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Preface 

 

 

The area of Neural computing that we shall discuss in this 

book represents a combination of techniques of classical 

optimization, statistics, and information theory.  Neural network 

was once widely called artificial neural networks, which 

represented how the emerging technology was related to artificial 

intelligence.   It once was a topic that had captivated the interest of 

most computer scientists, engineers, and mathematicians.  Its 

charm of being an adaptive system or universal functional 

approximator has compelling appeal to most researchers and 

engineers.   The Backpropagation training algorithm was once the 

most popular keywords used in most engineering conferences.  

There is an interesting history on this area dated back from the late 

fifties which we saw the advent of the Mark I Perceptron.  But the 

real intriguing history started from the sixties that we saw Minsky 

and Papert’s book “Perceptrons” discredited the early neural 

research work.  For all neural researchers, the late eighties are well 

remembered because the research of neural networks was 

reinstated and repositioned.  From the nineties to the new 

millennium is history to be made by all neural researchers. We saw 

the flourish of this topic and its applications stretched from 

rigorous mathematical proof to different physical science and even 

business applications.  Researchers now tend to use the term 

“neural networks” instead of “artificial neural networks” when we 

have understood the theoretical background more.  There have 

been volumes of research literature published on the new 

development of neural theory and applications.  There have been 

many attempts to discuss this topic from either a very 

mathematical way or a very practical way. But to most users 

including students and engineers, how to employ an appropriate 

neural network learning algorithm and the selection of model for a 

given physical problem appear to be the main issue.    

This book, written from a more application perspective, 

provides thorough discussions on neural network learning 
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algorithms and their related issues.   We strive to find the balance 

in covering the major topics in neurocomputing, from learning 

theory, learning algorithms, network architecture to applications.   

We start the book from the fundamental building block “neuron” 

and the earliest neural network model, McCulloh and Pitts Model.  

In the beginning, we treat the learning concept from the well-

known regression problem which shows how the idea of data 

fitting can be used to explain the fundamental concept of neural 

learning.   We employ an error convex surface to illustrate the 

optimization concept of learning algorithm. This is important as it 

shows readers that the neural learning algorithm is nothing more 

than a high dimensional optimization problem.  One of the beauties 

of neural network is being a soft computing approach in which the 

selection of a model structure and initial settings may not have 

noticeable effect on the final solution.   But neural learning process 

also suffers from its problem of being slow and stuck in local 

minima especially when it is required to handle a rather complex 

problem.  These are the two main issues addressed in the later 

chapters of this book.  We study the neural learning problem from 

a new perspective and offer several modified algorithms to 

enhance the learning speed and its convergence ability.   We also 

show initializations of a network have significant effect on the 

learning performance.  Different initialization methods are then 

discussed and elaborated.  

Later chapters of the book deal with Basis function 

network, Self-Organizing map, and Feature Selection.  These are 

interesting and useful topics to most engineering and science 

researchers.  The Self-Organizing map is the most widely used 

unsupervised neural network.  It is useful for performing 

clustering, dimensional reduction, and classification.   The SOM is 

very different from the feedforward neural network in the sense of 

architecture and learning algorithm.   In this book, we have 

provided thorough discussions and newly developed extended 

algorithms for readers to use.  Classification and Feature selection 

is discussed in Chapter 6.   We include this topic in the book 

because bioinformatics has recently become a very important 
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research area.  Gene selection using computational methods, and 

performing cancer classification computationally have become the 

21
st
 Century research.  This book provides a detail discussion on 

feature selection and how different methods be applied to gene 

selection and cancer classification.  We hope this book will 

provide useful and inspiring information to readers.  A number of 

software algorithms written in MATLAB are available for readers 

to use.  Although the authors have gone through the book for few 

times checking typos and errors, we would appreciate readers 

notifying us about any typos found.  

At last, the authors would thank the support and help from 

his colleagues and students.  The author must thank his students 

Mr. Gaoyang Dai, Dr. Di Huang, Dr. Jim Y F Yam, Dr. Sitao Wu, 

and Dr. M K M Rahman for their help in preparing the material.  

The authors would also thank Prof. Guanrong Chen for introducing 

us to the very helpful publisher.  The authors must thank the World 

Scientific Publishing Co for publishing this book.       

Last but not least, Tommy Chow would like to thank Irene, 

Adrian and Ian for their tolerance and support.       

 

    
. 
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1 

Chapter 1 

Introduction 

1.1. Background 

Human beings are now living in an era of unparalleled changes 
especially in the world of science and technology.  We have witnessed 
the impact of DNA research from the way of diagnosing cancer, creating 
new drugs and to the way of tracing our human ancestors back to over 
eighty thousand years ago.  We have also witnessed the birth of the 
Information Technology era which has changed our life from the 
personal entertainment habits to our learning and even the way of how 
our business is run.   All these amazing things, which are attributed to the 
immense development of computing technology, happened in merely 
few decades.  Undoubtedly, computers have become an integral part of 
our lives that most users have taken them for granted but may not know 
that the structure of computer is based on John Von Neumann’s view on 
how computational process  be organized.   Von Neumann architecture is 
a very organized way of processing computation.  The computing is 
achieved by using a CPU operating a series of instructions including: 
fetch, decode, execute, and writeback. This type of serial operation has 
been working extremely well for virtually all applications, until the 
challenge posed by the emerging Artificial Intelligent technology.  

Neural Computing is basically a parallel distributed processing.  It 
has the ability of performing supervised and/or unsupervised learning to 
adapt the information environment.   The architecture of neural network 
is in fact based on the way of how our human nerve system is connected.   
Generally, there are about 100 billion numbers of neuron in a human 
brain.  Neurons in our brain are parallel connected to numerous other 
neurons forming a massive parallel computer like machine.  Neural 
network is designed in a way to seek the style of computing of human 
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brain.  As a result, neural network is powerful enough to solve a variety 
of problems that are proved to be difficult with conventional digital 
computational methods. Typical cognitive tasks include recognition of a 
familiar face, learning to speak and understand a natural language, 
retrieving contextually appropriate information from memory, and 
performing demanding classification tasks. 

The human thinking system is in parallel which means it operates 
with numerous of our neurons connected together.   In contrast to the 
conventional crisp mathematical logic, the main characteristics of human 
thinking process is imprecise, fuzziness, but adaptive.  It learns by 
examples, experience and it exhibits strong adaptation to external 
changes.   Neural networks are designed in a way to mimic most of these 
characteristics. They are so far exhibiting very encouraging performance. 

Learning: Neural network can modify their behaviour in response to 
the environment. When a given set of inputs with or without desired 
outputs, they can self-adjust to produce consistent responses. 

Generalization: When the network is once trained, its response can 
be in some extent insensitive to minor variations, which may be caused 
by noise corruption or slight distortion in a real-world environment, in its 
inputs. 

Massively parallelism: Information is processed in a massive 
parallel manner. 

Fault-tolerance:  Once when the network connections are made, the 
network is able to deliver a robust behaviour.  The response of the 
network as a whole may only be slightly degraded if some of its 
processing elements are slightly damaged or altered.  

1.2. Neuron Model 

Neuron is the fundamental cellular unit of a nervous system.  A 
typical biological neuron in human brain is shown in Fig. 1.1.  In each 
neuron it has an output fiber called axon, and a button like terminal 
called synapse. The axon, which is the output path of a neuron, splits up 
and connects to many dendrites, which are the input paths of other 
neurons, through a junction called synapse.  Each neuron receives and 
combines signals from numerous neurons through dendrites similarly 
connected.   



 Introduction 3 

 

Figure 1.1. A typical biological neuron and its connection 
 
A neuron can receive up to few thousands to about fifteen thousands 

inputs from the axons of other neurons.  Apparently this forms a massive 
parallel system compared with the digital computer architecture.   In each 
neuron, if the combined signal exceeds a threshold value, it activates the 
firing of a neuron producing an output signal through the axon. 
Transmission of information across synapses is in fact a chemical in 
nature, but it has electrical side effects which we can be measured.   
Electrical activities in neurons appeared in a shape of pulse with a 
frequency in the range of 1 KHz.  This type of biological behaviour is 
modeled by an electronic model shown in Fig. 1.2. A simple neuron 
model is the most fundamental processing element of neural networks.   
The weights correspond to the synaptic strength of neural connections, 
i.e., analogous to “memory” and the neuron sums all the weighted inputs, 
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modifies the signals through a transfer function which is usually non-
linear.  The transfer function can be a threshold function which only 
allows signal to be passed if the combined activity level reaches a certain 
threshold level, or it is a continuous function of the combined input. 

 

Figure 1.2. Electronic model of a neuron 

1.3.  Historical Remarks 

The first neural network model has to be the McCulloch and Pitts 
model proposed in 1943.  It is a very simple electronic model that can be 
hardware implemented.  It is a multiple inputs summing device that 
consists of different weightings for each input, and a threshold before the 
output. The significance of this model at that time was its ability to 
compute any arithmetic or logical function.  It is until about the ends of 
the fifties that the first type of Perceptron was proposed by Frank 
Rosenblatt, and Wightman.  The first application of the Mark I 
Perceptron machine was on pattern recognition.  In their experiments, the 
pattern recognition ability of Perceptron model was demonstrated by 
recognizing different simple characters. Subsequently, numerous neural 
networks results were reported. Neural hardware business was even 
established.  It was similar to the hype of the IT industries in the end of 
nineties, the neural hype burst when good idea ran out.  By the mid of 
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sixties, Minsky and Papert’s paper mathematically proved that a simple 
perceptron could not handle the XOR function.  This has silenced neural 
research work for about 2 decades.  It was until about the mid of eighties 
that Neural research has become flourish again.  It was achieved with the 
contribution from a number of renowned scientists including Hopfield, 
Amari, Grossberg, Kohonen, Fukushima, Oji, etc.  They have developed 
many important neural topologies.    

In 1982, Hopfield published two important articles which most 
people still regard as the inauguration of the current neural network era.  
Hopfield showed a novel idea that models of physical systems could be 
effectively used for solving computational problems.  Using the idea of 
an energy function to establish a new type of network architecture, he 
showed that when a distorted pattern is presented to the network, the 
pattern is associated with another pattern which belongs to a similar class 
pattern.  Hopfield networks are, thus, sometimes called associative 
networks. For a discrete-time Hopfield network, the energy of a certain 
vector with a given initial state will converge to a value having minimum 
energy.  This is used to explain its capability of converging to a similar 
class of patterns.  Also, in the early eighties Carpenter and Grossberg 
established the well-known adaptive resonance theory (ART) based on 
their early work on competitive learning.  ART was introduced by them 
over the period of 1976-1986 as a theory of human information 
processing.   Like Kohonen’s Self Organising Map, they were working 
on systems that are capable of organizing themselves.  ART has the 
ability to learn without supervised training and is consistent with 
cognitive and behavioral models. It was derived based on competitive 
learning which is capable of finding categories.  ART has been widely 
used as a type of neural network models that perform supervised and 
unsupervised category learning, and pattern classification.   

In 1988 George Cybenko published a very important work proving 
the universal functional approximation ability of neural networks.  In 
1989, Funahashi, Hornik, and Stinchcombe also reported their findings 
on proving multilayer Perceptron network as a universal approximator.  
Subsequently, neural networks have been widely applied on many 
different science and engineering areas. The nowadays neural networks 
have already extended from its simple pattern recognition problem to the 
very complicated DNA, gene recognition and classification problems.  
Applications have extended from physical science and engineering to 
finance, economic and social science.  
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1.4. Network architecture 

Generally, neural networks can be categorized into 2 main types, 
namely supervised networks and unsupervised networks.  The way the 
network architecture was deigned has taken the ability of its training 
algorithm into account.  In most newly proposed network topologies, the 
design of their corresponding training algorithms are deemed essential.  
Apparently, a successful network architecture must be supported by an 
effective and simple enough training algorithm.  In this book, the later 
chapter will detail different efficient training algorithms.  In this section, 
we focus the introduction of their hardware architectures. 

1.4.1.  Supervised Neural Networks 

Supervised neural networks are the mainstream of neural network 
development. The differentiable characteristic of supervised neural 
networks lies in the inclusion of a teacher in their learning process. The 
basic block diagram of supervised learning for all neural network models 
can be described through Fig. 1.3. For the learning process, the network 
needs training data examples consisting of a number of input-output 
pairs. The desired output vector in the training data set serve as a teacher 
for the network’s learning. In the training process the error signals are 
constructed from the difference between the desired output and system 
output. Through iterative training procedure the network’s weights are 
adjusted by the error signal in a way that the network output tries to 
follow the desired output as close as possible.  

The learning procedure continues until the error signal is close to 
zero or below a predefined value. The sum of errors over all the training 
samples can be considered as a kind of network performance measure, 
which is a function of free parameters of the system. Such function can 
be visualized a multidimensional error surface where network free 
parameters serves as coordinates. During the course of learning the 
system gradually moves to a minimum point along an error surface. The 
error surface is determined by the network architecture and the cost 
function.  In later chapter of this book, more details in this aspect will be 
discussed.  The supervised networks’ architectures can vary depending 
on the complexity and nature of data to be handled. Broadly speaking, 
they can be sub-divided into following three fundamental classes. 
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Figure 1.3. Overview of supervised learning 

1.4.1.1. McCulloh and Pitts Model 

In 1943, neurophysiologist McCulloch and his associate Pitts used a 
type of electrical circuit to model a simple neuron. This is the first ever 
type of electronic model used to model a neuron. The McCulloh and Pitts 
(MCP) model has a profound impact on the later Perceptron model.  The 
MCP model basically consists of a summing amplifier and variable 
resistors as shown in Fig. 1.4.  The weights ( )1 2,W W  in Fig. 1.4 are 
adjusted through varying the values of the resistors.  A threshold device, 
which is made of voltage comparator, generates an output 1 if the 
summation of signals exceeds the threshold value, T, or the output is 0 if 
the signal is less than the threshold value, T.  

To illustrate how the MCP model works, we use a simple “AND” 
logic problem as example.The general form of MCP model is 
 1Output = , if 1 1 2 2X W X W T+ >  (1.1) 

We make use of the truth table and the following inequalities are 
obtained. 
 O T< , 2O W T+ < , 1W O T+ < , 1 2W W T+ >  
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Figure 1.4. The general form of MCP model 
 

 
Table 1.1 

 

1X  2X  Output 

0 0 0 
0 1 0 
1 0 0 
1 1 1 
 

The task is to determine the values of T, 2W  and 2W  so that the output 
satisfies the logic “AND” function. We can chose 1 0.5W = , 2 0.8W =  

and 1T =  as a solution. Fig. 1.5 shows that the job is equivalent of 
finding a line separating the 3 “0” from the “1”. Apparently, the 3 lines 
and many other lines can satisfy the requirement.  

To find the separating line, we need to find the gradient and the 
interceptions of the line. By replacing “>” with “=”, 

 1 1 2 2W X W X T+ =  (1.2) 

 

1 1
2

2 2

W XTX
W W

= −
  

Thus 
1 1.25

0.8
a = = , and 

5
8

gradient −
= , 

1 2
0.5

b = =  
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Figure 1.5. 
 
There are infinite numbers of solutions that can satisfy the 

requirement. Clearly, it is a very lose way in finding a solution which 
appears to be one of the beauty of neural network. The Application of a 
“AND” logic function may appear to be too simple to illustrate its 
concept of finding a hyper-plane for discrimination. We now consider 
the following logic function. 

 
Table 1.2 

 

1X  2X  3X  Output 

0 0 0 1 
0 1 1 0 
0 0 1 0 
0 1 0 1 
1 0 0 0 
1 1 1 0 
1 0 1 0 
1 1 0 0 
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Figure 1.6. 

 
In this example, we need to find a plane “Z” to separate the 6 “0” 

from the 2 “1”. Similarly, it is clear that there are many hyperplanes “Z” 
can do the separation job. The complexity of the problem can be 
visualized when higher dimension input vector are considered. A training 
rule is needed to find the possible hyperplane to separate “1” from the 
“0”.  

In the above examples, whether it is a 3-dimensional cube or a 2-
dimensional plane, they are all linearly separable cases. This means that 
we can use a linear line or a hyperplane to separate the “0” from the “1”. 
In real world, problems may usually be linear non-separable. We use the 
famous “ex-OR” as example to illustrate the concept of linear non-
separable. Fig. 1.7 shows that it is impossible to use a straight line to 
separate the “0” from the “1”. This brings out the main shortcoming of a 
simple Perceptron model and the need of using multilayer Perceptron 
network which will all be briefed in later sections of this chapter. 
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Table 1.3 
 

 

 

Figure 1.7. 
 
In this case none of line “1”, line “2” and all other linear lines can 

possible separate the 2 “0” from the 2 “1”.  

1.4.1.2. The Perceptron Model 

The Perceptron model is the simplest type of neural network 
developed by Frank Rosenblatt in 1962.  This type of simple network is 
rarely used now but it is significant in terms of its historical contribution 
to neural networks.   A very simple form of Perceptron model is shown 
in Fig. 1.8. It is very much similar to the MCP model discussed in the 
last section.  It has more than 1 inputs connected to the node summing 
the linear combination of the inputs connected to the node.  Also, the 
resulting sum goes through a hard limiter which produces an output of +1 
if the input of the hard limiter is positive.  Similarly, it produces an 

1X  2X  
Output 

0 0 0 
0 1 1 
1 0 1 
1 1 0 
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output of -1 if the input is negative.    It was first developed to classify a 
set of externally inputs into 2 classes of 1C or 2C  with an output +1 
signifies 1C  or 2C .  Despite its early success, the single layer Perceptron 
network was proved by Minsky and Papert’s work that it is unable to 
classify linear non-separable problem.  

 

 
 

Figure 1.8. Single-layer Perceptron model 
 
A 2-layer Perceptron network can be used for classifying linear non-

separable problems. First, we consider the classification regions in a 2 
dimensional space.  Fig. 1.9 shows the 2-D input space in which a line is 
used to separate the 2 classes 1C  and 2C . 

Similar to Eq. (1.2) 
 1 1 2 2 0W X W X T+ − =  

The region below or on the right of the line is 
 1 1 2 2 0W X W X T+ − >  (1.3) 

Thus the region above or on the left of the line is 
 1 1 2 2 0W X W X T+ − <  (1.4)  

Fig. 1.10 shows that a linear non-separable case can be separated 
using a 2-layer perceptron model. Fig. 1.10(b) shows a 2-layer 
perceptron network separating linear non-separable case. This concept 
has paved the way for the later development of multi-layer feedforward 
model.  

1x  

2x  

3x  

mx  
Bias 

y

Output Input 
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Figure 1.9. 
 

 

Figure 1.10. (a) It shows we can use 3-liear lines to separate linear non-separable case 
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Figure 1.10. (b) A 2-layer perceptron network separating linear non-separable case 

1.4.1.3. Multi-layer Feedforward Network 

In a simple form, a feedforward network consists of an input layer 
and a single layer of neurons. Such a single-layer feedforward network is 
not capable of classifying nonlinearly separable patters as discussed in 
the previous sections.  Multi-layer feedforward network has become the 
major and most widely used supervised learning neural network 
architecture. In the feedforward networks, all connections are acyclic or 
unidirectional from input to output layer.  

Multi-layer network, shown in Fig. 1.11, consists of one or more 
layers of neuron, called hidden layer, between input and output layer. 
The neurons in hidden layers are called hidden neuron. The network is 
called fully connected when every neuron in one layer is connected to 
every neuron of the next layer.  It is able to handle relatively complex 
task and linear non-separable classification. A typical example of such 
problem is the well known Exclusive OR (XOR). 
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Figure 1.11. Multilayer feedforward network with 1 hidden layer 
  

1.4.1.4. Recurrent Networks 

Recurrent network is a special form of network.  It can be a single 
layer or multiple hidden layers network. The basic difference from 
feedforward networks is that they have one or more feedback loops as 
shown in Fig. 1.12. The feedback loop can appear in many forms 
between any two neurons or layers.  It typically involves unit delay 
element denoted by 1z− .  Recurrent networks exhibit complex dynamics 
because they consist of a large number of feedforward and feedback 
connections.  This characteristic provides them extra advantages in 
handling time-series related and dynamical problems over feedforward 
networks. Recurrent networks are also useful for processing special types 
of data such as graph-structured data. A recurrent network with a smaller 
network size may be equivalent to a complicated type of feedforward 
network architecture. 

Inputs  

Outputs 

Input layer 

Output layer 
of neurons 

Hidden layer 
of neurons 
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Figure 1.12. Recurrent network 
 

There have been a wide applications of recurrent networks on 
intelligent control, system identification, and dynamical system 
applications.  In these applications, theoretical study of stability, 
convergence of the network trajectory to the equilibrium, and their 
functional approximation ability are regarded important.  These studies 
have widely been reported in many research articles.  Some of these 
work include the proof of a discrete-time trajectory on a closed finite 
interval can be represented by using a discrete-time recurrent neural 
network. In the case of continuous-time recurrent networks, there is work 
showing that a continuous-time dynamical system without input 
i.e. ( )=x F x  can be approximated by a class of recurrent networks to an 
arbitrary degree of accuracy.   Subsequently, there are work proving that 
a general dynamical continuous-time systems with control input, i.e. 

( ),=x F x u  can be represented by recurrent networks.  Different type of 

dynamical system like ( ) ( )= + ⋅x f x g x u  has also been studied.  All 
these works focus on the approximation problem of continuous-time 
recurrent networks to dynamical time-invariant system ( ),=x F x u . 
There are also study on dynamical time-variant systems, 

Input  

1z−

1z−

1z−
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i.e. ( ) ( ), ,t t=x F x u , which has wider industrial applications because 
most dynamical systems may be time-variant.  Now the theoretical study 
of recurrent neural networks on approximating different dynamical 
systems has reached a very sophisticated stage that recurrent networks 
have been widely applied to many forecasting, functional approximation, 
system identification, and control problems. In recurrent network 
learning algorithm, special types of algorithms were designed to handle 
control problems. More approaches have been developed using recurrent 
neural networks based control methods. It has been pointed out that the 
fundamental shortcomings of current adaptive control techniques, such 
as nonlinear control laws which are difficult to derive, geometrically 
increasing complexity with the number of unknown parameters, and 
general unsuitability for real-time applications, have compelled 
researchers to look for solutions elsewhere. Recently, it has been shown 
that recurrent neural networks have emerged as a successful tool in the 
field of dynamical control systems. Funahashi and Nakamura have 
proved that any finite-time trajectory of a given n-dimensional dynamical 
system can be approximately realized by internal states of the output 
units of a continuous-time recurrent neural network when appropriate 
network topologies together with appropriate initial conditions are used. 
When recurrent networks are used to approximate and control an 
unknown nonlinear system through an on-line learning process, they may 
be considered as subsystems of an adaptive control system. The weights 
of the networks need to be updated using a dynamical learning algorithm 
during the control process.  In establishing a convergence control action, 
many different recurrent training learning algorithms were developed, for 
instance Chow and Fang derived a 2-D nonlinear system mathematical 
model to describe the dynamic of a recurrent network and the dynamics 
of the learning process.  The error dynamic equation is expressed in the 
form of a 2-D Roesser’s model with time-varying coefficients. Based on 
2-D system theory, a real-time iterative learning algorithm for trajectory 
tracking was derived.  

1.4.2. Unsupervised Neural Networks 

Unlike the supervised networks, unsupervised networks do not have 
a teacher in the training data set.  The learning process of unsupervised 
neural networks is carried out from a self-organizing behavior.  In the 
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course of training, no external factor is used to affect the weights 
adjustment of the network. The correct outputs are not available during 
the course of training. For instance, a typical unsupervised network 
consists of an input layer and a competitive layer.  Neurons on the 
competitive layer compete with each other via a simple competitive 
learning rule to best represent a given input pattern.  Through 
competitive learning, the network output automatically reflects some 
statistical characteristics of input data such as data cluster, topological 
ordering etc.  

Self-organizing map (SOM) is the most widely used unsupervised 
neural networks. Fig. 1.13(b) shows the architecture of a typical SOM 
network, in which all neurons, arranged on a fixed grid of the output 
layer, contain a weight vector similar to the input dimension.  After the 
training, each neuron becomes representative of different types of input 
data. One of the most important characteristic of SOM lies in is its 
topological ordering which means that the neurons that have similar 
weight (in the input dimension) also close to each other in the SOM 
output map.  This type of SOM map is useful in a many applications 
including clustering, visualization, quantization and retrieval. 

 

Figure 1.13. (a) Unsupervised learning process (b) SOM network architecture 
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1.5. Modeling and Learning Mechanism 

One of the main functions of neural networks is about their 
excellent ability to model a complex multi-input multi-output system.  
Neural networks have widely been considered and used as a kind of soft 
mathematical modeling method.  In a given high dimensional input 
output dataset, neural networks are able to provide a promising modeling 
service.  Despite the fact that the neural learning procedures may be 
perceived rather straightforward from the perspective of application, 
every problem is vastly different because the problems usually consist of 
new measurements or test data that are not exactly the same as the 
training data seen amid the training period.  For instance, consider a face 
detection problem in which the training dataset is given with a set of 
pictures containing faces.  A picture can be represented by a vector of its 
pixel values in an n-dimensional vector.  The training set may consist of 
an m pairs of data in which the label, which is the name of the face, 
associated with the picture is included. The training process should come 
up with a function h(x) which would deliver the correct label when given 
a query image.  Usually, there are 2 main problems: (i) the function, h(x), 
may produce excellent results on the training set, but may perform rather 
poorly on new unseen pictures. (ii) New unseen pictures may never be 
identical as the previously seen images in the training set. Apparently, 
the task of training is not simply to reduce the training error. We are 
more concern on the generalization ability of the network.  

There are many training algorithms developed in the past 10 years, 
they all share the similar goal of minimizing the training error in the 
shortest possible time. Despite their employed approaches may ranged 
from using gradient descent optimization to Least Squared mechanism, 
we need to analyze the problem from the perspectives of Information 
theory, and Statistics in order to come up with the best network for a 
given problem. In order to understand the fundamental of learning 
mechanism, we will start to illustrate it from a simple linear regression 
perspective.   

1.5.1.  Determination of Parameters 

We can consider a simple linear regression example in which a 
linear line is used to model a given dataset as shown in Fig. 1.14. It 
investigates the electrical property of a new conducting material.  The 
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dots show how electrical current varies with the supply voltage. For a 
given supply voltage of 50 volts, we are asked to predict the magnitude 
of current flowing through the new material. This question can simply be 
answered by using a linear model. The simplest model is in the form 
 y wx b= +  (1.5) 

 

Figure 1.14. 
 
The question becomes the determination of the 2 parameters, w  and 

b . It is a question of finding the best straight line, which will be used as 
a predictor, drawn through the experimental data. In this simple linear 
regression question, the two parameters can be solved conventionally by 
using the Least Squared method.  
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where ,i id x  correspond to the measured current response, and voltage 
supply respectively, and N is the total number of data.  In solving the 
linear regression problem, the 2 parameters are obtained by using the 
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above equation.  One can imagine that complexity of the problem when 
more parameters are involved. In neural network training mechanism, we 
have to rely on a more sophisticated optimization approach on solving 
the numerous parameters.    

We use the same linear regression problem to illustrate the concept 
of a cost function approach. To make a “good predictor”, we define a 
cost function E over the model parameters.  One of the most widely used 
cost function for E is the sum squared error given  

 2)(
2
1

i
i

i ydE −= ∑  (1.7) 

The above equation is quadratic because of the square term.  The 
performance surface is in a form of a convex surface, in which the 
minimum locates at the bottom.  Fig. 1.15 shows how the sum squared 
error varies with the 2 parameters.  

 

 

Figure 1.15. 
 

 
The cost function E provides us an objective measure of predictive 

error for a specific choice of parameters.  The best possible parameters 
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can be obtained by minimizing the cost function or finding the minimum 
of the performance surface.  We use gradient descent type optimization 
algorithm to find the minimum.  This can easily be found as long as we 
are able to evaluate the gradient of the performance surface and follow 
its down hill path all the way along the surface.   Different initial settings 
do not affect the final solution except providing different downhill paths. 
We can simply imagine that we are somewhere on or near the summit of 
a mountain.   The shortest way to go down hill will simply to follow the 
steepest gradient of the terrain.  But the selection of our step size is 
important when we go downhill because too large a step size will 
apparently be dangerous.  In mathematical sense, too large a step size 
will likely cause oscillation around the minimum although it may speed 
up the optimization at the beginning.  All these issues will be discussed 
in detail in later chapter of this book.   The gradient descent optimization 
procedures are 

 
1. Initialize the parameters randomly.  
2. Evaluate the gradient of the error function with respect to each 

model parameter.  
3. Adjust the model parameters by a certain step size in the direction 

of the steepest gradient.   
4. Repeat steps 2 and 3 until the minimum is found.  
 
Interestingly, the linear model shown in Eq. (1.5) can be 

implemented by the simplest form of a neural network shown Fig. 1.16.  
This simple network consists of a bias neuron, an input neuron, and a 
linear output neuron. In most feedforward neural network 
implementation, the bias neuron is set to have a constant input 1.  
 ))(1( 202112 WWxy +=  (1.8)   

The weights 21W and 20W  are determined using the gradient descent 
algorithm.   When more weights are involved, the problem becomes a 
high dimensional one which cannot be depicted using a 3 dimensional 
space. But the overall mechanism can be perceived identical to the above 
described. It is worth noting that although the bias neurons and their 
weights are generally omitted from most architecture layout diagrams, all 
neurons consist of a bias weight with a constant input 1. The learning 
algorithm will determine the weight of the bias together with other 
weights. 
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Figure 1.17. 
 

Neuron 
(2) 

Neuron 
(0) bias 

Neuron 
(1) input 

Input  
set to 1 

Input 1x  

20W  
21W  

Output  

2y  

Figure 1.16. 



24 Neural Networks and Computing: Learning Algorithms and Applications 

The Current Vs Supply voltage example illustrate the determination 
of the current from any given supply voltage. This is a simple single 
input single output problem. If the problem is a more complicated 
consisting more than a single input and a single output variables, i.e. 
frequency, noise, bias, and phase, the above simple neural network 
model has to be modified by including more input and output neurons as 
shown in Fig. 1.17.  

 

 

Figure 1.18. (a) A network with a neuron consisting of a nonlinear activation function 
( )f u  and (b) “sigmoid”- a typical activation function 

 
We consider the curve fitting problem again from different 

perspective.  In Fig. 1.14, it is clear that a curve will provide a much 
better fit than a linear line. Thus, it is reasonable to perform the curve 
fitting by including a nonlinear activation function inserted at the output 

of a neuron.  An S-shaped sigmoid function
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Fig. 1.18(b) is one of the most widely used activation functions. The 
output of the network with a nonlinear activation function is 
 )( 20121 wxwfy +=  (1.9) 
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where 
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+
. Here, u is the weighted input for the output 

neuron: ( )21 1 20u w x w= + .  This is the widely used feedforward 
neural network with nonlinear activation function.  
 

1.5.2. Gradient Descent Searching Method 

In the last section, we have shown why the performance surface is 
paraboloid when only 2 parameters are involved.  In neural networks 
learning, a large number of weights are involved that results in a very 
complex high dimensional performance surface. Searching the 
performance surface using gradient descent method is an efficient way to 
determine the networks weights iteratively.  As the search is to reach the 
minimum of the surface, the search direction must be opposite to the 
local gradient.  Thus we can randomly initialize the weights as (0)W  
where the index in the parentheses denotes the number of iteration, and 
W denotes the weight vector.  With the given initial weights, we can 
evaluate the gradient of the surface at (0)W . The weights are thus 
adjusted by a magnitude proportional to the gradient and a step size.   
The new updated weights, (1)W  is then obtained. This process continues 
in a way  
 ( 1) ( ) ( )W n W n J nη+ = − ∇  (1.10) 

where η  is a constant step size, and ( )J n∇ denotes the gradient of the 
surface at nth iteration.  The search mechanism stops when the stopping 
criteria are met.  To improve the learning process without leading to 
oscillation, Rumelhant suggested the learning algorithm to be modified 
as 
 )1()()()1( −Δ+∇−=+ nWnJnWnW αη  (1.11) 

where the α  is a constant which determines the effect of the past weight 
changes on the current direction of movement in weight space. The 
constantα , called momentum, provides the damping effect and reduces 
the amount of oscillation during the course of training. 

It is noted that most learning algorithms use a constant η  during the 
whole course of learning. It is, however, obvious that a flexible learning 
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rate that varies with different iterations can be a better learning 
mechanism. A relatively large learning rate at the beginning learning 
phase is employed but a relatively small learning rate has to be used in 
order to maintain learning stability when the search is close to the 
minimum. The ways of adjusting the learning rate according to different 
scenarios have never been straightforward. These involve complicated 
computation on the correlation between the weights change and their 
current learning rate. This will be discussed in later chapter of this book.  

When we are handling a complex neural network, the performance 
surface is very complicated that cannot be depicted in a 3 dimensional 
space. We cannot be sure if there is only one minimum as shown in Fig. 
1.15.  Usually, the high dimensional performance surface may be very 
rugged that results in many local minima. One will never be sure that 
whether or not our searching is stuck in a local minimum. Also, we will 
never be able to obtain a zero error despite many trials. The searching 
mechanism is stopped when the magnitude of the error reaches a 
predefined level or when certain number of iteration is reached. This is 
called the stopping criteria. Trapping in local minima has also been a 
main concern to many neural network users. The likelihood of getting 
stuck in local minima increases when the complexity of a problem 
increases because the high dimensional performance surface may 
become very rugged that results in many local minima. One of the ways 
to relieve this problem is using advanced learning algorithms or even 
employing different cost function that may have an effect of changing 
the performance surface. These issues will be detailed in later chapters of 
this book. 

Exercises 

Q1.1. A two input binary neuron shown in Fig. 1.19 has a unit step 
activation function with bias = 0.5. Find the space of possible 
values of weights of α, and β for input 1x  and 2x respectively if  
the neuron is 

 
1) OFF for input (1.0, 1.0); 
2) OFF for input (0.5, -1.0); 
3) ON for input (0.5, -0.5). 
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X1

X2
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Y

 

Figure 1.19. 
 
Q1.2.  The gradient vector of a function 2 2

1 2 1 2( , ) 12 3g x x x x= +  is 

defined by a column vector   
1 2

[ ]Tg gg c
x x
∂ ∂

∇ = =
∂ ∂

. It is given 

that the normalized gradient vector 
T

cc
c c

= . Use gradient 

descent method to search the minimum for 1 2)( ,g x x with a given 

initialization of (0) [13]Tx = . Show and find the updated values 
(1)x and (2)x , with a step size of 0.5.  

 
Q1.3. An LMS algorithm is used to implement a dual-input, single-

weight adaptive noise canceller as shown in Fig. 1.20.  Use the 
LMS rule to adjust the weight w  of the adaptive filter.  Set up an 
updating equation relating ( 1)w n + to ( ), ( ), ( )w n y n x n and the 
learning rateη . 
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Figure 1.20. 
 
 
Q1.4. Write a simple program to generate a dataset relating y to x1, x2, 

x3, and x4 as the following. Use a feedforward network to model 
the following equation. Use 100 data for training and another 50 
unseen data as testing. 

 2
34121 22345 xxxXxy +−++=  

 
 
Q1.5.  Fig. 1.21 and Fig. 1.22 show the simple McCulloch and Pitts 

(MCP) model used for modeling a logic function “AND”. It 
shows the separation line with a gradient of - 0.7, which 
intersects the y-axis at 1.3, where 1x  is denoted by the y axis, 
and 2x  is denoted by the x axis. Assuming the threshold T is 1, 
determine the weights 1w  and 2w  for input 1x and 2x  
respectively. 
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Figure 1.21. 

 

Figure 1.22. 
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Chapter 2 

Learning Performance and Enhancement 

Neural networks structures, broadly classified as feedforward 
(without feedback) and recurrent (involving feedback), have numerous 
processing elements (activation functions) and connections (weights). 
Most network topologies are in the forms of layer that categorize single-
layer networks and multi-layer networks. The single-layer network is the 
simplest form that an input layer of source nodes projects onto an output 
layer of neurons. The multi-layer network is mostly useful because the 
presence of one or more hidden layers (connected between input layer 
and output layer) enable the extraction of higher-order statistics for the 
neural network to acquire a global perspective. It is particularly valuable 
when the problems are rather difficult and diverse. Interconnections exist 
between each layer of the layered type neural networks. The strengths of 
the interconnections are known as synaptic weights that are used to store 
the knowledge acquired by a neural network through a learning process. 
The procedure used to perform such a learning process is called a 
learning algorithm. 

Learning algorithm can be defined as a function to adjust the synaptic 
weights of a neural network in an orderly fashion so as to attain a desired 
objective. Since the past few decades, different types of learning 
algorithms have been developed by many researchers. For instances, 
Hebbian learning and competitive learning were developed for 
unsupervised learning, whereas, least-mean-squares (LMS) algorithm 
and error Backpropagation (BP) algorithm (Rumelhart et al., 1986) were 
developed for supervised learning. All these classic works have laid an 
immense contribution to the modern neural network research. They are 
much easier to analyze theoretically and can often be implemented 
efficiently in a variety of applications, such as time-series forecasting, 
pattern classification, system identification, and robotics and visions 
applications. Since the flourish of these early works, the supervised 
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learning method, especially for the error BP, has been widely used for 
multilayer neural networks. 

This chapter is organized as follows: Section 2.1 presents the 
fundamental of gradient descent optimization. Section 2.2 presents the 
Back-propagation learning algorithm. The derivation are briefly 
described, however, the limitations are also addressed in this section. 
Section 2.3 focuses on the convergence performance in terms of learning 
speed. Three algorithms are described to increase the rate of 
convergence. Following that, section 2.4 presents the algorithm 
initialization has a significant affect to the learning performance.  The 
methods of initialization enhancement are described and suggested how 
the networks weights can be set effectively in this section. The problem 
of local minima is another issue to affect the convergence which is 
addressed in section 2.5. This section describes several global 
optimization methods which can be used to train neural networks 
effectively. Some evaluations are also presented in this section. Finally, 
section 2.6 presents the concluding remarks of this chapter. 

2.1. Fundamental of Gradient Descent Optimization 

In order to train a neural network by gradient descent, we need to be 
able to compute the gradient E∇  of the cost function with respect to 
each weight jiw  of the network. It tells us how a small change in that 
weight will affect the overall error E. We begin by splitting the cost 
function into separate terms for each pattern p in the training data: 

 ∑=
p

pEE ,        ( )∑ −=
j

p
j

p
j

p ytE 2

2
1

 (2.1) 

where j ranges over the output units of the network. Since differentiation 
and summation are interchangeable, we can split the gradient into 
separate components for each training pattern: 
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In what follows, we describe the computation of the gradient for a single 
data point, omitting the superscript p in order to make the notation easier 
to follow. 
First use the chain rule to decompose the gradient into two factors: 
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 (2.3) 

The first factor can be obtained by differentiating eq. (2.1) above: 
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Using ∑= i ijij ywy , the second factor becomes 

 

i

i
iji

jiji

j

y

yw
ww

y

=

∂
∂

=
∂
∂

∑
        

 (2.5) 

Putting the equations (2.3)-(2.5) back together, we obtain 

 ( ) ijj
ji

yyt
w
E

−−=
∂
∂

 (2.6) 

To find the gradient E∇  for the entire data set, we sum at each weight 
the contribution given by equation (2.6) over all the data points. We can 
then subtract a small proportion μ (called the learning rate) of E∇  from 
the weights to perform gradient descent. The gradient descent algorithm 
is sum up as follows: 

1. Initialize all weights to small random values 
2. REPEAT until done 
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a. For each weight jiw  set 0:=Δ jiw  

b. For each data pattern ( )Ptx,  
i. Set input units to x 

ii. Compute value of output units 
iii. For each weight jiw  set ( ) ijjjiji yytww −+Δ=Δ :  

c. For each weight jiw  set jijiji www Δ+= μ:  
The algorithm terminates once we are at, or sufficiently near to, the 
minimum of the error function, where 0=∇E . We say then that the 
algorithm has converged. 

In this gradient descent algorithm, an important consideration is the 
learning rate μ, which determines by how much we change the weights w 
at each step. If μ is too small, the algorithm will take a long time to 
converge (see Fig. 2.1a). Conversely, if μ is too large, we may end up 
bouncing around the error surface out of control – the algorithm diverges 
(see Fig. 2.1b). This usually ends with an overflow error in the 
computer’s floating point arithmetic. 
 

     
 (a) (b) 

Figure 2.1. Learning rate for gradient descent optimization, (a) Small learning rate – Slow 
convergence, (b) Large learning rate – Divergence 

 
As described in the above we have accumulated the gradient 

contributions for all data points in the training set before updating the 
weights. This method is often referred to as batch learning. An 
alternative approach is online learning, from which weights are updated 
immediately after seeing each data point. Since the gradient for a single 
data point can be considered a noisy approximation to the overall 
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gradient E∇  (Fig. 2.2), this is also called stochastic (noisy) gradient 
descent. 
Online learning has a number of advantages: 

- it is often much faster, especially when the training set is 
redundant (contains many similar data points), 

- it can be used when there is no fixed training set (new data keeps 
coming in), 

- it is better at tracking nonstationary environments (where the 
best model gradually changes over time), 

- the noise in the gradient can help to escape from local minima 
(which are a problem for gradient descent in nonlinear models). 

These advantages are, however, bought at a price: many powerful 
optimization techniques, such as, conjugate and second-order gradient 
methods, support vector machines, Bayesian methods, etc. – are batch 
methods that cannot be used online. A compromise between batch and 
online learning is the use of “mini-batches”: the weights are updated 
after every n data points, where n is greater than 1 but smaller than the 
training set size. 
 

Average E

E1

E2

E

w  
 Figure 2.2. A noisy approximation to the overall gradient 

 2.2. Conventional Backpropagation Algorithm 

Recently, multilayer neural networks have been applied successfully 
to solve lots of difficult and diverse problems through employing various 
supervised learning procedures among which the error Backpropagation 
(BP) learning algorithm appears to be the most popular. This algorithm is 
an iterative gradient based algorithm proposed to minimize an error 
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between the actual output vector of the network and the desired output 
vector. Because of the nonlinearity of neural models, algorithms for 
supervised training are mainly based upon the nonlinear optimization 
methods. In the following, we will describe the batch-mode training 
using backpropagation algorithm. 

For notation convenience, the layers are numbered from bottom up 
beginning with 1. Analogous to the single-layer perceptron, layer 1 
consists of fanout processing neurons that simply accept the individual 
elements of the input patterns and pass them directly to all units of layer 
2. Each neuron on other layers receives the weighted signal from each of 
the neurons of the layer below. After the summation and the activation 
function operations, the output is distributed to all neurons of the upper 
layer next to this layer. A multilayer feedforward neural network, 
showing the notation for neurons and weights is shown in Fig. 2.3. 
 

 
Figure 2.3. A multilayer feedforward neural network, showing the notation for neurons 
and weights 
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Let ipx ,  be the current input pattern for the ith neuron of the input layer, 
l

jpa ,  be the corresponding output of the jth neuron of layer l, and l
jiw ,  be 

the weight connecting the ith neuron of layer l and the jth neuron of layer 
1+l , the computation procedure can be described as 

 11
1, 1
=+npa  

and  ipip xa ,
1

, =          1...,,2,1 ni =  (2.7a) 

 ∑
+

=

=
1

1
,,,

ln

i

l
ji

l
ip

l
jp wao  (2.7b) 

 )( ,
1

,
l

jp
l

jp ofa =+   

 Pp ...,,1= , 1...,,2,1 −= Ll  and 1...,,2,1 += lnj  (2.7c) 

 11
1, 1
=+

++

l
np l

a Pp ...,,1= , 2...,,2,1 −= Ll  (2.7d) 

where ln  denotes the total number of neurons on layer l, L denotes the 
number of layers in the architecture, and P denotes the number of 
training patterns. 1

1, 1

+
++

l
np l

a  are set to 1 for making the weight 1
,11

+
++

l
jnl

w  as a 
threshold for the jth neuron on layer 1+l . The outputs of the final layer 
are evaluated by propagating the signals in this way.  

The operation of the network described above can equally well be 
represented by matrix equations. For a multilayer feedforward neural 
network with L layers, the layer l consists of 1+ln  neurons 
( 1...,,1 −= Ll ) in which the last neuron is a bias node with a constant 
output of 1. The first layer with 11 +n  neurons is the input layer, the L-
th one with Ln  neurons is the output layer. All the given inputs can be 

represented by a matrix 1A  with P rows and 11 +n  columns. All entries 
of the last column of the matrix 1A  are constant 1. Similarly, the outputs 
of the layer l can be represented by lA  with P rows and 1+ln  columns. 

The outputs of the last layer can be represented by LA  with P rows and 

Ln  columns. Similarly, the target can be represented by a matrix LT  
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with P rows and Ln  columns. The weights between neurons in the layers 
l and 1+l  form a matrix lW  with entries l

jiw ,  ( 1...,,1 += lni , 

1...,,1 += lnj ).  Entry l
jiw ,  connects neuron i of layer l with neuron j of 

layer 1+l . 
The output of all hidden layers and the output layer are obtained by 

propagating the training patterns through the network.  Let us define the 
matrix  

 lll WAO =  (2.8a) 

The entries of 1+lA  for all layers (i.e., 1...,,1 −= Ll ) are evaluated as 
follows: 

 )( ,
1

,
l

jp
l

jp ofa =+   

 Pp ...,,1=  and 1...,,2,1 += lnj  (2.8b) 

In this way, the patterns propagate through the network until the outputs 
of final layer are computed. An algorithm is required to adjust the 
weights so that the network learns how to map the input patterns to the 
output patterns. The most widely used algorithm for training feedforward 
neural networks is the backpropagation algorithm. 

Learning is achieved by adjusting the weights such that the network 
output, LA  is as close as possible or equal to the target, LT . The most 
frequently used error function for measuring the difference between the 
output and the target is the mean squared error function. It is defined as 

 ∑∑
= =
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 (2.9) 

Explicit solution of the weights is impossible to obtain because of the 
nonlinearity of the network. Iterative methods are required to solve this 
problem. Backpropagation algorithm is the classical algorithm for 
training a multilayer perceptron.  This algorithm is based on a gradient-
descent method to minimise the error cost function; i.e., the changes of 
weights are proportional to the error gradient. Mathematically, 

 l
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l
ji w
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, ∂
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−=Δ η  (2.10) 
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where η  is the learning rate. The weight changes 1
,
−Δ L
jiw  for the weights 

connecting to the final layer are obtained by 
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Notice that for a given j, only L
jpa ,  has a relation with 1

,
−L
jiw , we get 
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The partial derivative 1
,

,
−∂

∂
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 can be evaluated using the chain rule 
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The two factors are obtained as follows: 
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and  
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From Eqns. (2.11-2.12) 
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where 1
,
−L
jpδ  is defined as 
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The weights change for the weights connected to the second to the last 
layer are obtained from the following equations: 
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By applying the chain rule, 1
,
−∂

∂
L

jpa
E  can be evaluated. Specifically, we 

write 
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We finally get the weight change  
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If we denote 
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The weight change 2
,
−Δ L
jiw  can then be simplified as 
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From the Eq. (2.21), it is noticed that the deltas at an internal node can be 
evaluated in terms of the deltas at an upper layer. Thus, starting at the 
highest layer – the output layer – we can evaluate 1

,
−L
jpδ  using the Eq. 

(2.17), and we can then propagate the “error” backward to lower layers. 
The operation of the algorithm justifies the term “backpropagation”. 

By analogy, we can show that the weights change for other lower 
layers of weights, 
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The learning procedure therefore consists of the network starting with a 
random set of weight values, choosing one of the training patterns and 
evaluating the output(s) using that pattern as input in a feedforward 
manner. Using the backpropagation procedure, all the weight changes for 
that pattern are evaluated. This procedure is repeated for all the patterns 
in the training set so that the jiw ,Δ for all the weights are obtained. The 
corrections to the weights are made. One epoch is completed. 

The choice of the value of learning rate is important when we 
implement a neural network. A large learning rate corresponds to rapid 
learning but might also result in oscillations. In 1986, Rumelhart, Hinton, 
and Williams (1986) suggested that the expression was modified to 
include a momentum term. That is, 
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where the subscript n indexes the presentation number,  and α is a 
constant which determines the effect of past weight changes on the 
current direction of movement in the weight space. This provides a kind 
of momentum in weight space that effectively filters out high-frequency 
variations of the error-surface in the weight space. This is useful in 
spaces containing long ravines that are characterized by sharp curvature 
across the ravine and a gently sloping floor. The sharp curvature tends to 
cause divergent oscillations across the ravine. To prevent these it is 
necessary to take very small steps, but this causes very slow progress 
along the ravine. The momentum filters out the high curvature and thus 
allows the effective weight steps to be bigger. The values of η and α for 
rapid training are dependent on the training patterns and the architecture 
of the neural network. Although the backpropagation algorithm with 
momentum term can speed up the training process, it is too slow for 
practical applications. This is one of the difficulties for training neural 
networks by the backpropagation algorithm. 

Another difficulty of the backpropagation algorithm in practice is 
that the learning procedure is always trapped in a local minimum. In 
1992, Gori and Tesi (1992) proposed a theoretical framework of the 
Backpropagation algorithm to identify the problem of local minima. In 
their studies, they illustrated that the gradient descent type BP learning 
algorithm are prone to local minima. For any nonlinear optimization 
problem, it is hardly to guarantee that the optimal solution is obtained by 
such numerical solving schemes. The major reason is with the intrinsic 
shape of the error surfaces which is normally fixed and independent of 
the learning algorithm. Frasconi et al. deduced several theorems stating 
that the cost function has a unique minimum if the patterns of the 
learning environment are only linearly separable. From the theoretical 
point of view, their results corroborate that the BP algorithm is not a very 
reliable learning algorithm in most practical applications. Also, there are 
very useful examples illustrated by Gori and Tesi (1990) trying to show 
that the BP algorithm always easily gets stuck in local minima.  

2.3. Convergence Enhancement 

In order to reduce the time taken to train feedforward neural 
networks, Sutton (1986) proposed that each weight has its own learning 
rate. The learning rate of each weight should increase or decrease its 
value according to the number of sign changes observed in the partial 
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derivative of the error function with respect to the corresponding weight. 
On the basis of the above heuristics, Silva and Almeida (1990) developed 
an efficient algorithm with locally adaptive learning rate. This algorithm 
will be compared with the extended backpropagation algorithm in the 
following section. This algorithm employs batch back-propagation with 
momentum. Consider that in a given learning process the sign of a 
certain component of the gradient remains equal for several iterations. 
This fact suggests that the error surface has a smooth variation along the 
axis and, therefore, the learning rate for this particular component should 
be increased. On the other hand, if the sign of some component changes 
in several consecutive iterations, the learning rate parameter should be 
decreased to avoid oscillation. 

A simple and effective way of implementing this basic idea is as 
follows. The weight change for the synapse linking neurons i and j at 
epoch n as 
 ( ) ( ) ( )nvnnw jijiji ,,, η=Δ  (2.26) 

where ( )nv ji ,  is given by 

 ( ) ( )1,
,

, −+
∂
∂

−= nv
w
Env ji

ji
ji β  (2.27) 

where β is the momentum coefficient. The momentum term smoothes the 
gradient vector in an adaptive way and amplifies the gradient component 
along the valley direction. The learning rate parameters are adapted as 
follows: 
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Their recommended values of the parameters are: 

 3.11.1 ≤≤ u ,        9.075.0 ≤≤ d     and    1−≈ du  (2.29a) 

 ( ) 3
, 100 −=jiη ,        1.0=β  (2.29b) 

The values of  u and d are obtained after performing a wide range of 
tests. For the d parameters, a value slightly below u

1  enables the 
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adaptive process give a small preference to learning rate decrease, 
yielding a somewhat more stable convergence process. 

As the fast increase in learning rate may drive the learning process to 
an unstable state, the following procedure is used to avoid this. If the 
present error is greater than that in the previous iteration, the new weight 
changes are rejected. However, the adaptation of the learning rate is still 
performed as usual, the gradient evaluated at the rejected iteration point 
is used as a reference. With this technique, a valid iteration point can 
generally be obtained after a few training epochs. If this strategy does not 
work after a few trials, it is always possible to simply reduce all the 
learning rate parameters by a fixed factor and repeat the process. 

Despite the fact that the adaptive backpropagation algorithm can 
reduce the number of iterations to converge, the overall time taken for 
the training of rather small networks with only a few thousand weights is 
still unacceptably long. In the following, three new training algorithms 
will be described. These algorithms are developed to further reduce the 
time taken for training.  

2.3.1. Extended Backpropagation Algorithm 

In the backpropagation algorithm, training is only based on the current 
downhill gradient of the error surface E(t)-∇  and last change in weight 

1)-W(tΔ . The two column vectors, E(t)-∇  and 1)-W(tΔ , are n 

dimensional vectors with elements 
( )
l

jiw
tE

,∂
∂

−  and ( )1, −Δ twl
ji  respectively 

at the t-th iteration, and n is the total number of weights in the neural 
network.  The local topography of error surface can be thoroughly 
evaluated for determining the optimum learning rate and momentum 
coefficient.  The higher derivatives of the error function and line search 
technique are often used to find the optimum learning rate; however, a long 
computational time and a larger storage is required for these processes.  In 
the EBP algorithm, the learning rate adaptation is simply based on the 
correlation coefficient between the current downhill direction of the local 
gradient and the previous weight update. The correlation coefficient 
between the negative gradient and last weight update is given by 
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and  
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where t indexes the presentation number and n is the total number of 
weights. ( )tE l

ji ,∇−  is the mean value of negative error gradient with 

respect to l
jiw ,  in the layer l and ( )1, −Δ twl

ji  is the mean value of previous 

weight change of weight l
jiw , . The correlation coefficient measures the 

change in the direction of minimisation in a statistical way. From this 
correlation coefficient, three different conditions can be identified from this 
correlation coefficient. 
A) When the correlation coefficient is near to one, there is almost no 

change in the direction of error minimisation and the change of 
weights is likely moving on the plateau. The learning rate can be 
increased to improve the convergence rate.   

B) When the correlation coefficient is near to minus one, it implies an 
abrupt change in the direction of error minimisation, which is 
likely moving along the wall of the ravine.  The learning rate 
should then be reduced to prevent oscillation across both sides of 
the ravine. 

C) When there is no correlation between the negative gradient and 
previous weight update, the learning rate should be kept constant.   

The following heuristic algorithm is suggested to alter the learning rate: 
 (i) ( ) 00 =r  and set the value of 1=t  
(ii) if ( ) 0>tr  
  if ( ) 01 >−tr  then ( ) ( ) ( )[ ]tdrtt +−= 11ηη  
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  else ( ) ( )tdrt += 1η  
 if ( ) 0<tr  
  if ( ) 01 >−tr  then ( ) ( )tdrt += 1η  
  else ( ) ( ) ( )[ ]tdrtt +−= 11ηη  
 if  ( ) 0=tr  then ( ) ( )1−= tt ηη  
(iii) Set the value of 1+= tt , and repeat step (ii) 
where d is a positive constants which determines how much the learning 
rate changes in each epoch. One of the significant features of this 
algorithm is the exponential increasing and decreasing of the learning 
rate. The learning rate can increase or decrease rapidly when the 
successive values of the correlation coefficient have the same sign. This 
feature enables the optimal learning rate to be found in a few learning 
iterations, and thus reduces the total output error rapidly. When the 
correlation coefficient changes sign, the algorithm can reset the excessive 
large value of learning rate and enhance the stability of this algorithm. 
As the learning rate is changed abruptly when the correlation coefficient 
changes sign, the algorithm is found more suitable to be used in the 
problems with binary target values. In these problems, the algorithm can 
drive the neurons to their target value quickly. Note that in a wide range 
of tests performed with this heuristic algorithm, it was found that a value 
of d equal to 0.5 was able to produce good results. 

However, the convergence rate is not optimised with a fixed 
momentum coefficient α. The momentum term has an accelerating effect 
only when the ( )tE∇−  and ( )1−Δ tW  have the same direction.  For the 
fixed momentum coefficient, the momentum term may override the 
gradient term when the ( )tE∇−  and ( )1−Δ tW  are in opposite 
directions.  The momentum coefficient ( )tα  is suggested to be 

 ( ) ( ) ( ) ( )
( )

2

2

1−Δ

∇−
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ttt ηλα  (2.31) 
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The final algorithm becomes  
                 ( )tWΔ = ( ) ( )( ) ( ) ( )1−Δ+∇− tWttEt αη  

                             = ( ) ( ) ( )( ) ( ) ( ) ( )1ˆˆ
22

−Δ∇−+∇−∇− tWtEttEtEt ηη  

            = ( ) ( ) ( ) ( ) ( )( )1ˆˆ
2

−Δ+∇−∇− tWttEtEt λη  (2.33) 

( )tÊ∇−  and ( )1ˆ −Δ tW  are the unit vectors of ( )tE∇−  and ( )1−Δ tW , 

respectively.  When ( )tÊ∇−  and ( )1ˆ −Δ tW  are in opposite directions, 
( )tλ  is less than or equal to one, and hence the momentum term does not 

override the gradient term.  When ( )tÊ∇−  and ( )1ˆ −Δ tW  have the same 
direction, ( )tλ  is greater than 1.0, and enhance the accelerating effect of 
the momentum term.  The dramatic increase in learning rate may lead the 
network to get stuck in a local minimum in some neural network problems.  
This phenomenon can be avoided by the following strategy.  If the present 
Root Mean Squares (RMS) error is greater than the previous one by 0.1, the 
last step is cancelled and ( )tη  is reduced by half.  This strategy gives a 
small preference to learning rate reduction and enhances the robustness of 
the training process. 

2.3.2. Least Squares Based Training Algorithm 

The algorithm decomposes each neuron into a linear part and a 
nonlinear part, i.e., the dot product of inputs and weights, and the 
activation function.  The weights of neural networks are firstly initialized 
by a random generator.  Given the last layer of weights and the inverses 
of activation function of the desired outputs of neurons in the output 
layer, the optimal outputs of the last hidden layer can be evaluated by a 
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linear least squares method.  As the solutions may be out of the range of 
the activation function, the solutions are scaled back into the range of the 
activation function by multiplying the solutions with a transformation 
matrix. After evaluating the desired outputs of the last hidden layer, the 
optimal weights between the last hidden layer and its preceding layer are 
found again by the least squares method.  Subsequently, the optimal 
outputs of the layer preceding the last hidden layer are determined.  The 
process is repeated until the weights between the input layer and first 
hidden layer are determined. The outputs of the last hidden layer are 
evaluated by propagating the training patterns through the network using 
the evaluated optimal weights.  Subsequently, the weights between the 
last hidden layer and the output layer are evaluated.  All the above 
procedures complete one training iteration and the process is repeated 
until the required accuracy is reached.  The detailed mathematical 
description is described in the following. 

A multilayer neural network with L fully interconnected layers is 
considered.   Layer l consists of neurons ( 1,,1 −= Ll … ) in which the 
last neuron is a bias node with a constant output of 1. If there are P 
patterns for network training, all given inputs can be represented by a 
matrix 1A  with P rows and 11 +n  columns. All entries of the last 
column of the matrix 1A  are constant 1. Similarly, the target can be 
represented by a matrix LT  with P rows and Ln  columns.  The weights 
between neurons in the layers l and 1+l form a matrix lW  with entries 
wi j

l
,  ( 1...,,1 += lni , 1...,,1 += lnj ).  Entry wi j

l
,  connects neuron i of 

layer l with neuron j of layer 1+l . 
The output of all hidden layers and the output layer are obtained 

by propagating the training patterns through the network.  Let us define 
the matrix  

 lll WAO =  (2.34)   
To facilitate the description of our algorithm, we also define 

 [ ]BAA l
p

l = , and 

 ⎥
⎦

⎤
⎢
⎣

⎡
= l

l
l

V
U

W  (2.35) 
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where B  represents the outputs contributed by the bias node of layer l. 
B  is a column vector with P entries, and every entry has the value of 1. 

l
pA  represents all the outputs of neurons in the layer l except the bias 

node. lV  represents the weights of connections between the bias node of 
layer l and neurons of layer 1+l . lV  forms a row vector with dimension 

1+ln . Therefore, lO  can also be expressed as 

 [ ] ⎥
⎦

⎤
⎢
⎣

⎡
= l

l
l
p

l

V
U

BAO    (2.36) 

The entries of Al+1  for all layers (i.e., 1...,,1 −= Ll ) are evaluated as 
follows: 

 1,
1
, ...,,2,1   and     ...,,1          )( +
+ === l

l
jp

l
jp njPpofa  (2.37) 

where f(x) is the activation function.   
 Learning is achieved by adjusting the weights such that LA  is as 
close as possible or equal to LT .  Let us introduce a matrix S L−1  with 
entries 

 )( ,
11 

.
L

ji
L

ji tfs −− =   (2.38) 

where t i j
L
,  are the entries of LT . 

We can reformulate the task of learning as least squares problem: 
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This linear least squares problem can be solved by QR factorization 
using Householder transforms or by Singular Value Decomposition 
(SVD). SVD is more robust when the number of equations is smaller 
than the number of unknown variables, however, it is not the case in 
training of neural networks. In addition, SVD is more computational 
complex than QR factorisation; therefore QR factorisation is used here. 
The Euclidean norm in Eq. (2.33) can be minimized by either adjusting 
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1−L
pA  or 1−LW .  In this training algorithm, the optimal 1−L

pA  is evaluated 

first.  This problem is equivalent to find the solution of 1−L
pA  in 

 ( )
2

1111 −−−− ∗−−∗ LLLL
p VBSUA = minimal (2.40) 

The optimal output of hidden layer is now the new target values for 
lower layers; i.e., 

 11 −− = L
p

L AT  (2.41) 

With the optimal output of hidden layer, the weights of the lower 
layer can be adjusted to reach T L -1  as close as possible, but the entries 
in the matrix T L -1 may have values outside the range of the activation 
function.  In order to transform 1- LT  to a matrix with entries values 
inside the range, a transformation matrix C L -1 with order 
( ) ( )n nL L− −+ ∗ +1 11 1  is constructed such that 

 [ ] [ ] 111 −−− ∗= LLL
trans CBTBT   (2.42) 

If the activation function is the standard sigmoid function with the 
range between 0 and 1, i.e. 

 ( )
)exp(1

1
x

xf
−+

=  (2.43) 

the elements of  C L -1  is defined as  
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where d nL= +−1 1 and  

 ∑
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 1
,1 

 min −

=
= L

kj

P

jk tγ ,   k = 1, . . . , 1−Ln     (2.45) 

Values of all other entries of C L -1  are zeros.  The following function 
is actually implemented by Eq. (2.36) with the values of 1

,
−L
jic  defined as 

above.  

 1
)(,

−L
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From the Eq. (2.46), it can be proved easily that the average output of 
each neuron is 0.5. This equation summarizes three different mapping 
methods into one equation and which mapping method is used depends 
on the value of ( )jjjj γααβ −− ,,5.0max . When the values of 

jj αβ −  and jj γα −  are smaller than the half range of the activation 
function; i.e., smaller than 0.5, the Eq. (2.46) is simplified to 

 1
)(,

−L
transjit = ( ) 5.0*4.0 1

, +−−
j

L
jit α  (2.47) 

It is noticed that j
L

jit α−−1
,  has a value in the range between 

( )jj αγ −−  and jj αβ − . As ( )jj αγ −−  is greater than 5.0−  and 

jj αβ − is smaller than 0.5, 1
)(,

−L
transjit  is always between 0.1 and 0.9.  

When the value of ( )jjjj γααβ −− ,,5.0max  is equal to jj αβ − , the 
Eq. (2.46) is simplified to 

 1
)(,

−L
transjit = 5.0*4.0

1
, +
−
−−

jj

j
L

jit
αβ
α

 (2.48) 

In this case, the maximum value of 1
)(,

−L
transjit  is equal to 0.9 and the 

minimum value of 1
)(,

−L
transjit  is greater than 0.1. When the value of 

( )jjjj γααβ −− ,,5.0max  is equal to jj γα − , the Eq. (2.47) is 
simplified to 
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 1
)(,
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transjit  = 5.0*4.0

1
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 (2.49) 

In this case, the minimum value of 1
)(,

−L
transjit  is equal to 0.1 and the 

maximum value of 1
)(,

−L
transjit  is smaller than 0.9.  Therefore, the entries of 

S L−2  will not have very large negative and positive values.  If the 
activation function used is 

 ( )
)exp(1
)exp(1

x
xxf

−+
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=  (2.50) 

the elements of  C L -1  is defined as  
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Again values of all other entries of C L -1  are zeros. The following 
function is actually implemented by Eq. (2.42) with the values of 1

,
−L
jic  

defined by Eqs. (2.46-2.47).  

 1
)(,

−L
transjit = ( )jjjj

j
L

jit
γααβ

α
−−

−−

,,0.1max*25.1

1
,  (2.52) 

Using the similar argument as before, it can be shown that all entries 
of Ttrans

L−1  are between -0.8 and 0.8, and the average output of each neuron 
is zero.  Therefore, the entries of 2−LS  will not have very large negative 
and positive values.  The next step is to train the lower layers of the 
network to produce 1−L

transT .   
If the network has three layers, by applying Eqs. (2.38) and (2.39) 

with L and T substituted by 2 and Ttrans  respectively, the optimal weights 
1W  between the input and hidden layer can be determined by the least 

squares method.  Propagating the training patterns through the network 
using the determined optimal weights 1W , updated hidden layer outputs 

2A can be evaluated accordingly. The optimal weights 1−LW  between 
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the hidden and output layers can be evaluated by applying Eq. (2.39) 
with L=3 and using the updated 2A .  This process is repeated until the 
specified error level is reached. 

For a network with more than one hidden layer, the weight between 
the hidden layers 1−l  and l (for l L= −3 1, ,… ) are evaluated as 
follows.  We start with l L= − 1  after evaluating Ttrans

L−1  as stated in the 
previous section.  The S l−1  is evaluated as in Eq. (2.38) with L replaced 
by l.  Afterwards, 1−lW  is first evaluated by the least squares method to 
minimize the Euclidean norm as in Eq. (2.39). After finding the optimal 
weights between layers 1−l  and l, the 1−l

pA  is found by Eq. (2.38) with L 

replaced by l.  To transform T l -1  to a matrix with entry values inside the 
range of the activation function, a transformation matrix C l -1  is 
constructed as in Eq. (2.44) or Eq. (2.51), which is dependent on the 
activation function used.  To maintain the least squares solution during 
forward propagating, an inverse matrix of C l−1  has to be found such that 

 [ ] 1111 −−−− ∗= lll
trans WCW  (2.53) 

Using the Eq. (2.53), the following equality holds when the input 
patterns propagate through the network. 

            [ ] 11 * −− l
trans

l
trans WBT = [ ] [ ] 11111 * −−−−− ∗∗ llll WCCBT  

 = [ ] 11 −− ∗ ll WBT  

                                           = 11 −− ∗ ll WA  (2.54) 
Therefore, the outputs of the network remain the same after the 

introduction of the transformation matrix and the least squares solution is 

thus valid. The entries of inverse [ ]C l− −1 1
can be evaluated from those of 

C l−1  by the following equations:  
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l
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−= −1 1
1

1 ,              k = 1, . . . , nl−1  

 ( )c
ck k

l

k k
l,

,

− −

−=1 1

1

1
,             k = 1, . . . , d           (2.55) 
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where d nl= +−1 1 . 
The weights between hidden layers 1−l  and l and optimal target 

Ttrans
l−1  are evaluated successively as stated in the previous paragraph until 

l = 3.  The optimal weights 1W  between the input layer and hidden 
layer are then evaluated by solving the least squares problems as in Eq. 
(2.39).  By propagating the training patterns through the network using 
the optimal weights, A L -1  is evaluated.  Subsequently, the optimal 
weights 1−LW  between the last hidden layer and the output layer are 
evaluated again by solving Eq. (2.39).  This process is repeated until the 
specified error level is reached. 
The LSB algorithm can be summarized as follows: 
1.   (i) The weights of the network are randomly initialized with values 

between -0.5 to 0.5. 
      (ii) Evaluate S L−1 in Eq. (2.38). 
2. Propagating all given patterns through the network so that the 

matrices Al , l L= 2, ,… , can be successively evaluated.  If error 
norm between AL and TL is smaller than the specified value, the 
training is completed. 

3.   (i) Evaluate T L -1  by solving the linear least squares problem in 
Eqs. (2.40) and (2.41). 

      (ii) Evaluate the transformed matrix Ttrans
L−1  by applying Eq. (2.42) 

so that all the values of its entries are within the range of 
activation function. 

      (iii) Set T L -1 = Ttrans
L−1  

4. For l L= − 1 3, ,…  
 (i) Evaluate S l−1  as in Eq. (2.38). 
 (ii) Evaluate a new set of weights lW  by solving the least squares 

problem as in Eq. (2.39). 
 (iii) Evaluate T l -1  by solving the linear least squares problem as in 

Eqs. (2.40) and (2.41). 
 (iv) Evaluate the transformed matrix Ttrans

l−1  by applying Eq. (2.42). 
 (v) Evaluate the transformed weight matrix 1−l

transW  by applying Eq. 
(2.53). 

 (vi) Set T l-1 = Ttrans
l−1  



 Learning Performance and Enhancement 55 

5.   (i) Evaluate S 1  as in Eq. (2.38). 
      (ii) Evaluate a new set of weights 1W  by solving the least squares 

problem as in Eq. (2.39). 
6. Evaluate the updated Al  ( l L= −2 1, ,… ) by propagating the input 

patterns through the network with the new weights. 
7. Evaluate a new set of weights 1−LW  by solving the least squares 

problem as in Eq. (2.39). 
8. Evaluate the updated A L  with the new weights 1−LW  obtained in 

step 7.  If error norm between AL and TL is smaller than the specified 
value, the training is completed. 

9. Go to step 3. 

2.3.3. Extended Least Squares Based Algorithm 

An extended least squares based algorithm for feedforward networks 
is described. This algorithm combines the features of the extended 
backpropagation algorithm described in 2.3.1 and the features of the pure 
least squares algorithm described in 2.3.2. The weights connecting the 
last hidden and the output layers are firstly evaluated by a least squares 
algorithm.  The weights between the input and the hidden layers are then 
evaluated using the extended backpropagation algorithm. This 
arrangement eliminates the stalling problem experienced by the pure 
least squares type algorithms and still maintains the characteristic of fast 
convergence. 

A multilayer neural network with L fully interconnected layers is 
considered to be same as Section 2.3.2 described. Learning is achieved 
by adjusting the weights such that LA  is as close as possible or equal to 

LT  so that the mean squared error E is minimized, where E is defined as 

 ( )E
P

a tp j
L

p j
L

j np P L

= −
==
∑∑1

2
2

11
, ,

, ,, , ……
 (2.56) 

In this learning algorithm, the weights between the last hidden layer 
and the output layer are evaluated by a pure least squares algorithm; the 
weights between the input and the hidden layers, the weights between 
hidden layers are evaluated by a modified gradient descent algorithm.  
The problem of determining the W L−1

 optimally can be formulated as 
follows: 
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2

 11 min LLL TWA −−− with respect to 1−LW  (2.57) 

This linear least squares problem can be solved by using QR 
factorization together with Householder transforms or Singular Value 
Decomposition (SVD). QR factorization using Householder transforms 
was implemented because it has less computational complexity than 
SVD.  After the optimal weights W L−1 are found, the new network 
output A L  are evaluated.  To determine the appropriate weights change 
in the preceding layer, the remaining error is backpropagated to the 
preceding layer of the neural network.  After the gradient information is 
obtained, the appropriate learning rate and momentum coefficient for 
each layer are determined in accordance with the correlation between the 
negative error gradient and the previous weight update of that layer 
(Yam & Chow, 1993).  The correlation coefficient between the negative 
gradient and the last weight update for the layer l is given by 
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 (2.58) 

where t indexes the presentation number, −∇E ti j
l
, ( )  is the negative error 

gradient with respect to wi j
l
,  in the layer l and Δw ti j

l
, ( )−1  is the 

previous weight change of weight wi j
l
, .  −∇E ti j

l
, ( )  and Δw ti j

l
, ( )  are the 

mean values of the negative error gradients and the weight changes in the 
layer l respectively.  The correlation coefficient is used again for 
measuring the change in the direction of minimisation in a statistical way. 
From this correlation coefficient, three different conditions can be 
identified. 
A) When the correlation coefficient is near to one, there is almost no 

change in the direction of local error minimization and the change of 
weights is likely moving on the plateau.  The learning rate can be 
increased to improve the convergence rate. 

B) When the correlation coefficient is near to minus one, it implies an 
abrupt change in the direction of local error minimization, which is 
likely moving along the wall of the ravine.  The learning rate should 
then be reduced to prevent oscillation across both sides of the 
ravine. 
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C) When there is no correlation between the negative gradient and the 
previous weight change, the learning rate should be kept constant. 

According to these three conditions, the following heuristic algorithm is 
proposed to adjust the learning rate: 

 ( ) ( ) ( )( )trtt lll 5.011 +−=ηη   (2.59) 

The heuristic algorithm is a simplified version of the learning rate 
changing rules. The learning rate is changed abruptly when the 
correlation coefficient changes sign. The abrupt change in the learning 
rate often drives the neurons to their extreme regions where the targets of 
binary problem lie, and thus increases the rate of convergence. For the 
problem with continuous target values, the abrupt change in the learning 
rate may drive the neurons to overshoot their target values and cause 
oscillation.  

The convergence rate is not optimized with a fixed momentum 
coefficient.  The momentum term has an accelerating effect only when 
the −∇Ei j

l
,  and Δwi j

l
,  have the same directions.  For the fixed 

momentum coefficient, the momentum term may override the negative 
gradient term when the −∇Ei j

l
,  and Δwi j

l
,  are in the opposite directions.  

The momentum coefficient α l t( )  at the t-th iteration is determined as 
follows: 
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As ( )λ l t  is always less than or equal to 1, the momentum term will not 
override the negative gradient term. 

After evaluating the η l t( )  and α l t( )  for layers l L= − 2 1, ,… , 
the new weights are determined.  After that, the new network output and 
error are evaluated.  One epoch is completed.  As a fast increase in the 
learning rate may drive the neurons to their saturation region in some 
neural network problems, the following strategy is used to improve the 
stability of the algorithm.  If the present Root Mean Squares Error 
(RMSE) is greater than the previous one by 0.1, the last weight change is 
canceled and η l t( )  is reduced by half.  This strategy gives a small 
preference to the learning rate reduction and enhances the robustness of 
the training process. The process is repeated until the network error 
reaches a specified error level. 
The algorithm can be summarized as follows: 
1. Generate initial weights for each layer using a pseudo-random 

generator. 
2. Propagate all given patterns through the network so that the matrices 

Al , l L= 2, ,… , can be successively evaluated.  If the error norm 
between LA  and LT  is smaller than the specified value, the training 
is completed. 

3. Evaluate a new set of weights W L−1  by solving the least squares 
problem. 

4. Compute a new LA  from the A L−1  and the new weights W L−1 .  If 
the error norm between LA  and LT  is smaller than the specified 
value, the training completes. 

5. Compute the gradient for layers l L= − 2 1, ,…  using the new LA  
and the new weights W L−1 . 

6. For l L= − 2 1, ,… : 
(i) Evaluate the learning rate η l  and the momentum coefficient by 

applying Eqs. (2.58)-(2.62). 
(ii) Evaluate the weight change Δwi j

l
, . 

(iii) Evaluate the new weights W l . 
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7. Compute a new AL from A1 , W 1 ,..., W l , W l+1 ..., and W L−1 . If 
error norm between LA  and LT is smaller than the specified value, 
the training completes. 

8. If the RMS error is larger than the previous RMS error by 0.1, the 
weight changes for all layers are cancelled; the learning rate is 
reduced by half, and go to 6 (ii) again. 

9. Continue with 2. 

2.4. Initialization Consideration 

There are several approaches to estimate optimal values for the 
initial weights so that the number of training iterations is reduced. It is 
quite obvious that the training session can be shortened when the starting 
point of the optimization is very close to the true minimum.  

Shepanski (1988) regards the training of a multilayer feedforward 
network as an optimal estimation problem. The optimal set of weights is 
determined using a least squares criterion, employing a standard 
pseudoinverse matrix technique.  This technique has been applied 
previously on a single layer network.  Shepanski has extended the 
pseudoinverse method to multilayer networks.  In a task of restoring a 
data bit stream, this method can reduce the initial error dramatically. 
Nguyen and Widrow speed up the training process by setting the initial 
weights of the hidden layer so that each hidden node is assigned to 
approximate a portion of the range of the desired function at the start of 
training (Nguyen & Widrow, 1990).  By approximating the activation 
function with piece-wise linear segments, the weights can be evaluated.  
Next, the thresholds of neurons are selected by assuming the input 
variables are kept between -1 and 1.  Nguyen and Widrow applied this 
method to initialize weights of numerous problems including the “Truck-
Backer-Upper” problem.  The results show that this method can greatly 
reduce the training time.  Osowski (1993) following the idea of Nguyen 
and Widrow, developed another approach to select the initial values of 
weights of single input and single output three-layer feedforward neural 
networks.  Osowski also approximates the activation function with piece-
wise linear segments; however, he suggests an explicit method to 
determine the number of hidden neurons and uses the information of the 
desired function y=f(x) to determine the initial weights.  Firstly, the 
whole region of x of the measured (x,y) curve is split into sections 
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containing only one negative or positive slope.  After that, a set of 
neurons in the hidden layer is chosen equal in number to the number of 
sections determined.  Each section of the curve is associated with one 
neuron in the hidden layer.  The weights and the bias of each neuron are 
determined so that this neuron enters its active (middle) region of the 
proper section.  Finally, the weights to the output layer are evaluated 
using the change of y in the corresponding section, and the bias of the 
output neuron is set to zero.  In the example given in Osowski's paper, 
the optimum values of weights obtained by training the network using 
the BP algorithm are very close to the initial weights suggested by 
Osowski’s algorithm.  Hisashi Shimodaira (Shimodaira, 1994) proposes 
another method called OIVS to determine the distribution of initial 
values of the weights and the length of the weight vector so that the 
outputs of the neurons are in the active region in which the derivative of 
the sigmoid function has a large value.  Shimodaira considers the input 
and output values of a neuron are located inside a unit hypercube (for the 
unipolar sigmoid function).  By assuming that the activation region width 
in a neuron is larger than the length of the diagonal line of a unit 
hypercube and the center of the activation region coincides with the 
center of the unit hypercube, the weight value distribution and the 
magnitude of a weight value can be determined.  In comparison with the 
BP algorithm, the OIVS method can greatly reduce the number of non-
convergence cases in the training of the XOR problem.  In the random 
mapping problem, the mean number of iterations required by the OIVS 
method is 0.46 times that required by the conventional BP algorithm.  
Drago and Ridella (1992) propose a method called Statistically 
Controlled Activation Weight Initialization (SCAWI) to find the optimal 
initial weights.  The aim of the SCAWI method is to prevent neurons 
from saturation in the early stage by properly initializing the weights.  
Drago and Ridella determine the maximum magnitude of the weights by 
statistical analysis.  They show that the maximum magnitude of the 
weights is a function of the paralysed neuron percentage (PNP), which is 
in turn related to the convergence speed.  By determining the optimal 
range of PNP through computer simulations, the maximum magnitude of 
the weights can be obtained and the time needed to reach the required 
convergence criterion can be minimised.  Denoeux and Lengellé (1993) 
suggest a method to initialize the weights in feedforward networks with 
one hidden layer.  The proposed method relies on the use of reference 
patterns, or prototypes, and on a transformation that maps each vector in 
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the original feature space onto a unit-length vector in a space with one 
additional dimension.  Simulation results show that the method can 
reduce the training time, improve robustness against local minima and 
give better generalization.   

In this section, three noniterative algorithms for determining the 
optimal initial weights of feedforward neural networks are suggested to 
enhance the convergence performance of MLP networks. All three 
algorithms are based on purely linear algebraic methods. 

2.4.1. Weight Initialization Algorithm I 

Considering a multilayer neural network with L fully interconnected 
layers is the same as describing in Section 2.3.2. The output of all hidden 
layers and the output layer are obtained by propagating the training 
patterns through the network.  Let us define the matrix  

 lll WAO =   (2.63)   

The entries of 1+lA  for all hidden layers (i.e., 2...,,1 −= Ll ) are 
evaluated as follows: 

                         )(  
,

1 
,

l
jp

l
jp ofa =+ Pp ...,,1=  and 1...,,2,1 += lnj  (2.64) 

                         0.11 
, =+l
jpa         Pp ...,,1=  and 11 += +lnj  (2.65) 

where f(x) is the activation function.  The activation function used here is 
the sigmoid function with range between 0 and 1: 

 
)exp(1

1)(
x

xf
−+

=  (2.66) 

The entries of output layer LA  are evaluated as follows: 

                      )( 1  
,,
−= L
jp

L
jp ofa Pp ...,,1=  and Lnj ...,,2,1=   (2.67) 

Learning is achieved by adjusting the weights such that LA  is as close as 
possible or equal to LT .  By introducing a matrix S with entries 

 s f ti j
L

i j
L

. ,( ) − −=1 1  (2.68) 

where t i j
L
,  are the entries of TL . 
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The weight initialization algorithm I (WIA I) starts by regarding the 
neural network being a single-layer perceptron network.  The optimal 
weights for a single-layer perceptron can be evaluated by solving the 
following equation, 

 minimize  A W SL
L1 1 1

2
− −  (2.69) 

This linear least squares problem can be solved by QR factorization 
using Householder reflections or Singular Value Decomposition (SVD).  
As SVD has better numerical stability, it is employed to solve the linear 
least squares problem. In the case of an overdetermined system, SVD 
produces a solution that is the best approximation in the least squares 
senses.  In the case of an underdetermined system, SVD computes the 
minimal-norm solution. 
The QR factorization of the optimal WL

1  is then computed, i.e., 

 111 RQWL =  (2.70) 

 11 QWO =  (2.71) 

WO
1  contains the optimal weights connecting the input to the first hidden 

layer. In the QR factorization, we express an m-by-n matrix M as the 
product of an orthogonal matrix Q and an upper triangular matrix R, 
where mm×ℜ∈Q  and nm×ℜ∈R . QR factorization has property that 
when the columns of M are linearly independent, the first n columns of Q 
are an orthonormal basis for the columns of M (assuming nm ≥ ).  As 
column vectors of WO

1  are orthonormal, the product of input A1 (scaled 
between 0.1 and 0.9) and WO

1  seldom produces outputs that drive 
neurons to saturation. As the matrix WL

1  has order ( ) 21 n1 ×+n , the 
matrix WO

1  obtained by QR factorisation has order ( ) ( )11 11 +×+ nn ; 
therefore the number of neurons in the first hidden layer is restricted to 
be 112 += nn  when this algorithm is used. 

After evaluating WO
1 , an updated 2A  is then evaluated using 

equations (2.63)-(2.65).  After evaluating 2A , the network between the 
first hidden layer and the output layer is again considered as a single-
layer perceptron network and the optimal weights WL

2  is evaluated 
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similarly as in Eq. (2.69). The initial values of weights WO
2  are evaluated 

by QR factorization of WL
2  in the same way as in Eq. (2.70). After 

evaluating the initial weights WO
l  between the l-th and the 1+l -th layer, 

an updated Al +1  is calculated using eqs. (2.63)-(2.65).  The network 
between the l+1-th layer and the output layer is solved as it is a linear 
discriminant, i.e., 

 minimize    A W Sl
L
l L+ + −−1 1 1

2
          (2.72) 

The initial weights matrix WO
l +1  is set to equal to Q l +1  which is 

obtained from the QR factorization of WL
l +1 , i.e., 

 1+ 1+ 1 lll
L RQW =+           (2.73) 

 1+ 1+ ll
O QW =           (2.74) 

The process continues until 3−= Ll .  After evaluating all the preceding 
layer of weights, an updated 1−LA  is found. The optimal weight 1−L

oW  is 
evaluated using the least squares method as in Eq. (2.72). All the initial 
weights are then found. 
The number of neurons of layer l + 1 is limited to 1+ln  again because 

the matrix 1−l
oW  obtained from the QR factorisation of the order of 

matrix WL
l  has order ( ) ( )11 +×+ ll nn .  In many cases, the architecture 

of a feedforward network must satisfy Kolmogorov's mapping theorem 
(1957) to ensure the function can be implemented by a three-layer 
feedforward neural network, i.e., 12 12 += nn . In these cases, an 
augmented matrix Aaug

l +1  can be constructed from Al +1  by adding 1+ln  

column vectors with values 1.0, that is equivalent to adding 1+ln  bias 
nodes to the layer 1+l , i.e.,  
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By replacing Al +1  in Eq. (2.72) with Aaug
l +1  and solving it, a matrix 

Qaug
l +1  of order ( ) ( )2 1 2 11 1n nl l  + ++ × +  can be obtained by applying 

Eq. (2.73). As there is only one bias node in each layer of a standard 
feedforward neural network, the matrix 1 +l

OW  of order 
( ) ( )n nl l  +1   +1+ × +1 2 1  is constructed by copying the first 1+ln  rows of 

Qaug
l +1  and setting the last row of 1 +l

OW  to be the sum of the last 11 ++ln  

rows of 1+ l
augQ .  With this arrangement, the product of 1 +l

OW  and 1+ l
augR  

still satisfies Eq. (2.72).  Generally, the number of neurons in layer 2+l  
can be set to any value between 11+ +ln  and 12 1 ++ln  by constructing 

an augmented matrix Aaug
l +1  from Al +1 . However, this algorithm cannot 

be applied to the networks in which the number of hidden neurons is 
smaller than the number of input neurons plus one. 

2.4.2. Weight Initialization Algorithm II 

Although the WIA I can speed up the training process, this algorithm 
cannot be applied to the networks in which the number of hidden neurons 
is smaller than the number of input neurons plus one. To tackle this 
problem, the weights initialization algorithm II (WIA II) was proposed in 
(Yam & Chow, 1997). The rationale behind the second algorithm is to 
reduce the initial network error while preventing the network from 
getting stuck with the initial weights. The algorithm ensures the outputs 
of hidden layers are in the active region, i.e., the range in which the 
derivative of activation function has a large value. In the classical 
backpropagation algorithm, the weights are changed according to 
gradient descent direction of an error surface E, 
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The weights are changed according to  
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so that the error cost function E is minimized, where t labels the update 
epoch in the learning process, η is the learning rate.  If the standard 
sigmoid function with the range between 0 and 1 as shown in Eq. (2.66) 
is used, the rule of changing the weights can be shown to be 
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For the output layer, i.e. l L= −1 
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For the other layers, i.e. l L= −1 2…  
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From Eqs. (2.78) to (2.80), it is noticed that the change of a weight 
depends on the outputs of neurons connected to it.  When the output of 
neuron is 0 or 1, the derivative of the activation function evaluated at this 
value is zero.  Therefore, there will be no weight change at all, even if 
there is a difference between the value of the target and the actual output.  
Instead of using a statistical method to evaluate the maximum magnitude 
of weights (Drago & Ridella, 1992), the outputs of hidden neurons are 
assigned with random numbers in the range between t−1  and t .   t  is 
chosen that 01.0)1( =− tt . Let us introduce a matrix lS  with entries 

 )( ,
11

.
l

ji
l

ji tfs −− =         12 −= Ll …  (2.81) 

where l
jit ,  are the random numbers within the stated range and contained 

in the matrix T l .  The neurons of the first hidden layer are first assigned 
with random numbers in the specific range.  Then the optimal weights 
for a single-layer perceptron can be evaluated by solving the following 
equation, 
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2

111 minimize SWA −  (2.82) 

This linear least squares problem can be solved by QR factorization 
using Householder reflections. In the case of an overdetermined system, 
QR factorization produces a solution that is the best approximation in a 
least squares sense. In the case of an underdetermined system, QR 
factorization computes the minimal-norm solution.  As the number of 
training patterns is always greater than the number of variables in W 1  in 
neural network applications, the system is always overdetermined and 
the least squares solution is obtained by solving the Eq. (2.82). After the 
weights W 1  are evaluated, the actual outputs of the first hidden layer A2  
can be evaluated by propagating the input patterns using the weights W 1 . 
The outputs of hidden neurons A2  are always in the range between 

t−1  and t  because the least squares solution W 1  is used. As the 
outputs of hidden neurons are not at the extreme state, the derivatives of 
the activation function at these values are not zeros and the network will 
never get stuck. After evaluating A2 , the outputs of the second hidden 
layer are assigned with T 3  in which entries have random values between 

t−1  and t .  By solving the linear least squares problem, the optimal 
weights W 2  can be evaluated.  In general, to find the optimal weights 
W l  (for l L= −1 2… ), we have first find all the previous weights and 
generate a matrix T l+1  using a random number generator.  By 
propagating the input patterns through the network using the evaluated 
optimal weights, Al  can be found.  The optimal weights W l  can be 
evaluated by solving the following equation: 

 
2

 minimize lll SWA −           l L= −1 2…  (2.83) 

To evaluate the last layer of weights 1−LW , we find 1−LA  first as stated 
before; however, we need not generate the matrix LT  using a random 
number generator, instead we directly use the target values of the training 
patterns.  The following equation is used to find the last layer of weights: 

 
2

111 minimize −−− − LLL SWA   (2.84) 

The weight initialization process is then completed. 
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2.4.3. Weight Initialization Algorithm III 

It was noticed that several networks initialized by the WIA II got 
stuck when they were further trained by the BP algorithm. A 
modification to the WIA II algorithm was proposed to tackle this 
problem. By the same argument stated in the second algorithm, the 
outputs of the hidden neurons should be within the active region, i.e. the 
range in which the derivative of activation function has a large value, so 
that the learning will not be hindered. Instead of assigning the outputs of 
hidden units and using the least squares method to evaluate the weights, 
the magnitudes of weights required to ensure that the outputs of hidden 
units are in the active region are derived as in the following. 

To evaluate the required range of weights l
jiw ,  when the activation 

function shown in Eq. (2.66) is used, the following problem has to be 
solved: 

 tat l
jp ≤≤− +1

,1  or sos l
jp ≤≤− ,  (2.85) 

where )(1 tfs −= . The Eq. (2.85) can be simplified to be 
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By Cauchy’s inequality, 
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In order to ensure the outputs of neurons are in the active range, the 
requirement for the range of weights is further constricted using the Eq. 
(2.87), i.e. 
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If ln  is a large number and the weights are values between l
pθ−  to l

pθ  
with uniform probability distribution, the following equation is obtained: 
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where ( )2

,
l
i jE w⎡ ⎤

⎢ ⎥⎣ ⎦
 is the second moment of the weights at layer l, which 

can be shown to be 
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Therefore, the magnitude of weights l
pθ  for pattern P is chosen to be: 
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For different input patterns, the values of l
pθ  are different. To make sure 

the outputs of hidden neurons are in the active region for all patterns, the 
minimum value of l

pθ  is chosen: 

 ( )
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l
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l
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min
"=

= θθ  (2.92) 

The weights at layer l are then initialized by a random number generator 
with uniform distribution between lθ−  to lθ .  
The procedures of the third weights initialization are as follows: 
(i) Evaluate 1θ  using the input training patterns ipip xa ,

1
, = . 

(ii) The weights 1
, jiw  are initialized by a random number generator 

with uniform distribution between 1θ−  to 1θ . 
(iii) Evaluate 2

,ipa  by propagating the input patterns through the 

network using 1
, jiw . 

(iv) For 2,,2 −= Ll …  
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a) Evaluate lθ  using the outputs of layer l, i.e. l
ipa , . 

b) The weights l
jiw ,  are initialized by a random number 

generator with uniform distribution between lθ−  to lθ . 
c) Evaluate 1

,
+l
ipa  by propagating the outputs of l

ipa ,  

through the network using l
jiw , . 

(v) After finding 1
,
−L
ipa  or 1−LA , we can find the last layer of weights 

1−LW  using Eq. (2.86) as stated in the second weights initialization 
algorithm. 

2.5. Global Learning Algorithms 

Another fundamental limitation of the error Backpropagation 
algorithm is dominated by the susceptibility to local minima during 
learning process. In the past decade, many researchers have proposed 
different types of algorithms which can provide a significant reduction in 
the total number of iterations by exploiting the fast convergence 
characteristics, but getting stuck in the local minima is still inevitable for 
many cases. Convergence stalling is yielded especially in applying to the 
complicated problems. 

Global optimization methods (Horst & Pardalos, 1995) were, 
recently, employed instead of the conventional gradient descent to avoid 
the convergence trapped in undesired local minima. For instance, 
Random Search (RS) method (Baba, 1989) is a stochastic optimization 
method, which could be successfully utilized to find the global minimum 
in the error surface. Simulated Annealing (SA) (Kirkpatrick et al., 1983) 
is another stochastic type global minimization method to allow any 
down-hill and up-hill movement for escaping from the local minima 
which results the search convergence to a global minimum at the end. 
Evolutionary Programming (Fogel, 1995) or Genetic Algorithm 
(Goldberg, 1985, Holland, 1975), based upon the computational model 
of evolution, is another mechanism for the global optimization to 
determine connectivity in the feedforward networks. All of these 
methods have been applied to complex and multi-model minimization 
problems with both discrete and continuous variables. Moreover, Battiti 
and Tecchiolli (1995) proposed a heuristic scheme of the reactive Tabu 
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search, based on a “modified local search” component complemented 
with a meta-strategy, for the neural networks learning. Shang and Wah 
(1996) developed a trajectory-based non-linear optimization method. It 
relies on an external force to pull a search out of the local minima. Their 
global optimization method is capable of providing excellent results by 
applying in the pattern recognition and classification problems. However, 
the algorithm is extremely computational complex because the 
evaluation of the trace function, that leads the trajectory out of the local 
minima, requires highly computation for the solution of an ordinary 
differential equation. Another learning scheme for achieving global 
optimization is based on the hybrid local and global optimizations 
method. This method was operated by making use of local search to 
optimize the weights between the output and hidden layers and use 
global search to optimize the other weights at the other layers. One 
method was proposed in (Cho & Chow, 1999) which is based on the 
hybrid of Least Squares method and penalized optimization method. The 
idea of this penalized optimization is defined by superimposing a 
discontinuous type function under the weight space domain while the 
learning process is getting stuck. This study included the use of Gaussian 
function, Rayleigh function and Laplace function as the penalty-like 
functions. Despite the success of this approach in performing global 
learning, like all other algorithms, we are still unable to determine the 
minima distribution in error surfaces and unable to identify whether a 
minimum is a local one or global one.  

2.5.1. Simulated Annealing Algorithm 

The simulated annealing method has been introduced in 1983 by 
Kirkpatrick, Gellat and Vecchi, inspired by the annealing (cooling) 
process of crystals that reach the lowest energy, corresponding to the 
perfect crystal structure, if cooled sufficiently slowly. Simulated 
Annealing (SA) has found numerous applications in all branches of 
science and technology. There are three types of user-defined functions 
in the SA procedure: first, ( )Pp p , describing the probability distribution 

of parameters; second, ( )( )PEpE Δ , the probability of accepting the new 
set of parameters as the current one, depending on the change of the error 
function; and third, ( )kT , the schedule of changing the ‘temperature’ 
parameter T in some time steps t. Temperature T determines the scale of 
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fluctuations allowed at a given time step. The Boltzmann annealing 
schedule is most frequently used because of the statistical mechanics 
roots of the method. It is defined by: 

 ( )( ) ( )( )TPE
PEpE Δ+

=Δ
exp1

1
 (2.93) 

There are various proofs showing that, with the probability approaching 
one, for ( )tT  shower than tT ln0  a global minimum can be found by 
this procedure. For the pp  distribution gaussian form is frequently used: 

 ( ) ( ) ( )TPTPp N
p 2exp2 22 Δ−=Δ π  (2.94) 

where PΔ  is the vector defining change of parameters from the previous 
value. Another popular simulated annealing method, called Fast 
Annealing, is based on Cauchy distribution, defined by: 

 ( )
( ) 2)1(22 +

+Δ
=Δ Np

TP
TPp  (2.95) 

which assigns higher probabilities to larger changes of parameters. To 
save time, temperature is frequently reduced by a constant amount, 
leading to exponential schedule that does not guarantee that the global 
minimum is found. In many simulations in the initial stages of 
minimization will not allow to sample the minima; to avoid the time 
waste short sample runs with fast annealing schedule are recommended 
to determine good initial temperature. In later stages, when local minima 
are explored, shifting to gradient based or linear search techniques may 
significantly reduce cost of calculation. 

2.5.2. Alopex Algorithm 

A special form of simulated annealing is used in the Alopex 
algorithm (Unnikrishnan & Venugopal, 1994), since the result of this 
approach seem to be very good. Alpoex algorithm is based on a very 
simple idea which is competitive to the backpropagation. The weight 

jiw is changed by a constant amount δ with probability defined by the 

sigmoidal factor, ( )TEwp jiji Δ⋅Δ=σ , where the weight change and 
the error change computed in the previous iteration is used. The 
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annealing temperature is changed every epoch consisting of K steps, 
using the sum of error changes in the previous epoch: 

 ( ) ( )∑
−

−=

Δ=
1n

Knt

tE
K

nT δ
 (2.96) 

For large temperature, probabilities of δ±  are close to 0.5 and the 
weights are randomly changed until a large change of energy is detected 
(correlation between changes of weights and changes of error are large) 
and the temperature is reduced. During an iteration all weights are 
updated simultaneously. No assumptions are made about the structure of 
the network, the error measure being minimized or the transfer functions, 
no gradients are computed, the same algorithm may be used in 
feedforward as well as recurrent networks, and there is even some 
neurobiological plausibility of this algorithm. There are 3 parameters: the 
step-size δ, which is taken as 0.01-0.001 times the dynamic range of 
weights, the initial temperature, and the number of steps per epoch 
K=10-100. Obviously many improvements can be proposed, such as the 
variable K, fast and slow weights, different annealing schedules etc. 
Alopex may be quite easily used in connection with other global 
minimization methods, for example with genetic algorithms. One 
disadvantage of the Alopex algorithm seems to be that the weights are 
always updated and therefore saturate large positive or negative values. 
To prune the small weights and enable feature selection it is better to 
define conditions when they may vanish, for example by using penalized 
optimization described in the later section. 

2.5.3. Reactive Tabu Search 

The reactive tabu search is based on a simple idea. The search is 
started at a random point and the best elementary move is selected; 
cycles are avoided by keeping the trajectory of the search and 
discouraging the system from visiting the same regions again. In context 
of neural networks the values of the adaptive parameters P are kept with 
finite precision and the neighborhood ( )PN  is defined by single-bit 
change operations. The error function ( )PE  is therefore defined on a 
finite set of points. The best operation for which ( )'PE , ( )PNP∈'  has 
the lowest value, is selected (even if the error grows) and the ties are 
broken in a random way. The inverses of most recent moves are 
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prohibited to avoid cycles, hence the ‘tabu’ name for the method – 
regions already visited should be avoided. If there are too many 
possibilities only a restricted subset of moves are randomly sampled and 
the best one selected. The tabu is put on the moves, not on the values of 
P, and kept for a limited number of T time steps. The values of T should 
be large enough to avoid cycles and small enough to avoid over-
constraining the search. The reactive tabu search optimizes the 
prohibition period T adjusting it to the local structure of the problem. 
This requires remembering the points P along the trajectory and counting 
how many times each point has been encountered. The reactive tabu 
search was used with very good result on a large number of 
combinatorial optimization problems. It has used to discriminate 
interesting events in High Energy Physics data, with the best results 
obtained for a one-bit representation of weights. The generalization 
levels reached 90% while in the standard BP they reached only 62%. 

2.5.4. The NOVEL Algorithm 

A hybrid, global/local trajectory based method, called NOVEL has 
been proposed for neural networks (Shang & Wah, 1996). This method 
was exploring the solution space, locating promising regions and using 
local search to locate promising minima. Trajectory ( )tP  in the global 
search stage is defined by a differential equation: 

 ( ) ( )( )( ) ( ) ( )( )tPtTBtPMAtP p ,ˆ +∇=  (2.97) 

where T is the trace function and A, B are in general non-linear functions. 
The first component allows local minima to attract the trajectories, and 
the second component allows to walk out from the local minima. In the 
simplest case used in the NOVEL algorithm A and B functions are 
constants: 

 ( ) ( )( ) ( ) ( )( )tPtTtPMtP tPg −+∇−= μμˆ  (2.98) 

The trace function T should assure that all space is finally traversed; it 
may either partition the space into regions that are explored in details or 
make first coarse and fine searches. The differential equation is either 
solved in its original form by standard Ordinary Differential Equation 
(ODE) or in a discretized form as a differential equation: 

 ( ) ( ) ( )( ) ( ) ( )( )[ ]tPtTtPMttPttP tPg −+∇−+=+ μμδδ   (2.99) 
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It was noted that ODE solutions are slightly better although discretized 
equations are faster to simulate. The method has been tested on the two-
spiral problem, training 5 hidden units in 100 time steps, starting from 
zero weights. This is one of very hard problems for neural networks. This 
method claimed that finding a solution for 4 hidden units required a total 
of one week of Sun workstation running time. 

2.5.5. The Heuristic Hybrid Global Learning Algorithm 

A heuristic approach global learning algorithm, based on the hybrid 
of the Least Squares and the Penalized optimization methods, has been 
described in (Cho & Chow, 1999). For simplicity, we assume that the 
multilayer neural network has a single hidden layer. The weights 
connected between the output layer and the hidden layer are firstly 
determined using the Least Squares (LS) based method. Afterward, the 
weights connected between the hidden layer and the input layer are 
determined by the gradient descent optimization. When the learning 
process is stuck, the learning mechanism is switched to minimizing the 
new penalty approach through the weight matrix (V) at the output layer. 
In terms of its working mechanism, the weights (V) are estimated by the 
LS method whilst the weights (W) at the hidden layer are estimated by 
the penalty approach optimization. 
As described in (Cho & Chow, 1999), let us define the global 
optimization problem to be considered as follows. Let ( ) ℜ→ℜnE :w  
be the cost function, which can be twice differentiable continuously, 
where w is a vector of n state variables or parameters. The objective is to 
find the global minimum solution, gmw  which minimizes ( )wE , 

 ( ) ( ){ }ℑ∈== www EEE gm min*  (2.100) 

where ℑ  is the domain of the state variables over which one seeks the 
global minimum and ℑ  is assumed to be compact and connected. 
Further, we assume that every local minimum lmw  of ( )wE  in ℑ  
satisfies the conditions 

 
( )

0=
∂

∂
w
w lmE

 (2.101) 
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Based on the above conditions, we assume that the global minimum 
satisfies these local minima and that the global minimum does not occur 
beyond the boundary of ℑ . A well-known penalized optimization 
method was introduced in (Zheng & Zhuang, 1992) stating that the 
problem (2.100) can be approximated by solution of associated penalized 
unconstrained problems in finite dimensional spaces as shown below: 

 ( ) ( ){ } ( ){ } *minmin EEEE pen =ℑ∈=+ wwww λ  (2.103) 

where ( )wpenE  is a penalty function for the constraint set ℑ  and λ is a 
real number that λ>0. The penalized optimization technique provides an 
uphill force whenever the convergence is trapped in local minima. Thus, 
a discontinuous penalty function, defined from (Cho & Chow, 1999) for 
global optimization, should satisfy 

 ( ) ( )⎩
⎨
⎧

ℑ∉
ℑ∈

=
ww

w
w

  
      ,0

g
E pen  (2.104) 

where ( )wg  is a penalty-like function. Three types of the penalty-like 
function are chosen such as: Gaussian function, Rayleigh function and 
Laplace function. 

For simplicity, the algorithm was considered to use a 
feedforward neural network with a single hidden layer network. Suppose 
the network has M input units, N hidden units and Q output units, and we 

assume that the activation function takes a form of ( ) ( )σ x
x

=
+ −

1
1 exp( )

 

in the hidden layer. The general form of the feedforward network can be 
represented as follows: 

 o v w x bk kj ji i
i

M

j
j

N

k= +
⎛

⎝
⎜

⎞

⎠
⎟ +

==
∑∑ σ θ

11
,          1≤ ≤k Q  (2.105) 

where ok  and xi  denote network output and input values respectively. 
w ji  and bj  denote the synapses weights and bias term respectively 
connected between the hidden layer and the input layer which form 
elements of the weight matrix W. Similarly, vkj  and θk  denote the 



76 Neural Networks and Computing: Learning Algorithms and Applications 

synapses and bias respectively connected between the output layer and 
the hidden layer which form elements of the weight matrix V. Assume 
there are P patterns in the training set. For pattern p P= 1 2, , ,… , let 

( )t p p p Qp
T

t t t= 1 2, , ,…  and ( )o p p p Qp
T

o o o= 1 2, , ,…  denote the desired 

output vector and the true output vector of the network. 

( )a p p p Np
T

a a a= 1 2 1, , , ,…  denotes the vector of outputs at the hidden 

layer, where the entries a w x bjp ji ip
i

M

j= +
⎛

⎝
⎜

⎞

⎠
⎟

=
∑σ

1

. ( )x p p p Mp
T

x x x= 1 2 1, , , ,…  

denotes the vector of inputs of the network.  
A total sum-squared-error function,  

 ( ) ( ) ( )ET p p
T

p p
p

P
V W t o t o, = − −

=
∑

1

  (2.106) 

is chosen as a cost function for the network optimisation. The goal of the 
learning algorithm is required to optimise the weights of the network by 
minimising the cost function such that all the derivatives of ( )ET V W,  
with respect to V are equalled to zero, so the optimal weight matrix V 
can be exactly computed by 

 ( )�V TA AA=
+T T  (2.107) 

where ( )T t t t= 1 2, , ,… P  and ( )A a a a= 1 2, , ,… P . “+” denotes an 
operation of pseudo-inverse of the matrix. Thus, the cost function 

( )ET V W,  can be reformulated in a form of 

 ( ) ( )( ) ( )E E ET hidV W V W V W, ,= =  (2.108) 

because the weight matrix V can be expressed as a matrix function of 
matrix W. There exists a new weight space ℜ ×M N  with lower 
dimension mapping into the original weight space. In other words, the 
minimisation of the new cost function ( )Ehid W  is equivalent to 
minimising the error function over the whole weight space. In this study, 
the weights matrix, W can be iteratively estimated via minimising the 
cost function by the gradient descent optimisation.  

As our aforementioned statements, the minimisation by the gradient 
descent optimisation suffers from the problem of local minima. 
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Therefore it is advisable to modify the new cost function, ( )Ehid W  by 
including a penalty function to provide a search out of the local minima 
when the convergence gets stuck. In this paper, the penalty function is 
introduced to superimpose under the weight space domain. Three 
different types of our proposed penalty functions are given as follow, 

 ( )E
w n w

pen
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λ λ
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                                                                 Gaussian type (2.109) 
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                                                                    Rayleigh type (2.110) 
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                                                                   Laplace type (2.111) 

where w nji ( )− 1  is the weight in the specify weight space, ℜ ×M N  at the 

previous iteration. w ji  is the sub-optimal weight value which is assumed 
to be getting stuck in a local minimum. λ denotes the penalty factor 
which determines the influence of the penalty term against the original 
least squares cost function. This weighting factor is used to control the 
breadth of the search iteratively to force the trajectory out of the local 
minima. The correct choice and adaptation procedure of λ will be 
described later. In accordance with the penalty approach, the modified 
cost function for the proposed heuristic algorithm is defined as 
 ( ) ( ) ( )E E Egbl hid penW W W, ,λ λ= +  (2.110) 

Consequently, the updated equations for the weights connected between 
the hidden layer and the input layer is, 
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where w nji
** ( )  is an optimal weight in the specified weight space by 

minimising the modified cost function. η  denotes a learning rate of the 

algorithm. ( )∂
∂

E
w

hid

ji

W  is the original gradient of ( )Ehid W with respect to 

w ji  and ( )∂ λ

∂

E

w
pen

ji

W ,  is the penalty term of the derivative of 

( )E pen W,λ  with respect to w ji  using eqns. (2.109-2.110), so we define: 
Gaussian term: 
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Rayleigh term: 
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Laplace term: 
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as the proposed penalty terms. Based on the above formulations, these 
allow to descent the gradient of Ehid and to ascend the gradient of Epen, 
that the classical gradient descent in the basin of attraction of a minimum 
and for escaping a local minimum entrapment were implemented in this 
algorithm. 
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In accordance with the eq. (2.114), the penalty factor λ determines 
the effect of the penalty term against the original negative gradient of 

( )∂
∂

E
w

hid

ji

W . A correct selection and adaptation for λ are critical 

considerations for the entirely algorithm performance. The selection of λ 
is based on the following condition: 
1.  If λ is too small, large weight changes are possible because of the 

strong effect of the penalty term. In this case, the algorithm is 
unstable which may result an invalid solution. 

2.  If λ is too large, only very small weight changes are allowed for the 
trajectory to escape from the local minima because the penalty term 
becomes virtually redundancy. 

The best choice of λ lies between these two extremes and with the 
condition of assuring the training convergence. The proposed algorithm 
is said to be convergent in the mean square if the mean-square value of 
the error vector, ( ) ( )e t ogbl p pn n= −  approaches a constant value as the 
number of iterations n approaches infinity; that is: 

 ( ) ( ){ }E n ngbl
T

gble e → constant        as n→∞  (2.117) 

so, it implicit that, 
 ( ) ( ) ( )ΔE n E n E ngbl gbl gbl= + − ≤1 0        as  n→∞  (2.118) 

The modified cost function can be approximated by a first order Taylor 
series: 
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where ∂

∂

E ngbl
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T
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⎦
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⎥

 represents the gradient of the modified cost function 

with respect to the weight vector w j ; Δw j n( )  represents the change in 
an arbitrary weight vector. 

Based on the above expressions, suppose the Gaussian penalty term 
is a general case, the guideline of the selection of λ is defined as 
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The derivation of the upper bound of λ is briefly expressed in the 
Appendix 2.1. 
Besides, the adjustment of the penalty factor λ is employed to control the 
global search ability and is adapted according to the following 
conditions:  
1.  When the convergence is stuck in local minimum, the penalised 

optimisation is introduced. λ(n) decreases gradually by 0.3% of the 
λ(n-1) to provide an uphill force to escape from the local minimum. 

2.  After running the penalised optimisation for few iterations, the λ(n) 
should be increased by 1% of the λ(n-1) to diminish the effect of the 
penalty term when the training error starts to decrease. 

The following are shown some illustrations by making use of this 
algorithm in different benchmark problems. First, Fig. 2.4a shows a 3-D 
error surface plot of modified XOR problem. This modified XOR 
problem was used to illustrate the problem of local minima during 
training with the BP algorithm. It is a classical XOR problem but with 
one more introduced pattern such that a unique global minimum exists. 
As there is one known local minimum in the error surface, the plot of 
searching trajectory along the error surface. The network architecture of 
2-2-1 with only 9 connection weights was used for this problem. In the 
range shown, the problem has three minima, one of which is the global 
minimum. Using a search range of [-5, 5], Fig. 2.4 illustrates the search 
trajectories convergence. The 2-D contour plot and the comparative 
performances by the Gaussian penalty function, the Rayleigh penalty 
function and the Laplace penalty function are also shown in Figs. 2.4. 
Clearly, similar performance was obtained and the trajectories are able to 
pull out from the local minimum with the first hundred iterations. The 
subsequent trajectories are able to follow the surface contour down to the 
global minimum. The second problem used by this algorithm was the 
two-spiral benchmark test. This test is reputable to be an extremely and 
demanding classification problem for any algorithm in the network 
training. The cascade-correlation could be used to solve this problem 
using a structure of 2-5-5-5-1 network (three hidden layers with five 
units of each, “shortcuts” connections required). The network 
architecture is of high-order structure. Their results are promising but 
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extremely long training time was required despite working under a 
powerful workstation machine. Fig. 2.5 shows that the solutions yielded 
by this heuristic hybrid algorithm using different types of penalty terms. 
 

 
Error surface plot by modified XOR Gaussian penalty approach 

 
Rayleigh penalty approach Laplace penalty approach 
 
Figure 2.4. 3-D error plot and 2-D contour plots with searching trajectories of the 
heuristic global learning algorithm for the modified XOR problems. In these figures 
shown, the convergence is stuck in the local minimum and the trajectories can be pulled 
out from the local minimum by the penalty force to converge to the global minimum 
eventually 
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Gassian penalty approach Laplace penalty approach 

 
Rayleigh penalty approach 
 
Figure 2.5. Output classification contour images for two-spiral problem by the heuristic 
global algorithm 

2.6. Concluding Remarks 

The classified problems affecting the learning performance and the 
enhancement were addressed in this chapter. Since the learning algorithm 
is based on the gradient descent typed characteristics (i.e. 
Backpropagation algorithm), two common problems, i.e. slow 
convergence speed and susceptibility of local minima, do often occur 
amid the learning process. This chapter suggests several methods to 
enhance the learning performance in the neural networks 

2.6.1. Fast Learning Algorithms 

Three fast learning algorithms have been described to reduce the 
training time of feedforward neural networks. These three fast training 
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algorithms are Extended Backpropagation (EBP) algorithm, Modified 
Least Squares Based (MLSB) algorithm, and Extended Least Squares 
Based (ELSB) Algorithm. The EBP algorithm is based on the adaptation 
of the learning rate and the momentum coefficient according to the 
coefficient of correlation between the downhill gradient and the previous 
weight update.  The EBP algorithm greatly reduces the training time 
when it is compared to the Adaptive Backpropagation algorithm. 
However, this algorithm is more suitable for the problems with binary 
target values because the abrupt change in learning rate usually drives 
the neurons to their extreme values where the binary targets lie. To 
further increase the rate of convergence, the MLSB algorithm, which is 
based purely on a linear algebraic method, was described. Although the 
MLSB algorithm trains the networks to reach small error levels in the 
first few iterations, the network error cannot be further reduced 
afterwards. The problem arises from the use of a transformation matrix to 
transform the optimal output of the hidden layer into the range of the 
activation function. Apparently, there are numerous ways to construct a 
transformation matrix in accordance with different distribution of 
training data. For the problems that require the networks with very high 
accuracy, the ELSB algorithm was developed. The ELSB algorithm 
combines the methods used in the EBP algorithm and the MLSB 
algorithm.  

2.6.2. Weight Initialization Methods 

Determining the optimal initial weights of feedforward neural 
networks is another approach to enhance the learning performance. Three 
weight initialization algorithms, which all are based purely on linear 
algebraic methods, have been described. In the first weight initialization 
method (WIA I), the system is first assumed to be linear. This enables 
the parameters relating the input and output to be evaluated using a least 
squares method. The initial weights in each layer are then evaluated from 
these parameters by QR factorization. The algorithm greatly reduced the 
initial network errors, but this algorithm cannot be applied to the neural 
networks in which the number of hidden neurons is smaller than the 
number of input neurons plus one. Another weight initialization 
algorithm (WIA II), was thus developed to overcome this limitation. In 
the WIA II algorithm, the outputs of hidden layers are assigned with 
values in the range in which the derivative of activation function has a 
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large value. The optimal weights are evaluated by the least squares 
method. Although the WIA II algorithm can be applied to any network 
architecture, the networks initialized with this algorithm had greater 
chances of getting stuck when they are further trained. The third weight 
initialization algorithm (WIA III) was given to improve the second 
algorithm. The WIA III algorithm determines the distribution of initial 
values of the weights of all layers except the output layer; the weights 
connecting to the output layer are evaluated by the least squares 
algorithm. The WIA III overcomes the shortcomings of the first two 
weight initialization algorithms and was combined with the ELSB 
algorithm to form the fast training mechanism. The training mechanism 
greatly reduces the training time and has additional advantages over 
other well-known fast training algorithms in terms of the low 
computational complexity and the storage requirement. 

2.6.3. Global Learning Algorithms 

Another important issue of the local minima problem was addressed 
in this chapter. In the past decade, many researchers have proposed 
different types of algorithms which can provide a significant reduction in 
the total number of iterations by exploiting the fast convergence 
characteristics, but getting stuck in the local minima is inevitable in 
many cases. Convergence stalling is yielded especially in applying to the 
complicated problems. Random Search (RS) and Simulated Annealing 
(SA) methods are one of the stochastic typed global optimization 
methods. In terms of their working mechanism, the approaches are 
reliable and simply to implement, but larger neural network size is 
required for solving very complicated classification problems. 
Deterministic algorithms, such as NOVEL and reactive tabu search, have 
some advantages over the stochastic versions. They find all deep minima 
contained in some bound region of the parameter space. Unfortunately 
finding a solution for 4 hidden units required a total of one week of 
workstation time. Therefore, a hybrid learning scheme is one of the 
possible solution to tackle the above problems. This algorithm converges 
to the global minimum in the probabilistic sense. The methodology of the 
learning scheme is based on a hybrid of the least squares method and the 
well-known stochastic optimization method. The least square method 
determines the weights connected between the output layer and the 
hidden layer. As a result, the convergence speed is spectacular because 
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the weights are determined in a single step. The stochastic part was 
employed by the penalized optimization. The idea of this penalty 
approach is defined by superimposing a discontinuous type function 
under the weight space domain while the learning process is getting 
stuck. These studies included the use of Gaussian, Rayleigh, and Laplace 
functions as the discontinuous penalty functions.  

Appendix 2.1. 

Assume the weight change Δw j n( )  is the weight difference between 
w j n( )  and w j n( )− 1 , so 
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Therefore, from (2.118), 
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where ⋅  is a norm of the vector. 
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By the Convergence Theorem from Eq. (2.118), ΔE ngbl ( ) ≤ 0  and 
assume η  is positive constant, so, 
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becomes, 
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initially, we assume that λ > 0  and is a quite large number, so λ2 →∞  

then 1 0
2λ
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then Eq. (2.120) follows. 
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Exercises 

Q2.1. Consider a simple multilayer perceptron (MLP) as shown in Fig. 
2.6, compute the individual steps of the back-propagation 
algorithm. Consider the learning rate to be η=0.5 and sigmoid 

activation functions ( ) 2

1
1 hh

e βσ −=
+

 in the nodes with gain 

β=0.5. Calculate the complete cycle with the input pattern (0, 1) 
and the input pattern (1, 0). 

 
 
w0 w1x w2 w3 w4 x1 x2 Oh Oo ∆w4 ∆w3 ∆w2 ∆w1 ∆w0 
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 Figure 2.6. MLP network for the AND function 
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Q2.2. A neural network is being trained on the data for XOR problem. 
The architecture and the values of the weights and biases are 
shown in Fig. 2.7. 

 Using the sigmoid function ( ) 2

1
1 hh

e βσ −=
+

 with gain β =0.5, 

compute the activations for each of the units when the input 
vector (0, 1) is presented. Find the delta factors for the output 
and hidden units. Using a learning rate of η=0.1, compute the 
weight corrections. Find the new weights (and biases). 
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 Figure 2.7. Neural network for Q2.2 
 
 
Q2.3. Repeat the question of Q2.2 for the input vector (1, 0). 
 
 
Q2.4. Interpret the differences between the weight changes on the 

connection to the output unit and the weight changes to the 
hidden units in Q2.2 and Q2.3. 

 
 
Q2.5. Consider an MLP with three inputs, one output and one hidden 

layer with 10 nodes. As learning algorithm uses backpropagation 
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and sigmoid functions in the nodes, compute the initial weights 
at the hidden and output layers using the Weight Initialization 
Algorithm I as described in Section 2.4.1. 

 
 

Input patterns Output 
x1 x2 x3 y 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

 
 
Q2.6. Determine the upper bound of the penalty factor λ by means of 

convergence proof as similar to equation (2.121) if a Rayleigh 
penalty term is used for penalized optimization. 

 
 
Q2.7. Repeat the question of Q2.6 of a Laplace penalty term is used for 

penalized optimization. 
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Chapter 3 

Generalization and Performance Enhancement 

This chapter focuses on the issue of generalization capability of 
neural network. In this chapter, neural network and network are 
considered as interchangeable terms. The neural networks possess two 
paramount features of the universal function approximating (Hornik et 
al., 1989) and generalization capabilities (Bishop, 1995), (Leung, 1998). 
Therefore, researchers and engineers often consider neural networks as 
“black box” type of tools. However, the network performance often 
varies greatly depending on many factors such as learning algorithms, 
network size….etc. The network performance is often determined 
according to a training error and a test error. The training error is a 
quantity to indicate the closeness between the neural network and the 
training patterns. The test error is an index to reflect the distance between 
the neural network and the underlying function based on the unseen test 
set. 

As neural networks are considered universal approximators 
(Funahashi, 1989), the network training is, in fact, a process of non-
parametric functional estimation in the statistical sense. The network 
training only based on a finite number of training examples is basically 
an ill-posed problem (Geman et al., 1992). Due to the limited availability 
of the training samples, there are enormous possible realizations of 
neural networks delivering comparable level of training error. However, 
most of the realizations often do not generalize the training data as 
expected. Only a few realizations are able to generalize the training data 
as what the underlying function is perceived. 
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There is no doubt that obtaining an appropriate realization from the 
enormous possibilities is a baffling problem. Such behavior is analogous 
to the situation of curve fitting, where the right complexity is needed for 
a good fit to both training and test sets, as illustrated in Fig. 3.1. The 
main concern of this chapter is that the error level to the novice examples 
should be comparable to the training data in a particular application. The 
trained networks should have a high degree of generalization capability, 
thus the training error should be a relatively reliable measure of the 
network performance when the training data is assumed to be sufficient 
in representing the underlying function. 

 

 
Figure 3.1. (a) A good fit; (b) Over-fit data: Perfect fir on training set, but poor fit on test 
patterns (x’s represent training patterns, o’s represents test patterns) 

 
Recently, there are many techniques proposed to enhance the 

generalization capability. These techniques can be roughly divided into 
two categories, structure-based and application-based. The structure-
based techniques are currently the mainstream approach, which is based 
on finding an appropriate network structure. The structure-based 
techniques consist of pruning methods and construction methods. 
Pruning methods start from initial architecture that is over-
parameterized, and selectively removing units and/or connections during 
the network training, until a satisfactory performance level is reached. 
Optimal brain damage (LeCun et al., 1990), optimal brain surgeon 
(Hassibi et al., 1993), weight decay (Krogh & Hertz, 1992), and weight 
elimination (Weigend et al., 1991) are some of the well-known pruning 
methods. Construction methods, namely dynamic node creation (Ash, 
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1989), and Cascade-correlation (Fahlman & Lebiere, 1990), concentrate 
on incrementally building a network from a simple structure. 

It is believed that the choice of the network realizations should also 
depends upon the nature of the applications. For example, the pattern 
recognition problems and the regression problems introduce different 
aspects of requirements. The inclusion of a priori knowledge of a 
particular application facilitates the network training to converge to a 
desirable neural network realization. The application-based techniques 
concentrate on including the a priori knowledge in the network training. 
This chapter focuses on discussing this issue. 

This chapter is organized as follows: Section 3.1 presents some basic 
properties of cost function as well as generalization capability for neural 
network optimization. Under simplifying assumptions, the Least-Square 
(LS) cost function is the most popular used for the feed-forward neural 
network. However, the LS based optimization algorithms suffer from a 
problem of “overfitting” noise. Therefore, Section 3.2 focuses on higher 
order cumulants based cost function, which is blind to Gaussian noise to 
tackle the problems of the LS cost function. An interesting property of 
higher order cumulants applying to neural network learning is described 
in this section. Following that, Section 3.3 presents the concepts of 
regularization methods based upon higher-order cumulants based cost 
functions. The methods of adaptive regularization parameters selection 
are described and suggested how the regularization parameter selects to 
avoid trapping into sub-optimal solution in this section. An evaluation by 
synthetic function mapping is also presented in this section. Finally, 
Section 3.4 presents the concluding remarks of this chapter. 

3.1. Cost Function and Performance Surface 

In principle, the primary goal of the network training is to model the 
underlying function of the training data, so that the best possible 
estimation for the network outputs can be made when the trained neural 
network is presented with a novice value for the network inputs. The 
optimal weights obtained by the network training are totally based on the 
information from the selected objective function. Hence, the selection of 
objective functions is decisive to the efficiency of the network training 
and the performance of the trained neural network. There is a common 
view that different applications may emphasize on different aspects. For 
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time-series forecasting problems, the basic goal of the network training is 
to model the conditional distribution of the output variables, given the 
input variables. This motivates the use of the Least Squares (LS) error 
function that achieves extensive use in the neural based time-series 
forecasting. 

3.1.1. Maximum Likelihood Estimation 

For regression problems, the major objective in the network training 
is not to memorize the training data, but rather to model the underlying 
function of the data. Hence, the best possible forecasts of the output 
vector t can be made when the trained network is subsequently presented 
with a novice value for the input vector x, viz. 

 ( ){ } ( )Wxtxt t ,,maxargˆ Fp ==  (3.1) 

where t̂  is the estimated t; W is the network weight vector; F is the 
function of the neural network; ( ){ }xVxmaxarg  is the value of x that 
maximizes ( )xV  and ( )tx,p  is the joint probability density function. 
We consider that there is a set of training data ( ){ }kk txD ,=  and each 
data sample ( )kk tx ,  is drawn randomly and independently from the 
same distribution. In accordance with Maximum Likelihood Estimation, 
the optimal weight vector W is found by maximizing a likelihood 
function, which is given by 
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where ( )kkp xt  is the probability density of t given a particular input 

vector x; and ( )xp  is the unconditional density of x. The likelihood 
function ζ  can be converted into an objective function 

 ( ) ( )∑∑ −−=−=
k

k
k

kk pp xxt lnlnlnζε  (3.3) 

As the second term is equation 3.3 is independent of the neural 
network function F, we can redefine the objective function ε  by 
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 ( )∑−=
k

kkp xtlnε  (3.4) 

Hence, we can obtain a maximum likelihood estimation based on the 
equation 3.4. 

3.1.2. The Least-Square Cost Function 

For the sake of analysis, we only consider the neural network with a 
single linear output because the extension to the multiple outputs is 
obvious. Assume the case have n data points ( )kk tx ,  where k=1,2,…,n, 
and suppose that the data points ( )kk tx ,  are statistically independent. 
We consider the target value kt  is given by an unknown function h with 
added Gaussian noise perturbation e, viz. 

 ( ) kkk eht += x  (3.5) 

where ke  is Gaussian distributed with zero mean and standard deviation 
σ. The noise e is also statistically independent of the input vector x and t. 
As the neural network ( )Wx,F  is used to model the unknown function 
( )xh , the conditional probability density ( )xtp  is given by 
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According to Maximum Likelihood Method, the error function E in the 
equation 3.5 will be 
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As the second and third terms of equation 3.7 are independent of weights 
W, we obtain the familiar expression for the Least-Sqaures (LS) error 
function 
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where a is the scalar constant. Now, let us consider the asymptotic 
condition of the error function when the size n of the training data set 

goes to infinity. By selecting 
n

a 1
= , we have 
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We now substitute ( ) { } { } ( )WxxxWx ,, FtEtEtFt −+−=−  in the 
above equations, 
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  (3.10) 
Since the third term vanishes, we have 

 { }{ }{ } { } ( ){ }{ }2 2
,E t E t E E t Fε = − + −x x x W  (3.11) 

Because the first term of equation 3.11 is independent of the network 
weights W, the absolute minimum of the error function in equation 3.11 
when the second term vanishes, which corresponds to the following 
result 

 ( ) { }xWx tEF =*,  (3.12) 

where *W  is the network weights at the absolute minimum of the error 
function. Based on the derivation of the LS error function, the 
distribution of the target value kt  is assumed to be Gaussian. A 
maximum likelihood estimate of the unknown function h can be obtained 
when the following conditions are met: 
1. The data set must be sufficiently large that it approximates an infinite 

data set; 
2. The neural network ( )Wx,F  must be sufficiently general that there 

exists a choice of parameters which makes second term in equation 
3.11 sufficiently small; 
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The optimization of the network weights is without getting stuck in the 
local minima of the LS error function. 

Conditions 1 and 2 sometimes may not be met together at the same 
time. The size of the data set required by Condition 1 depends upon the 
size of the neural network. In order to have a generalized neural network, 
a larger network size is required, thus the data size has to become larger 
accordingly. The data sampling in many applications is extremely 
expensive and difficult to obtain. The training process with a large data 
set is sometimes impossible due to the enormous computational effort 
involved. We have to consider the network generalization capability 
when the data set may no longer be sufficiently large as described as 
Condition 1. 

Now, we consider there is a finite data set ( ) ( ){ }nn ttD ,,,, 11 xx …=  
consisting of n patterns used to determine the neural network ( )Wx,F . 
Consider the mean-squared error of the neural network ( )xF  as an 
estimator of { }xtE  based on the finite data set D. The mean-squared 
error Dε  is defined by 

 ( ) { }{ }xx tEFEDD −=ε  (3.13) 

where {}⋅DE  denotes the expectation over all the patterns in the data set 
D. We now substitute 

 ( ) { } ( ) ( ){ } ( ){ } { }xxxxxx tEFEFEFtEF DD −+−=−  (3.14) 

in Dε  and manipulate it as follows: 
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Hence, the mean-squared error Dε  will be 

 ( ){ } { }{ }{ } ( ) ( ){ }{ }{ }22 xxxx FEFEtEFEE DDDDD −+−=ε  (3.16) 

The first term of the above equation represents the bias of the neural 
network ( )xF  measured with respect to the function ( ) { }xtEh =x . The 
second term represents the variance of the neural network function. Thus, 
there is a cost of large variance for achieving a small bias by a sufficient 
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general neural network function. In other words, when the network 
training is based on the LS error function and a finite training data set, 
the problem of poor generalization capability (overfitting the training 
samples) is likely to occur. Especially, if the training data is perturbed, 
the trained neural network may overfit the noisy training samples when 
the size of the perturbed samples is not sufficiently large to make the 
cross term { }{ } { } ( ){ }xxx FtEEtEtE −−  in equation 3.10 to be zero. 

As mentioned before, the noise perturbation or the target values of the 
training data is assumed to be Gaussian normal distributed. On one hand, 
the LS error function is only in terms of the second-order moment, which 
cannot distinguish between the Gaussian distribution and any other 
distribution having the same mean and variance. The distribution of the 
residual error, ( )Wx ,kkk Fte −= , of the trained network ( )Wx,F  
may not be Gaussian distributed as assumed. This degrades the 
generalization capability of the trained neural network. On the other 
hand, the distribution of real world data is non-Gaussian in general. The 
network training based on the LS error function may not be able to 
obtain a maximum likelihood estimate as mentioned in Section 3.1.1. 

3.2. Higher-Order Statistic Generalization 

In the previous section, many problems, especially the problem of the 
generalization capability, stem from the assumption of the Gaussian 
distribution of the training data and the LS error function is not able to 
distinguish any non-Gaussian process from a Gaussian process with the 
same values of mean and variance. In the real world, a wide variety of 
applications, including sonar, digital communications, seismology, and 
radio astronomy, are arisen by non-Gaussian signals. When traditional 
Gaussian model based techniques, such as the LS error based algorithms, 
is applied to non-Gaussian signals, the performance is often not 
satisfactory. To analyze the non-Gaussian data, the use of a much more 
sophisticated statistical methodology is needed to supplement the 
deficient of the traditional Gaussian model based techniques. Recently, 
higher-order statistics were applied to various real world non-Gaussian 
(or, possible nonlinear) processes. Higher-order statistics have been 
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applied in many areas such as system identification and parameter 
estimation (Tugnait, 1990), and noise estimation and detection (Sadler & 
Giannakis, 1994).  The general advantages behind the use of higher-order 
statistics are threefold: 1) to extract information due to deviations from 
Gaussianness (normality), 2) to estimate the phase of non-Gaussian 
parametric signals, and 3) to detect and characterize the nonlinear 
properties of mechanisms which generate time-series via phase relations 
of their harmonic components (Nikias & Raghuveer, 1987). Hence, a 
new type of objective functions is proposed based on the higher-order 
statistics. 

3.2.1. Definitions and Properties of Higher-Order Statistics 

Higher-Order Statistic (HOS) provides a unique feature of 
suppressing gaussian noise processes of unknown spectral characteristics 
(Nilias & Petropuou, 1993). Cumulants of order r > 2 are blind to any 
kind of a Gaussian process (white or color) whereas correlation is not.  
As a result, cumulants-based methods are able to boost signal-to-noise 
ratio when non-Gaussian signals are perturbed by Gaussian measurement 
noise (Mendel, 1991). The definition and the essential properties of 
higher-order statistics are summarized as follows: 

Given a set of n real random variables { }nxxx ,,, 21 … , joint 
moments of order nkkkr +++= "21  are given by (Papoulis, 1991) 
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where  
 ( ) ( ){ }nnn xxjE ωωωωω ++=Φ "… 1121 exp,,,  (3.18) 

is their joint characteristic function. The joint cumulants of order r of the 
same set random variables are defined as  
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The general relationship between joint moments of { }nxxx ,,, 21 …  and 
joint cumulants { }nxxxCum ,,, 21 …  of order nr =  is given by 
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  (3.20) 
where the summation extends over all partitions 
( ) npsss p ,,2,1,,,, 21 …… = , of the set of integer ( )n,,2,1 … . Therefore, 
the joint cumulants can be expressed in terms of the joint moments of a 
set of random variables, such as 
 { } { } { }111 xExMomxCum ==  (3.21) 
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If { } ",2,1,0 ,1 ±±=tx  is a real stationary random process and its 
moments and cumulants up to order n exists, then 

{ }
11

,,,
−++ nttt xxxMom ττ …  and { }

11
,,,

−++ nttt xxxCum ττ …  will depend 

only on the time difference ",2,1,0 ±±=iτ  for all i. The variance, 
shewness, and kurtosis measures of the distribution of { }tx  can be in 

terms of { }2
txCum , { }3

txCum  and { }4
txCum  respectively. Moreover, a 

process { }tx  is said to be ergodic in the most general form if the 
expected value {}⋅E  can be computed by time averages, viz. 
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3.2.2. The Higher-Order Cumulants based Cost Function 

In many real world applications, noise perturbation is inevitable and it 
may significantly affect the network training when the size of the 
training data is not sufficiently large. To diminish the undesired noise 
effect, a higher-order cumulant (HOC) based cost function was proposed 
(Leung & Chow, 1997) to resolve the problem of poor generalization 
when the network is working under a noisy condition and the data size N 
is small compared to the number of weights. This new cost function 
provides useful features suppressing Gaussian noise processes of any 
spectral characteristics and boosting the signal-to-noise ratio when non-
Gaussian signals are perturbed by Gaussian measurement noises. The 
fourth-order cumulant (FOC) cost function is defined by 

 ( )( ){ } ( )( ){ }( )242 ,, WxWx FtCumFtEH DFOC −+−= λ  (3.26) 

where {}⋅DE  is the expected value over all patterns on the training data 
set ( ){ } {}⋅== Dkk CumnktD  ;,,2,1,, "x  is the value of the cumulants 
over all patterns on D; and λ is the positive regularization parameter. 

Let ( )Wx,F  be a sufficient general feedforward neural network with 
a single output node. Suppose an unknown function ( )xh  of the target 
system governs the mappings from the input vector x of dimension m to 
the output value ( )xhy =  such that  
 eyt +=  (3.27) 

where e is the additive noise perturbation with zero mean and finite 
variance. A finite number of samples from the target system are collected 
for the network training. We assume that the data sample ( )kk t,x  is 
independent and identically distributed, and the noise perturbation e is 
independent of the system output y. Now, we consider the asymptotic 
condition of the FOC objective function.  When the size of the training 
set approaches infinity, by substituting 
 ( ) { } { } ( )WxxxWx ,, FtEtEtFt −+−=−  
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we have the FOC objective function 
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  (3.28) 

Because the terms { }( ){ }2xtEtE −  and { }( ){ }4xtEtCum −  are 
independent of the network weights W, the absolute minimum of the 
FOC objective function in equation 3.28 at *W when the terms 

{ } ( )( ){ }2, Wxx FtEE −  and { } ( )( ){ }4, Wxx FtECum −  vanish. This 
corresponds to the following result 

 ( ) { }xWx tEF =*,  (3.29) 

as the case of the LS error function. Thus, when the output variable t or 
the noise perturbation e are Gaussian distributed, a maximum likelihood 
estimate ( )*,WxF  can be obtained by applying the FOC objective 
function. Also, the signal-to-noise ratio is boosted because the term 

{ }( ){ }4xtEtCum −  will be zero if the noise perturbation is Gaussian 

distributed. It is believed that the inclusion of the fourth-order cumulant 
term is capable of facilitating the network training because the term can 
extract more high-order information from the training data. The fourth-
order cumulant term also enables the network training to capture the 
phase information from the data, which is essential to time-series 
forecasting.   

The foremost situation is when the training data set D is finite. Now, 
we consider there is a finite data set D consisting of n patterns which is 
used to determine the neural network ( )Wx,F . Consider the fourth-
order cumulant of the error of the neural network ( )xF  as an estimator 
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of { }xtE  based on the finite data set D. The fourth-order cumulant of 
the error is defined by 

 ( ) { }( ){ }4
, xx tEFCumDFOCD −=ε  (3.30) 

We now substitute equation 3.14 in FOCD,ε  and we have 
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  (3.31) 

because ( ) ( ){ }( )xx FEF D−  and ( ){ } { }( )xx tEFED −  are independent 
of each other. Also, neural networks with linear output nodes are 
commonly applied in regression problems, such as time-series 
forecasting. We can consider the output of the neural network ( )xFy =ˆ  
as a random variable expressed in the form of 

 ∑
=

=
l

i
ivy

1

ˆ  (3.32) 

where { }iv , li ,,2,1 …= , is the set of the random variables of the inputs 
of the output node of the neural network. According to the Central Limit 
Theorem (Papoulis, 1991), the distribution of ŷ  approaches a Gaussian 
distribution as l increases. Consequently, it is reasonably assumed that 

( ) ( ){ }( )xx FEF D−  is Gaussian distributed so that the term 

( ) ( ){ }( ){ }4xx FEFCum DD −  vanishes. Hence, we have 

 ( ){ } { }( ){ }4
, xx tEFECum DDFOCD −=ε   (3.33) 

In other words, there is no bias/variance dilemma to the cumulant 
term in the FOC objective function when the size of the neural network 
is sufficiently large.  

As mentioned in the Section 3.1.2, the LS error function or the sum-
of-squares error function is only in terms of the second-order moment 
which can characterize all information of a Gaussian distribution. 
Second-order moments cannot, nevertheless, distinguish between the 
Gaussian distribution and any other distribution having the same mean 
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and variance. If the network training is based on the sum-of-squares error 
function, it is probable to have a non-Gaussian distributed residual error, 

( )Wx,Fte kk −= , especially when the size of the training data is not 
sufficiently large. The trained network may probably overfit the training 
data. In contrast, the FOC objective function is capable of not only 
characterizing a non-Gaussian distribution but also measuring the 
kurtosis or “Gaussianity” of the distribution. Consequently, the FOC 
objective function enables the network training to filter out the undesired 
functional estimates of which the residual error is non-Gaussian 
distributed. The residual error is squeezed to be Gaussian distributed as 
much as possible. Thus, the trained network exhibits a higher 
generalization capability when the output of the target system or the 
noise perturbation is Gaussian distributed.  

Furthermore, because the distribution of the residual error of the 
trained network is very close to Gaussian, the reliability of the network 
training can be coarsely estimated based on the test error of the novice 
data set. The confidence upper bound of the approximation error of the 
trained network, 

 ( )( ){ }2,WxFtE ka −=ε  (3.34) 

can be computed by 

 ( )βχ
ε

ε 2
1−

≤
n

t
a

n
 (3.35) 

with a confidence level of 100β%, where n is the number of patterns in 
the test data set ( ){ }iit tD x,= , ni ,,2,1 …= ; the test error tε  is given 
by 

 ( )( )∑
=

−=
N

i
iit Ft

n 1

2,1 Wxε  (3.36) 

and the 2χ  distribution is defined as 

 ( ) ( ) ( )
12 2

2

1 exp 2
2 2

n

n nx
x y y dy

n
χ

∞ −
= −

Γ∫  (3.37) 

The detailed deviation of the confidence upper bound is summarized in 
appendix 3.1. 



 Generalization and Performance Enhancement 105 

3.2.3. Property of the Higher-Order Cumulant Cost Function 

Although many global learning algorithms have proposed to find an 
optimal solution on an error surface containing sub-optimal solutions, the 
network training often requires the training duration in terms of days or 
weeks under the platform of workstation level. The required training 
time is often prohibitively long for real-world applications. The reason 
behind the long training time is not difficult to understand. These global 
learning algorithms are developed for general applications and objective 
functions. The characteristics of particular objective function and 
application which may facilitate the network training are not fully 
utilized. It is believed that utilizing the characteristics enables the 
network training to speed up and to converge to an optimal solution, or a 
solution with an acceptable generalization error. In this section, an 
interesting property between { }2E ε  and { }rCum ε , 3,4r = , is found 

when the neural networks are applied to time-series forecasting. Based 
on the property, we are able to reconstruct the HOC objective functions 
such that there is no sub-optimal solution. Consequently, the HOC 
objective functions together with specified regularization method1 enable 
the network training not to be trapped into sub-optimal solutions. The 
detailed description of the property is shown beneath. 

Suppose that a set of training pairs ( ){ }kk tD ,x=  is available. The 
stationary time-series { }kt  is represented by  

 ( ) kkk gt η+= x ,       for all time step 0≤k  (3.38) 

where ( )kg x  is the underlying regression function; kη  is the noise 
perturbation, which is zero mean and finite r-order cumulants, 

4,3,2=r , and kη  is independent and identically distributed.  We 
assume that the underlying function ( )xg  belongs to the function class 

( ){ }Wx,F . In other words, the selected architecture of the neural 
network is sufficient to exactly mimic the unknown regression function 
( )kg x . Hence, the minimum mean square error optimal predictor of kt  

given the value of kx  is the conditional expectation 

                                                 
1 This regularization method is called Adaptive Regularization Parameter Selection 
(ARPS), which discusses in Section 3.3. 
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 { } ( )kkk gtEt xx ==ˆ  (3.39) 

According to the Ergodicity Theorem, the moments of the stationary 
time-series { }kt  can be approximated by the corresponding time average. 
For this reason, we suppose that without the loss of generality there 
exists an optimal solution *W  on the LS error surface such that, for all 
W, 

 ( )( ){ } ( )( ){ }22* ,, WxWx kkkkkk FtEFtE −≤−  (3.40)  

where {}⋅kE  is the time average or the expectation over the time step k. 
Therefore, the underlying function ( )kg x  can be exactly modeled by the 

best-fit neural network ( )*,WxkF  as follows: for all time step k, 

 ( ) **, kkk eFt += Wx  (3.41) 

where the residual *
ke  equals the noise perturbation kη , i.e. kke η=* . 

Then, we have, for all weight vector W and time step k, 

 ( ) kkk eFt += Wx ,  (3.42) 

and 

 ( ) ( ) kkk eFF wWxWx += ,, *  (3.43) 

where the residual ke  is given by 

 *
kkk eee += w  (3.44) 

the following theorem has been proved. 
 

Theorem 3.1 If there exists a W such that, { } 02 =∇ kk eE  and 

{ } 0=∇ r
kk eCum , for r=3,4 then 

 ( ) ( )( ){ } { } 0,, 22* ==− kkkkk eEFFE wWxWx  

The proof is based on the following assumptions: 

[H1]      For all w in W, *
ke  and 

( )
w

F k

∂
∂ Wx ,

 are statistically 

independent. 
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[H2] *
ke  and kew  are also statistically independent. 

[H3] ( )g x  can be exactly mimicked by the neural network ( )*,F x W . 

[H4] The series kt  is stationary. 
The detail of the proof is summarized in Appendix 3.2. The above 

assumptions H1 and H2 are selected based on the rationale that the error, 
( ) ( )*,Wxx kk Fg − , is negligible compared with the noise perturbation 
kη  in order to have a good network generalization. For the simplicity of 

analysis, *
ke  is considered to be a noise which is independent and 

identically distributed with zero mean and finite variance. 
According to Theorem 3.1, the new objective function (i.e. FOC 

function) is redefined as 

 ( )( ){ } ( )( ){ }2 4
' , ,FOC D DH E t F Cum t Fλ= − + −x W x W  (3.45) 

In the equation 3.45, the regularized objective function is composed 
of two terms which are { }r

kk eCum  and { }2
kk eE .  Hence, the network 

training will stall only when 
1. The gradients of { }2

kk eE  and { }r
kk eCum , r=3,4 both vanish, or 

2. The sum of the two gradients is zero, i.e. for r=3,4  

 { } { }2 0r
k k k kE e Cum eλ∇ + ∇ =  (3.46) 

when the gradients of { }2
kk eE  and { }r

kk eCum  are nonzero.  
Condition 1 is one of the situations that the algorithm finds a 

minimum. In accordance with Theorem 3.1, when Condition 1 occurs, 
an optimal solution is found. Moreover, Condition 2 is the condition of 
sub-optimal solutions when the Hessian matrix is semi-positive. As seen 
in equation 3.46, there exists a parameter λ affecting the condition and 
the location of sub-optimal solutions on the error surface of the objective 
functions, while the locations of the optimal solutions are not affected by 
the magnitude of λ. In other words, when a gradient type training process 
gets stuck in sub-optimal solutions on the composite surface, we can 
easily relocate the obstruction (sub-optimal solution) by changing the 
value of λ. Moreover, theorem 3.1 implies that the locations of the 
optimal solutions in Condition 1 do not change with λ. The neural 
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network training will not stall at a sub-optimal solution if λ is properly 
controlled by a regularization selection method, which is discussed in 
Section 3.4. It is worth to note that more than one optimal solution may 
exist. Different initial guesses of network weights lead to different down-
hill trajectories and may end up to different optimal solutions. In 
practical situations, the network training can converge to the best 
possible solution under finite available training data and training time. It 
is believed that the best possible solution may be close to one of the 
optimal solutions. 

3.2.4. Learning and Generalization Performance 

A batch-mode HOC objective function (shown in equation 3.26) 
based backpropagation algorithm is derived in accordance with the fact 
that the time-series is assumed to be stationary. In fact, when the time-
series is non-stationary, this assumption can easily be met by the proper 
selection of time-series model. Hence, by assuming the time-series to be 
ergodic, the moments can be approximated by 
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ititD Ft

n
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1
,1 Wx  (3.47) 
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where the training data D is ( ){ }itit t ++ ,x , ni ,,2,1 "=  . According to the 
gradient descent optimization technique, the solution W, which 
minimizes the HOC objective function, can be computed iteratively by 
the following equation: 

 
( ) ( ) ( )

( ) ( ) ( )( )1               
1

−Δ+∇+=
Δ+=+

kHk
kkk

FOCk WW
WWW

W βη
 (3.51) 
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where k is the iteration number; η is the learning factor; β is the 
momentum factor; W(0) is randomly initialized and 

( ) ( ) { } { } ( ) { }
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In this section, a number of numerical simulation results are presented 

for validating the arguments discussed in this chapter. The state-of-the-
art generalization enhancement methods, including weight decay and 
weight elimination, as well as the two proposed higher-order statistics 
based objective functions have been studied in the prediction of two 
chaotic time-series, namely Henon Attractor and Sunspot time-series. 
The simulations were conducted under a SUN Sparc 20 platform. 

3.2.4.1. Experiment one: Henon Attractor 

The Henon map, which exhibits stochastic dynamics in the classical 
case, is a nonlinear quantum harmonic oscillator with two degrees of 
freedom, and is characterized by 

 1
2

1 1 −+ +−= kkk bxaxx  (3.53) 

The Henon attractor is chaotic for the parameter values 4.1=a  and 
3.0=b . The capacity of the attractor was estimated to be around 1.27, 

and the size of the largest Lyapunov exponent is about 0.408. The 

normalized kx~  and 1
~

−kx , by 
σ

xxx k
k

−
=~  where x  and σ are the mean 

and variance of the data, are the inputs of the neural networks, and the 
11

~
++ + kk nx  is the target output where 1+kn  is additive noise perturbation 

with zero mean and standard deviation of 0.1. Two different 
distributions, namely uniform and Gaussian, of noise perturbation were 

(3.52)
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studied. Two hundred training patterns and another two set of 200 
different test patterns were used in this study. The simulations were 
conducted under the conditions of learning rate 0.1 and momentum 
factor 0.9.  The architecture of the neural network used in this study is 
two inputs, ten hidden neurons, and one output. Each neural network was 
initialized by the same set of weights and was trained by 30,000 
iterations. 

 

 
Figure 3.2. Results of Henon series prediction using HOC cost function under Gaussian 
noise perturbation 

 
 

Under the noise perturbation of Gaussian distribution, different values 
of the regularization parameter λ were used to examine the effect to the 
network performance for the methods studied in this experiment. Tables 
3.1 and 3.2 summarize the simulation results and Figs. 3.2 to 3.4 
illustrate the variation in the network performance to the value of the 
regularization parameter λ. Fig. 3.2 manifests that varying the value of λ 
did not noticeably affect the network training and the network 
performance when the HOC objective function was applied. Figs. 3.3 
and 3.4, respectively, show that the performance of the weight decay and 
weight elimination methods were significantly affected by the value of λ. 
Moreover, the methods are relatively sensitive to noise when a non-
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optimal λ is used. Additional simulation was conducted to validate the 
confidence upper bound of approximation error for the HOC objective 
function. The network trained according to 410−=λ  was tested. Another 
45 test sets of 200 samples were used for validation. The RMS error of 
the 45 test set was computed and the histogram of the RMS errors is 
shown in Fig. 3.5. According to equation 3.35, we consider that, with a 
confidence level 99%, the confidence upper bound of the approximation 
error in the form of RMS error is 0.1344. The upper bound is bounded 
above all the test errors as shown in Fig. 3.5. Hence, the approximation 
error can be coarsely estimated based on the upper bound when the HOC 
objective function is used and the noise perturbation is Gaussian 
distributed. 

 
Table 3.1. Simulation results of Henon series prediction using the HOC objective 
functions under Gaussian noise perturbation. “Not Conv.” means that the networks 
training does not converge to a training error lower than 1 

 RMS Error 
λ Training Set Test Set 1 Test Set 2 
10-4 0.087690 0.10202 0.10015 
10-3 0.087668 0.10210 0.10013 
10-2 0.091421 0.10855 0.099337 
0.1 0.091461 0.10848 0.099202 
1 Not Conv. 
10 Not Conv. 

Table 3.2. Simulation results of Henon series prediction using the weight decay and 
weight elimination method under Gaussian noise perturbation. “Not Conv.” means that 
the networks training does not converge to a training error lower than 1 

 RMS Error 
λ Training Set Test Set 1 Test Set 2 
10-4 0.093319 0.10375 0.10127 
10-3 0.15442 0.15637 0.15520 
10-2 0.36620 0.36434 0.36155 
0.1 Not Conv. 
1 Not Conv. 
10 Not Conv. 
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Figure 3.3. Results of Henon series predication using weight decay method under 
Gaussian noise perturbation 

 

 
Figure 3.4. Results of Henon series predication using weight elimination method under 
Gaussian noise perturbation 
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Figure 3.5. Histogram of the test error distribution using HOC cost function 

 

 
Figure 3.6. Results of Henon series prediction using HOC cost function under uniform 
noise perturbation 
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Figure 3.7. Results of Henon series prediction using weight decay method under uniform 
noise perturbation 
 

 
Figure 3.8. Results of Henon series prediction using weight elimination method under 
uniform noise perturbation 
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Under the noise perturbation of uniform distribution, similarly, 
different values of the regularization parameter λ were used to examine 
the effect on the network performance for the methods. Figs. 3.6 to 3.8 
illustrate the variation in the network performances to the value of the 
regularization parameter λ. Fig. 3.6 illustrates that the network training 
and the network performance when the HOC objective function was 
applied. Figs. 3.7 and 3.8, respectively, show that the performance of the 
weight decay and weight elimination methods were significantly affected 
by the value of λ. Moreover, all the training errors and test errors in 3.3 
are not noticeably deviated from the value of standard deviation of the 
noise perturbation. When the proper value of λ is selected, the weight 
decay and weight elimination methods can train a network to generalize 
the training data.  The methods are relatively sensitive to noise when a 
non-optimal λ is used. 

Furthermore, in accordance with the two sets of simulations under 
different noise perturbation, the results indicate that the performance of 
the HOC objective function and the weight decay method were not 
noticeably changed when different noise distributions. However, the 
performance of weight elimination method was significantly affected by 
the noise distribution. The HOC based objective function provides 
significantly better performance in terms of the generalization capability, 
the robustness to λ and noise perturbation. 

3.2.4.2. Experiment Two: Sunspot time-series 

The prediction of the sunspot series is regarded as a benchmark test 
for the time-series prediction technique. The sunspot data (1700-1979) 
are divided into a training set (1700-1920) and two test sets, covering the 
periods of 1921-1955 and 1956-1979. The network architecture is 
identical to that used by Weigend et al. (1991), which has 12 inputs, 8 
hidden units, and 1 output. A thorough comparison amongst the weight 
decay method, the weight elimination method, and the FOC objective 
function are included hereafter. The learning rate of 0.1 and the 
momentum factor of 0.9 were used and each network was trained by 
30,000 iterations. Different regularization parameters were applied to 
evaluate the performance of the generalization enhancement methods 
studied in this chapter. Figs. 3.9 to 3.11 illustrate the variation in the 
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network performance to the value of the regularization parameter λ. Fig. 
3.9 manifests that varying the value of λ does not noticeably affect the 
network training and the network performance when the HOC based 
objective function was applied. Figs. 3.10 and 3.11 show that the 
performance of the weight decay and weight elimination methods were 
significantly affected by the value of λ. Figs. 3.10 and 3.11 indicate that 
the generalization capabilities of the networks in terms of RMS errors of 
the test sets 1 and 2 were fluctuated enormously. These results manifest 
that it is relatively difficult to tune the generalization capability by 
varying λ when the weight decay and weight elimination methods are 
used. The networks trained by the weight decay and weight elimination 
methods are probably under-trained and the methods are relatively 
sensitive to the noise when a non-optimal λ is used.   

 
 

 
Figure 3.10. Sunspot series prediction using weight decay method 

3.3. Regularization for Generalization Enhancement  

In the Section 3.2, a new type of objective functions is introduced 
according to higher-order statistics. Basically, the HOC based objective 
function is constructed by the regularization technique. The technique 
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constructs a regularized objective function to assimilate the a priori 
knowledge. For example, in the applications of classification, new 
discriminant functions (Setiono, 1997) were proposed to maximize the 
classification accuracy to the unseen examples. For the applications of 
functional approximation, a number of regularized objective functions 
have been proposed to enhance the generalization capability. For 
instance, the regularized objective functions are derived in accordance 
with the techniques such as searching flat minima (Hochreiter & 
Schmidhuber, 1997), minimizing the mutual information criterion (Deco 
et al., 1995), and minimizing the higher-order cumulants between the 
network outputs and the desired outputs. Despite the regularization 
technique being a systematic approach to make the network training less 
ill-posed, the training process may stall because of the existence of sub-
optimal solutions.   
 

 
Figure 3.11. Sunspot series prediction using weight elimination method 

 
We consider a typical form of the regularized objective function 

expressed in the following equation:   
 ( ) ( ) ( )DPDMDH ,,, WWW λ+=  (3.54) 
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where  ( )Tmwww ,,, 10 …=W  is the weight vector of the neural network 
and D is the set of training examples; and λ is the regularization 
parameter. ( )DM ,W , which is mostly in terms of the LS error or the 
sum-of-squares error, is the primary cost term; and ( )DP ,W  is the 
regularization term  used to assimilate the a priori knowledge. For 
example, when weight decay method is used, the regularization term 
( )DP ,W  will be ∑i iw2 .  In general, the plausible range of λ is often 

data dependent and has to be determined experimentally. The value of λ 
is often pre-selected within its plausible range, or it is selected in 
accordance with some heuristic selection schemes. It is believed that a 
systematic λ selection mechanism may be able to further enhance the 
generalization capability of the trained neural networks. In fact, this type 
of objective functions is still suffering from the problem of the existence 
of sub-optimal solutions because of the nonlinearity of neural networks. 
Although some undesired solutions should have been screened out to 
some extent, the regularized objective function introduces another set of 
undesired solutions. Consequently, the enhancement in the regularization 
technique may sometimes be insignificant, especially when a fixed value 
of λ is used during the network training.    

From equation 3.54, the network training stalls only when 
( ) 0, =∇ DH W . 
The ( )DM ,W∇  and ( )DP ,W∇  are both zero vectors; 
The ( )DM ,W∇  and ( )DP ,W∇  are both non-zero vectors such 

that 
 ( ) ( ) 0,, =∇+∇ DPDM WW λ  (3.55) 

Condition 1 is a trivial case. The network training is often expected to 
converge to the minimum of this condition. Condition 2 may contribute 
to the introduction of another set of undesired sub-optimal solutions. The 
location of the sub-optimal solutions defined in Condition 2 is 
significantly affected by the pre-selected value of λ. Hence, the selection 
of λ is one of the major issues in the regularization technique and is 
determinant in the performance of neural networks, especially in the 
generalization capability. In this chapter, an adaptive regularization 
parameter selection method is introduced to tackle this problem. 
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Although the sub-optimal solutions defined in Condition 2 can be 
“bypassed” by adaptively changing the regularization parameter, there 
may exist sub-optimal solutions of Condition 1 because of the non-
quadratic objective function. The sub-optimal solutions of Condition 1 
are unable to be “bypassed” because the condition does not depend upon 
the value of the regularization parameter. The conventional gradient 
descent type optimizations, such as conjugate-gradient and quasi-Newton 
methods (Battiti, 1992), do not guarantee the convergence to an optimal 
solution because the gradient descent type algorithms are coarsely 
classified as local search methods which are based on the local 
information, namely gradient and Hessian matrix. Despite the local 
search approach being the most efficient and popular techniques, the 
network weights are easily trapped in a sub-optimal solution during the 
training process. Consequently, the properties of the universal 
approximator cannot be fully exploited and only a sub-optimal time-
series predictor is obtained.  

Another approach called Global Search methods, such as simulated 
annealing (Aarts & Korst, 1989) and genetic algorithm (Dodd, 1990), 
have been proposed to search global minima over the whole error 
surface. The Global Search approach is based on more information from 
the terrain of the error surface. Whether the global search methods are 
probabilistic or deterministic, the methods do not suffer from the 
problem of trapping in sub-optimal solutions. The global search methods 
introduce jumps when the neural network is stuck in a sub-optimal 
solution. To search the global minima in the extremely high-dimensional 
weight space is an extremely time-consuming procedure. Apart from 
local information, assimilating more terrain information of the error 
surface in the training process is very difficult without sacrificing the 
training time and increasing the computation complexity.  Furthermore, 
the two discussed approaches are aimed at general applications and 
objective functions. 

3.3.1. Adaptive Regularization Parameter Selection (ARPS) Method 

As the selection of λ is extremely crucial to the performance of neural 
networks, this section introduces an adaptive λ selection mechanism to 
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tackle the problems due to the sub-optimal solutions defined in Condition 
2. The ARPS method consists of three main elements according to their 
functions. The three functional elements are responsible to the following 
functions: 
Stalling Identification method identifies whether the training process 
converges to a sub-optimal solution that satisfies Condition 2; 
λ Selection Scheme A selects an appropriate value of λ to ensure the 
training convergence of the ( )DM ,W  and ( )DP ,W  when the training 
process is not stuck at a sub-optimal solution that satisfies Condition 2; 
λ Selection Scheme B selects an appropriate value of λ to ensure the 
training convergence of the ( )DM ,W  when the training process may 
stall in the sub-optimal solution. 

On one hand, based on their functions, the λ selection scheme A 
guarantees the convergence of the ( )DM ,W  and ( )DP ,W  terms when 
there is no clue indicating the training process stalling. This part assures 
that the training process goes as smooth as possible. On the other hand, 
the λ selection scheme B will be applied to avoid the network training 
from stalling at a sub-optimal solution defined in Condition 2 when the 
ARPS method identifies the training process is about to stall at the sub-
optimal solution. Hence, within the plausible range of the λ, the ARPS 
method is capable of avoiding the training process from stalling at a sub-
optimal solution defined in Condition 2. The detailed description of the 
stalling identification method and the two λ selection schemes are given 
in the sections beneath. 

3.3.1.1. Stalling Identification Method 

From equation 3.55, the stalling situation of condition 2 occurs when 
the vector sum of the nonzero ( )DM ,W∇  and ( )DP ,W∇  terms are 
zero vector. This implies that the ( )DM ,W∇  and ( )DP ,W∇  are scalar 
multiple of each other, that is, 
 ( ) ( )DPDM ,, WW ∇−=∇ λ  (3.56) 

Thus, Condition 2 can be easily identified by means of inner product 
of the direction vectors of the two gradient terms. The direction vector of 
a vector ( )Tnxxx ,,, 21 "=x  is defined by 
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x
xx =ˆ  (3.57) 

and the inner product between a direction vectors ( )Tnxxx ˆ,,ˆ,ˆˆ 21 "=x  

and ( )Tnyyy ˆ,,ˆ,ˆˆ 21 "=y  is defined by 

 ∑
=

=
n

i
ii yx

1

ˆˆˆ,ˆ yx  (3.58) 

where the norm x  is defined by 

 ∑
=

=
n

i
ix

1

2x  (3.59) 

Hence, the value of the inner product signifies the likelihood of 
getting stuck at a sub-optimal solution defined in Condition 2. In this 
project, the criterion of the stalling identification method is based on the 
value of the inner product PM ˆ,ˆ ∇∇ . When the inner product is close 
to negative one, the training process almost stalls at a sub-optimal 
solution defined in Condition 2. Consequently, the mechanism of the 
stalling identification method is that the training process is classified as 
stalling when the inner product is less than a pre-selected threshold γ; 
otherwise, the training process is considered as not stalling. 

3.3.1.2. λ Selection Schemes 

Apart from the stalling identification method, the λ selection schemes 
are another of paramount importance in the ARPS method. The rationale 
behind the λ selection schemes is that when the training process is 
classified as not stalling, λ is selected to guarantee the convergence of 
the both ( )DM ,W  and ( )DP ,W  to maximize the effect of the 
regularization method. While the network training is about to stall, 
another λ is chosen to assure the convergence of the ( )DM ,W  and 
( )DP ,W  only. The ( )DP ,W  may not further converge, or even 

diverge slightly. In other words, the ARPS method, on one hand, breaks 
the tendency from getting stuck in the sub-optimal solution defined in 
Condition 2 by means of changing the λ. On the other hand, all the sub-
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optimal solutions defined in Condition 2 disappear momentarily because 
the training process, at that instance, is switched into a non-regularized 
training process. Consequently, the network training may tunnel through 
the sub-optimal solution. 

In order to implement the above ideas, a set of λ selection criteria are 
derived and are obtained by means of the convergence analysis for the 
gradient descent type optimization. We let the plausible range of the λ 
for a particular regularized objective function be the interval 
( )maxmin ,λλ . Suppose the value of the inner product PM ˆ,ˆ ∇∇  is 
negative. We consider the sufficient condition for the convergence of the 

( )DM ,W  term.  The change of ( )DM ,W  is given by 
 ( ) ( )DMDMM ,, WWW −Δ+=Δ  (3.60) 

Because the gradient descent type training technique is used in  
this project, the update step WΔ  is proportional to H∇  , viz. 

H∇−=Δ ηW  where η is the learning rate. Using Taylor expansion, we 
have 

 HMM ∇−∇=Δ η,  (3.61) 

Using Lyapunov method, the sufficient condition for the convergence of 
( )DM ,W  is given by 

 λ≤
∇∇

∇−
<

PM
M
,

0
2

 (3.62) 

Similarly, the sufficient condition for the convergence of the term 
( )DP ,W  is 

 λ≤
∇

∇∇−
< 2

,
0

P

PM
 (3.63) 

The detailed derivation of the above sufficient conditions is summarized 
in Appendix 3.3. In order to guarantee the convergences of the both 
terms ( )DM ,W  and ( )DP ,W , the λ can be chosen within the 
following interval 
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when the inner product PM ∇∇ ,  is negative and greater than γ. When 

the inner product is greater than zero, the Aλ  is set to be half of maxλ  
because a positive λ assures the convergence. To assure the convergence 
of ( )DM ,W , the value of λ can be selected from the interval beneath: 
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In the λ selection scheme A, the λ is computed by 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇∇
∇−

∇

∇∇−
= max

2

2 ,
,

,
,

maxmin λλ
PM

M

P

PM
A  (3.66) 

when the value of the inner product PM ˆ,ˆ ∇∇  is negative. Otherwise, 

the value of λ remains unchanged. In the scheme B, the λ is calculated 
by  
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Once the ARPS method is applied, the advantages of the regularization 
method are maximized, and the problem of the sub-optimal solutions 
defined in Condition 2 is eliminated within the plausible range of λ. 
Hereafter, the algorithm outline of our ARPS method is summarized as 
follows:  
To initialize 0W  and 0λ ; 

kkk WWW Δ+=+1 ; 
If the training error is smaller than the presumed value, then stop; 
If the training process is likely to stall according to the stalling 
identification method, then jump to step 6; 
To select 1+kλ , based on λ selection scheme A, and jump to step 2; 
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To select 1+kλ , based on λ selection scheme B, and jump to step 2; 

3.3.1. Synthetic Function Mapping 

The results of applying the HOC objective functions defined in this 
chapter are described as to a synthetically generated data set by the 
following trigonometric function 

 925.0
2

4tanh
2

4tanh −⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ +=

ππ xxy  (3.68) 

The independent variable x was uniformly generated on the range from  
-1 to 1. Two collections of the data were generated. The training set 
possesses 200 samples and the test set has another 200 samples. The 
property of the HOC based objective function is validated by applying 
the objective functions with ARPS method to approximate the synthetic 
function. Ten Monte Carlo runs were performed. The simulation results 
are tabulated in Table 3.3. It manifests that the network training is able to 
converge to a very low training error and comparably low test error. In 
addition, the deviation in the errors over the Monte Carlo runs is rather 
small as compared to the training errors. Fig. 3.12 illustrates the 
convergence curves of the network training. From the figures, it is 
observed that there is no observable sign showing the training being 
stuck and a tendency to converge to a lower training error. This result 
indirectly substantiates that the network training using HOC based 
objective function with ARPS method does not get stuck at sub-optimal 
solutions of Conditions 1 and 2. Figs. 3.13 and 3.14 illustrate the 
distributions of the magnitude of the weights of the neural network in the 
10 runs.  Fig. 3.13 shows the distributions of the sorted magnitude of the 
hidden layer weights in the 10 runs. The result indicates that there are 
only two dominant weights. These results are inline with the synthetic 
function which can be approximated by a neural network with 2 hidden 
neurons. Fig. 3.14 illustrates the distribution of the sorted magnitude of 
the output layer biases in the 10 runs. The figure indicates that the 
magnitude of the output layer biases in the 10 runs are close to the 
constant term in equation 3.68. These simulation results substantiate that 
the network training based on the HOC objective function with ARPS 
method is not trapped in sub-optimal solutions.  
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Table 3.3. Simulation results of synthetic function mapping 

 RMS Error 
 Training Set Testing Set 
mean 0.0148 0.0155 
standard deviation 0.0016 0.0016 

 

 
Figure 3.12. Convergence of the network training using HOC cost function. The upper 
curve is the maximum values of the training error over the 10 Monte Carlo runs. The 
middle curve is the mean values, and the lower curve is the minimum values 

3.4. Concluding Remarks 

This chapter addressed the problem of the generalization capability 
when only a finite number of observable data is available. Since neural 
networks are considered as universal approximators, the network training 
is in fact a nonparametric estimation. The training based on finite 
observable data is ill-posed. In other words, the trained neural network 
may memorize the data set rather than generalize it. This chapter has 
shown how the methods of objective function selection are applied to 
enhance the generalization capability.  
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Figure 3.13. The distribution of the sorted magnitude of the hidden layer weights using 
HOC cost function with APRS method 
 

 
 
Figure 3.14. The distribution of the sorted magnitude of the output layer weights using 
HOC cost function with APRS method 

Weight Number Trial 

Trial Weight Number 
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3.4.1. Objective function selection 

The least squares (LS) error function or mean squared error function 
is used to find maximum likelihood estimation  assuming that the noise 
perturbation or the target value of the training data are  Gaussian normal 
distributed. The sum-of-squares error function is only in terms of the 
second-order moment which cannot distinguish between the Gaussian 
distribution and other distributions having the same mean and variance. 
Thus, on one hand, the distribution of the residual error, 

( ),k k ke t F= − x W , of the trained network may not be Gaussian 

distributed because the sum-of-squares error function is in terms of the 
second-order moment. This degrades the generalization capability of the 
trained neural network. On the other hand, the distribution of real world 
data is non-Gaussian in general. The network training based on the LS 
error function is not able to determine a maximum likelihood estimate 
and results in a biased neural network because of improper assumption.   

In this chapter, higher-order statistics based objective functions were 
described. The fourth-order cumulant (FOC) objective function is 
constructed by including a fourth-order cumulant regularization term in 
the mean squared error function.  A maximum likelihood estimate can be 
obtained by applying the FOC objective function when the output 
variable or the noise perturbation is Gaussian distributed. Also, the 
signal-to-noise ratio is boosted because the cumulant term is zero when 
the noise perturbation is Gaussian distributed. The inclusion of the 
fourth-order cumulant term is capable of facilitating the network training 
because the term can extract more high-order information from the 
training data. To include the fourth-order cumulant term also enables the 
network training to capture the phase information from the data which is 
extremely essential to time-series forecasting.  

The HOC objective function is capable of not only characterizing a 
distribution of non-Gaussianity but also measuring the kurtosis or 
“Gaussianity” of the distribution. Consequently, the FOC objective 
function enables the network training to filter out the undesired 
functional estimates of which the residual error is non-Gaussian 
distributed. The residual error is squeezed to be Gaussian distributed as 
much as possible. Thus, the trained network is more likely to have a high 
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generalization capability when the output of the target system or the 
noise perturbation is Gaussian distributed. The distribution of the 
residual error of the trained network is very close to Gaussian. Therefore, 
the reliability of the network training in terms of the confidence upper 
bound of the approximation error can be coarsely estimated based on the 
test error of the novice data set. 

In real world data, an additive noise may not be Gaussian distributed 
as the assumption of the sum-of-squares error function and the FOC 
objective function. Depending upon the working conditions of the target 
system, the additive noise is often symmetrically distributed. The 
computation complexity of the FOC objective function based algorithm 
is relatively high despite the advantages of the FOC objective function. 
This high computation complexity limits the variety of applications. The 
FOC objective function is capable of not only characterizing a non-
Gaussian distribution but also measuring the skewness of the 
distribution. As a result, the FOC objective function enables the network 
training to filter out the undesired functional estimates of which the 
residual error is asymmetrically distributed. The residual error is 
squeezed to be symmetrically distributed as much as possible. Thus, the 
trained network may have a higher generalization capability when the 
output of the target system or the noise perturbation is symmetrically 
distributed.  Moreover, an interesting property between { }2eE  and 

{ }reCum , r=3,4 is found when the neural network is applied to time-
series forecasting.  If there exists a W such that, { } 02 =∇ kk eE  and 

{ } 02 =∇ kk eCum  for r=3,4 then 

 ( ) ( )( ){ } 0,, 2* =− WxWx kkk FFE . 

Based on the property, new HOC basedobjective functions are 
reconstructed such that there is no sub-optimal solution defined in 
Condition 1. Consequently, we can say that FOC and TOC objective 
functions based algorithms are capable of ensuring that the network 
training is not trapped in sub-optimal solutions. 



 Generalization and Performance Enhancement 129 

3.4.2. Regularization selection 

It is well-known that the training process based on a regularized 
objective function may stall because of the existence of sub-optimal 
solutions. The conditions of getting stuck at sub-optimal solutions are 
summarized as follows: 

The gradients of the primary and regularization terms are both zero 
vectors; 

The gradients of the primary ( )DM ,W  and regularization ( )DP ,W  
terms are both non-zero vectors such that 
 ( ) ( ) 0,, =∇+∇ DPDM WW λ . 

In this chapter, the adaptive regularization parameter selection 
method was described to tackle this problem of getting stuck at sub-
optimal solutions as defined in Condition 2. The methodology of the 
ARPS method is that when the training process is classified as not 
stalling, a λ is selected to guarantee the convergence of the both 

( )DM ,W  and ( )DP ,W  to maximize the effect of the regularization 
method. While the network training is about to stall, another λ is chosen 
to assure the convergence of the ( )DM ,W  only. The ( )DP ,W  may 
not further converge, or even diverge slightly. In other words, the ARPS 
method, on one hand, breaks the tendency to getting stuck in the sub-
optimal solution as defined in Condition 2 by means of changing the λ. 
On the other hand, all the sub-optimal solutions as defined in Condition 2 
disappear momentarily because the training process is, at that instance, 
switched into a non-regularized type training. Consequently, the network 
training may tunnel through the sub-optimal solution and the advantages 
of the regularization method are maximized and the problem of the sub-
optimal solution of Condition 2 is eliminated within the plausible range 
of λ.  The ARPS method can only tackle the problem of sub-optimal 
solutions as defined in Condition 2. In general, there may exist sub-
optimal solutions as defined in Condition 1. 
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Appendix 3.1: Confidence Upper Bound of Approximation Error 

For the sake of simplicity, a multiple-input-single-output and time-
invariant system is analyzed. The generalization to a multiple-input-
multiple-output system is obvious. Suppose the m-input-single-output 
unknown target function can be summarized by a function YX6:h  
where the domain X is contained in mℜ  and the range Y is a subset of 
ℜ . An n-input-single-output neural network ( )Wx,F  with sufficiently 
large network size is applied. Because the measurement of system output 
is always perturbed, the target output t can be written as 
 ( ) nht += x  (A3.1) 

where n is a random noise which is Gaussian distributed, and is 
independent to ( )xh  and the past t. The network training is aimed at 
finding the optimal weights *W  for an neural network model class 
( )Wx,F  based on the minimization of the approximation error, i.e. 

 ( )( ){ }2*,WxFtEa −=ε  (A3.2) 

A finite number of test data ( ){ } nitD iit ,,2,1,, "== x  is generally 
sampled from the target system so that aε  can be estimated based on the 
finite number of samples. Test error tε , which is the estimate of aε , is 
defined as 

 ( )( )∑
=

−=
n

i
it Ft

n 1

2*,1 Wxε  (A3.3) 

When the FOC objective function is applied in the network training, 
the residual error ( )Wx,Fte −=  of the trained network should be 
squeezed to be as Gaussian distributed as possible. Suppose we obtain a 
test data set tD  which is new to the trained network ( )*,WxF . It is 
assumed that the neural network ( )Wx,F  is sufficiently general to 
approximate the unknown target system ( )xh , i.e. ( ) ( ){ }Wxx ,Fh ∈ ; 
and the residual error ie  is independent and identically Gaussian 
distributed with variance 2σ , i.e. ( )2,0~ σNei . Consequently, we 
have, from equation A3.2, 

 { } 22 σε == eEa  (A3.4) 
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Let the statistic 
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which is an unbiased estimator for 2σ . Since 
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Subsequently, we have 
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According to the central limit theorem, e  is negligible for large n 
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As a result, the confidence upper bound of aε  is 
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Appendix 3.2: Proof of the Property of the HOC Cost Function 

The proof of the theorem 3.1 is as follows: 

Lemma 3.1. For all w in W, if  
{ } 0
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∂
w
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eEk w  
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Thus, if, for all w in W, 
{ } 0

2

=
∂

∂
w
eE kk , then { } 0=

k
eEk w .          Q.E.D. 

Theorem 3.1. If there exists a W such that, for all w in W and r=3,4, 
{ } 0
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=
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∂
w
eE kk  and 

{ } 0
3
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w

eCum rk , then 
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Proof:  

Suppose there exists a W such that { } 02 ≠
k
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element of W, 
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w
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kk w . For r=3, we have, 

from H2, 

 { } { } ( ){ }3*33
kkkkk eCumeCumeCum

k
+= w  

Subsequently, 



 Generalization and Performance Enhancement 133 

 

{ } ( ){ }
{ } { } { } { } { }

{ }( ) { }
w
eE

eE

w
eE

eE
w
eE

eE
w
eE

w
eCum

w
eCum

k

k

k

k

k

k

k

k

k
k

k
k

k
k

k

kkk

∂

∂
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
−

∂

∂
=

∂

∂
=

∂
∂

w
w

w
w

w
w

w

w

2

2
23

33

6                     

3                   
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Then, we have  
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Similarly, for r=4, we have, by Lemma 3.1, 

 

{ } { }

{ }

{ }
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

−
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−=

∂

∂
=

∂
∂

w
FeEeE

eE
w
FE

w
FeE

w
eCum

w
eCum

kk

kk

k

kk

kkk

kkk

ww

ww

w

2

33

44

12                     

4                  . 

By Orthogonality principle, we obtain 
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It implies 3
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Appendix 3.3: The Derivation of the Sufficient Conditions of the 
Regularization Parameter 

We consider the regularized objective function is defined as 
 ( ) ( ) ( )WWW PMH λ+=             (A3.11) 

where λ is the regularization parameter and is positive. In this derivation, 
a gradient descent type training method is considered, viz. 
 H∇−=Δ ηW  (A3.12) 

where η is the learning factor. 
Now, we consider the convergence of ( )WM . After each iteration, the 
change of ( )WM  is given by 

 ( ) ( )WWW MMM −Δ+=Δ  (A3.13) 

Since H∇−=Δ ηW , using Taylor expansion, we have 
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Using Lyapunov method, we have 0≤ΔM  and subsequently, we obtain 
the sufficient condition for the convergence of ( )WM  
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The convergence of ( )WP  is now considered. Similar to the case of 
( )WM , we have 
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Consequently, the sufficient condition for the convergence of ( )WP  is 
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Exercises 

Q3.1. Let ( )1 2, , , kcol v v v=v …  and ( )1 2, , , kcol x x x=x … , where 

( )1 2, , , kx x x…  denotes a collection of random variables. The 
kth-order cumulant of these random variables is defined as the 
coefficient of ( )1 2, , , k

kv v v j×…  in the Taylor series expansion 
(provided it exists) of the cumulant-generating function 

  ( ) ( ){ }ln exp TK E j=v v x  

 Prove that ( ) { }1 2 1 2,cum x x E x x=  using the above equation and 
the definition in Eq. (3.17). 

 
 

Q3.2. Apply the definitions and properties stated in Section 3.2.2 and 
3.2.3 to derive the third-order cumulant cost function and hence 
derive a batch-mode third-order cumulant cost function based 
backpropagation algorithm. 
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Q3.3. Consider the Fourth Order Cumulant cost function as shown in 
Eq. (3.45) as a regularized error function and suppose that the 
unregularized error DE  is minimized by a weight vector w*. 
Show that, if the regularization coefficient λ is small, the weight 
vector w�  which minimizes the regularized error can be written 
in the form 

  ( )( ){ }4* 1 ,DCum t Fλ −= − ∇ −w w H x W�  

 where the gradient ( )( ){ }4
,DCum t F∇ − x W  and the Hessian 

DE∇∇  are evaluated at *=w w . 
 
 
Q3.4. Use the derivation in Appendix 3.3 to derive the sufficient 

conditions of the regularization parameter λ in the Fourth Order 
Cumulant Objective Function as shown in Eq. (3.45). Assume 
that a gradient descent type training method is used and the 

H∇−=Δ ηW  where η is the learning factor. 
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Chapter 4 

Basis Function Networks for Classification 

In the nervous system of biological organisms there is evidence of 
neurons whose response characteristics are “local” or “tuned” to some 
region of input space. An example is the orientation-sensitive cells of the 
visual cortex, whose response is sensitive to local regions in the retina. In 
this chapter, we discuss a network structure related to the multilayer 
feedforward network, known as the Radial Basis Function (RBF) 
network. The RBF network is a feedforward structure with a modified 
hidden layer and training algorithm, which may be used for mapping. 
The RBF network can also be seen as a class of classifiers. It is 
characterized by having a transfer function in hidden unit layer, having 
radial symmetry with respect to a centre. From this characteristic it 
comes the name RBF. Usually the function is also bell-shaped, thus the 
activation of the unit has a maximum in the center and is almost equal to 
zero far from it. This feature entails the possibility to modify a unit of the 
network without affecting the overall behaviour and turns out to be very 
useful in order to implement incremental learning strategies. Moreover, 
they exhibit nice mathematical properties that exploit the regularization 
theory, and they are suitable to statistical and symbolic interpretations. 

The chapter is composed of three complementary parts. The first part 
(Section 4.1 and 4.2) gives the theoretical background related to basic 
function network for classification. The second part (Section 4.3) 
presents how the RBF networks work. The third part (Section 4.4) 
addresses the connections between RBF networks and other approaches. 
More in detail, Section 4.1 presents the basic theories of the linear 
separation and perceptions in which we can prove that two groups are 
linearly separable if there is a linear function. Section 4.2 gives some of 
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the possible ways to describe more general functions of the feature 
variables which can be basis function models for parametric smoothing. 
Section 4.3 describes the basic architecture of RBF network and it 
approximation properties, i.e. the characterization of the problems that 
RBF networks can solve. Some common learning algorithms used for 
RBF networks are also presented in the same section. Consequently, the 
regularization theory of the RBF networks is discussed. Section 4.4 
discusses RBF networks could be considered as some advance models, 
such as Support Vector Machine, Wavelet Network, Fuzzy RBF network 
and Probabilistic Network Networks, in which they share some common 
properties of the RBF networks. Finally, Section 4.5 draws the 
concluding remarks of this chapter. 

4.1. Linear Separation and Perceptions 

Historically, special attention has been given to situations in which 
two species are completely separated on the first linear discriminant. We 
always say two groups are linearly separable if there is a linear function 
of the variables, say b+xa , which is positive on one group and negative 
on the other. A function which computes a linear combination of the 
variables and returns the sign of the result is known as a perceptron after 
the work of F. Rosenblatt (1957, 1958, 1962). There is also publication 
by (Block, 1962). Their interest now is in their continuing influence on 
the thinking in the field of neural networks. 

Let us add a column of 1’s to x and add b to a. Let xxz =  on the 
first group and xxz −=  on the second group. We then seek a linear 
combination a such that 0za >  for every example in the training set. 
Since the training set is finite, we can choose 0>δ  so that δ>za . 
Indeed, we can achieve this for any 0>δ  by rescaling a. 

One approach to the problem would be to choose a by least squares to 
make za as near one as possible, or to regress 1±=y  on x which as we 
have seen gives the linear discriminant up to a scale factor. However, 
there is no guarantee that the linear discriminant will linearly separate the 
groups if they are linearly separable, and it is easy to construct examples 
in which it will not. A more direct formulation is to minimize the number 
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of errors, but as that is a discrete measure, the optimization is difficult. 
The sum of the degree of error [ ]∑ +−

i
iazδ  will be zero if and only if 

linear separation can be achieved. This is equivalent to solving the linear 
programming problem δ≥az i , and linear programming methods can 
find a solution or show that none exists (Grinold, 1969). 

In the late 1950s, a number of researchers were interested in simpler 
but iterative solutions, in which the value of a was adjusted after each 
example was presented. The derivative for the least-squares problem 

2Xay −  is ( )yXaX T −2  and so a steepest descent procedure would 
be of the form 
  ( )∑ −−←

i

T
iii xyaxaa η  (4.1) 

For small amount of η, this process converges to the space of least-
squares solutions. 

Rather than compute the sum on the right-hand side and update a, we 
could update after each pattern was considered. This gives the rule 

  ( ) T
iii xyaxaa −−← η  (4.2) 

known as Widrow-Hoff learning (Widrow and Hoff, 1960) or the delta 
rule. The patterns are presented cyclically until convergence, which will 
need 0→η . 

Rosenblatt’s perceptron learning rule replaced the term axi  in (4.2) 
by the output of the perceptron, the sign of xa. Thus, a is changed only if 
the current pattern is misclassified, and so the rule is of the form 

( )02 ≤+← azIzaa i
T
iη . No generality is lost by taking 21=η , since 

we can rescale a. Rosenblatt showed that this rule will converge in a 
finite number of steps to a linearly separating combination if one exists. 
Let a* be a suitable combination chosen so that 1* ≥azi  for all members 
of the training set. If the rule changes a, we have 0* ≤azi  so 

 ( ) 112
2**2*2* −−≤+−+−=−Δ+ aaaazaaaaa i  

This shows the rule terminates in at most 
2*

0 aa −  steps. 

This result is known as the perceptron convergence theorem. Its 
limitations were explored by the first edition of Minsky & Papert (1988). 
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They shown that the coefficients needed to achieve linear separation 
(with fixed δ) sould grow very rapidly with the size of the problem and 
the finite number of steps needed by perceptron rule could become very 
large. There is after all another rule which will terminate in finite number 
of steps: try all integer-valued a in order of increasing length, and no one 
would advocate that rule. 

Minsky & Papert also considered the behaviour of the rule when the 
two groups were not linearly separable, and stated that a  would remain 
bounded. Thus if the a belong to a fixed-precision sets, the rule will 
eventually cycle. In particular there is no immediate way to deduce 
whether the rule will ever terminate, and cycling can be hard to detect, as 
the cycle length is unknown. 

There are a number of variants of the perceptron updating rule. For 
example, η can be chosen just large enough to correctly classify the 
current case. Ho & Kashyap (1965) have other algorithms, discussed in 
detail in Duda & Hart (1973). It is also possible to extend the procedure 
to K>2 categories. In that case the natural classifier would be to choose 
the largest of K linear discriminants kxa . Let a be the concatenation of 
the vectors ka . Then correct classification of pattern x in class k is 
equivalent to ( ) 00,00,,0 >− axx ………  with the negative element in 
position j, for each j not equal to k. Thus each example x generates g-1 
examples in the K p-dimensional problem. Applying the perceptron 
updating rule to this problem is equivalent to the updating rule 
 xaa +← ii ,          xaa −← jj  

when pattern x is from class i, and j is a class with a larger value of jxa . 
Since this is the perceptron rule in the transformed problem, the 
convergence proof still holds. 

4.2. Basis Function Model for Parametric Smoothing 

We discuss some of the possible ways to describe more general 
functions of the feature variables. We consider methods using univariate 
functions ℜ→ℑ:f . An additive model is of the form 
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  ( ) ( )∑
=

+=
p

j
jj xgf

1
αx  (4.3) 

for smooth but unknown functions jg  (Friedman, 1989), (Hastie and 
Tibshirani 1990), which could encompass the effect of transformations of 
each feature. One choice of the smooth function ( )xg  of a single feature 
is to use splines. Splines are defined by M knots iξ  which we can 
consider in increasing order. Then within an interval [ ]1, +ii ξξ  a spline is 
a polynomial of degree d (often three) and at the knots the first ( )1−d  
derivatives are continuous. This can be written as 

  ( ) [ ]∑∑
=

+
=

− −+=
M

i

d
ii

d

i

i
i xxxg

10

1 ξβα  (4.4) 

which shows that there are 1++ dM  free parameters. There are other 
bases which have better numerical properties such as B-splines (Boor, 
1978). In any basis we can write 

  ( ) ( )∑
++

=

=
1

1

dM

i
ii xxg φβ  (4.5) 

It remains to choose the parameters iβ . For a regression spline these are 
chosen by least squares. Cubic smoothing splines are the solution to the 
minimization problem 

  ( )[ ] ( )∫∑ +−
=

duuggy
M

i
ii

2

1

2 "λξ  (4.6) 

and the parameters in (4.5) can be found by solving a sparse system of 
linear equations.  

Additive models do not allow interactions between the features in ℑ . 
Perhaps the simplest way to allow interactions is through linear 
combinations (projections) of features: 

  ( ) ( )∑
=

++=
r

j

T
jjjgf

1
xx βαα  (4.7) 
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which is projection pursuit regression (PPR) (Friedman and Tukey, 
1981). Sometimes the components of (4.7) are called ridge functions 
because a peaked jg  gives a topographic ridge in two dimensions. This 
is a surprisingly general class of functions, as it can approximate 
uniformly arbitrary continuous functions over compact. As PPR 
encompasses feed-forward neural networks, the functions jg  are 
restricted to one function, the logistic. However, ridge functions provide 
better approximations to some functions than others (Donoho and 
Johnstone, 1989), (Zhao & Atkeson, 1992), which express as working 
better for ‘angular smooth functions’ than for ‘Laplacian smooth 
functions’. With multivariate regression we have to decide whether to 
use common non-linear terms for the different independent variables. 
This is usually done, so that for example for projection pursuit regression 
we have 

  ( ) ( )∑
=

++=
r

j

T
jjjkjkkf

1

xx βαφγη  (4.8) 

This shows that the fitted values lie in a (r+1)-dimensional space. Since 
the scale of jφ  is not otherwise fixed, we can choose ( )xT

jjj βαφ +  to 
have zero mean and unit variance over the training set. 

4.3. Radial Basis Function Network 

The Radial Basis Function (RBF) networks correspond to a particular 
class of function approximators which can be trained, using a set of 
samples. RBF networks have been receiving a growing amount of 
attention since their initial proposal (Broomhead & Lowe, 1988), 
(Moody & Darken, 1988), and now great deal of theoretical and 
empirical results are available. 

4.3.1. RBF Networks Architecture 

The approximation strategy used in RBF networks consists of 
approximating an unknown function with a linear combination of non-
linear functions, called basis functions. The basis functions are radial 
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functions, i.e., they have radial symmetry with respect to a centre. Fig. 
4.1 shows a typical structure of RBF network. Let X be a vectorial space, 
representing the domain of the function ( )xf  to approximate, and x  a 
point in X. The general form for an RBF network ℵ is given by the 
following expression: 

  ( ) ( )∑
=

−=ℵ
n

i
iii cxgwx

1

 (4.9) 

where ( )zg  is a non-linear radial function with centre in ic  and 
iicx −  

denotes the distance of x  from the centre and iw  are weights. Each 
basis function is radial because its dependence on x  is only through the 
term 

iicx − . 
Many alternative choices are possible for the function ( )zg , for 

example, triangular, car-box or Gaussian. Anyhow it is usual to choose 
( )zg  in such a way that the following conditions hold: 

  ( ) ( )zgzg =−  (4.10) 

  ( ) 0lim =
±∞→

zg
z

 (4.11) 

A common choice for the distance function 
i
⋅  is a biquadratic form: 

  T
ii
xQxx =  (4.12) 

where iQ  is a positive definite matrix, often constrained to be diagonal: 
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In the simplest case all diagonal elements of iQ  are equal ijji qq =,  so 

that Iii qQ = . In this case the radiality of the basis functions is proper 

and if function ( )zg  fades to infinity, 
iq

1
 can be interpreted as the width 

of the i-th basis function. 
From the point of view of the notation is also common to write: 
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  ( ) ( )iiii cxgcxg −=−  (4.13) 

where the information about the distance function 
i
⋅  is contained in the 

function ( )xgi . 
It is also possible to define a normalized version of the RBF network: 

  ( ) ( )
( )∑

∑
=

=

−

−
=ℵ n

i ii

n

i iii

cxg

cxgw
x

1

1  (4.14) 

Different type of output, continuous or Boolean, may be needed 
depending on the type of the target function. In order to obtain a Boolean 
output Bℵ  we need to compose function ℵ and a derivable threshold 
function σ: 
  ( ) ( )( )xxB ℵ=ℵ σ  (4.15) 

usually ( )xσ  is the sigmoid (logistic function): 

  ( ) kxe
x −+
=

1
1σ  (4.16) 

whose derivative is: 

  
( ) ( ) ( )( )xx

dx
xd σσσ

−= 1  (4.17) 

The positive constant k expresses the steepness of the threshold. 
Alternatively, we can obtain a Boolean output composing ℵ with the 
function ( )bxsign +  where ℜ∈b  is a threshold. 

4.3.2. Universal Approximation 

A relevant property usually required for a class of approximators is 
universal approximation. Given a family of function approximators, it is 
important to characterize the class of functions which can be effectively 
approximated. In general, an approximator is said to be universal if can 
asymptotically approximate any integrable function to a desired degree 
of precision. 
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Figure 4.1. Structure of RBF network 

 
Hornik et al. (1989) proved that any network with at least three 

layers, i.e., input, hidden, and output layers, is an universal approximator 
provided that the activation function of the hidden layer is nonlinear. In 
the MLP network, traditionally trained by means of the backpropagation 
algorithm, the most frequently used activation function is the sigmoid. 
RBF networks are similar to MLPs from the point of view of the 
topological structure but they adopt activation functions having axial 
symmetry. 

Universal approximation capability for RBF networks was presented 
in (Park & Sandberg, 1993), where the problem of characterizing the 
kinds of radial function that entail the property of universal 
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approximation was addressed by (Chen & Chen, 1995) who shown that 
for a continuous function ( )zg  the necessary and sufficient condition is 
that it is not an even polynomial. 

From the mathematical point of view the universal approximation 
property is usually asserted by demonstrating the density of the family of 
approximators into the set of the target functions. This guarantees the 
existence of an approximator that with a high, but finite number of units, 
can achieve an approximation with every degree of precision. The result 
states only that this approximator exists. It does not, however, suggest 
any direct method for constructing it. In general this assertion is true, 
even when the function is explicitly given. In other words, it is not 
always possible to find the best approximation within a specified class of 
approximators, even when the analytical expression of the function is 
given. 

Whether the target function is Boolean or continuous, the learning 
task of an RBF network can be stated as a classification or regression 
problem. In both cases the problem can be stated in the general 
framework of the function approximation problem, formally expressed 
as: given an unknown target function Df n →ℜ:  and a set S of 
samples ( )ii yx ,  such that ( ) ii yxf =  for Ni …1= , find an 

approximator f̂  of f that minimizes a cost function ( )ffE ˆ, . Function  
f is a mapping from a continuous multidimensional domain X to a 
codomain ℜ⊂D  (regression) or { }1,0== BD  (classification). 

The approximation accuracy is measured by the cost function 
( )ffE ˆ,  also said error function (or approximation criterion) and which 

depends on the set of examples S. In general the solution depends upon 
S, upon the choice of the approximation f̂  is searched. In practice, a 
common choice for the cost function is the empirical square error: 

  ( )( )∑
=

−=
N

i
ii xfyE

1

2ˆ  (4.18) 

Under some restrictive hypothesis it can be shown that minimizing 
(4.18) is equivalent to finding the approximator that maximizes the 
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likelihood of S, i.e. the probability of observing S given the a prior 
hypothesis { }( )ˆ ˆf f P S f f= =  (Mitchell, 1997). 

 
 (a) (b) 

Figure 4.2. Clustering of data patterns 

4.3.3. Initialization and Clustering 

It is critical and cumbersome to select hidden units during the 
initialization process. There are different approaches to tackle this 
problem by (Kohonen, 1997), (Kubat, 1998). Many researches suggest 
that the geometrical distribution of training patterns and the chosen  
basis function have significant effect on the number of hidden neurons 
(Yam & Chow, 2001). As illustrated in Fig. 4.2(a), with the unsupervised 
clustering algorithms (k-means, SOM), the data patterns are simply 
partitioned into two clusters. In the application to classification problem, 
it is expected that each cluster is homogeneous. The clustering in Fig. 
4.2(b) is the more suitable for classification. In other words, it is 
expected that patterns belonging to the same class should be grouped 
together, while patterns from different classes should be separated. It is 
worth noting that unsupervised clustering algorithms are not preferable 
to initialize the general RBF classifier especially when one is dealing 
with complex data distribution (Pedrya, 1998). Hence, a supervised 
clustering algorithm is designed to deal with this problem. 
The procedures of supervised clustering is the followings. 
1. Initializing: 
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 For every class k ( )mk ≤≤1  
  Creating a new cluster kS  
   Number of pattern 1=kn  

 Center ∑
∈

=
k class

1

ix
i

k
k x

m
c  

   Label klk =  
 End For 
2. Clustering: 
 While (the number of the left training patterns > 1) 
 Randomly selecting data point x from the left training patterns. 
Finding out the center ic , ji cxcx −<− , mj ≤≤1  and ij ≠  
  If the class of ix =  then 
   iSx∈  
   Number of pattern 1+= ii nn  

 Center ∑
∈

=
ip Sx

pi x
n

c 1
 

  Else 
   1+= mm  
   New cluster 1+mS ; 
   Number of pattern 11 =+mn ; 
   Center xcm =+1 ; 
   Label xlm  of class1 =+  
  End If 
  Deleting x from training patterns 
End while 
3. Output result 
 Number of cluster mNcluster =  
 Data patterns labeled with ( )clusteri Nil ,,2,1 …=  

With the above algorithm, it is likely that certain established clusters 
may not be able to represent real clusters in the input space. The criteria 
are set for eliminating the noise clusters. If the cluster jS  contains few 
training patterns ( )0NDnj <  or occupies small space ( )0σσ <j , it is 
considered as ‘noise’ and should be deleted.  
The algorithm for deleting noise clusters is as follows: 
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For every ( )clusterj NjS ≤≤1  

{ }cluster in this points data any twobetween distant max0 =jσ  

             If 0NDnj <  Or 00 σσ <j  

  Delete jS  
 Else 
                          [ ]0000 ,,, iiii d σσσσ …×=  

 End If 
End For 

The constant 0d  affects the overlapping between different clusters. In 
order to avoid a too large or too small value of width for the RBF 
network, 10 =d  is used. In this supervised clustering algorithm, other 
two parameters, 0σ  and 0ND , determine the number of final clusters. 
The small values of them bring up a large size of clusters and will have 
an effect of overfitting to training data, while the relative large values of 
them will lead to an inaccurate description of data distribution and will 
degrade the classification performance. These two parameters can be 
determined based on the information about distribution of data patterns. 

0σ  and 0ND  are determined using 

 
clusterN

ND patterns data ofnumber  the
0 = , (4.19) 

{ }patterns data any twobetween  distancemin00 ×= NDσ . (4.20) 

Linear parameters )1(W , )2(W  and B can be adjusted by the linear 
least squares (LLS) method as shown below: 

  T
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B
W
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⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
1

)2(

 (4.21) 

  TXW +=)1(  (4.22) 

where [ ]+⋅  is defined as the pseudoinverse of [ ]⋅ , Z, X, and T are output 
matrix of hidden layer, network input matrix and the output target matrix 
respectively. 
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4.3.4. Learning Algorithms 

The universal approximation property states that an optimal solution 
to the approximation problem exists: finding the corresponding minimum 
of the cost function is the goal of the learning algorithms. There are 
different learning strategies that we can follow in the design of an RBF 
network, depending on how the centers of the RBF of the network are 
specified. In the following we may assume that the choice of the RBF 
( )zg  has already been made. Essentially, we may identify three 

approaches, as discussed below. 

4.3.4.1. Linear Weights Optimization 

The simplest approach is to assume fixed RBF defining the activation 
functions of the hidden units. Specifically, the locations of the centers 
may be chosen randomly from the training data set. This is considered to 
be a “sensible” approach, provided that the training data are distributed 
in a representative manner for the problem at hand (Lowe, 1989). For the 
RBF themselves, we may employ an isotropic Gaussian function whose 
standard deviation is fixed according to the spread of the centers. A RBF 
centered at ic  is defined as 

 ( )2 2
2expi i i i

Mg x c x c
d

⎛ ⎞− = − −⎜ ⎟
⎝ ⎠

,     Mi ,,2,1 …=  (4.23) 

where n is the number of centers and d is the maximum distance between 
the chosen centers. In effect, the standard deviation (i.e., width) of all the 
Gaussian radial basis functions is fixed at  

  
M

d
2

=σ  (4.24) 

Such a choice for the standard deviation σ merely ensures that the 
Gaussian functions are not too peaked or too flat; both of these extremes 
are to be avoided. 

The only parameters that would need to be learned in this approach 
are the linear weights in the output layer of the network. A 
straightforward procedure for doing this is to use the pseudoinverse 
method as 
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  dGw +=  (4.25) 
where d is the desired response vector in the training set. The matrix G+ 

is the pseudoinverse of the matrix G, which is defined as 

  { }jig=G  (4.26) 

where 

 ⎟
⎠
⎞

⎜
⎝
⎛ −−=

2

2exp ijji d
Mg cx ,  Nj ,,1…= ; Mi ,,1…=  (4.27) 

where jx  is the jth input vector of the training set. 
Basic to all algorithms for the computation of a pseudoinverse of a 

matrix is the singular-value decomposition: 
If G is a real N-by-M matrix, then there exist orthogonal matrices 

  { }NuuU ,,1 …=  

and  
  { }MvvV ,,1 …=  

such that 

  ( )k
T diag σσ ,,1 …=GVU  

  ( )NMk ,min=  (4.28) 

The column vectors of the matrix U are called the left singular 
vectors of G, and the column vectors of the matrix V are called its right 
singular vectors. The kσσσ ,,, 21 …  are called the singular values of the 
matrix G. According to the singular value decomposition theorem, the 
m-by-n pseudoinverse of matrix G is defined by 

  TUVG ++ ∑=  (4.29) 

where +∑  is an M-by-M matrix defined in terms of the singular values 
of G by 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑+ 0,,0,1,1,1

21

""
k

diag
σσσ

 (4.30) 
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4.3.4.2. Gradient Descent Optimization 

In this approach, the centers of the RBF and all other free parameters 
of the network undergo a supervised learning process, called gradient 
descent optimization. The first step in the development of such a learning 
procedure is to define the instantaneous value of the cost function 

  ∑
=

=
N

j
jeE

1

2

2
1

 (4.31) 

where N is the number of training examples used to undertake the 
learning process, and je  is the error signal, defined by 

  
( )

( )
1

    

j j j

n

j i j i i
i

e d

d w g
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= −ℵ

= − −∑

x

x c
 (4.32) 

The requirement is to find the free parameters iw , ic , and 1−∑i  so as to 
minimize E. The results of this minimization are shown as below: 
Linear weights in output layer 
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∂ ∑ x c  (4.33) 
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Positions of centers in hidden layer 
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Spreads of centers in hidden layer 
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  ( ) ( ) ( )
T

ji j i j in n n⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦Q x c x c  (4.38) 
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The term )(ne j  is the error signal of output unit j at time n. The term 
( )⋅'g  is the first derivative of the Green’s function ( )⋅g  with respect to 

its argument. 
The cost function E is convex with respect to the linear parameters 

iw , but nonconvex with respect to the centers ic  and matrix 1−∑ i ; in the 
latter case, the search for the optimum values of ic  and 1−∑ i  may get 
stuck at a local minimum in parameter space. The update equations 
shown in (4.33)-(4.39) for iw , ic  and 1−∑ i  are assigned different 
learning rate parameters wη , cη  and ∑η , respectively. Unlike the 
backpropagation algorithm, the gradient descent procedure for an RBF 
network does not involve error backpropagation. The gradient vector 

iE c∂∂  has an effect similar to a clustering effect that is task-dependent 
(Poggio and Girosi, 1990a). 

For the initialization of the gradient descent procedure, it is often 
desirable to begin the search in parameter space from a structured initial 
condition that limits the region of parameter space to be searched to an 
already known useful area, which may be achieved by implementing a 
standard pattern classification method as an RBF network. In so doing, 
the likelihood of converging to an undesirable local minimum in weight 
space is reduced. For example, we may begin with a standard Gaussian 
classifier, which assumes that each pattern in each class is drawn from a 
full Gaussian distribution. 

4.3.4.3. Hybrid of Least Squares and Penalized Optimization 

For the supervising learning strategies, the RBF network optimization 
is usually based on a gradient descent learning process that is generally 
suffered from the local minima problem and slow convergence speed. In 
this section, a modified learning scheme is also suggested for computing 
the RBF parameters. This RBF learning scheme is modified from the 
method stated in Chapter 2 of this book (see Section 2.5.5). As stated in 
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the previous section, the cost function of this problem is convex with 
respect to the linear parameters iw , the optimum values of this 
parameters are determined by the linear least squares method directly so 
that the convergence of the algorithm is speeded up. On the other hand, 
because the cost function is nonconvex with respect to the centers ic  and 
matrix 1−∑ i , the optimum values of these parameters are optimized by 
the penalty approach so that the problem of local minima can be avoided. 
Based on these ideas, the RBF parameters are updated as: 
For linear parameters 

  ( ) ( )T
ji

T
jji nw ΦΦΦ=

− d1)(  (4.40) 

where the vector 
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For RBF matrices 
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The cη  and ∑η  are the learning rates of the RBF centers and matrices 

respectively. iE c∂∂  and 1−∑∂∂ iE  are the error gradients with respect 

to ic  and 1−∑ i  respectively. ( )⋅∇ penE  defines as a penalty term used for 
providing an uphill force under the searching space to avoid the learning 
process stuck in local minima. The penalty term is assigned as different 
types of functions as shown in Chapter 2 and the learning mechanisms 
are described in Section 2.5.5.  
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4.3.5. Regularization Networks 

There is fundamental theory for RBF network in (Poggio & Girosi, 
1968) which provided an elegant connection with Kolmogorov 
regularization theory. The basic idea of regularization consists of 
reducing an approximation problem to the minimization of a functional. 
The functional contains prior information about the nature of the 
unknown function, like constraints on its smoothness. The structure of 
the approximator is not initially given, so in the regularization 
framework the function approximation problem is stated as: 
Find the function ( )xF  that minimizes: 

 ( ) ( )( ) ( ) ( )FEFEPFxFdFE RS

n

i
ii λλ +=+−= ∑

=1

22

2
1

 (4.43) 

where ( )FES  is the standard error term, ( )FER  is the regularization 
term, λ is a regularization parameter and P is a differential operator. 
By differentiating equation (4.43) we obtain 

  ( ) ( )( ) ( )∑
=

−−=
n

i
iii xxxFdxPFP

1

* 1 δ
λ

 (4.44) 

where ( )⋅δ  is Dirac’s function. The solution F of equation (4.44) is: 

  ( ) ( )( ) ( )∑
=

−=
n

i
iii xxGxFdxF

1

,1
λ

 (4.45) 

Regularization theory leads to an approximator that is an expansion 
on a set of Green’s functions ( )ixxG ,  of the operator PP* . By 
definition Green’s function of the operator A centered in ix  is 
  ( ) ( )ii xxxxAG −= δ,  (4.46) 

The shape of these functions depends only on the differential operator P, 
i.e. on the former assumptions about the characteristics of the mapping 
between input and output space. Thus the choice of P completely 
determines the basis functions of the approximator. In particular if P is 
invariant for rotation and translation Green’s function is: 

  ( ) ( ), i iG x x G x x= −  (4.47) 
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so they depend only on the distance ixx −  and are therefore radial 
functions. 
The point ix  are the centers of the expansion and the term 

( )( )ii xFd −
λ
1

 of equation (4.47) are the coefficients. 

The approximator is 

  ( )( )iii xFdw −=
λ
1

        ( ) ( )∑ =
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n

i ii xxGwxF
1

,  (4.48) 

Equation (4.48) evaluated in the point jx  leads to  
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In order to determine the iw  let us define the matrices: 
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Then equation (4.49) can be represented in the form of matrices: 

  ( )FdW −=
λ
1

 (4.51) 

  GWF =  (4.52) 
Eliminating F from both expressions, we obtain: 

  ( )G I W dλ+ =  (4.53) 
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The matrix G is symmetric and for some operator is positive definite. It 
is always possible to choose a proper value of λ such that IG λ+  is 
invertible, that leads to: 

  ( ) dIGW 1−+= λ  (4.54) 

It is not necessary to expand the approximator over the whole data set, in 
fact the point ix  on which equation (4.48) was evaluated is arbitrarily 
chosen. If we consider a more general case in which the centers of the 
basis functions ic  with Ni …1= are distinct from the data the matrix G 
is rectangular. Defining two new matrices as: 
  ( )( )ji ccG ,0 =G          Nji …1, =  (4.55) 

  ( )( )ji cxG ,=G         Mi …1=   Nj …1=  (4.56) 

The optimal weights are: 

  ( ) dGGGG TTw 1
0

−
+= λ  (4.57) 

and if 0=λ  

  ( ) dGdGGG +−
== TTw 1

 (4.58) 

where ( ) dGGGG TT 1−+ =  is the pseudoinverse matrix. 
In the regularization framework the choice of the differential operator P 
determines the shape of the basis function. Haykin (1994) reports a 
formal description of the operator that leads to the Gaussian RBF 
network. The operator expresses conditions on the absolute value of the 
derivatives of the approximator. Hence the minimization of the 
regularization term ( )FER  causes a smoothing of the function encoded 
by the approximator. 

4.4. Advanced Radial Basis Function Networks 

4.4.1. Support Vector Machine 

Radial Basis Function (RBF) networks are deeply related to Supper 
Vector Machines (SVM) those are learners based Statistical Learning 
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Theory (Vapnik, 1995). In the case of classification the decision surface 
of a SVM is given in general by 
  ( ) ( )( )bxwsignxSVM += φ  (4.59) 

where Fn →ℜ:φ  is a mapping in some feature space F. The 
parameters Fw ∈  and Rb∈  are such that they minimize an upper 
bound on the expected risk. We omit the formula of the bound that 
represents a fundamental contribute given by Vapnik to statistical 
learning theory. For the present purpose it suffices to remember that the 
bound is composed by an empirical risk term and a complexity term that 
depends on the VC dimension of the linear separator. Controlling or 
minimizing both the terms permits control over the generalization error 
in a theoretically well-founded way. 
The learning procedure of a SVM can be sketched as follows. The 
minimization of complexity term can be achieved by minimizing the 

quantity 
2

2
1 w , namely the square of the norm of the vector w . In 

addition the strategy is to control the empirical risk term by constraining: 

  ( )( ) iii bxwy μφ −≥+ 1  (4.60) 

with 0≥iμ  and Ni …1=  for each sample of the training set. The 
presence of the variables iμ  allows some misclassification on the 
training set. 
Introducing a set of Lagrange multipliers iα , Ni …1=  if it is possible 
to solve the programming problem defined above, finding w , the 
multipliers and the threshold term b. The vector w  has the form: 

  ( )∑
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i
iii xyw

1
φα  (4.61) 

so the decision surface is: 
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where the mapping φ  compares only in the dot product ( ) ( )xxi φφ . The 
dependency only on the dot product and not on the mapping φ  is valid 
also for the multipliers. Following (Mueller et al., 2001), the connection 
between RBF networks and SVMs is based on upon the remark that a 
kernel function ( )yxk ,  defined on RCCk →×:  with C a compact set 
of nℜ , namely 

  ( ) ( ) ( ) ( )2 : , 0
C

f L C k x y f x f y dxdy∀ ∈ ≥∫  (4.63) 

can be seen as the dot product ( ) ( ) ( )yxyxk φφ=,  of a mapping 
Fn →ℜ:φ  in some feature space F. As a consequence, it is possible to 

substitute ( ) ( ) ( )yxyxk φφ=,  obtaining the decision surface expressed 
as: 
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1
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Choosing a radial kernel ( ) ( ),k x y e x y= −  such that the 
equation has the same structure of the RBF network presented in section 
4.3.1 in the case of a classification task. The possibility of interpreting 
RBF networks as an SVM permits application of this technique to 
control complexity and prevent overfitting. Complexity regularization 
has also been studied directly for RBF networks (Kryzak & Linder, 
1999) with bounds on the expected risk in terms of the sample set size. 
SVMs also connect RBF networks with Kernel-Based Algorithms and 
following (Muller et al., 2001) with Boosting techniques. 

4.4.2. Wavelet Network 

Wavelet network is a network combining the ideas of the feed-
forward neural networks and the wavelet decompositions, Zhang and 
Benveniste (1992) provide an alternative to the feedforward neural 
networks for approximating functions. Wavelet networks use simple 
wavelets and wavelet network learning is performed by the standard 
backpropagation type algorithm as the tradition neural network. The 
localization property of wavelet decomposition is reflected in the 
important properties of wavelet networks. Wavelet networks can 
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approximate any continuous functions on [ ]n1,0  and have certain 
advantages such as the use of wavelet coefficients as the initial value for 
backpropagation training and possible reduction of the network size 
while achieving the same level of approximation. In a feedforward 
network, neurons take their inputs from the previous layer only and send 
the outputs to the next layer only. Since the signals go in one direction 
only, the network can compute a result very quickly. Basic neuron of a 
wavelet network are multidimensional wavelets and the neuron 
parameters are the dilation and translation coefficients. The output of a 
wavelet network is the linear combination of the values of several 
multidimensional wavelets. 
Suppose there is a function ψ define on nℜ  such that there is a countable 
set Ψ of the form 
  ( )( ){ }iiD tx −=Ψ ψ  (4.65) 

iD  is an nn×  diagonal matrix with the diagonal vector n
id ℜ∈ , x  and 

n
i R∈t , is a frame, which means there exist constants A and B such that 

222 , fBffA ≤Ψ∈≤∑ αα  for any nLf ℜ∈ 2 . It follows from 

the frame property that the set S of all linear combinations of the 
elements in Ψ is dense in nL ℜ2 . Obviously, the set of all linear 
combinations of the form 

  ( )( )∑
=

−
N

i
iii Dw

1
txψ  (4.66) 

where iD  and it  are not restricted to those in Ψ is a superset of S and is 
also dense in nL ℜ2 . For example, we can use ψ given by 
  ( ) ( ) ( ) ( ) ( )nSSSn xxxxx ψψψψψ "… 211 ,, ==x  (4.67) 

where Sψ  is the function given by 

  ( ) 22x
S xex −−=ψ  (4.68) 

the first derivative of the Gaussian function 22xe− . Note the derivative of 
Sψ , 
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  ( ) ( )22 1
2

xex
dx
d x

S −−= −ψ  (4.69) 

The wavelet network structure will be of the form 

  ( ) ( )( ) gDawh
N

i
iii +−= ∑

=1
, txx ψ  (4.70) 

where Rai ∈ , ψ is a given wavelet function, iD  is an nn×  diagonal 

matrix, x and n
i R∈t , and g  the average value of ( )xg . w represents 

all the parameters naa ,,1 … , nDD ,,1 … , ntt ,,1 … , and g . The matrix 

iD  and it  are set by the wavelet decomposition and the weights iw  are 
initially set to be zero. It should be noted that the wavelet decomposition 
uses the given iD  and it  and finds the weight coefficients iw , while the 
wavelet network tries to adjust iD , it  and the weight coefficients iw  
altogether to fit the data. Wavelet networks can be used for concept 
learning for a concept [ ]nS 1,0⊂  using sf χ= , the characteristic 
function of S, that is, 
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Given 0>ε , there exist 

  ( ) ( ) ( )( ) gDawhg
N

i
iii +−== ∑

=1
, txxx ψ  (4.72) 

and [ ]nD 1,0⊂  with measure ε−≥ 1  such that 

  ( ) ( )g f ε− <x x           D∈∀x  (4.73) 

The learning algorithm of a wavelet network modifies the dilation and 
translation coefficients of every wavelet neuron and the coefficients 
(weights) of the linear combination of the neurons so that the network 
closely fits the data. We assume the data is contaminated with noise, so 
the learning algorithm should not seek to interpolate the data points. The 
network θg , where θ represents all the parameters iD , it  and iw , will 
be adjusted by the learning algorithm to minimize a suitable objective 
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function, so that it becomes an optimization problem. A simple objective 
function we consider is 

  ( ) ( )( )2
C E g yθθ = −x  (4.74) 

where kx  and ky  are data pairs (that is, ( ) kkk nyf +=x , where kn  is a 
random noise). Though a standard gradient descent algorithm can be 
used, a heavy computation requirement makes it impractical in some 
situations. In practice, some other more efficient algorithms, such as 
stochastic gradient method, are used. The function computed by the basic 
wavelet network model is differentiable with respect to all parameters 
(dilation and translation parameter and the weights). 

4.4.3. Fuzzy RBF Controllers 

Radial Basis Function networks also are interpreted as fuzzy 
controllers (Jang, 1993). In general, a controller of this kind is a software 
or hardware implementation of a control function, defined from the state-
space of the system to its input-space. In this way, the control function 
maps a set of information about the state of the system we want to 
control, to the actions the controller has to apply to the system. 
Typically, the state and the actions are continuous vectors and the 
controller is fully described by a set of input variables X, a set of output 
variables Y, and the set of elements implementing the control function. In 
the case of fuzzy controllers, the internal elements are defined by means 
of a fuzzy logic propositional theory. 

Fuzzy logics are based on a generalization of the characteristic 
function of a set. Formally, let Af  be the characteristic function of a set 
A: 

  ( )
⎩
⎨
⎧

∉
∈

=
Ax
Ax

xfA  if   0
 if   1

 (4.75) 

Fuzzy set theory (Zadeh, 1965) generalizes the notion of presence of an 
element in a set and consequently the notion of characteristic function, 
by introducing fuzzy values. This approach is equivalent to introducing 
uncertainty in the presence of an element in a set. The fuzzy 
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characteristic function is called membership which can assume any value 
in the interval [0, 1]. A set in which the membership function is restricted 
to assume the values in the set {0, 1}, is said to be crisp. The 
introduction of a fuzzy membership has deep implications concerning the 
logics which can be built on it. The first one is the possibility of have 
fuzzy truth values for predicates. A predicate is no longer simply false 
(0) or true (1) but can assume any value between. Consequently, the 
definitions of the basic connectives (disjunction, conjunction and 
negation) have to deal with fuzzy values. Fuzzy logics are typically used 
for expressing uncertain or approximate knowledge in the form of rules. 
The theory can be partially contradictory, causing fuzzy memberships to 
overlap each other. Many different shapes for the membership functions 
have been proposed (triangular, trapezoidal, Gaussian) [see (Berebji, 
1992)]. 

Usually a fuzzy controller is organized as three layers. The first one 
implements the so-called fuzzification operation and maps every 
dimension of the input space via the memberships, to one or more 
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Figure 4.3. Fuzzy RBF network architecture. The first layer hidden units have a one-
dimensional Gaussian activation function. The second layer hidden units compose the
input values using arithmetic product. An average sum unit performs the weighted sum of
the activation values received from the product units 
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linguistic variables, in a fuzzy logic language. The linguistic variables 
are then combined with the fuzzy connectives to form the fuzzy theory. 
Typically the theory is propositional and it implements the 
defuzzification transforming back the continuous truth values into points 
in the output space. A RBF based fuzzy controller (Blanzieri & 
Giordana, 1995) was introduced in which the architecture is also similar 
to the fuzzy neural networks for implementing fuzzy controllers capable 
of learning from a reinforcement signal, and to the architecture proposed 
by Tresp et al. (1993). Fig. 4.3 describes the basic network topology. 

The activation function used in a fuzzy RBF network with n input 
units is defined as the product of n one-dimensional radial functions, 
each one associated to one of the input features. Therefore a fuzzy RBF 
can be described as a network with two hidden layers. The neurons in the 
first hidden layer are feature detectors, each associated to a single one-
dimensional activation function and are connected to a single input only. 
For example, if we choose to use Gaussian functions, the neuron ijr  (the 
i-th component of the j-th activation area) computes the output: 

  

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

= ij

iji CI

ij e σμ  (4.76) 

The neurons in the second hidden layer simply compute a product and 
construct multi-dimensional radial functions: 

  ∏ ==
i

jijj gr μ  (4.77) 

where jg  was introduced in section 4.3.1. 
Finally, the output neuron combines the contributions of the 

composite functions computed in the second hidden layer. In this 
architecture, a choice of four different activation functions is possible for 
the output unit, in order to adapt the network to different needs. The 
output function can be a weighted sum 

  ∑=
j

jjrwY  (4.78) 

The same function can be followed by a sigmoid when the network is 
used for a classification task. Using this function the network tends to 
produce an output value close to ‘0’ everywhere the input vector falls in 
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a point of the domain which is far from every activation area. The 
consequence is under-generalization in the classification tasks. This 
problem can be avoided by introducing a normalization term in the 
output activation function: 

  
∑
∑

=
j j

j jj

r

rw
Ŷ  (4.79) 

This function is frequently used for fuzzy controller architectures. In this 
case, one obtains a network biased toward over-generalization in a 
similar way as for the multi-layer perceptron. Depending on the 
application, under-generalization or over-generalization can be 
preferable.  

4.4.4. Probabilistic Neural Networks 

Probabilistic Neural Networks (PNN) originate in a pattern 
recognition framework as tools for building up classifiers. In that 
framework the examples of a classification problem are points in a 
continuous space and they along to two different classes conventionally 
named 0 and 1. PNN were first proposed by Specht (1990), who 
proposed to approximate, separately, the density distributions ( )xg1  and 

( )xg0  of the two classes and use a Bayes strategy for predicting the 
class 

  ( ) ( ) ( )
( ) ( )⎩

⎨
⎧

<
>

=
xglpxglp
xglpxglp

xf
000111

000111

 if   0
 if   1ˆ  (4.80) 

where 1p  and 0p  are the a priori probabilities for the classes to separate 
and, 1l  and 0l  are the losses associated with their misclassification  
( 1l  loss associated with the decision ( ) 0ˆ =xf  when ( ) 1ˆ =xf ). 
Then the decision surface is described by the equation: 
  ( ) ( )xkgxg 01 =  (4.81) 

where 
11

00

lp
lpk =  and defining ( )xσ  as a threshold function the estimate 

of the target function is: 
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  ( ) ( ) ( )( )xkgxgxf 01
ˆ −= σ  (4.82) 

Again the density approximations are made using the kernel estimations 
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with the extension of the sum limited to the 1N  instances belonging to 
class 1 and analogously for the class 0. 

  ( ) ( ) ( )( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

=

−
+

N

i
ini zzHKzC

H
xf

1

1
1

1ˆ σ  (4.84) 
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The equation (4.80) is a particular case of the RBF network described in 
equation (4.14) in Section 4.3.1 for approximating Boolean functions. 

In the statistical framework it is common to use all the data as centers 
of the kernels. In the case of a large data set it is possible to limit the 
initialization to an extracted sample of data. It is worth noting, that no 
computation is needed to find the values of the weights. In fact, as an 
effect of the normalization terms contained in the kernels, the weights are 
equal to the output values, or set to an estimate of the a priori probability 
of the class. This method can be applied in an incremental way, but like 
any other method which uses all the data, it suffers for the overgrowing 
of the approximator. This property permits to analyze directly the 
network in terms of probability having a direct statistical interpretation. 
In fact, given the estimation of the density implicitly formed by the RBF 
network is possible estimate all the statistics parameter of the 
distribution. Moreover exploiting a factorizable architecture is possible 
to express independency between the inputs as is normally done in 
Bayesian Networks. 
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4.5. Concluding Remarks 

This chapter is concerned with Radial Basis Function (RBF) networks 
and it addresses their different interpretations and the applicative 
perspectives as a classifier. RBF networks can be described as three layer 
neural networks where hidden units have a radial activation function. 
Although some of the results of the neural networks can be extended to 
RBF network, exploiting this interpretation (e.g. approximation 
capabilities and the existence of a unique minimum (Bianchini et al., 
1995), substantial difference still remain with respect to the other 
feedforward networks. In fact, RBF networks exhibit properties 
substantially different with respect to both learning properties and 
semantic interpretation. In order to understand the different behaviours of 
the two network types, assume we have to modify a weight between two 
nodes in the multilayer perceptron, as is done by the backpropagation 
updating rule during the training phase. The effect involves an infinite 
region of the input space and can affect a large part of the co-domain of 
the target function. On the contrary, changing the amplitude of the region 
of the input space in which the activation function of a neuron in an RBF 
network fires, or shifting its position, will have an effect local to the 
region dominated by that neuron. More in general, this locality property 
of RBF networks allows the network layout to be incrementally 
constructed, adjusting the existing neurons, and/or adding new ones. As 
every change has a local effect, the knowledge encoded in the other parts 
of the network is not lost; so, it will not be necessary to go through a 
global revision process. 

An important point of the present work is the systematic way the 
different interpretations have been presented in order to permit their 
comparison. RBF networks are particularly suitable for integrating the 
symbolic and connectionist paradigms in the line drawn by Towell and 
Shavlik (1994) whose recent developments has been surveyed by Cloete 
and Zurada (2000). This symbolic interpretation permits to consider RBF 
networks as intrinsically Knowledge-Based Networks. Moreover, RBF 
networks have also very different interpretations. They are 
Regularization Networks so there is the possibility of tuning the 
regularization parameter. They are Support Vector Machines so they gain 
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theoretical foundation from statistical learning theory. They are related to 
Wavelet Networks so they can gain advantage in signal applications. 
They have a Fuzzy interpretation so they can be interpreted in terms of 
fuzzy logic. They have a statistical interpretation so they can produce, 
after training, knowledge in terms of probability. They are also instance-
based learners and so they can provide a case-based reasoning modality. 
Finally, another basic property of the RBF network is the locality that 
permits the synthesis of incremental dynamic algorithms permitting the 
growing of the cases without unlearning. 

Exercises 

Q4.1. Consider a 2-input, 4-hidden and 1-ouput nodes of Radial Basis 
Function network for XOR function. Compute the linear weight 
w and sketch the profiles of the radial basis functions if linear 
RBF operators are used: 

  ( ) || ||i ix x xφ = −  

 
Q4.2. Repeat the exercise of Q4.1 if Gaussian RBF operators are used: 

  
2|| ||( ) exp( )

2
i

i
x xxφ

σ
−

= −  

 where σ=1. 
 
 
Q4.3. Compare between the linear separation capabilities of RBF 

network and MLP network.  
 
 
Q4.4. The gradient descent optimization can be used for optimizing the 

RBF parameters. In order to compute the gradients, it is required 
to compute the derivative g’(h) of the RBF operators g(h). 
Suppose a Gaussian RBF operator is used, compute the 
derivative of this operator. 
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Q4.5. For a Support Vector Machine (SVM), given a training data 
sample ( ){ }, ,  1, ,i i i N=x d … , find the optimum values of the 

weight vector w  

  ( )0,i i ia d φ=∑w x  

 where 0,ia  are the optimal Lagrange multipliers determined by 
maximising the following objective function 

  
1 1 1
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  0;    0i i ia d a= >∑  

 Let the nonlinear mapping for the XOR function be: 
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 The feature space for XOR function is in 6D with 20 input data 

  

( )
( )
( )
( )

1 1

2 2

3 3

4 4

1, 1 ,    1

1,1 ,      1

1, 1 ,      1

1,1 ,        1

d

d

d

d

= − − = −

= − =

= − =

= = −

x

x

x

x

 

 Minimize the above cost function to find the optimal decision 
boundary for this XOR problem. 
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Chapter 5 

Self-organizing Maps 

5.1. Introduction 

The Self-Organizing Map (SOM), also known as the Kohonen feature 
map, was introduced by Kohonen in 1982.  In contrast to many other 
neural networks, which usually require a teacher and a supervising 
learning process, it is an unsupervised network that does not require a 
teacher.  Its outputs are organized in a way of groups or clusters. It is 
particular useful for clustering high dimensional data.   For instance, 
consider a simple example of analyzing colour grouping.  If an SOM with 
3 input nodes connected to random Red, Green, and Blue values 
representing different RGB values of a color, the SOM output map 
ultimately contains the high level colours such as Red, Orange, Yellow, 
Green, Blue, Violet, etc.  The Red, Green, and Blue will be clustered in 
corners, whilst other colors such as, Yellow, Orange, Violet will be 
clustered in between. The SOM can also be seen as a combination of 
vector quantization and dimension reduction method in one algorithm and 
can be used for visualization or projecting high-dimensional data to low 
dimensions. Fig. 5.1(a) shows color distributions among neurons of a 
randomly initialized 20x20 SOM by assigning random 3 RGB values to 
their weight vector. After the training is complete by randomly generated 
color data, the three basic colors red, green, blue appeared in three corners 
and others intermediate colors appeared in-between as shown in Fig. 
5.1(b). This example shows the organizing capability, which is referred to 
“Topological ordering”, of the SOM.  
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(a) 

 
(b) 

Figure 5.1. Color distribution among neurons (a) at random initialization and (b) after the 
training is complete 

 
The SOM has been widely used in many areas such as pattern 

recognition, biological modeling, data compression, and data mining. The 
success of the SOM algorithms lies with its simplicity making it easy to 
understand. Usually, it is considered as a heuristic approach because its 
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fundamental theories have not been derived from strict mathematics. The 
basic SOM algorithm consists of a set of neurons usually arranged in a 
2-dimentional grid such that there are neighborhood relations among 
neurons. Each neuron is attached to a feature vector of the same dimension 
as the input space. The neurons are selectively adjusted to various inputs 
or input patterns during the course of a competitive training in which the 
neurons compete among themselves. The weight vectors of winning 
neurons and their neighboring neurons are then adjusted systematically.  
As a result, a meaningful systematic coordinate map will be established 
for representing the given input features.  Through assigning each input 
data to the neuron with the nearest feature vector, an SOM is able to group 
input data into regions with the similar feature vectors. This process can be 
considered as vector quantization. Also, because of the neighborhood 
relation contributed by the inter-connections among neurons, it exhibits an 
important property of topology preservation. In other words, when feature 
vectors are near from each other in the input space, the corresponding 
neurons will also be close in the output space. 

Since the SOM was first introduced by Kohonen, it has undergone 
many modifications.  Before briefing some of these recent works, we need 
to describe some of the deficiencies of classical SOM.  Generally we need 
to pre-define the map structure and the map size prior to the 
commencement of the training process. Conventional SOM topology 
seems to be inherently limited by the fixed network. One must adopt a 
number of trials and tests to select an appropriate network structure and 
size. Several improved SOMs or related algorithms have been developed 
to overcome these shortcomings.  All these algorithms are mainly in the 
direction of growing an SOM adaptively. Although most of these 
extended algorithms are able to dynamically increase the network to an 
appropriate size, the final SOM maps are either not easy to visualize 
high-dimensional input data on a 2-D plane, or are of equal distances 
among neighboring neurons in a 2-D output map.  

Indeed, the SOM can be seen as discrete approximation of principal 
surfaces in the input space. The ViSOM, a new visualization method, 
regularizes the inter-neuron distances such that the inter-neuron distances 
in the input space resemble those in the output space after the completion 
of training. This feature can be useful to some applications because it is 
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able to preserve the topology information as well as the inter-neuron 
distances.   This characteristic is attributed to the output topology 
pre-defined in a regular 2-D grid so that the trained neurons are almost 
regularly distributed in the input space. The ViSOM delivers excellent 
visual exhibition compared with conventional SOM and other 
visualization methods.  

The SOM is also used for clustering data. In Huntsberger and 
Ajjimarangsee (1989), and Mao and Jain (1996), an SOM was used to 
develop clustering algorithms.  There is also a two-level SOM approach 
used to cluster data. The first level is used to train data and the second 
level is used to cluster data. The number of output neurons required at the 
first level is more than the desired number of clusters. Clustering is carried 
out by clustering of output neurons after completion of training. This 
two-level approach has been discussed by Lampinen and Oja (1992), 
Kiang (2001) and several other researchers.   

The SOM is widely known with its ability of performing visualization.  
It is useful in data mining and facilitating people in understanding data 
visually. Through visualization we can evaluate mined patterns and finally 
unearth the truly interesting or useful patterns. There have been quite a 
few SOM based visualization methods reported in different literatures. 
The assignment method simply assigns inputs to their corresponding 
neurons. The U-matrix utilizes inter-neuron distances to show the 
clustering tendency of data. There are other methods attempting to find a 
non-uniformly distributed 2-D output map, instead of a uniformly 
distributed output neurons.   In later sections of this chapter, we will 
introduce and discuss several modified SOM topologies. 

5.2. Self-Organizing Maps 

The self-organizing map consists of a set of neurons usually arranged 
in a one or two dimensional grid.  Through a competitive learning, the 
weights of neurons are adjusted to various input patterns while 
maintaining topological order in the output map. Architecture of a typical 
2-dimensional SOM is shown in Fig. 5.2.  
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Figure 5.2. Architecture of a 2-dimensional SOM 

 
In this configuration, input data are presented through the input layer. 

The neurons in the 2-dimensional output layer are fully connected with 
input layer. This means the synaptic weight of each neuron has the same 
dimension of the input data.  

5.2.1. Learning Algorithm  

For each input vector )(tx , the SOM algorithm first finds the closest 
neuron c on the output map of size N  by 

               arg min ( ) , 1,  2,  ...,  ii
c x t w i N= − =   

where iw is the weight vector of the ith neuron. 
A set of neighboring neurons of the winning neuron is denoted as cN . 

The neighboring radius of the winning neuron c decreases with time. The 
sequential weight-updating rule of the SOM algorithm is given by 
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where )(tε  is the learning rate and h(c,i; t) is the neighborhood 
function centering at the output coordinates of the winning neuron. Both 

)(tε and h(c,i; t) decreases with time. A typical settings for h(c,i; t) is: 
2

2

( , )( , ; ) exp
2 ( )
d i jh i j t

tσ
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, where t  is the iteration number, d(i,j) is the 

distance of each neuron from the winner, and σ(t) is the width of the 

neighborhood function h(c,i; t).  Usually 0
1

( ) .exp ttσ σ
τ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 , where 

1τ is a time constant and σ0 is the initial width. The learning rate of the 

training typically controlled as: 0
2

.exp nε ε
τ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, where 2τ  is the time 

constant and 0ε is the initial learning rate. The weight updating for all data 
repeats until the maximum number of iterations is reached. 

 

oldw1

oldw3

oldw2

x

Winning neuron

 
Figure 5.3. Weight distributions before weight updating 
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Figure 5.4. Weight distributions after weight-updating 

 
We use an example of three neurons in the data space to illustrate the 

learning strategy.  In Fig. 5.3, x is the current input datum. The weights of 
the three neurons are 1 2,w w and 3w . Before updating, it can be noticed 
that 2w  is the closest neuron to input datum before updating. Neuron 2 is 
the winner neuron and it learns more than the other two neurons, i.e., 

2 2 1 2 31,   and  h h h h h= >> >> , where 1 2 3,  ,  h h h  are the neighborhood 

function for neurons 1, 2 and 3 respectively. As a result, the updated 2w  
becomes closer to the datum x and the displacement of 2w  is bigger than 
that of the other two weights shown in Fig. 5.4. 

Let us consider another example whose input is a uniformly distributed 
2-D synthetic data in a unit square (400 data). In this example, an SOM is 
used to form an ordered 2-D net interpolated in a 2-D input space.  

Fig. 5.5 shows the distribution of input data and initial neurons’ weight 
as well as the neighborhood connections between neighboring neurons 
(Map size 88 × ). After the SOM has been updated for 500 iterations, the 
weights distribution is shown in Fig. 5.6. 

When we observe the weights distributions and their interconnection 
in Fig. 5.5 and Fig. 5.6, the weights become more ordered in the data space 
after 500 iterations. After 2500 iterations, the weights are well ordered 
with respect to the input data shown in Fig. 5.7. 
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Figure 5.5. Initial weight distributions with neighborhood connections between 
neighboring neurons (Map size 8 8× ). Black dots are input data. Red stars are weights of 
neurons. Red lines are connections of neighboring neurons 

 
 

 
Figure 5.6. Weight distributions after 500 iterations. Black dots are input data; Red stars 
are weights of neurons; Red lines are connections of neighboring neurons 
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Figure 5.7. Weight distributions after training (2500 iterations). Black dots are input data; 
Red stars are weights of neurons; Red lines are connections of neighboring neurons 

5.3. Growing SOMs   

5.3.1. Cell Splitting Grid 

This section describes a Cell Splitting Grid (CSG) learning algorithm 
for growing an SOM. The CSG algorithm improves the learning 
mechanism by growing an SOM in both the input and output space. It 
resembles the cell-splitting mechanism from a biological perspective. 
Using the CSG algorithm, it can overcome some of the shortcomings of 
conventional SOM. The CSG algorithm has some connections to quadtree 
structure, and other supervised self-organizing networks. It improves the 
performance for non-uniformly distributed input data. It enables a 2-D 
representation on the output map confined in a square region and neurons 
are distributed on a 2-D map according to the density distribution of input 
data. The neurons representing the dense region of input data are densely 
distributed on a 2-D output map, whereas those lying in the sparse region 
are located on the sparse region of the 2-D output space. As a result, the 
non-uniform distribution of neurons on the output map is not only able to 
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preserve the data distribution in the input space, it also delivers a better 
performance of vector quantization than those delivered by conventional 
SOM and other SOM related algorithms. 

The CSG network architecture is similar to conventional SOM 
architecture. Its output map is constrained in a square of unit length. All 
neurons are generated within the square. Each neuron corresponds to a 
square region with different size and neighboring neurons are connected to 
form the neighboring relationship. The notation of the CSG algorithm is 
introduced as follows. In order to decide when new neurons are generated, 
τ is introduced to denote the activation level of neurons. XY is the 2-D 
coordinates of a neuron in a 2-D square region. Len denotes the length of 
the square region. L, R, T and B denote the left, right, top and bottom 
bound coordinates of the square region. When new neurons are generated, 
they are all endowed with an initial value τ i  as the activation level τ. 
When a neuron is activated, its activation level τ decreases by a constant 
value. This process continues until τ of a neuron becomes zero. The 
neuron is then split to generating its four offspring neurons. The executing 
steps of the CSG algorithms are as follows.  
1. Start from only one neuron and initialize its weight w with a random 

value within the input space. Set L, R, T, B, Len to 0, 1, 1, 0 and 1 
respectively and set XY to [0.5 0.5]. Physically, this implies the first 
neuron be at the center of a square with a unit length. The square 
denotes the region corresponding to that neuron. Set τ of the first 
neuron to τ i  large enough to learn the information before splitting. 
Cycle, which is denoted as the iterations performed on the network 
before splitting, is set to zero. 

2. Select an input x randomly from the input space according to the 
input distribution p(x). 

3. Find the best-matching neuron c by Eq. (5.1). 
4. Adapt weights of the winner neuron c and neurons in N c . 

  cwΔ = x(1α )cw− , for the winner neuron c (5.2) 

            bwΔ = )(2 bwx −α , for all 2,αcNb∈ << 1α  (5.3) 
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5. Decrease the activation level of the winner neuron c and increase 
the iteration counter: 

  1cτΔ = −  (5.4) 

  1CycleΔ =  (5.5) 

6. When the activation level τ of the current winner neuron c 
decreases to zero, perform the cell-splitting mechanism, i.e., delete 
the neuron c and then generate four new neurons within the square 
region of the neuron c, and set Cycle zero.  

7. Initialize the new weights and the activation levels of the new 
generated neurons. The new weights are endowed according to the 
weight distribution on the output map before splitting. After the 
initial activation levels (τ i ) are given to the new neurons, increase 
the activation levels of all neurons by τΔ (>0) to slow down the 
splitting rate. 

8. If Cycle is less than the pre-defined saturated time value TMax, then 
go to step 2. Otherwise, the neural network approaches to a saturate 
state indicating that an appropriate network topology is obtained. 

 

  
(a) 
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(b) 

Figure 5.8. Learning results by the CSG algorithm (neighboring neurons are connected)  
(a) Output map (b) input data and neurons in the input space 

 
 
Figure 5.8 shows an example of the CSG algorithm on a 2-D synthetic 

input data set. Neurons at the corners of the output map are dense. The two 
largest regions are located at the other two corners of the output map, 
representing the two neurons lying in the gap between the two dense 
regions in the input space. The CSG algorithm is useful in delving the data 
for determining the input data distribution. 

5.3.2. Growing Hierarchical Self-Organizing Quadtree Map 

The Growing Hierarchical Self-Organizing Quadtree Map (GHSOQM) 
is another hierarchical growing SOM using a quadtree structure. A neuron 
at a high level can generate its child SOM at a low level according to the 
number of inputs associated to it. The GHSOQM does not grow neurons 
horizontally for maintaining a simple and efficient growing process. A 
neuron in the GHSOQM may generate four child neurons upon some 
conditions. Fig. 5.9(a) shows the typical structure of an GHSOQM, which 
is very similar to the quadtree structure. The number of neurons at each 
level of the GHSOQM is adaptively determined. If we look down from the 
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top of the GHSOQM and only use the leaf neurons that have no child 
SOMs, the final one-layer map is like the one-layer quadtree-like SOMs as 
shown in Fig. 5.9(b) corresponding to Fig. 5.9(a) Usually the root level 
with only one neuron is useless and we begin with the first level with 4 
neurons.  

 

  
(a)      (b) 

Figure 5.9. (a) Architecture of an GHSOQM that grows neurons hierarchically (b) The 
one-layer map corresponding to (a) when we look down from the top of hierarchy of the 
GHSOQM and only use the leaf neurons without child SOMs 

 
The training data set is denoted as 1{ , , }nX x x= ⋅⋅ ⋅ . The input data 

associated with neuron i at the nth level are denoted by ( )nX i . The feature 
vectors of the child neurons at the (n+1)th level from the mother neuron i 
at the nth level is denoted by 1 1 1 1 1{ (1), (2), (3), (4)}i i i i i

n n n n nW W W W W+ + + + += . 
The GHSOQM algorithm is summarized as follows. 
1. INITIALIZATION: 

Set level n=1 and the feature vectors at the first level 
0 0 0 0 0

1 1 1 1 1{ (1), (2), (3), (4)}W W W W W= , where 0
1 ( )W i  is the feature 

vector of the ith neuron at level 1. An SOM with the four neurons  
is trained with all data X by invoking the function TRAIN_SOM  
(X, n, 0

1W ). 
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2. RECURSIVE LOOP: 

FUNCTION GENERATE_SOM (X, n, W) 
FOR i=1 to 4 

Assign each input datum in X to its nearest neurons. If the 
number of inputs assigned with the ith neuron at the nth level  
is more than a predefined number τ , then the neuron spawns 
four child neurons representing a child SOM with size 2 2× . 
Then train the child SOM by TRAIN_SOM( ( )nX i , n+1, 1

i
nW + ) 

and generate child SOMs by recursively invoking 
GENERATE_SOM( ( )nX i , n+1, 1

i
nW + ). 

END 
 

FUNCTION TRAIN_SOM (INPUT, n, W) 
Train SOM at the nth level with the input data INPUT and the four 
neurons with feature vectors W. 

 
The function TRAIN_SOM is an implementation of classical SOM 

algorithm. The function GENERATE_SOM recursively generates child 
SOMs if possible and train them with data associated with their mother 
neurons. In a word, the GHSOQM trains the network at each level by the 
data associated with their mother neurons. The GHSOQM completes the 
training from the upper levels and then proceeds to train the next lower 
level. For newly added data, the learned network must have the ability to 
learn new data without reusing old data.  

5.4. Probabilistic SOMs 

5.4.1. Cellular Probabilistic SOM 

The SOM can be considered as a combination of vector quantization 
(VQ) and topology preservation. If no lateral interactions occur, an SOM 
becomes a standard VQ algorithm. Through adding topological 
information into the cost function in VQ problems, an SOM can be viewed 
as an efficient approximation to the gradient descent algorithm for 
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topological VQ (TVQ). The TVQ can be further extended to Soft 
Topographic Vector Quantization (STVQ), which provides a soft 
probability assignment for each neuron. Using a batch mode Expectation- 
Maximization (EM) algorithm, the STVQ offers a family of topographic 
mapping algorithms in which the batch SOM and TVQ are included. The 
STVQ algorithm gives an energy function (soft quantization error) as 
follows.  

                        
1 1 1

( ( )) ( ( ), )
M N N

i ij j
t i j

F P x t h D x t w
= = =

= ∑ ∑ ∑  (5.6) 

where M and N are the numbers of input data and map size respectively, 
( ( ))iP x t  is the soft assignment probability of neuron i  upon the input 

( )x t , ijh  is a fixed neighborhood function satisfying 1
1

=∑
=

N

j
ijh , and 

)),(( jwtxD  is the quantization error between the input )(tx  and the 

weight jw  of  neuron j, defined by  )(
2
1)),((

2
jj wtxwtxD −= . The 

entropy of the assignments is  

                            
1 1

( ( )) ln( ( ( ))
M N

i i
t i

S P x t P x t
= =

= −∑∑  (5.7) 

In order to maximize the entropy of Eq. (5.8) with the constraint given 
in Eq. (5.7), the energy function becomes 

  E F Sβ= −  (5.8) 

Using the EM algorithm, the weights can be obtained by the following 
iterative steps: 

E step: 1

1 1

exp( ( ( ), ))
( ( ))    , 1,  2,  ...,  

exp( ( ( ), ))

N

ij j
j

i N N

kj j
k j

h D x t w
P x t i N

h D x t w

β

β

=

= =

−
= =

−

∑

∑ ∑
 (5.9) 
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  M step: 1 1

1 1

( ) ( ( ))
  , 1,  2,  ..., 

( ( ))

M N

ij j
t j

i M N

ij j
t j

x t h P x t
w i N

h P x t

= =

= =

= =
∑ ∑

∑∑
 (5.10) 

In Eq. (5.9), β  is a parameter of inverse temperature. The optimized 
weights can be obtained using deterministic annealing from low to high 
values in order to avoid being stuck at the local minima of the energy 
function of Eq. (5.9). The above steps of the STVQ algorithm are batch 
type and can be modified into the batch type SOM if we set ijh  to a delta 
function, ijδ , and ∞→β in Eq. (5.9). As it is needed to collect all the 

input data before the learning process, the batch EM algorithm is not 
suitable for large data sets or dynamic data sets. Thus, an online EM 
algorithm is necessary to be incorporated in the STVQ model.  

We describe an online mode of STVQ, called the Cellular Probabilistic 
SOM (CPSOM). The term “cellular” is derived from the concept that a 
neuron in the CPSOM is locally connected to neighboring neurons like a 
biological cell. However, the incremental EM algorithms are not suitable 
for the CPSOM because they need additional storage variables for all the 
training data. The online EM model is able to improve incremental EM 
algorithms when the parameters in the M step can be expressed by 
sufficient statistics.  This leads to the derivation of the CPSOM. The 
online form of CPSOM is equivalent to the STVQ under certain 
conditions. The online property makes it more suitable for large data sets 
than the STVQ. It shows a faster convergence rate than the STVQ with the 
same effect when map size is relatively small. When the map size becomes 
relatively large, the stochastic approximation to the STVQ in turn makes it 
less likely for the CPSOM be trapped in local minima, thereby the final 
maps are more ordered with lower soft quantization errors than the STVQ. 
Most of all, the online CPSOM can be used for dynamic data sets. It has 
relations to the SOM, S-Map, and the online gradient-descent form of 
STVQ.  

We can express the weight-updating in the M step as an online version. 
First, we introduce a state variable )(tBi  for neuron i at iteration t: 
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1 1

( ) ( ( ))
t N

i ij j
k j

B t h P x k
= =

= ∑∑ , then the weight of neuron i can be sequentially 

adapted by 

1

1

( 1) ( 1) ( ) ( ( ))
( )   

( 1) ( ( ))

N

i i ij j
j

i N

i ij j
j

w t B t x t h P x t
w t

B t h P x t

=

=

− − +
=

− +

∑

∑
 (5.11) 

( ) (t-1)i i iw t w w= + Δ  

1

1 ( ( ))( ( ) ( 1)),   1,  2,  ...,  
( )

N

i ij j i
ji

w h P x t x t w t i N
B t =

Δ = − − =∑          (5.12) 

 

The learning rate iη  in Eq. (5.12) is 
)(

1
tBi

. The updating rule in Eq. 

(5.12) is also intended to optimize the objective function of Eq. (5.9). 
 
The CPSOM algorithm can be implemented as the following steps: 
 

1. Initialize weights of all neurons to be random vectors, compute the 
neighborhood function ijh , and set the start values startββ = and 

startγγ = . 
2. Select an input x randomly from a static data set, or sequentially from 

a dynamic data set. 
3. Adapt the weights and state variables for all neurons: 

1

1 1

exp( ( ( ), ))
  step: ( ( )) , 1,  2,  ...,  

exp( ( ( ), ))

N

ij j
j

i N N

nj j
n j

h D x t w
E P x t i N

h D x t w

β

β

=

= =

−
= =

−

∑

∑ ∑
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1

1 step: ( ) ( 1) ( ( ))( ( ) ( 1)), 1,2,...,
( )

                                

N

i i ij j i
ji

M w t w t h P x t x t w t i N
B t =

= − + − − =∑

where   . ..., ,2 ,1 ,))(()1()(
1

NitxPhtBtB
N

j
jijii =+−= ∑

=

                                                              

4. Increase β  by 1Δ+← ββ  if finalββ < , where )0(1 >Δ  is an 
incremental factor, if the current iteration t is an integer multiple of a 
parameter 1λ . 

5. If the current iteration t is an integer multiple of a parameter 2λ , 
decrease )(tBi  by NitBtB ii  ..., ,2 ,1  ,/)()( == γ , where 

)0,1( 22 >Δ≥Δ−← γγγ  is a factor shrinking to a final value 
1=finalγ . This procedure enables the algorithm to retrain the 

network at a higher learning rate after certain iterations to avoid being 
trapped in local minima. In fact, γ  can be considered as a forgetting 
factor to reduce the weight of the old input data contained in the 

stBi )( . When an CPSOM is used for dynamic data sets, we set 
startγγ =  if the current iteration t is an integer multiple of a 

parameter 3λ ( 23 λλ >>  and 3λ is an integer multiple of 2λ ). This 
procedure ensures the learning algorithm to track the dynamic 
environment. 

6. Terminate the adaptation for static data sets when pre-specified 
epochs finalT  are reached. Otherwise, go to step 2. 

It should be noted that the parameter 3λ is not required if the input data 
are static. The learning rate is oscillatory at the early stage of the training 
and finally decreases to zero. For dynamic data sets, γ  needs to be reset to 

startγ  to retrain the network after sufficient iterations. This requires that 
the models under the dynamic data do not change too rapidly. 
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5.4.2. Probabilistic Regularized SOM 

The ViSOM is a relatively recent algorithm for preserving topology as 
well as inter-neuron distances. The final map can be seen as a smooth net 
embedded in input space. The distances between any pairs of neurons in 
input space resemble those in output space. The ViSOM uses the same 
network architecture of the SOM. The only difference between the two 
networks is that the neighboring neurons of winner neuron are updated 
differently. The weight-updating rule (5.2) is used for SOM, while the 
weight-updating rule for the neighboring neurons of winner neuron in the 
ViSOM is 

(t 1) ( ) ( ) ( ) [ ( ) ( )] [ ( ) ( )] ,    ci ci
i i ic c c i c

ci

dw w t t h t x t w t w t w t i Nλε
λ

⎛ ⎞⎛ ⎞− Δ
+ = + − + − ∀ ∈⎜ ⎟⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠

  

  (5.13) 

where cid  and ciΔ  are the distances between the neuron c and i in input 
space and output space, respectively, and λ is a resolution parameter.  The 
basic idea behind the ViSOM is that the force )()( twtxF iix −=  can be 
decomposed into two parts: cicxiccix FFtwtwtwtxF +=−+−= )]()([)]()([ . 

cxF is a force from the winner neuron c to the input x. ciF  is a lateral force 
from the neuron i to the winner neuron c. The ViSOM constrains the 

lateral force ciF  by multiplying a coefficient ci ci

ci

d λ
λ
− Δ
Δ

. The objective is 

to maintain the preservations of distances between neurons. The discrete 
surface constructed by neurons is then regularized to be smooth for good 
visualization. In order to keep the rigidity of the final map, the final 
neighborhood size fσ should not include only the winner neurons. The 
larger fσ , the flatter the map in input space will be. The resolution 
parameter λ controls the resolution of the map. Small values of λ  
generate maps with high resolution, while large values of λ generate maps 
with low resolution. 

Here we describe the Probabilistic Regularized SOM (PRSOM) 
algorithm. Unlike the hard assignment in the SOM and ViSOM, the 
assignment in the PRSOM is soft so that an input datum belongs to a 
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neuron with certain probability. The sequential weight-updating rule of 
the PRSOM is extended from the ViSOM to an optimization of a cost 
function. Under certain circumstance, the ViSOM can be considered as a 
special case and an accelerated one of PRSOM. The PRSOM can also be 
considered as a discrete approximation of principal surfaces like the SOM 
and ViSOM. Like regularization terms used in supervised learning, 
quantization and feature extraction to simplify or smooth function and to 
avoid overfitting, the surfaces of PRSOM are smooth that enables a good 
visualization effect.  

Let ))(( txp j  denote the noised probabilistic assignment of neuron j: 

  
1

( ( )) ( ( ))
N

j ij i
i

p x t h P x t
=

= ∑  (5.14) 

where ( ( ))jP x t  is the probabilistic assignment of neuron j for input x(t) 

and ijh is a neighborhood constant satisfying 
1

1
N

ij
j

h
=

=∑ .  Here the term 

“noised” mean ))(( txp j  is affected by leaked probabilistic assignments 
from other neighboring neurons. Therefore ))(( txp j  is the probabilistic 
assignment of neuron j that considers the effects of other neurons. Note 
that ))(( txp j  can be considered as a weight since 

 
1 1 1 1 1

( ( )) ( ( )) ( ( )) 1
N N N N N

j ij i i ij
j j i i j

p x t h P x t P x t h
= = = = =

= = =∑ ∑∑ ∑ ∑  (5.15) 

The cost function of the PRSOM is then soft vector quantization error: 
2 2

1 1 1 1

1 1( ( )) ( ) ( ) ( ( ))
2 2

M N M N

vq j j j j
t j t j

F p x t x t w x t p x t w
= = = =

⎡ ⎤= − = −⎣ ⎦∑ ∑ ∑ ∑  (5.16)  

which computes the sum of square errors between the input data and the 
average weights for all input data. To control the complexity of the above 
model, or ensure the solution simple or smooth, we added the following 
regularization term:  
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2 2 2 2

1 1 1

1 ( ( )) ( ( ))( ) /( )
8

M N N

reg j m jm jm jm jm
t j m

F p x t p x t d Iλ λ
= = =

= − Δ Δ +∑∑∑  (5.17) 

where jm j md w w= −  is the distance in input space, jmΔ  is the 

corresponding distance between neuron j and m in 2-D output space, λ  is 
a resolution parameter like the ViSOM, and the identity matrix I is 
introduced to avoid the case that the denominator of the fractional term 
would be zero when j=m. regF in (5.17) tries to preserve pairwise distance 

of neurons in input and output space. It emphasizes large products of 
errors and fractional errors like Sammon’s mapping. It also can be 
considered as the restriction of the PRSOM for the smoothness of discrete 
approximation of the principal surfaces.  Then a regularized cost function 
of the PRSOM is  

2

1 1

2 2 2 2

1 1 1

1 ( ( )) ( )
2

( ( )) ( ( ))( ) /( )
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M N

vq reg j j
t j

M N N
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∑ ∑

∑∑∑
 (5.18) 

where γ is a regularization parameter.  
The weight-updating and probability assignment of the PRSOM can be 

explained from Eq. (5.18) and can be re-expressed as
1

( )
M

t

E E t
=

=∑  where: 
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∑
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Since the left and right terms in E(t) are always positive, the 
minimization of E is equal to the minimization of each E(t). 

Taking the gradient of E(t) with respect to jw , i.e., 
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the following weight-updating rule is obtained: 
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  (5.19) 

In (5.19), '( ) ( ) ( ( ))jt t p x tε ε=  is the learning rate of the weight- 

updating rule of the PRSOM. To avoid small values of the learning  
rate '( )tε , the noised probabilistic assignment (or fuzzy neighborhood 

function) 
1

( ( )) ( ) ( ( ))
N

j ij i
i

p x t h t P x t
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( )' ( ( )) ( ( )) / max ( ( ))j j kk
p x t p x t p x t= .  Then the resultant updating rule is 
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 (5.20) 

The probabilistic assignment ))(( txPi is (5.10) in the STVQ. But the 
additional parameter β , the inverse temperature, must be carefully 
selected and tuned from low to high values. If we used the same technique 
in the PRSOM, we add the entropy into the cost function (5.18): 

  
1 1

( ) ( ( )) ln( ( ( ))
M N

vq stress i i
t i

E F F P x t P x tβ γ
= =

= + + ∑ ∑  (5.21) 
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where β is a fixed regularization parameter. Taking the gradient of (5.21) 
with respect to ))(( txPj , we obtained the following expression of 

))(( txPj : 

1 1 1
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  (5.22) 

which is a fixed-point iteration. However, Eq. (5.22) may not converge in 
practical situations. A more convenient and heuristic way to compute 

))(( txPi can be taken as 

  ( )
2

1

1( ( )) 1/ ( )
N

j jk k
k

P x t h x t w
C =

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (5.23) 

where C is a normalization constant. No iteration is needed in (5.23). Since 
neighborhood function jjh  is much larger than any other ( )jkh k j≠ , 

( ( ))jP x t  achieves the highest probability assignment if jw  is the feature 

vector of the nearest neuron from the input x(t). Eq. (5.23) is then 
reasonable in that the closer a neuron to input, the higher assignment 
probability. 

The architecture of the PRSOM is the same as the SOM or ViSOM. 
Using the same notation of SOM, the sequential PRSOM algorithm is 
described as follows. 

1. Randomly select an input x(t) from a data set. 
2. Compute the assignment probability of x(t) for all neurons 

according to Eq. (5.23). 
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3. Perform the weight-updating rule for all neurons according to Eq. 
(5.20). 

4. Terminate the algorithm until certain criterion is satisfied. 
Otherwise, go to step 1. 

 
The above sequential algorithm is affected by the ordering of training 

samples. To avoid this problem, it is better to use the following batch 
algorithm of PRSOM. 

 
1. Compute the assignment probability of x(t) for all input data and 

neurons according to Eq. (5.23). 
2. Perform the batch weight-updating rule for all neurons: 

'
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∑

where k is current epoch, k+1 is the next epoch. 
3. Terminate the algorithm until certain criterion is satisfied. 

 
The computational complexity of the PRSOM and ViSOM is 

2( )O MN , where M and N are the number of input data and neurons, 
respectively. If 2N is significantly less than M, the computational 
complexity of the PRSOM is less than that of MDS, i.e., 2( )O M . )(tε  in 
the PRSOM should be decreased from high values to nearly zero. The 
selection of regularization coefficient γ  can be set from 0.5 to 10 
practically according to emphasis of the second term in Eq. (5.18). ijh  in 

the PRSOM can be selected in Eq. (5.24) with the constraint ∑ = :1ijh  

  

2 2

2 2
1

exp  exp   
2 2

N
i j i k

ij
k

Pos Pos Pos Pos
h

σ σ=
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∑
 (5.24) 

where the neighborhood radius σ  is a constant. The value of σ  is 
important for the training. The neighborhood function curves are steep 
when the value of σ  is small. As a result, only few neurons around neuron 
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j can be included in the computation of the weight of the neuron j.  This 
may have an effect of generating folded or disordered maps. On the other 
hand, the area of the neighborhood function is enlarged to neurons that are 
far from the neuron j when σ  is set to a large value. Large σ  flattens the 
neighborhood function curves and results in contracted maps. This would 
degrade the performance of competitive learning. Generally, it is 
suggested to set σ  to 0.5 which results in maps with good mapping 
effects.  

The neighborhood function in the PRSOM is 

1

( ( )) ( ( )) ( )
N

j i ij
i

p x t P x t h t
=

= ∑ . σ  in Eq. (5.24) can be set to a small value, 

e.g., 0.5, such that ( ( ))jp x t  affects not only the winner neuron due to the 

leaked information from other neighboring neurons. The most important 
property of the PRSOM is the cost function in Eq. (5.18), which gives the 
meaning of the weight-updating rule. From the definition of the cost 
function, the probabilistic quantization error vqF  in Eq. (5.16) is different 
from that of the STVQ in Eq. (5.7). Only optimizing the first term vqF will 

not generate similar result with the SOM. This should be also true for the 
ViSOM if the regularized term in the updating rule is left out. The 
implication of vqF  is to not only minimize the probabilistic quantization 

error, but also repulse neurons from one another.  
The resolution parameter λ  must be chosen carefully. If λ  is too 

large, some useful data structure may not be well displayed on the output 
map. Some neurons far outside input data may be wasteful for 
visualization. If λ  is too small, the resultant map is embedded in input 
data and cannot well display input data. The following show a practical 
equation for the selection of λ : 

 max1 ~ 1.5
min{ , }
Span

a b
λ = × , or max4

1 ~ 1.5
min{ , }

Var
a b

λ
×

= ×  (5.25) 

where a and b are the number of rows and columns of the SOM map, 
respectively. However, the selection of λ  may be out of the rage 
according to Eq. (5.25) because of high input dimension or nonlinearity. 
The soft assignment in the PRSOM can be exploited similar to that in the 
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STVQ. The accumulated probability in each neuron forms an accumulated 
probability matrix (AP matrix) like U-matrix. The element ijAP  of neuron 

k located at the ith row and jth column of the map is defined by: 

  ∑
=

=
M

t
kij txPAP

1

))((  (5.26) 

Assigning different colors to different accumulated probabilities, we 
can obtain a colored map with some colors corresponding to clusters and 
some colors corresponding to empty regions. This is a powerful 
visualization technique in addition to the method by simply assigning 
input data to their nearest neurons.  The SOM and ViSOM are both 
discrete approximations of principal surfaces. But SOM cannot display the 
data boundary well at the boundaries of output map because it is a 
density-based quantizer. The ViSOM instead can represent the data 
boundary well because ViSOM is a uniform quantizer and some neurons 
are outside input data when the parameters of an ViSOM are properly 
chosen. The PRSOM is also a discrete approximation of principal surface 
like the ViSOM. As the inter-neuron distances in input space are 
regularized to resemble those in output grid, the regularized term (second 
term) in Eq. (5.19) can be very small after the completion of training. We 
further consider only the nearest neuron c using hard assignment. The 
updating rule in Eq. (5.19) now becomes 

  ( )( 1) ( ) ( ) ( ) ( )j j cj cw t w t t h x t w tε+ = + −  (5.27) 

Then the adaptation rule in the final stage leads to the smoothing 
process: 

       PRSOM: 
1 1

( )
L L

c cj cj
t t

w x t h h
= =

= ∑ ∑  (5.28) 

where cjh  is fixed for all time in the PRSOM.  
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5.5. Clustering of SOM 

The clustering at the second level for an SOM-based two-level 
clustering is the agglomerative hierarchical clustering. The merging 
criterion is motivated by a clustering validity index based on the 
inter-cluster and intra-cluster density, and inter-cluster distances (Halkidi 
& Vazirgiannis, 2002). The original index is used for the whole input data 
and therefore is a global index. The optimal number of clusters can be 
found by the clustering validity index. In this SOM based clustering 
algorithm (Wu & Chow, 2004), the clustering validity index is slightly 
modified and used locally to determine which neighboring pair of clusters 
to be merged into one cluster in the agglomerative hierarchical clustering. 
Since more information is added into the merging criterion in addition to 
the inter-cluster distances, the described algorithm clusters data in a better 
way than other clustering algorithms using an SOM. After certain 
preprocessing techniques for filtering, the clustering algorithm is able to 
handle the input data with noises and outliers. 

The notations in the clustering validity index are defined as follows. 
The data set is partitioned into c clusters. A set of representation points 

},...,,{ 21 iiriii vvvV =  represents the ith cluster, where ir  is the number of 
representation points of the ith cluster. )(istdev  is a standard deviation 
vector of the ith cluster. The pth component of )(istdev is defined by 

∑
=

−−=
in

k
i

p
i

p
k

p nmxistdev
1

2 )1/()()( , where in  is the number of data 

points in the ith cluster, kx  is the data belonging to the ith cluster, and im  
is the sample mean of the ith cluster. The average standard deviation is 

given by: ∑
=

=
c

i

cistdevstdev
1

2 /)( . 

The overall clustering validity index, called “Composing Density 
Between and With Clusters” (CDbw), is defined by 

  )()(_)( cSepcdenIntracCDbw ×=  (5.29) 

Intra_den(c) in Eq. (5.29) is the intra-cluster density and defined by 
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where ( )ijdensity v is defined by 
1

( ) ( , )
in

ij l ij
l

density v f x v
=

= ∑ , where 

lx belongs to the ith cluster, ijv  is the jth representation point of the ith 
cluster, and ),( ijl vxf is defined by 

  
⎩
⎨
⎧ ≤−

=
otherwise               ,0

      ,1),( stdevvxvxf ijl
ijl  (5.31) 

The Sep(c) in Eq. (5.19) is the inter-cluster density and defined by 
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where close_rep(i) and close_rep(j) are the closest pair of representations 
of the ith and jth clusters, and Inter_den(c) is defined by  

1 1
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where iju  is the middle point between the pair points close_rep(i) and 

close_rep(j), 
1

( ) ( , )
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ij k ij
k

density u f x u
+

=

= ∑ , where kx  is the input vector 

belonging to the ith and jth clusters, and ( , )k ijf x u  is defined by 

 ( )1,       ( ) ( )  / 2
( , )

0,                                                    otherwise
k ij

k ij

x u stdev i stdev j
f x u

⎧ − ≤ +⎪= ⎨
⎪⎩

 (5.33) 

The overall clustering algorithm is summarized as follows: 
1. Train input data using an SOM. 
2. Preprocessing before clustering of an SOM. 
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3. Cluster of an SOM using the agglomerative hierarchical 
clustering. Find the local CDbw for all pairs of directly 
neighboring clusters and merge the two clusters with the lowest 
CDbw. Compute the global CDbw for all input data before the 
merging process until only two clusters exist, or merging cannot 
happen.  

4. Find the optimal partition of input data according to the global 
CDbw for all the input data as a function of the number of 
clusters. 

Wine data set is used as an example for demonstration. Wine data have 
178 13-D data with known 3 classes. The numbers of data samples in the 
three classes are 59, 71 and 48, respectively.  
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Figure 5.10. The CDbw as a function of the number of clusters for the wine data set by the 
clustering algorithm on SOM 

 
We use this clustering algorithm with map size 44 ×  to cluster the 

data. The CDbw as a function of the number of clusters, plotted in Figure 
5.10, indicates that the number of clusters is three, which is exactly equal 
to the number of the classes. This algorithm achieved a high clustering 
accuracy of 98.3%. 
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5.6. Multi-Layer SOM for Tree-Structured data 

The conventional SOM and the above mentioned SOM deal with 
vector type data of fixed length. They are, however, unable to deal with 
tree-structured data. A tree data can consists of many levels, and number 
of nodes in each level is not fixed. The Multi-Layer SOM (MLSOM) is 
another extended architecture developed for handling tree-structured data 
that cannot be encoded in a single fixed vector.  The node attributes at 
different levels of trees are ordinal-type features. Using multiple SOM 
layers, the MLSOM processes the nodes of tree-structured data at different 
levels in a layer-by-layer fashion. Fig. 5.11 describes the schematic 
diagram of processing a 3-level tree data using the MLSOM. 

 
Figure 5.11. Data mapping in a multi-layer SOM model 

 
The number of SOM layers is equal to the maximum levels of trees. If 

there are maximum L levels in all the tree structures, L groups of data and 
corresponding L SOM layers are generated. The ith (i=1,...,L) group of 
data is composed of all the ith level nodes in all the tree structures. The 
basic idea of the MLSOM is that the SOM training is performed in a way 
of level by level. That is, the Lth level group of data is firstly trained by the 
Lth SOM layer. Similar to the SOM-SD, the SOM outputs of child nodes 
are used for the input representation (child vector) of a parent node. After 
the Lth SOM output information is filled in the (L-1)th SOM input 
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representation, the (L-1)th SOM layer is then trained. This procedure 
repeats until the 1st level group of data is trained by the 1st SOM layer. 
Finally, the visualization of tree-structured data can be performed on the 
1st SOM layer.  

 

After the Lth SOM ouput information is filled in
the (L−1)th SOM input representation, the (L−1)th

SOM layer is trained

The Lth SOM layer is trained with the input data
of all the Lth level nodes

After the (L−1)th SOM ouput information is filled
in the (L−2)th SOM input representation, the

(L−2)th SOM layer is trained

After the 2nd SOM ouput information is filled in
the 1st  SOM input representation, the 1st SOM

layer is trained

 

Figure 5.12. The basic flow chart of training steps by the MLSOM 
 
The basic flow chart of training steps by the MLSOM is illustrated in 

Figure 5.12.  The following describe the SOM input representation and the 
MLSOM training in details. 

5.6.1. SOM Input Representation 

Assume that the maximum number of children nodes of a node at the 
kth level in all the training data trees are kc , the maximum levels in all the 
tree structures is L and the SOM output is a 2-D rectangular grid. It is 
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noted that 0Lc =  as leaf nodes at the bottom layer have no children nodes. 
Each SOM input representation at an SOM layer consists of two parts: (1) 
the n-dimensional feature vector u of the current node; (2) 2-D position 
vectors 1,..., kcp p of its children nodes at the SOM layer below the current 
SOM. For non-leaf nodes, some ip  may be set to [0,0] since the number 
of children nodes of a node may be less than kc . The lowest values of 
horizontal or vertical positions on the 2-D SOM output map are set to be 
larger than 0. 

The ordering of children nodes of a node may not be predefined in real 
world applications. In the MLSOM, an ordering algorithm is used if the 
ordering of children is not predefined. Suppose that the nodes at the kth 
level need to be ordered before appending their position vectors to the 
SOM input representation at the (k-1)th SOM  layer. After the completion 
of training the kth SOM layer, all the 2-D output positions of the nodes at 
kth level are obtained.  

 

12
3

4

5
6

, , , , ,0 0 0B A cp p p

Ap

Bp

cp

 
Figure 5.13. The illustration of the ordering of children nodes of a node 

 
The basic idea of the ordering algorithm is to use all 2-D position 

vectors to train a 1-dimensional SOM.  The number of neurons in the 1-D 
SOM is set to 1kc − , i.e., the maximum number of children nodes of a node 
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at the (k-1)th level. After the completion of training of the 1-D SOM, each 
training datum is assigned to a neuron index of the 1-D SOM. The neuron 
index is then used in the SOM input representation of ip ( {1,..., }i c∈ ) of 
parent nodes at the (k-1)th SOM layer. This procedure is illustrated in  
Fig. 5.13, where the maximum number of children nodes of a node at the 
(k-1)th level is 6. Therefore the number of the 1-D SOM neurons used for 
the training of output positions at the kth SOM layer is 6. After the 
completion of training of the 1-D SOM, the 2-D weight vectors of all the  
6 neurons are marked in circles with index labels as shown in Fig. 5.13. 
The neighboring neurons are connected with a solid line. Consider three 
nodes at the kth level: A, B and C. Ap , Bp  and cp  are their corresponding 
output positions on the kth SOM layer. The three nodes are the children 
nodes of a parent node at the (k-1) level. The 2-D position vectors Ap , Bp  
and cp are marked in cross symbols as shown in Fig. 5.13. The ordering 
algorithm just assigns Ap  to its nearest neuron, i.e., neuron index 3. Then 

Bp  and cp is assigned to neuron index 2, neuron index 6 respectively. 
Therefore the SOM input representation 1 2 3 4 5 6[ , , , , , ]p p p p p p  of their 
parent node at the (k-1) level is , , , , , ][0 0 0B A cp p p , where 0 is [0,0]. This 
ordering makes the later similarity measurement more reasonable. 

5.6.2. MLSOM Training 

Assume that each node at the kth level of trees has a kn dimensional 
feature vector. The maximum of children nodes of a node at the kth level 
are kc . The maximum levels of trees and maximum layers of MLSOM are 
all L. The input data for the kth SOM layer are all 2k kn c+  dimensional 
vectors. There are km  neurons at the kth SOM layer. The weights of 
neurons at the kth SOM layer are also 2k kn c+  dimensional vectors. The 
learning steps of the MLSOM for a tree-structured data are described as 
follows. 
 

1. Set the current level k of trees and the current layer k of an 
MLSOM  to be L (bottom level and bottom layer). 
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2. Normalize the 2-D positions of neurons in each SOM layer in a 
range of ( )(0,1],(0,1] .  

3. Set iteration t to be 0. Collect all the nodes at the kth level nodes of 
trees to be the training data for the kth SOM layer. The ordered 
2-D SOM output positions of children nodes of the nodes at the 
kth level are filled in the SOM input representation at the kth SOM 
layer. Therefore the 2k kn c+  dimensional vectors are generated 
for the inputs of the kth SOM layer. Normalize the values in each 
dimension of them in a range of [0,1]. Randomly initialize the 

2k kn c+  dimensional vectors for the km weights at the kth SOM 
layer. 

4. Randomly select a vector x from the 2k kn c+  dimensional 
vectors for the inputs of the kth SOM layer. 

5. Find the winner neuron a at the kth SOM layer: 
arg max ( , ) ,  1,...,k

i ki
a S x w i m= =  (5.34) 

where S(x, k
iw ) is the similarity measurement of x and k

iw , k
iw is 

the weight vector of the ith neuron at the kth SOM layer. The 
similarity measurement of x and k

iw  is defined as follows. 

( ){ }

( )( ) ( )( )

1
1 2

1

2 2

2 1 2 2 1 22 1 2
1

1( , ) 1
( , )

( , ) 1

k

k

k k

k

k k k kk k

n
k k
i j ij c

jk
j n j n

j

c
k k

j n j n j n j ni j n i j n
j

S x w abs x w
n x x

x x x w x w

λ λ

δ

δ

=
+ − +

=

+ − + + − ++ − +
=

−
= − − +

⎧ ⎫⎡ ⎤⎪ ⎪− − + −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑
∑

∑

2

             (5.35) 
where jx is the jth value of  x, k

ijw is the jth value of k
iw , λ  is a 

weighting parameter, ( , )x yδ  is a function such that 
1,  if 0 and 0

( , )
0,             otherwise

x y
x yδ

= ≠ ≠⎧
= ⎨=⎩

 

The first term in (5.35) considers the features of the current node 
whilst the second one considers the compressed features of its 
children nodes. The weighting parameter λ  determines the 
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emphasis on global features, which appears at root nodes or 
higher level, or local feature that appears at lower part of the tree. 
The choice of λ  is problem-dependant. An equal weighting 
( λ =1) is used in general unless specified. 

6. Update the weights of neurons at the kth SOM layer by 
( )( ) ( ) , 1,...,k k k

i i ia i kw w t h t x w i mη= + − =     (5.36)  

where ( )tη is the learning rate at iteration t, ( )iah t is the 
neighborhood function around the winner node a. 

7. Increase the iteration by t = t + 1. 
8. When the maximum number of iterations is reached, the training 

at the kth SOM layer stops. Otherwise go to step 4. 
9. If the ordering of children nodes is not predefined, the 2-D SOM 

output positions of nodes at the kth level are ordered by an 
ordering algorithm, otherwise, go to step 10. 

10. When k is equal to 1 (top level of trees or top SOM layer), the 
training stops. Otherwise, k = k − 1, go to step 3. 

 
From the above training steps, the second parts of the SOM input 

representation are fixed before training. The nodes at each level are fed 
into the corresponding SOM layer for training. Therefore the 
computational complexity of the MLSOM for one epoch is 

( )
1

2
L

k k k k
k

O N m n c
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ , where kN  is the number of nodes at the kth level 

of trees, km is the number of neurons at the kth SOM layer, kn is the 
number of input features of a node at the kth level, and kc is the maximum 
number of children nodes of all trees at the kth level.  

5.6.3. MLSOM Visualization and Classification 

The top SOM layer in an MLSOM plays an important role for 
visualization of the tree-structured data. After the completion of the 
MLSOM training, the top SOM layer can be used for data visualization. 
As each root node represents each tree structure, the tree-structured data 
can be visualized by their associated neurons. Some useful information, 
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such as clustering tendency, can be further detected from the top SOM 
layer.  

The MLSOM can be further used for classification. A neuron at the top 
SOM layer can be labeled with a class that most associated tree-structured 
data belong to. In the case of tie, the class is chosen randomly. If a neuron 
is not assigned any datum, we just search the nearest neurons and the 
neuron is labeled with the class that the most structured data associated 
with the nearest neurons belong to. Thus the SOM map is labeled by 
assigning data classes to all neurons. The labeled SOM map, called “class 
map”, can be used for classification. When a testing tree-structured datum 
is presented to the MLSOM, a best-matching neuron at the top layer can 
be found according to Eq. (5.34). As the best-matching neuron is already 
labeled with a class, the testing datum is classified to that class. 

We used a real data set consisting of 480 real flower images to 
demonstrate the processing of a tree-structured data using the MLSOM.  
There are totally 12 different species of flowers. Each species has 40 
flower images. All the flower images are divided into training and testing 
sets. The total number of flower images used for training is 240 and that 
for testing is 240. Fig. 5.14 shows a tree-structured data extracted from a 
flower image. A flower image is represented by a three-level tree. The root 
node of a tree represents the whole image. The 2nd level nodes of a tree 
represent local regions such as background and flowers. The 3rd level 
nodes of a tree represent more specific local regions such as each 
individual flower. Different types of features are used to describe nodes at 
different levels as shown in the figure. An MLSOM with 3 layers 
(40×40-48×48-56×56) is used to process the flower images. After the 
training is completed, the visualization on the top layer is shown in  
Fig. 5.15. The 12 species of flowers from the training set are shown on the 
map in different symbols. The map indicates different flowers form 
different clusters on the output map. Using the above-mentioned “class 
map” procedure, a classification performance of 100% and 93% are 
achieved on the training set and the testing set respectively. 
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Figure 5.14. Illustration of the tree-structured flower image representation. Different types 
of features are assigned to different levels of nodes 
 

 
Figure 5.15. Visualization of 12 different flower species on the top layer of an MLSOM 
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Exercises 

Q5.1. An SOM is used to learn a dataset with no target output.  What 
does the SOM learn and how visualization is conducted?  

 
Q5.2. In an electric power plant fault diagnostic system, the following 

table shows 9 data points of a 8-attribute + 1 class-label data file.   
The whole data file consists of over 10000 different fault 
instances collected in the past.  

 
Circuit 

ID 
Weather 

type Phases Loading type Season plant 
Cust off 

time 
Duration 
in min 

Fault  
Causes 

1 o R 5 (High) S c4 13:45 10 F1 

1 o R 5 (High) S c4 14:45 10 F2 

2 o R 3 (Medium) A c4 9:40 20 F3 

2 1 Y 5 (High) A x 11:00 45 F4 

3 10 Y 5 (High) A x 20:00 20 F1 

3 2 Y 1 (Low) W c4 19:43 60 F4 

3 3 R 4 (Quite high) W c4 17:32 20 F3 

5 3 R 3 (Medium) W c4 16:44 13 F3 

6 3 R 4 (Quite high) W c4 11:33 7 F2 

  
Which of the above attributes should not be used in the SOM 
training for studying plant fault diagnosis? 

 
Q5.3. In Q 5.2, there are only 6 types of fault, i.e., ice, animal, lightning, 

human, tree, and deterioration denoted F1, F2, F3, F4, F5 and F6 
under the attribute of fault causes.  These six types of fault are 
found to be nicely discriminated by an SOM using 10x10 neurons.  
Sketch a typical SOM map to show the possible result. In this case, 
what is the factor affecting the output visualization of the SOM 
map?  
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Q5.4. The weight adaptation of the SOM learning rule uses a simple 
competitive learning method with neighborhood function being 
set to h=1 for the winner neuron, and =0.5 for all other neurons.  
Also, assume η =0.5. In a data set, the current input data x1=[2, 3], 
and the following input data are [1, 4], and [3, 1], the initial 
weights of three neurons are w1=[-1, 2], w2=[2, 0] and w3=[1, 1]. 
Show how the weights are updated for only one number of 
iteration. 
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Chapter 6 

Classification and Feature Selection 

6.1. Introduction 

To mimic human’s ability in discriminating various objects using 
mathematical models and computer has always been an intriguing issue 
for human beings. Among many other AI, or pattern recognition 
techniques, the use of neural networks to perform discrimination task has 
proved to be appealing because of its supervised and unsupervised 
learning ability. Neural classifiers have shown many important 
applications since computers have become immensely powerful 
compared to a decade ago. This enables us to conduct a lot of 
complicated classification or recognition tasks that were difficult or even 
impossible to be handled in the past decades.  We are now able to design 
classifiers capable of discriminating between members and non-members 
of a given class as a result. 

When we use neural networks to act as a classifier, we are simply 
finding a network to represent a non-linear discriminant function.  As a 
result, the trained network will deliver a classification result when new 
input vectors are presented to it.   On the other hand, we can view that 
the network is used to model the posterior probability of class 
membership.  Posterior probability, a quantity widely used in statistical 
analysis, enables us to make a near-optimal decision on the class 
membership of a given data. Classifier is then considered as a machine 
whose decision on class membership is made according to the probability 
distribution of the variables.  
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For a given feature vector x , classifying its class membership 
requires the knowledge of its posterior probability. For a given feature 
vector x , the posterior probability, ( )P C Xa , tells us the probability of 
the instances belonging to class Ca . Maximizing the probability of 
classification can be obtained by finding the class Ca having the largest 
posterior probability. Conversely speaking, classifying newly given 
feature vector x  as certain class having the largest posterior probability is 
equivalent to minimizing the probability of misclassification.  

In practical applications, a classifier can be designed by finding 
appropriate discriminant functions, which are usually in forms of 
parametrized functions.  In most cases, the values of the parameters are 
determined from a set of training data together with a learning algorithm. 
For example, we consider a simple problem of distinguishing men from 
women. Certain feature vector ,iX of a given human face must be 
extracted and analyzed.  We might, for instance, analyze the pixel-based 
representation of face images. We might expect that the feature 
vector ,iX transformed from pixel-based codes, of women face images 
will be different from the men in certain extent.  Apparently, for certain 
given feature vectors, the probability of misclassifying the face image 
will be low, which means that we will be very certain that it is either a 
woman or a man.  On the other hand, it is perceivable there are many 
cases that the class membership overlaps with feature vectors, which 
means that there is a high chance of misclassifying.   A classifier can 
then be seen as a system which consists of a set of input vectors mapping 
to an output variable ,y which in this case representing the label of 
whether it is a man or a woman. The mapping is done using certain 
mathematical modeling.  For instance, the mathematical model can be in 
the form ),;( WXgy ii =  where the model can be considered as a neural 
network, and W are the weights of a neural network.  By optimizing the 
parameters ,W we will be able to minimize the probability of 
misclassifying a given facial image.  Perceptron, regarded as one of the 
earliest form of neural classifier, is a well-known linear discriminat 
developed in the early sixties for recognizing simple characters, although 
it was later proved to be unable to handle a linear non-separable problem.  
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In Chapter 1, we have shown the principle of its operation and how its 
weights are determined.    

There are several types of widely used classifiers including K-
nearest neighbour, multi-layer Perceptron (MLP), Radial Basis Function 
network, Support vector machines (SVM), Bayesian classifiers, and 
Decision Tree.  They are either in the category of statistical classifier or 
machine learning classifier. Some of these have been thoroughly 
described in the previous chapters.  Classifiers have been successfully 
applied to a wide range of applications including handwriting recognition, 
finger print recognition, speaker identification, and text categorization, 
faults diagnostic, etc. Most recently it has been extended to the 
application of handling the emerging micro-biology problems. The 
advent of complementary DNA (cDNA) microarrays technology enables 
computer scientists to measure the expression levels of thousands of 
genes in a single experiment. cDNA microarrays technology allows 
detection of the expression levels of thousands of genes at a time.  
Bioinformatic researchers, biologists and medicine researchers are now 
able to compare different ribosomal proteins or genes coding for all sorts 
of medical purposes.  This provides a new way to understand and 
investigate the differences in the gene expression patterns.  

In microarrays cDNA classification, neural classifiers are used for 
classifying whether a given patient’s data is cancer positive or not.  Prior 
using a classifier, advanced features selection technique is used to extract 
the informative genes among the thousands genes because a microarrays 
dataset usually consists of thousands of features and classifiers usually 
find handling a huge feature set difficult.  Thus in the later section of this 
chapter, some classification and feature selection methods will be 
discussed.   

Tables 6.1 show interesting results obtained from a 10 fold test on 
different diseases and classifiers. The classifiers studied include k-NN, 
MLP, SVM, and Decision Tree.  In the tests, only the most prominent 50 
features are selected from a feature selection scheme for classification.  
The numbers of data points are small so they may experience the small 
data point problem. This can be clearly seen in the Colon cancer case 
which consists of 62 data points only.  Apparently, the classification 
accuracy is significantly lower than the Lung Cancer dataset which 
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consists of 181 data points.  In this type of bioinformatics dataset, it is 
generally noticed that SVM can deliver very promising performance in 
terms of classification accuracy.   SVM and MLP are found to be 
relatively more robust to noise corrupted data, while KNN and decision 
Tree can provide very stable performance under noise free environment.  

Table 6.1 (a) Details of the four investigated cancer diseases 

Dataset Name Number of data Dimensions Number of selected 
features 

Colon Cancer 62 2000 50 
Prostate Cancer 102 12600 50 

Lung Cancer 181 12533 50 
ALL-AML 
Leukemia 

72 7129 50 

  Table 6.1 (b) Classification accuracy of Colon Tumor data (10 fold test) 

 KNN MLP SVM Decision   tree 
Mean value  0.693 0.7234 0.7412 0.6962 
Std V value 0.0089 0.0081 0.0098 0.0057 

Table 6.1 (c) Classification accuracy of Prostate Cancer data (10 fold test) 

 KNN MLP SVM Decision tree 
Mean value 0.834 0.8684 0.8725 0.8184 
Std V value 0.0046 0.0036 0.0049 0.0086 

Table 6.1 (d) Classification accuracy of Lung Cancer data (10 fold test) 

 KNN MLP SVM Decision tree 
Mean value 0.9831 0.9625 0.9874 0.9547 
Std V value 0.00078707 0.0025 0.0014 0.0013 

 Table 6.1 (e) Classification accuracy of ALL-AML_Leukemia data (10 fold test) 

 KNN MLP SVM Decision tree 
Mean value 0.824 0.8541 0.8902 0.8981 
Std V value 0.0074 0.0045 0.0047 0.0053 

 
The above results indicate that different classifiers perform slightly 

different on the same cancer classification.  The factors affecting their 
classification accuracy are very complicated including the noise level of 
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the data, the level of redundancy data, the dimensionality of the problem, 
and number of data sample etc.  But this is usually perceived as problem 
dependent. 

6.2. Support Vector Machines (SVM) 

Support vector machines (SVMs) are a new type of supervised 
learning methodology nicely developed by Vapnik and his associates. It 
is an elegant and powerful approach for performing classification based 
on the principle of structural risk minimization, for instance, minimizing 
the summation of empirical risk and the bound of risk confidence. It is 
worth pointing out that most classifier like multi-layer Perceptron 
network can perform classification, but they are prone to the risk of 
finding trivial solutions that overfitting the data.  Its learning algorithms 
do not guarantee to minimize the margin errors over all hyperplanes.  
The advantages of SVMs over traditional multi-layer Perceptron 
networks are their better generalization ability and global minimization.   

A typical classification problem is the separation of positive 
members from negative members. Generally, we are required to build a 
conventional classifier separating the positive members from negative 
members.  If the data points in the training set are vectors of m numbers, 
the development of such a classifier is to find a hyperplane that is able to 
separate the members.  In most real-world problems, the problems are 
usually not ideal and they involve non-separable data.  This means that 
there may not be a hyperplane allowing us to separate all the positive 
members from the negative members. SVMs map a given training set 
into a possibly high-dimensional feature space in an attempt to determine 
a hyperplane that separates the positive members from the negative 
members.  Much of the beauty of SVM's comes from its elegantly 
defined criterion for selecting a separating plane because there may 
usually be many high-dimensional candidate planes available for doing a 
similar job.  SVM is able to select the plane that maintains a maximum 
margin in the training set. This is important because statistical learning 
theory suggests that the choice of the maximum margin hyperplane will 
lead to maximal generalization when the result is used for predicting 
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classification of unseen data.   The theory enables us to find a separating 
hyperplane in the feature space simply by defining a Kernel function.     

Let the training data be { }, 1,...,ix i N= . The corresponding class 
labels are { }| { 1,1}i iy y ∈ − . If a hyperplane separates the two classes 
successfully, the data point x lying on the hyperplane 
satisfies 0=+⋅ bxw . Let mind the minimum distance from the 
hyperplane to a datum with label “1” or “-1”. In SVM, mind  is selected as 
1. Then the training data satisfy 

 
1,   for 1i iw x b y⋅ + ≥ =

 (6.1) 

 
1for   ,1 −=≤+⋅ ii ybxw

 (6.2) 
Thus Eqs. (6.1) and (6.2) with equality define two parallel 

hyperplanes H1 and H2. The above inequalities can be combined into 
one inequality: 

 
( ) 1 0,i iy w x b i⋅ + − ≥ ∀

 (6.3) 
The distance between H1 and H2 is 2 / w , which is also called 

margin. SVM tries to maximize the margin to deliver the good 
classification performance, under the constraint of Eq. (6.3). This can be 
expressed by a Lagrangian: 
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 (6.4) 
The above problem can be converted to a dual one and the solution 

of classification can be obtained using an optimization method. For a 
non-separable case, slack variables can be introduced in Eqs. (6.3) and 
(6.4). Despite the excellent classification ability of SVMs, they are 
unable to provide a visualized classification result. Class boundary 
between the two classes cannot be visualized for users.  The process may 
appear to be obtained from a mathematical tool-box only.  In some cases, 
this may be rather restrictive when boundary information is useful for 
enhancing the classification results.  The boundary information may 
provide useful information on the relative distance of the instances 
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during classification. The next section will then describe a new type of 
classification tool called SVM visualization (SVMV).   

6.2.1. Support Vector Machine Visualization (SVMV)  

SVMV is a useful tool to visualize the SVM classification results.  
SVMV is developed by exploiting the advantages of both SVM and 
SOM. SVMV gives additional information about the classification 
boundary. That is, data close to the class boundary can be classified 
directly from visualization. The distance between a datum and 
classification boundary can be directly visualized in a low-dimensional 
space.  As a result, we are able to minimize the possibility of mis-
classification of data when they appear to be too close to the 
classification boundary. The whole classification results obtained by 
SVM can be clearly elaborated through visual clarification.  

In general, there are two main types of SVMs models for binary 
classification: C-SVMs and v-SVMs. But in terms of classification, v-
SVMs are better than C-SVMs because the parameter (0,1)v∈  in v-
SVMs has salient physical meaning and is thus used in this section to 
illustrate the theory of the SVMV.  Suppose an empirical 
dataset 1 1( , ),..., ( , )n nx y x y , where d

ix ∈ℜ  is a d-dimensional input 
vector, yi∈ {±1} is the binary class label, n is the number of input data. 
As illustrated in Fig. 6.1, v-SVMs try to separate two classes using an 
optimal hyperplane that maximizes the margin of separation. It solves the 
following primal problem: 
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where ϕ  is a mapping function from input space to high-dimensional 
feature space, dW ∈ℜ  is a vector perpendicular to the optimal 

hyperplane in feature space, 0
db ∈ℜ  is a bias vector, iξ  is a slack 

variable for allowing classification errors, dρ ∈ℜ is  another bias vector, 
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and v is a parameter discussed before. Instead of solving problem Eq. 
(6.5) directly, v-SVMs solve its dual problem as follows: 
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where iα  is a Lagrange coefficient. The solution of iα  in Eq. (6.6) can 
be used to compute w, 0b , and ρ  in (1) [20]. To avoid computing the 
dot product in the high dimensional feature space, SVMs use kernel 
functions. After the completion of optimizing Eq. (6.6), the data points 
with 0 1/i nα< <  are called support vectors (SVs). 

Optimal
hyperplane

Support vectors
Support vectors

/ wρ

/ wρ

 

Figure 6.1. Illustration of the separation of two classes by v-SVM 
 

The decision function for the binary classification of the data is 
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The bias function for a new input z is 
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 (6.8) 
The distance between z and the optimal hyperplane (classification 

boundary) in feature space is 

 
( ) /f z w

  (6.9) 
For the SVs with 0 1/i nα< < , the value of Eq. (6.8) is ρ  or ρ− , 

and that of Eq. (6.5) is / wρ . For the data points lying in the 

classification boundary, the value of Eq. (6.8) or Eq. (6.9) should be zero. 
In SVMV, SOM is firstly trained. The SVMs are then applied to the data 
to find the optimal solution of classification. Using the result from SVMs, 
the distances (or bias) between feature vectors of neurons of the SOM 
and optimal hyperplane of SVM in high-dimensional feature space can 
be obtained. The classification boundary can be found and visualized in 
the neurons with zero distance (bias) to optimal hyperplane. The detailed 
procedure of the SVMV algorithm is described as follows: 

 
Step 1. First, an SOM algorithm is trained to obtain the topology-

preserved weights{ }iw , i=1,…, m. 

Step 2. Then v-SVMs are used to obtain the optimal value 
of ,  1,...,i i nα = , according to Eq. (6.6). 

Step 3. Interpolation is performed between the neighboring pairs of 
weights { }iw in SOM and therefore extended weight vectors 

{ }'iw are formed to obtain a more precise map. The detailed 

interpolation will be explained in the next subsection. 
Step 4. After that, the bias function ( )if w′ on the extended weight vectors 

{ }'iw  is computed according to Eq. (6.10): 
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Step 5. Finally a 2-D map of SOM is colored according to the values 
of{ }( )if w′ .  The neurons with grey color, whose bias ( )if w′ is 

larger than 0, belong to class “1”.  On the contrary, the neurons 
with white color, whose bias is less than 0, belong to class “−1”. 
Obviously, the bias ( )if w′ of the neurons on the boundary is 
equal to zero. So the classification boundary can be detected 
by ( ) 0if w′ = .  

 
Due to the topology preservation of SOM, if a datum in the input 

space is close to classification boundary, they are also close to each other 
in the reduced low-dimensional space.  The distance between data and 
classification boundary can be displayed on the reduced low-dimensional 
space.  In Fig. 6.2, they show some of typical examples of using SVMV 
for classification of leukemia dataset which consists of 72 leukemia 
samples with 7129 genes. The following results show the training data 
contain 27 acute lymphoblastic leukemia (ALL) samples and 11 acute 
myeloid leukemia (AML) samples. The testing data contain 20 ALL 
samples and 14 AML samples. AML samples are labeled with class “+1” 
while ALL samples are labeled with class “1”. The kernel width σ  is 
selected as 1 and 10. The AML and ALL samples are visualized by cross 
and dot symbols, respectively.  For the training data, the data with the 
same class are located in the region of the same color. This indicates the 
training data are well classified with 100% classification accuracy. For 
the testing data shown in Fig. 6.2(b), there is only one neuron out of the 4 
AML samples located in the white region which represents ALL samples.  
It means a classification error of 11.8% for the testing data.  SVM with a 
small RBF kernel width means that the classification boundary is more 
complicated. Although the classification can be very good for training 
data, it has poor generalization for classifying testing data. In Fig. 6.2 (c) 
and (d), when the RBF kernel width σ  is selected as 10, the 
generalization of SVM is improved. The classification accuracy is 100% 
for both the training and testing data. In this section, the SVMV method 
is a hybrid approach of both SVM and SOM.  It achieves good 
visualization effect with classification boundary. Unlike SVM that 
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cannot explain the whole classification mechanism, the SVMV provides 
2-D visualization on complicated classification results. 

 

Figure 6.2. Visualization results on the leukemia dataset by SVMV (a) (σ=1) 
Visualization on the training data (b) (σ=1) Visualization on the testing data (c) (σ=10) 
Visualization on the training data (d) (σ=10) Visualization on the testing data 

6.3. Cost Function  

In previous chapters, we have shown the use of mean squared error 
(MSE), and higher-order cumulants cost functions on different learning 
algorithms. The choice of cost function is dependent upon the 
applications.  We have also shown that a careful design of cost function 
can enhance the generalization, and convergence rate of the network 
performance. For instance, for general regression problems of which the 
objective is to model the relationship between the input variables and 
output variables. The use of MSE or MSE-FOC cost function will have a 
positive effect of enhancing the learning performance.  For classification 
problem, the objective is largely different. A classifier is to model the 
posterior probability of class membership with input variables.  When 
MSE cost function is used, there are differences between the objectives 
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of training a neural classifier and delivering good classification 
performance. By minimizing the MSE cost function, the training 
algorithms are aimed to make the output of a network approximates the 
discrete values, such as 0 and 1, as close as possible. But a classification 
task is generally made on the basis of hard decision rules. That is, we 
classify a given observation to the class having the maximum output in 
order to minimize the classification error probability. In this sense, the 
requirements on the output of a classifier can be relaxed. It is largely 
satisfactory that the output of a classifier can correctly distinguish 
different class patterns, although the value of output may not be able to 
approximate the designated value (1 or 0) closely. In a training process 
of using MSE cost function, the patterns that have been correctly 
recognized still have an unnecessary contribution to the subsequent 
training process. This may reduce the convergence rate and cause 
overfitting.  

When we are designing classifiers, our aim is clearly to enhance the  
classification ability, the minimum classification error function (MCE), 
which was proposed for achieving minimum classification error, is a 
good choice over the conventional MSE.  The concept of MCE cost 
function is to find a set of classifier parameter together with their 
associated decision rule such that the probability of misclassifying any 
given observations can be minimized.  

 Although the MCE function enables the neural classifier to be 
directly constructed to minimize the classification error, there is certain 
difficulty in implementing MCE based classifiers. The selection of a 
smoothness parameter ξ  of MCE has a marked effect on training a 
classifier. A large ξ  results a rather rugged error surface in which a lot 
of local minima may cause sub-optimal results. On the other hand, when 
ξ  is set to a small value, the error surface of the MCE becomes 
smoother. Dynamically changing of ξ  is an option to improve the 
classification performance and the convergence rate.  It is an algorithmic 
approach to adjust the smoothness parameter ξ  when the training 
proceeds but requires more implementation effort. In the following 
sections, we discuss the MCE and a hybrid MSE-MCE cost functions for 
classification. 
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6.3.1. MSE and MCE Cost Functions 

Assume that patterns in dataset ),...,,( 21 ′= NxxxX  are fallen into J 
categories. We also assume a classifier has J output units, for instance, 
one output unit corresponds to one class.  Below, for convenience, for a 
data pattern ix , let ),...,,( 21 iJiii tttt =  and ),...,,,( 321 iJiiii yyyyy =  be the 
output target and the actual output of a classifier, respectively. For a 
pattern (say, ix ) belonging to the class ),,2,1( Jjcl j ⋅⋅⋅= , it is defined 

that  

 ⎩
⎨
⎧

≠
=

=
jk
jk

tik     ,0
     ,1

 
Mean square error function, mseE , commonly used for training 

classifiers, can be expressed as 
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In Eq. (6.11), the classification decision rules are not directly 
reflected. Through minimizing Eq. (6.11), the output of classifier 
approximates the target (1 or 0) as close as possible. A hard decision rule 
is directly adopted in the MCE function [11, 12]. In the MCE function, 

),...,,,( 321 iJiiii yyyyy =  are the outputs of a set of the discriminant 
functions. Generally, the class is determined as  

 kx cls∈
 if 1

( ) arg max ( )k jj J
y x y x

≤ ≤
=

 
Based on this type of decision rule, for x belongs to the class mcl , 

recognizing x correctly requires ym to be larger than other y. Also, the 
larger the difference between ym and other y is, the smaller the 
misclassification risk will be. Thus, the difference between ym and the 
largest y can be used to measure the classification ability of the built 
discriminant function set. This is the rationale behind the 
misclassification measure Eq. (6.12) defined in [11].  
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where p is a positive constant, and Λ be the parameter set of the 
discriminant functions. A small value of )(md  indicates a low 
misclassification probability. With different p, one can take all the 
potential class into consideration to a different degree. When p is large 
enough, we have  
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That is, for a large p, Eq. (6.12) is able to directly reflect the hard 
decision rule. We can set that p = 10. For convenience, we rewrite Eq. 
(6.12) in a form of output vector iy  and target vector it  
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where ( )′• means the transpose of vector • . In Eq. (6.12) or Eq. (6.13), 

0)( <md  indicates a correct class determination, whereas 0)( ≥md  
results in a misclassification determination. With )(md , the 
misclassification error function (MCE) is  
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where 0>ξ , and mi clsx ∈ . Obviously, Eq. (6.14) increases with the 

decreasing of )(md . Optimizing Eq. (6.14) can directly maximize the 
classification ability of the constructed model. Eq. (6.14) is a smooth 
zero-one function and can be optimized using gradient decent type 
algorithms. The MCE on the whole dataset { }NxxxX ,...,, 21=  is the 
mean of MCE results on all patterns, for instance, 
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The MCE Eq. (6.15) evaluates the classification ability of a 
classifier in a direct way.  This is a clear advantage of enhancing the 
classification performance.  

6.3.2. Hybrid MCE-MSE Cost Function  

First we would like to focus on analyzing the MCE function before 
we move to the hybrid MCE-MSE cost function. In a batch version of 
gradient descent learning, the direction of updating is the average of 
negative gradient of all patterns. It is expected that the patterns far from 
being correctly classified should impose more effect on the parameters 
adjustment, while the patterns close to the target should have less effect. 
In this sense, the MSE function satisfies the requirement well. But, the 
MCE function Eq. (6.16) is unable to satisfying the above requirement 
because 'MCEE  decreases with the increase of dm for misclassified 

patterns (i.e., dm > 0). This shows that the data patterns that are far from 
being correctly classified may have small or even negligible effect on 
adjusting the parameters.  

For example, for a data pattern x, the real output is ),( 21 yyy = and 
the target output is )0,1(=t . We have the 2-dimensional MCE function  

 1 2( )

1
1mce y yE

e ξ− − +=
+  (6.16) 

Fig. 6.3 illustrates the relationship between ),( 21 yyy =  and the 
derivative 1yEmce ∂∂ .  Table 6.1 lists several values of 1/ yEmce ∂∂ , and 

1/ yEmse ∂∂ , and their corresponding outputs. Take point 1, point 2 and 
point 3 as examples. The situation of point 1 certainly satisfied the above 
requirement because its output is close to the target and 1/ yEmce ∂∂  is 
very small. But for point 2 and 3, it is desirable to have a larger value of 

1/ yEmce ∂∂  to minimize the classification error.  The 1/ yEmce ∂∂ values of 
these points, however, are small. This illustrates that using gradient 
decent type training methods to optimize mceE  may not assure a 
satisfactory convergence rate and the subsequent classification results. 
This shortcoming can be addressed by dynamically controlling the 
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smoothness parameterξ , but this approach is rather problem dependent 
and may not be straightforward for implementation.  

 

Figure 6.3. It shows the relationship between 1mceE y∂ ∂  and the classifier output 
1 2( , )y y y= . Supporting that, for this 2-class, the target for an input data pattern 

is (1,0)t = . Its MCE function is 1 2( ) 1[1 ]y y
mceE e ξ− − + −= +  

Table 6.2 Gradient value of MCE function and MSE function 

Target [y1, y2] = [1 0] 

Point No. Output [y1, y2] 

Gradient of MCE 
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1 [0.9  0.1] [0.0031   -0.0031] [0.1000   -0.1000] 

2 [0.5  0.9] [0.3133   -0.3133] [0.5000   -0.9000] 

3 [0.1  0.9] [0.0061   -0.0061] [0.9000   -0.9000] 

 
We can consider a hybrid cost function   

 

1 ( )
2 mse mceE E E= +

 (6.17) 
The MCE-MSE cost function encompasses the properties of both 

MCE and MSE. The MSE part of this cost function enables the patterns 
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with large classification errors to be taken into account irrespective of the 
value of ξ in the MCE. The shortcoming of MCE is compensated in a 
more simple way.  The MCE-MSE function maintains the balanced 
property of MCE and MSE functions and provides a balanced 
performance on convergence rate and classification results.    Similar to 
the MCE function, selecting different value of smoothness parameter ξ  
affects the performance of the MCE-MSE based learning algorithm, and 
usually ξ  can be fixed as 1 for most problems. 

We use RBF classifier solving a two-spiral classification problem as 
example. The training processes are stopped when the classification error 
has not further decreased for 100 training epochs continuously. The 
averaged results of 10 trials are listed in Table 6.2 where ξ  of the MCE 
function is 1. It shows that both the number of epochs and running time 
required by the MCE cost function are significantly larger compared with 
the proposed MCE-MSE based cost function.  

Table 6.3 Comparisons of different cost functions 

Cost 

function 

Number of 

epochs  

Running time 

(sec) 

Classification error 

(%) 

MCE-MSE 5380 267 2.0 
MSE 6040 383 12.6 

MCE 15,340 1.31×103 1.9 

 
Typical convergence curves are shown in Fig. 6.4. Due to the 

complex boundary of this problem, the training process generally begins 
with 50% classification error. That is, a major part of patterns are far 
away from being correctly recognized. To swiftly reduce the 
classification error requires weighing the misclassified patterns more 
than the correctly-classified patterns. MSE function is able to meet this 
requirement, whereas MCE function has difficulties to satisfy this 
condition. Thus, the convergence rate of MSE and the MCE-MSE based 
gradient algorithms are much faster than the MCE based approach.  In 
terms of classification results, the hybrid MCE-MSE based algorithm 
shows promising performance compared with other approaches.  
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Figure 6.4. A typical convergence curves of different cost functions on the two-spiral 
classification problem 

6.3.3. Implementing MCE-MSE  

RBF network is used to illustrate the implementation of MCE-MSE 
hybrid cost function because of its excellent classification ability 
compared with feedforward networks. The centers of the RBF networks 
are firstly initialized. As all data are normalized to the interval [0, 1], the 
widths of hidden neurons in RBF network are determined by 

Idr ×= 0σ  where Id is the identity matrix, and 7.00 =r  is used. The 

linear weights ( )2(W , )(lW , B ) of RBF network are randomly initialised 
with the values between 0 and 1. After initialisation, we can use the 
learning algorithm listed in the following flow diagram.  
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The adjustment of parameters of hidden units is a non-linear process 

based on the MCE-MSE function Eq. (6.17), whereas the identification 
of weights between the hidden and the output layers is a linear one based 
on MSE function Eq. (6.11). Using a simple RBF network, the function 
can be expressed as  

 
(2) ( )( ) lY f X Z W X W B= = × + × +

    
where Z is the output matrix of the hidden layer. The linear parameters in 
f(X), i.e., W(2) and )(lW , can be calculated by minimizing the MSE 
function, 
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where +⋅][  is defined as the pseudoinverse of ][⋅ . Both the MSE function 
and the MCE function are smooth and differentiable functions, and can 
be conveniently minimized using gradient descent method. The updating 
rule of the hidden layer parameter using MCE-MSE function Eq. (6.17) 
is  
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 (6.19) 

where τΛ  denotes the parameter c  or σ  at the th τ  step. The updating 
rules of Λ based on MSE, i.e., mseΔΛ , have been explained in [3, 8] 
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Simply based on the definition of the MCE function, mceΔΛ  is 
solved as follows. 

 

( )
( )

( )
( 1) ( )

2( )1 1

( ) ( )
N J

ik jk mce
jk j i jrmce

i r irjk

x c Ec g x w
y

τ
τ τ

τ
η τ

σ
+

= =

− ∂
Δ =

∂∑ ∑
 (6.22) 

Setting that 
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according to Eqs. (6.13) and (6.15), we have 
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In Eq. (6.25), ×⋅  is a type of matrix operator, and BA ×⋅ is the 
entry-by-entry product of matrix A and B. The modification rule of the 
center c  based on the MCE-MSE Eq. (6.17) is  

 
( ) ( )( )( 1) ( ) ( 1) ( 1)1

2jk jk jk jkmse mce
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where ( )

msejkc )1( +Δ τ and ( )
mcejkc )1( +Δ τ are given in Eq. (6.20) and Eqs. (6.22-

6.25) respectively. In the similar way, the updating rule for the widthσ  
based on MCE-MSE function is  
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where ( )

msejk
)1( +Δ τσ  has been given in Eq. (6.21). And ( )
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where irmce yE ∂∂ is calculated using Eqs. (6.23-6.25).  
More thorough tests on the MCE-MSE cost function were reported 

in other published literature.  Three main observations are noticed. First, 
from the perspective of the classification performance, the MCE-MSE 
cost function can deliver better classification result than the MSE based 
method. Second, the MCE-MSE cost function exhibits faster 
convergence rate than that of the MCE cost function. Even, in certain 
examples, the efficiency of MCE-MSE based method is substantially 
larger than that of MCE based cost function. Third, the MCE-MSE 
function itself exhibits a natural property of faster convergence rate 
compared with MCE cost function.  It is worth noting that the enhanced 
convergence rate does not require the use of complicated algorithm for 
adaptively adjusting ξ , which makes it computationally efficient and 
easy for implementation. 
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6.4. Feature Selection 

Feature selection is an important pre-processing prior classification. 
It identifies the salient features from the given feature sets for sequential 
data analysis. In most practical classification and recognition problems, it 
is very common that a large number of features are given while only a 
fraction of them are useful to the job.  For example, in the problem of 
sonar signal recognition, data are collected using an array of sensors. But 
there is not need to use all the collected data from all sensors to classify 
the sonar signal. Feature selection is to preprocess a given dataset so that 
we can obtain a smaller subset of representative features for 
classification or recognition.   

In a case of face recognition, it is perceived as a common sense that 
increasing the number of extracted features may lead to an increase of 
recognition rate.  This, however, does not suggest that we may ever 
increase the size of feature set, for instance, by extracting irrelevant 
features. In practice, we experience that the overall performance of 
recognition is degraded when the feature set is increased beyond certain 
level.  This is due to the problem of curse of dimensionality, which was 
firstly introduced by Bellman at 1961.  The issue refers to the 
exponential growth of hyper-volume as a function of dimensionality.  

In neural computing, the problem can be viewed from two 
perspectives. First, a neural network maps an input space to an output 
space. A neural network thus requires representing every part of its input 
space reasonably well in order to know how that part of the space should 
be mapped.  Covering the input space undoubtedly requires resources.   It 
is noted that the amount of required resources is proportional to the 
hyper-volume of the input space. Including too many irrelevant 
dimensions causes a network using lots of irrelevant inputs which results 
performance degradation.  When the dimension of an input space is high, 
a network uses virtually all its resources to represent irrelevant portions 
of the space.  Second, if we include more irrelevant attributes, we 
increase the size of the input space.  This increases the ‘distance' between 
two similar instances. In the case of neural computing, a neural network 
cannot tell which attributes are irrelevant or not. The network will try to 
include all of them in the best possible way. This may not be a problem 
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in the learning phase but the network may experience significant problem 
when it is required to generalize new unseen instances. The network 
suffers from the problem of overfitting, which means it tries too hard to 
represent all of the data.  As a result, incorrect and highly noisy data 
presented to it are also included during the network training.   

We use the cDNA microarrays Colon cancer classification as an 
example to illustrate the problem of “curse of dimensionality”.  In the 
following table, it shows the classification accuracy decreases when 
more features are presented to the two classifiers.     

Table 6.4 Mean Classifying accuracy Colon Tumor data of ten fold tests 

No of selected 
features 

KNN MLP SVM Decision tree 

50 0.693 0.7234 0.7412 0.6962 
500 0.3774 0.6887 0.8226 0.7032 
1000 0.3516 0.6758 0.7806 0.7452 
2000 0.3484 Not available 0.7516 0.6613 

 
Rather than representing the entire given input features to the output 

space, feature selection is an important approach to remove the unwanted 
attributes. When we are selecting the best possible feature subset for 
performing classification, establishing reliable criteria for evaluating the 
‘goodness’ of feature subsets is crucial. Based on the type of evaluation 
criteria, feature selection models fall into two main categories – the filter 
model and the wrapper model. In a wrapper model, the correct 
recognition rate or error rate of classifiers is directly used for feature 
selection. Using this type of criteria guarantees high accuracy, but they 
are usually very computationally demanding. In filter models, various 
statistics based criteria were developed to measure feature relevance, i.e., 
the relationship between features and class labels, and/or feature 
dependence, i.e., the relationship among features. The principle is that 
the features carrying little or no additional information beyond the 
selected features are considered redundant and are discarded.  There are a 
number of ways for measuring the feature relevance and dependence. 
These include linear dependence, correlation coefficients, consistency, 
and the mutual information (MI) between the selected input variables and 
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output class labels, called MIIO.   Before we can further discuss MIIO 
method, background on the information theory must be included. 

6.4.1. Information Theory 

Claude Shannon introduced the subject of information theory in 
1940's during his work on communication engineering.  The 
development of Information Theory is arguably to be one of the greatest 
intellectual achievements of the twentieth century engineering work. 
Information theory has had a pivotal contribution to the 21st century 
digital communication technology.  It has also had a significant impact 
on applied mathematics, particularly on probability theory.  Information 
theory, originally developed as “A mathematical theory of 
communication”, can provide us with how uncertain a random variable is 
and how relevant different variables are.  

6.4.1.1.  Mutual Information 

Mutual Information is used for determining the significance of each 
feature among a given huge feature set for feature selection.  But before 
we move to the concept of mutual information, we need to introduce the 
concept of entropy.  Entropy, originated from thermodynamics, has been 
extended to statistical mechanics and information theory [2]. For a 
discrete distribution modeled by X = {x1, x2, ……, xN}, entropy measures 
the “information” conveyed by X. The “information” means the 
uncertainty or the degree of surprise for a particular value of X being 
drawn. Suppose that x is a value drawn from X, and the event x = xk 
occurs with probability pk, the sum of the probabilities for x = xk (k = 1, 2, 
……, N) is 1, i.e., 11 =∑ =

N
k kp . In the case of pk = 1, there is no 

uncertainty or surprise for x = xk. A lower value of pk increases the 
uncertainty or the “information” when it is known that x = xk occur. Thus, 
this “information” is generally measured by I(xk) = -log(pk). The 
“information” contained by the whole event set X is called entropy 
enumerated by the expected value of -log(pk), i.e., 



 Classification and Feature Selection 237 

 
∑
=

−==
N

i
ii ppxIEXH

1
log))(()( k

 (6.27) 
A large value of entropy H(X) indicates a high uncertainty about X. 

When all the probabilities, i.e., pk for all k, are equal to each other, we 
have the maximal uncertainty which the value in X is taken, and the 
entropy H(X) achieves its maximum log(1/N). Conversely, when all the 
pi except one are 0, there is no uncertainty about X, i.e., H(X)=0.   

When X is a continuous variable, Eq. (6.27) will be extended to 
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x

dxxxpXH )log()()(
 (6.28) 

Mutual information was firstly used by Claude Shannon to describe 
the dependence between two variables. The mutual information between 
them is zero when the two variables are independent.  On the other hand, 
the mutual information between them is large when the two variables are 
strongly dependent. There are, however, other interpretations of the 
mutual information.  It can be used to describe the stored information in 
one variable about another variable.  As a result, we will be able to tell 
the degree of predictability of the second variable when the first variable 
is known.  These interpretations may appear slightly different from the 
original on, but they are all related to the same issue of dependence and 
correlation. Mutual information is developed to assess the relation 
between two variables. Given two variables X and Y, the conditional 
entropy H(Y|X) measures the uncertainty about C when X is known. And 
the mutual information (MI) I(X;Y) measures the certainty about Y that is 
resolved by X. Apparently, the relation of the entropy H(Y), H(Y|X) and 
I(X;Y)  is );()|()( CXIXCHCH += ,  

or, equivalently,  

 
( ; ) ( ) ( | )I X C H C H C X= −

 (6.29) 
Also, it can be noted that I(X;Y) = I(Y;X).  To evaluate the 

conditional entropy H(Y|X)  is  
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The MI between X and Y is defined by Shannon as  
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Besides, MI can be seen as the difference between the joint density 
p(y, x) and the distance p(x)(y). The Euclidean MI is defined as  
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And based on the Cauchy-Schwartz inequality, i.e., 0
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where f(x, y) and g(x, y) are p(x, y) and p(x)p(y), respectively. 

6.4.1.2. Probability density function (pdf) estimation 

Most engineering or physical science research, implicitly or 
explicitly, assume that the signal and the observation noise are well 
described as Gaussian random sequences. In most machine learning 
processes, the underlying probability density functions (pdf) are required 
for the evaluation of MI and entropy. There are two popular ways to 
estimate pdf. One is histogram, and the other is mixture model. 

Hitherto, the most commonly used technique for estimating the pdf 
of a continuous-valued random variable is histogram.  The idea behind 
histogram is simple. For a variable x, a set of events {x=x1, x=x2, …, 
x=xn} is given. Histogram defines the underlying probability of x using 
the appearance frequency. For example, assume that a series of values of 
x is {0, 0, 1, 0, 2, 3, 2, 0}. There are totally 8 values collected from x. 
Base on these values, histogram determines p(x = 0) = 4/8 = 0.5,          
p(x = 1) = 1/8, p(x = 2) = 2/8, and p(x = 3) = 1/8.  Generally, histogram is 
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shown as a bar graph. In Fig. 6.5, the histogram of the example is 
illustrated.  

x = 0 x = 1 x = 2 x = 3

0.2

0.4

0.6

 
Figure 6.5. 

 
Obviously, histogram can only deal with discrete/categorical 

variables. For a continuous variable, a discretization process is required. 
In a 2-dimensional data space, a histogram can be constructed feasibly, 
but two major problems may be experienced in a high-dimensional data 
space. First, the increase of data space dimension might have 
significantly degraded the estimation accuracy due to the sparse 
distribution of data, especially when the size of data set is relatively 
small. Second, the required memories exponentially increase with the 
number of dimensions.  This problem may become horrendous when one 
handle a dataset with huge number of attributes, for instance, an cDNA 
micrroarrays dataset with over 10 thousand features. 

It is widely believed that continuous pdf estimators are more 
accurate than histograms. Parzen window is a popular mixture 
probability estimation model, in which all the known data points are used 
as kernel centres.  Given a dataset X = {x1, x2, ……, xn}, Parzen window 
estimator is modeled as  
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where κ is the kernel function of Parzen window, and h is the parameter 
to determine the width of the window. With the proper selection of 

)(⋅κ and h, a Parzen window estimator can converge to the real 
probability density. The kernel function is required to be a finite-value 
nonnegative function satisfying  
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The width parameter h is required to decrease until 0 with the 
increase of the number of the patterns used, i.e., 0)(lim =

∞→
Nqh

Nq
.  

A symmetric Gaussian function is a typical choose of κ . The 
general Gaussian function in an M-dimension space is modelled as 
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where iΣ  is determined according to the covariance of X. There are 
many approaches for choosing h. In [7], for instance, it is set that 

Nxh log/1= , and in [8], ( ) )4/(1)4/(1)2(4 +−++= MM nMh , where n and M 
are the number of patterns and the dimensionality of dataset X,  
respectively.  

6.4.2. MI Based Forward Feature Selection 

Due to the difficulties in high dimensional data spaces, a forward 
searching is usually adopted. An MIIO based forward feature selection 
algorithm is realised as follows: 

1. (Initialization) Set F← ”initial feature set”, S ← Empty; 
2. Ffi ∈∀ , compute )( ifMIIO ; 
3. Find the feature kf that maximizes ( )iMIIO f , 

set }{ }{ kk fSfFF ←← ,\ ; 
4. Repeat until stopping criterion is met; 
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5. Calculate )( ifSMIIO +  for all f F∈ ; 
6. Choose the feature Ff k ∈  that maximizes the )( ifSMIIO + ; 
7. Set }{ }{ kk fSfFF ←← ,\ ; 
8. Output the set S. 
 
In the above process, the MIIO increases gradually. Also, the 

incremental MIIO at each iteration gradually decreases to zero where all 
the relevant features are selected. Using these properties, the forward 
process can be stopped when the incremental MIIO is small enough 
because it indicates that the features left in F contain very little additional 
classification information beyond the selected feature set S.  

 Hall (1999) developed a Correlation coefficient based feature 
selection (CrFS) in which the feature selection criterion, sCorr  is defined 
as 

 ff

cf
s

rmmm

rm
Corr

)1( −+
=

 (6.37) 
where m is the cardinality of S, cfr  is the average feature-class 
correlation, and ffr  is the average feature-feature correlation. In the 

sCorr  Eq. (6.37), the numerator indicates the predictiveness of the 
feature set S; and the denominator measures the extent of redundancy 
existed in S. Apparently, the higher the sCorr is, the better the feature set 
for classification will be. For a given feature set, both the irrelevancy 
features and the redundant features have effect on reducing the value of 

sCorr . When the sCorr is determined, the relationship between the 
individual features and output class labels, and the relationship between 
two features are considered. Also, the correlation coefficient is a type of 
linear analysis, in which the nonlinear dependence between two variables 
may not be measured.  

The concept of Consistency based feature selection (CsFS) was 
introduced to measure the consistency of data described by the feature 
set S with their class labels. syConsistenc  is defined as 
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where, for a feature subset S, J is the number of distinct data patterns 
described by S, all

in  is the number of occurrences of the ith distinct 

pattern, mj
in is the largest number of occurrences of the ith distinct pattern 

in the same class, N is the number of all patterns. To support that, there is 
a group of n patterns in which all patterns match with each other without 
considering their class labels.  In this pattern group, n1 patterns belong to 
class 1, n2 to class 2, n3 to class 3, where n=n1 + n2 + n3. If n3 = max (n1, 
n2, n3), the inconsistency count of this pattern group is (n - n3). A higher 
value of sConsistency indicates that the distribution of data patterns 
defined by S is more similar to that of the class labels. 

CsFS is sensitive to noise data.  Also, in order to calculate the 
sConsistency , continuous input variables should be discretized in a way 

similar to produce histograms. CsFS suffers the same problem of 
histograms that the pattern shortage substantially degrades the 
performance of CsFS.  It is worth noting that 1sConsistency =  may  
not be a reliable indication that the best feature subset is selected.  In  
a high-dimensional space, there are hardly sufficient matching patterns 
due to the sparse distribution of data patterns.  From Eq. (6.38), 

1sConsistency =  can be obtained because 0=− all
i

mj
i nn for any i.  

6.4.2.1. MIFS and MIFS-U 

Battiti (1994) and Kwok and Choi (2002) employed MIIO to select 
feature. As shown in Fig. 6.6, because of the high-dimensional problems 
experienced by histograms, Battiti and Kwok did not direct estimate 
MIIO ( );( CfSI i+ ) represented by the area A1+A2+A3.  Instead, they 
analyzed )|;( SCfI  represented by the area A1 through the 2-
dimensional MI. These methods are acceptable because the area A2+A3 is 
common for Ffi ∈ . To analyze )|;( SCfI  represented by the area A1, 
Battiti’s MIFS used 
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and Eq. (6.40) was used in Kwok’s MIFS-U. 
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Figure 6.6. The relation between input feature variables and output classes in terms of MI 
 
This indirect analysis on high dimensional MI generates two major 

problems, i.e., sub-optimization and no estimate on the ANSF.  Also, 
these methods cannot provide a principled guide to reduce the 
redundancies. In Eqs. (6.39) and (6.40), the parameter β  is aimed at 
regulating the relative importance of MI between f and S with respect to 
the MI of f with output classes. Also, β  determines the capability of 
handling the redundant features.  Despite the importance of β , there is 
no guideline provided for its selection.  The selection of β  is rather 
problem dependent and does require strong experience.  

6.4.2.2. Using quadratic MI 

Given a classification task with class labels C, and the selected 
feature set S, the criterion MIIO of a feature S)( ∉mm ff  is defined as,  
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The MISF measures the similarity between the feature subset S and 

a single feature fm. The similarity between S and S)( ∉mm ff  can be 
estimated by )I(S;fm . As addition of input variables have no effect on 
decreasing the MI (Cover & Thomas, 1994), )I(S;fm  has to be large 
when the MI of  mf with any feature in S is large. That is, if mf is very 
similar to )( Sff ii ∈ , mf  should be redundant to S .  Hence, given a 
feature set S, the MISF of )( Sff mm ∉  is defined as 
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When θ≥);( SfMISF m , the feature mf  is considered as a 
redundant feature to S.  Hence, the feature mf  should not be added into S 
accordingly. Using the definition of entropy and MI, we have 

);();()|()( mimimii ffIffIffHfH ≥+= . Hence 1≤θ  with the 
equality if and only if mf  contains no additional information beyond 

)( Sff ii ∈ . In general, θ  is chosen as 0.5.  
MIIO and MISF are estimated in a similar way of using the 

quadratic MI and the Gaussian based density estimators. In order to 
further reduce the computational complexity, a supervised data 
compression algorithm (Huang and Chow, 2003) is used. This data 
compression algorithm firstly clusters the whole data points {X, C} into 
homogenous subgroups },...,,{ 21 NuuuuU = . Following the clustering 
process, certain data points are sampled for each cluster. Let the data set 

},...,,{ 21 NssxsxsxSX =  be the compression result of {X, C}. For the 

cluster ju , let x
jn  be the number of data points in the original data {X, C} 

and s
jn  be the number of data points in the compressed data SX. 

Obviously, we have s
j

x
j nn ≥  due to the data compression process.  
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With the data set SX, conventional Parzen window estimator 
(Parzen, 1969) assumed that   

 s
ip N

sxp 1)( =
 (6.43) 

In order to make use of more information contained in the original 
data set, different from conventional Parzen window estiamtor, we 
estimate )( isxp  using 
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Hence, we estimate the marginal density and conditional density as  
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where },,,,,,{ 21 NllllL =  is the class label set. Actually, the proposed 
density estimator is a generalization of the Parzen window density 
estimator. In our proposed density estimator, a symmetric Gaussian 
function is chosen as kernel function. The Gaussian function in M 
dimension is  

1
0 0

0 0 1/2 2/2

( ) ( )1( , ) ( , ) exp( )
2(2 )

T

M

z z z zz z G z z
hh

κ
π

−− Σ −
− Σ = − Σ = −

Σ  (6.48) 

where Σ  is determined from the variance matrix of the overall data, h is 
the bandwidth of kernel function. In general, I=Σ is set.  There are 
many methods for choosing h. The method developed by Silverman 
(1986) is used in this paper, i.e., h in Eq. (6.48) is calculated by  
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The quadratic MI (2.6) can be extended to discrete variables as 
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Using the property of Guassian function, the quadratic MI Eq. 
(6.50), and the marginal pdfs and conditional pdfs Eqs. (6.45-6.47), we 
are able to estimate MIIO with   
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Where, 
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Only MIs between two continuous variables are required when 
estimating MISF because ).;()( iii ffIfH =  For the input data 
containing two input features af  and bf , assume that the result obtained 
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by the data compression algorithm is 
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the 2-dimensional MI );( ba ffI  can be estimated with  
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The forward feature selection is an iterative process.  It begins with 
an empty feature set and additional features are included one by one. The 
forward feature selection process can be implemented as follows. 

 
Step 1. Set F ← “initial feature set”, S ← Empty, the number of 

selected features 0j = ; 
Step 2. If cardinality (F) > 0, then compute ( )iMIIO f  for if F∀ ∈ ; 

Otherwise  goto Step 6; 
End If; 

Step 3. Choose the feature kf F∈  that 
( ) arg max( ( ))

i

k i
f

MIIO f MIIO f= ; 

Step 4. Identify the redundancy: 
 If ( )kMISF f θ≥ , then }{\ kF F f← , goto Step 3; 

Otherwise }{\ kF F f← , }{ kS f← , 1j j= + , 

( )j kMIIO MIIO f= , goto Step 5;  

End If; 
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Step 5. Stop the iterative process: 
 If 1 1( ) /j jMIIO MIIO MIIO γ−− ≤ , goto Step 6; 

Otherwise goto Step 2; 
End If; 

Step 6. Estimate the appropriate number of the selected features 
(ANSF). B ANSF j≤ ≤ , where B satisfies 

arg max( )B i
i

MIIO MIIOλ≥ × ; 

Step 7. Output the set S and ANSF. 
 
In the above stopping criteria, γ  should be as close to zero as 

possible in order to assure most of the original classification information 
are preserved in the selected features. Generally, 01.0=γ  is considered 
a small enough index for delivering satisfactory results.  The parameter 
λ determines the range of estimates. It is well known that the optimal 
feature set is rather classifier dependent. At last, we can say that one can 
use the above feature selection scheme for effectively eliminating huge 
redundancy features in a huge feature set.   This is useful in many 
nowadays physical and engineering applications.  

Exercise 

Q6.1. The average entropy ),(dH  is a binary function.   It is given 
that )1(log)1(log)( 22 dddddH −−−−= , determine 

  
(a) (0.5)H ; 
(b) The average entropy )(dH when the probability d is 

uniformly distributed in the range .10 ≤≤ d  
 

Q6.2. To understand the probability and conditional probability. 
 Based on the following knowledge, calculate the probability that 

if somebody is tall, that person must be male. It is known that the 
probability of being male is P(M) = 0.5, and the probability of 
being female is P(F) = 0.5. Also, it is known that 20% of males 
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are tall, that is p(T|M) = 0.2, and p(T|F) = 0.06. This question 
asks you to calculate p(M|T). 

 
Q6.3. To understand the entropy, conditional entropy and mutual 

information.  
To win a volleyball game, a team requires get 3 out of 5 sets. 
Thus, a game comes to end once either side has won 3 sets. 
Assume that we have two teams, A and B.  The final result may 
be AAA, ABBB, BAABB, etc. Let X be the final competition 
result, and Y be the number of sets played. Also, it is known that 
A and B are equally matched and the results of the sets are 
independent. Calculate H(X), H(Y), H(X|Y), H(Y|X) and I(X;Y). 
 

Q6.4. Coin flip problem. Flip a coin until the first head occur. Let X be 
the number of flips conducted. Calculate the probability of X = i.  
Then based on the probabilities, find H(X) in bits. The following 
equations will be useful 

 1 1
n

n

rr
r

∞

=

=
−∑

 and ( )2
1 1

n

n

rnr
r

∞

=

=
−

∑
 

 
Q6.5. Assume that X and Y are random values respectively from 

{x1,x2, …, xn} and {y1, y2, …, ym}.  
 

a) Let Z  = aX where a is a constant. Show that H(X) = H(Z); 
b) Let Z  = X + Y. Show that H(X|Y) = H(Z|Y); 
c) Let Z  = X + Y. Show that if X and Y are independent, H(Z) 

≥ H(X) and H(Z) ≥ H(Y); 
d) Let Z  = X + Y. Given a condition (i.e., the relationship 

between X and Y) in which H(Z) < H(X) and H(Z) <H(Y); 
e) Let Z  = X + Y. Under what condition does H(Z) = H(X) + 

H(Y). 
 



This page intentionally left blankThis page intentionally left blank



251 

Chapter 7 

Engineering Applications 

We have provided the general framework of Neural Computing and 
its related theories in the previous six chapters. In this Chapter, we aim to 
demonstrate the applications of the three selected areas.  The first one is 
the use of feedforward neural network on a widely interested area of 
time-series based forecasting problem. Many literatures on this topic are 
published.  In this Chapter, we introduce the way of including weather 
parameters, which are considered as noises to the model, and model 
selection to short term electric load forecasting problem.  The second 
application example is the use of Self-Organizing Map on an image 
retrieval system. This is a useful and interesting application to the IT 
area.  The last example is about the use of feature selection method for 
bioinformatics area.  Bioinformatics has become a very important 
research area which requires a lot of support from neural computing. 
Computation intelligence methods have once again shown its versatility 
and importance on gene selection and cancer diagnosis. This example 
will surely provide new insight on neural computing. 

7.1. Electric Load Forecasting 

System load forecasting is an essential function in power system 
control centers. Short-term load forecasting (STLF) is an indispensable 
procedure in the real-time control of power generation and efficient 
energy management systems. It is used for establishing the power station 
operation plan and the unit operation plan, together with generation and 
spinning reserve planning of energy exchange. Significant forecast errors 
can result in either excessively conservative scheduling or excessively 
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risky scheduling that can cause heavy economic penalties. Large savings 
of money and energy can be achieved if accurate load forecasts are used 
to support these planning and scheduling. 

Interest in applying neural network to electric load forecasting has 
begun since 1990. Feedforward neural network is used to incorporate the 
previous load demands, day of week, hour of day and temperature 
information for load forecasting. There are other extended work 
including additional input variables of a seasonal factor and 
cooling/heating degree is included in a single neural network.  Most 
neural models treat electric load demands as a nonstationary time-series 
and they modeled the load profile by a recurrent neural network.  

Amongst the above neural based forecasting techniques, most of 
them can be classified as nonlinear time-series approaches assuming that 
the load can be decomposed into two components, namely weather 
dependent factor and weather independent factor. The behavior of 
weather independent load is mostly characterized by seasonal factors and 
trend profiles in terms of time. The weather dependent load is often 
estimated through weather variables such as the temperature, relative 
humidity and wind speed. 

Up to now, most neural-based techniques consider electric load 
demands as “short-time” wide sense stationary. In general, load profile, 
however, behaves as a nonstationary time-series, especially in 
developing countries. This reason makes those techniques difficult to 
provide accurate forecasts over time. Besides, those load forecast models 
can be summarized in the following two equations. For static model 
(feedforward neural network), 

 1 2 1 2ˆ( , ,..., , , , ,..., )t l t t x p t l t t t q t lx h x x x w w w w e+ − − − + − − − += +  (7.1) 

and, for dynamical model (recurrent neural network),  

 1 2 1 1ˆ( , ,..., , , ,..., , ,..., )t l t t x p t l t t q t t r t lx h x x x w w w e e e+ − − − + − − − − += +  (7.2) 

where xt is the load consumption, ltw +ˆ is the weather forecast, wt is the 
weather information and et is noise residual at time t. The nonlinear 
function h is nonlinearly approximated by a neural network. From the 
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above models, the load forecast ltx +ˆ is mainly estimated based on the 
current available load profile. We can rewrite Eq. (7.1) in the form of 

 

24

1 2 1 2ˆ( , ,..., , , , ,..., )
t l t l t l

t t x p t l t t t q t l

x x x
h x x x w w w w e

+ + − +

− − − + − − − +

= + Δ
= +

 (7.3) 

Because the load xt+l and xt+l-24 are highly correlated, the 
deviation xt+l is commonly about 2-3% of the base load for weekdays. 
Actually, our target of load forecasting is aimed at the prediction of the 
deviation xt+l instead of the load xt+l. In other words, only the 2-3% 
dynamic range of a neural network is used for prediction in those 
models. It is difficult to have an overall forecast error less than 2% when 
the data is perturbed by weather disturbance that strongly influences the 
behavior of power consumption, especially in higher population areas, 
such as Hong Kong, and the dynamic range of the neural network is not 
fully utilized. 

7.1.2. Nonlinear Autoregressive Integrated Neural Network Model 

Now, we focus on a multilayer feedforward neural network (FNN) 
and how it may be used to forecast hourly load consumption of the 
coming day. It has been proved that an FNN can be used as a universal 
function approximator (Hornik et al. 1989). A function defined on a 
compact set in C[a,b] or Lp[a,b] can be approximated arbitrarily well by 
an FNN with one hidden layer (Chen 1993). However, FNN does not 
always provide acceptable performance in applications of time-series 
prediction. In many time-series predictions, the time-series model is 
always based on nonlinear autoregressive (NAR) models which is 

 x h x x x et t t t p t= +− − −( , ,..., )1 2  (7.4) 

The neural STLF models (Peng et al. 1993, Lu et al. 1993, Chen  
et al. 1992, Djukanovic, et al. 1993, Paplexopoulos et al. 1994) can be 
considered as a modified NAR model Eq. (7.1) which is given by 

 x h x x x et l t t x t t l+ − − − += +( , ,..., , )1 2 24 w  (7.5) 
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and the unknown smooth function h is nonlinearly approximated by 
FNN. Hence, the neural optimal predictor is given by 
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where 0≤l≤24 and the function is a smooth function bounded monotonic 
function, tanh(0.5x). The vector wt of m components contains the 
available weather information at time t. The parameters 0

ijW , 0
ikW  and 1

iW  

are the neural network weights. 
For stationary time-series, the upper and lower bounds of value xt 

can be estimated because the statistical characteristics of stationary time-
series are time-invariant. Based on the results of (Chen et al. 1993), the 
unknown function h can be approximated arbitrarily well by FNN. In 
contrast, the statistical parameters of nonstationary time-series, such as 
E{xt}, are time-variant. The upper and lower bounds of value xt can 
hardly be found so that the NAR model is not the most appropriate 
model for neural time-series prediction of nonstationary time-series. To 
obtain accurate load forecasting, the most appropriate model must be 
identified in accordance with the nature of load consumption. The 
electric load consumption is actually nonstationary. A modified 
Nonlinear AR integrated (NARI) model is used for STLF. Several 
important weather factors are also included in the model because weather 
variation is one of the crucial disturbances to electric load demand. 
Consequently, the modified NARI model for STLF is given by 

 1 24
ˆˆ ( ,..., , )t l t l d t t t t lx x h x x e+ + − − − += + +w  (7.7) 

and the neural optimal predictor is then formulated by 
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⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑  (7.8) 

where 0≤l≤24. The weather information vector wt contains the following 
components: 
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a. Temperature: 
Current day:  24 hourly temperatures, maximum temperature, 
minimum temperature, mean temperature. 
Next day (forecast): maximum temperature, minimum 
temperature. 
Temperature is the most important weather variable. System load 
is rather sensitive to temperature changes. Large system load 
change occurs at the time with large temperature rise and fall. 

b. Relative Humidity: 
Current day: 24 hour relative humidity 
In summer, for a given range of temperature, relative humidity is 
significant in affecting the utilization of air conditioning. In 
addition, sky cover and probability of rain can be related to the 
relative humidity. 

c. Rainfall: 
Current day: rainfall 
Rainfall is the other crucial parameter affecting system load. It 
has never been addressed in other works. In Hong Kong, rain is a 
common phenomenon, especially in summer. It directly affects 
air conditioning load and lighting load because relative humidity 
and sky cover are all related to rainfall. 

d. Sunshine: 
Current day: sunshine 
Sunshine is an index measuring the degree of sky cover that 
directly affects lighting load consumption. 

 
The architecture of the neural network model is illustrated in Fig. 

7.1(b). The structure of the modified NAR model for STLF is also 
depicted in Fig. 7.1(a) Compared to the weather dependent component of 
electric load, the weather independent component, in fact, exhibits low 
frequency characteristics. According to Eq. (7.8), the low frequency 
weather independent component can be excluded because the operator 

d
tx∇  behaves as a high-pass filter. Hence, the NARI neural network 

model is called a weather compensation neural network because the 
weather dependent component will only be determined using weather 
information and load consumption of the previous day. 
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Figure 7.1. (a) The architecture of modified Nonlinear AR (NAR) model for neural short-
term load forecasting 
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Figure 7.1. (b) The architecture of weather compensation neural network (modified 
NARI model) 
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7.1.3. Case Studies 

Case studies were carried out for a one-day ahead forecasting of 
hourly electric loads of weekdays using historical data on Hong Kong 
Island. The results were analyzed based on the following indices: 

Standard Deviation: 

 ( )2

1

1 ˆ
N

i i
t t

i
x x

N
σ

=

= −∑  (7.9) 

Percentage Error: 

 
1

ˆ1 100
i iN
t t

i
i t

x x
N x

ε
=

−
= ∑  (7.10) 

Two different neural network models of NAR, Eq. (7.6) and NARI, 
Eq. (7.8) are established using FNN with a single hidden layer. For 
simplicity of terminology, NAR stands for neural network NAR model 
while NARI represents neural network NARI model. An adaptive 
backpropagation learning algorithm of extended backpropagation 
described in Chapter 2 is used because this algorithm can significantly 
speed up the training speed by adaptively tuning the learning rate and the 
momentum factor. The same structure of FNN with 81 hidden neurons is 
applied to these two load models for one-day ahead hourly load 
forecasting. The 24 hour load consumption of the previous day as well as 
the weather information is used as input variables.  

The influence of weekends and standard holidays on the load is not 
considered in the STLF. Before the NARI neural network model is built, 
the parameter d has to be estimated. The selection of parameter d is 
based on the criterion of minimizing { }d

tE x∇ . The value of 

{ }d
tE x∇  is directly related to the correlation between xt and xt-d 

because { }d
tE x∇  will be smaller if xt and xt-d are more correlated. 

Therefore, d is estimated based on the correlation between xt and xt-d.  
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Figure 7.2. The scatter plot (a) between loads xt and xt-24 (b) between loads xt and xt-12 (c) 
between loads xt and xt-48 

200

700

1200

1700

200 700 1200 1700

load Xt (100 MW)

lo
ad

 X
t-2

4 
(1

00
 M

W
)

(a) 

200

700

1200

1700

200 700 1200 1700

load Xt (100 MW)

Xt
-1

2 
(1

00
 M

W
)

(c) 

(b) 

200

700

1200

1700

200 700 1200 1700

load Xt (100 MW)

lo
ad

 X
t-4

8 
(1

00
 M

W
)



 Engineering Applications 259 

 

The scatter plot of xt and xt-d enables the correlation between the two 
variables to be found. As a result, whether xt and xt-d are linear or 
nonlinear correlated, the correlation can then be visually determined. In 
Fig. 7.2(b), the points between xt and xt-12 scatters all over the diagram, 
which implies xt and xt-12 are not correlated. Apparently, Figs. 7.2(a) and 
7.2(c) indicate that they are more correlated. Compared to Figs. 7.2(a) 
and 7.2(c), xt and xt-d in Fig. 7.2(a) appears to be the most correlated. 
Hence, the parameter d is chosen to be 24. In our investigation, the load 
demands of weekdays from March 12 to August 26, 1992 were used for 
testing while the load demands of weekdays in 1991 were used for the 
training set. Figs. 7.3 to 7.4 show the results of model NAR and NARI 
respectively. Fig. 7.3 illustrates the weather effect on the daily load 
profile which is defined by the following equation 

 
24
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1 100
24

i i
t t

w i
i t

x x
E

x
−

=

−
= ∑  (7.11) 

Due to the seasonal transition, the load profile from day 5 to day 20 
changed severely as shown in Fig. 7.3. NAR and NARI can predict load 
consumption with acceptable accuracy during this interval. Outside the 
seasonal transition, NAR, however, cannot provide more accurate 
forecast as illustrated in Figs. 7.3 and 7.4. In contrast, Figs. 7.3 and 7.5 
manifest that NARI can forecast the electric load at comparable accuracy 
compared to the case for seasonal transition. Table 7.1 summarizes the 
overall percentage errors. NARI can provide the most accurate load 
forecast and the overall percentage error is 1.755 for the forecasts of 24-
hours ahead. The overall percentage error of STLF using NARI can be 
reduced by 0.65%. 

0
1
2
3
4
5
6

0 5 10 15 20 25 30 35 40

time (day)

Ew

 
Figure 7.3. The effect of load change due to the weather change 
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Figure 7.4. Percentage error of load forecast using neural network NAR model 
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Figure 7.5. Percentage error of load forecast using neural network NARI model 

 

Table 7.1 Comparison of forecasting results for March 12 - August 26, 1992 

 NAR NARI 

overall % Error 2.492 1.755 

 
It must be noted that the target of load forecasting is only aimed at 

the prediction of the small deviation Δxt+l instead of the load xt+l based on 
Eq. (7.3). In model NAR, only the 2-3% dynamic range of FNN is used 
for prediction. Apparently, the overall forecast error can hardly be less 
than 2% when the data is perturbed by the weather disturbance that 
strongly influences on the behavior of power consumption, especially in 
Hong Kong. The neural network model can utilize the whole dynamic 
range of the output for forecasting the target Δxt+l. From Table 7.2, the 
standard deviation of forecast error of NARI can significantly be reduced 
in almost all time slots by 1190 MW, which is about 0.7 % of the peak 
load.  
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Table 7.2 Comparison of forecasting results of each hour 

 NAR NARI NARI (136-1) 
hour % Error St.Dev. /100 MW % Error St.Dev. /100 MW % Error St.Dev. /100 MW

1 1.522 11.607 1.274 11.134 1.214 11.479 
2 1.870 14.068 1.181 9.303 1.059 8.457 
3 2.302 18.393 1.391 11.335 1.280 10.215 
4 2.198 15.356 1.229 8.654 1.275 9.512 
5 2.268 18.014 1.353 9.545 1.348 9.509 
6 2.044 19.032 1.308 9.366 1.354 9.767 
7 1.157 14.256 1.747 16.361 1.417 13.051 
8 1.138 19.399 1.298 18.138 1.371 17.824 
9 2.168 36.059 1.763 27.909 1.314 22.063 
10 2.789 49.709 1.719 28.621 1.139 21.040 
11 2.916 52.315 1.733 30.518 1.188 22.101 
12 3.224 60.484 1.946 34.929 1.271 24.643 
13 2.864 55.318 1.549 29.621 1.366 24.637 
14 2.805 52.329 1.801 33.888 1.283 25.867 
15 2.626 50.027 1.707 33.280 1.483 27.379 
16 2.792 52.377 1.949 37.454 1.489 28.359 
17 2.853 50.874 1.443 28.310 1.418 25.561 
18 2.262 37.006 1.807 31.220 1.685 28.139 
19 2.875 43.099 2.075 34.141 1.785 28.673 
20 2.819 41.576 2.133 33.299 1.882 31.244 
21 2.716 37.533 2.215 32.991 2.014 30.564 
22 3.338 41.282 2.312 34.541 1.950 30.979 
23 3.296 36.489 2.538 31.960 2.195 28.631 
24 2.956 35.043 2.642 29.287 2.324 25.566 

overall 2.492 39.051 1.755 27.146 1.504 22.856 

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40

time (day)

%
 E

rr
or

 10 - 1
 20 - 1
 136 - 1

 
Figure 7.6. Comparison of percentage error for different sizes of moving window using 
neural network NARI model  
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The characteristic of electric load consumption gradually changes 
because of many uncontrollable factors. The weather compensation 
neural network (NARI model), without keeping track of the change of 
load characteristic, will degrade the forecasting performance in later 
years. An adaptive tracking scheme can be employed so that the weather 
compensation neural network can be retrained every day. This scheme 
can efficiently update the neural network to adapt the changing 
conditions of the environment. Further details on this issue can be 
referred to other literatures.  

7.2. Content-based Image Retrieval Using SOM 

Content-based image retrieval (CBIR) is one of the effective 
techniques for retrieving semantically relevant images from unlabelled 
image data sets based on automatically extracted features. It has been an 
ongoing research subject for more than a decade (Rui et al. 1999). It 
usually retrieves relevant images based on the image comparison of 
visual contents, such as color, texture, shape, structure, etc. A region-
based CBIR system using a growing hierarchical self-organizing 
quadtree map (GHSOQM) is described. Each image in the CBIR system 
is first segmented into several regions. Each region has similar features 
for colors and textures. Each image is thus represented by a region-based 
feature matrix. Different images may have different number of regions. 
As far as we are aware, there, hitherto, has not been a definition of 
feature matrices for neurons in neural networks. All neurons in 
GHSOQM have a fixed number of row vectors in feature matrices, which 
mean that all neurons represent images with fixed number of regions in 
feature space. A new criterion for image distance can be applied to 
region-based representation of images. GHSOQM organizes images in 
hierarchical levels. Since SOM usually defines an elastic topology-
preserving net stretched in the input space, high-dimensional images can 
be arranged in a 2-D grid at different precision level in GHSOQM. 
Images belonging to neighboring neurons have similar semantic 
meanings in an SOM at the same level. Dead or useless neurons at each 
of the hierarchical level are removed. This is significant because the 
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storing space for neurons is saved and searching time can be significantly 
speeded up. Coupled with relevance feedback technique, the CBIR 
system can achieve a good retrieving result. 

7.2.1. GHSOQM Based CBIR Systems 

7.2.1.1. Overall Architecture of GHSOQM-Based CBIR System 

All images are processed by the same feature extraction method. 
Each image is first segmented into several similar regions, such as by the 
JSEG algorithm (Deng et al. 1999). The characteristic features, i.e., 
colors and textures, are extracted for each region of an image. After all 
available images are processed; GHSOQM is trained by using region-
based feature vectors for images. After completion of training, all images 
are first assigned to the SOM at the first level according to the nearest 
distance. Then the images assigned to a neuron at the first level are 
assigned to the child neurons of the neuron. The assignment process 
proceeds until the leaf neurons are assigned with images. After 
completion of image assignment to neurons, the GHSOQM-based CBIR 
system is ready for query or retrieval. The image retrieval procedure can 
be described as the following steps: 

 
Step 1) A submitted query image is processed to extract region-based 

features. 
Step 2) The CBIR system first finds a nearest neuron at the top level of 

GHSOQM. 
Step 3) If the number of associated images in the nearest neuron exceeds 

a prespecified minimum number λ , find a nearest child neuron of 
the nearest neuron at the next bottom level. 

Step 4) Repeat the step 3 until the found neuron is associated with the 
least number of images that is still more than the prespecified 
number λ . The last found neuron is a target one for next steps.  

Step 5) Directly compare the distance between the query image and the 
target neuron by region-based features. Sort the images by 
distance with an ascending order and provide them to users. 

Step 6) Users select some retrieved images as relevant ones. This 
information is feedback to front-end of the CBIR system. The 
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old query is then modified to a new one according to the users’ 
feedback. And the new query is supposed to retrieve more 
relevant images. This step is called relevance feedback (RF). RF 
is usually iterated for several times. 

 
The architecture of GHSOQM-based CBIR system is shown in Fig. 

7.7. Note that the CBIR system uses a hierarchical structure by 
GHSOQM to organize images and GHSOQM must be first trained by 
using all images. Retrieval processes in some CBIR systems, e.g., 
SIMPLIcity (Wang et al. 2001), directly compare query image with all 
images. It uses a flat structure and does not require any training. The 
extra work by GHSOQM is compensated by a faster retrieval time. 

 

Figure 7.7. Architecture of GHSOQM-based CBIR system 

7.2.1.2. Image Segmentation, Feature Extraction and Region-Based 
Feature Matrices 

JSEG algorithm (Deng et al. 1999) is an algorithm for image 
segmentation. JSEG first quantizes colors in an image and generates a 
class map. Based on the class map, JSEG finds a good segmentation with 
coarse or precise resolution by using a criterion for goodness of 
segmentation.  

After image segmentation we can perform feature extraction for 
each region of an image. Thirteen features are extracted for each region, 
i.e., six for colors, six for textures and one for region percentages of 
images. We compute the average and standard deviation of the L, a and b 
components in Lab color space for each region of an image. We denote 
the average of L, a and b as 1 2 3, ,  and f f f , the standard deviation of L, a 



 Engineering Applications 265 

 

and b as 4 5 6, ,  and f f f . For texture features, the following three 
variables for a 4 4×  block in an image as used: 

2 2
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1 1
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i j
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= =
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 are the coefficients of Haar 

wavelet transform for LH, HL and HH band, respectively (Wang et al. 
2001). After wavelet transformation, we just assign the three variables to 
each pixel of the block. Then we compute the average and standard 
deviation of the three features a, b and c for each region. We denote the 
average of a, b and c as 7 8 9,  and f f f , the standard deviation of a, b and c 
as 10 11 12,  and f f f . The last feature 13f  is the region percentage of an image. 

So an image x can be denoted by region-based features matrix 
1

...

x

x
n

R

R

⎡ ⎤
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⎢ ⎥
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, where ,1 ,12[ ,..., ]x x x
i i iR f f= (i=1,…,n) is a row feature vector 

representing the ith region of the image x, n is the number of regions in 
the image. Different images may have different number of regions. For 
the sake of convenience, a neuron in the GHSOQM-based CBIR system 
is represented by a feature matrix with a fixed number of rows, which 
means a fixed number of regions. 

7.2.1.3. Image Distance  

Since the representation of an image is a feature matrix, we defined 
a distance measure in order to compare the dissimilarity of two images. 
In this study, images are compared with direction from query image to 
other images. The weight assignment for each region of an image is just 
the region percentage of the image.  

Suppose we have two images A and B. Image A have n regions and 

image B has m ones. The corresponding representing matrix are 
1
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A

A
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R

⎡ ⎤
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and 
1

...

B

B
m

R
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, where A
iR is the row feature vector of the ith region of image 

A and each component of all feature vectors are normalized to lie in  
[0 1]. The region distance between and A B

m nR R  is defined as the 
following: 
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where 1w to 4w  are the weights to colors and textures. The weights are 

chosen such that 1 3 4 21,  and 0.5w w w w= = = = . With this selection 
of weights for colors and textures, image retrieval results are satisfactory. 

The distance from image A to B is described as the following steps. 
Step 1) Compute the distance matrix D, where mnd is the element in mth 

row and nth column of the matrix and denoted by Eq. (7.13). 
Step 2) Find the minimum value in each row of the matrix D and denote 

iD as the minimum of ith row of D. 
Step 3) Compute the weighted average for distance from image A to B: 

 ,13
1

Distance(A,B) = 
n

A
i i

i
f D

=
∑  (7.14) 

The above distance of two images can be illustrated in Fig. 7.8. 
First find the nearest regions from image A to B. The nearest 
regions are connected in Fig. 7.8. Then the distance from image 
A to B is 

 1,13 13 2,13 22Distance(A,B) = A Af d f d+  

7.2.1.4. GHSOQM and Relevance Feedback in the CBIR System 

The GHSOQM algorithm is used in the CBIR system. Images and 
weights of neurons are represented by feature matrices. A large number 
of computations in GHSOQM is to find the nearest neurons to retrieve 
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images. As mentioned before, a neuron i represents an image at time t 

by
1 (t)
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R t
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⎢ ⎥⎣ ⎦

, where r is the fixed number of regions. The distance 

from an image A to neuron i (with weight matrix iw ) is the same function 
as Eq. (7.14): 
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where iD  is the minimum value in the ith row of the distance matrix D 
between image A and neuron i. 

The weight updating for neurons must be modified in the CBIR 
system because of the matrix representation of images. The weight 
updating now is the following steps: 

 
Step 1) Find the nearest regions of an updating neuron k from a query 

image 
1

...

x

x
n

R
x

R

⎡ ⎤
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at time t. The found regions of the neuron are 

arranged with order in a matrix 
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k
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 corresponding to the 

regions of x. Note that the found regions may repeat such that 
( )k

iR t ′  and ( )k
jR t ′  are the same as a region of the neuron k. 

 
Step 2) Update the neuron by: 

 ( 1) ( ) ( ) ( ( ) ),   1,...,k k x k
i i kc i iR t R t t h R R t i nε′ ′ ′+ = + − =  (7.16) 

 where kch  is the neighborhood function , x
iR  is the feature vector 

of the ith region of the query image x, ( )k
iR t ′  is the feature vector 

of the nearest region in neuron k at time t from the ith region of 
the query image x.  
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For example, a query image x has three regions 
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. As shown in Fig. 7.9, the 

corresponding nearest regions of the neuron from the query image are 
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with order. The weight updating is 

 

2 2 1 2

3 3 2 3

3 3 3 3

( 1) ( ) ( ) ( ( ))

( 1) ( ) ( ) ( ( ))

( 1) ( ) ( ) ( ( ))

k k x k
kc

k k x k
kc

k k x k
kc

R t R t t h R R t
R t R t t h R R t
R t R t t h R R t

ε

ε

ε

+ = + −

+ = + −

+ = + −
 (7.17) 

Note that the region 3 of the neuron k is updated twice because it is 
the nearest region from the region 1 and 3 of the query image. 

Assume the query image has a feature matrix 
1
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x
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R
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. The 

retrieved images are classified as relevant images 1{ ,..., }YY Y Y= and 

irrelevant images { }1,..., ZZ Z Z= . For image iY , find the nearest regions 

from the regions of the image x and denote them as a matrix
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where ijY ′  is the nearest region of image iY  from the jth region of the 
query image x. Similarly, the nearest regions from the image x are 
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denoted as a matrix 
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for each iZ . Then the new query matrix is 

modified by 
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where ,   and α β γ  are parameters controlling the relative weighting of 
current query image, relevant images and irrelevant images, respectively. 
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Figure 7.8. Illustration of image distance by the GHSOQM-based CBIR system 
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Figure 7.9. Illustration of nearest regions of an updating neuron from a query image 
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7.2.2. Performance Evaluation 

In this experiment a database of one thousand images were used to 
test the effectiveness of the CBIR system. The number of fixed regions 
for representing a feature image of one neuron is set to 10. After image 
retrieval, users select relevant images with several rounds of relevant 
feedback iterations. The next new query by RF leaves out already 
selected images. And all selected images are always listed on the top 
rank. 

 
Figure 7.10. Ten sample images with one sample image in each class. The name of an 
image is shown on the top of the image 

 
In this data set, 1000 images from (Wang et al. 2001) are chosen to 

test the system. The images have ten classes, each of which contains 100 
pictures. The sizes of the images are 384 256×  or 256 384× . Ten sample 
images with one sample image in one class are shown in Fig. 7.10. The 
parameter τ  for GHSOQM training was set to 20, which means that a 
neuron must generate its child neurons if the number of images 
belonging to it is more than 20. Another parameter λ for the retrieval 
process was set to 20, which means that the least number of a target 
neuron for image retrieval is more than 20. Furthermore, the 
implemented GHSOQM-based CBIR system only shows the first 20 
images to users. After completion of training GHSOQM, the CBIR 
system was ready for testing. 

Firstly the CBIR system requires training for GHSOQM. The 
average training time by GHSOQM is 1890 seconds for the 1000 images. 
The querying time of the GHSOQM-based is faster than that of direct 
query method that compares a query image with all other images of the 
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database. The average search time of GHSOQM-based query for one 
image is 3.08 seconds and direct query is 7.25. As shown in Fig. 7.11, 
the proposed query is much faster than direct query because the 
hierarchical structure of images and the additional training before 
querying.  

 
Figure 7.11. Comparison of query time between GHSOQM-based query and direct query 

 
The recall-precision graph is used to evaluate the retrieval results. 

Precision P is defined as the following: 

 ( ) /kP k n k=  (7.19) 

where k is the number of retrieved images and kn  is the number of 
relevant images in the retrieved images. Recall R is defined as 

 ( ) /kR k n N=  (7.20) 

where N is the number of all relevant images in the data set. An optimal 
recall-precision graph would have a straight line, i.e., precision always at 
1. Typically, when recall increases, precision decreases. Since the system 
only shows the first 20 images, the maximum value of recall is 0.2. The 
aforesaid 10 sample images from all classes are used and tested the 
performance of GHSOQM-based query and direct query. The recall-
precision graphs are plotted in Fig. 7.12. GHSOQM-based query and 
direct query have similar query performance. The recall-precision graphs 
of some images are optimal at the recall interval [0 0.2], i.e., buses, 
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dinosaurs and flowers. This is because the objects in these classes have 
simpler color distributions. The performance for the images from other 
classes is degraded because the objects in the images have more complex 
color distributions. 

 
(a)   (b) 

 
(c)   (d) 

  
(e)   (f) 
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(g)   (h) 

  
(i)   (j) 

Figure 7.12. Recall-precision graphs for GHSOQM-based query and direct query on the 
10 images (a) 097.jpg (African people and village) (b) 173.jpg (beach) (c) 219.jpg 
(building) (d) 325.jpg (buses) (e) 411.jpg (dinosaurs) (f) 586.jpg (elephants) (g) 672.jpg 
(flowers) (h) 788.jpg (horses) (i) 861.jpg (mountains and glaciers) (j) 906.jpg (food) 

7.3. Feature Selection for cDNA Microarray 

In this section, we describe how feature selection technique 
described in Chapter 6 be applied to bioinformatics problem.    
Microarrays are a powerful biotechnological means because they are able 
to record the expression levels of thousands of genes simultaneously. 
Through hybridizing the fluorescent DNA probe of an examined sample 
with that of a reference cell, the mRNA levels of the genes in the 
examined sample are obtained. Since the mRNA levels are roughly 
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related to the amount of protein product, the obtained microarray result 
can be used to express the “state” of the examined sample. Generally, 
different cells or a cell under different conditions yield different 
microarray results. The comparisons of microarray results between 
normal and cancer cells can provide the important information of cancer 
diagnosis and treatment. Among a large amount of genes encoded in the 
microarray gene expression data, only a very small fraction of them are 
informative for a certain task. A very challenging task arises as a result – 
how to select the most useful features (genes) for performing data 
analysis such as diagnosis, prognosis, subtype classification of a 
heterogeneous disease and understanding of a gene network. The gene 
selection is important and sometimes necessary because of two main 
reasons. First, it is impossible for biologists or physicians to examine the 
whole feature space (e.g. the genes in human genome) in the laboratory 
experiments at one time. It is necessary to recommend a small fraction of 
the features by using computational algorithms. Second, it is widely 
known that taking many irrelevant features into account amid the course 
of classification will increase the dimensionality of the problem, and thus 
results an unnecessary computational difficulties and additional noise. 

In this section, we describe combining the quadratic MI based 
feature selection method with a grid based clustering algorithm, called 
QMIFS-GC in short in this section, for performing gene selection.  The 
method consists of two sequential parts: 

1) A supervised QMIFS-GC algorithm is used to sort out and 
discard the highly redundant features. As a result, the computational 
efficiency of the whole feature selection process is greatly improved 
without reducing the quality of the selection results.  

2) In the MI based forward selection stage, the quadratic MI 
estimation and Gaussian based probability estimators is employed.  With 
them, MI can be estimated effectively even when only a small pattern set 
is available. Also, we can use a MI based criterion to filter out the 
redundant features. Finally, the direct MI estimation enables us to 
terminate the selection process at an appropriate point where the selected 
gene subset has preserved the most essential information of the given 
microarrays dataset.  
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7.3.1. MI Based Forward Feature Selection Scheme  

The forward searching strategy described in Chapter 6 is used 
because of its simple implementation and its relative high efficiency. 
First let us consider the microarrays problem as a general classification 
dataset {X; C}, in which the feature set is denoted by F, a MI based 
forward feature selection algorithm is generally realised as follows. 

(Initialization) Set the selected feature set S empty.  
For any feature (say, fi) in F, compute the MI I(fi ;C). 
Determine the feature that maximizes I(fi ;C). Add hat feature into S, 

and delete it from F.  
Repeat the following two steps until stopping criterion is met 
Calculate I(S+fi ;C), for any feature (say, fi) remaining in F. 
Choose the feature that maximizes I(S+fi ;C). And put that feature 

into S, and eliminate it from F. 
Output the selected feature subset S. 
 
In the above processes, the MI between S and the output variable C 

increases gradually because the adding of input variables cannot decrease 
MI. The incremental MI gradually decreases to zero when all the relevant 
genes (features) are selected. Assume that fa is a selected gene at certain 
iteration (say ith iteration), S is the selected gene subset before this 
iteration. The incremental MI at ith iteration is the conditional MI 
I(fa;C|S). Assume that fb is the next selected gene, the incremental MI of 
the (i+1)th iteration is I(fb;C|S+fa). In the above process,   

 ( ; | ) ( ; | )a bI f C S I f C S>  (7.21) 

Based on the definition of the conditional MI, we have 

),|;()|;(),|;()|;( abaabb fSCfISCfIfSCfISCfI ≥+=  (7.22) 

With Eqs. (7.21) and (7.22), we have I(fa;C|S) > I(fb;C|S+fa). This 
inequality suggests that the incremental MI decreases in the above 
searching process. As a result, the forward process can be reliably 
terminated when the incremental MI is small enough implying the 
unselected genes at that point contain little additional information for 
cancer diagnosis. The small sample set and huge gene set of a microarray 
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gene expression data poses two main challenges to the above MI based 
feature selection scheme. First, a relatively small sample set makes the 
estimation of high-dimensional MIs much harder. Second, a large 
amount of genes leads to a remarkably huge computational burden.  
These difficulties must be addressed.  

7.3.2. The Supervised Grid Based Redundancy Elimination  

In a microarray dataset, many redundant genes exist. Filtering out 
those redundant genes efficiently before performing feature selection will 
greatly enhance the computational efficiency. Simply using other 
conventional gene clustering methods to reduce the redundancy is very 
computationally demanding.  Alternatively, based on the concept of grid, 
a simple and fast algorithm can identify redundant genes in an efficient 
way. In details, the basic concept of the grid-based redundancy 
elimination algorithm is that objects in a grid must be similar to each 
other when the size of that grid is small enough. Due to the sparsity in 
the high-dimensional spaces, the size of the grid becomes critical. In 
order to enhance the performance of robustness, an adaptive grid size, 
rather than a fixed grid size, is used.  Using the property of MI ranking, 
only the features with close MI values are checked if they are within the 
grid. For a considered feature f, if a feature has similar MI value to f and 
falls within the grid around f, it will be removed as a redundant feature. 

At the beginning of the clustering process, the MI of each gene with 
output variable is estimated as described in the last chapter. With these 
estimates, the discrimination abilities of genes are evaluated. Clustering 
is performed on each gene in a descending order of the MI estimates 
unless the ones are marked as redundant one. In each iteration, an 
adaptive grid is generated around the considered gene and only genes 
with the acceptable MI values are checked.  The grid size starts at the 
maximum distance different in a dimension and changes until the number 
of redundant genes is within the pre-defined range, GridNumRange. The 
number of genes is defined by the user or determined according to the 
MI estimate differences.  There are two types of input parameters: 1) the 
number of genes within the grid, GridNumRange, and 2) the number of 
genes for checking redundancy, RedNum.  The number of genes within 
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the grid should be given to guide the changing of the grid.  The number 
of genes for checking redundancy could be defined by fixing the number 
of genes directly or input the acceptable MI difference, which is used to 
determine the number of genes for redundancy check.  The changing of 
the grid size depends upon the number of redundant genes. This QMIFS-
GC algorithm is realized as follows.  

7.3.3. The Forward Gene Selection Process Using MIIO and MISF 

As illustrated in Fig. 7.13, the gene selection method consists of two 
sequential processes – the supervised QMIFS-GC process, and the MI 
based forward feature selection process. Suppose that R is the result of 
the grid-based redundancy elimination. In the MI based forward process, 
the genes (features) in R are firstly ranked in a descend order of MIIO. 
The gene satisfying two constraints – having as the large MIIO as 
possible and not being redundant to the selected gene subset (determined 
by using MISF) – is identified and placed into the selected gene subset S. 
This process repeats until no unselected important gene is found. Using 
R, the forward selection process can be stated as follows. 

 
Step 1. R is the result of the above clustering process. And the selected 

gene set (S) is set empty.  
Step 2. Calculate MIIO(f) for each gene f in R. According to MIIO(f), 

sort out the most important gene, fk. Put fk into S, delete fk  from 
R, and set MIIO1 = MIIO( fk ). 

Step 3. Estimate )( fSMIIO +  for each gene f remaining in R. 
Step 4. Identify fk. having ))((maxarg)( iik fSMIIOfSMIIO +=+ , and 

delete fk. from R. 
Step 5. If the candidate feature fk is not redundant to S, 

i.e., ≤);( SfMISF k 0.9, put fk into S, set MIIOj = MIIO(S) (j is the 
number of the features in S), otherwise, goto Step 4. 

Step 6. If (MIIOj - MIIOj-1) / MIIO1 γ≤ , goto Step 7, otherwise, goto 
Step 3.  

Step 7. Output the gene subset S. 
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The threshold in the stopping criterion γ is set with 0.05. With  
γ  = 0.05, we know that the information beyond the selected gene subset 
is small enough to be ignored. 

7.3.4. Results  

In this section, we illustrate how the quadratic MI combining with a 
grid based clustering method be used for selecting genes.  This method is 
also compared with other two selection methods, one is called FR for 
short in this section, and another one is called the SVM RFE. Assuming 
that all genes are independent to each other, FR ranks genes according to 
the individual linear discriminant ability. To rank the genes, SVM RFE 
depends on SVM, a state-of-art classification model: SVM RFE firstly 
builds a linear SVM model using all the genes, and then according to the 
parameters of the built SVM model it ranks genes in a descending order 
of classification importance. Through discarding low-ranked ones, the 
current gene set is reduced by half. The process of building-SVM-
discarding-half-of-genes repeats until no gene remains. We also 
demonstrate the QMI based feature forward selection method (QMIFS), 
which conducts the forward feature selection on the whole gene set. 
There is no grid-based clustering for pre-processing. Four different types 
of classifiers are used to evaluate the gene selection results.  They are 
two types of support vector machine models (SVM), decision tree (DT) 
and k-NN rule. Decision tree and k-NN rule are available in the Weka 
software package (at http://www.cs.waikato.ac.nz/~ml/weka). Following 
Guyon, we downloaded SVM model from 
http://www.isis.ecs.soton.ac.uk /resources/svminfo, and used two types 
of SVM models – the linear SVM model (SVM-L) and the RBF SVM 
model (SVM-R).  When all these classifiers achieve the best or the near-
best performance before the stopping points, it is assumed that the 
selection results have covered most of the important information. 
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Figure 7.13. The block diagram of the QMIFS-GC method 
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7.3.4.1. Prostate Cancer Classification Dataset 

The objective of this task is to distinguish prostate cancer cases 
from non-cancer cases. The original raw data are published at 
http://www.genome.wi.mit.edu/mpr/prostate. This dataset consists of 102 
samples from the same experimental conditions. And each sample is 
described by using 12600 features. We split the 102 samples into two 
disjoint groups – one group with 60 samples for training and the other 
one with 42 samples for testing. 

First, QMIFS and the grids based MI method select the best 50 
genes. These selected genes are compared with those obtained from FR 
and SVM RFE in terms of efficiency and effectiveness as shown in Fig. 
7.14 and Table 7.3 respectively.  
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Figure 7.14. Comparisons in terms of the running time on the prostate cancer 
classification data 

 
These results show that FR and SVM RFE are much faster than 

QMIFS and grid-based MI method because the searching strategies in FR 
and SVM-RFE are very simple – FR only ranks features individually, 
and SVM RFE reduces the remaining features in an exponential rate. The 
comparisons between QMIFS and the QMIFS-GC clearly suggest the 
huge computational savings contributed by the redundancy elimination 
approach.  In practice, this process could reduce the number of genes 
from 12,600 to 872 with less than 4 minutes. The results listed in Table 
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7.3 indicate that QMIFS and QMIFS-GC have very similar gene 
selection effectiveness.  These two methods provide better results than 
the SVM RFE and FR methods.  With the (near) best effectiveness and 
the better efficiency, the QMIFS-GC delivers good gene selection 
results.   

 
Table 7.3 Comparisons of classification accuracy on the prostate cancer classification 
dataset  

Number of selected features FR SVM-RFE QMIFS QMIFS-GC 

4 0.83 0.88 0.93 0.93 

8 0.83 0.93 0.95 0.95 k-NN 

16 0.83 0.90 0.88 0.90 

4 0.78 0.90 0.95 0.95 

8 0.81 0.93 0.95 0.95 SVM-R 

16 0.86 0.93 0.93 0.95 

4 0.76 0.93 0.95 0.95 

8 0.83 0.93 0.98 0.98 SVM-L 

16 0.83 0.90 0.98 0.95 

4 0.76 0.88 0.88 0.88 

8 0.76 0.81 0.90 0.90 Decision Tree 

16 0.71 0.81 0.90 0.90 

 
In Fig. 7.15, the changes of MIIO and the incremental MIIO are 

illustrated. They imply that the gene selection process stops when 25 
genes are selected. And all classifiers are able to deliver their best or 
near-best performance before the stopping point, as illustrated in Fig. 
7.16.  In Table 7.4, the top 8 genes selected are briefly described. Each 
gene basically carries different biological meaning and exhibits different 
biological function.  For example, 37639_at, which is also determined as 
one of the genes for prostate cancer classification, is for human hepatoma 
mRNA for serine protease and it plays an essential role in cell growth 
and maintenance of cell morphology (referred to http://www.rzpd.de/cgi-
bin/cards/). Further details on these genes can be found in the websites 
about genomics, such as, http://expression.gnf.org/cgi-bin/index.cgi. 
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Figure 7.15. The change of MIIO and the incremental MIIO with the number of the 
selected genes on the prostate classification data 
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Figure 7.16. Classification results of the genes selected by QMIFS-GC on the prostate 
cancer classification data 
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Table 7.4 The gene selection result of QMIFS-GC on the prostate cancer classification 
dataset. GAN represents the gene accession number 

Selection 
Order 

Reference 
Number GeneBank Description 

1 37639_at X07732 Human hepatoma mRNA for serine protease hepsin 

2 37720_at M22382 Human mitochondrial matrix protein P1  
(nuclear encoded) mRNA. 

3 38028_at AL050152 Homo sapiens mRNA; cDNA DKFZp586K1220 
(from clone DKFZp586K1220) 

4 41504_s_at AF055376 Homo sapiens short form transcription factor  
C-MAF (c-maf) mRNA. 

5 32786_at X51345 Human jun-B mRNA for JUN-B protein 

6 36864_at AJ001625 Homo sapiens mRNA for Pex3 protein 

7 35644_at AB014598 Homo sapiens mRNA for KIAA0698 protein. 

8 38087_s_at W72186 zd69b10.s1 Homo sapiens cDNA. 

7.3.4.2. Subtype of ALL Classification Dataset 

The pediatric acute lymphoblastic leukemia (ALL) is a 
heterogeneous disease. The correct diagnosis of the subtypes for a patient 
is crucial because different subtypes have different treatment plan. Over-
treated or less-treated therapy could lead to serious consequences to the 
patient. The subtype classification of this disease has been 
comprehensively studied previously using gene expression profiling and 
supervised machine learning methods. The original data is divided into 
six diagnostic groups (BCR-ABL, E2A-PBX1, Hyperdiploid>50, MLL, 
T-ALL and TEL-AML1), and a miscellaneous class that contains 
diagnostic samples that did not fit into any one of the above groups (thus 
labeled as "Others"). There are total of 12558 features and 327 samples 
in this dataset. This dataset is partitioned into two disjoint subsets, in 
which 215 samples are used for training and 112 are used for testing.  

Comparative results are shown in Fig. 7.17 and Table 7.5. The 
running time shown in Fig. 7.17 is the time required for selecting 150 
features. The change of MIIO is shown in Fig. 7.18, which shows the 
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gene selection process stops when 95 genes are selected. In Fig. 7.19, it 
indicates that the best or the near best classification results could be 
obtained before this stopping point. Also, by using the classification 
schemes, the results are compared with other reported results. These 
results are summarized in Table 7.6.  In Table 7.7, the top 20 selected 
genes are listed.  
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Figure 7.17. Comparisons in terms of running time on the ALL subtype classification 
data 

Table 7.5 Comparisons of classification accuracy on the ALL subtype classification 
dataset  

Number of selected features FR QMIFS QMIFS-GC 

4 0.46 0.57 0.57 

8 0.74 0.79 0.79 

16 0.73 0.88 0.88 
k-NN 

32 0.72 0.89 0.90 

4 0.43 0.58 0.58 

8 0.71 0.76 0.76 

16 0.72 0.79 0.79 
Decision Tree 

32 0.76 0.79 0.79 
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Figure 7.18. The change of MIIO and the incremental MIIO with the number of the 
selected genes on the ALL subtype classification data 
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Figure 7.19. Classification results of the genes selected by QMIFS-GC on the ALL 
subtype classification data 
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Table 7.6 Comparisons between QMIFS-GC and the other methods. The numbers listed 
in this table are classification accuracy. To evaluate a gene selection method, binary 
classification schemes for each subtype are constructed by using 50 genes determined by 
that gene selection method. The details about this classification scheme can be found in 
[6] (a) The results of SVM (b) The results of k-NN rule 

(a) 
 

 QMIFS-GC Chi sq CFS T-stats SOM/DAV 

T-ALL 1.00 1.00 1.00 1.00 1.00 

E2A-PBX1 1.00 1.00 1.00 1.00 1.00 

TEL-AML1 0.98 0.99 0.99 0.98 0.97 

BCR-ABL 0.97 0.95 0.97 0.94 0.97 

MLL 0.96 1.00 0.98 1.00 0.97 

H>50 0.97 0.96 0.96 0.96 0.95 

 
(b) 
 

 QMIFS-GC Chi sq CFS T-stats SOM/DAV 

T-ALL 1.00 1.00 1.00 1.00 1.00 

E2A-PBX1 1.00 1.00 1.00 1.00 1.00 

TEL-AML1 0.98 0.98 0.98 0.99 1.00 

BCR-ABL 0.97 0.94 0.97 0.95 0.93 

MLL 0.96 1.00 0.98 0.95 1.00 

H>50 0.97 0.98 0.96 0.94 0.98 

 



 Engineering Applications 287 

 

Table 7.7 The gene selection results of QMIFS-GC on the ALL subtype classification 
dataset. GAN represents the gene accession number 

Selection
Order 

Reference 
Number GAN Description 

1 1077_at M29474 Human recombination activating protein (RAG-1) 
gene. 

2 36239_at Z49194 H.sapiens mRNA for oct-binding factor. 

3 41442_at AB010419 Homo sapiens mRNA for MTG8-related protein 
MTG16a. 

4 38319_at AA919102 Homo sapiens cDNA. 

5 36937_s_at U90878 Homo sapiens carboxyl terminal LIM domain 
protein (CLIM1) mRNA. 

6 35614_at AB012124 Homo sapiens TCFL5 mRNA for transcription 
factor-like 5. 

7 38968_at AB005047 Homo sapiens mRNA for SH3 binding protein. 

8 36985_at X17025 Human homolog of yeast IPP isomerase. 

9 38518_at Y18004 Homo sapiens mRNA for SCML2 protein. 

10 41097_at, AF002999 Homo sapiens TTAGGG repeat binding factor 2. 

11 33355_at AL049381 Homo sapiens mRNA; cDNA DKFZp586J2118 
(from clone DKFZp586J2118). 

12 38596_i_at D50402 Human mRNA for NRAMP1. 

13 36620_at X02317 Human mRNA for Cu/Zn superoxide dismutase 

14 38242_at AF068180 Homo sapiens B cell linker protein BLNK mRNA, 
alternatively spliced. 

15 39728_at J03909 Human gamma-interferon-inducible protein (IP-30)
mRNA. 

16 38652_at AF070644 Homo sapiens clone 24742 mRNA sequence. 

17 39878_at AI524125 Homo sapiens cDNA. 

18 2087_s_at D21254 Human mRNA for OB-cadherin-1. 

19 37344_at X62744 Human RING6 mRNA for HLA class II alpha 
chain-like product. 

20 35974_at U10485 Human lymphoid-restricted membrane protein 
(Jaw1) mRNA. 
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Table 7.8 Comparisons on other cancer classification problems. In the columns for listing 
best classification accuracy, the left value is the best classification accuracy of top 50 
feature subsets, and the right value is the smallest size of the gene subsets with the best 
classification accuracy. The running time of QMIFS and QMIFS-GC is the time for them 
selecting 50 genes 

Best classification accuracy Feature 
selection 

methodology

Running 
time 

(second) k-NN SVM-R SVM-L DT 

ovarian cancer classification 

FR 46 0.99; 26 0.98; 9 1.00; 22 0.96;10 

SVM RFE 351 1.00; 8 1.00; 4 1.00; 4 0.96; 4 

QMIFS 4100.2 × 1.00; 3 1.00; 3 1.00; 3 0.99; 3 

QMIFS-GC 3103.1 ×  1.00; 3 1.00; 3 1.00; 3 0.99; 3 

colon cancer classification 

FR 1.2 0.76; 3 0.86; 4 0.90; 12 0.81; 8 

SVM RFE 3.5 0.86; 8 0.90; 8 0.81; 8 0.76; 8 

QMIFS 211.6 0.86; 3 0.90; 9 0.95; 9 0.81; 3 

QMIFS-GC 81.1 0.90; 11 0.95; 11 0.90; 3 0.81; 3 

 
Also, we show how these gene selection methods are applied to 

other microarray type data, such as the colon cancer classification data 
and the ovarian cancer classification data (the proteomic data of this 
application were treated in the same way with the microarray data). In 
the ovarian cancer classification, there are 253 data samples and 15154 
genes. Among these samples, 91 are control samples (non-cancer) while 
162 are cancer samples. We randomly select 150 samples for training, 
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and the others for testing. The colon cancer classification dataset consists 
of 62 samples and 2000 genes. The 62 samples are randomly split into 
two disjoint parts – one part of 40 samples for training and the other of 
22 samples for testing. The results are summarized in Table 7.8.  

7.3.5. Remarks 

We demonstrate how mutual information based feature selection 
scheme be used for gene selection. It is interesting to show that mutual 
information is employed for three purposes. First, with the guidance of 
mutual information, we have demonstrated that the QMIFS-GC can 
greatly eliminate the redundancy in a huge feature set. Certainly, this 
concept can be used to other feature selection applications. As a result of 
the grid based clustering approach, it is worth noting that the efficiency 
of the whole feature selection can be enhanced. Second, based on mutual 
information, the salient features are identified gradually. The 
computational difficulty of estimating the high dimensional MI is solved. 
Also, attributed to the characteristics of mutual information, the 
termination of the searching process is not determined in an ad hoc basis.  
This is useful to most applications. Third, using mutual information, the 
highly redundant selection results can be avoided in a systematic way. In 
this application it is of particular important because of the size of the 
original dataset.  In most other physical applications, similar problems 
may also be experienced.  This is a very useful feature to one who is 
working on feature selection.  
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  Enhancement, 31 
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maximum magnitude of weights, 65 
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  model, 7 

mean squared error function, 38, 223 
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momentum, 41, 43, 46, 57 

  factor, 110 
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MSE (see mean squared error function) 

Multi-Layer SOM, 202 

Mutual Information, 236-238, 274-275, 
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  quadratic MI, 243 

mutual information criterion, 117 

 

Neural Computing, 1 

  Network architecture, 6 

neighborhood function, 178-179 
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neuron, 1, 2, 175 
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noise estimation and detection, 99 

noise perturbation, 101, 106 
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nonlinear autoregressive, 253 

nonlinear optimization problem, 42 
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Parametric Smoothing, 142 
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  penalty factor λ, 80 
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  convergence theorem, 141 
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PNN (see Probabilistic Neural Networks) 
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PPR (see projection pursuit regression) 

Probabilistic Neural Networks, 167 

Probabilistic Regularized SOM, 191 

Probabilistic SOMs, 186 

probability estimation model, 239 

probability density, 94 
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Prostate Cancer, 280 
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QR factorization, 49, 56, 62 
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Random Search, 69 

random variables, 99 
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  problems, 94 

regularization: 

  Adaptive Regularization Parameter 

Selection, 120 

  Kolmogorov regularization theory, 157 

  method, 105 
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RMS (see Root Mean Squares) 

  error, 110 

Root Mean Squares, 47, 58 

Rosenblatt’s perceptron learning rule, 
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Rumelhant, 26 

 

scatter plot, 259 

second-order moment, 102 

Self Organising Map, 5, 18, 149, 173, 
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  learning algorithm, 177 

  weight-updating rule, 178 

semi-positive, 107 

serine protease, 281 

shewness, 100 

Short-term load forecasting, 251, 254 
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Simulated Annealing, 69, 70, 120 

single-layer perceptron, 36 

Singular Value Decomposition, 49, 56, 
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Weight Initialization, 60  

Statistical Learning Theory, 159 
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stochastic, 35 

  optimization, 69 
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structural risk minimization, 223 
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Synthetic Function Mapping, 124 

system identification, 99 

 

Taylor expansion, 136 
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time-series, 15, 99 

  forecasting, 102 
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  nonstationary, 252 

threshold function, 4 
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transformation matrix, 50 
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Truck-Backer-Upper problem, 59 

two-spiral benchmark test, 80 

 

U-matrix, 176 

unbiased estimator, 132 
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Unsupervised Neural Networks, 17 

 

variance, 100 

vector quantization, 175, 186 

  soft quantization error, 187 
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Von Neumann architecture, 1 

ViSOM, 175 
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Wavelet  
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  transform, 265 

weather forecast, 252 
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