
MySQL
Connector/Python
Revealed

SQL and NoSQL Data Storage Using
MySQL for Python Programmers
—
Jesper Wisborg Krogh

www.allitebooks.com

http://www.allitebooks.org

MySQL
Connector/Python

Revealed
SQL and NoSQL Data Storage

Using MySQL for Python
Programmers

Jesper Wisborg Krogh

www.allitebooks.com

http://www.allitebooks.org

MySQL Connector/Python Revealed

ISBN-13 (pbk): 978-1-4842-3693-2		 ISBN-13 (electronic): 978-1-4842-3694-9
https://doi.org/10.1007/978-1-4842-3694-9

Library of Congress Control Number: 2018952522

Copyright © 2018 by Jesper Wisborg Krogh

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.
com/9781484236932. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Jesper Wisborg Krogh
Hornsby, New South Wales, Australia

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3694-9
http://www.allitebooks.org

To my wife, Ann-Margrete, and my parents.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

Table of Contents

Part I: �Getting Ready���1

Chapter 1: �Introduction and Installation��3

Introduction��3

Versions��4

Community and Enterprise Editions���5

APIs��6

Downloading��8

Installation���15

pip – All Platforms��16

Microsoft Windows – MySQL Installer��20

Linux – MySQL Yum Repository��25

Verifying the Installation���27

MySQL Server��29

Installation��29

Configuration��33

www.allitebooks.com

http://www.allitebooks.org

vi

Creating the Application User��35

Installing the world Sample Database���37

Code Examples��41

Summary���43

Part II: �The Legacy APIs��45

Chapter 2: �Connecting to MySQL���47

Creating the Connection from Python��47

Syntax���48

Common Connection Options���50

Connection Examples���52

Reconfiguration and Reconnect���55

Connection Best Practices��57

Configuration Files���58

Alternatives to Hardcoding the Configuration���58

Using MySQL Configuration Files���60

General Configuration��64

Connection��64

Character Set��71

Query Behavior���80

Warnings��81

Summary���82

Chapter 3: �Basic Query Execution���83

Simple Execution���83

Executing the Query: cmd_query()���85

Retrieving Rows – get_rows()��89

Automatic Conversion into Native Python Types��95

Table of ContentsTable of Contents

vii

Retrieving Rows – get_rows() With Limit���98

Retrieving Rows – get_row()��101

Consuming Results���104

Cursors���105

Instantiation��106

MySQLCursor – Execution Flow��109

MySQLCursor – Query Execution��111

MySQLCursor – Properties���115

The Dictionary and Named Tuple Cursor Subclasses�����������������������������������118

Handling User Input���121

Validating the Input��122

Query Parameterization��122

Prepared Statements��127

Summary���131

Chapter 4: �Advanced Query Execution��133

Multi-Query Execution���134

Multiple Queries with Support for Results��135

Multiple Queries Based on a Template���143

Extended Inserts���148

Buffered Results��151

Stored Procedures���156

Loading Data Using a CSV File���162

Loading a Server-Side File���163

Loading an Application-Side File��164

Load Data Example���165

Connection Properties��170

Transactions���175

Table of ContentsTable of Contents

viii

Default Database��188

Time Zones���190

Other Connection Utility Methods��196

Connection Methods���198

Server Information Methods���204

Column Information���206

Field Types��207

MySQL Column Flags��209

The C Extension���214

The mysql.connector.connect() Function��215

The _mysql_connector Module��218

Summary���221

Chapter 5: �Connection Pooling and Failover��������������������������������������223

Connection Pooling – Background���223

The pooling.MySQLConnectionPool Class��224

The pooling.PooledMySQLConnection Class���226

Configuration Options���227

Using Connection Pools���229

Creating a Connection Pool��229

Using Connection Pool Connections���231

Executing Queries���239

Reconfiguring the Connections��241

Connection Failover���244

Failover Configuration��245

Coding for Failover���248

Failover Example��250

Summary���256

Table of ContentsTable of Contents

ix

Part III: �The X DevAPI��257

Chapter 6: �The X DevAPI��259

The MySQL X Plugin���261

The mysqlx Module��263

Creating a Session���267

Passing Individual Options���268

Passing an URI��272

Connection Examples���274

Working with the Session��275

Transactions���275

Other Session Methods��276

Schemas��277

Schema Manipulation���278

Other Schema Methods and Properties��284

Schema Example��286

CRUD Arguments��289

Documents���289

Document ID���291

Condition��292

Fields��293

Statements���294

Results���298

result.Result���299

result.DocResult and result.RowResult��300

result.SqlResult��302

Summary���304

Table of ContentsTable of Contents

x

Chapter 7: �The MySQL Document Store���305

The MySQL Document Store��305

Workflow��307

Collections���309

Collection Manipulation��310

Other Collection Methods and Properties���330

Queries – CRUD��331

CRUD: Create��333

CRUD: Read��339

CRUD: Update���346

Replacing Documents���347

Modifying Documents���350

CRUD: Delete��366

Summary���370

Chapter 8: �SQL Tables��371

Workflow��371

NoSQL API for SQL Tables��373

Table and View Objects���374

Table Queries��377

CRUD: Create��378

CRUD: Read���382

CRUD: Update���387

CRUD: Delete��390

SQL Statements���393

Executing SQL Statements���394

Queries with Multiple Result Sets��397

Summary���400

Table of ContentsTable of Contents

xi

Part IV: �Error Handling and Troubleshooting����������������������������403

Chapter 9: �Error Handling��405

Warnings, Errors, and Strict Modes in MySQL Server��406

Treating Note Level Messages as Warnings���406

Strict Modes���408

The MySQL Error Log��410

Warning and Error Handling���411

Configuration��411

Fetching Warnings After cmd_query()��415

Fetching Warnings with Cursors���421

Fetching Warnings with the X DevAPI��424

MySQL Error Numbers and SQL States��426

MySQL Error Numbers��427

SQL States��429

Exception Classes��432

Built-In Classes��433

Mapping Errors to Exception Classes���437

Custom Exceptions���438

Locking Issues���441

What to Do When Things Go Wrong��444

Severity��445

Impact��445

Frequency���446

Retriable���446

Effort���450

Summary���450

Table of ContentsTable of Contents

xii

Chapter 10: �Troubleshooting��453

Troubleshooting Steps���453

Checking Warnings���454

Determining the SQL Statement���455

Retrieving Raw Data���462

Reading the MySQL Connector/Python Source Code������������������������������������463

Changing the Implementation��464

MySQL Server Logs��464

Tools for Debugging���470

MySQL Shell���470

PyCharm���478

Troubleshooting Examples���487

Unread Result Found��487

Data Too Long or Out of Range Value���490

Data Changes Are Lost���493

The Used Command Is Not Allowed with This MySQL Version���������������������495

Bulk Changes Causes Corruption or Errors��496

Unsupported Argument When Creating the Connection�������������������������������497

Aborted Connections in the MySQL Server Error Log�����������������������������������498

Locking Issues��499

Summary���503

�Index��505

Table of ContentsTable of Contents

xiii

About the Author

Jesper Wisborg Krogh is a member of the

Oracle MySQL Support team and has spoken

on several occasions at Oracle OpenWorld.

He has a Ph.D. in Computational Chemistry

but he switched to working with MySQL and

other software development in 2006. His areas

of expertise include MySQL Cluster, MySQL

Enterprise Backup, and the Performance and

sys schemas. He is an active author in the

Oracle Knowledge Base and regularly

blogs on MySQL topics.

Jesper lives in Sydney, Australia, and enjoys spending time outdoors,

walking, traveling, and reading.

xv

About the Technical Reviewer

Charles Bell conducts research in emerging

technologies. He is a member of the Oracle

MySQL Development team and works

on various teams including Replication,

Utilities, and MySQL Enterprise Backup.

He received his Ph.D. in Engineering from

Virginia Commonwealth University in 2005. 

Charles is an expert in the database field

and has extensive knowledge and experience

in software development and systems engineering. His research interests

include 3D printers, microcontrollers, 3D printing, database systems,

software engineering, and sensor networks.

Charles lives in a small town in rural Virginia with his loving wife.

He spends his limited free time as a practicing Maker, focusing on

microcontroller projects and the refinement of 3D printers.

xvii

Acknowledgments

I would like to thank all of the people who made this book possible. The

Apress team has again been a great help, and I would in particular like

to thank Jonathan Gennick, Jill Balzano, and Laura Berendson, the three

editors I worked with while getting this book ready for production.

Several people have been invaluable sparring partners in technical

discussions. Thanks to Charles Bell for providing a thorough and

speedy technical review; his comments were, as always, very useful. The

discussions with Nuno Mariz, Israel Gomez Delgado, and Philip Olson

have also been invaluable.

Last but not least, thanks to my wife Ann-Margrete for her patience

and support while I wrote this book.

xix

Introduction

MySQL Connector/Python is the official driver used by Python programs

to communicate with MySQL. It is maintained by Oracle and is part of the

MySQL suite of products. It allows you to connect to a MySQL database

from your Python program and execute queries. You have a choice of

several APIs including the option of using SQL statements or a NoSQL

interface.

This book goes through the high-level usage as well as the low-level

details. When you have read all ten chapters of this book, you will be able

to decide which API is the best for your project and you’ll be able to use

it to execute your MySQL queries, handle errors, and troubleshoot when

things go wrong.

�Book Audience
The book was written for developers who need to use MySQL as a backend

data store or are otherwise interested in learning about the capabilities

of MySQL Connector/Python and how to use it. No prior knowledge of

MySQL Connector/Python is required. It is, however, an advantage to be

familiar with databases in general and with SQL and Python.

�Book Structure
The chapters are divided into four parts. The journey starts out with some

general background information, the installation of MySQL Connector/

Python and MySQL Server, and the preparation for the example programs

xx

that are included throughout the book. The next two parts are dedicated to

each of the main APIs included in MySQL Connector/Python: the legacy

(classic) API and the new X DevAPI. The final part discusses how to handle

errors and how to troubleshoot.

�Part I - Getting Ready
The first part consists of just one chapter:

	 1.	 Introduction and Installation - This chapter starts

out with an introduction to MySQL Connector/

Python. It then goes through the process of

downloading and installing it. The chapter finishes

off with instructions for getting a MySQL Server

instance set up for the example programs that are

included throughout the rest of the book.

�Part II - The Legacy APIs
The second part goes through the details of the MySQL Connector/Python

APIs based on the Python Database API specification (PEP 249), which is

the API traditionally used when connecting from Python to MySQL. The

four chapters are as follows:

	 2.	 Connecting to MySQL – The first task when using

MySQL Connector/Python is to connect to the

database instance. This chapter covers how to

create and configure the connection. This chapter

also includes a discussion of character sets and

collations.

IntroductionIntroduction

xxi

	 3.	 Basic Query Execution – In this chapter, you start

executing queries. The discussion is split over

two chapters; this chapter covers the basic parts

including simple queries returning a single result

set, using cursors, and the important topic of

handling user input.

	 4.	 Advanced Query Execution – This chapter continues

where the previous one ended. It goes through more

advanced concepts of executing queries such as

handling multiple result sets and loading data from

a CSV file. The topic of connection properties is also

revisited with a focus on the options that affect how

transactions work, the behavior of queries, etc. Then

there is a discussion of utilities, for example to test

whether the connection is still alive. Finally, there is

a discussion of the C Extension.

	 5.	 Connection Pooling and Failover – MySQL

Connector/Python has built-in support for

connection pooling and failover. This chapter

discusses how to set up and use a connection pool

as well as how to fail over to a different MySQL

instance should the current become unavailable.

�Part III - The X DevAPI
The third part switches the focus to the new API called the X DevAPI. This

API has reached general available status with MySQL 8.0 and provides

uniform access from several programming languages. It includes support

IntroductionIntroduction

xxii

for both NoSQL and SQL access as well as native support for working with

JSON documents in the MySQL Document Store. The three chapters are as

follows:

	 6.	 The X DevAPI – This chapter introduces the X

DevAPI, including details of the parts that are

shared between using MySQL as a document

store and using SQL tables. It covers how to create

connections and how to work with schemas,

statements, and results.

	 7.	 The MySQL Document Store – While MySQL

traditionally has been a relational SQL database,

the MySQL Document Store allows you to use it to

store JSON documents. This chapter goes through

the details of how to use the X DevAPI to work with

collections and documents.

	 8.	 SQL Tables – The X DevAPI also supports using

MySQL with SQL tables, both using a NoSQL

interface and to execute SQL statements. This chapter

explains how to use the X DevAPI with SQL tables.

�Part IV - Error Handling and Troubleshooting
The fourth and final part covers two important topics: error handling and

troubleshooting. The two chapters are as follows:

	 9.	 Error Handling – An important part of writing

a program is knowing how to handle errors

appropriately. This chapter covers errors from a

MySQL Server and MySQL Connector/Python

perspective including MySQL error numbers, SQL

states, lock issues, and what to do when an error

occurs.

IntroductionIntroduction

xxiii

	 10.	 Troubleshooting – When writing a program,

something inevitably goes wrong. An error may

occur or a query may not return the expected result.

This chapter discusses how to find information that

can help determine what the issue is and offers

several examples of problems and their solution.

�Downloading the Code
The code for the examples shown in this book is available on the Apress

web site, www.apress.com. A link can be found on the book’s information

page at https://www.apress.com/gp/book/9781484236932.

IntroductionIntroduction

https://www.apress.com/
https://www.apress.com/gp/book/9781484236932

PART I

Getting Ready

3© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9_1

CHAPTER 1

Introduction and
Installation
You are about to embark on a journey through the world of MySQL

Connector/Python. Welcome aboard! This is the first chapter out of a

ten-step guide that will take you through everything from installation

to troubleshooting. Along the way you will become acquainted with the

features and workings of the connector and its APIs.

This chapter will introduce MySQL Connector/Python by going

through the versions, editions, and the APIs. The middle part of this

chapter will discuss how to download and install the connector, and the

final part will talk about MySQL Server, how to set up the server for the

examples in this book, and a word on the examples themselves.

�Introduction
MySQL Connector/Python is the glue that is used between a Python program

and a MySQL Server database. It can be used to manipulate the database

objects using data definition language (DDL) statements as well as to change

or query the data through data manipulation language (DML) statements.

You can also call MySQL Connector/Python a database driver. It is the

official MySQL connector for Python, developed and maintained by Oracle

Corporation by the MySQL development team. It effectively supports three

different APIs, although only two are commonly used directly.

4

This section introduces the MySQL Connector/Python versions,

editions, and the three APIs.

�Versions
Before 2012, there was no Python connector maintained by Oracle. There

were other third-party connectors, such as the MySQL-python (MySQLdb)

interface; however, it was getting aged and only officially supported up to

MySQL 5.5 and Python 2.7.

MySQL decided to develop its own connector: MySQL Connector/

Python. It was written to be compatible with the MySQL-python interface

and to be up to date with the latest MySQL Server and Python versions.

The initial general availability (GA) release was version 1.0.7, which was

released in September 2012. A major update occurred with version 2.1; it

introduced the C Extension, which allows better performance. The latest

GA release as of April 2018 is version 8.0.11, which additionally introduces

the X DevAPI. This is the version that is the primary focus of this book.

Note  If you look at the change history of MySQL Connector/Python,
you may be a little puzzled. The version series before 8.0 was 2.1
with a few pre-GA releases of version 2.2. The list of 8.0 releases is
no less puzzling: the latest pre-GA release is 8.0.6 with the first GA
release being 8.0.11. Why the jumps? The version numbers of most
MySQL products were aligned, which required some irregularity in
release numbers, but it now means that MySQL Server 8.0.11 and
MySQL Connector/Python 8.0.11 are released together.

It is recommended to use the latest patch release of the latest series of

GA quality. Only the latest GA series receives all improvements and

bug fixes. That means that, at the time of writing, it is recommended to

use the latest MySQL Connector/Python 8.0 release. While the MySQL

Chapter 1 Introduction and Installation

5

Connector/Python 8.0 releases are coupled together with the release of

MySQL Server and other MySQL products,1 they are backward compatible

with older MySQL Server versions. So, even if you are still using, for

example, MySQL Server 5.7, you should still use MySQL Connector/

Python 8.0.

Tip U se the latest release of the latest release series of GA quality to
ensure you have access not only to all the latest features but also the
latest available bug fixes. The latest MySQL Connector/Python version
can be used with older MySQL Server versions. On the other hand,
an older version of MySQL Connector/Python may not be compatible
with the latest MySQL Server version. For example, MySQL Server 8.0
uses the caching_sha2_password authentication plugin by default,
which is not supported until recently in MySQL Connector/Python.

As with any product under active development, new features are

regularly added and bugs are fixed. You can follow the changes in the

release notes, which are available from https://dev.mysql.com/doc/

relnotes/connector-python/en/.

In addition to the various versions of MySQL Connector/Python, there

are (as with other MySQL products) two different editions to choose from.

Let’s take a look at them.

�Community and Enterprise Editions
MySQL products are available in two different editions: Community and

Enterprise. The Enterprise Edition is a commercial offering from Oracle.

The difference between the two editions varies among the products.

For example, for MySQL Server, several additional plugins are available for

1�https://mysqlrelease.com/2018/03/mysql-8-0-it-goes-to-11/

Chapter 1 Introduction and Installation

https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-python/en/
https://mysqlrelease.com/2018/03/mysql-8-0-it-goes-to-11/

6

the Enterprise Edition. For MySQL Connector/Python, the difference

is subtler.

A common difference for all products is the license. The Community

Edition is released under the GNU General Public License, version 2.0,

whereas the Enterprise Edition uses a proprietary license. Additionally, the

Enterprise Edition includes technical support through MySQL Technical

Support Services. These are presently the only differences between the two

editions for MySQL Connector/Python itself.

This book will work with either of the two editions and, except when

briefly discussing download locations and install methods later in this

chapter, there will be no mention of the edition. All examples have been

written and tested with the Community Edition.

In contrast, when it comes to APIs, it makes a big difference which API

you use.

�APIs
There are effectively three different APIs that can be used in MySQL

Connector/Python. How to use the APIs is the main purpose of

Chapters 2-9. Before you get started for real, it is worth taking a brief view

of the differences.

Table 1-1 shows the three APIs, which MySQL Connector/Python

module they are available in, the first GA version including support for the

API, and the chapters where they are discussed.

Table 1-1.  MySQL Connector/Python APIs

API Module First Version Chapters

Connector/Python API mysql.connector 1.0.7 2, 3, 4, 5, 9, 10

C Extension API _mysql_connector 2.1.3 4

X DevAPI mysqlx 8.0.11 6, 7, 8, 9, 10

Chapter 1 Introduction and Installation

7

Additionally, the Connector/Python API and X DevAPI exist both

in a pure Python implementation and one using C Extension under the

hood. These two implementations are meant to be interchangeable. Some

differences between the two implementations will be mentioned when

encountered throughout the book.

As you can see, the main focus is on the Connector/Python API and

X DevAPI. The Connector/Python API and the C Extension API exclusively

use SQL statements to execute queries. The X DevAPI, on the other hand,

supports NoSQL methods to handle JSON documents and SQL tables

as well as support for SQL statements. The X DevAPI is a common API

available for other programming languages as well, including JavaScript

(Node.js), PHP, Java, DotNet, and C++.

So which API should you choose? From the description thus far, it

sounds like it is a no-brainer to choose the X DevAPI. However, there is a

little more to it than that.

If you are exclusively using SQL statements to execute queries, the C

Extension and C Extension API are more mature. For example, they offer

much better support for features such as parameter binding and prepared

statements. If you need a connection pool, they are also the APIs to choose.

If you have existing Python programs, they are also most likely using the

Connector/Python API (with or without the C Extension implementation

enabled).

On the other hand, the X DevAPI is a new API that has been designed

from the ground up to fit modern requirements. The API also exists

for other programming languages, making it easier to switch between

languages when several languages are required for the applications. The

NoSQL parts of the API makes simple queries against SQL tables and

working with JSON documents simpler. The new command-line client,

MySQL Shell, also supports using the X DevAPI via either Python or

JavaScript. So, the X DevAPI there is a lot talking for new projects.

Chapter 1 Introduction and Installation

8

Since the X DevAPI is essentially in its version 1.0 (MySQL 8.0 is the

first GA version for the X DevAPI), new features are more likely to become

available in relatively short succession. If you are missing a feature, keep

an eye on the release notes to see if the feature has become available, or

register your interest at https://bugs.mysql.com/.

Whether to use the C Extension or not is to a large degree a

question of performance compared to “convenience.” The C Extension

implementation provides better performance particularly when working

with large result sets and prepared statements. However, the pure Python

implementation is available on more platforms, is easier to work with

when building MySQL Connector/Python yourself, and is easier to modify

(as the name suggest, the pure Python implementation is written entirely

in Python).

This concludes the introduction to MySQL Connector/Python. It

is time to get started with the installation process. The first step is to

download MySQL Connector/Python.

�Downloading
It is straightforward to download MySQL Connector/Python; however,

there are still a few considerations. These considerations and the steps to

perform the download are the topics of this section.

The first thing to ask is whether you need the Community or Enterprise

Edition of the connector. This decides both the download and the install

options. The Community Edition is available from several locations and

both in the form of source code and as binary distributions. The Enterprise

Edition is only available as the binary distribution from Oracle.

Chapter 1 Introduction and Installation

https://bugs.mysql.com/

9

Tip  The recommended way to install the Community Edition
of MySQL Connector/Python is to use packages from the Python
Packaging Authority (PyPa)/Python Package Index (PyPi). This is done
using the pip tool and does not require predownloading any files.
One downside of using PyPi is there can be a small lag from when
the release is made to when it becomes available in PyPi.

Table 1-2 shows an overview of the delivery methods available for

MySQL Connector/Python and whether the method is available for the

Community and Enterprise Editions.

Table 1-2.  MySQL Connector/Python Download Options

Distribution Community Edition Enterprise Edition

Python Packages (pip) Available; see installation

Windows Installer Available Available

MSI Installer Available Available

APT repository Available

SUSE repository Available

Yum repository Available

RPM downloads Available Available

DEB packages Available Available

Solaris package Available Available

macOS Available Available

Platform-independent tar or

zip files

Available Available

Chapter 1 Introduction and Installation

10

As you can see, MySQL Connector/Python is available for a large range

of platforms and in different distributions. The Community Edition is

available directly using the pip command-line tool; using the MySQL Yum

repository for Red Hat Enterprise Linux, Oracle Linux, and Fedora Linux;

the MySQL APT repository for Debian and Ubuntu; and using the MySQL

SUSE repository for SLES. The pip and package repository options are only

available for the Community Edition.

Tip  Both a MySQL Installer and a MSI Installer for MySQL
Connector/Python are available for Microsoft Windows. If you want to
use one of these installers, MySQL Installer is recommended because
it also supports most of the other MySQL products.

Table 1-3 shows the URLs for the download locations for the various

sources and installers. The MySQL repositories count as installers in

this context even though they are more like definition files used with an

installer.

Chapter 1 Introduction and Installation

11

The Community Edition-related downloads are available from pages

under https://dev.mysql.com/downloads. If you need the source code, it is

available from the MySQL Downloads site and MySQL’s GitHub repository.2

The Enterprise Edition is available either from the Patches & Updates

tab in My Oracle Support (MOS) or from the Oracle Software Delivery

Cloud (requires creating an account and signing in). MySQL customers are

2�If you are familiar with git, it is recommended to use GitHub to get the source code
because it allows you to easily switch branches, which includes older releases.
However, as with PyPi, there can be a lag of the newest changes to be uploaded.

Table 1-3.  Download Sources

Source/Installer URL

Community:
MySQL Installer for Microsoft Windows https://dev.mysql.com/downloads/

installer/

APT repository https://dev.mysql.com/downloads/

repo/apt/

SUSE repository https://dev.mysql.com/downloads/

repo/suse/

Yum repository https://dev.mysql.com/downloads/

repo/yum/

MySQL downloads https://dev.mysql.com/downloads/

connector/python/

GitHub https://github.com/mysql/mysql-

connector-python

Enterprise:
My Oracle Support https://support.oracle.com/

Oracle Software Delivery Cloud https://edelivery.oracle.com/

Chapter 1 Introduction and Installation

https://dev.mysql.com/downloads
https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/connector/python/
https://github.com/mysql/mysql-connector-python
https://github.com/mysql/mysql-connector-python
https://support.oracle.com/
https://edelivery.oracle.com/

12

recommended to use My Oracle Support because it contains more releases

and is updated more often than the Oracle Software Delivery Cloud. On

the other hand, a 30-day trial version of the Enterprise Edition of the

MySQL products is available from Oracle Software Delivery Cloud. MySQL

Installer for Microsoft Windows is also available in an Enterprise Edition;

this can be downloaded from either My Oracle Support or Oracle Software

Delivery Cloud.

The downloads are pretty straightforward. Figure 1-1 shows the

download screen to download the MySQL Installer for Microsoft Windows.

Figure 1-1.  Downloading the MySQL Installer for Microsoft Windows

Chapter 1 Introduction and Installation

13

Once you click Download, you will be taken to the page in Figure 1-2

if you are not logged in. Here you can choose to log into an existing Oracle

Web account, sign up for a new Oracle Web account, or download without

using an account by clicking No thanks, just start my download. Choose

the option that suits you best. The Oracle Web account is also used for My

Oracle Support and Oracle Software Delivery Cloud, so if you are an Oracle

customer you can use your existing account.

Figure 1-2.  Ready to download

Chapter 1 Introduction and Installation

14

Downloading other MySQL Products including MySQL Connector/

Python from the community download page follows the same pattern.

The main difference is that you will need to choose the operating system

and optionally the operating system version you are using. The default

operating system chosen will be the one you are browsing from. Figure 1-3

shows how the operating system can be chosen when downloading MySQL

Connector/Python.

Figure 1-3.  Choosing a platform for MySQL Connector/Python

Chapter 1 Introduction and Installation

15

Once you have chosen the platform, you can choose the specific

file to download. The differences may be which Python version to use

MySQL Connector/Python with and whether it is the pure Python or the C

Extension implementation.

One word about the C Extension and downloads. Depending on the

platform, the C Extension implementation may be bundled with the rest

of the download and automatically installed, or there may be a separate

file to download. On Microsoft Windows, the C Extension is always

included if it available for the Python version. In general, the latest couple

of supported Python versions will include the C Extension; for older

Python versions, it is not included. For RPM and DEB packages, there are

two packages for each MySQL Connector/Python release and supported

Python version: one file with the pure Python implementation and one

with the C Extension implementation.

The web sites where the Enterprise Edition of MySQL Installer and

MySQL Connector/Python can be downloaded are designed differently,

but the idea is the same. How downloads work from My Oracle Support

and the Oracle Software Delivery Cloud will not be discussed further in

this book. Instead, let’s look at the installation process itself.

�Installation
MySQL Connector/Python supports several ways to install the connector.

The available methods depend on the operating system. The steps should

give few surprises if you are used to installing software.

If your installation method includes the option of whether to

install the C Extension or not (for example, RPM or DEB packages), it is

recommended to include the C Extension package. Even if you do not plan

on using the _mysql_connector module directly, using the C Extension

implementation of the other APIs can provide better performance.

Chapter 1 Introduction and Installation

16

The type of installation that will be required closely follows the choice

of how to download the installation file. The most unique way of installing

MySQL Connector/Python is to use MySQL Installer. This section will go

through installation using the pip command, using MySQL Installer, and

using the MySQL Yum repository.

�pip – All Platforms
The recommended way to install MySQL Connector/Python if you use the

Community Edition is to use the pip command to install the package from

the Python Packaging Authority (PyPa). This ensures that any potential

dependencies are resolved automatically, and the same installation

method can be used across all platforms where you need MySQL

Connector/Python.

The pip command is available as part of the normal Python

installation for Python version 2.7.9 and later if you downloaded Python

from https://www.python.org/. Noticeable exceptions are some

Linux distributions such as RedHat Enterprise Linux, Oracle Linux, and

CentOS Linux., which still use relatively old versions of Python. General

installation instructions can be found at https://pip.pypa.io/en/

stable/installing/ and https://packaging.python.org/guides/

installing-using-linux-tools/. The sidebar “Installing pip On the

RedHat Family of Linux” includes an example of how to install pip on

RedHat Enterprise Linux, Oracle Linux, and CentOS.

When pip is available, it is simple to install the latest available MySQL

Connector/Python release using the install command. The exact

output of the installation varies, for example, depending on whether

dependencies such as protobuf have already been installed. An example

output is

PS: Python> pip install mysql-connector-python

Collecting mysql-connector-python

Chapter 1 Introduction and Installation

https://www.python.org/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://packaging.python.org/guides/installing-using-linux-tools/
https://packaging.python.org/guides/installing-using-linux-tools/

17

 �Downloading https://files.pythonhosted.org/.../mysql_

connector_python-8.0.11-cp36-cp36m-win_amd64.whl

(3.0MB)

 100% |███████████████| 3.0MB 3.5MB/s

Collecting protobuf>=3.0.0 (from mysql-connector-python)

 �Using cached https://files.pythonhosted.org/.../protobuf-

3.5.2.post1-cp36-cp36m-win_amd64.whl

Requirement already satisfied: six>=1.9 in c:\users\jesper\

appdata\local\programs\python\python36\lib\site-packages (from

protobuf>=3.0.0->mysql-connector-python)

 (1.11.0)

Requirement already satisfied: setuptools in c:\users\jesper

\appdata\local\programs\python\python36\lib\site-packages (from

protobuf>=3.0.0->mysql-connector-python)

 (28.8.0)

Installing collected packages: protobuf, mysql-connector-python

Successfully installed mysql-connector-python-8.0.11 protobuf-

3.5.2.post1

The example is from Microsoft Windows executing the pip command

in PowerShell. The command assumes that the pip command is in the

search path for executables (this can be enabled when installing Python on

Windows and will in general be the case on Linux). If the pip command is

not in the search path, you must use the full path. When the installation is

performed on other platforms, the command is the same and the output

very similar.

If you want to uninstall the package, the command is very similar; just

use the uninstall command instead.

So

PS: Python> pip uninstall mysql-connector-python

Uninstalling mysql-connector-python-8.0.11:

Chapter 1 Introduction and Installation

18

 Would remove:

 �c:\users\jesper\appdata\local\programs\python\python36\lib\

site-packages_mysql_connector.cp36-win_amd64.pyd

 �c:\users\jesper\appdata\local\programs\python\python36\lib\

site-packages_mysqlxpb.cp36-win_amd64.pyd

 �c:\users\jesper\appdata\local\programs\python\python36\lib\

site-packages\libeay32.dll

 �c:\users\jesper\appdata\local\programs\python\python36\lib\

site-packages\libmysql.dll

 �c:\users\jesper\appdata\local\programs\python\python36\lib\

site-packages\mysql*

 �c:\users\jesper\appdata\local\programs\python\python36\lib\

site-packages\mysql_connector_python-8.0.11.dist-info*

 �c:\users\jesper\appdata\local\programs\python\python36\lib\

site-packages\mysqlx*

 �c:\users\jesper\appdata\local\programs\python\python36\lib\

site-packages\ssleay32.dll

Proceed (y/n)? y

 Successfully uninstalled mysql-connector-python-8.0.11

INSTALLING PIP ON THE REDHAT FAMILY OF LINUX

The best way to install the pip command on Oracle Linux, RedHat Enterprise

Linux, and CentOS is to use the EPEL Yum repository. The following steps

assume you are using version 7 of the respectively Linux distribution. Older

versions will require slightly different instructions. The steps are as follows:

	1.	D ownload the EPEL repository definition from https://

dl.fedoraproject.org/pub/epel/epel-release-

latest-7.noarch.rpm.

	2.	 Install the downloaded EPEL RPM.

Chapter 1 Introduction and Installation

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

19

	3.	 Install the python-pip and python-wheel packages.

	4.	O ptionally, let pip upgrade itself using the pip install

–upgrade pip command.

The python-wheel package provides support for the wheel built-package format

used for Python packages. See also https://pypi.org/project/wheel/.

The combined steps executed in the Linux shell are as follows:

shell$ wget https://dl.fedoraproject.org/pub/epel/epel-release-

latest-7.noarch.rpm

...

2018-03-10 20:26:28 (55.3 KB/s) - 'epel-release-latest-7.noarch.

rpm' saved [15080/15080]

shell$ sudo yum localinstall epel-release-latest-7.noarch.rpm

...

Downloading packages:

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

 Installing : epel-release-7-11.noarch 1/1

 Verifying : epel-release-7-11.noarch 1/1

Installed:

 epel-release.noarch 0:7-11

Complete!

shell$ sudo yum install python-pip python-wheel

...

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

Chapter 1 Introduction and Installation

https://pypi.org/project/wheel/

20

 Installing : python-wheel-0.24.0-2.el7.noarch 1/2

 Installing : python2-pip-8.1.2-5.el7.noarch 2/2

 Verifying : python2-pip-8.1.2-5.el7.noarch 1/2

 Verifying : python-wheel-0.24.0-2.el7.noarch 2/2

Installed:

 python-wheel.noarch 0:0.24.0-2.el7

 python2-pip.noarch 0:8.1.2-5.el7

Complete!

shell$ sudo pip install --upgrade pip

Collecting pip

 Downloading pip-9.0.1-py2.py3-none-any.whl (1.3MB)

 100% |████████████████| 1.3MB 296kB/s

Installing collected packages: pip

 Found existing installation: pip 8.1.2

 Uninstalling pip-8.1.2:

 Successfully uninstalled pip-8.1.2

Successfully installed pip-9.0.1

At this point, the pip command has been installed as /usr/bin/pip. In most

cases, commands in /usr/bin can be executed without specifying the

full path.

�Microsoft Windows – MySQL Installer
For installations on Microsoft Windows where you for one reason or

another do not wish to use the pip command, the preferred installation

method is MySQL Installer. One advantage is that it can be used to install

both the Community and Enterprise Editions of MySQL Connector/

Python. Which version will be installed depends on the edition of MySQL

Installer.

Chapter 1 Introduction and Installation

21

The following instructions assume you have MySQL Installer on your

computer already. If that is not the case, please see the “MySQL Installer

for Microsoft Windows” sidebar for instructions. The first step is to launch

MySQL Installer. The first time you use the installer, you will be asked to

accept the license terms. Then you will be taken to a screen where you can

choose which MySQL products you want to install. We will pick up at that

point again after the discussion of Figure 1-4.

If you have already used MySQL Installer to install products, you will

be shown the screen in Figure 1-4; it’s an overview of the MySQL products

already installed and the available actions.

Figure 1-4.  The MySQL Installer screen showing already installed
MySQL products

Chapter 1 Introduction and Installation

22

If you installed MySQL Installer some time ago and have not recently

updated the catalog, it is recommended first to click the Catalog action in

the lower right corner to ensure you can choose from all the latest releases.

This will take you to a screen where you can execute a catalog update. The

update does not change any of the products installed; it only updates the

list of products that MySQL Installer uses to notify of upgrades and you

choose from when installing new products.

Once the catalog is up to date, you can add a new product using the

Add action to the right of the list of installed products. This brings you

to the screen shown in Figure 1-5, which is also the screen you are taken

directly to the first time MySQL Installer is launched.

Figure 1-5.  Choosing what to install

Chapter 1 Introduction and Installation

23

The filter at the top can be used to narrow down or expand which

products and releases should be included. By default, the latest GA releases

are included for all software in both the 32-bit and 64-bit architectures. If

you want to try out a development milestone release or release candidate,

you need to include pre-releases by editing the filter. An example of

filtering to search for GA releases of Connector/Python under The MySQL

Connectors category and requiring it to be 64-bit can be seen in Figure 1-6.

MySQL Connector/Python can be found under Available Products by

expanding the MySQL Connectors group. There is one product listed for

each supported Python version. MySQL Installer will check whether the

correct Python version is installed. When you have found the right release,

add it to the list of products and features to be installed by clicking the

arrow pointing to the right and then clicking Next.

The next screen shows an overview of the products to install. Once you

have confirmed everything is correct, click Execute to start the installation.

The execution may take a little time because it includes downloading the

connector. Once the installation has completed, click Next. This will allow

you to copy the log to the clipboard and finish.

Figure 1-6.  Filtering the list of products

Chapter 1 Introduction and Installation

24

MYSQL INSTALLER FOR MICROSOFT WINDOWS

The MySQL Installer for Microsoft Windows is the entry point to manage the

various MySQL products (MySQL NDB Cluster is an exception). It allows you

to install, upgrade, and remove the products and features from one interface.

There is also limited support for configuring MySQL Server.

MySQL Installer comes in two flavors: one that includes a version of MySQL

Server and one without (the “web” download). If you know you will be

installing MySQL Server, it can be convenient to use the download that has

MySQL Server bundled because it will save time during the installation.

With either choice, MySQL Installer will download the product as part of the

installation if you do not have a local installation file ready.

In order to install MySQL Installer, follow these steps:

	1.	D ownload MySQL Installer. If you are using the Community

Edition of the MySQL products, download it from https://

dev.mysql.com/downloads/installer/. If you use

the Enterprise Edition, download it from My Oracle Support

(https://support.oracle.com/) or Oracle Software

Delivery Cloud (https://edelivery.oracle.com/). Both

locations for the Enterprise Edition require using an existing

Oracle account or creating a new one. My Oracle Support is

recommended if you are an existing customer.

	2.	 The downloaded file is an MSI Installer but will for the

Enterprise Edition be inside a zip file, which you can unzip and

then execute the MSI Installer and follow the instructions.

	3.	 If you have not downloaded the latest release of MySQL

Installer, you will be offered the opportunity to upgrade it. It is

recommended to do this.

Chapter 1 Introduction and Installation

https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/downloads/installer/
https://support.oracle.com/
https://edelivery.oracle.com/

25

	4.	 When the installation has completed, MySQL Installer

automatically launches.

The installer also can be launched later, for example through the Start menu.

�Linux – MySQL Yum Repository
The easiest way to install MySQL products in the Community Edition on

Linux distributions is to use the MySQL repository. For RedHat Enterprise

Linux, Oracle Linux, CentOS, and Fedora, this means the MySQL Yum

repository. This way the packages can be found by the yum command and

Yum will be able to resolve dependencies automatically. Except for using the

pip command to install MySQL Connector/Python, this is the recommended

way to install MySQL software if you want the install to be managed.

That the installation is managed means the installer (pip or yum)

handles dependencies for you, and it is possible to request an upgrade

using the installer. For both installs and upgrades, the software is

automatically downloaded from the repository.

The MySQL Yum repository is installed using the RPM that can be

downloaded from https://dev.mysql.com/downloads/repo/yum/.

Choose the RPM that corresponds to your Linux distribution. The RPM

can, for example, be installed using the yum localinstall command:

shell$ sudo yum localinstall \

 mysql57-community-release-el7-11.noarch.rpm

...

Running transaction

 Installing : mysql57-community-release-el7-11.noarch 1/1

 Verifying : mysql57-community-release-el7-11.noarch 1/1

Installed:

 mysql57-community-release.noarch 0:el7-11

Complete!

Chapter 1 Introduction and Installation

https://dev.mysql.com/downloads/repo/yum/

26

The MySQL RPMs are signed with GnuPG. To make the rpm command

(invoked by yum) check the signatures and not complain about missing

keys, you need to install the public key used by MySQL. There are several

ways to do this as described in https://dev.mysql.com/doc/refman/en/

checking-gpg-signature.html. One option is to get the public key from

this page and save it in a file. You need the part starting with -----BEGIN

PGP PUBLIC KEY BLOCK----- and finishing with -----END PGP PUBLIC

KEY BLOCK----- (everything included). Save the key into a file, for example

named mysql_pubkey.asc. Then you import the key into RPM’s keyring:

shell$ sudo rpm --import mysql_pubkey.asc

Once the repository and the public key have been installed, MySQL

Connector/Python can be installed as shown in Listing 1-1.

Listing 1-1.  Installing MySQL Connector/Python Using Yum on Linux

shell$ sudo yum install mysql-connector-python \

 mysql-connector-python-cext

...

Downloading packages:

(1/2): mysql-connector-python-8.0.11-1.el7.x86_64.rpm | 418 kB

00:00

(2/2): mysql-connector-python-cext-8.0.11-1.el7.x86_6 | 4.8 MB

00:01

Total 3.3 MB/s | 5.2 MB 00:01

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

 Installing : mysql-connector-python-8.0.11-1.el7.x86_64 1/2

 �Installing : mysql-connector-python-cext-8.0.11-1.el7.

x86_64 2/2

Chapter 1 Introduction and Installation

https://dev.mysql.com/doc/refman/en/checking-gpg-signature.html
https://dev.mysql.com/doc/refman/en/checking-gpg-signature.html

27

 �Verifying : mysql-connector-python-8.0.11-1.el7.

x86_64 1/2

 �Verifying : mysql-connector-python-cext-8.0.11-1.el7.

x86_64 2/2

Installed:

 mysql-connector-python.x86_64 0:8.0.11-1.el7

 mysql-connector-python-cext.x86_64 0:8.0.11-1.el7

Complete!

This code installed both the pure Python and the C Extension (with

cext in the name) implementations of MySQL Connector/Python. Before

moving on, let’s verify the MySQL Connector/Python installation.

�Verifying the Installation
A simple way to verify that the installation of MySQL Connector/Python

works is to create a small test program to print a few properties from the

mysql.connector module. If the program executes without errors, the

installation was successful.

Listing 1-2 shows an example of retrieving the MySQL Connector/

Python version as well as a few other properties.

Listing 1-2.  Verifying That the MySQL Connector/Python

Installation Works

import mysql.connector

print(

 "MySQL Connector/Python version: {0}"

 .format(mysql.connector.__version__)

)

Chapter 1 Introduction and Installation

28

print("Version as tuple:")

print(mysql.connector.__version_info__)

print("")

print("API level: {0}"

 .format(mysql.connector.apilevel))

print("Parameter style: {0}"

 .format(mysql.connector.paramstyle))

print("Thread safe: {0}"

 .format(mysql.connector.threadsafety))

The version is printed in two different ways, as a string and as a tuple.

The tuple can be useful if you need an application to be compatible with

two different versions of MySQL Connector/Python and need different

code paths depending on the version.

The API level, parameter style, and thread safety properties do not, in

general, change. They are related to the Python Database API specification

(https://www.python.org/dev/peps/pep-0249/) that the mysql.

connector module implements. These three properties are required global

properties of the module.

The output when using MySQL Connector/Python 8.0.11 is

PS: Chapter 1> python listing_1_1.py

MySQL Connector/Python version: 8.0.11

Version as tuple:

(8, 0, 11, '', 1)

API Level: 2.0

Parameter style: pyformat

Thread safe: 1

Chapter 1 Introduction and Installation

https://www.python.org/dev/peps/pep-0249/

29

�MySQL Server
MySQL Connector/Python is not worth much on its own. Unless you have

a MySQL Server instance to connect to, you will be limited to doing things

such as checking the version, as in the example in the previous section.

So, if you do not already have access to an installation of MySQL Server,

you will also need to install it. This section will give a brief overview of

installing and configuring MySQL Server.

�Installation
The installation process of MySQL Server is similar to the steps described

for MySQL Connector/Python if you use the MySQL Installer or the MySQL

Yum repository. In both of these cases, the installer will set up MySQL

for you. Additionally, there is an option to install using a zip archive on

Microsoft Windows or a tar archive on Linux, macOS, Oracle Solaris, and

FreeBSD.

Note  This discussion assumes a new installation. If you already
have MySQL installed, you can also choose to upgrade. However, if
your current MySQL installation is not from the MySQL repository, it
is best to remove the existing installation first to avoid conflicts, and
then do a clean install.

Since the installation steps are so similar for MySQL Server compared

to MySQL Connector/Python when using an installer, this discussion

will focus on installing using a zip or tar archive. The discussion about

retrieving the password that is set for the administrator account (root@

localhost) is also relevant when using installers on Linux. Since MySQL

Installer is an interactive installer, it will ask you what the password should

be and set it for you.

Chapter 1 Introduction and Installation

30

Tip  The discussion about the installation of MySQL Server in
this book only covers some of the basics. For the full installation
instructions, see https://dev.mysql.com/doc/refman/
en/installing.html and https://dev.mysql.com/doc/
refman/en/data-directory-initialization-mysqld.html.

Using a zip or tar archive can be particularly useful if you need multiple

different versions installed on the same computer because it allows you

to locate the installation where you like. If you choose this approach, you

need to initialize the data directory manually. An example of doing this on

Microsoft Windows can be seen in the following example:

PS: Python> D:\MySQL\mysql-8.0.11-winx64\bin\mysqld

 --basedir=D:\MySQL\mysql-8.0.11-winx64

 --datadir=D:\MySQL\Data_8.0.11

 --log_error=D:\MySQL\Data_8.0.11\error.log

 --initialize

The command is split over several lines to improve readability. Make

sure you combine all of the parts into one line when you execute it.

The command may take a little time to complete, particularly if you are

installing on a non-memory-based (i.e. a spinning) disk drive.

The command in Linux and other Unix-like systems is very similar

except that the --user option has been added:

shell$ /MySQL/base/8.0.11/bin/mysqld \

 --basedir=/MySQL/base/8.0.11/ \

 --datadir=/MySQL/Data_8.0.11 \

 --log_error=/MySQL/Data_8.0.11/error.log \

 --user=mysql \

 --initialize

Chapter 1 Introduction and Installation

https://dev.mysql.com/doc/refman/en/installing.html
https://dev.mysql.com/doc/refman/en/installing.html
https://dev.mysql.com/doc/refman/en/data-directory-initialization-mysqld.html
https://dev.mysql.com/doc/refman/en/data-directory-initialization-mysqld.html

31

The two commands use several arguments. They are

•	 --basedir: This option tells where MySQL Server

binaries, libraries, etc. are installed. This directory

includes a bin, lib, share, and more subdirectories with

the files required by MySQL Server.

•	 --datadir: This option tells where to store the data.

This is the directory that is initialized by the command.

This directory must either not exist or be empty. If it

does not exist, the --log_error option cannot point to

a file inside the data directory.

•	 --log_error: This option tells where to write the log

messages to.

•	 --user: On Linux and Unix, this option is used to tell

which user MySQL will be executed as. This is only

required (but is allowed in general) if you initialize the

data directory as the root user. In that case, MySQL

will ensure that the newly created files are owned by

the user specified by the --user argument. The user

traditionally used is the mysql user, but for personal test

instances, you can also use your normal login user.

•	 --initialize: This option tells MySQL to initialize the

data directory.

The initialization includes setting the password for the root@

localhost account. The password is random and can be found in the error

log; this also applies when MySQL has been installed using, for example,

RPMs. However, MySQL Installer will ask for the password during the

installation and set it. If you are using macOS, the password will also be

shown in the notifications. An example of the error log that includes the

temporary password is

Chapter 1 Introduction and Installation

32

2018-03-11T05:01:08.871014Z 0 [System] [MY-010116] D:\MySQL\

mysql-8.0.4-rc-winx64\bin\mysqld.exe (mysqld 8.0.4-rc) starting

as process 3964 ...

2018-03-11T05:01:20.240818Z 0 [Warning] [MY-010068] CA

certificate ca.pem is self signed.

2018-03-11T05:01:20.259178Z 5 [Note] [MY-010454] A temporary

password is generated for root@localhost: fj3dJih6Ao*T

You need this password the first time you connect. Once you have

connected, you must change the password before you can execute general

queries because the random one generated during the installation is

marked as expired. You change the password using the ALTER USER

statement, as shown in Listing 1-3.

Listing 1-3.  Changing the Password of the root@localhost Account

PS: Python> D:\MySQL\mysql-8.0.11-winx64\bin\mysql --user=root

--password

Enter password: ************

Welcome to the MySQL monitor. Commands end with ; org.

Your MySQL connection id is 7

Server version: 8.0.11 MySQL Community Server - GPL

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All

rights reserved. Oracle is a registered trademark of

Oracle Corporation and/or its affiliates. Other names may be

trademarks of their respective owners. Type 'help;' or '\h' for

help. Type '\c' to clear the current input statement.

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY

'&lknjJ2lAc1)#';

Query OK, 0 rows affected (0.15 sec)

Chapter 1 Introduction and Installation

33

Ensure that you choose a password that is hard for others to guess. You

can also use the command to change other settings for the user such as the

SSL requirements, the authentication plugin, and so on.

Tip  The default authentication plugin in MySQL 8.0 is the
caching_sha2_password plugin. It provides good security
because it is based on sha256 salted hashes. At the same time,
the caching makes it perform well. However, since it is a new
authentication plugin, older connectors and clients including MySQL
Connector/Python 2.1.7 and earlier, the MySQL command-line
client from MySQL Server 5.7, and third-party connectors such as
those for PHP and Perl do not at the time of writing support the
caching_sha2_password plugin. If you need to connect using one
of these connectors or clients, you can use the older (and less secure
because it is sha1-based and not salted) mysql_native_password
plugin instead. See https://dev.mysql.com/doc/refman/
en/create-user.html and https://dev.mysql.com/doc/
refman/en/alter-user.html for more information about the
syntax of the CREATE USER and ALTER USER statements.

The instance will, unless you used MySQL Installer, use the default

configuration. The final thing to consider is how to change the configuration.

�Configuration
In some cases, it is necessary to change the configuration of the newly

installed MySQL Server instance. In general, the default values are a great

starting point. Obviously, for a production server, there are some changes

that are required, but often it is a case of few changes are better than

many changes. For the purpose of the examples in this book, the default

configuration works well.

Chapter 1 Introduction and Installation

https://dev.mysql.com/doc/refman/en/create-user.html
https://dev.mysql.com/doc/refman/en/create-user.html
https://dev.mysql.com/doc/refman/en/alter-user.html
https://dev.mysql.com/doc/refman/en/alter-user.html

34

That said, you already saw some non-default settings in the examples

where the data directory was initialized manually. Additionally, if you

are developing an application that will be deployed to production, it is

recommended to use a configuration that is as close to the production

configuration as possible to avoid gotchas due to differences. While this,

of course, does not mean the desktop you are developing on should be

able to allocate half a terabyte of memory to the InnoDB buffer pool just

because the production server is using that, you can use a configuration

that is similar but scaled down.

Tip  You can read more about configuring MySQL in the Reference
Manual, including the complete list of options, at https://dev.
mysql.com/doc/refman/en/server-system-variables.html
and https://dev.mysql.com/doc/refman/en/option-
files.html.

In general, it is also best to use a MySQL configuration file to set

any required options. This avoids missing some options when starting

MySQL. You can then start the MySQL daemon (mysqld on Linux/Unix

and mysqld.exe on Microsoft Windows) with the --defaults-file

option with the path to the configuration file. By convention, the MySQL

configuration file is named my.ini on Microsoft Windows and my.cnf on

other platforms.

If you are using Microsoft Windows and chose to install MySQL as

a service, you will be starting and stopping the MySQL service through

the control panel application (or letting Microsoft Windows do it

automatically). In this case, a configuration file is even more useful

because you can specify to use it in the service definition, which avoids

modifying the service if you later want to change the MySQL configuration.

Chapter 1 Introduction and Installation

https://dev.mysql.com/doc/refman/en/server-system-variables.html
https://dev.mysql.com/doc/refman/en/server-system-variables.html
https://dev.mysql.com/doc/refman/en/option-files.html
https://dev.mysql.com/doc/refman/en/option-files.html

35

The configuration file follows the INI file format. The following is an

example with the options from the initialization on Microsoft Windows

from earlier in the section as well as the TCP port number:

[mysqld]

basedir = D:\MySQL\mysql-8.0.11-winx64

datadir = D:\MySQL\Data_8.0.11

log_error = D:\MySQL\Data_8.0.11\error.log

port = 3306

This concludes the discussion about installing and configuring

MySQL Server. A related topic is how to create the database user that the

application will use to connect to MySQL.

�Creating the Application User
When an application connects to MySQL, it is necessary to specify the

username to use for the connection. Additionally, MySQL takes the

hostname where the connection comes from into account, so the account

name for the user is formed as username@hostname. The user’s privileges

determine what the user is allowed to do in the database.

MySQL Server has one standard user available for logins, the

root@localhost user. This user has all privileges; that is, it is an

administrator account. Applications should not use this user for several

reasons, which will be explained in the following discussion.

The application should, in general, not have permission to do everything.

For example, the application should not be allowed to access tables it does

not need, and there is rarely a requirement for an application to manage

users. Additionally, MySQL has a limit on the number of concurrent

connections allowed (the max_connections configuration option). However,

there is one extra connection reserved for a user with the CONNECTION_ADMIN

(SUPER) privilege. So, if the application user has all privileges, it can block out

the database administrator from investigating why all connections are in use.

Chapter 1 Introduction and Installation

36

It is beyond the scope of this book to go into the details of the MySQL

privilege system. The main takeaway is that you should assign the minimum

required privileges to your users, including during the development phase,

because it is much easier to add new privileges as required than remove

unnecessary privileges when you are ready to deploy the application.

Tip  It is worth getting familiar with MySQL security features including
the access privilege system and user account management. The
Security chapter in the MySQL Reference Manual is an excellent source:
https://dev.mysql.com/doc/refman/en/security.html.

The following SQL statements can be used to create a test user who has

the required privileges for the examples in this book:

mysql> CREATE USER 'pyuser'@'localhost'

 IDENTIFIED BY 'Py@pp4Demo';

mysql> GRANT ALL PRIVILEGES

 ON world.*

 TO 'pyuser'@'localhost';

mysql> GRANT ALL PRIVILEGES

 ON py_test_db.*

 TO 'pyuser'@'localhost';

It is assumed that the test programs will be executed on the same host

as where MySQL is installed. If this is not the case, replace localhost with

the hostname where the test programs are executed. ALL PRIVILEGES

in the GRANT statements gives all available privileges on the schema

(database) level, but the administrative privileges are not included.

This will still be more than the typical application needs, but it is used here

for simplicity and to allow demonstrating queries that are not typically

executed from within an application.

Chapter 1 Introduction and Installation

https://dev.mysql.com/doc/refman/en/security.html

37

The password has been chosen as Py@pp4Demo. This is not a very strong

password, and it is strongly recommended to use a different password that

is more difficult to guess.

If you want to play with the world_x sample database that is briefly

mentioned in Chapter 7, you will also need the following privileges:

mysql> GRANT ALL PRIVILEGES

 ON world_x.*

 TO 'pyuser'@'localhost';

However, none of the examples discussed in this book use the world_x

sample database. The installation instructions for the world_x sample

database are very similar to those in the next step, which is to install some

sample data for the code examples in Chapters 3, 4, and 5.

�Installing the world Sample Database
Throughout the book, the world sample database is used for several of the

examples. The example databases are considered part of the “other MySQL

documentation” and can be accessed from https://dev.mysql.com/doc/

index-other.html. The world database can be downloaded either as a

gzip file or zip file; either way, after decompression, there is a single file:

world.sql.

Note  There is the world database and the world_x database.
Chapters 3, 4, and 5 use the world database. The world_x
database is not required but can optionally be installed using similar
steps as shown here if you would like to have it for your own testing.

The world.sql file is self-contained. It will drop the world schema if

it exists and recreate it with three tables: country, countrylanguage, and

city, including some sample data. The easiest way to apply the world.sql

Chapter 1 Introduction and Installation

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

38

file is to use the mysql command-line client (https://dev.mysql.com/

doc/refman/en/mysql.html) from the same directory as where the

world.sql file is located:

shell$ mysql --user=pyuser --password \

 --host=127.0.0.1 --port=3306 \

 --execute="SOURCE world.sql"

Enter password:

This assumes that the mysql binary is in the execution search path;

otherwise, the full path must be used. On Microsoft Windows, keep the

whole command on the same line and remove the backslashes. The

resulting tables are outlined in Listing 1-4.

Listing 1-4.  The Tables of the world Sample Database

mysql> SHOW TABLES FROM world;

+-----------------+

| Tables_in_world |

+-----------------+

| city |

| country |

| countrylanguage |

+-----------------+

3 rows in set (0.00 sec)

mysql> SHOW CREATE TABLE world.city\G

*************************** 1. row ***************************

 Table: city

Create Table: CREATE TABLE `city` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

 `Name` char(35) NOT NULL DEFAULT '',

 `CountryCode` char(3) NOT NULL DEFAULT '',

 `District` char(20) NOT NULL DEFAULT '',

 `Population` int(11) NOT NULL DEFAULT '0',

Chapter 1 Introduction and Installation

https://dev.mysql.com/doc/refman/en/mysql.html
https://dev.mysql.com/doc/refman/en/mysql.html

39

 PRIMARY KEY (`ID`),

 KEY `CountryCode` (`CountryCode`),

 CONSTRAINT `city_ibfk_1` FOREIGN KEY (`CountryCode`)

REFERENCES `country` (`code`)

) ENGINE=InnoDB AUTO_INCREMENT=4080 DEFAULT CHARSET=latin1

1 row in set (0.00 sec)

mysql> SELECT COUNT(*) FROM world.city;

+----------+

| COUNT(*) |

+----------+

| 4079 |

+----------+

1 row in set (0.00 sec)

mysql> SHOW CREATE TABLE world.country\G

*************************** 1. row ***************************

 Table: country

Create Table: CREATE TABLE `country` (

 `Code` char(3) NOT NULL DEFAULT '',

 `Name` char(52) NOT NULL DEFAULT '',

 `�Continent` enum('Asia','Europe','North America','Africa',

'Oceania','Antarctica','South America') NOT NULL DEFAULT

'Asia',

 `Region` char(26) NOT NULL DEFAULT '',

 `SurfaceArea` float(10,2) NOT NULL DEFAULT '0.00',

 `IndepYear` smallint(6) DEFAULT NULL,

 `Population` int(11) NOT NULL DEFAULT '0',

 `LifeExpectancy` float(3,1) DEFAULT NULL,

 `GNP` float(10,2) DEFAULT NULL,

 `GNPOld` float(10,2) DEFAULT NULL,

 `LocalName` char(45) NOT NULL DEFAULT '',

 `GovernmentForm` char(45) NOT NULL DEFAULT '',

Chapter 1 Introduction and Installation

40

 `HeadOfState` char(60) DEFAULT NULL,

 `Capital` int(11) DEFAULT NULL,

 `Code2` char(2) NOT NULL DEFAULT '',

 PRIMARY KEY (`Code`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

1 row in set (0.00 sec)

mysql> SELECT COUNT(*) FROM world.country;

+----------+

| COUNT(*) |

+----------+

| 239 |

+----------+

1 row in set (0.00 sec)

mysql> SHOW CREATE TABLE world.countrylanguage\G

*************************** 1. row ***************************

 Table: countrylanguage

Create Table: CREATE TABLE `countrylanguage` (

 `CountryCode` char(3) NOT NULL DEFAULT '',

 `Language` char(30) NOT NULL DEFAULT '',

 `IsOfficial` enum('T','F') NOT NULL DEFAULT 'F',

 `Percentage` float(4,1) NOT NULL DEFAULT '0.0',

 PRIMARY KEY (`CountryCode`,`Language`),

 KEY `CountryCode` (`CountryCode`),

 CONSTRAINT `countryLanguage_ibfk_1` FOREIGN KEY

(`CountryCode`) REFERENCES `country` (`code`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

1 row in set (0.00 sec)

Chapter 1 Introduction and Installation

41

mysql> SELECT COUNT(*) FROM world.countrylanguage;

+----------+

| COUNT(*) |

+----------+

| 984 |

+----------+

1 row in set (0.00 sec)

Tip  For more information about the world sample database
including installation instructions, see https://dev.mysql.com/
doc/world-setup/en/world-setup-installation.html.

Before concluding this chapter, a word regarding the code examples is

required.

�Code Examples
There are a number of example programs in this book. The programs have

been tested with Python 3.6. For other Python versions, including Python

2.7 from Oracle Linux 7/Red Hat Enterprise Linux (RHEL) 7/CentOS 7, the

examples will work with minor modifications. No changes are required for

the MySQL Connector/Python-specific parts.

In Python 2, it is recommended to load the print function from__

future__:

from __future__ import print_function

Additionally the UTF-8 string handling is different in Python 2, so

it may be necessary to use the encode() method to print strings. For

example:

Chapter 1 Introduction and Installation

https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html
https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html

42

print(

 "{0:15s} {1:^7s} {2:4.1f}".format(

 city['Name'].encode('utf8'),

 city['CountryCode'].encode('utf8'),

 city['Population']/1000000

)

)

The examples using the mysql.connector module assume that a file

named my.ini is present in the directory where Python is executed with

the connection options required to connect to MySQL Server. An example

configuration file is

[connector_python]

user = pyuser

host = 127.0.0.1

port = 3306

password = Py@pp4Demo

The examples using the mysqlx module store the configuration in a

file named config.py, which is also located in the same directory where

Python is executed. The example configuration is

connect_args = {

 'host': '127.0.0.1',

 'port': 33060,

 'user': 'pyuser',

 'password': 'Py@pp4Demo',

};

The coding style in the examples is optimized for print and in

particular eBook readers such as Kindle. Since this leaves very little real

estate to work with, the lines have in general been kept below 40 characters

with “long” lines up to 50 characters to minimize the amount of wrapping.

Chapter 1 Introduction and Installation

43

The downside is that this means it has not really been possible to follow

a standard coding style such as the one specified in PEP 8 (https://www.

python.org/dev/peps/pep-0008/). It is recommended to follow PEP 8 or

another well-established coding standard in your own projects.

All example programs that appear in a listing are available for

download. The file name reflects the listing number; for example, the

code in Listing 1-2 can be found in the file listing_1_2.py. See the book’s

homepage for instructions on how to download the source.

This concludes the installation and preparations. The next step is to

create connections from MySQL Connector/Python to MySQL Server,

which is the topic of the next chapter.

�Summary
This chapter got you up and running. First, MySQL Connector/Python was

introduced. The latest GA release series is version 8.0, the same as for most

other MySQL products. MySQL products are available as a Community

Edition and a commercial Enterprise Edition. For MySQL Connector/

Python, the main difference is the license and support, and either edition

can be used with this book.

MySQL Connector/Python has three APIs: two legacy APIs that

only work with SQL statements and a new API called the X DevAPI that

supports both NoSQL and SQL queries. How to use the three APIs is the

topic of the rest of the book.

In order to get started, you downloaded and installed both MySQL

Connector/Python and MySQL Server. There was a brief discussion about

configuring MySQL Server, instructions on how to create a user that can

be used for this book, how to install the test data, and a word on the code

examples.

You are ready to use MySQL Connector/Python. The next chapter will

show you how to connect using the API in the Connector/Python API (the

mysql.connector module).

Chapter 1 Introduction and Installation

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

PART II

The Legacy APIs

47© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9_2

CHAPTER 2

Connecting to MySQL
In the previous chapter, you installed MySQL Connector/Python and made

sure that the module worked. However, printing the version string for the

connector is hardly very exciting, so this chapter will begin the journey

through the features of the two legacy APIs.

The mysql.connector module includes the implementation of the

Python Database API, which is defined in PEP249 (https://www.python.

org/dev/peps/pep-0249/). This includes the option to use the C Extension

while using the same API. This API is the main focus of Chapters 2-5.

Additionally, the _mysql_connector module with the implementation of

the C Extension API is briefly discussed in Chapter 4.

This chapter goes through the ins and outs of creating and configuring

connections to MySQL. Creating a connection is simple and is the first

thing you will learn. There is a little more to the connection than just

creating it, though. The rest of the chapter will discuss how to configure the

connection, including tips to avoid hardcoding the username and password

into the application. The chapter finishes with a discussion of other

connection-related options, with a particular focus on the character set.

�Creating the Connection from Python
It has taken some work to get to this point, but now you are ready to connect

to MySQL from Python for the first time. This section will go through the

syntax of creating the connection, the most common connection options,

http://www.python.org/dev/peps/pep-0249/
http://www.python.org/dev/peps/pep-0249/

48

examples of creating a connection, reconfiguring a connection, and some

best practices for connections.

�Syntax
There are several ways to create the connection. Four of them are

•	 The mysql.connector.connect() function: This is the

most flexible connection method. It provides a uniform

way of creating connections using the C Extension or

enabling the connection pooling and the failover-related

options. This function works as a wrapper that returns an

object of the appropriate class depending on the settings.

•	 The MySQLConnection() constructor

•	 The MySQLConnection.connect() method: It requires

first instantiating the MySQLConnection class without

arguments and then creating the connection.

•	 The same as before using the MySQLConnection.

connect() method, but with the difference that the

MySQLConnection.config() method is called explicitly

to configure the connection.

The MySQLConnection class is the pure Python implementation.

Alternatively, the CMySQLConnection class can be used, which provides

implementation of the C Extension backend to the Python Database API.

All of the methods end up with the same connection object, and

they all take the connections options as keyword arguments. This means

that you can choose whatever way to create the connection that works

best for the program. However, since the mysql.connector.connect()

function is the most powerful, it is the preferred way to connect because

it makes it easier to switch between the pure Python and C Extension

implementations or to enable connection pooling or failover.

Chapter 2 Connecting to MySQL

49

Tip  Creating a connection using the mysql.connector.
connect() function gives access to all connection-related features.

Figure 2-1 shows the basic flow of using the four ways to create

a connection. The red (dark grey) boxes are called directly from the

application code, and the yellow (light grey) boxes are called by the last

method called indirectly. The figure uses the MySQLConnection class;

however, the same applies if the CMySQLConnection class is used.

The leftmost route is the one using the mysql.connector.connect()

function. The Python program calls the function with the connection

arguments, and the function then handles the rest. The figure assumes a

MySQLConnection connection (using the pure Python implementation) is

created, but the function can also return a CMySQLConnection object if the

C Extension is used. The basic syntax for the mysql.connector.connect()

function is

db = mysql.connector.connect(**kwargs)

Figure 2-1.  The flow of creating a connection

Chapter 2 Connecting to MySQL

50

The route second from the left has the Python program send the

connections arguments to the constructor when instantiating the

MySQLConnection class. This triggers the constructor to call the connect()

method, which in turn calls the config() method. The syntax when using

the MySQLConnection class is

db = mysql.connector.MySQLConnection(**kwargs)

In the third route from the left, the MySQLConnection class is first

instantiated and then the connect() method is explicitly invoked. The

code syntax becomes

db = mysql.connector.MySQLConnection()

db.connect(**kwargs)

Finally, in the rightmost route, all steps are done explicitly. Notice

that the order of calling the connect() and config() methods becomes

reversed in this case compared with the three other ways of creating the

connection. The syntax is

db = mysql.connector.MySQLConnection()

db.config(**kwargs)

db.connect()

Before creating some real connections, it is necessary to take a look at

the most common options used when creating a connection.

�Common Connection Options
The most commonly used options for specifying how to connect to

MySQL, whom to authenticate as, and which password to use are

summarized in Table 2-1.

Chapter 2 Connecting to MySQL

51

Table 2-1.  Common Connection-Related Options

Argument Default Value Description

host 127.0.0.1 The hostname of the host, where the MySQL

instance you want to connect to is installed.

The default is to connect to the loopback (that

is the local host).

port 3306 The port on which MySQL is listening. Port

3306 is the standard MySQL port.

unix_socket On Linux and Unix, it is possible to connect

to a MySQL instance on the local host by using

a Unix socket. Specify the path to the socket

file.

user The username of the application user. Do not

include the @ and the following hostname; that

is for the test user created in Chapter 1. Just

specify pyuser.

password The password with which to authenticate. For

the test user, this would be Py@pp4Demo.

ssl_ca The path to the file containing the SSL

certificate authority (CA).

ssl_cert The path to the file containing the public SSL

certificate.

ssl_cipher The SSL cipher to use for the connection. You

can get a list of valid ciphers by connecting

to MySQL using SSL and executing the query

SHOW GLOBAL STATUS LIKE ‘Ssl_cipher_list’;

The current cipher in use can be determined

through the Ssl_cipher session status variable.

(continued)

Chapter 2 Connecting to MySQL

52

The option names may seem familiar if you have, for example, used

the MySQL command-line client. That is not a coincidence. Using these

options, it is possible to demonstrate how to create connections.

Tip T here are a number of example programs in this chapter. All
example programs that appear in a listing are available for download.
See the discussion of example programs in Chapter 1 for more
information about using the example programs.

�Connection Examples
It is time to combine the four ways of creating a connection as well as

the most common connection option to create source code examples for

creating MySQL Connector/Python connections. Listing 2-1 shows how to

connect using the four ways of creating the connection. The examples are

in the same order as when they were discussed earlier in the section.

Listing 2-1.  Examples of Connecting to MySQL

import mysql.connector

connect_args = {

 "host": "127.0.0.1",

 "port": 3306,

Argument Default Value Description

ssl_disabled Force a non-SSL connection.

ssl_key The path to the file containing the private SSL key.

ssl_verify_cert False Whether MySQL Connector/Python should verify

the certificate used by MySQL Server against

the CA specified with the ssl_ca option.

Table 2-1.  (continued)

Chapter 2 Connecting to MySQL

53

 "user": "pyuser",

 "password": "Py@pp4Demo",

};

---- connect() function ----

db1 = mysql.connector.connect(

 **connect_args

)

print(

 "MySQL connection ID for db1: {0}"

 .format(db1.connection_id)

)

db1.close()

---- Explicit MySQLConnection ----

db2 = mysql.connector.MySQLConnection(

 **connect_args

)

print(

 "MySQL connection ID for db2: {0}"

 .format(db2.connection_id)

)

db2.close()

---- Two steps manually ----

db3 = mysql.connector.MySQLConnection()

db3.connect(**connect_args)

print(

 "MySQL connection ID for db3: {0}"

 .format(db3.connection_id)

)

Chapter 2 Connecting to MySQL

54

db3.close()

---- All three steps manually ----

db4 = mysql.connector.MySQLConnection()

db4.config(**connect_args)

db4.connect()

print(

 "MySQL connection ID for db4: {0}"

 .format(db4.connection_id)

)

db4.close()

The four connections use the same connection options. Once the

connection is created, the connection ID (from the MySQL Server side)

of the connection is printed using the connection_id property of the

connection. Finally, the connection is closed using the close() method.

It is best practice to always explicitly close the connection when the

application is done with it.

Tip A lways close the connection when you are done with it. Closing
the connection ensures a clean disconnect from MySQL Server. It
may also take some time before the server kills the connection; in the
meantime, it occupies one of the available connections.

The output is similar to the following sample except the connection

IDs will be different:

MySQL connection ID for db1: 13

MySQL connection ID for db2: 14

MySQL connection ID for db3: 15

MySQL connection ID for db4: 16

The config() method can also be invoked for an existing connection.

Let’s discuss how to reconfigure the connection and reconnect next.

Chapter 2 Connecting to MySQL

55

�Reconfiguration and Reconnect
It is not commonly done, but it is possible to reconfigure an existing

connection and reconnect. In this context, reconfiguring means potentially

changing all options including the MySQL Server instance that the

application is connected to. When such changes are made, it is necessary

to explicitly tell MySQL Connector/Python to reconnect.

To reconfigure a connection, use the config() method in the same way

as you did before the initial connection was made. Once the new, desired

configuration has been created, call the reconnect() method if any of the

configuration changes require a new connection. Calling reconnect()

closes the old connection and creates a new one with the new configuration.

Listing 2-2 shows an example of reconfiguring a connection.

Listing 2-2.  Reconfiguring a Connection

import mysql.connector

initial_args = {

 "host": "127.0.0.1",

 "port": 3306,

 "user": "pyuser",

 "password": "Py@pp4Demo",

};

Create initial connection

db = mysql.connector.connect(

 **initial_args

)

print(

 "Initial MySQL connection ID ...: {0}"

 .format(db.connection_id)

)

Chapter 2 Connecting to MySQL

56

new_args = {

 "host": "<your_IP_goes_here_in_quotes>",

};

db.config(**new_args)

db.reconnect()

print(

 "New MySQL connection ID: {0}"

 .format(db.connection_id)

)

db.close()

This example requires that there is a second user account on the same

MySQL instance. The user is identical to the existing pyuser@localhost

connection, but is defined to connect from the public IP address (replace

with the IP address of your computer or if the IP address resolves with the

hostname):

mysql> CREATE USER pyuser@'<your_IP_goes_here_in_quotes>'

 IDENTIFIED BY 'Py@pp4Demo';

Query OK, 0 rows affected (0.84 sec)

It is also necessary that any firewall allows the connection.

As you can see from the example, it is not necessary to change all of

the configuration options. Those that are not explicitly set in the new set of

options keep their old value. The output of the program is (except for the IDs)

Initial MySQL connection ID ...: 21

New MySQL connection ID: 22

The last topic of the section is a few best practices regarding

connections.

Chapter 2 Connecting to MySQL

57

�Connection Best Practices
There are a few best practices that are good to follow when it comes

to connections. It is always difficult with best practices because all

applications have unique requirements. So, the suggestions will focus on

the technical side of MySQL Connector/Python.

The main best practices are

•	 Always close the connection when you are done with it.

This has already been discussed.

•	 Use SSL (TLS) to encrypt the connections. This is

particularly important if you are connecting to a remote

host and even more so if the connection is over an

insecure network. An exception is when you use a Unix

socket for the connection as that is always considered a

secure connection even without using SSL.

•	 Do not hardcode the configuration into the source

code. This particularly applies to the password.

Note  While MySQL uses ssl_ as the prefix for the options related
to encrypting the connection, in reality TLS is used.

In MySQL 8.0 and in some builds of MySQL 5.7, SSL is enabled by

default using a self-signed certificate, and MySQL Connector/Python will

use an encrypted connection by default.

The examples thus far have had a major flaw: they hardcoded not

only where to connect to, but also the username and particularly the

password. This makes the code harder to maintain, and it is also a security

concern because the password is visible to anyone with access to the

source code. Hardcoding the connection options also means that either

the development and production system must share connection options or

Chapter 2 Connecting to MySQL

58

the deployment procedure needs to change the source code to update the

configuration parameters.

Caution N ever store the password in the source code.

Neither is a good option, so an alternative solution must be found. The

next section will discuss an alternative: using configuration files.

�Configuration Files
The method of specifying the connection options directly in with the call

to create the connection to MySQL can be very useful for doing quick

tests, but it is neither practical nor secure (for the password) to do in real

applications. This section will start out discussing some alternatives and

then will go into details of using MySQL configuration files.

�Alternatives to Hardcoding the Configuration
There are several ways to avoid hardcoding the connection configuration

into the source code. There are pros and cons for each method, so it is not

a matter of one size fits all. Four methods will be discussed:

•	 Asking for the information interactively

•	 Using environment variables

•	 Reading the information from the application’s own

configuration file or as a command-line argument

•	 Using a MySQL configuration file.

The interactive approach is great if you are writing a program that can

be used by different users, so it is not known who the program will connect

as. It is also the safest way to pass the password to the program. It is,

Chapter 2 Connecting to MySQL

59

however, not very convenient for more daemon-like processes to require

starting the process manually each time it is necessary to restart it.

Environment variables can be used to specify options for the session.

Child processes will inherit the environment of the parent, so the

environment variables can be used to pass settings to a child process,

such as from a shell to the application. It can be a great way to configure

applications without requiring files or parsing the options on the

command line. For example, it is a common way to configure applications

running inside containers such as Docker.1

There are some downsides to using environment variables. When

automatically starting processes, it will be necessary to store the environment

variables in a file, which means it ends up being an alternative format for a

configuration file. The environment is also in general long-lived; for example,

if the application starts new processes on its own, it will by default pass on its

environment, including potential secret information such as the password.

The environment variables may also be readable by users with high

privileges. So, care should be taken when using environment variables.

Using the application’s own configuration file or providing the options

as command-line arguments means that all of the configuration is done

in one place. In this case, the MySQL options are treated the same way as

other options, and all that is required when writing the code is to pass the

options and their values to the MySQL connection.

Caution  Be very careful with passwords as command-line options.
It may be possible for other users on the host to see the arguments
passed to the program, such as by using the ps command on Linux.
So, it is recommended not to specify the password as a command-line
argument.

1�See https://docs.docker.com/engine/reference/commandline/run/#set-
environment-variables--e---env---env-file for the Docker documentation
on setting environment variables.

Chapter 2 Connecting to MySQL

https://docs.docker.com/engine/reference/commandline/run/#set-environment-variables--e---env---env-file
https://docs.docker.com/engine/reference/commandline/run/#set-environment-variables--e---env---env-file

60

There is another way, however. MySQL Connector/Python has native

support for reading MySQL configuration files. Some of the reasons for

using this approach over the application’s own configuration file are that

the application may not need a configuration file except for the MySQL-

related options, or there may be different owners of the application

configuration and the MySQL configuration. The latter can happen if the

developer is responsible for defining the behavior of the application itself

but the database administrator is in charge of the MySQL-specific options.

Since this book is about using the MySQL Connector/Python features

rather than general Python programming, the only one of the four options

to be discussed in more detail is the one using a MySQL configuration file.

�Using MySQL Configuration Files
MySQL uses the INI file format for its configuration files. The following is

a simple example for use with MySQL Connector/Python using the same

configuration as previously in this chapter:

[connector_python]

user = pyuser

host = 127.0.0.1

port = 3306

password = Py@pp4Demo

There are two connection options that control the use MySQL

configuration files:

•	 option_files: This option specifies the path to one or

more configuration files to read. The value can either

be a string or a list of strings. There is no default value.

•	 option_groups: This option specifies which option

groups to read from. The option group is specified

as a name between square brackets; in the example

Chapter 2 Connecting to MySQL

61

configuration, the option group is connector_python.

The value is a list of strings with the names of the group.

The default is to read from the client and connector_

python groups.

By convention, MySQL configuration files are called my.ini on Microsoft

Windows and my.cnf on other platforms. There are no requirements for the

file name or file extension from a functional point of view.

An important feature to be aware of is that the option_groups option

does not treat all groups equally. Specifically, the connector_python group

is special because all options in this group must be valid or a ValueError

exception will be raised. For other groups, unknown options are ignored.

The reason to ignore unknown options is that several programs may read

the same option groups. For example, the client group is also read by the

mysql command-line client and other MySQL client programs.

Listing 2-3 shows an example of connecting to MySQL with the

connection options read from the my.ini file located in the same directory

as the program.

Listing 2-3.  Using a MySQL Configuration File

import mysql.connector

db = mysql.connector.connect(

 option_files="my.ini")

print(__file__ + " - single config file:")

print(

 "MySQL connection ID for db: {0}"

 .format(db.connection_id)

)

db.close()

Chapter 2 Connecting to MySQL

62

The output is similar to the previous examples printing the ID for the

connection, for example:

listing_2_3.py - single config file:

MySQL connection ID for db: 35

In some cases, you may want to split the MySQL configuration into

several files. For example, say several applications need to connect to the

same MySQL backend, so they share the host and port information, but

each application uses different credentials for the connection. Continuing

the example, the two files, my_shared.ini and my_app_specific.ini, can

be created with the following content:

my_shared.ini:

[client]

host = 127.0.0.1

port = 3306

my_app_specific.ini:

[connector_python]

user = pyuser

password = Py@pp4Demo

The only change required to the test program is to change the value of

option_files into a list. To demonstrate how the option_groups option

can be set, it is also added to the program. The resulting source code can

be seen in Listing 2-4.

Listing 2-4.  Using Multiple Configuration Files

import mysql.connector

db = mysql.connector.connect(

Chapter 2 Connecting to MySQL

63

 option_files = [

 "my_shared.ini",

 "my_app_specific.ini"

],

 option_groups = [

 "client",

 "connector_python"

]

)

print(__file__ + " - two config files:")

print(

 "MySQL connection ID for db: {0}"

 .format(db.connection_id)

)

db.close()

The output is (except for the ID, which will change from execution to

execution) the following:

listing_2_4.py - two config files:

MySQL connection ID for db: 42

One final consideration is path names. If a relative path is specified, it

is the directory where Python is executed that is used as the base directory.

Take, for example, the following command to execute a program (the ID

will in general be different):

PS C:\MySQL> python Source/test.py

MySQL connection ID for db: 56

This is executed while C:\MySQL is the current working directory. If

test.py has option_files="my.ini", then the my.ini file must be located

in C:\MySQL.

Chapter 2 Connecting to MySQL

64

Another observation is that for Microsoft Windows it is optional

whether backslashes (\) or forward slashes (/) are used to separate the

path components (directories).

This concludes the discussion of configuration files. The final topic

of the chapter is the remaining options that MySQL Connector/Python

supports for the connection.

�General Configuration
Thus far the only configuration options that have been discussed are the

ones required to specify where to connect to, whom to connect as, and

whether to use SSL. There are several other options that are more related to

the behavior of the application. These options are the topic of this section.

The options that were not included in the list of connection options

earlier in the chapter are summarized in Table 2-2 through Table 2-5 with

one table for each of the following option types: connection, character set,

query behavior, and warnings. The rest of the book will include examples

of using several of these options.

�Connection
There are more connection options than were discussed in the “Creating

the Connection” section. They are not as commonly used but can be

required for some use cases. The options are summarized in Table 2-2.

Some of the options will be discussed in more detail after the table.

Chapter 2 Connecting to MySQL

65

Table 2-2.  Less Common Connection-Related Options

Name Default Value Description

auth_plugin Which authentication plugin to use.

This is, for example, required when

using MySQL Connector/Python 2.1 to

connect to MySQL Server 8.0 because the

server’s default authentication plugin is

not supported by old MySQL Connector/

Python versions.

client_flags An alternative way to configure several

options through flags.

compress False When enabled, the network traffic is

compressed.

connection_timeout How long to wait before timing out when

creating the connection.

converter_class Specifies a custom converter class for

converting the raw row data to Python

types.

failover Tuple of dictionaries specifying alternative

MySQL Server instances to fail over

to if the primary connection fails. This

is only supported using the mysql.

connector.connect() function.

force_ipv6 False When True, IPv6 is always used when

possible.

(continued)

Chapter 2 Connecting to MySQL

66

Name Default Value Description

pool_name Auto

generated

The name of a connection pool. By

default, the name is generated by joining

the values of the host, port, user,

and database connection options.

The name can be at most pooling.

CNX_POOL_MAXNAMESIZE (defaults to

64) characters long and is allowed to

use alphanumeric characters as well

as the following characters: ., _, :, -, *,

$, and #. This is only supported using

the mysql.connector.connect()

function or by instantiating the pooling.

MySQLConnectionPool constructor

class directly.

pool_reset_session True When True, the session variables are

reset when the connection is returned

to the pool. This is only supported using

the mysql.connector.connect()

function or by instantiating the pooling.

MySQLConnectionPool constructor

class directly.

Table 2-2.  (continued)

(continued)

Chapter 2 Connecting to MySQL

67

Name Default Value Description

pool_size 5 The number of connections to hold in the

pool. The value must be at least 1 and at

most pooling.CNX_POOL_MAXSIZE

(defaulting to 32). This is only supported

using the mysql.connector.connect()

function or by instantiating the pooling.

MySQLConnectionPool constructor class

directly.

use_pure False When True, the pure Python

implementation of the connector is used.

When False, the C Extension is used.

If the option is not specified, the default

is to use the C Extension if it is installed;

otherwise it falls back on the pure Python

implementation. This is only supported

using the mysql.connector.connect()

function. In most cases, it is recommended

to use the C Extension.

Table 2-2.  (continued)

The compress option can be used to reduce the amount of network

traffic by compressing the data transferred between the application and

MySQL Server (and vice versa) at the cost of additional computational

resources. This can be particularly useful if large SQL statements are sent

to the server or large query results are returned to the application and the

application is installed on a remote host.

Four options that deserve a little more attention are the failover

and pool options. The failover option can be used to define one or

more MySQL Server instances that MySQL Connector/Python will fail

over to if the connection to the primary instance fails. Each alternative

Chapter 2 Connecting to MySQL

68

MySQL Server instance is specified as a dictionary in a tuple or list. The

pool options set up a connection pool that the application can request

connections from. These options are discussed in more detail in Chapter 5.

The client_flags option can be used to set several options. The list

of options that is available can be determined using the get_full_info()

method of the ClientFlag constants:

from mysql.connector.constants import ClientFlag

print("\n".join(

 sorted(ClientFlag.get_full_info())

))

The output from Connector/Python 8.0.11 can be seen in Listing 2-5.

The name of the client flag is first listed, followed by a description of what

the flag controls. Most of the flags also have dedicated options, but there

are a few additional flags such as INTERACTIVE that can only be set through

the client_flags option.

Listing 2-5.  List of Client Flags

CAN_HANDLE_EXPIRED_PASSWORDS : Don't close the connection for a

connection with expired password

COMPRESS : Can use compression protocol

CONNECT_ARGS : Client supports connection attributes

CONNECT_WITH_DB : One can specify db on connect

DEPRECATE_EOF : Client no longer needs EOF packet

FOUND_ROWS : Found instead of affected rows

IGNORE_SIGPIPE : IGNORE sigpipes

IGNORE_SPACE : Ignore spaces before ''

INTERACTIVE : This is an interactive client

LOCAL_FILES : Can use LOAD DATA LOCAL

LONG_FLAG : Get all column flags

LONG_PASSWD : New more secure passwords

Chapter 2 Connecting to MySQL

69

MULTI_RESULTS : Enable/disable multi-results

MULTI_STATEMENTS : Enable/disable multi-stmt support

NO_SCHEMA : Don't allow database.table.column

ODBC : ODBC client

PLUGIN_AUTH : Client supports plugin authentication

PLUGIN_AUTH_LENENC_CLIENT_DATA : Enable authentication response

packet to be larger than 255 bytes

PROTOCOL_41 : New 4.1 protocol

PS_MULTI_RESULTS : Multi-results in PS-protocol

REMEMBER_OPTIONS :

RESERVED : Old flag for 4.1 protocol

SECURE_CONNECTION : New 4.1 authentication

SESION_TRACK : Capable of handling server state change

information

SSL : Switch to SSL after handshake

SSL_VERIFY_SERVER_CERT :

TRANSACTIONS : Client knows about transactions

In order to configure client_flags, specify a list of the flags that

should be enabled or disabled. To enable the flag, just specify the name

of the flag; to disable the flag, prepend a minus sign. Listing 2-6 shows an

example to tell the connection it is an interactive connection, but it cannot

handle expired passwords.

Listing 2-6.  Using Client Flags in the Connection

import mysql.connector

from mysql.connector.constants import ClientFlag

connect_args = {

 "host": "127.0.0.1",

 "port": 3306,

 "user": "pyuser",

 "password": "Py@pp4Demo",

Chapter 2 Connecting to MySQL

70

 "client_flags": [

 ClientFlag.INTERACTIVE,

 -ClientFlag.CAN_HANDLE_EXPIRED_PASSWORDS

]

};

db = mysql.connector.connect(

 **connect_args

)

print(__file__ + " - Client flags:")

print(

 "MySQL connection ID for db: {0}"

 .format(db.connection_id)

)

db.close()

This gives the following output (again except for the values of the ID):

listing_2_6.py - Client flags:

MySQL connection ID for db: 60

The use_pure option can be used to specify whether the C Extension

or the pure Python implementation of the connector will be used. The C

Extension provides better performance than the pure implementation,

particularly when working with large result sets and prepared statements.

On the other hand, the pure Python implementation is supported on more

platforms, has a few more features, and it is easier to modify the source code.

The C Extension is the default in versions 8.0.11 and later when it is installed,

whereas earlier versions used the pure Python implementation by default.

The C Extension can also be used by importing the _mysql_connector

module instead of the usual mysql.connector module. An example of

using the C Extension is included in Chapter 4.

Chapter 2 Connecting to MySQL

71

The other connection options will not be discussed in any more detail.

Instead, focus will be moved to the character set options.

�Character Set
The character set defines how characters are encoded. In the early days

of the Internet, the ASCII character set was often used. ASCII uses seven

bits for each character, which is space efficient but it means there are

only 128 different characters available. This works reasonably well for

plain text in English, but it is missing characters for other languages. Over

the years, various other character sets have been used, such as the Latin

character sets.

The locale-specific character sets help support all languages, but

with the downside that different encodings are required for different

languages. One response to that is the Unicode Transformation Format

(UTF) encodings; UTF-8 in particular has become popular. UTF-8 uses

a variable number of bytes to store characters. The original 128 ASCII

characters have the same encoding in UTF-8; other characters use two to

four bytes.

Until and including MySQL Server 5.7, the default character set for

the server side was Latin1, but this changed in MySQL 8.0 when utf8mb4

became the default. The mb4 suffix indicates that up to four bytes are used

for each character (mb = multi-byte). The reason this is required is that

utf8 in MySQL previously has meant up to three bytes per character is

supported per character. However, a three-byte UTF-8 implementation

misses out on several emojis and it has been deprecated, so it is better

to use the four-byte variant. The default character set for Connector/

Python until version 8.0.12 is utf8, which is a three-byte implementation

of UTF-8 (called utf8 or utf8mb3 in MySQL Server). Starting from version

8.0.12 the default is utf8mb4 as in MySQL Server.

There is also the concept of collation to consider. The collation defines

how to compare two characters or character sequences with each other,

Chapter 2 Connecting to MySQL

72

such as whether ä and a should be considered the same character in

comparisons and whether ss is considered equal to ß (German sharp s).

The collation also defines the sorting order of characters and whether

the comparison is case sensitive or not. Each character set has a default

collation, but it is also possible to explicitly request a collation.

Tip  Unless you have specific country requirements, the default
collation in MySQL Server is often a good choice when choosing
utf8 or utf8mb4 as the character set.

The character sets and collations that are available in MySQL do not,

in general, change much between versions. However, one of the major

changes for MySQL Server 8.0 is the addition of a range of UCA 9.0.0

collations. Information about the available character sets and their default

collation can be found using the CHARACTER_SETS table in the Information

Schema, as shown in Listing 2-7.

Listing 2-7.  Character Set Collations in MySQL 8.0.11

mysql> SELECT CHARACTER_SET_NAME AS Name,

 DEFAULT_COLLATE_NAME

 FROM information_schema.CHARACTER_SETS

 ORDER BY CHARACTER_SET_NAME;

+----------+----------------------+

| Name | DEFAULT_COLLATE_NAME |

+----------+----------------------+

| armscii8 | armscii8_general_ci |

| ascii | ascii_general_ci |

| big5 | big5_chinese_ci |

| binary | binary |

...

Chapter 2 Connecting to MySQL

73

| ujis | ujis_japanese_ci |

| utf16 | utf16_general_ci |

| utf16le | utf16le_general_ci |

| utf32 | utf32_general_ci |

| utf8 | utf8_general_ci |

| utf8mb4 | utf8mb4_0900_ai_ci |

+----------+----------------------+

41 rows in set (0.00 sec)

Similarly, the collations available for a specific character set can be

determined using the COLLATIONS table. Listing 2-8 shows the output for

the utf8mb4 character set.

Listing 2-8.  The Collations Available for the utf8mb4 Character Set

mysql> SELECT COLLATION_NAME, IS_DEFAULT

 FROM information_schema.COLLATIONS

 WHERE CHARACTER_SET_NAME = 'utf8mb4';

+----------------------------+------------+

| COLLATION_NAME | IS_DEFAULT |

+----------------------------+------------+

| utf8mb4_general_ci | |

| utf8mb4_bin | |

| utf8mb4_unicode_ci | |

...

| utf8mb4_0900_ai_ci | Yes |

| utf8mb4_de_pb_0900_ai_ci | |

| utf8mb4_is_0900_ai_ci | |

| utf8mb4_lv_0900_ai_ci | |

...

Chapter 2 Connecting to MySQL

74

| utf8mb4_vi_0900_as_cs | |

| utf8mb4_ja_0900_as_cs | |

| utf8mb4_ja_0900_as_cs_ks | |

| utf8mb4_0900_as_ci | |

| utf8mb4_ru_0900_ai_ci | |

| utf8mb4_ru_0900_as_cs | |

+----------------------------+------------+

73 rows in set (0.00 sec)

The output shows the 73 collations that are available for utf8mb4 in

MySQL Server 8.0.11. The collation names consist of several parts:

•	 The character set name

•	 Which country the collation is for (for example ja for

Japan) or whether it is of a more general nature

•	 Modifiers (accents): These are not present for all

collations. Examples are ai for accent insensitive, as for

accent sensitive, ci for case insensitive, and cs for case

sensitive.

Tip T he topic of character sets and collations in MySQL is large.
For a deeper discussion, see https://dev.mysql.com/doc/
refman/en/charset.html and references therein.

There are three options related to characters sets and collations for

MySQL Connector/Python. These are summarized in Table 2-3.

Chapter 2 Connecting to MySQL

https://dev.mysql.com/doc/refman/en/charset.html
https://dev.mysql.com/doc/refman/en/charset.html

75

Listing 2-9 shows an example of configuring the character set-related

options.

Listing 2-9.  Specifying the Character Set and Collation

import mysql.connector

connect_args = {

 "host": "127.0.0.1",

 "port": 3306,

 "user": "pyuser",

 "password": "Py@pp4Demo",

Table 2-3.  Character Set-Related Options

Name Default Value Description

charset utf8mb4 The character set used for the connection. In

MySQL Connector/Python 8.0.11 and earlier, the

default is utf8. In most cases, it is recommended

to use utf8mb4.

collation utf8mb4_

general_ci

The collation to use for comparisons and ordering

of strings. In many cases, the default can be used.

The default value for MySQL Connector/Python

8.0.11 and earlier is utf8_general_ci. In

MySQL Server 8.0, the default collation for the

utf8mb4 character set is utf8mb4_0900_ai_ci

which is often a good choice unless specific

requirements exist.

use_

unicode

True Whether to return strings in query results as

Python Unicode literals. The default is True, and

this is usually also the best value to use.

Chapter 2 Connecting to MySQL

76

 "charset": "utf8mb4",

 "collation": "utf8mb4_unicode_ci",

 "use_unicode": True

};

db = mysql.connector.connect(

 **connect_args)

print(__file__ + " - Setting character set:")

print(

 "MySQL connection ID for db: {0}"

 .format(db.connection_id)

)

db.close()

The available character sets and collations are coded into the MySQL

Connector/Python source code. This means that when you upgrade

MySQL Server, if there are new character sets or collations included,

you can only use them in your Python program if you update MySQL

Connector/Python to a version that includes support for the new character

sets and collations.

Tip I f you upgrade MySQL Server, you may also need to upgrade
MySQL Connector/Python to get support for all of the new features.

It is possible to change the character set and collation used by the

connection after the initial connection to MySQL Server has been made.

The best way to do this is to change the charset and collation properties

of the connection using the set_charset_collation() method as

demonstrated in Listing 2-10. Notice that unlike the rest of the examples,

this example first instantiates the MySQLConnection class to be able to print

the initial character set and collation before creating the connection.

Chapter 2 Connecting to MySQL

77

Listing 2-10.  Changing the Character Set of a Connection

import mysql.connector

db = mysql.connector.MySQLConnection()

Print banner and initial settings

print(

 "{0:<9s} {1:<7s} {2:<18s}".format(

 "Stage", "charset", "collation"

)

)

print("-" * 40)

print(

 "{0:<9s} {1:<7s} {2:<18s}".format(

 "Initial", db.charset, db.collation

)

)

Create the connection

connect_args = {

 "host": "127.0.0.1",

 "port": 3306,

 "user": "pyuser",

 "password": "Py@pp4Demo"

};

db.connect(**connect_args)

The connection does not change the

settings

print(

 "{0:<9s} {1:<7s} {2:<18s}".format(

 "Connected",

Chapter 2 Connecting to MySQL

78

 db.charset, db.collation

)

)

Change only the character set

db.set_charset_collation(

 charset = "utf8mb4"

)

print(

 "{0:<9s} {1:<7s} {2:<18s}".format(

 "Charset", db.charset, db.collation

)

)

Change only the collation

db.set_charset_collation(

 collation = "utf8mb4_unicode_ci"

)

print(

 "{0:<9s} {1:<7s} {2:<18s}".format(

 "Collation",

 db.charset, db.collation

)

)

Change both the character set and

collation

db.set_charset_collation(

 charset = "latin1",

 collation = "latin1_general_ci"

)

Chapter 2 Connecting to MySQL

79

print(

 "{0:<9s} {1:<7s} {2:<18s}".format(

 "Both", db.charset, db.collation

)

)

db.close()

As you can see from the example, the character set and collation

properties can be used even before the connection has been established.

However, it is not possible to use the set_charset_collation() method

to change the character set or collation until the connection has been

established.

Note A lways use the set_charset_collation() method to
change the character set and/or collation for a connection. Compared
with executing SET NAMES as an SQL statement directly, it ensures
that Connector/Python knows which settings are used for converting
bytearrays into Python strings (see the next chapter), the character
set and collation choice are validated against those known by
Connector/Python, and the C Extension settings are kept in sync.

Establishing the connection will not change the value of the charset

and collation properties. The character set can be changed on its own,

in which case the collation is set to the default for the character set. In

this case, the character set is set to utf8mb4, so the default character set is

utf8mb4_general_ci.

The collation can also be set separately, and finally both the character

set and collation are set. The output of executing the program in

Listing 2-10 using version 8.0.11 is

Chapter 2 Connecting to MySQL

80

Stage charset collation

--

Initial utf8 utf8_general_ci

Connected utf8 utf8_general_ci

Charset utf8mb4 utf8mb4_general_ci

Collation utf8mb4 utf8mb4_unicode_ci

Both latin1 latin1_general_ci

If you are using MySQL Connector/Python 8.0.12 or later, the character

set and collation for Initial and Connected are utf8mb4 and utf8mb4_

general_ci.

�Query Behavior
There are several options that control how queries behave. These range

from defining whether features are allowed over transaction configuration

to defining how MySQL Connector/Python will handle the results. The

options are listed in Table 2-4.

Table 2-4.  Query-Related Options

Name Default Value Description

allow_local_

infile

True Whether the LOAD DATA LOCAL INFILE

statement is allowed.

autocommit False When True, an implicit COMMIT is executed

after each query.

buffered False When True, the result set is fetched

immediately and buffered in the application.

consume_

results

False When True, query results are fetched

automatically if there are unfetched rows and a

new query is executed.

(continued)

Chapter 2 Connecting to MySQL

81

Chapters 3 and 4 offer discussions on several of these options,

including code examples where these options are used.

�Warnings
It is very important that warnings and errors are handled in the correct

way. Failure to do so can result in corrupted or lost data. There are two

options that control how MySQL Connector/Python handles warnings

when you use a cursor (cursors are discussed in the next chapter). The

options are shown in Table 2-5.

Name Default Value Description

database Which database (schema) to use as the default

for queries where the database name is not

explicitly given for a table.

raw False By default, result values are converted to Python

types when cursors are used. When setting this

option to True, the results are returned without

conversion.

sql_mode (Server default) The SQL mode used when executing queries.

See https://dev.mysql.com/doc/refman/

en/sql-mode.html.

time_zone When set, timestamps are converted to that time

zone instead of using the server-side time zone.

Table 2-4.  (continued)

Chapter 2 Connecting to MySQL

82

Since it so important that warnings and errors are handled correct,

Chapter 9 is dedicated to discussing this topic.

�Summary
This chapter went through how to create and configure a connection from

a Python program to a MySQL Server database. The following topics were

discussed:

•	 Four different ways to establish the connection

including the initial configuration. The mysql.

connector.connect() function is the most flexible of

the four methods.

•	 The configuration options.

•	 Best practices for connections: Close connections,

use SSL/TLS to encrypt the traffic, do not hardcode

connection options (particularly the password) in the

source code.

•	 MySQL configuration files.

•	 Character sets.

It is all well and good to be able to create the connection to the database,

but it is not very useful unless you can execute queries. The next two

chapters will go into query execution, starting with the more basic use cases.

Table 2-5.  Warning-Related Options for Cursors

Name Default Value Description

get_warnings False When set to True, warnings are

automatically fetched after each query.

raise_on_warnings False When set to True, warnings cause an

exception to be raised.

Chapter 2 Connecting to MySQL

83© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9_3

CHAPTER 3

Basic Query
Execution
The previous chapter discussed how to connect to MySQL from the Python

program. However, there is not much point in creating a connection just to

get a connection ID or do nothing. The whole point of MySQL Connector/

Python, after all, is to execute queries. This chapter will look at the basics

of query execution.

First, you will learn how to execute queries using the cmd_query()

method of the connection object. Then you will explore the more

advanced concept of cursors. Lastly, you’ll see how to handle user input.

Tip  There are a number of example programs in this chapter. All
example programs that appear in a listing are available for download.
See the discussion of example programs in Chapter 1 for more
information about using the example programs.

�Simple Execution
There are a few different methods to execute queries through MySQL

Connector/Python. The simplest, but also least powerful, is the cmd_query()

method of the connection object. I will also discuss the get_rows() and

get_row() methods to fetch the result of a SELECT statement.

84

Before diving into the three methods for querying and fetching results,

it is useful to consider the relationship between them so take a look at

Figure 3-1.

Figure 3-1.  The flow of executing queries through the connection
object

Chapter 3 Basic Query Execution

85

Figure 3-1 shows that once the connection has been created, a query

can be executed using the cmd_query() method. If there is a result (rows

are returned), either the get_rows() or get_row() method can be used

to read the rows. The connection can be reused for more queries. At the

end, when there are no more queries, the connection is closed using

the close() method. This is a little simplified compared to real-world

programs; for example, there is no consideration about transactions.

However, it serves as a useful high-level overview.

The cmd_query(), get_rows(), and get_row() methods, as well as how

to handle the results, are the main topics of this section. For more general

usage, it is necessary to use a cursor; this will be the topic of the next

section as well as the next chapter.

Note I n most cases, it is best to use cursors as described in the
next section. However, this section is important because it explains
how cursors work under the hood.

�Executing the Query: cmd_query()
The cmd_query() method is very simple. It takes one argument, which is

the query to execute, and it returns a dictionary with information about

the executed query. The exact content of the returned dictionary depends

on the query. For example, for a SELECT query, the dictionary will include

information about the selected columns. For all queries, the status of

the query is also included. The examples in this section will include the

content of the result dictionary.

A simple example of using cmd_query() to execute a SELECT query that

returns a single row is shown in Listing 3-1.

Chapter 3 Basic Query Execution

86

Listing 3-1.  Executing a Simple SELECT Using cmd_query()

import mysql.connector

import pprint

printer = pprint.PrettyPrinter(indent=1)

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

Execute a query

result = db.cmd_query(

 """SELECT *

 FROM world.city

 WHERE ID = 130"""

)

Print the result dictionary

print("Result Dictionary\n" + "="*17)

printer.pprint(result)

db.close()

Caution  This example (and several of the other examples in this
chapter) has the query parameter (130 for the value of ID in this
example). This is acceptable since it is a fixed query. However, never
inline user-submitted data into the queries. The “Handling User Input”
section later in the chapter will show you how to safely handle user-
submitted values.

Chapter 3 Basic Query Execution

87

The program creates a connection, as you saw in Chapter 2. After

the connection has been established, the query is executed using the

cmd_query() method and the returned dictionary is stored in the result

variable, which is printed using the pretty printing module (pprint):

Result Dictionary

=================

{'columns': [('ID', 3, None, None, None, None, 0, 49667),

 ('Name', 254, None, None, None, None, 0, 1),

 ('�CountryCode', 254, None, None, None, None, 0,

16393),

 ('District', 254, None, None, None, None, 0, 1),

 ('�Population', 3, None, None, None, None, 0,

32769)],

 'eof': {'status_flag': 16385, 'warning_count': 0}}

The columns part of the result dictionary will be discussed in detail in

the next chapter; for now, just know that the first element of the tuple for

a column is the column name. The second part of the result dictionary,

the eof element, includes some details for the query; the fields included

depend on the query. The values you get for the last integer in the

column tuples and for the status_flag may be different from the

example output because they depend, for example, on whether the C

Extension is used or not.

Common fields in the eof element are the status_flag and warning_

count fields. The status flag is not nearly as useful as it sounds; in fact,

the value is undocumented, and no significance should be taken from

its value. The warning count, on the other hand, shows the number of

warnings that occurred during the query. Chapter 9 covers how to check

for warnings.

Chapter 3 Basic Query Execution

88

For queries without a result set (i.e. not returning rows), the eof

information is an “OK package,” which includes information about the

query. For example, the following information is the result of an UPDATE

statement that updates 14 rows using the pure Python implementation:

Result Dictionary

=================

{'affected_rows': 14,

 'field_count': 0,

 'info_msg': 'Rows matched: 14 Changed: 14 Warnings: 0',

 'insert_id': 0,

 'status_flag': 1,

 'warning_count': 0}

The two most important parameters are

•	 affected_rows: This shows the number of affected

rows. In this case, 14 rows were updated.

•	 insert_id: For INSERT and REPLACE statements

inserting data into a table with an auto-increment

column, the insert_id is the ID of the first row inserted

by the statement.

When use_pure = False, the info_msg parameter is not present and

the status_flag is replaced with server_status.

A sibling to cmd_query() is the cmd_query_iter() method, which can

be used to send multiple queries to MySQL. Executing multiple queries in

one call and handling multiple result sets are topics of the next chapter.

It is all well and good to execute queries like in the example just

discussed, but without retrieving the results, queries like the SELECT

statement in Listing 3-1 are not very interesting. To fetch the rows found,

the get_rows() and get_row() methods are used.

Chapter 3 Basic Query Execution

89

�Retrieving Rows – get_rows()
Some queries, such as CREATE TABLE, ALTER TABLE, INSERT, UPDATE, and

DELETE statements, do not return any result and checking whether the

query succeeded is all that needs to be done. However, in general, the

majority of queries in a program are SELECT queries that return a result

set. For queries that return a result set, the rows must be fetched. When

the query is executed with cmd_query(), the corresponding method for

fetching the rows is get_rows(), which returns all rows found by the query.

The usage of get_rows() is simple. All that is required is to call it, and

the rows are returned as a list of tuples, as illustrated in Listing 3-2.

Listing 3-2.  Fetching Rows with get_rows()

import mysql.connector

import pprint

printer = pprint.PrettyPrinter(indent=1)

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

Execute a query

result = db.cmd_query(

 """SELECT Name, CountryCode,

 Population

 FROM world.city

 WHERE Population > 9000000

 ORDER BY Population DESC"""

)

Chapter 3 Basic Query Execution

90

Fetch the rows

result_set = db.get_rows()

Print the result dictionary

print("Result Dictionary\n" + "="*17)

printer.pprint(result)

Print the rows

print("\nResult Set\n" + "="*10)

printer.pprint(result_set)

db.close()

The program in Listing 3-2 is similar to the one in Listing 3-1, except

in this case, it forces the use of the pure Python implementation by

using use_pure = True. The query this time looks for the cities with a

population greater than nine million and asks for the resulting rows to be

sorted by the population in descending order. The output looks like

Listing 3-3. The output is generated with MySQL Connector/Python

version 8.0.11.

Note  An important change in MySQL Connector 8.0.12 is to
align the behavior of get_rows() and get_row() between the
pure Python and the C Extenstion implementation. This means
that in MySQL Connector/Python 8.0.12 and later, the pure Python
implementation of get_rows() and get_row() no longer return
the result as byte arrays. The following discussion is never the less
useful to illustrate what happens with the result.

Chapter 3 Basic Query Execution

91

Listing 3-3.  The Output of Executing the Program in Listing 3-2

Result Dictionary

=================

{'columns': [('Name', 254, None, None, None, None, 0, 1),

 ('�CountryCode', 254, None, None, None, None, 0,

16393),

 ('Population', 3, None, None, None, None, 0, 1)],

 'eof': {'status_flag': 33, 'warning_count': 0}}

Result Set

==========

([(bytearray(b'Mumbai (Bombay)'), bytearray(b'IND'),

bytearray(b'10500000')),

 (bytearray(b'Seoul'), bytearray(b'KOR'),

bytearray(b'9981619')),

 (bytearray(b'S\xc3\xa3o Paulo'), bytearray(b'BRA'),

bytearray(b'9968485')),

 (bytearray(b'Shanghai'), bytearray(b'CHN'),

bytearray(b'9696300')),

 (bytearray(b'Jakarta'), bytearray(b'IDN'),

bytearray(b'9604900')),

 (bytearray(b'Karachi'), bytearray(b'PAK'),

bytearray(b'9269265'))],

 {'status_flag': 33, 'warning_count': 0})

The result dictionary is similar to the previous example with the

column information and the eof information. More interesting is the result

set returned by get_rows(). The values are returned as strings represented

by an array of their binary data (bytearray). While this is technically a

correct representation of the result, it is not very useful. For example, the

population is an integer, so it’s better to have the data as an integer rather

Chapter 3 Basic Query Execution

92

than a string. Another issue is a city like São Paulo where the byte sequence

is “S\xc3\xa3o Paulo”; note that the ã is represented as \xc3\xa3.

Note I f you use the C Extension or version 8.0.12 and later, the
values are not returned as byte arrays but as Unicode string. This
is an example where the two implementations were not identical in
earlier versions.

In order for the data to be really useful in the program, it is necessary

to convert the byte arrays to native Python data types. The exact way to

convert depends on the data, and it is beyond the scope of this book to

implement explicit conversion for each data type. However, it is also not

required because MySQL Connector/Python already includes the code

for it; more about this shortly. For now, see Listing 3-4 for an example of

converting the strings and integer in the result of Listing 3-2.

Note  This example and the following examples where the output
includes non-ASCII characters show how the difference in Unicode
handling between Python 2 and Python 3 makes a difference. The
examples assume Python 3 and MySQL Connector/Python 8.0.11.
The examples will not work in version 8.0.12 and later.

Listing 3-4.  Converting the Result to Native Python Types

import mysql.connector

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

Chapter 3 Basic Query Execution

93

Execute a query

result = db.cmd_query(

 """SELECT Name, CountryCode,

 Population

 FROM world.city

 WHERE Population > 9000000

 ORDER BY Population DESC"""

)

Fetch the rows

(cities, eof) = db.get_rows()

Print the rows found

print(__file__ + " – Using decode:")

print("")

print(

 "{0:15s} {1:7s} {2:3s}".format(

 "City", "Country", "Pop"

)

)

for city in cities:

 print(

 "{0:15s} {1:^7s} {2:4.1f}".format(

 city[0].decode(db.python_charset),

 city[1].decode(db.python_charset),

 int(

 city[2].decode(db.python_charset)

)/1000000.0

)

)

Print the eof package

print("\nEnd-of-file:");

Chapter 3 Basic Query Execution

94

for key in eof:

 print("{0:15s} = {1:2d}".format(

 key, eof[key]

))

db.close()

The main difference between Listing 3-2 and Listing 3-4 is in the

handling of the result set. First, the result set is split into the returned rows

(cities) and the end-of-file (eof) package. The cities are then printed while

converting the values to native Python types.

String values are converted using the decode() method of the

bytearray type. This requires parsing the character set of the connection.

In this case, the character set is utf8 (using the default); however, to ensure

that any character set can be handled, the python_charset property of the

connection is used to set the character set to use in the conversion. Since

utf8mb4 is a MySQL invention, it is necessary to catch that and use utf8

instead; this is the difference between the charset and python_charset

properties. The population can be converted using the int() function and

then divided by one million to get the population in millions.

Finally, the end-of-file part of the result set is printed. This is the same

information as is available in the eof part of the results returned by

cmd_query(). The output of the program is

listing_3_4.py – Using decode

City Country Pop

Mumbai (Bombay) IND 10.5

Seoul KOR 10.0

São Paulo BRA 10.0

Shanghai CHN 9.7

Jakarta IDN 9.6

Karachi PAK 9.3

Chapter 3 Basic Query Execution

95

End-of-file:

status_flag = 33

warning_count = 0

Manually converting the arrays of bytes is not feasible in general and

it is not necessary, as it will be shown next, when automatic conversion of

rows is discussed.

�Automatic Conversion into Native Python Types
In the previous examples, the rows returned by the query were handled

manually. This can be a great way to understand what is going on, but in

more real-world cases, it is usually preferred to get the result returned as

native Python types.

Note  As with the previous example, this discussion is only required
for MySQL Connector/Python 8.0.11 and earlier including version 2.1.
In later versions, the conversion happens automatically; however, it
is safe to call row_to_python() as it will just be a null-operation if
the conversion has already happened.

MySQL Connector/Python includes the conversion module that

provides tools for doing conversions of the results returned by MySQL

Server. Specifically, the row_to_python() method in the MySQLConverter

class can convert all values in a row. Listing 3-5 shows the equivalent of the

example in Listing 3-4, but this time using row_to_python() to handle the

conversion.

Chapter 3 Basic Query Execution

96

Listing 3-5.  Converting Query Results Using MySQLConverter.

row_to_python()

import mysql.connector

from mysql.connector.conversion import MySQLConverter

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

Execute a query

result = db.cmd_query(

 """SELECT Name, CountryCode,

 Population

 FROM world.city

 WHERE Population > 9000000

 ORDER BY Population DESC"""

)

Fetch the rows

(cities, eof) = db.get_rows()

Initialize the converter

converter = MySQLConverter(

 db.charset, True)

Print the rows found

print(__file__ + " - Using MySQLConverter:")

print("")

print(

 "{0:15s} {1:7s} {2:3s}".format(

 "City", "Country", "Pop"

)

)

Chapter 3 Basic Query Execution

97

for city in cities:

 values = converter.row_to_python(

 city, result["columns"])

 print(

 "{0:15s} {1:^7s} {2:4.1f}".format(

 values[0],

 values[1],

 values[2]/1000000.0

)

)

db.close()

The important parts of the example in Listing 3-5 are those involving

the MySQLConverter class. First, the class is imported; then the class is

instantiated when the result set is ready to be printed; and finally, the rows

are converted by using the row_to_python() method.

When the MySQLConverter class is instantiated, two arguments are

required: the character set and whether Unicode is used in Python.

Remember from Chapter 2 that it is possible to configure both when

creating the connection. The character set is exposed through the charset

property of the connection so, as before, that is used to ensure that a change

of connection character set does not require code changes when converting

the row. The MySQLConverter class knows how to handle utf8mb4, so there

is no need to take care of that explicitly. There is no property for the use of

Unicode in Python, so it is necessary to specify it explicitly.

With an instance of the MySQLConverter class available, the rows

can be converted one at a time. The column information from the result

of the cmd_query() call is passed as an argument along the values to be

converted; this ensures that MySQL Connector/Python knows the data

type for each column. The output is the same as for the example in

Listing 3-4 except the information in the eof part has be removed:

Chapter 3 Basic Query Execution

98

listing_3_5.py - Using MySQLConverter

City Country Pop

Mumbai (Bombay) IND 10.5

Seoul KOR 10.0

São Paulo BRA 10.0

Shanghai CHN 9.7

Jakarta IDN 9.6

Karachi PAK 9.3

The examples thus far have fetched all rows in the result set and then

used the rows. That is great for a small result, but it is not efficient for a

large number of rows with large values.

�Retrieving Rows – get_rows() With Limit
One option to limit the number of rows retrieved is to specify the number

of rows to fetch as an argument to get_rows(). This can be done in one of

two ways: either just give the number of rows as an argument on its own

or explicitly as the count parameter. The number of rows specified is the

maximum number of rows to read in the batch. While there are more rows

to be read, eof will be set to None. If there are fewer rows available than

requested, get_rows() will return what is left and set eof to include the

end-of-file information. This is illustrated in Listing 3-6.

Listing 3-6.  Fetching a Limited Number of Rows at a Time Using

get_rows()

import mysql.connector

from mysql.connector.conversion import MySQLConverter

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

Chapter 3 Basic Query Execution

99

Execute a query

result = db.cmd_query(

 """SELECT Name, CountryCode,

 Population

 FROM world.city

 WHERE Population > 9000000

 ORDER BY Population DESC"""

)

Initialize the converter

converter = MySQLConverter(

 db.charset, True)

Fetch and print the rows

print(__file__

 + " - Using get_rows with limit:")

print("")

count = 0

(cities, eof) = db.get_rows(4)

while (cities):

 count = count + 1

 print("count = {0}".format(count))

 # Print the rows found in this batch

 print(

 "{0:15s} {1:7s} {2:3s}".format(

 "City", "Country", "Pop"

)

)

 for city in cities:

 values = converter.row_to_python(

 city, result["columns"])

Chapter 3 Basic Query Execution

100

 print(

 "{0:15s} {1:^7s} {2:4.1f}".format(

 values[0],

 values[1],

 values[2]/1000000.0

)

)

 print("")

 # Read the next batch of rows

 if (eof == None):

 (cities, eof) = db.get_rows(count=4)

 else:

 cities = []

db.close()

The first four rows are fetched with the row count just specified as the

argument on its own:

(cities, eof) = db.get_rows(4)

The rest of the rows are read inside the loop:

 if (eof == None):

 (cities, eof) = db.get_rows(count=4)

 else:

 cities = []

It is necessary to check for the value of the eof part of the result set

because the previous read may have fetched the last rows. Indeed, that

happens here. The first pass through the loop prints the first four rows of

the result, and the second pass the remaining two rows:

Chapter 3 Basic Query Execution

101

listing_3_6.py - Using get_rows with limit

count = 1

City Country Pop

Mumbai (Bombay) IND 10.5

Seoul KOR 10.0

São Paulo BRA 10.0

Shanghai CHN 9.7

count = 2

City Country Pop

Jakarta IDN 9.6

Karachi PAK 9.3

One thing to be aware of with this use is that get_rows() reads a total

of seven “rows:” the six rows that are the result of the query plus the eof

information.

A special case of reading a limited number of rows at a time is to fetch

one row. The read_row() method is available for that case as a wrapper

around a call to get_rows() with count=1.

�Retrieving Rows – get_row()
There are two different strategies for fetching rows after executing a query

with the cmd_query() method. Either several rows can be fetched at once

using get_rows(), as has been shown thus far, or rows can be fetched one

at a time using the get_row() method.

The advantage to just fetching one row at a time is that the application

only stores that one row in memory at a time. This can be more efficient

for large result sets even though it requires more calls to the get_row()

method and more round trips for reading the data from MySQL Server.

Chapter 3 Basic Query Execution

102

Note  This is a little simplified. As you will see in the next chapter,
cursors support buffering results (i.e. prefetching the result set).
However, that is not supported when using the cmd_query()
method directly.

Another potential advantage of get_row() is that it provides a different

flow of the code. With get_rows(), the rows are first fetched and then the

code iterates over the rows. On the other hand, when fetching one row at a

time, it is possible to use get_row() directly in a loop, as shown in

Listing 3-7. Which code flow is preferable depends on the situation and

general style of the program.

Listing 3-7.  Using get_row() to Read the Rows One by One

import mysql.connector

from mysql.connector.conversion import MySQLConverter

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

Execute a query

result = db.cmd_query(

 """SELECT Name, CountryCode,

 Population

 FROM world.city

 WHERE Population > 9000000

 ORDER BY Population DESC"""

)

Chapter 3 Basic Query Execution

103

Print the rows found

print(__file__ + " - Using get_row:")

print("")

converter = MySQLConverter(

 db.charset, True)

print(

 "{0:15s} {1:7s} {2:3s}".format(

 "City", "Country", "Pop"

)

)

(city, eof) = db.get_row()

while (not eof):

 values = converter.row_to_python(

 city, result["columns"])

 print(

 "{0:15s} {1:^7s} {2:4.1f}".format(

 values[0],

 values[1],

 values[2]/1000000

)

)

 (city, eof) = db.get_row()

db.close()

Most of the code in Listing 3-7 is the same as in the earlier examples.

The difference is how the loop printing the result set is done. Here the

values for each city and the end-of-file information are obtained using the

get_row() method. The eof variable is None while there are more rows to

read. Then a while loop is used to keep fetching rows until eof is set to the

same value as for get_rows(). The output is

Chapter 3 Basic Query Execution

104

listing_3_7.py - Using get_row

City Country Pop

Mumbai (Bombay) IND 10.5

Seoul KOR 10.0

São Paulo BRA 10.0

Shanghai CHN 9.7

Jakarta IDN 9.6

Karachi PAK 9.3

Before moving on to cursors, it is worth considering the general nature

of consuming results in MySQL Connector/Python.

�Consuming Results
Thus far, the examples have just used get_rows() or get_row() to fetch

the rows returned by the SELECT statements. That is all well and good when

testing, but it is worth looking a little more into consuming results.

Whenever a query returns a result set, the rows must be consumed

before another query can be executed. If the rows have not been

consumed, an exception will occur:

mysql.connector.errors.InternalError: Unread result found

There are two ways to avoid the error:

•	 Read the rows with get_rows() or get_row(). All the

rows as well as the eof package must be read.

•	 Enable the can_consume connection property when

creating the connection.

Chapter 3 Basic Query Execution

105

Caution  Always ensure that all rows returned by a query are
consumed either using one of the methods get_rows() or get_
row() or by enabling can_consume when creating the connection.

You can check whether the can_consume option has been enabled

by using the can_consume_results property of the connection. When

can_consume is enabled, MySQL Connector/Python will call get_rows()

internally if a new query is about to be executed and there still are unread

rows.

How does the program know whether there are any unread rows

left? The connection class keeps track of this through the unread_result

property. When the last row of a result set is read, unread_result is set

to False. The property is public accessible, so it is possible to use it, for

example, together with get_rows().

The can_consume_results property is just one of many properties of

the connection object. Several of the properties were mentioned in the

previous chapter when I discussed how connections are created. Now,

with a better understanding of how connections and query execution

work, you can move on to cursors.

Tip I f there is a large amount of data to be consumed and the data
is not needed, it can be faster to close the connection and reconnect
compared to fetching the rows.

�Cursors
Thus far, all of the examples in this chapter have exclusively used the

methods and properties of the connection object to execute queries and

fetch the resulting rows. Using the connection directly can be considered

Chapter 3 Basic Query Execution

106

the low-level method. For actual programs, it is more common to choose

the higher-level cursors, which provide a nicer way of working with

queries.

Note  While the connection methods cmd_query(), get_rows(),
and get_row() are rarely used directly, it is still useful to know how
the methods work. It helps explain why cursors work the way they do
and is useful when debugging issues.

Before it is possible to use the cursor to execute queries, it must be

instantiated. This is the first topic in the journey through the use of cursors.

�Instantiation
There are two ways to instantiate a cursor: either using the cursor()

method of the connection object or using the MySQLCursor constructor

directly. The two methods are illustrated with the following code snippet:

import mysql.connector

from mysql.connector.cursor import MySQLCursor

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

Create a cursor using cursor()

cursor1 = db.cursor()

cursor1.close()

Create a cursor using the constructor

cursor2 = MySQLCursor(db)

cursor2.close()

db.close()

Chapter 3 Basic Query Execution

107

Note  This example is not the whole story. There are several cursor
subclasses, and the one returned by db.cursor() depends on the
cursor settings. More about that shortly.

As with the database connection itself, the cursor is closed using the

close() method of the cursor object. Closing the cursor when you are

done using it ensures that the reference back to the connection object is

deleted, thus avoiding memory leaks.

There are several different cursor classes. The one to use depends on

the requirements. The classes are

•	 MySQLCursor: This is the “plain” cursor class for

unbuffered output converted to Python types. This is

the default cursor class.

•	 MySQLCursorBuffered: This uses buffered result sets

(see Chapter 4), but still converts the result set to

Python types.

•	 MySQLCursorRaw: This returns the raw results as byte

arrays similar to get_rows() in version 8.0.11 and

earlier while not using buffering.

•	 MySQLCursorBufferedRaw: This returns the raw result

set and enables buffering.

•	 MySQLCursorDict: The same as MySQLCursor, but the

rows are returned as dictionaries.

•	 MySQLCursorBufferedDict: The same as

MySQLCursorBuffered, but the rows are returned as

dictionaries.

•	 MySQLCursorNamedTuple: The same as MySQLCursor,

but the rows are returned as named tuples.

Chapter 3 Basic Query Execution

108

•	 MySQLCursorBufferedNamedTuple: The same as

MySQLCursorBuffered, but the rows are returned as

named tuples.

•	 MySQLCursorPrepared: For use with prepared

statements. Prepared statements will be discussed at

the end of the chapter.

An advantage of using the cursor() method is that you can provide

arguments for the cursor and the method will return a cursor object using

the appropriate cursor class. The supported arguments are

•	 buffered: Whether to buffer the result set in the

application. The default is taken from the buffered

option for the connection.

•	 raw: Whether to return the raw result sets instead of

converting them to Python types. The default is taken

from the raw option for the connection.

•	 prepared: Whether the cursor will be using prepared

statements. Examples of this will be given in the

“Handling User Input” section. The default is None

(False).

•	 cursor_class: Specifies a custom cursor class to use.

This custom class must be a subclass of the CursorBase

class. The default is None. Custom classes are beyond

the scope of this book.

•	 dictionary: Whether to return the rows as dictionaries.

Cannot be combined with raw and named_tuple. The

default is None (False).

•	 named_tuple: Whether to return the rows as named

tuples. This option cannot be enabled if raw or

dictionary is also enabled. The default is None (False).

Chapter 3 Basic Query Execution

109

Table 3-1 summarizes the supported combinations of options and

the cursor class that is returned. In the header, the dictionary option has

been abbreviated with “dict” and the named_tuple option with “tuple.” The

options left empty in the table can either be False or None.

If an unsupported combination of options is used, a ValueError

exception is raised, for example:

ValueError: Cursor not available with given criteria:

dictionary, named_tuple

The rest of this section will cover the cursor execution flow and examples

of instantiating and using cursors, starting with the execution flow.

�MySQLCursor – Execution Flow
The usage of the MySQLCursor class is similar to what was used when

executing queries directly from the connection class: the query is executed

and then the rows are fetched.

Table 3-1.  Arguments for Cursor Objects

buffered raw prepared dict tuple Class

MySQLCursor

True MySQLCursorBuffered

True MySQLCursorRaw

True True MySQLCursorBufferedRaw

True MySQLCursorDict

True True MySQLCursorBufferedDict

True MySQLCursorNamedTuple

True True MySQLCursorBufferedNamedTuple

True MySQLCursorPrepared

Chapter 3 Basic Query Execution

110

The main method for executing queries is the execute() method,

while there are three different methods for reading the rows returned

by the query. The execute() and the row fetching methods and their

relationship are summarized in Figure 3-2. Additionally, there are the

executemany() and callproc() methods for executing queries. They are

discussed in Chapter 4 together with stored_results(), which is used

together with the callproc() method.

Figure 3-2.  A typical code flow using cursors

Chapter 3 Basic Query Execution

111

The flow starts with the application creating a connection. The

cursor() method is then used to create a cursor. There is not just one

cursor class; rather, it is a family of classes depending on the exact nature

of the cursor. Single queries, as discussed in this chapter, are executed

using the execute() method.

The cursor classes have a property called with_rows that specifies

whether there is a result set to handle. The rows can be fetched using one

of three methods: fetchone(), fetchmany(), or fetchall(). Once all rows

are fetched, the fetch method will return None or an empty result. The

cursor can be reused to execute more queries. Once all queries have been

executed, both the cursor and the connection are closed.

As with the flow chart showing how to use the connection methods,

this is a simplified example. At the end of this section, it will be clearer how

cursors work, and the next chapter will add more details.

�MySQLCursor – Query Execution
For single queries other than for stored procedures, the execute() method

is used; this includes support for executing multiple different queries in

one call. The executemany() method can be used to execute the same

query with different parameter sets.

The execute() method takes one required argument, the query to

execute, as well as two optional arguments:

•	 operation: The query to execute. This argument is

mandatory.

•	 params: Either a dictionary, list, or tuple of the

parameters to use with the query. The “Handling

User Input” section discusses the use of parametrized

queries. The default is None.

Chapter 3 Basic Query Execution

112

•	 multi: When True, the operation is considered multiple

queries separated by semicolons and execute()

returns an iterator to make it possible to iterate over the

result of each query. Chapter 4 includes examples of

this. The default is False.

The rows returned by the query can be fetched using one of the

following methods:

•	 fetchall(): Fetches all remaining rows. This is similar

to the get_rows() method without any argument.

fetchall() uses get_rows() for the connection to get

all rows in one call for unbuffered cursors.

•	 fetchmany(): Fetches a batch of rows with the

possibility to set the maximum number of rows to

include in the batch. This is similar to using get_rows()

with an argument. fetchmany() is implemented using

fetchone(). The default is to read one row at a time.

•	 fetchone(): Reads one row at a time. This is the

equivalent of the get_row() method, which is also used

for unbuffered results.

Stored procedures can be executed using the callproc() method. The

stored_results() is a related method that can be used when the stored

procedure returns one or more result sets. Executing multiple queries and

using stored procedures will be discussed in Chapter 4.

Chapter 3 Basic Query Execution

113

Note  All rows must be fetched explicitly or by enabling consume_
results for the connection. An exception will be raised if unread
rows are found and a new query is executed using the same cursor
or the cursor is closed unless consume_results is enabled. It is
also only possible to have one cursor for the connection with an
unread result at a time.

Listing 3-8 shows a simple example of using a cursor to find the cities

with more than nine million residents (the same query used in several of

the cmd_query() examples).

Listing 3-8.  Using a Cursor to Execute a SELECT Statement

import mysql.connector

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

Instantiate the cursor

cursor = db.cursor()

Execute the query

cursor.execute(

 """SELECT Name, CountryCode,

 Population

 FROM world.city

 WHERE Population > 9000000

 ORDER BY Population DESC"""

)

Chapter 3 Basic Query Execution

114

print(__file__

 + " - Using the default cursor:")

print("")

if (cursor.with_rows):

 # Print the rows found

 print(

 "{0:15s} {1:7s} {2:3s}".format(

 "City", "Country", "Pop"

)

)

 city = cursor.fetchone()

 while (city):

 print(

 "{0:15s} {1:^7s} {2:4.1f}".format(

 city[0],

 city[1],

 city[2]/1000000.0

)

)

 city = cursor.fetchone()

cursor.close()

db.close()

The first thing to note about the program is that the loop for printing

the result is more compact compared to using get_row(). In the example

in Listing 3-7, which is essentially the same example using cmd_query()

and get_row(), the loop was 13 lines of code (including reading the first

row); in the cursor example, the loop is 11 lines. The reason for this is that

the MySQLCursor class automatically handles the conversion from the raw

data to the Python types, irrespective of whether the pure Python or C

Extension implementation is used, making it simpler to just loop over the

rows and print them.

Chapter 3 Basic Query Execution

115

The second point is that the use of fetchone() and the loop condition

are a little different compared to the example with get_rows(). The return

value of fetchone() is just a tuple of the values for the row whereas get_

rows() also includes the eof information. This means that the loop must

terminate when fetchone() returns None.

The third point is that the with_rows property of the cursor is checked

before fetching the rows. The with_rows property is True when the query

returns rows. The value does not change even if all rows have been fetched;

this is different from the unread_result property that was examined

earlier for the connection object.

The output is the same as in the previous examples except for the

heading:

listing_3_8.py - Using the default cursor

City Country Pop

Mumbai (Bombay) IND 10.5

Seoul KOR 10.0

São Paulo BRA 10.0

Shanghai CHN 9.7

Jakarta IDN 9.6

Karachi PAK 9.3

Since neither execute() nor the fetch methods include the eof

information, how can that information be obtained? Let’s find out.

�MySQLCursor – Properties
An advantage of working with cursors is that it is no longer necessary

to consider the eof information that cmd_query(), get_rows(), and

get_row() return. Instead, the relevant information is available through

properties of the cursor.

Chapter 3 Basic Query Execution

116

The properties that are available are

•	 column_names

•	 description

•	 lastrowid

•	 rowcount

•	 statement

•	 with_rows

All of the properties are read-only and contain information related to

the latest query that was executed. Each of the properties will be briefly

discussed in the following sections.

�column_names

The column_names property includes the name of each column in the same

order as their values. It is the same as the first element in the list for the

columns in the result dictionary returned by the cmd_query() method.

The column names can, for example, be useful if a row should be

converted into a dictionary using the column names as the keys:

row = cursor.fetchone()

row_dict = dict(

 zip(cursor.column_names, row)

)

Tip I f you want all of the results converted to dictionaries, then use
the MySQLCursorDict cursor class instead. An example is provided
in “The Dictionary and Named Tuple Cursor Subclasses” section.

Chapter 3 Basic Query Execution

117

�description

The description property is equivalent to the entire columns element

in the cmd_query() result dictionary. The value of the property is a list of

tuples, such as the following (as printed using the pprint module):

[('Name', 254, None, None, None, None, 0, 1),

 ('CountryCode', 254, None, None, None, None, 0, 16393),

 ('Population', 3, None, None, None, None, 0, 1)]

The details of the values included in the tuples can be found in the

“Query Metadata” section in Chapter 4.

�lastrowid

The lastrowid can be used to get the last assigned ID after inserting

it into a table with an auto-increment column. This is the same as the

insert_id element of the OK package returned by cmd_query() for

INSERT statements. If the statement inserts multiple rows, it is the ID of

the first row that is assigned to lastrowid. If no ID is available, the value of

lastrowid is None.

�rowcount

The meaning of the rowcount property depends on the statement that was

executed. For SELECT statements, it is the number of rows returned. For

data modification language (DML) statements such as INSERT, UPDATE, and

DELETE, it is the number of rows affected.

For unbuffered SELECT queries (the default), the row count will only

be known after all rows have been fetched. In those cases, rowcount is

initialized to -1, set to 1 when the first row is read, and then incremented

as rows are fetched. That is, rowcount will be -1 until the first row has been

fetched and afterwards will reflect the number of rows fetched up to the

point of time when the property is read.

Chapter 3 Basic Query Execution

118

�statement

The statement property holds the last query or queries to be executed.

When parameter substitution is used (see the “Handling User Input”

section), the statement property is set to the resulting query, making it

useful for debugging.

�with_rows

The with_rows property is a Boolean that is True when the query returns

a result set. Unlike the unread_result property of the connection,

with_rows is not set to False when all rows have been read.

�The Dictionary and Named Tuple Cursor
Subclasses
The other cursor classes that are available in addition to MySQLCursor, such

as MySQLCursorDict, are all subclasses of the MySQLCursor class. This means

that the behavior in general is the same for all of the cursor classes; the

difference is the details of how they handle the result of SELECT statements,

and for the MySQLCursorPrepared class, how the query is executed.

One scenario that can often come up is the requirement to obtain

the query result as a dictionary rather than each row just being an

(anonymous) tuple. In the recurring query used in several of the examples

in this chapter, the city name has, for example, been found as city[0] or

similar. Referencing the columns by their ordinal position makes it hard to

understand the code, and it is error prone. Errors can easily arise by using

the wrong column number or adding a column to the query.

A better solution is to refer to the column by its name. The

MySQLCursorDict subclass can make the conversion from a tuple of values

to a dictionary automatically. Listing 3-9 shows an example of how the

cursor is created with the dictionary parameter set to True.

Chapter 3 Basic Query Execution

119

Listing 3-9.  Using the MySQLCursorDict cursor Subclass

import mysql.connector

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

Instantiate the cursor

cursor = db.cursor(dictionary=True)

Execute the query

cursor.execute(

 """SELECT Name, CountryCode,

 Population

 FROM world.city

 WHERE Population > 9000000

 ORDER BY Population DESC"""

)

print(__file__

 + " - Using the dictionary cursor:")

print("")

if (cursor.with_rows):

 # Print the rows found

 print(

 "{0:15s} {1:7s} {2:3s}".format(

 "City", "Country", "Pop"

)

)

Chapter 3 Basic Query Execution

120

 city = cursor.fetchone()

 while (city):

 print(

 "{0:15s} {1:^7s} {2:4.1f}".format(

 city["Name"],

 city["CountryCode"],

 city["Population"]/1000000

)

)

 city = cursor.fetchone()

cursor.close()

db.close()

The only differences from the previous example are that

dictionary=True is provided as an argument to db.cursor() and, when

printing the values, the columns values are referenced by column name,

for example city["Name"].

The MySQLCursorNamedTuple subclass works similarly:

...

cursor = db.cursor(named_tuple=True)

...

 city = cursor.fetchone()

 while (city):

 print(

 "{0:15s} {1:^7s} {2:4.1f}".format(

 city.Name,

 city.CountryCode,

 city.Population/1000000

)

)

 city = cursor.fetchone()

...

Chapter 3 Basic Query Execution

121

This concludes the discussion of cursors for now. The next chapter is

on advanced query usage and it will include more discussion of cursors.

However, before you get that far, a very important subject must be

addressed: how to handle input provided by users.

�Handling User Input
A common scenario in programs is that queries are generated based

on input from users or other external sources. After all, a program with

all static queries is rarely of much interest. It is critical how this input is

handled. A failure to handle it properly can, in the best case, result in

mysterious errors; in the worst case, it can result in data theft, lost data,

and data corruption. This section discusses how to handle externally

provided data correctly.

Caution N ever input information into the database without ensuring
that it is handled such that it cannot change the meaning of the
queries. Failing to do so can, for example, open the application to SQL
injection attacks.

There are several ways to secure the program. The three ways that will

be discussed are

•	 Validating the input

•	 Parametrizing the queries

•	 Using prepared statements

These three methods are the topics in the remainder of this chapter.

Chapter 3 Basic Query Execution

122

�Validating the Input
Whenever the application reads data, it is important to validate the input.

For example, if the application asks for the age in years, verify that the

entered data is a positive integer, optionally with a check of whether

the specified age is in the expected range. Not only does the validation

help make the application safer, it also makes it easier to provide useful

feedback to the user, which enhances the user experience.

Note  Client-side data validation, such as using JavaScript in web
pages, is great for improving the user experience, but does not count
as data validation for the application. The reason is that the user can
override the validation performed on their side.

There is nothing unique to Python programming with respect to data

validation. It is a common requirement irrespective of the programming

language. How to do query parametrization is, however, specific to MySQL

Connector/Python, which is the second line of defense.

�Query Parameterization
A great way to defend the database against SQL injection attempts is to use

parametrized queries. This will hand over the task of escaping and quoting

the data to MySQL Connector/Python.

There are two ways of using parameter substitution with the cursor

execute() method. The first is to provide a list or tuple with the values in

the same order as they appear in the query. In this case, each parameter

is represented with a %s in the query text. This is a useful way to provide

the parameters if there only are a couple of parameters or for repeated use

such as for an INSERT statement.

Chapter 3 Basic Query Execution

123

Tip  Specifying a single parameter inside parameters, like (“John
Doe”), does not create a tuple; the end result is a scalar string. If you
only have one parameter, either use a list or add a comma after the
value, like (“John Doe”,), to force the value into a tuple.

The other way is to provide a dictionary where each parameter is

given a name (the key of the dictionary with the value being the parameter

value). This is more verbose, but on the upside, it also makes for easier-to-

read source code. This is particularly the case if the query includes several

parameters. The parameters are specified in the query like %(name_of_

parameter)s.

As an example, consider the following query:

SELECT *

 FROM world.city

 WHERE Name = ?

The question mark represents data that will be provided by the user of

the application. Assume the user specifies the city name as 'Sydney' OR

True. Listing 3-10 shows two different ways of handling that input using a

dictionary for the parametrized query.

Listing 3-10.  Handling User-Provided Data

import mysql.connector

input = "'Sydney' OR True"

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

Instantiate the cursor

cursor = db.cursor(dictionary=True)

Chapter 3 Basic Query Execution

124

Execute the query without parameter

sql = """SELECT *

 FROM world.city

 WHERE Name = {0}""".format(input)

cursor.execute(sql)

cursor.fetchall()

print("1: Statement: {0}".format(

 cursor.statement))

print("1: Row count: {0}\n".format(

 cursor.rowcount))

Execute the query with parameter

sql = """SELECT *

 FROM world.city

 WHERE Name = %(name)s"""

params = {'name': input}

cursor.execute(

 sql,

 params=params

)

cursor.fetchall()

print("2: Statement: {0}".format(

 cursor.statement))

print("2: Row count: {0}".format(

 cursor.rowcount))

cursor.close()

db.close()

The input is set in the input variable first in the program. Then the

query is executed twice. In the first execution, the input is simply added in

the query using the format() string method. In the second execution, the

Chapter 3 Basic Query Execution

125

input is added by setting the params option when calling the execute()

cursor method. After each execution, the executed statement and the

number of rows found are printed. The output is

1: Statement: SELECT *

 FROM world.city

 WHERE Name = 'Sydney' OR True

1: Row count: 4079

2: Statement: SELECT *

 FROM world.city

 WHERE Name = '\'Sydney\' OR True'

2: Row count: 0

Notice how the first execution ends up finding all 4079 rows in the

world.city table. The reason for this is that the WHERE clause ends up

consisting of two parts: Name = 'Sydney' and True. Because of the OR

between the two conditions, all cities will end up matching because True

matches everything.

On the other hand, the second execution escapes the single quotes and

adds quotes around the whole string. So, no rows are found because no

city is named “‘Sydney’ OR True.”

Caution  MySQL Connector/Python uses the Python data type to
determine how to insert the parameters into the query. So, it is not a
defense against the user providing data of the wrong type. To protect
against the wrong data types being used, data validation and/or
prepared statements must be used.

Using parametrization is not only good to ensure that the data is

quoted and escaped correctly. It also makes it easy to reuse queries, and

it is possible to use Python data types in the application and let MySQL

Chapter 3 Basic Query Execution

126

Connector/Python handle the proper conversion to MySQL data types. An

example is dates. In Listing 3-11, a temporary table is first created, then

a row is inserted including a date, and then the actual query executed is

printed. This time the parameters are provided in a tuple.

Listing 13-11.  Using Parameters with a datetime Value

import mysql.connector

import datetime

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

Instantiate the cursor

cursor = db.cursor()

Create a temporary table

sql = """

CREATE TEMPORARY TABLE world.tmp_person (

 Name varchar(50) NOT NULL,

 Birthday date NOT NULL,

 PRIMARY KEY (Name)

)"""

cursor.execute(sql)

sql = """

INSERT INTO world.tmp_person

VALUES (%s, %s)

"""

params = (

 "John Doe",

 datetime.date(1970, 10, 31)

)

Chapter 3 Basic Query Execution

127

cursor.execute(sql,params=params)

print("Statement:\n{0}".format(

 cursor.statement))

cursor.close()

db.close()

The output of the print statement is:

Statement:

INSERT INTO world.tmp_person

VALUES ('John Doe', '1970-10-31')

So the parameter substitution ensured that the date of October 31,

1970 was expressed correctly as '1970-10-31' in the query sent to MySQL.

A method that is related to parameter optimization is prepared

statements. This is the last method of defense that will be discussed.

�Prepared Statements
Prepared statements can be very useful when working with databases

because they have some advantages over the more direct ways of executing

queries that have been used thus far. Two of the advantages are improved

performance when a query is reused and protection against SQL injection.

From the point of view of MySQL Connector/Python, there is little

difference between using parameterization or prepared statements. In

fact, other than creating a different cursor subclass, the usage from the

application point of view is identical.

Behind the scenes, there are subtle differences, though. The first

time a query is executed, the statement is prepared; that is, the statement

is submitted to MySQL Server with place holders, and MySQL Server

prepares the statement for future use. Then the cursor sends a command

to tell MySQL Server to execute the prepared statement along with

Chapter 3 Basic Query Execution

128

the parameters to use for the query. There are two advantages of this

approach:

•	 MySQL Server does as much of the preparation of the

query during the prepare phase as possible. This means

that for subsequent executions, there is less work

required, and only the parameters need to be sent over

the network, so the performance is improved.

•	 MySQL Server resolves which tables and columns

are required for the query, so it is able to ensure the

submitted parameters are handled according to the

data type of the column. This prevents SQL injection.

Note  With respect to performance, the one thing to watch out for is
that if the query is only executed once, there is no performance gain.
On the other hand, there will be an extra round trip to MySQL Server,
so the performance of using a prepared statement will be worse than
executing the query directly. The more time a prepared statement is
reused, the more the performance will benefit.

The exact method used to prepare and execute the prepared

statements depends on whether the pure Python or C Extension

implementation of MySQL Connector/Python is used. The pure Python

implementation uses the PREPARE and EXECUTE statements (see https://

dev.mysql.com/doc/refman/en/sql-syntax-prepared-statements.

html). The C Extension uses the binary protocol, which is more efficient.

The use of the C Extension with prepared statements requires using the

_mysql_connector module, which is discussed in Chapter 4.

Listing 3-12 shows an example of using the same query, except for the

country code, to find the three most populous cities in the United States

and India.

Chapter 3 Basic Query Execution

https://dev.mysql.com/doc/refman/en/sql-syntax-prepared-statements.html
https://dev.mysql.com/doc/refman/en/sql-syntax-prepared-statements.html
https://dev.mysql.com/doc/refman/en/sql-syntax-prepared-statements.html

129

Listing 13-12.  Using Prepared Statements

import mysql.connector

Format strings

FMT_QUERY = "Query {0}:\n" + "-"*8

FMT_HEADER = "{0:18s} {1:7s} {2:3s}"

FMT_ROW = "{0:18s} {1:^7s} {2:4.1f}"

Define the queries

SQL = """

SELECT Name, CountryCode, Population

 FROM world.city

 WHERE CountryCode = %s

 ORDER BY Population DESC

 LIMIT 3"""

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

cursor = db.cursor(prepared=True)

Execute the query finding the top

three populous cities in the USA and

India.

count = 0

for country in ("USA", "IND"):

 count = count + 1;

 print(FMT_QUERY.format(count))

 cursor.execute(SQL, (country,))

 if (cursor.with_rows):

 # Print the result.

Chapter 3 Basic Query Execution

130

 print(FMT_HEADER.format(

 "City", "Country", "Pop"))

 city = cursor.fetchone()

 while (city):

 print(FMT_ROW.format(

 city[0],

 city[1],

 city[2]/1000000

))

 city = cursor.fetchone()

 print("")

cursor.close()

db.close()

This example is very similar to earlier examples except that the cursor

is created with prepared=True. The main difference is that there is no

support for named parameters, so %s is used. The output of the program is

Query 1:

City Country Pop

New York USA 8.0

Los Angeles USA 3.7

Chicago USA 2.9

Query 2:

City Country Pop

Mumbai (Bombay) IND 10.5

Delhi IND 7.2

Calcutta [Kolkata] IND 4.4

Chapter 3 Basic Query Execution

131

There is no support when using prepared statements for converting the

rows into a dictionary or named tuple. This makes it somewhat harder to

use prepared statements. Finally, the callproc() and stored_results()

methods (see the “Stored Procedures” section in Chapter 4) are not

implemented. The upside is improved protection against SQL injection, so

it is worth going through the extra work.

Note  The prepared statement cursor is more basic than the other
cursor subclasses. There is no support for data conversion for strings,
dictionaries, named tuples, and the stored procedures methods.
If prepared statements are used regularly, it worth considering a
custom cursor class that adds support for these features.

�Summary
This chapter went through the basics of executing queries using MySQL

Connector/Python. You started out using the methods available for the

connection object:

•	 cmd_query() to execute queries

•	 get_rows() to fetch multiple rows (by default all rows)

when the query generated a result set

•	 get_row() to fetch one row at a time

These methods can be considered the low-level methods. At a higher

level, the cursor classes provide support for executing queries while

offering support for converting the result automatically to Python types

and other features. The cursor methods discussed were

Chapter 3 Basic Query Execution

132

•	 execute() to execute queries

•	 fetchone(), fetchmany(), and fetchall() for reading

the result sets

Finally, you learned how to handle user input. It is very important that

all input is validated, and parameterization is used to protect against SQL

injections. Parameterization can be performed using cursors. Enabling

prepared statements in the cursor provides additional protection because

it is MySQL Server handling the parameters with the knowledge of the

target data types. Prepared statements can also improve performance

when the same base query is executed repeatedly.

There is still much more to query execution in MySQL Connector/

Python, so the next chapter will continue with more advanced examples.

Chapter 3 Basic Query Execution

133© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9_4

CHAPTER 4

Advanced Query
Execution
In the previous chapter, you looked at the basics of executing queries. This

chapter explores additional features related to query execution. It starts

out by looking into the options of executing multiple queries in one API

call and then moves on to features such as buffered results, calling stored

procedures, and loading data in CSV files.

The second half of the chapter focuses on the connection properties,

how to execute transactions, using the default database property to avoid

specifying the database name explicitly for each table, and working with

time zones. It also offers an overview of how to use the column information

available after queries. The chapter concludes with a discussion of the C

Extension.

Tip  There are a number of example programs in this chapter. All
example programs that appear in a listing are available for download.
See the discussion of example programs in Chapter 1 for more
information about using the example programs.

134

�Multi-Query Execution
In the previous chapter, all calls to the cmd_query() and execute()

methods involved a single query. It is, however, also possible to execute

multiple queries with one call to MySQL Connector/Python.

Note  While it may seem like a simplification to submit multiple
queries at a time and the performance in some cases can be
improved, there are also downsides. Particularly, it can be harder
to follow what is going on when reading the source code of the
program. So, make sure to use the support for multiple query
execution with care.

There is support for multiple queries both using the connection object

and cursors. Assuming the connection object is named db and the cursor

is named cursor, the methods that have support for handling multiple

queries are

•	 db.cmd_query_iter(): This works similarly to the cmd_

query() method, except it returns a generator that can be

used to fetch the result of each of the queries. The method

is only available in the pure Python implementation.

•	 cursor.execute(): When the multi argument is

enabled, the execute() method of a cursor can also

execute multiple queries. This is the equivalent of

cmd_query_iter() and a generator for the results is

returned.

•	 cursor.executemany(): This method takes a template

(query with parameter placeholders) and a list of sets

of parameters. There is no support for having results

returned.

Chapter 4 Advanced Query Execution

135

The three methods will be the topic of the rest of this section, starting

with the execution of several queries using the cmd_query_iter() and

execute() methods, then moving on to queries based on a template using

executemany(), and finally the special case of inserting multiple rows into

a table using executemany().

�Multiple Queries with Support for Results
The equivalent of the methods used in the previous chapter but with

support for executing multiple queries is the cmd_query_iter() method of

the connection object and the execute() method of the cursor object (the

same as used for single queries). In both cases, a generator for the results

(not rows!) is returned.

The flow of executing queries in this way is illustrated in Figure 4-1.

Figure 4-1.  Flow of executing multiple queries at a time

Chapter 4 Advanced Query Execution

136

Figure 4-1 shows that the queries are sent to MySQL Server one by

one. When MySQL Server is done executing the query, the result is sent

back to the application. Once all rows are read, MySQL Connector/Python

automatically sends the next query. This means that enabling buffering

(discussed later in this chapter in the “Buffered Results” section) can be

useful with multi-statement execution.

The details of cmd_query_iter() and execute() with multi = True

will be discussed in turn in the next subsections.

�Connection - cmd_query_iter()

The cmd_query_iter() method works similar to the cmd_query() method.

The main difference is that cmd_query_iter() returns a generator that can

be used to fetch the results instead of returning the result directly.

Listing 4-1 shows an example where cmd_query_iter() is used to

select the three most populous cities of the United States and India.

Note  As with cmd_query(), the use of the MySQLConverter class
is not required in MySQL Connector/Python 8.0.12 and later.

Listing 4-1.  Executing Multiple Queries with cmd_query_iter()

import mysql.connector

from mysql.connector.conversion import MySQLConverter

from datetime import datetime

from time import sleep

Format strings

FMT_QUERY = "Query {0} - {1}:\n" + "-"*19

FMT_HEADER = "{0:18s} {1:7s} {2:3s}"

FMT_ROW = "{0:18s} {1:^7s} {2:4.1f}"

Chapter 4 Advanced Query Execution

137

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

Prepare the converter

converter = MySQLConverter(db.charset, True)

Define the queries

sql1 = """

SELECT Name, CountryCode, Population

 FROM world.city

 WHERE CountryCode = 'USA'

 ORDER BY Population DESC

 LIMIT 3"""

sql2 = "DO SLEEP(3)"

sql3 = """

SELECT Name, CountryCode, Population

 FROM world.city

 WHERE CountryCode = 'IND'

 ORDER BY Population DESC

 LIMIT 3"""

queries = [sql1, sql2, sql3]

Execute the queries and obtain the

iterator

results = db.cmd_query_iter(";".join(queries))

Iterate through the results

count = 0

for result in results:

 count = count + 1;

 time = datetime.now().strftime('%H:%M:%S')

 print(FMT_QUERY.format(count, time))

Chapter 4 Advanced Query Execution

138

 if ('columns' in result):

 # It is one of the SELECT statements

 # as it has column definitions.

 # Print the result.

 print(FMT_HEADER.format(

 "City", "Country", "Pop"))

 (city, eof) = db.get_row()

 while (not eof):

 values = converter.row_to_python(

 city, result["columns"])

 print(FMT_ROW.format(

 values[0],

 values[1],

 values[2]/1000000.0

))

 (city, eof) = db.get_row()

 else:

 # Not a SELECT statement

 print("No result to print")

 sleep(2)

 print("")

db.close()

The first thing to notice is that the connection is established using

pure_python = True. The cmd_query_iter() method is one of the cases

where it is necessary to use the pure Python implementation because the

method is not available in the C Extension implementation.

After the connection has been established, the format strings for the

later outputs are defined, and the three queries that will be executed are

defined. After executing the queries, there is a loop over each result. If

the result dictionary includes column information, then there are rows

Chapter 4 Advanced Query Execution

139

to fetch. Otherwise, it is another type of query (for example INSERT or, as

here, a DO statement).

Note  The with_rows property of cursors also works by checking
whether there is column information in the result dictionary.

Two sleeps are inserted: the second query performs a sleep of three

seconds on the MySQL Server side, and at the end of each loop handling

the results, there is a sleep of two seconds in the Python code. This allows

you to see from the output the flow of the queries and fetching of results.

The output is

Query 1 - 16:24:58:

City Country Pop

New York USA 8.0

Los Angeles USA 3.7

Chicago USA 2.9

Query 2 - 16:25:01:

No result to print

Query 3 - 16:25:03:

City Country Pop

Mumbai (Bombay) IND 10.5

Delhi IND 7.2

Calcutta [Kolkata] IND 4.4

The first query completed the execution at 16:24:58. The second query

is the three-second sleep, which is also the delay until the result of the

query is ready. Since there also is a two-second sleep in the Python code

Chapter 4 Advanced Query Execution

140

after handling the result of the first query, it shows that the second query is

executing while the application is “working” after reading the result of the

first query.

This also shows one of the advantages of using the multi-query

methods: if the queries are slow and possibly the application also needs

some time to handle the result, it can improve the overall performance

because the application can move on to processing the query result while

the next query is executing.

Next up is how to perform the same task using a cursor instead.

�Cursor – execute()

Executing multiple queries at a time using a cursor is very similar to

executing a single query. In both cases, the execute() method is used.

The main differences are that the multi argument is set to True and that

a generator is returned. The queries are submitted in one string with the

queries separated by a semicolon, just like with cmd_query_iter().

Passing parameters to the queries is supported; however, all

parameters must be in a single tuple, list, or dictionary. This makes it less

useful to use the multi-query execution when parameters are required;

instead, several single query executions are recommended in those cases.

Tip I f it the same query template is used for all the queries, and
there is no result set to handle, then the executemany() method
discussed next is a useful alternative to execute() with multi =
True.

Listing 4-2 shows the example that corresponds to the previous

cmd_query_iter() one, but this time using a cursor. The sleeps in the

Python code and the printing of timestamps have been removed since they

would work the same.

Chapter 4 Advanced Query Execution

141

Listing 4-2.  Using a Cursor to Execute Multiple Queries

import mysql.connector

Format strings

FMT_QUERY = "Query {0}:\n" + "-"*8

FMT_HEADER = "{0:18s} {1:7s} {2:3s}"

FMT_ROW = "{0:18s} {1:^7s} {2:4.1f}"

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

Define the queries

sql_select = """

SELECT Name, CountryCode, Population

 FROM world.city

 WHERE CountryCode = %s

 ORDER BY Population DESC

 LIMIT 3"""

sql_do = "DO SLEEP(3)"

queries = [sql_select, sql_do, sql_select]

Execute the queries and obtain the

iterator

cursor = db.cursor()

results = cursor.execute(

 ";".join(queries),

 params=("USA", "IND"),

 multi=True

)

Iterate through the results

count = 0

Chapter 4 Advanced Query Execution

142

for result in results:

 count = count + 1;

 print(FMT_QUERY.format(count))

 if (result.with_rows):

 # It is one of the SELECT statements

 # as it has column definitions.

 # Print the result.

 print(FMT_HEADER.format(

 "City", "Country", "Pop"))

 city = cursor.fetchone()

 while (city):

 print(FMT_ROW.format(

 city[0],

 city[1],

 city[2]/1000000

))

 city = cursor.fetchone()

 else:

 # Not a SELECT statement

 print("No result to print")

 print("")

cursor.close()

db.close()

There are only few surprises in the code. The main thing is that, as

discussed, the params argument is a single tuple shared for all queries.

In this case, it is reasonably simple to keep track of the parameters in the

queries, but in general this can become difficult and error prone. So, if

parameter substitution is required, it is in most cases better to use multiple

executions of single queries, or if the use case permits, use the cursor

executemany() method.

Chapter 4 Advanced Query Execution

143

Caution U sing parameter substitution with multi-query execution is
error prone. Consider executing the queries one by one, or if no result
set is returned and the same template is used for all queries, use the
cursor executemany() method.

The output of the script is similar to the previous example:

Query 1:

City Country Pop

New York USA 8.0

Los Angeles USA 3.7

Chicago USA 2.9

Query 2:

No result to print

Query 3:

City Country Pop

Mumbai (Bombay) IND 10.5

Delhi IND 7.2

Calcutta [Kolkata] IND 4.4

�Multiple Queries Based on a Template
In some cases, it is necessary to execute the same query over and over but

using different parameters. For that use case, the executemany() method

exists.

Chapter 4 Advanced Query Execution

144

The main downside of executemany() is that there is no support for

returning result sets. After each query execution, it is checked whether

there are any rows to fetch; if so, all rows are fetched but not saved. Even

the return value is always None.

Listing 4-3 shows a simple example where several cities have

population changes. Since the basic query is the same, executemany()

is a good candidate for this task. To make it easier to see which cities

are updated, the city name, district, and country code are spelled out.

However, in real applications, if the primary key (the ID column for the

city table) is known, it is a better identifier of the rows to update because

it will require fewer locks and better performance.

Tip  Aim to look up rows using the primary key or at least another
index when possible. The more specific an index is, the fewer rows
will be searched and the less locks will be held. This applies to all
queries selecting, updating, or deleting rows.

Listing 4-3.  Using executemany() to Update Several Rows

import mysql.connector

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

cursor = db.cursor()

Definte the query template and the

parameters to submit with it.

sql = """

UPDATE world.city

 SET Population = %(population)s

 WHERE Name = %(name)s

Chapter 4 Advanced Query Execution

145

 AND CountryCode = %(country)s

 AND District = %(district)s"""

params = (

 {

 "name": "Dimitrovgrad",

 "country": "RUS",

 "district": "Uljanovsk",

 "population": 150000

 },

 {

 "name": "Lower Hutt",

 "country": "NZL",

 "district": "Wellington",

 "population": 100000

 },

 {

 "name": "Wuhan",

 "country": "CHN",

 "district": "Hubei",

 "population": 5000000

 },

)

Get the previous number of questions

asked to MySQL by the session

cursor.execute("""

 SELECT VARIABLE_VALUE

 FROM performance_schema.session_status

 WHERE VARIABLE_NAME = 'Questions'""")

tmp = cursor.fetchone()

questions_before = int(tmp[0])

Chapter 4 Advanced Query Execution

146

Execute the queries

cursor.executemany(sql, params)

print("Row count: {0}".format(

 cursor.rowcount))

print("Last statement: {0}".format(

 cursor.statement))

Get the previous number of questions

asked to MySQL by the session

cursor.execute("""

 SELECT VARIABLE_VALUE

 FROM performance_schema.session_status

 WHERE VARIABLE_NAME = 'Questions'""")

tmp = cursor.fetchone()

questions_after = int(tmp[0])

print("Difference in number of"

 + " questions: {0}".format(

 questions_after-questions_before

))

db.rollback()

cursor.close()

db.close()

First, the template is defined. In this case, named parameters are used

to make it possible to use a sequence of dictionaries of the parameters.

It makes for more verbose code, but also code that is easier to read and

understand.

Then the executemany() method is called and the number of rows

modified is printed. In this case, three rows are updated. Before and after

the executemany() call, the number of questions asked by the connection

is fetched from the performance_schema.session_status table. This

Chapter 4 Advanced Query Execution

147

is used to show how many queries are sent to MySQL Server during

the executemany() call. The rowcount and statement properties of the

cursor are used to get some information about the call to executemany().

It is the use of the statement property that is the reason for use_pure =

True when the connection is created; when using the C Extension, the

statement property is not supported when queries are executed with

executemany() except for extended inserts.

Tip I n MySQL Server 5.6 and earlier, change the performance_
schema.session_status table to the information_schema.
session_status table.

Finally, the transaction is rolled back to leave the city table as before

the start of the example. This is only done so that all examples will use

the same known state of the data; plus it means you can re-execute

the example and get the same result. Transactions are discussed in the

“Transactions” section later in this chapter. The output of the program is

Row count: 3

Last statement: UPDATE world.city

 SET Population = 5000000

 WHERE Name = 'Wuhan'

 AND CountryCode = 'CHN'

 AND District = 'Hubei'

Difference in number of questions: 4

The output shows that executemany() updated three rows (and then

later rolled back), and the last executed statement updated the population

of the city of Wuhan. The difference in the number of questions asked

before and after is four: three for the three update statements, and one for

querying for the number of questions asked.

Chapter 4 Advanced Query Execution

148

As shown, the queries are executed one by one by executemany()

calling the execute() method. So, there is no performance advantage

compared to looping over the queries in the application itself. There is one

exception, however: INSERT statements.

�Extended Inserts
MySQL supports a feature called extended inserts. Usually when inserting

multiple rows into a table, it’s done as a series of INSERT statements:

CREATE TEMPORARY TABLE world.t1 (

 id int unsigned NOT NULL,

 val varchar(10),

 PRIMARY KEY (id)

);

INSERT INTO world.t1 VALUES (1, 'abc');

INSERT INTO world.t1 VALUES (2, 'def');

INSERT INTO world.t1 VALUES (3, 'ghi');

SELECT * FROM world.t1;

+----+------+

| id | val |

+----+------+

| 1 | abc |

| 2 | def |

| 3 | ghi |

+----+------+

This can be converted to a single statement that uses extended inserts:

DELETE FROM world.t1;

INSERT INTO world.t1

VALUES (1, 'abc'),

 (2, 'def'),

 (3, 'ghi');

Chapter 4 Advanced Query Execution

149

SELECT * FROM world.t1;

+----+------+

| id | val |

+----+------+

| 1 | abc |

| 2 | def |

| 3 | ghi |

+----+------+

Extended inserts can greatly improve the performance of bulk inserts

compared to single inserts, particularly if autocommit is enabled (see the

“Transactions” section for more about autocommit).

MySQL Connector/Python has built-in support for generating extended

INSERT statements by the use of the executemany() method. When it

is detected that the template matches an INSERT statement, a single

statement inserting all the required rows is generated. Listing 4-4 shows an

example of inserting three rows into the world.t1 temporary table.

Listing 4-4.  Using executemany() to Insert Several Rows

import mysql.connector

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini"

)

cursor = db.cursor()

Create a temporary table for this

example

cursor.execute("""

 CREATE TEMPORARY TABLE world.t1 (

 id int unsigned NOT NULL,

 val varchar(10),

 PRIMARY KEY (id)

)""")

Chapter 4 Advanced Query Execution

150

Definte the query template and the

parameters to submit with it.

sql = """

INSERT INTO world.t1 VALUES (%s, %s)"""

params = (

 (1, "abc"),

 (2, "def"),

 (3, "ghi")

)

Get the previous number of questions

asked to MySQL by the session

cursor.execute("""

 SELECT VARIABLE_VALUE

 FROM performance_schema.session_status

 WHERE VARIABLE_NAME = 'Questions'""")

tmp = cursor.fetchone()

questions_before = int(tmp[0])

Execute the query

cursor.executemany(sql, params)

print("Row count = {0}".format(

 cursor.rowcount))

print("Last statement: {0}".format(

 cursor.statement

))

Get the previous number of questions

asked to MySQL by the session

cursor.execute("""

 SELECT VARIABLE_VALUE

 FROM performance_schema.session_status

 WHERE VARIABLE_NAME = 'Questions'""")

tmp = cursor.fetchone()

questions_after = int(tmp[0])

Chapter 4 Advanced Query Execution

151

print("Difference in number of"

 + " questions: {0}".format(

 questions_after-questions_before

))

cursor.close()

db.close()

The example is basically identical to the previous one except it is

an INSERT statement and a temporary table is created for the data to be

inserted into. The output this time is

Row count = 3

Last statement: INSERT INTO world.t1 VALUES (1, 'abc'),(2,

'def'),(3, 'ghi')

Difference in number of questions: 2

The row count is still three, but now the last statement includes all

three rows: the three INSERT statements have been rewritten to a single

statement inserting all three rows. This is also reflected in the number of

questions, which is two less than it was for the UPDATE example.

This concludes the topic of multiple queries for now. There will be a

brief additional discussion in the “Transactions” section. Now it is time to

look at some of the other features of cursors; first up is buffered results.

�Buffered Results
A special feature of cursors is that it is possible to have MySQL Connector/

Python automatically fetch the result set after a query and buffer it so it

can be used later. Buffering the result frees up the resources from MySQL

Server as quickly as possible but adds requirements to the application

instead. This makes buffering most useful where the application handles

small result sets. The buffering cursor can be combined with the

dictionary or named_tuple options.

Chapter 4 Advanced Query Execution

152

One advantage of buffered cursors over non-buffered cursors is that it

is possible to have two cursors for the same connection active at the same

time even if they include result sets. For a non-buffered cursor, attempting

to execute a query through the same connection before all rows have been

fetched results in an exception. Since a buffering cursor automatically

fetches the rows and makes the fetch methods read from the buffer, as far

as MySQL Server is concerned, the connection is free to be used again.

Two examples where this feature can be useful are

•	 Executing two or more SELECT statements where it

makes sense to handle the returned rows side by side.

Often it is better to rewrite those queries to a single

query using JOINs, but occasionally there can be

reasons to use more but simpler queries.

•	 Reading rows from one query and then using the rows

in another query. Again, it may be better to combine

the queries but, for example, if a row is read so it can be

updated and the business logic is not available in the

database, then it can be useful to use two cursors.

Note  Buffering allows for executing a new query in the same cursor
before handling the result set. However, it will cause the old result set
to be discarded.

Listing 4-5 shows an example where both buffering and conversion

to a dictionary are enabled. There are two cursors: cursor1 reads the

Australian cities and cursor2 updates the population by increasing it by

10%. The business logic in this case is so simple, it would be better to have

done it in one query, but a similar approach can be used where the logic

for updating the row is more complex.

Chapter 4 Advanced Query Execution

153

Listing 4-5.  Using a Buffering Cursor to Update Rows

import mysql.connector

from math import ceil

The SQL UPDATE statement that will be

used in cursor2.

SQL_UPDATE = """

 UPDATE world.city

 SET Population = %(new_population)s

 WHERE ID = %(city_id)s"""

Function to increase the population

with 10%

def new_population(old_population):

 return int(ceil(old_population * 1.10))

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

Instantiate the cursors

cursor1 = db.cursor(

 buffered=True, dictionary=True)

cursor2 = db.cursor()

Execute the query to get the

Australian cities

cursor1.execute(

 """SELECT ID, Population

 FROM world.city

 WHERE CountryCode = %s""",

 params=("AUS",)

)

Chapter 4 Advanced Query Execution

154

city = cursor1.fetchone()

while (city):

 old_pop = city["Population"]

 new_pop = new_population(old_pop)

 print("ID, Old => New: "

 + "{0}, {1} => {2}".format(

 city["ID"], old_pop, new_pop

))

 cursor2.execute(

 SQL_UPDATE,

 params={

 "city_id": city["ID"],

 "new_population": new_pop

 }

)

 print("Statement: {0}".format(

 cursor2.statement))

 city = cursor1.fetchone()

db.rollback()

cursor1.close()

cursor2.close()

db.close()

First, the logic for updating the population is defined. In this case, it is

a simple function that increases the argument with 10% and then rounds

the result up to the nearest integer.

The two cursors are defined. cursor1 reads the rows that will be

updated, so it must be a buffering cursor. In this case, it has also been

decided to have the rows returned as a dictionary. cursor2 performs the

updates while the rows from cursor1 are read. It does not matter in this

example whether cursor2 is a buffering or non-buffering cursor because it

does not return any rows.

Chapter 4 Advanced Query Execution

155

After the SELECT query to find the ID and existing population of the

Australian cities has been executed, there is a loop over the cities. For

each city, the new population is calculated and the UPDATE statement is

executed. The city ID, the before and after populations, and the UPDATE

statement are all printed as output. The output for the first three cities is

ID, Old => New: 130, 3276207 => 3603828

Statement: UPDATE world.city

 SET Population = 3603828

 WHERE ID = 130

ID, Old => New: 131, 2865329 => 3151862

Statement: UPDATE world.city

 SET Population = 3151862

 WHERE ID = 131

ID, Old => New: 132, 1291117 => 1420229

Statement: UPDATE world.city

 SET Population = 1420229

 WHERE ID = 132

...

Caution  The queries for the two cursors must be executed within
the same transaction (happens by default) to ensure the right result.
Otherwise another connection may update the population between
the SELECT and the UPDATE. However, the rows are locked for as
long as the transaction is active, so be careful that the execution of
the loop does not take a long time, or it may cause other queries to
time out or deadlocks may occur.

The last cursor-specific feature to discuss is the support for stored

procedures.

Chapter 4 Advanced Query Execution

156

�Stored Procedures
Stored procedures have characteristics that mean they must be treated

differently for some use cases. Specifically, they can return values through

the argument list and a single query calling a stored procedure can return

multiple result sets. Under the hood, the cmd_query_iter() method of the

connection is used together with one internal buffered cursor per result set.

Caution  Because buffered cursors are used to handle the results
sets of a stored procedure, the memory usage on the application side
can be higher than expected. Use the stored procedure support with
care if large results are returned.

The cursor methods that can be used to execute stored procedures are

•	 callproc(): This is the method used to execute the

stored procedure. The return value is a tuple with the

parameters passed to the procedure.

•	 stored_results(): This method is a generator for

iterating over the result sets returned by a stored

procedure invoked with callproc().

The easiest way to understand how the two procedures work is to

consider an example. For this purpose, the min_max_cities() procedure

in Listing 4-6 will be used.

Listing 4-6.  The min_max_cities() Procedure

DELIMITER $$

CREATE PROCEDURE world.min_max_cities(

 IN in_country char(3),

 INOUT inout_min int,

 OUT out_max int

Chapter 4 Advanced Query Execution

157

)

SQL SECURITY INVOKER

BEGIN

 SELECT MIN(Population),

 MAX(Population)

 INTO inout_min, out_max

 FROM world.city

 WHERE CountryCode = in_country

 AND Population >= inout_min;

 SELECT *

 FROM world.city

 WHERE CountryCode = in_country

 AND Population >= inout_min

 ORDER BY Population ASC

 LIMIT 3;

 SELECT *

 FROM world.city

 WHERE CountryCode = in_country

 AND Population >= inout_min

 ORDER BY Population DESC

 LIMIT 3;

END$$

DELIMITER ;

The procedure finds the minimum and maximum populations of

the cities of a given country, where the city population must be at least a

certain amount. Then all data for the three cities fulfilling the minimum

population requirement is selected, and finally the same for the three most

populous cities. The procedure takes three arguments:

•	 in_country: The country code by which to filter cities.

This argument is read-only inside the procedure.

Chapter 4 Advanced Query Execution

158

•	 inout_min: On input, it is the minimum population

the cities must have. On output, it is the minimum

population of the cities fulfilling the requirement.

•	 out_max: On output, it contains the population of

the most populous city that has at least inout_min

residents. The input value is discarded.

In total, this procedure uses all of the features of the stored procedure

implementation in MySQL Connector/Python cursors. The procedure can

be installed in a similar way to how the world sample database was installed:

shell$ mysql --user=pyuser --password \

 --host=127.0.0.1 --port=3306 \

 --execute="SOURCE listing_4_6.sql"

The command assumes the mysql command-line client is the

execution search path and that the file listing_4_6.sql with the

procedure definition is in the current working directory. On Windows, the

same command can be used, but all of the arguments must be on the same

line. An example of using the procedure from within the mysql command-

line client is shown in Listing 4-7.

Listing 4-7.  Using the world.min_max_cities Procedure

mysql> SET @MIN = 500000;

Query OK, 0 rows affected (0.00 sec)

mysql> CALL world.min_max_cities('AUS', @MIN, @MAX);

+-----+----------+-------------+-----------------+------------+

| ID | Name | CountryCode | District | Population |

+-----+----------+-------------+-----------------+------------+

| 134 | Adelaide | AUS | South Australia | 978100 |

| 133 | Perth | AUS | West Australia | 1096829 |

| 132 | Brisbane | AUS | Queensland | 1291117 |

+-----+----------+-------------+-----------------+------------+

Chapter 4 Advanced Query Execution

159

3 rows in set (0.01 sec)

+-----+-----------+-------------+-----------------+-----------+

| ID | Name | CountryCode | District |Population |

+-----+-----------+-------------+-----------------+-----------+

| 130 | Sydney | AUS | New South Wales | 3276207 |

| 131 | Melbourne | AUS | Victoria | 2865329 |

| 132 | Brisbane | AUS | Queensland | 1291117 |

+-----+-----------+-------------+-----------------+-----------+

3 rows in set (0.01 sec)

Query OK, 0 rows affected (0.02 sec)

mysql> SELECT @MIN, @MAX;

+--------+---------+

| @MIN | @MAX |

+--------+---------+

| 978100 | 3276207 |

+--------+---------+

1 row in set (0.00 sec)

Listing 4-8 shows the corresponding Python program that calls the

procedure using the callproc() method and then reads the result sets

using the stored_results() method.

Listing 4-8.  Using the Cursor Stored Procedure Methods

import mysql.connector

Format strings

FMT_QUERY = "Query {0}:\n" + "-"*8

FMT_HEADER = "{0:18s} {1:3s}"

FMT_ROW = "{0:18s} {1:4.1f}"

Chapter 4 Advanced Query Execution

160

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

cursor = db.cursor()

Execute the procedure

return_args = cursor.callproc(

 "world.min_max_cities",

 ("AUS", 500000, None)

)

Print the returned arguments

print("""Country: {0}

Min Population ...: {1:8d}

Max Population ...: {2:8d}

""".format(*return_args))

Iterate over the result sets and print

the cities and their population

Convert the rows to dictionaries to

avoid referencing the columns by

ordinal position.

count = 0

for result in cursor.stored_results():

 count = count + 1;

 print(FMT_QUERY.format(count))

 if (result.with_rows):

 # It is one of the SELECT statements

 # as it has column definitions.

 # Print the result.

 print(FMT_HEADER.format("City", "Pop"))

 city = result.fetchone()

 while (city):

Chapter 4 Advanced Query Execution

161

 city_dict = dict(

 zip(result.column_names, city))

 print(FMT_ROW.format(

 city_dict["Name"],

 city_dict["Population"]/1000000

))

 city = result.fetchone()

 print("")

cursor.close()

db.close()

After establishing the connection and setting up the format strings

for printing the output, the procedure is invoked using the callproc()

method. The args argument (second argument) must include one element

for each argument taken by the procedure, even if some of the arguments

are only used as out arguments. The return value is a tuple with one

element per argument passed to procedure. For arguments that are only

sent to the procedure, the original value is used in the return tuple.

Tip  The returned arguments will by default retain the data type
defined in the procedure (unless raw=True for the cursor, in which
case they are returned as arraybytes). It is, however, also possible
to explicitly specify the MySQL data type, for example (0, 'CHAR').
See https://dev.mysql.com/doc/refman/en/cast-
functions.html for the available types.

The last part of the program iterates over the results returned by

stored_results(). The loop is similar to what was used with the other

multi-result set method. The output looks like the following:

Chapter 4 Advanced Query Execution

https://dev.mysql.com/doc/refman/en/cast-functions.html
https://dev.mysql.com/doc/refman/en/cast-functions.html

162

Country: AUS

Min Population ...: 978100

Max Population ...: 3276207

Query 1:

City Pop

Adelaide 1.0

Perth 1.1

Brisbane 1.3

Query 2:

City Pop

Sydney 3.3

Melbourne 2.9

Brisbane 1.3

With stored procedures in place, there is only one type of query left to

discuss: loading data stored as comma-separated values (CSV).

�Loading Data Using a CSV File
A popular way to transport data between systems is files with comma-

separated values (CSV). This is a standard way to store data and there is wide

support for it, from exporting spreadsheets to database backups. Loading the

data stored in a CSV file is also a relatively efficient way to bulk load data.

Note  While the C in CSV suggest the data is comma-separated,
it is common to use the tab character, space, semicolon, or other
characters as a separator. In fact, MySQL uses a tab as the default
separator.

Chapter 4 Advanced Query Execution

163

The MySQL statement to load data is the LOAD DATA INFILE

command. There is no native support for this command in MySQL

Connector/Python, but there are still some special considerations. There

are essentially two ways to use the LOAD DATA INFILE: loading a file located

on the host where MySQL Server is installed or loading a file from the

application side. In either case, the statement is executed as any other

single statement using the connection cmd_query() method or the cursor

execute() method.

�Loading a Server-Side File
Loading a file located on the host where MySQL Server is installed is the

method used when executing LOAD DATA INFILE without any modifier.

The main things to be aware of are that the MySQL user must have the

FILE privilege and the CSV file cannot be located in any random location.

The paths where LOAD DATA INFILE is allowed to read files from are

limited by the secure_file_priv option (https://dev.mysql.com/doc/

refman/en/server-system-variables.html#sysvar_secure_file_priv)

for MySQL Sever. Only paths in the path specified by secure_file_priv or

below it can be used. The secure_file_priv option also specifies where

the SELECT … INTO OUTFILE statement can export data to. The current

value of secure_file_priv can, for example, be found using the following

query:

mysql> SELECT @@global.secure_file_priv;

+---------------------------+

| @@global.secure_file_priv |

+---------------------------+

| C:\MySQL\Files\ |

+---------------------------+

1 row in set (0.00 sec)

Chapter 4 Advanced Query Execution

https://dev.mysql.com/doc/refman/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/en/server-system-variables.html#sysvar_secure_file_priv

164

In recent MySQL Server versions, secure_file_priv defaults to NULL,

which disables both imports and exports except when installed on Linux

using native packages (where it defaults to /var/lib/mysql-files) or

using MySQL Installer on Windows (where it defaults to C:\ProgramData\

MySQL\MySQL Server 8.0\Uploads\ or similar).

The secure_file_priv option can only be changed by updating the

MySQL configuration file (by convention, my.ini on Windows and my.cnf

on other platforms). For example:

[mysqld]

secure_file_priv = C:\MySQL\Files

After the MySQL configuration file has been updated, a restart of

MySQL Server is required for the change to take effect. At this time, it

is possible to load data using the LOAD DATA INFILE command. Before

discussing an example of loading data, let’s look at the alternative to

loading a file from the MySQL Server side: loading a file that is local to the

application.

�Loading an Application-Side File
The local version is used when the LOCAL keyword is added to the

command: LOAD DATA LOCAL INFILE. On the MySQL Server side, the

option local_infile (https://dev.mysql.com/doc/refman/en/server-

system-variables.html#sysvar_local_infile) specifies whether the

feature is allowed. In MySQL Server 5.7 and earlier, it is enabled by default;

in version 8.0 and later, it is disabled by default.

In MySQL Connector/Python, the option allow_local_infile

specifies whether loading local files is allowed. In all recent MySQL

Connector/Python versions, allow_local_infile is enabled by default.

The option is set when the connection is created or with the connection

config() method.

Chapter 4 Advanced Query Execution

https://dev.mysql.com/doc/refman/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/en/server-system-variables.html#sysvar_local_infile

165

Tip  From a security perspective, it is best to disable support
for reading data files from the application side. That is, it is
recommended to set local_infile = 0 on the MySQL Server
side (the default in MySQL Server 8.0 and later) and allow_local_
infile = False in the MySQL Connector/Python program unless
the feature is really required. One potential issue of allowing local
files to be read is that a bug in a web application can end up allowing
the user to retrieve any file the application can read. See https://
dev.mysql.com/doc/refman/en/load-data-local.html for
more about the security implications of loading local files.

The rest of this section will go through an example with the main focus

on the local variant but with some notes on how to turn it into the server-

side case.

�Load Data Example
The LOAD DATA INFILE statement is quite versatile because it can handle

different delimiters, quoting styles, line endings, etc. A complete guide

to the statement is beyond the scope of this book, but it is worth taking a

look at an example. The code listing will use the application-side variant;

however, the server side is very similar and it is left as an exercise to load

the file from the server side.

Tip  For the complete documentation of LOAD DATA INFILE, see
https://dev.mysql.com/doc/refman/en/load-data.html.

Chapter 4 Advanced Query Execution

https://dev.mysql.com/doc/refman/en/load-data-local.html
https://dev.mysql.com/doc/refman/en/load-data-local.html
https://dev.mysql.com/doc/refman/en/load-data.html

166

The example will load the file testdata.txt, located in the same

directory as where the Python program is executed. The data will be

loaded into the world.loadtest table. The content of the file is

ID, Value

1,"abcdef..."

2,"MySQL Connector/Python is fun"

3,"Smileys require utf8mb4"

4,

The last value is the dolphin emoji (U+1F42C). Since the dolphin is one

of the emojis requiring four bytes in UTF-8 (0xF09F90AC), it is necessary

to use the utf8mb4 character set in MySQL (the default in MySQL 8.0

and later). The world.loadtest table can be created with the following

statement:

CREATE TABLE world.loadtest (

 id int unsigned NOT NULL PRIMARY KEY,

 val varchar(30)

) DEFAULT CHARACTER SET=utf8mb4;

As this is loading a local file, you must enable the local_infile option

in MySQL Server. This can be done using the following statement:

mysql> SET GLOBAL local_infile = ON;

Query OK, 0 rows affected (0.00 sec)

This enables the setting without a need to restart MySQL; however, it

does not persist the change.

With the data, table, and server-side setting ready, the program in

Listing 4-9 can be used to load the data into the table. The file endings

used for the file in the example are assumed to be Unix newlines. If

Windows newlines are used, the LOAD DATA LOCAL INFILE statement must

be changed to \r\n or \r (depending on the application that wrote the file)

instead of \n for the LINES TERMINATED BY argument.

Chapter 4 Advanced Query Execution

167

Listing 4-9.  Loading Data with LOAD DATA LOCAL INFILE

import mysql.connector

FMT_HEADER = "{0:2s} {1:30s} {2:8s}"

FMT_ROW = "{0:2d} {1:30s} ({2:8s})"

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini",

 allow_local_infile=True

)

cursor = db.cursor(dictionary=True)

Clear the table of any existing rows

cursor.execute("DELETE FROM world.loadtest")

Define the statement and execute it.

sql = """

LOAD DATA LOCAL INFILE 'testdata.txt'

 INTO TABLE world.loadtest

CHARACTER SET utf8mb4

 FIELDS TERMINATED BY ','

 OPTIONALLY ENCLOSED BY '"'

 LINES TERMINATED BY '\n'

 IGNORE 1 LINES"""

cursor.execute(sql)

print(

 "Number of rows inserted: {0}".format(

 cursor.rowcount

))

print("")

sql = """

Chapter 4 Advanced Query Execution

168

SELECT id, val, LEFT(HEX(val), 8) AS hex

 FROM world.loadtest

 ORDER BY id"""

cursor.execute(sql)

if (cursor.with_rows):

 # Print the rows found

 print(

 FMT_HEADER.format(

 "ID", "Value", "Hex"

)

)

 row = cursor.fetchone()

 while (row):

 print(

 FMT_ROW.format(

 row["id"],

 row["val"],

 row["hex"]

)

)

 row = cursor.fetchone()

Commit the transaction

db.commit()

cursor.close()

db.close()

The connection is created with the allow_local_infile option

explicitly set to True. This can seem unnecessary; however, it shows the

clear intention to load a local file and insert the content into a table. Note

that MySQL client programs such as the mysql command-line client have

disabled the option corresponding to allow_local_infile by default

Chapter 4 Advanced Query Execution

169

in MySQL Server 8.0. It may be that the connectors including MySQL

Connector/Python will make the same change at some point in the future,

so enabling allow_local_infile explicitly will make upgrades easier in

the future.

The first thing that is done after the connection and cursor have been

created is to delete all the existing data in the world.loadtest table. This

is done in case the program is run multiple times; the DELETE statement

ensures the table is always empty before the data is loaded.

The data is then loaded using the LOAD DATA LOCAL INFILE statement.

The exact arguments to use depend on the CSV file that is being loaded. It

is recommended to always specify the character set of the file so that the

data is read correctly.

Tip  Always specify the character set the data has been saved with
so that MySQL can interpret the data correctly.

After the data has been loaded, the number of rows inserted is printed

using the cursor.rowcount property, and the content of the table is

selected and printed. Be aware that not all terminal programs can print

the dolphin emoji, so it may look like a question mark, some other place-

holder character, or even no character at all. This is the reason the first four

bytes of the value are also printed in hexadecimal notation, so it is possible

to verify that the value is the correct one. The output looks like

Number of rows inserted: 4

ID Value Hex

 1 abcdef... (61626364)

 2 MySQL Connector/Python is fun (4D795351)

 3 Smileys require utf8mb4 (536D696C)

 4 ? (F09F90AC)

Chapter 4 Advanced Query Execution

170

If you want to try the server-side variant, then you need to ensure the

user has the FILE privilege:

mysql> GRANT FILE ON *.* TO pyuser@localhost;

Query OK, 0 rows affected (0.40 sec)

On the other hand, you no longer need to enable the allow_local_

infile option. Additionally, you will have to remove the LOCAL keyword

in the LOAD DATA INFILE statement and change the path to point to the

location of the file server-side, for example:

LOAD DATA INFILE 'C:/MySQL/Files/testdata.txt'

 INTO TABLE world.loadtest

CHARACTER SET utf8mb4

 FIELDS TERMINATED BY ','

 OPTIONALLY ENCLOSED BY '"'

 LINES TERMINATED BY '\n'

 IGNORE 1 LINES

This concludes the tour of various non-trivial ways to execute queries.

It is time to look at connection properties.

�Connection Properties
There are several properties that provide information about the status of

the connection or the behavior when executing queries. These properties

range from setting the default database (schema) and character set for

the queries to information on whether there are rows to be consumed,

as discussed in the previous chapter. The properties are part of the

connection object and are summarized in Table 4-1.

Chapter 4 Advanced Query Execution

171

Table 4-1.  The Connection Properties

Property Type Data Type Description

autocommit RW Boolean Whether the auto-commit mode is

enabled for the connection. Using

the property causes the SELECT

@@session.autocommit query to

be executed on the MySQL Server.

can_consume_results RO Boolean Is True when results are

automatically consumed if a new

query is executed before the

previous rows have been fetched.

The corresponding connection

configuration option is consume_

results.

charset RO String The character set used for

the connection. Use the set_

charset_collation() method

to change the character set and/or

collection used.

collation RO String The collection used for the

connection. Use the set_

charset_collation() method

to change the character set and/or

collection used.

connection_id RO Integer The connection ID assigned to the

connection by MySQL Server. This

property was used in Chapter 2

to verify the connection had been

created.

(continued)

Chapter 4 Advanced Query Execution

172

Property Type Data Type Description

database RW String The current default database

(schema) for the connection or

None if no default database is

set. Referencing the property

executes SELECT DATABASE()

on the server. Setting the property

executes the USE statement.

Alternatively, the default database

can be changed using the cmd_

init_db() method.

get_warnings RW Boolean Whether warnings are automatically

retrieved when using a cursor.

in_transaction RO Boolean Whether the connection is currently

in a transaction.

python_charset RO String The Python equivalent of the MySQL

character set. The difference

between the two is that the

utf8mb4 and binary character

sets are returned as utf8 in

Python.

raise_on_warnings RW Boolean Whether a warning is converted

to an exception when using a

cursor. When the value is changed,

the value of get_warnings is

automatically set to the same value

as for raise_on_warnings.

Table 4-1.  (continued)

(continued)

Chapter 4 Advanced Query Execution

173

Property Type Data Type Description

server_host RO String The hostname used to connect to

MySQL Server. The corresponding

connection configuration option is

host.

server_port RO Integer The TCP/IP port used to connect to

MySQL Server. The corresponding

connection configuration option is

port.

sql_mode RW String The SQL mode currently in use.

Reading the property causes the

following query to be executed:

SELECT @@session.sql_mode.

Setting the SQL mode executes a

SET statement. It is recommended

to specify a new SQL mode using

a list of modes from the SQLMode

constants class. The returned value

is a string with the values separated

by commas.

time_zone RW String The time zone used for the

connection. This affects the values

returned for timestamp data types.

Reading the property executes the

query SELECT @@session.time_

zone. Assigning a new time zone

executes a SET statement.

Table 4-1.  (continued)

(continued)

Chapter 4 Advanced Query Execution

174

The Type column specifies whether the property is read-only (RO) or

it possible to both read and write to the property (RW). Some of the read-

only options have a special method to change their value; when this is

the case, the method is mentioned in the description. For example, the

character set and collation-related properties can be updated through

the set_charset_collation() method, as shown in Chapter 2. With the

exception of the properties connection_id, in_transaction, python_

charset, and unread_result, the properties can all be set when creating

the configuration. The name of the configuration option is the same as the

property name except where it is mentioned in the description.

The following sections will include examples of some of the properties.

First, transactions will be discussed, including the relationship between

the autocommit and in_transaction properties. Later sections will discuss

specifying a default database and using time zones.

Table 4-1.  (continued)

Property Type Data Type Description

unix_socket RO String The path to the Unix socket used to

connect to MySQL Server.

unread_result RW Boolean Whether there are rows to be read

from the previous query.

Warning: Do not set this property.

The write support is meant for

cursors only.

user RO String The user currently used for the

connection. The cmd_change_

user() method of the connection

can be used to change the user,

default schema, and character set.

Chapter 4 Advanced Query Execution

175

�Transactions
Transactions are a very important concept when using databases. A

transaction groups several queries together and ensures that all are either

committed or rolled back. They also allow isolation so, for example, the

changes made by one transaction will not be visible to other transactions

until the changes have been committed.

TRANSACTIONS – WHAT IS ACID?

ACID stands for atomicity, consistency, isolation, and durability. Perhaps one

of the most important concepts in database theory, it defines the behavior

that database systems must exhibit to be considered reliable for transaction

processing.

Atomicity means that the database must allow modifications of data on an

“all or nothing” basis for transactions that contain multiple commands. That is,

each transaction is atomic. If a command fails, the entire transaction fails, and

all changes up to that point in the transaction are discarded. This is especially

important for systems that operate in highly transactional environments, such

as the financial market. Consider for a moment the ramifications of a money

transfer. Typically, multiple steps are involved in debiting one account and

crediting another. If the transaction fails after the debit step and doesn’t credit

the money back to the first account, the owner of that account will be very

angry. In this case, the entire transaction from debit to credit must succeed, or

none of it does.

Consistency means that only valid data will be stored in the database. That

is, if a command in a transaction violates one of the consistency rules, the

entire transaction is discarded, and the data is returned to the state they

were in before the transaction began. Conversely, if a transaction completes

successfully, it will alter the data in a manner that obeys the database

consistency rules.

Chapter 4 Advanced Query Execution

176

Isolation means that multiple transactions executing at the same time will not

interfere with one another. This is where the true challenge of concurrency is

most evident. Database systems must handle situations in which transactions

cannot violate the data (alter, delete, etc.) being used in another transaction.

There are many ways to handle this. Most systems use a mechanism called

locking that keeps the data from being used by another transaction until

the first one is done. Although the isolation property does not dictate which

transaction is executed first, it does ensure they will not interfere with one

another.

Durability means that no transaction will result in lost data nor will any data

created or altered during the transaction be lost. Durability is usually provided

by robust backup-and-restore maintenance functions. Some database systems

use logging to ensure that any uncommitted data can be recovered on restart.1

There are two connection properties related to transactions. The

autocommit option specifies whether transactions are committed

automatically; the in_transaction property reflects whether the

connection is in the middle of a transaction.

Note  MySQL has two transactional storage engines: InnoDB, which
is the default in MySQL Server, and NDBCluster, which is included
with the MySQL Cluster product.

An example of the effect of the autocommit option can be seen from the

example in Listing 4-10 where the value of the in_transaction property is

examined with the autocommit property first disabled and then enabled.

1�Thanks to Dr. Charles Bell for contributing this sidebar.

Chapter 4 Advanced Query Execution

177

Listing 4-10.  The Effect of the autocommit Property

import mysql.connector

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

cursor = db.cursor()

Initialize the stages (ordered)

stages = [

 "Initial",

 "After CREATE TABLE",

 "After INSERT",

 "After commit()",

 "After SELECT",

]

Initialize dictionary with one list

per stage to keep track of whether

db.in_transaction is True or False

at each stage.

in_trx = {stage: [] for stage in stages}

for autocommit in [False, True]:

 db.autocommit = autocommit;

 in_trx["Initial"].insert(

 autocommit, db.in_transaction)

 # Create a test table

 cursor.execute("""

CREATE TABLE world.t1 (

 id int unsigned NOT NULL PRIMARY KEY,

 val varchar(10)

)"""

)

Chapter 4 Advanced Query Execution

178

 in_trx["After CREATE TABLE"].insert(

 autocommit, db.in_transaction)

 # Insert a row

 cursor.execute("""

INSERT INTO world.t1

VALUES (1, 'abc')"""

)

 in_trx["After INSERT"].insert(

 autocommit, db.in_transaction)

 # Commit the transaction

 db.commit()

 in_trx["After commit()"].insert(

 autocommit, db.in_transaction)

 # Select the row

 cursor.execute("SELECT * FROM world.t1")

 cursor.fetchall()

 in_trx["After SELECT"].insert(

 autocommit, db.in_transaction)

 # Commit the transaction

 db.commit()

 # Drop the test table

 cursor.execute("DROP TABLE world.t1")

cursor.close()

db.close()

fmt = "{0:18s} {1:^8s} {2:^7s}"

print("{0:18s} {1:^18s}".format(

 "", "in_transaction"))

Chapter 4 Advanced Query Execution

179

print(fmt.format(

 "Stage", "Disabled", "Enabled"))

print("-"*39)

for stage in stages:

 print(fmt.format(

 stage,

 "True" if in_trx[stage][0] else "False",

 "True" if in_trx[stage][1] else "False",

))

The main part of the example consists of a loop where the autocommit

property is first disabled (the default) and then enabled. In the loop, a

series of statements are executed:

	 1.	 A test table is created.

	 2.	 A row is inserted into the test table.

	 3.	 The commit() method is called.

	 4.	 The row is selected from the test table.

	 5.	 The commit() method is called.

	 6.	 The test table is dropped.

The value of the in_transaction is captured before the first step and

after each of the first four steps. The output of the program is

 in_transaction

Stage Disabled Enabled

Initial False False

After CREATE TABLE False False

After INSERT True False

After commit() False False

After SELECT True False

Chapter 4 Advanced Query Execution

180

In both iterations the initial value of in_transaction is False. The

value stays False after creating the table; this is because MySQL does not

support schema changes inside a transaction. It becomes more interesting

after the INSERT and SELECT statements. When autocommit = False, in_

transaction is True until commit() is called. When autocommit is enabled,

there is never an ongoing transaction after the statement has finished

executing.

This difference in behavior is important to be aware of when coding

applications that use MySQL for the data storage. If autocommit is disabled,

you must ensure you commit or roll back your transactions when you

are done with them. Otherwise the changes will not be visible to other

connections, locks will keep preventing other connections from making

changes to the rows, and there will be a (potentially large) overhead for

all connections because the storage engine must keep track of the various

versions of the data. If autocommit is enabled, you must start an explicit

transaction when you need to group multiple statements, so they behave

as an atomic change.

Note D ata definition language (DDL) statements such as CREATE
TABLE always perform an implicit commit if there is an ongoing
transaction.

It is still possible to use multi-statement transactions even if

autocommit is enabled. In that case, it is necessary to explicitly start a

transaction and commit or rollback the transaction when the transaction

has completed. There is no built-in support for savepoints (except when

using the X DevAPI as discussed in Chapter 6). There are three methods to

control transactions:

Chapter 4 Advanced Query Execution

181

•	 start_transaction(): Starts a transaction. This is only

required when autocommit is enabled. It is possible to

set whether to start the transaction with a consistent

snapshot, the transaction isolation level, and whether

the transaction is read-only. The arguments will be

discussed later.

•	 commit(): Commits an ongoing transaction. The

method does not accept any arguments.

•	 rollback(): Rolls back an ongoing transaction. Like

the commit() method, rollback() does not accept any

arguments.

The commit() and rollback() methods work the same way

irrespective of the value for the autocommit setting. The start_

transaction() method is mostly used when autocommit is enabled;

however, it can also be used with autocommit disabled to get better control

of how the transaction behaves.

There are three optional arguments when starting a transaction:

•	 consistent_snapshot: Takes a Boolean value and

specifies whether a consistent snapshot will be created

at the time the start_transaction() method is called.

The default is False, which means the snapshot (if the

transaction isolation level is REPEATABLE READ) will be

created when the first query is executed after the start

of the transaction. Enabling consistent_snapshot is

the same as using WITH CONSISTENT SNAPSHOT with the

START TRANSACTION statement. Consistent snapshots

are only supported by tables using the InnoDB storage

engine.

Chapter 4 Advanced Query Execution

182

•	 isolation_level: The transaction isolation level to

use for the transaction. The default is REPEATABLE

READ. Only InnoDB tables support setting the

transaction isolation level. Note that for tables using

the NDBCluster storage engine, the specified isolation

level is ignored, and the READ COMMITTED transaction

isolation level will always be used.

•	 readonly: If it is known that the transaction will never

modify any data, the readonly argument can be set to

allow InnoDB to optimize the transaction. The default

is False.

Tip  For more information about transaction settings, see also the
description for the SET TRANSACTION statement in the MySQL
Server manual and references therein: https://dev.mysql.com/
doc/refman/en/set-transaction.html. A detailed description
of the transaction isolation levels can be found in https://
dev.mysql.com/doc/refman/en/innodb-transaction-
isolation-levels.html.

So, a transaction is started either implicitly by having autocommit

disabled or by explicitly calling start_transaction(). In either case, the

transaction is completed using either commit() to persist the changes and

make them visible to other connections or rollback() to abandon the

changes. The flow of a typical transaction can be seen in Figure 4-2.

Chapter 4 Advanced Query Execution

https://dev.mysql.com/doc/refman/en/set-transaction.html
https://dev.mysql.com/doc/refman/en/set-transaction.html
https://dev.mysql.com/doc/refman/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/en/innodb-transaction-isolation-levels.html

183

The Boolean values in yellow (light grey) ellipsoids to the left in the

connection are the value of the in_transaction property at the different

stages. After the transaction starts, one or more queries are executed using

either the connection object or a cursor (or a combination). Note that the

status of the transaction is always a connection matter, but queries can be

executed either in the connection itself or in a cursor.

An example of using an explicit transaction can be seen in Listing 4-11.

In the example, a row is inserted into the world.city table and then selected

again before the transaction is rolled back. To illustrate the difference

between implicitly committed transactions and using an explicit transaction,

autocommit is enabled for the connection and the in_transaction property

is inspected between the INSERT and SELECT statements.

Figure 4-2.  The flow of a typical transaction

Chapter 4 Advanced Query Execution

184

Listing 4-11.  Using an Explicit Transaction

import mysql.connector

import pprint

printer = pprint.PrettyPrinter(indent=1)

Create two connections to MySQL

db1 = mysql.connector.connect(

 option_files="my.ini",

 autocommit=True

)

db2 = mysql.connector.connect(

 option_files="my.ini",

 autocommit=True

)

cursor1 = db1.cursor(dictionary=True)

cursor2 = db2.cursor(dictionary=True)

Start a transaction

db1.start_transaction()

Insert a row

cursor1.execute("""

INSERT INTO world.city

VALUES (DEFAULT, 'Camelot', 'GBR',

 'King Arthur County', 2000)"""

)

print("\nin_transaction = {0}".format(

 db1.in_transaction))

id = cursor1.lastrowid

sql = """SELECT *

Chapter 4 Advanced Query Execution

185

 FROM world.city

 WHERE id = {0}""".format(id)

cursor1.execute(sql)

cursor2.execute(sql)

Fetch and print the rows

print("\nResult Set in Connection 1")

print("="*26)

result_set1 = cursor1.fetchall()

printer.pprint(result_set1)

print("\nResult Set in Connection 2")

print("="*26)

result_set2 = cursor2.fetchall()

printer.pprint(result_set2)

db1.rollback()

cursor1.close()

db1.close()

cursor2.close()

db2.close()

The program is quite straightforward. Two connections are created

and then King Arthur’s castle is inserted as a new city using the first of the

connections. The world.city table has an auto-increment column as the

primary key, so the first value is set to use the default (next available ID).

The ID is retrieved from the lastrowid property of the cursor (or the

insert_id element of the result dictionary of the INSERT statement if

cmd_query() is used to insert the row), so it is possible to retrieve the row

again using the primary key.

In-between the two statements, the value of in_transaction property

is checked. Finally, the transaction is rolled back (and the inserted row

is removed again). The second connection and cursor are used to query

Chapter 4 Advanced Query Execution

186

the same row from a separate connection. The output is similar to the

following example (the ID will depend on how many rows have been

inserted into the table, even if later rolled back):

Result Set in Connection 1

==========================

[{'CountryCode': 'GBR',

 'District': 'King Arthur County',

 'ID': 4080,

 'Name': 'Camelot',

 'Population': 2000}]

Result Set in Connection 2

==========================

[]

Notice how the second connection can’t see the row. This is an

example of how transactions provide isolation of the changes.

Tip U nless there is a specific requirement to have autocommit
disabled, it is often better to enable it. It makes it easier to see in
the source code where multi-statement transactions are required,
it saves round trips for the application with many one-statement
transactions, and it allows InnoDB to automatically enable the
read-only optimization for SELECT statements that do not use stored
functions.

In the example, the table was referred to as world.city. That is,

both the database name (world) and table name (city) were specified

explicitly. It is possible to avoid specifying the database name every time

by setting the default database. How to do this is discussed next.

Chapter 4 Advanced Query Execution

187

MULTIPLE QUERY EXECUTION AND TRANSACTIONS

When autocommit is enabled, it is important to consider the impact of

executing multiple statements in one cmd_query_iter(), execute(), or

executemany() call. Except when multiple INSERT statements are rewritten

to a single extended INSERT, each statement will be executed in its own

transaction unless an explicit transaction is created. This is a fact that can

easily be forgotten considering it is a single line of code.

To execute all of the queries in a single transaction, use the start_

transaction() method of the connection to explicitly start a transaction:

import mysql.connector

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", autocommit=True)

cursor = db.cursor()

queries = [

 """UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130""",

 """UPDATE world.country

 SET Population = Population + 1

 WHERE Code = 'AUS'""",

]

db.start_transaction()

tests = cursor.execute(

 ";".join(queries), multi=True)

for test in tests:

 # Do something or pass if no action

 # is required.

 pass

db.rollback();

Chapter 4 Advanced Query Execution

188

cursor.close()

db.close()

The example is also available in the Chapter_04/multi_stmt_

transaction.py file in the source code download for this book.

�Default Database
In many applications, most or all queries are executed against tables in

the same database. It may also be that the application can be used with

several database names depending on the end user. An example is an

online application that allows users to blog and the user can specify the

name of the database where the tables for the installation are located. In

such cases, it is convenient to be able to specify the database name in the

configuration part of the application so all queries will be automatically

executed against the configured database.

Note I n MySQL, database and schema are synonyms.

This is possible by setting the database option for the connection,

either at the time the connection is created or by manipulating the property

directly. An example of the use of a default database is shown in Listing 4-12.

Listing 4-12.  Using a Default Database

import mysql.connector

from mysql.connector import errors

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini",

 consume_results=True

)

Chapter 4 Advanced Query Execution

189

First query the city table without

a default database

try:

 result = db.cmd_query(

 """SELECT *

 FROM city

 WHERE id = 130"""

)

except errors.ProgrammingError as err:

 print(

 "1: Failed to execute query with "

 + "the error:\n {0}".format(err)

)

else:

 print("1: Query executed successfully")

Then query the city table with

a default database

db.database = "world"

try:

 result = db.cmd_query(

 """SELECT *

 FROM city

 WHERE id = 130"""

)

except errors.ProgrammingError as err:

 print(

 "2: Failed to execute query with "

 + "the error:\n {0}".format(err)

)

else:

 print("2: Query executed successfully")

db.close()

Chapter 4 Advanced Query Execution

190

The first query executes without having a default database configured.

The result is that an exception occurs. After setting the default database to

world, the second query succeeds. The output of executing the query is

1: Failed to execute query with the error:

 1046 (3D000): No database selected

2: Query executed successfully

Tip I t is also possible to change the default database using the
cmd_init_db() connection method, for example cmd_init_
db("world"). The difference is that setting the property executes a
USE <database name> whereas cmd_init_db() sends a COM_
INIT_DB command to MySQL Server. If you monitor MySQL using
the Performance Schema, it makes a difference which method is
used. The event name for USE is statement/sql/change_db and
the statement is visible, whereas the event name is statement/
com/Init DB for a COM_INIT_DB command.

This concludes the discussion about a default database, leaving one

final topic related to connection properties to discuss: time zones.

�Time Zones
Time zones are an important concept in the global world of today. Often it

is desirable to display the time of an event in the user’s local time zone, but

this will be different for each user. This section will discuss how to use time

zones in MySQL Connector/Python programs.

Before delving into the MySQL Connector/Python specifics of handling

time zones, it is worth recapping how MySQL Server handles time zones.

MySQL Server has two data types for handling values consisting both of a

data and a time of day: datetime and timestamp. The datetime data type

Chapter 4 Advanced Query Execution

191

is used to store the date and time directly as it is given to MySQL; that is,

the value is time zone-independent and the same value is always returned

irrespective of the time zone. The timestamp data type provides a more

compact storage format that always stores the value in UTC and returns

the value according to the time zone set for the session. In neither case, a

custom time zone is associated with the stored value. The two data types

are summarized in Table 4-2.

Table 4-2.  MySQL Server Data Types Storing Both the Date and Time

of Day

Data Type Time Zone Support Date Range Description

datetime No 1000-01-01 to

9999-12-31

The data is stored as is.

A workaround for the lack

of time zone support is to

explicitly convert the time to

and from UTC when storing

and reading it.

timestamp Limited 1970-01-01 to

2038-01-19

The date and time (other than

fractional seconds) are stored

as an unsigned four-byte

integer since the start of the

Unix epoch time. The value is

always stored in UTC using

the session’s time zone for

the conversion.

Chapter 4 Advanced Query Execution

192

In addition to the limited time zone support for the timestamp data

type, there is the CONVERT_TZ() function (on the MySQL Server side;

https://dev.mysql.com/doc/refman/en/date-and-time-functions.

html#function_convert-tz). It takes a datetime value and converts it

between two time zones. By default, there is support for time zones where

the offset to UTC is specified explicitly (for example +10:00). Optionally,

the time zone tables in the mysql database can be populated to add

support for named time zones (such as Australia/Sydney). The named

time zones also include information about changes to daylight saving time.

Tip  When using datetime columns, store the data in the UTC time
zone and convert to the time zone required when using the data. By
always storing the value in UTC, there is less chance of problems if
the OS time zone or MySQL Server time zone is changed.

It can be a bit difficult to wrap one’s head around time zones, so it

is worth considering an example. Listing 4-13 is an example where the

same value is inserted into a datetime and a timestamp column and then

selected again using different time zone values. The time_zone property of

the connection is used to change the time zone.

Listing 4-13.  The Effect of the Time Zone

import mysql.connector

from datetime import datetime

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

cursor = db.cursor(named_tuple=True)

Chapter 4 Advanced Query Execution

https://dev.mysql.com/doc/refman/en/date-and-time-functions.html#function_convert-tz
https://dev.mysql.com/doc/refman/en/date-and-time-functions.html#function_convert-tz

193

Create a temporary table for this

example

cursor.execute("""

 CREATE TEMPORARY TABLE world.t1 (

 id int unsigned NOT NULL,

 val_datetime datetime,

 val_timestamp timestamp,

 PRIMARY KEY (id)

)""")

Set the time zone to UTC

db.time_zone = "+00:00"

Insert a date and time value:

2018-05-06 21:10:12

(May 6th 2018 09:10:12pm)

time = datetime(2018, 5, 6, 21, 10, 12)

Definte the query template and the

parameters to submit with it.

sql = """

INSERT INTO world.t1

VALUES (%s, %s, %s)"""

params = (1, time, time)

Insert the row

cursor.execute(sql, params)

Define output formats

and print output header

fmt = "{0:9s} {1:^19s} {2:^19s}"

print(fmt.format(

 "Time Zone", "Datetime", "Timestamp"))

print("-"*53)

Chapter 4 Advanced Query Execution

194

Retrieve the values using thee

different time zones

sql = """

SELECT val_datetime, val_timestamp

 FROM world.t1

 WHERE id = 1"""

for tz in ("+00:00", "-05:00", "+10:00"):

 db.time_zone = tz

 cursor.execute(sql)

 row = cursor.fetchone()

 print(fmt.format(

 "UTC" + ("" if tz == "+00:00" else tz),

 row.val_datetime.isoformat(" "),

 row.val_timestamp.isoformat(" ")

))

Use the CONVERT_TZ() function to

convert the time zone of the datetime

value

sql = """

SELECT CONVERT_TZ(

 val_datetime,

 '+00:00',

 '+10:00'

) val_utc

 FROM world.t1

 WHERE id = 1"""

cursor.execute(sql)

row = cursor.fetchone()

Chapter 4 Advanced Query Execution

195

print("\ndatetime in UTC+10:00: {0}".format(

 row.val_utc.isoformat(" ")))

cursor.close()

db.close()

The date time value for May 5th, 2018 at 09:10:12pm is inserted into a

temporary table with both a datetime and timestamp column. The time

zone is set to UTC using the connection time_zone property when the

row is inserted. The datetime and timestamp values are then selected

with three different time zones set, and the datetime value is converted to

UTC+10 using the CONVERT_TZ() function. The output is

Time Zone Datetime Timestamp

UTC 2018-05-06 21:10:12 2018-05-06 21:10:12

UTC-05:00 2018-05-06 21:10:12 2018-05-06 16:10:12

UTC+10:00 2018-05-06 21:10:12 2018-05-07 07:10:12

datetime in UTC+10:00: 2018-05-07 07:10:12

The value printed for the datetime column is always the same

irrespective of the time zone. However, for the timestamp column, the

value returned depends on the time zone. Only when the time zone is the

same at the time of selecting the data as when the data was inserted is the

returned timestamp value the same as what was inserted. So, when using

timestamp columns, it is important to keep the time zone in mind.

Tip  For more information about MySQL time zone support and how
to add the named time zones, see https://dev.mysql.com/doc/
refman/en/time-zone-support.html.

Chapter 4 Advanced Query Execution

https://dev.mysql.com/doc/refman/en/time-zone-support.html
https://dev.mysql.com/doc/refman/en/time-zone-support.html

196

This is the final example that involves the properties of the connection.

There are several other utility methods, some of which will be discussed in

the next section.

�Other Connection Utility Methods
The connection object has several methods that can be used for a range of

tasks such as checking whether the connection is still available, resetting

the connection, and getting information about the server to which the

application is connected. This section will briefly discuss the most useful

utility methods.

Note  For a complete list of methods, see https://dev.mysql.
com/doc/connector-python/en/connector-python-api-
mysqlconnection.html.

The utility methods that will be discussed are summarized in Table 4-3.

The scope of the methods is one of Connection and Server. The connection

methods affect the connection or perform tests for the connection. The

server methods can be used to get information about MySQL Server.

Chapter 4 Advanced Query Execution

https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlconnection.html
https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlconnection.html
https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlconnection.html

197

These methods will be discussed in the following subsections.

Table 4-3.  Some Useful Connection Utility Methods

Method Scope Description

cmd_change_

user()

Connection Changes the user as well as the database and

character set related options.

cmd_reset_

connection()

Connection Resets the user variables and session variables for

the connection. Only works for MySQL Server 5.7

and later and is only available when using the pure

Python implementation.

is_

connected()

Connection Returns True if the connection is still connected to

MySQL Server.

ping() Connection Verifies whether the connection is still available by

pinging MySQL Server. Can optionally attempt to

reconnect.

reset_

session()

Connection Resets the user variables and session variables for

the connection. Works for all MySQL Server versions

and allows setting user and session variables after

the reset.

cmd_

statistics()

Server Returns a dictionary with statistics for the MySQL

Server.

get_server_

info()

Server Returns the MySQL Server version as a string. This

includes any version suffixes such as “rc” that may

apply. If there is no suffix, it indicates a GA release.

Examples are “8.0.4-rc-log” and “8.0.11”.

get_server_

version()

Server Returns the MySQL Server version as a tuple of

integers. Version suffixes are not included.

Chapter 4 Advanced Query Execution

198

�Connection Methods
The connection methods can be used to perform various actions to either

affect the connection or to check whether the connection is still alive.

The methods will be discussed in alphabetical order, except the reset_

session() method, which will be discussed together with cmd_reset_

connection().

�cmd_change_user()

The cmd_change_user() method can be used to change which user is used

for the connection, the default database, the character set, and collation. All

of the arguments are optional; arguments that are not set use their default

value. The arguments and their default values are summarized in Table 4-4.

Table 4-4.  The Arguments for cmd_change_user()

Argument Default Value Description

username (Empty string) The username to connect with.

password (Empty string) The password to authenticate with.

database (Empty string) The new default database.

charset 45 The character set and collation. The value of 33

corresponds to the utf8mb4 (the 4-byte implementation)

with the utf8mb4_general_ci collation. In MySQL

Connector/Python 8.0.11 and earlier the default is 33

(utf8 - the 3-byte implementation - with the utf8_

general_ci collation).

Notice that the username is specified with the username argument

rather than the usual user argument. Additionally, the character set is set

using the internal character set ID, which is an integer and also includes

which collation is used. The character set ID can be found as the first

Chapter 4 Advanced Query Execution

199

element in the tuple returned by the CharacterSet.get_charset_info()

method in the mysql.connector.constants module.

Tip I f the goal is just to change the default database and/or the
character set and collation, use the dedicated methods for those
tasks. The default database can be changed by setting the database
property or calling the cmd_init_db() method, as discussed
earlier in the chapter. The character set and collation can be changed
using the set_charset_collation() method, as discussed in
Chapter 2.

An example of changing the user to become the root (administrator)

user while setting the default database to world, the character set to

utf8mb4, and the collation to utf8mb4_0900_ai_ci is

import mysql.connector

from mysql.connector.constants import CharacterSet

db = mysql.connector.connect(

 option_files="my.ini")

charset = CharacterSet.get_charset_info(

 "utf8mb4", "utf8mb4_0900_ai_ci")

db.cmd_change_user(

 username="root",

 password="password",

 database="world",

 charset=charset[0]

)

db.close()

Chapter 4 Advanced Query Execution

200

Caution  This example hard codes the password to keep the
example simple. Do not do so in actual programs because it lets
too many people know the password and makes the code harder to
maintain.

�cmd_reset_connection() and reset_session()

The cmd_reset_connection() is a lightweight method to unset all user

variables (e.g. @my_user_variable) for the connection and ensure all

session variables (e.g. @@session.sort_buffer_size) are reset to the

global defaults. The method is lightweight because it does not require

reauthenticating. The method does not take any arguments and only works

in MySQL 5.7 and later when using the pure Python implementation. An

example is

import mysql.connector

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

db.cmd_reset_connection()

db.close()

The reset_session() method is related (and uses cmd_reset_

connection() under the hood) but allows you to set user and session

variables after the reset. Another advantage of reset_connection()

is that it works with all versions of MySQL Server and with the C

Extension implementation. For server versions that support cmd_

reset_connection(), this is used to avoid reauthenticating; for older

server versions, reset_session() falls back on the more expensive

reauthentication approach. An example of using reset_connection() is

Chapter 4 Advanced Query Execution

201

import mysql.connector

db = mysql.connector.connect(

 option_files="my.ini")

user_variables = {

 "employee_id": 1,

 "name": "Jane Doe",

}

session_variables = {

 "sort_buffer_size": 32*1024,

 "max_execution_time": 2,

}

db.reset_session(

 user_variables=user_variables,

 session_variables=session_variables

)

db.close()

This sets the @employee_id and @name user variables to the values of 1

and Jane Doe, respectively. The session uses a sort buffer that is at most

32kiB large and SELECT queries are not allowed to take longer than two

seconds. Both arguments are optional and default to setting no variables.

�is_connected()

The is_connected() method checks whether the connection is still

connected to the database. It returns True or False, with True meaning the

connection is still working. A simple example of using the method is

import mysql.connector

db = mysql.connector.connect(

 option_files="my.ini")

Chapter 4 Advanced Query Execution

202

if (db.is_connected()):

 print("Is connected")

else:

 print("Connection lost")

db.close()

A related method is ping().

�ping()

The ping() method is similar to is_connected(). In fact, the ping()

and is_connected() methods both use the same underlying (internal)

method to verify whether the connection is available. There are a couple of

differences, however.

Whereas the is_connected() method returns False if the connection

is not available, ping() triggers an InterfaceError exception. Another

difference is that the ping() method supports waiting for the connection

to become available. It supports the arguments in Table 4-5.

Table 4-5.  The Arguments Supported by ping()

Argument Default Value Description

reconnect False Whether to attempt to reconnect if the connection is

not available.

attempts 1 The maximum number of times to try reconnecting.

Use a negative value to try an infinite number of

times.

Delay 0 The delay in seconds between completing the

previous reconnection attempt and trying the next.

As the connection attempt itself takes time, the

total time per attempt will be larger than the value

specified.

Chapter 4 Advanced Query Execution

203

An example of pinging for the connection to become available again

with at most five attempts to reconnect and each attempt separated by one

second is

import mysql.connector

from mysql.connector import errors

db = mysql.connector.connect(

 option_files="my.ini")

try:

 input("Hit Enter to continue.")

except SyntaxError:

 pass

try:

 db.ping(reconnect=True, attempts=5, delay=1)

except errors.InterfaceError as err:

 print(err)

else:

 print("Reconnected")

db.close()

The input() function allows you to shut down MySQL before

proceeding to pinging the server. If MySQL Server becomes available again

before the attempts are exhausted, Reconnected is printed. Otherwise, an

InterfaceError exception occurs after some time when five attempts to

reconnect have been exhausted, for example:

Can not reconnect to MySQL after 5 attempt(s): 2003 (HY000):

Can't connect to MySQL server on '127.0.0.1' (10061)

The message tells the number of attempts made and the reason the

connection failed. The details will depend on the platform, whether the C

Extension is used, and why MySQL Connector/Python cannot connect.

Chapter 4 Advanced Query Execution

204

This is the last connection-related utility method that will be

discussed. However, there are some methods related to the server that are

worth discussing.

�Server Information Methods
There are three methods to obtain statistics about the server or the server

version. The information can also be obtained through normal SQL

statements, but the dedicated methods can be useful because they require

less parsing.

The cmd_statistics() method returns a dictionary with a few metrics

about the operation of the server, for example the number of times the

tables have been flushed, the number of questions (queries) asked, and the

uptime.

The get_server_info() method returns the server version as a string.

This can be useful if the application logs the version of the database it is

connected to.

The last method is get_server_version(), which returns the server

version as a tuple with each of the three components as an element. This

can be useful, for example, when verifying whether the server is new

enough to have a certain feature.

The following code example demonstrates how the three methods can

be used:

import mysql.connector

import pprint

Print the result dictionary

printer = pprint.PrettyPrinter(indent=1)

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

Chapter 4 Advanced Query Execution

205

print("cmd_statistics\n" + "="*14)

statistics = db.cmd_statistics()

printer.pprint(statistics)

print("\nget_server_info\n" + "="*15)

server_info = db.get_server_info()

printer.pprint(server_info)

print("\nget_server_version\n" + "="*18)

server_version = db.get_server_version()

printer.pprint(server_version)

if (server_version >= (8, 0, 2)):

 print("Supports window functions")

db.close()

The output depends on how long it has been since MySQL Server was

started, the workload on the instance, and the MySQL Server version.

An example of the output generated by the code is

cmd_statistics

==============

{'Flush tables': 2,

 'Open tables': 66,

 'Opens': 90,

 'Queries per second avg': Decimal('0.034'),

 'Questions': 71,

 'Slow queries': 0,

 'Threads': 2,

 'Uptime': 2046}

get_server_info

===============

'8.0.11'

Chapter 4 Advanced Query Execution

206

get_server_version

==================

(8, 0, 11)

Supports window functions

A related topic is the metadata that is available for the columns

returned in SELECT and SHOW statements. This is the next topic to explore.

�Column Information
When a query that asks for data to be returned, typically a SELECT

statement, is executed, the dictionary returned by the connection

cmd_query() method includes details about each of the columns in the

result set. When a cursor is used, the description property includes the

same information. You have already seen examples of using the column

information when converting the results to Python types. Much of the

information is not trivial to use, so this section will look into how the

information can be easily converted into a more accessible format.

The column information for a row in the world.city table using the

pure Python implementation is

[('ID', 3, None, None, None, None, 0, 16899),

 ('Name', 254, None, None, None, None, 0, 1),

 ('CountryCode', 254, None, None, None, None, 0, 16393),

 ('District', 254, None, None, None, None, 0, 1),

 ('Population', 3, None, None, None, None, 0, 1)]

The information is a list with one tuple per column. There are eight

elements of each the tuple:

•	 The name of the column

•	 The field type (this is an integer)

Chapter 4 Advanced Query Execution

207

•	 The display size

•	 The internal size

•	 The precision of the column

•	 The scale of the column

•	 Whether the column values can be NULL (0 is used for

False, 1 for True)

•	 MySQL-specific flags specified as an integer

The display size, internal size, precision of the column, and the scale

of the column are always set to None. As you can see from the example

output, the column name is easy to use, but the field type and the MySQL-

specific flags need mappings. The rest of the section will discuss how to

convert the field type and the flags into names.

�Field Types
The field type integers originate from MySQL Server and are defined in the

source code (the include/mysql.h.pp file in the MySQL Server 8.0 source

code). MySQL Connector/Python includes the FieldType.get_info()

function (in the constants.py file) to convert the types to human-readable

names. The example in Listing 4-14 shows how the integer field types can

be mapped into names.

Listing 4-14.  Mapping the Field Types

import mysql.connector

from mysql.connector import FieldType

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

cursor = db.cursor()

Chapter 4 Advanced Query Execution

208

Create a test table

cursor.execute(

 """CREATE TEMPORARY TABLE world.t1 (

 id int unsigned NOT NULL PRIMARY KEY,

 val1 tinyint,

 val2 bigint,

 val3 decimal(10,3),

 val4 text,

 val5 varchar(10),

 val6 char(10)

)"""

)

Select all columns (no rows returned)

cursor.execute("SELECT * FROM world.t1")

Print the field type for each column

print("{0:6s} {1}".format(

 "Column", "Field Type"))

print("=" * 25);

for column in cursor.description:

 print("{0:6s} {1:3d} - {2}".format(

 column[0],

 column[1],

 FieldType.get_info(column[1])

))

Consume the (non-existing) rows

cursor.fetchall()

cursor.close

db.close()

Chapter 4 Advanced Query Execution

209

After the connection is made, the temporary table world.t1 is created.

The table has seven columns of various data types. Next, a SELECT query

is executed to get the result dictionary including the column information.

The dictionary is used to print the field type both as an integer and as a

string. The output of executing the code is

Column Field Type

=========================

id 3 - LONG

val1 1 - TINY

val2 8 - LONGLONG

val3 246 - NEWDECIMAL

val4 252 - BLOB

val5 253 - VAR_STRING

val6 254 - STRING

�MySQL Column Flags
The other piece of information available that can be converted into names

is the MySQL column flags (also called field flags). The column flags are

defined in MySQL Server in the include/mysql_com.h header file in the

source. The information included in the flag includes whether the column

is a primary key, whether it allows NULL values, etc. The latter is how the

“allow NULL” value in the column description is derived (from protocol.py

in the MySQL Connector/Python installation):

~flags & FieldFlag.NOT_NULL, # null_ok

As the definition shows, the column flags are defined in the FieldFlag

class in constants.py and they can be used with the bitwise and operator

(&) to check whether a given flag is set. Unlike the columns types, there is no

readymade function to get the flags for a given column, so it is necessary to

determine the flags yourself. Listing 4-15 shows an example of how to do this.

Chapter 4 Advanced Query Execution

210

Listing 4-15.  Checking Whether Field Flags Are Set for a Column

def get_column_flags(column_info):

 """Returns a dictionary with a

 dictionary for each flag set for a

 column. The dictionary key is the

 flag name. The flag name, the flag

 numeric value and the description of

 the flag is included in the flag

 dictionary.

 """

 from mysql.connector import FieldFlag

 flags = {}

 desc = FieldFlag.desc

 for name in FieldFlag.desc:

 (value, description) = desc[name]

 if (column_info[7] & value):

 flags[name] = {

 "name": name,

 "value": value,

 "description": description

 }

 return flags

Main program

import mysql.connector

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini")

cursor = db.cursor()

Chapter 4 Advanced Query Execution

211

Create a test table

cursor.execute("""

CREATE TEMPORARY TABLE world.t1 (

 id int unsigned NOT NULL auto_increment,

 val1 bigint,

 val2 varchar(10),

 val3 varchar(10) NOT NULL,

 val4 varchar(10),

 val5 varchar(10),

 PRIMARY KEY(id),

 UNIQUE KEY (val1),

 INDEX (val2),

 INDEX (val3, val4)

)"""

)

Select all columns (no rows returned)

cursor.execute("SELECT * FROM world.t1")

Print the field type for each column

print("{0:6s} {1}".format(

 "Column", "Field Flags"))

print("=" * 74);

all_flags = {}

for column in cursor.description:

 flags = get_column_flags(column)

 # Add the flags to the list of

 # all flags, so the description

 # can be printed later

 # for flag_name in flags:

 all_flags.update(flags)

Chapter 4 Advanced Query Execution

212

 # Print the flag names sorted

 # alphabetically

 print("{0:6s} {1}".format(

 column[0],

 ", ".join(sorted(flags))

))

print("")

Print description of the flags that

were found

print("{0:18s} {1}".format(

 "Flag Name", "Description"))

print("=" * 53);

for flag_name in sorted(all_flags):

 print("{0:18s} {1}".format(

 flag_name,

 all_flags[flag_name]["description"]

))

Consume the (non-existing) rows

cursor.fetchall()

cursor.close

db.close()

The most interesting part of the program is the get_column_flags()

function. The function loops over all known flags and uses the bitwise

and operator to check whether the flag is set. FieldFlag.desc is a

dictionary with the flag name as the key. For each flag there is a tuple with

the number value as the first element and a description and the second

element. The FieldFlag class also has a constant with the name the same

as the flag name, for example FieldFlag.PRI_KEY for the “is part of the

primary key” flag.

Chapter 4 Advanced Query Execution

213

The flag names are printed in alphabetical order for each column, and

at the end the description is printed for each flag that has been used. The

output from MySQL 8.0.11 using the C Extension is

Column Field Flags

===

id �AUTO_INCREMENT, GROUP, NOT_NULL, NUM, PART_KEY,

PRI_KEY, UNSIGNED

val1 GROUP, NUM, PART_KEY, UNIQUE_KEY

val2 GROUP, MULTIPLE_KEY, NUM

val3 GROUP, MULTIPLE_KEY, NOT_NULL, NO_DEFAULT_VALUE, NUM

val4 GROUP, NUM

val5

Flag Name Description

===

AUTO_INCREMENT field is a autoincrement field

GROUP Intern: Group field

MULTIPLE_KEY Field is part of a key

NOT_NULL Field can't be NULL

NO_DEFAULT_VALUE Field doesn't have default value

NUM Field is num (for clients)

PART_KEY Intern; Part of some key

PRI_KEY Field is part of a primary key

UNIQUE_KEY Field is part of a unique key

UNSIGNED Field is unsigned

The PART_KEY flag is only included when the C Extension

implementation is used.

This concludes the discussion of the column information. There is one

remaining topic: the MySQL Connector/Python C Extension.

Chapter 4 Advanced Query Execution

214

�The C Extension
Thus far, most examples have not specified whether to use the

implementation of MySQL Connector/Python written purely in Python

or the one using the C Extension. While the pure Python implementation

has advantages such as being able to easily look at the code executed by

the connector, it has some disadvantages with respect to performance. To

overcome that, there is the MySQL Connector/Python C Extension.

Depending on the platform and how MySQL Connector/Python

has been installed, the C Extension may or may not have been included

automatically. For example, on Windows using MySQL Installer and the

latest supported Python version, it is included, but using RPM packages on

Red Hat Enterprise Linux (RHEL) or Oracle Linux requires an extra RPM

package to be installed.

The main benefit of using the C Extension is performance. There

are particularly two use cases where the C Extension can be beneficial

compared to the pure Python implementation:

•	 Handling large result sets

•	 Using prepared statements, particularly if a large

amount of data needs to be transferred

The C Extension provides an interface from the Python part of the

connector to the MySQL C client library. For queries returning large result

sets, it is an advantage to handle the memory-intensive parts in a C library.

Additionally, the MySQL C client library has the advantage that is supports

prepared statements implemented using the binary protocol.

Tip I n most cases, it is recommended to enable the C Extension
for anything but simple scripts. That said, the pure Python
implementation can be useful for debugging programs.

Chapter 4 Advanced Query Execution

215

There are two ways to switch to the C Extension:

•	 The mysql.connector.connect() function: Call the

function with the use_pure connection option set to False.

This is the default in MySQL Connector/Python 8.0.11 and

later. An advantage is that the API stays the same.

•	 The _ mysql_connector module: Import the _mysql_

connector module instead of mysql.connector. The

advantage is that the C Extension API is used directly,

thus removing the overhead of the wrapper methods.

The disadvantage is that the API is different.

Tip U sing the mysql.connector.connect() function is the
simplest way to use the C Extension. On the other hand, using the
_mysql_connector module can give better performance.

The rest of this section provides an example of using each of the two

methods to access the C Extension.

�The mysql.connector.connect() Function
The simplest way to get to use the C Extension is to use the mysql.connector.

connect() function. All that is required if you have an existing MySQL

Connector/Python application is to change how the connection is created.

Caution  While there are in general only small differences between the
pure Python and C Extension implementation when using the mysql.
connector module, you must do exhaustive testing if you change the
implementation used for an existing application. This includes upgrading
to MySQL Connector/Python version 8.0 from an earlier version.

Chapter 4 Advanced Query Execution

216

Listing 4-16 shows how to use the C Extension. Once the connection is

created, a query is executed and the result is printed.

Listing 4-16.  Using the C Extension by Setting use_pure = False

import mysql.connector

Create connection to MySQL

db = mysql.connector.connect(

 option_files="my.ini",

 use_pure=False

)

Instantiate the cursor

cursor = db.cursor(dictionary=True)

Execute the query

cursor.execute(

 """SELECT Name, CountryCode,

 Population

 FROM world.city

 WHERE Population > 9000000

 ORDER BY Population DESC"""

)

print(__file__ + " - Setting use_pure = False:")

print("")

if (cursor.with_rows):

 # Print the rows found

 print(

 "{0:15s} {1:7s} {2:3s}".format(

 "City", "Country", "Pop"

)

)

Chapter 4 Advanced Query Execution

217

 city = cursor.fetchone()

 while (city):

 print(

 "{0:15s} {1:^7s} {2:4.1f}".format(

 city["Name"],

 city["CountryCode"],

 city["Population"]/1000000.0

)

)

 city = cursor.fetchone()

cursor.close()

db.close()

There is just one difference compared with similar previous programs

where the default implementation was used: the use_pure variable is set to

False to request the C Extension. The output of the program is

listing_4_16.py - Setting use_pure = False:

City Country Pop

Mumbai (Bombay) IND 10.5

Seoul KOR 10.0

São Paulo BRA 10.0

Shanghai CHN 9.7

Jakarta IDN 9.6

Karachi PAK 9.3

Note R emember that when the C Extension is used, the mysql.
connector.connect() function must be used to create the
connection. The reason is that the decision of whether to use the C
Extension or not decides which connection class to instantiate.

Chapter 4 Advanced Query Execution

218

If it is attempted to pass use_pure as an option to either of the

CMySQLConnection() or MySQLConnection() classes or their connect()

methods, an attribute error occurs:

AttributeError: Unsupported argument 'use_pure'

�The _mysql_connector Module
The alternative way to use the C Extension is to explicitly import the

_mysql_connector module. When the _mysql_connector module is used

directly, the usage is similar to using the C client library. So, if you are used

to writing C programs that use MySQL, this will be familiar, although not

identical. Listing 4-17 shows the equivalent of the preceding example, but

this time using the _mysql_connector module.

Listing 4-17.  Using the C Extension by Importing the _mysql_

connector Module

import _mysql_connector

Create connection to MySQL

connect_args = {

 "host": "127.0.0.1",

 "port": 3306,

 "user": "pyuser",

 "password": "Py@pp4Demo",

};

db = _mysql_connector.MySQL()

db.connect(**connect_args)

charset_mysql = "utf8mb4"

charset_python = "utf-8"

db.set_character_set(charset_mysql)

Chapter 4 Advanced Query Execution

219

Execute the query

db.query(

 """SELECT Name, CountryCode,

 Population

 FROM world.city

 WHERE Population > 9000000

 ORDER BY Population DESC"""

)

print(__file__ + " - Using _mysql_connector:")

print("")

if (db.have_result_set):

 # Print the rows found

 print(

 "{0:15s} {1:7s} {2:3s}".format(

 "City", "Country", "Pop"

)

)

 city = db.fetch_row()

 while (city):

 print(

 "{0:15s} {1:^7s} {2:4.1f}".format(

 city[0].decode(charset_python),

 city[1].decode(charset_python),

 city[2]/1000000.0

)

)

 city = db.fetch_row()

db.free_result()

db.close()

Chapter 4 Advanced Query Execution

220

The first thing to notice is that unlike the other examples in this

chapter, the connection arguments are not read from a configuration file.

The support for reading the options from a configuration file is a feature

of the Python part of MySQL Connector/Python and thus not supported

when _mysql_connector module is used directly.

The second thing is that the character set is set explicitly, and it is

necessary to set the character set using the set_character_set() method.

The reason is that the connect() method only supports a subset of the

connection options that MySQL Connector/Python otherwise supports.

The rest of the options must be set using dedicated methods such as the

set_character_set() method.

The third thing is that using the methods of the _mysql_connector.

MySQL class is similar to using the connection methods (like cmd_query())

for executing the query and handling the result set. However, the method

names are different. With this, it is also necessary to handle the result

values explicitly. The string values are returned as bytes, though the

population is returned as an integer.

The fourth thing is that it is necessary to free the result using the free_

result() method, when the program is done handling the result. This is

also similar to using the C client library.

The output of the program is

listing_4_17.py - Using _mysql_connector:

City Country Pop

Mumbai (Bombay) IND 10.5

Seoul KOR 10.0

São Paulo BRA 10.0

Shanghai CHN 9.7

Jakarta IDN 9.6

Karachi PAK 9.3

Chapter 4 Advanced Query Execution

221

Tip  The _mysql_connector module will not be discussed in
any more detail. For the full documentation of the C Extension API,
see https://dev.mysql.com/doc/connector-python/en/
connector-python-cext-reference.html.

�Summary
This chapter covered several features of query execution and the

connection object in MySQL Connector/Python. It began by looking at

executing multiple queries in a single API call, including handling multiple

result sets and using extended inserts. Additionally, the use of buffered

results, calling stored procedures, and loading data from CSV files were

discussed.

The second half the chapter focused on connection properties,

transactions, setting the default database, and time zones. The chapter

ended with a discussion of the C Extension. The C Extension is

recommended for most cases. When enabling the C Extension by setting

use_pure = False in the mysql.connector.connect() function, the API

is the same as for the pure Python implementation, making it relatively

simple to change between the two implementations.

It is time to take a break from the focus on queries and take a look

at advanced connection features such as connection pools and failover

configuration.

Chapter 4 Advanced Query Execution

https://dev.mysql.com/doc/connector-python/en/connector-python-cext-reference.html
https://dev.mysql.com/doc/connector-python/en/connector-python-cext-reference.html

223© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9_5

CHAPTER 5

Connection Pooling
and Failover
In the two previous chapters, you went through the workings of MySQL

Connector/Python from a query point of view. It is time to change the

topic a bit and look at some of the more advanced connection features:

connection pooling and failover.

Tip  There are several example programs in this chapter. All
example programs that appear in a listing are available for download.
See the discussion of example programs in Chapter 1 for more
information about using the example programs.

�Connection Pooling – Background
Connection pooling makes it possible to have a number of connections

that the application can draw on for its queries. This is useful in multi-

threaded applications, where queries end up being executed in parallel.

By using a pool, it is possible to control the number of concurrent

connections and it reduces the overhead because it is not necessary to

create a new connection for each task.

224

While creating a connection in MySQL is relatively fast, particularly

for applications doing many quick queries and if the network to MySQL

is stable, using persistent connections can save enough time to make it

worthwhile to implement a connection pool. On the other hand, if you

are writing a program for the Internet of Things (IoT) with an unstable

network connection and the program will only execute a few queries each

minute, it is better to create a new connection each time.

There are two classes used with a connection pool. The classes are

•	 pooling.MySQLConnectionPool

•	 pooling.PooledMySQLConnection

This section will look at the two classes, their methods, and properties.

The next section will discuss the more practical side of connection pools.

Note  It is not possible to use the C Extension with a connection
pool. The use_pure option will be ignored when calling the mysql.
connector.connect() function with a combination of connection
pool settings and use_pure.

�The pooling.MySQLConnectionPool Class
The pooling.MySQLConnectionPool class is the main class defining the

pool. This is the class where connections are added, configured, and

retrieved when the application needs to execute a query.

In addition to the constructor, there are three methods and one

property that are used with the pooling.MySQLConnectionPool class. They

are summarized in Table 5-1.

Chapter 5 Connection Pooling and Failover

225

A connection pool is first created by invoking the constructor. This

can either happen directly or indirectly through the mysql.connector.

connect() function. When the application needs a connection, it can fetch

one by calling the get_connection() method.

Caution  The add_connection() method is used internally to
return a connection to the pool. It can also be called externally with a
connection of the MySQLConnection class. (Connections using the
C Extension are not supported.) However, adding a new connection
to the pool does not actually increase the size of the pool. So, the
result is that all of the connections can no longer be returned to
the pool, and a PoolError exception with the error “Failed adding
connection; queue is full” is returned.

Table 5-1.  Summary of the pooling.MySQLConnectionPool Class

Name Type Description

MySQLConnectionPool Constructor The constructor for creating a connection

pool.

add_connection() Method Adds or returns a connection to the pool

(i.e. increases the number of connections

in the pool with one).

get_connection() Method Fetches a connection from the pool.

set_config() Method Configures the connections in the pool.

pool_name Property The name of the pool. This can be set

when instantiating the pool.

Chapter 5 Connection Pooling and Failover

226

If necessary, the configurations can be reconfigured using the

set_config() method. Unlike standalone connections, like those used in

the previous chapters, the configuration cannot be changed directly for the

connection. If that was possible, it would no longer be guaranteed that all

connections in the pool were identically configured. Since it is not known by

the application which connection is returned, it would be very unfortunate

if the configuration differed from connection to connection. If you need

connections with different configurations, create one pool per configuration.

Tip  It is possible to have more than one pool. This can, for example,
be used to have different connection configurations available. One
use case is for read-write splitting, so writes go to a replication
master (source) and reads to a replication slave (replica).

There is no official method to disconnect the connections in the pool.

The constructor and methods will be discussed in more detail when they

are used in the examples later in this section. However, first let’s look at the

other half using connection pools: the connections.

�The pooling.PooledMySQLConnection Class
The connections retrieved from a connection pool are instances of the

pooling.PooledMySQLConnection class rather than the MySQLConnection

or the CMySQLConnection classes. In most aspects, a pooled connection

behaves the same way as a standalone connection, but there are a couple

of differences.

The two most important differences are that the close() and config()

methods have been changed. The close() method does not actually close

a pooled connection, but rather returns it to the pool. Since all connections

in the pool must have the same configuration, the config() method will

return a PoolError exception.

Chapter 5 Connection Pooling and Failover

227

In addition to the changed behavior of the close() and config()

methods, there is the pool_name property. This is the same as for the

pooling.MySQLConnectionPool class and can be used to confirm which

pool the connection is from. This can be useful where a connection is

passed to another function or method.

�Configuration Options
The configuration of a connection pool is controlled by three options,

which all have the prefix pool_. These options allow you to set the name

and size, and control whether the connection is reset when returned to the

pool. The options are summarized in Table 5-2. It is not possible to change

any of the settings after the pool has been created.

Table 5-2.  Options for Configuring a Connection Pool

Name Default
Value

Description

pool_name Auto

generated

The name of a connection pool. By default,

the name is generated by joining the values

of the host, port, user, and database

connection options. The name can be at

most pooling.CNX_POOL_MAXNAMESIZE

(defaults to 64) characters long and is allowed

to use alphanumeric characters as well as the

following characters: ., _, :, -, *, $, and #.

pool_reset_session True When True, the session variables are reset

when the connection is returned to the pool.

pool_size 5 The number of connections to hold in the

pool. The value must be at least 1 and at

most pooling.CNX_POOL_MAXSIZE

(defaulting to 32).

Chapter 5 Connection Pooling and Failover

228

All connection pools have a name. If a name is not explicitly set when

creating the pool, a name will be automatically generated by joining the

values of the host, port, user, and database connection options. If neither

of the options is set in the keyword arguments, an PoolError exception

is raised. Options set through an option file are not considered when

generating the name.

Tip  It is recommended to explicitly configure the pool name. This
ensures that changes to the configuration do not change the pool
name. If you have multiple pools, give them unique names to avoid
confusion. Remember that even if the pool name is not used in your
current code, it may be required later.

The pool_reset_session option controls whether the session

variables are reset when a connection is returned to the pool. Resetting

means unsetting all user variables (e.g. @my_user_variable) and ensuring

all session variables (e.g. @@session.sort_buffer_size) have the same

value as the global default. There are two limitations to resetting the

connection in MySQL Server 5.6 and earlier:

•	 The reset is done by reconnecting.

•	 Compression (the compress option) is not supported.

In most cases, it is recommended to reset the connection because

it ensures that the state of the connection is always the same when it is

fetched from the pool.

Tip  Unless there is an explicit requirement to keep the state of
the connections, always use pool_reset_session = True (the
default) to ensure that the state of the connections is known when
fetching them from the pool.

Chapter 5 Connection Pooling and Failover

229

The number of connections in the pool is specified using the

pool_size option. The default is to create the pool with five connections,

but it is possible to have up to pooling.CNX_POOL_MAXSIZE connections.

The pooling.CNX_POOL_MAXSIZE property defaults to 32.

In addition to the three connection pool options, the other

connections options required for the connections must be specified in the

same way as for standalone connections. The non-pool-related options

can also be set for the connections in an existing pool by using the

set_config() method, which works in the same way as the config()

method for a standalone connection. The next section includes an

example of using the set_config() method.

Now that the basics of the two connection pool classes and the

configuration have been discussed, let’s find out how to use them.

�Using Connection Pools
It is finally time to be more practical and start using connection pools.

This section will first show how to create a connection pool and then

show examples of fetching and returning connections. The second half

of the section will discuss query execution and reconfiguration of the

connections when using a connection pool.

�Creating a Connection Pool
When using connection pools, the first step is to create the pool. As

mentioned, there are two different ways to create a pool: it can be done

implicitly or explicitly.

To implicitly create a connection pool, use the mysql.connector.

connect() function as for creating standalone connections. Whenever at

least one of the connection pool options are present, a pool will be created

if no pool with the same name already exists and a connection of the

Chapter 5 Connection Pooling and Failover

230

pooling.PooledMySQLConnection class is returned. If a pool with the same

pool name exists, a connection from that pool is returned. An example is

import mysql.connector

db = mysql.connector.connect(

 option_files="my.ini",

 pool_name="test_connect",

)

print("Pool name: {0}".format(db.pool_name))

The advantage of the indirect method is that it is more similar to

creating standalone connections. The disadvantage is that it that you have

less control of the pool compared to using the pooling.MySQLConnectionP

ool class.

The alternative is to create a connection pool explicitly by instantiating

the pooling.MySQLConnectionPool class, for example:

from mysql.connector import pooling

pool = pooling.MySQLConnectionPool(

 option_files="my.ini",

 pool_name="test_constructor",

)

print("Pool name: {0}".format(pool.pool_name))

The advantage of creating a pool this way is that it gives access to

reconfiguring the connections.

When invoking the pooling.MySQLConnectionPool constructor

directly, all of the connection pool options are optional. If the pool is

created using the mysql.connector.connect() function, at least one of the

options must be specified.

Once the connection pool has been created, connections can be retrieved

from the pool and returned to the pool. Let’s look at how that is done.

Chapter 5 Connection Pooling and Failover

231

�Using Connection Pool Connections
Obviously, the main purpose of a connection pool is to have connections

available for use. So, let’s look a bit more into retrieving and returning

connections as well as how to use them.

The way a connection is fetched depends on how the pool was created.

For a pool created using the mysql.connector.connect() function,

connections are retrieved using the mysql.connector.connect() function

again with the same pool name as when the pool was created. On the other

hand, for pools created explicitly by invoking the pooling.MySQLConnecti

onPool constructor, connections are fetched using the get_connection()

method.

Caution D o not attempt to mix the two ways of fetching
connections. If the mysql.connector.connect() function is used
with the same pool name as for a pool created using the constructor,
a second pool is created.

�Using the mysql.connector.connect() Function

When the pool is created using the mysql.connector.connect() function,

the first connection is returned immediately and additional connections

are fetched invoking the function again with the same pool name. Any

options passed to mysql.connector.connect() other than the pool_name

option are ignored.

Figure 5-1 shows the general workflow when using a connection pool with

two connections and a pool created with the mysql.connector.connect()

function.

Chapter 5 Connection Pooling and Failover

232

In the middle of the figure are the commands executed in the

application. A connection pool with two connections is created at the start.

A connection can either be in the pool awaiting the application to fetch it

(the connections to the left) or in use in the application (the connections

to the right).

Figure 5-1.  The workflow when using the mysql.connector.
connect() function

Chapter 5 Connection Pooling and Failover

233

You can see that the steps of creating the pool and fetching the

first connection out the pool are combined into one call to the mysql.

connector.connect() function. Subsequent connections can be fetched

in the same way. Once the application is done with the connection, it is

returned to the pool by closing it. The connection can be reused if needed

by fetching it from the pool again (not shown in the figure).

Listing 5-1 shows an example of using the mysql.connector.

connect() function to manage a connection pool.

Listing 5-1.  Managing a Connection Pool with mysql.connector.

connect()

import mysql.connector

from mysql.connector.errors import PoolError

print(__file__ + " - connect():")

print("")

Create a pool and return the first

connection

db1 = mysql.connector.connect(

 option_files="my.ini",

 pool_size=2,

 pool_name="test",

)

Get a second connection in the same pool

db2 = mysql.connector.connect(

 pool_name="test")

Attempt to get a third one

try:

 db3 = mysql.connector.connect(

 pool_name="test")

Chapter 5 Connection Pooling and Failover

234

except PoolError as err:

 print("Unable to fetch connection:\n{0}\n"

 .format(err))

Save the connection id of db1 and

return it to the pool, then try

fetching db3 again.

db1_connection_id = db1.connection_id

db1.close()

db3 = mysql.connector.connect(

 pool_name="test")

print("Connection IDs:\n")

print("db1 db2 db3")

print("-"*15)

print("{0:3d} {1:3d} {2:3d}".format(

 db1_connection_id,

 db2.connection_id,

 db3.connection_id

)

)

db2.close()

db3.close()

Initially a connection is fetched in the same way as for a standalone

connection. The only difference is that the connection pool is enabled by

setting at least one of the connection pool options; in this case, both the

pool_size and pool_name options are set. The connection is an instance of

the pooling.PooledMySQLConnection class.

The db2 connection is fetched in a similar way. The pool_name option

is the only thing set here, and it is the only required option. However, it is

fine to keep the original options if that makes the code easier to write; any

extra options are simply ignored, provided they are valid options, when

fetching additional connections from the pool.

Chapter 5 Connection Pooling and Failover

235

When a third connection is attempted, a PoolError exception occurs.

The exception has been imported from mysql.connector.errors near

the top of the example. The exception occurs because the pool has been

exhausted. Returning the db1 connection to the pool allows you to get db3.

Finally, the three connection IDs are printed:

listing_5_1.py - connect():

Unable to fetch connection:

Failed getting connection; pool exhausted

Connection IDs:

db1 db2 db3

324 325 324

The actual IDs will differ from the example output because they

depend on how many connections have been made since MySQL was last

restarted. The important thing is that the output confirms that db3 ends up

with the connection ID previously used by db1.

�Using the get_connection() Method

The code used when working directly with the connection pool is

somewhat different from using the mysql.connector.connect() function;

however, the functionality is essentially the same. A connection is fetched

with the get_connection() method. The returned connection is an

instance of the pooling.PooledMySQLConnection class just as when using

the mysql.connector.connect() function. Figure 5-2 shows the basic

workflow for a pool with two connections.

Chapter 5 Connection Pooling and Failover

236

Figure 5-2.  The workflow when using the pooling.
MySQLConnectionPool class

Chapter 5 Connection Pooling and Failover

237

The connection pool with two connections is created explicitly using

the pooling.MySQLConnectionPool constructor pooling.MySQLConnect

ionPool:constructor. Initially both connections are in the pool. Each time

a connection is needed by the application, it is fetched using the get_

connection() method of the pool object. Once the application is done

with the connection, it is returned to the pool by closing it. The equivalent

of the previous example can be seen in Listing 5-2.

Listing 5-2.  Managing a Connection Pool Using the pool Object

Directly

from mysql.connector import pooling

from mysql.connector import errors

print(__file__ + " - MySQLConnectionPool():")

print("")

pool = pooling.MySQLConnectionPool(

 option_files="my.ini",

 pool_name="test",

 pool_size=2,

)

Fetch the first connection

db1 = pool.get_connection()

Get a second connection in the same pool

db2 = pool.get_connection()

Attempt to get a third one

try:

 db3 = pool.get_connection()

except errors.PoolError as err:

 print("Unable to fetch connection:\n{0}\n"

 .format(err))

Chapter 5 Connection Pooling and Failover

238

Save the connection id of db1 and

return it to the pool, then try

fetching db3 again.

db1_connection_id = db1.connection_id

db1.close()

db3 = pool.get_connection()

print("Connection IDs:\n")

print("db1 db2 db3")

print("-"*15)

print("{0:3d} {1:3d} {2:3d}".format(

 db1_connection_id,

 db2.connection_id,

 db3.connection_id

)

)

db2.close()

db3.close()

The connection pool is created explicitly and the connections are

retrieved using the get_connection() method of the pool object, but

otherwise the example is identical to the one using the mysql.connector.

connect() function. When the pool is exhausted and a connection is

attempted, a PoolError exception occurs again, and connections are

returned to the pool using the close() method of the connection object.

The output is similar to the output when the mysql.connector.

connect() function was used to create the pool. Again, the actual IDs will

differ. An example output is

Chapter 5 Connection Pooling and Failover

239

listing_5_2.py - MySQLConnectionPool():

Unable to fetch connection:

Failed getting connection; pool exhausted

Connection IDs:

db1 db2 db3

350 351 350

Now that you know how to create and return connections, let’s move

on to what is ultimately the most important purpose of connections: to

execute queries.

�Executing Queries
Creating connection pools and fetching and returning the connection can

be fun to play with, but a connection that is not used for queries is not

worth much. While the connection is out of the pool, it can be used like

any regular connection, except that the config() method does not work

and the close() method returns the connection to the pool rather than

closing the connection.

In order to execute queries, all of the other features discussed in

Chapter 3 and Chapter 4 can be used (except the C Extension). Listing 5-3

shows an example of executing a simple SELECT query using a cursor.

Listing 5-3.  Executing a Query in a Connection Pool Connection

from mysql.connector import pooling

pool = pooling.MySQLConnectionPool(

 option_files="my.ini",

 pool_name="test",

)

Chapter 5 Connection Pooling and Failover

240

db = pool.get_connection()

cursor = db.cursor(named_tuple=True)

cursor.execute("""

SELECT Name, CountryCode, Population

 FROM world.city

 WHERE CountryCode = %s""", ("AUS",))

if (cursor.with_rows):

 # Print the rows found

 print(

 "{0:15s} {1:7s} {2:10s}".format(

 "City", "Country", "Population"

)

)

 city = cursor.fetchone()

 while (city):

 print(

 "{0:15s} {1:^7s} {2:8d}".format(

 city.Name,

 city.CountryCode,

 city.Population

)

)

 city = cursor.fetchone()

cursor.close()

db.close()

The program is straightforward. After the connection has been created,

a connection is fetched. The query is executing in a cursor using named

tuples. When the query result has been handled, the cursor is closed, and

the connection is returned to the pool. As you can see, there is nothing

Chapter 5 Connection Pooling and Failover

241

special in the example compared with the queries in the previous chapters,

other than the fact that the connection came out of a pool. The output of

executing the program is

City Country Population

Sydney AUS 3276207

Melbourne AUS 2865329

Brisbane AUS 1291117

Perth AUS 1096829

Adelaide AUS 978100

Canberra AUS 322723

Gold Coast AUS 311932

Newcastle AUS 270324

Central Coast AUS 227657

Wollongong AUS 219761

Hobart AUS 126118

Geelong AUS 125382

Townsville AUS 109914

Cairns AUS 92273

The final thing to consider for connection pools is how to reconfigure

the connections in the pool and the impact it has on the connections.

�Reconfiguring the Connections
When you use a standalone connection like in Chapters 3 and 4, the

concept of reconfiguring it is simple. The reconfiguration happens in

the same execution flow as where the connection is used for queries. It

is different, however, for pooled connections because some connections

will be in the pool and others will be outside doing work. Changing the

configuration for a connection used somewhere else in the application can

cause undefined behavior and can cause queries to suddenly be executed

as another user or on another MySQL Server instance than expected.

Chapter 5 Connection Pooling and Failover

242

The way MySQL Connector/Python handles a reconfiguration request

is that for a given connection it is only reconfigured when it is inside the

pool. For connections in use at the time of the reconfiguration request, the

change to the configuration is postponed until it is returned to the pool.

Listing 5-4 shows an example of reconfiguring the connections in a

connection pool with two connections. One of the connections (db1) is

outside the pool at the time of the call to set_config(), whereas the other

(db2) is inside the pool.

Listing 5-4.  Using the set_config() Method

from mysql.connector import pooling

pool = pooling.MySQLConnectionPool(

 option_files="my.ini",

 pool_name="test",

 pool_size=2,

)

print("{0:18s}: {1:3s} {2:3s}".format(

 "Stage", "db1", "db2"

))

print("-"*29)

fmt = "{0:18s}: {1:3d} {2:3d}"

db1 = pool.get_connection()

db2 = pool.get_connection()

print(

 fmt.format(

 "Initially",

 db1.connection_id,

 db2.connection_id

)

)

Chapter 5 Connection Pooling and Failover

243

Return one of the connections before

the reconfiguration

db2.close()

Reconfigure the connections

pool.set_config(user="pyuser")

Fetch db2 again

db2 = pool.get_connection()

print(

 fmt.format(

 "After set_config()",

 db1.connection_id,

 db2.connection_id

)

)

Return the db1 connection to the pool

and refetch it.

db1.close()

db1 = pool.get_connection()

print(

 fmt.format(

 "After refetching",

 db1.connection_id,

 db2.connection_id

)

)

db1.close()

db2.close()

Chapter 5 Connection Pooling and Failover

244

A connection pool is first created. Two connections are then retrieved

(exhausting the pool) and the connection IDs are printed. The db2

connection is returned before the reconfiguration, whereas db1 stays in

use. After reconfiguring the connection, the connection IDs are printed

again. In this case, there is not actually any change to the configuration,

but that does not affect how MySQL Connector/Python behaves. Finally,

the db1 connection is returned to the pool and retrieved again, and the

connection ID is printed a last time. The output is similar to

Stage : db1 db2

Initially : 369 370

After set_config(): 369 371

After refetching : 372 371

A change in connection ID means the old connection was closed, the

connection configuration was updated, and the connection reestablished.

You can see from the output that the connection ID of the db1 connection

does not change by the call to set_config(). Connections already fetched

from the pool will not have the configuration updated until it is returned to

the pool. Connections sitting in the pool, like the one used with db2, will be

updated immediately. After the db1 connection goes back in the pool and

is fetched again, the connection ID is changed, reflecting the reconnect

that happened when the configuration was updated.

This concludes the discussion of connection pools. There is another

advanced topic for connections: failover configuration. It will be the final

topic of the chapter.

�Connection Failover
Many applications today need to be available 24x7. However, it is still

necessary to be able to perform maintenance on the database backend,

for example in order to upgrade the operating system or MySQL Server.

Chapter 5 Connection Pooling and Failover

245

There may also be an outage due to hardware issues or a problem with the

database. How is the application going to stay online when the database

instance is not available? The answer is to perform a failover to another

MySQL Server instance with the same data.

There are several ways to implement high availability for an

application. This is a large and interesting topic and many books have

been written about it. So, it is not possible to discuss it in detail in this

book. One option, however, is directly related to MySQL Connector/

Python: the possibility of the connector to automatically fail over when the

primary database is not available.

This section will go through how the built-in failover in MySQL

Connector/Python works. The first topic is configuration, then how to use

failover in the application code, and finally there will be an example.

Note  It can be easy to think that all that is required to implement
failover is to configure it. However, for the failover to work properly,
the application must be coded with failovers in mind. There will be
more information in the “Coding for Failover” section.

�Failover Configuration
Configuring the application to use the failover feature in MySQL

Connector/Python is the simplest part of using failover. There is just one

option to consider: the failover option.

The failover option takes a tuple (or list) with a dictionary for each

MySQL Server instance to consider when creating a connection. The

dictionaries must have the connection options that are unique for that

instance. Common connection options can be set as normal. If an option

is specified both in the argument list to the mysql.connector.connect()

function and in a failover dictionary, the value in the failover dictionary

takes precedence.

Chapter 5 Connection Pooling and Failover

246

The failover option supports a subset of the connection options.

Only the options that are directly related to specifying where to connect to,

which user, and connection pool options are allowed. The complete list of

supported options is

•	 user

•	 password

•	 host

•	 port

•	 unix_socket

•	 database

•	 pool_name

•	 pool_size

In general, it is preferable to keep the options as similar as possible for

all of the MySQL Server instances because it reduces the chance of ending

up with errors that are hard to debug. For example, if the user name is

different, it increases the possibility that a change to the privileges ends up

being different between the instances.

An example of creating a connection with failover is

import mysql.connector

primary_args = {

 "host": "192.168.56.10",

}

failover_args = {

 "host": "192.168.56.11",

}

Chapter 5 Connection Pooling and Failover

247

db = mysql.connector.connect(

 option_files="my.ini",

 failover=(

 primary_args,

 failover_args,

)

)

In this example, the standard my.ini file is used to set the common

options for the two instances. The only option set in the failover option

is the host for each of the instances. MySQL Connector/Python will try to

connect to the instances in the order they are listed, so the first one listed

will be the primary instance and the second one the failover instance. It is

possible to add more instances if required.

Note  The order in which the MySQL Server instances are added
to the failover tuple matters. MySQL Connector/Python will try to
connect to the instances in order starting with the first one listed.

The only time the instances listed in the failover option are

considered is when a new connection is requested. That is, if first

a connection is created successfully and it only fails later, MySQL

Connector/Python will not automatically reconnect, neither to the

old instance nor one of the other instances. The detection of a failed

connection and establishing a new connection must be explicitly coded

in the application. Similarly, the application must handle the case when it

has run out of instances to connect to.

Chapter 5 Connection Pooling and Failover

248

�Coding for Failover
As mentioned, the hard part of working with failover is to make the

application work with them. MySQL Connector/Python provides the

framework to connect to the first available instance, but it is up to the

application to ensure it is used to improve the availability.

When a connection fails, MySQL Connector/Python will never

reconnect automatically. This is the case irrespective of whether the

connection was made with or without the failover option. The reason

for this is that it is in general not safe to just reconnect and continue as

if nothing happened. For example, the application may be in the middle

of a transaction when the disconnect happens, in which case it will be

necessary to go back to the start of the transaction.

This means that the developer must check for errors when using a

connector. Error handling in general is a topic of Chapter 9. With respect

to failover, the important thing is to check whether it is really a connection

error; otherwise, there is little point in initializing a failover. Some common

possibilities of connection errors that can occur after the connection has

been created are listed in Table 5-3.

Table 5-3.  Common Connection-Related Errors

Errno Errno – Define Symbol Error Message

(None) (None) MySQL Connection not available

1053 ER_SERVER_SHUTDOWN Server shutdown in progress

2005 CR_SERVER_LOST_EXTENDED Lost connection to MySQL server at '…',

system error: …

2006 CR_SERVER_GONE_ERROR MySQL server has gone away

2013 CR_SERVER_LOST Lost connection to MySQL server during

query

Chapter 5 Connection Pooling and Failover

249

The error “MySQL Connection not available” occurs when it is

attempted to use the connection in a non-query manner, for example

when creating a cursor after the connection has been lost. When the error

number is available, it can be found in the errno property of the exception.

The define symbols are available in the mysql.connector.errorcode

module and can be used to make it easier to see which error the error

number is compared against.

If there are several application instances that all use the same MySQL

Server instances and they write to the database, it is also important to

ensure that either none of the application instances fail over or all do. If

some application instances end up writing to one database instance and

other application instances to another database instance, the data can end

up being inconsistent. In a case with multiple application instances, it may

be better to implement failover using a proxy such as MySQL Router or

ProxySQL that directs connections to the correct MySQL Server instance.

Tip  To avoid inconsistent data, make sure that failover MySQL
instances have the super_read_only option set until they are
meant to accept writes. The super_read_only option is available
in MySQL Server 5.7 and later. Earlier versions only offer the weaker
read_only option that does not block a user with the SUPER
privilege from writing to the instance.

Testing is also more important than normal when failover is involved.

Ensure you test various failure conditions including forcefully killing

MySQL Server while the application is executing queries and introducing

network failures. Additionally, add some failures that should not result in

a failover, such as lock wait timeouts. This is the only way to verify that the

application is able to handle failures correctly.

To round up the discussion of using the failover feature, let’s look at an

example that incorporates some of the things discussed so far.

Chapter 5 Connection Pooling and Failover

250

�Failover Example
It can be hard to wrap your head around all of the things that must be

considered in an application that uses failover. Hopefully an example will

help make things clearer.

For the example to work, there must be two MySQL Server instances.

In a real-world application, it’s normal to have the database instances

on different hosts, so it is possible to fail over even if the whole host is

shut down. However, for this example, it is fine to have two instances on

the same host using different TCP ports, paths to the data directory (the

datadir options) and other database-specific files, and on Linux and Unix

different Unix socket paths (the socket option).

Tip  There are different options for running multiple instances on
one machine depending on your operating system and how you
have installed MySQL. See https://dev.mysql.com/doc/
refman/en/multiple-servers.html and references therein for
instructions both for Microsoft Windows and Unix/Linux. If you are
using systemd to manage MySQL on Linux, see also https://dev.
mysql.com/doc/refman/en/using-systemd.html.

The example assumes both instances are on the local host (127.0.0.1)

with the primary instance using port 3306 (as in all the previous examples)

and the failover instance using port 3307. See Listing 5-5.

Listing 5-5.  Using the Failover Feature

import mysql.connector

from mysql.connector import errorcode

from mysql.connector import errors

Chapter 5 Connection Pooling and Failover

https://dev.mysql.com/doc/refman/en/multiple-servers.html
https://dev.mysql.com/doc/refman/en/multiple-servers.html
https://dev.mysql.com/doc/refman/en/using-systemd.html
https://dev.mysql.com/doc/refman/en/using-systemd.html

251

def connect():

 """Connect to MySQL Server and return

 the connection object."""

 primary_args = {

 "host": "127.0.0.1",

 "port": 3306,

 }

 failover_args = {

 "host": "127.0.0.1",

 "port": 3307,

 }

 db = mysql.connector.connect(

 option_files="my.ini",

 use_pure=True,

 failover=(

 primary_args,

 failover_args,

)

)

 return db

def execute(db, wait_for_failure=False):

 """Execute the query and print

 the result."""

 sql = """

SELECT @@global.hostname AS Hostname,

 @@global.port AS Port"""

 retry = False

 try:

 cursor = db.cursor(named_tuple=True)

Chapter 5 Connection Pooling and Failover

252

 except errors.OperationalError as err:

 print("Failed to create the cursor."

 + " Error:\n{0}\n".format(err))

 retry = True

 else:

 if (wait_for_failure):

 try:

 input("Shut down primary now to"

 + " fail when executing query."

 + "\nHit Enter to continue.")

 except SyntaxError:

 pass

 print("")

 try:

 cursor.execute(sql)

 except errors.InterfaceError as err:

 print("Failed to execute query"

 + " (InterfaceError)."

 + " Error:\n{0}\n".format(err))

 retry = (err.errno == errorcode.CR_SERVER_LOST)

 except errors.OperationalError as err:

 print("Failed to execute query"

 + " (OperationalError)."

 + " Error:\n{0}\n".format(err))

 retry = (err.errno == errorcode.CR_SERVER_LOST_EXTENDED)

 else:

 print("Result of query:")

 print(cursor.fetchall())

 finally:

 cursor.close()

 return retry

Chapter 5 Connection Pooling and Failover

253

Execute for the first time This should

be against the primary instance

db = connect()

retry = True

while retry:

 retry = execute(db)

 if retry:

 # Reconnect

 db = connect()

print("")

Wait for the primary instance to

shut down.

try:

 input("Shut down primary now to fail"

 + " when creating cursor."

 + "\nHit Enter to continue.")

except SyntaxError:

 pass

print("")

Attempt to execute again

retry = True

allow_failure = True

while retry:

 retry = execute(db, allow_failure)

 allow_failure = False

 if retry:

 # Reconnect

 db = connect()

db.close()

Chapter 5 Connection Pooling and Failover

254

The connection is created in the connect() function. The main

reason for putting this into its own function is that it is necessary to

explicitly reconnect when a failure happens, so it is convenient to have the

connection-related code isolated and reusable.

This is also the reason for the execute() function that creates a cursor

and executes a query to get the hostname and port of the MySQL Server

instance the program is connected to. The execution code includes try

statements to test whether the operations succeeded and, if not, whether

the query should be retried after a reconnect (and possible failover).

The example assumes both the primary and failover MySQL Server

instances are available at the start. When the connection is first created, it

will be against the primary instance because it is listed first in the failover

option. Once the query against the primary instance has completed, the

execution will pause, making it possible to shut down the primary instance

if the failure should happen when the next cursor is created.

When the execution continues (after pressing Enter), the query will

be attempted again. If the primary instance has been shut down, creating

the cursor will fail and the error will be printed. Otherwise, a new pause

will be created because wait_for_failover is set to True the first time the

execute() function is called in the second round. If the primary instance is

shut down at this time, the error will occur when trying to execute the actual

query. In that case, the error number is compared to what is expected to

make sure it is indeed a connection issue that caused the failure.

When the connection failure has been detected, the code will attempt

to reconnect. This time mysql.connector.connect() will fail over to the

failover instance. It is then possible to execute the query.

The output when the failure happens when the cursor is created is

Result of query:

[Row(Hostname='MY-COMPUTER', Port=3306)]

Shut down primary now to fail when creating cursor.

Hit Enter to continue.

Chapter 5 Connection Pooling and Failover

255

Failed to create the cursor. Error:

MySQL Connection not available.

Result of query:

[Row(Hostname='MY-COMPUTER', Port=3307)]

The error received is an OperationalError exception with no error

number. Notice how the port number changed after the connection failure,

showing that the program is now connected to the failover instance.

The second case where the error occurs when attempting to execute

the query has different exceptions and errors depending on the platform.

On Microsoft Windows, the output is

Result of query:

[Row(Hostname='MY-COMPUTER', Port=3306)]

Shut down primary now to fail when creating cursor.

Hit Enter to continue.

Shut down primary now to fail when executing query.

Hit Enter to continue.

Failed to execute query (OperationalError). Error:

2055: Lost connection to MySQL server at '127.0.0.1:3306',

system error: 10053 An established connection was aborted by

the software in your host machine

Result of query:

[Row(Hostname='MY-COMPUTER', Port=3307)]

Here is another OperationalError exception, but with the error

number set to 2055. On Linux, the error is

Failed to execute query (InterfaceError). Error:

2013: Lost connection to MySQL server during query

Chapter 5 Connection Pooling and Failover

256

So, on Linux it is an InterfaceError exception with error number 2013.

This shows that the details of the failure can depend on the platform as

well. It can also depend on whether the pure Python implementation or the

C Extension is used, so that must also be taken into account when coding.

�Summary
In this chapter, you looked at two advanced connection features:

connection pools and failover. They are not commonly used but can be

useful for some applications.

The connection pool feature makes it possible for an application to

retrieve connections out of the pool. This is particularly useful for multi-

threaded applications where the pool can be used to reduce overhead and

to limit the concurrency with which queries are executed.

The failover function makes MySQL Connector/Python go through

each configured connection in turn to find the first one available. This

can help improve availability, but it also requires additional work in the

application. It is possible to combine the connection pool and failover

features.

Except for error handling and troubleshooting (Chapter 9 and

Chapter 10), this concludes the discussion of the traditional MySQL

Connector/Python. In the next three chapters, you will look at how the

X DevAPI that is exclusive to MySQL Connector/Python 8.0 can be used to

work with MySQL Server as a document store.

Chapter 5 Connection Pooling and Failover

PART III

The X DevAPI

259© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9_6

CHAPTER 6

The X DevAPI
MySQL Server was originally released as an SQL database in 1995. SQL

statements executed as shown in Chapters 2 and 3 are still by far the most

common way to execute queries in MySQL, and the mysql.connector

module uses the traditional protocol. There is, however, another way: the

new X Protocol.

This chapter will start out with a brief introduction to the X Plugin

(the back end) and the X DevAPI (the API used by the application) and

the features in-between. The rest of the chapter will focus on the parts of

the MySQL Connector/Python implementation of the X DevAPI that are

common among the three main parts of the API: the MySQL Document

Store, the create-read-update-delete (CRUD) interface to SQL tables,

and SQL statements. This includes how to create a connection, common

argument types, statement classes, and the result objects.

The next two chapters will go into detail on the rest of the API. Chapter 7

will show how to use the MySQL Document Store. Chapter 8 will show how

to use the X DevAPI with SQL tables via the CRUD NoSQL methods and

SQL statements. Error handling and troubleshooting are deferred until

Chapters 9 and 10.

260

Tip  The MySQL X DevAPI is very new; it became GA with MySQL 8.0.
This means that new features are still being worked on at a relative
fast pace. If you can’t find a certain feature, check the online
API documentation at https://dev.mysql.com/doc/dev/
connector-python/8.0/ to see if the feature has been added. You
can also request new features at https://bugs.mysql.com/.

WHAT IS NOSQL?

There is no one definition of NoSQL that everyone agrees on. Does “No” mean

“no, SQL is not used to define queries at all” or does “No” mean “not only?” Does

“SQL” refer to the language used to write queries or to relational databases?

Even within NoSQL there are large differences between the available products.

Some are key-value stores, some store documents such as JSON documents,

etc. In other words, it’s not clear cut what NoSQL is, but one common thing is

that you query the data using API methods rather than SQL statements.

Considering NoSQL from the MySQL point of view, using MySQL as a relational

database and writing queries using the Structured Query Language (SQL) such

as SELET * FROM world.city means it is clearly in the SQL regime. On the

other hand, using the MySQL Document Store (storing data in JSON documents)

and querying the data using the methods of the X DevAPI (the programming

language features) to define the queries means it is in the NoSQL regime.

However, there is a grey zone in-between. The X DevAPI also supports

querying SQL (relational) tables without writing SQL queries, and you can

query a document in the Document Store using SQL statements. Whether

these uses should be considered NoSQL or not can be discussed. In that

sense, you can say that MySQL 8.0 with the Document Store and the X DevAPI

is a “not only SQL” database.

Chapter 6 The X DevAPI

https://dev.mysql.com/doc/dev/connector-python/8.0/
https://dev.mysql.com/doc/dev/connector-python/8.0/
https://bugs.mysql.com/

261

�The MySQL X Plugin
In MySQL Server 5.7.12, the MySQL X Plugin was introduced as a beta

feature. It has since been given time to mature and is GA in MySQL Server

8.0. The X Plugin allows you to use MySQL using NoSQL in a similar way to

other document stores in addition to traditional SQL statements.

There are several parts to the X Plugin to handle the various levels

where it used. The parts are

•	 The X Plugin: This is the server-side implementation

of the features. In MySQL 8.0.11 and later, it is a built-in

plugin, so no actions are required to enable it.

•	 The X Protocol: The new protocol used for an

application to communicate with the X Plugin. The

default TCP port for the X Protocol is port 33060.

•	 The X DevAPI: This is the new API for use with the X

Protocol.

•	 The mysqlx Module: The MySQL Connector/Python

module with the implementation of the X DevAPI.

Additionally, there is the concept of the MySQL Document Store,

which is the X Plugin, the X Protocol, the X DevAPI, and MySQL Shell

(discussed shortly) together.

In order to be able to use the X Plugin, a new API named the X DevAPI

was developed. It is available for several programming languages

including Python, JavaScript (Node.js), PHP, .Net, C++, and Java. MySQL

Shell is a new command-line client that to some extend can replace the

traditional mysql command-line client. It supports the X DevAPI and can

be used to execute queries using SQL statements, Python, and JavaScript.

Additionally, MySQL Shell can be used to manage MySQL InnoDB Cluster

using Python or JavaScript.

Chapter 6 The X DevAPI

262

Communication between applications and the Document Store is done

using the X Protocol. Because it is a new protocol compared to the traditional

MySQL protocol, the Document Store uses its own port. The default port

number is 33060; this can be changed using the mysqlx_port option.

The server-side part of the X DevAPI is implemented as a plugin to

MySQL Server. The plugin is named the X Plugin. It is enabled by default

in MySQL Server 8.0.11 and later; in fact, it has become a built-in plugin

that cannot be removed, so it will always be present. The X Plugin is also

available for older releases of MySQL; however, changes were made up to

the time of 8.0.11 when MySQL 8.0 became generally available. So, make

sure you are using MySQL 8.0.11 or later.

You can confirm that the plugin is active by querying the PLUGINS view

in the information_schema database:

mysql> SELECT *

 FROM information_schema.PLUGINS

 WHERE PLUGIN_NAME = 'mysqlx'\G

*************************** 1. row ***************************

 PLUGIN_NAME: mysqlx

 PLUGIN_VERSION: 1.0

 PLUGIN_STATUS: ACTIVE

 PLUGIN_TYPE: DAEMON

 PLUGIN_TYPE_VERSION: 80011.0

 PLUGIN_LIBRARY: NULL

PLUGIN_LIBRARY_VERSION: NULL

 PLUGIN_AUTHOR: Oracle Corp

 PLUGIN_DESCRIPTION: X Plugin for MySQL

 PLUGIN_LICENSE: GPL

 LOAD_OPTION: ON

1 row in set (0.00 sec)

Notice here that the PLUGIN_STATUS is ACTIVE. If that is not the case,

the most likely cause is that the X Plugin was disabled explicitly in the

Chapter 6 The X DevAPI

263

MySQL configuration file (my.ini on Microsoft Windows, my.cnf on other

platforms). Look for an option like

[mysqld]

mysqlx = 0

Instead of mysqlx = 0, you may also see skip-mysqlx. Remove this

option, comment it out, or change it to mysqlx = 1. Since the X Plugin is

enabled by default, the recommended way is to remove or comment it out.

You will learn some of the characteristics of the X features in this and

the next two chapters. However, before you can start using the X DevAPI,

you need a high-level overview of the mysqlx module.

�The mysqlx Module
The X DevAPI support in Connector/Python is in its own separate module

compared to the rest of MySQL Connector/Python. The module is called

mysqlx. There are significant differences between the names and in the

general use of the mysqlx module and the mysql.connector module.

This may seem strange, but part of the idea of the X DevAPI is to have a

relatively uniform API across the supported languages. This means if you are

accustomed to using the X DevAPI in MySQL Connector/Python, it is easy to

implement another project using, for example, MySQL Connector/Node.js.1

In order to get started using the X DevAPI for Python, you must import

the mysqlx module:

import mysqlx

That’s it. The next step is to create a session but let’s first take a look at

Figure 6-1, which shows how the mysqlx module is organized with respect

to the classes that will be used in the remainder of the X DevAPI discussion.

1�That said, each language keeps its characteristics, for example, with respect to
naming conventions and whether setter and getter methods are used versus
properties. So, there are some differences.

Chapter 6 The X DevAPI

264

Figure 6-1.  The organization of the mysqlx module

Chapter 6 The X DevAPI

265

The classes are shown as the smaller yellow (light grey) boxes. The

larger boxes surrounding the classes are the sub-module in which the class

is located. For example, the Session class is located in mysqlx.connection.

Figure 6-1 also shows the general flow of the code execution. You start

out with a session and can from the session object get a schema object to use

with CRUD statements or an SQL statement. The flow for SQL statements is

simple because that results in an SQL result which may returns rows.

The CRUD schema objects include collections, tables, and views.

Collections are used with the Document Store whereas tables and views

are used with SQL tables. The CRUD objects can be used to create a CRUD

statement. These are the statements in the statement sub-module; in

total, eight CRUD statement classes will be discussed. (The “…”-statement

represents those classes not included in the figure.)

The CRUD statements end up with a “plain” result for queries without

a result set. Statements that return data end with a document result for

collections or a row result for SQL tables and views. A document result

returns the data as DbDoc objects and a row result returns Row objects.

Feel free to return to this overview as you work through all of the parts.

Before continuing to create a session let’s discuss how commands are

executed and the support for chaining them.

There are essentially two different ways to implement a series of

commands: one line of code for each method and execute() (required

for statements that have been defined and are ready for execution), or

chaining the method calls. Consider a find statement where you want to

define the fields to extract from the document, set a filter, and execute the

query. With ellipses replacing the actual arguments, this query can be

created, refined, and executed as

statement = collection.find()

statement.fields(...)

statement.where(...)

result = statement.execute()

Chapter 6 The X DevAPI

266

Alternatively, the same query can be written as one chain, like so:

result = collection.find().fields(...).where(...).execute()

It is also possible to use a hybrid where part of the statement uses a

chain and the other part doesn’t, or you can use several shorter chains.

This can be useful if you need to execute several queries that have a

common base, but then have the filter or values changes.

One method is not more correct than the other. The one you use

should be determined by the style of the code, requirements, and how the

statement will be used. The next two chapters include examples of various

ways to put the flow of commands together.

MYSQL SHELL

MySQL Shell is a new command-line client that provides several additional

features compared to the traditional mysql command-line client. One of the

features it includes is support for using the X DevAPI in Python. While MySQL

Shell does not use MySQL Connector/Python and thus the mysqlx module is

not 100% the same, you can use MySQL Shell to test the X DevAPI interactively.

An example that creates a session and executes a read request using MySQL

Shell is

MySQL Py > connect_args = {

 ... 'host' : '127.0.0.1',

 ... 'port' : 33060,

 ... 'user' : 'pyuser',

 ... 'password' : 'Py@pp4Demo',

 ... };

 ...

 MySQL Py > db = mysqlx.get_session(**connect_args)

 MySQL Py > schema = db.get_schema('world_x')

 MySQL Py > countries = schema.get_collection('countryinfo')

Chapter 6 The X DevAPI

267

 MySQL Py > country = countries.get_one('AUS')

 MySQL Py >

 MySQL Py > fmt = "{0:13s} {1}"

 MySQL Py > print(fmt.format(

 ... "Name:",

 ... country["Name"]

 ...))

 ...

Name: Australia

 MySQL Py > print(fmt.format(

 ... "Continent ...:",

 ... country["geography"]["Continent"]

 ...))

 ...

Continent ...: Oceania

Don’t worry if the code does not make sense yet; this is what this and the next

two chapters are about. At the end, it should all be clear. Chapter 10 will also

look into using MySQL Shell as a tool during development.

Be aware that the example uses the world_x sample database, which is

derived from the world sample database used in the earlier chapters. If

you want to play with the world_x database, it can be downloaded from

https://dev.mysql.com/doc/index-other.html.

�Creating a Session
In the X DevAPI, a session corresponds to the connection object in the

traditional MySQL Connector/Python mysql.connector module. It does

not matter whether you want to create a session to use the Document

Store, use the CRUD methods with SQL tables, or execute traditional SQL

queries. This is one of the advantages of the X DevAPI: it combines the

NoSQL and SQL worlds.

Chapter 6 The X DevAPI

https://dev.mysql.com/doc/index-other.html

268

Tip  The primary use of the X DevAPI is the NoSQL CRUD methods.
If you need more than basic SQL features, it is recommended to use
the mysql.connector module as described earlier in this book.
It is also possible to combine the use of the mysqlx and mysql.
connector modules to get the best of both worlds.

A session is created using the get_session() method. The arguments

passed to the function are used to configure the session. The definition of

the function is

mysqlx.get_session(*args, **kwargs)

The connection arguments can be specified in one of two ways:

•	 Passing the options in the same way as when creating a

connection in the mysql.connector module

•	 Creating an URI

Let’s look at how to use each way, starting out by specifying the options

explicitly. After the discussion of configuring the session, there will be

examples of using the get_session() function to create the session.

Caution  Do not hard code the password into the application. This is
neither safe nor practical. In general, it is best to keep the connection
options outside the application. This also ensures that the connection
options can be updated without updating the application.

�Passing Individual Options
If you are used to coding with MySQL Connector/Python, the simplest

way to specify the options is to pass them individually either as direct

arguments or as a dictionary.

Chapter 6 The X DevAPI

269

One important difference compared to the connections created in the

previous chapters is that it is not possible to specify a MySQL configuration

file. So, if you use the X DevAPI, it is recommended to store the options in

a custom configuration file. The complete list of supported options can be

seen in Table 6-1. The options are ordered alphabetically.

Table 6-1.  The X DevAPI Options for Creating a Session

Name Default Value Description

auth With SSL,

Unix socket,

and Windows

named-pipe:

PLAIN

Otherwise, try

MYSQL41

Finally, try

SHA256_

MEMORY

auth takes one of three values: MYSQL41, SHA256_

MEMORY, or PLAIN. MYSQL41 should be used with

the mysql_native_password authentication

plugin. SHA256_MEMORY can be used to connect with

an account using the sha2_caching_password

authentication plugin without an SSL connection,

provided that at least one connection has been made

prior using SSL since the last restart of MySQL Server.

PLAIN is used in most other cases but requires a

secure connection, one that uses SSL, a Unix socket,

or a Windows named-pipe. It is rarely necessary to set

this option.

host localhost The hostname to connect to; the default is to connect

to the local host.

password The password to authenticate with; for the test user,

it’s Py@pp4Demo.

port 33060 The port MySQL is listening to for X DevAPI

connections. Port 33060 is the standard MySQL X

DevAPI port.

(continued)

Chapter 6 The X DevAPI

270

Name Default Value Description

routers List of dictionaries with the host and port keys

defining possible MySQL instances to connect to.

Optionally, the priority can also be set; the higher

the value, the more likely the instance is used. If the

priority is set for one instance, it must be set for all

instances. If no priorities are given, the instances are

used in the order they appear in the list. If the host

option is specified in addition to routers, the host

and port options are used to create an instance at

the end of the routers list.

schema The default schema (database) to use for the session.

It is not required for the schema to already exist. The

default schema only applies to the mysqlx.crud.

Session.get_default_schema() method.

socket Unix socket or Windows named-pipe.

ssl-ca The path to the file containing the SSL certificate

authority (CA).

ssl-crl The path to the file containing the SSL certificate

revocation lists.

ssl-cert The path to the file containing the public SSL

certificate.

ssl-key The path to the file containing the private SSL key.

Table 6-1.  (continued)

(continued)

Chapter 6 The X DevAPI

271

Name Default Value Description

ssl-mode REQUIRED Which SSL mode to use. This is the same as for

clients shipped with MySQL Server. It can take a

range of values: DISABLED, PREFERRED, REQUIRED,

VERIFY_CA, VERIFY_IDENTITY. The value VERIFY_

IDENTITY is equivalent to the old ssl_verify_

cert option. See also https://dev.mysql.com/

doc/refman/en/encrypted-connection-

options.html#option_general_ssl-mode.

use_pure False Whether to use the pure Python implementation (when

use_pure = True) or the C Extension.

user The username of the application user. Do not include

the @ and the following hostname (that is, for the test

user just specify pyuser).

Table 6-1.  (continued)

As you can see from the list of options, there are not nearly as many

as for the mysql.connector module. Most noticeable is that there are no

character set options. The X DevAPI always uses utf8mb4.

Tip  If you data is stored using a different character set than utf8,
utf8mb3, or utf8mb4, either convert it in the query or use the
mysql.connector module.

The list of supported SSL options (except ssl-mode) is stored in the

_SSL_OPTS constant in the mysqlx module, and the complete list of options

can be found in the _SESS_OPTS constant. This makes it easy to get the list

of options, for example, by using the following code:

Chapter 6 The X DevAPI

https://dev.mysql.com/doc/refman/en/encrypted-connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/en/encrypted-connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/en/encrypted-connection-options.html#option_general_ssl-mode

272

import mysqlx

print("SSL options ...: {0}".format(

 mysqlx._SSL_OPTS

))

print("All options ...: {0}".format(

 mysqlx._SESS_OPTS

))

This code is an example of a difference between using the X DevAPI

with MySQL Connector/Python and MySQL Shell. In MySQL Shell, the

mysqlx module does not have these two properties, so the example will

cause an exception. The output using MySQL Connector/Python 8.0.11 is

SSL options ...: ['ssl-cert', 'ssl-ca', 'ssl-key', 'ssl-crl']

All options ...: ['ssl-cert', 'ssl-ca', 'ssl-key', 'ssl-crl',

'user', 'password', 'schema', 'host', 'port', 'routers',

'socket', 'ssl-mode', 'auth', 'use_pure']

MySQL Connector/Python also supports specifying an URI with the

connection options. Let’s see how this is done.

�Passing an URI
A common way to connect to a database is by creating an URI (Uniform

Resource Identifier) that includes all of the connection options. An URI is

also used to access a web site (all URLs (Uniform Resource Locators) are

also URIs). Using an URI with database connections is also known from

MySQL Connector/J (Java).

The basic form of an URI for the X DevAPI is

scheme://[user[:[password]]@]target[:port][/schema]

[?attribute1=value1][&attribute2=value2...]

Chapter 6 The X DevAPI

273

The scheme is always mysqlx and can be left out (MySQL Connector/

Python will add it if it is missing). At the time of writing, MySQL

Connector/Python does not support escaping of characters in the URI (as

is otherwise the norm), so some values are currently not supported.

Note  Because of the bug described in https://bugs.mysql.
com/89614, some characters are not currently supported in the
parameters. Most noticeable is that the @ character is not supported
in passwords. If you want to test using an URI, you must change the
password to not include the @ character until the bug has been fixed.

The target is either the socket option, the host option, or the host and

port options separated with a colon. The attributes are any of the supported

options other than user, password, host, port, socket, and schema.

As an example, consider creating a connection using the following

arguments (in the order they appear in the URI):

•	 user: Pyuser

•	 password: PyApp4Demo

•	 host: 127.0.0.1

•	 port: 33060

•	 schema: py_test_db

•	 ssl-mode: REQUIRED

•	 auth: PLAIN

The resulting URI is

mysqlx://pyuser:PyApp4Demo@127.0.0.1:33060/py_test_db?ssl-

mode=REQUIRED&auth=PLAIN

The rest of the discussion of the X DevAPI passes the connection

options individually.

Chapter 6 The X DevAPI

https://bugs.mysql.com/89614
https://bugs.mysql.com/89614

274

�Connection Examples
The time has come to create an actual session that is connected to MySQL

using the X DevAPI. In order to avoid coding the connection options into

the examples, the configuration that is common to the examples in the

remainder of this and the following two chapters will be stored in the

config module.

See the following for the contents of the config module that is

included with the source code for this book as config.py:

connect_args = {

 'host': '127.0.0.1',

 'port': 33060,

 'user': 'pyuser',

 'password': 'Py@pp4Demo',

};

Using the config module, the session can be created as follows:

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

When you are done using the session, it is recommended to close it

to ensure the connection is terminated cleanly. This is achieved with the

close() method:

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

...

db.close()

Chapter 6 The X DevAPI

275

That’s all there is to it. So, let’s move on and start to use the X DevAPI

session.

�Working with the Session
The session object includes a few useful methods of its own. Remember

that the session is the equivalent of the mysql.connector connection object,

so it is at the session level that, for example, transactions are controlled.

This section will go through these features. Additionally, the session also

contains the methods used to manipulate a schema such as creating and

dropping them. Working with schemas will be covered in the next section.

�Transactions
The X DevAPI supports transactions for all actions other than those

manipulating schema objects. This is the same as when using the mysql.

connector module or any other way to interact with MySQL Server. The

X DevAPI actually has better transactional support than the mysql.

connector module because it supports savepoints in addition to the

transactions themselves.

Note  An important difference between mysqlx and mysql.
connector is that autocommit. mysqlx inherits the value from
the global default set in MySQL Server, and there is no way to change
the value of it other than using an SQL statement. For this reason, it is
recommended always to explicitly use transactions.

There are six methods to control transactions and savepoints. They are

summarized in Table 6-2. The order of the methods is according to when

they are used in a transaction.

Chapter 6 The X DevAPI

276

There will be examples of using transactions throughout the rest of the

X DevAPI discussion. Before you get that far, there are a few session utility

methods to discuss.

�Other Session Methods
Let’s discuss a few methods that are useful for various purposes. They

mostly evolve around retrieving objects such as getting the underlying

connection object or starting an SQL statement. The utility methods are

summarized in Table 6-3 in alphabetical order. All returned objects are

relative to the mysqlx module.

Table 6-2.  Session Methods to Control Transactions

Method Argument Description

start_transaction Starts a transaction.

set_savepoint name Sets a savepoint. If the name is not specified,

a name will be generated using the uuid.

uuid1() function. The name of the savepoint

is returned.

release_savepoint name Releases (the savepoint equivalent to a

commit but without persisting the changes)

the savepoint with the name specified.

rollback_to name Rolls back the changes made since the

savepoint specified.

commit Commits (persists) all changes made since

the start_transaction() call.

rollback Dismisses all changes made since the start_

transaction() call. The use of a savepoint

does not change the result of a rollback.

Chapter 6 The X DevAPI

277

Some of these methods will be used in the examples that follow later.

One thing that is absent from this list of methods is how to proceed if you

want to use the NoSQL CRUD methods. This is done by obtaining a schema

object, which is the next thing to discuss, along with other schema methods.

�Schemas
Schemas (schemata) are containers that can include tables or document

collections. They are not used directly themselves and can in some way

be seen as a kind of namespace. In the X DevAPI, schema objects are only

needed when using the CRUD methods.

The methods to work with schemas are split among two classes.

Methods for creating, dropping, and retrieving a schema exists in the

mysqlx.Session class, whereas methods for using the schema or getting

information about the schema are in the mysqlx.crud.Schema class. This

section investigates these methods with the exception of methods related

to manipulating collections and tables, which are the topic of the next two

chapters. At the end of this section, there is an example that puts together

the methods and properties discussed.

Table 6-3.  Session Utility Methods

Method Argument Returns Object Description

get_connection connection.

Connection

Retrieves the underlying

connection.

is_open Returns True or False

depending on whether the

connection is open.

sql sql statement.

SqlStatement

Used for executing SQL queries.

See also the “SQL Statements”

section in Chapter 8.

Chapter 6 The X DevAPI

278

�Schema Manipulation
When an application needs a schema, the first thing to do is to either

create a new schema or retrieve an existing schema. Optionally, the

schema may be dropped at the end if it is no longer needed.

The methods for performing these tasks have in common that they all

exist in the mysqlx.Session class. The methods that will be discussed in

this section are summarized in Table 6-4.

Table 6-4.  Session Schema Methods

Method Argument Returns Object Description

create_schema name crud.Schema Creates a schema with the name

specified as the argument.

drop_schema name Drops the schema specified by

the name argument.

get_

default_schema

crud.Schema Returns the schema object for the

schema specified when creating

the session. If no default schema

exists, a ProgrammingError

exception occurs.

get_schema name crud.Schema Returns the requested schema

object. If no schema exists with

the specified name, a Schema

object is still returned.

get_schemas Returns a list with the schema

names the user has access to.

This method is introduced in

version 8.0.12.

Chapter 6 The X DevAPI

279

Figure 6-2.  Example of the workflow around the schema object

Figure 6-2 shows how the schema sits in the workflow between the

session and the object classes. The red (dark grey) boxes are examples of

the methods that can be used to get from one class (large boxes) to another.

Chapter 6 The X DevAPI

280

Figure 6-2 starts out creating a session using the mysqlx.get_

session() method, as discussed earlier in the chapter. The get_schema()

method is then used to get a schema object. Another option is to use

create_schema() for a new schema. At this point, there is a choice of

which kind of object to work with, and from then on statements are

defined. This is the subject of the next two chapters.

You will first look at creating a schema using the create_schema()

method, and then you will use the get_default_schema() and get_

schema() methods to get an object of the mysqlx.Schema class for an

existing schema, and finally you will use the drop_schema() method to

delete a schema.

�Creating a Schema

Schema manipulations are not commonly made from the application

code because schemas are long-living database objects. However, it may

still be useful to be able to create and drop a schema from time to time, for

example in a utility script.

The method to create a schema is create_schema(), which is part of

the session object. It just takes one argument: the name of the schema to

create. An example that creates the py_test_db schema is

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

schema = db.create_schema("py_test_db")

db.close()

The create_schema() method returns an object of the mysqlx.crud.

Schema class for the schema, which can be used to manipulate the schema

object, for example to create or find a collection, as discussed in the next

chapter.

Chapter 6 The X DevAPI

281

If you compare this with a CREATE SCHEMA SQL statement, there are

two noticeable differences. First, there is no option to set the default

character set for the schema. The default character set for a schema

created with create_schema() is always the one specified with the

character_set_server MySQL Server option. In the same way, the value

of the collation_server MySQL Server option is used to specify the

default schema collation.

The other difference is there is no equivalent to the IF NOT EXISTS

clause of CREATE SCHEMA. Likewise, drop_schema() does not have an

equivalent for IF EXISTS. Instead, create_schema() will succeed even if

the schema already exists. In fact, the underlying SQL statement executed

by the above example is

CREATE DATABASE IF NOT EXISTS `py_test_db`;

So, the IF NOT EXISTS clause will always be included. That does not

mean it is recommended just to use create_schema() to get an existing

schema. The CREATE DATABSE IF NOT EXISTS causes unnecessary

overhead and it makes the intention of the code less clear. Instead, use

one of the two dedicated methods to get a schema object for an existing

schema.

�Retrieving the Default Schema

The most common scenario in a real application is that the schema

already exists and the application needs to get a schema object either

to manipulate the schema or to go deeper down and get a collection or

a table to work with. There are two ways to get a schema object in the X

DevAPI: either to ask for the default schema specified when creating the

session or to ask for it by schema name.

Chapter 6 The X DevAPI

282

When the session is created, it is possible to specify the default schema

using the schema option. To get the schema object for the default schema,

you can use the get_default_schema() session method. As an example,

consider a session that is created with the py_test_db schema as the

default:

import mysqlx

from config import connect_args

db = mysqlx.get_session(

 schema="py_test_db",

 **connect_args

)

print("Retrieving default schema")

schema = db.get_default_schema()

print("Schema name: {0}"

 .format(schema.name)

)

db.close()

The connection is created with the schema='py_test_db' option

added, and the schema object is then retrieved using the get_default_

schema() method. Finally, the name of the schema is printed using the

name property of the schema and the session is closed. The output is

Retrieving default schema

Schema name: py_test_db

The get_default_schema() method is a great way to retrieve the

default schema, for example if the schema name is not known at the

time the application is written. However, in other cases, it is necessary to

retrieve a specific schema irrespective of the default schema. Let’s see how

this is done.

Chapter 6 The X DevAPI

283

�Retrieving a Schema by Name

Retrieving a specific schema by its name is similar to creating a new

schema. The difference is that the get_schema() method is used instead

of create_schema(). A single argument is required: name, which is a string

with the name of the schema. Consider the following example to get the

schema object for the py_test_db schema:

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

print("Retrieving non-default schema")

schema = db.get_schema("py_test_db")

print("Schema name: {0}"

 .format(schema.name)

)

db.close()

After the session has been created, the schema is retrieved and the

name is printed. This example is very similar to the previous one using

get_default_schema(), except the name of the schema is specified at the

time it is retrieved rather than at the time the session is created. The output

of the example is the similar to the previous:

Retrieving non-default schema

Schema name: py_test_db

The final step of manipulating the schema is to drop a schema.

Chapter 6 The X DevAPI

284

�Dropping a Schema

Dropping a schema is done in a very similar way to creating it. The session

includes the drop_schema() method, which takes the name of the schema

to be removed. An example that drops the py_test_db schema used in this

section is

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

db.drop_schema("py_test_db")

db.close()

The only difference here compared to the create_schema() example

earlier in the section is that the drop_schema() method is used instead.

Similar to creating a schema, no error occurs if the schema does not exist.

That is, the underlying SQL statement is

DROP DATABASE IF EXISTS `py_test_db`;

As with the session, the mysqlx.crud.Schema class also has a few utility

methods and two properties. They are the final things to consider for the

schema objects.

�Other Schema Methods and Properties
The mysqlx.Schema class includes a few methods as well as three

properties that can be useful for checking the state of the schema

object. They include information about the schema name, whether the

schema exists, etc. Additionally, there are methods to get the underlying

connection and session. All of this will be discussed here.

Chapter 6 The X DevAPI

285

The schema methods that will be included in the discussion are

summarized in Table 6-5. The objects returned are all relative to the

mysqlx module. None of the methods take any arguments.

The most commonly used of the methods are those to get the name

(get_name()) or to check whether the schema actually exists (exists_

in_database()). The name can also be obtained using the name property.

Similarly, the session can be retrieved using either the get_session()

method or in MySQL Connector/Python 8.0.12 and later the session

property. Additionally, the schema itself is stored in the schema property;

however, this is not usually used in applications.

Before moving on to discuss CRUD arguments, it is worth going

through an example that combines the features discussed in this section.

Table 6-5.  Schema Utility Methods

Method Returns Object Description

exists_

in_database

Returns True or False depending on

whether the schema exists.

get_connection connection.

Connection

Gets the underlying connection of the

session.

get_name Returns the name of the schema. This is the

same as using the name property.

get_schema crud.Schema This returns the schema itself. This is the

same as using the schema property. It is not

commonly used in applications.

get_session connection.

Session

Returns the session object for the schema.

This can be useful when a schema is

passed as an argument to a function. In

version 8.0.12 and later, the session can

also be retrieved from the session property.

Chapter 6 The X DevAPI

286

�Schema Example
Thus far, this has all been a bit abstract with minimal code examples.

So, let’s see an extended example that puts together several of the things

discussed and shows how the methods and properties are related.

Listing 6-1 uses a default schema and then uses the utility and schema

manipulation methods to investigate and take actions.

Listing 6-1.  Manipulating and Checking Schemas

import mysqlx

from config import connect_args

Create the session

db = mysqlx.get_session(

 schema="py_test_db",

 **connect_args

)

Retrieve the default schema

(py_test_db)

py_schema = db.get_default_schema()

print("Schema name: {0} - Exists? {1}"

 .format(

 py_schema.name,

 py_schema.exists_in_database()

)

)

If py_test_db does not exist,

create it

if (not py_schema.exists_in_database()):

 db.create_schema(py_schema.name)

Chapter 6 The X DevAPI

287

print("Schema name: {0} - Exists? {1}"

 .format(

 py_schema.name,

 py_schema.exists_in_database()

)

)

Get the world schema

w_schema = db.get_schema("world")

print("Schema name: {0} - Exists? {1}"

 .format(

 w_schema.name,

 w_schema.exists_in_database()

)

)

Get the session object of the world

schema and see if it is the same as

the db object.

w_session = w_schema.get_session()

print("db == w_session? {0}".format(

 db == w_session))

Drop the py_test_db schema.

db.drop_schema(py_schema.name)

print("Schema name: {0} - Exists? {1}"

 .format(

 py_schema.name,

 py_schema.exists_in_database()

)

)

db.close()

Chapter 6 The X DevAPI

288

This example starts out by creating a session where the default schema

is set to py_test_db and the get_default_schema() session method is

used to get a schema object for the py_test_db schema. The name property

and the exists_in_database() method of the schema object are used

to print the name and whether it exists. This is repeated throughout the

example whenever there are changes to the schema object.

If the py_test_db schema does not exist, then it is created. It is not

actually necessary to check whether the schema does not exists before

calling the create_schema() method, but it makes the intention clearer.

A second schema object is then retrieved, this time using the get_

schema() method to get an object for the world schema. The session of

the newly created w_schema object is retrieved using the get_session()

method, and it is confirmed that the db and w_session objects are identical

(as in their identities or memory addresses are identical).

Finally, the py_test_db schema is dropped again using the drop_

schema() method, leaving the database in the same state as before the

example (assuming the py_test_db schema did not exist at the start).

Assuming the py_test_db does not exist and the world database from the

previous chapters does exist, the output from running the example is

Schema name: py_test_db - Exists? False

Schema name: py_test_db - Exists? True

Schema name: world - Exists? True

db == w_session? True

Schema name: py_test_db - Exists? False

The output shows that py_test_db did not exist at the beginning,

but after the create_schema() call it does. The world schema exists

without being created because you loaded it manually in Chapter 1. When

comparing the two copies of the session, you can see they are identical.

Finally, after dropping the py_test_db schema, the exists_in_database()

method returns False again.

Chapter 6 The X DevAPI

289

To complete this chapter, you will look at three things that are common

for the methods discussed in the next two chapters: first, the arguments

used with CRUD methods.

�CRUD Arguments
The CRUD methods that will be discussed in Chapter 7 and Chapter 8 all

use a limited set of arguments. Rather than explaining again and again

what these arguments mean, let’s go through them now.

The CRUD methods use the following four argument types:

•	 documents

•	 document IDs

•	 conditions

•	 fields

The documents and document IDs are exclusive to the Document

Store, whereas fields and conditions are shared between the two. The

following discussion will look at each of the four argument types and go

into the use of them.

�Documents
The documents are the containers for the data that is stored in the

Document Store. Inside MySQL the documents are stored as JavaScript

Object Notation (JSON) documents. In Python, JSON can be represented

as a dictionary where JSON objects are dictionary keys with a value. JSON

arrays are created as a list in Python.

Chapter 6 The X DevAPI

290

Tip  If you want to learn more about JSON documents some
references are https://json.org/, https://en.wikipedia.
org/wiki/JSON, and https://dev.mysql.com/doc/refman/
en/json.html.

As an example, consider an employee named John Doe who is

currently a team lead. He has a manager and he previously held roles

as a developer (from 2010-2014) and senior developer (2014-2017). A

document that represents this is

document = {

 "_id" : "10001",

 "Name" : "John Doe",

 "Manager_id" : "10000",

 "Title" : "Team Lead",

 "Previous_roles": [

 {

 "Title" : "Developer",

 "Start_year" : "2010",

 "End_year" : "2014"

 },

 {

 "Title" : "Senior Developer",

 "Start_year" : "2014",

 "End_year" : "2017"

 },

]

}

The document starts with a dictionary and at the top level are all of

the scalar facts about the employee such as name, manager, etc. The

Chapter 6 The X DevAPI

https://json.org/
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://dev.mysql.com/doc/refman/en/json.html
https://dev.mysql.com/doc/refman/en/json.html

291

employee’s history with the company is represented as a list with a

dictionary for each of the roles the employee had previously.

The data inside the array does not need to have a structure. For

example, if the favorite fruits for a person are stored, they can be

represented as simple list with each fruit specified as a string.

One special field in the document is the _id element. This is the

document ID, which is the unique identifier (primary key) of the

document. Let’s take a look at the document ID.

�Document ID
The document ID is what MySQL uses to uniquely identify a document.

It is also what is used as the primary key in the underlying storage. All

documents must have a document ID. If it is not explicitly provided when

connected to MySQL Server 8.0, it will be auto-generated.

The document ID is an (up to) 32-byte long binary string. If the ID is

not provided, MySQL Server 8.0 will create one using three parts:

•	 A prefix: This is an unsigned integer in hexadecimal

encoding. It is 0 except if it is set by the database

administrator or MySQL Server is part of an InnoDB

Cluster group. The prefix is stored in the mysqlx_

document_id_unique_prefix MySQL Server option.

•	 A timestamp: The time when the MySQL Server

instance was last started in hexadecimal encoding.

•	 An auto-increment counter: This is an unsigned

integer in hexadecimal encoding. The initial value is

the value of the auto_increment_offset MySQL Server

option, and it then increments with auto_increment_

increment per ID generated.

Chapter 6 The X DevAPI

292

An example of an ID generated with mysqlx_document_id_unique_

prefix = 5678 is 162e5ae987780000000000000003. The prefix is the first

four hexadecimal digits (162e), followed by the timestamp; the 3 at the end

shows it is the third ID generated after MySQL Server was last restarted.

The IDs generated this way are designed so they can be globally

unique while also being optimized for the InnoDB storage engine and

be cheap to generate. InnoDB performs optimally when monotonically

incrementing primary keys are used. The auto-generated document IDs

are optimized for this.

On the surface, a natural choice could have been an UUID, but they

are not monotonically increasing. Even if you swap the high- and low-

order time parts of an UUID, you will have interleaved values if there are

application instances from multiple hosts connected. This is why the

three-part ID was developed.

The next argument type to discuss is a condition.

�Condition
A condition is used to filter which documents should be affected by an

operation and is used both for CRUD methods with the Document Store

and SQL tables. For read operations, only documents matching the filter are

returned; for update and delete operations, the condition specifies which

documents should be changed. The SQL equivalent of a condition is a WHERE

clause. With the exception of modify() for a collection in version 8.0.12

and later, the methods accepting a condition as an argument also provide a

where() method in their statement object that can be used instead.

The condition is fairly straightforward to write and uses the same

syntax as a MySQL SQL WHERE clause. For example, to include all

documents where the Office field is set to Sydney, the following condition

can be used:

Office = 'Sydney'

Chapter 6 The X DevAPI

293

One difference between SQL tables and documents is that where MySQL

by default treats WHERE clauses as case insensitive when filtering on string

data types, the Document Store is always case sensitive. The explanation of

this is that JSON documents are stored as binary objects because otherwise

it would not be possible to store arbitrary values in the documents.

Note  MySQL WHERE clauses and SQL tables by default perform
a case insensitive match, but the Document Store is always case
sensitive.

The final argument type is fields, which is used with CRUD methods to

specify what to return or modify.

�Fields
The fields argument, for example, specifies which fields to return in a

select statement or which fields to set values for in an insert statement. The

fields argument type is also used in some statement methods such as the

FindStatement.fields() method. In the SQL language, a field is the same

as a column.

Each field is represented as a string with the name of the field to

include or set the value for. For JSON documents, the field is a JSON path

to the location of the field within the JSON document. The document

itself is represented by $. The path is then constructed by specifying the

elements separated by a period (.). The leading $. is optional except when

creating indexes on collections.

It is possible to use * as a wildcard. Specifying .* means all

members of the object are matched. Alternatively, you can use the

syntax [prefix]**{suffix} where the prefix is optional and the suffix is

mandatory. This matches everything starting with the prefix and ending

with the suffix.

Chapter 6 The X DevAPI

294

For arrays, square brackets can be used to specify which elements to

include. [N] returns the Nth element (0-based) of the array. Using [*] is

the same as not specifying an index at all (i.e. the whole array is returned).

Tip  The rules for specifying a JSON path in MySQL are documented
in https://dev.mysql.com/doc/refman/en/json-path-
syntax.html.

The fields can be specified either as individual arguments, a tuple, or

a list. The following three initializations of a select statement do the same

thing:

stmt = city.select("Name", "District")

fields = ("Name", "District")

stmt = city.select(fields)

fields = ["Name", "District"]

stmt = city.select(fields)

This concludes the discussion about the arguments used with the

CRUD methods. Next, you will look at the middle part of a query: the

statement object.

�Statements
Most of the methods that will be discussed in the next two chapters involve

a statement object. This is used to refine the query and to execute it. The

methods that on the surface do not involve statement objects, such as the

count() methods, still use statements under the hood.

The statement object is where the bulk of the work with the query

is done. You can, for example, use the statement object to set the filter

Chapter 6 The X DevAPI

https://dev.mysql.com/doc/refman/en/json-path-syntax.html
https://dev.mysql.com/doc/refman/en/json-path-syntax.html

295

condition for a find() query or limit the number of documents in the

result. The statement classes that will be encountered in the next two

chapters are summarized in Table 6-6.

The class is class in the mysqlx.statement module that is returned

for the method. The scope specifies whether it is for collection-, table-, or

SQL-based queries. The CRUD column shows the corresponding CRUD

actions. Finally, the Method column lists the method used to create the

statement.

The specific methods of the statements will be covered when the

respective methods are discussed. There are, however, some features that

are shared among all or several of the statements. These common methods

are listed in Table 6-7.

Table 6-6.  Statement Classes

Class Scope CRUD Method

AddStatement Collection Create add()

FindStatement Collection Read find()

ModifyStatement Collection Update modify()

RemoveStatement Collection Delete remove()

InsertStatement Table Create insert()

SelectStatement Table Read select()

UpdateStatement Table Update update()

DeleteStatement Table Delete delete()

SqlStatement SQL sql()

Chapter 6 The X DevAPI

296

Table 6-7.  Methods to Get Information About a Statement

Method Statements Return Type Description

get_binding_map Read

Update

Delete

Dictionary Returns a dictionary with the

binding map.

get_bindings Read

Update

Delete

List Returns a list of the bindings.

Each binding is represented by

a dictionary with the name and

value.

get_grouping Read

Update

Delete

List Returns the expressions used

for grouping the result.

get_having Read

Update

Delete

protobuf.

Message

object

Returns an object for the

having filter.

get_limit_offset Read

Update

Delete

Integer Returns the offset for the limit.

get_limit_row_c

ount

Read

Update

Delete

Integer Returns the maximum number

of documents to return from

the query.

get_

projection_expr

Read

Update

Delete

List Returns a list with the

projection mappings of the

fields.

get_sort_expr Read

Update

Delete

List Returns a list with the

expressions used for sorting

the result.

(continued)

Chapter 6 The X DevAPI

297

Method Statements Return Type Description

get_sql Select String Returns the SQL statement

as it looks with the current

statement definition.

get_update_ops Update UpdateSpec

object

Returns a list with the update

operations.

get_values Create List Returns a list of the values that

the statement will create or has

created.

get_where_expr Read

Update

Delete

protobuf.

Message

object

Returns an object for the where

filter.

is_doc_based All Boolean Always returns True for a

collection-based statements

and False for table- and SQL-

based statements.

is_

lock_exclusive

Read Boolean Returns True if an exclusive

lock has been requested.

is_lock_shared Read Boolean Returns True if a shared lock

has been requested.

is_upsert Create Boolean Returns True if the statement

performs an upsert (that is,

replace if the record already

exists, otherwise add a new

document) operation. It always

returns False for insert

statements. Chapter 7 includes

an example of an upsert.

Table 6-7.  (continued)

Chapter 6 The X DevAPI

298

The Statements column shows which statement classes the method

applies to. In most cases, the statement classes will be specified by the

CRUD operations that have the method; for example, “Read” means the

two read methods (Collection.find() and Table.select()) have it in

the returned statement object. Two special values are “All,” which means

it applies to all of the statement types, and “Select,” which means it only

applies to SelectStatement objects (from Table.select()).

The get_having() and get_where_expr() methods return an object

of the mysqlx.protobuf.Message class. The get_update_ops() method

returns an object of the mysqlx.statement.UpdateSpec class. This book

will not go into any details of how to use this class.

Once a statement has been executed, a result object is returned. The

result object that is returned will depend on the statement class.

�Results
When a query is executed, a result object is returned. The exact nature of

the result object depends on the query and whether it is using a collection,

SQL table, or is an SQL statement. This section will discuss the various

result objects used with the X DevAPI.

For Document Store CRUD statements, an object of the result.Result

class is returned for queries not returning any data, such as when adding

documents. For queries returning data, an object of the result.DocResult

class is returned. The only exception is the count() method, which returns

the total number of documents in the collection directly as an integer.

For SQL tables, the pattern is similar, with the exception that the

result object for a select statement is of the result.RowResult class. SQL

statements always end up with a result.SqlResult object.

Table 6-8 summarizes which result object is returned for which

method. How to get to the result and examples of using the result will be

shown in the next two chapters.

Chapter 6 The X DevAPI

299

Table 6-8.  Mapping of Statement Types to Result Objects

Statement Type Collections Tables SQL

CRUD – Create Result Result

CRUD – Read DocResult RowResult

CRUD – Update Result Result

CRUD – Delete Result Result

SQL SqlResult

It is worth looking a bit closer at the four result classes. The following

discussion will look at the result classes from a high level. Examples of

using the results follow in the discussion of the CRUD and SQL methods.

�result.Result
The result.Result class is used for CRUD statements where there is

no result set and provides metadata about the query. For example, after

inserting documents into a collection, it will include information about the

number of documents inserted. It is used both for collection- and table-

based statements.

Table 6-9 includes an overview of some of the most important methods

of the result.Result class, including what they return. None of the

methods take any arguments.

Chapter 6 The X DevAPI

300

These methods are similar to or provide similar data as what is also

available for cursors in the mysql.connector module.

�result.DocResult and result.RowResult
The result.DocResult and result.RowResult classes are used for

Collection.find() and Table.select() methods, respectively. The

classes work similarly to using a cursor in the mysql.connector module to

work with a query result.

The most important methods of the result.DocResult and result.

RowResult classes are summarized in Table 6-10. None of the methods

take any arguments.

Table 6-9.  Important Methods of the result.Result Class

Method Returns

Data Type

Description

get_affected_

items_count

Integer Returns the number of documents or rows

affected by the query, such as how many

documents were inserted or updated.

get_autoincrement_

value

Integer Returns the last auto-increment ID

generated for a table insert statement.

This is mostly useful when inserting a

single row. It applies only to table objects.

get_generated_ids List of

strings

Returns all of the document IDs that have

been inserted by the query into the

collection. It applies only to collection objects.

get_warnings List of tuples Returns the warnings generated by the

query.

get_warnings_count Integer Returns the number of warnings that

occurred for the query.

Chapter 6 The X DevAPI

301

Table 6-10.  Important Methods of the result.DocResult and

result.RowResult Classes

Method Returns

Data Type

Description

fetch_all List of

documents

Returns all of the remaining documents in the

result set. Each of the elements in the list is

an instance of the mysqlx.dbdoc.DbDoc or

mysql.result.Row class as described after

the table.

fetch_one Object Returns the next document or row in the

result set or None if all documents/rows have

been retrieved. The object type returned is

discussed after the table.

get_columns List of objects Returns the column information from the

column property. It only exists for the result.

RowResult class. Added in version 8.0.12.

get_warnings List of tuples Returns the warnings generated by the query.

get_

warnings_count

Integer Returns the number of warnings that occurred

for the query.

In addition to the methods listed, there is the count property, which

is set to the total number of documents retrieved using the fetch_all()

method. The result.RowResult class furthermore includes the columns

property, which includes similar information as the column information

that was discussed in Chapters 3 and 4; in version 8.0.12 and later the

columns can also be retrieved with the get_columns() method. The object

type returned by fetch_one() and that makes up the list returned by

fetch_all() depends on the statement type:

Chapter 6 The X DevAPI

302

•	 Collection.find(): The object is of the mysqlx.

dbdoc.DbDoc class

•	 Table.select(): The object of the mysqlx.result.Row

class

In either case, the object behaves like a dictionary, so there are no

special considerations required when using the returned documents.

The last result class that is used is SqlResult, which is used for all SQL

statements.

�result.SqlResult
The MySQL Connector/Python implementation of the X DevAPI does

not distinguish between SELECT type queries and other queries when

determining which type of result object to return for an SQL statement. It is

always an object of the result.SqlResult class that is returned.

The most important methods of the SqlResult class have been

summarized in Table 6-11.

Table 6-11.  Important Methods of the result.SqlResult Class

Method Argument Returns

Data Type

Description

fetch_all List of rows Returns all of the remaining

rows in the result set. Each of

the rows is an instance of the

mysql.result.Row class.

fetch_one result.Row Returns the next row in the

result set or None if all rows

have been retrieved.

(continued)

Chapter 6 The X DevAPI

303

Method Argument Returns

Data Type

Description

get_

autoincrement_

value

Integer Returns the last auto-increment

ID generated, if the query was

an insert statement. This is

mostly useful when inserting a

single row.

get_columns List of objects Returns the column information

from the column property.

Added in version 8.0.12.

get_warnings List of tuples Returns the warnings generated

by the query.

get_

warnings_count

Integer Returns the number of warnings

that occurred for the query.

has_data Boolean Returns whether there is a

result set for the query. For

a SELECT query returning no

rows, the value is False. Added

in version 8.0.12.

index_of col_name Integer Returns the numeric index

of the column with the name

specified.

next_result Boolean Reinitializes the result object to

work with the next result set,

when the query generated more

than one result set. Returns

True if there was another result

to handle; otherwise False.

Table 6-11.  (continued)

Chapter 6 The X DevAPI

304

Additionally, the SqlResult class has two useful properties:

•	 columns: A list of the columns for the result

•	 count: The total number of items retrieved with the

fetch_all() method

This concludes the discussion of the result classes used with the

X DevAPI. They will appear again when you look at how to execute

statements in the next two chapters.

�Summary
This chapter provided an introduction to the MySQL X DevAPI. It started

out with a brief overview of the X Plugin, X Protocol, X DevAPI, and the

mysqlx module. For MySQL Connector/Python to be able to execute

queries using the X DevAPI, it is necessary for the X Plugin to be installed

in MySQL Sever. This is the case by default in MySQL Server 8.0.11 and

later.

The rest of the chapter discussed the features that are common

irrespectively of what part of the X DevAPI is used. A program starts by

creating a session that can be used to create, get, and drop schemas. The

schema objects are the next step when using CRUD methods. The final

part of the workflow is to get the result object, so the result of the query can

be checked or the result set used.

This chapter didn’t cover the big piece in the middle, after creating

the session and possibly obtaining the schema object. This is where the

fun part exists (defining and executing statements) and this is what the

next two chapters are all about. The next chapter looks at how to use the X

DevAPI with the MySQL Document Store.

Chapter 6 The X DevAPI

305© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9_7

CHAPTER 7

The MySQL
Document Store
As the name suggest, MySQL has traditionally been all about using SQL

statements to execute queries. This is not just reflected in the language

used to describe what the queries should do, but also in the underlying

way the data is structured. The MySQL Document Store turns this upside

down and provides not only a NoSQL database, but also uses JSON

documents, like other document stores use for storing data.

The Document Store does not replace the SQL database. The two are

meant to live side by side, so you can use whichever works the best for your

application and data. You can even mix the two, so some data is stored in

traditional SQL tables and other as documents.

This chapter will look into how you can use the MySQL Connector/

Python and the X DevAPI to work with the MySQL Document Store.

�The MySQL Document Store
The MySQL Document Store is part of the X Plugin that was introduced as

a beta feature in MySQL Server 5.7.12 and became GA in MySQL Server

8.0. The Document Store stores the data as a JSON document but uses the

InnoDB storage engine to provide features such as transactional support.

306

Note  The Document Store is a big topic on its own and it is beyond
the scope of this book to give a comprehensive walkthrough. It is
recommended that you read more about it if you intend to use the
Document Store. Two excellent references are Introducing the MySQL 8
Document Store by Charles Bell (https://www.apress.com/gp/
book/9781484227244) and the MySQL Reference Manual (https://
dev.mysql.com/doc/refman/en/document-store.html).

While the details of the X Protocol and the Document Store will be

left as an exercise for the reader, there are a couple of characteristics that

are good to consider before continuing. As the name suggests, the data

is stored in documents. This means that unlike in a normal relational

schema, all “columns” are stored within the same data object.

In the Document Store, it is said that the documents are stored in a

collection. The documents use the JSON format. If you think of a row in

a regular MySQL table, the column names are the names of each object

inside the JSON document and the column values are the values of the

object. Unlike for an SQL table, there is no requirement for each document

(“row”) to have the same fields or contain the same type of data. The

documents are said to be part of a collection (“table” in SQL terminology).

Caution  As with other document stores, the MySQL Document
Store is schemaless. This may seem like a very attractive feature
from a development point of view; indeed, it makes it much easier to
add new types of data to the application. However, it also removes
the chance for the database layer to validate the data and check for
constraints. So, if you choose a schemaless data model, it is all up to
the developer to ensure data consistency.

Chapter 7 The MySQL Document Store

https://www.apress.com/gp/book/9781484227244
https://www.apress.com/gp/book/9781484227244
https://dev.mysql.com/doc/refman/en/document-store.html
https://dev.mysql.com/doc/refman/en/document-store.html

307

All documents must have a unique key, which is always an object in

the JSON document with the key _id. Indexes in general are supported

by creating virtual columns on the table that holds the collection. The X

DevAPI includes support for creating indexes for collections, and this is

the preferred way to manipulate indexes. MySQL Shell is very useful if you

need to create or drop an index for a collection.

Now let’s take a look at the general workflow when working with

collections in the Document Store.

Tip  There are a number of example programs in this chapter. All
example programs that appear in a listing are available for download.
See the discussion of example programs in Chapter 1 for more
information about using the example programs. In general, changes
are rolled back to allow for reexecuting the examples with the same
result. An exception is when the sample data is loaded in Listing 7-3.

�Workflow
The workflow was hinted at in the previous chapter, but it is worth looking

at it in a bit more detail. Let’s focus on how to work with collections. A

collection is obtained through the schema, and statements are created from

the collection. Finally, statements return results. Of course, there is more to

it, which this section will go through. It will not be an exhaustive discussion;

rather, it’s meant to serve as an overview for the rest of the chapter.

The workflow starting with the schema and ending with the results

can be seen in Figure 7-1. The main focus is on the steps of obtaining

the collection and creating the statement. The details of refining and

executing the statements are left out but will be discussed later in

this chapter for each query method. The red (dark grey) boxes are the

methods that are called.

Chapter 7 The MySQL Document Store

308

Figure 7-1.  The workflow when using collections

Chapter 7 The MySQL Document Store

309

As you will see in the first half of the chapter, collections are obtained

from the schema using either get_collection(), get_collections(),

or create_collection(). The schema can also be used to drop a

collection. From the collection object, one possibility is to create and

drop indexes.

The other possibility, which will be discussed in the second half

of the chapter, is to execute queries. There are a number of methods to

execute queries. The main ones are add(), find(), modify(),

and remove(). They return a statement that in turn returns a result

once the statement is executed. However, there are also three

supplementary methods that combine all the steps and return a result

directly. Finally, there is the count() method, which is not included in

the figure.

With the workflow in place, you are ready to look at how collections

work.

�Collections
You saw in the previous chapter how a schema can be created from the

session. The schema, however, is just a container for what really matters:

the collections and tables. In a relational database, we talk about data

being stored in tables. The X DevAPI can also work with tables (they will

be discussed in the next chapter), but for the time being we will stick to

the Document Store. The equivalent of a table in the Document Store is a

collection.

Chapter 7 The MySQL Document Store

310

This section will go through how collections are created, maintained,

and removed when no longer needed. The flow will be similar to the

one used for schemas. The actual collection manipulation is done using

methods on the schema object, like the schema manipulation was done

using session methods. The collection object itself also includes methods

and a property in the same way as for the schema. The actual manipulation

of data will be postponed until the following sections. The first stop is to

create, get, and drop collections.

�Collection Manipulation
Creation and removal of collections are not the most common tasks of

an application, but they may be part of a deployment script or a utility,

a collection may temporarily be required by the application, or you may

be using MySQL Shell to optimize the performance of a collection. In all

cases, the application needs to get a collection object in order to be able

to execute queries against it. Creating, fetching, dropping, and creating

indexes for collections are the topics of this discussion.

Collections are manipulated in a very similar way as schemas. For

example, to create a schema, you use the session create_schema()

method. In the same way, you can create a collection using the schema

create_collection() method. This makes it easy to learn how to

manipulate collections. The schema collection methods that will be

discussed are listed in Table 7-1. The returned objects are relative to the

mysqlx module.

Chapter 7 The MySQL Document Store

311

Table 7-1.  Schema Collection Methods

Method Arguments Description

create_collection name Creates a collection with

the name specified as the

argument. The collection

is returned as a crud.

Collection object. If

the collection exists, a

ProgrammingError exception

occurs unless reuse is True,

in which case the existing

collection is returned instead.

reuse=False

drop_collection name Drops the collection with the

specified name. It is not required

that the collection exists.

get_collection name Returns the collection with the

specified name as a crud.

Collection object. If

check_existence = True, a

ProgrammingError exception

occurs if the collection does not

exist.

check_

existence=False

get_collections Returns a list of the collections

in the schema. Each element

in the list is an instance of the

mysqlx.crud.Collection

class.

Chapter 7 The MySQL Document Store

312

The table shows that there are only a few differences compared to

schemas: mainly that it is possible to affect whether the collection must

not exist when creating a collection and whether it must exist when

fetching it. Additionally, the two collection methods for creating and

dropping indexes in Table 7-2 will also be discussed. Neither of the

methods returns any value.

Table 7-2.  Collection Methods to Create and Drop Indexes

Method Arguments Description

create_index index_name Creates an index named according to the

value of index_name and defined by the

dictionary specified in fields_desc (“desc”

stands for description). The index name must

be unique for the collection.

Note: Calling create_index() only

defines the index and returns a statement.

CreateCollectionIndexStatement

object. To create the index, call the

execute() method on the returned object.

fields_desc

drop_index index_name Drops the index with the name specified in the

argument.

The dictionary used to define a new index has the following structure:

{

 "type" : INDEX|SPATIAL,

 "unique" : False,

 "fields" : [...]

}

Chapter 7 The MySQL Document Store

313

The type can be INDEX for a normal index (this is the default)

or SPATIAL for a geometry index. Full text indexes are currently not

supported. The unique element defines whether it is a unique index or not.

The default is False, which is also currently the only supported value (i.e.

unique indexes are not currently supported). The fields element contains

a list of the fields to include in the index. Each field is a dictionary with the

elements in Table 7-3.

Table 7-3.  The Dictionary Defining a Field in an Index

Element Default Value Type Description

Field String The definition of how to find the value

in the document. For example, to get

the top level object called Name, use

$.Name.

type String Similar to the data type for table

columns. Examples of supported types

are given after this table.

required False Boolean Whether the value must exist in the

document (“NOT NULL”). For the

GeoJSON type, this must be set to

True.

collation String The collation if the type is TEXT(…).

This can only be set if type is a TEXT

type. As of MySQL Server 8.0.11,

custom collations are not supported for

indexes, so the value is ignored.

(continued)

Chapter 7 The MySQL Document Store

314

The field and type elements are always required in the field definition

whereas the rest of the elements depend on the index created. Some

commonly used type values are

•	 INT: Specifies a signed integer. Variations include

TINYINT, SMALLINT, MEDIUMINT, and BIGINT. To get

an unsigned value, add UNSIGNED, for example INT

UNSIGNED.

•	 FLOAT: A four-byte floating-point number.

Table 7-3.  (continued)

Element Default Value Type Description

options 1 Integer The options argument for the

ST_GeomFromGeoJSON() function

when creating a spatial index. It is only

allowed for spatial indexes. Supported

values are 1, 2, 3, and 4. It defines

the behavior if the document contains

values of dimension higher than two.

srid 4326 Integer The srid (Spatial Reference

System Identifier) argument for the

ST_GeomFromGeoJSON() function

when creating a spatial index. It is only

allowed for spatial indexes. This must

be an unsigned 32-bit integer. The ST_

SPATIAL_REFERENCE_SYSTEMS table

in information_schema includes all

spatial reference systems supported by

MySQL. Two references for SRIDs are

https://epsg.io/ and http://

spatialreference.org/.

Chapter 7 The MySQL Document Store

https://epsg.io/
http://spatialreference.org/
http://spatialreference.org/

315

•	 DOUBLE: An eight-byte floating-point number.

•	 DECIMAL: A fixed-point (exact) number. A precision can

optionally be specified. The default precision is (10,0).

•	 DATE: A date.

•	 TIME: A time specification.

•	 TIMESTAMP: A timestamp consisting of a data and time

of day. The range is from January 1, 1970 one second

past midnight to January 19, 2038 at 03:14:07 UTC. The

number of decimals to add for the seconds can be

specified in parenthesis, for example TIMESTAMP(3) to

have millisecond precision.

•	 DATETIME: Similar to a timestamp but supporting the

range from January 1, 1000 at midnight to the end of

day on December 31, 9999. The number of decimals to

add for the seconds can be specified in parenthesis, for

example DATETIME(3) to have millisecond precision.

•	 YEAR: The year in four digits, for example 2018.

•	 BIT: Specifies a bit value.

•	 BLOB: For storing binary objects (i.e. bytes without a

character set). The maximum size of the value to index

must be specified, for example BLOB(50) to index the first

50 bytes of the value. There is no support for the variations

TINYBLOB, SMALLBLOB, MEDIUMBLOB, and LONGBLOB.

•	 TEXT: For storing strings. This requires the collation to

be specified. The maximum size of the value to index

must be specified, for example TEXT(50) to index the

first 50 characters of the value. There is no support for

the variations TINYTEXT, SMALLTEXT, MEDIUMTEXT, and

LONGTEXT.

Chapter 7 The MySQL Document Store

316

•	 GEOJSON: For spatial values using the GeoJSON format.

When this is used, required must be True and the

elements options and srid may be set. The GeoJSON

format is only supported for spatial indexes. GeoJSON

values are extracted from the document using the

ST_GeomFromGeoJSON() function (https://dev.mysql.

com/doc/refman/en/spatial-geojson-functions.

html#function_st-geomfromgeojson). The options

and srid values are the ones supported for that

function.

It is worth noticing that the type cannot itself be JSON; only scalar

types are supported.

Tip  If you want to dig more into the requirements for the index
specification, see the CreateCollectionIndexStatement
class in the mysqlx/ lib/mysqlx/statement.py file in MySQL
Connector/Python and the Admin_command_index::Index_
field::create() method in the plugin/x/src/admin_cmd_
index.cc file in the MySQL Server source code.

There will be an example of creating indexes later in this section. The

following discussions will go through the four methods in turn, starting

with the task of creating a collection.

�Creating a Collection

A collection is created using the create_collection() method, which

takes the name of the collection as the first argument or as the name

keyword argument. There is a second optional argument, reuse, which

defaults to False. If reuse is False, the collection cannot exist or a

ProgrammingError exception occurs. If reuse is True, the collection will

Chapter 7 The MySQL Document Store

https://dev.mysql.com/doc/refman/en/spatial-geojson-functions.html#function_st-geomfromgeojson
https://dev.mysql.com/doc/refman/en/spatial-geojson-functions.html#function_st-geomfromgeojson
https://dev.mysql.com/doc/refman/en/spatial-geojson-functions.html#function_st-geomfromgeojson

317

be created if it does not exist; otherwise, the existing collection will be

returned. In most cases, it is best to leave reuse at its default value, so it is

known if an existing collection of the same name exists. Otherwise, subtle

errors can easily occur.

The following example shows how to create the collection my_docs in

the py_test_db schema:

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

Reset the py_test_db schema

db.drop_schema("py_test_db")

schema = db.create_schema("py_test_db")

docs = schema.create_collection("my_docs")

db.close()

The example first drops the py_test_db schema to ensure you start

out with an empty schema. The create_collection() method returns a

collection object, so it is possible to go straight to work.

It can be interesting to show the table definition using the SHOW CREATE

TABLE statement in the mysql command-line client:

mysql> SHOW CREATE TABLE py_test_db.my_docs\G

*************************** 1. row ***************************

 Table: my_docs

Create Table: CREATE TABLE `my_docs` (

 `doc` json DEFAULT NULL,

 �_id` varbinary(32) GENERATED ALWAYS AS (json_unquote

(json_extract(`doc`,_utf8mb4'$._id'))) STORED NOT NULL,

 PRIMARY KEY (`_id`)

Chapter 7 The MySQL Document Store

318

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_

ai_ci

1 row in set (0.00 sec)

This is the standard table definition for collections in the Document

Store before any secondary indexes are created. The doc column is the

document (using the JSON datatype). The _id column is a generated

column that extracts the _id object from the doc column. The _id column

is used as the primary key.

This also shows how indexes are created on values in the document.

For each index, a generated column is created and used for the index.

While the primary key must be a stored generated column, for secondary

indexes a virtual column can be used. The advantage of a virtual column

is that it does not require any storage but is calculated when needed. The

index, however, still uses the same space as if the column was stored. You

will soon see how to create additional indexes for a collection.

Tip  To read more about generated columns, see https://dev.
mysql.com/doc/refman/en/create-table-generated-
columns.html and https://dev.mysql.com/doc/refman/
en/create-table-secondary-indexes.html in the MySQL
Server Reference Manual.

The create_collection() method always sets the character set to

utf8mb4; however, note that the JSON datatype is stored as a BLOB (i.e.

as binary data without a character set). The primary key is always an (up

to) 32-character long binary string stored in the _id object inside the

document and retrieved using a generated column to allow MySQL to

index it.

For existing collections, it is better to use get_collection() or get_

collections(). Let’s see how they work.

Chapter 7 The MySQL Document Store

https://dev.mysql.com/doc/refman/en/create-table-generated-columns.html
https://dev.mysql.com/doc/refman/en/create-table-generated-columns.html
https://dev.mysql.com/doc/refman/en/create-table-generated-columns.html
https://dev.mysql.com/doc/refman/en/create-table-secondary-indexes.html
https://dev.mysql.com/doc/refman/en/create-table-secondary-indexes.html

319

�Retrieving a Single Collection

The simplest case of retrieving a collection is just to get one based on the

name, which is done using the get_collection() method. This makes it

easy to control which collections are fetched and it makes it easy to assign

meaningful variable names to them.

As an example, consider retrieving the my_docs collection that was

created in the previous example. This can be done using the following

code:

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

schema = db.create_schema("py_test_db")

docs = schema.get_collection("my_docs")

print("Name of collection: {0}".format(

 docs.name))

db.close()

The only thing new in this example is the line where the docs variable

is assigned the collection retrieved using the get_collection() method.

The name of the collection is printed using the name property of the

collection object:

Name of collection: my_docs

If you need to retrieve many collections, it can be useful to fetch them

all in one call. This can be accomplished using get_collections(), as will

be shown next.

Chapter 7 The MySQL Document Store

320

�Retrieving All Collections in a Schema

In some cases, the application may use several collections. One solution

is to use get_collection() to retrieve the collections one by one. There is

another way, though.

The alternative is to use the get_collections() method, which

returns all collections as a list. This is one of the cases where the name

attribute of the collection becomes very useful because otherwise it

would not be possible to know which collection object contains which

documents.

The following code shows an example of retrieving the collections in

a schema with two collections. This example is similar to the previous two

but starts out by dropping the schema to start from scratch. The example

code is

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

Reinitialize the py_test_db schema

db.drop_schema("py_test_db")

schema = db.create_schema("py_test_db")

Create two collections

schema.create_collection("employees")

schema.create_collection("customers")

Get all collections and print their

names

collections = schema.get_collections()

for collection in collections:

 print("Collection name: {0}".format(

 collection.name))

Chapter 7 The MySQL Document Store

321

Create an index using the collection

name as the key and the collection

as the value

coll_dict = {

 collection.name: collection

 for collection in collections

}

db.close()

After the schema has been set up with the two collections

employees and customers, the two collections are retrieved using the

get_collections() method. The code then iterates over the collections

and prints the name of each of them. Additionally, a dictionary is created

using the name of the collection as the key. This makes it easier to

retrieve a specific collection later. For example, the employees collection

can be used by referencing coll_dict["employees"]. The output of the

program is

Collection name: customers

Collection name: employees

The next collection manipulation method is the drop_collection()

method, which is used to drop a collection that is no longer needed.

�Dropping a Collection

When the application no longer needs a collection, it is possible to drop it

using the drop_collection() method on the schema object. The method

takes the name of the collection to drop. If the collection does not exist,

drop_collection() will silently ignore it.

An example that removes all three collections that have been used in

this chapter is

Chapter 7 The MySQL Document Store

322

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

Reinitialize the py_test_db schema

schema = db.get_schema("py_test_db")

Drop all three collections that has

been used in this section

schema.drop_collection("my_docs")

schema.drop_collection("employees")

schema.drop_collection("customers")

For good measure also drop the schema

db.drop_schema("py_test_db")

db.close()

Since drop_schema() will drop all collections (and tables) in the

schema, the drop_collection() calls are redundant, but they show how it

is possible to drop collections one by one.

As with SQL queries, the performance of queries against a document

collection can be greatly improved by adding indexes. This is covered in

the next section.

�Creating Indexes

Indexes provide search trees of the values that are indexed with references

to the actual documents that contain these values. This makes it much

faster to look for a specific value compared to scanning all documents and

checking them one by one to see if they meet the requirement.

Chapter 7 The MySQL Document Store

323

Note  There are other types of indexes, such as full text indexes.
At the time of writing, only B-Tree (“normal”) and R-Tree (spatial)
indexes are supported for collections.

Creating indexes for a collection is a little more complex compared to

a regular SQL table because, in addition to the index definition itself, it is

necessary to define how the values are retrieved from the document and

what the values represent. This is the price to pay for using schemaless

data storage.

An index can be defined using the create_index() method of the

collection object. The full definition of the method was discussed earlier

and will not be repeated. Instead, let’s look at an example. Listing 7-1

shows an example of creating a collection and adding three indexes.

Listing 7-1.  Creating Indexes for a Collection

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

Reinitialize employees collection in

the py_test_db schema

schema = db.create_schema("py_test_db")

schema.drop_collection("employees")

employees = schema.create_collection(

 "employees")

Define the three fields that will be

used in the indexes.

Chapter 7 The MySQL Document Store

324

field_name = {

 "field" : "$.Name",

 "type" : "TEXT(60)",

 "required" : True,

 "collation" : "utf8mb4_0900_ai_ci",

}

field_office_location = {

 "field" : "$.Office.Location",

 "type" : "GEOJSON",

 "required" : True,

 "options" : 1,

 "srid" : 4326,

}

field_birthday = {

 "field" : "$.Birthday",

 "type" : "DATE",

 "required" : False,

}

Create a normal index on the

employee's name

index_name = "employee_name"

index_def = {

 "fields" : [

 field_name

],

 "type" : "INDEX",

}

index = employees.create_index(

 index_name, index_def)

index.execute()

Chapter 7 The MySQL Document Store

325

print(

 "Index created: {0}".format(index_name)

)

Create a spatial index for the

location the employee work at.

index_name = "employee_office_location"

index_def = {

 "fields" : [

 field_office_location

],

 "type" : "SPATIAL",

}

employees.create_index(

 index_name, index_def

).execute()

print(

 "Index created: {0}".format(index_name)

)

Create a normal index on the

employee's birthday and name

index_name = "employee_birthday_name"

index_def = {

 "fields" : [

 field_birthday,

 field_name

],

 "type" : "INDEX",

}

Chapter 7 The MySQL Document Store

326

index = employees.create_index(

 index_name, index_def)

index.execute()

print(

 "Index created: {0}".format(index_name)

)

db.close()

The example starts out reinitializing the collection. This ensures that

the starting point for adding indexes is the same even if the example is

executed multiple times. The three fields (columns in SQL language) that

will be used in the indexes are then defined. This allows you to reuse them

as needed. In this case, you require the employee to have the name and

office location set, but the birthday is optional.

The first index created is on the Name field. This is a normal index and

you specify that the utf8mb4_0900_ai_ci collation should be used. The

index width is set to 60 characters. Don’t worry; names longer than 60

characters are still supported. It’s just that the index only considers the first

60 characters. The object created by create_index() is stored in the index

variable and the actual creation of the index is performed with index.

execute().

The second index is a spatial index for the location of the office where

the employee works. The default values for options and srid are used. In

this case, the index execution is combined with defining the index.

The third index combines the employee’s birthday and the name.

This allows you to search on the birthday and name together. Combining

multiple fields into one index can be a powerful way to improve query

performance when more than one condition is applied.

Chapter 7 The MySQL Document Store

327

For each of the three indexes a confirmation message is printed after

the index has been created:

Index created: employee_name

Index created: employee_office_location

Index created: employee_birthday_name

Tip  If you had created the last index as (Name, Birthday) it
would have made the index just on the name redundant because
a search on the name alone could just as well have been resolved
using the combined index. This is because MySQL allows you
to search a left prefix of the index on its own for B-tree indexes.
Another consideration when combining multiple fields is that the best
performance is achieved when the most selective value is first.

It can be interesting to check the table definition that results from

executing the example. A slightly reformatted output is

mysql> SHOW CREATE TABLE py_test_db.employees\G

*************************** 1. row ***************************

 Table: employees

Create Table: CREATE TABLE `employees` (

 `doc` json DEFAULT NULL,

 `_id` varbinary(32) GENERATED ALWAYS AS

 (json_unquote(json_extract(`doc`,_utf8mb4'$._id')))

 STORED NOT NULL,

 `$ix_t60_r_4CB1E32CCBE4FE2585D3C8F059CB3A909FC536B7` text

 GENERATED ALWAYS AS

 (json_unquote(json_extract(`doc`,_utf8mb4'$.Name')))

 VIRTUAL NOT NULL,

Chapter 7 The MySQL Document Store

328

 `$ix_gj_r_E933A4A981E8AB89AF33A3DB0B1D45F8E76A6E38` geometry

 GENERATED ALWAYS AS

 (st_geomfromgeojson(

 json_extract(`doc`,_utf8mb4'$.Office.Location'),1,4326)

) STORED NOT NULL /*!80003 SRID 4326 */,

 `$ix_d_CAA21771B5BB2089412F3D426AF25DEE3EDD1B76` date

 GENERATED ALWAYS AS

 (json_unquote(json_extract(`doc`,_utf8mb4'$.Birthday')))

 VIRTUAL,

 PRIMARY KEY (`_id`),

 SPATIAL KEY `employee_office_location`

 (`$ix_gj_r_E933A4A981E8AB89AF33A3DB0B1D45F8E76A6E38`),

 KEY `employee_name`

 (`$ix_t60_r_4CB1E32CCBE4FE2585D3C8F059CB3A909FC536B7`(60)),

 KEY `employee_birthday_name`

 (`$ix_d_CAA21771B5BB2089412F3D426AF25DEE3EDD1B76`,

 `$ix_t60_r_4CB1E32CCBE4FE2585D3C8F059CB3A909FC536B7`(60))

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

1 row in set (0.00 sec)

Granted, the first things that stand out are the hard-to-read names

for the generated columns. They are auto-generated to be unique, but

they can easily be used by the X DevAPI. The names depend on the field

definition, so they will stay the same for the same extracted field. That

way, the same field is not added multiple times when it is used in several

indexes. In this example, the employee name is used in two indexes, but it

is only defined once how to extract it.

The other thing is that for these new secondary indexes the generated

columns have the VIRTUAL clause. This means the values are not actually

stored in the table, but just fetched as required. This saves disk space.

Chapter 7 The MySQL Document Store

329

The compliment of create_index() is drop_index(), which is

discussed next.

�Dropping Indexes

It is much simpler to drop an index than to create it. All that is required is

to invoke the drop_index() method of the collection with the name of the

index to drop. MySQL will then take care of removing the index, and if the

generated columns in the index are no longer needed for other indexes,

they will be removed as well.

Listing 7-2 shows an example of dropping the employee_name index,

which was one of the indexes created in the previous example.

Listing 7-2.  Dropping an Index

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

Reinitialize employees collection in

the py_test_db schema

schema = db.get_schema("py_test_db")

employees = schema.get_collection(

 "employees")

Drop the index on the Name field.

employees.drop_index("employee_name")

print("Index employee_name has been dropped")

db.close()

Chapter 7 The MySQL Document Store

330

In this case, the index is dropped just by invoking the drop_index()

method. The output of the script is

Index employee_name has been dropped

It is left as an exercise for the reader to compare the output of SHOW

CREATE TABLE py_test_db.employees\G before and after dropping the

index to confirm that the Name field is still extracted. A second exercise is

to modify the example to drop the employee_birthday_name index as well

and see that the Name and Birthday generated columns get removed.

This completes the walkthrough of the methods available to

manipulate collections (not considering the documents stored in the

collection). There are a few additional methods to consider before moving

on query execution.

�Other Collection Methods and Properties
The mysqlx.Collection class includes a few methods and three properties

that can be useful when working with collection objects. They are very

similar to those already discussed for schemas, so this will only include a

brief introduction.

The methods that can return information about the collection are

listed in Table 7-4. The returned objects are relative to the mysqlx module.

None of the methods take any arguments.

Chapter 7 The MySQL Document Store

331

As you can see from the description of the methods returning the name

and schema, there are also three properties. The name property is the name

of the collection, the schema property holds the schema object, and the

session property (available in 8.0.12 and later) holds the session object.

As the collection utility methods and properties are essentially the

same as for the schema, let’s move on to execute some queries.

�Queries – CRUD
The fun part of working with data is executing queries. Now that you

know how to work with sessions, schemas, and collections, you can start

using the session to use the NoSQL part of the API. The implementation

is built around the CRUD (create, read, update, delete) principle, and the

following four sections will go through each of the four actions in turn.

Before getting in deep, it is worth taking a high-level look at the CRUD

methods. They are collected in Table 7-5. The returned objects are relative

to the myqslx module.

Table 7-4.  Collection Utility Methods

Method Returns Object Description

exists_

in_database

Returns True or False depending on

whether the collection exists.

get_connection connection.

Connection

Returns the underlying connection object.

get_name Returns the name of the collection. This

is the same as the name property.

get_schema crud.Schema Returns the object for the schema where

the collection exists. This is the same as

the schema property.

get_session connection.

Session

Returns the object for the session. This is

the same as the session property. Added

in version 8.0.12.

Chapter 7 The MySQL Document Store

332

Table 7-5.  CRUD Methods for Collection Objects

Method Arguments Returns Object Description

add List of

documents

Statement.

AddStatement

Prepares to add the

documents in the list of

dictionaries. Each dictionary

is a document.

add_or_

replace_one

doc_id Result.Result Upserts the document, so

if the document ID exists,

it replaces the existing

document; otherwise, it adds

it as a new document.

doc

count Returns the number of

documents in the collection

as an integer.

find condition Statement.

FindStatement

Prepares a find statement

that returns the document

matching the condition.

modify condition Statement.

ModifyStatement

Prepares a modify statement

that updates the documents

matching the condition. The

condition is mandatory in

version 8.0.12 and later.

remove condition Statement.

RemoveStatement

Prepares a remove statement

that deletes the documents

matching the condition.

remove_one doc_id result.Result Removes the document with

the specified document ID.

replace_one doc_id result.Result Updates the document with

the specified document ID

with the new document.
doc

Chapter 7 The MySQL Document Store

333

As you can see from the table, the CRUD methods use a few common

arguments:

•	 Document: This is a dictionary describing the JSON

document.

•	 Document ID: This is the unique key of the document.

•	 Condition: This is the equivalent of a WHERE clause in

SQL, which defines the filter to use when searching for

documents.

Note  There is, of course, more to it than what the list of three
arguments types suggest. For example, it is possible to sort the result
of a read request. You will learn how to do that shortly.

For some of the methods, a result object is returned directly. It will

include information about the performed action. The rest of the methods,

with the exception of count(), return an object of a class in the statement

module. They require you to call the execute() method of the returned

statement object before the action is performed, and execute() then

returns a result object.

It is time to stop talking and dive in head first and create some

documents. This means you need to look at the create part of CRUD.

�CRUD: Create
The first step of working with the data stored in a database is to create

the data. Until data exists in the collection, there is nothing to query or

modify. So, your first task is to populate a collection with some data. The

data inserted in this section is the basis for the rest of the Document Store

CRUD discussion.

Chapter 7 The MySQL Document Store

334

There are two methods that can add data to a collection: add() and

add_or_replace_one(). This section will discuss the add() method whereas

add_or_replace_one() will be postponed to the “CRUD: Update” section

because it can work for both adding new data and updating existing data.

The add() method takes zero or more documents as the arguments.

Each document is defined using a Python dictionary, which naturally

forms a JSON document. When multiple documents are inserted in the

same invocation of add(), they can be provided as a list or tuple, or by

specifying multiple arguments.

The add() method returns a mysqlx.statement.AddStatement object.

The two most important methods for this are add() and execute(). These

methods are summarized in Table 7-6.

Table 7-6.  Methods to Work with an Add Statement

Method Arguments Description

add *values Adds the document(s) specified in the values to the add

statement.

execute Executes the add statement by submitting the values to

MySQL Server.

The AddStatement.add() method can be used to add more documents

to the statement, and the AddStatement.execute() sends the documents

to the Document Store. All added documents are sent as one statement.

The data that will be inserted is available in the cities.py file included

in the source code for this book. The file includes data for 15 Australian

cities in the cities dictionary. The start of the file is

cities = {

 "Sydney": {

 "Name" : "Sydney",

 "Country_capital": False,

Chapter 7 The MySQL Document Store

335

 "State_capital" : True,

 "Geography": {

 "Country" : "Australia",

 "State" : "New South Wales",

 "Area" : 12367.7,

 �"Location": �"{'Type': 'Point', 'Coordinates': [151.2094,

-33.8650]}",

 "Climate" : {

 "Classification" : "humid subtropical",

 "Mean_max_temperature": 22.5,

 "Mean_min_temperature": 14.5,

 "Annual_rainfaill" : 1222.7

 },

 },

 "Demographics": {

 "Population": 5029768,

 "Median Age": 36

 },

 "Suburbs": [

 "Central Business District",

 "Parramatta",

 "Bankstown",

 "Sutherland",

 "Chatswood"

]

 },

...

Listing 7-3 shows an example where the add() method is used three

times to insert cities into a newly created collection. The first example of

using add() inserts a single city, the second time two cities are inserted in

one add() call, and the third time several cities are inserted using multiple

add() calls to create one large statement.

Chapter 7 The MySQL Document Store

336

Listing 7-3.  Adding Data to a Collection

import mysqlx

from config import connect_args

from cities import cities

db = mysqlx.get_session(**connect_args)

schema = db.create_schema("py_test_db")

Reinitalize the city collection

schema.drop_collection("city")

city_col = schema.create_collection("city")

Insert a single city

sydney = cities.pop("Sydney")

db.start_transaction()

result = city_col.add(sydney).execute()

db.commit()

items = result.get_affected_items_count()

print("1: Number of docs added: {0}"

 .format(items))

ids = result.get_generated_ids()

print("1: Doc IDs added: {0}".format(ids))

print("")

Insert two cities in one call

melbourne = cities.pop("Melbourne")

brisbane = cities.pop("Brisbane")

data = (melbourne, brisbane)

db.start_transaction()

result = city_col.add(data).execute()

db.commit()

items = result.get_affected_items_count()

Chapter 7 The MySQL Document Store

337

print("2: Number of docs added: {0}"

 .format(items))

ids = result.get_generated_ids()

print("2: Doc IDs added: {0}".format(ids))

print("")

Insert the rest of the cities by

adding them to the statement object

one by one.

db.start_transaction()

statement = city_col.add()

for city_name in cities:

 statement.add(cities[city_name])

result = statement.execute()

db.commit()

items = result.get_affected_items_count()

print("3: Number of docs added: {0}"

 .format(items))

print("")

db.close()

The example starts out by ensuring the city collection in the py_test_

db schema does not exist and then creates it. Then it adds the cities that

were imported from the cities.py file.

The first city to be inserted is Sydney. This is done by inserting the

city on its own. The command is chained to perform all of the work in

one line of code, and the result is a result.Result object. Notice how the

invocation is wrapped by db.start_transaction() and db.commit() call.

Since the value of autocommit is inherited from the MySQL Server global

setting, it is safest to explicitly add transactions.

Chapter 7 The MySQL Document Store

338

Note  As always, you should check whether any warnings or errors
occurred before committing the data. To keep the example easier to
read, the handling of warnings and errors has been omitted. Chapter 9
will go into more detail on how to check for warnings and errors.

Next, the cities of Melbourne and Brisbane are inserted. This is

done by creating a tuple with the documents, and the tuple is passed to

the add() method. The documents could also have been added as two

arguments, for example:

result = city_col.add(

 melbourne, brisbane

).execute()

Finally, the remaining cities are added. This is done by first creating the

AddStatement object, then iterating over the remaining cities, and adding

them one by one. Finally, the AddStatement.execute() method is called to

insert all of the cities in one database call.

The output of the executing the example is similar to the following

sample:

1: Number of docs added: 1

1: Doc IDs added: ['00005af3e4f7000000000000008f']

2: Number of docs added: 2

2: Doc IDs added: ['00005af3e4f70000000000000090',

'00005af3e4f70000000000000091']

3: Number of docs added: 12

The actual document IDs will be different because they are auto-

generated. The city collection now has 15 Australian cities to query, so it

is time to look at read operations.

Chapter 7 The MySQL Document Store

339

�CRUD: Read
For most databases, the majority of the queries are read queries (queries that

do not modify any of the data). These queries are the topic of this section.

There are two methods that read from a collection without changing

any of the data in the Document Store: count() and find(). The count()

method is the simplest because it just returns the number of documents in

the collection as an integer. The find() method is more complex because

it supports a condition (WHERE clause in SQL language), sorting, returning

the documents, and more.

The find() method returns a mysqlx.statement.FindStatement

object. This is the main building block where the query can be modified by

invoking FindStatement methods. Each of these modifier methods returns

the FindStatement object itself, so it can be further modified. In the end

there is a chain of calls defining the query, and the execute() method can

be used to submit the query. Table 7-7 shows the FindStatement methods

available to modify the statement. The methods are ordered in the order

they are typically invoked.

Table 7-7.  Methods to Modify a Find Statement

Method Arguments Description

fields *fields Defines the fields to include in the result. Each

field can be an expression using the same

language as for SQL.

group_by *fields Describes which fields to group by for queries

involving aggregate functions.

having condition Describes what to filter the result by after the

query has otherwise been resolved (except for

sorting). This makes it useful for filtering by the

value of aggregate functions.

(continued)

Chapter 7 The MySQL Document Store

340

Table 7-7.  (continued)

Method Arguments Description

sort *sort_

clauses

Describes what to sort the result by.

limit row_count

offset=0

The first argument sets the maximum number of

documents to return. The second optional argument

defines the offset. The default offset is 0.

Note: The offset argument has been deprecated

in version 8.0.12 and will be removed in a later

release. Instead the offset() method has

been introduced to set the offset.

offset offset Set the offset of the rows to return. Added in

version 8.0.12.

lock_exclusive Makes the statement take an exclusive lock.

Only one statement can have an exclusive lock

at a time. Use if the document(s) will be updated

later in the same transaction.

lock_shared Makes the statement take a shared lock. This

prevents other statements from modifying the

matching documents, but it is possible for them

to read the documents.

bind *args The first argument provides the name of the

parameter to replace. The second argument

provides the value. Call bind() once for each

parameter.

execute Executes the find statement.

Chapter 7 The MySQL Document Store

341

The order the query modifying methods are called is not of importance,

but it is recommended to stick to the same order throughout the program

to make it easier at a glance to determine how the query is modified.

Listing 7-4 shows an example where first the total number of cities in

the city collection is determined. Then it shows the states with the most

cities in the collection. The result is ordered by the number of cities in the

state and limited to at most three states.

Listing 7-4.  Querying the city Collection

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

schema = db.create_schema("py_test_db")

city_col = schema.get_collection("city")

Use the count() method to get the

total number of cities.

num_cities = city_col.count()

print("Total number of cities: {0}"

 .format(num_cities))

print("")

statement = city_col.find(

 "Geography.Country = :country") \

 .fields("Geography.State AS State",

 "COUNT(*) AS NumCities") \

 .group_by("Geography.State") \

 .having("COUNT(*) > 1") \

 .sort("COUNT(*) DESC") \

 .limit(3)

Chapter 7 The MySQL Document Store

342

result = statement.bind(

 "country", "Australia"

).execute()

states = result.fetch_all()

print("Num states in result: {0}"

 .format(result.count))

print("")

print("{0:15s} {1:8s}"

 .format("State", "# Cities"))

print("-"*26)

for state in states:

 print("{State:15s} {NumCities:1d}"

 .format(**state))

 db.close()

Other than the new syntax, the example is straightforward. The count()

method of the collection is used to get the total number of rows. Then the query

is defined. You ask for the query to be filtered by the Geography.Country

element with the value to filter by occupied by a placeholder (:country) that

is later set to the value of Australia later in the bind() method. The query will

return the Geography.State element to be returned and renamed as State,

and the number of cities for each state is returned as NumCities.

Since the fields include an aggregate function (COUNT()) as well as a

non-aggregate field (Geography.State), it is required to also define what

to group by. This is done by calling the group_by() method. Additionally

in this case, you choose to filter so only states with more than one city are

included; this is done using the having() method.

Chapter 7 The MySQL Document Store

343

Finally, you tell the Document Store that you want to sort the result

by the number of cities in the state in descending order, and you at most

want three states returned (the three with the most cities). The statement

is saved at this point in the statement variable. In this case, that is not

important, but by specifying the bind parameters at the execution time, it

is possible to reuse the query.

Tip  If the statement object is stored in a variable, it is possible to
execute the same query several times. By saving the bind() call to
the execution time, it is possible to reuse the same query template
with different values. An example of reusing a find query follows
when modifying documents.

Once the query has been executed, the rows are fetched using

fetch_all(). This also sets the count property of the result to the number

of documents in the result. The output of the program is

Total number of cities: 15

Num states in result: 3

State # Cities

Queensland 5

New South Wales 3

Victoria 2

The location of all the cities in the city collection is known. As a

second example, let’s look at how geographical data is used. Listing 7-5

shows an example of finding all cities, calculating the distance to Sydney,

and ordering by how far they are away, starting with the closest city.

Sydney itself will be skipped because it does not provide any information.

Chapter 7 The MySQL Document Store

344

Listing 7-5.  Querying Geographical Data

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

schema = db.get_schema("py_test_db")

city_col = schema.get_collection("city")

Get the location of Sydney

statement = city_col.find("Name = :city")

statement.fields(

 "Geography.Location AS Location")

statement.bind("city", "Sydney")

result = statement.execute()

sydney = result.fetch_one()

Define the formula for converting

the location in GeoJSON format to

the binary format used in MySQL

to_geom = "ST_GeomFromGeoJSON({0})"

sydney_geom = to_geom.format(

 sydney["Location"])

other_geom = to_geom.format(

 "Geography.Location")

distance = "ST_Distance({0}, {1})".format(

 sydney_geom, other_geom)

statement = city_col.find("Name != 'Sydney'")

statement.fields(

 "Name",

Chapter 7 The MySQL Document Store

345

 "Geography.State AS State",

 distance + " AS Distance"

)

statement.sort(distance)

result = statement.execute()

cities = result.fetch_all()

print("{0:14s} {1:28s} {2:8s}"

 .format("City", "State", "Distance"))

print("-"*56)

for city in cities:

 # Convert the distance to kilometers

 distance = city["Distance"]/1000

 print("{Name:14s} {State:28s}"

 .format(**city)

 + " {0:4d}"

 .format(int(distance))

)

db.close()

The basics of this example are the same as in the previous one. The

interesting part is the use of two MySQL geometry functions. The

ST_GeomFromGeoJSON() function is used to convert the GeoJSON

coordinates to the binary geometry format used inside MySQL. The

ST_Distance() function then calculates the distance between two points,

taking the spatial reference system into account; here the default is used,

which is the Earth. The output of the program is shown in Listing 7-6.

Chapter 7 The MySQL Document Store

346

Listing 7-6.  The Output of the Example Program in Listing 7-5

City State Distance

--

Wollongong New South Wales 69

Newcastle New South Wales 116

Canberra Australian Capital Territory 249

Gold Coast Queensland 681

Melbourne Victoria 714

Brisbane Queensland 730

Geelong Victoria 779

Sunshine Coast Queensland 819

Hobart Tasmania 1056

Adelaide South Australia 1164

Townsville Queensland 1676

Cairns Queensland 1960

Darwin Northern Territory 3145

Perth Western Australia 3297

Adding and retrieving data covers a lot of database use cases, but what

do you do if the data is no longer current? Let’s look at how to update the

data in the database.

�CRUD: Update
In CRUD, the update part is to modify existing data, so the value of one

or more fields is changed or fields are added or removed. An example is

to update the population of a city when it changes because of migration,

child births, and deaths. This section will look into the methods available

for doing just that.

Chapter 7 The MySQL Document Store

347

There are three methods available for modifying data in MySQL

Connector/Python X DevAPI for a Document Store:

•	 add_or_replace_one(): Used to upsert a document.

For example, if there is a document with the same

document ID, it will be replaced; otherwise, a new

document will be added.

•	 modify(): Updates an existing document. Documents are

found in the same way as read queries filter the documents.

•	 replace_one(): Replaces the document with the given

document ID.

Since add_or_replace_one() and replace_one() methods are very

similar, they will be discussed together, followed by a discussion of the

modify() method.

�Replacing Documents
The difference between add_or_replace_one() and replace_one() is

what happens if there is no document with the specified ID. The add_or_

replace_one() method adds a new document whereas the replace_one()

method ends up not doing anything.

Listing 7-7 shows an example where the document for Geelong is replaced

with a document where the population is changed to 193000. Afterwards it

attempts to replace a document with a non-existing document ID.

Listing 7-7.  Upserting a Document and Attempting to Replace One

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

schema = db.get_schema("py_test_db")

city_col = schema.get_collection("city")

Chapter 7 The MySQL Document Store

348

Get the current document for Geelong

db.start_transaction()

result = city_col.find("Name = :city_name") \

 .bind("city_name", "Geelong") \

 .lock_exclusive() \

 .execute()

geelong = result.fetch_one()

Get the Geelong document ID and

update the population

geeling_id = geelong["_id"]

geelong["Demographics"]["Population"] = 193000

Upsert the document

result = city_col.add_or_replace_one(

 geeling_id, geelong)

print("Number of affected docs: {0}"

 .format(result.get_affected_items_count()))

Attempt to use the same document

to change a non-existing ID

result = city_col.replace_one(

 "No such ID", geelong)

print("Number of affected docs: {0}"

 .format(result.get_affected_items_count()))

Leave the data in the same state as

before the changes

db.rollback()

db.close()

Chapter 7 The MySQL Document Store

349

The example starts out by retrieving the existing document for

Geelong. It is used to get the Document ID and as the base of the new

document. This is also an example of taking an exclusive lock, so no one

else can access the document until the transaction is complete. The new

document is upserted into the Document Store using the add_or_replace_

one() method. After that, the same document is used with the replace_

one() method, but for a document ID that does not exist. For each of the

two uses, the number of affected documents is printed. The output is

Number of affected docs: 2

Number of affected docs: 0

The result of the add_or_replace_one() call shows that two

documents were affected. How? It’s because of the way upserts are

implemented. First, an insert of the new document is attempted. In case

of a duplicate document, the existing one is updated (an INSERT ... ON

DUPLICATE KEY UPDATE ... statement in SQL). Had the document not

existed, only one document would have been affected. On the other hand,

replace_one() does not affect any documents; it neither inserted a new

document nor updated an existing one.

Note  Do not think of replace_one() as an SQL REPLACE
statement. The equivalent SQL statement for replace_one() is
UPDATE with a WHERE clause on the primary key.

If you want to just update the fields that have changed rather than the

whole document, you need to use the modify() method.

Chapter 7 The MySQL Document Store

350

�Modifying Documents
The two replace methods that you saw in the previous discussion worked

on replacing the whole document. For the relatively small documents in

the example collection, this is not a big issue, but for larger documents, it

quickly becomes inefficient. Additionally, the two replace methods can

only modify one document at a time, making it cumbersome to update all

cities in a country or all documents in a collection.

This is where the modify() method comes into play. It supports

specifying a condition like for read queries to specify which documents to

change, and the change can be based on the existing values. The modify()

method returns a mysqlx.statement.ModifyStatement object, which, like

the statement object returned by find(), can be used to define the overall

modify statement. Table 7-8 includes the most important methods.

Table 7-8.  Methods to Modify a Modify Query

Method Arguments Description

sort *sort_

clauses

Describes what to sort the documents by.

limit row_count The argument sets the maximum number of

documents to modify.

array_append doc_path Appends the value to an existing array element

in the document at the point specified by

doc_path.value

array_insert field Inserts the value into the array specified by

field.
value

(continued)

Chapter 7 The MySQL Document Store

351

Several of the methods are the same as for find(), which is not

surprising since the first task of a modify statement is to locate the

documents to update. Unlike for find statements, it is a requirement that

there is a condition defined. Otherwise, a ProgrammingErrror exception

occurs in 8.0.11:

mysqlx.errors.ProgrammingError: No condition was found for modify

In MySQL Connector/Python 8.0.12 and later, the condition must be

specified when creating the modify statement. Otherwise a TypeError

exception occurs:

TypeError: modify() missing 1 required positional argument:

'condition'

Table 7-8.  (continued)

Method Arguments Description

set doc_path If the document path already exists, the value is

updated; otherwise, the field is added with the

given value.value

patch Doc Adds or replaces the fields included in the document.

It also supports removing existing fields.

unset *doc_paths Removes the matching document paths from the

documents.

bind *args The first argument provides the name of the

parameter to replace. The second argument provides

the value. Call bind() once for each parameter.

execute Executes the modify statement.

Chapter 7 The MySQL Document Store

352

This is a safety feature to prevent accidentally updating all documents

due to a coding error. If you really need to modify all documents, add a

condition that always evaluates to True, for example:

collectoin.modify("True")

Note  A modify statement must have a condition specifying which
documents to update. If you really want to update all documents, use
True as a condition; this also makes your intention clear, which is
helpful when you get back to the code at a later date.

There are also several methods to change the content of the matching

documents. Let’s look at some examples using several of these methods.

�set() and unset()

The simplest methods for modifying the documents are the set() and

unset() methods. The set() and unset() methods are very similar.

The set() method will change the value of the specified field. If the field

does not exists, it will be added. The new value can be a calculation that

includes the old value. The unset() method, on the other hand, removes a

field if it exists.

Let’s assume there has been a census and the data for state of Victoria

shows a 10% population increase. Listing 7-8 shows how to make that

change using the modify() method.

Listing 7-8.  Modifying Several Documents at a Time with set()

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

schema = db.get_schema("py_test_db")

city_col = schema.get_collection("city")

Chapter 7 The MySQL Document Store

353

db.start_transaction()

Get the current population

statement = city_col.find(

 "Geography.State = :state")

statement.fields("Name AS CityName",

 "Demographics.Population AS Population")

statement.sort("Name")

statement.bind("state", "Victoria")

before = statement.execute()

Update the population for cities

in the state of Victoria to increase

the population with 10%

result = city_col.modify(

 "Geography.State = :state") \

 .set("Demographics.Population",

 "FLOOR(Demographics.Population * 1.10)") \

 .bind("state", "Victoria") \

 .execute()

print("Number of affected docs: {0}"

 .format(result.get_affected_items_count()))

print("")

after = statement.execute()

before_cities = before.fetch_all()

after_cities = after.fetch_all()

print("{0:10s} {1:^17s}"

 .format("City", "Population"))

print("{0:10s} {1:7s} {2:7s}"

 .format("", "Before", "After"))

print("-"*30)

Chapter 7 The MySQL Document Store

354

for before_city, after_city \

 in zip(before_cities, after_cities):

 print("{0:10s} {1:7d} {2:7d}"

 .format(

 before_city["CityName"],

 int(before_city["Population"]),

 int(after_city["Population"])

)

)

Leave the data in the same state as

before the changes

db.rollback()

db.close()

Before modifying the cities in Victoria, a find statement is defined to

get the city names and their population. This is used to get the population

both before and after the modify statement, so it is possible to confirm the

result is as expected.

The most interesting part of the example is the invocation of modify()

and the subsequent method calls to define the update. The set()

method is used to define the update itself and the new population is

calculated based on the old population. Notice how the FLOOR() function

is wrapped around the calculation determining the new population.

This is to avoid fractional people. Even if you allowed fractions, it is

necessary with parenthesis around the new value to signify that the value

of Demographics.Population should be used and not the literal string

“Demographics.Population”.

After the execution of the modify statement, the populations are read

again, and the before and after populations for the cities are printed.

Chapter 7 The MySQL Document Store

355

Finally, the transaction is rolled back so it is possible to execute the

program several times and get the same output, which is the following:

Number of affected docs: 2

City Population

 Before After

Geelong 192393 211632

Melbourne 4725316 5197847

The next two modify methods to be discussed are the array_append()

and array_insert() methods.

�array_append() and array_insert()

As their names suggest, the array_append() and array_insert() methods

work with arrays within the document. While their usage is relatively

limited, they are very good at what they do. Their use is similar, so they will

be discussed together.

Both methods take the same two arguments even though they are

named differently. The two arguments are

•	 The path to the array element to modify or the location

of where to insert the value

•	 The value

The major difference is what is done at the specified element. The

array_append() method replaces the existing value with an array

consisting of the existing value followed by the new value. On the other

hand, array_insert() inserts the new element into that place in the array.

The easiest way to explain how they work is to show an example.

Listing 7-9 uses both methods to modify the suburbs of Sydney. The

array_append() method is used change the Central Business District

Chapter 7 The MySQL Document Store

356

suburb to be an array consisting of itself as the first element and an array of

places in the suburb as the second element. The array_insert() method

is used to add Liverpool to the list of suburbs.

Listing 7-9.  Updating a Document with array_append() and

array_insert()

import mysqlx

from config import connect_args

import pprint

printer = pprint.PrettyPrinter(indent=1)

db = mysqlx.get_session(**connect_args)

schema = db.get_schema("py_test_db")

city_col = schema.get_collection("city")

Run inside a transaction, so the

changes can be rolled back at the end.

db.start_transaction()

Get the current suburbs, the document

id, and the index of Central Business

District in the Suburbs array.

statement = city_col.find("Name = :city_name")

statement.fields(

 "_id",

 "Suburbs",

 "JSON_SEARCH("

 + "Suburbs,"

 + " 'one',"

 + " 'Central Business District')"

 + " AS Index")

statement.bind("city_name", "Sydney")

Chapter 7 The MySQL Document Store

357

before = statement.execute().fetch_one()

print("Suburbs before the changes:")

print("-"*27)

printer.pprint(before["Suburbs"])

print("")

docid = before["_id"]

The returned index includes $ to

signify the start of the path, but

that is relative to Suburbs, so

remove for this use.

index = before["Index"][1:]

print("Index = '{0}'\n"

 .format(before["Index"]))

Use array_append() to change the

Central Busines District suburb into

an array of itself plus an array of

some places within the suburb.

modify = city_col.modify("_id = :id")

modify.array_append(

 "Suburbs{0}".format(index),

 ["Circular Quay", "Town Hall"])

modify.bind("id", docid)

modify.execute()

after1 = statement.execute().fetch_one()

print("Suburbs after the array_append:")

print("-"*31)

printer.pprint(after1["Suburbs"])

print("")

Chapter 7 The MySQL Document Store

358

Reset the data

db.rollback()

Use array_insert to add the suburb

Liverpool

db.start_transaction()

num_suburbs = len(before["Suburbs"])

modify = city_col.modify("_id = :id")

modify.array_insert(

 "Suburbs[{0}]".format(num_suburbs),

 "Liverpool")

modify.bind("id", docid)

modify.execute()

after2 = statement.execute().fetch_one()

print("Suburbs after the array_insert:")

print("-"*31)

printer.pprint(after2["Suburbs"])

Reset the data

db.rollback()

db.close()

The start of the example just sets up the environment as usual. Then

the existing suburbs of Sydney are read as well as the document ID and the

index of the Central Business District inside the suburbs array.

The document ID allows you to use it in the modify statement’s filter

condition. Finding a document by its document ID is always the most

efficient way to locate it.

Chapter 7 The MySQL Document Store

359

The index of the Central Business District element is returned as

$[0] (the first element in the array). The dollar sign signifies the head of

the document, but since you used the JSON_SEARCH() function to search

the Suburbs array, it is relative to the Suburbs array and not the root of

the document. So, in order to use the index, it is necessary to remove the

dollar sign.

Tip  There are several JSON functions available in MySQL to search
or work with JSON documents. They are in general centered around
what is required when working with MySQL as a document store, but
there are also a few functions that are more related to the SQL side.
For a full overview of JSON functions in MySQL, see https://dev.
mysql.com/doc/refman/en/json-functions.html.

You are now ready to use array_append() to add locations within the

suburb and to add the suburb of Liverpool using array_insert(). For

the insert, the path is set as Suburbs[{0}] where {0} is replaced with the

number of suburbs before the change to add the new suburb at the end.

After each of the modify statements the transaction is rolled back to reset

the data. The output is

Suburbs before the changes:

['Central Business District',

 'Parramatta',

 'Bankstown',

 'Sutherland',

 'Chatswood']

Index = '$[0]'

Chapter 7 The MySQL Document Store

https://dev.mysql.com/doc/refman/en/json-functions.html
https://dev.mysql.com/doc/refman/en/json-functions.html

360

Suburbs after the array_append:

[['Central Business District', ['Circular Quay', 'Town Hall']],

 'Parramatta',

 'Bankstown',

 'Sutherland',

 'Chatswood']

Suburbs after the array_insert:

['Central Business District',

 'Parramatta',

 'Bankstown',

 'Sutherland',

 'Chatswood',

 'Liverpool']

The output makes it clear what changes were made (see the part of

the output in bold). The array_append() changed the string 'Central

Business District' into the array ['Central Business District',

['Circular Quay', 'Town Hall']]. The array_insert() method

inserted 'Liverpool' at the end of the existing array.

Now there is only the patch() method left to consider for modify

statements.

�patch()

The final method to modify a document is the patch() method. This is the

most powerful of the methods, yet it’s surprisingly simple once you get the

hang of it. To some extend it works similarly to the patch command used

to apply changes to source code, thus the name; however, the syntax is not

related.

Chapter 7 The MySQL Document Store

361

There are three possible outcomes of what the patch() method does

for each of the JSON fields that are matched by the document provided as

the argument:

•	 The element is removed: This happens when there is

a match for the field name and there is no value in the

patch document.

•	 The element is modified: This happens when there

is a match for the field and it has a value in the patch

document.

•	 The element is inserted: This happens when the field

does not exist and it has a value in the patch document.

The way the lack of a value for a field is specified (to delete it or not add

it) depends on how the document is specified. If the document is specified

as a string with the JSON document written inside, the lack of a value is

specified by writing null. When the document is specified as a dictionary,

use None to signify no value.

So, to patch a document, you provide a new document with the new

values you want. Then MySQL figures out the rest. This is where the

simplicity of the method comes in.

As an example, consider the city of Adelaide. The data has become

outdated, so it is time to determine the most recent values of the fields

stored in the document. The city area and population have changed, but

it has not been possible to find an updated amount for the Median weekly

individual income, so you decide to delete that field. The document to

describe the patch then becomes

doc = {

 "Geography": {

 "Area": 3400

 },

Chapter 7 The MySQL Document Store

362

 "Demographics": {

 "Population": 1500000,

 "Median weekly individual income": None

 }

}

This is fairly straightforward, and it also is quite easy to see what is

being changed. Listing 7-10 shows the full example of making the changes.

Listing 7-10.  Using patch() to Modify a Document

import mysqlx

from config import connect_args

import pprint

printer = pprint.PrettyPrinter(indent=1)

db = mysqlx.get_session(**connect_args)

schema = db.get_schema("py_test_db")

city_col = schema.get_collection("city")

Run inside a transaction, so the

changes can be rolled back at the end.

db.start_transaction()

Get the current suburbs, the document

id, and the index of Central Business

District in the Suburbs array.

statement = city_col.find(

 "Name = :city_name")

statement.bind("city_name", "Adelaide")

before = statement.execute().fetch_one()

print("Adelaide before patching:")

print("-"*25)

Chapter 7 The MySQL Document Store

363

printer.pprint(dict(before))

print("")

docid = before["_id"]

Make the following changes:

* Increase the area to 3400

* Increase the population to 1500000

* Remove the median weekly individual

income.

doc = {

 "Geography": {

 "Area": 3400

 },

 "Demographics": {

 "Population": 1500000,

 "Median weekly individual income": None

 }

}

modify = city_col.modify("_id = :id")

modify.patch(doc)

modify.bind("id", docid)

modify.execute()

after = statement.execute().fetch_one()

print("Adelaide after patching:")

print("-"*24)

printer.pprint(dict(after))

Reset the data

db.rollback()

db.close()

Chapter 7 The MySQL Document Store

364

The only new part in this example is the definition of the document to

patch the existing document with and the use of the patch() method. The

before and after documents for Adelaide are shown in Listing 7-11.

Listing 7-11.  The Before and After Documents for Adelaide After

the Patching Process

Adelaide before patching:

{'Country_capital': False,

 'Demographics': {'Median weekly individual income': 447,

 'Population': 1324279},

 'Geography': {'Area': 3257.7,

 'Climate': {'Annual rainfaill': 543.9,

 'Classification': 'Mediterranean',

 'Mean max temperature': 22.4,

 'Mean min temperature': 12.3},

 'Country': 'Australia',

 'Location': {'Coordinates': [138.601, -34.929],

'Type': 'Point'},

 'State': 'South Australia'},

 'Name': 'Adelaide',

 'State_capital': True,

 'Suburbs': ['Adelaide',

 'Elizabeth',

 'Wingfield',

 'Henley Beach',

 'Oaklands Park'],

 '_id': '00005af3e4f70000000000000093'}

Chapter 7 The MySQL Document Store

365

Adelaide after patching:

{'Country_capital': False,

 'Demographics': {'Population': 1500000},

 'Geography': {'Area': 3400,

 'Climate': {'Annual rainfaill': 543.9,

 'Classification': 'Mediterranean',

 'Mean max temperature': 22.4,

 'Mean min temperature': 12.3},

 'Country': 'Australia',

 �'Location': {'Coordinates': [138.601, -34.929],

'Type': 'Point'},

 'State': 'South Australia'},

 'Name': 'Adelaide',

 'State_capital': True,

 'Suburbs': ['Adelaide',

 'Elizabeth',

 'Wingfield',

 'Henley Beach',

 'Oaklands Park'],

 '_id': '00005af3e4f70000000000000093'}

Notice here how the Median weekly individual income has been

removed and the Population and Area have been updated. The value of

_id will differ from the one in this output, but the _id is the same before

and after the patching.

Tip  If you want to learn more about patching documents, a good
place to start is the documentation of the JSON_MERGE_PATCH()
SQL function, which is the one providing the underlying functionality.
See https://dev.mysql.com/doc/refman/en/json-
modification-functions.html#function_json-merge-patch.

Chapter 7 The MySQL Document Store

https://dev.mysql.com/doc/refman/en/json-modification-functions.html#function_json-merge-patch
https://dev.mysql.com/doc/refman/en/json-modification-functions.html#function_json-merge-patch

366

This completes the discussion of modifying statements. The last part of

CRUD is deleting documents.

�CRUD: Delete
In most applications, some documents should be deleted at some point.

Removing documents reduces the size of the data, which not only reduces

the disk usage but also makes queries more efficient because they need

to process less data. The Document Store has two methods for removing

documents from a collection:

•	 remove(): For arbitrary deletion of documents based

on a condition.

•	 remove_one(): For deleting a single document based

on the document ID.

These methods are among the simplest of the CRUD methods

because all that is required is to specify which documents to delete. The

remove() method offers an option of how many documents to delete at

most.

The remove_one() method is the simplest of the two methods because

it just requires a document ID and returns a Result object directly. The

remove() method takes a condition, like for find() and modify(), and

returns an object of the RemoveStatement class. The statement can be

further refined using the methods listed in Table 7-9.

Chapter 7 The MySQL Document Store

367

These modifier methods should all be familiar by now. In the same

way as for the modify() method, there must be a condition specified;

otherwise, a ProgrammingError exception occurs in 8.0.11:

mysqlx.errors.ProgrammingError: No condition was found for remove

In MySQL Connector/Python 8.0.12 and later, the condition must be

specified when calling remove() to create the remove statement. If no

condition has been given, a TypeError exception occurs:

TypeError: remove() missing 1 required positional argument:

'condition'

If you need to delete all documents, either use True as a condition or

drop/recreate the collection.

Listing 7-12 shows how to first delete a single city by using the

Document ID and then delete several cities by filtering by the country.

Table 7-9.  Methods to Modify a Remove Query

Method Arguments Description

sort *sort_clauses Describes what to sort the documents by.

limit row_count Sets the maximum number of documents to delete.

bind *args The first argument provides the name of the

parameter to replace. The second argument provides

the value. Call bind() once for each parameter.

execute Executes the remove statement.

Chapter 7 The MySQL Document Store

368

Listing 7-12.  Deleting Documents in a Collection

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

schema = db.get_schema("py_test_db")

city_col = schema.get_collection("city")

For printing information along the way

fmt = "{0:36s}: {1:2d}"

Run inside a transaction, so the

changes can be rolled back at the end.

db.start_transaction()

Get the document ID for Canberra.

statement = city_col.find("Name = :city_name")

statement.fields("_id")

statement.bind("city_name", "Canberra")

result = statement.execute()

canberra_id = result.fetch_one()["_id"]

Number of rows in the collection

before removing any documents

print(fmt.format(

 "Initial number of documents",

 city_col.count()

))

print("")

result = city_col.remove_one(

 canberra_id)

items = result.get_affected_items_count()

print(fmt.format(

Chapter 7 The MySQL Document Store

369

 "Number of rows deleted by remove_one",

 result.get_affected_items_count()

))

print(fmt.format(

 "Number of documents after remove_one",

 city_col.count()

))

print("")

statement = city_col.remove(

 "Geography.Country = :country")

statement.bind("country", "Australia")

result = statement.execute()

print(fmt.format(

 "Number of rows deleted by remove",

 result.get_affected_items_count()

))

print(fmt.format(

 "Number of documents after remove",

 city_col.count()

))

Reset the data

db.rollback()

db.close()

In the example, the document ID for Canberra is first found using the

find() method. Then the document for the Canberra document ID is

removed using remove_one(), before all remaining Australian cities are

deleted using the remove() method. Along the way, the number of cities and

the number of rows affected by the remove actions are printed. The output is

Initial number of documents : 15

Number of rows deleted by remove_one: 1

Number of documents after remove_one: 14

Chapter 7 The MySQL Document Store

370

Number of rows deleted by remove : 14

Number of documents after remove : 0

There were 15 cities in the collection. As expected, remove_one()

deleted one city, leaving 14 cities. Since there were only Australian cities in

the collection, deleting with a filter of Geography.Country = 'Australia'

removed the remaining 14 documents.

This concludes the lengthy journey through the world of the Document

Store. The MySQL X DevAPI is not just about the Document Store; it can

also work with SQL tables in a NoSQL fashion and execute SQL queries, so

there is much more to dive into in the next chapter.

�Summary
This chapter went into detail on the MySQL Document Store. Specifically,

you looked at collections and how to use them. A collection is a container

for related documents; for example, you can have a container named city

to store information about cities such as the country they are located in,

their population, and much more.

The documents themselves are JSON documents that store data

schemalessly. This allows the developer to quickly add new types of data to

the database, but also pushes the task of keeping the data consistent back

on the developer.

You started out learning how collections can be manipulated from

the point of creating them until the deletion. In-between, indexes can be

created and dropped, and a collection can be retrieved for use with the

create-read-update-delete (CRUD) methods. The rest of the chapter went

into detail of each of the CRUD methods.

The MySQL X DevAPI is not only for use with the Document Store. The

next chapter will look at how to use the CRUD method with SQL tables and

how to execute arbitrary SQL statements.

Chapter 7 The MySQL Document Store

371© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9_8

CHAPTER 8

SQL Tables
Thus far, the main focus of the X DevAPI has been on using it with the

MySQL Document Store. However, as explained in Chapter 6, it also

supports “good old” SQL tables. In fact, there are two interfaces to work

with SQL tables. The create-read-update-delete (CRUD) actions that

were the focus of Chapter 7 also exist for SQL tables and provide a NoSQL

API. Also, the X DevAPI can be used to execute arbitrary SQL statements.

This chapter will first give an overview of the workflow when using

SQL tables and then go through how the X DevAPI can use SQL tables with

a NoSQL API. The second part of the chapter will look at the interface to

execute SQL statements.

�Workflow
The workflow when using SQL tables with the NoSQL API is very similar

to the one you looked at for collections in the previous chapter. However,

when SQL statements are used, the workflow is somewhat different. Before

you look into the details, it is worth getting an overview of the general

workflow.

Figure 8-1 shows the workflow starting with a schema and ending

with the results. The main focus is on the steps until a statement object

has been obtained. How to use the statements will be covered in detail

throughout the chapter. The red (dark grey) boxes are the methods called.

372

Figure 8-1.  Overview of the workflow when using SQL tables

Chapter 8 SQL Tables

373

The figure starts with the schema object. There are four different ways

to continue; however, effectively there are only two distinct paths. The

get_collection_as_table() returns a table object with the SQL table

that stores the collection, and the view object returned by get_view() is a

subclass of a table, with the only difference being the query used to check

whether the object exists in the database. So, for most purposes collections

as tables, views, and tables can be considered the same thing.

Once you have the table object, you can use it to execute either an insert,

select, update, or delete statement. Except for the count() method (not

included in the figure), there are no additional methods like you saw for the

collections. Once the statement has been executed, a row result is returned for

a select statement and a result without rows is returned for the other methods.

The big difference in the workflow is SQL statements, which are

created directly from the schema object. An SQL statement always returns

an SQL result irrespective of the query type.

With the workflows in place, it is time to look at the NoSQL API for SQL

tables.

Tip T here are a number of example programs in this chapter. All
example programs that appear in a listing are available for download.
See the discussion of example programs in Chapter 1 for more
information about using the example programs. In general, changes are
rolled back to allow reexecuting the examples with the same result.

�NoSQL API for SQL Tables
In the previous chapter, you used the Document Store, which is meant to

be managed purely using the NoSQL API. It is, however, also possible to

continue to work with SQL tables, but avoid writing SQL statements.

Chapter 8 SQL Tables

374

The NoSQL table API is similar to the Document Store API and the

discussion in this section assumes you are familiar with the X DevAPI

described in Chapter 6.

The table API is the topic of this section. You will start out by getting

a table object and getting information about the object. Then the table

object will be used to execute queries.

Note T he discussion of the table API has a relatively large overlap
with the API used to work with collections. It is recommended to read
Chapter 6 before this chapter to get the most out of this table API
discussion.

�Table and View Objects
A table object is equivalent to a collection object; the difference is that

the table object is designed to be used with general SQL tables whereas a

collection is dedicated for a table with a JSON column storing a document.

In fact, you can ask to retrieve a collection as a table if you want. A view

object is very similar to a table object but is for a view (virtual table) rather

than a base table. Unless explicitly noted, tables and views behave the

same.

There are three different methods for getting a table object. They are

listed in Table 8-1. The returned objects are relative to the mysqlx module.

Chapter 8 SQL Tables

375

The get_table() and get_tables() methods are the equivalent to the

get_collection() and get_collections() methods from the previous

chapter. There are no methods for creating tables, changing the table

definitions, or adding indexes; this must be done using an SQL statement.

Table 8-1.  Schema Table Methods

Method Arguments Description

get_collection_

as_table

Name Returns the collection with the

specified name as a crud.Table

object. If check_existence =

True, a ProgrammingError

exception occurs if the collection does

not exist.

check_

existence=False

get_table name Returns the table with the specified

name as a crud.Table object. The

get_table() method can also be

used to open a view as a crud.Table

object. If check_existence = True,

a ProgrammingError exception

occurs if the table does not exist.

check_

existence=False

get_tables Returns a list of the tables and views

in the schema. Each element in the

list is an instance of the crud.Table

class.

get_view name Returns the view with the specified

name as a crud.View object. If

check_existence = True, a

ProgrammingError exception

occurs if the view does not exist.

check_

existence=False

Chapter 8 SQL Tables

376

There are a number of methods to get information about a table object.

These methods are summarized in Table 8-2. The returned objects are

relative to the mysqlx module. None of these methods take an argument.

Table 8-2.  Table and View Utility Methods

Method Returns Object Description

exists_

in_database

Returns True or False depending on

whether the table exists.

get_connection connection.

Connection

Returns the underlying connection object.

get_name Returns the name of the table. This is the

same as the name property.

get_schema crud.Schema Returns the object for the schema where the

table exists. This is the same as the schema

property.

get_session connection.

Session

Returns the object for the session. This is

the same as the session property. Added in

version 8.0.12.

is_view Returns True or False depending on

whether the table object is a view. This

is based on the actual definition in the

database and not whether get_table() or

get_view() was used to get the object.

The schema object, session object (8.0.12 and later), and table

name can also be found in the schema, session, and name properties,

respectively. Thus far, there has been very little difference in collections

other than tables do not have all of the collection features. For queries,

there are some differences, so let’s look at them.

Chapter 8 SQL Tables

377

�Table Queries
Querying tables using a table object and the NoSQL methods is to some

extent a mix of using SQL statements and the Document Store create,

read, update, and delete (CRUD) methods. There is no support for joining

tables or more advanced SQL features such as common table expressions

(CTEs) and window functions yet. The available methods also fall into one

of the CRUD functionalities. So far it sounds like collections again, but the

method names reflect the SQL statements used for the actions.

Note  Queries performed using table objects are primarily for tables
using the UTF-8-character sets. There are also some more complex
constructions; for example, converting the character set for a column,
that are not supported. In those cases, you must use a direct SQL
statement instead, as described later in the chapter.

The table CRUD methods can be found in Table 8-3. Except for the count()

method, all of the methods return a statement object corresponding to the

query type. The statement object classes are all in the mysqlx.statement module.

Table 8-3.  CRUD Methods for Table and View Objects

Method Arguments Returns Object Description

count Returns the number of rows in the

table as an integer.

delete DeleteStatement Creates a delete statement.

insert *fields InsertStatement Creates an insert statement where

values will be set for the fields

specified.

select *fields SelectStatement Creates a select statement that

will retrieve the fields specified.

update UpdateStatement Creates an update statement.

Chapter 8 SQL Tables

378

While the method names sound very familiar to those accustomed

to writing SQL statements, their use requires a bit more explanation.

The remainder of this section will go through the CRUD methods one by

one. The count() method will be used as a supplement to the insert(),

select(), update(), and delete() methods.

�CRUD: Create
The first part of CRUD is to create data. For SQL tables, this is inserting

data into a table, so appropriately the table object method to create data is

the insert() method. This is the topic of the following discussion.

The arguments to the insert() method are the fields that you

will provide data for. The method returns an object of the mysqlx.

statement.InsertStatement class. This object can be used to add the

values and to execute the insert statement. The important methods of the

InsertStatement class are listed in Table 8-4.

Table 8-4.  InsertStatement Methods

Method Arguments Description

execute Executes the insert statement and returns the result as

a result.Result object.

values *values The values for one row to add to the insert statement.

values() can be called multiple times to insert

several rows. The values for each row must be in the

same order as the fields.

The InsertStatement object has two properties:

•	 schema: The schema object for the insert statement

•	 target: The table object for the insert statement

Chapter 8 SQL Tables

379

The main use of these properties is to work your way back to the parent

objects when the insert statement is passed to other functions or methods.

To see the workflow for inserting data, see Listing 8-1. It’s an example

of inserting two cities into the world.city table. Once the result has

been returned, the number of rows inserted and the first generated auto-

increment ID is printed. Before and after the insert statement, the number

of rows in the table is determined using the Table.count() method.

Listing 8-1.  Inserting Rows into a Table Using the insert() Method

import mysqlx

from config import connect_args

fmt = "{0:28s}: {1:4d}"

db = mysqlx.get_session(**connect_args)

Get the world.city table

schema = db.get_schema("world")

city = schema.get_table("city")

db.start_transaction()

print(fmt.format(

 "Number of rows before insert",

 city.count()

))

Define the insert statement

insert = city.insert(

 "Name",

 "CountryCode",

 "District",

 "Population"

)

Chapter 8 SQL Tables

380

Add row using a list

darwin = [

 "Darwin",

 "AUS",

 "Northern Territory",

 145916

]

insert.values(darwin)

Add row by arguments

insert.values(

 "Sunshine Coast",

 "AUS",

 "Queensland",

 302122

)

Execute the insert

result = insert.execute()

Get the auto-increment ID generated

for the inserted row

print(fmt.format(

 "Number of rows inserted",

 result.get_affected_items_count()))

print(fmt.format(

 "First ID generated",

 result.get_autoincrement_value()))

print(fmt.format(

 "Number of rows after insert",

 city.count()))

Chapter 8 SQL Tables

381

Reset the data

db.rollback()

db.close()

First, the table object is obtained using the get_table() schema

method. The insert statement is created using the insert() method and

the four fields that you specify values for are given as arguments. The fields

can also be given as a list or tuple if that works better in the code flow.

The city table also has an ID field, which by default is assigned an auto-

increment value. In the example, you use the default behavior for the ID

field.

The two rows are added to the insert statement using the values()

method. Darwin is added by first creating a tuple with the values and then

the tuple is passed to values(). Sunshine Coast is added by passing each

field value as a separate argument to values().

Finally, the two rows are inserted using the execute() method. The

returned result.Result object can be used to check the number of

inserted rows and the generated auto-increment ID of the first row to be

inserted (Darwin). It is not possible to get the auto-increment ID for later

rows.

An example of the output of running the example is

Number of rows before insert: 4079

Number of rows inserted : 2

First ID generated : 4111

Number of rows after insert : 4081

The first ID generated depends on how the city table has been used

before and thus will in general be different from the example output. With

data inserted into the table, let’s look at how to retrieve it again.

Chapter 8 SQL Tables

382

�CRUD: Read
The read statement is the workhorse of most databases. For table and

view objects, the select() method is used to get data from the underlying

database object. This section will show how to do so.

The select() method takes the fields that should be retrieved

from the table. If no fields are specified, all will be included; this is the

equivalent of SELECT * FROM. The method returns a mysqlx.statement.

SelectStatement object that can be used to refine the query.

The SelectStatement methods that can be used to define the query

further are listed in Table 8-5. They can be used to specify the conditions

that must be fulfilled for a row to be included, how many rows to return,

grouping, etc.

Table 8-5.  Methods to Modify a Select Statement

Method Arguments Description

where condition This is the condition by which to filter the

query result.

group_by *fields Describes which fields to group by for queries

involving aggregate functions.

having condition Describes what to filter the result by after the

query has otherwise been resolved (except

for sorting). This makes it useful for filtering

by value of aggregate functions.

order_by *clauses Describes what to sort the result by.

(continued)

Chapter 8 SQL Tables

383

Once the statement has been fully defined, it can be executed using the

execute() method. This returns a RowResult object, which can be used to

get information about the result and fetch the rows.

Table 8-5.  (continued)

Method Arguments Description

limit

offset

row_count

offset=0

The first argument sets the maximum number

of rows to return. The second optional

argument defines the offset. The default

offset is 0.

Note: This is changed in version 8.0.12 where

offset is deprecated. Use the offset()

method instead.

Set the offset of the rows to return. Added in

version 8.0.12.

offset

lock_exclusive Makes the statement take an exclusive lock.

Only one statement can have an exclusive

lock at a time. Use this if the row(s) will be

updated later in the same transaction.

lock_shared Makes the statement take a shared lock. This

prevents other statements from modifying the

matching rows, but it is possible for them to

read the rows.

bind *args The first argument provides the name of the

parameter to replace. The second argument

provides the value. Call bind() once for

each parameter.

execute Executes the select statement.

Chapter 8 SQL Tables

384

As an example, consider a select statement where the cities in the

United States of America with a population higher than 1,000,000 people

are found and grouped by state (the District field). For each state the

number of cities and the population of the largest city are found. The result

is sorted in descending order according to the number of cities and then by

the largest population. The example can be seen in Listing 8-2.

Listing 8-2.  Example of Using a Select Statement

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

Get the world.city table

schema = db.get_schema("world")

city = schema.get_table("city")

db.start_transaction()

statement = city.select(

 "District",

 "COUNT(*) AS NumCities",

 "MAX(Population) AS LargestCityPop")

statement.where(

 "CountryCode = :country"

 + " AND Population > :min_pop")

statement.group_by("District")

statement.order_by(

 "NumCities DESC",

 "LargestCityPop DESC")

statement.bind("country", "USA")

statement.bind("min_pop", 1000000)

Chapter 8 SQL Tables

385

print("SQL statement:\n{0}"

 .format(statement.get_sql()))

result = statement.execute()

print("Number of rows in result: {0}\n"

 .format(result.count))

fmt = "{0:12s} {1:6d} {2:12d}"

print("{0:12s} {1:6s} {2:12s}"

 .format(

 "State",

 "Cities",

 "Largest City"

))

print("-"*37)

for row in result.fetch_all():

 print(fmt.format(

 row["District"],

 row["NumCities"],

 row["LargestCityPop"]

))

print("")

print("Number of rows in result: {0}\n"

 .format(result.count))

db.commit()

db.close()

After the table object has been retrieved, the statement is created and

the fields that should be included in the result are defined. Then a filter is

set using the where() method, and the grouping and sorting are set. The

value passed to the where() method uses two named parameters, country

and min_pop, to allow binding the values later using the bind() method.

Chapter 8 SQL Tables

386

This ensures that the quoting is correct for the type provided (but it does

not ensure it is the correct type!) and allows you to reuse the rest of the

statement if you need to execute the same query again but with different

values for the two parameters.

Before executing the statement, the generated SQL is printed. The

get_sql() method is unique to the SelectStatement class. The method takes

the SelectStatement and builds the SQL statement that will be executed as

a result of the query that has been defined. This can be useful if you want to

execute the query manually through the MySQL Shell or you need to compare

the generated SQL with an SQL statement that you are basing the query on.

After the result has been obtained, the number of rows in the result is

printed (and again after retrieving the result). The result is obtained using

the fetch_all() method, which returns a result.Row object. The Row

object can be used as a dictionary when printing the result. The output is

SQL statement:

SELECT District,COUNT(*) AS NumCities,MAX(Population) AS

LargestCityPop FROM world.city WHERE CountryCode = :country

AND Population > :min_pop GROUP BY District ORDER BY NumCities

DESC,LargestCityPop DESC

Number of rows in result: 0

State Cities Largest City

Texas 3 1953631

California 2 3694820

New York 1 8008278

Illinois 1 2896016

Pennsylvania 1 1517550

Arizona 1 1321045

Number of rows in result: 6

Chapter 8 SQL Tables

387

The most noticeable in the output is how the number of rows in the

result is reported as 0 before the result is retrieved but 6 afterwards. This

was discussed for the RowResult object in Chapter 6: the count property is

set when reading the rows using the fetch_all() method.

Now let’s update the data in a table.

�CRUD: Update
Updates to tables replace the value of one or more fields with new values.

Unlike for documents, there is no way to add new fields or remove existing

fields; those actions require a change of the table definition. The following

discussion goes into detail on how table updates work in the CRUD world

of MySQL Connector/Python.

The update() method itself does not take any arguments. The sole

purpose of invoking it is to create an UpdateStatement object that can be used

to define the update. The methods for doing this can be seen in Table 8-6.

Table 8-6.  Methods to Define an Update Statement

Method Arguments Description

set field Sets the new value for the given field. The value must be

a scalar.value

where condition This is the condition to filter which rows should be updated.

order_

by

*clauses Describes which order the rows should be updated. Added

in version 8.0.12.

sort *sort_clauses Describes which order the rows should be updated.

Note: This has been deprecated in version 8.0.12; use

order_by() instead.

limit row_count The argument sets the maximum number of rows to update.

bind *args The first argument provides the name of the parameter

to replace. The second argument provides the value. Call

bind() once for each parameter.

Chapter 8 SQL Tables

388

One thing to be aware of is that bind parameters cannot be used with

the set() method. If the new value is based on user input, make sure to

validate input as always. The statement returns a result.Result object

when it is executed.

Caution A lways validate user input before using it in statements.
This does not only apply to update statements or even the X
DevAPI. This should be a standard part of working with user input.

When executing the statement, you must define a where condition. If

you don’t, a ProgrammingError exception will occur:

mysqlx.errors.ProgrammingError: No condition was found for

update

This is meant as a safety precaution to avoid accidentally updating

all rows in a table. If you really want to update all rows, set the where()

condition to True or a similar condition that evaluates to True:

update.where(True)

Not only does the requirement mean you do not by mistakenly update

all rows because of a missing condition, a condition set to True also helps

document that you really mean to update all rows.

Listing 8-3 shows an example where the population of a city is

updated. The population is printed before and after the update to verify

the effect of the update statement.

Listing 8-3.  Using an Update Statement

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

Chapter 8 SQL Tables

389

Get the world.city table

schema = db.get_schema("world")

city = schema.get_table("city")

db.start_transaction()

Check the population before the update

select = city.select()

select.where(

 "Name = :city"

 + " AND CountryCode = :country"

)

select.bind("city", "Sydney")

select.bind("country", "AUS")

result = select.execute()

sydney = result.fetch_one()

print("Old population: {0}".format(

 sydney["Population"]))

Define the update

update = city.update()

update.set("Population", 5000000)

update.where(

 "Name = :city"

 + " AND CountryCode = :country")

update.bind("city", "Sydney")

update.bind("country", "AUS")

result = update.execute()

print("Number of rows updated: {0}"

 .format(

 result.get_affected_items_count())

)

Chapter 8 SQL Tables

390

Check the affect

result = select.execute()

sydney = result.fetch_one()

print("New population: {0}".format(

 sydney["Population"]))

Reset the data

db.rollback()

db.close()

The steps to define the update statement follow the usual pattern for

the X DevAPI CRUD methods. The output of the program is

Old population: 3276207

Number of rows updated: 1

New population: 5000000

This leaves one final CRUD method to look at: how to delete rows.

�CRUD: Delete
The last thing to discuss related to CRUD methods is how to delete rows in

a table. This is done using the delete() table method with optional filter

conditions, sorting, and limit.

The delete() method takes an optional argument defining the

condition to filter the rows by, and the method returns a DeleteStatement

object. Additional refinement of the delete statement can be made through

methods of the DeleteStatement object. These methods are listed in

Table 8-7.

Chapter 8 SQL Tables

391

If you have a good grasp of the other CRUD methods, the use of delete

statements is straightforward. In the same way as for the update() method,

a condition must be set; otherwise a ProgrammingError occurs:

mysqlx.errors.ProgrammingError: No condition was found for

delete

If you need to delete all rows in the table, set the condition to True.

Alternatively, you can recreate the table using the TRUNCATE TABLE SQL

statement.

Listing 8-4 shows an example of deleting all cities with a population

less than 1000.

Table 8-7.  Methods to Define a Delete Statement

Method Arguments Description

where condition This is the condition to filter which rows should be

deleted.

order_by *clauses Describes the order in which the rows should be

deleted. Added in version 8.0.12.

sort *sort_clauses Describes the order in which the rows should be

deleted.

Note: This has been deprecated in version 8.0.12;

use order_by() instead.

limit row_count The argument sets the maximum number of rows

to delete.

bind *args The first argument provides the name of the

parameter to replace. The second argument

provides the value. Call bind() once for each

parameter.

execute Executes the delete statement.

Chapter 8 SQL Tables

392

Listing 8-4.  Deleting Rows from a Table

import mysqlx

from config import connect_args

fmt = "{0:22s}: {1:4d}"

db = mysqlx.get_session(**connect_args)

Get the world.city table

schema = db.get_schema("world")

city = schema.get_table("city")

db.start_transaction()

Check the number of rows before

deleting rows.

print(fmt.format(

 "Number of rows before",

 city.count()

))

Define the update

delete = city.delete()

delete.where("Population < :min_pop")

delete.bind("min_pop", 1000)

result = delete.execute()

print(fmt.format(

 "Number of rows deleted",

 result.get_affected_items_count()

))

Chapter 8 SQL Tables

393

Check the affect

print(fmt.format(

 "Number of rows after",

 city.count()

))

Reset the data

db.rollback()

db.close()

The filter condition is specified using the where() method. It could

also have been specified when the delete statement was first created. The

output is

Number of rows before : 4079

Number of rows deleted: 11

Number of rows after : 4068

This concludes the discussion of CRUD methods for SQL tables. As

discussed, these methods currently have some limitations. If you need

to generate queries that are not supported, it is still possible using SQL

statements, which will be discussed in the remainder of this chapter.

�SQL Statements
Thus far, the discussion about the X DevAPI has been about CRUD

methods, either for document collections or SQL tables. What happened

to the good old SQL statements? They are still here, and that is what this

section is about.

In some ways, I saved the simplest for last, but it’s also the one that

currently executes the most different queries. The two things are related

because the SQL statements do not put any constraints on what you can

use them for beyond the limitations of the specific MySQL Server version.

Chapter 8 SQL Tables

394

This also means it is not possible to know what each statement is about to

the same extent, and thus it is not possible to be as specific about how it

works. This makes it simpler than the CRUD methods. Of course, the price

is that it is to a larger extent up to the developer to take care of things.

Tip T he SQL statement functionality of the X DevAPI is not nearly as
complete as when using the mysql.connector module. If you need
more than simple queries, it is recommended to use the methods
described in Chapters 2 through 5. This includes all cases where
parameters are required.

This section will look at how SQL statements are executed using the

X DevAPI.

�Executing SQL Statements
Executing SQL statements is straightforward. An SQL statement is created

directly from the session using the sql() method, which takes the SQL

statement to execute. The SqlStatement object is returned.

The SqlStatement class is simple and only has two methods, which are

summarized in Table 8-8. Neither method takes any arguments.

Chapter 8 SQL Tables

395

The result object is always of the SqlResult class, which combines

the information that is useful for queries modifying data or schema and

queries fetching data.

Listing 8-5 shows an example of querying for the German states with at

least one city with a population of more than 500,000 people.

Listing 8-5.  Querying Data with a SELECT SQL Statement

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

sql = db.sql("""

SELECT CONVERT(District USING utf8mb4)

 AS District,

 COUNT(*) AS NumCities

 FROM world.city

 WHERE CountryCode = 'DEU'

 AND Population > 500000

 GROUP BY District

 ORDER BY NumCities DESC, District""")

Table 8-8.  Methods to Work with an SQL Statement

Method Returns Description

execute result.SqlResult

object

Sends the query to MySQL Server.

Returns an object of the mysqlx.

result.SqlResult class.

is_doc_based Boolean Whether the statement is for a

collection. It always returns False for

an SqlStatement and is mostly useful

when a method or function can handle

several different types of statements.

Chapter 8 SQL Tables

396

result = sql.execute()

fmt = "{0:19s} {1:6d}"

print("{0:19s} {1:6s}".format(

 "State", "Cities"))

print("-"*28)

row = result.fetch_one()

while row:

 print(fmt.format(

 row["District"],

 row["NumCities"]

))

 row = result.fetch_one()

db.close()

The first thing to notice is that the District column is explicitly

converted to utf8mb4 in the query. The reason for this is, as mentioned,

that the X DevAPI expects only UTF-8 data to be returned. If this

conversion is not done, an error is returned:

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xfc in

position 7: invalid start byte

This is another case where the legacy API in the mysql.connector

module is better to use. The workaround is, as in the example, to convert

the data inside the query.

The result is handled similar to the result of the select() CRUD

method. It is possible to fetch a single row at a time using the fetch_one()

method or all rows using the fetch_all() method. The former is used in

this case. The output is

Chapter 8 SQL Tables

397

State Cities

Nordrhein-Westfalen 5

Baden-Württemberg 1

Baijeri 1

Berliini 1

Bremen 1

Hamburg 1

Hessen 1

Niedersachsen 1

There is one more feature of the SqlStatment class that is worth

discussing: how to handle queries that return more than one result set.

�Queries with Multiple Result Sets
In Chapter 4, you looked at handling multiple result sets from a query

when using the legacy API in the mysql.connector module. The X DevAPI

in the mysqlx module can also handle multiple result sets but without the

bells and whistles.

The first result set is handled just as described in the previous example.

The difference is that once the first result has been handled, the result can

be reinitialized using the SqlResult.next_result() method. This allows

you to handle the next result. The next_result() method returns True or

False depending on whether there are more results to handle.

In order to see how this works in practice, consider the world.

top_cities stored procedure in Listing 8-6. This is similar to the stored

procedure used in Chapter 4.

Chapter 8 SQL Tables

398

Listing 8-6.  The world.top_cities Stored Procedure

DROP PROCEDURE IF EXISTS world.top_cities;

DELIMITER $$

CREATE PROCEDURE world.top_cities(

 IN in_country char(3)

)

SQL SECURITY INVOKER

BEGIN

 SELECT Name, District, Population

 FROM world.city

 WHERE CountryCode = in_country

 AND Population

 ORDER BY Population ASC

 LIMIT 3;

 SELECT Name, District, Population

 FROM world.city

 WHERE CountryCode = in_country

 AND Population

 ORDER BY Population DESC

 LIMIT 3;

END$$

DELIMITER ;

The procedure returns two result sets: first, the three least populous

cities of the country are found, and then the three most populous cities are

found. Listing 8-7 shows an example of handling the two result sets.

Chapter 8 SQL Tables

399

Listing 8-7.  Handling Multiple Result Sets in an X DevAPI SQL

Statement

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

sql = db.sql(

 "CALL world.top_cities('USA')")

result = sql.execute()

fmt = "{0:11s} {1:14s} {2:10d}"

print("{0:11s} {1:14s} {2:10s}"

 .format(

 "City", "State", "Population"

)

)

more = True

while more:

 print("-"*41)

 row = result.fetch_one()

 while row:

 print(fmt.format(

 row["Name"],

 row["District"],

 row["Population"]

))

 row = result.fetch_one()

 more = result.next_result()

db.close()

Chapter 8 SQL Tables

400

The query is executed as normal. The first result set is handled as

normal. It is wrapped inside a while loop. After the first result has been

handled, more results are searched for by calling next_result(). This also

resets the result object to work with the next result. Once all result sets

have been handled, next_result() returns False and the loop terminates.

The output is

City State Population

Charleston South Carolina 89063

Carson California 89089

Odessa Texas 89293

New York New York 8008278

Los Angeles California 3694820

Chicago Illinois 2896016

This concludes the discussion of SQL statements in the MySQL

Connector/Python X DevAPI.

�Summary
This chapter looked at how SQL tables can be used with the X

DevAPI. There are two options available: using the NoSQL CRUD methods

or executing SQL statements.

The NoSQL CRUD interface for SQL tables is very similar but simpler

than the one you looked at in the previous chapter for the MySQL

Document Store. The CRUD methods are named according to the SQL

statement performing the underlying action of the method. For example,

to read data, the select() method is used. There is no support for

changing the schema of SQL tables using the NoSQL API.

Chapter 8 SQL Tables

401

There is support for executing arbitrary SQL statements using the

mysqlx.Session.sql() method. It can be useful for simple queries;

however, for more complex tasks and when adding user input to the

queries, it is recommended to use the methods of the mysql.connector

module.

This chapter completes the walkthrough of the X DevAPI as seen from

MySQL Connector/Python. There are two remaining, but very important,

tasks left: handling errors and troubleshooting MySQL Connector/Python

programs. These topics are covered next.

Chapter 8 SQL Tables

PART IV

Error Handling and
Troubleshooting

405© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9_9

CHAPTER 9

Error Handling
The first eight chapters focused on specific use cases: installation,

executing queries, handling the result, etc. In a few places, it was

mentioned that error handling is important, but not much detail was

providedsql_note. This is about to change because this chapter is

dedicated to error handling.

Error handling is one of the most important topics for all

programming, not just when using MySQL Connector/Python. You can

argue that it together with testing should be the two first topics you learn.

There is a large degree of truth in that statement; however, I decided to

make error handling the second-to-last chapter in this book. Not because

it is not important (the phrase “last but not least” certainly applies to this

and the following chapter about troubleshooting) but for two reasons:

first, this is not a book as much about programming as using MySQL

Connector/Python, so it is assumed you already have a good grasp of

programming best practices. Second, it allows to me give more context to

the examples.

Note  Do not consider error handling and testing as a secondary
task. Make sure they are treated with at least as high a priority
as implementing the actual feature. This is not unique to MySQL
Connector/Python.

406

This chapter will start out with some considerations about warnings,

errors, and strict modes in MySQL Server. You’ll then move on to MySQL

Connector/Python itself where the first part of the discussion will be about

warnings and error handling in general, warning configurations, and how

to fetch warnings. The second part will discuss the MySQL error numbers

and SQL states. Finally, the third part will give an overview of the error

classes of the mysql.connector and mysqlx modules.

Tip  There are a number of example programs in this chapter. All
example programs that appear in a listing are available for download.
See the discussion of example programs in Chapter 1 for more
information about using the example programs.

�Warnings, Errors, and Strict Modes in
MySQL Server
In the discussion of error handling in MySQL Connector/Python, there are

a couple of things to consider on the MySQL Server side of the connection.

This section will look at the configuration setting to specify whether a note

level message should be treated as a warning, how strict modes work, and

how the application can cause messages to be logged in the MySQL error log.

�Treating Note Level Messages as Warnings
There are three severity levels for events that occur when a statement is

executed. The most severe is an error that will always stop the statement

from completing. The next level is warnings that allow the statement to

complete but return warnings to the user or application so a decision can

be made about what to do. The lowest severity is the note level, which is

the topic of this discussion.

Chapter 9 Error Handling

407

By default, a note level message for a statement (such as if a database

exists and you try to create it using CREATE DATABLASE IF NOT EXISTS)

causes a warning to occur. For example:

mysql> CREATE SCHEMA IF NOT EXISTS py_test_db;

Query OK, 1 row affected, 1 warning (0.28 sec)

mysql> SHOW WARNINGS\G

*************************** 1. row ***************************

 Level: Note

 Code: 1007

Message: Can't create database 'py_test_db'; database exists

1 row in set (0.00 sec)

Notice that in the SHOW WARNINGS output, the level is Note. It is possible

to avoid a note level message to generate warnings. This is done by

changing the value of the sql_notes option. When the value of sql_notes

is ON (the default), a warning is created. If it is OFF, no warning is created.

The option can be changed for the session, so if you in general want to

cause a warning but for a given statement you want to disable it, you can

suppress the message. To temporarily suppress note level messages, you

can use the following workflow:

mysql> SET SESSION sql_notes = OFF;

Query OK, 0 rows affected (0.00 sec)

-- Execute statements

mysql> SET SESSION sql_notes = ON;

Query OK, 0 rows affected (0.00 sec)

Thus, if you know a query will cause a note level message, you can

change the value of sql_notes for the session while executing that one

statement. However, in general it is better to try to avoid the message in the

first place by changing the statement.

Chapter 9 Error Handling

408

Tip I t is recommended to enable sql_notes and only disable it for
specific statements that you know don’t require warnings.

�Strict Modes
The second part to the server-side configuration is strict modes. When a

strict mode is enabled, it tells MySQL to treat, for example, invalid data as

an error rather than a warning. In old versions of MySQL, the default was

to be forgiving with data that did not fit into the tables and do a best effort

to make it fit. This makes it easier to develop applications, but a major

downside of this is that it can cause the database to end up with different

data than expected.

Examples of manipulation to force data to fit are to cast a string to an

integer or to truncate data. Consider the table named table_1 with the

following definition:

mysql> CREATE SCHEMA db1;

Query OK, 1 row affected (0.41 sec)

mysql> CREATE TABLE db1.table_1 (

 id int unsigned NOT NULL PRIMARY KEY,

 val varchar(5)

) ENGINE=InnoDB;

Query OK, 0 rows affected (0.24 sec)

Without the strict mode enabled, an attempt to insert a value with six

characters will cause a warning, but the row will still be inserted with the

value truncated to five characters:

mysql> INSERT INTO db1.table_1 VALUES (1, 'abcdef');

Query OK, 1 row affected, 1 warning (0.15 sec)

Chapter 9 Error Handling

409

mysql> SHOW WARNINGS\G

*************************** 1. row ***************************

 Level: Warning

 Code: 1265

Message: Data truncated for column 'val' at row 1

1 row in set (0.00 sec)

mysql> SELECT * FROM table_1;

+----+-------+

| id | val |

+----+-------+

| 1 | abcde |

+----+-------+

1 row in set (0.00 sec)

In MySQL 5.7 and later, strict mode is enabled by default for

transactional tables (the InnoDB and NDBCluster storage engines). In this

case, an error will occur if the data does not fit. An example of the strict

mode preventing an insert is

mysql> INSERT INTO db1.table_1 VALUES (2, 'ghijkl');

ERROR 1406 (22001): Data too long for column 'val' at row 1

The strict mode for transactional tables is enabled by including

STRICT_TRANS_TABLES in the list of SQL modes. For more about SQL

modes, see https://dev.mysql.com/doc/refman/en/sql-mode.html.

From inside MySQL Connector/Python the SQL mode can be set using the

sql_mode connection option.

Related to the STRICT_TRANS_TABLES SQL mode is the innodb_strict_

mode option. This option only applies to InnoDB tables. Where the SQL

mode controls what happens to data modification language (DML)

queries, the innodb_strict_mode option controls what happens for data

definition language (DDL) queries such as CREATE TABLE, ALTER TABLE,

Chapter 9 Error Handling

https://dev.mysql.com/doc/refman/en/sql-mode.html

410

and CREATE INDEX. One of the most common causes of errors being

triggered by the innodb_strict_mode option is when a table is created with

a definition that will cause the maximum possible row size for the table to

exceed InnoDB’s limit.

It is strongly recommended to both enable the STRICT_TRANS_TABLES

SQL mode and the innodb_strict_mode option. Enable it before you start

developing the application, so you get warned about incompatibility issues

as soon as possible.

Tip I t is much easier to fix violations of the strict modes during the
initial development than after completing the application. So, enable
the strict modes before you start coding; it will save you work in the
long run.

�The MySQL Error Log
A final thing to be aware of on the MySQL Server side is that actions

performed (or not performed) by the application can trigger messages in

the MySQL error log. For example, if the application attempts to connect

using invalid credentials or it does not close its connections properly,

messages similar to the following examples can occur:

2018-03-03T04:10:19.943401Z 52 [Note] [MY-010926] Access denied

for user 'pyuser'@'localhost' (using password: YES)

2018-03-03T04:10:28.330173Z 53 [Note] [MY-010914] Aborted

connection 53 to db: 'unconnected' user: 'pyuser' host:

'localhost' (Got an error reading communication packets).

The first note says that an attempt was made to connect by the pyuser

user from localhost using a password, but the password was wrong

(or the user did not exist). The second note says that there was an error

Chapter 9 Error Handling

411

trying to read from one of the connections. In this case, it’s because the

connection disappeared.

These messages will only show up when the log_error_verbosity

MySQL Server option is set to 3. It is recommended to ensure that is the

case during development and to regularly check the error log to capture all

messages triggered by the application. This can be accomplished by setting

the option in the MySQL configuration file. In MySQL 8.0, it can also be

achieved using the SET PERSIST statement like so:

mysql> SET PERSIST log_error_verbosity = 3;

Query OK, 0 rows affected (0.04 sec)

This code sets the current value and persists the value when MySQL is

restarted.

Enough about MySQL Server. The next topic is warning and error

handling in MySQL Connector/Python itself.

�Warning and Error Handling
When you use MySQL Connector/Python in your programs, you will

encounter a mix of the built-in Python exceptions and custom exceptions

of the MySQL Connector/Python module you use. Additionally, there is a

submodule with the MySQL error codes as constants. This section will go

through the configuration related to warnings and how to fetch warnings.

MySQL error numbers, SQL states, and the exception classes are discussed

in the next two sections.

�Configuration
When you work with the methods in the mysql.connector module, it

is possible to configure how MySQL Connector/Python should handle

warnings. There are two options: whether to automatically fetch all

warnings for a query and whether to elevate warnings to exceptions.

Chapter 9 Error Handling

412

MySQL works with three different severity levels for error messages:

•	 Note: This is a just a notification about what happened.

It is in general not a sign of problems. A note, for

example, happens when you create a database

(schema) with CREATE DATABASE IF NOT EXISTS

and the database does exist. In some cases, if a note

happens, often it can be a sign of underlying issues or

bad practices. So, you should not automatically dismiss

note level messages. By default, note level messages are

treated as warnings; this is controlled by the sql_notes

MySQL Server option.

•	 Warning: This is something that does not prevent

MySQL from continuing, but the behavior may not

be what you expect. It can, for example, occur if you

provide a value that does not fit into the column

definition and MySQL truncates or converts the

provided value. Some warnings, like the one in the

example, can be elevated to an error if MySQL Server

has the strict modes enabled.

•	 Error: This is for conditions that prevented MySQL

from executing the query. They will always raise an

exception in MySQL Connector/Python. An example

can be that a duplicate key error occurred.

In general, it is recommended to take all warnings and errors seriously.

A warning is often a sign that something is not as it should be, and

handling warnings from the very first stage of the development can avoid

major grief later on.

Chapter 9 Error Handling

413

Tip I f you handle all warnings from the start of the development
of an application, you won’t get caught out by unintended data
conversions or other problems. If warnings are ignored, as little
as a one-character typo can cause problems for years before it is
discovered.

There are two options that control how MySQL Connector/Python

handles warnings when connecting to MySQL using the mysql.connector

module. They are listed in Table 9-1.

Table 9-1.  Warning-Related Options

Name Default Value Description

get_warnings False When set to True, warnings are

automatically fetched after each

query. This makes it possible to fetch

warnings without manually executing

SHOW WARNINGS.

raise_on_warnings False When set to True, warnings cause

an exception to be raised. Setting

raise_on_warnings always sets

get_warnings to the same value.

Note: The exception will not be raised

until the warning is fetched. For queries

with a result, this means when the rows

are fetched.

Both options only apply when cursors are used. There are at the time

of writing no options to change the behavior of warnings when using the

X DevAPI in the mysqlx module.

Chapter 9 Error Handling

414

It is also possible to change the value of get_warnings and raise_on_

warnings after the connection has been made. This can, for example, be

useful to temporarily enable or disable the settings, as it can be seen in the

following code snippet:

import mysql.connector

db = mysql.connector.connect(

 get_warnings=True,

 raise_on_warnings=True,

 option_files="my.ini",

)

cursor = db.cursor()

db.get_warnings = False

db.raise_on_warnings = False

cursor.execute(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

db.get_warnings = True

db.raise_on_warnings = True

db.close()

It is recommended at least during development to enable both

raise_on_warnings and get_warnings. In production, it is also

recommended to at least check for warnings. The get_warnings

option does not have any overhead compared to manually fetching the

warnings because the SHOW WARNINGS statement is only executed if the

query returned warnings. When get_warnings is enabled, the warnings

can be retrieved using the fetchwarnings() method. Talking about

fetchwarnings(), let’s look at how warnings are fetched.

Chapter 9 Error Handling

415

�Fetching Warnings After cmd_query()
In the mysql.connector module, the way you fetch the warnings depends

on whether you execute the queries through the connection object or a

cursor. In either case, the warnings are retrieved using the SHOW WARNINGS

statement, but the cursor allows you to let it handle this for you.

When you execute queries directly through the connection object, you

must fetch the warnings yourself. Additionally, you must be careful that

you fetch all of the rows before you fetch the warnings because otherwise

you will get an error that you have unread rows. Extra care should be taken

if you have enabled consume_results because fetching the warnings in

that case will cause the original result to be dismissed.

Caution I f you have enabled consume_results, then executing
SHOW WARNINGS to get the warnings for the query will dismiss any
outstanding rows.

There are some differences of how warnings are handled when using

cmd_query() depending on whether the C Extension or the pure Python

implementation is used. So, it is worth looking at both cases.

Listing 9-1 shows an example where the C Extension implementation

is used, and the warnings are fetched after both a CREATE TABLE statement

and a SELECT statement.

Listing 9-1.  Checking Warnings with the C Extension

Implementation and cmd_query()

import mysql.connector

def print_warnings(warnings):

 �if mysql.connector.__version_info__[0:3] > (8, 0, 11):

 (warnings, eof) = warnings

Chapter 9 Error Handling

416

 for warning in warnings:

 print("Level : {0}".format(

 warning[0]))

 print("Errno : {0}".format(

 warning[1]))

 print("Message: {0}".format(

 warning[2]))

db = mysql.connector.connect(

 option_files="my.ini", use_pure=False)

This example only works with the C

Extension installed. Exit if that is

not the case.

is_cext = isinstance(

 db,

 mysql.connector.connection_cext.CMySQLConnection

)

if not is_cext:

 print("The example requires the C "

 + "Extension implementation to be "

 + "installed")

 exit()

print("Using the C Extension implementation\n")

Ensure the DDL statement will cause

a warnings by executing the same

CREATE SCHEMA IF NOT EXISTS statement

twice.

db.cmd_query(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

Chapter 9 Error Handling

417

For a DDL statement

result = db.cmd_query(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

print("Warnings for CREATE SCHEMA:")

print("---------------------------")

print("DDL: Number of warnings: {0}"

 .format(result["warning_count"]))

Get the warnings

db.cmd_query("SHOW WARNINGS")

warnings = db.get_rows()

print_warnings(warnings)

db.free_result()

print("")

Try a SELECT statement

result = db.cmd_query("SELECT 1/0")

rows = db.get_rows()

db.free_result()

print("Warnings for SELECT:")

print("--------------------")

print("SELECT: Number of warnings: {0}"

 .format(db.warning_count))

Get the warnings

db.cmd_query("SHOW WARNINGS")

warnings = db.get_rows()

print_warnings(warnings)

db.close()

The warnings are printed in the print_warnings() function. As there

is a change so the eof packet is also included when using the C Extension

in version 8.0.12 and later, it is necessary to have version dependent code.

The __version_info__ property is used for this.

Chapter 9 Error Handling

418

For the CREATE TABLE statement, the result returned by cmd_query()

directly has the number of warnings as the warning_count element. For

the SELECT statement, it is a little more complicated. It is necessary to

consume the result first and then the number of warnings can be found in

the warning_count property of the connection object.

The warnings themselves are fetched using the SHOW WARNINGS

statements, which are executed as any other statement. The output is

Using the C Extension implementation

Warnings for CREATE SCHEMA:

DDL: Number of warnings: 1

Level : Note

Errno : 1007

Message: Can't create database 'py_test_db'; database exists

Warnings for SELECT:

SELECT: Number of warnings: 1

Level : Warning

Errno : 1365

Message: Division by 0

There are three elements for each warning(): the severity (Note,

Warning, or Error), the error number (which will be discussed later in the

chapter), and an error message describing the error. If the C Extension is

not available, the program exits with the error:

The example requires the C Extension implementation to be installed

If you use the pure Python implementation there are a couple of

differences. First, the warning count for the SELECT statement can be found

in the eof part returned by get_row() or get_rows() for all versions. The

other thing is that the result of the SHOW WARNINGS statement() is returned

Chapter 9 Error Handling

419

as a byte array in MySQL Connector/Python 8.0.11, so it must be decoded.

Listing 9-2 shows the pure Python equivalent of the example for version

8.0.12 and later. The code examples include a version for 8.0.11 and earlier

in the file Chapter_09/listing_9_2_version_8_0_11.py.

Listing 9-2.  Checking Warnings with the Pure Python

Implementation and cmd_query()

import mysql.connector

def print_warnings(warnings):

 for warning in warnings:

 print("Level : {0}".format(

 warning[0]))

 print("Errno : {0}".format(

 warning[1]))

 print("Message: {0}".format(

 warning[2]))

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

print("Using the pure Python implementation\n")

Ensure the DDL statement will cause

a warnings by executing the same

CREATE SCHEMA IF NOT EXISTS statement

twice.

db.cmd_query(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

For a DDL statement

result = db.cmd_query(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

Chapter 9 Error Handling

420

print("Warnings for CREATE SCHEMA:")

print("---------------------------")

print("DDL: Number of warnings: {0}"

 .format(result["warning_count"]))

Get the warnings

db.cmd_query("SHOW WARNINGS")

(warnings, eof) = db.get_rows()

print_warnings(warnings)

print("")

Try a SELECT statement

result = db.cmd_query("SELECT 1/0")

(rows, eof) = db.get_rows()

print("Warnings for SELECT:")

print("--------------------")

print("SELECT: Number of warnings: {0}"

 .format(eof["warning_count"]))

Get the warnings

db.cmd_query("SHOW WARNINGS")

(warnings, eof) = db.get_rows()

print_warnings(warnings)

db.close()

The example goes through the same steps as before, but this time the

number of warnings for the SELECT statement is retrieved from the eof part

when fetching the rows. As before, the warning count is only available once

all rows() have been fetched. The output of the example is the same as

before except for the header:

Using the pure Python implementation

Chapter 9 Error Handling

421

Warnings for CREATE SCHEMA:

DDL: Number of warnings: 1

Level : Note

Errno : 1007

Message: Can't create database 'py_test_db'; database exists

Warnings for SELECT:

SELECT: Number of warnings: 1

Level : Warning

Errno : 1365

Message: Division by 0

If you use cursors, things are, as usual, a little simpler. Let’s look at how

cursors and warnings work.

�Fetching Warnings with Cursors
The work done when fetching warnings with a cursor is in principle

the same as when fetching them after using the cmd_query() method.

However, much of the work is handled in the background by the cursor,

which overall makes it simpler to use.

Listing 9-3 shows the equivalent example of what was examined in

Listing 9-1 and Listing 9-2, only this time a cursor is used instead with

get_warnings enabled.

Listing 9-3.  Fetching Warnings Using a Cursor with get_warnings

Enabled

import mysql.connector

def print_warnings(warnings):

 for warning in warnings:

Chapter 9 Error Handling

422

 print("Level : {0}".format(

 warning[0]))

 print("Errno : {0}".format(

 warning[1]))

 print("Message: {0}".format(

 warning[2]))

print("Using cursors\n")

db = mysql.connector.connect(

 option_files="my.ini")

cursor = db.cursor()

Ensure the DDL statement will cause

a warnings by executing the same

CREATE SCHEMA IF NOT EXISTS statement

twice.

cursor.execute(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

Enable retriaval of warnings

db.get_warnings = True

For a DDL statement

cursor.execute(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

Get the warnings

warnings = cursor.fetchwarnings()

print("Warnings for CREATE SCHEMA:")

print("---------------------------")

print("DDL: Number of warnings: {0}"

 .format(len(warnings)))

print_warnings(warnings)

print("")

Chapter 9 Error Handling

423

Try a SELECT statement

cursor.execute("SELECT 1/0")

rows = cursor.fetchall()

Get the warnings

warnings = cursor.fetchwarnings()

print("Warnings for SELECT:")

print("--------------------")

print("SELECT: Number of warnings: {0}"

 .format(len(warnings)))

print_warnings(warnings)

db.close()

Before any queries are executed, the get_warnings option is enabled.

This could also have been done in the option file or as a separate argument

for the mysql.connector.connect() function.

With get_warnings enabled, the workflow to get the warnings is

the same for DDL and SELECT statements. This is a major benefit of this

approach. The warnings are fetched using the fetchwarnings() method of

the cursor. This returns a list of warnings in the same way as in the previous

example. The number of warnings is found as the length of the list. For the

SELECT statement, you must retrieve all rows in the result set before fetching

the warnings. The output is the same as for Listing 9-1 and Listing 9-2:

Using cursors

Warnings for CREATE SCHEMA:

DDL: Number of warnings: 1

Level : Note

Errno : 1007

Message: Can't create database 'py_test_db'; database exists

Chapter 9 Error Handling

424

Warnings for SELECT:

SELECT: Number of warnings: 1

Level : Warning

Errno : 1365

Message: Division by 0

�Fetching Warnings with the X DevAPI
The handling of warnings when using the X DevAPI is similar to how it works

for cursors. The big difference is that warnings are part of the result object.

This ensures a uniform approach to working with warnings irrespectively of

which part of the X DevAPI is used and the query type executed.

The handling of warnings uses the same two methods no matter which

kind of result object is returned. The two methods are

•	 get_warnings(): Returns a list of tuples of the warnings

generated by the query

•	 get_warnings_count(): Returns an integer with the

number of warnings

There is no need to enable warnings before the query. The warnings

are always available.

As an example, let’s repeat the example used for cmd_query() and

cursors to see how warnings are handled in a program using the X

DevAPI. The resulting code can be seen in Listing 9-4.

Listing 9-4.  Handling Warnings with the X DevAPI

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

Chapter 9 Error Handling

425

Ensure the DDL statement will cause

a warnings by executing the same

CREATE SCHEMA IF NOT EXISTS statement

twice.

sql = db.sql(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

sql.execute()

For a DDL statement

sql = db.sql(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

result = sql.execute()

Get the warnings

print("Warnings for CREATE SCHEMA:")

print("---------------------------")

print("DDL: Number of warnings: {0}"

 .format(result.get_warnings_count()))

print(result.get_warnings())

print("")

Try a SELECT statement

sql = db.sql("SELECT 1/0")

result = sql.execute()

row = result.fetch_all()

Get the warnings

print("Warnings for SELECT:")

print("--------------------")

print("SELECT: Number of warnings: {0}"

 .format(result.get_warnings_count()))

print(result.get_warnings())

db.close()

Chapter 9 Error Handling

426

The example is similar to the cursor example except that the warning

count can be found using the get_warnings_count() method instead

of using the length of the warnings list. For a query returning rows

or documents as part of the result, the result much be fetched before

retrieving the warnings. The output is

Warnings for CREATE SCHEMA:

DDL: Number of warnings: 1

[{'level': 1, 'code': 1007, 'msg': "Can't create database

'py_test_db'; database exists"}]

Warnings for SELECT:

SELECT: Number of warnings: 1

[{'level': 2, 'code': 1365, 'msg': 'Division by 0'}]

The output shows that the warnings are returned as a list of

dictionaries. There is one major difference in the output compared to the

other examples: the severity level is an integer instead of a string. The

levels that can be returned are 1 and 2 with the following meaning:

•	 1: This is a note level message.

•	 2: This is a warning level message.

The code element of the warning dictionary is the MySQL error

number, but what does 1007 mean? Let’s find out.

�MySQL Error Numbers and SQL States
MySQL uses error numbers to specify which note, warning, or error event

has occurred. You saw in the examples how the warnings include the error

number. For exceptions that are discussed in the next section, the error

Chapter 9 Error Handling

427

numbers also play a central role. So before continuing, let’s pause and

consider the error numbers in more detail.

The error numbers are four- to five-digit numbers that uniquely

identify the warning or error encountered. The numbers are MySQL-

specific, so they cannot be compared to errors in other database systems.

Error numbers may be taken out of use if they are no longer relevant, but

they will not be reused. This means that it is safe to check whether a given

error number has been encountered and take action based on that.

In addition to the error number, there is also the SQL state, which

is meant to be portable across SQL databases. The price to pay for this

portability is that it is not possible to be as specific about the error. The

SQL states are, however, good to use to represent a group of errors. The

SQL state is only returned as part of an error exception.

The rest of this section will look at error numbers and SQL states.

�MySQL Error Numbers
The error numbers and SQL states for each known error can be found in

https://dev.mysql.com/doc/refman/en/error-handling.html. The

errors are grouped into server-side and client-side errors. The client-side

errors all have numbers between 2000 and 2999. Server-side errors use

the ranges 1000-1999 and above 3000. As these ranges suggest, there are

thousands of error numbers, and the number increases with each MySQL

version.

Fortunately, MySQL Connector/Python has a list of error

numbers mapped to constants. This allows you to use the constants

in the application if you need to check whether a given error has been

encountered. Using the constants makes it easier to see what the error is

when you read the code several years after writing it.

Chapter 9 Error Handling

https://dev.mysql.com/doc/refman/en/error-handling.html

428

For both the mysql.connector and mysqlx modules, the error code

constants are defined in the errorcode submodule and the use is the

same. Listing 9-5 shows an example of checking whether the warning

returned when attempting to create a database is that the database already

exists; in that case, it is safe to ignore the warning because you already

know that the database may exist.

Listing 9-5.  Comparing an Error Code Against a Constant from the

errorcode Module

import mysqlx

from mysqlx.errorcode import *

from config import connect_args

db = mysqlx.get_session(**connect_args)

Ensure the DDL statement will cause

a warnings by executing the same

CREATE SCHEMA IF NOT EXISTS statement

twice.

sql = db.sql(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

sql.execute()

For a DDL statement

sql = db.sql(

 "CREATE SCHEMA IF NOT EXISTS py_test_db")

result = sql.execute()

Get the warnings

for warning in result.get_warnings():

 if warning["code"] == ER_DB_CREATE_EXISTS:

 print("Ignoring the warning")

Chapter 9 Error Handling

429

 else:

 raise mysqlx.errors.DatabaseError(

 warning["msg"], warning["code"])

db.close()

This example imports all of the error codes from the mysqlx.

errorcode module. This allows you to check whether the error number

of the warning is ER_DB_CREATE_EXISTS (1007). If it is, the warning will be

ignored; otherwise, the warning will be used to raise an exception.

MySQL Connector/Python error exceptions also include the SQL state,

so before moving on to discuss the exception classes, let’s take a look at the

SQL states.

�SQL States
Unlike the MySQL error numbers, SQL states are shared among all

SQL databases. If you write code that is used with support for different

underlying database storages, it is good to use the SQL states as much as

possible because it makes it more likely to keep your application portable.

SQL states can also be used to determine the category of an error. In

MySQL Connector/Python, the SQL states are only used in connection

with error exceptions.

The SQL states consist of five letters and digits. The two first characters

define the class and the remaining three characters provide the detail.

Some common error classes can be seen in Table 9-2. The Exception

column is the exception class used for that SQL state class.

Chapter 9 Error Handling

430

Table 9-2.  Common SQL State Classes

Class Description Exception Comments

00 Success The query executed successfully.

This will never cause an exception.

01 Warning The query causes a warning. This

will only cause an exception if the

raise_on_warnings option is

enabled.

02 No data DataError This can originate in stored programs

when no more data exists for a query.

08 Connection

exception

OperationalError This covers various issues in creating

the connection like too many
connections, MySQL Connector/

Python does not support the

authentication protocol requested by

the server, etc. The error must occur

server side for this SQL state class.

21 Count is

wrong

DataError Occurs, for example, for inserts

where the number of values given

does not match the number of fields

specified.

22 Data does

not fit

DataError Occurs, for example, if a string is

too long for the column or a numeric

value is out of range.

23 Constraint

violation

IntegrityError Occurs when a unique key constraint

fails, a foreign key is violated, or

attempting to specify NULL as a

value for a NOT NULL column.

(continued)

Chapter 9 Error Handling

431

Table 9-2.  (continued)

Class Description Exception Comments

25 Invalid

transaction

state

ProgrammingError Occurs if you try to perform an action

that is not allowed with the current

transaction state. For example, if you

attempt to insert data in a read-only

transaction.

28 Not

authorized

ProgrammingError The connection failed due to using

wrong credentials.

3D No schema ProgrammingError Occurs when executing a query

without a default database (schema)

and the database is not explicitly set

in the query.

40 Transaction

errors

InternalError This can, for example, happen due

to deadlocks. Another cause is using

MySQL Group Replication and a

transaction is rolled back during the

commit because it cannot be applied

to all nodes.

42 Syntax error

or no access

ProgrammingError The error occurs when the SQL

statement is not valid or you do not

have permission to access the data

requested.

(continued)

Chapter 9 Error Handling

432

There are more SQL state classes, but the ones listed in Table 9-2 are

those most commonly encountered in MySQL Connector/Python. Each

SQL state class is mapped to an exception class. So, let’s look at how the

exception classes work.

Caution  Syntax errors (SQL state class 42) may be a sign of SQL
injection attempts. Make sure to give these errors high priority.

�Exception Classes
MySQL Connector/Python uses exceptions to report errors encountered

either while processing the commands inside the connector or if there

are errors when a query is executed. The exception can be one of three

categories, as discussed in this section.

Class Description Exception Comments

HY Other error DatabaseError For errors that do not have a more

specific SQL state defined. This, for

example, includes a lock wait timeout

for InnoDB. MySQL error numbers

1210 and 1243 are exceptions

to using the DatabaseError

exception class; these two errors

raise a ProgrammingError

exception instead.

XA XA

transactions

IntegrityError Used for all errors related to XA

transactions.

Table 9-2.  (continued)

Chapter 9 Error Handling

433

The possible exception categories range from the standard Python

exceptions to custom exceptions created by the developer. The three

categories are

•	 Standard Python exceptions: Used for non-MySQL-

related errors and will not be discussed in more detail.

•	 MySQL Connector/Python built-in exceptions:

The ones you will encounter when a MySQL-related

error is encountered, unless the exception has been

overwritten by a custom exception.

•	 Custom exceptions: It is possible to define your own

exception and register it for a given MySQL error

number.

The rest of this section will discuss the built-in MySQL Connector/

Python exceptions and custom exceptions.

�Built-In Classes
A number of exception classes are predefined in MySQL Connector/

Python depending on the type of the error. Let’s explore them.

The predefined classes are mostly the same whether the mysql.

connector or mysqlx module is used, and they will be discussed together.

The classes all use the errors.Error class as their base except for the

Warning class. All classes based on errors.Error have the same properties

available.

Table 9-3 summarizes the exception classes used in MySQL

Connector/Python and which module(s) they are available in. All classes

exist in the errors submodule (i.e. mysql.connector.errors or mysqlx.

errors depending on which module is used).

Chapter 9 Error Handling

434

Table 9-3.  MySQL Connector/Python Exception Classes

Exception Class Modules Description

DatabaseError mysql.connector

mysqlx

For general database errors. This

class is not often used directly except

for SQL states starting with HY.

DataError mysql.connector

mysqlx

Errors related to the data that are

not constraint errors. Examples

include that the data is of the wrong

type or does not fit into the field

or the wrong number of values is

provided.

Error mysql.connector

mysqlx

This is the base exception class. It

is not used directly.

IntegrityError mysql.connector

mysqlx

Constraint error or XA transaction

errors.

InterfaceError mysql.connector

mysqlx

Used for errors related to the

connection.

InternalError mysql.connector

mysqlx

Internal database errors such as

deadlocks and unhandled results.

NotSupportedError mysql.connector

mysqlx

Occurs when a feature that has not

been implemented is used. This is

often related to using features in the

wrong context, such as returning

a result set in a stored function. It

is also used when attempting to

connect using the pre-4.1.1 (MySQL

Server version) authentication

protocol when it is not available.

(continued)

Chapter 9 Error Handling

435

The following classes are all subclasses of the DatabaseError class:

InternalError, OperationalError, ProgrammingError, IntegrityError,

DataError, and NotSupportedError.

All of the characteristics of the classes are defined in the base Error

class, so they will be the same for all of the exception classes except the

Warning class. The Warning class has no special features beyond what

all exceptions have. To aid the discussion of the features of the error

exceptions, consider the following uncaught exception:

mysql.connector.errors.ProgrammingError: 1046 (3D000): No

database selected

Table 9-3.  (continued)

Exception Class Modules Description

OperationalError mysql.connector

mysqlx

Errors related to the operation of

the database. This is most often

encountered when making the

connection.

PoolError mysql.connector

mysqlx

For errors related to a connection

pool.

ProgrammingError mysql.connector

mysqlx

Errors related to the application in a

broad sense. Includes syntax errors

and attempting to access database

objects that do not exist or the user

does not have access to.

Warning mysql.connector Used for important warnings.

Chapter 9 Error Handling

436

The error classes have three public properties that can be used when

handling the exception:

•	 msg: This is the string describing the error. In the

example, it’s “No database selected.”

•	 errno: The MySQL error number. In the example, it’s

1046.

•	 sqlstate: The SQL state. In the example, it’s 3D000.

Listing 9-6 shows an example that triggers the same exception as the

one just discussed. The exception is caught and each of the properties

is printed. Finally, the error number is compared to a constant from the

errorcode submodule.

Listing 9-6.  Example of Handling an Exception

import mysql.connector

from mysql.connector import errors

from mysql.connector.errorcode import *

db = mysql.connector.connect(

 option_files="my.ini")

cursor = db.cursor()

try:

 cursor.execute("SELECT * FROM city")

except errors.ProgrammingError as e:

 print("Msg: {0}"

 .format(e.msg))

 print("Errno: {0}"

 .format(e.errno))

 print("SQL State ...: {0}"

 .format(e.sqlstate))

Chapter 9 Error Handling

437

 print("")

 if e.errno == ER_NO_DB_ERROR:

 print("Errno is ER_NO_DB_ERROR")

db.close()

The exception is caught as usual in Python, and the usage of the properties

is straightforward. As you saw earlier, the error number can be compared

against a constant in the errorcode submodule to make it easier to see which

error the exception is compared against. The output of the example is

Msg: No database selected

Errno: 1046

SQL State ...: 3D000

Errno is ER_NO_DB_ERROR

How does MySQL Connector/Python decide which of the classes

should be used? This was partly answered in the previous section when the

SQL states were discussed, but let’s look at the topic in a little more detail.

�Mapping Errors to Exception Classes
When an error occurs, MySQL Connector/Python uses the error number

and the SQL state to determine which exception class to use. In most

cases, you do not need to worry about this, but in some cases, you may

need to modify which class is used (currently this is only supported for

the mysql.connector module), and in all cases it can be useful to have an

understanding of the underlying process.

The exception class is determined using the following steps:

	 1.	 If a custom exception has been defined for the

MySQL error number, use it. Custom exceptions are

only available for the mysql.connector module and

will be discussed after these steps.

Chapter 9 Error Handling

438

	 2.	 If the MySQL error number is defined in the

errors._ERROR_EXCEPTIONS list, use the class

defined there for that error.

	 3.	 If there is no SQL state defined for the error, use the

DatabaseError class. This happens for warnings that

are raised as errors.

	 4.	 Find the class in the errors._SQLSTATE_CLASS_

EXCEPTION list based on the SQL state.

	 5.	 Use the DatabaseError class.

If you need an error to trigger a different exception, it is of course

possible to modify the _ERROR_EXCEPTIONS and _SQLSTATE_CLASS_

EXCEPTION lists. However, this is not recommended because they are

meant to be private (thus the underscore at the beginning of the name). In

the mysql.connector module, there is a better way: a custom exception.

�Custom Exceptions
In some cases, it can be useful to use a custom exception to handle specific

errors. It may be that you want to trigger a special workflow when the error

occurs, for example to log a message to the application log. Currently only

the mysql.connector module has support for custom exceptions.

A custom exception is registered using the errors.custom_error_

exception() function. You need to provide the MySQL error number that will

use the exception and the exception itself. It is recommended that the custom

exception class inherits the error.Error class to include the basic features.

Listing 9-7 shows an example where the MyError class is used for the

ER_NO_DB_ERROR error. The only difference compared to the normal classes

is that it prints a message with the information of the error to stderr. If you

are using Python 2.7, you need add "from __future__ import print_

function" as the first line of the code.

Chapter 9 Error Handling

439

Listing 9-7.  Using a Custom Exception

import mysql.connector

from mysql.connector import errors

from mysql.connector.errorcode \

 import ER_NO_DB_ERROR

Define the custom exception class

class MyError(errors.Error):

 def __init__(

 self, msg=None, errno=None,

 values=None, sqlstate=None):

 import sys

 super(MyError, self).__init__(

 msg, errno, values, sqlstate)

 print("MyError: {0} ({1}): {2}"

 .format(self.errno,

 self.sqlstate,

 self.msg

), file=sys.stderr)

Register the class

errors.custom_error_exception(

 ER_NO_DB_ERROR,

 MyError

)

Now cause the exception to be raised

db = mysql.connector.connect(

 option_files="my.ini")

Chapter 9 Error Handling

440

cursor = db.cursor()

try:

 cursor.execute("SELECT * FROM city")

except MyError as e:

 print("Msg: {0}"

 .format(e.msg))

 print("Errno: {0}"

 .format(e.errno))

 print("SQL State ...: {0}"

 .format(e.sqlstate))

db.close()

First, the MyError class is defined. It calls the __init__ method of its

own super class to set up all of the standard properties. Then the error

message is printed to stderr. This could also use a logging service or use

some other logic. Second, the MyError class is registered as the exception

class for errors with the MySQL error number set to ER_NO_DB_ERROR.

The rest of the program is the same as before except that you now catch

the MyError exception instead of the ProgrammingError exception. The

output when executing the program is

MyError: 1046 (3D000): No database selected

Msg: No database selected

Errno: 1046

SQL State ...: 3D000

This assumes that stderr and stdout are both printed to the

console. It is left as an exercise to first redirect stderr and then stdout to

somewhere else and see how this changes the output.

There are also issues that do not necessarily return a warning or an

error. One group of issues that may or may not return errors is locking

issues. Since locking issues are about working with a database, you should

check them out.

Chapter 9 Error Handling

441

�Locking Issues
Locking issues occur when two or more transactions (which can be single

queries) attempt to access or update the same data in an incompatible

way. The topic of locks in databases is large and complex, but also

interesting. It is beyond the scope of this book to go into details about

locking, but this section will provide a brief overview.

Note  The lock discussion is simplified; for example, only row
(record) locks are mentioned. Some of the other locks are gap locks,
table locks, metadata locks, and the global read lock. There are also
different lock types such as intention locks. The transaction isolation
level also plays a role with locks. The MySQL Reference Manual
has several pages about InnoDB locking alone. The starting point is
https://dev.mysql.com/doc/refman/en/innodb-locking-
transaction-model.html.

The reason for locking is to allow concurrent access to the data while

still ensuring a consistent result. If one transaction updates a given row

and then another transaction attempts to update the same row, the second

transaction must wait for the first transaction to complete (commit or

rollback) before it can access the row. If this was not the case, the end

result would be nondeterministic.

The two transactional storage engines in MySQL, InnoDB and

NDBCluster, both uses row-level locks. This means that only the rows read

or changed by a query are locked. Since it is not known until the row is

accessed whether it is needed, queries execute optimistically, assuming it

will be possible to obtain the required locks.

The optimistic approach works great most of the time, but it also

means that sometimes a query will have to wait for a lock. It can even be

that the wait is so long that a timeout occurs.

Chapter 9 Error Handling

https://dev.mysql.com/doc/refman/en/innodb-locking-transaction-model.html
https://dev.mysql.com/doc/refman/en/innodb-locking-transaction-model.html

442

Another possibility is that a conflict occurs where two transactions

are waiting for locks from each other. That situation will never resolve by

itself and is called a deadlock. The name deadlock sounds scary, but it

is just a name for a situation where the database must intervene for the

lock issue to resolve. InnoDB chooses the transaction that has done the

least work and rolls it back. A deadlock error is returned in that case so the

application knows why the transaction failed. Listing 9-8 shows a simple

example where two connections end up with a deadlock.

Listing 9-8.  Example of Two Transactions Causing a Deadlock

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.00 sec)

Connection 1> UPDATE world.city

 SET Population = Population + 100

 �WHERE Name = 'San Francisco' AND

CountryCode = 'USA';

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.00 sec)

Connection 2> UPDATE world.city

 SET Population = Population + 200

 WHERE Name = 'Sydney' AND CountryCode = 'AUS';

Query OK, 1 row affected (0.04 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Connection 1> UPDATE world.city

 SET Population = Population + 100

 WHERE Name = 'Sydney' AND CountryCode = 'AUS';

-- Connection 1 blocks until the deadlock occurs for Connection 2.

Chapter 9 Error Handling

443

Connection 2> UPDATE world.city

 SET Population = Population + 200

 �WHERE Name = 'San Francisco' AND

CountryCode = 'USA';

ERROR 1213 (40001): Deadlock found when trying to get lock; try

restarting transaction

Both transactions try to increase the population of Sydney and San

Francisco; the one in Connection 1 with 100 people, the one in Connection

2 with 200 people. However, they update the two cities in the opposite

order and interleaved. So, in the end, Connection 1 waits for the lock

on Sydney to be released and Connection 2 waits for the lock on San

Francisco to be released. This will never happen, so it is a deadlock.

Lock waits and deadlocks are facts of life when working with fine-

grained locks. It is important that you have this in mind and ensure

that your application can handle lock issues. If a lock wait timeout or a

deadlock only happens rarely, it is usually enough to retry the transaction.

If the issues occur so often that they affect performance, you need to work

at reducing the lock contention. The next chapter will briefly discuss

troubleshooting locks.

Tip  Make sure your application can handle lock waits and
deadlocks. The first approach is to retry the transaction, possibly with
a small delay to give the other transaction a chance to complete.
Frequently recurring lock issues should be investigated further.

The final thing to discuss is what to do when a warning, an error, or

some other issue occurs.

Chapter 9 Error Handling

444

�What to Do When Things Go Wrong
Thus far, the discussion about warnings and errors has been focused on

how warnings and errors work with MySQL Connector/Python. A rather

important question remains, though: What do you do when you encounter

warnings, errors, and other issues?

The short answer to this question is that “it depends.” Not only does it

depend on the issue, it also depends on the circumstances. Some things to

consider are the following:

•	 Severity: How critical is the issue?

•	 Impact: How many and who are impacted by the issue?

•	 Frequency: How often does the issue occur?

•	 Retriable: Is it worth retrying the action that led to the

error?

•	 Effort: How much work does it take to avoid the issue?

Another consideration is how to report a failure. If it involves a

production environment, a relatively short, concise message is best. If

possible, provide information how to avoid the issue and/or how to get help.

It may seem like a good idea to include the full stack trace and exact

exception; however, the end user cannot use that information. In fact, in some

cases it looks unprofessional to return so many details to the front end, and it

may even reveal details about the application the end user should not know.

The full details of the error, including the trace, are of course of great

interest to the developers. Exactly how to log it depends on the application,

but it can be written to the application log or a separate error log. Another

option in the development environment is to support a “debug” mode

that outputs the full details to the front end to make it easier to get the

information during testing.

In the end, exactly how you want to present an error depends on your

specific needs, the target users, and so on. In some cases, it may even be

Chapter 9 Error Handling

445

possible to avoid the end user being affected by the issue encountered.

Which brings us back to the five items listed at the start of this section; they

will be discussed in the following subsections.

�Severity
The severity of the issue is how critical it is for the rest of the application

and the users. If an error causes the application not to work at all, it is

obviously more critical to handle that error than one that, for example,

causes a slightly slower response.

High severity issues need to be handled quickly. If it is a security issue,

or the web site unavailable, a delayed solution can cost the company

money. On the other hand, if one out of a million requests takes 5% longer to

handle than normal, it may still be an annoyance but hardly something that

warrants dropping everything you are doing. Together with the severity, the

impact is the other major factor in deciding the urgency of the issue.

�Impact
It makes a big difference whether an issue is encountered in a customer-

facing production environment, an internal non-critical application, or

a development system. The higher the number of users affected and the

more the company relies on the application to work, the more urgent it is

to fix the issue.

Within a given environment there can also be differences. Consider a

development environment. If you are the only one affected and the issue

does not impact what you are currently working on, you can postpone

working on a solution.

However, if 100 other developers are sitting around and twiddling their

thumbs or have their work impacted, it becomes more urgent to solve the

issue. The frequency of the issue obviously also has an influence on the

impact.

Chapter 9 Error Handling

446

�Frequency
The frequently of an issue affects how much effort is required. If you

encounter a deadlock or a lock wait timeout once in a blue moon, it is

perfectly fine to just retry the query (see also the next item). If the same

locking issue occurs several times a minute, it is necessary to investigate

how the issue can be avoided.

The limit where an issue occurs too often depends on the nature of

the issue, which ties the frequency back to the severity and impact. If

customers experience the application crashes, it very quickly becomes an

issue that must be handled immediately. Likewise, a reporting job that fails

after an hour and must be restarted from the beginning.

On the other hand, if the same one-hour reporting job gets delayed by

some seconds each time the issue occurs, it won’t likely be a priority.

�Retriable
The errors you will encounter in MySQL Connector/Python can be divided

into two groups: those that will always keep failing no matter how many

times you try, and those that may succeed if you retry them. The latter

deserves a little more attention because you can add support for handling

them automatically.

Retriable errors are typically caused either by lock contention or

resource exhaustion. I have already discussed locks, so let’s look closer at

what causes resource exhaustion from a MySQL point of view.

There are several places in the lifetime of a connection when resources

are required. When the connection is first created, there must be more

connections available in MySQL Server, and the operating system must allow

for the creating of a new thread (by default MySQL creates one operating

system thread per connection). When a query is executed, it will require

memory for various parts of the execution, for example to sort a result. If you

Chapter 9 Error Handling

447

Table 9-4.  MySQL Error Numbers That May Be Retried

Error # Constant SQL State Description

1028 ER_FILSORT_ABORT HY000 A sorting operation has been

aborted.

1038 ER_OUT_OF_SORTMEMORY HY001 A sorting operation was aborted

due to not having enough

memory. It may be necessary

to increase the sort_buffer_

size MySQL session variable.

1040 ER_CON_COUNT_ERROR 08004 MySQL Connector/Python fails

to connect to MySQL Server

because all allocated connections

(max_connections) are

already in use.

1041 ER_OUT_OF_RESOURCES HY000 MySQL Server is out of memory

but may be able to continue.

(continued)

insert or change the data, it may also cause the table to grow, which requires

additional disk space. If these resources get exhausted, the query will fail.

Not all of these errors are equally likely to go away if you retry the

query. For example, if the disk is full, it likely requires the database

administrator and/or system administrator to intervene before it is

possible to insert data again. On the other hand, if you have a locking issue

and your transactions are all of short duration, then retrying the failed

transaction is likely to succeed.

Table 9-4 shows some of the typical error numbers where a retry is an

option.

Chapter 9 Error Handling

448

Table 9-4.  (continued)

Error # Constant SQL State Description

1043 ER_HANDSHAKE_ERROR 08S01 This can happen when creating

the connection, if there are

network problems.

1114 ER_RECORD_FILE_FULL HY000 The table is full.

1135 ER_CANT_CREATE_THREAD HY000 It is not possible to create the

thread for a new connection.

This may be due to exhaustion

of the memory, file descriptors,

or allowed number of processes.

1180 ER_ERROR_DURING_COMMIT HY000 An error occurred while

committing a transaction.

1181 ER_ERROR_DURING_

ROLLBACK

HY000 An error occurred while rolling

back a transaction.

1203 ER_TOO_MANY_USER_

CONNECTIONS

42000 The user has too many

connections.

1205 ER_LOCK_WAIT_TIMEOUT HY000 The transaction waited for longer

than the timeout (50 seconds by

default for InnoDB) for a lock.

1206 ER_LOCK_TABLE_FULL HY000 This can happen for InnoDB

if there are too many locks

compared to the size of the InnoDB

buffer pool. It is only worth retrying

if it is not the transaction itself

causing the large number of locks.

(continued)

Chapter 9 Error Handling

449

Error # Constant SQL State Description

1213 ER_LOCK_DEADLOCK 40001 A deadlock occurred, and this

transaction was chosen as the

victim.

1226 ER_USER_LIMIT_REACHED 42000 A user resource limit has been

exceeded.

1613 ER_XA_RBTIMEOUT XA106 The XA transaction was rolled

back because it took too long.

1614 ER_XA_RBDEADLOCK XA102 The XA transaction was rolled

back due to a deadlock.

1615 ER_NEED_REPREPARE HY000 The prepared statement needs

to be prepared again.

The list of errors is not meant to be exhaustive, and the chance of

success of retrying them varies.

Note that you may be able to code a solution for some errors. For

example, error number 1456 (ER_SP_RECURSION_LIMIT, SQL state HY000)

happens if you exceed the recursion depth allowed by the max_sp_

recursion_depth variable. If you have set this option to a relatively low

value, but accept increasing it in some cases, you can increase the value

for the session and retry. Obviously, it would be better for this specific case

if the value was increased before the first attempt, but there may be some

special considerations that prevent this.

If you decide to retry a transaction, you also need to decide whether it

is enough to retry the latest statement or if the whole transaction must be

retried. Usually the latter is the case and, in all cases, it is the safest.

Table 9-4.  (continued)

Chapter 9 Error Handling

450

Caution I t may be tempting just to retry the last statement in a
transaction but be careful because the preceding statements may
have been rolled back.

It can be tempting to automatically retry queries that fail because of a

lost connection. However, be careful in that case to ensure that everything

the query relies on, such as earlier queries in the same transaction, are also

reexecuted.

�Effort
The last thing of note is the effort to resolve an issue. In an ideal world, all

bugs get fixed, but in reality, resources are limited so it is often necessary to

prioritize. This idea ties together all of the previous considerations.

The larger a software project is, the more complicated it becomes

to determine which issues should be fixed in which order. There may

be several conflicting interests, such as two customers being affected by

different issues. There may also be a requirement for the development of

new features to stay on track. In such cases, it can be necessary to have

several parties included in the discussions to prioritize the work that is

required.

This completes the discussion of warnings and error handling in

MySQL Connector/Python. A related topic is how to troubleshoot the

errors you encounter, which will be discussed in the next chapter.

�Summary
This chapter explored how warnings and errors work in MySQL Server and

MySQL Connector/Python. There are three severity levels of warnings and

errors: notes, warnings, and errors.

Chapter 9 Error Handling

451

You started out looking at how the sql_notes option in MySQL Server

can be used to change whether note level messages are treated as warnings

or not. It is also possible to configure whether MySQL Server should

operate in a strict mode or not. Finally, you saw that you should monitor

the MySQL error log to check whether the application is causing any

messages to be logged.

In MySQL Connector/Python, you should check for warnings and

verify whether they are a sign of a more severe issue. At least during

development, it can be useful to make MySQL Connector/Python raise

warnings as exceptions; however, that is only available when using cursors

with the mysql.connector module, and it still requires you to fetch the

warnings.

Error messages consist of an error number, an SQL state, and a

text message. The error numbers are also available as constants in the

errorcode submodule of both mysql.connector and mysqlx. Using the

constants make it easier to understand which errors are in use, when you

get back to that part of the code and can no longer remember the meaning

of, for example, error number 1046.

The SQL states can be used to determine the overall category of

the error. They are also used together with the error number to decide

which exception class to use. Non-MySQL errors in general use one of

the standard Python exception classes whereas MySQL errors use one of

several classes specific to MySQL Connector/Python. When you use the

mysql.connector module, it is also possible to register your own custom

exception class for a given MySQL error number.

The final part of the chapter looked into what locking issues are and

what to do when an issue is encountered. In the end, an error may require

troubleshooting, which is the topic of the next chapter.

Chapter 9 Error Handling

453© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9_10

CHAPTER 10

Troubleshooting
You have written a large and complex application and there is just a short

time left before the deadline. You start the final testing, but something

is not working as expected. Once the application is in production, a

customer or a support engineer may complain about errors. How do you

troubleshoot these issues as quickly and efficiently as possible? Read on!

Tip  There are a couple of example programs in this chapter. All
example programs that appear in a listing are available for download.
See the discussion of example programs in Chapter 1 for more
information about using the example programs.

�Troubleshooting Steps
When you are new to a programming language, library, database, or the

like, it can be difficult to troubleshoot an issue. To help you troubleshoot

in MySQL Connector/Python, this section will discuss some general

troubleshooting techniques that are specific to MySQL Connector/Python.

It is also recommended to become familiar with general software, Python,

and MySQL troubleshooting.

454

Tip  One book that may be of use for general MySQL
troubleshooting is MySQL Troubleshooting by Sveta Smirnova
(http://shop.oreilly.com/product/0636920021964.do). It
is some years old now, so it does not cover all of the latest features,
but it still provides a good starting point if you are not familiar with
MySQL troubleshooting.

Before you dive in and start working on your troubleshooting skills,

remember that the problems that are easiest to solve are those that are

discovered immediately when the code is written. So, make sure you have

a good test framework in place and that you have good test coverage.

Tip  Having a good test suite is the first step to avoiding issues that
will later take master troubleshooting skills to debug.

The troubleshooting discussion will start by going through the five

general means of troubleshooting MySQL Connector/Python issues:

check the warnings; determine the SQL statement; work with raw data;

the MySQL Connector/Python source code; and change the MySQL

Connector/Python implementation. Additionally, the next subsection will

describe the MySQL server logs, which can also be useful.

�Checking Warnings
The checking of warnings was discussed in the previous chapter. So, this

just serves to reiterate that it is important to check the warnings because

they can be an early indicator that something is wrong, something that

may cause more severe errors later. Errors can occur within in the same

program execution or surface at a later time, even years later.

Chapter 10 Troubleshooting

http://shop.oreilly.com/product/0636920021964.do

455

Therefore, optimally your program should not cause any warnings

except when you are fully aware of why the warning was created and

the warning can be handled explicitly. An example of when a warning is

expected is for EXPLAIN statements where the reformatted query and other

information can be returned through warnings.

The recommendation is to check all warnings and if possible enable

raise_on_warnings to cause an exception when a warning occurs. It

may be impossible to completely avoid warnings, but if you handle them

explicitly either by catching the exception or by temporarily disabling

raise_on_warnings, at least it ensures you are aware of the warnings that

do occur, and you can investigate the cause of them. One way to investigate

the cause of a warning is to look at the exact SQL statement executed; this

is the next topic.

�Determining the SQL Statement
In some cases, it is very clear which SQL statement is executed, for

example whenever you execute an explicitly written SQL statement.

However, in other cases, it is less clear. You may use parameters, execute

queries through the X DevAPI, or use some other framework that generates

the actual SQL statements for you.

Once you have the statement, you can try to execute it manually, for

example, through MySQL Shell. Using a command-line client is a great way

to debug SQL statements, and MySQL Shell supports both executing SQL

statements directly and using Python code.

Let’s look at how you can find out which SQL statements are actually

executed. There are various ways to extract the queries. The following

examples show how to get the statement for cursor, a select statement

in the X DevAPI, and the general case using the MySQL Performance

Schema.

Chapter 10 Troubleshooting

456

�cursor.statement

When you use a cursor, you can retrieve the last executed query in the

statement property of the cursor. This even works with parameters

because the query returned is with the parameter substitution. The

following example shows how the SQL statement is found:

import mysql.connector

db = mysql.connector.connect(

 option_files="my.ini",

)

cursor = db.cursor()

cursor.execute(

 "SELECT * FROM world.city WHERE ID = %(id)s",

 params={"id": 130}

)

print("Statement: {0};"

 .format(cursor.statement))

db.close()

This prints the following output:

Statement: SELECT * FROM world.city WHERE ID = 130;

�mysqlx SelectStatement.get_sql()

For select statements in the X DevAPI, the get_sql() method returns the

statement that is generated based on the query definition. This works

like the cursor statement property, except parameter substitution is not

included. An example of using get_sql() to retrieve the statement is

Chapter 10 Troubleshooting

457

import mysqlx

from config import connect_args

db = mysqlx.get_session(**connect_args)

world = db.get_schema("world")

city = world.get_table("city")

stmt = city.select()

stmt.where("ID = :city_id")

stmt.bind("city_id", 130)

print("Statement: {0}"

 .format(stmt.get_sql()))

db.close()

This prints the following output:

Statement: SELECT * FROM world.city WHERE ID = :city_id

What may seem surprising here is that instead of the actual ID, the

placeholder name is used (:city_id). The X DevAPI does not apply the

binding until execution time, so when using get_sql() to generate the

SQL statement, only the name of the placeholder is available.

�Using the Performance Schema

A method that can be used in all cases except when prepared statements

are used is to query the MySQL Performance Schema. This is easiest to do

on a test instance where you can ensure no other queries are executed.

Similar steps can be used on busy servers as well but this requires a bit

more care and filtering to find the queries from the application.

In order to use the Performance Schema, you need to prepare the

configuration, so queries are captured and kept even when the application

Chapter 10 Troubleshooting

458

has closed its connection. One way to do this is to enable the events_

statements_history_long consumer and disable monitoring for the

database connection that will retrieve the queries:

mysql> UPDATE performance_schema.setup_consumers

 SET ENABLED = 'YES'

 WHERE NAME = 'events_statements_history_long';

Query OK, 1 row affected (0.09 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> UPDATE performance_schema.threads

 SET INSTRUMENTED = 'NO'

 WHERE PROCESSLIST_ID = CONNECTION_ID();

Query OK, 1 row affected (0.11 sec)

Rows matched: 1 Changed: 1 Warnings: 0

At this point, it is possible to execute the part of the application that

you need to get the queries from. Consider the example program in Listing

10-1 that executes one select statement on the city table in the world

schema using both the mysql.connector module and the X DevAPI’s CRUD

access to SQL tables (so two queries in total).

Listing 10-1.  Executing Two Simple Queries Using mysql.connector

and mysqlx

import mysql.connector

import mysqlx

from config import connect_args

Execute a query using the traditional

API

db_trad = mysql.connector.connect(

 option_files="my.ini")

cursor = db_trad.cursor()

Chapter 10 Troubleshooting

459

sql = """SELECT *

 FROM world.city

 WHERE ID = %(id)s"""

params = {'id': 130}

cursor.execute(sql, params=params)

for row in cursor.fetchall():

 print(row)

db_trad.close()

Execute a query using the X DevAPI

dbx = mysqlx.get_session(**connect_args)

world = dbx.get_schema("world")

city = world.get_table("city")

city_stmt = city.select()

city_stmt.where("ID = :city_id")

city_stmt.bind("city_id", 131)

res = city_stmt.execute()

for row in res.fetch_all():

 print("({0}, '{1}', '{2}', '{3}', {4})"

 .format(

 row[0], row[1],

 row[2],row[3],row[4]

))

dbx.close()

Once the execution has completed, you can get the queries the

program executed using a statement like in Listing 10-2. A LIMIT 8

has been added because in general there can be up to 10,000 rows in

the output. Since the queries executed by other connections will also

be recorded, it may not be the first rows returned that are the ones for

the example program, in which case it can be necessary to increase the

number of rows included in the output.

Chapter 10 Troubleshooting

460

Listing 10-2.  Obtaining the Statements from the Performance

Schema

mysql> SELECT THREAD_ID, EVENT_ID, EVENT_NAME, SQL_TEXT

 FROM performance_schema.events_statements_history_long

 ORDER BY THREAD_ID DESC, EVENT_ID

 LIMIT 8\G

*************************** 1. row ***************************

 THREAD_ID: 182

 EVENT_ID: 1

EVENT_NAME: statement/sql/set_option

 SQL_TEXT: SET NAMES 'utf8' COLLATE 'utf8_general_ci'

*************************** 2. row ***************************

 THREAD_ID: 182

 EVENT_ID: 2

EVENT_NAME: statement/sql/set_option

 SQL_TEXT: SET NAMES utf8

*************************** 3. row ***************************

 THREAD_ID: 182

 EVENT_ID: 3

EVENT_NAME: statement/sql/set_option

 SQL_TEXT: set autocommit=0

*************************** 4. row ***************************

 THREAD_ID: 182

 EVENT_ID: 4

EVENT_NAME: statement/com/Ping

 SQL_TEXT: NULL

*************************** 5. row ***************************

Chapter 10 Troubleshooting

461

 THREAD_ID: 182

 EVENT_ID: 5

EVENT_NAME: statement/sql/select

 SQL_TEXT: SELECT *

 FROM world.city

 WHERE ID = 130

*************************** 6. row ***************************

 THREAD_ID: 182

 EVENT_ID: 7

EVENT_NAME: statement/com/Quit

 SQL_TEXT: NULL

*************************** 7. row ***************************

 THREAD_ID: 179

 EVENT_ID: 1

EVENT_NAME: statement/sql/select

 SQL_TEXT: �/* xplugin authentication */ SELECT @@require_

secure_transport, `authentication_string`,

`plugin`,(`account_locked`='Y') as is_account_

locked, (`password_expired`!

ord`, @@offline_mode and (`Super_priv`='N') as `is_offline_

mode_and_not_super_user`,`ssl_type`, `ssl_cipher`, `x509_

issuer`, `x509_subject` FROM mysql.user WHERE 'pyuser' = `u

*************************** 8. row ***************************

 THREAD_ID: 179

 EVENT_ID: 3

EVENT_NAME: statement/sql/select

 SQL_TEXT: SELECT * FROM `world`.`city` WHERE (`ID` = 131)

8 rows in set (0.00 sec)

Chapter 10 Troubleshooting

462

The rows with THREAD_ID = 182 are the queries when using the mysql.

connector module, and the rows with THREAD_ID = 179 are for the mysqlx

module. The actual thread and event IDs will be different and, as you can

see from this example, the thread IDs are not monotonically increasing

(the example created the connection with THREAD_ID = 182 before the one

with THREAD_ID = 179). The statements for a given thread ID are executed

in the order of the EVENT_ID.

As you can see, executing a query through MySQL Connector/

Python includes executing other queries and commands as well. The two

highlighted queries are the ones you asked to be executed.

The performance_schema.events_statements_history_long table

does not include queries executed as server-side prepared statements.

They can be found in the performance_schema.prepared_statements_

instances, but only aggregated per prepared statement and only as long as

the application is connected.

There is one more way to get the SQL statements that are executed: the

general query log. This will be discussed together with the other MySQL

Server logs later in the chapter.

Once you have confirmed the actual query exists, you may need to look

at the returned raw data if your problem has not been resolved.

�Retrieving Raw Data
If the query seems to be correct and it works when you execute it manually,

the issue may be in the processing of the data that is returned. One way to

investigate whether that is the issue when using cursors is to ask for the

data to be returned raw.

Note R aw result data is only supported together with a plain cursor
and a buffered cursor.

Chapter 10 Troubleshooting

463

When you have the raw data, you can see if it looks as expected and

work from there to figure out the issue. It may be necessary to look at the

MySQL Connector/Python source code, which is the next topic.

�Reading the MySQL Connector/Python
Source Code
One of the reasons for using a library like MySQL Connector/Python is that

you do not want to implement a connector yourself, and you want to use

it as a black box. That is also the aim but writing Python programs has an

advantage: it is easy to take a look at how the libraries are implemented

because they are largely written in Python themselves and you can open

the libraries files directly rather than having a separate source code tree.

There are three options if you want to look into the source code:

•	 Look directly at the libraries files that are used. This

can particularly be useful on your development system

because as it allows you to perform debugging inside

the library. Be sure to reset the code once you are

done, so you do not end up having a different behavior

on your development system than on the production

system. The best way to reset is to reinstall the libraries.

•	 Download the source code from https://dev.mysql.

com/downloads/connector/python/ for the latest

released source or https://downloads.mysql.com/

archives/c-python/ for older releases.

•	 Download the source from the MySQL GitHub

repository at https://github.com/mysql/mysql-

connector-python. If you are familiar with git, this can

be a convenient way to work with the source, if you

need to switch between the available branches and

versions.

Chapter 10 Troubleshooting

https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/connector/python/
https://downloads.mysql.com/archives/c-python/
https://downloads.mysql.com/archives/c-python/
https://github.com/mysql/mysql-connector-python
https://github.com/mysql/mysql-connector-python

464

If you are using the C Extension, only a limited amount of the source

code is written in Python. However, you can switch between the pure

Python implementation and the C Extension on demand, which is the final

topic of this section.

�Changing the Implementation
One final option is to change whether you are using the pure Python or

the C Extension implementation of MySQL Connector/Python. In general,

it should not matter which implementation you are using, but in some

corner cases there may be a difference.

You change between the two implementations by changing the value

of the use_pure connection option. This is disabled by default. If there is a

difference in behavior beyond what has been described in this book or is

documented in the manual, it may be a bug in MySQL Connector/Python;

you can log a bug at https://bugs.mysql.com/.

Tip U nexpected behavior may be due to a bug in MySQL Connector/
Python. The older the release, the more likely this is the case. It is
recommended to use the latest patch release for the release series to
ensure you have as many bug fixes as possible. The release notes
can be found at https://dev.mysql.com/doc/relnotes/
connector-python/en/.

The final source of troubleshooting information that will be considered

is the MySQL Server logs.

�MySQL Server Logs
MySQL Server includes several logs that can be useful for investigating

what is going on and what is going wrong. It is worth taking a look at

them and how they can be used when investigating an issue in a MySQL

Connector/Python program.

Chapter 10 Troubleshooting

https://bugs.mysql.com/
https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-python/en/

465

The logs included with MySQL Server are

•	 The error log: This is where the MySQL Server instance

logs messages when something is not correct from the

server side or when important changes such as starting

and stopping the instance occur.

•	 The general query log: This can be enabled to record

all executed queries.

•	 The slow query log: This can be used to log all queries

that take longer than a certain amount of time or ones

that are not using indexes.

•	 The binary log: This records all changes made to the

schema or data, but not queries selecting data.

•	 The audit log: This can be used to record all or a

subset of queries. It is similar to the general query log

but more flexible, with more features, and the option

of having lower overhead. This is only available in the

Enterprise Edition and will not be discussed further.

If you are interested, see https://www.mysql.com/

products/enterprise/audit.html.

Each of the logs has its own strengths, so it is not a matter of enabling

just one of them. To get a better feeling for each of the logs (except the

audit log), let’s go into more detail about them.

�The Error Log

The error log is the main place to look for problems on the MySQL Server

side. However, it can also include information about aborted connections,

failed authentication, and other issues that are related to the client side.

The error log location is specified using the log_error option. The default

depends on your platform and how you start MySQL. It is recommended to

Chapter 10 Troubleshooting

https://www.mysql.com/products/enterprise/audit.html
https://www.mysql.com/products/enterprise/audit.html

466

always set this explicitly to have the path specified in the configuration file

and to avoid the file name changing if the hostname (on Linux and Unix) is

updated. This also ensures the error log is always enabled.

The verbosity is controlled using the log_error_verbosity option. It

can be set to 1, 2, or 3. The default value in MySQL 8.0 is 2. A higher value

means less important messages are included.

•	 1: Error messages

•	 2: Error and warning messages

•	 3: Error, warning, and note level messages

In MySQL 8.0, there is an additional category of messages: system

messages. They are always included irrespective of the value of log_

error_verbosity.

These are the most important settings from a development point of

view. There are several other settings such as logging to a syslog facility

and advanced filtering options. These settings are beyond the scope of this

book, but you can read more about them at https://dev.mysql.com/doc/

refman/en/error-log.html.

�The General Query Log

The general query log logs all queries before they are executed. This makes

it a great resource when debugging issues where you are not explicitly

writing and executing each query manually. On the downside, the general

query log has a large performance overhead, so it is not recommended to

enable this in production other than for short periods of a time.

Caution  The general query log has a large overhead. Be very
careful if you enable it on a production system. It is, however, a great
tool on development systems for debugging.

Chapter 10 Troubleshooting

https://dev.mysql.com/doc/refman/en/error-log.html
https://dev.mysql.com/doc/refman/en/error-log.html

467

The general query log is enabled using the general_log option and the

location of the file can be set using general_log_file. The default location

is a file using the hostname as the basename and .log as the extension. You

can, for example, enable the general query log and check the current file

location using the following SQL commands:

mysql> SET GLOBAL general_log = ON;

Query OK, 0 rows affected (0.07 sec)

mysql> SELECT @@global.general_log_file;

+----------------------------------+

| @@global.general_log_file |

+----------------------------------+

| D:\MySQL\Data_8.0.11\general.log |

+----------------------------------+

1 row in set (0.00 sec)

The content of the general log file includes connections and the

queries executed with timestamps. An example is

D:\MySQL\mysql-8.0.11-winx64\bin\mysqld.exe, Version: 8.0.11

(MySQL Community Server - GPL). started with:

TCP Port: 3306, Named Pipe: MySQL

Time Id Command Argument

2018-05-13T04:53:35.717319Z 164 Connect �pyuser@localhost on

using SSL/TLS

2018-05-13T04:53:35.717850Z 164 Query �SET NAMES 'utf8'

COLLATE 'utf8_

general_ci'

2018-05-13T04:53:35.718079Z 164 Query SET NAMES utf8

2018-05-13T04:53:35.718304Z 164 Query set autocommit=0

2018-05-13T04:53:35.718674Z 164 Query SELECT *

 FROM world.city

 WHERE ID = 130

Chapter 10 Troubleshooting

468

2018-05-13T04:53:35.719042Z 164 Quit

2018-05-13T04:53:36.167636Z 165 Connect

2018-05-13T04:53:36.167890Z 165 Query /* xplugin

authentication */ SELECT @@require_secure_transport,

`authentication_string`, `plugin`,(`account_locked`='Y') as

is_account_locked, (`password_expired`!='N') as `is_password_

expired`, @@disconnect_on_expired_password as `disconnect_on_

expired_password`, @@offline_mode and (`Super_priv`='N') as

`is_offline_mode_and_not_super_user`,`ssl_type`, `ssl_cipher`,

`x509_issuer`, `x509_subject` FROM mysql.user WHERE 'pyuser' =

`user` AND 'localhost' = `host`

2018-05-13�T04:53:36.169665Z 165 Query SELECT * FROM

`world`.`city` WHERE (`ID` = 131)

2018-05-13T04:53:36.170498Z 165 Quit

This is from the same example as where the Performance Schema was

used to determine the queries. The Id column is the connection ID, so it

cannot be compared to the THREAD_ID in the Performance Schema. For

more information about the general query log, see https://dev.mysql.

com/doc/refman/en/query-log.html.

�The Slow Query Log

The slow query log is the traditional tool to investigate slow queries

in MySQL. Nowadays the Performance Schema provides much of the

functionality of the slow query log, but there are still cases where you may

want to log to a file, such as persisting the log when MySQL restarts.

The slow query log is enabled using the slow_query_log option. The

default is that queries taking longer than long_query_time seconds are

logged to the file specified by the slow_query_log_file. An exception

is administrative queries (ALTER TABLE, OPTIMIZE TABLE, etc.), which

require the log_slow_admin_statements option to be enabled before they

are logged.

Chapter 10 Troubleshooting

https://dev.mysql.com/doc/refman/en/query-log.html
https://dev.mysql.com/doc/refman/en/query-log.html

469

Additionally, there is the log_queries_not_using_indexes option,

which causes all queries not using an index to be logged irrespective of how

long time it takes to execute the query. When enabling this option, it can

be useful to increase long_query_time to a large value (like 10000) to focus

only on queries not using an index. The min_examined_row_limit can be

used to avoid logging queries only examining a small number of rows; for

example, if a table only has 10 rows, it is fine to do a full table scan.

For more about the slow query log, see https://dev.mysql.com/doc/

refman/en/slow-query-log.html.

�The Binary Log

The binary log is somewhat different to the other logs because the primary

purpose is not to log things out of the ordinary or work as a log for auditing.

It is used to allow replication and point-in-time recoveries. However, since

the binary log records all changes to both schema and data, it can also be

useful in determining when changes were made.

The binary log is enabled by default in MySQL 8.0.3 and later and is

controlled by the log_bin option. This option can both be used to enable

the binary log and to set the path and file name prefix for the binary log

files. To disable binary logging, use the option skip_log_bin. Within a

given connection (session), binary logging can be disabled by setting the

sql_log_bin option to OFF and reenabling it by setting it to ON:

mysql> SET SESSION sql_log_bin = OFF;

Query OK, 0 rows affected (0.04 sec)

mysql> -- Some queries not to be logged

mysql> SET SESSION sql_log_bin = ON;

Query OK, 0 rows affected (0.00 sec)

Chapter 10 Troubleshooting

https://dev.mysql.com/doc/refman/en/slow-query-log.html
https://dev.mysql.com/doc/refman/en/slow-query-log.html

470

The SYSTEM_VARIABLES_ADMIN or SUPER privilege is required to change

sql_log_bin, and you should only do so if you have a good reason. If

schema or data changes are missing in the binary log, a replication slave

can become out of sync; that is, it does not have the same data as the

replication master, meaning it is necessary to rebuild the slave.

The binary log is read using the mysqlbinlog utility that is included

with the MySQL Server installation. For more information about the binary

log, see https://dev.mysql.com/doc/refman/en/binary-log.html.

The chapter thus far has shown a very manual approach to

troubleshooting. It is possible to make this easier via tools. The next

section will discuss two tools: MySQL Shell and PyCharm.

�Tools for Debugging
For simple programs and simple problems, it may be faster to resolve

the issue by manually debugging by reading the source, adding print

statements, etc. However, in general this is not the most efficient way.

This section will take a look at two tools that can help debug MySQL

Connector/Python programs. First, you’ll look at MySQL Shell, which was

briefly mentioned in Chapter 6, and then you’ll take a brief look at using

PyCharm for debugging.

�MySQL Shell
The command-line client MySQL Shell was first released as GA in April

2017. It is meant to be the next generation tool for not only executing SQL

queries, but also performing administrative tasks and executing code in

Python and JavaScript.

MySQL Shell is not as such a debugging tool. However, because it is

interactive and it supports both Python and direct SQL statements, it is a

convenient way to experiment and investigate how code and queries are

Chapter 10 Troubleshooting

https://dev.mysql.com/doc/refman/en/binary-log.html

471

working. It also includes support for the X DevAPI, so you can debug code

that uses the mysqlx module interactively.

Note  It is not MySQL Connector/Python that is included in MySQL
Shell. So, there are some differences whether you use the X DevAPI
from a program using MySQL Connector/Python or you use MySQL
Shell. However, the API itself is the same.

You can download MySQL Shell from the same location as MySQL

Connector/Python and MySQL Server. The link to the Community

downloads is https://dev.mysql.com/downloads/shell/. If you are using

MySQL Installer on Microsoft Windows, you can also install MySQL Shell

that way. Once MySQL Shell has been installed (the installation will be left

as an exercise for the reader), you can launch it in several ways:

•	 Executing the mysqlsh binary from a shell. This is the

most common way on Linux and Unix, but it also works

on Microsoft Windows.

•	 On Microsoft Windows you can also execute it from the

Start menu.

One advantage of invoking mysqlsh from a shell is that you can specify

options on the command-line; for example, --py starts MySQL Shell in

Python mode. Once you have started it, you get a prompt like in Figure 10-1.

Figure 10-1.  The MySQL Shell welcome message

Chapter 10 Troubleshooting

https://dev.mysql.com/downloads/shell/

472

The colors have been changed in the screen shot to work better in

print. The default color scheme is optimized for a black background. The

prompt shows which mode the shell is in. The tree modes are summarized

in Table 10-1.

Table 10-1.  The MySQL Shell Modes

Mode Prompt Command-Line Command

JavaScript JS --js \js

Python Py --py \py

SQL SQL --sql \sql

The Prompt column shows the abbreviation used for the mode in the

prompt text. The Command-Line column contains the option to enable the

mode when starting MySQL Shell from the command line. The Command

column shows the command to use inside the shell to change the mode.

There are six global objects that can be used when executing Python

code in MySQL Shell:

•	 mysqlx: The mysqlx module; however, this is

not identical to the mysqlx module from MySQL

Connector/Python (but it is very similar).

•	 session: The session object that holds the connection

to MySQL Server.

•	 db: A schema object if one has been defined in the URI

when creating the connection.

•	 dba: This object contains methods for administering

MySQL InnoDB Cluster.

Chapter 10 Troubleshooting

473

•	 shell: An object with various general-purpose

methods such as for configuring MySQL Shell.

•	 util: This object contains various utility methods.

Listing 10-3 shows an example of using the MySQL Shell to test code

that creates a collection and adds two documents.

Listing 10-3.  Using the MySQL Shell

JS> \py

Switching to Python mode...

Py> \c pyuser@localhost

Creating a session to 'pyuser@localhost'

Enter password: **********

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 179 (X protocol)

Server version: 8.0.11 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

Py> session

<Session:pyuser@localhost>

Py> session.drop_schema('py_test_db')

Py> db = session.create_schema('py_test_db')

Py> people = db.create_collection('people')

Py> add_stmt = people.add(

... {

... "FirstName": "John",

... "LastName": "Doe"

... }

...)

...

Py> add_stmt.add(

... {

Chapter 10 Troubleshooting

474

... "FirstName": "Jane",

... "LastName": "Doe"

... }

...)

...

Query OK, 2 items affected (0.1715 sec)

Py> find_stmt = people.find("FirstName = 'Jane'")

Py> find_stmt.fields("FirstName", "LastName")

[

 {

 "FirstName": "Jane",

 "LastName": "Doe"

 }

]

1 document in set (0.0007 sec)

Py> \sql

Switching to SQL mode... Commands end with ;

SQL> SELECT _id,

 ... doc->>'$.FirstName' AS FirstName,

 ... doc->>'$.LastName' AS LastName

 ... FROM py_test_db.people;

+------------------------------+-----------+----------+

| _id | FirstName | LastName |

+------------------------------+-----------+----------+

| 00005af3e4f700000000000000a2 | John | Doe |

| 00005af3e4f700000000000000a3 | Jane | Doe |

+------------------------------+-----------+----------+

2 rows in set (0.0006 sec)

SQL> \q

Bye!

Chapter 10 Troubleshooting

475

The prompt in the example has been modified to just show the

language mode. The example consists of several steps:

	 1.	 Switch to using Python.

	 2.	 Connect to MySQL.

	 3.	 Drop the py_test_db schema if it exists.

	 4.	 Create the py_test_db schema.

	 5.	 Create the people collection.

	 6.	 Add two people to the people collection.

	 7.	 Query the people collection using a CRUD read

statement.

	 8.	 Switch to SQL mode.

	 9.	 Query the people collection (now considered a

table) using SQL.

Most of the steps should look familiar by now; however, there are a

few things to note. The first things is that once the connection has been

created, the session variable is automatically set up. The next major thing

is that when Jane Doe is added to add_stmt, the statement is executed even

though there is no call to execute(). A similar thing happens for the find

statement. This is a feature of MySQL Shell. When you use CRUD methods

and you do not assign the result to a variable, there is an implicit call to

execute().

At the end of the example, the records in the people collection are

retrieved using an SQL statement. This uses the ->> operator, which is

a combination of extracting the field and unquoting it. MySQL has two

shorthand notations for extracting values from a JSON document.

The -> operator is equivalent to the JSON_EXTRACT() function, and ->> is

the same as JSON_UNQUOTE(JSON_EXTRACT()).

Chapter 10 Troubleshooting

476

There is much more that can be done using the MySQL Shell. The

best way to become a master of it is to start using it. While it can seem like

a complicated tool at first, there are several built-in resources to provide

help if you get stuck. The first is the --help command-line argument. This

will provide a high-level description of MySQL Shell including a list of the

command-line arguments. Additionally, all objects related to the X DevAPI

have built-in help that you get by executing the help() method. This does

not only apply to the global variables listed earlier, but also to other objects

such as a collection. For the people collection from the previous listing, the

help text can be seen in Listing 10-4.

Listing 10-4.  The Output of the help() Method for a Collection

Py> people = db.get_collection('people')

Py> people.help()

A Document is a set of key and value pairs, as represented by a

JSON object.

A Document is represented internally using the MySQL binary

JSON object,

through the JSON MySQL datatype.

The values of fields can contain other documents, arrays, and

lists of

documents.

The following properties are currently supported.

 - name The name of this database object.

 - session The Session object of this database object.

 - schema The Schema object of this database object.

Chapter 10 Troubleshooting

477

The following functions are currently supported.

 - add �Inserts one or more documents into a

collection.

 - add_or_replace_one �Replaces or adds a document in a

collection.

 - create_index Creates an index on a collection.

 - drop_index Drops an index from a collection.

 - exists_in_database �Verifies if this object exists in the

database.

 - find �Retrieves documents from a collection,

matching a specified criteria.

 - get_name �Returns the name of this database

object.

 - get_one �Fetches the document with the given _id

from the collection.

 - get_schema �Returns the Schema object of this

database object.

 - get_session �Returns the Session object of this

database object.

 - help �Provides help about this class and it's

members

 - modify Creates a collection update handler.

 - remove Creates a document deletion handler.

 - remove_one �Removes document with the given _id

value.

 - replace_one �Replaces an existing document with a new

document.

Chapter 10 Troubleshooting

478

Tip U se mysqlsh --help to get high-level help for MySQL Shell
and the help() method of the X DevAPI objects to get more specific
help. For online help, see also https://dev.mysql.com/doc/
refman/en/mysql-shell.html and https://dev.mysql.
com/doc/refman/en/mysql-shell-tutorial-python.html.

There are other choices for debugging tools than MySQL Shell. For a

dedicated Python IDE, let’s take a look at PyCharm.

�PyCharm
There are numerous editors and IDEs available for source code editing

and debugging. One such IDE is PyCharm, which is specifically written for

use with Python. The full potential of PyCharm is beyond the scope of this

book, and the short example is meant more to show the idea of using an

IDE for development and troubleshooting rather than instructions how to

use PyCharm.

Note P yCharm is used for this example, but other IDEs have similar
functionality. Use the IDE that you are comfortable with, suits your
requirements, and is available at your company.

PyCharm can be downloaded from the products home page at

https://www.jetbrains.com/pycharm/. The IDE is available for Microsoft

Windows, macOS, and Linux. The installation is straightforward, and it is

assumed that you already have installed PyCharm.

To start using PyCharm, you need to create a new project. This can be

done from the welcome screen, as shown in Figure 10-2.

Chapter 10 Troubleshooting

https://dev.mysql.com/doc/refman/en/mysql-shell.html
https://dev.mysql.com/doc/refman/en/mysql-shell.html
https://dev.mysql.com/doc/refman/en/mysql-shell-tutorial-python.html
https://dev.mysql.com/doc/refman/en/mysql-shell-tutorial-python.html
https://www.jetbrains.com/pycharm/

479

After clicking Create New Project, choose the name of the project, as

shown in Figure 10-3. In this case, the name is MySQL Connector-Python

Revealed.

Figure 10-2.  The PyCharm welcome screen

Chapter 10 Troubleshooting

480

Once the project has been created, you enter the IDE environment

itself. Here you can create new source files, execute the source files, debug

them, etc. The first step is to make sure MySQL Connector/Python is

available. PyCharm isolates all of the files required for the project with the

project, so you need to install MySQL Connector/Python for the project

first. This can be done from the Settings page, which you get to by choosing

File in the top menu and then choosing Settings, as shown in Figure 10-4.

Figure 10-3.  Creating a new project

Chapter 10 Troubleshooting

481

In the settings, there is a part where the project itself can be configured.

This includes installing packages from PyPi. Since MySQL Connector/

Python is available from PyPi, this is what you will do. The project

interpreter settings screen can be seen in Figure 10-5.

Figure 10-4.  Navigating to the settings

Chapter 10 Troubleshooting

482

You can add packages using the green + icon to the top right of the part

of the area with the list of installed packages. This takes you to the screen

shown in Figure 10-6 where you can search or browse for packages to

install.

Figure 10-5.  The screen with the project interpreter settings

Chapter 10 Troubleshooting

483

The easiest way to find MySQL Connector/Python is to search for

the package name: mysql-connector-python. Once you have selected the

package, you can see details about it. Make sure the package has Oracle

and/or its affiliates as the author and that the version is 8.0.11 or newer.

You can optionally choose a different version than the newest, but in

general it is recommended to use the version selected for you. Click Install

Package to install the package.

The installation takes a little while because the package plus its

dependencies must be downloaded and installed. Once you get back to

the settings screen, you can see that a couple of other packages have been

pulled in as dependencies, including the protobuf package. Click OK to

return to the main IDE window where you can now create your first Python

program.

To create a new source file, click the project folder in the left-hand menu,

then choose File in the top menu (same as to get to the settings) and then

New. Choose to create a new file and call it test.py. Create a second file in

the same manner called my.ini (you can choose the format to be Text).

Figure 10-6.  Searching and browsing for PyPi packages to install

Chapter 10 Troubleshooting

484

In the my.ini file, you can enter the usual MySQL Connector/Python

configuration for connecting to MySQL:

[connector_python]

user = pyuser

host = 127.0.0.1

port = 3306

password = Py@pp4Demo

You can save the file with CTRL + s. Then go to the test.py file and

enter and save your program:

import mysql.connector

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

cursor = db.cursor()

cursor.execute("SELECT * FROM city")

db.close()

Figure 10-7 shows the editor with the code entered.

Chapter 10 Troubleshooting

485

This is the point in time where the strength of an IDE comes into

play because you can now execute or debug the code. These actions are

accessible from the Run menu. Feel free to go ahead and try to run the

code. The example contains a bug; the query should have been SELECT *

FROM world.city. The bug means a MySQLProgrammingError exception is

thrown because the database for the query has not been chosen:

mysql.connector.errors.ProgrammingError: 1046 (3D000): No

database selected

Process finished with exit code 1

If you instead of “running” the program chooses Debug, then the

IDE detects the exception. Instead of just outputting the same backtrack

information as you see when running the program from a console, you also

get debugger output with access to the source code where the exception

occurred; in this case, it is triggered in the connection.py file of MySQL

Connector/Python. Figure 10-8 shows part of the information and how the

connection.py file opened at the point where the exception occurred.

Figure 10-7.  The code editor

Chapter 10 Troubleshooting

486

Since the exception is triggered inside the mysql.connector code, it

suggests one of the following problems:

•	 The query is not valid.

•	 The program uses MySQL Connector/Python in an

invalid way.

•	 A bug has been encountered in MySQL Connector/

Python.

In this case, it is easy to solve the bug; it just requires replacing the

query with SELECT * FROM world.city. Even the error message in the

exception is enough in this case. However, in larger programs and with

more complex workflows, it can be much harder to determine where and

what the bug is. Using an IDE, as in this example, can make it easier and

quicker to resolve the issue.

Figure 10-8.  Debugging an exception

Chapter 10 Troubleshooting

487

Tip E ven with the power of an IDE, do not underestimate the
usefulness of the error message returned with the exception. Often
it will be show enough information, so you can determiner what the
issue is.

This is just scratching the surface of working with IDEs. There are

many other features such as stepping into the code, using breakpoints, etc.

This concludes the general discussion of troubleshooting. Before I

wrap up, some specific examples of errors and problems will be discussed.

�Troubleshooting Examples
The last part of this chapter is dedicated to several examples of problems

that may be encountered when you work with MySQL Connector/Python.

It is in no way exhaustive but will hopefully provide an idea of the issues

you may experience and how to deal with them.

Note  Some of these examples may seem far-fetched. However,
I have worked for many years supporting MySQL and I have seen
these kinds of errors–and tripped over them myself–several times.
They do happen in real life.

�Unread Result Found
The error “Unread result found” can happen when you work with the

mysql.connector module. The exception is using the InternalError class.

It is caused by attempting to execute a query before you have completely

consumed the result set of the previous query.

Chapter 10 Troubleshooting

488

A basic example causing the error is

import mysql.connector

db = mysql.connector.connect(

 option_files="my.ini",

 database="world"

)

cursor = db.cursor()

cursor.execute("SELECT * FROM city")

cursor.execute("SELECT * FROM country")

db.close()

If you execute this example, you will end up with an InternalError

exception. The exact traceback depends on where MySQL Connector/

Python is installed and the release, but it will look similar to the following

output:

Traceback (most recent call last):

 File "test.py", line 10, in <module>

 cursor.execute("SELECT * FROM country")

 �File "C:\Users\jesper\AppData\Local\Programs\Python\Python36\

lib\site-packages\mysql\connector\cursor_cext.py", line 232,

in execute

 self._cnx.handle_unread_result()

 �File "C:\Users\jesper\AppData\Local\Programs\Python\Python36\

lib\site-packages\mysql\connector\connection_cext.py",

line 599, in handle_unread_result

 raise errors.InternalError("Unread result found")

mysql.connector.errors.InternalError: Unread result found

Chapter 10 Troubleshooting

489

This is most likely to occur if you use some of the result of the first

query but meet some condition triggering a second query. Also remember

that there can only be one outstanding result for the whole connection,

so if you need to execute multiple queries side by side, you need to either

use two connections or ensure the previous result has been completely

consumed, for example, by using a buffered cursor.

The mysql.connector module requires you to indicate what you want

to do with the remaining result of the first query before executing the

second query. There are a few ways to deal with it:

•	 Explicitly fetch all remaining rows.

•	 When using the C Extension, explicitly free the

result set using the free_result() method on the

connection object. This is required in version 8.0.11

and earlier when using the C Extension even if all rows

have been fetched.

•	 If you need to execute the queries side by side, use a

buffered cursor for all but the last query, as described

in the “Buffered Results” section in Chapter 4.

•	 Enable the consume_results option. This tells MySQL

Connector/Python to automatically throw away the rest

of the rows when a new query is executed.

In general, the first two methods are preferred because they explicitly

explain the intention and avoid the overhead of keeping a whole result in

memory in the application. The least preferable method is to automatically

consume results because this can easily hide a programming error.

The mysqlx module automatically throws away outstanding results in

the same way as if consume_results is enabled for the mysql.connector

module.

Chapter 10 Troubleshooting

490

�Data Too Long or Out of Range Value
If you were using older versions of MySQL Server (version 5.6 and

earlier) and you upgraded to MySQL 5.7 and later, you may find that your

previously working application starts to throw errors about the data being

too long or out of range. This can also happen for new applications and

with older versions of MySQL Server, but it is more likely to occur with new

MySQL Server versions.

Two examples of the errors that can be encountered are

mysql.connector.errors.DataError: 1406 (22001): Data too long

for column 'Code' at row 1

mysql.connector.errors.DataError: 1264 (22003): Out of range

value for column 'IndepYear' at row 1

As discussed in the previous chapter, the cause is that by default

strict modes is enabled in MySQL Server 5.7 and later. This means that if

the data provided in an INSERT or UPDATE statement does not fit into the

definition of the column, the query will be rejected rather than trying to

beat the data into a shape. An example of an INSERT statement that triggers

the Data too long for column error is

import mysql.connector

db = mysql.connector.connect(

 option_files="my.ini",

 database="world"

)

cursor = db.cursor()

db.start_transaction()

Chapter 10 Troubleshooting

491

cursor.execute("""

INSERT INTO country (Code, Name)

VALUES ('Foobar', 'Foobar Country')""")

db.rollback()

db.close()

An example of the traceback and exception is

Traceback (most recent call last):

 �File "C:\Users\jesper\AppData\Local\Programs\Python\Python36\

lib\site-packages\mysql\connector\connection_cext.py",

line 377, in cmd_query

 raw_as_string=raw_as_string)

_mysql_connector.MySQLInterfaceError: Data too long for column

'Code' at row 1

During handling of the above exception, another exception

occurred:

Traceback (most recent call last):

 File "test.py", line 13, in <module>

 VALUES ('Foobar', 'Foobar Country')""")

 �File "C:\Users\jesper\AppData\Local\Programs\Python\Python36\

lib\site-packages\mysql\connector\cursor_cext.py", line 264,

in execute

 raw_as_string=self._raw_as_string)

 �File "C:\Users\jesper\AppData\Local\Programs\Python\Python36\

lib\site-packages\mysql\connector\connection_cext.py",

line 380, in cmd_query

 sqlstate=exc.sqlstate)

mysql.connector.errors.DataError: 1406 (22001): Data too long

for column 'Code' at row 1

Chapter 10 Troubleshooting

492

The Code column is defined as char(3), so a six-character code will

not fit into the column. There are a couple of possible ways to handle these

types of errors:

•	 Change the column definition to be able to store the

data.

•	 Change the data in the application to fulfil the column

definition. If, for example, it is ok to truncate a string or

round a number, do it explicitly.

•	 If the error occurs for a query where the data is

not coming directly from the application, but from

inserting data from one table into another, manipulate

the data in the query if it is acceptable to do so. For

example, the LEFT() function can be used to truncate a

string if it exceeds a given number of characters.

•	 Disable the strict mode by removing STRICT_TRANS_

TABLES from the sql_mode variable. This is by far the

least preferred solution because you will likely end up

with different data in the database than you intend.

Data consistency is an important feature. The strict mode exists to help

you achieve it, so only disable it if you have no other option.

Caution  Disabling the strict mode will allow silent data corruption.
Do not disable it unless you have no other choice.

Chapter 10 Troubleshooting

493

�Data Changes Are Lost
If you find that changes you make from your application do not stick, or

are visible from the same connection that made the changes but not from

other connections, then you are likely not committing the changes. This

is most likely to occur if you have autocommit disabled (the default for the

mysql.connector module).

Another way this is sometimes discovered is that in a replication setup,

the changes appear to be visible on the replication source (provided you

query the data from the same connection that made the change), but it

seems the change is not replicating.

This is an issue that can make you hair turn grey in a very short time;

then, when you discover the cause, you are ready to pull out all of your

hair. The issue is that by default MySQL Server has autocommit enabled, so

when you work with a connector that disables it, you can easily get caught

out. A simple example can be seen in Listing 10-5.

Listing 10-5.  Apparently Losing Data

import mysql.connector

db1 = mysql.connector.connect(

 option_files="my.ini",

 database="world",

 autocommit=False

)

db2 = mysql.connector.connect(

 option_files="my.ini",

 database="world",

)

cursor1 = db1.cursor()

cursor2 = db2.cursor()

Chapter 10 Troubleshooting

494

sql = """

SELECT Population

 FROM city

 WHERE ID = 130"""

cursor1.execute("""

UPDATE city

 SET Population = 5000000

 WHERE ID = 130""")

cursor1.execute(sql)

row1 = cursor1.fetchone()

print("Connection 1: {0}"

 .format(row1[0]))

cursor2.execute(sql)

row2 = cursor2.fetchone()

print("Connection 2: {0}"

 .format(row2[0]))

db1.close()

db2.close()

Auto-commit is disabled for the db1 connection, which means MySQL

automatically starts a transaction and keeps it open when a query is

executed. Since there is no commit of the transaction, transaction isolation

prevents the other connections from seeing the data. The output of the

program shows the population as it is found by each of the connections

after the update has happened:

Connection 1: 5000000

Connection 2: 3276207

This issue can also occur in a subtler way even if the change is

committed. If the other connection opened a transaction in the default

Chapter 10 Troubleshooting

495

transaction isolation level (repeatable-read) before the commit, then this

second connection will keep seeing the old data until it closes its transaction.

Possible solutions to this issue include the following:

•	 Always ensure that you commit or roll back your

transactions when you are done. This applies to SELECT

statements as well.

•	 Enable the autocommit option. This is the default in

MySQL Server and for the X DevAPI (it inherits the

MySQL Server setting).

There is no strong preference for one solution over the other. Enabling

the auto-commit feature is less likely to cause surprises, particularly if

you are already used to this behavior. Additionally, when the autocommit

option is enabled, the InnoDB storage engine will change the transaction

to read-only mode if it is clear that the statement cannot change data and

no explicit transaction has been started.

�The Used Command Is Not Allowed with This
MySQL Version
This error can cause much confusion. Your application is working well.

And then you upgraded MySQL Server. Suddenly you are told that a certain

command is not allowed with this MySQL version. What does that mean?

An example of the full error message is

mysql.connector.errors.ProgrammingError: 1148 (42000): The used

command is not allowed with this MySQL version

This error is slightly misleading. It has nothing to do with the MySQL

version, other than a potential change to default values. The error occurs

when you try to use the LOAD DATA LOCAL INFILE statement, and the

support for loading local files is disabled in either MySQL Server or MySQL

Connector/Python.

Chapter 10 Troubleshooting

496

The MySQL Server option for allowing loading local files is local_

infile. It is enabled by default in MySQL Server 5.7 and earlier but

disabled in MySQL Server 8.0. The MySQL Connector/Python option is

allow_local_infile, which is enabled by default in all recent versions.

If you need to use LOAD DATA LOCAL INFILE, the solution is to enable

both the MySQL Server local_infile option and the MySQL Connector/

Python allow_local_infile option.

Caution B efore allowing LOAD DATA LOCAL INFILE, please
read https://dev.mysql.com/doc/refman/en/load-data-
local.html for information about the security implications.

�Bulk Changes Causes Corruption or Errors
Data is becoming more standardized if not by one standard then by

several. The world now uses UTF-8 for the character set, the JSON and

XML formats are commonly used for storage or transport of data that

requires a flexible self-descriptive schema, and so on. However, there are

still plenty of opportunities to get caught up.

If you find yourself loading data into a database or executing a batch

of SQL statements, but the resulting data seems corrupt or the job plainly

fails because of errors, then you are likely a victim of mixing character sets

or line endings. The result of such mix-ups varies greatly.

For example, if you load a file with UTF-8 data as Latin1, then no error

will ever occur because Latin1 can handle any byte sequence. If it’s the

other way around, it will likely result in an error about an invalid byte

sequence for UTF-8. If you attempt to load the string “Wür” encoded in

Latin1 as if it was UTF-8, you’ll get the following error message:

mysql.connector.errors.DatabaseError: 1300 (HY000): Invalid

utf8mb4 character string: 'W'

Chapter 10 Troubleshooting

https://dev.mysql.com/doc/refman/en/load-data-local.html
https://dev.mysql.com/doc/refman/en/load-data-local.html

497

Line ending changes are more likely to cause multiple lines to be

inserted into one field or part of the line ending not to be consumed.

When you use LOAD DATA [LOCAL] INFILE, it is recommended always

to be explicit regarding the character set and file endings you expect in

the file. This ensures that a change to the MySQL Server defaults, a change

in the operating system, or similar cannot cause the file to be interpreted

in the wrong way. A common source of these problems is preparing and

testing the job on Microsoft Windows but the production system is on

Linux or vice versa.

�Unsupported Argument When Creating
the Connection
There are several ways to create a connection when you use the mysql.

connector module. Flexibility can be a good thing but it also leaves room

for potential errors by mixing up the various methods. One problem that

can easily occur when creating a connection is that you get an error with

an AttributeError caused by an unsupported argument.

An example of an error due to an unsupported argument is the use_

pure argument, but it can also be caused by other arguments:

AttributeError: Unsupported argument 'use_pure'

Specifically for use_pure, when you use the mysql.connector module,

the argument is only allowed when you use the mysql.connector.

connect() function to create a connection. This is a wrapper function

that ensures you get an object of the pure Python or the C Extension

implementation. So, it only makes sense to include the use_pure argument

if you do not explicitly choose the underlying class to create an instance of

yourself.

The issue can also be caused by adding an argument such as use_pure

that is only understood by mysql.connector.connect() function to the

MySQL configuration file. The mysql.connector.connect() function does

Chapter 10 Troubleshooting

498

not itself look at the configuration in the configuration file, but merely

passes it on to the underlying connection class. So, the options in the

configuration file must be understood by the connection object itself.

If you encounter an error like this, take a look at where the option is

defined. If it is defined in the configuration file, move it into the call to

mysql.connector.connect() and see if that helps. Obviously, you should

also check for spelling errors.

�Aborted Connections in the MySQL Server
Error Log
A common issue when checking the MySQL error log is that there are

many notes about aborted connections. This is particularly the case in

MySQL Server 5.7 where the error log verbosity is higher by default than for

other MySQL Server versions.

Aborted connections can be triggered by several things, such as

network issues. However, with respect to writing MySQL Connector/

Python programs, the more interesting cause is when the application does

not properly close the connection. This can happen either because the

application crashes or it does not explicitly close its database connections.

The following example can be used to trigger a message about an

aborted connection:

import mysql.connector

db = mysql.connector.connect(

 option_files="my.ini", use_pure=True)

Do some database work, but do not

close the connection (db.close()).

exit()

Chapter 10 Troubleshooting

499

The resulting message in the MySQL error log is similar to the

following example:

2018-03-04T07:28:22.753264Z 148 [Note] [MY-010914] Aborted

connection 148 to db: 'unconnected' user: 'pyuser' host:

'localhost' (Got an error reading communication packets).

The message only shows up when MySQL Server has the log_error_

verbosity option set to 3 and the exact message depends on the MySQL

Server version. You can also monitor the number of aborted connections

by checking the Aborted_clients status variable in MySQL Server.

The solution to the issue is to ensure that all connections are properly

closed before terminating the application:

db.close()

Unfortunately, there is one case that does not resolve that easily. When

you use a connection pool, there is no official way to close the connections.

Using the close() method on a connection does not close the underlying

connection but rather returns it to the pool. This means that when

the application shuts down, there will be one aborted connection per

connection in the pool. Currently, the options are to ignore the messages,

reduce the error log verbosity, or set up an error log filter (only supported

in MySQL Server 8.0). In either case, it also prevents noticing real problems

with the network or application.

�Locking Issues
Locking issues can be notoriously hard to debug. They typically require a

specific workload to occur for the lock contention to show up, so it may be

difficult to reproduce the issue on demand. The following discussion will

give an overview of some of the tools available during an investigation of a

lock issue.

Chapter 10 Troubleshooting

500

If you can catch the locking issue while it is ongoing, then the

sys.innodb_lock_waits view is an excellent place to start the investigation.

It will show information about the connection holding the lock and the one

waiting for it. An example can be seen in Listing 10-6. The exact output will

depend on the MySQL Server version; the example is from version 8.0.

Listing 10-6.  InnoDB Lock Wait Information

mysql> SELECT * FROM sys.innodb_lock_waits\G

*************************** 1. row ***************************

 wait_started: 2018-03-06 21:28:45

 wait_age: 00:00:19

 wait_age_secs: 19

 locked_table: `world`.`city`

 locked_table_schema: world

 locked_table_name: city

 locked_table_partition: NULL

 locked_table_subpartition: NULL

 locked_index: PRIMARY

 locked_type: RECORD

 waiting_trx_id: 29071

 waiting_trx_started: 2018-03-06 21:28:45

 waiting_trx_age: 00:00:19

 waiting_trx_rows_locked: 1

 waiting_trx_rows_modified: 0

 waiting_pid: 154

 waiting_query: �UPDATE world.city SET Population =

Population + 1 WHERE ID = 130

 waiting_lock_id: 29071:2:7:41

 waiting_lock_mode: X

 blocking_trx_id: 29069

 blocking_pid: 151

 blocking_query: NULL

Chapter 10 Troubleshooting

501

 blocking_lock_id: 29069:2:7:41

 blocking_lock_mode: X

 blocking_trx_started: 2018-03-06 21:26:20

 blocking_trx_age: 00:02:44

 blocking_trx_rows_locked: 1

 blocking_trx_rows_modified: 1

 sql_kill_blocking_query: KILL QUERY 151

sql_kill_blocking_connection: KILL 151

1 row in set (0.00 sec)

The information includes when the wait started and the age of the wait

both in hours:minutes:seconds notation and in seconds. The next several

columns contain information about the table and index that are locked as

well as the lock type. Then follows information about the waiting connection

including the query that is currently executing. The same information is also

included for the blocking connection. Finally, there are two SQL statements

that can be used to kill the blocking query or connection.

In the example, the blocking query is NULL. This means that the

connection is not currently executing any queries. How is it then holding

locks? The answer is that there is an active transaction. When queries

are executed inside the transaction, the locks may be needed until the

transaction completes. Idle but active transactions are one of the more

common causes of locking issues.

Some of the other resources available for investigating InnoDB and

metadata lock issues include

•	 sys.schema_table_lock_waits: This view is similar

to the sys.innodb_lock_waits view but includes

information about metadata lock waits. The wait/

lock/metadata/sql/mdl Performance Schema

instrument must be enabled for this view to work.

The instrument is enabled by default in MySQL Server

8.0 but not in version 5.7.

Chapter 10 Troubleshooting

502

•	 performance_schema.data_locks: This table is new

in MySQL Server 8.0 and includes information about

locks held by InnoDB. It is used by sys.innodb_lock_

waits.

•	 performance_schema.data_lock_waits: The table is

new in MySQL Server 8.0 and includes information

about InnoDB lock waits. It is used by sys.innodb_

lock_waits.

•	 information_schema.INNODB_LOCKS: The MySQL

Server 5.7 equivalent of performance_schema.data_

locks. It only includes information about locks another

transaction is waiting for. This is used by sys.innodb_

lock_waits.

•	 information_schema.INNODB_LOCK_WAITS: The MySQL

Server 5.7 equivalent of performance_schema.data_

lock_waits. This is used by sys.innodb_lock_waits.

•	 information_schema.INNODB_TRX: Information about

ongoing InnoDB transactions. This is used by sys.

innodb_lock_waits.

•	 performance_schema.metadata_locks: Information

about metadata locks. This is used by the sys.table_

lock_waits view.

•	 SHOW ENGINE INNODB STATUS: The statement to

generate the InnoDB monitor output. When the global

variable innodb_status_output_locks is enabled, the

transaction list will also include information about the

locks. The output will also include details about the last

deadlock that occurred.

Chapter 10 Troubleshooting

503

•	 innodb_print_all_deadlocks: When this global

variable is enabled, information about all InnoDB

deadlocks will be printed to the MySQL error log. Note

that the output is quite verbose, so if you have many

deadlocks, it can make it hard to notice other notes,

warnings, and errors in the log.

While there are several sources to look to when investigating locks, it

can be hard to understand the data. It is beyond the scope of this book to

provide a guide for this. However, it is definitely a case of practice makes

master. It is worth taking your time to go through the output for some lock

issues. For example, create a lock wait or deadlock situation yourself. That

way you know what is causing the lock conflicts, which can make it easier

to understand the information provided in the various sources.

�Summary
This chapter looked at troubleshooting problems that occur

when developing applications using MySQL Connector/Python.

Troubleshooting requires years of practice to master, but hopefully this

introduction makes it easier to get started.

The chapter started by showing some steps to get information about

the issue: check the warnings; determine which SQL statement executed at

the time of the issue; retrieve the result as raw data and study the MySQL

Connector/Python source code; and switch between the pure Python and

the C Extension implementations. The MySQL Server logs can also be very

useful in a troubleshooting situation.

The MySQL Shell and third-party Python IDEs can be useful tools

for debugging MySQL Connector/Python programs. MySQL Shell allows

you to try out code interactively and switch between the Python and SQL

modes. It is particularly useful when working with the X DevAPI, which

is built into MySQL Shell. IDEs provide more sophisticated debugging

Chapter 10 Troubleshooting

504

tools such as detecting exceptions and showing the source code where the

exception occurred even if this occurred inside an external module. IDEs

also support features such as breakpoints and variable inspection, which

are invaluable when debugging a program.

The last part of the chapter went through several examples of issues

that can be encountered. The examples included data issues, coding

issues, and locking issues.

This concludes the last chapter of this book. Hopefully you have found

the journey through the world of MySQL Connector/Python interesting,

and you feel ready to use it in your work. Happy coding.

Chapter 10 Troubleshooting

505© Jesper Wisborg Krogh 2018
J. W. Krogh, MySQL Connector/Python Revealed,
https://doi.org/10.1007/978-1-4842-3694-9

Index

A
API

C Extension API, 6–8, 15
Connector/Python API, 6–7, 43
X DevAPI, 6–7, 43

Audit log, 465

B
Binary log

log_bin, 469
mysqlbinlog, 470
skip_log_bin, 469
sql_log_bin, 469

Buffered results, 133, 136, 151–152,
154–155, 221

C
C Extension, 4, 6–8, 15, 27, 464, 489,

497, 503
_mysql_connector, 215, 218,

220–221
mysql.connector.connect(),

215–218
Chaining, 265
Character set, 64, 71, 82
Code examples, 37, 41–43

Collation, 71–76, 79
Collection object

methods
add(), 332, 334
add_or_replace_one(),

332, 334
count(), 332–333, 339
create_index(), 312, 323
drop_index(), 312, 329
exists_in_database(), 331
find(), 332, 339
get_connection(), 331
get_name(), 331
get_schema(), 331
modify(), 332
remove(), 332
remove_one(), 332, 366
replace_one(), 332

properties
name, 331
schema, 307, 309,

311, 320, 331
Configuration

file, 58–64, 82
Connection

create, 47, 58, 62, 64–65, 76, 82
example, 48, 52, 55–57, 60–62,

64, 69, 76, 79

https://doi.org/10.1007/978-1-4842-3694-9

506

option, 47–48, 50–52, 54–61, 64,
66, 68, 71, 75, 80, 82

Connection object
methods

close(), 54
cmd_change_user(), 174,

197–198, 200
cmd_init_db(), 172, 190, 199
cmd_query(), 83, 85, 87, 415,

418, 420–421, 424
cmd_query_iter(), 134–136,

138, 140, 156, 187
cmd_reset_connection(),

197–198, 200–201
cmd_statistics(), 197, 204
commit(), 179–182
cursor(), 106, 108
get_row(), 83, 85, 418
get_rows(), 83, 85, 418
get_server_info(), 197, 204
get_server_version(), 197, 204
is_connected(), 197, 201–202
ping(), 197, 202–203
reset_session(), 197–198,

200–201
rollback(), 181–182
set_charset_collation(), 76,

171, 174, 199
start_transaction(),

181–182, 187
properties

autocommit, 149, 171, 174,
176–177, 179–183, 186–187

can_consume_results, 105, 171
charset, 94, 97, 171, 198
collation, 171, 174, 198–199
connection_id, 171, 174
database, 133, 172, 174, 199
get_warnings, 172
in_transaction, 172, 174,

176–177, 179–180, 183, 185
python_charset, 172, 174
raise_on_warnings, 172
server_host, 173
server_port, 173
sql_mode, 173
time_zone, 173, 192, 195
unix_socket, 174
unread_result, 105, 115,

118, 174
user, 174

Connection options, 215, 220
allow_local_infile, 80
auth_plugin, 65
autocommit, 80, 493
buffered, 80
can_consume, 105
charset, 75
client_flags, 65
collation, 75
compress, 65
connection_timeout, 65
consume_results, 80, 415
converter_class, 65
database, 81
failover, 65
force_ipv6, 65

Connection (cont.)

Index

507

get_warnings, 82, 413–414, 423
host, 51, 66
password, 50–51, 57–59, 82
pool_name, 66, 227
pool_reset_session, 66, 227
pool_size, 67, 227
port, 51, 66
raise_on_warnings, 82, 413–414,

430, 455
raw, 81
sql_mode, 81
ssl_ca, 51
ssl_cert, 51–52
ssl_key, 52
ssl_verify_cert, 52
time_zone, 81
unix_socket, 51
use_pure, 67, 90, 464
user, 51, 59, 66
use_unicode, 75

Connection pool
create

mysql.connector.connect(),
224–225, 229–235, 238,
245, 254

pooling.MySQLConnection
Pool(), 224–227, 230–231,
236–237

execute query, 255
reconfigure connections, 241,

243–244
CRUD

arguments
conditions, 292–293
document ID, 291–292

documents, 289–291
fields, 293–294

CSV file
application-side, 164–165
example, 165–169
load, 162–166, 168–170
server-side, 163–164

Cursor
classes

MySQLCursor, 107, 118
MySQLCursorBuffered,

107, 109
MySQLCursorBufferedDict,

107, 109
MySQLCursor

BufferedNamedTuple,
108–109

MySQLCursorBufferedRaw,
107, 109

MySQLCursorDict, 107,
109, 118

MySQLCursorNamedTuple,
107, 109, 120

MySQLCursorPrepared,
108–109, 118

MySQLCursorRaw, 107, 109
instantiation, 106
methods

callproc(), 156, 159, 161
close(), 107
execute(), 111, 122, 125, 132,

134–136, 140, 142–143
executemany(), 134–135,

140, 142–144, 146–149
fetchall(), 111–112, 132

Index

508

fetchmany(), 111–112, 132
fetchone(), 111–112, 115, 132
fetchwarnings(), 414, 423
stored_results(), 156,

159–161
properties, 147

column_names, 116
description, 115
lastrowid, 117
rowcount, 117
statement, 118, 456
with_rows, 118

Custom exception
custom_error_exception(), 438

D
Deadlock, 431, 434, 442–443, 446
Download

MySQL Connector/Python,
8–10, 14–16, 23, 43

MySQL Installer, 11–12,
15–16, 24

E
Editions

Community, 5–6, 8–11, 16, 20,
24–25, 43

Enterprise, 5–6, 8–9, 11–12, 15,
20, 24, 43

Error code, see Error number
Error message

Aborted connection, 498
Can not reconnect to MySQL

after 5 attempt(s), 203
Can’t connect to MySQL

server, 203
Cursor not available with given

criteria, 109
Data too long for column, 409,

490–491
Deadlock found when trying to

get lock; try restarting
transaction, 443

Failed adding connection;
queue is full, 225

Failed getting connection; pool
exhausted, 235, 239

Invalid utf8mb4 character
string, 496

No condition was found for
delete, 391

No condition was found for
modify, 351

No condition was found for
remove, 367

No condition was found for
update, 388

No database selected, 190
Out of range value for

column, 490
Syntax error, 431–432, 435
Unread result found, 104, 487
Unsupported

argument, 218, 497

Cursor (cont.)

Index

509

The used command is not
allowed with this MySQL
version, 495

‘utf-8’ codec can’t decode byte
0xfc in position 7: invalid
start byte, 396

Error number, 406, 411, 418,
426–427, 429, 432,
436–438, 440, 447,
449, 451

Exception
AttributeError, 497
custom (see Custom exception)
DatabaseError, 432,

434, 438
DataError, 430, 434–435, 490
error, 426–427, 429, 432–435,

437–438, 440
IntegrityError, 430, 432, 434–435
InterfaceError, 202–203, 256,

434, 491
InternalError, 104, 431,

434–435, 488
NotSupportedError, 434–435
OperationalError, 255, 430, 435
PoolError, 225–226, 228,

238, 435
ProgrammingError, 189, 278,

316, 367, 375, 388, 431–432,
435, 440, 485

ValueError, 61, 109
warning, 411, 426, 429–430, 435,

438, 451
Extended inserts, 147–151, 221

F
Failover

coding for failover, 248–249
configuration, 244–247
example, 250, 254, 256

FieldFlag, see mysql.connector
FieldType, see mysql.connector

G, H
General query log

general_log, 467
general_log_file, 467

I
IDE, see Integrated Development

Environment (IDE)
Install

MySQL Installer, 11–12, 15–16,
20–25, 29, 31, 33

MySQL Yum repository, 16, 25, 29
pip, 16–17, 19–20, 25

Integrated Development
Environment (IDE), 478,
480, 483, 485–486, 503

J, K
JSON_MERGE_PATCH(), 365
JSON path, 293–294
JSON_SEARCH(), 359

L
Locking, 440–443, 446–447, 451

Index

510

M
Module

mysql.connector, 6, 15, 27–28,
42–43

mysqlx, 6, 42
mysql.connector

connect(), 48–49, 52, 55, 61–62,
65–67, 69, 75, 77, 82, 231,
233–235

FieldFlag, 209–210, 212
FieldType

get_info(), 207
MySQLConverter

row_to_python(), 95
result properties

affected_rows, 88
eof, 115
insert_id, 88

MySQL Document Store, 305–370
MySQL error log

log_error, 465
log_error_verbosity, 411,

466, 499
MySQL Installer, 11–12, 15–16,

20–25, 29, 31, 33
MySQL Server

configure, 24, 29, 33–35, 42–43
install, 8, 15–16, 20, 24–25, 27,

29, 31, 43
user, 30–31, 35, 43
world sample database, 37–38

MySQL Shell, 261, 266–267, 272,
455, 470

mysqlx
methods

get_session(), 268, 280
URI, 273

mysqlx_port, 262

N, O
NoSQL, 259–261, 267–268, 277

P, Q
Parameterization, 122, 132
Performance Schema

events_statements_history_
long, 460, 462

setup_consumers, 458
threads, 458

pooling.MySQLConnectionPool
constructor, 225, 230–231
methods

add_connection(), 225
get_connection(), 225, 231,

235–239
set_config(), 225–226, 229,

242, 244
properties

pool_name, 225, 227, 231,
234, 246

pooling.PooledMySQLConnection
methods

close(), 226–227, 238–239
config(), 226, 239

Index

511

Prepared statement, 108, 121,
125, 127

PyCharm, 470, 478
PyPa, see Python Packaging

Authority (PyPa)
PyPi, see Python Package Index (PyPi)
Python Package

Index (PyPi), 9, 481, 483
Python Packaging Authority

(PyPa), 16

R
result.DocResult

methods
fetch_all(), 301, 343
fetch_one(), 301, 344, 368
get_warnings(), 301, 424
get_warnings_count(),

301, 424
properties

count, 301
result.Result

methods
get_affected_items

_count(), 300
get_autoincrement

_value(), 300
get_generated_ids(), 300
get_warnings(), 300, 424
get_warnings_count(),

300, 424
result.RowResult

methods
fetch_all(), 301

fetch_one(), 301
get_warnings(), 301, 424
get_warnings_count(),

301, 424
get_columns(), 301

properties
count, 301

result.SqlResult
methods

fetch_all(), 302,
386–387, 396

fetch_one(), 302, 396
get_autoincrement

_value(), 303
get_columns(), 303
get_warnings(), 303, 424
get_warnings_count(),

303, 424
has_data(), 303
index_of(), 303
next_result(), 303,

397, 400
properties

columns, 304
count, 304

S
Schema object

methods
create_collection(), 309–310,

316–318
drop_collection(), 321–322
exists_in_database(), 285

Index

512

get_collection(), 309,
318–320

get_collection_as_table(), 373
get_collections(), 309,

318–321
get_connection(), 285
get_name(), 285
get_schema(), 285
get_session(), 285
get_table(), 375–376, 381
get_tables(), 375
get_view(), 373, 376

properties
name, 284
schema, 284

Session, 263, 265–267, 277–285,
288, 304, 331

Session object
methods

commit(), 276
create_schema(), 278
drop_schema(), 278
get_connection(), 277
get_default_schema(), 278
get_schema(), 278
get_schemas(), 278
is_open(), 277
release_savepoint(), 276
rollback(), 276
rollback_to(), 276
set_savepoint(), 276
sql(), 277
start_transaction(), 276

Session options
auth, 269, 273
host, 269
password, 269
port, 269
routers, 270
schema, 270
socket, 270
ssl-ca, 270
ssl-cert, 270
ssl-crl, 270
ssl-key, 270
ssl-mode, 271
use_pure, 271
user, 271

SHOW WARNINGS, 407,
413–415, 418

Slow query log
log_queries_not_using

_indexes, 469
log_slow_admin_statements, 468
long_query_time, 468
min_examined_row

_limit, 469
slow_query_log, 468
slow_query_log_file, 468

Spatial Reference System Identifier
(SRID), 314

SQL injection, 121–122, 127–128,
131, 432

sql_notes, 405, 407, 412, 451
SQL state, 406, 411, 426–427,

429–432, 434, 436–438,
447, 451

Schema object (cont.)

Index

513

SRID, see Spatial Reference System
Identifier (SRID)

statement.AddStatement
methods

add(), 334
execute(), 334, 338
get_values(), 297
is_doc_based(), 297
is_upsert(), 297

statement.DeleteStatement
methods

bind(), 385, 391
get_binding_map(), 296
get_bindings(), 296
get_grouping(), 296
get_having(), 296
get_limit_offset(), 296
get_limit_row_count(), 296
get_projection_expr(), 296
get_sort_expr(), 296
get_where_expr(), 297
is_doc_based(), 297
limit(), 390–391
order_by(), 391
sort(), 382, 391
where(), 385, 388, 393

statement.FindStatement
methods

bind(), 340
execute(), 340
fields(), 339
get_binding_map(), 296
get_bindings(), 296
get_grouping(), 296

get_having(), 296
get_limit_offset(), 296
get_limit_row_count(), 296
get_projection_expr(), 296
get_sort_expr(), 296
get_where_expr(), 297
group_by(), 339
having(), 339
is_doc_based(), 297
is_lock_exclusive(), 297
is_lock_shared(), 297
limit(), 340
lock_exclusive(), 340
lock_shared(), 340
offset(), 340
sort(), 340

statement.InsertStatement
methods

execute(), 378, 380–381,
383, 391

get_values(), 297
is_doc_based(), 297
values(), 378, 381

properties
schema, 378
target, 378

statement.ModifyStatement
methods

array_append(), 350, 355
array_insert(), 350, 355
bind(), 351
execute(), 351
get_binding_map(), 296
get_bindings(), 296

Index

514

get_grouping(), 296
get_having(), 296
get_limit_offset(), 296
get_limit_row_count(), 296
get_projection_expr(), 296
get_sort_expr(), 296
get_update_ops(), 297
get_where_expr(), 297
is_doc_based(), 297
limit(), 350
patch(), 351, 360
set(), 351–352
sort(), 350
unset(), 351–352

statement.RemoveStatement
methods

bind(), 367
get_binding_map(), 296
get_bindings(), 296
get_grouping(), 296
get_having(), 296
get_limit_offset(), 296
get_limit_row_count(), 296
get_projection_expr(), 296
get_sort_expr(), 296
get_where_expr(), 297
is_doc_based(), 297
limit(), 367
sort(), 367

statement.SelectStatement
methods

bind(), 383
execute(), 383

get_binding_map(), 296
get_bindings(), 296
get_grouping(), 296
get_having(), 296
get_limit_offset(), 296
get_limit_row_count(), 296
get_projection_expr(), 296
get_sort_expr(), 296
get_sql(), 297, 386, 456
get_where_expr(), 297
group_by(), 382
having(), 382
is_doc_based(), 297
is_lock_exclusive(), 297
is_lock_shared(), 297
limit(), 383
lock_exclusive(), 383
lock_shared(), 383
offset(), 383
order_by(), 382
where(), 382

statement.SqlStatement
methods

execute(), 395
is_doc_based(), 297, 395

statement.UpdateStatement
methods

bind(), 387
get_binding_map(), 296
get_bindings(), 296
get_grouping(), 296
get_having(), 296
get_limit_offset(), 296
get_limit_row_count(), 296

statement.ModifyStatement (cont.)

Index

515

get_projection_expr(), 296
get_sort_expr(), 296
get_update_ops(), 297
get_where_expr(), 297
is_doc_based(), 297
is_lock_exclusive(), 297
is_lock_shared(), 297
limit(), 387
order_by(), 387
set(), 387–388
sort(), 387
where(), 387

ST_GeomFromGeoJSON(), 314, 345
Stored procedure, 133, 156–161
Strict mode

innodb_strict_mode, 409–410
STRICT_TRANS_TABLES SQL

mode, 409–410

T
Table object

methods
count(), 373, 377–379
delete(), 377, 390
exists_in_database(), 376
get_connection(), 376
get_name(), 376
get_schema(), 376
insert(), 377–379, 381
is_view(), 376

select(), 377–378, 382,
396, 400

update(), 377–378
properties

name, 375
schema, 376

Time zone
CONVERT_TZ(), 192, 195
data type

datetime, 190–192, 195
timestamp, 173,

190–192, 195
Transaction

autocommit, 275
consistent snapshot, 181
isolation level, 181–182
read-only, 157, 174, 181, 186
Savepoint, 275–276

U
User input, 83, 86, 108, 111,

121, 132

V, W
Versions, 4–6, 8, 12, 14–16, 18, 20,

23–24, 27–30, 41, 43

X, Y, Z
X Plugin, 261–263, 304
X Protocol, 259, 261–262, 304

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Getting Ready
	Chapter 1: Introduction and Installation
	Introduction
	Versions
	Community and Enterprise Editions
	APIs

	Downloading
	Installation
	pip – All Platforms
	Microsoft Windows – MySQL Installer
	Linux – MySQL Yum Repository
	Verifying the Installation

	MySQL Server
	Installation
	Configuration

	Creating the Application User
	Installing the world Sample Database
	Code Examples
	Summary

	Part II: The Legacy APIs
	Chapter 2: Connecting to MySQL
	Creating the Connection from Python
	Syntax
	Common Connection Options
	Connection Examples
	Reconfiguration and Reconnect
	Connection Best Practices

	Configuration Files
	Alternatives to Hardcoding the Configuration
	Using MySQL Configuration Files

	General Configuration
	Connection
	Character Set
	Query Behavior
	Warnings

	Summary

	Chapter 3: Basic Query Execution
	Simple Execution
	Executing the Query: cmd_query()
	Retrieving Rows – get_rows()
	Automatic Conversion into Native Python Types
	Retrieving Rows – get_rows() With Limit
	Retrieving Rows – get_row()
	Consuming Results

	Cursors
	Instantiation
	MySQLCursor – Execution Flow
	MySQLCursor – Query Execution
	MySQLCursor – Properties
	column_names
	description
	lastrowid
	rowcount
	statement
	with_rows

	The Dictionary and Named Tuple Cursor Subclasses

	Handling User Input
	Validating the Input
	Query Parameterization
	Prepared Statements

	Summary

	Chapter 4: Advanced Query Execution
	Multi-Query Execution
	Multiple Queries with Support for Results
	Connection - cmd_query_iter()
	Cursor – execute()

	Multiple Queries Based on a Template
	Extended Inserts

	Buffered Results
	Stored Procedures
	Loading Data Using a CSV File
	Loading a Server-Side File
	Loading an Application-Side File
	Load Data Example

	Connection Properties
	Transactions
	Default Database
	Time Zones
	Other Connection Utility Methods
	Connection Methods
	cmd_change_user()
	cmd_reset_connection() and reset_session()
	is_connected()
	ping()

	Server Information Methods

	Column Information
	Field Types
	MySQL Column Flags

	The C Extension
	The mysql.connector.connect() Function
	The _mysql_connector Module

	Summary

	Chapter 5: Connection Pooling and Failover
	Connection Pooling – Background
	The pooling.MySQLConnectionPool Class
	The pooling.PooledMySQLConnection Class
	Configuration Options

	Using Connection Pools
	Creating a Connection Pool
	Using Connection Pool Connections
	Using the mysql.connector.connect() Function
	Using the get_connection() Method

	Executing Queries
	Reconfiguring the Connections

	Connection Failover
	Failover Configuration
	Coding for Failover
	Failover Example

	Summary

	Part III: The X DevAPI
	Chapter 6: The X DevAPI
	The MySQL X Plugin
	The mysqlx Module
	Creating a Session
	Passing Individual Options
	Passing an URI
	Connection Examples

	Working with the Session
	Transactions
	Other Session Methods

	Schemas
	Schema Manipulation
	Creating a Schema
	Retrieving the Default Schema
	Retrieving a Schema by Name
	Dropping a Schema

	Other Schema Methods and Properties
	Schema Example
	CRUD Arguments
	Documents
	Document ID
	Condition
	Fields

	Statements
	Results
	result.Result
	result.DocResult and result.RowResult
	result.SqlResult

	Summary

	Chapter 7: The MySQL Document Store
	The MySQL Document Store
	Workflow
	Collections
	Collection Manipulation
	Creating a Collection
	Retrieving a Single Collection
	Retrieving All Collections in a Schema
	Dropping a Collection
	Creating Indexes
	Dropping Indexes

	Other Collection Methods and Properties

	Queries – CRUD
	CRUD: Create
	CRUD: Read
	CRUD: Update
	Replacing Documents
	Modifying Documents
	set() and unset()
	array_append() and array_insert()
	patch()

	CRUD: Delete
	Summary

	Chapter 8: SQL Tables
	Workflow
	NoSQL API for SQL Tables
	Table and View Objects
	Table Queries
	CRUD: Create
	CRUD: Read
	CRUD: Update
	CRUD: Delete

	SQL Statements
	Executing SQL Statements
	Queries with Multiple Result Sets

	Summary

	Part IV: Error Handling and Troubleshooting
	Chapter 9: Error Handling
	Warnings, Errors, and Strict Modes in MySQL Server
	Treating Note Level Messages as Warnings
	Strict Modes
	The MySQL Error Log

	Warning and Error Handling
	Configuration
	Fetching Warnings After cmd_query()
	Fetching Warnings with Cursors
	Fetching Warnings with the X DevAPI

	MySQL Error Numbers and SQL States
	MySQL Error Numbers
	SQL States

	Exception Classes
	Built-In Classes
	Mapping Errors to Exception Classes
	Custom Exceptions

	Locking Issues
	What to Do When Things Go Wrong
	Severity
	Impact
	Frequency
	Retriable
	Effort

	Summary

	Chapter 10: Troubleshooting
	Troubleshooting Steps
	Checking Warnings
	Determining the SQL Statement
	cursor.statement
	mysqlx SelectStatement.get_sql()
	Using the Performance Schema

	Retrieving Raw Data
	Reading the MySQL Connector/Python Source Code
	Changing the Implementation
	MySQL Server Logs
	The Error Log
	The General Query Log
	The Slow Query Log
	The Binary Log

	Tools for Debugging
	MySQL Shell
	PyCharm

	Troubleshooting Examples
	Unread Result Found
	Data Too Long or Out of Range Value
	Data Changes Are Lost
	The Used Command Is Not Allowed with This MySQL Version
	Bulk Changes Causes Corruption or Errors
	Unsupported Argument When Creating the Connection
	Aborted Connections in the MySQL Server Error Log
	Locking Issues

	Summary

	Index

