
www.allitebooks.com

http://www.allitebooks.org

Neural Networks
and Computing

Learning Algorithms and Applications

www.allitebooks.com

http://www.allitebooks.org

SERIES IN ELECTRICAL AND COMPUTER ENGINEERING

Editor: Wai-Kai Chen (University of Illinois, Chicago, USA)

Published:

Vol. 1: Net Theory and Its Applications
Flows in Networks
by W. K. Chen

Vol. 2: A Mathematical Introduction to Control Theory
by S. Engelberg

Vol. 5: Security Modeling and Analysis of Mobile Agent Systems
by Lu Ma and Jeffrey J. P. Tsai

Vol. 6: Multi-Objective Group Decision Making: Methods Software and
Applications with Fuzzy Set Techniques
by Jie Lu, Guangquan Zhang, Da Ruan and Fengjie Wu

Steven - Neural Networks and Computing.pmd 9/20/2007, 1:51 PM2

www.allitebooks.com

http://www.allitebooks.org

VOL. 7 S E R I E S I N E L E C T R I C A L A N D
C O M P U T E R E N G I N E E R I N G

Neural Networks
and Computing

Learning Algorithms and Applications

TommyW S Chow
City University of Hong Kong, Hong Kong

Siu-Yeung Cho
Nan yang Technological University, Singapore

rn Imperial College Press
www.allitebooks.com

http://www.allitebooks.org

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Published by

Imperial College Press
57 Shelton Street
Covent Garden
London WC2H 9HE

Distributed by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-1-86094-758-2
ISBN-10 1-86094-758-1

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2007 by Imperial College Press

NEURAL NETWORKS AND COMPUTING
Series in Electrical and Computer Engineering — Vol. 7

Steven - Neural Networks and Computing.pmd 9/20/2007, 1:51 PM1

www.allitebooks.com

http://www.allitebooks.org

v

Preface

The area of Neural computing that we shall discuss in this

book represents a combination of techniques of classical

optimization, statistics, and information theory. Neural network

was once widely called artificial neural networks, which

represented how the emerging technology was related to artificial

intelligence. It once was a topic that had captivated the interest of

most computer scientists, engineers, and mathematicians. Its

charm of being an adaptive system or universal functional

approximator has compelling appeal to most researchers and

engineers. The Backpropagation training algorithm was once the

most popular keywords used in most engineering conferences.

There is an interesting history on this area dated back from the late

fifties which we saw the advent of the Mark I Perceptron. But the

real intriguing history started from the sixties that we saw Minsky

and Papert’s book “Perceptrons” discredited the early neural

research work. For all neural researchers, the late eighties are well

remembered because the research of neural networks was

reinstated and repositioned. From the nineties to the new

millennium is history to be made by all neural researchers. We saw

the flourish of this topic and its applications stretched from

rigorous mathematical proof to different physical science and even

business applications. Researchers now tend to use the term

“neural networks” instead of “artificial neural networks” when we

have understood the theoretical background more. There have

been volumes of research literature published on the new

development of neural theory and applications. There have been

many attempts to discuss this topic from either a very

mathematical way or a very practical way. But to most users

including students and engineers, how to employ an appropriate

neural network learning algorithm and the selection of model for a

given physical problem appear to be the main issue.

This book, written from a more application perspective,

provides thorough discussions on neural network learning

www.allitebooks.com

http://www.allitebooks.org

vi Neural Networks and Computing: Learning Algorithms and Applications

algorithms and their related issues. We strive to find the balance

in covering the major topics in neurocomputing, from learning

theory, learning algorithms, network architecture to applications.

We start the book from the fundamental building block “neuron”

and the earliest neural network model, McCulloh and Pitts Model.

In the beginning, we treat the learning concept from the well-

known regression problem which shows how the idea of data

fitting can be used to explain the fundamental concept of neural

learning. We employ an error convex surface to illustrate the

optimization concept of learning algorithm. This is important as it

shows readers that the neural learning algorithm is nothing more

than a high dimensional optimization problem. One of the beauties

of neural network is being a soft computing approach in which the

selection of a model structure and initial settings may not have

noticeable effect on the final solution. But neural learning process

also suffers from its problem of being slow and stuck in local

minima especially when it is required to handle a rather complex

problem. These are the two main issues addressed in the later

chapters of this book. We study the neural learning problem from

a new perspective and offer several modified algorithms to

enhance the learning speed and its convergence ability. We also

show initializations of a network have significant effect on the

learning performance. Different initialization methods are then

discussed and elaborated.

Later chapters of the book deal with Basis function

network, Self-Organizing map, and Feature Selection. These are

interesting and useful topics to most engineering and science

researchers. The Self-Organizing map is the most widely used

unsupervised neural network. It is useful for performing

clustering, dimensional reduction, and classification. The SOM is

very different from the feedforward neural network in the sense of

architecture and learning algorithm. In this book, we have

provided thorough discussions and newly developed extended

algorithms for readers to use. Classification and Feature selection

is discussed in Chapter 6. We include this topic in the book

because bioinformatics has recently become a very important

www.allitebooks.com

http://www.allitebooks.org

 Preface vii

research area. Gene selection using computational methods, and

performing cancer classification computationally have become the

21
st
 Century research. This book provides a detail discussion on

feature selection and how different methods be applied to gene

selection and cancer classification. We hope this book will

provide useful and inspiring information to readers. A number of

software algorithms written in MATLAB are available for readers

to use. Although the authors have gone through the book for few

times checking typos and errors, we would appreciate readers

notifying us about any typos found.

At last, the authors would thank the support and help from

his colleagues and students. The author must thank his students

Mr. Gaoyang Dai, Dr. Di Huang, Dr. Jim Y F Yam, Dr. Sitao Wu,

and Dr. M K M Rahman for their help in preparing the material.

The authors would also thank Prof. Guanrong Chen for introducing

us to the very helpful publisher. The authors must thank the World

Scientific Publishing Co for publishing this book.

Last but not least, Tommy Chow would like to thank Irene,

Adrian and Ian for their tolerance and support.

.

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blankThis page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ix

Contents

Preface v

1. Introduction 1

 1.1 Background . 1

 1.2 Neuron Model . 2

 1.3 Historical Remarks . 4

 1.4 Network architecture . 6

 1.4.1 Supervised Neural Networks . 6

 1.4.1.1 McCulloh and Pitts Model . 7

 1.4.1.2 The Perceptron Model. 11

 1.4.1.3 Multi-layer Feedforward Network 14

 1.4.1.4 Recurrent Networks . 15

 1.4.2 Unsupervised Neural Networks . 17

 1.5 Modeling and Learning Mechanism . 19

 1.5.1 Determination of Parameters . 20

 1.5.2 Gradient Descent Searching Method 26

 Exercises . 28

2. Learning Performance and Enhancement 31

 2.1 Fundamental of Gradient Descent Optimization 32

 2.2 Conventional Backpropagation Algorithm . 35

 2.3 Convergence Enhancement . 42

 2.3.1 Extended Backpropagation Algorithm 44

 2.3.2 Least Squares Based Training Algorithm 47

 2.3.3 Extended Least Squares Based Algorithm 55

 2.4 Initialization Consideration . 59

 2.4.1 Weight Initialization Algorithm I . 61

 2.4.2 Weight Initialization Algorithm II . 64

 2.4.3 Weight Initialization Algorithm III . 67

 2.5 Global Learning Algorithms . 69

 2.5.1 Simulated Annealing Algorithm . 70

www.allitebooks.com

http://www.allitebooks.org

Neural Networks and Computing: Learning Algorithms and Applications x

 2.5.2 Alopex Algorithm . 71

 2.5.3 Reactive Tabu Search . 72

 2.5.4 The NOVEL Algorithm . 73

 2.5.5 The Heuristic Hybrid Global Learning Algorithm 74

 2.6 Concluding Remarks . 82

 2.6.1 Fast Learning Algorithms . 82

 2.6.2 Weight Initialization Methods . 83

 2.6.3 Global Learning Algorithms . 84

 Appendix 2.1 . 85

 Exercises . 87

3. Generalization and Performance Enhancement 91

 3.1 Cost Function and Performance Surface . 93

 3.1.1 Maximum Likelihood Estimation . 94

 3.1.2 The Least-Square Cost Function . 95

 3.2 Higher-Order Statistic Generalization . 98

 3.2.1 Definitions and Properties of Higher-Order Statistics 99

 3.2.2 The Higher-Order Cumulants based Cost Function 101

 3.2.3 Property of the Higher-Order Cumulant Cost Function 105

 3.2.4 Learning and Generalization Performance 108

 3.2.4.1 Experiment one: Henon Attractor 109

 3.2.4.2 Experiment Two: Sunspot time-series 116

 3.3 Regularization for Generalization Enhancement 117

 3.3.1 Adaptive Regularization Parameter Selection (ARPS) Method 120

 3.3.1.1 Stalling Identification Method 121

 3.3.1.2 λ Selection Schemes . 122

 3.3.2 Synthetic Function Mapping . 124

 3.4 Concluding Remarks . 126

 3.4.1 Objective function selection . 128

 3.4.2 Regularization selection . 129

 Appendix 3.1 Confidence Upper Bound of Approximation Error. 131

 Appendix 3.2 Proof of the Property of the HOC Cost Function 133

 Appendix 3.3 The Derivation of the Sufficient Conditions of the

Regularization Parameter. 136

 Exercises . 137

4. Basis Function Networks for Classification . 139

 4.1 Linear Separation and Perceptions . 140

 4.2 Basis Function Model for Parametric Smoothing 142

 4.3 Radial Basis Function Network . 144

 4.3.1 RBF Networks Architecture . 144

 4.3.2 Universal Approximation . 146

Contents xi

 4.3.3 Initialization and Clustering . 149

 4.3.4 Learning Algorithms. 152

 4.3.4.1 Linear Weights Optimization. 152

 4.3.4.2 Gradient Descent Optimization 154

 4.3.4.3 Hybrid of Least Squares and Penalized Optimization . 155

 4.3.5 Regularization Networks. 157

 4.4 Advanced Radial Basis Function Networks . 159

 4.4.1 Support Vector Machine. 159

 4.4.2 Wavelet Network . 161

 4.4.3 Fuzzy RBF Controllers. 164

 4.4.4 Probabilistic Neural Networks . 167

 4.5 Concluding Remarks. 169

 Exercises . 170

5. Self-organizing Maps . 173

 5.1 Introduction . 173

 5.2 Self-Organizing Maps . 177

 5.2.1 Learning Algorithm . 178

 5.3 Growing SOMs . 182

 5.3.1 Cell Splitting Grid . 182

 5.3.2 Growing Hierarchical Self-Organizing Quadtree Map 185

 5.4 Probabilistic SOMs . 188

 5.4.1 Cellular Probabilistic SOM . 188

 5.4.2 Probabilistic Regularized SOM . 193

 5.5 Clustering of SOM . 202

 5.6 Multi-Layer SOM for Tree-Structured data . 205

 5.6.1 SOM Input Representation . 207

 5.6.2 MLSOM Training . 210

 5.6.3 MLSOM visualization and classification 212

 Exercises . 216

6 Classification and Feature Selection . 219

 6.1 Introduction . 219

 6.2 Support Vector Machines (SVM) . 223

 6.2.1 Support Vector Machine Visualization (SVMV) 224

 6.3 Cost Function . 229

 6.3.1 MSE and MCE Cost Functions . 230

 6.3.2 Hybrid MCE-MSE Cost Function . 232

 6.3.3 Implementing MCE-MSE . 236

 6.4 Feature Selection . 239

 6.4.1 Information Theory . 241

 6.4.1.1 Mutual Information . 241

Neural Networks and Computing: Learning Algorithms and Applications xii

 6.4.1.2 Probability density function (pdf) estimation 243

 6.4.2 MI Based Forward Feature Selection . 245

 6.4.2.1 MIFS and MIFS-U . 247

 6.4.2.2 Using quadratic MI . 248

 Exercises . 253

7. Engineering Applications . 255

 7.1 Electric Load Forecasting . 255

 7.1.1 Nonlinear Autoregressive Integrated Neural Network Model . 257

 7.1.2 Case Studies . 261

 7.2 Content-based Image Retrieval Using SOM . 266

 7.2.1 GHSOQM Based CBIR Systems . 267

 7.2.1.1 Overall Architecture of GHSOQM-Based CBIR

System . 267

7.2.1.2 Image Segmentation, Feature Extraction and Region-

Based Feature Matrices . 268

7.2.1.3 Image Distance . 269

 7.2.1.4 GHSOQM and Relevance Feedback in the CBIR

System . 270

7.2.2 Performance Evaluation . 274

7.3 Feature Selection for cDNA Microarray . 278

 7.3.1 MI Based Forward Feature Selection Scheme 279

 7.3.2 The Supervised Grid Based Redundancy Elimination 280

 7.3.3 The Forward Gene Selection Process Using MIIO and MISF . 281

7.3.4 Results . 282

 7.3.4.1 Prostate Cancer Classification Dataset 284

 7.3.4.2 Subtype of ALL Classification Dataset 288

 7.3.5 Remarks . 294

Bibliography 291

Index 305

1

Chapter 1

Introduction

1.1. Background

Human beings are now living in an era of unparalleled changes
especially in the world of science and technology. We have witnessed
the impact of DNA research from the way of diagnosing cancer, creating
new drugs and to the way of tracing our human ancestors back to over
eighty thousand years ago. We have also witnessed the birth of the
Information Technology era which has changed our life from the
personal entertainment habits to our learning and even the way of how
our business is run. All these amazing things, which are attributed to the
immense development of computing technology, happened in merely
few decades. Undoubtedly, computers have become an integral part of
our lives that most users have taken them for granted but may not know
that the structure of computer is based on John Von Neumann’s view on
how computational process be organized. Von Neumann architecture is
a very organized way of processing computation. The computing is
achieved by using a CPU operating a series of instructions including:
fetch, decode, execute, and writeback. This type of serial operation has
been working extremely well for virtually all applications, until the
challenge posed by the emerging Artificial Intelligent technology.

Neural Computing is basically a parallel distributed processing. It
has the ability of performing supervised and/or unsupervised learning to
adapt the information environment. The architecture of neural network
is in fact based on the way of how our human nerve system is connected.
Generally, there are about 100 billion numbers of neuron in a human
brain. Neurons in our brain are parallel connected to numerous other
neurons forming a massive parallel computer like machine. Neural
network is designed in a way to seek the style of computing of human

2 Neural Networks and Computing: Learning Algorithms and Applications

brain. As a result, neural network is powerful enough to solve a variety
of problems that are proved to be difficult with conventional digital
computational methods. Typical cognitive tasks include recognition of a
familiar face, learning to speak and understand a natural language,
retrieving contextually appropriate information from memory, and
performing demanding classification tasks.

The human thinking system is in parallel which means it operates
with numerous of our neurons connected together. In contrast to the
conventional crisp mathematical logic, the main characteristics of human
thinking process is imprecise, fuzziness, but adaptive. It learns by
examples, experience and it exhibits strong adaptation to external
changes. Neural networks are designed in a way to mimic most of these
characteristics. They are so far exhibiting very encouraging performance.

Learning: Neural network can modify their behaviour in response to
the environment. When a given set of inputs with or without desired
outputs, they can self-adjust to produce consistent responses.

Generalization: When the network is once trained, its response can
be in some extent insensitive to minor variations, which may be caused
by noise corruption or slight distortion in a real-world environment, in its
inputs.

Massively parallelism: Information is processed in a massive
parallel manner.

Fault-tolerance: Once when the network connections are made, the
network is able to deliver a robust behaviour. The response of the
network as a whole may only be slightly degraded if some of its
processing elements are slightly damaged or altered.

1.2. Neuron Model

Neuron is the fundamental cellular unit of a nervous system. A
typical biological neuron in human brain is shown in Fig. 1.1. In each
neuron it has an output fiber called axon, and a button like terminal
called synapse. The axon, which is the output path of a neuron, splits up
and connects to many dendrites, which are the input paths of other
neurons, through a junction called synapse. Each neuron receives and
combines signals from numerous neurons through dendrites similarly
connected.

 Introduction 3

Figure 1.1. A typical biological neuron and its connection

A neuron can receive up to few thousands to about fifteen thousands

inputs from the axons of other neurons. Apparently this forms a massive
parallel system compared with the digital computer architecture. In each
neuron, if the combined signal exceeds a threshold value, it activates the
firing of a neuron producing an output signal through the axon.
Transmission of information across synapses is in fact a chemical in
nature, but it has electrical side effects which we can be measured.
Electrical activities in neurons appeared in a shape of pulse with a
frequency in the range of 1 KHz. This type of biological behaviour is
modeled by an electronic model shown in Fig. 1.2. A simple neuron
model is the most fundamental processing element of neural networks.
The weights correspond to the synaptic strength of neural connections,
i.e., analogous to “memory” and the neuron sums all the weighted inputs,

4 Neural Networks and Computing: Learning Algorithms and Applications

modifies the signals through a transfer function which is usually non-
linear. The transfer function can be a threshold function which only
allows signal to be passed if the combined activity level reaches a certain
threshold level, or it is a continuous function of the combined input.

Figure 1.2. Electronic model of a neuron

1.3. Historical Remarks

The first neural network model has to be the McCulloch and Pitts
model proposed in 1943. It is a very simple electronic model that can be
hardware implemented. It is a multiple inputs summing device that
consists of different weightings for each input, and a threshold before the
output. The significance of this model at that time was its ability to
compute any arithmetic or logical function. It is until about the ends of
the fifties that the first type of Perceptron was proposed by Frank
Rosenblatt, and Wightman. The first application of the Mark I
Perceptron machine was on pattern recognition. In their experiments, the
pattern recognition ability of Perceptron model was demonstrated by
recognizing different simple characters. Subsequently, numerous neural
networks results were reported. Neural hardware business was even
established. It was similar to the hype of the IT industries in the end of
nineties, the neural hype burst when good idea ran out. By the mid of

 Introduction 5

sixties, Minsky and Papert’s paper mathematically proved that a simple
perceptron could not handle the XOR function. This has silenced neural
research work for about 2 decades. It was until about the mid of eighties
that Neural research has become flourish again. It was achieved with the
contribution from a number of renowned scientists including Hopfield,
Amari, Grossberg, Kohonen, Fukushima, Oji, etc. They have developed
many important neural topologies.

In 1982, Hopfield published two important articles which most
people still regard as the inauguration of the current neural network era.
Hopfield showed a novel idea that models of physical systems could be
effectively used for solving computational problems. Using the idea of
an energy function to establish a new type of network architecture, he
showed that when a distorted pattern is presented to the network, the
pattern is associated with another pattern which belongs to a similar class
pattern. Hopfield networks are, thus, sometimes called associative
networks. For a discrete-time Hopfield network, the energy of a certain
vector with a given initial state will converge to a value having minimum
energy. This is used to explain its capability of converging to a similar
class of patterns. Also, in the early eighties Carpenter and Grossberg
established the well-known adaptive resonance theory (ART) based on
their early work on competitive learning. ART was introduced by them
over the period of 1976-1986 as a theory of human information
processing. Like Kohonen’s Self Organising Map, they were working
on systems that are capable of organizing themselves. ART has the
ability to learn without supervised training and is consistent with
cognitive and behavioral models. It was derived based on competitive
learning which is capable of finding categories. ART has been widely
used as a type of neural network models that perform supervised and
unsupervised category learning, and pattern classification.

In 1988 George Cybenko published a very important work proving
the universal functional approximation ability of neural networks. In
1989, Funahashi, Hornik, and Stinchcombe also reported their findings
on proving multilayer Perceptron network as a universal approximator.
Subsequently, neural networks have been widely applied on many
different science and engineering areas. The nowadays neural networks
have already extended from its simple pattern recognition problem to the
very complicated DNA, gene recognition and classification problems.
Applications have extended from physical science and engineering to
finance, economic and social science.

6 Neural Networks and Computing: Learning Algorithms and Applications

1.4. Network architecture

Generally, neural networks can be categorized into 2 main types,
namely supervised networks and unsupervised networks. The way the
network architecture was deigned has taken the ability of its training
algorithm into account. In most newly proposed network topologies, the
design of their corresponding training algorithms are deemed essential.
Apparently, a successful network architecture must be supported by an
effective and simple enough training algorithm. In this book, the later
chapter will detail different efficient training algorithms. In this section,
we focus the introduction of their hardware architectures.

1.4.1. Supervised Neural Networks

Supervised neural networks are the mainstream of neural network
development. The differentiable characteristic of supervised neural
networks lies in the inclusion of a teacher in their learning process. The
basic block diagram of supervised learning for all neural network models
can be described through Fig. 1.3. For the learning process, the network
needs training data examples consisting of a number of input-output
pairs. The desired output vector in the training data set serve as a teacher
for the network’s learning. In the training process the error signals are
constructed from the difference between the desired output and system
output. Through iterative training procedure the network’s weights are
adjusted by the error signal in a way that the network output tries to
follow the desired output as close as possible.

The learning procedure continues until the error signal is close to
zero or below a predefined value. The sum of errors over all the training
samples can be considered as a kind of network performance measure,
which is a function of free parameters of the system. Such function can
be visualized a multidimensional error surface where network free
parameters serves as coordinates. During the course of learning the
system gradually moves to a minimum point along an error surface. The
error surface is determined by the network architecture and the cost
function. In later chapter of this book, more details in this aspect will be
discussed. The supervised networks’ architectures can vary depending
on the complexity and nature of data to be handled. Broadly speaking,
they can be sub-divided into following three fundamental classes.

 Introduction 7

Figure 1.3. Overview of supervised learning

1.4.1.1. McCulloh and Pitts Model

In 1943, neurophysiologist McCulloch and his associate Pitts used a
type of electrical circuit to model a simple neuron. This is the first ever
type of electronic model used to model a neuron. The McCulloh and Pitts
(MCP) model has a profound impact on the later Perceptron model. The
MCP model basically consists of a summing amplifier and variable
resistors as shown in Fig. 1.4. The weights ()1 2,W W in Fig. 1.4 are
adjusted through varying the values of the resistors. A threshold device,
which is made of voltage comparator, generates an output 1 if the
summation of signals exceeds the threshold value, T, or the output is 0 if
the signal is less than the threshold value, T.

To illustrate how the MCP model works, we use a simple “AND”
logic problem as example.The general form of MCP model is
 1Output = , if 1 1 2 2X W X W T+ > (1.1)

We make use of the truth table and the following inequalities are
obtained.
 O T< , 2O W T+ < , 1W O T+ < , 1 2W W T+ >

www.allitebooks.com

http://www.allitebooks.org

8 Neural Networks and Computing: Learning Algorithms and Applications

Figure 1.4. The general form of MCP model

Table 1.1

1X 2X Output

0 0 0
0 1 0
1 0 0
1 1 1

The task is to determine the values of T, 2W and 2W so that the output
satisfies the logic “AND” function. We can chose 1 0.5W = , 2 0.8W =

and 1T = as a solution. Fig. 1.5 shows that the job is equivalent of
finding a line separating the 3 “0” from the “1”. Apparently, the 3 lines
and many other lines can satisfy the requirement.

To find the separating line, we need to find the gradient and the
interceptions of the line. By replacing “>” with “=”,

 1 1 2 2W X W X T+ = (1.2)

1 1
2

2 2

W XTX
W W

= −

Thus
1 1.25

0.8
a = = , and

5
8

gradient −
= ,

1 2
0.5

b = =

 Introduction 9

Figure 1.5.

There are infinite numbers of solutions that can satisfy the

requirement. Clearly, it is a very lose way in finding a solution which
appears to be one of the beauty of neural network. The Application of a
“AND” logic function may appear to be too simple to illustrate its
concept of finding a hyper-plane for discrimination. We now consider
the following logic function.

Table 1.2

1X 2X 3X Output

0 0 0 1
0 1 1 0
0 0 1 0
0 1 0 1
1 0 0 0
1 1 1 0
1 0 1 0
1 1 0 0

10 Neural Networks and Computing: Learning Algorithms and Applications

Figure 1.6.

In this example, we need to find a plane “Z” to separate the 6 “0”

from the 2 “1”. Similarly, it is clear that there are many hyperplanes “Z”
can do the separation job. The complexity of the problem can be
visualized when higher dimension input vector are considered. A training
rule is needed to find the possible hyperplane to separate “1” from the
“0”.

In the above examples, whether it is a 3-dimensional cube or a 2-
dimensional plane, they are all linearly separable cases. This means that
we can use a linear line or a hyperplane to separate the “0” from the “1”.
In real world, problems may usually be linear non-separable. We use the
famous “ex-OR” as example to illustrate the concept of linear non-
separable. Fig. 1.7 shows that it is impossible to use a straight line to
separate the “0” from the “1”. This brings out the main shortcoming of a
simple Perceptron model and the need of using multilayer Perceptron
network which will all be briefed in later sections of this chapter.

 Introduction 11

Table 1.3

Figure 1.7.

In this case none of line “1”, line “2” and all other linear lines can

possible separate the 2 “0” from the 2 “1”.

1.4.1.2. The Perceptron Model

The Perceptron model is the simplest type of neural network
developed by Frank Rosenblatt in 1962. This type of simple network is
rarely used now but it is significant in terms of its historical contribution
to neural networks. A very simple form of Perceptron model is shown
in Fig. 1.8. It is very much similar to the MCP model discussed in the
last section. It has more than 1 inputs connected to the node summing
the linear combination of the inputs connected to the node. Also, the
resulting sum goes through a hard limiter which produces an output of +1
if the input of the hard limiter is positive. Similarly, it produces an

1X 2X
Output

0 0 0
0 1 1
1 0 1
1 1 0

12 Neural Networks and Computing: Learning Algorithms and Applications

output of -1 if the input is negative. It was first developed to classify a
set of externally inputs into 2 classes of 1C or 2C with an output +1
signifies 1C or 2C . Despite its early success, the single layer Perceptron
network was proved by Minsky and Papert’s work that it is unable to
classify linear non-separable problem.

Figure 1.8. Single-layer Perceptron model

A 2-layer Perceptron network can be used for classifying linear non-

separable problems. First, we consider the classification regions in a 2
dimensional space. Fig. 1.9 shows the 2-D input space in which a line is
used to separate the 2 classes 1C and 2C .

Similar to Eq. (1.2)
 1 1 2 2 0W X W X T+ − =

The region below or on the right of the line is
 1 1 2 2 0W X W X T+ − > (1.3)

Thus the region above or on the left of the line is
 1 1 2 2 0W X W X T+ − < (1.4)

Fig. 1.10 shows that a linear non-separable case can be separated
using a 2-layer perceptron model. Fig. 1.10(b) shows a 2-layer
perceptron network separating linear non-separable case. This concept
has paved the way for the later development of multi-layer feedforward
model.

1x

2x

3x

mx
Bias

y

Output Input

 Introduction 13

Figure 1.9.

Figure 1.10. (a) It shows we can use 3-liear lines to separate linear non-separable case

14 Neural Networks and Computing: Learning Algorithms and Applications

Figure 1.10. (b) A 2-layer perceptron network separating linear non-separable case

1.4.1.3. Multi-layer Feedforward Network

In a simple form, a feedforward network consists of an input layer
and a single layer of neurons. Such a single-layer feedforward network is
not capable of classifying nonlinearly separable patters as discussed in
the previous sections. Multi-layer feedforward network has become the
major and most widely used supervised learning neural network
architecture. In the feedforward networks, all connections are acyclic or
unidirectional from input to output layer.

Multi-layer network, shown in Fig. 1.11, consists of one or more
layers of neuron, called hidden layer, between input and output layer.
The neurons in hidden layers are called hidden neuron. The network is
called fully connected when every neuron in one layer is connected to
every neuron of the next layer. It is able to handle relatively complex
task and linear non-separable classification. A typical example of such
problem is the well known Exclusive OR (XOR).

 Introduction 15

Figure 1.11. Multilayer feedforward network with 1 hidden layer

1.4.1.4. Recurrent Networks

Recurrent network is a special form of network. It can be a single
layer or multiple hidden layers network. The basic difference from
feedforward networks is that they have one or more feedback loops as
shown in Fig. 1.12. The feedback loop can appear in many forms
between any two neurons or layers. It typically involves unit delay
element denoted by 1z− . Recurrent networks exhibit complex dynamics
because they consist of a large number of feedforward and feedback
connections. This characteristic provides them extra advantages in
handling time-series related and dynamical problems over feedforward
networks. Recurrent networks are also useful for processing special types
of data such as graph-structured data. A recurrent network with a smaller
network size may be equivalent to a complicated type of feedforward
network architecture.

Inputs

Outputs

Input layer

Output layer
of neurons

Hidden layer
of neurons

16 Neural Networks and Computing: Learning Algorithms and Applications

Figure 1.12. Recurrent network

There have been a wide applications of recurrent networks on
intelligent control, system identification, and dynamical system
applications. In these applications, theoretical study of stability,
convergence of the network trajectory to the equilibrium, and their
functional approximation ability are regarded important. These studies
have widely been reported in many research articles. Some of these
work include the proof of a discrete-time trajectory on a closed finite
interval can be represented by using a discrete-time recurrent neural
network. In the case of continuous-time recurrent networks, there is work
showing that a continuous-time dynamical system without input
i.e. ()=x F x can be approximated by a class of recurrent networks to an
arbitrary degree of accuracy. Subsequently, there are work proving that
a general dynamical continuous-time systems with control input, i.e.

(),=x F x u can be represented by recurrent networks. Different type of

dynamical system like () ()= + ⋅x f x g x u has also been studied. All
these works focus on the approximation problem of continuous-time
recurrent networks to dynamical time-invariant system (),=x F x u .
There are also study on dynamical time-variant systems,

Input

1z−

1z−

1z−

 Introduction 17

i.e. () (), ,t t=x F x u , which has wider industrial applications because
most dynamical systems may be time-variant. Now the theoretical study
of recurrent neural networks on approximating different dynamical
systems has reached a very sophisticated stage that recurrent networks
have been widely applied to many forecasting, functional approximation,
system identification, and control problems. In recurrent network
learning algorithm, special types of algorithms were designed to handle
control problems. More approaches have been developed using recurrent
neural networks based control methods. It has been pointed out that the
fundamental shortcomings of current adaptive control techniques, such
as nonlinear control laws which are difficult to derive, geometrically
increasing complexity with the number of unknown parameters, and
general unsuitability for real-time applications, have compelled
researchers to look for solutions elsewhere. Recently, it has been shown
that recurrent neural networks have emerged as a successful tool in the
field of dynamical control systems. Funahashi and Nakamura have
proved that any finite-time trajectory of a given n-dimensional dynamical
system can be approximately realized by internal states of the output
units of a continuous-time recurrent neural network when appropriate
network topologies together with appropriate initial conditions are used.
When recurrent networks are used to approximate and control an
unknown nonlinear system through an on-line learning process, they may
be considered as subsystems of an adaptive control system. The weights
of the networks need to be updated using a dynamical learning algorithm
during the control process. In establishing a convergence control action,
many different recurrent training learning algorithms were developed, for
instance Chow and Fang derived a 2-D nonlinear system mathematical
model to describe the dynamic of a recurrent network and the dynamics
of the learning process. The error dynamic equation is expressed in the
form of a 2-D Roesser’s model with time-varying coefficients. Based on
2-D system theory, a real-time iterative learning algorithm for trajectory
tracking was derived.

1.4.2. Unsupervised Neural Networks

Unlike the supervised networks, unsupervised networks do not have
a teacher in the training data set. The learning process of unsupervised
neural networks is carried out from a self-organizing behavior. In the

www.allitebooks.com

http://www.allitebooks.org

18 Neural Networks and Computing: Learning Algorithms and Applications

course of training, no external factor is used to affect the weights
adjustment of the network. The correct outputs are not available during
the course of training. For instance, a typical unsupervised network
consists of an input layer and a competitive layer. Neurons on the
competitive layer compete with each other via a simple competitive
learning rule to best represent a given input pattern. Through
competitive learning, the network output automatically reflects some
statistical characteristics of input data such as data cluster, topological
ordering etc.

Self-organizing map (SOM) is the most widely used unsupervised
neural networks. Fig. 1.13(b) shows the architecture of a typical SOM
network, in which all neurons, arranged on a fixed grid of the output
layer, contain a weight vector similar to the input dimension. After the
training, each neuron becomes representative of different types of input
data. One of the most important characteristic of SOM lies in is its
topological ordering which means that the neurons that have similar
weight (in the input dimension) also close to each other in the SOM
output map. This type of SOM map is useful in a many applications
including clustering, visualization, quantization and retrieval.

Figure 1.13. (a) Unsupervised learning process (b) SOM network architecture

Training patterns

Learning
System

System
output

(a) (b)

987

3 4 5 621

X
Input layer

24

2

2w
3

12

18

4

66w

11w

30
36

10 11 12

13 14 1615 1817

20 22 2319

25

2421

26 30 2827

31 34 3533

29

32 36
Output layer

 Introduction 19

1.5. Modeling and Learning Mechanism

One of the main functions of neural networks is about their
excellent ability to model a complex multi-input multi-output system.
Neural networks have widely been considered and used as a kind of soft
mathematical modeling method. In a given high dimensional input
output dataset, neural networks are able to provide a promising modeling
service. Despite the fact that the neural learning procedures may be
perceived rather straightforward from the perspective of application,
every problem is vastly different because the problems usually consist of
new measurements or test data that are not exactly the same as the
training data seen amid the training period. For instance, consider a face
detection problem in which the training dataset is given with a set of
pictures containing faces. A picture can be represented by a vector of its
pixel values in an n-dimensional vector. The training set may consist of
an m pairs of data in which the label, which is the name of the face,
associated with the picture is included. The training process should come
up with a function h(x) which would deliver the correct label when given
a query image. Usually, there are 2 main problems: (i) the function, h(x),
may produce excellent results on the training set, but may perform rather
poorly on new unseen pictures. (ii) New unseen pictures may never be
identical as the previously seen images in the training set. Apparently,
the task of training is not simply to reduce the training error. We are
more concern on the generalization ability of the network.

There are many training algorithms developed in the past 10 years,
they all share the similar goal of minimizing the training error in the
shortest possible time. Despite their employed approaches may ranged
from using gradient descent optimization to Least Squared mechanism,
we need to analyze the problem from the perspectives of Information
theory, and Statistics in order to come up with the best network for a
given problem. In order to understand the fundamental of learning
mechanism, we will start to illustrate it from a simple linear regression
perspective.

1.5.1. Determination of Parameters

We can consider a simple linear regression example in which a
linear line is used to model a given dataset as shown in Fig. 1.14. It
investigates the electrical property of a new conducting material. The

20 Neural Networks and Computing: Learning Algorithms and Applications

dots show how electrical current varies with the supply voltage. For a
given supply voltage of 50 volts, we are asked to predict the magnitude
of current flowing through the new material. This question can simply be
answered by using a linear model. The simplest model is in the form
 y wx b= + (1.5)

Figure 1.14.

The question becomes the determination of the 2 parameters, w and

b . It is a question of finding the best straight line, which will be used as
a predictor, drawn through the experimental data. In this simple linear
regression question, the two parameters can be solved conventionally by
using the Least Squared method.

∑ ∑

∑ ∑ ∑
−

−
=

i i
ii

i i i
iiii

Nxx

Ndxdx
w

/)(

/)(

22 (1.6a)

∑ ∑

∑ ∑ ∑ ∑
−

−
=

i
ii

i i i i
iiiii

xxN

dxXdx
b

22

2

)(
 (1.6b)

where ,i id x correspond to the measured current response, and voltage
supply respectively, and N is the total number of data. In solving the
linear regression problem, the 2 parameters are obtained by using the

 Introduction 21

above equation. One can imagine that complexity of the problem when
more parameters are involved. In neural network training mechanism, we
have to rely on a more sophisticated optimization approach on solving
the numerous parameters.

We use the same linear regression problem to illustrate the concept
of a cost function approach. To make a “good predictor”, we define a
cost function E over the model parameters. One of the most widely used
cost function for E is the sum squared error given

 2)(
2
1

i
i

i ydE −= ∑ (1.7)

The above equation is quadratic because of the square term. The
performance surface is in a form of a convex surface, in which the
minimum locates at the bottom. Fig. 1.15 shows how the sum squared
error varies with the 2 parameters.

Figure 1.15.

The cost function E provides us an objective measure of predictive

error for a specific choice of parameters. The best possible parameters

22 Neural Networks and Computing: Learning Algorithms and Applications

can be obtained by minimizing the cost function or finding the minimum
of the performance surface. We use gradient descent type optimization
algorithm to find the minimum. This can easily be found as long as we
are able to evaluate the gradient of the performance surface and follow
its down hill path all the way along the surface. Different initial settings
do not affect the final solution except providing different downhill paths.
We can simply imagine that we are somewhere on or near the summit of
a mountain. The shortest way to go down hill will simply to follow the
steepest gradient of the terrain. But the selection of our step size is
important when we go downhill because too large a step size will
apparently be dangerous. In mathematical sense, too large a step size
will likely cause oscillation around the minimum although it may speed
up the optimization at the beginning. All these issues will be discussed
in detail in later chapter of this book. The gradient descent optimization
procedures are

1. Initialize the parameters randomly.
2. Evaluate the gradient of the error function with respect to each

model parameter.
3. Adjust the model parameters by a certain step size in the direction

of the steepest gradient.
4. Repeat steps 2 and 3 until the minimum is found.

Interestingly, the linear model shown in Eq. (1.5) can be

implemented by the simplest form of a neural network shown Fig. 1.16.
This simple network consists of a bias neuron, an input neuron, and a
linear output neuron. In most feedforward neural network
implementation, the bias neuron is set to have a constant input 1.
))(1(202112 WWxy += (1.8)

The weights 21W and 20W are determined using the gradient descent
algorithm. When more weights are involved, the problem becomes a
high dimensional one which cannot be depicted using a 3 dimensional
space. But the overall mechanism can be perceived identical to the above
described. It is worth noting that although the bias neurons and their
weights are generally omitted from most architecture layout diagrams, all
neurons consist of a bias weight with a constant input 1. The learning
algorithm will determine the weight of the bias together with other
weights.

 Introduction 23

Figure 1.17.

Neuron
(2)

Neuron
(0) bias

Neuron
(1) input

Input
set to 1

Input 1x

20W
21W

Output

2y

Figure 1.16.

24 Neural Networks and Computing: Learning Algorithms and Applications

The Current Vs Supply voltage example illustrate the determination
of the current from any given supply voltage. This is a simple single
input single output problem. If the problem is a more complicated
consisting more than a single input and a single output variables, i.e.
frequency, noise, bias, and phase, the above simple neural network
model has to be modified by including more input and output neurons as
shown in Fig. 1.17.

Figure 1.18. (a) A network with a neuron consisting of a nonlinear activation function
()f u and (b) “sigmoid”- a typical activation function

We consider the curve fitting problem again from different

perspective. In Fig. 1.14, it is clear that a curve will provide a much
better fit than a linear line. Thus, it is reasonable to perform the curve
fitting by including a nonlinear activation function inserted at the output

of a neuron. An S-shaped sigmoid function
1()
1

u

u

ef u
e

α

α

−

−

−
=

+
 shown in

Fig. 1.18(b) is one of the most widely used activation functions. The
output of the network with a nonlinear activation function is
)(20121 wxwfy += (1.9)

 Introduction 25

where
1()
1

u

u

ef u
e

α

α

−

−

−
=

+
. Here, u is the weighted input for the output

neuron: ()21 1 20u w x w= + . This is the widely used feedforward
neural network with nonlinear activation function.

1.5.2. Gradient Descent Searching Method

In the last section, we have shown why the performance surface is
paraboloid when only 2 parameters are involved. In neural networks
learning, a large number of weights are involved that results in a very
complex high dimensional performance surface. Searching the
performance surface using gradient descent method is an efficient way to
determine the networks weights iteratively. As the search is to reach the
minimum of the surface, the search direction must be opposite to the
local gradient. Thus we can randomly initialize the weights as (0)W
where the index in the parentheses denotes the number of iteration, and
W denotes the weight vector. With the given initial weights, we can
evaluate the gradient of the surface at (0)W . The weights are thus
adjusted by a magnitude proportional to the gradient and a step size.
The new updated weights, (1)W is then obtained. This process continues
in a way
 (1) () ()W n W n J nη+ = − ∇ (1.10)

where η is a constant step size, and ()J n∇ denotes the gradient of the
surface at nth iteration. The search mechanism stops when the stopping
criteria are met. To improve the learning process without leading to
oscillation, Rumelhant suggested the learning algorithm to be modified
as
)1()()()1(−Δ+∇−=+ nWnJnWnW αη (1.11)

where the α is a constant which determines the effect of the past weight
changes on the current direction of movement in weight space. The
constantα , called momentum, provides the damping effect and reduces
the amount of oscillation during the course of training.

It is noted that most learning algorithms use a constant η during the
whole course of learning. It is, however, obvious that a flexible learning

26 Neural Networks and Computing: Learning Algorithms and Applications

rate that varies with different iterations can be a better learning
mechanism. A relatively large learning rate at the beginning learning
phase is employed but a relatively small learning rate has to be used in
order to maintain learning stability when the search is close to the
minimum. The ways of adjusting the learning rate according to different
scenarios have never been straightforward. These involve complicated
computation on the correlation between the weights change and their
current learning rate. This will be discussed in later chapter of this book.

When we are handling a complex neural network, the performance
surface is very complicated that cannot be depicted in a 3 dimensional
space. We cannot be sure if there is only one minimum as shown in Fig.
1.15. Usually, the high dimensional performance surface may be very
rugged that results in many local minima. One will never be sure that
whether or not our searching is stuck in a local minimum. Also, we will
never be able to obtain a zero error despite many trials. The searching
mechanism is stopped when the magnitude of the error reaches a
predefined level or when certain number of iteration is reached. This is
called the stopping criteria. Trapping in local minima has also been a
main concern to many neural network users. The likelihood of getting
stuck in local minima increases when the complexity of a problem
increases because the high dimensional performance surface may
become very rugged that results in many local minima. One of the ways
to relieve this problem is using advanced learning algorithms or even
employing different cost function that may have an effect of changing
the performance surface. These issues will be detailed in later chapters of
this book.

Exercises

Q1.1. A two input binary neuron shown in Fig. 1.19 has a unit step
activation function with bias = 0.5. Find the space of possible
values of weights of α, and β for input 1x and 2x respectively if
the neuron is

1) OFF for input (1.0, 1.0);
2) OFF for input (0.5, -1.0);
3) ON for input (0.5, -0.5).

 Introduction 27

X1

X2

bias

Y

Figure 1.19.

Q1.2. The gradient vector of a function 2 2

1 2 1 2(,) 12 3g x x x x= + is

defined by a column vector
1 2

[]Tg gg c
x x
∂ ∂

∇ = =
∂ ∂

. It is given

that the normalized gradient vector
T

cc
c c

= . Use gradient

descent method to search the minimum for 1 2)(,g x x with a given

initialization of (0) [13]Tx = . Show and find the updated values
(1)x and (2)x , with a step size of 0.5.

Q1.3. An LMS algorithm is used to implement a dual-input, single-

weight adaptive noise canceller as shown in Fig. 1.20. Use the
LMS rule to adjust the weight w of the adaptive filter. Set up an
updating equation relating (1)w n + to (), (), ()w n y n x n and the
learning rateη .

www.allitebooks.com

http://www.allitebooks.org

28 Neural Networks and Computing: Learning Algorithms and Applications

Figure 1.20.

Q1.4. Write a simple program to generate a dataset relating y to x1, x2,

x3, and x4 as the following. Use a feedforward network to model
the following equation. Use 100 data for training and another 50
unseen data as testing.

 2
34121 22345 xxxXxy +−++=

Q1.5. Fig. 1.21 and Fig. 1.22 show the simple McCulloch and Pitts

(MCP) model used for modeling a logic function “AND”. It
shows the separation line with a gradient of - 0.7, which
intersects the y-axis at 1.3, where 1x is denoted by the y axis,
and 2x is denoted by the x axis. Assuming the threshold T is 1,
determine the weights 1w and 2w for input 1x and 2x
respectively.

 Introduction 29

Figure 1.21.

Figure 1.22.

This page intentionally left blankThis page intentionally left blank

31

Chapter 2

Learning Performance and Enhancement

Neural networks structures, broadly classified as feedforward
(without feedback) and recurrent (involving feedback), have numerous
processing elements (activation functions) and connections (weights).
Most network topologies are in the forms of layer that categorize single-
layer networks and multi-layer networks. The single-layer network is the
simplest form that an input layer of source nodes projects onto an output
layer of neurons. The multi-layer network is mostly useful because the
presence of one or more hidden layers (connected between input layer
and output layer) enable the extraction of higher-order statistics for the
neural network to acquire a global perspective. It is particularly valuable
when the problems are rather difficult and diverse. Interconnections exist
between each layer of the layered type neural networks. The strengths of
the interconnections are known as synaptic weights that are used to store
the knowledge acquired by a neural network through a learning process.
The procedure used to perform such a learning process is called a
learning algorithm.

Learning algorithm can be defined as a function to adjust the synaptic
weights of a neural network in an orderly fashion so as to attain a desired
objective. Since the past few decades, different types of learning
algorithms have been developed by many researchers. For instances,
Hebbian learning and competitive learning were developed for
unsupervised learning, whereas, least-mean-squares (LMS) algorithm
and error Backpropagation (BP) algorithm (Rumelhart et al., 1986) were
developed for supervised learning. All these classic works have laid an
immense contribution to the modern neural network research. They are
much easier to analyze theoretically and can often be implemented
efficiently in a variety of applications, such as time-series forecasting,
pattern classification, system identification, and robotics and visions
applications. Since the flourish of these early works, the supervised

32 Neural Networks and Computing: Learning Algorithms and Applications

learning method, especially for the error BP, has been widely used for
multilayer neural networks.

This chapter is organized as follows: Section 2.1 presents the
fundamental of gradient descent optimization. Section 2.2 presents the
Back-propagation learning algorithm. The derivation are briefly
described, however, the limitations are also addressed in this section.
Section 2.3 focuses on the convergence performance in terms of learning
speed. Three algorithms are described to increase the rate of
convergence. Following that, section 2.4 presents the algorithm
initialization has a significant affect to the learning performance. The
methods of initialization enhancement are described and suggested how
the networks weights can be set effectively in this section. The problem
of local minima is another issue to affect the convergence which is
addressed in section 2.5. This section describes several global
optimization methods which can be used to train neural networks
effectively. Some evaluations are also presented in this section. Finally,
section 2.6 presents the concluding remarks of this chapter.

2.1. Fundamental of Gradient Descent Optimization

In order to train a neural network by gradient descent, we need to be
able to compute the gradient E∇ of the cost function with respect to
each weight jiw of the network. It tells us how a small change in that
weight will affect the overall error E. We begin by splitting the cost
function into separate terms for each pattern p in the training data:

 ∑=
p

pEE , ()∑ −=
j

p
j

p
j

p ytE 2

2
1

 (2.1)

where j ranges over the output units of the network. Since differentiation
and summation are interchangeable, we can split the gradient into
separate components for each training pattern:

 Learning Performance and Enhancement 33

∑

∑

∂
∂

=

∂
∂

=

∂
∂

=∇

p ji

p

p

p

ji

ji

w
E

E
w

w
EE

 (2.2)

In what follows, we describe the computation of the gradient for a single
data point, omitting the superscript p in order to make the notation easier
to follow.
First use the chain rule to decompose the gradient into two factors:

ji

j

jji w
y

y
E

w
E

∂
∂

∂
∂

=
∂
∂

 (2.3)

The first factor can be obtained by differentiating eq. (2.1) above:

 ()jj
j

yt
y
E

−−=
∂
∂

 (2.4)

Using ∑= i ijij ywy , the second factor becomes

i

i
iji

jiji

j

y

yw
ww

y

=

∂
∂

=
∂
∂

∑

 (2.5)

Putting the equations (2.3)-(2.5) back together, we obtain

 () ijj
ji

yyt
w
E

−−=
∂
∂

 (2.6)

To find the gradient E∇ for the entire data set, we sum at each weight
the contribution given by equation (2.6) over all the data points. We can
then subtract a small proportion μ (called the learning rate) of E∇ from
the weights to perform gradient descent. The gradient descent algorithm
is sum up as follows:

1. Initialize all weights to small random values
2. REPEAT until done

34 Neural Networks and Computing: Learning Algorithms and Applications

a. For each weight jiw set 0:=Δ jiw

b. For each data pattern ()Ptx,
i. Set input units to x

ii. Compute value of output units
iii. For each weight jiw set () ijjjiji yytww −+Δ=Δ :

c. For each weight jiw set jijiji www Δ+= μ:
The algorithm terminates once we are at, or sufficiently near to, the
minimum of the error function, where 0=∇E . We say then that the
algorithm has converged.

In this gradient descent algorithm, an important consideration is the
learning rate μ, which determines by how much we change the weights w
at each step. If μ is too small, the algorithm will take a long time to
converge (see Fig. 2.1a). Conversely, if μ is too large, we may end up
bouncing around the error surface out of control – the algorithm diverges
(see Fig. 2.1b). This usually ends with an overflow error in the
computer’s floating point arithmetic.

 (a) (b)

Figure 2.1. Learning rate for gradient descent optimization, (a) Small learning rate – Slow
convergence, (b) Large learning rate – Divergence

As described in the above we have accumulated the gradient

contributions for all data points in the training set before updating the
weights. This method is often referred to as batch learning. An
alternative approach is online learning, from which weights are updated
immediately after seeing each data point. Since the gradient for a single
data point can be considered a noisy approximation to the overall

 Learning Performance and Enhancement 35

gradient E∇ (Fig. 2.2), this is also called stochastic (noisy) gradient
descent.
Online learning has a number of advantages:

- it is often much faster, especially when the training set is
redundant (contains many similar data points),

- it can be used when there is no fixed training set (new data keeps
coming in),

- it is better at tracking nonstationary environments (where the
best model gradually changes over time),

- the noise in the gradient can help to escape from local minima
(which are a problem for gradient descent in nonlinear models).

These advantages are, however, bought at a price: many powerful
optimization techniques, such as, conjugate and second-order gradient
methods, support vector machines, Bayesian methods, etc. – are batch
methods that cannot be used online. A compromise between batch and
online learning is the use of “mini-batches”: the weights are updated
after every n data points, where n is greater than 1 but smaller than the
training set size.

Average E

E1

E2

E

w
 Figure 2.2. A noisy approximation to the overall gradient

 2.2. Conventional Backpropagation Algorithm

Recently, multilayer neural networks have been applied successfully
to solve lots of difficult and diverse problems through employing various
supervised learning procedures among which the error Backpropagation
(BP) learning algorithm appears to be the most popular. This algorithm is
an iterative gradient based algorithm proposed to minimize an error

36 Neural Networks and Computing: Learning Algorithms and Applications

between the actual output vector of the network and the desired output
vector. Because of the nonlinearity of neural models, algorithms for
supervised training are mainly based upon the nonlinear optimization
methods. In the following, we will describe the batch-mode training
using backpropagation algorithm.

For notation convenience, the layers are numbered from bottom up
beginning with 1. Analogous to the single-layer perceptron, layer 1
consists of fanout processing neurons that simply accept the individual
elements of the input patterns and pass them directly to all units of layer
2. Each neuron on other layers receives the weighted signal from each of
the neurons of the layer below. After the summation and the activation
function operations, the output is distributed to all neurons of the upper
layer next to this layer. A multilayer feedforward neural network,
showing the notation for neurons and weights is shown in Fig. 2.3.

Figure 2.3. A multilayer feedforward neural network, showing the notation for neurons
and weights

 Learning Performance and Enhancement 37

Let ipx , be the current input pattern for the ith neuron of the input layer,
l

jpa , be the corresponding output of the jth neuron of layer l, and l
jiw , be

the weight connecting the ith neuron of layer l and the jth neuron of layer
1+l , the computation procedure can be described as

 11
1, 1
=+npa

and ipip xa ,
1

, = 1...,,2,1 ni = (2.7a)

 ∑
+

=

=
1

1
,,,

ln

i

l
ji

l
ip

l
jp wao (2.7b)

)(,
1

,
l

jp
l

jp ofa =+

 Pp ...,,1= , 1...,,2,1 −= Ll and 1...,,2,1 += lnj (2.7c)

 11
1, 1
=+

++

l
np l

a Pp ...,,1= , 2...,,2,1 −= Ll (2.7d)

where ln denotes the total number of neurons on layer l, L denotes the
number of layers in the architecture, and P denotes the number of
training patterns. 1

1, 1

+
++

l
np l

a are set to 1 for making the weight 1
,11

+
++

l
jnl

w as a
threshold for the jth neuron on layer 1+l . The outputs of the final layer
are evaluated by propagating the signals in this way.

The operation of the network described above can equally well be
represented by matrix equations. For a multilayer feedforward neural
network with L layers, the layer l consists of 1+ln neurons
(1...,,1 −= Ll) in which the last neuron is a bias node with a constant
output of 1. The first layer with 11 +n neurons is the input layer, the L-
th one with Ln neurons is the output layer. All the given inputs can be

represented by a matrix 1A with P rows and 11 +n columns. All entries
of the last column of the matrix 1A are constant 1. Similarly, the outputs
of the layer l can be represented by lA with P rows and 1+ln columns.

The outputs of the last layer can be represented by LA with P rows and

Ln columns. Similarly, the target can be represented by a matrix LT

www.allitebooks.com

http://www.allitebooks.org

38 Neural Networks and Computing: Learning Algorithms and Applications

with P rows and Ln columns. The weights between neurons in the layers
l and 1+l form a matrix lW with entries l

jiw , (1...,,1 += lni ,

1...,,1 += lnj). Entry l
jiw , connects neuron i of layer l with neuron j of

layer 1+l .
The output of all hidden layers and the output layer are obtained by

propagating the training patterns through the network. Let us define the
matrix

 lll WAO = (2.8a)

The entries of 1+lA for all layers (i.e., 1...,,1 −= Ll) are evaluated as
follows:

)(,
1

,
l

jp
l

jp ofa =+

 Pp ...,,1= and 1...,,2,1 += lnj (2.8b)

In this way, the patterns propagate through the network until the outputs
of final layer are computed. An algorithm is required to adjust the
weights so that the network learns how to map the input patterns to the
output patterns. The most widely used algorithm for training feedforward
neural networks is the backpropagation algorithm.

Learning is achieved by adjusting the weights such that the network
output, LA is as close as possible or equal to the target, LT . The most
frequently used error function for measuring the difference between the
output and the target is the mean squared error function. It is defined as

 ∑∑
= =

−=
P

p

n

j

L
jpjp

L

at
P

E
1 1

2
.,)(

2
1

 (2.9)

Explicit solution of the weights is impossible to obtain because of the
nonlinearity of the network. Iterative methods are required to solve this
problem. Backpropagation algorithm is the classical algorithm for
training a multilayer perceptron. This algorithm is based on a gradient-
descent method to minimise the error cost function; i.e., the changes of
weights are proportional to the error gradient. Mathematically,

 l
ji

l
ji w

Ew
,

, ∂
∂

−=Δ η (2.10)

 Learning Performance and Enhancement 39

where η is the learning rate. The weight changes 1
,
−Δ L
jiw for the weights

connecting to the final layer are obtained by

 ()
2

1 1
,,1

,

1
, 2 ∑∑

= =
−

− −
∂
∂

−=Δ
P

p

n

j

L
jpjpL

ji

L
ji

L

at
wP

w η
 (2.11)

Notice that for a given j, only L
jpa , has a relation with 1

,
−L
jiw , we get

 () 1
,

,

1
,,

1
, −

=

−

∂
∂

−=Δ ∑ L
ji

L
jp

P

p

L
jpjp

L
ji w

a
at

P
w η

 (2.12)

The partial derivative 1
,

,
−∂

∂
L

ji

L
jp

w
a

 can be evaluated using the chain rule

 1
,

1
,

1
,

,
1

,

, −

−

−− ∂
∂

∂
∂

=
∂
∂

L
ji

L
jp

L
jp

L
jp

L
ji

L
jp

w
o

o
a

w
a

 (2.13)

The two factors are obtained as follows:

 ()1
,1

,

, ' −
− =

∂
∂ L

jpL
jp

L
jp of

o
a

 (2.14)

and

 1
,

1

1

1
,

1
,1

,
1

,

1
,

1

 −
+

=

−−
−−

−

=
∂
∂

=
∂
∂

∑
−

L
ip

n

i

L
ji

L
ipL

ji
L

ji

L
jp awa

ww
o l

 (2.15)

From Eqns. (2.11-2.12)

() ()

∑

∑

=

−−

−−

=

−

=

−=Δ

P

p

L
ip

L
jp

L
ip

L
jp

P

p

L
jpjp

L
ji

a
P

aofat
P

w

1

1
,

1
,

1
,

1
,

1
,,

1
,

'

δη

η

 (2.16)

where 1
,
−L
jpδ is defined as

40 Neural Networks and Computing: Learning Algorithms and Applications

 ())(' 1
,.,

1
,

−− −= L
jp

L
jpjp

L
jp ofatδ (2.17)

The weights change for the weights connected to the second to the last
layer are obtained from the following equations:

 2
,
−Δ L
jiw = 2

,
−∂

∂
− L

jiw
Eη

 = 2
,

2
,

1
2

,
−

−

=
− ∂

∂
∂
∂

− ∑ L
ji

L
jp

P

p
L

jp w
o

o
Eη

 = 2
,

1
2

,

−

=
−∑ ∂

∂
− L

ip

P

p
L

jp

a
o

Eη

 = 2
,

1
2

,

1
,

1
,

−

=
−

−

−∑ ∂
∂

∂
∂

− L
ip

P

p
L

jp

L
jp

L
jp

a
o
a

a
Eη

 = () 2
,

1

2
,1

,

' −

=

−
−∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

− L
ip

P

p

L
jpL

jp

aof
a
Eη (2.18)

By applying the chain rule, 1
,
−∂

∂
L

jpa
E can be evaluated. Specifically, we

write

 1
,
−∂

∂
− L

jpa
E

= ∑
=

−

−

− ∂
∂

∂
∂

−
Ln

k
L

jp

L
kp

L
kp a

o
o
E

1
1

,

1
,

1
,

 = ∑
=

−−
Ln

k

L
kj

L
kp w

P 1

1
,

1
,

1 δ (2.19)

We finally get the weight change

 () 2
,

2
,

1 1

1
,

1
,

2
,

' −−

= =

−−− ∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ L

ip
L

jp

P

p

n

k

L
kj

L
kp

L
ji aofw

P
w

L

δη
 (2.20)

If we denote

 Learning Performance and Enhancement 41

 ()2
,

1

1
,

1
,

2
,

' −

=

−−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ L

jp

n

k

L
kj

L
kp

L
jp ofw

L

δδ (2.21)

The weight change 2
,
−Δ L
jiw can then be simplified as

 2
,
−Δ L
jiw = ∑

=

−−
P

p

L
ip

L
jp a

P 1

2
,

2
,δη

 (2.22)

From the Eq. (2.21), it is noticed that the deltas at an internal node can be
evaluated in terms of the deltas at an upper layer. Thus, starting at the
highest layer – the output layer – we can evaluate 1

,
−L
jpδ using the Eq.

(2.17), and we can then propagate the “error” backward to lower layers.
The operation of the algorithm justifies the term “backpropagation”.

By analogy, we can show that the weights change for other lower
layers of weights,

 ∑
=

=Δ
P

p

l
ip

l
jp

l
ji a

P
w

1
,,, δη

 1,,1 −= Ll " (2.23)

and

 ()l
jp

n

k

l
kj

l
kp

l
jp ofw

l

,
'

1

1
,

1
,,

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

+

=

++δδ 2,,1 −= Ll " (2.24)

The learning procedure therefore consists of the network starting with a
random set of weight values, choosing one of the training patterns and
evaluating the output(s) using that pattern as input in a feedforward
manner. Using the backpropagation procedure, all the weight changes for
that pattern are evaluated. This procedure is repeated for all the patterns
in the training set so that the jiw ,Δ for all the weights are obtained. The
corrections to the weights are made. One epoch is completed.

The choice of the value of learning rate is important when we
implement a neural network. A large learning rate corresponds to rapid
learning but might also result in oscillations. In 1986, Rumelhart, Hinton,
and Williams (1986) suggested that the expression was modified to
include a momentum term. That is,

)()1(,
,

, nw
w
Enw l

jil
ji

l
ji Δ+

∂
∂

−=+Δ αη (2.25)

42 Neural Networks and Computing: Learning Algorithms and Applications

where the subscript n indexes the presentation number, and α is a
constant which determines the effect of past weight changes on the
current direction of movement in the weight space. This provides a kind
of momentum in weight space that effectively filters out high-frequency
variations of the error-surface in the weight space. This is useful in
spaces containing long ravines that are characterized by sharp curvature
across the ravine and a gently sloping floor. The sharp curvature tends to
cause divergent oscillations across the ravine. To prevent these it is
necessary to take very small steps, but this causes very slow progress
along the ravine. The momentum filters out the high curvature and thus
allows the effective weight steps to be bigger. The values of η and α for
rapid training are dependent on the training patterns and the architecture
of the neural network. Although the backpropagation algorithm with
momentum term can speed up the training process, it is too slow for
practical applications. This is one of the difficulties for training neural
networks by the backpropagation algorithm.

Another difficulty of the backpropagation algorithm in practice is
that the learning procedure is always trapped in a local minimum. In
1992, Gori and Tesi (1992) proposed a theoretical framework of the
Backpropagation algorithm to identify the problem of local minima. In
their studies, they illustrated that the gradient descent type BP learning
algorithm are prone to local minima. For any nonlinear optimization
problem, it is hardly to guarantee that the optimal solution is obtained by
such numerical solving schemes. The major reason is with the intrinsic
shape of the error surfaces which is normally fixed and independent of
the learning algorithm. Frasconi et al. deduced several theorems stating
that the cost function has a unique minimum if the patterns of the
learning environment are only linearly separable. From the theoretical
point of view, their results corroborate that the BP algorithm is not a very
reliable learning algorithm in most practical applications. Also, there are
very useful examples illustrated by Gori and Tesi (1990) trying to show
that the BP algorithm always easily gets stuck in local minima.

2.3. Convergence Enhancement

In order to reduce the time taken to train feedforward neural
networks, Sutton (1986) proposed that each weight has its own learning
rate. The learning rate of each weight should increase or decrease its
value according to the number of sign changes observed in the partial

 Learning Performance and Enhancement 43

derivative of the error function with respect to the corresponding weight.
On the basis of the above heuristics, Silva and Almeida (1990) developed
an efficient algorithm with locally adaptive learning rate. This algorithm
will be compared with the extended backpropagation algorithm in the
following section. This algorithm employs batch back-propagation with
momentum. Consider that in a given learning process the sign of a
certain component of the gradient remains equal for several iterations.
This fact suggests that the error surface has a smooth variation along the
axis and, therefore, the learning rate for this particular component should
be increased. On the other hand, if the sign of some component changes
in several consecutive iterations, the learning rate parameter should be
decreased to avoid oscillation.

A simple and effective way of implementing this basic idea is as
follows. The weight change for the synapse linking neurons i and j at
epoch n as
 () () ()nvnnw jijiji ,,, η=Δ (2.26)

where ()nv ji , is given by

 () ()1,
,

, −+
∂
∂

−= nv
w
Env ji

ji
ji β (2.27)

where β is the momentum coefficient. The momentum term smoothes the
gradient vector in an adaptive way and amplifies the gradient component
along the valley direction. The learning rate parameters are adapted as
follows:

 ()
() () ()

() () ()
⎪
⎪
⎩

⎪⎪
⎨

⎧

<
∂

−∂
∂
∂

−

>
∂

−∂
∂
∂

−
=

01 if 1

01 if 1

,,
,

,,
,

,

jiji
ji

jiji
ji

ji

w
nE

w
nEnd

w
nE

w
nEnu

nn
η

η
 (2.28)

Their recommended values of the parameters are:

 3.11.1 ≤≤ u , 9.075.0 ≤≤ d and 1−≈ du (2.29a)

 () 3
, 100 −=jiη , 1.0=β (2.29b)

The values of u and d are obtained after performing a wide range of
tests. For the d parameters, a value slightly below u

1 enables the

44 Neural Networks and Computing: Learning Algorithms and Applications

adaptive process give a small preference to learning rate decrease,
yielding a somewhat more stable convergence process.

As the fast increase in learning rate may drive the learning process to
an unstable state, the following procedure is used to avoid this. If the
present error is greater than that in the previous iteration, the new weight
changes are rejected. However, the adaptation of the learning rate is still
performed as usual, the gradient evaluated at the rejected iteration point
is used as a reference. With this technique, a valid iteration point can
generally be obtained after a few training epochs. If this strategy does not
work after a few trials, it is always possible to simply reduce all the
learning rate parameters by a fixed factor and repeat the process.

Despite the fact that the adaptive backpropagation algorithm can
reduce the number of iterations to converge, the overall time taken for
the training of rather small networks with only a few thousand weights is
still unacceptably long. In the following, three new training algorithms
will be described. These algorithms are developed to further reduce the
time taken for training.

2.3.1. Extended Backpropagation Algorithm

In the backpropagation algorithm, training is only based on the current
downhill gradient of the error surface E(t)-∇ and last change in weight

1)-W(tΔ . The two column vectors, E(t)-∇ and 1)-W(tΔ , are n

dimensional vectors with elements
()
l

jiw
tE

,∂
∂

− and ()1, −Δ twl
ji respectively

at the t-th iteration, and n is the total number of weights in the neural
network. The local topography of error surface can be thoroughly
evaluated for determining the optimum learning rate and momentum
coefficient. The higher derivatives of the error function and line search
technique are often used to find the optimum learning rate; however, a long
computational time and a larger storage is required for these processes. In
the EBP algorithm, the learning rate adaptation is simply based on the
correlation coefficient between the current downhill direction of the local
gradient and the previous weight update. The correlation coefficient
between the negative gradient and last weight update is given by

 Learning Performance and Enhancement 45

()
() ()() () ()()

() ()() () ()() 2
1

2

,,

2
1

2

,,

,,,,

11

11

⎥
⎦

⎤
⎢
⎣

⎡
−Δ−Δ⎥

⎦

⎤
⎢
⎣

⎡
∇−−∇−

−Δ−Δ∇−−∇

∑∑∑∑∑∑

∑∑∑

i j l

l
ji

l
ji

i j l

l
ji

l
ji

i j l

l
ji

l
ji

l
ji

l
ji

tw-twtEtE

tw-twtEtE-
 = tr

(2.30)

and

 ()
()

n

tE
=tE i j l

l
ji

l
ji

∑∑∑∇
−∇−

,

,

 ()
()

n

tw
tw i j l

l
ji

l
ji

∑∑∑ −Δ
=−Δ

1
1

,

,

where t indexes the presentation number and n is the total number of
weights. ()tE l

ji ,∇− is the mean value of negative error gradient with

respect to l
jiw , in the layer l and ()1, −Δ twl

ji is the mean value of previous

weight change of weight l
jiw , . The correlation coefficient measures the

change in the direction of minimisation in a statistical way. From this
correlation coefficient, three different conditions can be identified from this
correlation coefficient.
A) When the correlation coefficient is near to one, there is almost no

change in the direction of error minimisation and the change of
weights is likely moving on the plateau. The learning rate can be
increased to improve the convergence rate.

B) When the correlation coefficient is near to minus one, it implies an
abrupt change in the direction of error minimisation, which is
likely moving along the wall of the ravine. The learning rate
should then be reduced to prevent oscillation across both sides of
the ravine.

C) When there is no correlation between the negative gradient and
previous weight update, the learning rate should be kept constant.

The following heuristic algorithm is suggested to alter the learning rate:
 (i) () 00 =r and set the value of 1=t
(ii) if () 0>tr
 if () 01 >−tr then () () ()[]tdrtt +−= 11ηη

46 Neural Networks and Computing: Learning Algorithms and Applications

 else () ()tdrt += 1η
 if () 0<tr
 if () 01 >−tr then () ()tdrt += 1η
 else () () ()[]tdrtt +−= 11ηη
 if () 0=tr then () ()1−= tt ηη
(iii) Set the value of 1+= tt , and repeat step (ii)
where d is a positive constants which determines how much the learning
rate changes in each epoch. One of the significant features of this
algorithm is the exponential increasing and decreasing of the learning
rate. The learning rate can increase or decrease rapidly when the
successive values of the correlation coefficient have the same sign. This
feature enables the optimal learning rate to be found in a few learning
iterations, and thus reduces the total output error rapidly. When the
correlation coefficient changes sign, the algorithm can reset the excessive
large value of learning rate and enhance the stability of this algorithm.
As the learning rate is changed abruptly when the correlation coefficient
changes sign, the algorithm is found more suitable to be used in the
problems with binary target values. In these problems, the algorithm can
drive the neurons to their target value quickly. Note that in a wide range
of tests performed with this heuristic algorithm, it was found that a value
of d equal to 0.5 was able to produce good results.

However, the convergence rate is not optimised with a fixed
momentum coefficient α. The momentum term has an accelerating effect
only when the ()tE∇− and ()1−Δ tW have the same direction. For the
fixed momentum coefficient, the momentum term may override the
gradient term when the ()tE∇− and ()1−Δ tW are in opposite
directions. The momentum coefficient ()tα is suggested to be

 () () () ()
()

2

2

1−Δ

∇−
=

tW
tE

ttt ηλα (2.31)

where

 () () 2
1

2
,2

)(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇−=∇− ∑∑∑

i j l

l
ji tEtE

 Learning Performance and Enhancement 47

 ()
2

1−Δ tW = ()() 2
1

2
, 1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−Δ∑∑∑

i j l

l
ji tw

and

 () () ()
() 1

1

1 ≥
<

⎩
⎨
⎧

=
t
tt

t
η
ηη

λ (2.32)

The final algorithm becomes
 ()tWΔ = () ()() () ()1−Δ+∇− tWttEt αη

 = () () ()() () () ()1ˆˆ
22

−Δ∇−+∇−∇− tWtEttEtEt ηη

 = () () () () ()()1ˆˆ
2

−Δ+∇−∇− tWttEtEt λη (2.33)

()tÊ∇− and ()1ˆ −Δ tW are the unit vectors of ()tE∇− and ()1−Δ tW ,

respectively. When ()tÊ∇− and ()1ˆ −Δ tW are in opposite directions,
()tλ is less than or equal to one, and hence the momentum term does not

override the gradient term. When ()tÊ∇− and ()1ˆ −Δ tW have the same
direction, ()tλ is greater than 1.0, and enhance the accelerating effect of
the momentum term. The dramatic increase in learning rate may lead the
network to get stuck in a local minimum in some neural network problems.
This phenomenon can be avoided by the following strategy. If the present
Root Mean Squares (RMS) error is greater than the previous one by 0.1, the
last step is cancelled and ()tη is reduced by half. This strategy gives a
small preference to learning rate reduction and enhances the robustness of
the training process.

2.3.2. Least Squares Based Training Algorithm

The algorithm decomposes each neuron into a linear part and a
nonlinear part, i.e., the dot product of inputs and weights, and the
activation function. The weights of neural networks are firstly initialized
by a random generator. Given the last layer of weights and the inverses
of activation function of the desired outputs of neurons in the output
layer, the optimal outputs of the last hidden layer can be evaluated by a

www.allitebooks.com

http://www.allitebooks.org

48 Neural Networks and Computing: Learning Algorithms and Applications

linear least squares method. As the solutions may be out of the range of
the activation function, the solutions are scaled back into the range of the
activation function by multiplying the solutions with a transformation
matrix. After evaluating the desired outputs of the last hidden layer, the
optimal weights between the last hidden layer and its preceding layer are
found again by the least squares method. Subsequently, the optimal
outputs of the layer preceding the last hidden layer are determined. The
process is repeated until the weights between the input layer and first
hidden layer are determined. The outputs of the last hidden layer are
evaluated by propagating the training patterns through the network using
the evaluated optimal weights. Subsequently, the weights between the
last hidden layer and the output layer are evaluated. All the above
procedures complete one training iteration and the process is repeated
until the required accuracy is reached. The detailed mathematical
description is described in the following.

A multilayer neural network with L fully interconnected layers is
considered. Layer l consists of neurons (1,,1 −= Ll …) in which the
last neuron is a bias node with a constant output of 1. If there are P
patterns for network training, all given inputs can be represented by a
matrix 1A with P rows and 11 +n columns. All entries of the last
column of the matrix 1A are constant 1. Similarly, the target can be
represented by a matrix LT with P rows and Ln columns. The weights
between neurons in the layers l and 1+l form a matrix lW with entries
wi j

l
, (1...,,1 += lni , 1...,,1 += lnj). Entry wi j

l
, connects neuron i of

layer l with neuron j of layer 1+l .
The output of all hidden layers and the output layer are obtained

by propagating the training patterns through the network. Let us define
the matrix

 lll WAO = (2.34)
To facilitate the description of our algorithm, we also define

 []BAA l
p

l = , and

 ⎥
⎦

⎤
⎢
⎣

⎡
= l

l
l

V
U

W (2.35)

 Learning Performance and Enhancement 49

where B represents the outputs contributed by the bias node of layer l.
B is a column vector with P entries, and every entry has the value of 1.

l
pA represents all the outputs of neurons in the layer l except the bias

node. lV represents the weights of connections between the bias node of
layer l and neurons of layer 1+l . lV forms a row vector with dimension

1+ln . Therefore, lO can also be expressed as

 [] ⎥
⎦

⎤
⎢
⎣

⎡
= l

l
l
p

l

V
U

BAO (2.36)

The entries of Al+1 for all layers (i.e., 1...,,1 −= Ll) are evaluated as
follows:

 1,
1
, ...,,2,1 and ...,,1)(+
+ === l

l
jp

l
jp njPpofa (2.37)

where f(x) is the activation function.
 Learning is achieved by adjusting the weights such that LA is as
close as possible or equal to LT . Let us introduce a matrix S L−1 with
entries

)(,
11

.
L

ji
L

ji tfs −− = (2.38)

where t i j
L
, are the entries of LT .

We can reformulate the task of learning as least squares problem:

2

1 11 min −−− − LLL SWA or

 []
2

1
1

1
1 min −

−

−
− −⎥

⎦

⎤
⎢
⎣

⎡ L
L

L
L
p S

V
U

BA (2.39)

This linear least squares problem can be solved by QR factorization
using Householder transforms or by Singular Value Decomposition
(SVD). SVD is more robust when the number of equations is smaller
than the number of unknown variables, however, it is not the case in
training of neural networks. In addition, SVD is more computational
complex than QR factorisation; therefore QR factorisation is used here.
The Euclidean norm in Eq. (2.33) can be minimized by either adjusting

50 Neural Networks and Computing: Learning Algorithms and Applications

1−L
pA or 1−LW . In this training algorithm, the optimal 1−L

pA is evaluated

first. This problem is equivalent to find the solution of 1−L
pA in

 ()
2

1111 −−−− ∗−−∗ LLLL
p VBSUA = minimal (2.40)

The optimal output of hidden layer is now the new target values for
lower layers; i.e.,

 11 −− = L
p

L AT (2.41)

With the optimal output of hidden layer, the weights of the lower
layer can be adjusted to reach T L -1 as close as possible, but the entries
in the matrix T L -1 may have values outside the range of the activation
function. In order to transform 1- LT to a matrix with entries values
inside the range, a transformation matrix C L -1 with order
() ()n nL L− −+ ∗ +1 11 1 is constructed such that

 [] [] 111 −−− ∗= LLL
trans CBTBT (2.42)

If the activation function is the standard sigmoid function with the
range between 0 and 1, i.e.

 ()
)exp(1

1
x

xf
−+

= (2.43)

the elements of C L -1 is defined as

 cd d
L

, .− =1 10 ,
),,5.0(max*5.2

),,5.0(max*25.11
,

kkkk

kkkkkL
kdc

γααβ
γααβα

−−
−−−

−=−

),,5.0(max*5.2

11
,

kkkk

L
kkc

γααβ −−
=− (2.44)

where d nL= +−1 1 and

 ∑
=

−

=
P

j

L
kj

k P
t

1

1
,α

 1
,1

 max −

=
= L

kj

P

jk tβ

 Learning Performance and Enhancement 51

 1
,1

 min −

=
= L

kj

P

jk tγ , k = 1, . . . , 1−Ln (2.45)

Values of all other entries of C L -1 are zeros. The following function
is actually implemented by Eq. (2.36) with the values of 1

,
−L
jic defined as

above.

 1
)(,

−L
transjit =

()()
()jjjj

jjjjj
L

jit
γααβ

γααβα
−−

−−−−−

,,5.0max*5.2
,,5.0max*25.11

,

 = () 5.0
,,5.0max*5.2

1
, +

−−
−−

jjjj

j
L

jit
γααβ

α
 (2.46)

From the Eq. (2.46), it can be proved easily that the average output of
each neuron is 0.5. This equation summarizes three different mapping
methods into one equation and which mapping method is used depends
on the value of ()jjjj γααβ −− ,,5.0max . When the values of

jj αβ − and jj γα − are smaller than the half range of the activation
function; i.e., smaller than 0.5, the Eq. (2.46) is simplified to

 1
)(,

−L
transjit = () 5.0*4.0 1

, +−−
j

L
jit α (2.47)

It is noticed that j
L

jit α−−1
, has a value in the range between

()jj αγ −− and jj αβ − . As ()jj αγ −− is greater than 5.0− and

jj αβ − is smaller than 0.5, 1
)(,

−L
transjit is always between 0.1 and 0.9.

When the value of ()jjjj γααβ −− ,,5.0max is equal to jj αβ − , the
Eq. (2.46) is simplified to

 1
)(,

−L
transjit = 5.0*4.0

1
, +
−
−−

jj

j
L

jit
αβ
α

 (2.48)

In this case, the maximum value of 1
)(,

−L
transjit is equal to 0.9 and the

minimum value of 1
)(,

−L
transjit is greater than 0.1. When the value of

()jjjj γααβ −− ,,5.0max is equal to jj γα − , the Eq. (2.47) is
simplified to

52 Neural Networks and Computing: Learning Algorithms and Applications

 1
)(,

−L
transjit = 5.0*4.0

1
, +
−

−−

jj

j
L

jit
γα
α

 (2.49)

In this case, the minimum value of 1
)(,

−L
transjit is equal to 0.1 and the

maximum value of 1
)(,

−L
transjit is smaller than 0.9. Therefore, the entries of

S L−2 will not have very large negative and positive values. If the
activation function used is

 ()
)exp(1
)exp(1

x
xxf

−+
−−

= (2.50)

the elements of C L -1 is defined as

 cd d
L

, .− =1 10 ,
),,0.1(max*25.1

1
,

kkkk

kL
kdc

γααβ
α

−−
−=−

),,0.1(max*25.1

11
,

kkkk

L
kkc

γααβ −−
=− (2.51)

Again values of all other entries of C L -1 are zeros. The following
function is actually implemented by Eq. (2.42) with the values of 1

,
−L
jic

defined by Eqs. (2.46-2.47).

 1
)(,

−L
transjit = ()jjjj

j
L

jit
γααβ

α
−−

−−

,,0.1max*25.1

1
, (2.52)

Using the similar argument as before, it can be shown that all entries
of Ttrans

L−1 are between -0.8 and 0.8, and the average output of each neuron
is zero. Therefore, the entries of 2−LS will not have very large negative
and positive values. The next step is to train the lower layers of the
network to produce 1−L

transT .
If the network has three layers, by applying Eqs. (2.38) and (2.39)

with L and T substituted by 2 and Ttrans respectively, the optimal weights
1W between the input and hidden layer can be determined by the least

squares method. Propagating the training patterns through the network
using the determined optimal weights 1W , updated hidden layer outputs

2A can be evaluated accordingly. The optimal weights 1−LW between

 Learning Performance and Enhancement 53

the hidden and output layers can be evaluated by applying Eq. (2.39)
with L=3 and using the updated 2A . This process is repeated until the
specified error level is reached.

For a network with more than one hidden layer, the weight between
the hidden layers 1−l and l (for l L= −3 1, ,…) are evaluated as
follows. We start with l L= − 1 after evaluating Ttrans

L−1 as stated in the
previous section. The S l−1 is evaluated as in Eq. (2.38) with L replaced
by l. Afterwards, 1−lW is first evaluated by the least squares method to
minimize the Euclidean norm as in Eq. (2.39). After finding the optimal
weights between layers 1−l and l, the 1−l

pA is found by Eq. (2.38) with L

replaced by l. To transform T l -1 to a matrix with entry values inside the
range of the activation function, a transformation matrix C l -1 is
constructed as in Eq. (2.44) or Eq. (2.51), which is dependent on the
activation function used. To maintain the least squares solution during
forward propagating, an inverse matrix of C l−1 has to be found such that

 [] 1111 −−−− ∗= lll
trans WCW (2.53)

Using the Eq. (2.53), the following equality holds when the input
patterns propagate through the network.

 [] 11 * −− l
trans

l
trans WBT = [] [] 11111 * −−−−− ∗∗ llll WCCBT

 = [] 11 −− ∗ ll WBT

 = 11 −− ∗ ll WA (2.54)
Therefore, the outputs of the network remain the same after the

introduction of the transformation matrix and the least squares solution is

thus valid. The entries of inverse []C l− −1 1
can be evaluated from those of

C l−1 by the following equations:

 ()c
c
cd k

l d k
l

k k
l,

,

,

− −
−

−= −1 1
1

1 , k = 1, . . . , nl−1

 ()c
ck k

l

k k
l,

,

− −

−=1 1

1

1
, k = 1, . . . , d (2.55)

54 Neural Networks and Computing: Learning Algorithms and Applications

where d nl= +−1 1 .
The weights between hidden layers 1−l and l and optimal target

Ttrans
l−1 are evaluated successively as stated in the previous paragraph until

l = 3. The optimal weights 1W between the input layer and hidden
layer are then evaluated by solving the least squares problems as in Eq.
(2.39). By propagating the training patterns through the network using
the optimal weights, A L -1 is evaluated. Subsequently, the optimal
weights 1−LW between the last hidden layer and the output layer are
evaluated again by solving Eq. (2.39). This process is repeated until the
specified error level is reached.
The LSB algorithm can be summarized as follows:
1. (i) The weights of the network are randomly initialized with values

between -0.5 to 0.5.
 (ii) Evaluate S L−1 in Eq. (2.38).
2. Propagating all given patterns through the network so that the

matrices Al , l L= 2, ,… , can be successively evaluated. If error
norm between AL and TL is smaller than the specified value, the
training is completed.

3. (i) Evaluate T L -1 by solving the linear least squares problem in
Eqs. (2.40) and (2.41).

 (ii) Evaluate the transformed matrix Ttrans
L−1 by applying Eq. (2.42)

so that all the values of its entries are within the range of
activation function.

 (iii) Set T L -1 = Ttrans
L−1

4. For l L= − 1 3, ,…
 (i) Evaluate S l−1 as in Eq. (2.38).
 (ii) Evaluate a new set of weights lW by solving the least squares

problem as in Eq. (2.39).
 (iii) Evaluate T l -1 by solving the linear least squares problem as in

Eqs. (2.40) and (2.41).
 (iv) Evaluate the transformed matrix Ttrans

l−1 by applying Eq. (2.42).
 (v) Evaluate the transformed weight matrix 1−l

transW by applying Eq.
(2.53).

 (vi) Set T l-1 = Ttrans
l−1

 Learning Performance and Enhancement 55

5. (i) Evaluate S 1 as in Eq. (2.38).
 (ii) Evaluate a new set of weights 1W by solving the least squares

problem as in Eq. (2.39).
6. Evaluate the updated Al (l L= −2 1, ,…) by propagating the input

patterns through the network with the new weights.
7. Evaluate a new set of weights 1−LW by solving the least squares

problem as in Eq. (2.39).
8. Evaluate the updated A L with the new weights 1−LW obtained in

step 7. If error norm between AL and TL is smaller than the specified
value, the training is completed.

9. Go to step 3.

2.3.3. Extended Least Squares Based Algorithm

An extended least squares based algorithm for feedforward networks
is described. This algorithm combines the features of the extended
backpropagation algorithm described in 2.3.1 and the features of the pure
least squares algorithm described in 2.3.2. The weights connecting the
last hidden and the output layers are firstly evaluated by a least squares
algorithm. The weights between the input and the hidden layers are then
evaluated using the extended backpropagation algorithm. This
arrangement eliminates the stalling problem experienced by the pure
least squares type algorithms and still maintains the characteristic of fast
convergence.

A multilayer neural network with L fully interconnected layers is
considered to be same as Section 2.3.2 described. Learning is achieved
by adjusting the weights such that LA is as close as possible or equal to

LT so that the mean squared error E is minimized, where E is defined as

 ()E
P

a tp j
L

p j
L

j np P L

= −
==
∑∑1

2
2

11
, ,

, ,, , ……
 (2.56)

In this learning algorithm, the weights between the last hidden layer
and the output layer are evaluated by a pure least squares algorithm; the
weights between the input and the hidden layers, the weights between
hidden layers are evaluated by a modified gradient descent algorithm.
The problem of determining the W L−1

 optimally can be formulated as
follows:

56 Neural Networks and Computing: Learning Algorithms and Applications

2

 11 min LLL TWA −−− with respect to 1−LW (2.57)

This linear least squares problem can be solved by using QR
factorization together with Householder transforms or Singular Value
Decomposition (SVD). QR factorization using Householder transforms
was implemented because it has less computational complexity than
SVD. After the optimal weights W L−1 are found, the new network
output A L are evaluated. To determine the appropriate weights change
in the preceding layer, the remaining error is backpropagated to the
preceding layer of the neural network. After the gradient information is
obtained, the appropriate learning rate and momentum coefficient for
each layer are determined in accordance with the correlation between the
negative error gradient and the previous weight update of that layer
(Yam & Chow, 1993). The correlation coefficient between the negative
gradient and the last weight update for the layer l is given by

()()

() () 2
1

2

,,

2
1

2

,,

,,,,

)1()1()()(

)1()1()()(
)(

⎥
⎦

⎤
⎢
⎣

⎡
−Δ−−Δ⎥

⎦

⎤
⎢
⎣

⎡
∇−−∇−

−Δ−−Δ∇−−∇−
=

∑∑∑∑

∑∑

i j

l
ji

l
ji

i j

l
ji

l
ji

i j

l
ji

l
ji

l
ji

l
ji

l

twtwtEtE

twtwtEtE
tr

 (2.58)

where t indexes the presentation number, −∇E ti j
l
, () is the negative error

gradient with respect to wi j
l
, in the layer l and Δw ti j

l
, ()−1 is the

previous weight change of weight wi j
l
, . −∇E ti j

l
, () and Δw ti j

l
, () are the

mean values of the negative error gradients and the weight changes in the
layer l respectively. The correlation coefficient is used again for
measuring the change in the direction of minimisation in a statistical way.
From this correlation coefficient, three different conditions can be
identified.
A) When the correlation coefficient is near to one, there is almost no

change in the direction of local error minimization and the change of
weights is likely moving on the plateau. The learning rate can be
increased to improve the convergence rate.

B) When the correlation coefficient is near to minus one, it implies an
abrupt change in the direction of local error minimization, which is
likely moving along the wall of the ravine. The learning rate should
then be reduced to prevent oscillation across both sides of the
ravine.

 Learning Performance and Enhancement 57

C) When there is no correlation between the negative gradient and the
previous weight change, the learning rate should be kept constant.

According to these three conditions, the following heuristic algorithm is
proposed to adjust the learning rate:

 () () ()()trtt lll 5.011 +−=ηη (2.59)

The heuristic algorithm is a simplified version of the learning rate
changing rules. The learning rate is changed abruptly when the
correlation coefficient changes sign. The abrupt change in the learning
rate often drives the neurons to their extreme regions where the targets of
binary problem lie, and thus increases the rate of convergence. For the
problem with continuous target values, the abrupt change in the learning
rate may drive the neurons to overshoot their target values and cause
oscillation.

The convergence rate is not optimized with a fixed momentum
coefficient. The momentum term has an accelerating effect only when
the −∇Ei j

l
, and Δwi j

l
, have the same directions. For the fixed

momentum coefficient, the momentum term may override the negative
gradient term when the −∇Ei j

l
, and Δwi j

l
, are in the opposite directions.

The momentum coefficient α l t() at the t-th iteration is determined as
follows:

 () ()
()

()
α λ ηl l l

l

l
t t t

E t

w t
() =

−∇

−
2

2
1Δ

 (2.60)

where

 () ()−∇ = −∇
⎛

⎝
⎜

⎞

⎠
⎟∑∑E t E tl

i j
l

ji
2

2

1
2

, ()

and ()Δw tl −1
2

= ()()Δw tl

ji

−
⎛

⎝
⎜

⎞

⎠
⎟∑∑ 1

2

1
2

 (2.61)

 () () ()
()

λ
η η

η
l

l l

lt
t t

t
=
⎧
⎨
⎩

<
≥1

1
1

 (2.62)

www.allitebooks.com

http://www.allitebooks.org

58 Neural Networks and Computing: Learning Algorithms and Applications

As ()λ l t is always less than or equal to 1, the momentum term will not
override the negative gradient term.

After evaluating the η l t() and α l t() for layers l L= − 2 1, ,… ,
the new weights are determined. After that, the new network output and
error are evaluated. One epoch is completed. As a fast increase in the
learning rate may drive the neurons to their saturation region in some
neural network problems, the following strategy is used to improve the
stability of the algorithm. If the present Root Mean Squares Error
(RMSE) is greater than the previous one by 0.1, the last weight change is
canceled and η l t() is reduced by half. This strategy gives a small
preference to the learning rate reduction and enhances the robustness of
the training process. The process is repeated until the network error
reaches a specified error level.
The algorithm can be summarized as follows:
1. Generate initial weights for each layer using a pseudo-random

generator.
2. Propagate all given patterns through the network so that the matrices

Al , l L= 2, ,… , can be successively evaluated. If the error norm
between LA and LT is smaller than the specified value, the training
is completed.

3. Evaluate a new set of weights W L−1 by solving the least squares
problem.

4. Compute a new LA from the A L−1 and the new weights W L−1 . If
the error norm between LA and LT is smaller than the specified
value, the training completes.

5. Compute the gradient for layers l L= − 2 1, ,… using the new LA
and the new weights W L−1 .

6. For l L= − 2 1, ,… :
(i) Evaluate the learning rate η l and the momentum coefficient by

applying Eqs. (2.58)-(2.62).
(ii) Evaluate the weight change Δwi j

l
, .

(iii) Evaluate the new weights W l .

 Learning Performance and Enhancement 59

7. Compute a new AL from A1 , W 1 ,..., W l , W l+1 ..., and W L−1 . If
error norm between LA and LT is smaller than the specified value,
the training completes.

8. If the RMS error is larger than the previous RMS error by 0.1, the
weight changes for all layers are cancelled; the learning rate is
reduced by half, and go to 6 (ii) again.

9. Continue with 2.

2.4. Initialization Consideration

There are several approaches to estimate optimal values for the
initial weights so that the number of training iterations is reduced. It is
quite obvious that the training session can be shortened when the starting
point of the optimization is very close to the true minimum.

Shepanski (1988) regards the training of a multilayer feedforward
network as an optimal estimation problem. The optimal set of weights is
determined using a least squares criterion, employing a standard
pseudoinverse matrix technique. This technique has been applied
previously on a single layer network. Shepanski has extended the
pseudoinverse method to multilayer networks. In a task of restoring a
data bit stream, this method can reduce the initial error dramatically.
Nguyen and Widrow speed up the training process by setting the initial
weights of the hidden layer so that each hidden node is assigned to
approximate a portion of the range of the desired function at the start of
training (Nguyen & Widrow, 1990). By approximating the activation
function with piece-wise linear segments, the weights can be evaluated.
Next, the thresholds of neurons are selected by assuming the input
variables are kept between -1 and 1. Nguyen and Widrow applied this
method to initialize weights of numerous problems including the “Truck-
Backer-Upper” problem. The results show that this method can greatly
reduce the training time. Osowski (1993) following the idea of Nguyen
and Widrow, developed another approach to select the initial values of
weights of single input and single output three-layer feedforward neural
networks. Osowski also approximates the activation function with piece-
wise linear segments; however, he suggests an explicit method to
determine the number of hidden neurons and uses the information of the
desired function y=f(x) to determine the initial weights. Firstly, the
whole region of x of the measured (x,y) curve is split into sections

60 Neural Networks and Computing: Learning Algorithms and Applications

containing only one negative or positive slope. After that, a set of
neurons in the hidden layer is chosen equal in number to the number of
sections determined. Each section of the curve is associated with one
neuron in the hidden layer. The weights and the bias of each neuron are
determined so that this neuron enters its active (middle) region of the
proper section. Finally, the weights to the output layer are evaluated
using the change of y in the corresponding section, and the bias of the
output neuron is set to zero. In the example given in Osowski's paper,
the optimum values of weights obtained by training the network using
the BP algorithm are very close to the initial weights suggested by
Osowski’s algorithm. Hisashi Shimodaira (Shimodaira, 1994) proposes
another method called OIVS to determine the distribution of initial
values of the weights and the length of the weight vector so that the
outputs of the neurons are in the active region in which the derivative of
the sigmoid function has a large value. Shimodaira considers the input
and output values of a neuron are located inside a unit hypercube (for the
unipolar sigmoid function). By assuming that the activation region width
in a neuron is larger than the length of the diagonal line of a unit
hypercube and the center of the activation region coincides with the
center of the unit hypercube, the weight value distribution and the
magnitude of a weight value can be determined. In comparison with the
BP algorithm, the OIVS method can greatly reduce the number of non-
convergence cases in the training of the XOR problem. In the random
mapping problem, the mean number of iterations required by the OIVS
method is 0.46 times that required by the conventional BP algorithm.
Drago and Ridella (1992) propose a method called Statistically
Controlled Activation Weight Initialization (SCAWI) to find the optimal
initial weights. The aim of the SCAWI method is to prevent neurons
from saturation in the early stage by properly initializing the weights.
Drago and Ridella determine the maximum magnitude of the weights by
statistical analysis. They show that the maximum magnitude of the
weights is a function of the paralysed neuron percentage (PNP), which is
in turn related to the convergence speed. By determining the optimal
range of PNP through computer simulations, the maximum magnitude of
the weights can be obtained and the time needed to reach the required
convergence criterion can be minimised. Denoeux and Lengellé (1993)
suggest a method to initialize the weights in feedforward networks with
one hidden layer. The proposed method relies on the use of reference
patterns, or prototypes, and on a transformation that maps each vector in

 Learning Performance and Enhancement 61

the original feature space onto a unit-length vector in a space with one
additional dimension. Simulation results show that the method can
reduce the training time, improve robustness against local minima and
give better generalization.

In this section, three noniterative algorithms for determining the
optimal initial weights of feedforward neural networks are suggested to
enhance the convergence performance of MLP networks. All three
algorithms are based on purely linear algebraic methods.

2.4.1. Weight Initialization Algorithm I

Considering a multilayer neural network with L fully interconnected
layers is the same as describing in Section 2.3.2. The output of all hidden
layers and the output layer are obtained by propagating the training
patterns through the network. Let us define the matrix

 lll WAO = (2.63)

The entries of 1+lA for all hidden layers (i.e., 2...,,1 −= Ll) are
evaluated as follows:

)(
,

1
,

l
jp

l
jp ofa =+ Pp ...,,1= and 1...,,2,1 += lnj (2.64)

 0.11
, =+l
jpa Pp ...,,1= and 11 += +lnj (2.65)

where f(x) is the activation function. The activation function used here is
the sigmoid function with range between 0 and 1:

)exp(1

1)(
x

xf
−+

= (2.66)

The entries of output layer LA are evaluated as follows:

)(1
,,
−= L
jp

L
jp ofa Pp ...,,1= and Lnj ...,,2,1= (2.67)

Learning is achieved by adjusting the weights such that LA is as close as
possible or equal to LT . By introducing a matrix S with entries

 s f ti j
L

i j
L

. ,() − −=1 1 (2.68)

where t i j
L
, are the entries of TL .

62 Neural Networks and Computing: Learning Algorithms and Applications

The weight initialization algorithm I (WIA I) starts by regarding the
neural network being a single-layer perceptron network. The optimal
weights for a single-layer perceptron can be evaluated by solving the
following equation,

 minimize A W SL
L1 1 1

2
− − (2.69)

This linear least squares problem can be solved by QR factorization
using Householder reflections or Singular Value Decomposition (SVD).
As SVD has better numerical stability, it is employed to solve the linear
least squares problem. In the case of an overdetermined system, SVD
produces a solution that is the best approximation in the least squares
senses. In the case of an underdetermined system, SVD computes the
minimal-norm solution.
The QR factorization of the optimal WL

1 is then computed, i.e.,

 111 RQWL = (2.70)

 11 QWO = (2.71)

WO
1 contains the optimal weights connecting the input to the first hidden

layer. In the QR factorization, we express an m-by-n matrix M as the
product of an orthogonal matrix Q and an upper triangular matrix R,
where mm×ℜ∈Q and nm×ℜ∈R . QR factorization has property that
when the columns of M are linearly independent, the first n columns of Q
are an orthonormal basis for the columns of M (assuming nm ≥). As
column vectors of WO

1 are orthonormal, the product of input A1 (scaled
between 0.1 and 0.9) and WO

1 seldom produces outputs that drive
neurons to saturation. As the matrix WL

1 has order () 21 n1 ×+n , the
matrix WO

1 obtained by QR factorisation has order () ()11 11 +×+ nn ;
therefore the number of neurons in the first hidden layer is restricted to
be 112 += nn when this algorithm is used.

After evaluating WO
1 , an updated 2A is then evaluated using

equations (2.63)-(2.65). After evaluating 2A , the network between the
first hidden layer and the output layer is again considered as a single-
layer perceptron network and the optimal weights WL

2 is evaluated

 Learning Performance and Enhancement 63

similarly as in Eq. (2.69). The initial values of weights WO
2 are evaluated

by QR factorization of WL
2 in the same way as in Eq. (2.70). After

evaluating the initial weights WO
l between the l-th and the 1+l -th layer,

an updated Al +1 is calculated using eqs. (2.63)-(2.65). The network
between the l+1-th layer and the output layer is solved as it is a linear
discriminant, i.e.,

 minimize A W Sl
L
l L+ + −−1 1 1

2
 (2.72)

The initial weights matrix WO
l +1 is set to equal to Q l +1 which is

obtained from the QR factorization of WL
l +1 , i.e.,

 1+ 1+ 1 lll
L RQW =+ (2.73)

 1+ 1+ ll
O QW = (2.74)

The process continues until 3−= Ll . After evaluating all the preceding
layer of weights, an updated 1−LA is found. The optimal weight 1−L

oW is
evaluated using the least squares method as in Eq. (2.72). All the initial
weights are then found.
The number of neurons of layer l + 1 is limited to 1+ln again because

the matrix 1−l
oW obtained from the QR factorisation of the order of

matrix WL
l has order () ()11 +×+ ll nn . In many cases, the architecture

of a feedforward network must satisfy Kolmogorov's mapping theorem
(1957) to ensure the function can be implemented by a three-layer
feedforward neural network, i.e., 12 12 += nn . In these cases, an
augmented matrix Aaug

l +1 can be constructed from Al +1 by adding 1+ln

column vectors with values 1.0, that is equivalent to adding 1+ln bias
nodes to the layer 1+l , i.e.,

64 Neural Networks and Computing: Learning Algorithms and Applications

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

+

++

�
�	� "
#%##

"
"

1

111

111
111

11

ln

ll
aug AA (2.75)

By replacing Al +1 in Eq. (2.72) with Aaug
l +1 and solving it, a matrix

Qaug
l +1 of order () ()2 1 2 11 1n nl l + ++ × + can be obtained by applying

Eq. (2.73). As there is only one bias node in each layer of a standard
feedforward neural network, the matrix 1 +l

OW of order
() ()n nl l +1 +1+ × +1 2 1 is constructed by copying the first 1+ln rows of

Qaug
l +1 and setting the last row of 1 +l

OW to be the sum of the last 11 ++ln

rows of 1+ l
augQ . With this arrangement, the product of 1 +l

OW and 1+ l
augR

still satisfies Eq. (2.72). Generally, the number of neurons in layer 2+l
can be set to any value between 11+ +ln and 12 1 ++ln by constructing

an augmented matrix Aaug
l +1 from Al +1 . However, this algorithm cannot

be applied to the networks in which the number of hidden neurons is
smaller than the number of input neurons plus one.

2.4.2. Weight Initialization Algorithm II

Although the WIA I can speed up the training process, this algorithm
cannot be applied to the networks in which the number of hidden neurons
is smaller than the number of input neurons plus one. To tackle this
problem, the weights initialization algorithm II (WIA II) was proposed in
(Yam & Chow, 1997). The rationale behind the second algorithm is to
reduce the initial network error while preventing the network from
getting stuck with the initial weights. The algorithm ensures the outputs
of hidden layers are in the active region, i.e., the range in which the
derivative of activation function has a large value. In the classical
backpropagation algorithm, the weights are changed according to
gradient descent direction of an error surface E,

 Learning Performance and Enhancement 65

 ∑
=

=
P

p
pEE

1

 and ()
2

1
,,2

1∑
=

−=
Ln

j

L
jp

L
jpp atE (2.76)

The weights are changed according to

 () ()
∑
= ∂

∂
−=+Δ

P

p
l

ji

pl
ji tw

tE
P

tw
1 ,

,)(2
1 η

 (2.77)

so that the error cost function E is minimized, where t labels the update
epoch in the learning process, η is the learning rate. If the standard
sigmoid function with the range between 0 and 1 as shown in Eq. (2.66)
is used, the rule of changing the weights can be shown to be

 ∑
=

=Δ
P

p

l
ip

l
jp

l
ji a

P
w

1
,,, δη

 (2.78)

For the output layer, i.e. l L= −1

)1()()(')(,,,,
1

,,,
1

,
L

ip
L

ip
L

jp
L

jp
L

jp
L

jp
L

jp
L

jp aaatofat −−=−= −−δ (2.79)

For the other layers, i.e. l L= −1 2…

 ∑∑
++

=

++

=

++++ −==
22

1

1
,

1
,

1

1
,

1
,

1
,

1
,,,)1()('

ll n

k

l
jk

l
kp

n

k

l
ip

l
ip

l
jk

l
kp

l
jp

l
jp waawof δδδ (2.80)

From Eqs. (2.78) to (2.80), it is noticed that the change of a weight
depends on the outputs of neurons connected to it. When the output of
neuron is 0 or 1, the derivative of the activation function evaluated at this
value is zero. Therefore, there will be no weight change at all, even if
there is a difference between the value of the target and the actual output.
Instead of using a statistical method to evaluate the maximum magnitude
of weights (Drago & Ridella, 1992), the outputs of hidden neurons are
assigned with random numbers in the range between t−1 and t . t is
chosen that 01.0)1(=− tt . Let us introduce a matrix lS with entries

)(,
11

.
l

ji
l

ji tfs −− = 12 −= Ll … (2.81)

where l
jit , are the random numbers within the stated range and contained

in the matrix T l . The neurons of the first hidden layer are first assigned
with random numbers in the specific range. Then the optimal weights
for a single-layer perceptron can be evaluated by solving the following
equation,

66 Neural Networks and Computing: Learning Algorithms and Applications

2

111 minimize SWA − (2.82)

This linear least squares problem can be solved by QR factorization
using Householder reflections. In the case of an overdetermined system,
QR factorization produces a solution that is the best approximation in a
least squares sense. In the case of an underdetermined system, QR
factorization computes the minimal-norm solution. As the number of
training patterns is always greater than the number of variables in W 1 in
neural network applications, the system is always overdetermined and
the least squares solution is obtained by solving the Eq. (2.82). After the
weights W 1 are evaluated, the actual outputs of the first hidden layer A2
can be evaluated by propagating the input patterns using the weights W 1 .
The outputs of hidden neurons A2 are always in the range between

t−1 and t because the least squares solution W 1 is used. As the
outputs of hidden neurons are not at the extreme state, the derivatives of
the activation function at these values are not zeros and the network will
never get stuck. After evaluating A2 , the outputs of the second hidden
layer are assigned with T 3 in which entries have random values between

t−1 and t . By solving the linear least squares problem, the optimal
weights W 2 can be evaluated. In general, to find the optimal weights
W l (for l L= −1 2…), we have first find all the previous weights and
generate a matrix T l+1 using a random number generator. By
propagating the input patterns through the network using the evaluated
optimal weights, Al can be found. The optimal weights W l can be
evaluated by solving the following equation:

2

 minimize lll SWA − l L= −1 2… (2.83)

To evaluate the last layer of weights 1−LW , we find 1−LA first as stated
before; however, we need not generate the matrix LT using a random
number generator, instead we directly use the target values of the training
patterns. The following equation is used to find the last layer of weights:

2

111 minimize −−− − LLL SWA (2.84)

The weight initialization process is then completed.

 Learning Performance and Enhancement 67

2.4.3. Weight Initialization Algorithm III

It was noticed that several networks initialized by the WIA II got
stuck when they were further trained by the BP algorithm. A
modification to the WIA II algorithm was proposed to tackle this
problem. By the same argument stated in the second algorithm, the
outputs of the hidden neurons should be within the active region, i.e. the
range in which the derivative of activation function has a large value, so
that the learning will not be hindered. Instead of assigning the outputs of
hidden units and using the least squares method to evaluate the weights,
the magnitudes of weights required to ensure that the outputs of hidden
units are in the active region are derived as in the following.

To evaluate the required range of weights l
jiw , when the activation

function shown in Eq. (2.66) is used, the following problem has to be
solved:

 tat l
jp ≤≤− +1

,1 or sos l
jp ≤≤− , (2.85)

where)(1 tfs −= . The Eq. (2.85) can be simplified to be

 () 22
, sol
jp ≤ or 2

21

1
,, swa

ln

i

l
ji

l
ip ≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛∑
+

=

 (2.86)

By Cauchy’s inequality,

 () ()∑∑∑
+

=

+

=

+

=

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 1

1

2
,

1

1

2
,

21

1
,,

lll n

i

l
ji

n

i

l
ip

n

i

l
ji

l
ip wawa (2.87)

In order to ensure the outputs of neurons are in the active range, the
requirement for the range of weights is further constricted using the Eq.
(2.87), i.e.

 () () 2
1

1

2
,

1

1

2
, swa

ll n

i

l
ji

n

i

l
ip ≤∑∑

+

=

+

=

 (2.88)

If ln is a large number and the weights are values between l
pθ− to l

pθ
with uniform probability distribution, the following equation is obtained:

68 Neural Networks and Computing: Learning Algorithms and Applications

 () ()[]
()∑

+

=

≤+ 1

1

2
,

2
2

,1
ln

i

l
ip

l
jil

a

swEn (2.89)

where ()2

,
l
i jE w⎡ ⎤

⎢ ⎥⎣ ⎦
 is the second moment of the weights at layer l, which

can be shown to be

 ()2

,
l
i jE w⎡ ⎤

⎢ ⎥⎣ ⎦
= dxx

l
p

l
p

l
p

∫
−

θ

θ θ2

2

 =
()

3

2l
pθ (2.90)

Therefore, the magnitude of weights l
pθ for pattern P is chosen to be:

() ()∑

+

=

+
= 1

1

2
,1

3
ln

i

l
ipl

l
p

an
sθ (2.91)

For different input patterns, the values of l
pθ are different. To make sure

the outputs of hidden neurons are in the active region for all patterns, the
minimum value of l

pθ is chosen:

 ()
Pp

l
p

l

,,1

min
"=

= θθ (2.92)

The weights at layer l are then initialized by a random number generator
with uniform distribution between lθ− to lθ .
The procedures of the third weights initialization are as follows:
(i) Evaluate 1θ using the input training patterns ipip xa ,

1
, = .

(ii) The weights 1
, jiw are initialized by a random number generator

with uniform distribution between 1θ− to 1θ .
(iii) Evaluate 2

,ipa by propagating the input patterns through the

network using 1
, jiw .

(iv) For 2,,2 −= Ll …

 Learning Performance and Enhancement 69

a) Evaluate lθ using the outputs of layer l, i.e. l
ipa , .

b) The weights l
jiw , are initialized by a random number

generator with uniform distribution between lθ− to lθ .
c) Evaluate 1

,
+l
ipa by propagating the outputs of l

ipa ,

through the network using l
jiw , .

(v) After finding 1
,
−L
ipa or 1−LA , we can find the last layer of weights

1−LW using Eq. (2.86) as stated in the second weights initialization
algorithm.

2.5. Global Learning Algorithms

Another fundamental limitation of the error Backpropagation
algorithm is dominated by the susceptibility to local minima during
learning process. In the past decade, many researchers have proposed
different types of algorithms which can provide a significant reduction in
the total number of iterations by exploiting the fast convergence
characteristics, but getting stuck in the local minima is still inevitable for
many cases. Convergence stalling is yielded especially in applying to the
complicated problems.

Global optimization methods (Horst & Pardalos, 1995) were,
recently, employed instead of the conventional gradient descent to avoid
the convergence trapped in undesired local minima. For instance,
Random Search (RS) method (Baba, 1989) is a stochastic optimization
method, which could be successfully utilized to find the global minimum
in the error surface. Simulated Annealing (SA) (Kirkpatrick et al., 1983)
is another stochastic type global minimization method to allow any
down-hill and up-hill movement for escaping from the local minima
which results the search convergence to a global minimum at the end.
Evolutionary Programming (Fogel, 1995) or Genetic Algorithm
(Goldberg, 1985, Holland, 1975), based upon the computational model
of evolution, is another mechanism for the global optimization to
determine connectivity in the feedforward networks. All of these
methods have been applied to complex and multi-model minimization
problems with both discrete and continuous variables. Moreover, Battiti
and Tecchiolli (1995) proposed a heuristic scheme of the reactive Tabu

70 Neural Networks and Computing: Learning Algorithms and Applications

search, based on a “modified local search” component complemented
with a meta-strategy, for the neural networks learning. Shang and Wah
(1996) developed a trajectory-based non-linear optimization method. It
relies on an external force to pull a search out of the local minima. Their
global optimization method is capable of providing excellent results by
applying in the pattern recognition and classification problems. However,
the algorithm is extremely computational complex because the
evaluation of the trace function, that leads the trajectory out of the local
minima, requires highly computation for the solution of an ordinary
differential equation. Another learning scheme for achieving global
optimization is based on the hybrid local and global optimizations
method. This method was operated by making use of local search to
optimize the weights between the output and hidden layers and use
global search to optimize the other weights at the other layers. One
method was proposed in (Cho & Chow, 1999) which is based on the
hybrid of Least Squares method and penalized optimization method. The
idea of this penalized optimization is defined by superimposing a
discontinuous type function under the weight space domain while the
learning process is getting stuck. This study included the use of Gaussian
function, Rayleigh function and Laplace function as the penalty-like
functions. Despite the success of this approach in performing global
learning, like all other algorithms, we are still unable to determine the
minima distribution in error surfaces and unable to identify whether a
minimum is a local one or global one.

2.5.1. Simulated Annealing Algorithm

The simulated annealing method has been introduced in 1983 by
Kirkpatrick, Gellat and Vecchi, inspired by the annealing (cooling)
process of crystals that reach the lowest energy, corresponding to the
perfect crystal structure, if cooled sufficiently slowly. Simulated
Annealing (SA) has found numerous applications in all branches of
science and technology. There are three types of user-defined functions
in the SA procedure: first, ()Pp p , describing the probability distribution

of parameters; second, ()()PEpE Δ , the probability of accepting the new
set of parameters as the current one, depending on the change of the error
function; and third, ()kT , the schedule of changing the ‘temperature’
parameter T in some time steps t. Temperature T determines the scale of

 Learning Performance and Enhancement 71

fluctuations allowed at a given time step. The Boltzmann annealing
schedule is most frequently used because of the statistical mechanics
roots of the method. It is defined by:

 ()() ()()TPE
PEpE Δ+

=Δ
exp1

1
 (2.93)

There are various proofs showing that, with the probability approaching
one, for ()tT shower than tT ln0 a global minimum can be found by
this procedure. For the pp distribution gaussian form is frequently used:

 () () ()TPTPp N
p 2exp2 22 Δ−=Δ π (2.94)

where PΔ is the vector defining change of parameters from the previous
value. Another popular simulated annealing method, called Fast
Annealing, is based on Cauchy distribution, defined by:

 ()
() 2)1(22 +

+Δ
=Δ Np

TP
TPp (2.95)

which assigns higher probabilities to larger changes of parameters. To
save time, temperature is frequently reduced by a constant amount,
leading to exponential schedule that does not guarantee that the global
minimum is found. In many simulations in the initial stages of
minimization will not allow to sample the minima; to avoid the time
waste short sample runs with fast annealing schedule are recommended
to determine good initial temperature. In later stages, when local minima
are explored, shifting to gradient based or linear search techniques may
significantly reduce cost of calculation.

2.5.2. Alopex Algorithm

A special form of simulated annealing is used in the Alopex
algorithm (Unnikrishnan & Venugopal, 1994), since the result of this
approach seem to be very good. Alpoex algorithm is based on a very
simple idea which is competitive to the backpropagation. The weight

jiw is changed by a constant amount δ with probability defined by the

sigmoidal factor, ()TEwp jiji Δ⋅Δ=σ , where the weight change and
the error change computed in the previous iteration is used. The

72 Neural Networks and Computing: Learning Algorithms and Applications

annealing temperature is changed every epoch consisting of K steps,
using the sum of error changes in the previous epoch:

 () ()∑
−

−=

Δ=
1n

Knt

tE
K

nT δ
 (2.96)

For large temperature, probabilities of δ± are close to 0.5 and the
weights are randomly changed until a large change of energy is detected
(correlation between changes of weights and changes of error are large)
and the temperature is reduced. During an iteration all weights are
updated simultaneously. No assumptions are made about the structure of
the network, the error measure being minimized or the transfer functions,
no gradients are computed, the same algorithm may be used in
feedforward as well as recurrent networks, and there is even some
neurobiological plausibility of this algorithm. There are 3 parameters: the
step-size δ, which is taken as 0.01-0.001 times the dynamic range of
weights, the initial temperature, and the number of steps per epoch
K=10-100. Obviously many improvements can be proposed, such as the
variable K, fast and slow weights, different annealing schedules etc.
Alopex may be quite easily used in connection with other global
minimization methods, for example with genetic algorithms. One
disadvantage of the Alopex algorithm seems to be that the weights are
always updated and therefore saturate large positive or negative values.
To prune the small weights and enable feature selection it is better to
define conditions when they may vanish, for example by using penalized
optimization described in the later section.

2.5.3. Reactive Tabu Search

The reactive tabu search is based on a simple idea. The search is
started at a random point and the best elementary move is selected;
cycles are avoided by keeping the trajectory of the search and
discouraging the system from visiting the same regions again. In context
of neural networks the values of the adaptive parameters P are kept with
finite precision and the neighborhood ()PN is defined by single-bit
change operations. The error function ()PE is therefore defined on a
finite set of points. The best operation for which ()'PE , ()PNP∈' has
the lowest value, is selected (even if the error grows) and the ties are
broken in a random way. The inverses of most recent moves are

 Learning Performance and Enhancement 73

prohibited to avoid cycles, hence the ‘tabu’ name for the method –
regions already visited should be avoided. If there are too many
possibilities only a restricted subset of moves are randomly sampled and
the best one selected. The tabu is put on the moves, not on the values of
P, and kept for a limited number of T time steps. The values of T should
be large enough to avoid cycles and small enough to avoid over-
constraining the search. The reactive tabu search optimizes the
prohibition period T adjusting it to the local structure of the problem.
This requires remembering the points P along the trajectory and counting
how many times each point has been encountered. The reactive tabu
search was used with very good result on a large number of
combinatorial optimization problems. It has used to discriminate
interesting events in High Energy Physics data, with the best results
obtained for a one-bit representation of weights. The generalization
levels reached 90% while in the standard BP they reached only 62%.

2.5.4. The NOVEL Algorithm

A hybrid, global/local trajectory based method, called NOVEL has
been proposed for neural networks (Shang & Wah, 1996). This method
was exploring the solution space, locating promising regions and using
local search to locate promising minima. Trajectory ()tP in the global
search stage is defined by a differential equation:

 () ()()() () ()()tPtTBtPMAtP p ,ˆ +∇= (2.97)

where T is the trace function and A, B are in general non-linear functions.
The first component allows local minima to attract the trajectories, and
the second component allows to walk out from the local minima. In the
simplest case used in the NOVEL algorithm A and B functions are
constants:

 () ()() () ()()tPtTtPMtP tPg −+∇−= μμˆ (2.98)

The trace function T should assure that all space is finally traversed; it
may either partition the space into regions that are explored in details or
make first coarse and fine searches. The differential equation is either
solved in its original form by standard Ordinary Differential Equation
(ODE) or in a discretized form as a differential equation:

 () () ()() () ()()[]tPtTtPMttPttP tPg −+∇−+=+ μμδδ (2.99)

74 Neural Networks and Computing: Learning Algorithms and Applications

It was noted that ODE solutions are slightly better although discretized
equations are faster to simulate. The method has been tested on the two-
spiral problem, training 5 hidden units in 100 time steps, starting from
zero weights. This is one of very hard problems for neural networks. This
method claimed that finding a solution for 4 hidden units required a total
of one week of Sun workstation running time.

2.5.5. The Heuristic Hybrid Global Learning Algorithm

A heuristic approach global learning algorithm, based on the hybrid
of the Least Squares and the Penalized optimization methods, has been
described in (Cho & Chow, 1999). For simplicity, we assume that the
multilayer neural network has a single hidden layer. The weights
connected between the output layer and the hidden layer are firstly
determined using the Least Squares (LS) based method. Afterward, the
weights connected between the hidden layer and the input layer are
determined by the gradient descent optimization. When the learning
process is stuck, the learning mechanism is switched to minimizing the
new penalty approach through the weight matrix (V) at the output layer.
In terms of its working mechanism, the weights (V) are estimated by the
LS method whilst the weights (W) at the hidden layer are estimated by
the penalty approach optimization.
As described in (Cho & Chow, 1999), let us define the global
optimization problem to be considered as follows. Let () ℜ→ℜnE :w
be the cost function, which can be twice differentiable continuously,
where w is a vector of n state variables or parameters. The objective is to
find the global minimum solution, gmw which minimizes ()wE ,

 () (){ }ℑ∈== www EEE gm min* (2.100)

where ℑ is the domain of the state variables over which one seeks the
global minimum and ℑ is assumed to be compact and connected.
Further, we assume that every local minimum lmw of ()wE in ℑ
satisfies the conditions

()

0=
∂

∂
w
w lmE

 (2.101)

 Learning Performance and Enhancement 75

()

02

2

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂ y
w
wy lmT E

, nℜ=∀y (2.102)

Based on the above conditions, we assume that the global minimum
satisfies these local minima and that the global minimum does not occur
beyond the boundary of ℑ . A well-known penalized optimization
method was introduced in (Zheng & Zhuang, 1992) stating that the
problem (2.100) can be approximated by solution of associated penalized
unconstrained problems in finite dimensional spaces as shown below:

 () (){ } (){ } *minmin EEEE pen =ℑ∈=+ wwww λ (2.103)

where ()wpenE is a penalty function for the constraint set ℑ and λ is a
real number that λ>0. The penalized optimization technique provides an
uphill force whenever the convergence is trapped in local minima. Thus,
a discontinuous penalty function, defined from (Cho & Chow, 1999) for
global optimization, should satisfy

 () ()⎩
⎨
⎧

ℑ∉
ℑ∈

=
ww

w
w

 ,0

g
E pen (2.104)

where ()wg is a penalty-like function. Three types of the penalty-like
function are chosen such as: Gaussian function, Rayleigh function and
Laplace function.

For simplicity, the algorithm was considered to use a
feedforward neural network with a single hidden layer network. Suppose
the network has M input units, N hidden units and Q output units, and we

assume that the activation function takes a form of () ()σ x
x

=
+ −

1
1 exp()

in the hidden layer. The general form of the feedforward network can be
represented as follows:

 o v w x bk kj ji i
i

M

j
j

N

k= +
⎛

⎝
⎜

⎞

⎠
⎟ +

==
∑∑ σ θ

11
, 1≤ ≤k Q (2.105)

where ok and xi denote network output and input values respectively.
w ji and bj denote the synapses weights and bias term respectively
connected between the hidden layer and the input layer which form
elements of the weight matrix W. Similarly, vkj and θk denote the

76 Neural Networks and Computing: Learning Algorithms and Applications

synapses and bias respectively connected between the output layer and
the hidden layer which form elements of the weight matrix V. Assume
there are P patterns in the training set. For pattern p P= 1 2, , ,… , let

()t p p p Qp
T

t t t= 1 2, , ,… and ()o p p p Qp
T

o o o= 1 2, , ,… denote the desired

output vector and the true output vector of the network.

()a p p p Np
T

a a a= 1 2 1, , , ,… denotes the vector of outputs at the hidden

layer, where the entries a w x bjp ji ip
i

M

j= +
⎛

⎝
⎜

⎞

⎠
⎟

=
∑σ

1

. ()x p p p Mp
T

x x x= 1 2 1, , , ,…

denotes the vector of inputs of the network.
A total sum-squared-error function,

 () () ()ET p p
T

p p
p

P
V W t o t o, = − −

=
∑

1

 (2.106)

is chosen as a cost function for the network optimisation. The goal of the
learning algorithm is required to optimise the weights of the network by
minimising the cost function such that all the derivatives of ()ET V W,
with respect to V are equalled to zero, so the optimal weight matrix V
can be exactly computed by

 ()�V TA AA=
+T T (2.107)

where ()T t t t= 1 2, , ,… P and ()A a a a= 1 2, , ,… P . “+” denotes an
operation of pseudo-inverse of the matrix. Thus, the cost function

()ET V W, can be reformulated in a form of

 () ()() ()E E ET hidV W V W V W, ,= = (2.108)

because the weight matrix V can be expressed as a matrix function of
matrix W. There exists a new weight space ℜ ×M N with lower
dimension mapping into the original weight space. In other words, the
minimisation of the new cost function ()Ehid W is equivalent to
minimising the error function over the whole weight space. In this study,
the weights matrix, W can be iteratively estimated via minimising the
cost function by the gradient descent optimisation.

As our aforementioned statements, the minimisation by the gradient
descent optimisation suffers from the problem of local minima.

 Learning Performance and Enhancement 77

Therefore it is advisable to modify the new cost function, ()Ehid W by
including a penalty function to provide a search out of the local minima
when the convergence gets stuck. In this paper, the penalty function is
introduced to superimpose under the weight space domain. Three
different types of our proposed penalty functions are given as follow,

 ()E
w n w

pen
ji ji

i

M

j

N
W, exp

() *

λ λ
λ

= −
− −⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟==

∑∑
1

2

2
11

 Gaussian type (2.109)

 ()E w n w
w n w

pen ji ji
ji ji

i

M

j

N
W, () exp

()
λ λ

λ
= − − −

− −⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟==

∑∑1
1

2

2
11

 Rayleigh type (2.110)

 ()E
w n w

pen
ji ji

i

M

j

N
W, exp

()
λ λ

λ
= −

− −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

==
∑∑

1
2

11

 Laplace type (2.111)

where w nji ()− 1 is the weight in the specify weight space, ℜ ×M N at the

previous iteration. w ji is the sub-optimal weight value which is assumed
to be getting stuck in a local minimum. λ denotes the penalty factor
which determines the influence of the penalty term against the original
least squares cost function. This weighting factor is used to control the
breadth of the search iteratively to force the trajectory out of the local
minima. The correct choice and adaptation procedure of λ will be
described later. In accordance with the penalty approach, the modified
cost function for the proposed heuristic algorithm is defined as
 () () ()E E Egbl hid penW W W, ,λ λ= + (2.110)

Consequently, the updated equations for the weights connected between
the hidden layer and the input layer is,

78 Neural Networks and Computing: Learning Algorithms and Applications

()w n w n

E
wji ji

gbl

ji

** () ()
,

= − +1 η
∂ λ

∂

W
 (2.112)

() () ()∂ λ

∂
∂
∂

∂ λ
∂

E
w

E
w

E
w

gbl

ji

hid

ji

pen

ji

W W W, ,
= − + (2.113)

where w nji
** () is an optimal weight in the specified weight space by

minimising the modified cost function. η denotes a learning rate of the

algorithm. ()∂
∂

E
w

hid

ji

W is the original gradient of ()Ehid W with respect to

w ji and ()∂ λ

∂

E

w
pen

ji

W , is the penalty term of the derivative of

()E pen W,λ with respect to w ji using eqns. (2.109-2.110), so we define:
Gaussian term:

()∂ λ
∂ λ λ

E
w

w n w
w n w

pen

ji
ji ji

ji jiW,
() exp

()
= − − −

− −⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2 1
1

2

2
 (2.114)

Rayleigh term:

()∂ λ
∂ λ λ

E
w

w n w
w n w

pen

ji
ji ji

ji jiW,
() exp

()
= − − −

− −⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2 1
12

2

2
 (2.115)

Laplace term:

()∂ λ

∂ λ λ

E
w

w n w
pen

ji

ji jiW,
exp

()
= −

− −⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 1
2

 (2.116)

as the proposed penalty terms. Based on the above formulations, these
allow to descent the gradient of Ehid and to ascend the gradient of Epen,
that the classical gradient descent in the basin of attraction of a minimum
and for escaping a local minimum entrapment were implemented in this
algorithm.

 Learning Performance and Enhancement 79

In accordance with the eq. (2.114), the penalty factor λ determines
the effect of the penalty term against the original negative gradient of

()∂
∂

E
w

hid

ji

W . A correct selection and adaptation for λ are critical

considerations for the entirely algorithm performance. The selection of λ
is based on the following condition:
1. If λ is too small, large weight changes are possible because of the

strong effect of the penalty term. In this case, the algorithm is
unstable which may result an invalid solution.

2. If λ is too large, only very small weight changes are allowed for the
trajectory to escape from the local minima because the penalty term
becomes virtually redundancy.

The best choice of λ lies between these two extremes and with the
condition of assuring the training convergence. The proposed algorithm
is said to be convergent in the mean square if the mean-square value of
the error vector, () ()e t ogbl p pn n= − approaches a constant value as the
number of iterations n approaches infinity; that is:

 () (){ }E n ngbl
T

gble e → constant as n→∞ (2.117)

so, it implicit that,
 () () ()ΔE n E n E ngbl gbl gbl= + − ≤1 0 as n→∞ (2.118)

The modified cost function can be approximated by a first order Taylor
series:

 E n E n
E n

ngbl gbl
gbl

j

T

j() ()
()

()+ = +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
∂
∂w

wΔ (2.119)

where ∂

∂

E ngbl

j

T
()

w
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 represents the gradient of the modified cost function

with respect to the weight vector w j ; Δw j n() represents the change in
an arbitrary weight vector.

Based on the above expressions, suppose the Gaussian penalty term
is a general case, the guideline of the selection of λ is defined as

80 Neural Networks and Computing: Learning Algorithms and Applications

 0 2 1
1

< ≤ − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

λ ∂
∂

w w
wj j

hid

j
n E n() () (2.120)

The derivation of the upper bound of λ is briefly expressed in the
Appendix 2.1.
Besides, the adjustment of the penalty factor λ is employed to control the
global search ability and is adapted according to the following
conditions:
1. When the convergence is stuck in local minimum, the penalised

optimisation is introduced. λ(n) decreases gradually by 0.3% of the
λ(n-1) to provide an uphill force to escape from the local minimum.

2. After running the penalised optimisation for few iterations, the λ(n)
should be increased by 1% of the λ(n-1) to diminish the effect of the
penalty term when the training error starts to decrease.

The following are shown some illustrations by making use of this
algorithm in different benchmark problems. First, Fig. 2.4a shows a 3-D
error surface plot of modified XOR problem. This modified XOR
problem was used to illustrate the problem of local minima during
training with the BP algorithm. It is a classical XOR problem but with
one more introduced pattern such that a unique global minimum exists.
As there is one known local minimum in the error surface, the plot of
searching trajectory along the error surface. The network architecture of
2-2-1 with only 9 connection weights was used for this problem. In the
range shown, the problem has three minima, one of which is the global
minimum. Using a search range of [-5, 5], Fig. 2.4 illustrates the search
trajectories convergence. The 2-D contour plot and the comparative
performances by the Gaussian penalty function, the Rayleigh penalty
function and the Laplace penalty function are also shown in Figs. 2.4.
Clearly, similar performance was obtained and the trajectories are able to
pull out from the local minimum with the first hundred iterations. The
subsequent trajectories are able to follow the surface contour down to the
global minimum. The second problem used by this algorithm was the
two-spiral benchmark test. This test is reputable to be an extremely and
demanding classification problem for any algorithm in the network
training. The cascade-correlation could be used to solve this problem
using a structure of 2-5-5-5-1 network (three hidden layers with five
units of each, “shortcuts” connections required). The network
architecture is of high-order structure. Their results are promising but

 Learning Performance and Enhancement 81

extremely long training time was required despite working under a
powerful workstation machine. Fig. 2.5 shows that the solutions yielded
by this heuristic hybrid algorithm using different types of penalty terms.

Error surface plot by modified XOR Gaussian penalty approach

Rayleigh penalty approach Laplace penalty approach

Figure 2.4. 3-D error plot and 2-D contour plots with searching trajectories of the
heuristic global learning algorithm for the modified XOR problems. In these figures
shown, the convergence is stuck in the local minimum and the trajectories can be pulled
out from the local minimum by the penalty force to converge to the global minimum
eventually

82 Neural Networks and Computing: Learning Algorithms and Applications

Gassian penalty approach Laplace penalty approach

Rayleigh penalty approach

Figure 2.5. Output classification contour images for two-spiral problem by the heuristic
global algorithm

2.6. Concluding Remarks

The classified problems affecting the learning performance and the
enhancement were addressed in this chapter. Since the learning algorithm
is based on the gradient descent typed characteristics (i.e.
Backpropagation algorithm), two common problems, i.e. slow
convergence speed and susceptibility of local minima, do often occur
amid the learning process. This chapter suggests several methods to
enhance the learning performance in the neural networks

2.6.1. Fast Learning Algorithms

Three fast learning algorithms have been described to reduce the
training time of feedforward neural networks. These three fast training

 Learning Performance and Enhancement 83

algorithms are Extended Backpropagation (EBP) algorithm, Modified
Least Squares Based (MLSB) algorithm, and Extended Least Squares
Based (ELSB) Algorithm. The EBP algorithm is based on the adaptation
of the learning rate and the momentum coefficient according to the
coefficient of correlation between the downhill gradient and the previous
weight update. The EBP algorithm greatly reduces the training time
when it is compared to the Adaptive Backpropagation algorithm.
However, this algorithm is more suitable for the problems with binary
target values because the abrupt change in learning rate usually drives
the neurons to their extreme values where the binary targets lie. To
further increase the rate of convergence, the MLSB algorithm, which is
based purely on a linear algebraic method, was described. Although the
MLSB algorithm trains the networks to reach small error levels in the
first few iterations, the network error cannot be further reduced
afterwards. The problem arises from the use of a transformation matrix to
transform the optimal output of the hidden layer into the range of the
activation function. Apparently, there are numerous ways to construct a
transformation matrix in accordance with different distribution of
training data. For the problems that require the networks with very high
accuracy, the ELSB algorithm was developed. The ELSB algorithm
combines the methods used in the EBP algorithm and the MLSB
algorithm.

2.6.2. Weight Initialization Methods

Determining the optimal initial weights of feedforward neural
networks is another approach to enhance the learning performance. Three
weight initialization algorithms, which all are based purely on linear
algebraic methods, have been described. In the first weight initialization
method (WIA I), the system is first assumed to be linear. This enables
the parameters relating the input and output to be evaluated using a least
squares method. The initial weights in each layer are then evaluated from
these parameters by QR factorization. The algorithm greatly reduced the
initial network errors, but this algorithm cannot be applied to the neural
networks in which the number of hidden neurons is smaller than the
number of input neurons plus one. Another weight initialization
algorithm (WIA II), was thus developed to overcome this limitation. In
the WIA II algorithm, the outputs of hidden layers are assigned with
values in the range in which the derivative of activation function has a

84 Neural Networks and Computing: Learning Algorithms and Applications

large value. The optimal weights are evaluated by the least squares
method. Although the WIA II algorithm can be applied to any network
architecture, the networks initialized with this algorithm had greater
chances of getting stuck when they are further trained. The third weight
initialization algorithm (WIA III) was given to improve the second
algorithm. The WIA III algorithm determines the distribution of initial
values of the weights of all layers except the output layer; the weights
connecting to the output layer are evaluated by the least squares
algorithm. The WIA III overcomes the shortcomings of the first two
weight initialization algorithms and was combined with the ELSB
algorithm to form the fast training mechanism. The training mechanism
greatly reduces the training time and has additional advantages over
other well-known fast training algorithms in terms of the low
computational complexity and the storage requirement.

2.6.3. Global Learning Algorithms

Another important issue of the local minima problem was addressed
in this chapter. In the past decade, many researchers have proposed
different types of algorithms which can provide a significant reduction in
the total number of iterations by exploiting the fast convergence
characteristics, but getting stuck in the local minima is inevitable in
many cases. Convergence stalling is yielded especially in applying to the
complicated problems. Random Search (RS) and Simulated Annealing
(SA) methods are one of the stochastic typed global optimization
methods. In terms of their working mechanism, the approaches are
reliable and simply to implement, but larger neural network size is
required for solving very complicated classification problems.
Deterministic algorithms, such as NOVEL and reactive tabu search, have
some advantages over the stochastic versions. They find all deep minima
contained in some bound region of the parameter space. Unfortunately
finding a solution for 4 hidden units required a total of one week of
workstation time. Therefore, a hybrid learning scheme is one of the
possible solution to tackle the above problems. This algorithm converges
to the global minimum in the probabilistic sense. The methodology of the
learning scheme is based on a hybrid of the least squares method and the
well-known stochastic optimization method. The least square method
determines the weights connected between the output layer and the
hidden layer. As a result, the convergence speed is spectacular because

 Learning Performance and Enhancement 85

the weights are determined in a single step. The stochastic part was
employed by the penalized optimization. The idea of this penalty
approach is defined by superimposing a discontinuous type function
under the weight space domain while the learning process is getting
stuck. These studies included the use of Gaussian, Rayleigh, and Laplace
functions as the discontinuous penalty functions.

Appendix 2.1.

Assume the weight change Δw j n() is the weight difference between
w j n() and w j n()− 1 , so

() ()

*

* *

2

()()()

() 2 (1)

(1) (1)
exp

penhid
j

j j

hid
j j

j

T

j j j j

E nE nn

E n n

n n

∂∂η
∂ ∂

∂
∂ λ

η

λ

⎛ ⎞
Δ = − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− + − −⎜ ⎟
⎜ ⎟

= ⎜ ⎟⎛ ⎞− − − −⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

w
w w

w w
w

w w w w

 (A2.1)

Therefore, from (2.118),

() ()

() ()

*

* *

2

2
*

* *

2

() () 2() () (1)

(1) (1)
exp ()

() 2 (1)

(1) (1)
exp

T

gbl hid
gbl gbl j j

j j

T

j j j j
gbl

hid
j j

j

T

j j j j

E n E nE n E n n

n n
E n

E n n

n n

∂ ∂η
∂ ∂ λ

λ

∂
∂ λ

η

λ

⎡ ⎤ ⎛
Δ = + − + − −⎜⎢ ⎥ ⎜⎢ ⎥⎣ ⎦ ⎝

⎞⎛ ⎞− − − − ⎟⎜ ⎟− −⎟⎜ ⎟ ⎟⎝ ⎠ ⎠

− + − −

= ⎛ ⎞− − − −⎜ ⎟−
⎜ ⎟
⎝ ⎠

w w
w w

w w w w

w w
w

w w w w

 (A2.2)
where ⋅ is a norm of the vector.

86 Neural Networks and Computing: Learning Algorithms and Applications

By the Convergence Theorem from Eq. (2.118), ΔE ngbl () ≤ 0 and
assume η is positive constant, so,

 () ()

*

* *

2

() 2 (1)

(1) (1)
exp 0

hid
j j

j

T

j j j j

E n n

n n

∂
∂ λ

λ

− + − −

⎛ ⎞− − − −⎜ ⎟− ≤
⎜ ⎟
⎝ ⎠

w w
w

w w w w
 (A2.3)

becomes,

() ()

() ()

() ()

* * 1
*

2

* * 1
*

2

* *

2

*

(1) (1) () 2exp (1)

(1) (1) () 2log (1)

(1) (1)

2log (1)

T

j j j j hid
j j

j

T

j j j j hid
e j j

j

T

j j j j

e j j

n n E n n

n n E n n

n n

n

∂
λ ∂ λ

∂
λ ∂ λ

λ

λ

−

−

⎛ ⎞− − − − ⎛ ⎞⎜ ⎟− ≤ − −⎜ ⎟⎜ ⎟ ⎝ ⎠
⎝ ⎠

− − − − ⎛ ⎞⎛ ⎞− ≤ − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞− − − −⎜
⎜− ⎜ ⎛ ⎞⎜ + − −⎜ ⎟⎜ ⎝ ⎠⎝

w w w w
w w

w

w w w w
w w

w

w w w w

w w

#

()log hid
e

j

E n∂
∂

⎟ ⎛ ⎞⎟ ≥ − ⎜ ⎟⎟ ⎜ ⎟
⎝ ⎠⎟⎟

⎠

w

 (A2.4)

initially, we assume that λ > 0 and is a quite large number, so λ2 →∞

then 1 0
2λ
→ ,

∴

2 1

2 1
1

λ
∂
∂

λ
∂
∂

UB
j j

hid

j

UB j j
hid

j

n E n

n E n

w w
w

w w
w

() ()

() ()

*

*

− − ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− (A2.5)

then Eq. (2.120) follows.

 Learning Performance and Enhancement 87

Exercises

Q2.1. Consider a simple multilayer perceptron (MLP) as shown in Fig.
2.6, compute the individual steps of the back-propagation
algorithm. Consider the learning rate to be η=0.5 and sigmoid

activation functions () 2

1
1 hh

e βσ −=
+

 in the nodes with gain

β=0.5. Calculate the complete cycle with the input pattern (0, 1)
and the input pattern (1, 0).

w0 w1x w2 w3 w4 x1 x2 Oh Oo ∆w4 ∆w3 ∆w2 ∆w1 ∆w0
0.1 -0.1 0 0.1 0.1 0 1
 1 0 - - - - - - -

Oo

Oh

1 x1 x2

w0 w
1

w
3

w4

w2

x1 x2 AND
0 0 0
0 1 0
1 0 0
1 1 1

 Figure 2.6. MLP network for the AND function

88 Neural Networks and Computing: Learning Algorithms and Applications

Q2.2. A neural network is being trained on the data for XOR problem.
The architecture and the values of the weights and biases are
shown in Fig. 2.7.

 Using the sigmoid function () 2

1
1 hh

e βσ −=
+

 with gain β =0.5,

compute the activations for each of the units when the input
vector (0, 1) is presented. Find the delta factors for the output
and hidden units. Using a learning rate of η=0.1, compute the
weight corrections. Find the new weights (and biases).

y

z1 z2

x1 x2

1

1 1

-0.8
-4.

5 5.3

-2
.0 8.82.0

4.39.2 -0.1

 Figure 2.7. Neural network for Q2.2

Q2.3. Repeat the question of Q2.2 for the input vector (1, 0).

Q2.4. Interpret the differences between the weight changes on the

connection to the output unit and the weight changes to the
hidden units in Q2.2 and Q2.3.

Q2.5. Consider an MLP with three inputs, one output and one hidden

layer with 10 nodes. As learning algorithm uses backpropagation

 Learning Performance and Enhancement 89

and sigmoid functions in the nodes, compute the initial weights
at the hidden and output layers using the Weight Initialization
Algorithm I as described in Section 2.4.1.

Input patterns Output
x1 x2 x3 y
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Q2.6. Determine the upper bound of the penalty factor λ by means of

convergence proof as similar to equation (2.121) if a Rayleigh
penalty term is used for penalized optimization.

Q2.7. Repeat the question of Q2.6 of a Laplace penalty term is used for

penalized optimization.

This page intentionally left blankThis page intentionally left blank

91

Chapter 3

Generalization and Performance Enhancement

This chapter focuses on the issue of generalization capability of
neural network. In this chapter, neural network and network are
considered as interchangeable terms. The neural networks possess two
paramount features of the universal function approximating (Hornik et
al., 1989) and generalization capabilities (Bishop, 1995), (Leung, 1998).
Therefore, researchers and engineers often consider neural networks as
“black box” type of tools. However, the network performance often
varies greatly depending on many factors such as learning algorithms,
network size….etc. The network performance is often determined
according to a training error and a test error. The training error is a
quantity to indicate the closeness between the neural network and the
training patterns. The test error is an index to reflect the distance between
the neural network and the underlying function based on the unseen test
set.

As neural networks are considered universal approximators
(Funahashi, 1989), the network training is, in fact, a process of non-
parametric functional estimation in the statistical sense. The network
training only based on a finite number of training examples is basically
an ill-posed problem (Geman et al., 1992). Due to the limited availability
of the training samples, there are enormous possible realizations of
neural networks delivering comparable level of training error. However,
most of the realizations often do not generalize the training data as
expected. Only a few realizations are able to generalize the training data
as what the underlying function is perceived.

92 Neural Networks and Computing: Learning Algorithms and Applications

There is no doubt that obtaining an appropriate realization from the
enormous possibilities is a baffling problem. Such behavior is analogous
to the situation of curve fitting, where the right complexity is needed for
a good fit to both training and test sets, as illustrated in Fig. 3.1. The
main concern of this chapter is that the error level to the novice examples
should be comparable to the training data in a particular application. The
trained networks should have a high degree of generalization capability,
thus the training error should be a relatively reliable measure of the
network performance when the training data is assumed to be sufficient
in representing the underlying function.

Figure 3.1. (a) A good fit; (b) Over-fit data: Perfect fir on training set, but poor fit on test
patterns (x’s represent training patterns, o’s represents test patterns)

Recently, there are many techniques proposed to enhance the

generalization capability. These techniques can be roughly divided into
two categories, structure-based and application-based. The structure-
based techniques are currently the mainstream approach, which is based
on finding an appropriate network structure. The structure-based
techniques consist of pruning methods and construction methods.
Pruning methods start from initial architecture that is over-
parameterized, and selectively removing units and/or connections during
the network training, until a satisfactory performance level is reached.
Optimal brain damage (LeCun et al., 1990), optimal brain surgeon
(Hassibi et al., 1993), weight decay (Krogh & Hertz, 1992), and weight
elimination (Weigend et al., 1991) are some of the well-known pruning
methods. Construction methods, namely dynamic node creation (Ash,

 Generalization and Performance Enhancement 93

1989), and Cascade-correlation (Fahlman & Lebiere, 1990), concentrate
on incrementally building a network from a simple structure.

It is believed that the choice of the network realizations should also
depends upon the nature of the applications. For example, the pattern
recognition problems and the regression problems introduce different
aspects of requirements. The inclusion of a priori knowledge of a
particular application facilitates the network training to converge to a
desirable neural network realization. The application-based techniques
concentrate on including the a priori knowledge in the network training.
This chapter focuses on discussing this issue.

This chapter is organized as follows: Section 3.1 presents some basic
properties of cost function as well as generalization capability for neural
network optimization. Under simplifying assumptions, the Least-Square
(LS) cost function is the most popular used for the feed-forward neural
network. However, the LS based optimization algorithms suffer from a
problem of “overfitting” noise. Therefore, Section 3.2 focuses on higher
order cumulants based cost function, which is blind to Gaussian noise to
tackle the problems of the LS cost function. An interesting property of
higher order cumulants applying to neural network learning is described
in this section. Following that, Section 3.3 presents the concepts of
regularization methods based upon higher-order cumulants based cost
functions. The methods of adaptive regularization parameters selection
are described and suggested how the regularization parameter selects to
avoid trapping into sub-optimal solution in this section. An evaluation by
synthetic function mapping is also presented in this section. Finally,
Section 3.4 presents the concluding remarks of this chapter.

3.1. Cost Function and Performance Surface

In principle, the primary goal of the network training is to model the
underlying function of the training data, so that the best possible
estimation for the network outputs can be made when the trained neural
network is presented with a novice value for the network inputs. The
optimal weights obtained by the network training are totally based on the
information from the selected objective function. Hence, the selection of
objective functions is decisive to the efficiency of the network training
and the performance of the trained neural network. There is a common
view that different applications may emphasize on different aspects. For

94 Neural Networks and Computing: Learning Algorithms and Applications

time-series forecasting problems, the basic goal of the network training is
to model the conditional distribution of the output variables, given the
input variables. This motivates the use of the Least Squares (LS) error
function that achieves extensive use in the neural based time-series
forecasting.

3.1.1. Maximum Likelihood Estimation

For regression problems, the major objective in the network training
is not to memorize the training data, but rather to model the underlying
function of the data. Hence, the best possible forecasts of the output
vector t can be made when the trained network is subsequently presented
with a novice value for the input vector x, viz.

 (){ } ()Wxtxt t ,,maxargˆ Fp == (3.1)

where t̂ is the estimated t; W is the network weight vector; F is the
function of the neural network; (){ }xVxmaxarg is the value of x that
maximizes ()xV and ()tx,p is the joint probability density function.
We consider that there is a set of training data (){ }kk txD ,= and each
data sample ()kk tx , is drawn randomly and independently from the
same distribution. In accordance with Maximum Likelihood Estimation,
the optimal weight vector W is found by maximizing a likelihood
function, which is given by

()

() ()kkk
k

kk
k

pp

p

xxt

tx

∏=

∏=

,ζ
 (3.2)

where ()kkp xt is the probability density of t given a particular input

vector x; and ()xp is the unconditional density of x. The likelihood
function ζ can be converted into an objective function

 () ()∑∑ −−=−=
k

k
k

kk pp xxt lnlnlnζε (3.3)

As the second term is equation 3.3 is independent of the neural
network function F, we can redefine the objective function ε by

 Generalization and Performance Enhancement 95

 ()∑−=
k

kkp xtlnε (3.4)

Hence, we can obtain a maximum likelihood estimation based on the
equation 3.4.

3.1.2. The Least-Square Cost Function

For the sake of analysis, we only consider the neural network with a
single linear output because the extension to the multiple outputs is
obvious. Assume the case have n data points ()kk tx , where k=1,2,…,n,
and suppose that the data points ()kk tx , are statistically independent.
We consider the target value kt is given by an unknown function h with
added Gaussian noise perturbation e, viz.

 () kkk eht += x (3.5)

where ke is Gaussian distributed with zero mean and standard deviation
σ. The noise e is also statistically independent of the input vector x and t.
As the neural network ()Wx,F is used to model the unknown function
()xh , the conditional probability density ()xtp is given by

 () (){ }
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2

2 2
,exp

2
1

σπσ

Wxx Fttp (3.6)

According to Maximum Likelihood Method, the error function E in the
equation 3.5 will be

()

(){ } ()∑

∑

=

=

++−=

−=

n

k
kk

n

k
kk

nnWFt

tp

1

2
2

1

2ln
2

ln,
2

1

ln

πσ
σ

ε

x

x
 (3.7)

As the second and third terms of equation 3.7 are independent of weights
W, we obtain the familiar expression for the Least-Sqaures (LS) error
function

 (){ }∑
=

−=
n

k
kk Fta

1

2,Wxε (3.8)

96 Neural Networks and Computing: Learning Algorithms and Applications

where a is the scalar constant. Now, let us consider the asymptotic
condition of the error function when the size n of the training data set

goes to infinity. By selecting
n

a 1
= , we have

(){ }

(){ } ()
(){ }{ }2

2

1

2

,

,,

,1lim

Wx

xxWx

Wx

kk

kk

n

k
kkn

FtE

dtdtpFt

Ft
n

−=

−=

−=

∫∫

∑
=

∞→
ε

 (3.9)

We now substitute () { } { } ()WxxxWx ,, FtEtEtFt −+−=− in the
above equations,

{ } { } (){ }{ }
{ }{ }{ } { } (){ }{ } { }{ } { } (){ }WxxxWxxx

Wxxx

,,

,
22

2

FtEEtEtEFtEEtEtE

FtEtEtE

−−+−+−=

−+−=ε

 (3.10)
Since the third term vanishes, we have

 { }{ }{ } { } (){ }{ }2 2
,E t E t E E t Fε = − + −x x x W (3.11)

Because the first term of equation 3.11 is independent of the network
weights W, the absolute minimum of the error function in equation 3.11
when the second term vanishes, which corresponds to the following
result

 () { }xWx tEF =*, (3.12)

where *W is the network weights at the absolute minimum of the error
function. Based on the derivation of the LS error function, the
distribution of the target value kt is assumed to be Gaussian. A
maximum likelihood estimate of the unknown function h can be obtained
when the following conditions are met:
1. The data set must be sufficiently large that it approximates an infinite

data set;
2. The neural network ()Wx,F must be sufficiently general that there

exists a choice of parameters which makes second term in equation
3.11 sufficiently small;

 Generalization and Performance Enhancement 97

The optimization of the network weights is without getting stuck in the
local minima of the LS error function.

Conditions 1 and 2 sometimes may not be met together at the same
time. The size of the data set required by Condition 1 depends upon the
size of the neural network. In order to have a generalized neural network,
a larger network size is required, thus the data size has to become larger
accordingly. The data sampling in many applications is extremely
expensive and difficult to obtain. The training process with a large data
set is sometimes impossible due to the enormous computational effort
involved. We have to consider the network generalization capability
when the data set may no longer be sufficiently large as described as
Condition 1.

Now, we consider there is a finite data set () (){ }nn ttD ,,,, 11 xx …=
consisting of n patterns used to determine the neural network ()Wx,F .
Consider the mean-squared error of the neural network ()xF as an
estimator of { }xtE based on the finite data set D. The mean-squared
error Dε is defined by

 () { }{ }xx tEFEDD −=ε (3.13)

where {}⋅DE denotes the expectation over all the patterns in the data set
D. We now substitute

 () { } () (){ } (){ } { }xxxxxx tEFEFEFtEF DD −+−=− (3.14)

in Dε and manipulate it as follows:

() (){ }{ }{ }
(){ } { }{ }{ }

(){ } { }{ } () (){ }{ }xxxx

xx

xx

FEFEtEFE

tEFEE

FEFE

DDD

DD

DDD

−−+

−+

−=

2

 2

2ε

 (3.15)

Hence, the mean-squared error Dε will be

 (){ } { }{ }{ } () (){ }{ }{ }22 xxxx FEFEtEFEE DDDDD −+−=ε (3.16)

The first term of the above equation represents the bias of the neural
network ()xF measured with respect to the function () { }xtEh =x . The
second term represents the variance of the neural network function. Thus,
there is a cost of large variance for achieving a small bias by a sufficient

98 Neural Networks and Computing: Learning Algorithms and Applications

general neural network function. In other words, when the network
training is based on the LS error function and a finite training data set,
the problem of poor generalization capability (overfitting the training
samples) is likely to occur. Especially, if the training data is perturbed,
the trained neural network may overfit the noisy training samples when
the size of the perturbed samples is not sufficiently large to make the
cross term { }{ } { } (){ }xxx FtEEtEtE −− in equation 3.10 to be zero.

As mentioned before, the noise perturbation or the target values of the
training data is assumed to be Gaussian normal distributed. On one hand,
the LS error function is only in terms of the second-order moment, which
cannot distinguish between the Gaussian distribution and any other
distribution having the same mean and variance. The distribution of the
residual error, ()Wx ,kkk Fte −= , of the trained network ()Wx,F
may not be Gaussian distributed as assumed. This degrades the
generalization capability of the trained neural network. On the other
hand, the distribution of real world data is non-Gaussian in general. The
network training based on the LS error function may not be able to
obtain a maximum likelihood estimate as mentioned in Section 3.1.1.

3.2. Higher-Order Statistic Generalization

In the previous section, many problems, especially the problem of the
generalization capability, stem from the assumption of the Gaussian
distribution of the training data and the LS error function is not able to
distinguish any non-Gaussian process from a Gaussian process with the
same values of mean and variance. In the real world, a wide variety of
applications, including sonar, digital communications, seismology, and
radio astronomy, are arisen by non-Gaussian signals. When traditional
Gaussian model based techniques, such as the LS error based algorithms,
is applied to non-Gaussian signals, the performance is often not
satisfactory. To analyze the non-Gaussian data, the use of a much more
sophisticated statistical methodology is needed to supplement the
deficient of the traditional Gaussian model based techniques. Recently,
higher-order statistics were applied to various real world non-Gaussian
(or, possible nonlinear) processes. Higher-order statistics have been

 Generalization and Performance Enhancement 99

applied in many areas such as system identification and parameter
estimation (Tugnait, 1990), and noise estimation and detection (Sadler &
Giannakis, 1994). The general advantages behind the use of higher-order
statistics are threefold: 1) to extract information due to deviations from
Gaussianness (normality), 2) to estimate the phase of non-Gaussian
parametric signals, and 3) to detect and characterize the nonlinear
properties of mechanisms which generate time-series via phase relations
of their harmonic components (Nikias & Raghuveer, 1987). Hence, a
new type of objective functions is proposed based on the higher-order
statistics.

3.2.1. Definitions and Properties of Higher-Order Statistics

Higher-Order Statistic (HOS) provides a unique feature of
suppressing gaussian noise processes of unknown spectral characteristics
(Nilias & Petropuou, 1993). Cumulants of order r > 2 are blind to any
kind of a Gaussian process (white or color) whereas correlation is not.
As a result, cumulants-based methods are able to boost signal-to-noise
ratio when non-Gaussian signals are perturbed by Gaussian measurement
noise (Mendel, 1991). The definition and the essential properties of
higher-order statistics are summarized as follows:

Given a set of n real random variables { }nxxx ,,, 21 … , joint
moments of order nkkkr +++= "21 are given by (Papoulis, 1991)

{ } { }

() ()
0

21

2121

21

21

2121

,,,

,,,,,,

====
∂∂∂

Φ∂
−=

=

n

n

nn

kkk
n

r
r

k
n

kkk
n

kk

j

xxxExxxMom

ωωωωωω
ωωω

""
…

……
 (3.17)

where
 () (){ }nnn xxjE ωωωωω ++=Φ "… 1121 exp,,, (3.18)

is their joint characteristic function. The joint cumulants of order r of the
same set random variables are defined as

{ } () ()
0

21
21

21

21

21
,,,ln,,,

====
∂∂∂

Φ∂
−=

n

n

n
kkk

n
r

rk
n

kk jxxxCum
ωωωωωω

ωωω

""
…… (3.19)

100 Neural Networks and Computing: Learning Algorithms and Applications

The general relationship between joint moments of { }nxxx ,,, 21 … and
joint cumulants { }nxxxCum ,,, 21 … of order nr = is given by

 { } () ()
⎭
⎬
⎫

⎩
⎨
⎧∏

⎭
⎬
⎫

⎩
⎨
⎧∏

⎭
⎬
⎫

⎩
⎨
⎧∏⋅−−=

∈∈∈

−∑ i
si

i
si

i
si

p
n xExExEpxxxCum

321

!11,,, 1
21 "…

 (3.20)
where the summation extends over all partitions
() npsss p ,,2,1,,,, 21 …… = , of the set of integer ()n,,2,1 … . Therefore,
the joint cumulants can be expressed in terms of the joint moments of a
set of random variables, such as
 { } { } { }111 xExMomxCum == (3.21)

{ } { } { }

{ } { }()21
2
1

2
1

2
1

2
1

 xExE

xMomxMomxCum

−=

−=
 (3.22)

{ } { } { } { } { }()

{ } { } { } { }()311
2
1

3
1

3
11

2
1

3
1

3
1

23

23

xExExExE

xMomxMomxMomxMomxCum

+−=

+−=
(3.23)

{ } { } { } { } { }()
{ } { }() { }()

{ } { } { } { }()
{ } { }() { }()41

2
1

2
1

22
11

3
1

4
1

4
1

2
1

2
1

22
11

3
1

4
1

4
1

612

34

612

34

xExExE

xExExExE

xMomxMomxMom

xMomxMomxMomxMomxCum

−+

−−=

−+

−−=

(3.24)

If { } ",2,1,0 ,1 ±±=tx is a real stationary random process and its
moments and cumulants up to order n exists, then

{ }
11

,,,
−++ nttt xxxMom ττ … and { }

11
,,,

−++ nttt xxxCum ττ … will depend

only on the time difference ",2,1,0 ±±=iτ for all i. The variance,
shewness, and kurtosis measures of the distribution of { }tx can be in

terms of { }2
txCum , { }3

txCum and { }4
txCum respectively. Moreover, a

process { }tx is said to be ergodic in the most general form if the
expected value {}⋅E can be computed by time averages, viz.

 Generalization and Performance Enhancement 101

 { }
1111 12

1lim,,,
−− +

+

−=
+∞→++ ∑+

=
nn t

M

Mt
ttMttt xxx

M
xxxE ττττ "… (3.25)

3.2.2. The Higher-Order Cumulants based Cost Function

In many real world applications, noise perturbation is inevitable and it
may significantly affect the network training when the size of the
training data is not sufficiently large. To diminish the undesired noise
effect, a higher-order cumulant (HOC) based cost function was proposed
(Leung & Chow, 1997) to resolve the problem of poor generalization
when the network is working under a noisy condition and the data size N
is small compared to the number of weights. This new cost function
provides useful features suppressing Gaussian noise processes of any
spectral characteristics and boosting the signal-to-noise ratio when non-
Gaussian signals are perturbed by Gaussian measurement noises. The
fourth-order cumulant (FOC) cost function is defined by

 ()(){ } ()(){ }()242 ,, WxWx FtCumFtEH DFOC −+−= λ (3.26)

where {}⋅DE is the expected value over all patterns on the training data
set (){ } {}⋅== Dkk CumnktD ;,,2,1,, "x is the value of the cumulants
over all patterns on D; and λ is the positive regularization parameter.

Let ()Wx,F be a sufficient general feedforward neural network with
a single output node. Suppose an unknown function ()xh of the target
system governs the mappings from the input vector x of dimension m to
the output value ()xhy = such that
 eyt += (3.27)

where e is the additive noise perturbation with zero mean and finite
variance. A finite number of samples from the target system are collected
for the network training. We assume that the data sample ()kk t,x is
independent and identically distributed, and the noise perturbation e is
independent of the system output y. Now, we consider the asymptotic
condition of the FOC objective function. When the size of the training
set approaches infinity, by substituting
 () { } { } ()WxxxWx ,, FtEtEtFt −+−=−

102 Neural Networks and Computing: Learning Algorithms and Applications

we have the FOC objective function

()(){ } ()(){ }()
{ }() { } ()(){ }{ }

{ }() { } ()(){ }()
{ } ()(){ } { }(){ }

{ } ()(){ } { }(){ }()244

22

24

2

242

,

,

,

,

,,

xWxx

xWxx

Wxxx

Wxxx

WxWx

tEtCumFtECum

tEtEFtEE

FtEtEtCum

FtEtEtE

FtCumFtEH FOC

−+−+

−+−=

−+−+

−+−=

−+−=

λ

λ

λ

 (3.28)

Because the terms { }(){ }2xtEtE − and { }(){ }4xtEtCum − are
independent of the network weights W, the absolute minimum of the
FOC objective function in equation 3.28 at *W when the terms

{ } ()(){ }2, Wxx FtEE − and { } ()(){ }4, Wxx FtECum − vanish. This
corresponds to the following result

 () { }xWx tEF =*, (3.29)

as the case of the LS error function. Thus, when the output variable t or
the noise perturbation e are Gaussian distributed, a maximum likelihood
estimate ()*,WxF can be obtained by applying the FOC objective
function. Also, the signal-to-noise ratio is boosted because the term

{ }(){ }4xtEtCum − will be zero if the noise perturbation is Gaussian

distributed. It is believed that the inclusion of the fourth-order cumulant
term is capable of facilitating the network training because the term can
extract more high-order information from the training data. The fourth-
order cumulant term also enables the network training to capture the
phase information from the data, which is essential to time-series
forecasting.

The foremost situation is when the training data set D is finite. Now,
we consider there is a finite data set D consisting of n patterns which is
used to determine the neural network ()Wx,F . Consider the fourth-
order cumulant of the error of the neural network ()xF as an estimator

 Generalization and Performance Enhancement 103

of { }xtE based on the finite data set D. The fourth-order cumulant of
the error is defined by

 () { }(){ }4
, xx tEFCumDFOCD −=ε (3.30)

We now substitute equation 3.14 in FOCD,ε and we have

() (){ }() (){ } { }()(){ }
() (){ }(){ } (){ } { }(){ }44

4
,

 xxxx

xxxx

tEFECumFEFCum

tEFEFEFCum

DDDD

DDDFOCD

−+−=

−+−=ε

 (3.31)

because () (){ }()xx FEF D− and (){ } { }()xx tEFED − are independent
of each other. Also, neural networks with linear output nodes are
commonly applied in regression problems, such as time-series
forecasting. We can consider the output of the neural network ()xFy =ˆ
as a random variable expressed in the form of

 ∑
=

=
l

i
ivy

1

ˆ (3.32)

where { }iv , li ,,2,1 …= , is the set of the random variables of the inputs
of the output node of the neural network. According to the Central Limit
Theorem (Papoulis, 1991), the distribution of ŷ approaches a Gaussian
distribution as l increases. Consequently, it is reasonably assumed that

() (){ }()xx FEF D− is Gaussian distributed so that the term

() (){ }(){ }4xx FEFCum DD − vanishes. Hence, we have

 (){ } { }(){ }4
, xx tEFECum DDFOCD −=ε (3.33)

In other words, there is no bias/variance dilemma to the cumulant
term in the FOC objective function when the size of the neural network
is sufficiently large.

As mentioned in the Section 3.1.2, the LS error function or the sum-
of-squares error function is only in terms of the second-order moment
which can characterize all information of a Gaussian distribution.
Second-order moments cannot, nevertheless, distinguish between the
Gaussian distribution and any other distribution having the same mean

104 Neural Networks and Computing: Learning Algorithms and Applications

and variance. If the network training is based on the sum-of-squares error
function, it is probable to have a non-Gaussian distributed residual error,

()Wx,Fte kk −= , especially when the size of the training data is not
sufficiently large. The trained network may probably overfit the training
data. In contrast, the FOC objective function is capable of not only
characterizing a non-Gaussian distribution but also measuring the
kurtosis or “Gaussianity” of the distribution. Consequently, the FOC
objective function enables the network training to filter out the undesired
functional estimates of which the residual error is non-Gaussian
distributed. The residual error is squeezed to be Gaussian distributed as
much as possible. Thus, the trained network exhibits a higher
generalization capability when the output of the target system or the
noise perturbation is Gaussian distributed.

Furthermore, because the distribution of the residual error of the
trained network is very close to Gaussian, the reliability of the network
training can be coarsely estimated based on the test error of the novice
data set. The confidence upper bound of the approximation error of the
trained network,

 ()(){ }2,WxFtE ka −=ε (3.34)

can be computed by

 ()βχ
ε

ε 2
1−

≤
n

t
a

n
 (3.35)

with a confidence level of 100β%, where n is the number of patterns in
the test data set (){ }iit tD x,= , ni ,,2,1 …= ; the test error tε is given
by

 ()()∑
=

−=
N

i
iit Ft

n 1

2,1 Wxε (3.36)

and the 2χ distribution is defined as

 () () ()
12 2

2

1 exp 2
2 2

n

n nx
x y y dy

n
χ

∞ −
= −

Γ∫ (3.37)

The detailed deviation of the confidence upper bound is summarized in
appendix 3.1.

 Generalization and Performance Enhancement 105

3.2.3. Property of the Higher-Order Cumulant Cost Function

Although many global learning algorithms have proposed to find an
optimal solution on an error surface containing sub-optimal solutions, the
network training often requires the training duration in terms of days or
weeks under the platform of workstation level. The required training
time is often prohibitively long for real-world applications. The reason
behind the long training time is not difficult to understand. These global
learning algorithms are developed for general applications and objective
functions. The characteristics of particular objective function and
application which may facilitate the network training are not fully
utilized. It is believed that utilizing the characteristics enables the
network training to speed up and to converge to an optimal solution, or a
solution with an acceptable generalization error. In this section, an
interesting property between { }2E ε and { }rCum ε , 3,4r = , is found

when the neural networks are applied to time-series forecasting. Based
on the property, we are able to reconstruct the HOC objective functions
such that there is no sub-optimal solution. Consequently, the HOC
objective functions together with specified regularization method1 enable
the network training not to be trapped into sub-optimal solutions. The
detailed description of the property is shown beneath.

Suppose that a set of training pairs (){ }kk tD ,x= is available. The
stationary time-series { }kt is represented by

 () kkk gt η+= x , for all time step 0≤k (3.38)

where ()kg x is the underlying regression function; kη is the noise
perturbation, which is zero mean and finite r-order cumulants,

4,3,2=r , and kη is independent and identically distributed. We
assume that the underlying function ()xg belongs to the function class

(){ }Wx,F . In other words, the selected architecture of the neural
network is sufficient to exactly mimic the unknown regression function
()kg x . Hence, the minimum mean square error optimal predictor of kt

given the value of kx is the conditional expectation

1 This regularization method is called Adaptive Regularization Parameter Selection
(ARPS), which discusses in Section 3.3.

106 Neural Networks and Computing: Learning Algorithms and Applications

 { } ()kkk gtEt xx ==ˆ (3.39)

According to the Ergodicity Theorem, the moments of the stationary
time-series { }kt can be approximated by the corresponding time average.
For this reason, we suppose that without the loss of generality there
exists an optimal solution *W on the LS error surface such that, for all
W,

 ()(){ } ()(){ }22* ,, WxWx kkkkkk FtEFtE −≤− (3.40)

where {}⋅kE is the time average or the expectation over the time step k.
Therefore, the underlying function ()kg x can be exactly modeled by the

best-fit neural network ()*,WxkF as follows: for all time step k,

 () **, kkk eFt += Wx (3.41)

where the residual *
ke equals the noise perturbation kη , i.e. kke η=* .

Then, we have, for all weight vector W and time step k,

 () kkk eFt += Wx , (3.42)

and

 () () kkk eFF wWxWx += ,, * (3.43)

where the residual ke is given by

 *
kkk eee += w (3.44)

the following theorem has been proved.

Theorem 3.1 If there exists a W such that, { } 02 =∇ kk eE and

{ } 0=∇ r
kk eCum , for r=3,4 then

 () ()(){ } { } 0,, 22* ==− kkkkk eEFFE wWxWx

The proof is based on the following assumptions:

[H1] For all w in W, *
ke and

()
w

F k

∂
∂ Wx ,

 are statistically

independent.

 Generalization and Performance Enhancement 107

[H2] *
ke and kew are also statistically independent.

[H3] ()g x can be exactly mimicked by the neural network ()*,F x W .

[H4] The series kt is stationary.
The detail of the proof is summarized in Appendix 3.2. The above

assumptions H1 and H2 are selected based on the rationale that the error,
() ()*,Wxx kk Fg − , is negligible compared with the noise perturbation
kη in order to have a good network generalization. For the simplicity of

analysis, *
ke is considered to be a noise which is independent and

identically distributed with zero mean and finite variance.
According to Theorem 3.1, the new objective function (i.e. FOC

function) is redefined as

 ()(){ } ()(){ }2 4
' , ,FOC D DH E t F Cum t Fλ= − + −x W x W (3.45)

In the equation 3.45, the regularized objective function is composed
of two terms which are { }r

kk eCum and { }2
kk eE . Hence, the network

training will stall only when
1. The gradients of { }2

kk eE and { }r
kk eCum , r=3,4 both vanish, or

2. The sum of the two gradients is zero, i.e. for r=3,4

 { } { }2 0r
k k k kE e Cum eλ∇ + ∇ = (3.46)

when the gradients of { }2
kk eE and { }r

kk eCum are nonzero.
Condition 1 is one of the situations that the algorithm finds a

minimum. In accordance with Theorem 3.1, when Condition 1 occurs,
an optimal solution is found. Moreover, Condition 2 is the condition of
sub-optimal solutions when the Hessian matrix is semi-positive. As seen
in equation 3.46, there exists a parameter λ affecting the condition and
the location of sub-optimal solutions on the error surface of the objective
functions, while the locations of the optimal solutions are not affected by
the magnitude of λ. In other words, when a gradient type training process
gets stuck in sub-optimal solutions on the composite surface, we can
easily relocate the obstruction (sub-optimal solution) by changing the
value of λ. Moreover, theorem 3.1 implies that the locations of the
optimal solutions in Condition 1 do not change with λ. The neural

108 Neural Networks and Computing: Learning Algorithms and Applications

network training will not stall at a sub-optimal solution if λ is properly
controlled by a regularization selection method, which is discussed in
Section 3.4. It is worth to note that more than one optimal solution may
exist. Different initial guesses of network weights lead to different down-
hill trajectories and may end up to different optimal solutions. In
practical situations, the network training can converge to the best
possible solution under finite available training data and training time. It
is believed that the best possible solution may be close to one of the
optimal solutions.

3.2.4. Learning and Generalization Performance

A batch-mode HOC objective function (shown in equation 3.26)
based backpropagation algorithm is derived in accordance with the fact
that the time-series is assumed to be stationary. In fact, when the time-
series is non-stationary, this assumption can easily be met by the proper
selection of time-series model. Hence, by assuming the time-series to be
ergodic, the moments can be approximated by

 { } ()()∑
=

++ −≈
n

i
ititD Ft

n
eE

1
,1 Wx (3.47)

 { } ()()∑
=

++ −≈
n

i
ititD Ft

n
eE

1

22 ,1 Wx (3.48)

 { } ()()∑
=

++ −≈
n

i
ititD Ft

n
eE

1

33 ,1 Wx (3.49)

 { } ()()∑
=

++ −≈
n

i
ititD Ft

n
eE

1

44 ,1 Wx (3.50)

where the training data D is (){ }itit t ++ ,x , ni ,,2,1 "= . According to the
gradient descent optimization technique, the solution W, which
minimizes the HOC objective function, can be computed iteratively by
the following equation:

() () ()

() () ()()1
1

−Δ+∇+=
Δ+=+

kHk
kkk

FOCk WW
WWW

W βη
 (3.51)

 Generalization and Performance Enhancement 109

where k is the iteration number; η is the learning factor; β is the
momentum factor; W(0) is randomly initialized and

() () { } { } () { }
{ } () { } { } () { }

{ } () { } { } { } () { }

{ }() () { }
{ }() () { }

2 4 4

3 3

2 2 2

2 2

3

(

 4 4

 6 24

 12

 24)

FOC D D Dk k k

D D D Dk k

D D D D Dk k

D Dk

D Dk

H E e Cum e E e

E e E e E e E e

E e E e E e E e E e

E e E e

E e E e

λ∇ = ∇ + ∇

− ∇ − ∇

− ∇ + ∇

+ ∇

− ∇

W W W

W W

W W

W

W

In this section, a number of numerical simulation results are presented

for validating the arguments discussed in this chapter. The state-of-the-
art generalization enhancement methods, including weight decay and
weight elimination, as well as the two proposed higher-order statistics
based objective functions have been studied in the prediction of two
chaotic time-series, namely Henon Attractor and Sunspot time-series.
The simulations were conducted under a SUN Sparc 20 platform.

3.2.4.1. Experiment one: Henon Attractor

The Henon map, which exhibits stochastic dynamics in the classical
case, is a nonlinear quantum harmonic oscillator with two degrees of
freedom, and is characterized by

 1
2

1 1 −+ +−= kkk bxaxx (3.53)

The Henon attractor is chaotic for the parameter values 4.1=a and
3.0=b . The capacity of the attractor was estimated to be around 1.27,

and the size of the largest Lyapunov exponent is about 0.408. The

normalized kx~ and 1
~

−kx , by
σ

xxx k
k

−
=~ where x and σ are the mean

and variance of the data, are the inputs of the neural networks, and the
11

~
++ + kk nx is the target output where 1+kn is additive noise perturbation

with zero mean and standard deviation of 0.1. Two different
distributions, namely uniform and Gaussian, of noise perturbation were

(3.52)

110 Neural Networks and Computing: Learning Algorithms and Applications

studied. Two hundred training patterns and another two set of 200
different test patterns were used in this study. The simulations were
conducted under the conditions of learning rate 0.1 and momentum
factor 0.9. The architecture of the neural network used in this study is
two inputs, ten hidden neurons, and one output. Each neural network was
initialized by the same set of weights and was trained by 30,000
iterations.

Figure 3.2. Results of Henon series prediction using HOC cost function under Gaussian
noise perturbation

Under the noise perturbation of Gaussian distribution, different values
of the regularization parameter λ were used to examine the effect to the
network performance for the methods studied in this experiment. Tables
3.1 and 3.2 summarize the simulation results and Figs. 3.2 to 3.4
illustrate the variation in the network performance to the value of the
regularization parameter λ. Fig. 3.2 manifests that varying the value of λ
did not noticeably affect the network training and the network
performance when the HOC objective function was applied. Figs. 3.3
and 3.4, respectively, show that the performance of the weight decay and
weight elimination methods were significantly affected by the value of λ.
Moreover, the methods are relatively sensitive to noise when a non-

 Generalization and Performance Enhancement 111

optimal λ is used. Additional simulation was conducted to validate the
confidence upper bound of approximation error for the HOC objective
function. The network trained according to 410−=λ was tested. Another
45 test sets of 200 samples were used for validation. The RMS error of
the 45 test set was computed and the histogram of the RMS errors is
shown in Fig. 3.5. According to equation 3.35, we consider that, with a
confidence level 99%, the confidence upper bound of the approximation
error in the form of RMS error is 0.1344. The upper bound is bounded
above all the test errors as shown in Fig. 3.5. Hence, the approximation
error can be coarsely estimated based on the upper bound when the HOC
objective function is used and the noise perturbation is Gaussian
distributed.

Table 3.1. Simulation results of Henon series prediction using the HOC objective
functions under Gaussian noise perturbation. “Not Conv.” means that the networks
training does not converge to a training error lower than 1

 RMS Error
λ Training Set Test Set 1 Test Set 2
10-4 0.087690 0.10202 0.10015
10-3 0.087668 0.10210 0.10013
10-2 0.091421 0.10855 0.099337
0.1 0.091461 0.10848 0.099202
1 Not Conv.
10 Not Conv.

Table 3.2. Simulation results of Henon series prediction using the weight decay and
weight elimination method under Gaussian noise perturbation. “Not Conv.” means that
the networks training does not converge to a training error lower than 1

 RMS Error
λ Training Set Test Set 1 Test Set 2
10-4 0.093319 0.10375 0.10127
10-3 0.15442 0.15637 0.15520
10-2 0.36620 0.36434 0.36155
0.1 Not Conv.
1 Not Conv.
10 Not Conv.

112 Neural Networks and Computing: Learning Algorithms and Applications

Figure 3.3. Results of Henon series predication using weight decay method under
Gaussian noise perturbation

Figure 3.4. Results of Henon series predication using weight elimination method under
Gaussian noise perturbation

 Generalization and Performance Enhancement 113

Figure 3.5. Histogram of the test error distribution using HOC cost function

Figure 3.6. Results of Henon series prediction using HOC cost function under uniform
noise perturbation

114 Neural Networks and Computing: Learning Algorithms and Applications

Figure 3.7. Results of Henon series prediction using weight decay method under uniform
noise perturbation

Figure 3.8. Results of Henon series prediction using weight elimination method under
uniform noise perturbation

 Generalization and Performance Enhancement 115

Under the noise perturbation of uniform distribution, similarly,
different values of the regularization parameter λ were used to examine
the effect on the network performance for the methods. Figs. 3.6 to 3.8
illustrate the variation in the network performances to the value of the
regularization parameter λ. Fig. 3.6 illustrates that the network training
and the network performance when the HOC objective function was
applied. Figs. 3.7 and 3.8, respectively, show that the performance of the
weight decay and weight elimination methods were significantly affected
by the value of λ. Moreover, all the training errors and test errors in 3.3
are not noticeably deviated from the value of standard deviation of the
noise perturbation. When the proper value of λ is selected, the weight
decay and weight elimination methods can train a network to generalize
the training data. The methods are relatively sensitive to noise when a
non-optimal λ is used.

Furthermore, in accordance with the two sets of simulations under
different noise perturbation, the results indicate that the performance of
the HOC objective function and the weight decay method were not
noticeably changed when different noise distributions. However, the
performance of weight elimination method was significantly affected by
the noise distribution. The HOC based objective function provides
significantly better performance in terms of the generalization capability,
the robustness to λ and noise perturbation.

3.2.4.2. Experiment Two: Sunspot time-series

The prediction of the sunspot series is regarded as a benchmark test
for the time-series prediction technique. The sunspot data (1700-1979)
are divided into a training set (1700-1920) and two test sets, covering the
periods of 1921-1955 and 1956-1979. The network architecture is
identical to that used by Weigend et al. (1991), which has 12 inputs, 8
hidden units, and 1 output. A thorough comparison amongst the weight
decay method, the weight elimination method, and the FOC objective
function are included hereafter. The learning rate of 0.1 and the
momentum factor of 0.9 were used and each network was trained by
30,000 iterations. Different regularization parameters were applied to
evaluate the performance of the generalization enhancement methods
studied in this chapter. Figs. 3.9 to 3.11 illustrate the variation in the

116 Neural Networks and Computing: Learning Algorithms and Applications

network performance to the value of the regularization parameter λ. Fig.
3.9 manifests that varying the value of λ does not noticeably affect the
network training and the network performance when the HOC based
objective function was applied. Figs. 3.10 and 3.11 show that the
performance of the weight decay and weight elimination methods were
significantly affected by the value of λ. Figs. 3.10 and 3.11 indicate that
the generalization capabilities of the networks in terms of RMS errors of
the test sets 1 and 2 were fluctuated enormously. These results manifest
that it is relatively difficult to tune the generalization capability by
varying λ when the weight decay and weight elimination methods are
used. The networks trained by the weight decay and weight elimination
methods are probably under-trained and the methods are relatively
sensitive to the noise when a non-optimal λ is used.

Figure 3.10. Sunspot series prediction using weight decay method

3.3. Regularization for Generalization Enhancement

In the Section 3.2, a new type of objective functions is introduced
according to higher-order statistics. Basically, the HOC based objective
function is constructed by the regularization technique. The technique

 Generalization and Performance Enhancement 117

constructs a regularized objective function to assimilate the a priori
knowledge. For example, in the applications of classification, new
discriminant functions (Setiono, 1997) were proposed to maximize the
classification accuracy to the unseen examples. For the applications of
functional approximation, a number of regularized objective functions
have been proposed to enhance the generalization capability. For
instance, the regularized objective functions are derived in accordance
with the techniques such as searching flat minima (Hochreiter &
Schmidhuber, 1997), minimizing the mutual information criterion (Deco
et al., 1995), and minimizing the higher-order cumulants between the
network outputs and the desired outputs. Despite the regularization
technique being a systematic approach to make the network training less
ill-posed, the training process may stall because of the existence of sub-
optimal solutions.

Figure 3.11. Sunspot series prediction using weight elimination method

We consider a typical form of the regularized objective function

expressed in the following equation:
 () () ()DPDMDH ,,, WWW λ+= (3.54)

118 Neural Networks and Computing: Learning Algorithms and Applications

where ()Tmwww ,,, 10 …=W is the weight vector of the neural network
and D is the set of training examples; and λ is the regularization
parameter. ()DM ,W , which is mostly in terms of the LS error or the
sum-of-squares error, is the primary cost term; and ()DP ,W is the
regularization term used to assimilate the a priori knowledge. For
example, when weight decay method is used, the regularization term
()DP ,W will be ∑i iw2 . In general, the plausible range of λ is often

data dependent and has to be determined experimentally. The value of λ
is often pre-selected within its plausible range, or it is selected in
accordance with some heuristic selection schemes. It is believed that a
systematic λ selection mechanism may be able to further enhance the
generalization capability of the trained neural networks. In fact, this type
of objective functions is still suffering from the problem of the existence
of sub-optimal solutions because of the nonlinearity of neural networks.
Although some undesired solutions should have been screened out to
some extent, the regularized objective function introduces another set of
undesired solutions. Consequently, the enhancement in the regularization
technique may sometimes be insignificant, especially when a fixed value
of λ is used during the network training.

From equation 3.54, the network training stalls only when
() 0, =∇ DH W .
The ()DM ,W∇ and ()DP ,W∇ are both zero vectors;
The ()DM ,W∇ and ()DP ,W∇ are both non-zero vectors such

that
 () () 0,, =∇+∇ DPDM WW λ (3.55)

Condition 1 is a trivial case. The network training is often expected to
converge to the minimum of this condition. Condition 2 may contribute
to the introduction of another set of undesired sub-optimal solutions. The
location of the sub-optimal solutions defined in Condition 2 is
significantly affected by the pre-selected value of λ. Hence, the selection
of λ is one of the major issues in the regularization technique and is
determinant in the performance of neural networks, especially in the
generalization capability. In this chapter, an adaptive regularization
parameter selection method is introduced to tackle this problem.

 Generalization and Performance Enhancement 119

Although the sub-optimal solutions defined in Condition 2 can be
“bypassed” by adaptively changing the regularization parameter, there
may exist sub-optimal solutions of Condition 1 because of the non-
quadratic objective function. The sub-optimal solutions of Condition 1
are unable to be “bypassed” because the condition does not depend upon
the value of the regularization parameter. The conventional gradient
descent type optimizations, such as conjugate-gradient and quasi-Newton
methods (Battiti, 1992), do not guarantee the convergence to an optimal
solution because the gradient descent type algorithms are coarsely
classified as local search methods which are based on the local
information, namely gradient and Hessian matrix. Despite the local
search approach being the most efficient and popular techniques, the
network weights are easily trapped in a sub-optimal solution during the
training process. Consequently, the properties of the universal
approximator cannot be fully exploited and only a sub-optimal time-
series predictor is obtained.

Another approach called Global Search methods, such as simulated
annealing (Aarts & Korst, 1989) and genetic algorithm (Dodd, 1990),
have been proposed to search global minima over the whole error
surface. The Global Search approach is based on more information from
the terrain of the error surface. Whether the global search methods are
probabilistic or deterministic, the methods do not suffer from the
problem of trapping in sub-optimal solutions. The global search methods
introduce jumps when the neural network is stuck in a sub-optimal
solution. To search the global minima in the extremely high-dimensional
weight space is an extremely time-consuming procedure. Apart from
local information, assimilating more terrain information of the error
surface in the training process is very difficult without sacrificing the
training time and increasing the computation complexity. Furthermore,
the two discussed approaches are aimed at general applications and
objective functions.

3.3.1. Adaptive Regularization Parameter Selection (ARPS) Method

As the selection of λ is extremely crucial to the performance of neural
networks, this section introduces an adaptive λ selection mechanism to

120 Neural Networks and Computing: Learning Algorithms and Applications

tackle the problems due to the sub-optimal solutions defined in Condition
2. The ARPS method consists of three main elements according to their
functions. The three functional elements are responsible to the following
functions:
Stalling Identification method identifies whether the training process
converges to a sub-optimal solution that satisfies Condition 2;
λ Selection Scheme A selects an appropriate value of λ to ensure the
training convergence of the ()DM ,W and ()DP ,W when the training
process is not stuck at a sub-optimal solution that satisfies Condition 2;
λ Selection Scheme B selects an appropriate value of λ to ensure the
training convergence of the ()DM ,W when the training process may
stall in the sub-optimal solution.

On one hand, based on their functions, the λ selection scheme A
guarantees the convergence of the ()DM ,W and ()DP ,W terms when
there is no clue indicating the training process stalling. This part assures
that the training process goes as smooth as possible. On the other hand,
the λ selection scheme B will be applied to avoid the network training
from stalling at a sub-optimal solution defined in Condition 2 when the
ARPS method identifies the training process is about to stall at the sub-
optimal solution. Hence, within the plausible range of the λ, the ARPS
method is capable of avoiding the training process from stalling at a sub-
optimal solution defined in Condition 2. The detailed description of the
stalling identification method and the two λ selection schemes are given
in the sections beneath.

3.3.1.1. Stalling Identification Method

From equation 3.55, the stalling situation of condition 2 occurs when
the vector sum of the nonzero ()DM ,W∇ and ()DP ,W∇ terms are
zero vector. This implies that the ()DM ,W∇ and ()DP ,W∇ are scalar
multiple of each other, that is,
 () ()DPDM ,, WW ∇−=∇ λ (3.56)

Thus, Condition 2 can be easily identified by means of inner product
of the direction vectors of the two gradient terms. The direction vector of
a vector ()Tnxxx ,,, 21 "=x is defined by

 Generalization and Performance Enhancement 121

x
xx =ˆ (3.57)

and the inner product between a direction vectors ()Tnxxx ˆ,,ˆ,ˆˆ 21 "=x

and ()Tnyyy ˆ,,ˆ,ˆˆ 21 "=y is defined by

 ∑
=

=
n

i
ii yx

1

ˆˆˆ,ˆ yx (3.58)

where the norm x is defined by

 ∑
=

=
n

i
ix

1

2x (3.59)

Hence, the value of the inner product signifies the likelihood of
getting stuck at a sub-optimal solution defined in Condition 2. In this
project, the criterion of the stalling identification method is based on the
value of the inner product PM ˆ,ˆ ∇∇ . When the inner product is close
to negative one, the training process almost stalls at a sub-optimal
solution defined in Condition 2. Consequently, the mechanism of the
stalling identification method is that the training process is classified as
stalling when the inner product is less than a pre-selected threshold γ;
otherwise, the training process is considered as not stalling.

3.3.1.2. λ Selection Schemes

Apart from the stalling identification method, the λ selection schemes
are another of paramount importance in the ARPS method. The rationale
behind the λ selection schemes is that when the training process is
classified as not stalling, λ is selected to guarantee the convergence of
the both ()DM ,W and ()DP ,W to maximize the effect of the
regularization method. While the network training is about to stall,
another λ is chosen to assure the convergence of the ()DM ,W and
()DP ,W only. The ()DP ,W may not further converge, or even

diverge slightly. In other words, the ARPS method, on one hand, breaks
the tendency from getting stuck in the sub-optimal solution defined in
Condition 2 by means of changing the λ. On the other hand, all the sub-

122 Neural Networks and Computing: Learning Algorithms and Applications

optimal solutions defined in Condition 2 disappear momentarily because
the training process, at that instance, is switched into a non-regularized
training process. Consequently, the network training may tunnel through
the sub-optimal solution.

In order to implement the above ideas, a set of λ selection criteria are
derived and are obtained by means of the convergence analysis for the
gradient descent type optimization. We let the plausible range of the λ
for a particular regularized objective function be the interval
()maxmin ,λλ . Suppose the value of the inner product PM ˆ,ˆ ∇∇ is
negative. We consider the sufficient condition for the convergence of the

()DM ,W term. The change of ()DM ,W is given by
 () ()DMDMM ,, WWW −Δ+=Δ (3.60)

Because the gradient descent type training technique is used in
this project, the update step WΔ is proportional to H∇ , viz.

H∇−=Δ ηW where η is the learning rate. Using Taylor expansion, we
have

 HMM ∇−∇=Δ η, (3.61)

Using Lyapunov method, the sufficient condition for the convergence of
()DM ,W is given by

 λ≤
∇∇

∇−
<

PM
M
,

0
2

 (3.62)

Similarly, the sufficient condition for the convergence of the term
()DP ,W is

 λ≤
∇

∇∇−
< 2

,
0

P

PM
 (3.63)

The detailed derivation of the above sufficient conditions is summarized
in Appendix 3.3. In order to guarantee the convergences of the both
terms ()DM ,W and ()DP ,W , the λ can be chosen within the
following interval

 Generalization and Performance Enhancement 123

 λ≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇∇
∇−

∇

∇∇−
<

PM
M

P

PM
,

,
,

max0
2

2 (3.64)

when the inner product PM ∇∇ , is negative and greater than γ. When

the inner product is greater than zero, the Aλ is set to be half of maxλ
because a positive λ assures the convergence. To assure the convergence
of ()DM ,W , the value of λ can be selected from the interval beneath:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇∇
∇−

∇

∇∇−
≤<

PM
M

P

PM
,

,
,

min0
2

2λ (3.65)

In the λ selection scheme A, the λ is computed by

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇∇
∇−

∇

∇∇−
= max

2

2 ,
,

,
,

maxmin λλ
PM

M

P

PM
A (3.66)

when the value of the inner product PM ˆ,ˆ ∇∇ is negative. Otherwise,

the value of λ remains unchanged. In the scheme B, the λ is calculated
by

 { } ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇∇
∇−

∇

∇∇−
+=

PM
M

P

PM
B ,

,
,

min,0max
2
1

2

2minλλ (3.67)

Once the ARPS method is applied, the advantages of the regularization
method are maximized, and the problem of the sub-optimal solutions
defined in Condition 2 is eliminated within the plausible range of λ.
Hereafter, the algorithm outline of our ARPS method is summarized as
follows:
To initialize 0W and 0λ ;

kkk WWW Δ+=+1 ;
If the training error is smaller than the presumed value, then stop;
If the training process is likely to stall according to the stalling
identification method, then jump to step 6;
To select 1+kλ , based on λ selection scheme A, and jump to step 2;

124 Neural Networks and Computing: Learning Algorithms and Applications

To select 1+kλ , based on λ selection scheme B, and jump to step 2;

3.3.1. Synthetic Function Mapping

The results of applying the HOC objective functions defined in this
chapter are described as to a synthetically generated data set by the
following trigonometric function

 925.0
2

4tanh
2

4tanh −⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ +=

ππ xxy (3.68)

The independent variable x was uniformly generated on the range from
-1 to 1. Two collections of the data were generated. The training set
possesses 200 samples and the test set has another 200 samples. The
property of the HOC based objective function is validated by applying
the objective functions with ARPS method to approximate the synthetic
function. Ten Monte Carlo runs were performed. The simulation results
are tabulated in Table 3.3. It manifests that the network training is able to
converge to a very low training error and comparably low test error. In
addition, the deviation in the errors over the Monte Carlo runs is rather
small as compared to the training errors. Fig. 3.12 illustrates the
convergence curves of the network training. From the figures, it is
observed that there is no observable sign showing the training being
stuck and a tendency to converge to a lower training error. This result
indirectly substantiates that the network training using HOC based
objective function with ARPS method does not get stuck at sub-optimal
solutions of Conditions 1 and 2. Figs. 3.13 and 3.14 illustrate the
distributions of the magnitude of the weights of the neural network in the
10 runs. Fig. 3.13 shows the distributions of the sorted magnitude of the
hidden layer weights in the 10 runs. The result indicates that there are
only two dominant weights. These results are inline with the synthetic
function which can be approximated by a neural network with 2 hidden
neurons. Fig. 3.14 illustrates the distribution of the sorted magnitude of
the output layer biases in the 10 runs. The figure indicates that the
magnitude of the output layer biases in the 10 runs are close to the
constant term in equation 3.68. These simulation results substantiate that
the network training based on the HOC objective function with ARPS
method is not trapped in sub-optimal solutions.

 Generalization and Performance Enhancement 125

Table 3.3. Simulation results of synthetic function mapping

 RMS Error
 Training Set Testing Set
mean 0.0148 0.0155
standard deviation 0.0016 0.0016

Figure 3.12. Convergence of the network training using HOC cost function. The upper
curve is the maximum values of the training error over the 10 Monte Carlo runs. The
middle curve is the mean values, and the lower curve is the minimum values

3.4. Concluding Remarks

This chapter addressed the problem of the generalization capability
when only a finite number of observable data is available. Since neural
networks are considered as universal approximators, the network training
is in fact a nonparametric estimation. The training based on finite
observable data is ill-posed. In other words, the trained neural network
may memorize the data set rather than generalize it. This chapter has
shown how the methods of objective function selection are applied to
enhance the generalization capability.

126 Neural Networks and Computing: Learning Algorithms and Applications

Figure 3.13. The distribution of the sorted magnitude of the hidden layer weights using
HOC cost function with APRS method

Figure 3.14. The distribution of the sorted magnitude of the output layer weights using
HOC cost function with APRS method

Weight Number Trial

Trial Weight Number

 Generalization and Performance Enhancement 127

3.4.1. Objective function selection

The least squares (LS) error function or mean squared error function
is used to find maximum likelihood estimation assuming that the noise
perturbation or the target value of the training data are Gaussian normal
distributed. The sum-of-squares error function is only in terms of the
second-order moment which cannot distinguish between the Gaussian
distribution and other distributions having the same mean and variance.
Thus, on one hand, the distribution of the residual error,

(),k k ke t F= − x W , of the trained network may not be Gaussian

distributed because the sum-of-squares error function is in terms of the
second-order moment. This degrades the generalization capability of the
trained neural network. On the other hand, the distribution of real world
data is non-Gaussian in general. The network training based on the LS
error function is not able to determine a maximum likelihood estimate
and results in a biased neural network because of improper assumption.

In this chapter, higher-order statistics based objective functions were
described. The fourth-order cumulant (FOC) objective function is
constructed by including a fourth-order cumulant regularization term in
the mean squared error function. A maximum likelihood estimate can be
obtained by applying the FOC objective function when the output
variable or the noise perturbation is Gaussian distributed. Also, the
signal-to-noise ratio is boosted because the cumulant term is zero when
the noise perturbation is Gaussian distributed. The inclusion of the
fourth-order cumulant term is capable of facilitating the network training
because the term can extract more high-order information from the
training data. To include the fourth-order cumulant term also enables the
network training to capture the phase information from the data which is
extremely essential to time-series forecasting.

The HOC objective function is capable of not only characterizing a
distribution of non-Gaussianity but also measuring the kurtosis or
“Gaussianity” of the distribution. Consequently, the FOC objective
function enables the network training to filter out the undesired
functional estimates of which the residual error is non-Gaussian
distributed. The residual error is squeezed to be Gaussian distributed as
much as possible. Thus, the trained network is more likely to have a high

128 Neural Networks and Computing: Learning Algorithms and Applications

generalization capability when the output of the target system or the
noise perturbation is Gaussian distributed. The distribution of the
residual error of the trained network is very close to Gaussian. Therefore,
the reliability of the network training in terms of the confidence upper
bound of the approximation error can be coarsely estimated based on the
test error of the novice data set.

In real world data, an additive noise may not be Gaussian distributed
as the assumption of the sum-of-squares error function and the FOC
objective function. Depending upon the working conditions of the target
system, the additive noise is often symmetrically distributed. The
computation complexity of the FOC objective function based algorithm
is relatively high despite the advantages of the FOC objective function.
This high computation complexity limits the variety of applications. The
FOC objective function is capable of not only characterizing a non-
Gaussian distribution but also measuring the skewness of the
distribution. As a result, the FOC objective function enables the network
training to filter out the undesired functional estimates of which the
residual error is asymmetrically distributed. The residual error is
squeezed to be symmetrically distributed as much as possible. Thus, the
trained network may have a higher generalization capability when the
output of the target system or the noise perturbation is symmetrically
distributed. Moreover, an interesting property between { }2eE and

{ }reCum , r=3,4 is found when the neural network is applied to time-
series forecasting. If there exists a W such that, { } 02 =∇ kk eE and

{ } 02 =∇ kk eCum for r=3,4 then

 () ()(){ } 0,, 2* =− WxWx kkk FFE .

Based on the property, new HOC basedobjective functions are
reconstructed such that there is no sub-optimal solution defined in
Condition 1. Consequently, we can say that FOC and TOC objective
functions based algorithms are capable of ensuring that the network
training is not trapped in sub-optimal solutions.

 Generalization and Performance Enhancement 129

3.4.2. Regularization selection

It is well-known that the training process based on a regularized
objective function may stall because of the existence of sub-optimal
solutions. The conditions of getting stuck at sub-optimal solutions are
summarized as follows:

The gradients of the primary and regularization terms are both zero
vectors;

The gradients of the primary ()DM ,W and regularization ()DP ,W
terms are both non-zero vectors such that
 () () 0,, =∇+∇ DPDM WW λ .

In this chapter, the adaptive regularization parameter selection
method was described to tackle this problem of getting stuck at sub-
optimal solutions as defined in Condition 2. The methodology of the
ARPS method is that when the training process is classified as not
stalling, a λ is selected to guarantee the convergence of the both

()DM ,W and ()DP ,W to maximize the effect of the regularization
method. While the network training is about to stall, another λ is chosen
to assure the convergence of the ()DM ,W only. The ()DP ,W may
not further converge, or even diverge slightly. In other words, the ARPS
method, on one hand, breaks the tendency to getting stuck in the sub-
optimal solution as defined in Condition 2 by means of changing the λ.
On the other hand, all the sub-optimal solutions as defined in Condition 2
disappear momentarily because the training process is, at that instance,
switched into a non-regularized type training. Consequently, the network
training may tunnel through the sub-optimal solution and the advantages
of the regularization method are maximized and the problem of the sub-
optimal solution of Condition 2 is eliminated within the plausible range
of λ. The ARPS method can only tackle the problem of sub-optimal
solutions as defined in Condition 2. In general, there may exist sub-
optimal solutions as defined in Condition 1.

130 Neural Networks and Computing: Learning Algorithms and Applications

Appendix 3.1: Confidence Upper Bound of Approximation Error

For the sake of simplicity, a multiple-input-single-output and time-
invariant system is analyzed. The generalization to a multiple-input-
multiple-output system is obvious. Suppose the m-input-single-output
unknown target function can be summarized by a function YX6:h
where the domain X is contained in mℜ and the range Y is a subset of
ℜ . An n-input-single-output neural network ()Wx,F with sufficiently
large network size is applied. Because the measurement of system output
is always perturbed, the target output t can be written as
 () nht += x (A3.1)

where n is a random noise which is Gaussian distributed, and is
independent to ()xh and the past t. The network training is aimed at
finding the optimal weights *W for an neural network model class
()Wx,F based on the minimization of the approximation error, i.e.

 ()(){ }2*,WxFtEa −=ε (A3.2)

A finite number of test data (){ } nitD iit ,,2,1,, "== x is generally
sampled from the target system so that aε can be estimated based on the
finite number of samples. Test error tε , which is the estimate of aε , is
defined as

 ()()∑
=

−=
n

i
it Ft

n 1

2*,1 Wxε (A3.3)

When the FOC objective function is applied in the network training,
the residual error ()Wx,Fte −= of the trained network should be
squeezed to be as Gaussian distributed as possible. Suppose we obtain a
test data set tD which is new to the trained network ()*,WxF . It is
assumed that the neural network ()Wx,F is sufficiently general to
approximate the unknown target system ()xh , i.e. () (){ }Wxx ,Fh ∈ ;
and the residual error ie is independent and identically Gaussian
distributed with variance 2σ , i.e. ()2,0~ σNei . Consequently, we
have, from equation A3.2,

 { } 22 σε == eEa (A3.4)

 Generalization and Performance Enhancement 131

Let the statistic

()

1
1

2
2

−

−
= ∑ =

n
ee

s
n

i i (A3.5)

which is an unbiased estimator for 2σ . Since
()

2

21
σ

sn −
 is distributed as

chi-square distribution with n-1 degree of freedom, i.e.
() 2

12

2

~1
−

−
n

sn χ
σ

,

with confidence level 100β%,

() ()βχ
σ

−≥
−

− 11 2
12

2

n
sn

 (A3.6)

where

 () () ()
12 2

2

1 exp 2
2 2

n

n nx
x y y dy

n
χ

∞ −
= −

Γ∫ (A3.7)

Subsequently, we have

()

()βχ
σ 2

1

2
2 1

−

−
≤

n

sn
 (A3.8)

According to the central limit theorem, e is negligible for large n

because { }
n

eVar
2

2 σσ =>> . 2s can be approximated by

1

1
1

22

−
=≈ ∑

= n
ne

n
s t

n

i
i

ε
 (A3.9)

As a result, the confidence upper bound of aε is

 ()βχ
ε

σε 2
1

2

−

≤=
n

t
a

n
 (A3.10)

132 Neural Networks and Computing: Learning Algorithms and Applications

Appendix 3.2: Proof of the Property of the HOC Cost Function

The proof of the theorem 3.1 is as follows:

Lemma 3.1. For all w in W, if
{ } 0

2

=
∂

∂
w
eE kk , then { } 0=

k
eEk w

Proof:

{ } () { } { }() { }

kk
eEeEeE

w
FeE

w
eE

kkkk
k

k
kk

ww
Wx 22,2 *

11

2

−=+−=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−=
∂

∂
.

Thus, if, for all w in W,
{ } 0

2

=
∂

∂
w
eE kk , then { } 0=

k
eEk w . Q.E.D.

Theorem 3.1. If there exists a W such that, for all w in W and r=3,4,
{ } 0

2

=
∂

∂
w
eE kk and

{ } 0
3

=
∂

∂
w

eCum rk , then

 () ()(){ } { } 0,, 22* ==−
k

eEFFE kkkk wWxWx

Proof:

Suppose there exists a W such that { } 02 ≠
k

eEk w , and, for all w be an

element of W,
{ } 0

2

=
∂

∂
w
eE kk and

{ }
0

2

=
∂

∂

w
eCum

kk w . For r=3, we have,

from H2,

 { } { } (){ }3*33
kkkkk eCumeCumeCum

k
+= w

Subsequently,

 Generalization and Performance Enhancement 133

{ } (){ }
{ } { } { } { } { }

{ }() { }
w
eE

eE

w
eE

eE
w
eE

eE
w
eE

w
eCum

w
eCum

k

k

k

k

k

k

k

k

k
k

k
k

k
k

k

kkk

∂

∂
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
−

∂

∂
=

∂

∂
=

∂
∂

w
w

w
w

w
w

w

w

2

2
23

33

6

3

By Lemma 3.1, we have

{ } { } { } { }

{ }

{ }

33
2

2 2

2 2

3

 3 3

 3

k k

k

k k

k k

k k

k k

k kk k
k

k k k

k k k

E e E eCum e
E e

w w w
e e

E e E e E
w w

e e
E e E e E

w w

∂ ∂∂
= −

∂ ∂ ∂
⎧ ⎫ ⎧ ⎫∂ ∂⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬∂ ∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎡ ⎤⎧ ⎫ ⎧ ⎫∂ ∂⎪ ⎪ ⎪ ⎪= −⎢ ⎥⎨ ⎬ ⎨ ⎬∂ ∂⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

w w
w

w w
w w

w w
w w

{ }2 23
k kk k k

F FE e E e E
w w

⎡ ∂ ∂ ⎤⎧ ⎫ ⎧ ⎫= − −⎨ ⎬ ⎨ ⎬⎢ ⎥∂ ∂⎩ ⎭ ⎩ ⎭⎣ ⎦
w w

Thus, since
{ }3

0k kCum e
w

∂
=

∂
, we find

 { }
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

w
FEeE

w
FeE kkk kk

22
ww

Therefore, 2
k

ew and
w
F
∂
∂

 are uncorrelated [Papoulis91] because

 { } 0, 222 =
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

−
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

w
FEeE

w
FeE

w
FeCov kkk kkk www

However, using Taylor's expansion,

 () () () ()
w

FwwFF k
kk ∂

∂
−+≈

WxWxWx ,,, **

134 Neural Networks and Computing: Learning Algorithms and Applications

Then, we have

() () () ()

() ()
w

Fww

F
w

FwwFe

k

k
k

kk

∂
∂

−≈

⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−+≈

Wx

WxWxWxw

,

,,,

*

2
*2

.

Therefore, 2
k

ew and
w
F
∂
∂

 should be correlated. Contradiction!!!

() ()(){ } 0,, 2* =− WxWx kk FFE , when
{ } 0

2

=
∂

∂
w
eE kk and

{ }
0

2

=
∂

∂

w
eCum

kk w .

Similarly, for r=4, we have, by Lemma 3.1,

{ } { }

{ }

{ }
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

−
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−=

∂

∂
=

∂
∂

w
FeEeE

eE
w
FE

w
FeE

w
eCum

w
eCum

kk

kk

k

kk

kkk

kkk

ww

ww

w

2

33

44

12

4 .

By Orthogonality principle, we obtain

{ } { }⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

−
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−=
∂

∂ 33
4

4
kk

eE
w
FE

w
FeE

w
eCum

kkk
kk

ww .

Since
{ } 0

4

=
∂

∂
w

eCum kk ,

 { } 0, 333 =
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

−
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

w
FEeE

w
FeE

w
FeCov kkk kkk www .

 Generalization and Performance Enhancement 135

It implies 3
k

ew and
w
F
∂
∂

 are uncorrelated. But, according to Taylor

expansion,
k

ew and
w
F
∂
∂

 are correlated and so does the case of 2
k

ew and

w
F
∂
∂

. Contradiction!!!

() ()(){ } 0,, 2* =− WxWx kk FFE , when
{ } 0

2

=
∂

∂
w
eE kk and

{ }
0

4

=
∂

∂

w
eCum

kk w . Q.E.D.

Appendix 3.3: The Derivation of the Sufficient Conditions of the
Regularization Parameter

We consider the regularized objective function is defined as
 () () ()WWW PMH λ+= (A3.11)

where λ is the regularization parameter and is positive. In this derivation,
a gradient descent type training method is considered, viz.
 H∇−=Δ ηW (A3.12)

where η is the learning factor.
Now, we consider the convergence of ()WM . After each iteration, the
change of ()WM is given by

 () ()WWW MMM −Δ+=Δ (A3.13)

Since H∇−=Δ ηW , using Taylor expansion, we have

() ()() ()
() ()

() () () ()()WWWW

WW

WWWW

PMMM

HM

MMMM

∇∇+∇∇−≈

∇−∇≈

−Δ∇+≈Δ

,,

,

,

λη

η (A3.14)

Using Lyapunov method, we have 0≤ΔM and subsequently, we obtain
the sufficient condition for the convergence of ()WM

136 Neural Networks and Computing: Learning Algorithms and Applications

()

() ()WW
W

PM
M

∇∇
∇−

≥
,

2

λ (A3.15)

The convergence of ()WP is now considered. Similar to the case of
()WM , we have

() ()
()

() ()()2,

,

PMP

P
PPP

∇+∇∇−≈

Δ∇≈

−Δ+=Δ

λη WW

WW
WWW

 (A3.16)

Consequently, the sufficient condition for the convergence of ()WP is

() ()

() 2

,

W

WW

P

MP

∇−

∇∇
≥λ (A3.17)

Exercises

Q3.1. Let ()1 2, , , kcol v v v=v … and ()1 2, , , kcol x x x=x … , where

()1 2, , , kx x x… denotes a collection of random variables. The
kth-order cumulant of these random variables is defined as the
coefficient of ()1 2, , , k

kv v v j×… in the Taylor series expansion
(provided it exists) of the cumulant-generating function

 () (){ }ln exp TK E j=v v x

 Prove that () { }1 2 1 2,cum x x E x x= using the above equation and
the definition in Eq. (3.17).

Q3.2. Apply the definitions and properties stated in Section 3.2.2 and
3.2.3 to derive the third-order cumulant cost function and hence
derive a batch-mode third-order cumulant cost function based
backpropagation algorithm.

 Generalization and Performance Enhancement 137

Q3.3. Consider the Fourth Order Cumulant cost function as shown in
Eq. (3.45) as a regularized error function and suppose that the
unregularized error DE is minimized by a weight vector w*.
Show that, if the regularization coefficient λ is small, the weight
vector w� which minimizes the regularized error can be written
in the form

 ()(){ }4* 1 ,DCum t Fλ −= − ∇ −w w H x W�

 where the gradient ()(){ }4
,DCum t F∇ − x W and the Hessian

DE∇∇ are evaluated at *=w w .

Q3.4. Use the derivation in Appendix 3.3 to derive the sufficient

conditions of the regularization parameter λ in the Fourth Order
Cumulant Objective Function as shown in Eq. (3.45). Assume
that a gradient descent type training method is used and the

H∇−=Δ ηW where η is the learning factor.

This page intentionally left blankThis page intentionally left blank

139

Chapter 4

Basis Function Networks for Classification

In the nervous system of biological organisms there is evidence of
neurons whose response characteristics are “local” or “tuned” to some
region of input space. An example is the orientation-sensitive cells of the
visual cortex, whose response is sensitive to local regions in the retina. In
this chapter, we discuss a network structure related to the multilayer
feedforward network, known as the Radial Basis Function (RBF)
network. The RBF network is a feedforward structure with a modified
hidden layer and training algorithm, which may be used for mapping.
The RBF network can also be seen as a class of classifiers. It is
characterized by having a transfer function in hidden unit layer, having
radial symmetry with respect to a centre. From this characteristic it
comes the name RBF. Usually the function is also bell-shaped, thus the
activation of the unit has a maximum in the center and is almost equal to
zero far from it. This feature entails the possibility to modify a unit of the
network without affecting the overall behaviour and turns out to be very
useful in order to implement incremental learning strategies. Moreover,
they exhibit nice mathematical properties that exploit the regularization
theory, and they are suitable to statistical and symbolic interpretations.

The chapter is composed of three complementary parts. The first part
(Section 4.1 and 4.2) gives the theoretical background related to basic
function network for classification. The second part (Section 4.3)
presents how the RBF networks work. The third part (Section 4.4)
addresses the connections between RBF networks and other approaches.
More in detail, Section 4.1 presents the basic theories of the linear
separation and perceptions in which we can prove that two groups are
linearly separable if there is a linear function. Section 4.2 gives some of

140 Neural Networks and Computing: Learning Algorithms and Applications

the possible ways to describe more general functions of the feature
variables which can be basis function models for parametric smoothing.
Section 4.3 describes the basic architecture of RBF network and it
approximation properties, i.e. the characterization of the problems that
RBF networks can solve. Some common learning algorithms used for
RBF networks are also presented in the same section. Consequently, the
regularization theory of the RBF networks is discussed. Section 4.4
discusses RBF networks could be considered as some advance models,
such as Support Vector Machine, Wavelet Network, Fuzzy RBF network
and Probabilistic Network Networks, in which they share some common
properties of the RBF networks. Finally, Section 4.5 draws the
concluding remarks of this chapter.

4.1. Linear Separation and Perceptions

Historically, special attention has been given to situations in which
two species are completely separated on the first linear discriminant. We
always say two groups are linearly separable if there is a linear function
of the variables, say b+xa , which is positive on one group and negative
on the other. A function which computes a linear combination of the
variables and returns the sign of the result is known as a perceptron after
the work of F. Rosenblatt (1957, 1958, 1962). There is also publication
by (Block, 1962). Their interest now is in their continuing influence on
the thinking in the field of neural networks.

Let us add a column of 1’s to x and add b to a. Let xxz = on the
first group and xxz −= on the second group. We then seek a linear
combination a such that 0za > for every example in the training set.
Since the training set is finite, we can choose 0>δ so that δ>za .
Indeed, we can achieve this for any 0>δ by rescaling a.

One approach to the problem would be to choose a by least squares to
make za as near one as possible, or to regress 1±=y on x which as we
have seen gives the linear discriminant up to a scale factor. However,
there is no guarantee that the linear discriminant will linearly separate the
groups if they are linearly separable, and it is easy to construct examples
in which it will not. A more direct formulation is to minimize the number

 Basis Function Networks for Classification 141

of errors, but as that is a discrete measure, the optimization is difficult.
The sum of the degree of error []∑ +−

i
iazδ will be zero if and only if

linear separation can be achieved. This is equivalent to solving the linear
programming problem δ≥az i , and linear programming methods can
find a solution or show that none exists (Grinold, 1969).

In the late 1950s, a number of researchers were interested in simpler
but iterative solutions, in which the value of a was adjusted after each
example was presented. The derivative for the least-squares problem

2Xay − is ()yXaX T −2 and so a steepest descent procedure would
be of the form
 ()∑ −−←

i

T
iii xyaxaa η (4.1)

For small amount of η, this process converges to the space of least-
squares solutions.

Rather than compute the sum on the right-hand side and update a, we
could update after each pattern was considered. This gives the rule

 () T
iii xyaxaa −−← η (4.2)

known as Widrow-Hoff learning (Widrow and Hoff, 1960) or the delta
rule. The patterns are presented cyclically until convergence, which will
need 0→η .

Rosenblatt’s perceptron learning rule replaced the term axi in (4.2)
by the output of the perceptron, the sign of xa. Thus, a is changed only if
the current pattern is misclassified, and so the rule is of the form

()02 ≤+← azIzaa i
T
iη . No generality is lost by taking 21=η , since

we can rescale a. Rosenblatt showed that this rule will converge in a
finite number of steps to a linearly separating combination if one exists.
Let a* be a suitable combination chosen so that 1* ≥azi for all members
of the training set. If the rule changes a, we have 0* ≤azi so

 () 112
2**2*2* −−≤+−+−=−Δ+ aaaazaaaaa i

This shows the rule terminates in at most
2*

0 aa − steps.

This result is known as the perceptron convergence theorem. Its
limitations were explored by the first edition of Minsky & Papert (1988).

142 Neural Networks and Computing: Learning Algorithms and Applications

They shown that the coefficients needed to achieve linear separation
(with fixed δ) sould grow very rapidly with the size of the problem and
the finite number of steps needed by perceptron rule could become very
large. There is after all another rule which will terminate in finite number
of steps: try all integer-valued a in order of increasing length, and no one
would advocate that rule.

Minsky & Papert also considered the behaviour of the rule when the
two groups were not linearly separable, and stated that a would remain
bounded. Thus if the a belong to a fixed-precision sets, the rule will
eventually cycle. In particular there is no immediate way to deduce
whether the rule will ever terminate, and cycling can be hard to detect, as
the cycle length is unknown.

There are a number of variants of the perceptron updating rule. For
example, η can be chosen just large enough to correctly classify the
current case. Ho & Kashyap (1965) have other algorithms, discussed in
detail in Duda & Hart (1973). It is also possible to extend the procedure
to K>2 categories. In that case the natural classifier would be to choose
the largest of K linear discriminants kxa . Let a be the concatenation of
the vectors ka . Then correct classification of pattern x in class k is
equivalent to () 00,00,,0 >− axx ……… with the negative element in
position j, for each j not equal to k. Thus each example x generates g-1
examples in the K p-dimensional problem. Applying the perceptron
updating rule to this problem is equivalent to the updating rule
 xaa +← ii , xaa −← jj

when pattern x is from class i, and j is a class with a larger value of jxa .
Since this is the perceptron rule in the transformed problem, the
convergence proof still holds.

4.2. Basis Function Model for Parametric Smoothing

We discuss some of the possible ways to describe more general
functions of the feature variables. We consider methods using univariate
functions ℜ→ℑ:f . An additive model is of the form

 Basis Function Networks for Classification 143

 () ()∑
=

+=
p

j
jj xgf

1
αx (4.3)

for smooth but unknown functions jg (Friedman, 1989), (Hastie and
Tibshirani 1990), which could encompass the effect of transformations of
each feature. One choice of the smooth function ()xg of a single feature
is to use splines. Splines are defined by M knots iξ which we can
consider in increasing order. Then within an interval []1, +ii ξξ a spline is
a polynomial of degree d (often three) and at the knots the first ()1−d
derivatives are continuous. This can be written as

 () []∑∑
=

+
=

− −+=
M

i

d
ii

d

i

i
i xxxg

10

1 ξβα (4.4)

which shows that there are 1++ dM free parameters. There are other
bases which have better numerical properties such as B-splines (Boor,
1978). In any basis we can write

 () ()∑
++

=

=
1

1

dM

i
ii xxg φβ (4.5)

It remains to choose the parameters iβ . For a regression spline these are
chosen by least squares. Cubic smoothing splines are the solution to the
minimization problem

 ()[] ()∫∑ +−
=

duuggy
M

i
ii

2

1

2 "λξ (4.6)

and the parameters in (4.5) can be found by solving a sparse system of
linear equations.

Additive models do not allow interactions between the features in ℑ .
Perhaps the simplest way to allow interactions is through linear
combinations (projections) of features:

 () ()∑
=

++=
r

j

T
jjjgf

1
xx βαα (4.7)

144 Neural Networks and Computing: Learning Algorithms and Applications

which is projection pursuit regression (PPR) (Friedman and Tukey,
1981). Sometimes the components of (4.7) are called ridge functions
because a peaked jg gives a topographic ridge in two dimensions. This
is a surprisingly general class of functions, as it can approximate
uniformly arbitrary continuous functions over compact. As PPR
encompasses feed-forward neural networks, the functions jg are
restricted to one function, the logistic. However, ridge functions provide
better approximations to some functions than others (Donoho and
Johnstone, 1989), (Zhao & Atkeson, 1992), which express as working
better for ‘angular smooth functions’ than for ‘Laplacian smooth
functions’. With multivariate regression we have to decide whether to
use common non-linear terms for the different independent variables.
This is usually done, so that for example for projection pursuit regression
we have

 () ()∑
=

++=
r

j

T
jjjkjkkf

1

xx βαφγη (4.8)

This shows that the fitted values lie in a (r+1)-dimensional space. Since
the scale of jφ is not otherwise fixed, we can choose ()xT

jjj βαφ + to
have zero mean and unit variance over the training set.

4.3. Radial Basis Function Network

The Radial Basis Function (RBF) networks correspond to a particular
class of function approximators which can be trained, using a set of
samples. RBF networks have been receiving a growing amount of
attention since their initial proposal (Broomhead & Lowe, 1988),
(Moody & Darken, 1988), and now great deal of theoretical and
empirical results are available.

4.3.1. RBF Networks Architecture

The approximation strategy used in RBF networks consists of
approximating an unknown function with a linear combination of non-
linear functions, called basis functions. The basis functions are radial

 Basis Function Networks for Classification 145

functions, i.e., they have radial symmetry with respect to a centre. Fig.
4.1 shows a typical structure of RBF network. Let X be a vectorial space,
representing the domain of the function ()xf to approximate, and x a
point in X. The general form for an RBF network ℵ is given by the
following expression:

 () ()∑
=

−=ℵ
n

i
iii cxgwx

1

 (4.9)

where ()zg is a non-linear radial function with centre in ic and
iicx −

denotes the distance of x from the centre and iw are weights. Each
basis function is radial because its dependence on x is only through the
term

iicx − .
Many alternative choices are possible for the function ()zg , for

example, triangular, car-box or Gaussian. Anyhow it is usual to choose
()zg in such a way that the following conditions hold:

 () ()zgzg =− (4.10)

 () 0lim =
±∞→

zg
z

 (4.11)

A common choice for the distance function
i
⋅ is a biquadratic form:

 T
ii
xQxx = (4.12)

where iQ is a positive definite matrix, often constrained to be diagonal:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nni

i

i

i

q

q
q

Q

,

22,

11,

00

00
00

"
#""#

"
"

In the simplest case all diagonal elements of iQ are equal ijji qq =, so

that Iii qQ = . In this case the radiality of the basis functions is proper

and if function ()zg fades to infinity,
iq

1
 can be interpreted as the width

of the i-th basis function.
From the point of view of the notation is also common to write:

146 Neural Networks and Computing: Learning Algorithms and Applications

 () ()iiii cxgcxg −=− (4.13)

where the information about the distance function
i
⋅ is contained in the

function ()xgi .
It is also possible to define a normalized version of the RBF network:

 () ()
()∑

∑
=

=

−

−
=ℵ n

i ii

n

i iii

cxg

cxgw
x

1

1 (4.14)

Different type of output, continuous or Boolean, may be needed
depending on the type of the target function. In order to obtain a Boolean
output Bℵ we need to compose function ℵ and a derivable threshold
function σ:
 () ()()xxB ℵ=ℵ σ (4.15)

usually ()xσ is the sigmoid (logistic function):

 () kxe
x −+
=

1
1σ (4.16)

whose derivative is:

() () ()()xx

dx
xd σσσ

−= 1 (4.17)

The positive constant k expresses the steepness of the threshold.
Alternatively, we can obtain a Boolean output composing ℵ with the
function ()bxsign + where ℜ∈b is a threshold.

4.3.2. Universal Approximation

A relevant property usually required for a class of approximators is
universal approximation. Given a family of function approximators, it is
important to characterize the class of functions which can be effectively
approximated. In general, an approximator is said to be universal if can
asymptotically approximate any integrable function to a desired degree
of precision.

 Basis Function Networks for Classification 147

1

Hidden layer Output layerInput layer

(X) (Z, X) (Y)

σ(c,)),,()()2(BWW l

1g

2g

3g

Hg

1x

2x

Mx

1y

2y

Jy

Figure 4.1. Structure of RBF network

Hornik et al. (1989) proved that any network with at least three

layers, i.e., input, hidden, and output layers, is an universal approximator
provided that the activation function of the hidden layer is nonlinear. In
the MLP network, traditionally trained by means of the backpropagation
algorithm, the most frequently used activation function is the sigmoid.
RBF networks are similar to MLPs from the point of view of the
topological structure but they adopt activation functions having axial
symmetry.

Universal approximation capability for RBF networks was presented
in (Park & Sandberg, 1993), where the problem of characterizing the
kinds of radial function that entail the property of universal

148 Neural Networks and Computing: Learning Algorithms and Applications

approximation was addressed by (Chen & Chen, 1995) who shown that
for a continuous function ()zg the necessary and sufficient condition is
that it is not an even polynomial.

From the mathematical point of view the universal approximation
property is usually asserted by demonstrating the density of the family of
approximators into the set of the target functions. This guarantees the
existence of an approximator that with a high, but finite number of units,
can achieve an approximation with every degree of precision. The result
states only that this approximator exists. It does not, however, suggest
any direct method for constructing it. In general this assertion is true,
even when the function is explicitly given. In other words, it is not
always possible to find the best approximation within a specified class of
approximators, even when the analytical expression of the function is
given.

Whether the target function is Boolean or continuous, the learning
task of an RBF network can be stated as a classification or regression
problem. In both cases the problem can be stated in the general
framework of the function approximation problem, formally expressed
as: given an unknown target function Df n →ℜ: and a set S of
samples ()ii yx , such that () ii yxf = for Ni …1= , find an

approximator f̂ of f that minimizes a cost function ()ffE ˆ, . Function
f is a mapping from a continuous multidimensional domain X to a
codomain ℜ⊂D (regression) or { }1,0== BD (classification).

The approximation accuracy is measured by the cost function
()ffE ˆ, also said error function (or approximation criterion) and which

depends on the set of examples S. In general the solution depends upon
S, upon the choice of the approximation f̂ is searched. In practice, a
common choice for the cost function is the empirical square error:

 ()()∑
=

−=
N

i
ii xfyE

1

2ˆ (4.18)

Under some restrictive hypothesis it can be shown that minimizing
(4.18) is equivalent to finding the approximator that maximizes the

 Basis Function Networks for Classification 149

likelihood of S, i.e. the probability of observing S given the a prior
hypothesis { }()ˆ ˆf f P S f f= = (Mitchell, 1997).

 (a) (b)

Figure 4.2. Clustering of data patterns

4.3.3. Initialization and Clustering

It is critical and cumbersome to select hidden units during the
initialization process. There are different approaches to tackle this
problem by (Kohonen, 1997), (Kubat, 1998). Many researches suggest
that the geometrical distribution of training patterns and the chosen
basis function have significant effect on the number of hidden neurons
(Yam & Chow, 2001). As illustrated in Fig. 4.2(a), with the unsupervised
clustering algorithms (k-means, SOM), the data patterns are simply
partitioned into two clusters. In the application to classification problem,
it is expected that each cluster is homogeneous. The clustering in Fig.
4.2(b) is the more suitable for classification. In other words, it is
expected that patterns belonging to the same class should be grouped
together, while patterns from different classes should be separated. It is
worth noting that unsupervised clustering algorithms are not preferable
to initialize the general RBF classifier especially when one is dealing
with complex data distribution (Pedrya, 1998). Hence, a supervised
clustering algorithm is designed to deal with this problem.
The procedures of supervised clustering is the followings.
1. Initializing:

150 Neural Networks and Computing: Learning Algorithms and Applications

 For every class k ()mk ≤≤1
 Creating a new cluster kS
 Number of pattern 1=kn

 Center ∑
∈

=
k class

1

ix
i

k
k x

m
c

 Label klk =
 End For
2. Clustering:
 While (the number of the left training patterns > 1)
 Randomly selecting data point x from the left training patterns.
Finding out the center ic , ji cxcx −<− , mj ≤≤1 and ij ≠
 If the class of ix = then
 iSx∈
 Number of pattern 1+= ii nn

 Center ∑
∈

=
ip Sx

pi x
n

c 1

 Else
 1+= mm
 New cluster 1+mS ;
 Number of pattern 11 =+mn ;
 Center xcm =+1 ;
 Label xlm of class1 =+
 End If
 Deleting x from training patterns
End while
3. Output result
 Number of cluster mNcluster =
 Data patterns labeled with ()clusteri Nil ,,2,1 …=

With the above algorithm, it is likely that certain established clusters
may not be able to represent real clusters in the input space. The criteria
are set for eliminating the noise clusters. If the cluster jS contains few
training patterns ()0NDnj < or occupies small space ()0σσ <j , it is
considered as ‘noise’ and should be deleted.
The algorithm for deleting noise clusters is as follows:

 Basis Function Networks for Classification 151

For every ()clusterj NjS ≤≤1

{ }cluster in this points data any twobetween distant max0 =jσ

 If 0NDnj < Or 00 σσ <j

 Delete jS
 Else
 []0000 ,,, iiii d σσσσ …×=

 End If
End For

The constant 0d affects the overlapping between different clusters. In
order to avoid a too large or too small value of width for the RBF
network, 10 =d is used. In this supervised clustering algorithm, other
two parameters, 0σ and 0ND , determine the number of final clusters.
The small values of them bring up a large size of clusters and will have
an effect of overfitting to training data, while the relative large values of
them will lead to an inaccurate description of data distribution and will
degrade the classification performance. These two parameters can be
determined based on the information about distribution of data patterns.

0σ and 0ND are determined using

clusterN

ND patterns data ofnumber the
0 = , (4.19)

{ }patterns data any twobetween distancemin00 ×= NDσ . (4.20)

Linear parameters)1(W ,)2(W and B can be adjusted by the linear
least squares (LLS) method as shown below:

 T
Z

B
W

+

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
1

)2(

 (4.21)

 TXW +=)1((4.22)

where []+⋅ is defined as the pseudoinverse of []⋅ , Z, X, and T are output
matrix of hidden layer, network input matrix and the output target matrix
respectively.

152 Neural Networks and Computing: Learning Algorithms and Applications

4.3.4. Learning Algorithms

The universal approximation property states that an optimal solution
to the approximation problem exists: finding the corresponding minimum
of the cost function is the goal of the learning algorithms. There are
different learning strategies that we can follow in the design of an RBF
network, depending on how the centers of the RBF of the network are
specified. In the following we may assume that the choice of the RBF
()zg has already been made. Essentially, we may identify three

approaches, as discussed below.

4.3.4.1. Linear Weights Optimization

The simplest approach is to assume fixed RBF defining the activation
functions of the hidden units. Specifically, the locations of the centers
may be chosen randomly from the training data set. This is considered to
be a “sensible” approach, provided that the training data are distributed
in a representative manner for the problem at hand (Lowe, 1989). For the
RBF themselves, we may employ an isotropic Gaussian function whose
standard deviation is fixed according to the spread of the centers. A RBF
centered at ic is defined as

 ()2 2
2expi i i i

Mg x c x c
d

⎛ ⎞− = − −⎜ ⎟
⎝ ⎠

, Mi ,,2,1 …= (4.23)

where n is the number of centers and d is the maximum distance between
the chosen centers. In effect, the standard deviation (i.e., width) of all the
Gaussian radial basis functions is fixed at

M

d
2

=σ (4.24)

Such a choice for the standard deviation σ merely ensures that the
Gaussian functions are not too peaked or too flat; both of these extremes
are to be avoided.

The only parameters that would need to be learned in this approach
are the linear weights in the output layer of the network. A
straightforward procedure for doing this is to use the pseudoinverse
method as

 Basis Function Networks for Classification 153

 dGw += (4.25)
where d is the desired response vector in the training set. The matrix G+

is the pseudoinverse of the matrix G, which is defined as

 { }jig=G (4.26)

where

 ⎟
⎠
⎞

⎜
⎝
⎛ −−=

2

2exp ijji d
Mg cx , Nj ,,1…= ; Mi ,,1…= (4.27)

where jx is the jth input vector of the training set.
Basic to all algorithms for the computation of a pseudoinverse of a

matrix is the singular-value decomposition:
If G is a real N-by-M matrix, then there exist orthogonal matrices

 { }NuuU ,,1 …=

and
 { }MvvV ,,1 …=

such that

 ()k
T diag σσ ,,1 …=GVU

 ()NMk ,min= (4.28)

The column vectors of the matrix U are called the left singular
vectors of G, and the column vectors of the matrix V are called its right
singular vectors. The kσσσ ,,, 21 … are called the singular values of the
matrix G. According to the singular value decomposition theorem, the
m-by-n pseudoinverse of matrix G is defined by

 TUVG ++ ∑= (4.29)

where +∑ is an M-by-M matrix defined in terms of the singular values
of G by

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑+ 0,,0,1,1,1

21

""
k

diag
σσσ

 (4.30)

154 Neural Networks and Computing: Learning Algorithms and Applications

4.3.4.2. Gradient Descent Optimization

In this approach, the centers of the RBF and all other free parameters
of the network undergo a supervised learning process, called gradient
descent optimization. The first step in the development of such a learning
procedure is to define the instantaneous value of the cost function

 ∑
=

=
N

j
jeE

1

2

2
1

 (4.31)

where N is the number of training examples used to undertake the
learning process, and je is the error signal, defined by

()

()
1

j j j

n

j i j i i
i

e d

d w g
=

= −ℵ

= − −∑

x

x c
 (4.32)

The requirement is to find the free parameters iw , ic , and 1−∑i so as to
minimize E. The results of this minimization are shown as below:
Linear weights in output layer

 ()
1

() () ()
()

N

j j i i
ji

E n e n g n
w n =

∂
= −

∂ ∑ x c (4.33)

)(
)()()1(

nw
nEnwnw

i
wii ∂
∂

+=+ η , Mi ,,2,1 …= (4.34)

Positions of centers in hidden layer

 () 1

1

() 2 () () ' () ()
()

N

i j j i i j i
ji

E n w n e n g n n
n

−

=

∂ ⎡ ⎤= − ∑ −⎣ ⎦∂ ∑ x c x c
c

 (4.35)

)(
)()()1(

n
nEnn

i
ii c

cc c ∂
∂

+=+ η , Mi ,,2,1 …= (4.36)

Spreads of centers in hidden layer

 ()1
1

() () () ' () ()
()

N

i j j i ji
ji

E n w n e n g n n
n−

=

∂
= − −

∂∑ ∑ x c Q (4.37)

 Basis Function Networks for Classification 155

 () () ()
T

ji j i j in n n⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦Q x c x c (4.38)

)(

)()()1(1
11

n
nEnn

i
ii −∑
−−

∑∂
∂

−∑=+∑ η (4.39)

The term)(ne j is the error signal of output unit j at time n. The term
()⋅'g is the first derivative of the Green’s function ()⋅g with respect to

its argument.
The cost function E is convex with respect to the linear parameters

iw , but nonconvex with respect to the centers ic and matrix 1−∑ i ; in the
latter case, the search for the optimum values of ic and 1−∑ i may get
stuck at a local minimum in parameter space. The update equations
shown in (4.33)-(4.39) for iw , ic and 1−∑ i are assigned different
learning rate parameters wη , cη and ∑η , respectively. Unlike the
backpropagation algorithm, the gradient descent procedure for an RBF
network does not involve error backpropagation. The gradient vector

iE c∂∂ has an effect similar to a clustering effect that is task-dependent
(Poggio and Girosi, 1990a).

For the initialization of the gradient descent procedure, it is often
desirable to begin the search in parameter space from a structured initial
condition that limits the region of parameter space to be searched to an
already known useful area, which may be achieved by implementing a
standard pattern classification method as an RBF network. In so doing,
the likelihood of converging to an undesirable local minimum in weight
space is reduced. For example, we may begin with a standard Gaussian
classifier, which assumes that each pattern in each class is drawn from a
full Gaussian distribution.

4.3.4.3. Hybrid of Least Squares and Penalized Optimization

For the supervising learning strategies, the RBF network optimization
is usually based on a gradient descent learning process that is generally
suffered from the local minima problem and slow convergence speed. In
this section, a modified learning scheme is also suggested for computing
the RBF parameters. This RBF learning scheme is modified from the
method stated in Chapter 2 of this book (see Section 2.5.5). As stated in

156 Neural Networks and Computing: Learning Algorithms and Applications

the previous section, the cost function of this problem is convex with
respect to the linear parameters iw , the optimum values of this
parameters are determined by the linear least squares method directly so
that the convergence of the algorithm is speeded up. On the other hand,
because the cost function is nonconvex with respect to the centers ic and
matrix 1−∑ i , the optimum values of these parameters are optimized by
the penalty approach so that the problem of local minima can be avoided.
Based on these ideas, the RBF parameters are updated as:
For linear parameters

 () ()T
ji

T
jji nw ΦΦΦ=

− d1)((4.40)

where the vector

()

()

1

1 T

j

j

j M

g

g

⎛ ⎞
⎜ ⎟

−⎜ ⎟
Φ = ⎜ ⎟

⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

x c

x c

#
, Nj ,,2,1 …= , is denoted.

For RBF centers

 ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇+

∂
∂

−+=+)(
)(
)()()1(nE

n
nEnn ipen

i
ii c

c
cc cη (4.41)

For RBF matrices

 ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∇+

∑∂
∂

−+∑=+∑ −
−∑

−−)(
)(

)()()1(1
1

11 nE
n

nEnn ipen
i

ii η (4.42)

The cη and ∑η are the learning rates of the RBF centers and matrices

respectively. iE c∂∂ and 1−∑∂∂ iE are the error gradients with respect

to ic and 1−∑ i respectively. ()⋅∇ penE defines as a penalty term used for
providing an uphill force under the searching space to avoid the learning
process stuck in local minima. The penalty term is assigned as different
types of functions as shown in Chapter 2 and the learning mechanisms
are described in Section 2.5.5.

 Basis Function Networks for Classification 157

4.3.5. Regularization Networks

There is fundamental theory for RBF network in (Poggio & Girosi,
1968) which provided an elegant connection with Kolmogorov
regularization theory. The basic idea of regularization consists of
reducing an approximation problem to the minimization of a functional.
The functional contains prior information about the nature of the
unknown function, like constraints on its smoothness. The structure of
the approximator is not initially given, so in the regularization
framework the function approximation problem is stated as:
Find the function ()xF that minimizes:

 () ()() () ()FEFEPFxFdFE RS

n

i
ii λλ +=+−= ∑

=1

22

2
1

 (4.43)

where ()FES is the standard error term, ()FER is the regularization
term, λ is a regularization parameter and P is a differential operator.
By differentiating equation (4.43) we obtain

 () ()() ()∑
=

−−=
n

i
iii xxxFdxPFP

1

* 1 δ
λ

 (4.44)

where ()⋅δ is Dirac’s function. The solution F of equation (4.44) is:

 () ()() ()∑
=

−=
n

i
iii xxGxFdxF

1

,1
λ

 (4.45)

Regularization theory leads to an approximator that is an expansion
on a set of Green’s functions ()ixxG , of the operator PP* . By
definition Green’s function of the operator A centered in ix is
 () ()ii xxxxAG −= δ, (4.46)

The shape of these functions depends only on the differential operator P,
i.e. on the former assumptions about the characteristics of the mapping
between input and output space. Thus the choice of P completely
determines the basis functions of the approximator. In particular if P is
invariant for rotation and translation Green’s function is:

 () (), i iG x x G x x= − (4.47)

158 Neural Networks and Computing: Learning Algorithms and Applications

so they depend only on the distance ixx − and are therefore radial
functions.
The point ix are the centers of the expansion and the term

()()ii xFd −
λ
1

 of equation (4.47) are the coefficients.

The approximator is

 ()()iii xFdw −=
λ
1

 () ()∑ =
=

n

i ii xxGwxF
1

, (4.48)

Equation (4.48) evaluated in the point jx leads to

 () ()∑
=

=
n

i
ijij xxGwxF

1

, (4.49)

In order to determine the iw let us define the matrices:

()
()

()⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

NxF

xF
xF

F
#

2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Nd

d
d

d
#
2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Nw

w
w

W
#

2

1

() () ()
() () ()

() () ()⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

NNNN

N

N

xxGxxGxxG

xxGxxGxxG
xxGxxGxxG

G

,,,

,,,
,,,

21

22212

12111

"
#%##

"
"

 (4.50)

Then equation (4.49) can be represented in the form of matrices:

 ()FdW −=
λ
1

 (4.51)

 GWF = (4.52)
Eliminating F from both expressions, we obtain:

 ()G I W dλ+ = (4.53)

 Basis Function Networks for Classification 159

The matrix G is symmetric and for some operator is positive definite. It
is always possible to choose a proper value of λ such that IG λ+ is
invertible, that leads to:

 () dIGW 1−+= λ (4.54)

It is not necessary to expand the approximator over the whole data set, in
fact the point ix on which equation (4.48) was evaluated is arbitrarily
chosen. If we consider a more general case in which the centers of the
basis functions ic with Ni …1= are distinct from the data the matrix G
is rectangular. Defining two new matrices as:
 ()()ji ccG ,0 =G Nji …1, = (4.55)

 ()()ji cxG ,=G Mi …1= Nj …1= (4.56)

The optimal weights are:

 () dGGGG TTw 1
0

−
+= λ (4.57)

and if 0=λ

 () dGdGGG +−
== TTw 1

 (4.58)

where () dGGGG TT 1−+ = is the pseudoinverse matrix.
In the regularization framework the choice of the differential operator P
determines the shape of the basis function. Haykin (1994) reports a
formal description of the operator that leads to the Gaussian RBF
network. The operator expresses conditions on the absolute value of the
derivatives of the approximator. Hence the minimization of the
regularization term ()FER causes a smoothing of the function encoded
by the approximator.

4.4. Advanced Radial Basis Function Networks

4.4.1. Support Vector Machine

Radial Basis Function (RBF) networks are deeply related to Supper
Vector Machines (SVM) those are learners based Statistical Learning

160 Neural Networks and Computing: Learning Algorithms and Applications

Theory (Vapnik, 1995). In the case of classification the decision surface
of a SVM is given in general by
 () ()()bxwsignxSVM += φ (4.59)

where Fn →ℜ:φ is a mapping in some feature space F. The
parameters Fw ∈ and Rb∈ are such that they minimize an upper
bound on the expected risk. We omit the formula of the bound that
represents a fundamental contribute given by Vapnik to statistical
learning theory. For the present purpose it suffices to remember that the
bound is composed by an empirical risk term and a complexity term that
depends on the VC dimension of the linear separator. Controlling or
minimizing both the terms permits control over the generalization error
in a theoretically well-founded way.
The learning procedure of a SVM can be sketched as follows. The
minimization of complexity term can be achieved by minimizing the

quantity
2

2
1 w , namely the square of the norm of the vector w . In

addition the strategy is to control the empirical risk term by constraining:

 ()() iii bxwy μφ −≥+ 1 (4.60)

with 0≥iμ and Ni …1= for each sample of the training set. The
presence of the variables iμ allows some misclassification on the
training set.
Introducing a set of Lagrange multipliers iα , Ni …1= if it is possible
to solve the programming problem defined above, finding w , the
multipliers and the threshold term b. The vector w has the form:

 ()∑
=

=
N

i
iii xyw

1
φα (4.61)

so the decision surface is:

 () () () ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

N

i
iii bxxysignxSVM

1
φφα (4.62)

 Basis Function Networks for Classification 161

where the mapping φ compares only in the dot product () ()xxi φφ . The
dependency only on the dot product and not on the mapping φ is valid
also for the multipliers. Following (Mueller et al., 2001), the connection
between RBF networks and SVMs is based on upon the remark that a
kernel function ()yxk , defined on RCCk →×: with C a compact set
of nℜ , namely

 () () () ()2 : , 0
C

f L C k x y f x f y dxdy∀ ∈ ≥∫ (4.63)

can be seen as the dot product () () ()yxyxk φφ=, of a mapping
Fn →ℜ:φ in some feature space F. As a consequence, it is possible to

substitute () () ()yxyxk φφ=, obtaining the decision surface expressed
as:

 () () ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

N

i
iii bxxkysignxSVM

1
,α (4.64)

Choosing a radial kernel () (),k x y e x y= − such that the
equation has the same structure of the RBF network presented in section
4.3.1 in the case of a classification task. The possibility of interpreting
RBF networks as an SVM permits application of this technique to
control complexity and prevent overfitting. Complexity regularization
has also been studied directly for RBF networks (Kryzak & Linder,
1999) with bounds on the expected risk in terms of the sample set size.
SVMs also connect RBF networks with Kernel-Based Algorithms and
following (Muller et al., 2001) with Boosting techniques.

4.4.2. Wavelet Network

Wavelet network is a network combining the ideas of the feed-
forward neural networks and the wavelet decompositions, Zhang and
Benveniste (1992) provide an alternative to the feedforward neural
networks for approximating functions. Wavelet networks use simple
wavelets and wavelet network learning is performed by the standard
backpropagation type algorithm as the tradition neural network. The
localization property of wavelet decomposition is reflected in the
important properties of wavelet networks. Wavelet networks can

162 Neural Networks and Computing: Learning Algorithms and Applications

approximate any continuous functions on []n1,0 and have certain
advantages such as the use of wavelet coefficients as the initial value for
backpropagation training and possible reduction of the network size
while achieving the same level of approximation. In a feedforward
network, neurons take their inputs from the previous layer only and send
the outputs to the next layer only. Since the signals go in one direction
only, the network can compute a result very quickly. Basic neuron of a
wavelet network are multidimensional wavelets and the neuron
parameters are the dilation and translation coefficients. The output of a
wavelet network is the linear combination of the values of several
multidimensional wavelets.
Suppose there is a function ψ define on nℜ such that there is a countable
set Ψ of the form
 ()(){ }iiD tx −=Ψ ψ (4.65)

iD is an nn× diagonal matrix with the diagonal vector n
id ℜ∈ , x and

n
i R∈t , is a frame, which means there exist constants A and B such that

222 , fBffA ≤Ψ∈≤∑ αα for any nLf ℜ∈ 2 . It follows from

the frame property that the set S of all linear combinations of the
elements in Ψ is dense in nL ℜ2 . Obviously, the set of all linear
combinations of the form

 ()()∑
=

−
N

i
iii Dw

1
txψ (4.66)

where iD and it are not restricted to those in Ψ is a superset of S and is
also dense in nL ℜ2 . For example, we can use ψ given by
 () () () () ()nSSSn xxxxx ψψψψψ "… 211 ,, ==x (4.67)

where Sψ is the function given by

 () 22x
S xex −−=ψ (4.68)

the first derivative of the Gaussian function 22xe− . Note the derivative of
Sψ ,

 Basis Function Networks for Classification 163

 () ()22 1
2

xex
dx
d x

S −−= −ψ (4.69)

The wavelet network structure will be of the form

 () ()() gDawh
N

i
iii +−= ∑

=1
, txx ψ (4.70)

where Rai ∈ , ψ is a given wavelet function, iD is an nn× diagonal

matrix, x and n
i R∈t , and g the average value of ()xg . w represents

all the parameters naa ,,1 … , nDD ,,1 … , ntt ,,1 … , and g . The matrix

iD and it are set by the wavelet decomposition and the weights iw are
initially set to be zero. It should be noted that the wavelet decomposition
uses the given iD and it and finds the weight coefficients iw , while the
wavelet network tries to adjust iD , it and the weight coefficients iw
altogether to fit the data. Wavelet networks can be used for concept
learning for a concept []nS 1,0⊂ using sf χ= , the characteristic
function of S, that is,

()

.for 0
for 1

S
Sf

∈=
∈=

x
xx

 (4.71)

Given 0>ε , there exist

 () () ()() gDawhg
N

i
iii +−== ∑

=1
, txxx ψ (4.72)

and []nD 1,0⊂ with measure ε−≥ 1 such that

 () ()g f ε− <x x D∈∀x (4.73)

The learning algorithm of a wavelet network modifies the dilation and
translation coefficients of every wavelet neuron and the coefficients
(weights) of the linear combination of the neurons so that the network
closely fits the data. We assume the data is contaminated with noise, so
the learning algorithm should not seek to interpolate the data points. The
network θg , where θ represents all the parameters iD , it and iw , will
be adjusted by the learning algorithm to minimize a suitable objective

164 Neural Networks and Computing: Learning Algorithms and Applications

function, so that it becomes an optimization problem. A simple objective
function we consider is

 () ()()2
C E g yθθ = −x (4.74)

where kx and ky are data pairs (that is, () kkk nyf +=x , where kn is a
random noise). Though a standard gradient descent algorithm can be
used, a heavy computation requirement makes it impractical in some
situations. In practice, some other more efficient algorithms, such as
stochastic gradient method, are used. The function computed by the basic
wavelet network model is differentiable with respect to all parameters
(dilation and translation parameter and the weights).

4.4.3. Fuzzy RBF Controllers

Radial Basis Function networks also are interpreted as fuzzy
controllers (Jang, 1993). In general, a controller of this kind is a software
or hardware implementation of a control function, defined from the state-
space of the system to its input-space. In this way, the control function
maps a set of information about the state of the system we want to
control, to the actions the controller has to apply to the system.
Typically, the state and the actions are continuous vectors and the
controller is fully described by a set of input variables X, a set of output
variables Y, and the set of elements implementing the control function. In
the case of fuzzy controllers, the internal elements are defined by means
of a fuzzy logic propositional theory.

Fuzzy logics are based on a generalization of the characteristic
function of a set. Formally, let Af be the characteristic function of a set
A:

 ()
⎩
⎨
⎧

∉
∈

=
Ax
Ax

xfA if 0
 if 1

 (4.75)

Fuzzy set theory (Zadeh, 1965) generalizes the notion of presence of an
element in a set and consequently the notion of characteristic function,
by introducing fuzzy values. This approach is equivalent to introducing
uncertainty in the presence of an element in a set. The fuzzy

 Basis Function Networks for Classification 165

characteristic function is called membership which can assume any value
in the interval [0, 1]. A set in which the membership function is restricted
to assume the values in the set {0, 1}, is said to be crisp. The
introduction of a fuzzy membership has deep implications concerning the
logics which can be built on it. The first one is the possibility of have
fuzzy truth values for predicates. A predicate is no longer simply false
(0) or true (1) but can assume any value between. Consequently, the
definitions of the basic connectives (disjunction, conjunction and
negation) have to deal with fuzzy values. Fuzzy logics are typically used
for expressing uncertain or approximate knowledge in the form of rules.
The theory can be partially contradictory, causing fuzzy memberships to
overlap each other. Many different shapes for the membership functions
have been proposed (triangular, trapezoidal, Gaussian) [see (Berebji,
1992)].

Usually a fuzzy controller is organized as three layers. The first one
implements the so-called fuzzification operation and maps every
dimension of the input space via the memberships, to one or more

A

B

C

D

E

F

r1

r2

r3

r4

r5

Gaussian units

Product units

Figure 4.3. Fuzzy RBF network architecture. The first layer hidden units have a one-
dimensional Gaussian activation function. The second layer hidden units compose the
input values using arithmetic product. An average sum unit performs the weighted sum of
the activation values received from the product units

166 Neural Networks and Computing: Learning Algorithms and Applications

linguistic variables, in a fuzzy logic language. The linguistic variables
are then combined with the fuzzy connectives to form the fuzzy theory.
Typically the theory is propositional and it implements the
defuzzification transforming back the continuous truth values into points
in the output space. A RBF based fuzzy controller (Blanzieri &
Giordana, 1995) was introduced in which the architecture is also similar
to the fuzzy neural networks for implementing fuzzy controllers capable
of learning from a reinforcement signal, and to the architecture proposed
by Tresp et al. (1993). Fig. 4.3 describes the basic network topology.

The activation function used in a fuzzy RBF network with n input
units is defined as the product of n one-dimensional radial functions,
each one associated to one of the input features. Therefore a fuzzy RBF
can be described as a network with two hidden layers. The neurons in the
first hidden layer are feature detectors, each associated to a single one-
dimensional activation function and are connected to a single input only.
For example, if we choose to use Gaussian functions, the neuron ijr (the
i-th component of the j-th activation area) computes the output:

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

= ij

iji CI

ij e σμ (4.76)

The neurons in the second hidden layer simply compute a product and
construct multi-dimensional radial functions:

 ∏ ==
i

jijj gr μ (4.77)

where jg was introduced in section 4.3.1.
Finally, the output neuron combines the contributions of the

composite functions computed in the second hidden layer. In this
architecture, a choice of four different activation functions is possible for
the output unit, in order to adapt the network to different needs. The
output function can be a weighted sum

 ∑=
j

jjrwY (4.78)

The same function can be followed by a sigmoid when the network is
used for a classification task. Using this function the network tends to
produce an output value close to ‘0’ everywhere the input vector falls in

 Basis Function Networks for Classification 167

a point of the domain which is far from every activation area. The
consequence is under-generalization in the classification tasks. This
problem can be avoided by introducing a normalization term in the
output activation function:

∑
∑

=
j j

j jj

r

rw
Ŷ (4.79)

This function is frequently used for fuzzy controller architectures. In this
case, one obtains a network biased toward over-generalization in a
similar way as for the multi-layer perceptron. Depending on the
application, under-generalization or over-generalization can be
preferable.

4.4.4. Probabilistic Neural Networks

Probabilistic Neural Networks (PNN) originate in a pattern
recognition framework as tools for building up classifiers. In that
framework the examples of a classification problem are points in a
continuous space and they along to two different classes conventionally
named 0 and 1. PNN were first proposed by Specht (1990), who
proposed to approximate, separately, the density distributions ()xg1 and

()xg0 of the two classes and use a Bayes strategy for predicting the
class

 () () ()
() ()⎩

⎨
⎧

<
>

=
xglpxglp
xglpxglp

xf
000111

000111

 if 0
 if 1ˆ (4.80)

where 1p and 0p are the a priori probabilities for the classes to separate
and, 1l and 0l are the losses associated with their misclassification
(1l loss associated with the decision () 0ˆ =xf when () 1ˆ =xf).
Then the decision surface is described by the equation:
 () ()xkgxg 01 = (4.81)

where
11

00

lp
lpk = and defining ()xσ as a threshold function the estimate

of the target function is:

168 Neural Networks and Computing: Learning Algorithms and Applications

 () () ()()xkgxgxf 01
ˆ −= σ (4.82)

Again the density approximations are made using the kernel estimations

 () ()()∑
=

−
+ −=

1

1
1

1
1

1
1

1 N

i
n zzHK

HN
xg (4.83)

with the extension of the sum limited to the 1N instances belonging to
class 1 and analogously for the class 0.

 () () ()()⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

=

−
+

N

i
ini zzHKzC

H
xf

1

1
1

1ˆ σ (4.84)

where

 ()
()
()

⎪⎩

⎪
⎨
⎧

=−

=
= 0 if

1 if 1

0

1
i

i

i zf
N
Nk

zf
zC (4.85)

The equation (4.80) is a particular case of the RBF network described in
equation (4.14) in Section 4.3.1 for approximating Boolean functions.

In the statistical framework it is common to use all the data as centers
of the kernels. In the case of a large data set it is possible to limit the
initialization to an extracted sample of data. It is worth noting, that no
computation is needed to find the values of the weights. In fact, as an
effect of the normalization terms contained in the kernels, the weights are
equal to the output values, or set to an estimate of the a priori probability
of the class. This method can be applied in an incremental way, but like
any other method which uses all the data, it suffers for the overgrowing
of the approximator. This property permits to analyze directly the
network in terms of probability having a direct statistical interpretation.
In fact, given the estimation of the density implicitly formed by the RBF
network is possible estimate all the statistics parameter of the
distribution. Moreover exploiting a factorizable architecture is possible
to express independency between the inputs as is normally done in
Bayesian Networks.

 Basis Function Networks for Classification 169

4.5. Concluding Remarks

This chapter is concerned with Radial Basis Function (RBF) networks
and it addresses their different interpretations and the applicative
perspectives as a classifier. RBF networks can be described as three layer
neural networks where hidden units have a radial activation function.
Although some of the results of the neural networks can be extended to
RBF network, exploiting this interpretation (e.g. approximation
capabilities and the existence of a unique minimum (Bianchini et al.,
1995), substantial difference still remain with respect to the other
feedforward networks. In fact, RBF networks exhibit properties
substantially different with respect to both learning properties and
semantic interpretation. In order to understand the different behaviours of
the two network types, assume we have to modify a weight between two
nodes in the multilayer perceptron, as is done by the backpropagation
updating rule during the training phase. The effect involves an infinite
region of the input space and can affect a large part of the co-domain of
the target function. On the contrary, changing the amplitude of the region
of the input space in which the activation function of a neuron in an RBF
network fires, or shifting its position, will have an effect local to the
region dominated by that neuron. More in general, this locality property
of RBF networks allows the network layout to be incrementally
constructed, adjusting the existing neurons, and/or adding new ones. As
every change has a local effect, the knowledge encoded in the other parts
of the network is not lost; so, it will not be necessary to go through a
global revision process.

An important point of the present work is the systematic way the
different interpretations have been presented in order to permit their
comparison. RBF networks are particularly suitable for integrating the
symbolic and connectionist paradigms in the line drawn by Towell and
Shavlik (1994) whose recent developments has been surveyed by Cloete
and Zurada (2000). This symbolic interpretation permits to consider RBF
networks as intrinsically Knowledge-Based Networks. Moreover, RBF
networks have also very different interpretations. They are
Regularization Networks so there is the possibility of tuning the
regularization parameter. They are Support Vector Machines so they gain

170 Neural Networks and Computing: Learning Algorithms and Applications

theoretical foundation from statistical learning theory. They are related to
Wavelet Networks so they can gain advantage in signal applications.
They have a Fuzzy interpretation so they can be interpreted in terms of
fuzzy logic. They have a statistical interpretation so they can produce,
after training, knowledge in terms of probability. They are also instance-
based learners and so they can provide a case-based reasoning modality.
Finally, another basic property of the RBF network is the locality that
permits the synthesis of incremental dynamic algorithms permitting the
growing of the cases without unlearning.

Exercises

Q4.1. Consider a 2-input, 4-hidden and 1-ouput nodes of Radial Basis
Function network for XOR function. Compute the linear weight
w and sketch the profiles of the radial basis functions if linear
RBF operators are used:

 () || ||i ix x xφ = −

Q4.2. Repeat the exercise of Q4.1 if Gaussian RBF operators are used:

2|| ||() exp()

2
i

i
x xxφ

σ
−

= −

 where σ=1.

Q4.3. Compare between the linear separation capabilities of RBF

network and MLP network.

Q4.4. The gradient descent optimization can be used for optimizing the

RBF parameters. In order to compute the gradients, it is required
to compute the derivative g’(h) of the RBF operators g(h).
Suppose a Gaussian RBF operator is used, compute the
derivative of this operator.

 Basis Function Networks for Classification 171

Q4.5. For a Support Vector Machine (SVM), given a training data
sample (){ }, , 1, ,i i i N=x d … , find the optimum values of the

weight vector w

 ()0,i i ia d φ=∑w x

 where 0,ia are the optimal Lagrange multipliers determined by
maximising the following objective function

1 1 1

1() () ()
2

N N N
T

i i j i j i j
i i j

Q a a a a d d x xφ φ
= = =

= −∑ ∑∑

 subject to the constraints

 0; 0i i ia d a= >∑

 Let the nonlinear mapping for the XOR function be:

 () ()2 2
1 1 2 2 1 21, , 2 , , 2 , 2

T
x x x x x xφ =x

 And ()()2 2
1 1 2 2 1 21, , 2 , , 2 , 2

T

i i i i i i ix x x x x xφ x

 The feature space for XOR function is in 6D with 20 input data

()
()
()
()

1 1

2 2

3 3

4 4

1, 1 , 1

1,1 , 1

1, 1 , 1

1,1 , 1

d

d

d

d

= − − = −

= − =

= − =

= = −

x

x

x

x

 Minimize the above cost function to find the optimal decision
boundary for this XOR problem.

This page intentionally left blankThis page intentionally left blank

173

Chapter 5

Self-organizing Maps

5.1. Introduction

The Self-Organizing Map (SOM), also known as the Kohonen feature
map, was introduced by Kohonen in 1982. In contrast to many other
neural networks, which usually require a teacher and a supervising
learning process, it is an unsupervised network that does not require a
teacher. Its outputs are organized in a way of groups or clusters. It is
particular useful for clustering high dimensional data. For instance,
consider a simple example of analyzing colour grouping. If an SOM with
3 input nodes connected to random Red, Green, and Blue values
representing different RGB values of a color, the SOM output map
ultimately contains the high level colours such as Red, Orange, Yellow,
Green, Blue, Violet, etc. The Red, Green, and Blue will be clustered in
corners, whilst other colors such as, Yellow, Orange, Violet will be
clustered in between. The SOM can also be seen as a combination of
vector quantization and dimension reduction method in one algorithm and
can be used for visualization or projecting high-dimensional data to low
dimensions. Fig. 5.1(a) shows color distributions among neurons of a
randomly initialized 20x20 SOM by assigning random 3 RGB values to
their weight vector. After the training is complete by randomly generated
color data, the three basic colors red, green, blue appeared in three corners
and others intermediate colors appeared in-between as shown in Fig.
5.1(b). This example shows the organizing capability, which is referred to
“Topological ordering”, of the SOM.

174 Neural Networks and Computing: Learning Algorithms and Applications

(a)

(b)

Figure 5.1. Color distribution among neurons (a) at random initialization and (b) after the
training is complete

The SOM has been widely used in many areas such as pattern

recognition, biological modeling, data compression, and data mining. The
success of the SOM algorithms lies with its simplicity making it easy to
understand. Usually, it is considered as a heuristic approach because its

 Self-organizing Maps 175

fundamental theories have not been derived from strict mathematics. The
basic SOM algorithm consists of a set of neurons usually arranged in a
2-dimentional grid such that there are neighborhood relations among
neurons. Each neuron is attached to a feature vector of the same dimension
as the input space. The neurons are selectively adjusted to various inputs
or input patterns during the course of a competitive training in which the
neurons compete among themselves. The weight vectors of winning
neurons and their neighboring neurons are then adjusted systematically.
As a result, a meaningful systematic coordinate map will be established
for representing the given input features. Through assigning each input
data to the neuron with the nearest feature vector, an SOM is able to group
input data into regions with the similar feature vectors. This process can be
considered as vector quantization. Also, because of the neighborhood
relation contributed by the inter-connections among neurons, it exhibits an
important property of topology preservation. In other words, when feature
vectors are near from each other in the input space, the corresponding
neurons will also be close in the output space.

Since the SOM was first introduced by Kohonen, it has undergone
many modifications. Before briefing some of these recent works, we need
to describe some of the deficiencies of classical SOM. Generally we need
to pre-define the map structure and the map size prior to the
commencement of the training process. Conventional SOM topology
seems to be inherently limited by the fixed network. One must adopt a
number of trials and tests to select an appropriate network structure and
size. Several improved SOMs or related algorithms have been developed
to overcome these shortcomings. All these algorithms are mainly in the
direction of growing an SOM adaptively. Although most of these
extended algorithms are able to dynamically increase the network to an
appropriate size, the final SOM maps are either not easy to visualize
high-dimensional input data on a 2-D plane, or are of equal distances
among neighboring neurons in a 2-D output map.

Indeed, the SOM can be seen as discrete approximation of principal
surfaces in the input space. The ViSOM, a new visualization method,
regularizes the inter-neuron distances such that the inter-neuron distances
in the input space resemble those in the output space after the completion
of training. This feature can be useful to some applications because it is

176 Neural Networks and Computing: Learning Algorithms and Applications

able to preserve the topology information as well as the inter-neuron
distances. This characteristic is attributed to the output topology
pre-defined in a regular 2-D grid so that the trained neurons are almost
regularly distributed in the input space. The ViSOM delivers excellent
visual exhibition compared with conventional SOM and other
visualization methods.

The SOM is also used for clustering data. In Huntsberger and
Ajjimarangsee (1989), and Mao and Jain (1996), an SOM was used to
develop clustering algorithms. There is also a two-level SOM approach
used to cluster data. The first level is used to train data and the second
level is used to cluster data. The number of output neurons required at the
first level is more than the desired number of clusters. Clustering is carried
out by clustering of output neurons after completion of training. This
two-level approach has been discussed by Lampinen and Oja (1992),
Kiang (2001) and several other researchers.

The SOM is widely known with its ability of performing visualization.
It is useful in data mining and facilitating people in understanding data
visually. Through visualization we can evaluate mined patterns and finally
unearth the truly interesting or useful patterns. There have been quite a
few SOM based visualization methods reported in different literatures.
The assignment method simply assigns inputs to their corresponding
neurons. The U-matrix utilizes inter-neuron distances to show the
clustering tendency of data. There are other methods attempting to find a
non-uniformly distributed 2-D output map, instead of a uniformly
distributed output neurons. In later sections of this chapter, we will
introduce and discuss several modified SOM topologies.

5.2. Self-Organizing Maps

The self-organizing map consists of a set of neurons usually arranged
in a one or two dimensional grid. Through a competitive learning, the
weights of neurons are adjusted to various input patterns while
maintaining topological order in the output map. Architecture of a typical
2-dimensional SOM is shown in Fig. 5.2.

 Self-organizing Maps 177

987

3 4 5 621

X
Input layer

Output layer

5w

24w

2w 3w

12w
18w

4w 6w

1w

30w
36w

10 11 12

13 14 1615 1817

20 22 2319

25

2421

26 302827

31 34 3533

29

32 36

Figure 5.2. Architecture of a 2-dimensional SOM

In this configuration, input data are presented through the input layer.

The neurons in the 2-dimensional output layer are fully connected with
input layer. This means the synaptic weight of each neuron has the same
dimension of the input data.

5.2.1. Learning Algorithm

For each input vector)(tx , the SOM algorithm first finds the closest
neuron c on the output map of size N by

 arg min () , 1, 2, ..., ii
c x t w i N= − =

where iw is the weight vector of the ith neuron.
A set of neighboring neurons of the winning neuron is denoted as cN .

The neighboring radius of the winning neuron c decreases with time. The
sequential weight-updating rule of the SOM algorithm is given by

178 Neural Networks and Computing: Learning Algorithms and Applications

 () () (, ;)(() ()),

(t 1)
() , otherwise

i i c
i

i

w t t h c i t x t w t i N
w

w t
ε+ − ∀ ∈⎧

+ = ⎨
⎩

 (5.1)

where)(tε is the learning rate and h(c,i; t) is the neighborhood
function centering at the output coordinates of the winning neuron. Both

)(tε and h(c,i; t) decreases with time. A typical settings for h(c,i; t) is:
2

2

(,)(, ;) exp
2 ()
d i jh i j t

tσ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

, where t is the iteration number, d(i,j) is the

distance of each neuron from the winner, and σ(t) is the width of the

neighborhood function h(c,i; t). Usually 0
1

() .exp ttσ σ
τ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 , where

1τ is a time constant and σ0 is the initial width. The learning rate of the

training typically controlled as: 0
2

.exp nε ε
τ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, where 2τ is the time

constant and 0ε is the initial learning rate. The weight updating for all data
repeats until the maximum number of iterations is reached.

oldw1

oldw3

oldw2

x

Winning neuron

Figure 5.3. Weight distributions before weight updating

 Self-organizing Maps 179

neww1

neww3

neww2

x

Winning neuron

Figure 5.4. Weight distributions after weight-updating

We use an example of three neurons in the data space to illustrate the

learning strategy. In Fig. 5.3, x is the current input datum. The weights of
the three neurons are 1 2,w w and 3w . Before updating, it can be noticed
that 2w is the closest neuron to input datum before updating. Neuron 2 is
the winner neuron and it learns more than the other two neurons, i.e.,

2 2 1 2 31, and h h h h h= >> >> , where 1 2 3, , h h h are the neighborhood

function for neurons 1, 2 and 3 respectively. As a result, the updated 2w
becomes closer to the datum x and the displacement of 2w is bigger than
that of the other two weights shown in Fig. 5.4.

Let us consider another example whose input is a uniformly distributed
2-D synthetic data in a unit square (400 data). In this example, an SOM is
used to form an ordered 2-D net interpolated in a 2-D input space.

Fig. 5.5 shows the distribution of input data and initial neurons’ weight
as well as the neighborhood connections between neighboring neurons
(Map size 88 ×). After the SOM has been updated for 500 iterations, the
weights distribution is shown in Fig. 5.6.

When we observe the weights distributions and their interconnection
in Fig. 5.5 and Fig. 5.6, the weights become more ordered in the data space
after 500 iterations. After 2500 iterations, the weights are well ordered
with respect to the input data shown in Fig. 5.7.

180 Neural Networks and Computing: Learning Algorithms and Applications

Figure 5.5. Initial weight distributions with neighborhood connections between
neighboring neurons (Map size 8 8×). Black dots are input data. Red stars are weights of
neurons. Red lines are connections of neighboring neurons

Figure 5.6. Weight distributions after 500 iterations. Black dots are input data; Red stars
are weights of neurons; Red lines are connections of neighboring neurons

 Self-organizing Maps 181

Figure 5.7. Weight distributions after training (2500 iterations). Black dots are input data;
Red stars are weights of neurons; Red lines are connections of neighboring neurons

5.3. Growing SOMs

5.3.1. Cell Splitting Grid

This section describes a Cell Splitting Grid (CSG) learning algorithm
for growing an SOM. The CSG algorithm improves the learning
mechanism by growing an SOM in both the input and output space. It
resembles the cell-splitting mechanism from a biological perspective.
Using the CSG algorithm, it can overcome some of the shortcomings of
conventional SOM. The CSG algorithm has some connections to quadtree
structure, and other supervised self-organizing networks. It improves the
performance for non-uniformly distributed input data. It enables a 2-D
representation on the output map confined in a square region and neurons
are distributed on a 2-D map according to the density distribution of input
data. The neurons representing the dense region of input data are densely
distributed on a 2-D output map, whereas those lying in the sparse region
are located on the sparse region of the 2-D output space. As a result, the
non-uniform distribution of neurons on the output map is not only able to

182 Neural Networks and Computing: Learning Algorithms and Applications

preserve the data distribution in the input space, it also delivers a better
performance of vector quantization than those delivered by conventional
SOM and other SOM related algorithms.

The CSG network architecture is similar to conventional SOM
architecture. Its output map is constrained in a square of unit length. All
neurons are generated within the square. Each neuron corresponds to a
square region with different size and neighboring neurons are connected to
form the neighboring relationship. The notation of the CSG algorithm is
introduced as follows. In order to decide when new neurons are generated,
τ is introduced to denote the activation level of neurons. XY is the 2-D
coordinates of a neuron in a 2-D square region. Len denotes the length of
the square region. L, R, T and B denote the left, right, top and bottom
bound coordinates of the square region. When new neurons are generated,
they are all endowed with an initial value τ i as the activation level τ.
When a neuron is activated, its activation level τ decreases by a constant
value. This process continues until τ of a neuron becomes zero. The
neuron is then split to generating its four offspring neurons. The executing
steps of the CSG algorithms are as follows.
1. Start from only one neuron and initialize its weight w with a random

value within the input space. Set L, R, T, B, Len to 0, 1, 1, 0 and 1
respectively and set XY to [0.5 0.5]. Physically, this implies the first
neuron be at the center of a square with a unit length. The square
denotes the region corresponding to that neuron. Set τ of the first
neuron to τ i large enough to learn the information before splitting.
Cycle, which is denoted as the iterations performed on the network
before splitting, is set to zero.

2. Select an input x randomly from the input space according to the
input distribution p(x).

3. Find the best-matching neuron c by Eq. (5.1).
4. Adapt weights of the winner neuron c and neurons in N c .

 cwΔ = x(1α)cw− , for the winner neuron c (5.2)

 bwΔ =)(2 bwx −α , for all 2,αcNb∈ << 1α (5.3)

 Self-organizing Maps 183

5. Decrease the activation level of the winner neuron c and increase
the iteration counter:

 1cτΔ = − (5.4)

 1CycleΔ = (5.5)

6. When the activation level τ of the current winner neuron c
decreases to zero, perform the cell-splitting mechanism, i.e., delete
the neuron c and then generate four new neurons within the square
region of the neuron c, and set Cycle zero.

7. Initialize the new weights and the activation levels of the new
generated neurons. The new weights are endowed according to the
weight distribution on the output map before splitting. After the
initial activation levels (τ i) are given to the new neurons, increase
the activation levels of all neurons by τΔ (>0) to slow down the
splitting rate.

8. If Cycle is less than the pre-defined saturated time value TMax, then
go to step 2. Otherwise, the neural network approaches to a saturate
state indicating that an appropriate network topology is obtained.

(a)

184 Neural Networks and Computing: Learning Algorithms and Applications

(b)

Figure 5.8. Learning results by the CSG algorithm (neighboring neurons are connected)
(a) Output map (b) input data and neurons in the input space

Figure 5.8 shows an example of the CSG algorithm on a 2-D synthetic

input data set. Neurons at the corners of the output map are dense. The two
largest regions are located at the other two corners of the output map,
representing the two neurons lying in the gap between the two dense
regions in the input space. The CSG algorithm is useful in delving the data
for determining the input data distribution.

5.3.2. Growing Hierarchical Self-Organizing Quadtree Map

The Growing Hierarchical Self-Organizing Quadtree Map (GHSOQM)
is another hierarchical growing SOM using a quadtree structure. A neuron
at a high level can generate its child SOM at a low level according to the
number of inputs associated to it. The GHSOQM does not grow neurons
horizontally for maintaining a simple and efficient growing process. A
neuron in the GHSOQM may generate four child neurons upon some
conditions. Fig. 5.9(a) shows the typical structure of an GHSOQM, which
is very similar to the quadtree structure. The number of neurons at each
level of the GHSOQM is adaptively determined. If we look down from the

 Self-organizing Maps 185

top of the GHSOQM and only use the leaf neurons that have no child
SOMs, the final one-layer map is like the one-layer quadtree-like SOMs as
shown in Fig. 5.9(b) corresponding to Fig. 5.9(a) Usually the root level
with only one neuron is useless and we begin with the first level with 4
neurons.

(a) (b)

Figure 5.9. (a) Architecture of an GHSOQM that grows neurons hierarchically (b) The
one-layer map corresponding to (a) when we look down from the top of hierarchy of the
GHSOQM and only use the leaf neurons without child SOMs

The training data set is denoted as 1{ , , }nX x x= ⋅⋅ ⋅ . The input data

associated with neuron i at the nth level are denoted by ()nX i . The feature
vectors of the child neurons at the (n+1)th level from the mother neuron i
at the nth level is denoted by 1 1 1 1 1{ (1), (2), (3), (4)}i i i i i

n n n n nW W W W W+ + + + += .
The GHSOQM algorithm is summarized as follows.
1. INITIALIZATION:

Set level n=1 and the feature vectors at the first level
0 0 0 0 0

1 1 1 1 1{ (1), (2), (3), (4)}W W W W W= , where 0
1 ()W i is the feature

vector of the ith neuron at level 1. An SOM with the four neurons
is trained with all data X by invoking the function TRAIN_SOM
(X, n, 0

1W).

186 Neural Networks and Computing: Learning Algorithms and Applications

2. RECURSIVE LOOP:

FUNCTION GENERATE_SOM (X, n, W)
FOR i=1 to 4

Assign each input datum in X to its nearest neurons. If the
number of inputs assigned with the ith neuron at the nth level
is more than a predefined number τ , then the neuron spawns
four child neurons representing a child SOM with size 2 2× .
Then train the child SOM by TRAIN_SOM(()nX i , n+1, 1

i
nW +)

and generate child SOMs by recursively invoking
GENERATE_SOM(()nX i , n+1, 1

i
nW +).

END

FUNCTION TRAIN_SOM (INPUT, n, W)
Train SOM at the nth level with the input data INPUT and the four
neurons with feature vectors W.

The function TRAIN_SOM is an implementation of classical SOM

algorithm. The function GENERATE_SOM recursively generates child
SOMs if possible and train them with data associated with their mother
neurons. In a word, the GHSOQM trains the network at each level by the
data associated with their mother neurons. The GHSOQM completes the
training from the upper levels and then proceeds to train the next lower
level. For newly added data, the learned network must have the ability to
learn new data without reusing old data.

5.4. Probabilistic SOMs

5.4.1. Cellular Probabilistic SOM

The SOM can be considered as a combination of vector quantization
(VQ) and topology preservation. If no lateral interactions occur, an SOM
becomes a standard VQ algorithm. Through adding topological
information into the cost function in VQ problems, an SOM can be viewed
as an efficient approximation to the gradient descent algorithm for

 Self-organizing Maps 187

topological VQ (TVQ). The TVQ can be further extended to Soft
Topographic Vector Quantization (STVQ), which provides a soft
probability assignment for each neuron. Using a batch mode Expectation-
Maximization (EM) algorithm, the STVQ offers a family of topographic
mapping algorithms in which the batch SOM and TVQ are included. The
STVQ algorithm gives an energy function (soft quantization error) as
follows.

1 1 1

(()) ((),)
M N N

i ij j
t i j

F P x t h D x t w
= = =

= ∑ ∑ ∑ (5.6)

where M and N are the numbers of input data and map size respectively,
(())iP x t is the soft assignment probability of neuron i upon the input

()x t , ijh is a fixed neighborhood function satisfying 1
1

=∑
=

N

j
ijh , and

)),((jwtxD is the quantization error between the input)(tx and the

weight jw of neuron j, defined by)(
2
1)),((

2
jj wtxwtxD −= . The

entropy of the assignments is

1 1

(()) ln((())
M N

i i
t i

S P x t P x t
= =

= −∑∑ (5.7)

In order to maximize the entropy of Eq. (5.8) with the constraint given
in Eq. (5.7), the energy function becomes

 E F Sβ= − (5.8)

Using the EM algorithm, the weights can be obtained by the following
iterative steps:

E step: 1

1 1

exp(((),))
(()) , 1, 2, ...,

exp(((),))

N

ij j
j

i N N

kj j
k j

h D x t w
P x t i N

h D x t w

β

β

=

= =

−
= =

−

∑

∑ ∑
 (5.9)

188 Neural Networks and Computing: Learning Algorithms and Applications

 M step: 1 1

1 1

() (())
 , 1, 2, ...,

(())

M N

ij j
t j

i M N

ij j
t j

x t h P x t
w i N

h P x t

= =

= =

= =
∑ ∑

∑∑
 (5.10)

In Eq. (5.9), β is a parameter of inverse temperature. The optimized
weights can be obtained using deterministic annealing from low to high
values in order to avoid being stuck at the local minima of the energy
function of Eq. (5.9). The above steps of the STVQ algorithm are batch
type and can be modified into the batch type SOM if we set ijh to a delta
function, ijδ , and ∞→β in Eq. (5.9). As it is needed to collect all the

input data before the learning process, the batch EM algorithm is not
suitable for large data sets or dynamic data sets. Thus, an online EM
algorithm is necessary to be incorporated in the STVQ model.

We describe an online mode of STVQ, called the Cellular Probabilistic
SOM (CPSOM). The term “cellular” is derived from the concept that a
neuron in the CPSOM is locally connected to neighboring neurons like a
biological cell. However, the incremental EM algorithms are not suitable
for the CPSOM because they need additional storage variables for all the
training data. The online EM model is able to improve incremental EM
algorithms when the parameters in the M step can be expressed by
sufficient statistics. This leads to the derivation of the CPSOM. The
online form of CPSOM is equivalent to the STVQ under certain
conditions. The online property makes it more suitable for large data sets
than the STVQ. It shows a faster convergence rate than the STVQ with the
same effect when map size is relatively small. When the map size becomes
relatively large, the stochastic approximation to the STVQ in turn makes it
less likely for the CPSOM be trapped in local minima, thereby the final
maps are more ordered with lower soft quantization errors than the STVQ.
Most of all, the online CPSOM can be used for dynamic data sets. It has
relations to the SOM, S-Map, and the online gradient-descent form of
STVQ.

We can express the weight-updating in the M step as an online version.
First, we introduce a state variable)(tBi for neuron i at iteration t:

 Self-organizing Maps 189

1 1

() (())
t N

i ij j
k j

B t h P x k
= =

= ∑∑ , then the weight of neuron i can be sequentially

adapted by

1

1

(1) (1) () (())
()

(1) (())

N

i i ij j
j

i N

i ij j
j

w t B t x t h P x t
w t

B t h P x t

=

=

− − +
=

− +

∑

∑
 (5.11)

() (t-1)i i iw t w w= + Δ

1

1 (())(() (1)), 1, 2, ...,
()

N

i ij j i
ji

w h P x t x t w t i N
B t =

Δ = − − =∑ (5.12)

The learning rate iη in Eq. (5.12) is
)(

1
tBi

. The updating rule in Eq.

(5.12) is also intended to optimize the objective function of Eq. (5.9).

The CPSOM algorithm can be implemented as the following steps:

1. Initialize weights of all neurons to be random vectors, compute the
neighborhood function ijh , and set the start values startββ = and

startγγ = .
2. Select an input x randomly from a static data set, or sequentially from

a dynamic data set.
3. Adapt the weights and state variables for all neurons:

1

1 1

exp(((),))
 step: (()) , 1, 2, ...,

exp(((),))

N

ij j
j

i N N

nj j
n j

h D x t w
E P x t i N

h D x t w

β

β

=

= =

−
= =

−

∑

∑ ∑

190 Neural Networks and Computing: Learning Algorithms and Applications

1

1 step: () (1) (())(() (1)), 1,2,...,
()

N

i i ij j i
ji

M w t w t h P x t x t w t i N
B t =

= − + − − =∑

where , ,2 ,1 ,))(()1()(
1

NitxPhtBtB
N

j
jijii =+−= ∑

=

4. Increase β by 1Δ+← ββ if finalββ < , where)0(1 >Δ is an
incremental factor, if the current iteration t is an integer multiple of a
parameter 1λ .

5. If the current iteration t is an integer multiple of a parameter 2λ ,
decrease)(tBi by NitBtB ii ..., ,2 ,1 ,/)()(== γ , where

)0,1(22 >Δ≥Δ−← γγγ is a factor shrinking to a final value
1=finalγ . This procedure enables the algorithm to retrain the

network at a higher learning rate after certain iterations to avoid being
trapped in local minima. In fact, γ can be considered as a forgetting
factor to reduce the weight of the old input data contained in the

stBi)(. When an CPSOM is used for dynamic data sets, we set
startγγ = if the current iteration t is an integer multiple of a

parameter 3λ (23 λλ >> and 3λ is an integer multiple of 2λ). This
procedure ensures the learning algorithm to track the dynamic
environment.

6. Terminate the adaptation for static data sets when pre-specified
epochs finalT are reached. Otherwise, go to step 2.

It should be noted that the parameter 3λ is not required if the input data
are static. The learning rate is oscillatory at the early stage of the training
and finally decreases to zero. For dynamic data sets, γ needs to be reset to

startγ to retrain the network after sufficient iterations. This requires that
the models under the dynamic data do not change too rapidly.

 Self-organizing Maps 191

5.4.2. Probabilistic Regularized SOM

The ViSOM is a relatively recent algorithm for preserving topology as
well as inter-neuron distances. The final map can be seen as a smooth net
embedded in input space. The distances between any pairs of neurons in
input space resemble those in output space. The ViSOM uses the same
network architecture of the SOM. The only difference between the two
networks is that the neighboring neurons of winner neuron are updated
differently. The weight-updating rule (5.2) is used for SOM, while the
weight-updating rule for the neighboring neurons of winner neuron in the
ViSOM is

(t 1) () () () [() ()] [() ()] , ci ci
i i ic c c i c

ci

dw w t t h t x t w t w t w t i Nλε
λ

⎛ ⎞⎛ ⎞− Δ
+ = + − + − ∀ ∈⎜ ⎟⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠

 (5.13)

where cid and ciΔ are the distances between the neuron c and i in input
space and output space, respectively, and λ is a resolution parameter. The
basic idea behind the ViSOM is that the force)()(twtxF iix −= can be
decomposed into two parts: cicxiccix FFtwtwtwtxF +=−+−=)]()([)]()([.

cxF is a force from the winner neuron c to the input x. ciF is a lateral force
from the neuron i to the winner neuron c. The ViSOM constrains the

lateral force ciF by multiplying a coefficient ci ci

ci

d λ
λ
− Δ
Δ

. The objective is

to maintain the preservations of distances between neurons. The discrete
surface constructed by neurons is then regularized to be smooth for good
visualization. In order to keep the rigidity of the final map, the final
neighborhood size fσ should not include only the winner neurons. The
larger fσ , the flatter the map in input space will be. The resolution
parameter λ controls the resolution of the map. Small values of λ
generate maps with high resolution, while large values of λ generate maps
with low resolution.

Here we describe the Probabilistic Regularized SOM (PRSOM)
algorithm. Unlike the hard assignment in the SOM and ViSOM, the
assignment in the PRSOM is soft so that an input datum belongs to a

192 Neural Networks and Computing: Learning Algorithms and Applications

neuron with certain probability. The sequential weight-updating rule of
the PRSOM is extended from the ViSOM to an optimization of a cost
function. Under certain circumstance, the ViSOM can be considered as a
special case and an accelerated one of PRSOM. The PRSOM can also be
considered as a discrete approximation of principal surfaces like the SOM
and ViSOM. Like regularization terms used in supervised learning,
quantization and feature extraction to simplify or smooth function and to
avoid overfitting, the surfaces of PRSOM are smooth that enables a good
visualization effect.

Let))((txp j denote the noised probabilistic assignment of neuron j:

1

(()) (())
N

j ij i
i

p x t h P x t
=

= ∑ (5.14)

where (())jP x t is the probabilistic assignment of neuron j for input x(t)

and ijh is a neighborhood constant satisfying
1

1
N

ij
j

h
=

=∑ . Here the term

“noised” mean))((txp j is affected by leaked probabilistic assignments
from other neighboring neurons. Therefore))((txp j is the probabilistic
assignment of neuron j that considers the effects of other neurons. Note
that))((txp j can be considered as a weight since

1 1 1 1 1

(()) (()) (()) 1
N N N N N

j ij i i ij
j j i i j

p x t h P x t P x t h
= = = = =

= = =∑ ∑∑ ∑ ∑ (5.15)

The cost function of the PRSOM is then soft vector quantization error:
2 2

1 1 1 1

1 1(()) () () (())
2 2

M N M N

vq j j j j
t j t j

F p x t x t w x t p x t w
= = = =

⎡ ⎤= − = −⎣ ⎦∑ ∑ ∑ ∑ (5.16)

which computes the sum of square errors between the input data and the
average weights for all input data. To control the complexity of the above
model, or ensure the solution simple or smooth, we added the following
regularization term:

 Self-organizing Maps 193

2 2 2 2

1 1 1

1 (()) (())() /()
8

M N N

reg j m jm jm jm jm
t j m

F p x t p x t d Iλ λ
= = =

= − Δ Δ +∑∑∑ (5.17)

where jm j md w w= − is the distance in input space, jmΔ is the

corresponding distance between neuron j and m in 2-D output space, λ is
a resolution parameter like the ViSOM, and the identity matrix I is
introduced to avoid the case that the denominator of the fractional term
would be zero when j=m. regF in (5.17) tries to preserve pairwise distance

of neurons in input and output space. It emphasizes large products of
errors and fractional errors like Sammon’s mapping. It also can be
considered as the restriction of the PRSOM for the smoothness of discrete
approximation of the principal surfaces. Then a regularized cost function
of the PRSOM is

2

1 1

2 2 2 2

1 1 1

1 (()) ()
2

(()) (())() /()
8

M N

vq reg j j
t j

M N N

j m jm jm jm jm
t j m

E F F p x t x t w

p x t p x t d I

γ

γ λ λ

= =

= = =

⎡ ⎤= + −⎣ ⎦

+ − Δ Δ +

∑ ∑

∑∑∑
 (5.18)

where γ is a regularization parameter.
The weight-updating and probability assignment of the PRSOM can be

explained from Eq. (5.18) and can be re-expressed as
1

()
M

t

E E t
=

=∑ where:

2

1

2 2 2 2

1 1

1() (()) ()
2

(()) (())() /()
8

N

j j
j

N N

j m jm jm jm jm
j m

E t p x t x t w

p x t p x t d Iγ λ λ

=

= =

⎡ ⎤= −⎣ ⎦

+ − Δ Δ +

∑

∑∑

Since the left and right terms in E(t) are always positive, the
minimization of E is equal to the minimization of each E(t).

Taking the gradient of E(t) with respect to jw , i.e.,

194 Neural Networks and Computing: Learning Algorithms and Applications

 1

2 2

2
1

() (()) (())()

(()) (())()

N

j i i
ij

N
ij ij

j i i j
i ij ij

E t p x t p x t x w
w

d
p x t p x t w w

I
λ

γ
λ

=

=

∂
= − −

∂

⎛ ⎞− Δ
− − ⎜ ⎟⎜ ⎟Δ +⎝ ⎠

∑

∑

the following weight-updating rule is obtained:

2 2

2
1

()(1) () ()

= () () (()) (()) [() ()] [() ()]

j j
j

N
ij ij

j j i i i j
i ij ij

E tw t w t t
w

d
w t t p x t p x t x t w t w t w t

I

ε

λ
ε γ

λ=

∂
+ = −

∂
⎡ ⎤⎛ ⎞⎛ ⎞− Δ
⎢ ⎥+ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Δ +⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑

 (5.19)

In (5.19), '() () (())jt t p x tε ε= is the learning rate of the weight-

updating rule of the PRSOM. To avoid small values of the learning
rate '()tε , the noised probabilistic assignment (or fuzzy neighborhood

function)
1

(()) () (())
N

j ij i
i

p x t h t P x t
=

= ∑ can be set

()' (()) (()) / max (())j j kk
p x t p x t p x t= . Then the resultant updating rule is

'

2 2

2
1

(1) () () (())

(()) [() ()] [() ()]

j j j

N
ij ij

i i i j
i ij ij

w t w t t p x t

d
p x t x t w t w t w t

I

ε

λ
γ

λ=

+ = +

⎡ ⎤⎛ ⎞⎛ ⎞− Δ
⎢ ⎥− + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Δ +⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑

 (5.20)

The probabilistic assignment))((txPi is (5.10) in the STVQ. But the
additional parameter β , the inverse temperature, must be carefully
selected and tuned from low to high values. If we used the same technique
in the PRSOM, we add the entropy into the cost function (5.18):

1 1

() (()) ln((())
M N

vq stress i i
t i

E F F P x t P x tβ γ
= =

= + + ∑ ∑ (5.21)

 Self-organizing Maps 195

where β is a fixed regularization parameter. Taking the gradient of (5.21)
with respect to))((txPj , we obtained the following expression of

))((txPj :

1 1 1

2 2 2 2

1 1 1

1 1

(())(()) [()]
exp

((())) () /()
(())

(())(()) [()
exp

TN N N

ik i k i ji
k i i

N N N

ik i jm mk mk mk
k i m

j TN N

ik i k
k i

h P x t x t w x t w h

h P x t h d I
P x t

h P x t x t w x t

β

γ λ λ

β

= = =

= = =

= =

⎧ ⎫⎧ ⎫⎛ ⎞⎪ ⎪− −⎪ ⎪⎜ ⎟⎪ ⎪ ⎪⎪⎝ ⎠−⎨ ⎨ ⎬⎬
⎪ ⎪ ⎪⎪+ − Δ Δ +⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭=

⎛ ⎞
− −⎜ ⎟

⎝ ⎠−

∑∑ ∑

∑ ∑ ∑

∑∑
1

1 2 2 2 2

1 1 1

]

((())) () /()

N

i niN
i

N N Nn
ik i nm mk mk mk

k i m

w h

h P x t h d Iγ λ λ

=

=

= = =

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪⎪
⎨ ⎨ ⎬⎬
⎪ ⎪ ⎪⎪+ − Δ Δ +⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭

∑
∑

∑ ∑ ∑
 (5.22)

which is a fixed-point iteration. However, Eq. (5.22) may not converge in
practical situations. A more convenient and heuristic way to compute

))((txPi can be taken as

 ()
2

1

1(()) 1/ ()
N

j jk k
k

P x t h x t w
C =

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ (5.23)

where C is a normalization constant. No iteration is needed in (5.23). Since
neighborhood function jjh is much larger than any other ()jkh k j≠ ,

(())jP x t achieves the highest probability assignment if jw is the feature

vector of the nearest neuron from the input x(t). Eq. (5.23) is then
reasonable in that the closer a neuron to input, the higher assignment
probability.

The architecture of the PRSOM is the same as the SOM or ViSOM.
Using the same notation of SOM, the sequential PRSOM algorithm is
described as follows.

1. Randomly select an input x(t) from a data set.
2. Compute the assignment probability of x(t) for all neurons

according to Eq. (5.23).

196 Neural Networks and Computing: Learning Algorithms and Applications

3. Perform the weight-updating rule for all neurons according to Eq.
(5.20).

4. Terminate the algorithm until certain criterion is satisfied.
Otherwise, go to step 1.

The above sequential algorithm is affected by the ordering of training

samples. To avoid this problem, it is better to use the following batch
algorithm of PRSOM.

1. Compute the assignment probability of x(t) for all input data and

neurons according to Eq. (5.23).
2. Perform the batch weight-updating rule for all neurons:

'

1

2 2

2
1

()(1) () (())

(() [() ()] [() ()]

N

j j j
t

N
ij ij

i i i j
i ij ij

tw k w k p x t
N

d
p x t x t w k w k w k

I

ε

λ
γ

λ

=

=

+ = +

⎛ ⎞⎛ ⎞⎛ ⎞− Δ
⎜ ⎟⎜ ⎟× − + − ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Δ +⎝ ⎠⎝ ⎠⎝ ⎠

∑

∑

where k is current epoch, k+1 is the next epoch.
3. Terminate the algorithm until certain criterion is satisfied.

The computational complexity of the PRSOM and ViSOM is

2()O MN , where M and N are the number of input data and neurons,
respectively. If 2N is significantly less than M, the computational
complexity of the PRSOM is less than that of MDS, i.e., 2()O M .)(tε in
the PRSOM should be decreased from high values to nearly zero. The
selection of regularization coefficient γ can be set from 0.5 to 10
practically according to emphasis of the second term in Eq. (5.18). ijh in

the PRSOM can be selected in Eq. (5.24) with the constraint ∑ = :1ijh

2 2

2 2
1

exp exp
2 2

N
i j i k

ij
k

Pos Pos Pos Pos
h

σ σ=

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟= − −
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑
 (5.24)

where the neighborhood radius σ is a constant. The value of σ is
important for the training. The neighborhood function curves are steep
when the value of σ is small. As a result, only few neurons around neuron

 Self-organizing Maps 197

j can be included in the computation of the weight of the neuron j. This
may have an effect of generating folded or disordered maps. On the other
hand, the area of the neighborhood function is enlarged to neurons that are
far from the neuron j when σ is set to a large value. Large σ flattens the
neighborhood function curves and results in contracted maps. This would
degrade the performance of competitive learning. Generally, it is
suggested to set σ to 0.5 which results in maps with good mapping
effects.

The neighborhood function in the PRSOM is

1

(()) (()) ()
N

j i ij
i

p x t P x t h t
=

= ∑ . σ in Eq. (5.24) can be set to a small value,

e.g., 0.5, such that (())jp x t affects not only the winner neuron due to the

leaked information from other neighboring neurons. The most important
property of the PRSOM is the cost function in Eq. (5.18), which gives the
meaning of the weight-updating rule. From the definition of the cost
function, the probabilistic quantization error vqF in Eq. (5.16) is different
from that of the STVQ in Eq. (5.7). Only optimizing the first term vqF will

not generate similar result with the SOM. This should be also true for the
ViSOM if the regularized term in the updating rule is left out. The
implication of vqF is to not only minimize the probabilistic quantization

error, but also repulse neurons from one another.
The resolution parameter λ must be chosen carefully. If λ is too

large, some useful data structure may not be well displayed on the output
map. Some neurons far outside input data may be wasteful for
visualization. If λ is too small, the resultant map is embedded in input
data and cannot well display input data. The following show a practical
equation for the selection of λ :

 max1 ~ 1.5
min{ , }
Span

a b
λ = × , or max4

1 ~ 1.5
min{ , }

Var
a b

λ
×

= × (5.25)

where a and b are the number of rows and columns of the SOM map,
respectively. However, the selection of λ may be out of the rage
according to Eq. (5.25) because of high input dimension or nonlinearity.
The soft assignment in the PRSOM can be exploited similar to that in the

198 Neural Networks and Computing: Learning Algorithms and Applications

STVQ. The accumulated probability in each neuron forms an accumulated
probability matrix (AP matrix) like U-matrix. The element ijAP of neuron

k located at the ith row and jth column of the map is defined by:

 ∑
=

=
M

t
kij txPAP

1

))(((5.26)

Assigning different colors to different accumulated probabilities, we
can obtain a colored map with some colors corresponding to clusters and
some colors corresponding to empty regions. This is a powerful
visualization technique in addition to the method by simply assigning
input data to their nearest neurons. The SOM and ViSOM are both
discrete approximations of principal surfaces. But SOM cannot display the
data boundary well at the boundaries of output map because it is a
density-based quantizer. The ViSOM instead can represent the data
boundary well because ViSOM is a uniform quantizer and some neurons
are outside input data when the parameters of an ViSOM are properly
chosen. The PRSOM is also a discrete approximation of principal surface
like the ViSOM. As the inter-neuron distances in input space are
regularized to resemble those in output grid, the regularized term (second
term) in Eq. (5.19) can be very small after the completion of training. We
further consider only the nearest neuron c using hard assignment. The
updating rule in Eq. (5.19) now becomes

 ()(1) () () () ()j j cj cw t w t t h x t w tε+ = + − (5.27)

Then the adaptation rule in the final stage leads to the smoothing
process:

 PRSOM:
1 1

()
L L

c cj cj
t t

w x t h h
= =

= ∑ ∑ (5.28)

where cjh is fixed for all time in the PRSOM.

 Self-organizing Maps 199

5.5. Clustering of SOM

The clustering at the second level for an SOM-based two-level
clustering is the agglomerative hierarchical clustering. The merging
criterion is motivated by a clustering validity index based on the
inter-cluster and intra-cluster density, and inter-cluster distances (Halkidi
& Vazirgiannis, 2002). The original index is used for the whole input data
and therefore is a global index. The optimal number of clusters can be
found by the clustering validity index. In this SOM based clustering
algorithm (Wu & Chow, 2004), the clustering validity index is slightly
modified and used locally to determine which neighboring pair of clusters
to be merged into one cluster in the agglomerative hierarchical clustering.
Since more information is added into the merging criterion in addition to
the inter-cluster distances, the described algorithm clusters data in a better
way than other clustering algorithms using an SOM. After certain
preprocessing techniques for filtering, the clustering algorithm is able to
handle the input data with noises and outliers.

The notations in the clustering validity index are defined as follows.
The data set is partitioned into c clusters. A set of representation points

},...,,{ 21 iiriii vvvV = represents the ith cluster, where ir is the number of
representation points of the ith cluster.)(istdev is a standard deviation
vector of the ith cluster. The pth component of)(istdev is defined by

∑
=

−−=
in

k
i

p
i

p
k

p nmxistdev
1

2)1/()()(, where in is the number of data

points in the ith cluster, kx is the data belonging to the ith cluster, and im
is the sample mean of the ith cluster. The average standard deviation is

given by: ∑
=

=
c

i

cistdevstdev
1

2 /)(.

The overall clustering validity index, called “Composing Density
Between and With Clusters” (CDbw), is defined by

)()(_)(cSepcdenIntracCDbw ×= (5.29)

Intra_den(c) in Eq. (5.29) is the intra-cluster density and defined by

200 Neural Networks and Computing: Learning Algorithms and Applications

 ∑∑
= =

>=
c

i
ij

r

j

cvdensity
c

cdenIntra
i

1 1

1),(1)(_ (5.30)

where ()ijdensity v is defined by
1

() (,)
in

ij l ij
l

density v f x v
=

= ∑ , where

lx belongs to the ith cluster, ijv is the jth representation point of the ith
cluster, and),(ijl vxf is defined by

⎩
⎨
⎧ ≤−

=
otherwise ,0

 ,1),(stdevvxvxf ijl
ijl (5.31)

The Sep(c) in Eq. (5.19) is the inter-cluster density and defined by

1 1

_ () _ ()
() , 1

1 _ ()

c c

i j
j i

close rep i close rep j
Sep c c

Inter den c= =
≠

−
= >

+∑∑ (5.32)

where close_rep(i) and close_rep(j) are the closest pair of representations
of the ith and jth clusters, and Inter_den(c) is defined by

1 1

_ ()
_ () _ ()

(), 1
() ()

c c

ij
i j

j i

Inter den c
close rep i close rep j

density u c
stdev i stdev j= =

≠

=

−
>

+∑ ∑

where iju is the middle point between the pair points close_rep(i) and

close_rep(j),
1

() (,)
i jn n

ij k ij
k

density u f x u
+

=

= ∑ , where kx is the input vector

belonging to the ith and jth clusters, and (,)k ijf x u is defined by

 ()1, () () / 2
(,)

0, otherwise
k ij

k ij

x u stdev i stdev j
f x u

⎧ − ≤ +⎪= ⎨
⎪⎩

 (5.33)

The overall clustering algorithm is summarized as follows:
1. Train input data using an SOM.
2. Preprocessing before clustering of an SOM.

 Self-organizing Maps 201

3. Cluster of an SOM using the agglomerative hierarchical
clustering. Find the local CDbw for all pairs of directly
neighboring clusters and merge the two clusters with the lowest
CDbw. Compute the global CDbw for all input data before the
merging process until only two clusters exist, or merging cannot
happen.

4. Find the optimal partition of input data according to the global
CDbw for all the input data as a function of the number of
clusters.

Wine data set is used as an example for demonstration. Wine data have
178 13-D data with known 3 classes. The numbers of data samples in the
three classes are 59, 71 and 48, respectively.

2 3 4 5 6 7 8 9 10 11
10

15

20

25

30

35

40

Number of clusters

C
lu

st
er

in
g

va
lid

ity
 in

de
x

Figure 5.10. The CDbw as a function of the number of clusters for the wine data set by the
clustering algorithm on SOM

We use this clustering algorithm with map size 44 × to cluster the

data. The CDbw as a function of the number of clusters, plotted in Figure
5.10, indicates that the number of clusters is three, which is exactly equal
to the number of the classes. This algorithm achieved a high clustering
accuracy of 98.3%.

202 Neural Networks and Computing: Learning Algorithms and Applications

5.6. Multi-Layer SOM for Tree-Structured data

The conventional SOM and the above mentioned SOM deal with
vector type data of fixed length. They are, however, unable to deal with
tree-structured data. A tree data can consists of many levels, and number
of nodes in each level is not fixed. The Multi-Layer SOM (MLSOM) is
another extended architecture developed for handling tree-structured data
that cannot be encoded in a single fixed vector. The node attributes at
different levels of trees are ordinal-type features. Using multiple SOM
layers, the MLSOM processes the nodes of tree-structured data at different
levels in a layer-by-layer fashion. Fig. 5.11 describes the schematic
diagram of processing a 3-level tree data using the MLSOM.

Figure 5.11. Data mapping in a multi-layer SOM model

The number of SOM layers is equal to the maximum levels of trees. If

there are maximum L levels in all the tree structures, L groups of data and
corresponding L SOM layers are generated. The ith (i=1,...,L) group of
data is composed of all the ith level nodes in all the tree structures. The
basic idea of the MLSOM is that the SOM training is performed in a way
of level by level. That is, the Lth level group of data is firstly trained by the
Lth SOM layer. Similar to the SOM-SD, the SOM outputs of child nodes
are used for the input representation (child vector) of a parent node. After
the Lth SOM output information is filled in the (L-1)th SOM input

 Self-organizing Maps 203

representation, the (L-1)th SOM layer is then trained. This procedure
repeats until the 1st level group of data is trained by the 1st SOM layer.
Finally, the visualization of tree-structured data can be performed on the
1st SOM layer.

After the Lth SOM ouput information is filled in
the (L−1)th SOM input representation, the (L−1)th

SOM layer is trained

The Lth SOM layer is trained with the input data
of all the Lth level nodes

After the (L−1)th SOM ouput information is filled
in the (L−2)th SOM input representation, the

(L−2)th SOM layer is trained

After the 2nd SOM ouput information is filled in
the 1st SOM input representation, the 1st SOM

layer is trained

Figure 5.12. The basic flow chart of training steps by the MLSOM

The basic flow chart of training steps by the MLSOM is illustrated in

Figure 5.12. The following describe the SOM input representation and the
MLSOM training in details.

5.6.1. SOM Input Representation

Assume that the maximum number of children nodes of a node at the
kth level in all the training data trees are kc , the maximum levels in all the
tree structures is L and the SOM output is a 2-D rectangular grid. It is

204 Neural Networks and Computing: Learning Algorithms and Applications

noted that 0Lc = as leaf nodes at the bottom layer have no children nodes.
Each SOM input representation at an SOM layer consists of two parts: (1)
the n-dimensional feature vector u of the current node; (2) 2-D position
vectors 1,..., kcp p of its children nodes at the SOM layer below the current
SOM. For non-leaf nodes, some ip may be set to [0,0] since the number
of children nodes of a node may be less than kc . The lowest values of
horizontal or vertical positions on the 2-D SOM output map are set to be
larger than 0.

The ordering of children nodes of a node may not be predefined in real
world applications. In the MLSOM, an ordering algorithm is used if the
ordering of children is not predefined. Suppose that the nodes at the kth
level need to be ordered before appending their position vectors to the
SOM input representation at the (k-1)th SOM layer. After the completion
of training the kth SOM layer, all the 2-D output positions of the nodes at
kth level are obtained.

12
3

4

5
6

, , , , ,0 0 0B A cp p p

Ap

Bp

cp

Figure 5.13. The illustration of the ordering of children nodes of a node

The basic idea of the ordering algorithm is to use all 2-D position

vectors to train a 1-dimensional SOM. The number of neurons in the 1-D
SOM is set to 1kc − , i.e., the maximum number of children nodes of a node

 Self-organizing Maps 205

at the (k-1)th level. After the completion of training of the 1-D SOM, each
training datum is assigned to a neuron index of the 1-D SOM. The neuron
index is then used in the SOM input representation of ip ({1,..., }i c∈) of
parent nodes at the (k-1)th SOM layer. This procedure is illustrated in
Fig. 5.13, where the maximum number of children nodes of a node at the
(k-1)th level is 6. Therefore the number of the 1-D SOM neurons used for
the training of output positions at the kth SOM layer is 6. After the
completion of training of the 1-D SOM, the 2-D weight vectors of all the
6 neurons are marked in circles with index labels as shown in Fig. 5.13.
The neighboring neurons are connected with a solid line. Consider three
nodes at the kth level: A, B and C. Ap , Bp and cp are their corresponding
output positions on the kth SOM layer. The three nodes are the children
nodes of a parent node at the (k-1) level. The 2-D position vectors Ap , Bp
and cp are marked in cross symbols as shown in Fig. 5.13. The ordering
algorithm just assigns Ap to its nearest neuron, i.e., neuron index 3. Then

Bp and cp is assigned to neuron index 2, neuron index 6 respectively.
Therefore the SOM input representation 1 2 3 4 5 6[, , , , ,]p p p p p p of their
parent node at the (k-1) level is , , , , ,][0 0 0B A cp p p , where 0 is [0,0]. This
ordering makes the later similarity measurement more reasonable.

5.6.2. MLSOM Training

Assume that each node at the kth level of trees has a kn dimensional
feature vector. The maximum of children nodes of a node at the kth level
are kc . The maximum levels of trees and maximum layers of MLSOM are
all L. The input data for the kth SOM layer are all 2k kn c+ dimensional
vectors. There are km neurons at the kth SOM layer. The weights of
neurons at the kth SOM layer are also 2k kn c+ dimensional vectors. The
learning steps of the MLSOM for a tree-structured data are described as
follows.

1. Set the current level k of trees and the current layer k of an
MLSOM to be L (bottom level and bottom layer).

206 Neural Networks and Computing: Learning Algorithms and Applications

2. Normalize the 2-D positions of neurons in each SOM layer in a
range of ()(0,1],(0,1] .

3. Set iteration t to be 0. Collect all the nodes at the kth level nodes of
trees to be the training data for the kth SOM layer. The ordered
2-D SOM output positions of children nodes of the nodes at the
kth level are filled in the SOM input representation at the kth SOM
layer. Therefore the 2k kn c+ dimensional vectors are generated
for the inputs of the kth SOM layer. Normalize the values in each
dimension of them in a range of [0,1]. Randomly initialize the

2k kn c+ dimensional vectors for the km weights at the kth SOM
layer.

4. Randomly select a vector x from the 2k kn c+ dimensional
vectors for the inputs of the kth SOM layer.

5. Find the winner neuron a at the kth SOM layer:
arg max (,) , 1,...,k

i ki
a S x w i m= = (5.34)

where S(x, k
iw) is the similarity measurement of x and k

iw , k
iw is

the weight vector of the ith neuron at the kth SOM layer. The
similarity measurement of x and k

iw is defined as follows.

(){ }

()() ()()

1
1 2

1

2 2

2 1 2 2 1 22 1 2
1

1(,) 1
(,)

(,) 1

k

k

k k

k

k k k kk k

n
k k
i j ij c

jk
j n j n

j

c
k k

j n j n j n j ni j n i j n
j

S x w abs x w
n x x

x x x w x w

λ λ

δ

δ

=
+ − +

=

+ − + + − ++ − +
=

−
= − − +

⎧ ⎫⎡ ⎤⎪ ⎪− − + −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑
∑

∑

2

 (5.35)
where jx is the jth value of x, k

ijw is the jth value of k
iw , λ is a

weighting parameter, (,)x yδ is a function such that
1, if 0 and 0

(,)
0, otherwise

x y
x yδ

= ≠ ≠⎧
= ⎨=⎩

The first term in (5.35) considers the features of the current node
whilst the second one considers the compressed features of its
children nodes. The weighting parameter λ determines the

 Self-organizing Maps 207

emphasis on global features, which appears at root nodes or
higher level, or local feature that appears at lower part of the tree.
The choice of λ is problem-dependant. An equal weighting
(λ =1) is used in general unless specified.

6. Update the weights of neurons at the kth SOM layer by
()() () , 1,...,k k k

i i ia i kw w t h t x w i mη= + − = (5.36)

where ()tη is the learning rate at iteration t, ()iah t is the
neighborhood function around the winner node a.

7. Increase the iteration by t = t + 1.
8. When the maximum number of iterations is reached, the training

at the kth SOM layer stops. Otherwise go to step 4.
9. If the ordering of children nodes is not predefined, the 2-D SOM

output positions of nodes at the kth level are ordered by an
ordering algorithm, otherwise, go to step 10.

10. When k is equal to 1 (top level of trees or top SOM layer), the
training stops. Otherwise, k = k − 1, go to step 3.

From the above training steps, the second parts of the SOM input

representation are fixed before training. The nodes at each level are fed
into the corresponding SOM layer for training. Therefore the
computational complexity of the MLSOM for one epoch is

()
1

2
L

k k k k
k

O N m n c
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ , where kN is the number of nodes at the kth level

of trees, km is the number of neurons at the kth SOM layer, kn is the
number of input features of a node at the kth level, and kc is the maximum
number of children nodes of all trees at the kth level.

5.6.3. MLSOM Visualization and Classification

The top SOM layer in an MLSOM plays an important role for
visualization of the tree-structured data. After the completion of the
MLSOM training, the top SOM layer can be used for data visualization.
As each root node represents each tree structure, the tree-structured data
can be visualized by their associated neurons. Some useful information,

208 Neural Networks and Computing: Learning Algorithms and Applications

such as clustering tendency, can be further detected from the top SOM
layer.

The MLSOM can be further used for classification. A neuron at the top
SOM layer can be labeled with a class that most associated tree-structured
data belong to. In the case of tie, the class is chosen randomly. If a neuron
is not assigned any datum, we just search the nearest neurons and the
neuron is labeled with the class that the most structured data associated
with the nearest neurons belong to. Thus the SOM map is labeled by
assigning data classes to all neurons. The labeled SOM map, called “class
map”, can be used for classification. When a testing tree-structured datum
is presented to the MLSOM, a best-matching neuron at the top layer can
be found according to Eq. (5.34). As the best-matching neuron is already
labeled with a class, the testing datum is classified to that class.

We used a real data set consisting of 480 real flower images to
demonstrate the processing of a tree-structured data using the MLSOM.
There are totally 12 different species of flowers. Each species has 40
flower images. All the flower images are divided into training and testing
sets. The total number of flower images used for training is 240 and that
for testing is 240. Fig. 5.14 shows a tree-structured data extracted from a
flower image. A flower image is represented by a three-level tree. The root
node of a tree represents the whole image. The 2nd level nodes of a tree
represent local regions such as background and flowers. The 3rd level
nodes of a tree represent more specific local regions such as each
individual flower. Different types of features are used to describe nodes at
different levels as shown in the figure. An MLSOM with 3 layers
(40×40-48×48-56×56) is used to process the flower images. After the
training is completed, the visualization on the top layer is shown in
Fig. 5.15. The 12 species of flowers from the training set are shown on the
map in different symbols. The map indicates different flowers form
different clusters on the output map. Using the above-mentioned “class
map” procedure, a classification performance of 100% and 93% are
achieved on the training set and the testing set respectively.

 Self-organizing Maps 209

Figure 5.14. Illustration of the tree-structured flower image representation. Different types
of features are assigned to different levels of nodes

Figure 5.15. Visualization of 12 different flower species on the top layer of an MLSOM

210 Neural Networks and Computing: Learning Algorithms and Applications

Exercises

Q5.1. An SOM is used to learn a dataset with no target output. What
does the SOM learn and how visualization is conducted?

Q5.2. In an electric power plant fault diagnostic system, the following

table shows 9 data points of a 8-attribute + 1 class-label data file.
The whole data file consists of over 10000 different fault
instances collected in the past.

Circuit

ID
Weather

type Phases Loading type Season plant
Cust off

time
Duration
in min

Fault
Causes

1 o R 5 (High) S c4 13:45 10 F1

1 o R 5 (High) S c4 14:45 10 F2

2 o R 3 (Medium) A c4 9:40 20 F3

2 1 Y 5 (High) A x 11:00 45 F4

3 10 Y 5 (High) A x 20:00 20 F1

3 2 Y 1 (Low) W c4 19:43 60 F4

3 3 R 4 (Quite high) W c4 17:32 20 F3

5 3 R 3 (Medium) W c4 16:44 13 F3

6 3 R 4 (Quite high) W c4 11:33 7 F2

Which of the above attributes should not be used in the SOM
training for studying plant fault diagnosis?

Q5.3. In Q 5.2, there are only 6 types of fault, i.e., ice, animal, lightning,

human, tree, and deterioration denoted F1, F2, F3, F4, F5 and F6
under the attribute of fault causes. These six types of fault are
found to be nicely discriminated by an SOM using 10x10 neurons.
Sketch a typical SOM map to show the possible result. In this case,
what is the factor affecting the output visualization of the SOM
map?

 Self-organizing Maps 211

Q5.4. The weight adaptation of the SOM learning rule uses a simple
competitive learning method with neighborhood function being
set to h=1 for the winner neuron, and =0.5 for all other neurons.
Also, assume η =0.5. In a data set, the current input data x1=[2, 3],
and the following input data are [1, 4], and [3, 1], the initial
weights of three neurons are w1=[-1, 2], w2=[2, 0] and w3=[1, 1].
Show how the weights are updated for only one number of
iteration.

This page intentionally left blankThis page intentionally left blank

213

Chapter 6

Classification and Feature Selection

6.1. Introduction

To mimic human’s ability in discriminating various objects using
mathematical models and computer has always been an intriguing issue
for human beings. Among many other AI, or pattern recognition
techniques, the use of neural networks to perform discrimination task has
proved to be appealing because of its supervised and unsupervised
learning ability. Neural classifiers have shown many important
applications since computers have become immensely powerful
compared to a decade ago. This enables us to conduct a lot of
complicated classification or recognition tasks that were difficult or even
impossible to be handled in the past decades. We are now able to design
classifiers capable of discriminating between members and non-members
of a given class as a result.

When we use neural networks to act as a classifier, we are simply
finding a network to represent a non-linear discriminant function. As a
result, the trained network will deliver a classification result when new
input vectors are presented to it. On the other hand, we can view that
the network is used to model the posterior probability of class
membership. Posterior probability, a quantity widely used in statistical
analysis, enables us to make a near-optimal decision on the class
membership of a given data. Classifier is then considered as a machine
whose decision on class membership is made according to the probability
distribution of the variables.

214 Neural Networks and Computing: Learning Algorithms and Applications

For a given feature vector x , classifying its class membership
requires the knowledge of its posterior probability. For a given feature
vector x , the posterior probability, ()P C Xa , tells us the probability of
the instances belonging to class Ca . Maximizing the probability of
classification can be obtained by finding the class Ca having the largest
posterior probability. Conversely speaking, classifying newly given
feature vector x as certain class having the largest posterior probability is
equivalent to minimizing the probability of misclassification.

In practical applications, a classifier can be designed by finding
appropriate discriminant functions, which are usually in forms of
parametrized functions. In most cases, the values of the parameters are
determined from a set of training data together with a learning algorithm.
For example, we consider a simple problem of distinguishing men from
women. Certain feature vector ,iX of a given human face must be
extracted and analyzed. We might, for instance, analyze the pixel-based
representation of face images. We might expect that the feature
vector ,iX transformed from pixel-based codes, of women face images
will be different from the men in certain extent. Apparently, for certain
given feature vectors, the probability of misclassifying the face image
will be low, which means that we will be very certain that it is either a
woman or a man. On the other hand, it is perceivable there are many
cases that the class membership overlaps with feature vectors, which
means that there is a high chance of misclassifying. A classifier can
then be seen as a system which consists of a set of input vectors mapping
to an output variable ,y which in this case representing the label of
whether it is a man or a woman. The mapping is done using certain
mathematical modeling. For instance, the mathematical model can be in
the form),;(WXgy ii = where the model can be considered as a neural
network, and W are the weights of a neural network. By optimizing the
parameters ,W we will be able to minimize the probability of
misclassifying a given facial image. Perceptron, regarded as one of the
earliest form of neural classifier, is a well-known linear discriminat
developed in the early sixties for recognizing simple characters, although
it was later proved to be unable to handle a linear non-separable problem.

 Classification and Feature Selection 215

In Chapter 1, we have shown the principle of its operation and how its
weights are determined.

There are several types of widely used classifiers including K-
nearest neighbour, multi-layer Perceptron (MLP), Radial Basis Function
network, Support vector machines (SVM), Bayesian classifiers, and
Decision Tree. They are either in the category of statistical classifier or
machine learning classifier. Some of these have been thoroughly
described in the previous chapters. Classifiers have been successfully
applied to a wide range of applications including handwriting recognition,
finger print recognition, speaker identification, and text categorization,
faults diagnostic, etc. Most recently it has been extended to the
application of handling the emerging micro-biology problems. The
advent of complementary DNA (cDNA) microarrays technology enables
computer scientists to measure the expression levels of thousands of
genes in a single experiment. cDNA microarrays technology allows
detection of the expression levels of thousands of genes at a time.
Bioinformatic researchers, biologists and medicine researchers are now
able to compare different ribosomal proteins or genes coding for all sorts
of medical purposes. This provides a new way to understand and
investigate the differences in the gene expression patterns.

In microarrays cDNA classification, neural classifiers are used for
classifying whether a given patient’s data is cancer positive or not. Prior
using a classifier, advanced features selection technique is used to extract
the informative genes among the thousands genes because a microarrays
dataset usually consists of thousands of features and classifiers usually
find handling a huge feature set difficult. Thus in the later section of this
chapter, some classification and feature selection methods will be
discussed.

Tables 6.1 show interesting results obtained from a 10 fold test on
different diseases and classifiers. The classifiers studied include k-NN,
MLP, SVM, and Decision Tree. In the tests, only the most prominent 50
features are selected from a feature selection scheme for classification.
The numbers of data points are small so they may experience the small
data point problem. This can be clearly seen in the Colon cancer case
which consists of 62 data points only. Apparently, the classification
accuracy is significantly lower than the Lung Cancer dataset which

216 Neural Networks and Computing: Learning Algorithms and Applications

consists of 181 data points. In this type of bioinformatics dataset, it is
generally noticed that SVM can deliver very promising performance in
terms of classification accuracy. SVM and MLP are found to be
relatively more robust to noise corrupted data, while KNN and decision
Tree can provide very stable performance under noise free environment.

Table 6.1 (a) Details of the four investigated cancer diseases

Dataset Name Number of data Dimensions Number of selected
features

Colon Cancer 62 2000 50
Prostate Cancer 102 12600 50

Lung Cancer 181 12533 50
ALL-AML
Leukemia

72 7129 50

 Table 6.1 (b) Classification accuracy of Colon Tumor data (10 fold test)

 KNN MLP SVM Decision tree
Mean value 0.693 0.7234 0.7412 0.6962
Std V value 0.0089 0.0081 0.0098 0.0057

Table 6.1 (c) Classification accuracy of Prostate Cancer data (10 fold test)

 KNN MLP SVM Decision tree
Mean value 0.834 0.8684 0.8725 0.8184
Std V value 0.0046 0.0036 0.0049 0.0086

Table 6.1 (d) Classification accuracy of Lung Cancer data (10 fold test)

 KNN MLP SVM Decision tree
Mean value 0.9831 0.9625 0.9874 0.9547
Std V value 0.00078707 0.0025 0.0014 0.0013

 Table 6.1 (e) Classification accuracy of ALL-AML_Leukemia data (10 fold test)

 KNN MLP SVM Decision tree
Mean value 0.824 0.8541 0.8902 0.8981
Std V value 0.0074 0.0045 0.0047 0.0053

The above results indicate that different classifiers perform slightly

different on the same cancer classification. The factors affecting their
classification accuracy are very complicated including the noise level of

 Classification and Feature Selection 217

the data, the level of redundancy data, the dimensionality of the problem,
and number of data sample etc. But this is usually perceived as problem
dependent.

6.2. Support Vector Machines (SVM)

Support vector machines (SVMs) are a new type of supervised
learning methodology nicely developed by Vapnik and his associates. It
is an elegant and powerful approach for performing classification based
on the principle of structural risk minimization, for instance, minimizing
the summation of empirical risk and the bound of risk confidence. It is
worth pointing out that most classifier like multi-layer Perceptron
network can perform classification, but they are prone to the risk of
finding trivial solutions that overfitting the data. Its learning algorithms
do not guarantee to minimize the margin errors over all hyperplanes.
The advantages of SVMs over traditional multi-layer Perceptron
networks are their better generalization ability and global minimization.

A typical classification problem is the separation of positive
members from negative members. Generally, we are required to build a
conventional classifier separating the positive members from negative
members. If the data points in the training set are vectors of m numbers,
the development of such a classifier is to find a hyperplane that is able to
separate the members. In most real-world problems, the problems are
usually not ideal and they involve non-separable data. This means that
there may not be a hyperplane allowing us to separate all the positive
members from the negative members. SVMs map a given training set
into a possibly high-dimensional feature space in an attempt to determine
a hyperplane that separates the positive members from the negative
members. Much of the beauty of SVM's comes from its elegantly
defined criterion for selecting a separating plane because there may
usually be many high-dimensional candidate planes available for doing a
similar job. SVM is able to select the plane that maintains a maximum
margin in the training set. This is important because statistical learning
theory suggests that the choice of the maximum margin hyperplane will
lead to maximal generalization when the result is used for predicting

218 Neural Networks and Computing: Learning Algorithms and Applications

classification of unseen data. The theory enables us to find a separating
hyperplane in the feature space simply by defining a Kernel function.

Let the training data be { }, 1,...,ix i N= . The corresponding class
labels are { }| { 1,1}i iy y ∈ − . If a hyperplane separates the two classes
successfully, the data point x lying on the hyperplane
satisfies 0=+⋅ bxw . Let mind the minimum distance from the
hyperplane to a datum with label “1” or “-1”. In SVM, mind is selected as
1. Then the training data satisfy

1, for 1i iw x b y⋅ + ≥ =

 (6.1)

1for ,1 −=≤+⋅ ii ybxw

 (6.2)
Thus Eqs. (6.1) and (6.2) with equality define two parallel

hyperplanes H1 and H2. The above inequalities can be combined into
one inequality:

() 1 0,i iy w x b i⋅ + − ≥ ∀

 (6.3)
The distance between H1 and H2 is 2 / w , which is also called

margin. SVM tries to maximize the margin to deliver the good
classification performance, under the constraint of Eq. (6.3). This can be
expressed by a Lagrangian:

∑ ∑
= =

>++⋅−=
N

i

N

i
iiiiip aabxwyawL

1 1

2)0(,)(
2
1 :minimize

 (6.4)
The above problem can be converted to a dual one and the solution

of classification can be obtained using an optimization method. For a
non-separable case, slack variables can be introduced in Eqs. (6.3) and
(6.4). Despite the excellent classification ability of SVMs, they are
unable to provide a visualized classification result. Class boundary
between the two classes cannot be visualized for users. The process may
appear to be obtained from a mathematical tool-box only. In some cases,
this may be rather restrictive when boundary information is useful for
enhancing the classification results. The boundary information may
provide useful information on the relative distance of the instances

 Classification and Feature Selection 219

during classification. The next section will then describe a new type of
classification tool called SVM visualization (SVMV).

6.2.1. Support Vector Machine Visualization (SVMV)

SVMV is a useful tool to visualize the SVM classification results.
SVMV is developed by exploiting the advantages of both SVM and
SOM. SVMV gives additional information about the classification
boundary. That is, data close to the class boundary can be classified
directly from visualization. The distance between a datum and
classification boundary can be directly visualized in a low-dimensional
space. As a result, we are able to minimize the possibility of mis-
classification of data when they appear to be too close to the
classification boundary. The whole classification results obtained by
SVM can be clearly elaborated through visual clarification.

In general, there are two main types of SVMs models for binary
classification: C-SVMs and v-SVMs. But in terms of classification, v-
SVMs are better than C-SVMs because the parameter (0,1)v∈ in v-
SVMs has salient physical meaning and is thus used in this section to
illustrate the theory of the SVMV. Suppose an empirical
dataset 1 1(,),..., (,)n nx y x y , where d

ix ∈ℜ is a d-dimensional input
vector, yi∈ {±1} is the binary class label, n is the number of input data.
As illustrated in Fig. 6.1, v-SVMs try to separate two classes using an
optimal hyperplane that maximizes the margin of separation. It solves the
following primal problem:

2

1

0

1 1min () ()
2

s.t. [(())] ,
 0, 0, 0, 1, 2,...,

n

i
i

i i i

i

W W v
n

y W x b
v i n

φ ρ ξ

ϕ ρ ξ
ξ ρ

=

⎧
= − +⎪⎪

⎨ ⋅ + ≥ −⎪
> ≥ ≥ =⎪⎩

∑
 (6.5)

where ϕ is a mapping function from input space to high-dimensional
feature space, dW ∈ℜ is a vector perpendicular to the optimal

hyperplane in feature space, 0
db ∈ℜ is a bias vector, iξ is a slack

variable for allowing classification errors, dρ ∈ℜ is another bias vector,

220 Neural Networks and Computing: Learning Algorithms and Applications

and v is a parameter discussed before. Instead of solving problem Eq.
(6.5) directly, v-SVMs solve its dual problem as follows:

, 1

1

1

1max () () ()
2

1s.t. 0 , 0 ,

 , 1, 2,..., ,

n
T

i j i j i j
i j

n

i i i
i

n

i
i

Q y y x x

y
n

v i n

α α α ϕ ϕ

α α

α

=

=

=

⎧
= −⎪

⎪
⎪ ≤ ≤ =⎨
⎪
⎪

≥ =⎪
⎩

∑

∑

∑
 (6.6)

where iα is a Lagrange coefficient. The solution of iα in Eq. (6.6) can
be used to compute w, 0b , and ρ in (1) [20]. To avoid computing the
dot product in the high dimensional feature space, SVMs use kernel
functions. After the completion of optimizing Eq. (6.6), the data points
with 0 1/i nα< < are called support vectors (SVs).

Optimal
hyperplane

Support vectors
Support vectors

/ wρ

/ wρ

Figure 6.1. Illustration of the separation of two classes by v-SVM

The decision function for the binary classification of the data is

0 0

1
si gn(()) s ign((,))

n

i i i
i

W x b y K x x bϕ α
=

⋅ + = +∑
 (6.7)

 Classification and Feature Selection 221

The bias function for a new input z is

0

1

() (,)
n

i i i
i

f z y K x z bα
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑

 (6.8)
The distance between z and the optimal hyperplane (classification

boundary) in feature space is

() /f z w

 (6.9)
For the SVs with 0 1/i nα< < , the value of Eq. (6.8) is ρ or ρ− ,

and that of Eq. (6.5) is / wρ . For the data points lying in the

classification boundary, the value of Eq. (6.8) or Eq. (6.9) should be zero.
In SVMV, SOM is firstly trained. The SVMs are then applied to the data
to find the optimal solution of classification. Using the result from SVMs,
the distances (or bias) between feature vectors of neurons of the SOM
and optimal hyperplane of SVM in high-dimensional feature space can
be obtained. The classification boundary can be found and visualized in
the neurons with zero distance (bias) to optimal hyperplane. The detailed
procedure of the SVMV algorithm is described as follows:

Step 1. First, an SOM algorithm is trained to obtain the topology-

preserved weights{ }iw , i=1,…, m.

Step 2. Then v-SVMs are used to obtain the optimal value
of , 1,...,i i nα = , according to Eq. (6.6).

Step 3. Interpolation is performed between the neighboring pairs of
weights { }iw in SOM and therefore extended weight vectors

{ }'iw are formed to obtain a more precise map. The detailed

interpolation will be explained in the next subsection.
Step 4. After that, the bias function ()if w′ on the extended weight vectors

{ }'iw is computed according to Eq. (6.10):

' '

0
1

() (,)
n

i i i i i
i

f w y K x w bα
=

= +∑
 (6.10)

222 Neural Networks and Computing: Learning Algorithms and Applications

Step 5. Finally a 2-D map of SOM is colored according to the values
of{ }()if w′ . The neurons with grey color, whose bias ()if w′ is

larger than 0, belong to class “1”. On the contrary, the neurons
with white color, whose bias is less than 0, belong to class “−1”.
Obviously, the bias ()if w′ of the neurons on the boundary is
equal to zero. So the classification boundary can be detected
by () 0if w′ = .

Due to the topology preservation of SOM, if a datum in the input

space is close to classification boundary, they are also close to each other
in the reduced low-dimensional space. The distance between data and
classification boundary can be displayed on the reduced low-dimensional
space. In Fig. 6.2, they show some of typical examples of using SVMV
for classification of leukemia dataset which consists of 72 leukemia
samples with 7129 genes. The following results show the training data
contain 27 acute lymphoblastic leukemia (ALL) samples and 11 acute
myeloid leukemia (AML) samples. The testing data contain 20 ALL
samples and 14 AML samples. AML samples are labeled with class “+1”
while ALL samples are labeled with class “1”. The kernel width σ is
selected as 1 and 10. The AML and ALL samples are visualized by cross
and dot symbols, respectively. For the training data, the data with the
same class are located in the region of the same color. This indicates the
training data are well classified with 100% classification accuracy. For
the testing data shown in Fig. 6.2(b), there is only one neuron out of the 4
AML samples located in the white region which represents ALL samples.
It means a classification error of 11.8% for the testing data. SVM with a
small RBF kernel width means that the classification boundary is more
complicated. Although the classification can be very good for training
data, it has poor generalization for classifying testing data. In Fig. 6.2 (c)
and (d), when the RBF kernel width σ is selected as 10, the
generalization of SVM is improved. The classification accuracy is 100%
for both the training and testing data. In this section, the SVMV method
is a hybrid approach of both SVM and SOM. It achieves good
visualization effect with classification boundary. Unlike SVM that

 Classification and Feature Selection 223

cannot explain the whole classification mechanism, the SVMV provides
2-D visualization on complicated classification results.

Figure 6.2. Visualization results on the leukemia dataset by SVMV (a) (σ=1)
Visualization on the training data (b) (σ=1) Visualization on the testing data (c) (σ=10)
Visualization on the training data (d) (σ=10) Visualization on the testing data

6.3. Cost Function

In previous chapters, we have shown the use of mean squared error
(MSE), and higher-order cumulants cost functions on different learning
algorithms. The choice of cost function is dependent upon the
applications. We have also shown that a careful design of cost function
can enhance the generalization, and convergence rate of the network
performance. For instance, for general regression problems of which the
objective is to model the relationship between the input variables and
output variables. The use of MSE or MSE-FOC cost function will have a
positive effect of enhancing the learning performance. For classification
problem, the objective is largely different. A classifier is to model the
posterior probability of class membership with input variables. When
MSE cost function is used, there are differences between the objectives

224 Neural Networks and Computing: Learning Algorithms and Applications

of training a neural classifier and delivering good classification
performance. By minimizing the MSE cost function, the training
algorithms are aimed to make the output of a network approximates the
discrete values, such as 0 and 1, as close as possible. But a classification
task is generally made on the basis of hard decision rules. That is, we
classify a given observation to the class having the maximum output in
order to minimize the classification error probability. In this sense, the
requirements on the output of a classifier can be relaxed. It is largely
satisfactory that the output of a classifier can correctly distinguish
different class patterns, although the value of output may not be able to
approximate the designated value (1 or 0) closely. In a training process
of using MSE cost function, the patterns that have been correctly
recognized still have an unnecessary contribution to the subsequent
training process. This may reduce the convergence rate and cause
overfitting.

When we are designing classifiers, our aim is clearly to enhance the
classification ability, the minimum classification error function (MCE),
which was proposed for achieving minimum classification error, is a
good choice over the conventional MSE. The concept of MCE cost
function is to find a set of classifier parameter together with their
associated decision rule such that the probability of misclassifying any
given observations can be minimized.

 Although the MCE function enables the neural classifier to be
directly constructed to minimize the classification error, there is certain
difficulty in implementing MCE based classifiers. The selection of a
smoothness parameter ξ of MCE has a marked effect on training a
classifier. A large ξ results a rather rugged error surface in which a lot
of local minima may cause sub-optimal results. On the other hand, when
ξ is set to a small value, the error surface of the MCE becomes
smoother. Dynamically changing of ξ is an option to improve the
classification performance and the convergence rate. It is an algorithmic
approach to adjust the smoothness parameter ξ when the training
proceeds but requires more implementation effort. In the following
sections, we discuss the MCE and a hybrid MSE-MCE cost functions for
classification.

 Classification and Feature Selection 225

6.3.1. MSE and MCE Cost Functions

Assume that patterns in dataset),...,,(21 ′= NxxxX are fallen into J
categories. We also assume a classifier has J output units, for instance,
one output unit corresponds to one class. Below, for convenience, for a
data pattern ix , let),...,,(21 iJiii tttt = and),...,,,(321 iJiiii yyyyy = be the
output target and the actual output of a classifier, respectively. For a
pattern (say, ix) belonging to the class),,2,1(Jjcl j ⋅⋅⋅= , it is defined

that

 ⎩
⎨
⎧

≠
=

=
jk
jk

tik ,0
 ,1

Mean square error function, mseE , commonly used for training

classifiers, can be expressed as

2

1 1

1 ()
2

N J

mse ij ij
i j

E t y
N = =

= −∑∑
 (6.11)

In Eq. (6.11), the classification decision rules are not directly
reflected. Through minimizing Eq. (6.11), the output of classifier
approximates the target (1 or 0) as close as possible. A hard decision rule
is directly adopted in the MCE function [11, 12]. In the MCE function,

),...,,,(321 iJiiii yyyyy = are the outputs of a set of the discriminant
functions. Generally, the class is determined as

 kx cls∈
 if 1

() arg max ()k jj J
y x y x

≤ ≤
=

Based on this type of decision rule, for x belongs to the class mcl ,

recognizing x correctly requires ym to be larger than other y. Also, the
larger the difference between ym and other y is, the smaller the
misclassification risk will be. Thus, the difference between ym and the
largest y can be used to measure the classification ability of the built
discriminant function set. This is the rationale behind the
misclassification measure Eq. (6.12) defined in [11].

226 Neural Networks and Computing: Learning Algorithms and Applications

1

()

,

1(,) (,) (,)
1

p
m p

m j
j j m

d x y x y x
M ≠

⎡ ⎤
Λ = − Λ + Λ⎢ ⎥−⎣ ⎦

∑
 (6.12)

where p is a positive constant, and Λ be the parameter set of the
discriminant functions. A small value of)(md indicates a low
misclassification probability. With different p, one can take all the
potential class into consideration to a different degree. When p is large
enough, we have

p

mjj

p
jjmjj

xy
M

xy

1

,,
),(

1
1)),((maxarg ⎥

⎦

⎤
⎢
⎣

⎡
Λ

−
≈Λ ∑

≠
≠

That is, for a large p, Eq. (6.12) is able to directly reflect the hard
decision rule. We can set that p = 10. For convenience, we rewrite Eq.
(6.12) in a form of output vector iy and target vector it

1

() 1(,) (1) ()
1

pm p
i i i i id x t y t y

M
⎡ ⎤′ ′Λ = − × + − ×⎢ ⎥−⎣ ⎦ (6.13)

where ()′• means the transpose of vector • . In Eq. (6.12) or Eq. (6.13),

0)(<md indicates a correct class determination, whereas 0)(≥md
results in a misclassification determination. With)(md , the
misclassification error function (MCE) is

()((,))

1(,)
1

m
i

i d x
x

e ξ− Λ
Λ =

+ (6.14)
where 0>ξ , and mi clsx ∈ . Obviously, Eq. (6.14) increases with the

decreasing of)(md . Optimizing Eq. (6.14) can directly maximize the
classification ability of the constructed model. Eq. (6.14) is a smooth
zero-one function and can be optimized using gradient decent type
algorithms. The MCE on the whole dataset { }NxxxX ,...,, 21= is the
mean of MCE results on all patterns, for instance,

 1

1 (,)
N

mce i
i

E x
N =

= Λ∑
 (6.15)

 Classification and Feature Selection 227

The MCE Eq. (6.15) evaluates the classification ability of a
classifier in a direct way. This is a clear advantage of enhancing the
classification performance.

6.3.2. Hybrid MCE-MSE Cost Function

First we would like to focus on analyzing the MCE function before
we move to the hybrid MCE-MSE cost function. In a batch version of
gradient descent learning, the direction of updating is the average of
negative gradient of all patterns. It is expected that the patterns far from
being correctly classified should impose more effect on the parameters
adjustment, while the patterns close to the target should have less effect.
In this sense, the MSE function satisfies the requirement well. But, the
MCE function Eq. (6.16) is unable to satisfying the above requirement
because 'MCEE decreases with the increase of dm for misclassified

patterns (i.e., dm > 0). This shows that the data patterns that are far from
being correctly classified may have small or even negligible effect on
adjusting the parameters.

For example, for a data pattern x, the real output is),(21 yyy = and
the target output is)0,1(=t . We have the 2-dimensional MCE function

 1 2()

1
1mce y yE

e ξ− − +=
+ (6.16)

Fig. 6.3 illustrates the relationship between),(21 yyy = and the
derivative 1yEmce ∂∂ . Table 6.1 lists several values of 1/ yEmce ∂∂ , and

1/ yEmse ∂∂ , and their corresponding outputs. Take point 1, point 2 and
point 3 as examples. The situation of point 1 certainly satisfied the above
requirement because its output is close to the target and 1/ yEmce ∂∂ is
very small. But for point 2 and 3, it is desirable to have a larger value of

1/ yEmce ∂∂ to minimize the classification error. The 1/ yEmce ∂∂ values of
these points, however, are small. This illustrates that using gradient
decent type training methods to optimize mceE may not assure a
satisfactory convergence rate and the subsequent classification results.
This shortcoming can be addressed by dynamically controlling the

228 Neural Networks and Computing: Learning Algorithms and Applications

smoothness parameterξ , but this approach is rather problem dependent
and may not be straightforward for implementation.

Figure 6.3. It shows the relationship between 1mceE y∂ ∂ and the classifier output
1 2(,)y y y= . Supporting that, for this 2-class, the target for an input data pattern

is (1,0)t = . Its MCE function is 1 2() 1[1]y y
mceE e ξ− − + −= +

Table 6.2 Gradient value of MCE function and MSE function

Target [y1, y2] = [1 0]

Point No. Output [y1, y2]

Gradient of MCE

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

21
,

y
E

y
E mcemce

Gradient of MSE

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

21
,

y
E

y
E msemse

1 [0.9 0.1] [0.0031 -0.0031] [0.1000 -0.1000]

2 [0.5 0.9] [0.3133 -0.3133] [0.5000 -0.9000]

3 [0.1 0.9] [0.0061 -0.0061] [0.9000 -0.9000]

We can consider a hybrid cost function

1 ()
2 mse mceE E E= +

 (6.17)
The MCE-MSE cost function encompasses the properties of both

MCE and MSE. The MSE part of this cost function enables the patterns

 Classification and Feature Selection 229

with large classification errors to be taken into account irrespective of the
value of ξ in the MCE. The shortcoming of MCE is compensated in a
more simple way. The MCE-MSE function maintains the balanced
property of MCE and MSE functions and provides a balanced
performance on convergence rate and classification results. Similar to
the MCE function, selecting different value of smoothness parameter ξ
affects the performance of the MCE-MSE based learning algorithm, and
usually ξ can be fixed as 1 for most problems.

We use RBF classifier solving a two-spiral classification problem as
example. The training processes are stopped when the classification error
has not further decreased for 100 training epochs continuously. The
averaged results of 10 trials are listed in Table 6.2 where ξ of the MCE
function is 1. It shows that both the number of epochs and running time
required by the MCE cost function are significantly larger compared with
the proposed MCE-MSE based cost function.

Table 6.3 Comparisons of different cost functions

Cost

function

Number of

epochs

Running time

(sec)

Classification error

(%)

MCE-MSE 5380 267 2.0
MSE 6040 383 12.6

MCE 15,340 1.31×103 1.9

Typical convergence curves are shown in Fig. 6.4. Due to the

complex boundary of this problem, the training process generally begins
with 50% classification error. That is, a major part of patterns are far
away from being correctly recognized. To swiftly reduce the
classification error requires weighing the misclassified patterns more
than the correctly-classified patterns. MSE function is able to meet this
requirement, whereas MCE function has difficulties to satisfy this
condition. Thus, the convergence rate of MSE and the MCE-MSE based
gradient algorithms are much faster than the MCE based approach. In
terms of classification results, the hybrid MCE-MSE based algorithm
shows promising performance compared with other approaches.

230 Neural Networks and Computing: Learning Algorithms and Applications

Figure 6.4. A typical convergence curves of different cost functions on the two-spiral
classification problem

6.3.3. Implementing MCE-MSE

RBF network is used to illustrate the implementation of MCE-MSE
hybrid cost function because of its excellent classification ability
compared with feedforward networks. The centers of the RBF networks
are firstly initialized. As all data are normalized to the interval [0, 1], the
widths of hidden neurons in RBF network are determined by

Idr ×= 0σ where Id is the identity matrix, and 7.00 =r is used. The

linear weights ()2(W ,)(lW , B) of RBF network are randomly initialised
with the values between 0 and 1. After initialisation, we can use the
learning algorithm listed in the following flow diagram.

 Classification and Feature Selection 231

initalization

learning of linear part

Final result

the
 MSE

creterion

learning of non-linear part

),,()()2(BWW l

),(σc

stop?

hybrid algorithm

the
MCE-MSE

creterion

The adjustment of parameters of hidden units is a non-linear process

based on the MCE-MSE function Eq. (6.17), whereas the identification
of weights between the hidden and the output layers is a linear one based
on MSE function Eq. (6.11). Using a simple RBF network, the function
can be expressed as

(2) ()() lY f X Z W X W B= = × + × +

where Z is the output matrix of the hidden layer. The linear parameters in
f(X), i.e., W(2) and)(lW , can be calculated by minimizing the MSE
function,

(2)

()

1
l

ZW
T

B

W X T

+

+

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

=
 (6.18)

232 Neural Networks and Computing: Learning Algorithms and Applications

where +⋅][is defined as the pseudoinverse of][⋅ . Both the MSE function
and the MCE function are smooth and differentiable functions, and can
be conveniently minimized using gradient descent method. The updating
rule of the hidden layer parameter using MCE-MSE function Eq. (6.17)
is

() ()

(1) () 1
2

mse mce
τ

τ τ+
Λ=Λ

Λ = Λ − ΔΛ + ΔΛ
 (6.19)

where τΛ denotes the parameter c or σ at the th τ step. The updating
rules of Λ based on MSE, i.e., mseΔΛ , have been explained in [3, 8]

() () ∑∑
==

+ −
−

−=Δ
J

r
irjrjr

jk

jkik
N

i
ijmsejk ytw

cx
xgc

1

)(
2)(

)(

1

)1())(()()(τ
σ

τη τ

τ

τ
τ

 (6.20)

()
()

() 2
(1) ()

3()1 1

()
() () (())

N J
ik jk

jk j i jr ir irmse
i rjk

x c
g x w t y

τ
τ τ

τ
σ η τ τ

σ
+

= =

−
Δ = − −∑ ∑

 (6.21)

Simply based on the definition of the MCE function, mceΔΛ is
solved as follows.

()
()

()
(1) ()

2()1 1

() ()
N J

ik jk mce
jk j i jrmce

i r irjk

x c Ec g x w
y

τ
τ τ

τ
η τ

σ
+

= =

− ∂
Δ =

∂∑ ∑
 (6.22)

Setting that

),(),,()()(Λ≡Λ≡ i
mm

iii xddx
according to Eqs. (6.13) and (6.15), we have

mce i

ir ir

E
y y

∂ ∂
=

∂ ∂ (6.23)

()

(1)
m

i i
i i

ir ir

d
y y

ξ∂ ∂
= −

∂ ∂ (6.24)

1
1 1 11 (1) () (1)

1
p p pi p

i i i i i
i

d t t y t y
y M

− −∂ ⎡ ⎤ ′⎡ ⎤ ⎡ ⎤= − + − × × − ⋅×⎣ ⎦ ⎣ ⎦⎢ ⎥∂ −⎣ ⎦ (6.25)

 Classification and Feature Selection 233

In Eq. (6.25), ×⋅ is a type of matrix operator, and BA ×⋅ is the
entry-by-entry product of matrix A and B. The modification rule of the
center c based on the MCE-MSE Eq. (6.17) is

() ()()(1) () (1) (1)1

2jk jk jk jkmse mce
c c c cτ τ τ τ+ + += − Δ + Δ

where ()

msejkc)1(+Δ τ and ()
mcejkc)1(+Δ τ are given in Eq. (6.20) and Eqs. (6.22-

6.25) respectively. In the similar way, the updating rule for the widthσ
based on MCE-MSE function is

() ()()

mcejkmsejkjkjk
)1()1()()1(

2
1 +++ Δ+Δ−= ττττ σσσσ

where ()

msejk
)1(+Δ τσ has been given in Eq. (6.21). And ()

mcejk
)1(+Δ τσ can

be delivered as

()

()
() 2

(1) ()
3()1 1

()
() ()

N Jmce ik jr mce
jk j i jr

i r irjr

x c Eg x w
y

τ
τ τ

τ
σ η τ

σ
+

= =

− ∂
Δ =

∂∑ ∑
 (6.26)

where irmce yE ∂∂ is calculated using Eqs. (6.23-6.25).
More thorough tests on the MCE-MSE cost function were reported

in other published literature. Three main observations are noticed. First,
from the perspective of the classification performance, the MCE-MSE
cost function can deliver better classification result than the MSE based
method. Second, the MCE-MSE cost function exhibits faster
convergence rate than that of the MCE cost function. Even, in certain
examples, the efficiency of MCE-MSE based method is substantially
larger than that of MCE based cost function. Third, the MCE-MSE
function itself exhibits a natural property of faster convergence rate
compared with MCE cost function. It is worth noting that the enhanced
convergence rate does not require the use of complicated algorithm for
adaptively adjusting ξ , which makes it computationally efficient and
easy for implementation.

234 Neural Networks and Computing: Learning Algorithms and Applications

6.4. Feature Selection

Feature selection is an important pre-processing prior classification.
It identifies the salient features from the given feature sets for sequential
data analysis. In most practical classification and recognition problems, it
is very common that a large number of features are given while only a
fraction of them are useful to the job. For example, in the problem of
sonar signal recognition, data are collected using an array of sensors. But
there is not need to use all the collected data from all sensors to classify
the sonar signal. Feature selection is to preprocess a given dataset so that
we can obtain a smaller subset of representative features for
classification or recognition.

In a case of face recognition, it is perceived as a common sense that
increasing the number of extracted features may lead to an increase of
recognition rate. This, however, does not suggest that we may ever
increase the size of feature set, for instance, by extracting irrelevant
features. In practice, we experience that the overall performance of
recognition is degraded when the feature set is increased beyond certain
level. This is due to the problem of curse of dimensionality, which was
firstly introduced by Bellman at 1961. The issue refers to the
exponential growth of hyper-volume as a function of dimensionality.

In neural computing, the problem can be viewed from two
perspectives. First, a neural network maps an input space to an output
space. A neural network thus requires representing every part of its input
space reasonably well in order to know how that part of the space should
be mapped. Covering the input space undoubtedly requires resources. It
is noted that the amount of required resources is proportional to the
hyper-volume of the input space. Including too many irrelevant
dimensions causes a network using lots of irrelevant inputs which results
performance degradation. When the dimension of an input space is high,
a network uses virtually all its resources to represent irrelevant portions
of the space. Second, if we include more irrelevant attributes, we
increase the size of the input space. This increases the ‘distance' between
two similar instances. In the case of neural computing, a neural network
cannot tell which attributes are irrelevant or not. The network will try to
include all of them in the best possible way. This may not be a problem

 Classification and Feature Selection 235

in the learning phase but the network may experience significant problem
when it is required to generalize new unseen instances. The network
suffers from the problem of overfitting, which means it tries too hard to
represent all of the data. As a result, incorrect and highly noisy data
presented to it are also included during the network training.

We use the cDNA microarrays Colon cancer classification as an
example to illustrate the problem of “curse of dimensionality”. In the
following table, it shows the classification accuracy decreases when
more features are presented to the two classifiers.

Table 6.4 Mean Classifying accuracy Colon Tumor data of ten fold tests

No of selected
features

KNN MLP SVM Decision tree

50 0.693 0.7234 0.7412 0.6962
500 0.3774 0.6887 0.8226 0.7032
1000 0.3516 0.6758 0.7806 0.7452
2000 0.3484 Not available 0.7516 0.6613

Rather than representing the entire given input features to the output

space, feature selection is an important approach to remove the unwanted
attributes. When we are selecting the best possible feature subset for
performing classification, establishing reliable criteria for evaluating the
‘goodness’ of feature subsets is crucial. Based on the type of evaluation
criteria, feature selection models fall into two main categories – the filter
model and the wrapper model. In a wrapper model, the correct
recognition rate or error rate of classifiers is directly used for feature
selection. Using this type of criteria guarantees high accuracy, but they
are usually very computationally demanding. In filter models, various
statistics based criteria were developed to measure feature relevance, i.e.,
the relationship between features and class labels, and/or feature
dependence, i.e., the relationship among features. The principle is that
the features carrying little or no additional information beyond the
selected features are considered redundant and are discarded. There are a
number of ways for measuring the feature relevance and dependence.
These include linear dependence, correlation coefficients, consistency,
and the mutual information (MI) between the selected input variables and

236 Neural Networks and Computing: Learning Algorithms and Applications

output class labels, called MIIO. Before we can further discuss MIIO
method, background on the information theory must be included.

6.4.1. Information Theory

Claude Shannon introduced the subject of information theory in
1940's during his work on communication engineering. The
development of Information Theory is arguably to be one of the greatest
intellectual achievements of the twentieth century engineering work.
Information theory has had a pivotal contribution to the 21st century
digital communication technology. It has also had a significant impact
on applied mathematics, particularly on probability theory. Information
theory, originally developed as “A mathematical theory of
communication”, can provide us with how uncertain a random variable is
and how relevant different variables are.

6.4.1.1. Mutual Information

Mutual Information is used for determining the significance of each
feature among a given huge feature set for feature selection. But before
we move to the concept of mutual information, we need to introduce the
concept of entropy. Entropy, originated from thermodynamics, has been
extended to statistical mechanics and information theory [2]. For a
discrete distribution modeled by X = {x1, x2, ……, xN}, entropy measures
the “information” conveyed by X. The “information” means the
uncertainty or the degree of surprise for a particular value of X being
drawn. Suppose that x is a value drawn from X, and the event x = xk
occurs with probability pk, the sum of the probabilities for x = xk (k = 1, 2,
……, N) is 1, i.e., 11 =∑ =

N
k kp . In the case of pk = 1, there is no

uncertainty or surprise for x = xk. A lower value of pk increases the
uncertainty or the “information” when it is known that x = xk occur. Thus,
this “information” is generally measured by I(xk) = -log(pk). The
“information” contained by the whole event set X is called entropy
enumerated by the expected value of -log(pk), i.e.,

 Classification and Feature Selection 237

∑
=

−==
N

i
ii ppxIEXH

1
log))(()(k

 (6.27)
A large value of entropy H(X) indicates a high uncertainty about X.

When all the probabilities, i.e., pk for all k, are equal to each other, we
have the maximal uncertainty which the value in X is taken, and the
entropy H(X) achieves its maximum log(1/N). Conversely, when all the
pi except one are 0, there is no uncertainty about X, i.e., H(X)=0.

When X is a continuous variable, Eq. (6.27) will be extended to

∫−=
x

dxxxpXH)log()()(
 (6.28)

Mutual information was firstly used by Claude Shannon to describe
the dependence between two variables. The mutual information between
them is zero when the two variables are independent. On the other hand,
the mutual information between them is large when the two variables are
strongly dependent. There are, however, other interpretations of the
mutual information. It can be used to describe the stored information in
one variable about another variable. As a result, we will be able to tell
the degree of predictability of the second variable when the first variable
is known. These interpretations may appear slightly different from the
original on, but they are all related to the same issue of dependence and
correlation. Mutual information is developed to assess the relation
between two variables. Given two variables X and Y, the conditional
entropy H(Y|X) measures the uncertainty about C when X is known. And
the mutual information (MI) I(X;Y) measures the certainty about Y that is
resolved by X. Apparently, the relation of the entropy H(Y), H(Y|X) and
I(X;Y) is);()|()(CXIXCHCH += ,

or, equivalently,

(;) () (|)I X C H C H C X= −

 (6.29)
Also, it can be noted that I(X;Y) = I(Y;X). To evaluate the

conditional entropy H(Y|X) is

∫ ∫−=
x y

dxdyxypxypxpXYH)|(log)|()()|(
 (6.30)

238 Neural Networks and Computing: Learning Algorithms and Applications

The MI between X and Y is defined by Shannon as

∫ ∫=
y x

dxdy
xpyp

xypxypYXI
)()(

),(log),();(
 (6.31)

Besides, MI can be seen as the difference between the joint density
p(y, x) and the distance p(x)(y). The Euclidean MI is defined as

()∫ ∫ −=

y
e dydyppypYXI

x

2 x)()x(),x();(
 (6.32)

And based on the Cauchy-Schwartz inequality, i.e., 0
)(

log 2

22

≥
yx
yx

T ,

Principe et al extended the Euclidean MI to

2

,

,

2

,

2

),(),(

),(),(

log),(

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

∫

∫∫

yx

yxyx
CS

dxdyyxgyxf

dxdyyxgdxdyyxf

gfI
 (6.33)

where f(x, y) and g(x, y) are p(x, y) and p(x)p(y), respectively.

6.4.1.2. Probability density function (pdf) estimation

Most engineering or physical science research, implicitly or
explicitly, assume that the signal and the observation noise are well
described as Gaussian random sequences. In most machine learning
processes, the underlying probability density functions (pdf) are required
for the evaluation of MI and entropy. There are two popular ways to
estimate pdf. One is histogram, and the other is mixture model.

Hitherto, the most commonly used technique for estimating the pdf
of a continuous-valued random variable is histogram. The idea behind
histogram is simple. For a variable x, a set of events {x=x1, x=x2, …,
x=xn} is given. Histogram defines the underlying probability of x using
the appearance frequency. For example, assume that a series of values of
x is {0, 0, 1, 0, 2, 3, 2, 0}. There are totally 8 values collected from x.
Base on these values, histogram determines p(x = 0) = 4/8 = 0.5,
p(x = 1) = 1/8, p(x = 2) = 2/8, and p(x = 3) = 1/8. Generally, histogram is

 Classification and Feature Selection 239

shown as a bar graph. In Fig. 6.5, the histogram of the example is
illustrated.

x = 0 x = 1 x = 2 x = 3

0.2

0.4

0.6

Figure 6.5.

Obviously, histogram can only deal with discrete/categorical

variables. For a continuous variable, a discretization process is required.
In a 2-dimensional data space, a histogram can be constructed feasibly,
but two major problems may be experienced in a high-dimensional data
space. First, the increase of data space dimension might have
significantly degraded the estimation accuracy due to the sparse
distribution of data, especially when the size of data set is relatively
small. Second, the required memories exponentially increase with the
number of dimensions. This problem may become horrendous when one
handle a dataset with huge number of attributes, for instance, an cDNA
micrroarrays dataset with over 10 thousand features.

It is widely believed that continuous pdf estimators are more
accurate than histograms. Parzen window is a popular mixture
probability estimation model, in which all the known data points are used
as kernel centres. Given a dataset X = {x1, x2, ……, xn}, Parzen window
estimator is modeled as

240 Neural Networks and Computing: Learning Algorithms and Applications

∑∑
==

−==
n

i

n

i
h

n
p

n
xp

1
i

1
i),(1)|(1)(xxxx κ

 (6.34)
where κ is the kernel function of Parzen window, and h is the parameter
to determine the width of the window. With the proper selection of

)(⋅κ and h, a Parzen window estimator can converge to the real
probability density. The kernel function is required to be a finite-value
nonnegative function satisfying

1)(=∫

z

dzzκ
 and

0|)(|lim =
∞→

zz
z

κ
 (6.35)

The width parameter h is required to decrease until 0 with the
increase of the number of the patterns used, i.e., 0)(lim =

∞→
Nqh

Nq
.

A symmetric Gaussian function is a typical choose of κ . The
general Gaussian function in an M-dimension space is modelled as

⎟
⎠
⎞

⎜
⎝
⎛ −Σ−−

Σ
=−=− − T

i
i

M hh
hGh)xx()xx(

2
1exp

)2(

1),xx(),xx(i
1

i22/12/2ii
π

κ
(6.36)

where iΣ is determined according to the covariance of X. There are
many approaches for choosing h. In [7], for instance, it is set that

Nxh log/1= , and in [8], ())4/(1)4/(1)2(4 +−++= MM nMh , where n and M
are the number of patterns and the dimensionality of dataset X,
respectively.

6.4.2. MI Based Forward Feature Selection

Due to the difficulties in high dimensional data spaces, a forward
searching is usually adopted. An MIIO based forward feature selection
algorithm is realised as follows:

1. (Initialization) Set F← ”initial feature set”, S ← Empty;
2. Ffi ∈∀ , compute)(ifMIIO ;
3. Find the feature kf that maximizes ()iMIIO f ,

set }{ }{ kk fSfFF ←← ,\ ;
4. Repeat until stopping criterion is met;

 Classification and Feature Selection 241

5. Calculate)(ifSMIIO + for all f F∈ ;
6. Choose the feature Ff k ∈ that maximizes the)(ifSMIIO + ;
7. Set }{ }{ kk fSfFF ←← ,\ ;
8. Output the set S.

In the above process, the MIIO increases gradually. Also, the

incremental MIIO at each iteration gradually decreases to zero where all
the relevant features are selected. Using these properties, the forward
process can be stopped when the incremental MIIO is small enough
because it indicates that the features left in F contain very little additional
classification information beyond the selected feature set S.

 Hall (1999) developed a Correlation coefficient based feature
selection (CrFS) in which the feature selection criterion, sCorr is defined
as

 ff

cf
s

rmmm

rm
Corr

)1(−+
=

 (6.37)
where m is the cardinality of S, cfr is the average feature-class
correlation, and ffr is the average feature-feature correlation. In the

sCorr Eq. (6.37), the numerator indicates the predictiveness of the
feature set S; and the denominator measures the extent of redundancy
existed in S. Apparently, the higher the sCorr is, the better the feature set
for classification will be. For a given feature set, both the irrelevancy
features and the redundant features have effect on reducing the value of

sCorr . When the sCorr is determined, the relationship between the
individual features and output class labels, and the relationship between
two features are considered. Also, the correlation coefficient is a type of
linear analysis, in which the nonlinear dependence between two variables
may not be measured.

The concept of Consistency based feature selection (CsFS) was
introduced to measure the consistency of data described by the feature
set S with their class labels. syConsistenc is defined as

242 Neural Networks and Computing: Learning Algorithms and Applications

1 1

inconsistency count ()
1 1

J J
mj all
i i

i i
s

n n
Consistency

N N
= =

−
= − = −

∑ ∑
 (6.38)

where, for a feature subset S, J is the number of distinct data patterns
described by S, all

in is the number of occurrences of the ith distinct

pattern, mj
in is the largest number of occurrences of the ith distinct pattern

in the same class, N is the number of all patterns. To support that, there is
a group of n patterns in which all patterns match with each other without
considering their class labels. In this pattern group, n1 patterns belong to
class 1, n2 to class 2, n3 to class 3, where n=n1 + n2 + n3. If n3 = max (n1,
n2, n3), the inconsistency count of this pattern group is (n - n3). A higher
value of sConsistency indicates that the distribution of data patterns
defined by S is more similar to that of the class labels.

CsFS is sensitive to noise data. Also, in order to calculate the
sConsistency , continuous input variables should be discretized in a way

similar to produce histograms. CsFS suffers the same problem of
histograms that the pattern shortage substantially degrades the
performance of CsFS. It is worth noting that 1sConsistency = may
not be a reliable indication that the best feature subset is selected. In
a high-dimensional space, there are hardly sufficient matching patterns
due to the sparse distribution of data patterns. From Eq. (6.38),

1sConsistency = can be obtained because 0=− all
i

mj
i nn for any i.

6.4.2.1. MIFS and MIFS-U

Battiti (1994) and Kwok and Choi (2002) employed MIIO to select
feature. As shown in Fig. 6.6, because of the high-dimensional problems
experienced by histograms, Battiti and Kwok did not direct estimate
MIIO ();(CfSI i+) represented by the area A1+A2+A3. Instead, they
analyzed)|;(SCfI represented by the area A1 through the 2-
dimensional MI. These methods are acceptable because the area A2+A3 is
common for Ffi ∈ . To analyze)|;(SCfI represented by the area A1,
Battiti’s MIFS used

 Classification and Feature Selection 243

(;) (;)

f S

I f C I f fβ
∈

− ∑
 (6.39)

and Eq. (6.40) was used in Kwok’s MIFS-U.

(;)(;) (;)
()f S

I C fI f C I f f
H f

β
∈

− ∑
 (6.40)

H(C)

H(f) H(S)

A1

A2

A3

A4

42

23

21

);(
);(
);(

AASfI
AASCI
AAfCI

+=
+=
+=

Figure 6.6. The relation between input feature variables and output classes in terms of MI

This indirect analysis on high dimensional MI generates two major

problems, i.e., sub-optimization and no estimate on the ANSF. Also,
these methods cannot provide a principled guide to reduce the
redundancies. In Eqs. (6.39) and (6.40), the parameter β is aimed at
regulating the relative importance of MI between f and S with respect to
the MI of f with output classes. Also, β determines the capability of
handling the redundant features. Despite the importance of β , there is
no guideline provided for its selection. The selection of β is rather
problem dependent and does require strong experience.

6.4.2.2. Using quadratic MI

Given a classification task with class labels C, and the selected
feature set S, the criterion MIIO of a feature S)(∉mm ff is defined as,

244 Neural Networks and Computing: Learning Algorithms and Applications

);()(CfSIfMIIO mm +=

 (6.41)
The MISF measures the similarity between the feature subset S and

a single feature fm. The similarity between S and S)(∉mm ff can be
estimated by)I(S;fm . As addition of input variables have no effect on
decreasing the MI (Cover & Thomas, 1994),)I(S;fm has to be large
when the MI of mf with any feature in S is large. That is, if mf is very
similar to)(Sff ii ∈ , mf should be redundant to S . Hence, given a
feature set S, the MISF of)(Sff mm ∉ is defined as

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∈)(
);(

maxarg)(
i

im

Sf
m fH

ffI
fMISF

i (6.42)

When θ≥);(SfMISF m , the feature mf is considered as a
redundant feature to S. Hence, the feature mf should not be added into S
accordingly. Using the definition of entropy and MI, we have

);();()|()(mimimii ffIffIffHfH ≥+= . Hence 1≤θ with the
equality if and only if mf contains no additional information beyond

)(Sff ii ∈ . In general, θ is chosen as 0.5.
MIIO and MISF are estimated in a similar way of using the

quadratic MI and the Gaussian based density estimators. In order to
further reduce the computational complexity, a supervised data
compression algorithm (Huang and Chow, 2003) is used. This data
compression algorithm firstly clusters the whole data points {X, C} into
homogenous subgroups },...,,{ 21 NuuuuU = . Following the clustering
process, certain data points are sampled for each cluster. Let the data set

},...,,{ 21 NssxsxsxSX = be the compression result of {X, C}. For the

cluster ju , let x
jn be the number of data points in the original data {X, C}

and s
jn be the number of data points in the compressed data SX.

Obviously, we have s
j

x
j nn ≥ due to the data compression process.

 Classification and Feature Selection 245

With the data set SX, conventional Parzen window estimator
(Parzen, 1969) assumed that

 s
ip N

sxp 1)(=
 (6.43)

In order to make use of more information contained in the original
data set, different from conventional Parzen window estiamtor, we
estimate)(isxp using

 s
j

x
j

i nNx
n

sxp 1)(×=
 (6.44)

Hence, we estimate the marginal density and conditional density as

∑∑
==

Σ−==
Ns

i
iii

Ns

i
ii sxxsxpsxxpsxpxp

11
),()()|()()(κ

 (6.45)

∑∑
∈∈

Σ−==
lclasssx

iii
lclasssx

ii
ii

sxxsxpsxxpsxplxp

),()()|()()|(κ
 (6.46)

∑
∈

=
lclasssx

i
i

sxplp

)()(
 (6.47)

where },,,,,,{ 21 NllllL = is the class label set. Actually, the proposed
density estimator is a generalization of the Parzen window density
estimator. In our proposed density estimator, a symmetric Gaussian
function is chosen as kernel function. The Gaussian function in M
dimension is

1
0 0

0 0 1/2 2/2

() ()1(,) (,) exp()
2(2)

T

M

z z z zz z G z z
hh

κ
π

−− Σ −
− Σ = − Σ = −

Σ (6.48)

where Σ is determined from the variance matrix of the overall data, h is
the bandwidth of kernel function. In general, I=Σ is set. There are
many methods for choosing h. The method developed by Silverman
(1986) is used in this paper, i.e., h in Eq. (6.48) is calculated by

246 Neural Networks and Computing: Learning Algorithms and Applications

1/(4)

1/(4)4
(2)

M

Mh Nx
M

+

− +⎫⎧
= ⎨ ⎬+⎩ ⎭ (6.49)

The quadratic MI (2.6) can be extended to discrete variables as

2

222

))(),()((

))()()()(),((
log);(

dxxpxcpcp

dxxpcpdxcxp
CXI

c

cc
CS

∫∑
∫∑∫∑

=
 (6.50)

Using the property of Guassian function, the quadratic MI Eq.
(6.50), and the marginal pdfs and conditional pdfs Eqs. (6.45-6.47), we
are able to estimate MIIO with

 2
)(

)()(),(222

log);(
cx

xcxc
CS

V

VVV
CXIMIIO ==

 (6.51)

Where,

2
2

(,)
1 class class

(,) () () (,2)
i k j k

Nl

i j i jc x
l k sx l sx l

V p l x dx p sx p sx G sx sx I
= ∈ ∈

= = −∑ ∑ ∑ ∑∫

 (6.52)

2

2

2
()

1 1 class
() ()

i k

Nl Nl

k ic
k k sx l

V p l p sx
= = ∈

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 (6.53)

2

2
()

1 1
() () () (,2)

Ns Ns

i j i jx
i j

V p x dx p sx p sx G sx sx I
= =

= = −∑ ∑∫
 (6.54)

()

1 class 1 class

(,) () ()

() () () (,2)
i k i k

cx
l

Nl Ns

i j i j i
k sx l j sx l

V p l x p l p x dx

p sx p sx p sx G sx sx I
= ∈ = ∈

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

∑∫

∑ ∑ ∑ ∑ (6.55)

Only MIs between two continuous variables are required when
estimating MISF because).;()(iii ffIfH = For the input data
containing two input features af and bf , assume that the result obtained

 Classification and Feature Selection 247

by the data compression algorithm is

1 1 2 2{(,), (,),......, (,)}

s sa b a b aN bNSX sx sx sx sx sx sx=

the 2-dimensional MI);(ba ffI can be estimated with

 2
)(

)()(),(222

log);(
ba

baba

f

ffff
ba

V

VVV
ffI =

 (6.56)

where

)2,()()(

1

2

11
),(2 IsxsxGsxpsxpV qjqiji

Ns

j q

Ns

i
ff ba

−= ∑∏∑
= == (6.57)

∑∑
==

−=
Ns

j
qjqij

Ns

i
if IsxsxGsxpsxpV

q
11

)()2,()()(2

 (6.58)

2

()
1 11

() () (, 2)
ab

Ns Ns

f i j qi qj
i jq

V p sx p sx G sx sx I
= ==

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑∏

baq ,=

(6.59)

The forward feature selection is an iterative process. It begins with
an empty feature set and additional features are included one by one. The
forward feature selection process can be implemented as follows.

Step 1. Set F ← “initial feature set”, S ← Empty, the number of

selected features 0j = ;
Step 2. If cardinality (F) > 0, then compute ()iMIIO f for if F∀ ∈ ;

Otherwise goto Step 6;
End If;

Step 3. Choose the feature kf F∈ that
() arg max(())

i

k i
f

MIIO f MIIO f= ;

Step 4. Identify the redundancy:
 If ()kMISF f θ≥ , then }{\ kF F f← , goto Step 3;

Otherwise }{\ kF F f← , }{ kS f← , 1j j= + ,

()j kMIIO MIIO f= , goto Step 5;

End If;

248 Neural Networks and Computing: Learning Algorithms and Applications

Step 5. Stop the iterative process:
 If 1 1() /j jMIIO MIIO MIIO γ−− ≤ , goto Step 6;

Otherwise goto Step 2;
End If;

Step 6. Estimate the appropriate number of the selected features
(ANSF). B ANSF j≤ ≤ , where B satisfies

arg max()B i
i

MIIO MIIOλ≥ × ;

Step 7. Output the set S and ANSF.

In the above stopping criteria, γ should be as close to zero as

possible in order to assure most of the original classification information
are preserved in the selected features. Generally, 01.0=γ is considered
a small enough index for delivering satisfactory results. The parameter
λ determines the range of estimates. It is well known that the optimal
feature set is rather classifier dependent. At last, we can say that one can
use the above feature selection scheme for effectively eliminating huge
redundancy features in a huge feature set. This is useful in many
nowadays physical and engineering applications.

Exercise

Q6.1. The average entropy),(dH is a binary function. It is given
that)1(log)1(log)(22 dddddH −−−−= , determine

(a) (0.5)H ;
(b) The average entropy)(dH when the probability d is

uniformly distributed in the range .10 ≤≤ d

Q6.2. To understand the probability and conditional probability.
 Based on the following knowledge, calculate the probability that

if somebody is tall, that person must be male. It is known that the
probability of being male is P(M) = 0.5, and the probability of
being female is P(F) = 0.5. Also, it is known that 20% of males

 Classification and Feature Selection 249

are tall, that is p(T|M) = 0.2, and p(T|F) = 0.06. This question
asks you to calculate p(M|T).

Q6.3. To understand the entropy, conditional entropy and mutual

information.
To win a volleyball game, a team requires get 3 out of 5 sets.
Thus, a game comes to end once either side has won 3 sets.
Assume that we have two teams, A and B. The final result may
be AAA, ABBB, BAABB, etc. Let X be the final competition
result, and Y be the number of sets played. Also, it is known that
A and B are equally matched and the results of the sets are
independent. Calculate H(X), H(Y), H(X|Y), H(Y|X) and I(X;Y).

Q6.4. Coin flip problem. Flip a coin until the first head occur. Let X be
the number of flips conducted. Calculate the probability of X = i.
Then based on the probabilities, find H(X) in bits. The following
equations will be useful

 1 1
n

n

rr
r

∞

=

=
−∑

 and ()2
1 1

n

n

rnr
r

∞

=

=
−

∑

Q6.5. Assume that X and Y are random values respectively from

{x1,x2, …, xn} and {y1, y2, …, ym}.

a) Let Z = aX where a is a constant. Show that H(X) = H(Z);
b) Let Z = X + Y. Show that H(X|Y) = H(Z|Y);
c) Let Z = X + Y. Show that if X and Y are independent, H(Z)

≥ H(X) and H(Z) ≥ H(Y);
d) Let Z = X + Y. Given a condition (i.e., the relationship

between X and Y) in which H(Z) < H(X) and H(Z) <H(Y);
e) Let Z = X + Y. Under what condition does H(Z) = H(X) +

H(Y).

This page intentionally left blankThis page intentionally left blank

251

Chapter 7

Engineering Applications

We have provided the general framework of Neural Computing and
its related theories in the previous six chapters. In this Chapter, we aim to
demonstrate the applications of the three selected areas. The first one is
the use of feedforward neural network on a widely interested area of
time-series based forecasting problem. Many literatures on this topic are
published. In this Chapter, we introduce the way of including weather
parameters, which are considered as noises to the model, and model
selection to short term electric load forecasting problem. The second
application example is the use of Self-Organizing Map on an image
retrieval system. This is a useful and interesting application to the IT
area. The last example is about the use of feature selection method for
bioinformatics area. Bioinformatics has become a very important
research area which requires a lot of support from neural computing.
Computation intelligence methods have once again shown its versatility
and importance on gene selection and cancer diagnosis. This example
will surely provide new insight on neural computing.

7.1. Electric Load Forecasting

System load forecasting is an essential function in power system
control centers. Short-term load forecasting (STLF) is an indispensable
procedure in the real-time control of power generation and efficient
energy management systems. It is used for establishing the power station
operation plan and the unit operation plan, together with generation and
spinning reserve planning of energy exchange. Significant forecast errors
can result in either excessively conservative scheduling or excessively

Neural Networks and Computing: Learning Algorithms and Applications

252

risky scheduling that can cause heavy economic penalties. Large savings
of money and energy can be achieved if accurate load forecasts are used
to support these planning and scheduling.

Interest in applying neural network to electric load forecasting has
begun since 1990. Feedforward neural network is used to incorporate the
previous load demands, day of week, hour of day and temperature
information for load forecasting. There are other extended work
including additional input variables of a seasonal factor and
cooling/heating degree is included in a single neural network. Most
neural models treat electric load demands as a nonstationary time-series
and they modeled the load profile by a recurrent neural network.

Amongst the above neural based forecasting techniques, most of
them can be classified as nonlinear time-series approaches assuming that
the load can be decomposed into two components, namely weather
dependent factor and weather independent factor. The behavior of
weather independent load is mostly characterized by seasonal factors and
trend profiles in terms of time. The weather dependent load is often
estimated through weather variables such as the temperature, relative
humidity and wind speed.

Up to now, most neural-based techniques consider electric load
demands as “short-time” wide sense stationary. In general, load profile,
however, behaves as a nonstationary time-series, especially in
developing countries. This reason makes those techniques difficult to
provide accurate forecasts over time. Besides, those load forecast models
can be summarized in the following two equations. For static model
(feedforward neural network),

 1 2 1 2ˆ(, ,..., , , , ,...,)t l t t x p t l t t t q t lx h x x x w w w w e+ − − − + − − − += + (7.1)

and, for dynamical model (recurrent neural network),

 1 2 1 1ˆ(, ,..., , , ,..., , ,...,)t l t t x p t l t t q t t r t lx h x x x w w w e e e+ − − − + − − − − += + (7.2)

where xt is the load consumption, ltw +ˆ is the weather forecast, wt is the
weather information and et is noise residual at time t. The nonlinear
function h is nonlinearly approximated by a neural network. From the

 Engineering Applications 253

above models, the load forecast ltx +ˆ is mainly estimated based on the
current available load profile. We can rewrite Eq. (7.1) in the form of

24

1 2 1 2ˆ(, ,..., , , , ,...,)
t l t l t l

t t x p t l t t t q t l

x x x
h x x x w w w w e

+ + − +

− − − + − − − +

= + Δ
= +

 (7.3)

Because the load xt+l and xt+l-24 are highly correlated, the
deviation xt+l is commonly about 2-3% of the base load for weekdays.
Actually, our target of load forecasting is aimed at the prediction of the
deviation xt+l instead of the load xt+l. In other words, only the 2-3%
dynamic range of a neural network is used for prediction in those
models. It is difficult to have an overall forecast error less than 2% when
the data is perturbed by weather disturbance that strongly influences the
behavior of power consumption, especially in higher population areas,
such as Hong Kong, and the dynamic range of the neural network is not
fully utilized.

7.1.2. Nonlinear Autoregressive Integrated Neural Network Model

Now, we focus on a multilayer feedforward neural network (FNN)
and how it may be used to forecast hourly load consumption of the
coming day. It has been proved that an FNN can be used as a universal
function approximator (Hornik et al. 1989). A function defined on a
compact set in C[a,b] or Lp[a,b] can be approximated arbitrarily well by
an FNN with one hidden layer (Chen 1993). However, FNN does not
always provide acceptable performance in applications of time-series
prediction. In many time-series predictions, the time-series model is
always based on nonlinear autoregressive (NAR) models which is

 x h x x x et t t t p t= +− − −(, ,...,)1 2 (7.4)

The neural STLF models (Peng et al. 1993, Lu et al. 1993, Chen
et al. 1992, Djukanovic, et al. 1993, Paplexopoulos et al. 1994) can be
considered as a modified NAR model Eq. (7.1) which is given by

 x h x x x et l t t x t t l+ − − − += +(, ,..., ,)1 2 24 w (7.5)

Neural Networks and Computing: Learning Algorithms and Applications

254

and the unknown smooth function h is nonlinearly approximated by
FNN. Hence, the neural optimal predictor is given by

24

1 0 0

0 0 1

ˆ
H m

t
t l i ij t j ik k

i j k
x W W x W wσ σ+ −

= = =

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑ (7.6)

where 0≤l≤24 and the function is a smooth function bounded monotonic
function, tanh(0.5x). The vector wt of m components contains the
available weather information at time t. The parameters 0

ijW , 0
ikW and 1

iW

are the neural network weights.
For stationary time-series, the upper and lower bounds of value xt

can be estimated because the statistical characteristics of stationary time-
series are time-invariant. Based on the results of (Chen et al. 1993), the
unknown function h can be approximated arbitrarily well by FNN. In
contrast, the statistical parameters of nonstationary time-series, such as
E{xt}, are time-variant. The upper and lower bounds of value xt can
hardly be found so that the NAR model is not the most appropriate
model for neural time-series prediction of nonstationary time-series. To
obtain accurate load forecasting, the most appropriate model must be
identified in accordance with the nature of load consumption. The
electric load consumption is actually nonstationary. A modified
Nonlinear AR integrated (NARI) model is used for STLF. Several
important weather factors are also included in the model because weather
variation is one of the crucial disturbances to electric load demand.
Consequently, the modified NARI model for STLF is given by

 1 24
ˆˆ (,..., ,)t l t l d t t t t lx x h x x e+ + − − − += + +w (7.7)

and the neural optimal predictor is then formulated by

24

1 0 0

0 0 1

ˆ
H m

t
t l t l d i ij t j ik k

i j k
x x W W x W wσ σ+ + − −

= = =

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑ (7.8)

where 0≤l≤24. The weather information vector wt contains the following
components:

 Engineering Applications 255

a. Temperature:
Current day: 24 hourly temperatures, maximum temperature,
minimum temperature, mean temperature.
Next day (forecast): maximum temperature, minimum
temperature.
Temperature is the most important weather variable. System load
is rather sensitive to temperature changes. Large system load
change occurs at the time with large temperature rise and fall.

b. Relative Humidity:
Current day: 24 hour relative humidity
In summer, for a given range of temperature, relative humidity is
significant in affecting the utilization of air conditioning. In
addition, sky cover and probability of rain can be related to the
relative humidity.

c. Rainfall:
Current day: rainfall
Rainfall is the other crucial parameter affecting system load. It
has never been addressed in other works. In Hong Kong, rain is a
common phenomenon, especially in summer. It directly affects
air conditioning load and lighting load because relative humidity
and sky cover are all related to rainfall.

d. Sunshine:
Current day: sunshine
Sunshine is an index measuring the degree of sky cover that
directly affects lighting load consumption.

The architecture of the neural network model is illustrated in Fig.

7.1(b). The structure of the modified NAR model for STLF is also
depicted in Fig. 7.1(a) Compared to the weather dependent component of
electric load, the weather independent component, in fact, exhibits low
frequency characteristics. According to Eq. (7.8), the low frequency
weather independent component can be excluded because the operator

d
tx∇ behaves as a high-pass filter. Hence, the NARI neural network

model is called a weather compensation neural network because the
weather dependent component will only be determined using weather
information and load consumption of the previous day.

Neural Networks and Computing: Learning Algorithms and Applications

256

... ...

.

x
t+l

x x x
t-1 t-2 t-r

w w
t t
1 m

81
hidden
neurons

Figure 7.1. (a) The architecture of modified Nonlinear AR (NAR) model for neural short-
term load forecasting

... ...

.

Σ
x

t+l-d

xt+l

Δx
t+l

x x x
t-1 t-2 t-r

w w
t t
1 m

81
hidden
neurons

Figure 7.1. (b) The architecture of weather compensation neural network (modified
NARI model)

 Engineering Applications 257

7.1.3. Case Studies

Case studies were carried out for a one-day ahead forecasting of
hourly electric loads of weekdays using historical data on Hong Kong
Island. The results were analyzed based on the following indices:

Standard Deviation:

 ()2

1

1 ˆ
N

i i
t t

i
x x

N
σ

=

= −∑ (7.9)

Percentage Error:

1

ˆ1 100
i iN
t t

i
i t

x x
N x

ε
=

−
= ∑ (7.10)

Two different neural network models of NAR, Eq. (7.6) and NARI,
Eq. (7.8) are established using FNN with a single hidden layer. For
simplicity of terminology, NAR stands for neural network NAR model
while NARI represents neural network NARI model. An adaptive
backpropagation learning algorithm of extended backpropagation
described in Chapter 2 is used because this algorithm can significantly
speed up the training speed by adaptively tuning the learning rate and the
momentum factor. The same structure of FNN with 81 hidden neurons is
applied to these two load models for one-day ahead hourly load
forecasting. The 24 hour load consumption of the previous day as well as
the weather information is used as input variables.

The influence of weekends and standard holidays on the load is not
considered in the STLF. Before the NARI neural network model is built,
the parameter d has to be estimated. The selection of parameter d is
based on the criterion of minimizing { }d

tE x∇ . The value of

{ }d
tE x∇ is directly related to the correlation between xt and xt-d

because { }d
tE x∇ will be smaller if xt and xt-d are more correlated.

Therefore, d is estimated based on the correlation between xt and xt-d.

Neural Networks and Computing: Learning Algorithms and Applications

258

Figure 7.2. The scatter plot (a) between loads xt and xt-24 (b) between loads xt and xt-12 (c)
between loads xt and xt-48

200

700

1200

1700

200 700 1200 1700

load Xt (100 MW)

lo
ad

 X
t-2

4
(1

00
 M

W
)

(a)

200

700

1200

1700

200 700 1200 1700

load Xt (100 MW)

Xt
-1

2
(1

00
 M

W
)

(c)

(b)

200

700

1200

1700

200 700 1200 1700

load Xt (100 MW)

lo
ad

 X
t-4

8
(1

00
 M

W
)

 Engineering Applications 259

The scatter plot of xt and xt-d enables the correlation between the two
variables to be found. As a result, whether xt and xt-d are linear or
nonlinear correlated, the correlation can then be visually determined. In
Fig. 7.2(b), the points between xt and xt-12 scatters all over the diagram,
which implies xt and xt-12 are not correlated. Apparently, Figs. 7.2(a) and
7.2(c) indicate that they are more correlated. Compared to Figs. 7.2(a)
and 7.2(c), xt and xt-d in Fig. 7.2(a) appears to be the most correlated.
Hence, the parameter d is chosen to be 24. In our investigation, the load
demands of weekdays from March 12 to August 26, 1992 were used for
testing while the load demands of weekdays in 1991 were used for the
training set. Figs. 7.3 to 7.4 show the results of model NAR and NARI
respectively. Fig. 7.3 illustrates the weather effect on the daily load
profile which is defined by the following equation

24

1

1

1 100
24

i i
t t

w i
i t

x x
E

x
−

=

−
= ∑ (7.11)

Due to the seasonal transition, the load profile from day 5 to day 20
changed severely as shown in Fig. 7.3. NAR and NARI can predict load
consumption with acceptable accuracy during this interval. Outside the
seasonal transition, NAR, however, cannot provide more accurate
forecast as illustrated in Figs. 7.3 and 7.4. In contrast, Figs. 7.3 and 7.5
manifest that NARI can forecast the electric load at comparable accuracy
compared to the case for seasonal transition. Table 7.1 summarizes the
overall percentage errors. NARI can provide the most accurate load
forecast and the overall percentage error is 1.755 for the forecasts of 24-
hours ahead. The overall percentage error of STLF using NARI can be
reduced by 0.65%.

0
1
2
3
4
5
6

0 5 10 15 20 25 30 35 40

time (day)

Ew

Figure 7.3. The effect of load change due to the weather change

Neural Networks and Computing: Learning Algorithms and Applications

260

0
1
2
3
4
5
6

0 5 10 15 20 25 30 35 40

time (day)

%
 E

rr
or

Figure 7.4. Percentage error of load forecast using neural network NAR model

0
1
2
3
4
5
6

0 5 10 15 20 25 30 35 40

time (day)

%
 E

rr
or

Figure 7.5. Percentage error of load forecast using neural network NARI model

Table 7.1 Comparison of forecasting results for March 12 - August 26, 1992

 NAR NARI

overall % Error 2.492 1.755

It must be noted that the target of load forecasting is only aimed at

the prediction of the small deviation Δxt+l instead of the load xt+l based on
Eq. (7.3). In model NAR, only the 2-3% dynamic range of FNN is used
for prediction. Apparently, the overall forecast error can hardly be less
than 2% when the data is perturbed by the weather disturbance that
strongly influences on the behavior of power consumption, especially in
Hong Kong. The neural network model can utilize the whole dynamic
range of the output for forecasting the target Δxt+l. From Table 7.2, the
standard deviation of forecast error of NARI can significantly be reduced
in almost all time slots by 1190 MW, which is about 0.7 % of the peak
load.

 Engineering Applications 261

Table 7.2 Comparison of forecasting results of each hour

 NAR NARI NARI (136-1)
hour % Error St.Dev. /100 MW % Error St.Dev. /100 MW % Error St.Dev. /100 MW

1 1.522 11.607 1.274 11.134 1.214 11.479
2 1.870 14.068 1.181 9.303 1.059 8.457
3 2.302 18.393 1.391 11.335 1.280 10.215
4 2.198 15.356 1.229 8.654 1.275 9.512
5 2.268 18.014 1.353 9.545 1.348 9.509
6 2.044 19.032 1.308 9.366 1.354 9.767
7 1.157 14.256 1.747 16.361 1.417 13.051
8 1.138 19.399 1.298 18.138 1.371 17.824
9 2.168 36.059 1.763 27.909 1.314 22.063
10 2.789 49.709 1.719 28.621 1.139 21.040
11 2.916 52.315 1.733 30.518 1.188 22.101
12 3.224 60.484 1.946 34.929 1.271 24.643
13 2.864 55.318 1.549 29.621 1.366 24.637
14 2.805 52.329 1.801 33.888 1.283 25.867
15 2.626 50.027 1.707 33.280 1.483 27.379
16 2.792 52.377 1.949 37.454 1.489 28.359
17 2.853 50.874 1.443 28.310 1.418 25.561
18 2.262 37.006 1.807 31.220 1.685 28.139
19 2.875 43.099 2.075 34.141 1.785 28.673
20 2.819 41.576 2.133 33.299 1.882 31.244
21 2.716 37.533 2.215 32.991 2.014 30.564
22 3.338 41.282 2.312 34.541 1.950 30.979
23 3.296 36.489 2.538 31.960 2.195 28.631
24 2.956 35.043 2.642 29.287 2.324 25.566

overall 2.492 39.051 1.755 27.146 1.504 22.856

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40

time (day)

%
 E

rr
or

 10 - 1
 20 - 1
 136 - 1

Figure 7.6. Comparison of percentage error for different sizes of moving window using
neural network NARI model

Neural Networks and Computing: Learning Algorithms and Applications

262

The characteristic of electric load consumption gradually changes
because of many uncontrollable factors. The weather compensation
neural network (NARI model), without keeping track of the change of
load characteristic, will degrade the forecasting performance in later
years. An adaptive tracking scheme can be employed so that the weather
compensation neural network can be retrained every day. This scheme
can efficiently update the neural network to adapt the changing
conditions of the environment. Further details on this issue can be
referred to other literatures.

7.2. Content-based Image Retrieval Using SOM

Content-based image retrieval (CBIR) is one of the effective
techniques for retrieving semantically relevant images from unlabelled
image data sets based on automatically extracted features. It has been an
ongoing research subject for more than a decade (Rui et al. 1999). It
usually retrieves relevant images based on the image comparison of
visual contents, such as color, texture, shape, structure, etc. A region-
based CBIR system using a growing hierarchical self-organizing
quadtree map (GHSOQM) is described. Each image in the CBIR system
is first segmented into several regions. Each region has similar features
for colors and textures. Each image is thus represented by a region-based
feature matrix. Different images may have different number of regions.
As far as we are aware, there, hitherto, has not been a definition of
feature matrices for neurons in neural networks. All neurons in
GHSOQM have a fixed number of row vectors in feature matrices, which
mean that all neurons represent images with fixed number of regions in
feature space. A new criterion for image distance can be applied to
region-based representation of images. GHSOQM organizes images in
hierarchical levels. Since SOM usually defines an elastic topology-
preserving net stretched in the input space, high-dimensional images can
be arranged in a 2-D grid at different precision level in GHSOQM.
Images belonging to neighboring neurons have similar semantic
meanings in an SOM at the same level. Dead or useless neurons at each
of the hierarchical level are removed. This is significant because the

 Engineering Applications 263

storing space for neurons is saved and searching time can be significantly
speeded up. Coupled with relevance feedback technique, the CBIR
system can achieve a good retrieving result.

7.2.1. GHSOQM Based CBIR Systems

7.2.1.1. Overall Architecture of GHSOQM-Based CBIR System

All images are processed by the same feature extraction method.
Each image is first segmented into several similar regions, such as by the
JSEG algorithm (Deng et al. 1999). The characteristic features, i.e.,
colors and textures, are extracted for each region of an image. After all
available images are processed; GHSOQM is trained by using region-
based feature vectors for images. After completion of training, all images
are first assigned to the SOM at the first level according to the nearest
distance. Then the images assigned to a neuron at the first level are
assigned to the child neurons of the neuron. The assignment process
proceeds until the leaf neurons are assigned with images. After
completion of image assignment to neurons, the GHSOQM-based CBIR
system is ready for query or retrieval. The image retrieval procedure can
be described as the following steps:

Step 1) A submitted query image is processed to extract region-based

features.
Step 2) The CBIR system first finds a nearest neuron at the top level of

GHSOQM.
Step 3) If the number of associated images in the nearest neuron exceeds

a prespecified minimum number λ , find a nearest child neuron of
the nearest neuron at the next bottom level.

Step 4) Repeat the step 3 until the found neuron is associated with the
least number of images that is still more than the prespecified
number λ . The last found neuron is a target one for next steps.

Step 5) Directly compare the distance between the query image and the
target neuron by region-based features. Sort the images by
distance with an ascending order and provide them to users.

Step 6) Users select some retrieved images as relevant ones. This
information is feedback to front-end of the CBIR system. The

Neural Networks and Computing: Learning Algorithms and Applications

264

old query is then modified to a new one according to the users’
feedback. And the new query is supposed to retrieve more
relevant images. This step is called relevance feedback (RF). RF
is usually iterated for several times.

The architecture of GHSOQM-based CBIR system is shown in Fig.

7.7. Note that the CBIR system uses a hierarchical structure by
GHSOQM to organize images and GHSOQM must be first trained by
using all images. Retrieval processes in some CBIR systems, e.g.,
SIMPLIcity (Wang et al. 2001), directly compare query image with all
images. It uses a flat structure and does not require any training. The
extra work by GHSOQM is compensated by a faster retrieval time.

Figure 7.7. Architecture of GHSOQM-based CBIR system

7.2.1.2. Image Segmentation, Feature Extraction and Region-Based
Feature Matrices

JSEG algorithm (Deng et al. 1999) is an algorithm for image
segmentation. JSEG first quantizes colors in an image and generates a
class map. Based on the class map, JSEG finds a good segmentation with
coarse or precise resolution by using a criterion for goodness of
segmentation.

After image segmentation we can perform feature extraction for
each region of an image. Thirteen features are extracted for each region,
i.e., six for colors, six for textures and one for region percentages of
images. We compute the average and standard deviation of the L, a and b
components in Lab color space for each region of an image. We denote
the average of L, a and b as 1 2 3, , and f f f , the standard deviation of L, a

 Engineering Applications 265

and b as 4 5 6, , and f f f . For texture features, the following three
variables for a 4 4× block in an image as used:

2 2
2

1 1
() / 4ij

i j
a a

= =

= ∑∑ ,
2 2

2

1 1

() / 4ij
i j

b b
= =

= ∑∑ ,
2 2

2

1 1
() / 4ij

i j
c c

= =

= ∑∑ (7.12)

where 11 12

21 22

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 11 12

21 22

b b
b b
⎡ ⎤
⎢ ⎥
⎣ ⎦

and 11 12

21 22

c c
c c
⎡ ⎤
⎢ ⎥
⎣ ⎦

 are the coefficients of Haar

wavelet transform for LH, HL and HH band, respectively (Wang et al.
2001). After wavelet transformation, we just assign the three variables to
each pixel of the block. Then we compute the average and standard
deviation of the three features a, b and c for each region. We denote the
average of a, b and c as 7 8 9, and f f f , the standard deviation of a, b and c
as 10 11 12, and f f f . The last feature 13f is the region percentage of an image.

So an image x can be denoted by region-based features matrix
1

...

x

x
n

R

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, where ,1 ,12[,...,]x x x
i i iR f f= (i=1,…,n) is a row feature vector

representing the ith region of the image x, n is the number of regions in
the image. Different images may have different number of regions. For
the sake of convenience, a neuron in the GHSOQM-based CBIR system
is represented by a feature matrix with a fixed number of rows, which
means a fixed number of regions.

7.2.1.3. Image Distance

Since the representation of an image is a feature matrix, we defined
a distance measure in order to compare the dissimilarity of two images.
In this study, images are compared with direction from query image to
other images. The weight assignment for each region of an image is just
the region percentage of the image.

Suppose we have two images A and B. Image A have n regions and

image B has m ones. The corresponding representing matrix are
1

...

A

A
n

R

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Neural Networks and Computing: Learning Algorithms and Applications

266

and
1

...

B

B
m

R

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, where A
iR is the row feature vector of the ith region of image

A and each component of all feature vectors are normalized to lie in
[0 1]. The region distance between and A B

m nR R is defined as the
following:

1/23 6 9 12

2 2 2 2
1 , , 2 , , 3 , , 4 , ,

1 4 7 10

() () () ()A B A B A B A B
mn mi ni mi ni mi ni mi ni

i i i i
d w f f w f f w f f w f f

= = = =

⎛ ⎞= − + − + − + −⎜ ⎟
⎝ ⎠
∑ ∑ ∑ ∑ (7.13)

where 1w to 4w are the weights to colors and textures. The weights are

chosen such that 1 3 4 21, and 0.5w w w w= = = = . With this selection
of weights for colors and textures, image retrieval results are satisfactory.

The distance from image A to B is described as the following steps.
Step 1) Compute the distance matrix D, where mnd is the element in mth

row and nth column of the matrix and denoted by Eq. (7.13).
Step 2) Find the minimum value in each row of the matrix D and denote

iD as the minimum of ith row of D.
Step 3) Compute the weighted average for distance from image A to B:

 ,13
1

Distance(A,B) =
n

A
i i

i
f D

=
∑ (7.14)

The above distance of two images can be illustrated in Fig. 7.8.
First find the nearest regions from image A to B. The nearest
regions are connected in Fig. 7.8. Then the distance from image
A to B is

 1,13 13 2,13 22Distance(A,B) = A Af d f d+

7.2.1.4. GHSOQM and Relevance Feedback in the CBIR System

The GHSOQM algorithm is used in the CBIR system. Images and
weights of neurons are represented by feature matrices. A large number
of computations in GHSOQM is to find the nearest neurons to retrieve

 Engineering Applications 267

images. As mentioned before, a neuron i represents an image at time t

by
1 (t)
...
()

i

i
i
r

R
w

R t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, where r is the fixed number of regions. The distance

from an image A to neuron i (with weight matrix iw) is the same function
as Eq. (7.14):

 ,13
1

Distance(A,) =
n

A
i i

i
f D

=
∑ . (7.15)

where iD is the minimum value in the ith row of the distance matrix D
between image A and neuron i.

The weight updating for neurons must be modified in the CBIR
system because of the matrix representation of images. The weight
updating now is the following steps:

Step 1) Find the nearest regions of an updating neuron k from a query

image
1

...

x

x
n

R
x

R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

at time t. The found regions of the neuron are

arranged with order in a matrix

1 ()
..
()

k

k
n

R t

R t

′⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥′⎣ ⎦

 corresponding to the

regions of x. Note that the found regions may repeat such that
()k

iR t ′ and ()k
jR t ′ are the same as a region of the neuron k.

Step 2) Update the neuron by:

 (1) () () (()), 1,...,k k x k
i i kc i iR t R t t h R R t i nε′ ′ ′+ = + − = (7.16)

 where kch is the neighborhood function , x
iR is the feature vector

of the ith region of the query image x, ()k
iR t ′ is the feature vector

of the nearest region in neuron k at time t from the ith region of
the query image x.

Neural Networks and Computing: Learning Algorithms and Applications

268

For example, a query image x has three regions
1

2

3

x

x

x

R
R
R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and an

updating neuron k have four

1

2

3

4

k

k

k

k

R
R
R
R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. As shown in Fig. 7.9, the

corresponding nearest regions of the neuron from the query image are

2

3

3

k

k

k

R
R
R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

with order. The weight updating is

2 2 1 2

3 3 2 3

3 3 3 3

(1) () () (())

(1) () () (())

(1) () () (())

k k x k
kc

k k x k
kc

k k x k
kc

R t R t t h R R t
R t R t t h R R t
R t R t t h R R t

ε

ε

ε

+ = + −

+ = + −

+ = + −
 (7.17)

Note that the region 3 of the neuron k is updated twice because it is
the nearest region from the region 1 and 3 of the query image.

Assume the query image has a feature matrix
1

...

x

x
n

R
x

R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. The

retrieved images are classified as relevant images 1{ ,..., }YY Y Y= and

irrelevant images { }1,..., ZZ Z Z= . For image iY , find the nearest regions

from the regions of the image x and denote them as a matrix
1

...
i

i

in

Y
Y

Y

⎡ ⎤′
⎢ ⎥

′= ⎢ ⎥
⎢ ⎥′⎢ ⎥⎣ ⎦

,

where ijY ′ is the nearest region of image iY from the jth region of the
query image x. Similarly, the nearest regions from the image x are

 Engineering Applications 269

denoted as a matrix
1

...
i

i

in

Z
Z

Z

′⎡ ⎤
⎢ ⎥′ = ⎢ ⎥

′⎢ ⎥⎣ ⎦

for each iZ . Then the new query matrix is

modified by

 (1) () , 1,...,
k k

x x
i i ki ki

Y Y Z Z
R t R t Y Z i n

Y Z
β γα

∈ ∈

′ ′+ = + − =∑ ∑ (7.18)

where , and α β γ are parameters controlling the relative weighting of
current query image, relevant images and irrelevant images, respectively.

1 2

1 2 3

Image A

Image B

13d

22d

Figure 7.8. Illustration of image distance by the GHSOQM-based CBIR system

1 2

1 2 3

Query
image

Updating
neuron

13d
22d

3

4

33d

Figure 7.9. Illustration of nearest regions of an updating neuron from a query image

Neural Networks and Computing: Learning Algorithms and Applications

270

7.2.2. Performance Evaluation

In this experiment a database of one thousand images were used to
test the effectiveness of the CBIR system. The number of fixed regions
for representing a feature image of one neuron is set to 10. After image
retrieval, users select relevant images with several rounds of relevant
feedback iterations. The next new query by RF leaves out already
selected images. And all selected images are always listed on the top
rank.

Figure 7.10. Ten sample images with one sample image in each class. The name of an
image is shown on the top of the image

In this data set, 1000 images from (Wang et al. 2001) are chosen to

test the system. The images have ten classes, each of which contains 100
pictures. The sizes of the images are 384 256× or 256 384× . Ten sample
images with one sample image in one class are shown in Fig. 7.10. The
parameter τ for GHSOQM training was set to 20, which means that a
neuron must generate its child neurons if the number of images
belonging to it is more than 20. Another parameter λ for the retrieval
process was set to 20, which means that the least number of a target
neuron for image retrieval is more than 20. Furthermore, the
implemented GHSOQM-based CBIR system only shows the first 20
images to users. After completion of training GHSOQM, the CBIR
system was ready for testing.

Firstly the CBIR system requires training for GHSOQM. The
average training time by GHSOQM is 1890 seconds for the 1000 images.
The querying time of the GHSOQM-based is faster than that of direct
query method that compares a query image with all other images of the

 Engineering Applications 271

database. The average search time of GHSOQM-based query for one
image is 3.08 seconds and direct query is 7.25. As shown in Fig. 7.11,
the proposed query is much faster than direct query because the
hierarchical structure of images and the additional training before
querying.

Figure 7.11. Comparison of query time between GHSOQM-based query and direct query

The recall-precision graph is used to evaluate the retrieval results.

Precision P is defined as the following:

 () /kP k n k= (7.19)

where k is the number of retrieved images and kn is the number of
relevant images in the retrieved images. Recall R is defined as

 () /kR k n N= (7.20)

where N is the number of all relevant images in the data set. An optimal
recall-precision graph would have a straight line, i.e., precision always at
1. Typically, when recall increases, precision decreases. Since the system
only shows the first 20 images, the maximum value of recall is 0.2. The
aforesaid 10 sample images from all classes are used and tested the
performance of GHSOQM-based query and direct query. The recall-
precision graphs are plotted in Fig. 7.12. GHSOQM-based query and
direct query have similar query performance. The recall-precision graphs
of some images are optimal at the recall interval [0 0.2], i.e., buses,

Neural Networks and Computing: Learning Algorithms and Applications

272

dinosaurs and flowers. This is because the objects in these classes have
simpler color distributions. The performance for the images from other
classes is degraded because the objects in the images have more complex
color distributions.

(a) (b)

(c) (d)

(e) (f)

 Engineering Applications 273

(g) (h)

(i) (j)

Figure 7.12. Recall-precision graphs for GHSOQM-based query and direct query on the
10 images (a) 097.jpg (African people and village) (b) 173.jpg (beach) (c) 219.jpg
(building) (d) 325.jpg (buses) (e) 411.jpg (dinosaurs) (f) 586.jpg (elephants) (g) 672.jpg
(flowers) (h) 788.jpg (horses) (i) 861.jpg (mountains and glaciers) (j) 906.jpg (food)

7.3. Feature Selection for cDNA Microarray

In this section, we describe how feature selection technique
described in Chapter 6 be applied to bioinformatics problem.
Microarrays are a powerful biotechnological means because they are able
to record the expression levels of thousands of genes simultaneously.
Through hybridizing the fluorescent DNA probe of an examined sample
with that of a reference cell, the mRNA levels of the genes in the
examined sample are obtained. Since the mRNA levels are roughly

Neural Networks and Computing: Learning Algorithms and Applications

274

related to the amount of protein product, the obtained microarray result
can be used to express the “state” of the examined sample. Generally,
different cells or a cell under different conditions yield different
microarray results. The comparisons of microarray results between
normal and cancer cells can provide the important information of cancer
diagnosis and treatment. Among a large amount of genes encoded in the
microarray gene expression data, only a very small fraction of them are
informative for a certain task. A very challenging task arises as a result –
how to select the most useful features (genes) for performing data
analysis such as diagnosis, prognosis, subtype classification of a
heterogeneous disease and understanding of a gene network. The gene
selection is important and sometimes necessary because of two main
reasons. First, it is impossible for biologists or physicians to examine the
whole feature space (e.g. the genes in human genome) in the laboratory
experiments at one time. It is necessary to recommend a small fraction of
the features by using computational algorithms. Second, it is widely
known that taking many irrelevant features into account amid the course
of classification will increase the dimensionality of the problem, and thus
results an unnecessary computational difficulties and additional noise.

In this section, we describe combining the quadratic MI based
feature selection method with a grid based clustering algorithm, called
QMIFS-GC in short in this section, for performing gene selection. The
method consists of two sequential parts:

1) A supervised QMIFS-GC algorithm is used to sort out and
discard the highly redundant features. As a result, the computational
efficiency of the whole feature selection process is greatly improved
without reducing the quality of the selection results.

2) In the MI based forward selection stage, the quadratic MI
estimation and Gaussian based probability estimators is employed. With
them, MI can be estimated effectively even when only a small pattern set
is available. Also, we can use a MI based criterion to filter out the
redundant features. Finally, the direct MI estimation enables us to
terminate the selection process at an appropriate point where the selected
gene subset has preserved the most essential information of the given
microarrays dataset.

 Engineering Applications 275

7.3.1. MI Based Forward Feature Selection Scheme

The forward searching strategy described in Chapter 6 is used
because of its simple implementation and its relative high efficiency.
First let us consider the microarrays problem as a general classification
dataset {X; C}, in which the feature set is denoted by F, a MI based
forward feature selection algorithm is generally realised as follows.

(Initialization) Set the selected feature set S empty.
For any feature (say, fi) in F, compute the MI I(fi ;C).
Determine the feature that maximizes I(fi ;C). Add hat feature into S,

and delete it from F.
Repeat the following two steps until stopping criterion is met
Calculate I(S+fi ;C), for any feature (say, fi) remaining in F.
Choose the feature that maximizes I(S+fi ;C). And put that feature

into S, and eliminate it from F.
Output the selected feature subset S.

In the above processes, the MI between S and the output variable C

increases gradually because the adding of input variables cannot decrease
MI. The incremental MI gradually decreases to zero when all the relevant
genes (features) are selected. Assume that fa is a selected gene at certain
iteration (say ith iteration), S is the selected gene subset before this
iteration. The incremental MI at ith iteration is the conditional MI
I(fa;C|S). Assume that fb is the next selected gene, the incremental MI of
the (i+1)th iteration is I(fb;C|S+fa). In the above process,

 (; |) (; |)a bI f C S I f C S> (7.21)

Based on the definition of the conditional MI, we have

),|;()|;(),|;()|;(abaabb fSCfISCfIfSCfISCfI ≥+= (7.22)

With Eqs. (7.21) and (7.22), we have I(fa;C|S) > I(fb;C|S+fa). This
inequality suggests that the incremental MI decreases in the above
searching process. As a result, the forward process can be reliably
terminated when the incremental MI is small enough implying the
unselected genes at that point contain little additional information for
cancer diagnosis. The small sample set and huge gene set of a microarray

Neural Networks and Computing: Learning Algorithms and Applications

276

gene expression data poses two main challenges to the above MI based
feature selection scheme. First, a relatively small sample set makes the
estimation of high-dimensional MIs much harder. Second, a large
amount of genes leads to a remarkably huge computational burden.
These difficulties must be addressed.

7.3.2. The Supervised Grid Based Redundancy Elimination

In a microarray dataset, many redundant genes exist. Filtering out
those redundant genes efficiently before performing feature selection will
greatly enhance the computational efficiency. Simply using other
conventional gene clustering methods to reduce the redundancy is very
computationally demanding. Alternatively, based on the concept of grid,
a simple and fast algorithm can identify redundant genes in an efficient
way. In details, the basic concept of the grid-based redundancy
elimination algorithm is that objects in a grid must be similar to each
other when the size of that grid is small enough. Due to the sparsity in
the high-dimensional spaces, the size of the grid becomes critical. In
order to enhance the performance of robustness, an adaptive grid size,
rather than a fixed grid size, is used. Using the property of MI ranking,
only the features with close MI values are checked if they are within the
grid. For a considered feature f, if a feature has similar MI value to f and
falls within the grid around f, it will be removed as a redundant feature.

At the beginning of the clustering process, the MI of each gene with
output variable is estimated as described in the last chapter. With these
estimates, the discrimination abilities of genes are evaluated. Clustering
is performed on each gene in a descending order of the MI estimates
unless the ones are marked as redundant one. In each iteration, an
adaptive grid is generated around the considered gene and only genes
with the acceptable MI values are checked. The grid size starts at the
maximum distance different in a dimension and changes until the number
of redundant genes is within the pre-defined range, GridNumRange. The
number of genes is defined by the user or determined according to the
MI estimate differences. There are two types of input parameters: 1) the
number of genes within the grid, GridNumRange, and 2) the number of
genes for checking redundancy, RedNum. The number of genes within

 Engineering Applications 277

the grid should be given to guide the changing of the grid. The number
of genes for checking redundancy could be defined by fixing the number
of genes directly or input the acceptable MI difference, which is used to
determine the number of genes for redundancy check. The changing of
the grid size depends upon the number of redundant genes. This QMIFS-
GC algorithm is realized as follows.

7.3.3. The Forward Gene Selection Process Using MIIO and MISF

As illustrated in Fig. 7.13, the gene selection method consists of two
sequential processes – the supervised QMIFS-GC process, and the MI
based forward feature selection process. Suppose that R is the result of
the grid-based redundancy elimination. In the MI based forward process,
the genes (features) in R are firstly ranked in a descend order of MIIO.
The gene satisfying two constraints – having as the large MIIO as
possible and not being redundant to the selected gene subset (determined
by using MISF) – is identified and placed into the selected gene subset S.
This process repeats until no unselected important gene is found. Using
R, the forward selection process can be stated as follows.

Step 1. R is the result of the above clustering process. And the selected

gene set (S) is set empty.
Step 2. Calculate MIIO(f) for each gene f in R. According to MIIO(f),

sort out the most important gene, fk. Put fk into S, delete fk from
R, and set MIIO1 = MIIO(fk).

Step 3. Estimate)(fSMIIO + for each gene f remaining in R.
Step 4. Identify fk. having))((maxarg)(iik fSMIIOfSMIIO +=+ , and

delete fk. from R.
Step 5. If the candidate feature fk is not redundant to S,

i.e., ≤);(SfMISF k 0.9, put fk into S, set MIIOj = MIIO(S) (j is the
number of the features in S), otherwise, goto Step 4.

Step 6. If (MIIOj - MIIOj-1) / MIIO1 γ≤ , goto Step 7, otherwise, goto
Step 3.

Step 7. Output the gene subset S.

Neural Networks and Computing: Learning Algorithms and Applications

278

The threshold in the stopping criterion γ is set with 0.05. With
γ = 0.05, we know that the information beyond the selected gene subset
is small enough to be ignored.

7.3.4. Results

In this section, we illustrate how the quadratic MI combining with a
grid based clustering method be used for selecting genes. This method is
also compared with other two selection methods, one is called FR for
short in this section, and another one is called the SVM RFE. Assuming
that all genes are independent to each other, FR ranks genes according to
the individual linear discriminant ability. To rank the genes, SVM RFE
depends on SVM, a state-of-art classification model: SVM RFE firstly
builds a linear SVM model using all the genes, and then according to the
parameters of the built SVM model it ranks genes in a descending order
of classification importance. Through discarding low-ranked ones, the
current gene set is reduced by half. The process of building-SVM-
discarding-half-of-genes repeats until no gene remains. We also
demonstrate the QMI based feature forward selection method (QMIFS),
which conducts the forward feature selection on the whole gene set.
There is no grid-based clustering for pre-processing. Four different types
of classifiers are used to evaluate the gene selection results. They are
two types of support vector machine models (SVM), decision tree (DT)
and k-NN rule. Decision tree and k-NN rule are available in the Weka
software package (at http://www.cs.waikato.ac.nz/~ml/weka). Following
Guyon, we downloaded SVM model from
http://www.isis.ecs.soton.ac.uk /resources/svminfo, and used two types
of SVM models – the linear SVM model (SVM-L) and the RBF SVM
model (SVM-R). When all these classifiers achieve the best or the near-
best performance before the stopping points, it is assumed that the
selection results have covered most of the important information.

 Engineering Applications 279

original feature set F

any important
feature left in F?

fk is similar to S
in terms of MISF?

Stop?

Representation feature set R = {}

Select the most important feature fm in F based on the MI estimates

Put fm into R & Delete the features redundent to fm from F

The candidatate feature set R
Selected feature set S = {}

Select the most salient feature fk in R
on the basis of MIIO

Delete fk from R

Put fk into S

Output S

Supervised
feature clustering

y

n

Feature
selection

y

n

y

n

Extract features around fm for redundancy checking
based on the window value and initial grid size

Is the number
of redundent features less than the

user-defined value

y

n
Change the grid size

Figure 7.13. The block diagram of the QMIFS-GC method

Neural Networks and Computing: Learning Algorithms and Applications

280

7.3.4.1. Prostate Cancer Classification Dataset

The objective of this task is to distinguish prostate cancer cases
from non-cancer cases. The original raw data are published at
http://www.genome.wi.mit.edu/mpr/prostate. This dataset consists of 102
samples from the same experimental conditions. And each sample is
described by using 12600 features. We split the 102 samples into two
disjoint groups – one group with 60 samples for training and the other
one with 42 samples for testing.

First, QMIFS and the grids based MI method select the best 50
genes. These selected genes are compared with those obtained from FR
and SVM RFE in terms of efficiency and effectiveness as shown in Fig.
7.14 and Table 7.3 respectively.

0

500

1000

1500

2000

2500

3000

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

FR SVM RFE

QMIFS

QMIFS−GC

Figure 7.14. Comparisons in terms of the running time on the prostate cancer
classification data

These results show that FR and SVM RFE are much faster than

QMIFS and grid-based MI method because the searching strategies in FR
and SVM-RFE are very simple – FR only ranks features individually,
and SVM RFE reduces the remaining features in an exponential rate. The
comparisons between QMIFS and the QMIFS-GC clearly suggest the
huge computational savings contributed by the redundancy elimination
approach. In practice, this process could reduce the number of genes
from 12,600 to 872 with less than 4 minutes. The results listed in Table

 Engineering Applications 281

7.3 indicate that QMIFS and QMIFS-GC have very similar gene
selection effectiveness. These two methods provide better results than
the SVM RFE and FR methods. With the (near) best effectiveness and
the better efficiency, the QMIFS-GC delivers good gene selection
results.

Table 7.3 Comparisons of classification accuracy on the prostate cancer classification
dataset

Number of selected features FR SVM-RFE QMIFS QMIFS-GC

4 0.83 0.88 0.93 0.93

8 0.83 0.93 0.95 0.95 k-NN

16 0.83 0.90 0.88 0.90

4 0.78 0.90 0.95 0.95

8 0.81 0.93 0.95 0.95 SVM-R

16 0.86 0.93 0.93 0.95

4 0.76 0.93 0.95 0.95

8 0.83 0.93 0.98 0.98 SVM-L

16 0.83 0.90 0.98 0.95

4 0.76 0.88 0.88 0.88

8 0.76 0.81 0.90 0.90 Decision Tree

16 0.71 0.81 0.90 0.90

In Fig. 7.15, the changes of MIIO and the incremental MIIO are

illustrated. They imply that the gene selection process stops when 25
genes are selected. And all classifiers are able to deliver their best or
near-best performance before the stopping point, as illustrated in Fig.
7.16. In Table 7.4, the top 8 genes selected are briefly described. Each
gene basically carries different biological meaning and exhibits different
biological function. For example, 37639_at, which is also determined as
one of the genes for prostate cancer classification, is for human hepatoma
mRNA for serine protease and it plays an essential role in cell growth
and maintenance of cell morphology (referred to http://www.rzpd.de/cgi-
bin/cards/). Further details on these genes can be found in the websites
about genomics, such as, http://expression.gnf.org/cgi-bin/index.cgi.

Neural Networks and Computing: Learning Algorithms and Applications

282

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8
M

IIO

5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

0.6

In
cr

em
en

ta
l M

IIO

Number of selected features

Figure 7.15. The change of MIIO and the incremental MIIO with the number of the
selected genes on the prostate classification data

5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

1

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of selected features

k−NN
SVM−L
SVM−RBF
Decision Tree

Figure 7.16. Classification results of the genes selected by QMIFS-GC on the prostate
cancer classification data

 Engineering Applications 283

Table 7.4 The gene selection result of QMIFS-GC on the prostate cancer classification
dataset. GAN represents the gene accession number

Selection
Order

Reference
Number GeneBank Description

1 37639_at X07732 Human hepatoma mRNA for serine protease hepsin

2 37720_at M22382 Human mitochondrial matrix protein P1
(nuclear encoded) mRNA.

3 38028_at AL050152 Homo sapiens mRNA; cDNA DKFZp586K1220
(from clone DKFZp586K1220)

4 41504_s_at AF055376 Homo sapiens short form transcription factor
C-MAF (c-maf) mRNA.

5 32786_at X51345 Human jun-B mRNA for JUN-B protein

6 36864_at AJ001625 Homo sapiens mRNA for Pex3 protein

7 35644_at AB014598 Homo sapiens mRNA for KIAA0698 protein.

8 38087_s_at W72186 zd69b10.s1 Homo sapiens cDNA.

7.3.4.2. Subtype of ALL Classification Dataset

The pediatric acute lymphoblastic leukemia (ALL) is a
heterogeneous disease. The correct diagnosis of the subtypes for a patient
is crucial because different subtypes have different treatment plan. Over-
treated or less-treated therapy could lead to serious consequences to the
patient. The subtype classification of this disease has been
comprehensively studied previously using gene expression profiling and
supervised machine learning methods. The original data is divided into
six diagnostic groups (BCR-ABL, E2A-PBX1, Hyperdiploid>50, MLL,
T-ALL and TEL-AML1), and a miscellaneous class that contains
diagnostic samples that did not fit into any one of the above groups (thus
labeled as "Others"). There are total of 12558 features and 327 samples
in this dataset. This dataset is partitioned into two disjoint subsets, in
which 215 samples are used for training and 112 are used for testing.

Comparative results are shown in Fig. 7.17 and Table 7.5. The
running time shown in Fig. 7.17 is the time required for selecting 150
features. The change of MIIO is shown in Fig. 7.18, which shows the

Neural Networks and Computing: Learning Algorithms and Applications

284

gene selection process stops when 95 genes are selected. In Fig. 7.19, it
indicates that the best or the near best classification results could be
obtained before this stopping point. Also, by using the classification
schemes, the results are compared with other reported results. These
results are summarized in Table 7.6. In Table 7.7, the top 20 selected
genes are listed.

0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

FR

QMIFS

QMIFS−GC

Figure 7.17. Comparisons in terms of running time on the ALL subtype classification
data

Table 7.5 Comparisons of classification accuracy on the ALL subtype classification
dataset

Number of selected features FR QMIFS QMIFS-GC

4 0.46 0.57 0.57

8 0.74 0.79 0.79

16 0.73 0.88 0.88
k-NN

32 0.72 0.89 0.90

4 0.43 0.58 0.58

8 0.71 0.76 0.76

16 0.72 0.79 0.79
Decision Tree

32 0.76 0.79 0.79

 Engineering Applications 285

10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

1.5

2

2.5
M

IIO

10 20 30 40 50 60 70 80 90 100 110

0.2

0.4

0.6

0.8

1

In
cr

em
en

ta
l M

IIO

Number of selected features

Figure 7.18. The change of MIIO and the incremental MIIO with the number of the
selected genes on the ALL subtype classification data

20 40 60 80 100 120 140
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of selected features

k−NN
Decision Tree

Figure 7.19. Classification results of the genes selected by QMIFS-GC on the ALL
subtype classification data

Neural Networks and Computing: Learning Algorithms and Applications

286

Table 7.6 Comparisons between QMIFS-GC and the other methods. The numbers listed
in this table are classification accuracy. To evaluate a gene selection method, binary
classification schemes for each subtype are constructed by using 50 genes determined by
that gene selection method. The details about this classification scheme can be found in
[6] (a) The results of SVM (b) The results of k-NN rule

(a)

 QMIFS-GC Chi sq CFS T-stats SOM/DAV

T-ALL 1.00 1.00 1.00 1.00 1.00

E2A-PBX1 1.00 1.00 1.00 1.00 1.00

TEL-AML1 0.98 0.99 0.99 0.98 0.97

BCR-ABL 0.97 0.95 0.97 0.94 0.97

MLL 0.96 1.00 0.98 1.00 0.97

H>50 0.97 0.96 0.96 0.96 0.95

(b)

 QMIFS-GC Chi sq CFS T-stats SOM/DAV

T-ALL 1.00 1.00 1.00 1.00 1.00

E2A-PBX1 1.00 1.00 1.00 1.00 1.00

TEL-AML1 0.98 0.98 0.98 0.99 1.00

BCR-ABL 0.97 0.94 0.97 0.95 0.93

MLL 0.96 1.00 0.98 0.95 1.00

H>50 0.97 0.98 0.96 0.94 0.98

 Engineering Applications 287

Table 7.7 The gene selection results of QMIFS-GC on the ALL subtype classification
dataset. GAN represents the gene accession number

Selection
Order

Reference
Number GAN Description

1 1077_at M29474 Human recombination activating protein (RAG-1)
gene.

2 36239_at Z49194 H.sapiens mRNA for oct-binding factor.

3 41442_at AB010419 Homo sapiens mRNA for MTG8-related protein
MTG16a.

4 38319_at AA919102 Homo sapiens cDNA.

5 36937_s_at U90878 Homo sapiens carboxyl terminal LIM domain
protein (CLIM1) mRNA.

6 35614_at AB012124 Homo sapiens TCFL5 mRNA for transcription
factor-like 5.

7 38968_at AB005047 Homo sapiens mRNA for SH3 binding protein.

8 36985_at X17025 Human homolog of yeast IPP isomerase.

9 38518_at Y18004 Homo sapiens mRNA for SCML2 protein.

10 41097_at, AF002999 Homo sapiens TTAGGG repeat binding factor 2.

11 33355_at AL049381 Homo sapiens mRNA; cDNA DKFZp586J2118
(from clone DKFZp586J2118).

12 38596_i_at D50402 Human mRNA for NRAMP1.

13 36620_at X02317 Human mRNA for Cu/Zn superoxide dismutase

14 38242_at AF068180 Homo sapiens B cell linker protein BLNK mRNA,
alternatively spliced.

15 39728_at J03909 Human gamma-interferon-inducible protein (IP-30)
mRNA.

16 38652_at AF070644 Homo sapiens clone 24742 mRNA sequence.

17 39878_at AI524125 Homo sapiens cDNA.

18 2087_s_at D21254 Human mRNA for OB-cadherin-1.

19 37344_at X62744 Human RING6 mRNA for HLA class II alpha
chain-like product.

20 35974_at U10485 Human lymphoid-restricted membrane protein
(Jaw1) mRNA.

Neural Networks and Computing: Learning Algorithms and Applications

288

Table 7.8 Comparisons on other cancer classification problems. In the columns for listing
best classification accuracy, the left value is the best classification accuracy of top 50
feature subsets, and the right value is the smallest size of the gene subsets with the best
classification accuracy. The running time of QMIFS and QMIFS-GC is the time for them
selecting 50 genes

Best classification accuracy Feature
selection

methodology

Running
time

(second) k-NN SVM-R SVM-L DT

ovarian cancer classification

FR 46 0.99; 26 0.98; 9 1.00; 22 0.96;10

SVM RFE 351 1.00; 8 1.00; 4 1.00; 4 0.96; 4

QMIFS 4100.2 × 1.00; 3 1.00; 3 1.00; 3 0.99; 3

QMIFS-GC 3103.1 × 1.00; 3 1.00; 3 1.00; 3 0.99; 3

colon cancer classification

FR 1.2 0.76; 3 0.86; 4 0.90; 12 0.81; 8

SVM RFE 3.5 0.86; 8 0.90; 8 0.81; 8 0.76; 8

QMIFS 211.6 0.86; 3 0.90; 9 0.95; 9 0.81; 3

QMIFS-GC 81.1 0.90; 11 0.95; 11 0.90; 3 0.81; 3

Also, we show how these gene selection methods are applied to

other microarray type data, such as the colon cancer classification data
and the ovarian cancer classification data (the proteomic data of this
application were treated in the same way with the microarray data). In
the ovarian cancer classification, there are 253 data samples and 15154
genes. Among these samples, 91 are control samples (non-cancer) while
162 are cancer samples. We randomly select 150 samples for training,

 Engineering Applications 289

and the others for testing. The colon cancer classification dataset consists
of 62 samples and 2000 genes. The 62 samples are randomly split into
two disjoint parts – one part of 40 samples for training and the other of
22 samples for testing. The results are summarized in Table 7.8.

7.3.5. Remarks

We demonstrate how mutual information based feature selection
scheme be used for gene selection. It is interesting to show that mutual
information is employed for three purposes. First, with the guidance of
mutual information, we have demonstrated that the QMIFS-GC can
greatly eliminate the redundancy in a huge feature set. Certainly, this
concept can be used to other feature selection applications. As a result of
the grid based clustering approach, it is worth noting that the efficiency
of the whole feature selection can be enhanced. Second, based on mutual
information, the salient features are identified gradually. The
computational difficulty of estimating the high dimensional MI is solved.
Also, attributed to the characteristics of mutual information, the
termination of the searching process is not determined in an ad hoc basis.
This is useful to most applications. Third, using mutual information, the
highly redundant selection results can be avoided in a systematic way. In
this application it is of particular important because of the size of the
original dataset. In most other physical applications, similar problems
may also be experienced. This is a very useful feature to one who is
working on feature selection.

This page intentionally left blankThis page intentionally left blank

291

Bibliography

Aarts, E. and Korst J. (1989), Simulated Annealing and Boltzmann Machines: A

Stochastic Approach to Combinatorial Optimization and Neural Computing, John

Wiley & Sons.

Abu-Mostafa, Y. S. (1995), “Hints”, Neural Computation, vol. 7, pp. 639-671.

Alahakoon, D., Halgamuge, S. K., and Srinivasan, B. (2000). Dynamic self-organizing

maps with controlled growth for knowledge discovery. IEEE Trans. Neural

Networks, 11(3), 601-614.

Ani, M. and Deriche. (2001). An optimal feature selection technique using the concept of

mutual information. In Proceedings of A.A ISSPA, Malaysia.

Ash, T. (1989), “Dynamic Node Creation in Backpropagation Neural Networks”,

Connection Science, vol. 1, No. 4, pp. 365-375.

Baba, N. (1989), “A New approach for Finding the Global Minimum of Error Function of

Neural Networks”, Neural Networks, vol. 2, pp. 367-373.

Battiti, R. (1992), “First- and Second-order Methods for Learning: between Steepest

Descent and Newton's Method,” Neural Computation, Vol. 4, No. 2, pp. 144-166.

Battiti, R. (1994), “Using Mutual Information for Selecting Features in Supervised

Neural Net Learning”, IEEE Trans. Neural Networks, vol. 5, no. 4, July.

Battiti, R. and Tecchiolli G. (1995), “Training Neural Nets with the Reactive Tabu

Search”, IEEE Transactions on Neural Networks, vol. 6, no. 5, pp. 1185-1200.

Battiti, R. (1994). Using mutual information for selecting features in supervised neural

net learning. IEEE Tran. on Neural network, vol. 5, No 4, 537-550.

Bauber, H. -U., and Pawelzik, K. (1992). Quantifying the neighborhood preservation of

self-organizing feature maps. IEEE Trans. Neural Networks, 3(4), 570-579.

Bazaraa, M. S., Sherali H. D., and Shetty C. M. (1993), Nonlinear Programming: Theory

and Algorithms, 2nd edition, New York, Wiley, 1993.

Berenji, H. R. (1992) Fuzzy logic Controllers. In R.R. Yager and L.A. Zadeh, editors, An

Introduction to Fuzzy Logic Applications in Intelligent Systems. Kluver Academic

Publishers.

Neural Networks and Computing: Learning Algorithms and Applications

292

Bianchini, M., Frasconi P. and Gori M. (1995) Learning without local minima in radial

basis function networks. IEEE Transactions on Neural Networks, 6(3), pp. 749-

756.

Bishop, C. M. (1995), Neural Networks for Pattern Recognition, Oxford University Press

Inc., New York.

Blackmore, J., and Miikkulainen, R. (1995). Visualizing high-dimensional structure with

the incremental grid growing neural network,” Proc. 12th Int. Conf. Machine

learning, 55-63.

Blake, C. L., and Merz, C. J. (1998). UCI repository of machine learning databases.

Blanzier, E. and Giordana A. (1995) Mapping symbolic knowledge into locally receptive

field networks. In M. Gori and G. Soda, editors, Topics in Artificial Intelligence,

vol. 992 of Lectures Notes in Artificial Intelligence, pp. 267-278. Springer-Verlag.

Block, H. D. (1962) The perceptron: a model for brain functioning I. Reviews of Modern

Physics 34, pp. 123-135. Reprinted in Anderson & Rosenfeld (1988).

Bonnlander, B. and Weigend, A.S. (1994). Selecting input variables using mutual

information and nonparametric density estimation. In Proceedings of International

Symposium on Artificial Neural network, Taiwan, 42-50.

Broomhead, D. S. and Lowe D. (1988) Multivariable functional interpolation and

adaptive networks. Complex Systems, 2, pp. 321-355.

Broomhead, D. S. and Lowe D. (1988) Multivariable functional interpolation and

adaptive networks, Complex Systems 2, pp. 321-355.

Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. (2002). Choosing multiple

parameters for support vector machines. Machine Learning, 46(1), 131-159.

Chen, T. and Chen H. (1995) Approximation capability to functions of several variable

nonlinear functions and operators by radial basis function neural networks. IEEE

Transactions on Neural Networks, 6(4), pp. 904-910.

Cheng, Y. (1997). Convergence and ordering of Kohonen’s batch map. Neural

Computation, 9, 1667-1676.

Cho, S.Y. and Chow, T.W.S. (1999), “Training Multilayer Neural Networks Using Fast

Global Learning Algorithm – Least Squares and Penalized Optimization Methods”,

Neurocomputing, vol. 25, no. 1-3, pp. 115-131.

Cho, S. -B. (1997). Self-organizing map with dynamical node splitting: application to

handwritten digit recognition. Neural Computation, 9(6), 1345-1355.

Chow, T. W. S., and Wu, Sitao. (2002). Piecewise linear projection based on self-

organizing map. Neural Processing Letters, 16, 151-163.

Chow, T. W. S, and Wu, Sitao. (2003). An online cellular probabilistic self-organizing

map for static and dynamic data sets. IEEE trans. Circuit and System I, 51(4),732-

747.

Bibliography 293

Chow, T. W. S., and Wu, Sitao. (2004). Cell-splitting grid: a self-creating and self-

organizing neural network. Neurocomputing, 57, 373-387.

Chow, T.W.S., Rahman, M.K.M., Wu, S. (2006) Content Based Image Retrieval using

Tree-Structured Features and Multi-Layer SOM, Pattern Analysis and

Applications, in press.

Chow, T. W. S, Leung, C. T, Neural Network based short-term load forecasting using

weather compensation, IEEE Trans on Power system, Vol 11, No. 4, pp.1736-

1742, Nov 1996.

Chow, T. W. S, Huang, D., Estimating Optimal Features Subset Using Efficient Estimate

of High Dimensional Mutual Information, IEEE Trans on Neural Networks, Vol.

16, No. 1, January 2005, pp.213-224.

Chow, T. W. S, Rahman, M. K. M, Face Matching in Large Database by Self-Organising

Maps, Neural Processing Letters, Volume 23, Issue 3, Jun 2006, Pages 305 – 323.

Chow, T. W. S., Rahman, M. K. M., Wu, Sitao, Content Based Image Retrieval by Using

Tree-Structured Features and Multi-Layer SOM, Pattern Analysis and Applications

9, May. 2006, 1-20.

Chow, T. W. S, Sitao, An Online Cellular Probabilistic Self-Organizing Map for Static

and Dynamical Data Sets, IEEE Trans on Circuit and Systems, Part I, Vol. 51, No.

4, April 2004, pp. 732-747.

Chow, T. W. S, Wu, Sitao, Cell-Splitting Grid: A self-creating and self-organizing Neural

Networks, Neurocomputing, Vol.57, Mar. 2004, pp. 373-387.

Chow, T.W.S, Yong, Fang, A recurrent Neural Network Based Real-Time Learning

Control Strategy Applying to Nonlinear Systems with Unknown Dynamics, IEEE

Trans On Industrial Electronics, Vol. 45, No. 1, pp.151-161, Feb, 1998.

Cloete, I. Zurada J. M. (2000) Knowledge-Based Neurocomputing. MIT press, Boston.

Cortes, C. Vapnik V. (1995) Support Vector Networks, Machine Learning, 20(3), pp.

273-297.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. New York:

John Wiley.

Cover, T.M. and Thomas, J.A. (1994). Elements of information theory. New York: John

Wiley.

Das, S.K., (1971). Feature selection with a linear dependence measure. IEEE. Trans.

Computers, 1106-1109.

Dash, M. and Liu, H. (1997). Feature selection for classification. Intelligent data analysis,

131-156.

De Boor, C. (1978) A Practical Guide to Splines. New York: Springer.

Deco, G., Finnoff W. and Zimmermann H. G. (1995), “Unsupervised Mutual

Information Criterion for Elimination of Overtraining in Supervised Multilayer

Networks,” Neural Computation, Vol. 7, pp. 86-107.

Neural Networks and Computing: Learning Algorithms and Applications

294

Demartines, P. and Hérault, J. (1997). Curvilinear component analysis: a self-organzing

neural network for nonlinear mapping of data sets. IEEE trans Neural Networks,

8(1), 148-154.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1-38.

Denoeux, T. and Lengellé R. (1993), “Initializing back propagation networks with

prototypes,” Neural Networks, vol. 6, pp.351-363.

Devijver, P.A. and Kittler, J. (1982). Pattern recognition: A statistical approach.

Englewood Cliffs: Prentice Hall.

Dodd, N. (1990), “Optimization of network structure using genetic techniques”, Proc. Int.

Joint Conf. on Neural Networks, San Diego.

Donoho, D. L. and Johnstone, I. M. (1989) Projection-based approximation and a duality

with kernel methods, Annals of Statistics 17, pp. 58-106.

Drago G.P. and Ridella S. (1992), “Statistically controlled activation weight initialization

(SCAWI),” IEEE Trans. on Neural Networks, vol. 3, no. 4, pp. 627-631, July.

Duda, R. O. and Hart, P. E. (1973) Pattern Classification and Scene Analysis. New York:

Wiley.

Fahlman, S. E. and Lebiere C. (1990), “The Cascade-Correlation Learning Architecture”,

in Advances in Neural Information Processing Systems – 2, pp. 525-532, Morgan

Kaufmann, San Mateo, CA.

Fogel, D.B. (1995), Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence, Piscataway, NJ: IEEE Press.

Frasconi, P., M. Gori and Tesi A., “Successes and Failure of Back-propagation: a

Theoretical Investigation”, chapter in Progress in Neural Networks, Ablex

Publishing, Omid Omidvar (Ed.).

Fraser, A.M and Swinney, H.L. (1986). Independent coordinates for strange attractors

from mutual information. Phys. Rev. A, 33(2), 1134-1140.

Friedman, J. H. and Tukey, J. W. (1981) Projection pursuit regression. Journal of the

American Statistical Association 76, pp. 817-823.

Friedman, J. H. (1989) Regularized discriminant analysis, Journal of the American

Statistical Association 84, pp. 165-175.

Fritzke, B. (1994). Growing cell structure: A self-organizing network for supervised and

un-supervised learning. Neural Networks, 7(9), 1441-1460.

Fritzke, B. (1995). A growing neural gas network learns topologies. In G. Tesauro, D. S.

Touretzky & T. K. Leen (Eds.), Advances in Neural Information Processing

Systems 7 (pp. 625-632). Cambridge, MA: MIT Press.

Frohlinghaus, T., Weichert A. and Rujan P. (1994), “Hierarchical neural networks for

time-series and control,” Network, Vol. 5, pp. 101-106.

Bibliography 295

Funahashi, K. (1989), “On the Approximate Realization of Continuous Mappings by

Neural Networks”, Neural Networks, vol. 2, pp. 183-192.

Geman, S., Bienenstock E., and Doursat R. (1992), “Neural Networks and the

Bias/Variance Dilemma”, Neural Computation, vol. 4, pp. 1-58.

Goldberg, D.E. (1985), “Genetic algorithms and rule learning in dynamic system

control”, in Proc. 1st Int. Conf. On Genetic Algorithms and Their Applications,

Hillsdale, NJ: Lawrence Erlbaum, pp. 8-15.

Golub, G.H. and Van Loan C. F. (1989), Matrix Computations, The Johns Hopkins

University Press.

Gori, M and Tesi A. (1990), “Some examples of local minima during learning with Back-

propagation”, Parallel Architecture and Neural Networks, Vietri sul Mare (IT).

Gori M. and Tesi A. (1992), “On the problem of local minima in backpropagation”, IEEE

Transaction on Pattern Analysis and Machine Intelligence, vol. 14, no. 1, pp. 76-

86.

Graepel, T., Burger, M., and Obermayer, K. (1997). Phase transitions in stochastic self-

organizing maps. Physical Review E, 56, 3876-3890.

Graepel, T., Burger, M., and Obermayer, K. (1998). Self-organizing maps:

generalizations and new optimization techniques. Neurocomputing, 21, 173-190.

Gray, R. M. (1984). Vector quantization. IEEE Acoust., Speech, Signal Processing Mag.,

1 (2), 4-29.

Green, P. J. and Silverman, B. W. (1994) Non-parametric Regression and Generalize

Linear Models. A Roughness Penalty Approach. London: Chapman & Hall.

Grinold, R. C. (1969) Comment on “Pattern classification design by linear

programming”, IEEE Transactions on Computers 18, pp. 378-379.

Halkidi, M., and Vazirgiannis, M. (2002). Clustering validity assessment using multi

representatives. Proceedings of the 2nd Hellenic Conference on Artificial

Intelligence.

Hall, M. A. (1999). Correlation-based Feature Selection for Machine Learning. Ph.D.

thesis, Department of Computer Science, Waikato University, New Zealand.

Han, J.W. and M. Kamber. (2001). Data mining: concepts and techniques. San Meteo,

CA: Morgan Kaufmann Publishers.

Hasitie, T., Tibshirani, R. and Friedman, J. (2001). The elements of statistical learning:

Date mining, inference, and prediction. New York: Springer.

Hassibi B., Stork D. G., and Wolff G. J. (1993), “Optimal Brain Surgeon and General

Network Pruning”, Proc. IEEE International Conference on Neural Networks, San

Fransisco, vol. 1, pp. 293-299.

Hastie, T. J. and Tibshirani R. J. (1990) Generalized Additive Models. London: Chapman

& Hall.

Neural Networks and Computing: Learning Algorithms and Applications

296

Haykin, S. (1994) Neural Networks, a Comprehensive Foundation, IEEE Computer

Society Press, 1994.

Haykin, S. (1994), Neural Network: A Comprehensive Foundation, Macmillan,

Englewood Clifs, N.J.

Hebb, D. O. (1949), The Organization of Behavior: A Neuropsychological Theory,

Wiley, New York.

Herrero, J., Valencia, A., and Dopazo, J. (2001). A hierarchical unsupervised growing

neural network for clustering gene expression patterns. Bioinformatics, 17 (2),

126-136.

Heskes, T. (1999). Energy functions for self-organizing maps. In E. Oja and S. Kaski,

(Eds.), Kohonen Maps (pp. 303-315). Amsterdam: Elsevier.

Ho, Y.C. and Kashyap, R. L. (1965) An algorithm for linear inequalities and its

applications, IEEE Transactions on Electronic Computers 14, pp. 683-688.

Hochreiter S. and Schmidhuber J. (1997), “Flat Minima”, Neural Computation, Vol. 9,

pp. 1-42.

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor, MI:

Univ. of Michigan Press.

Hornik, K., Stinchcombe M. and White H (1989) Multilayer feedforward networks are

universal approximators. Neural Networks, 2, pp. 359-366.

Hornik, K., Stinchcombe M., While H. (1989), “Multilayer feedforward networks are

universal approximators”, Neural Networks, vol. 2, pp. 359-366.

Horst, R. and Pardalos P.M. (1995), Handbooks of Global Optimization, Kluwer

Academic Publisher, The Netherlands.

Huang, D, and Chow, T. W. S, Efficiently searching the important input variables using

Bayesian discriminant, IEEE Trans on Circuit and Systems, Part I, Vol. 52, No. 4,

April 2005, pp. 785-793.

Huang, D, and Chow, T. W. S,. Enhancing Density Based Data Reduction Using

Entropy, Neural Computation, Feb 2006, Vol. 18, No. 2, pp. 470-495.

Huntsberger, T., and Ajjimarangsee, P. (1989). Parallel self-organizing feature maps for

unsupervised pattern recognition. Int. J. General systems, 16, 357-372.

Jang, J. S. R. (1993) ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE

Transactions on Systems, Man and Cybernetics, 23(3) pp. 665-687.

John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant features and the subset

selection problem. In Processings of the 11th international conference, eds. W. W.

Cohen & H. Hirsh, 121-129, San Francisco, C. A : Morgan Kaufmann Publishers.

Joliffe, I. T. (1986). Principal component analysis. New York: Springer-Verlag.

Kenney, J. F. and Keeping, E. S. "Histograms." §2.4 in Mathematics of Statistics, Pt. 1,

3rd ed. Princeton, NJ: Van Nostrand, pp. 25-26, 1962.

Kiang, M. Y. (2001). Extending the Kohonen self-organizing map networks for

clustering analysis. Computational Statistics & Data Analysis, 38, 161-180.

Kirkpatrick, S.C.D., Jr. Gelatt and Vecchi M.P. (1983), “Optimization by simulated

annealing”, Science 220, vol. 4598, pp. 671-680.

Bibliography 297

Kiviluoto, K. and Oja, E. (1998). S-map: A network with a simple self-organization

algorithm for generative topographic mappings. In M. Jordan, M. Kearns & S.

Solla (Eds.), Advances in Neural Information Processing Systems 10 (pp. 549-

555). Cambridge, Massachusetts: MIT Press,.

Kohonen, Kaski, T., and Lappalainen, S., H. (1997). Self-organized formation of various

invariant-feature filters in the adaptive-subspace SOM. Neural Computation, 9(6),

1321-1344.

Kohonen, T. (1997) Self-organizing maps, Springer-Verlag, Berlin, Germany, 1997.

Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21, 1-6.

Kohonen, T. (2001). Self-Organizing Maps. London: Springer.

Koikkalainen, P. (1995). Fast deterministic self-organizing maps. Proc. Int. Conf.

Artificial Neural Networks, 63-68.

Kolmogorov, A.N. (1957), “On the representation of continuous functions of many

variables by superposition of continuous functions of one variable and addition,”

[in Russian], Dokl. Akad. Nauk USSR, 114, pp.953-957.

Köng, A. (2000). Interactive visualization and analysis of hierarchical neural projections

for data mining. IEEE Trans. Neural Networks, 11(3), 615-624.

Kononenko, I. (1994). Estimating attributes: analysis and extensions of RELIEF. In

proceedings of the european conference on Machine learning, eds. F. Bergadano &

L. De Raedt, 171 – 182. Berlin: Springer-Verlag.

Kraaijveld, M. Mao, A., J., and Jain, A. K. (1995). A nonlinear projection method based

on the Kohonen’s topology preserving maps. IEEE Trans. Neural Networks, 6(3),

548-559.

Krogh, A. and Hertz J. A. (1992), “A Simple Weight Decay Can Improve

Generalization”, in S. J. Hanson, J. E. Moody and R. P. Lippmann, editors,

Advances in Neural Information Processing Systems – 4, pp. 950-957, Morgan

Kaufmann, San Mateo, CA.

Kryzak, A. and Linder T., (1998) Radial basis function networks and complexity

regularization in function learning. IEEE Transactions on Neural Networks, 9(2),

pp. 247-256.

Kubat, M. (1998) Decision trees can initialize radial-basis function networks, IEEE

Trans. On Neural Networks, 9, pp. 813-821.

Kudo, M., and Sklansky, J. (2000). Comparison of algorithms that select features for

pattern classifiers. Pattern Recognition, 33, 25-41.

Laakso, A., and Cottrell, G. W. (1998). How can I know what you think?: Assessing

representational similarity in neural systems. Proc. 20th Annu. Cognitive Sci.

Conf., 591-596.

Lampinen, J., and Oja, E. (1992). Clustering properties of hierarchical self-organizing

maps. J. Math. Imag. Vis., 2(2-3), 261-272.

Neural Networks and Computing: Learning Algorithms and Applications

298

Lang K.J. and Witbrock M.J. (1988), “Learning to tell two spiral apart”, in Proc. Of the

1988 Connectionist Models Summer School, Morgan Kaufmann.

LeCun, Y., Denker J. S., and Solla S. A. (1990), “Optimal Brain Damage”, Advances in

Neural Information Processing Systems II (Denver 1989), pp. 508-605.

Leung, C. T. (1998), Generalization Enhancement Methods for Neural Networks Under

Finite Observed Data – Time Series Forecasting, PhD Thesis, City University of

Hong Kong.

Leung, C.T. and Chow T.W.S. (1997), “A Novel Robust Fourth-order Cumulants Cost

Function”, Neurocomputing, vol. 16, Iss. 2, pp. 139-147, Aug.

Li, W.T. (1990). Mutual information functions versus correlation functions. Stat. Phys.,

vol. 60, no.5/6, 823-837.

Liu, H. and Motoda, H. (1998 b). Feature selection for knowledge discovery and data

mining. London, GB: Kluwer Academic Publishers.

Liu, H., Motoda, H., and Dash, M. (1998 a). A monotonic measure for optimal feature

selection. In Proceedings of European Conference on Machine Learning, 101-106.

Lowe, D., (1989) Adaptive radial basis function nonlinearities, and the problem of

generalization, 1st IEE International Conference on Artificial Neural Networks, pp.

460-471, San Diego, CA.

Luttrel, S. (1994). A bayesian analysis of self-organizing maps. Neural Computation, 6,

767-794.

MacKay, D. (1992). A practical Bayesian framework for backpropagation networks,

Neural computation, 4, 448-472

Mao, J., and Jain, A. K. (1996). A self-organizing network for hyperellipsoidal clustering

(HEC). IEEE Trans. on Neural Networks, 7(1), 16-29.

Marsland, S., Shapiro, J., and Nehmzow, U. (2002). A self-organizing network that

grows when required. Neural Networks, 15 (8-9), 1041-1058.

Meilhac, C,. and C. Nastar, “Relevance feedback and category searching in image

databases,” in Proc. IEEE Intl. Conf. Multimedia Computing and Systems, pp.

512-517, Florence, Italy, June, 1999.

Mendal J. M. (1991), “Tutorial on Higher-Order Statistics (Spectra) in Signal Processing

and System Theory: Theoretical Results and Some Applications”, Proc. IEEE, Vol.

79, No. 3, pp. 278-305.

Minnick, R. C. (1961) Linear-input logic. IRE Transactions on Electonic Computers 10,

pp. 6-16.

Minsky, M. L. and Papert, S. A. (1988) Perceptrons. An Introduction to Computational

Geometry. Expanded edition. Cambridge, MA: The MIT Press.

Mitchell, T. (1997) Machine Learning. McGraw-Hill.

Bibliography 299

Mitra, P, Murthy, C.A. and Pal, S.K. (2002). Unsupervised feature selection using

feature similarity. IEEE Trans on PAMI, vol 24, no 3, 301-312.

Molina, L.C., Belanche, L. and Nebot, A. (2002). Feature selection algorithms: a survey

and experimental evaluation. available at: http://www.lsi.upc.es/dept/techreps/

html/R02-62.html. Technical Report.

Moody, J. and Darken C. (1988) Learning with localized receptive fields. In T.

Sejnowski, D. Touretzky, and G. Hinton, editors, Connectionist Models Summer

School, Carnegie Mellon University.

Moon, Y., B. Rajagopalan, U. Lall, “Estimation of mutual information using kernel

density estimators,” Phys. Rev. E, vol. 52, no. 3 (B), pp. 2318-2321, 1995.

Moon, Y., Rajagopalan, B., and Lall, U. (1995). Estimation of mutual information using

kernel density estimators. Phys. Rev. E, 52(3), 3, 2318-2321.

Mueller, K. R., Mika S., Ratch G., Tsuda K., and Scholkopf B. (2001) An introduction to

kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2),

pp. 181-201.

Mulier, F., and Cherkassky, V. (1995). Self-organization as an iterative kernel smoothing

process. Neural computation, 7, 1165-1177.

Muneesawang, P., and Guan, L. (2002). Automatic machine interactions for content-

based image retrieval using a self-organizing tree map architecture. IEEE Trans.

Neural Networks, 13 (4), 821-834.

Muroga, S., Toda, I. and Takasu, S. (1961) Theory of majority decision elements. Journal

of the Franklin Institute 271, pp. 376-418.

Murtagh, F. (1995). Interpreting the Kohonen self-organizing feature map using

contiguity-constrained clustering. Pattern Recognition Letters, 16, 399-408.

Narendra, P.M. and Fukunaga, K. (1977). A branch and bound algorithm for feature

selection. IEEE. Trans on computers, C-26(9), 917-922.

Neal, R., and Hinton, G. (1998). A new view of the EM algorithm that justifies

incremental, sparse, and other variants. In M. Jordan (Ed.), Learning in Graphical

Models (pp. 355-368). Dordrecht : Kluwer Academic.

Nguyen, D. and Widrow B. (1990), “Improving the learning speed of 2-layer neural

networks by choosing initial values of the adaptive weights,” International Joint

Conf. on Neural Networks, vol. 3, pp.21-26, San Diego, CA, U.S.A., 17-21 July.

Nikias, C. L. and Petropuou A. P. (1993), Higher-Order Spectra Analysis: a Nonlinear

Signal Processing Framework, Prentice-Hall, Englewood Cliffs, N.J.

Nikias, C. L., and Raghuveer M. R. (1987), “Bispectrum Estimation: A Digital Signal

Processing Framework,” Proc. IEEE, Vol. 75, No. 7, pp. 869-891.

Nojun, Kwak, and Choi C-H., (2002). Input feature selection for classification problems.

IEEE. Trans on Neural networks, vol 13 no 1, 143-159.

Neural Networks and Computing: Learning Algorithms and Applications

300

Osowski S. (1993) “New approach to selection of initial values of weights in neural

function approximation,” Electronics Letters, vol. 29, no. 3, pp.313-315, 4th Feb.

Pal, N. R., and Eluri, V. K. (1998). Two efficient connectionist schemes for structure

preserving dimensionality reduction. IEEE Trans. Neural networks, 9(6), 1142-

1154.

Pal, N. R., Bezdek, J. C., and Tsao, E. C.-K. (1993). Generalized clustering networks and

Kohonen’s self-organizing scheme. IEEE Trans. Neural Networks, 4(4), 549-557.

Papoulis, A. (1991), Probability, Random Variables, and Stochastic Processes, 3rd

international edition, McGraw-Hill, Singapore.

Park, J. and Sandberg I. W. (1991) Universal approximation using radial-basis functions.

Neural Computation, 3, pp. 246-257.

Park, J. and Sandberg I. W. (1993) Approximation and radial-basis-function networks.

Neural Computation, 3, pp. 305-316.

Park, J. and Sandberg I. W. (1991), “Universal Approximation Using Radial-Basis-

Function Networks”, Neural Computation, vol. 3, pp. 246-257.

Parzen, E. (1962). On the estimation of a probability density function and mode. Ann.

Math. Statist. Vol 33, 1064-1076.

Pedrya, W (1998) Conditional fuzzy clustering in the design of radial basis function

neural networks, IEEE Trans. On Neural Networks, 9, pp. 601-612.

Poggio, T. and Girosi F. (1990a) Networks for approximation and learning. Proceedings

of the IEEE, 78 (9), pp. 1481-1497.

Poggio, T. and Girosi F. (1990) Regularization algorithms for learning that are equivalent

to multilayer networks, Science 247, pp. 978-982.

Principe, J.C., Fisher III, and Xu J.D. (2000). Information theoretic learning. In

Unsupervised adaptive filtering, eds. S.Haykin, New York, NY: Wiley.

Rao, C. R. (1985), Linear Statistical Inference and its Applications, 2nd Ed., Wiley

Eastern, New Delhi.

Rauber, A., Merkl, D., and Dittenbach, M. (2002). The growing hierarchical self-

organizing map: exploratory analysis of high-dimensional data. IEEE Trans.

Neural Networks, 13(6), 1331-1341.

Ritter, H., Martinetz, T., and Schulten, K. (1992). Neural Computation and Self-

Organizing Maps: An introduction. Reading, Mass: Addison-Wesley.

Rosenblatt, F. (1957) The perceptron – a perceiving and recognizing automation. Report

85-460-1. Cornell Aeronautical Laboratory.

Rosenblatt, F. (1958) The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological Review 65, pp. 386-408. Reprinted in

Shavlik & Dietterich (1990).

Bibliography 301

Rosenblatt, F. (1962) Principles of Neurodynamics, Washington, DC: Spartan Books.

Rumelhart, D.E., Hinton G. E. and Williams R. J. (1986), “Learning representations by

back-propagation errors”, Nature, vol. 323, pp. 533-536.

Sadler, B. M., and Giannakis G. B. (1994), “Estimation and Detection in NonGaussian

Noise Using Higher Order Statistics”, IEEE Trans. Signal Processing, Vol. 42, No.

10, pp. 2729-2741.

Samet, H. (1984). The quadtree and related hierarchical data structures. ACM Computing

Surveys, 16(2), 187-260.

Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Trans.

Computers, 18(5), 491-509.

Sato, M., and Ishii, S. (2000). On-line EM algorithm for the normalized gaussian

network. Neural Computation, 12, 407-432.

Schölkopf, B., and Smola, A. J. (2002). Learning with Kernels: Support Vector

Machines, Regularization, Optimization and Beyond. Cambridge, Massachusetts:

MIT Press.

Schölkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, J., and Platt, J. (2000).

Support vector method for novelty detection. In Sara A. Solla, Todd K. Leen & K.

R. Muller (Eds.), Advances in Neural Information Processing Systems 12 (pp. 582-

588). Cambridge, Massachusetts: MIT Press.

Seiffert, U., and Jain, L. C. (2002). Self-organizing neural networks: recent advances and

applications. New York: Springer-Verlag.

Setiono R. (1997), “A Penalty-Function Approach for Pruning Feedforward Network

Networks,” Neural Computation, Vol. 9, pp. 185-204.

Setiono, R., and Liu, H. (1997). Neural-network feature selector. IEEE Trans on NN,

vol.8 no. 3, 654-661.

Shang, Y. and Wah B.W. (1996), “Global Optimization for Neural Networks Training”,

IEEE Computer, vol. 29, no. 3, pp. 45-54.

Shang, Y. and Wah B. W. (1996), “Global Optimization for Neural Network Training”,

IEEE Computer, Vol. 29, No. 3, pp. 45-54, Mar.

Shannon, C. E, A mathematical theory of communication, Bell System Technical Journal,

vol. 27, pp. 379-423 and 623-656, July and October, 1948.

Shepanski, J.F. (1988), “Fast learning in artificial neural systems: multilayer perceptron

training using optimal estimation,” IEEE International Conf. on Neural Networks,

vol. 1, pp.465-472, New York, IEEE Press.

Shimodaira, H. (1994), “A weight value initialization method for improving learning

performance of the back propagation algorithm in neural networks,” Proc. 6th Int.

Conf. on Tools with Artificial Intelligence, pp.672-675, New Orleans, LA, USA,

6-9 Nov.

Si, J., Lin, S., Vuong, M. -A. (2000). Dynamic topology representing networks. Neural

Networks, 13 (6), 617-627.

Silva F.M. and Almeida L.B. (1990), “Acceleration techniques for the backpropagation

algorithm,” Lectures Notes in Computer Science, vol.412, Springer-Verlag.

Neural Networks and Computing: Learning Algorithms and Applications

302

Silverman, B.W. (1986). Density estimation for statistics and data analysis. London:

Chapman-Hall.

Smith, F.W., (1968) Pattern classifier design by linear programming. IEEE Transactions

on Computers 18, pp. 548-551.

Su, M. C., and Chang, H. T. (2000). A new model of self-organizing neural networks and

its application in data projection. IEEE Trans. Neural Networks, 12(1), 153-158.

Sutton, R.S. (1986), “Two problems with backpropagation and other steepest descent

learning procedures for networks,” Proceedings of the 8th Annal Conf. of the

Cognitive Science Society, pp. 823-831.

Tax, D. M. J., and Duin, R. P. W. (1999). Support vector domain description. Pattern

recognition letters, 20, 1991-1999.

Torn, A. and Zillinskas A. (1987), Global Optimization, Springler-Verlag.

Towell, G. and Shavlik J. W. (1994) Knowledge based artificial neural networks.

Artificial Intelligence, 70(4), pp. 119-166.

Tresp, V., Hollatz J. and Ahmad S. (1993) Representing probabilistic rules with networks

of Gaussian basis functions. Machine Learning, 27, pp. 173-200.

Tugnait, J. K. (1990), “Consisten Parameter Estimation for Non-causal Autoregressive

Models via Higher-order Statistics,'' International Federation of Automatic Control,

Vol.26, No. 1, pp. 51-61.

Ultsch, A., and Siemon, H. P. (1990). Kohonen’s self organizing feature maps for

exploratory data analysis. Proc. Int. Neural Network Conf, 305-308.

Unnikrishnan, K.P. and Venugopal K.P. (1994), Alopex: a correlation-based learning

algorithm for feedforward and recurrent neural networks, Neural Computations, 6:

469-490.

Vapnik, V. N. (1995) The nature of statistical learning theory, Springer-Verlag, Berlin.

Vapnik, V. (1995). The nature of statistical learning theory. New York : Springer.

Vesanto, J., and Alhonierni, E. (2000). Clustering of the self-organizing map. IEEE

Trans. Neural Networks, 11(3), 586-600.

Wang, H., Bell, D., and Murtagh, F. (1999). Axiomatic approach to feature subset

selection based on relevance, IEEE Trans on PAMI, vol.21, no. 3, 271-277.

Wang, W., Jones, P. and Patridge, D. (2001). A comparative study of feature-salience

ranking techniques, Neural Computation, 13(7), 1603-1623.

Weigend, A., Rumelhart D. and Huberman B. (1991), “Generalization by Weight

Elimination with Application to Forecasting”, Advances in Neural Information

Processing III, R. P. Lippman and J. Moody Ed., Morgan Kaufmann, San Mateo,

CA, pp. 875-882.

Widrow, B. and Hoff, Jr. M. E. (1960), “Adaptive switching circuits”, IRE WESCON

Convention Record, pp. 96-104.

Bibliography 303

Widrow, B and Hoff, M. E. Jr. (1960) Adaptive switching circuits. IRE WESCON

Convention Record 4, pp. 96-104. Reprinted in Anderson & Rosenfeld (1988).

Wu, Sitao, and Chow, T. W. S. (2003b). Support vector visualization and clustering using

self-organizing map and support vector one-class classification. International Joint

Conference on Neural Networks (IJCNN), 803-808.

Wu, Sitao, and Chow, T. W. S. (2005a). Content-based image retrieval using growing

hierarchical self-organizing quadtree map. Pattern Recognition, 38(5), 707-722.

Wu, Sitao, and Chow, T. W. S. (2005b). PRSOM - a probabilistic regularized self-

organizing map for data projection and visualization. IEEE trans. Neural Networks,

16(6), 1362-1380.

Wu, Sitao, and T. W. S. Chow. (2004) Clustering of the self-organizing map using a

clustering validity index based on inter-cluster and intra-cluster density. Pattern

Recognition, 37(2), 175-188.

Wu, Sitao, Chow, T. W. S, Induction machine fault detection using SOM-based RBF

neural networks, IEEE Trans On Industrial Electronics, Vol. 51, No. 1, Feb 2004,

pp. 183-194.

Xiao-Dong LI, John K. L. Ho, T. W. S. Chow, Iterative Learning Control for Linear

Time-Variant Discrete Systems Based on 2-D System Theory, IEE Proceedings

IEE Proceedings Control Theory and Applications, Vol. 152, No. 1, Jan 2005,

pp.13-18.

Xu, L., Yan, P. and Chang, T. (1994) Best first strategy for feature selection. In Ninth

International Conference on Pattern Recognition, 706—708, IEEE Computer

Society Press.

Yam, Y.F. and Chow T.W.S. (1993), “Extended backpropagation algorithm,” Electronic

Letters, vol.29, no.19, pp.1701-1702.

Yam, Y.F. and Chow T.W.S. (1997), “A new method in determining the initial weights

of feedforward neural networks,” Neurocomputing, vol. 16, pp. 23-32.

Yam, J. Y. F. and Chow T. W. S., (2001) Feedforward networks training speed

enhancement by optimal initialization of the synaptic coefficients, IEEE Trans. On

Neural Networks, 2(2) pp. 430-434.

Yang, H. H. and Moody, J. (1999). Feature selection based on joint mutual information.

In Advances in intelligent data analysis (AIDA) and computational intelligent

methods and application (CIMA), Rochestor, New York.

Yin, H. (2002a). ViSOM-A novel method for multivariate data projection and structure

visualization. IEEE Trans. Neural Networks, 13(1), 237-243.

Yin, H. (2002b). Data Visualization and manifold mapping using the ViSOM. Neural

networks, 15, 1005-1016.

Zadeh, L A. (1965) Fuzzy Sets. Information Control, 8, pp. 338-353.

Zhang, Q. and Benveniste A. (1992) Wavelet networks, IEEE Transactions on Neural

Networks 3, pp. 889-898.

Neural Networks and Computing: Learning Algorithms and Applications

304

Zhang, X., and Li, Y. (1993). Self-organizing map as a new method for clustering and

data analysis. Proc. Int. Joint Conf. Neural Networks, 2448-2451.

Zhao, Y. and Atkeson, C. G. (1992) Some approximation properties of projection pursuit

learning networks. In NIPS4, pp. 936-943.

Zheng Q. and Zhuang D. (1992), “Integral Global Optimization of Constraint Problems

in Functional Spaces with Discontinuous Penalty Functions” Recent Advances in

Global Optimization, edited by C.A. Floudas and P.M. Paradalos, Princeton

University Press, pp. 298-320.

305

Index

activation function, 59

 sigmoid, 146

 logistic, 146

 unipolar sigmoid function, 60

adaptive resonance theory, 5

agglomerative hierarchical clustering,

199

Alopex Algorithm, 71

angular smooth functions, 144

ARPS (see Adaptive Regularization

Parameter Selection)

 λ Selection, 120-123

 Stalling Identification method, 120-122

ART (see adaptive resonance theory)

approximation error, 104

acute lymphoblastic leukemia (ALL),

222

 pediatric, 283

acute myeloid leukemia (AML), 222

axon, 2

Backpropagation, 31, 35, 41, 69, 82, 108,

147, 261

 adaptive backpropagation algorithm, 44

 extended backpropagation algorithm,

43, 44, 55

Basis Function, 139

Bayesian classifiers, 215

Bayesian methods, 35

Bayes strategy, 167

bias/variance dilemma, 103

bioinformatics, 216

Boosting techniques, 161

cancer diagnosis, 274

Cascade-correlation, 92

case-based reasoning, 170

CBIR (see Content-based image

retrieval)

cDNA (see complementary DNA

microarrays)

cell morphology, 281

Cell Splitting Grid, 181

Cellular Probabilistic SOM, 186

Central Limit Theorem, 103

chain rule, 33

children nodes, 207

Classification, 139, 148, 207, 213, 284,

293

classifier, 213, 215, 225

Clustering, 149, 155, 199, 276

 inter-cluster, 199

 intra-cluster, 199

 k-means, 149

Colon cancer, 215, 235

colour grouping, 173

competitive learning, 18

Complexity regularization, 161

computational complexity, 56, 196, 207

confidence upper bound, 104, 132

conjugate-gradient, 119

Content-based image retrieval, 262

Convergence Enhancement, 42

Convergence stalling, 69

correlation coefficient, 44, 46, 56

Cost Function, 93, 223

Cumulants, 99

Neural Networks and Computing: Learning Algorithms and Applications 306

 joint moments, 100

 joint cumulants, 100

curse of dimensionality, 234

decision function, 220

decision tree, 278

delta rule, 141

derivative, 65

differentiable functions, 232

discriminant functions, 117, 214

Divergence, 34

DNA, 1

 complementary DNA microarrays, 215,

273

dynamic node creation, 92

Electric Load Forecasting, 251

 electric load, 252

 weather dependent load, 252

EM algorithm, 187

Engineering Applications, 251

entropy, 187, 236

ergodic, 100

 Ergodicity, 106

error gradient, 38

error surface, 44

error minimisation, 45

Evolutionary Programming, 69

Extended Least Squares Based

Algorithm, 55

Fault-tolerance, 2

feature detectors, 166

Feature Selection, 234, 240, 273-274

feedforward model, 12, 14

 feedforward neural network, 101, 253

 Multi-layer feedforward network, 14,

36, 37, 48, 139, 147

 n-input-single-output neural network,

131

flat minima, 117

floating point arithmetic, 34

FOC (see fourth-order cumulant)

 objective function, 101

fourth-order cumulant, 101

fuzzy controllers, 164

 defuzzification, 165

 fuzzification, 165

 Fuzzy RBF Controllers, 164

fuzzy logic propositional theory, 164

Fuzzy set theory, 165

 conjunction, 165

 disjunction, 165

 negation, 165

Gaussianness, 99

 Gaussianity, 104

Gaussian distributed, 102

Gaussian function, 70, 75, 145

 isotropic Gaussian function, 152

Gaussian model, 98

Gaussian noise perturbation, 95

genes, 274, 284

Generalization, 2, 91, 223

Genetic Algorithm, 69, 120

genomics, 281

Global Learning Algorithms, 69, 84, 105

 Global optimization, 69

Gradient Descent Searching, 26, 35, 74

 Optimization, 32, 119, 154

gradient, 119

gradient vector, 28

 negative gradient, 45

Green’s function, 155

Growing SOMs, 181

 Growing Hierarchical Self-Organizing

Quadtree Map, 184, 262

harmonic components, 99

Henon Attractor, 109

Hessian matrix, 107, 119

heuristic algorithm, 57

 Heuristic Hybrid Global Learning

Algorithm, 74

hidden layer, 48

hidden neuron, 14

high curvature, 42

Higher-Order Cumulants, 101

 batch-mode HOC objective function,

108

 cost function, 101

Index 307

Higher-Order Statistic, 98

homogeneous, 149

Hopfield, 5

 Hopfield networks, 5

HOS (see Higher-Order Statistic)

Householder reflections, 66

Householder transforms, 49, 56

hyperplanes, 10, 223

Image Distance, 265

image segmentation, 264

 JSEG algorithm, 264

Information Theory, 236

independent and identically distributed,

105

 finite variance, 107

 zero mean, 107

Initialization, 59, 83, 149, 155, 185

 Weight Initialization Algorithm I, 61

 Weight Initialization Algorithm II, 64

 Weight Initialization Algorithm III, 67

Iterative methods, 38

Kernel-Based Algorithms, 161

k-NN, 215, 278

Knowledge-Based Networks, 170

Kohonen, 5, 173

Kolmogorov's mapping theorem, 63

kurtosis, 100

Lagrange multipliers, 160

Laplace function, 70, 75

Laplacian smooth functions, 144

Least Squares, 47, 70, 74, 155

 linear least squares method, 48, 53, 141

 LS error function, 102

Least-Square Cost Function, 95

learning, 2

 Mechanism, 19

 Performance, 31

 Enhancement, 31

learning rate, 41, 57, 110, 155, 178

 adaptive, 43

LMS algorithm, 29

linear discriminant, 140

linear non-separable, 12

Linear Separation, 140

Linear Weights Optimization, 152

local minimum or minima, 27, 42, 69,

77, 82, 156

loss of generality, 106

Lung Cancer, 215

Lyapunov exponent, 109

Maximum Likelihood:

 Estimation, 94

 Maximum Likelihood Method, 95

maximum magnitude of weights, 65

McCulloch and Pitts, 4

 model, 7

mean squared error function, 38, 223

minimum classification error function,

224-226

Minsky and Papert, 5, 12

MLP (see feedforward model - Multi-

layer feedforward network)

momentum, 41, 43, 46, 57

 factor, 110

Monte Carlo runs, 125

MCE (see minimum classification error

function)

MSE (see mean squared error function)

Multi-Layer SOM, 202

Mutual Information, 236-238, 274-275,

289

 quadratic MI, 243

mutual information criterion, 117

Neural Computing, 1

 Network architecture, 6

neighborhood function, 178-179

neighboring radius, 177

neuron, 1, 2, 175

 fanout processing neurons, 36

 hidden neurons, 149

 neighbouring neurons, 177

 winning neurons, 175, 178

noise estimation and detection, 99

noise perturbation, 101, 106

nonconvex, 155, 156

nonlinear autoregressive, 253

nonlinear optimization problem, 42

Neural Networks and Computing: Learning Algorithms and Applications 308

nonstationary, 35

NOVEL Algorithm, 73

OIVS method, 60

ordinary differential equation, 70

Orthogonality principle, 135

Optimal brain damage, 92

optimal brain surgeon, 92

optimal solution, 107

Osowski’s algorithm, 60

ovarian cancer, 293

overfitting, 93, 98, 151, 192, 235

Over-fit data, 92

parallelism, 2

paralysed neuron percentage, 60

Parametric Smoothing, 142

Parzen window, 239-240, 245

penalized optimization method, 70, 74,

155

 penalty term, 79

 penalty factor λ, 80

Perceptron, 4, 11, 140

 convergence theorem, 141

piece-wise linear segments, 59

PNN (see Probabilistic Neural Networks)

PNP (see paralysed neuron percentage)

Posterior probability, 213

PPR (see projection pursuit regression)

Probabilistic Neural Networks, 167

Probabilistic Regularized SOM, 191

Probabilistic SOMs, 186

probability estimation model, 239

probability density, 94

 function, 238

probability of classification, 214

projection pursuit regression, 144

Prostate Cancer, 280

pruning, 92

pseudoinverse, 151, 237

QR factorization, 49, 56, 62

quadtree structure, 181

quasi-Newton methods, 119, 186

Radial Basis Function, 139, 144

 Gaussian radial basis functions, 152

Random Search, 69

random variables, 99

Rayleigh function, 70, 75

RBF (see Radial Basis Function)

reactive Tabu search, 69, 72

Recurrent network, 15

redundant or redundancy, 35, 217, 274,

277

regression, 148

 function, 105

 problems, 94

regularization:

 Adaptive Regularization Parameter

Selection, 120

 Kolmogorov regularization theory, 157

 method, 105

 networks, 157

 parameter, 101, 110, 116

 selection method, 108

regularized objective function, 118

Relevance Feedback, 266

residual error, 104

RMS (see Root Mean Squares)

 error, 110

Root Mean Squares, 47, 58

Rosenblatt’s perceptron learning rule,

141

Rumelhant, 26

scatter plot, 259

second-order moment, 102

Self Organising Map, 5, 18, 149, 173,

176

 learning algorithm, 177

 weight-updating rule, 178

semi-positive, 107

serine protease, 281

shewness, 100

Short-term load forecasting, 251, 254

similarity measurement, 206

Simulated Annealing, 69, 70, 120

single-layer perceptron, 36

Singular Value Decomposition, 49, 56,

62

Index 309

SOM (see Self Organising Map)

Splines, 143

 B-splines, 143

 Cubic smoothing splines, 143

stalling problem, 55

Statistically Controlled Activation

Weight Initialization, 60

Statistical Learning Theory, 159

steepest descent, 141

STLF (see Short-term load forecasting)

stochastic, 35

 optimization, 69

stopping criteria, 26

structural risk minimization, 223

sub-optimal solutions, 107

Sunspot time-series, 109, 116

Supervised Neural Networks, 6

Support Vector Machines, 159, 217, 219-

223, 278

SVD (see Singular Value

Decomposition)

SVM (see Support Vector Machines)

synapse, 2

Synthetic Function Mapping, 124

system identification, 99

Taylor expansion, 136

teacher, 6

textures, 264

time-series, 15, 99

 forecasting, 102

 model, 108

 nonstationary, 252

threshold function, 4

Trajectory, 72-73

training error, 112

transformation matrix, 50

Tree-Structured data, 202, 207

Truck-Backer-Upper problem, 59

two-spiral benchmark test, 80

U-matrix, 176

unbiased estimator, 132

universal approximator, 5, 91, 119

Universal Approximation, 146, 152

universal function approximating, 91,

253

Unsupervised Neural Networks, 17

variance, 100

vector quantization, 175, 186

 soft quantization error, 187

 Soft Topographic Vector Quantization,

187

 topological VQ, 187

Von Neumann architecture, 1

ViSOM, 175

visualization, 175, 197, 207, 219

virtually redundancy, 79

wrapper model, 235

Wavelet

 decomposition, 161

 Network, 161

 transform, 265

weather forecast, 252

weather parameters, 251

weights, 3

weight decay, 109, 116

weight elimination, 92, 109, 116

weighting factor, 77

weight-updating rule, 177

Widrow-Hoff learning, 141

XOR problem, 80

	Contents
	Preface
	1. Introduction
	1.1 Background
	1.2 Neuron Model
	1.3 Historical Remarks
	1.4 Network architecture
	1.4.1 Supervised Neural Networks
	1.4.1.1 McCulloh and Pitts Model
	1.4.1.2 The Perceptron Model
	1.4.1.3 Multi-layer Feedforward Network
	1.4.1.4 Recurrent Networks

	1.4.2 Unsupervised Neural Networks

	1.5 Modeling and Learning Mechanism
	1.5.1 Determination of Parameters
	1.5.2 Gradient Descent Searching Method

	Exercises

	2. Learning Performance and Enhancement
	2.1 Fundamental of Gradient Descent Optimization
	2.2 Conventional Backpropagation Algorithm
	2.3 Convergence Enhancement
	2.3.1 Extended Backpropagation Algorithm
	2.3.2 Least Squares Based Training Algorithm
	2.3.3 Extended Least Squares Based Algorithm

	2.4 Initialization Consideration
	2.4.1 Weight Initialization Algorithm I
	2.4.2 Weight Initialization Algorithm II
	2.4.3 Weight Initialization Algorithm III

	2.5 Global Learning Algorithms
	2.5.1 Simulated Annealing Algorithm
	2.5.2 Alopex Algorithm
	2.5.3 Reactive Tabu Search
	2.5.4 The NOVEL Algorithm
	2.5.5 The Heuristic Hybrid Global Learning Algorithm

	2.6 Concluding Remarks
	2.6.1 Fast Learning Algorithms
	2.6.2 Weight Initialization Methods
	2.6.3 Global Learning Algorithms

	Appendix 2.1
	Exercises

	3. Generalization and Performance Enhancement
	3.1 Cost Function and Performance Surface
	3.1.1 Maximum Likelihood Estimation
	3.1.2 The Least-Square Cost Function

	3.2 Higher-Order Statistic Generalization
	3.2.1 Definitions and Properties of Higher-Order Statistics
	3.2.2 The Higher-Order Cumulants based Cost Function
	3.2.3 Property of the Higher-Order Cumulant Cost Function
	3.2.4 Learning and Generalization Performance
	3.2.4.1 Experiment one: Henon Attractor
	3.2.4.2 Experiment Two: Sunspot time-series

	3.3 Regularization for Generalization Enhancement
	3.3.1 Adaptive Regularization Parameter Selection (ARPS) Method
	3.3.1.1 Stalling Identification Method
	3.3.1.2 Selection Schemes

	3.3.2 Synthetic Function Mapping

	3.4 Concluding Remarks
	3.4.1 Objective function selection
	3.4.2 Regularization selection

	Appendix 3.1 Confidence Upper Bound of Approximation Error.
	Appendix 3.2 Proof of the Property of the HOC Cost Function
	Appendix 3.3 The Derivation of the Sufficient Conditions of the Regularization Parameter
	Exercises

	4. Basis Function Networks for Classification
	4.1 Linear Separation and Perceptions
	4.2 Basis Function Model for Parametric Smoothing
	4.3 Radial Basis Function Network
	4.3.1 RBF Networks Architecture
	4.3.2 Universal Approximation
	4.3.3 Initialization and Clustering
	4.3.4 Learning Algorithms
	4.3.4.1 Linear Weights Optimization.
	4.3.4.2 Gradient Descent Optimization
	4.3.4.3 Hybrid of Least Squares and Penalized Optimization

	4.3.5 Regularization Networks.

	4.4 Advanced Radial Basis Function Networks
	4.4.1 Support Vector Machine.
	4.4.2 Wavelet Network
	4.4.3 Fuzzy RBF Controllers.
	4.4.4 Probabilistic Neural Networks

	4.5 Concluding Remarks.
	Exercises

	5. Self-organizing Maps
	5.1 Introduction
	5.2 Self-Organizing Maps
	5.2.1 Learning Algorithm

	5.3 Growing SOMs
	5.3.1 Cell Splitting Grid
	5.3.2 Growing Hierarchical Self-Organizing Quadtree Map

	5.4 Probabilistic SOMs
	5.4.1 Cellular Probabilistic SOM
	5.4.2 Probabilistic Regularized SOM

	5.5 Clustering of SOM
	5.6 Multi-Layer SOM for Tree-Structured data
	5.6.1 SOM Input Representation
	5.6.2 MLSOM Training
	5.6.3 MLSOM visualization and classification

	Exercises

	6 Classification and Feature Selection
	6.1 Introduction
	6.2 Support Vector Machines (SVM)
	6.2.1 Support Vector Machine Visualization (SVMV)

	6.3 Cost Function
	6.3.1 MSE and MCE Cost Functions
	6.3.2 Hybrid MCE-MSE Cost Function
	6.3.3 Implementing MCE-MSE

	6.4 Feature Selection
	6.4.1 Information Theory
	6.4.1.1 Mutual Information
	6.4.1.2 Probability density function (pdf) estimation

	6.4.2 MI Based Forward Feature Selection
	6.4.2.1 MIFS and MIFS-U
	6.4.2.2 Using quadratic MI

	Exercises

	7. Engineering Applications
	7.1 Electric Load Forecasting
	7.1.1 Nonlinear Autoregressive Integrated Neural Network Model
	7.1.2 Case Studies

	7.2 Content-based Image Retrieval Using SOM
	7.2.1 GHSOQM Based CBIR Systems
	7.2.1.1 Overall Architecture of GHSOQM-Based CBIR System
	7.2.1.2 Image Segmentation, Feature Extraction and Region- Based Feature Matrices
	7.2.1.3 Image Distance
	7.2.1.4 GHSOQM and Relevance Feedback in the CBIR System

	7.2.2 Performance Evaluation

	7.3 Feature Selection for cDNA Microarray
	7.3.1 MI Based Forward Feature Selection Scheme
	7.3.2 The Supervised Grid Based Redundancy Elimination
	7.3.3 The Forward Gene Selection Process Using MIIO and MISF
	7.3.4 Results
	7.3.4.1 Prostate Cancer Classification Dataset
	7.3.4.2 Subtype of ALL Classification Dataset

	7.3.5 Remarks

	Bibliography
	Index

