
Practical Bot
Development

Designing and Building Bots
with Node.js and Microsoft
Bot Framework
—
Szymon Rozga

www.allitebooks.com

http://www.allitebooks.org

Practical Bot
Development

Designing and Building
Bots with Node.js and Microsoft

Bot Framework

Szymon Rozga

www.allitebooks.com

http://www.allitebooks.org

Practical Bot Development: Designing and Building Bots with Node.js and
Microsoft Bot Framework

ISBN-13 (pbk): 978-1-4842-3539-3 ISBN-13 (electronic): 978-1-4842-3540-9
https://doi.org/10.1007/978-1-4842-3540-9

Library of Congress Control Number: 2018949897

Copyright © 2018 by Szymon Rozga

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3539-3.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Szymon Rozga
Port Washington, New York, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3540-9
http://www.allitebooks.org

iii

Table of Contents
About the Author ���xi

About the Technical Reviewers ���xiii

Preface ���xv

Chapter 1: Introduction to Chat Bots ��1

The Expectations Game ��3

What Is a Chat Bot? ���4

Why Now? ���11

Advancements in Artificial Intelligence ���11

Messaging Apps as a Conversational Intelligence Platform ��������������������������13

Voice-Activated Intelligent Assistants ���14

Why Should We Create Bots? ��15

Bot Anatomy ��18

Bot Runtime ���18

Natural Language Understanding Engine ��20

Conversation Engine ��22

Channel Integration ���25

Conclusion ��27

Chapter 2: Chat Bot Natural Language Understanding �����������������������29

Natural Language Machine Learning Background ��32

Common NLP Tasks ���41

Syntax ��41

Semantics ��41

www.allitebooks.com

http://www.allitebooks.org

iv

Discourse Analysis���42

Common Bot NLU Tasks ��42

Cloud-Based NLU Systems ���44

Enterprise Space ���45

Conclusion ��46

Chapter 3: Language Understanding Intelligent Service (LUIS) ����������47

Classifying Intents ���50

Publishing Your Application ���58

Extracting Entities ���64

Age, Dimension, Money, and Temperature ���67

DatetimeV2 ��69

E-mails, Phone Numbers, and URLs ��77

Number, Percentage, and Ordinal ��77

Entity Training ���79

Custom Entities ���83

Simple Entities���84

Composite Entities ���94

Hierarchical Entities ��102

List Entities ��107

Regular Expressions Entities ���109

Prebuilt Domains ���109

A Historical Point ���111

Phrase Lists ��112

Active Learning ���115

Dashboard Overview ���116

Managing and Versioning Your Application ���118

Integrating with Spell Checking ��121

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Import/Export Application ���124

Using the LUIS Authoring API ��125

Troubleshooting Your Models ��126

Conclusion ��128

Chapter 4: Conversation Design ���129

Common Use Cases ��130

Common Consumer Cases ��130

Common Enterprise Cases ��138

Representing Conversations ���141

Bot Responses ��144

Building Blocks ��144

Authentication and Authorization in Bots ��149

Specialized Cards ��151

Other Functions ���156

Conversational Experience Guidelines ��157

Focus ���157

Don’t Pretend the Bot Is a Human ���158

Do Not Gender Bots ���160

Always Present the Next Best Action ���160

Have a Consistent Tone ���161

Utilize Rich Content ���162

Be Forgiving ��162

Avoid Getting Stuck ���163

Don’t Abuse Proactive Messaging ���163

Provide a Clear Path to Humans ��163

Learn from Your Users ���165

Conclusion ��166

Table of ConTenTsTable of ConTenTs

vi

Chapter 5: Introducing the Microsoft Bot Framework ����������������������167

Microsoft Bot Builder SDK Basics ���168

Bot Framework End-to-End Setup ��187

Step 1: Connecting to Azure ��188

Step 2: Creating the Bot Registration ��191

Step 3: Securing Our Bot ���194

Step 4: Setting Up Remote Access ��195

Step 5: Connecting to Facebook Messenger ���197

Step 6: Deploying to Azure ���204

What Did We Just Do? ���210

Microsoft Azure ���210

Bot Channels Registration Entry ��211

Authentication ���212

Connectivity and Ngrok ���212

Deploying to Facebook Messenger ���213

Deploying to Azure ���214

Key Bot Builder SDK Concepts ��214

Sessions and Messages ��215

Waterfalls and Prompts ���221

Dialogs ���225

Invoking Dialogs ��232

Recognizers ���235

Building a Simple Calendar Bot ��239

Conclusion ��241

Table of ConTenTsTable of ConTenTs

vii

Chapter 6: Diving into the Bot Builder SDK���������������������������������������243

Conversation State ��243

Messages ��246

Addresses and Proactive Messages ���251

Rich Content ��253

Buttons ��259

Cards ���265

Suggested Actions ��272

Channel Errors ��276

Channel Data ���276

Group Chat ��282

Custom Dialogs ���286

Actions ��294

Extra Notes on Actions���300

Libraries ��302

Conclusion ��304

Chapter 7: Building an Integrated Bot Experience ����������������������������305

A Word on OAuth 2�0 ���306

Setting Up Google APIs ��307

Integrating Authentication with Bot Builder ��315

Seamless Login Flow ��323

Integrating with the Google Calendar API ���336

Implementing the Bot Functionality ��345

Conclusion ��353

Table of ConTenTsTable of ConTenTs

viii

Chapter 8: Extending Channel Functionality �������������������������������������355

Deeper Slack Integration ��355

Connecting to Slack ��362

Experimenting with the Slack APIs ���370

Simple Interactive Message ��379

Multistep Experience ��391

Conclusion ��406

Chapter 9: Creating a New Channel Connector ���������������������������������407

The Direct Line API ��408

Custom Web Chat Interface ���411

Voice Bots ���428

Twilio ���429

Integrating Our Bot with Twilio ��431

Integrating with SSML ��447

Final Touches ��452

Conclusion ��457

Chapter 10: Making the Chat Bot Smarter ��459

Spell-Checking ��462

Sentiment ��471

Supporting Multiple Languages ��474

QnA Maker ��482

Computer Vision ��489

Conclusion ��496

Table of ConTenTsTable of ConTenTs

ix

Chapter 11: Adaptive Cards and Custom Graphics ���������������������������499

Adaptive Cards ��501

A Working Example ��512

Rendering Custom Graphics ���518

Conclusion ��545

Chapter 12: Human Handoff ��547

We Still Need Humans���548

Chat Bots from a Customer Service Perspective ��548

Always-On Chat Bot ���549

Sometimes-On Chat Bot ��549

CSR-Facing Chat Bot ���550

Typical Customer Service System Concepts ���550

Integration Approaches ���552

Custom-Built Interface ��552

On Platform��552

Product ��554

Facebook Messenger Handover Sample ���557

Conclusion ��570

Chapter 13: Chat Bot Analytics ���571

Common Data Questions ���572

Generic Data ��572

Demographics ���573

Sentiment ��574

User Retention ���575

User Session Flows ���576

Table of ConTenTsTable of ConTenTs

x

Analytics Platforms ���577

Integrating with Dashbot and Chatbase ��581

Conclusion ��590

Chapter 14: Applying Our Learnings: Alexa Skills Kit �����������������������591

Introduction ���591

Creating a New Skill ��595

Alexa NLU and Automatic Speech Recognition ���598

Diving Into Alexa Skills Kit for Node ��607

Other Options ��621

Connecting to Bot Framework ��624

Implementation Decisions Around Bot Framework and Alexa Skills Kit
Integration ���624

Sample Integration ��628

Conclusion ��639

Index ���641

Table of ConTenTsTable of ConTenTs

xi

About the Author

Szymon Rozga has 15 years of hands on experience in the software

development industry. He found a passion working on front end

applications on Wall Street. The interest in attention to user interface

details would take him on a tour of the different user interface technologies

on the Windows, Web and iOS/Android platforms. He has managed teams

of engineers on a variety of projects and since 2016, he has dedicated

his time to building chat bots for clients across text and voice channels.

He has built a practice around the technologies at BlueMetal, An Insight

Company, and is involved in a handful of chat bot projects at any time. As

Chief Architect of Emerging Technologies, he keeps cognitively flexible by

reading and watching presentations about new technologies, educating

clients, leading discovery sessions, scoping and guiding engagements,

mentoring engineers and helping clients apply technologies such as Chat

Bots, Blockchain and Augmented Reality to business problems.

In his spare time, he enjoys taking walks, reading fiction, going to the

beach, playing guitar, and spending time with his wife Kim, his son Teddy,

and his Golden Retriever, Chelsea.

xiii

About the Technical Reviewers

Alp Tunc is a software engineer with a master of science degree from Ege

University in Izmir, Turkey. He has 20 years of experience in the industry as

a developer/architect/project manager on projects of various sizes. He has

hands-on experience in a broad range of technologies. Besides technology,

he loves freezing moments in spectacular photographs, trekking into the

unknown, running, reading, and listening to jazz. He loves cats and dogs.

Jim O’Neil is a Microsoft Azure MVP and senior architect at BlueMetal

(an Insight Company), a modern application consulting firm

headquartered in Watertown, Massachusetts, where he is primarily

focused on designing and implementing IoT solutions for a variety of

industries. A former Microsoft Developer Evangelist for the Northeast

United States, he remains active in the New England software community

as a speaker and organizer of technical and nonprofit events, namely, New

England GiveCamp. In his spare time, he noodles around in genealogy and

DNA testing through which he’s found both of his birth parents’ families.

xv

In mid-2016, I started work on a fascinating project. A client wanted to have

users with type 2 diabetes be able to get advice from an automated coach, in

other words, a chat bot. It was a fascinating idea. I had many questions. Why

would anyone want to have a natural language conversation with a machine?

Is it possible to make this thing smart enough to accomplish its goals? How

do you even begin creating a chat bot? Through which means are users

supposed to interact with it? When the project ended, we quickly realized

that the technologies we just utilized, natural language understanding,

Microsoft’s Bot Framework, and custom machine learning models, could

serve as the technical base for a wide array of natural language applications

between users and computing systems. Natural language interfaces, after

all, were all the rage. The Alexa-powered Echo Dot had just been released,

and the general population was quickly becoming fascinated with the idea

of communicating with digital assistants by talking to them. My friend and I

jumped on the opportunity to become experts in this space.

We tried many of the different platforms such as Api.ai (now

DialogFlow), Wit.ai, and Watson Conversation but decided to focus on

Microsoft’s Bot Framework as we felt it best complemented the enterprise

space. Chat bot startups sprung up across the landscape promising the

best bot or bot platform. The field became saturated, and our customers

started paying attention. Suddenly, I found myself talking to multiple

clients a day. Initially, these were high-level mentorship sessions. What is

a chat bot? How does it work? What channels does it work with? Does it

learn by itself? Can it integrate with live chat?

Starting around mid-2017, these conversations slowly shifted from

educating clients to scoping the development effort for all types of use

cases. Clients were starting to apply the technology to solve their business

Preface

xvi

problems. In the second half of 2017, while working on delivering multiple

chat bot implementations, a colleague of mine connected me to the editors

who would make this book happen. Taking on this project was an easy

decision to make; it was a fascinating topic, it was a new space, and it had

lots of possibilities. Being slightly on the naïvely optimistic side about a

three-month old’s sleep patterns, I jumped on the opportunity.

I decided to write the book in the same way I would mentor engineers

on the topics. It is divided roughly into three sections. First, I introduce the

topics of chat bots and machine learning (ML) in Chapters 1 and 2.

Although chat bots can, and often do, exist independently of any ML

algorithms, the truth is that users expect chat bots to exhibit some forms

of intelligence, minimally a bit of natural language understanding. As

such, I want to set the state on ML and how it may be applied in natural

language conversations. Chapter 3 is a deep dive into Microsoft’s Language

Understanding Intelligence Service (LUIS), which we will utilize to create

natural language understanding models for our chat bot.

The second section is all about hands-on Bot Framework

development. Chapter 4 introduces the concept of conversation design,

which is the practice of modeling a chat bot conversation. Chapter 5 guides

us through the creation of a Bot Framework chat bot connected to a LUIS

model and its deployment into an Azure app service. In Chapter 6, we take

a step back to examine the features and capabilities of the Bot Builder SDK,

and in Chapter 7 we integrate our chat bot with an OAuth implementation

and external APIs. Chapter 8 is a deeper exploration into Slack bots, and,

finally, Chapter 9 explores the ability to connect any channel to our chat

bot via the Direct Line API. We marry Twilio Voice into the picture to create

a chat bot we can talk to via a phone.

The third section addresses a few additional topics that are essential

to chat bot development. Chapter 10 adds extra intelligence abilities to

our chat bots by focusing on a select set of Microsoft’s Cognitive Services.

Chapter 11 explores two manners of creating custom cards for our chat

bots: adaptive cards and custom graphic renderings. We explore human

PrefaCePrefaCe

xvii

handover in Chapter 12, we learn about chat bot analytics in Chapter 13,

and, finally, in Chapter 14 we put all our newly gained knowledge to work

by creating a simple Alexa skill using Amazon’s Alexa Skills Kit and then

replicate the same experience using a Bot Framework bot.

The chat bot space is dynamic. During the development of this

book, Facebook acquired Wit.ai and shifted its focus to natural language

understanding, Google acquired Api.ai, LUIS changed user interfaces not

once but twice, the Bot Framework was officially released and moved to

Azure, QnA Maker was officially released, Alexa’s user interface changed after

I had written all the content, and Microsoft announced tons of new features

at Build 2018 (which luckily did not drastically change the topics treated

in this book). We have reached a point where the subjects of this book are

relatively stable. It is my hope that the content is essential to any developer

looking to begin chat bot development using Microsoft’s Bot Framework.

This project has been a humbling experience and would not have

been possible without a small group of people for whose support I

am forever grateful. I would like to thank my wife Kim, without whose

patience, kindness, support, and late-night help with editing I would

have never completed the process. I would also like to thank Jeff Dodge

for the collaboration on building our chat bot practice, Bob Familiar for

introducing me to the Apress team, and BlueMetal for allowing me the

room to work on this project. Big thanks to Matt, Jimmy, and Andrew, and

my parents, Hanna and Krzysztof Rozga, for providing much needed moral

support and words of encouragement during times when I felt I was white

knuckling it. I would also like to acknowledge the Apress editors Natalie

and Jessica for their support during the book writing process.

This book is dedicated to Teddy.

—Szymon Rozga
June 1, 2018

Port Washington, New York

PrefaCePrefaCe

1© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_1

CHAPTER 1

Introduction to
Chat Bots
In recent years, chat bots and artificial intelligence (AI) have become

a hot topic in the tech sector and the public imagination. Chat bots,

computer programs that can communicate using natural language, are

doing everything from ordering pizza to buying clothes to saving money

on parking tickets1 to negotiating among themselves.2 Initially, developing

a chat bot was tantamount to developing an integration with a messaging

platform. There was no easy way to represent a conversation flow in code.

When Microsoft created the Bot Framework and the Bot Builder SDK, this

changed. Microsoft created a rich environment in which the developer

was liberated from the concerns of integrating with individual channels

and could focus on writing code that performed the conversational tasks

a chat bot needs to accomplish. The Bot Builder SDK provided a generic

approach to the development of conversational experiences. Microsoft’s

Bot Connectors implemented the logic to translate from the generic format

to channel-specific messages.

1 Robot Lawyers Makes Case Against Parking Tickets:
http://www.npr.org/2017/01/16/510096767/
robot-lawyer-makes-the-case-against-parking-tickets

2 Deal or no deal? Training AI bots to negotiate: https://code.facebook.com/
posts/1686672014972296/deal-or-no-deal-training-ai-bots-to-negotiate/

http://www.npr.org/2017/01/16/510096767/robot-lawyer-makes-the-case-against-parking-tickets
http://www.npr.org/2017/01/16/510096767/robot-lawyer-makes-the-case-against-parking-tickets
https://code.facebook.com/posts/1686672014972296/deal-or-no-deal-training-ai-bots-to-negotiate/
https://code.facebook.com/posts/1686672014972296/deal-or-no-deal-training-ai-bots-to-negotiate/

2

The result is that chat bot development has become significantly more

accessible to millions of developers. Engineers no longer have to learn the

ins and outs of integrating with something like Facebook’s Messenger APIs

or Slack’s Web API. Instead, developers focus on core bot logic and the

conversational experience. Microsoft worries about the rest.

The Bot Builder SDK is available for .NET and Node.js and is run as

an open source MIT-licensed project on GitHub.3 The team is active in

both development and responding to the various issues that development

teams run into. And the team is friendly to boot!

In December 2017, Microsoft made both the Bot Framework and the

Language Understanding Intelligence Service (LUIS) generally available.

LUIS is Microsoft’s natural language service that will aid us in adding

conversational intelligence to our bots. The Bot Framework is now also

called the Azure Bot Service; the two refer to the same thing. As implied

by the name, the Azure Bot Service is now a full-fledged part of Microsoft’s

Azure cloud offering. Microsoft has also provided free tiers of the service so

we can play with the framework to our heart’s content. All of the samples

and techniques in the book can be experimented with at no cost!

Over the last years, all the big tech companies like Microsoft, Facebook,

and Google, as well as many smaller ones, have been taking a stab at

creating the best and easiest-to-use chat bot development frameworks.

The field is very dynamic. Frameworks come and go. Things seem

to change daily. Despite the space’s dynamic nature, Microsoft’s Bot

Framework remains the best platform for developing powerful, fast, and

flexible chat bots. I am thrilled to take you on a journey through chat bot

development using this tool.

3 Microsoft Bot Builder SDK on GitHub: https://github.com/Microsoft/
BotBuilder

Chapter 1 IntroduCtIon to Chat Bots

https://github.com/Microsoft/BotBuilder
https://github.com/Microsoft/BotBuilder

3

 The Expectations Game
For more than two years now, a substantial chunk of my conversations with

customers has been spent on discussing chat bot capabilities, what they are,

and, more importantly, what they are not. Our culture largely confounds

chat bot abilities with artificial intelligence, and it is easy to see why. Some

chat bots employ rich natural language capabilities, leading us to imagine

there is more to them. Likewise, voice-based digital assistants such as

Cortana, Alexa, and Google Assistant live in our homes and may be spoken

to like real humans. Why wouldn’t chat bots display more intelligence?

The culture is additionally permeated with references to the likes of

IBM’s Watson on Jeopardy,4 the New York Times’ feature on the Google

Brain team5 and their feats in language translation using deep learning,

self-driving cars, and AlphaZero destroying the world’s highest-rated

chess-playing engine after only four hours of learning how to play chess.6

These and many other stories highlight the investment and interest in

these techniques, foreshadowing the kind of AI-driven interactions with

our devices that we are heading toward. Developments in the field of AI

have changed the way we interact with, as well as what we expect from,

our technology. Assigning human attributes and abilities to our devices is

becoming more prevalent. Thinkers in the cognition and science-fiction

spaces have long grappled with this possibility as popularized by Asimov’s

Three Laws of Robotics, a set of rules that robots obey to ensure the robots

don’t go after humans. And now that there are some clear and concrete AI

examples in the real world, that kind of reality seems so much closer.

4 IBM Watson: The inside story of how the Jeopardy-winning supercomputer
was born, and what it wants to do next: http://www.techrepublic.com/
article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-
supercomputer-was-born-and-what-it-wants-to-do-next/

5 The Great A.I. Awakening: https://www.nytimes.com/2016/12/14/magazine/
the-great-ai-awakening.html

6 Google’s AlphaZero Destroys Stockfish In 100-Game Match: https://www.chess.
com/news/view/google-s-alphazero-destroys-stockfish-in-100-game-match

Chapter 1 IntroduCtIon to Chat Bots

http://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
http://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
http://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
https://www.chess.com/news/view/google-s-alphazero-destroys-stockfish-in-100-game-match
https://www.chess.com/news/view/google-s-alphazero-destroys-stockfish-in-100-game-match

4

Yet, reality does not match the expectations set forth by AI’s successes

in some very specific problem areas. Although we have made tremendous

leaps and bounds in terms of natural language processing, computer

vision, emotion detection, and so forth, composing all of these pieces

into a human-like intelligence, usually referred to as Artificial General

Intelligence AGI, is not yet within our grasp and is not a realistic target for

chat bots. For every article that celebrates the tremendous achievements

in the AI space, there’s a matching article downplaying the hype around

the same technology and showing examples of why this type of AI is still

far from perfect (think of the articles showing all the images that computer

vision algorithms still can’t correctly classify). As with any technology

that has been hyped up in the media, we must be reasonable with the

expectations we set on it.

Are our bots going to be agents with human-level intelligence having

conversations with our users? No. Given the technology and the tasks

we want our bots to accomplish, can we make our bots perform those

tasks very well? Absolutely. This book aims to equip the reader with

the necessary skill to build compelling, engaging, and useful chat bots.

It is up to the engineer how much of the latest AI techniques you want

to incorporate during this journey. Certainly, these techniques are not

required for a great chat bot.

 What Is a Chat Bot?
At the most basic level, a chat bot, also referred to simply as a bot

throughout this book, is a computer program that can take user input

in natural language and return text or rich media to the user. The user

communicates with the chat bot via a messaging app, such as Facebook

Messenger, Skype, Slack, and others, or via a voice-activated device such as

the Amazon Echo, Google Home, or Harmon Kardon’s Invoke powered by

Microsoft’s Cortana.

Chapter 1 IntroduCtIon to Chat Bots

5

Figure 1-1 illustrates our first bot built using Microsoft Bot Framework.

This bot simply returns the same message to the user prefixed by the string

“echo: ”. The logic that runs this experience on the Bot Framework is brain-

dead simple.

var bot = new builder.UniversalBot(connector, [

 function (session) {

 // for every message, send back the text prepended by

echo:

 session.send('echo: ' + session.message.text);

 }

]);

Figure 1-1. A simple echo bot

Chapter 1 IntroduCtIon to Chat Bots

6

This is a chat bot. Basic and not terribly useful, right? We can just as

easily create a YouTube bot that, given user text input, searches for videos

on that topic and sends the user links to those videos (Figures 1-2 and 1-3).

This is another basic bot that does just one thing, and it kind of does

it well. It integrates with the YouTube API, uses your input as a search

parameter, and returns what are referred to in the Bot Framework as cards,

something we will explore later in the book. The images make for a richer

and more engaging experience—a bit more interesting but still rather

basic.

Figure 1-2. Cats are OK

Chapter 1 IntroduCtIon to Chat Bots

7

The code for this one is shown next. We make a request to YouTube

and translate the response from YouTube format to Bot Framework cards.

const bot = new builder.UniversalBot(connector, [

 session => {

 const url = vsprintf(urlTemplate, [session.message.text]);

 request.get(url, (err, response, body) => {

 if (err) {

 console.log('error while fetching video:\n' + err);

 session.endConversation('error while fetching

video. please try again later.');

Figure 1-3. Dogs are way better!

Chapter 1 IntroduCtIon to Chat Bots

8

 return;

 }

 const result = JSON.parse(body);

 // we have at most 5 results

 let cards = [];

 result.items.forEach(item => {

 const card = new builder.HeroCard(session)

 .title(item.snippet.title)

 .text(item.snippet.description)

 .images([

 builder.CardImage.create(session, item.

snippet.thumbnails.medium.url)

])

 .buttons([

 builder.CardAction.openUrl(session,

'https://www.youtube.com/watch?v=' +

item.id.videoId, 'Watch Video')

]);

 cards.push(card);

 });

 const reply = new builder.Message(session)

 .text('Here are some results for you')

 .attachmentLayout(builder.AttachmentLayout.

carousel)

 .attachments(cards);

 session.send(reply);

 });

 }

]);

Chapter 1 IntroduCtIon to Chat Bots

9

OK, how about this? We can have a bot that, given a statement, can

tell whether it’s a neutral, positive, or negative statement and return an

appropriate response (Figure 1-4). We don’t show it, but the code for this

one is as straightforward as the earlier examples: we fetch a sentiment

score from a simple sentiment REST API and use it to render an answer.

This is a simple example showing how easy our code can integrate with

AI, if we were to go that route. Bots don’t always have to follow a question-

response pattern. Bots can reach out to users proactively. For example, we

could have a fraud alert bot (Figure 1-5).

Figure 1-4. A simple example of utilizing AI to drive a conversation

Chapter 1 IntroduCtIon to Chat Bots

10

A bot can be more task driven. Imagine, for example, a calendar

bot that can create appointments, check availability, edit or delete

appointments, and give you a summary of your calendar (Figure 1-6).

Figure 1-5. Proactive user messaging

Figure 1-6. A simple calendar bot integrated with Google Calendar

Chapter 1 IntroduCtIon to Chat Bots

11

Now things are starting to get a bit more interesting. We are starting to

take natural language and to act on it.

 Why Now?
Why are bots becoming such a big deal? Certainly, they have existed in

all kinds of incarnations in old-school apps like IRC7 and AOL Instant

Messenger.8 And these were not little experiments. IRC bots have been

around for a long time. I remember interacting with quite a few bots over

IRC. Being young and naïve when it came to technology, I initially thought

there was an actual human responding to my messages. I quickly grasped

the idea that there was a machine sitting somewhere responding to what I

was writing. The more I interacted with IRC bots, the more I treated them

like a command line. This, however, was all pretty niche technology at the

time. The public wasn’t interacting with bots on a daily basis so there was

no need to cater to natural language interactions.

Today, the way we interact with the technology around us is

completely different, and it is driven by three forces: advancements in AI,

the idea of messaging apps as a conversational intelligence platform, and

voice-activated conversational interfaces.

 Advancements in Artificial Intelligence
Throughout the 20th century, computer scientists, biologists, linguists,

and economists have made tremendous strides in the fields of cognition,

artificial intelligence, artificial life, machine learning, and deep learning.

The very concept of a computer program executing instructions, the

7 IRC Bots: https://en.wikipedia.org/wiki/IRC_bot
8 SmarterChild: https://en.wikipedia.org/wiki/SmarterChild

Chapter 1 IntroduCtIon to Chat Bots

https://en.wikipedia.org/wiki/IRC_bot
https://en.wikipedia.org/wiki/SmarterChild

12

Universal Turing Machine9 and the idea of a computer architecture that

can digitally store code and execute the code taking inputs and producing

outputs, and the Von Neumann architecture,10 are recent in human history

standards but are the underlying concepts that our work on computers is

based on. The beginnings of the ideas around neural networks were first

published in 1943 by McCulloch and Pitts in their paper “A logical calculus

of the ideas immanent in nervous activity.”11 In 1950, Asimov included

the Three Laws of Robotics in his book I, Robot.12 That same year, the

first paper describing how a computer can play chess, “Programming a

Computer for Playing Chess” by Claude Shannon, was published. He went

on to essentially inventing the field of information theory.13 From the 1960s

and onward, the amount of research and growth in the space has been

mind-blowing; we see proof of this every day in media coverage of the

latest AI applications.

Suffice it to say, since the 1960s, machine learning and the process of

building our own models using a variety of algorithms have become better

performing and more accessible. Libraries such as scikit-learn for Python

and Google’s Tensor Flow, among many others, are well documented with

strong community support. The big technology firms have also invested

enough in their computational capacity and power to be able to work on

9 Universal Turing Machine: https://en.wikipedia.org/wiki/
Universal_Turing_machine

10 Von Neumann Architecture: https://en.wikipedia.org/wiki/
Von_Neumann_architecture

11 A Logical Calculus of Ideas Immanent in Nervous Activity: http://www.cs.cmu.
edu/~epxing/Class/10715/reading/McCulloch.and.Pitts.pdf

12 The Three Laws of Robotics: https://en.wikipedia.org/wiki/
Three_Laws_of_Robotics

13 Programming a Computer for Playing Chess: http://archive.
computerhistory.org/projects/chess/related_materials/
text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.
shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.
shannon.062303002.pdf

Chapter 1 IntroduCtIon to Chat Bots

https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
http://www.cs.cmu.edu/~epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
http://www.cs.cmu.edu/~epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://en.wikipedia.org/wiki/Three_Laws_of_Robotics
https://en.wikipedia.org/wiki/Three_Laws_of_Robotics
http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf

13

some of the most computationally intensive tasks in a reasonable time

frame. Microsoft, Amazon, Google, IBM, and others are now involved in

cloud platforms in one way or another. The next step has been to offer

some of these machine learning algorithms on demand. If we simply

examine Microsoft’s Cognitive Services as an example, we find 30 APIs at

the time of this writing. These include computer vision tools like Face and

Emotion Detection, Content Moderation, and OCR capabilities. It also

includes language tools such as Natural Language Processing, Linguistic

and Text Analytics, and Natural Language Understanding. It even includes

search and knowledge tools such as Recommendations engines and

Sematic Search. The availability of services that any developer can plug

into at any time to access these powerful features at a reasonable cost is

a significant reason why intelligent systems are becoming so much more

prevalent in our lives and is one of the great pieces of infrastructure that

our bots can take advantage of. We will look at Microsoft’s Cognitive

Services in Chapter 10.

 Messaging Apps as a Conversational
Intelligence Platform
Mobile messaging apps have become all the rage in recent years. Snapchat,

Slack, Telegram, iMessage, FB Messenger, WhatsApp, and WeChat are

some of the most used apps on a mobile user’s phone. In fact, their usage

has surpassed that of social networks such as Facebook. According to

Business Insider, messaging apps began being more used than social

networks sometime around the first quarter of 2015, and the trend has

continued since then. Although this book will not get into details around

all the relevant players in the U.S. and global markets, the key point is that

Asia-based messaging apps such as WeChat and LINE have figured out the

best way to grow usage via chat apps and how to monetize that usage. The

monetization trend has not yet fully caught up to the U.S. market, but firms

Chapter 1 IntroduCtIon to Chat Bots

14

like Apple, Twitter, and Facebook have been leading the way by allowing

developers to create easy chat bot and even payment integrations I do not

mean to limit the discussion to said players; the trend of opening access to

messaging platforms is prevalent across the board.

The ability to host these bots within an existing messaging platform

opens brands up to significantly more customers. The user experience

stays within the messaging application. The bot developer does not need

to concern herself with things like animations and memory management

as a mobile app developer might; the main concern is the conversation

with the user. One of the interesting concepts that we will encounter

throughout the book is that bots are not just text. They can include

images, videos, and audio as well as buttons to invoke other commands.

The creation of a conversational experience within the confines of an

existing messaging application is an exercise of writing an app within

an app; our bot is constrained by the native features supported by the

messaging platform. The Bot Framework has the necessary facilities to

maximally take advantage of all these features.

 Voice-Activated Intelligent Assistants
Another factor significantly accelerating the development of

conversational intelligence technologies is the development of voice-

enabled hardware devices. One of the more significant modern virtual

assistants, Siri, was introduced by Apple in 2011. Siri, now a household

name, is powered underneath the hood by some of the technology behind

one of the most well-known desktop voice recognition systems, Nuance’s

speech-to-text product, Dragon NaturallySpeaking.

Siri was the first to market, seemingly encouraging many other

companies to jump into the voice assistant game. Microsoft released

its Cortana Assistant in 2014, the same year that the first Amazon Echo

device was released. Cortana was initially limited to Windows Phone and

Windows desktop operating system but was later made available on mobile

Chapter 1 IntroduCtIon to Chat Bots

15

operating systems and even Xbox. Amazon’s Echo featuring the Alexa

voice assistant was the first commercially successful stand-alone hardware

device and has allowed Amazon to dominate the voice assistant market

early on. In subsequent years, Facebook and Google have introduced

M (shut down as of early 2018) and Google Assistant, respectively. Google

is jumping into the voice device game with Google Home. Harman Kardon

is bringing a product called Invoke into the market, a Microsoft Cortana–

powered speaker. Many other players are expanding into the market,

further encouraging innovation in the space.

This increased activity and competition have been accelerated by

improvements in AI and speech recognition, natural language processing,

and natural language understanding technologies. The significant build-

up of these technologies has increased the activity in terms of standards,

frameworks, and tools to create custom capabilities for these platforms.

As we will soon see, these custom capabilities, or skills, can be backed by a

chat bot.

 Why Should We Create Bots?
Why would we want to write bots and use messaging apps as a platform?

We could just as easily write mobile apps, publish to the app store, and be

done with it, no? Not exactly. There are a variety of trends in user behavior

that are making this approach less feasible.

When it comes to some of the bigger brand names, downloading their

app is a simple task. I want to use Facebook? Fine, I’ll get the app. I want

to check my e-mail; I’ll use the app. But, I want to talk to my local flower

shop? I don’t need an app for that. I don’t want an app for that. Why

should I download an app for every single business I have contact with?

Ideally, I would just be able to call them or, really, just text them, right?

Chapter 1 IntroduCtIon to Chat Bots

16

The moves that firms are making in the market are allowing users

to talk to a business directly. Let’s take Facebook as an example. A local

flower shop can have a Facebook page and enable messaging on the page.

Business employees can respond to customer queries in one place. Twitter

has a similar feature with its new Direct Message API. That offers a lot of

value for businesses. The removal of the app download friction makes it so

much easier for users to begin conversing with businesses. The next step,

of course, is to automate some of that communication. This is where bots

come in. The messaging platform takes care of numerous concerns such as

user identity, authentication, overall app stability, and so forth.

This translates to other use cases as well. Let’s take the use case of

a productivity tool such as Slack. Slack is a great work collaboration

platform that enables people to chat and collaborate with each other

across multiple topics. A chat bot on the Slack platform would typically be

more productivity oriented. For example, you would probably have a hard

time getting people to use a dating bot on Slack as opposed to on a social

network like Facebook. Figure 1-7 shows a listing of the top Slack bots.

These types of bots are more associated to work tasks such as to-do lists,

stand-ups, task assignment, and so on. Clearly, if a team is fully committed

and immersed in Slack, creating a bot to carry out common tasks may be

more effective than creating an entirely separate web site.

Chapter 1 IntroduCtIon to Chat Bots

17

Although Slack’s listing contains a specific category called Bots,

the fact is all of these apps are all bots. Some of them might be more

conversational, and others could have a more command-line feel to them;

as far as we are concerned, a bot is simply listening to messages and

acting upon them. For the heavy conversational kinds of chat bots, the

topic of natural language understanding, the discipline concerned with

understanding human language, is essential for a good user experience. As

such, we dedicate the Chapters 2 and 3 to the topic.

Figure 1-7. Slack bot listing

Chapter 1 IntroduCtIon to Chat Bots

18

 Bot Anatomy
As we dive into the Bot Framework, it is worth breaking down the

development of chat bots into individual components. In general, there

are several approaches to each component. In the following discussion,

I attempt to describe the general concepts and then highlight the way in

which Microsoft approaches the problem in the Bot Framework.

• Bot runtime

• Natural language understanding engine

• Conversation engine

• Channel integrations

 Bot Runtime
At the most basic level, a chat bot is a web service that responds to requests

from users. Depending on the messaging platform we integrate with, the

details differ, but the idea is the same: a messaging platform calls a bot

via an HTTP endpoint with a message that contains the user input. Our

chat bot’s role is to process the message and respond with a message

to the platform that includes the bot’s response plus any attachments

or platform-specific data. Figure 1-8 illustrates a generic approach.

Depending on the platform, we may be able to return exceptional cases

with HTTP status codes or some other format. When our bot processes the

message, it responds by calling the channel’s HTTP endpoint. The channel

then delivers the message to the user.

Chapter 1 IntroduCtIon to Chat Bots

19

There are a few problems with this approach, mainly that we are

tying the bot to a specific messaging channel, whereas our bots should be

channel agnostic so we can reutilize as much logic as possible. The Bot

Framework solves this by providing a connector service that sits between

the messaging platform and the bot. In reality, the interaction looks more

like Figure 1-9. Note that the channel connector owns the connection and

communication with the messaging platform and translates messages into

a generic format our bot can recognize. We will cover channels in more

detail in the “Channel Integrations” section later in this chapter.

Figure 1-8. Message exchange between user, messaging platform,
and a generic bot

Chapter 1 IntroduCtIon to Chat Bots

20

Since the bot runtime is simply a computer program listening to an

HTTP endpoint, we can develop the bot using any technology that allows

us to receive to HTTP messages. We can use .NET, Node.js, Python, and

PHP. In fact, we could simply use the Bot Framework to gain advantage of

the connectors and implement the HTTP endpoint using any approach

we would like. If we did, however, we would lose out on the Bot Builder

SDK. We will cover its benefits and reasons to use it in the “Conversation

Engine” section later in this chapter.

 Natural Language Understanding Engine
Writing a chat bot that reads and understands users’ utterances is

challenging. Human language is unstructured input with flexible and

inconsistent rules. And yet, our bots need to be able to take those inputs

and figure out what the user is talking about. At a high level, natural

language understanding engines solve two problems for the bot developer:

intent classification and entity extraction.

Figure 1-9. Message exchange between the user, messaging platform,
connector service, and bot using the Bot Framework

Chapter 1 IntroduCtIon to Chat Bots

21

We will show what intents and entities are by way of example. Say

we are developing a thermostat-controlling bot. Initially, we would

like to support four actions: turn on, turn off, set mode to cool or heat,

and set temperature. The categories of actions a user can express in

natural language (meaning the turning on/off, setting mode, or setting

temperature) are called intents. The mode itself (cool or heat) and the

temperature value are entities. NLU engines allow the bot developer to

define a custom set of intents and entities relevant to the application.

Table 1-1 lists some sample mappings.

Clearly, it is easier for our code to perform logic based on the intent

and entity values, as opposed to a raw user utterance.

There are several services a bot developer can utilize to gain this NLU

functionality. In the current technology environment, there are plenty of

cloud-based APIs available, such as LUIS, Wit.ai, and Dialog flow, among

others. LUIS is the richer and best-performing from this group and is the

subject of an NLU deep dive in Chapter 3.

Table 1-1. A Sample Mapping of User Input to Intent, As Resolved by

an NLU System

Utterance Intent Entity

“turn on” turnon none

“power off” turnoff none

“set to 68 degrees” settemperature “68 degrees”

type: temperature

“set mode to cool” setMode “cool”

type: Mode

Chapter 1 IntroduCtIon to Chat Bots

22

 Conversation Engine
When building bots, we typically develop a workflow that implements

tasks that our bot would like to accomplish. Following the basic thermostat

example, we could envision the bot architecture as shown in Figure 1-10.

The workflow always starts with the bot listening for user utterances.

An utterance spoken by the user will be resolved to the intents in Table 1- 1.

If the intent is TurnOn or TurnOff, the bot can execute the right logic and

respond with a confirmation message. If we receive a SetTemperature

intent, our bot can verify that the Temperature entity exists. If not, we ask

the user for it. Once we receive it, we can execute the right logic and send a

confirmation response. SetMode would work similarly to SetTemperature

in that we would confirm the existence of the entity and elicit it if it does

not exist.

This description of what a bot does based on user inputs is a

conversation. The activity of designing the types of inputs, the output, and

the transitions is called conversational experience design. We cover this

topic in depth in Chapter 4.

Figure 1-10. A sample bot conversation design diagram

Chapter 1 IntroduCtIon to Chat Bots

23

A conversation engine is the engine that tracks incoming messages,

processes them, and executes the state transitions between the

conversation diagram nodes (also referred to as dialogs). It does so

separately for each user. The state of the conversation is stored so that

when the next user message comes into the bot, the bot knows what the

user’s current state is. The Bot Framework does a great job of providing the

conversation engine via the Bot Builder SDK.

 Aside: Intents, Entities, Actions, Slots, Oh My!

There are multiple approaches to developing bots, but they can be

summarized into two approaches: bot engine and what I call bot

conversation as a service. The bot engine was described earlier: we run

our bot as a web service, call into NLU platforms as necessary, and use a

conversation engine to route messages to dialogs. The bot conversation

as a service approach was popularized by the likes of Dialogflow. The

approach implies that the NLU resolution, conversation mapping, state,

and transitions occur in the cloud on Dialogflow’s infrastructure. Your bot

is then called by Dialogflow to modify responses or integrate with other

systems.

When a user’s utterance maps to an intent and a defined set of

entities, it is called an action. An action has an intent and a set of

parameters. Based on our thermostat bot, we could define an action

named SetTemperatureAction. This action is the SetTemperature intent

with a Temperature parameter. The type of the Temperature parameter

is the Temperature entity. When Dialogflow resolves an action, it can call

into your bot to fulfill the action. In this model, the bot logic is focused

on the execution of logic based on the NLU service’s resolution logic; the

conversation engine is outsourced to the NLU service.

Chapter 1 IntroduCtIon to Chat Bots

24

An advanced topic in this type of approach to bot development is slot

filling. This is the process through which a service notices that an action

was only partially populated by a user input and automatically asks the

user to fill in the remaining slot, or what we called action parameters.

Tables 1-2 and 1-3 illustrate two sample actions.

Figure 1-11 illustrates the entire end-to-end flow between the user,

messaging platform, connector, NLU service, and the bot in in this

conversation as a service model.

Table 1-2. Action Definition for Setting a Temperature in Our

Thermostat Bot

Action Name Type Required? Prompt

settemperature temperature temperature Yes What temperature would

you like to set?

Table 1-3. A More Complex Action Based on a Flight-Booking Bot

Action Name Type Required? Prompt

Book Flight From City Yes departure city

to City Yes destination city

date datetime Yes When are you traveling?

Chapter 1 IntroduCtIon to Chat Bots

25

The conversation as a service approach can be good at getting

something up and running in short order. Unfortunately, this comes at a

loss of some control and flexibility. Using the Bot Framework gets around

these issues by allowing us full control over the bot engine.

 Channel Integration
Building bots means addressing multiple messaging platforms. Your boss

asks you to write a Facebook Messenger bot. You release it, and your boss

congratulates you for your great work. He then asks you, “Can we add this

as a web chat to our FAQ page?” Your bot code is tied to the Messenger

Webhooks and the Send API. You waffle around and figure you can isolate

some of the logic that communicates to Messenger behind a transport

Figure 1-11. Typical bot conversation as a service flow

Chapter 1 IntroduCtIon to Chat Bots

26

interface. You create a second implementation of the same interface that

talks to your chat bot through web sockets. Now you have created your own

abstraction of an interface between your bot and a messaging platform.

We want our bot logic to be abstracted away from the individual

messaging platforms as much as possible. The details of how to receive

messages from the channel and send responses are details we don’t want

to concern ourselves with too much, unless we are the professionals

building connectors into the various platforms. I don’t think you would

be reading this book if you were. You want to develop a bot, not the

infrastructure. Lucky for us, the different bot frameworks in the market

typically do all of this for us, as illustrated in Figure 1-12. The frameworks

allow us to write a bot in a channel-agnostic manner and then connect

to those channels by going through a few clicks and entering some data.

These features are usually called channels or channel integrations.

As is the case with many generic frameworks, there are some edge

cases that the framework does not support because the platform feature is

either too new or platform specific. In such cases, the framework should

allow us to communicate to the platform in its native format. The Bot

Framework provides a mechanism for this.

In addition, our framework should be flexible enough to allow for us

to create custom channel connectors. For example, if we desire to build a

mobile app that provides a chat bot interface, the framework should allow

us to do so. If our enterprise is using an instant messaging channel that is

unsupported by Microsoft’s Connector, we should be able to create one.

Microsoft’s Bot Framework allows for this level of integration via one of my

favorite features: the Directline API.

Chapter 1 IntroduCtIon to Chat Bots

27

We will cover channel and custom channel integrations in Chapters 9

and 10.

 Conclusion
In this chapter, we took a quick look below the surface of the different

components available to build bots. In my work, the Bot Framework has

clearly won out against competitors that use a conversation as a service

approach. The flexibility and control that the Bot Framework provides is

a requirement for many enterprise scenarios. The Bot Framework also

provides better and richer abstractions, deeper connector integration, and

an open and diverse community. The Bot Framework teams has created an

incredibly powerful suite that can be the foundation for any conversational

bot. My team and I have been using the Bot Framework for almost two

years and have found no reason to abandon the platform. In fact, the

framework’s approach to conversational engines and the connector

architecture have proven resilient to any use cases we have thrown its way.

Figure 1-12. Your bot should not be concerned with which channels
it talks to. That should be abstracted away for you.

Chapter 1 IntroduCtIon to Chat Bots

28

For these and many other reasons, this book revolves around using

Microsoft’s Bot Framework as the framework of choice. The framework

is available for the C#/.NET and Node.js development platforms. For the

purpose of this book, we will utilize the Node.js version. We will not utilize

any additional tools like TypeScript or CoffeeScript. We simply use vanilla

JavaScript to show how easy and straightforward it is to get started writing

bots using the Bot Framework SDK for Node.js, aka Bot Builder.

Hype or not, the technology and techniques utilized to build bots are

truly amazing. As part of this adventure, I want to make sure that we not

only cover the basics of building bots but learn more about some of the

underlying techniques and approaches. We will not be diving very deeply

into these topics, but I’ll cover enough to give the reader an introductory

level understanding of how the intelligence in bots can be implemented

to feel comfortable exploring more complex scenarios. In the interest

of overall book focus, when I cover such topics, I will provide links and

information for additional reading material to complement the content. I

am not a data scientist, but I have done my best in introducing the relevant

machine learning (ML) concepts.

We are about to embark on an exciting journey though the world of

conversational design, natural language understanding, and machine

learning as applied to chat bots. As we cover these topics and build bots,

keep in mind that these techniques apply to everything from chat bots to

voice assistant skills. With natural language and voice interfaces becoming

more and more prevalent both at home and in the workplace, I guarantee

you will apply these concepts in both current projects and future natural

language apps. Let’s get going!

Chapter 1 IntroduCtIon to Chat Bots

29© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_2

CHAPTER 2

Chat Bot Natural
Language
Understanding
Before we jump into creating bots and fancy natural language models,

we will take a quick detour into natural language understanding (NLU)

and some of its machine learning (ML) underpinnings. We will be

implementing some of these NLU concepts using Microsoft’s Language

Understanding Intelligence Service (LUIS) in the following chapter. Some

other concepts are available for you to explore using other services (for

instance, Microsoft’s Cognitive Services) or Python/R ML tools. This

chapter is meant to equip you with a quick-and-dirty introduction into

the ML space as it pertains to natural language tasks. If you are familiar

with these concepts, by all means, skip ahead to Chapter 3. Otherwise,

we hope to impart a base-level understanding of the roots of NLU and how

it can be applied to the field of bots. There is a great plethora of content on

the Internet that goes into depth about all of these topics; we provide the

appropriate references if you feel adventurous!

If we choose to develop an NLU-integrated chat bot, our day-to-day

engineering will involve continuous interactions with systems that can

make sense of what the user is saying. This is a nontrivial task. Consider

using brute-force coding to understand free-text user input as related to

30

our natural language controller thermostat. We introduced this use case

in Chapter 1. We had four intents: PowerOn, PowerOff, SetMode, and

SetTemperature. Let’s consider the SetTemperature intent. How would

you encode a system that understands that the user intends to set a

temperature and which part of the user input represents the temperature?

We could use a regular expression that tries to match sentences

like “set temperature to {temperature},” “set to {temperature},” and “set

{temperature}.” You test it out. You feel pretty good, and a tester comes

along and says, “I want it to be 80 degrees.” OK, no biggie. We add “I want it

to be {temperature}.” The next day someone comes along and says, “lower

temperature by 2 degrees.” We could add “lower temperature by {diff }” and

“increase temperature by {diff }.” But now we need to detect the word lower

and increase. And how do we even account for variations of those words?

And don’t get us started on multiple commands such as “set to 68 during

the day and 64 at night.” Come to think of it, what temperature units are we

talking about?

As we think through the interactions we want to support on the

chat bot, we quickly notice that using the brute-force approach would

result in quite a tedious system that, in the end, would not perform well

given the fascinating and annoying inconsistencies of natural language

communication. If we wanted to utilize a brute-force approach, the closest

we can get, and still get some pretty good performance, is to use regular

expressions. The Bot Framework supports this, as we will see in Chapter

5. If we use such an approach, assuming you are not a regular expression

junkie, our interaction model would need to stay simple for maintenance

reasons.

Natural language understanding (NLU) is a subset of the complex

field of natural language processing (NLP) concerned with the machine

comprehension of human language. NLU and NLP are inextricably tied

to our understanding of AI, likely because we often correlate intelligence

to communication skills. There is probably an underlying psychological

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

31

nature to it as well; we think the bot is smarter if it understands what we

are saying, regardless of our intelligence level and the complexity of our

speech. In fact, we would probably be happiest with the kind of AI that

could just understand what we are thinking, not what we say. But I digress.

Under that assumption, a command line is not intelligent because

it requires commands to be in a specific format. Would we consider it

intelligent if we could launch a Node.js script by asking the command

line to “launch node…I’m not sure which file, though; can you help me

out?.” Using modern NLU techniques, we can build models that seem

knowledgeable about certain specializations or tasks. Subsequently, on the

face of it, a bot may seem somewhat intelligent. Is it?

The truth is that we have not yet developed the computational power

and techniques to create an NLU system that matches human intelligence.

A problem is said to be “AI hard” if it could be solved only if we could make

computers as smart as humans. A proper NLU system that behaves and

understands natural language input like a human is not yet within our

grasp; but we can create narrow and clever systems that can understand a

few things well enough to create a reasonable conversational experience.

Considering the hype surrounding ML and AI these days, it is

important for us to set those expectations right from the beginning.

One of the first things I always address with clients in our initial

conversations about conversational intelligence is that there is a gap

between expectations and reality. I like to say that anyone in the room will

easily be able to defeat the bot by phrasing things in a way that a human

may understand but the bot won’t. There are limits to this technology,

and there are limits in what it can do within the available budgets and

timelines. That’s OK. As long as we create a chat bot focused on certain

tasks that make the lives on our users better, we’re on the right path. And if

we can delight our users by building some NLU into the chat bot, great!

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

32

 Natural Language Machine Learning
Background
The beginnings of the NLP field can be traced back to Alan Turing and,

specifically, the Turing test,1 a test to determine whether a machine

can behave intelligently. In the test, an evaluator can ask questions of

two participants. Responding as one of the participants is a human; a

computer is the second participant. Based on the answers the evaluator

receives from the two participants, if the evaluator cannot determine

which participant is a human and which one is a computer, then it is said

that the computer has passed the Turing test. Some systems have claimed

to be able to pass the Turing test, but these announcements have been

judged as premature.2 There’s a criticism that scripting a bot to try to trick a

human to believe that it is human and understanding human input are two

very different things. We are quite a few years from getting to passing the

Turing test.

One of the most famous early successes in the NLP field was Eliza,3 a

simulation of a psychologist written by Joseph Weizenbaum. Written in

the mid-1960s, it is a good example of a simple and seemingly intelligent

bot. The bot was driven by a script that assigned values to inputs based

on keywords and matched the scored input to an output, not dissimilar to

recognizers in the Bot Framework. A JavaScript implementation may be

found online; see Figure 2-1.4 Many other similar systems were created,

with varying levels of success.

1 Turing Test: https://en.wikipedia.org/wiki/Turing_test
2 Ask Ray | Response to announcement of chat bot Eugene Goostman passing the
Turing test: http://www.kurzweilai.net/ask-ray-response-to-announcement-
of-chatbot-eugene-goostman-passing-the-turing-test

3 Eliza: https://en.wikipedia.org/wiki/ELIZA
4 Elizabot: http://www.masswerk.at/elizabot/

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

https://en.wikipedia.org/wiki/Turing_test
http://www.kurzweilai.net/ask-ray-response-to-announcement-of-chatbot-eugene-goostman-passing-the-turing-test
http://www.kurzweilai.net/ask-ray-response-to-announcement-of-chatbot-eugene-goostman-passing-the-turing-test
https://en.wikipedia.org/wiki/ELIZA
http://www.masswerk.at/elizabot/

33

The NLU engines were generally rule based; they were encoded

with structured representations of knowledge for the systems to use

when processing user input. Around the 1980s, the field of machine

learning started gaining ground. Machine learning is the process of

having computers learn without being coded for the task—something

seemingly closer to intelligence than the rule-based approach. For

example, we briefly explored building a brute-force NLU engine and the

tedious work of encoding with the various rules. Using machine learning,

our system would not need to know anything about our domain and

intent classifications ahead of time, though we can certainly start with

a pretrained model. Instead, we would create an engine that we show

Figure 2-1. Sample interaction with JavaScript version of Eliza

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

34

sample inputs labeled with certain intent names. This is called the training

data set. Based on the inputs and labeled intents, we train a model to

identify the inputs as the presented labels. Once trained, a model is able

to receive inputs it has not yet seen and assign scores to each intent. The

more examples we train our model with, the better its performance. This

is where the AI comes in: the net effect of training the model with high-

quality data is that by using statistical models, the system can start making

label predictions of inputs it has not yet encountered.

What was just described is a simplified version of what is known as

supervised learning. The name comes from the fact that the input data is

labeled. Supervised learning’s performance can be quantitively analyzed

quite well because we know the real labels and are able to compare them

to the predicted labels to get a quantitative value, a technique known as

cross validation. The type of tasks best suited for supervised learning are

classification and regression problems. For a class C, classification is the

task of determining whether an input i is or is not of class C; for example, is

a photo one of a panda bear? Or we can go as far as given a set of classes S,

determine the class of input i. Common algorithms for classification include

support vector machines and decision trees. Figures 2-2, 2-3 and 2-4

illustrate a typical supervised learning scenario.

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

35

Regression is similar but is concerned with predicting continuous

values. For example, say we have a data set of some weather features across

airports. Maybe we have data for temperature, humidity, cloud cover,

wind speed, rain quantity, and the number of flights canceled for that day

for JFK in New York, San Francisco International, and O’Hare in Chicago.

We could feed this data into a regression model and use it to estimate the

number of cancellations given some hypothetical weather in New York,

San Francisco, and Chicago.

There are other forms of machine learning besides supervised

learning. Unsupervised learning is the task of making sense of unlabeled

data, typically data clustering tasks as illustrated in Figures 2-5 and 2-6.

Figures 2-2, 2-3, 2-4. A supervised learning example. Figure 2-2 is
our training data, and we would like to ask the system to categorize
the data point with the question mark in Figure 2-3. The classification
algorithm will utilize the data points to figure out the boundaries
based on the labeled data and then predict the label for the input
data point (Figure 2-4).

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

36

Semisupervised learning is the idea of training a model with some

labeled data and some unlabeled data. Reinforcement learning is the

idea of a system learning by making observations and, based on said

observations, making a decision that maximizes some reward function. If

the decision yields a better reward, it is reinforced. Otherwise, the decision

is penalized. More information about the different types of learning can be

found elsewhere.5

There is a fascinating illustration of deep reinforcement learning

on Stanford’s CS pages.,6 as shown in Figure 2-7. In this demo, an agent

navigates a space and learns to navigate toward the red apples with

positive reward and avoids the poisoned green apples.

5 Machine Learning Explained: Understanding Supervised, Unsupervised, and
Reinforcement Learning, Ronald Van Loon: https://www.datasciencecentral.
com/profiles/blogs/machine-learning-explained-understanding-
supervised-unsupervised

6 Deep Reinforcement Learning Visualization: http://cs.stanford.edu/people/
karpathy/convnetjs/demo/rldemo.html

Figures 2-5 and 2-6. Unsupervised learning in which an algorithm
identifies three clusters of data

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

https://www.datasciencecentral.com/profiles/blogs/machine-learning-explained-understanding-supervised-unsupervised
https://www.datasciencecentral.com/profiles/blogs/machine-learning-explained-understanding-supervised-unsupervised
https://www.datasciencecentral.com/profiles/blogs/machine-learning-explained-understanding-supervised-unsupervised
http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

37

Figure 2-7. A visualization of a deep reinforcement learning
algorithm

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

38

An interesting point to highlight is that the general popular bot

applications of NLU and NLP are quite superficial. In fact, there has been

criticism to calling what Watson did on Jeopardy or what bots do NLU. As

a Wall Street Journal article by Ray Kurzweil stated, Watson doesn’t know

it won Jeopardy. Understanding and classifying/extracting information are

two different tasks. This is a fair criticism, but a well-built intent and entity

model can prove useful when it comes to understanding human language

in specific narrow contexts, which is exactly what chat bots do.

Aside from the intent classification problem, NLP concerns itself with

tasks such as speech tagging, semantic analysis, translation, named entity

recognition, automatic summarization, natural language generation,

sentiment analysis, and many others. We will look into translation in

Chapter 10 in the context of a multilingual bot.

In the 1980s, interest in artificial neural network (ANN) research

was increasing. In the following decades, further research in the area

yielded fascinating results. A simplistic view of a neuron in an ANN is to

think of it as a simple function with N weights/inputs and one output. An

ANN is a set of interconnected neurons. The neural network, as a unit,

accepts a set of inputs and produces an output. The process of training a

neural network is the process of setting the values of the weights on the

neurons. Researchers have focused on analysis of many different types

of neural networks. Deep learning is the process of training deep neutral

networks, which are ANNs with many hidden layers between the input and

output (Figure 2-8).

Google’s Translate, AlphaGo, and Microsoft’s Speech Recognition

have all experienced positive results by utilizing deep neural networks.

Deep learning’s success is a result of research into the various connectivity

architectures within the hidden layers. Some of the more popular

architectures are convolutional neural networks (CNNs)7 and recurrent

7 Convolutional neural networks (CNNs): http://ufldl.stanford.edu/tutorial/
supervised/ConvolutionalNeuralNetwork/

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

39

neural networks (RNNs).8 Applications related to bots may include

translation, text summarization, and language generation. There are many

other resources for you to explore if you would like to go down the rabbit

hole of how ANNs can be applied to natural language tasks.9

What is happening within the many ANN layers as the data goes back

and forth between the neurons? It seems that no one is quite sure. Google’s

Translate, for example, has been observed creating an intermediate

representation of language. Facebook’s project to create AI that could

negotiate with either other bots or human resulted in the AI creating

its own shorthand and even lying. This has been written about as some

indication that AI is taking over the world when, in reality, although these

are fascinating and discussion-worthy behaviors, they are side effects of

the training process. In the future, some of these side effects may become

creepier and scarier as the complexity of the networks produce more

unintended emergent behavior. For now, we are safe from an AI takeover.

The ease of developing deep learning models by using toolkits such

as Microsoft’s Cognitive Toolkit10 and Google’s Tensor Flow11 is also

a significant driver in the recent uptick of popularity of ANN models.

8 Recurrent neural networks (RNNs) and associated architectures: https://
en.wikipedia.org/wiki/Recurrent_neural_network

9 Comparative Study of CNN and RNN for Natural Language Processing: https://
arxiv.org/pdf/1702.01923.pdf

10 Microsoft Cognitive Toolkit: https://www.microsoft.com/en-us/
cognitive-toolkit/

11 TensorFlow: https://www.tensorflow.org/

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://arxiv.org/pdf/1702.01923.pdf
https://arxiv.org/pdf/1702.01923.pdf
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.tensorflow.org/

40

Deep learning techniques are being utilized quite successfully in

natural language processing tasks. In particular, speech recognition and

translation have benefitted substantially from the introduction of deep

learning. In fact, Microsoft Research has created speech recognition

software “that recognizes conversations as well as professional human

transcribers,”12 and Google has decreased its translation algorithm’s error

rate by between 55 to 85 percent for certain language pairs by taking

advantage of deep learning.13 However, effectiveness in NLU tasks such as

intent classification is not as strong as the deep learning hype may want it

to be. The key insight here is that deep learning is another tool in the ML

toolkit, not a silver bullet.

12 Microsoft researchers achieve new conversational speech recognition milestone:
https://www.microsoft.com/en-us/research/blog/microsoft-researchers-
achieve-new-conversational-speech-recognition-milestone

13 A Neural Network for Machine Translation, at Production Scale - https://
research.googleblog.com/2016/09/a-neural-network-for-machine.html

Figure 2-8. An ANN

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

https://www.microsoft.com/en-us/research/blog/microsoft-researchers-achieve-new-conversational-speech-recognition-milestone
https://www.microsoft.com/en-us/research/blog/microsoft-researchers-achieve-new-conversational-speech-recognition-milestone
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

41

 Common NLP Tasks
In general, NLP deals with a whole multitude of problems, a subset of

which are what we would consider NLU tasks. At a high level, the topics

can be related to language syntax, semantics, and discourse analysis. Not

every NLP task is immediately relevant to chat bot development; some of

them are foundational to the more relevant higher-order features such as

intent classification and entity extraction.

 Syntax
Syntax tasks generally deal with issues corresponding to taking text input

and breaking it up into its constituent parts. Many of these tasks are

foundational and will not be directly used by a bot. Segmenting input

into smaller units of speech, called morphemes, and building structures

representing the speech in some grammar are two examples of this. Part of

speech tagging, the process of tagging every word in user input with its part

of speech (e.g., noun, verb, pronoun), could be used to refine user queries.

 Semantics
Semantic tasks are related to finding meaning in natural language input.

These tasks have real applications for chat bots and include the following:

• Named entity extraction: Given some text, determine

which words map to names and what the type of name

is (e.g., location, person). This is directly applicable to

what we want chat bots to do.

• Sentiment analysis: Identify whether the contents of

some text are overall positive, negative, or neutral.

This can be utilized for determining user sentiment to

bot responses, redirecting to a human agent, or in bot

analytics understanding where users are tripping up

and not reacting well to the bot.

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

42

• Topic segmentation: Given some text, break it into

segments related to topics and extract those topics.

• Relationship extraction: This extracts the relationship

between objects in text.

 Discourse Analysis
Discourse analysis is the process of looking at larger natural language

structures and making sense of them as a unit. In this area, we are interested

in deriving meaning from context in a body of text. Automatic summarization

is used to summarize a large body of content such as corporate financial

statements. More relevant to chat bots is the concept of co-reference

resolution. Co-reference resolution is the idea of determining what entity

multiple words refer to. In the following input, the I refers to Szymon:

My name is Szymon. I am piling up cereal for my son.

 Common Bot NLU Tasks
If we are planning on using NLU in our chat bot, there are several features

to consider when evaluating a solution. The bare-bones basic functionality

is the ability to recognize custom intents and entities. The following are

some features to consider:

• Multilanguage support: The support of multiple languages

in an NLU implementation speaks volumes about a

serious undertaking of an NLU platform. Experience

with optimizations for different languages can be a good

indicator of the team’s overall experience with NLU.

• Ability to include prebuilt models: A head start is always

appreciated, and many systems will include many

prebuilt intents and entities associated with a specific

domain for you to start using.

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

43

• Prebuilt entities: There are many types of entities we

would expect an existing system to be able to easily pull

out for us, for example, numbers and date/time objects.

• Entity types: There should be an ability to specify different

types of entities (lists versus nonlists come to mind).

• Synonyms: The system should accept the ability to show

assign synonyms to entities.

• Ongoing training via Active Learning: The system

should support the ability to utilize real user input as

training data for the NLU models.

• API Although these tools will implement some sort

of user interface for you to utilize to train the models,

there should an API you can utilize to do so.

• Export/Import: The tool should allow you to import/

export models, preferably in an open text format like

JSON.

An alternative approach to utilizing preexisting services would be to

write your own. This is an advanced topic. If you are reading this book,

chances are you do not possess the experience and knowledge to make

it work. There are easy-to-use ML packages such as scikit-learn that may

give the impression that creating something like this is easy, but the effort

requires substantial optimizations, tuning, testing, and operationalization.

Getting the right type of performance out of these general-purpose NLU

systems takes a lot of time, effort, and expertise. If you are interested in

how the technologies work, there are plenty of materials online for you to

educate yourself.14

14 Machine Learning, NLP: Text Classification using scikit-learn, python and
NLTK: https://towardsdatascience.com/machine-learning-nlp-text-
classification-using-scikit-learn-python-and-nltk-c52b92a7c73a

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

https://towardsdatascience.com/machine-learning-nlp-text-classification-using-scikit-learn-python-and-nltk-c52b92a7c73
https://towardsdatascience.com/machine-learning-nlp-text-classification-using-scikit-learn-python-and-nltk-c52b92a7c73

44

 Cloud-Based NLU Systems
The great news from the space of cloud computing and the investment

that the big technology firms are making into the ML as a service space

is that the basic functionality for the tasks that we need for our bots are

available as services. From a practical perspective, there are many benefits

here: developers don’t have to be concerned with selecting the best

algorithms for our classification problem, there is no need to scale the

implementation, there are existing efficient user interfaces and upgrades,

and optimizations are seamless. If you are creating a chat bot and need

the basic classification and entity extractions features, using a cloud-based

service is the best option.

The field is very dynamic, and the features and focus of these systems

change over time. At any rate, at the time of this writing, the following are

the best options, in no particular order:

• Microsoft’s Language Understanding Intelligence

Service (LUIS): This is the purest example of an LU

system because it is completely independent from a

conversation engine. LUIS allows the developer to add

intents and entities, version the LUIS application, test

the application before publishing, and finally publish

to a test or production endpoint. In addition, it includes

some very interesting active learning features.

• Google’s Dialogflow (Api.ai): Dialogflow, previously

known as Api.ai, has been around for a while. It

allows the developer to create NLU models and

define conversions flows and calls to webhooks or

cloud functions when certain conditions are met. The

conversation is accessible via an API or via integrations

to many messaging channels.

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

45

• Amazon’s Lex: Amazon’s Alexa has long allowed users

to create intent classification and entity extraction

models. With the introduction of Lex, Amazon brings a

better user interface to NLU with bot development. Lex

has a few channel integrations at the time of this writing

and can be accessed via an API. Like Dialogflow, Lex

allows developers to use an API to talk to the bot.

• IBM Watson Conversation: Yet another similar system,

Watson Conversation allows the user to define intents,

entities, and a cloud-based dialog. The conversation is

accessible via an API. At the time of this writing, there

are no prebuilt channel connectors; a broker must be

written by the bot developer though samples exist.

• Facebook’s Wit.ai: Wit.ai has been around for a while

and includes an interface to define intents and entities.

As of July 2017, it is refocusing on NLU and removing

the bot engine pieces. Wit.ai is also being more closely

integrated with the Facebook Messenger ecosystem.

For our NLU deep dive in the following chapter, we will utilize LUIS.

Being a pure NLU system, LUIS has a significant advantage, especially

when it comes to Bot Framework integration. Although there are not many

benchmarks in the NLU space at this time, LUIS ranks among the top-

performing NLU systems in the market.15

 Enterprise Space
There are many other options in the enterprise space—really, too many

to list. Some of the bigger company and product names you may run into

15 Evaluating Natural Language Understanding Service for Conversational
Question Answering Systems: http://www.sigdial.org/workshops/
conference18/proceedings/pdf/SIGDIAL22.pdf

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

http://www.sigdial.org/workshops/conference18/proceedings/pdf/SIGDIAL22.pdf
http://www.sigdial.org/workshops/conference18/proceedings/pdf/SIGDIAL22.pdf

46

are IPsoft’s Amelia and Nuance’s Nina. Products in this space are generally

advanced and contain years of enterprise-level investment. Some

companies focus on IT or other process automation. Some companies

focus on internal use cases. Some companies focus on specific verticals.

And yet other companies focus entirely on prebuilt NLU models around

specific use cases. In some products, we will write bot implementations via

a proprietary language versus an open language.

In the end, the decision for enterprises is a classic buy versus build

dilemma. Niche solutions may stay around for a while, but it is reasonable

to assume that with the amount of investment IBM, Amazon, Microsoft,

Google, and Facebook are throwing into this space, companies with less

financial backing might be handicapped. Niche players that don’t solve

the general bot problem may certainly thrive, and I think we will find more

companies creating and innovating in specialized NLU and bot solutions

that are powered by the big tech company offerings.

 Conclusion
We are truly seeing the democratization of AI in the NLU space. Years ago, bot

developers would have to pick up the existing NLU and ML libraries to create

a system that could be trained and used as readily and easily as the cloud

options we have available these days. Now, it is incredibly easy to create a bot

that integrates NLU, sentiment analysis, and coreferences. The firms’ effort

behind these systems isn’t something to scoff at either; the largest technology

companies are digging into this space to provide the tooling for their users

to build conversational experiences for their own platforms. For you as a bot

developer, this is great. It means competition will keep pushing for innovation

in the space, and as research in the field progresses, improvements in

classification, entity extraction and active learning will improve NLU systems’

performance. Bot developers stand to gain from the increased pace of

research and improved performance of all these NLP services.

Chapter 2 Chat Bot Natural laNguage uNderstaNdiNg

47© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_3

CHAPTER 3

Language
Understanding
Intelligent Service
(LUIS)
LUIS is an NLU system that my teams and I have used extensively and is a

perfect learning tool to apply the important concepts of intent classification

and entity extraction. You can access the system by going to https://

luis.ai. Once you log in using a Microsoft account, you will be shown a

page describing how to build a LUIS app. This is a good introduction to

the different tasks we will be accomplishing in this chapter. Once you are

done, click the Create LUIS app button near the bottom. You will be taken

to a page with your LUIS applications. Click the Create new app button and

enter a name; a LUIS app will be created for you where you can create a

new model and train, test, and publish it for use via an API when ready.

In this chapter, we will create a LUIS app that lets us power a Calendar

Concierge Bot. The Calendar Concierge Bot will be able to add, edit, and

delete appointments; summarize our calendar; and find availability in

a day. This task will take us on a tour of the various LUIS features. By the

end of the chapter, we will have developed a LUIS app that not only can be

used to create a useful bot but can constantly evolve and perform better.

https://luis.ai/
https://luis.ai/

48

To start, let’s create a new app in LUIS. When we click the Create new

app button, we will get a pop up as in Figure 3-1. Fill out the Name and

Description fields. LUIS not only works with English but supports other

cultures as well. Different languages require different language models

and optimizations. This selection informs LUIS which culture your app

will be using so those optimizations can be utilized. At the time of this

writing, LUIS supports Brazilian Portuguese, Chinese, Dutch, English,

French, French Canadian, German, Italian, Japanese, Korean, Spanish,

and Mexican Spanish. As the system matures, wider culture support may

be introduced.

Figure 3-1. Creating a new LUIS app

Chapter 3 Language understanding inteLLigent serviCe (Luis)

49

Once the app is created, you will be greeted by the Build section of the

LUIS interface (Figure 3-2). As you can see, it is empty except for the None

intent. We’ll get into that once we start training intents. You will also see

the Review Endpoint Utterances link. This is LUIS’s active learning feature,

which we will explore in subsequent sections.

Note that as of the time of this writing, a LUIS application is limited to

500 intents, 30 entities, and 50 list entities. When LUIS was first released,

the limits were closer to 10 intents and 10 entities. The latest up-to-date

numbers can always be found here online.1

On the top of the page, you will see your app name, the active version,

and links to the Dashboard, Build, Publish, and Settings sections of

LUIS. We can also easily train and test the model right from within the

interface. We will explore each of these LUIS sections as we build our

calendar concierge app.

1 LUIS Boundaries: https://docs.microsoft.com/en-us/azure/
cognitive-services/luis/luis-boundaries

Figure 3-2. LUIS Build section

Chapter 3 Language understanding inteLLigent serviCe (Luis)

https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-boundaries
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-boundaries

50

 Classifying Intents
We covered the concepts of intent classification in the previous chapter,

but this will be the first time we dive into it in practice. To reiterate, we

would like to create a LUIS app that lets us add, edit, or delete calendar

entries; display a summary of the calendar; and check availability in our

calendar. We will create the following intents:

• AddCalendarEntry

• RemoveCalendarEntry

• EditCalendarEntry

• ShowCalendarSummary

• CheckAvailability

We left off within the Build section. In the left pane, we have selected

the Intents item. There is one intent in the system: None. This intent

is resolved whenever the user’s input does not match any of the other

intents. We could use this in our bot to tell the user that they are trying to

ask questions outside of the bot’s area of expertise and remind them what

the bot is capable of.

A typical workflow for using LUIS is to add an intent and present LUIS

with several sample utterances that represent the intent. This is exactly

what we will do. Figure 3-3 illustrates the process of creating an intent.

The UI allows us to enter the utterance in a free-text entry field. We enter a

sample, press Enter, enter another sample, press Enter, and so forth. Once

we add enough sample utterances, we click the Save button and we're

done with the intent (Figure 3-4).

Chapter 3 Language understanding inteLLigent serviCe (Luis)

51

Note that the user interface allows us to search for utterances, delete

utterances, reassign intents to utterances, and display the data in a few

different formats. Feel free to explore this functionality as you go along.

Before we add the rest of the intents, let’s see if we can train and test

the application so far. Note that the Train button in the top right has a

red indicator; this means the app has changes that have not yet been

trained. Go ahead and click the Train button. Your request will be sent

to the LUIS servers, and your app will be queued for training. You may

notice a message that comes up informs you that LUIS is training your app

Figure 3-3. Adding new LUIS intent

Figure 3-4. Adding utterances for AddCalendarEntry intent

Chapter 3 Language understanding inteLLigent serviCe (Luis)

52

and “0/2 completed.” The 2 is the number of classifier models that your

application currently contains. One is for the None intent, and one is for

AddCalendarEntry. When training is done, the Train button indicator will

turn green to indicate that the app is up-to-date.

The intent interface also gives us information about which intent the

latest trained app scores highest for each utterance (Figure 3-5). This piece

of data is important because we can easily see when an application is

trained to classify an utterance as one intent but assigns the highest score

to a different intent. The discrepancy in the trained versus resulting intent

is often an indicator that there is something in one or more models that

is influencing the result in the wrong direction. We’ll cover this and other

scenarios in the Troubleshooting section of this chapter. For now, it appears

all our utterances have been successfully trained to result in a score of 1

on the AddCalendarEntry intent and between 0.05 and 0.07 on the None

intent (see Figure 3-6); these numbers may vary depending on your exact

utterances and also changes made by the LUIS engineering team.

Figure 3-5. Highest-scoring intents (also called predicted intents) for
AddCalendarEntry intent

Figure 3-6. Utterance score for each intent in our app

Chapter 3 Language understanding inteLLigent serviCe (Luis)

53

Once trained, we can use the Test slide-out next to the Train button to

test the models and see how they respond to different inputs (Figure 3- 7).

The Batch testing panel link allows a higher volume of testing to be

performed. For our purposes, we will stick to the interactive mode.

The way LUIS functions is that it runs each input through all the

models that were trained in the Training phase for our app. For each

model, we receive a resulting score between 0 to 1 inclusive. The top-

scoring intent is displayed prominently. Note that a score does not

correspond to a probability. A score is dependent on the algorithm that is

being used and usually represents some measure of the distance between

the input to an intent’s ideal form. If LUIS scores an input with similar

scores for more than one intent, we probably have some additional

training to do.

Figure 3-7. Interactively testing our model

Chapter 3 Language understanding inteLLigent serviCe (Luis)

54

After training our app and testing it, it seems to perform well until we

try to break it. Then, it quickly starts looking wrong. Figure 3-8 illustrates

this point.

Yikes. This is not terribly surprising. We have trained one intent with

a limited number of utterances. We provided zero sample utterances to

the None intent. This is the kind of behavior an undertrained model will

exhibit. Let’s add some of these silly phrases to the None intent, train, and

test again. You may try to add a few more nonsensical test cases like those

in Figure 3-9. It should work better. We will not solve for all kinds of issues

like this right now. This will take some time, dedication, and user feedback.

But we should be aware that training the app what it should not know is as

important as training an app what it should know.

Figure 3-8. Testing wacky and ridiculous inputs

Figure 3-9. We have made some progress!

Chapter 3 Language understanding inteLLigent serviCe (Luis)

55

Next, we will add the remaining intents. Figure 3-10, Figure 3- 11,

Figure 3-12, and Figure 3-13 show some sample utterances for the

CheckAvailability, EditCalendarEntry, DeleteCalendarEntry, and

ShowCalendarSummary intents.

Figure 3-10. CheckAvailability intent sample utterances

Figure 3-11. EditCalendarEntry intent sample utterances

Chapter 3 Language understanding inteLLigent serviCe (Luis)

56

Once all the intents are created and populated with sample utterances,

we train and confirm that the predicted intents look accurate. You may

note that although the top-scoring intent for each of the utterances is

correct, the scores are rather low (Figure 3-14). This is an opportunity for

us to train the app further. In fact, we can never assume that we can train

Figure 3-12. DeleteCalendarEntry intent sample utterances

Figure 3-13. ShowCalendarSummary intent sample utterances

Chapter 3 Language understanding inteLLigent serviCe (Luis)

57

an intent to be recognized with such a limited vocabulary and set of data.

Getting NLU right requires patience, dedication, and thought. We will add

more utterances to our app in an upcoming exercise.

EXERCISE 3-1

Training LUIS Intents

the previous samples show some sample inputs into the intents we trained.

Your task is to create a Luis app, create the same set of intents, and train the

app with enough utterance samples so that all intent scores are above 0.80.

• Create the following intents and enter at least ten sample

utterances for each:

• addCalendarentry

• removeCalendarentry

• editCalendarentry

• showCalendarsummary

• Checkavailability

• add some more training to the none intent. Focus on inputs that

either make no sense or make no sense in this application, such

as “i like coffee.” it makes sense but not for this application.

Figure 3-14. The scores are not looking great. This is an opportunity
to further train.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

58

• train the Luis app and observe the predicated scores for each

utterance by visiting the intent page. use the interactive test tab

as well.

• What are the scores? are they higher than 0.80? Lower? Keep

adding sample utterances to each intent to raise the score.

Be sure to train the app every so often and reload the intent

utterances to see the updated scores. how many utterances

does it take to make you confident in your app?

Once you are done with these exercise, you will have built up the experience

of training and testing Luis intents.

 Publishing Your Application
Obviously, we are not yet done developing our app. There are quite a

few things missing and many details of LUIS we have not yet explored.

We haven’t seen any real user data yet either. But, we can develop both

the LUIS app and the consuming application in parallel. The process of

taking our trained app and making it accessible via HTTP is referred to as

publishing our app.

On the top navigation strip for the app, next to the Build section, we

can find the Publish section. When we click this, we are greeted with a

page that allows us to deploy the LUIS application (Figure 3-15). LUIS

allows us to publish the application in one of two deployment slots: staging

or production. Staging is meant for usage when we are still developing

and testing the LUIS app. The production slot is meant to be used by

production apps. The idea behind the two slots is that you can have a

previous stable version of the LUIS app deployed into production, while

you work on new app features in the staging slot.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

59

We will go ahead and select the Staging slot from the “Publish to” drop-

down. Once it’s published, we can access the app via an HTTP endpoint.

Before we test the resulting endpoint using cURL, a command line tool

to transfer data over HTTP (among many other protocols), you may have

noticed that below the publish settings there is an Add Key button and a set

of keys for several deployment regions. When accessing a LUIS app, we must

provide a key, which is how LUIS can bill us for API usage. LUIS is deployed

to several regions; a key must be associated with a region. Keys are created

using Microsoft’s Azure Portal. Azure is Microsoft’s cloud services umbrella.

We will utilize it to register and deploy a bot in Chapter 5. To associate a key

with an app, we must use the Add Key button. Lucky for us, LUIS provides a

free starter key to use against apps published in the Staging slot.

Figure 3-15. LUIS Publish page

Chapter 3 Language understanding inteLLigent serviCe (Luis)

60

Once we publish to the Staging slot, a few things happened. We now

have information about the app version and the last time it was published.

The URL under Starter_Key is now functional. We may enable verbose

results (something we will examine momentarily) or Bing spell check

integration (which we will discuss later in this chapter) via URL query

parameters. Let’s take a closer look at the URL.

https://westus.api.cognitive.microsoft.com/luis/v2.0/

apps/3a26be6f-6227-4136-8bf4-c1074c9d14b6?

subscription-key=a9fe39aca38541db97d7e4e74d92268e&

staging=true&

verbose=true&

timezoneOffset=0&

q=

The first line of the URL is the service endpoint for the Azure Cognitive

Services in the West US region and, specifically, our LUIS app. These are

the query parameters that follow:

• The subscription key, in this case the Starter Key. This

key can also be passed via the Ocp-Apim-Subscription-

Key header.

• A flag indicating whether to use the Staging or

Production slot. Not including this parameter assumes

the Production slot.

• Verbose flag indicating whether to return all the intents

and their scores or return only the top-scoring intent.

• Time zone offset to assist in temporal tagging datetime

resolution, a topic we will dive into when exploring the

built-in Datetime entity.

• q to indicate the user’s query.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

61

We can play with the API by making requests and seeing the responses

by using curl. At its core, curl is a command-line tool to transfer data over a

variety of protocols. We are going to use it to transfer data over HTTPS. You

can find more information at https://curl.haxx.se/. The command we

can utilize is as follows. Note that we pass the subscription key as an HTTP

header.

curl -X GET -G -H "Ocp-Apim-Subscription-Key:

a9fe39aca38541db97d7e4e74d92268e" -d staging=true -d

verbose=true -d timezoneOffset=0 "https://westus.api.cognitive.

microsoft.com/luis/v2.0/apps/3a26be6f-6227-4136-8bf4-

c1074c9d14b6" --data-urlencode "q=hello world"

This query results in the following JSON. It gives us the score for each

intent in our LUIS app.

{

 "query": "hello world",

 "topScoringIntent": {

 "intent": "None",

 "score": 0.24031198

 },

 "intents": [

 {

 "intent": "None",

 "score": 0.24031198

 },

 {

 "intent": "DeleteCalendarEntry",

 "score": 0.1572571

 },

 {

 "intent": "AddCalendarEntry",

Chapter 3 Language understanding inteLLigent serviCe (Luis)

https://curl.haxx.se/

62

 "score": 0.123305522

 },

 {

 "intent": "EditCalendarEntry",

 "score": 0.0837310851

 },

 {

 "intent": "CheckAvailability",

 "score": 0.07568088

 },

 {

 "intent": "ShowCalendarSummary",

 "score": 0.0100482805

 }

],

 "entities": []

}

You may be thinking, whoa, we just learned that we can have up to

500 intents, so the size of this response would be ridiculous. You would

be quite correct thinking this (though gzip would certainly help here)!

Setting the verbose query parameter to false results in a significantly more

compact JSON listing.

{

 "query": "hello world",

 "topScoringIntent": {

 "intent": "None",

 "score": 0.24031198

 },

 "entities": []

}

Chapter 3 Language understanding inteLLigent serviCe (Luis)

63

Once we are ready to deploy into production, we would publish our

LUIS app into the Production slot and remove the staging parameter from

the URL request. The easiest way to accomplish this would be to simply

have your development and test configuration files point at the Staging slot

URL and the production configuration to point at the Production slot URL.

You are of course welcome to utilize any other HTTP tool you are

comfortable with. In addition, Microsoft provides an easy-to-use console

to test the LUIS API within the API documentation found online.2

EXERCISE 3-2

Publishing a LUIS App

You will now publish the Luis app from exercise 3-1 and access it via curl.

• publish the Luis app into the staging slot as per the steps in the

previous section.

• use curl to get the JsOn for predicted intents from the Luis api

for utterances you have entered as sample utterances and other

utterances you can think of.

• Make sure the curl command uses your application id and

starter key.

the process of publishing an application into a slot is straightforward.

getting used to testing the http endpoint using curl is important as you will

commonly need to access the api to examine the results from Luis.

2 LUIS Endpoint API Documentation: https://westus.dev.cognitive.
microsoft.com/docs/services/5819c76f40a6350ce09de1ac/operations/5819c
77140a63516d81aee78

Chapter 3 Language understanding inteLLigent serviCe (Luis)

https://westus.dev.cognitive.microsoft.com/docs/services/5819c76f40a6350ce09de1ac/operations/5819c77140a63516d81aee78
https://westus.dev.cognitive.microsoft.com/docs/services/5819c76f40a6350ce09de1ac/operations/5819c77140a63516d81aee78
https://westus.dev.cognitive.microsoft.com/docs/services/5819c76f40a6350ce09de1ac/operations/5819c77140a63516d81aee78

64

 Extracting Entities
So far, we have developed a simple intent-based LUIS application. But

other than it being able to tell our bot a user’s intent, we can’t really do

much with it. It is one thing for LUIS to give us information about the fact

that the user wants to add a calendar entry, but it better to be able to tell

us for what date and time, where, for how long, and with who. We could

develop a bot that asks the user for all these details in a linear sequence

whenever it sees an AddCalendarEntry. However, this is tedious and

neglects the fact that users may very well present the bot with an utterance

like this:

"add meeting with Huck tomorrow at 6pm"

It would be a bad user experience to ask the user to reenter all this

data. The bot should immediately know what the datetime value of

“tomorrow at 6pm” is and that “Huck” is someone who should be added to

the invite.

Let’s start with the basics. How do we make sure that “tomorrow at

6pm.” “a week from now,” and “next month” are machine readable? This

is where entity recognition comes in. Lucky for us, LUIS comes equipped

with many built-in entities that we can add to our application. By doing so,

the datetime extraction will “just work.”

If we go back into the Build section of the LUIS App and click the

Entities header, we will encounter an empty list of entities (Figure 3-16).

We can add three different types of entities. For now, we will simply add a

prebuilt entity. We’ll address normal entities and prebuilt domain entities

in later sections.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

65

A prebuilt entity is a pretrained definition that can be recognized in

utterances. The entity is automatically tagged in the input, and we cannot

change how the prebuilt entities are recognized. There is a good amount

of logic in them that we can utilize in our applications, and it is best to

understand what Microsoft has built before building our own entities.

There are many different prebuilt entities. Not all entities are available

across all supported cultures. The LUIS documentation provides details

around which prebuilt entities are available across which cultures3

(Figure 3-17).

3 Pre-Built Entities Reference: https://docs.microsoft.com/en-us/azure/
cognitive-services/luis/luis-reference-prebuilt-entities

Figure 3-16. Empty Entities page

Chapter 3 Language understanding inteLLigent serviCe (Luis)

https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-reference-prebuilt-entities
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-reference-prebuilt-entities

66

Some of these entities include what is called value resolution. Value

resolution is the process of taking the text input and converting it into a

value that can be interpreted by a computer. For example, “one hundred

thousand” should resolve to 100000, and “next May 10th” should resolve to

05/10/2019 and so forth.

You may have noticed the JSON result from LUIS included an empty

array called entities. This is the placeholder for all entities recognized in

the user’s input. A LUIS app can recognize any number of entities in an

input. The format of each entity will be as follows:

{

 "entity": "[entity text]",

 "type": "[entity type]",

Figure 3-17. LUIS built-in entity support across different cultures

Chapter 3 Language understanding inteLLigent serviCe (Luis)

67

 "startIndex": [number],

 "endIndex": [number],

 "resolution": {

 "values": [

 {

 "value": "[machine readable string of resolved

value]"

 }

]

 }

}

The resolution objects may include extra attributes, depending on

which entity type was detected. Let’s look at the different prebuilt entity

types, what they allow us to do, and what the LUIS API result looks like.

 Age, Dimension, Money, and Temperature
The age entity allows us to detect age expressions such as “five months

old,” “100 years,” and “2 days old.” The result object includes the value in

number format and a unit argument, such as Day, Month, or Year.

{

 "entity": "five months old",

 "type": "builtin.age",

 "startIndex": 0,

 "endIndex": 14,

 "resolution": {

 "unit": "Month",

 "value": "5"

 }

}

Chapter 3 Language understanding inteLLigent serviCe (Luis)

68

Any length, weight, volume, and area measure can be detected using

the Dimension entity. Inputs can vary from “10 miles” to “1 centimeter” to

“50 square meters.” Like the Age entity, the result resolution will include a

value and a unit.

{

 "entity": "two milliliters",

 "type": "builtin.dimension",

 "startIndex": 0,

 "endIndex": 14,

 "resolution": {

 "unit": "Milliliter",

 "value": "2"

 }

}

The currency entity can help us detect currencies in use input. The

resolution, yet again, includes a unit and value attribute.

{

 "entity": "12 yen",

 "type": "builtin.currency",

 "startIndex": 0,

 "endIndex": 5,

 "resolution": {

 "unit": "Japanese yen",

 "value": "12"

 }

}

The temperature entity helps us detect temperatures and includes a

unit and value attribute in the resolution.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

69

{

 "entity": "98 celsius",

 "type": "builtin.temperature",

 "startIndex": 0,

 "endIndex": 9,

 "resolution": {

 "unit": "C",

 "value": "98"

 }

}

 DatetimeV2
DatetimeV2 is a powerful hierarchical entity that replaces the previous,

you guessed it, datetime entity. A hierarchical entity defines categories

and its members; it makes sense to use when certain entities are similar

and closely related yet have different meanings. The datetimeV2 entity

also attempts to resolve the datetime in machine-readable formats like

TIMEX (which stands for “time expression”; TIMEX3 is part of TimeML)

and the following formats: yyyy:MM:dd, HH:mm:ss, and yyyy:MM:dd

HH:mm:ss (for date, time, and datetime, respectively). A basic example is

illustrated below.

{

 "entity": "tomorrow at 5pm",

 "type": "builtin.datetimeV2.datetime",

 "startIndex": 0,

 "endIndex": 14,

Chapter 3 Language understanding inteLLigent serviCe (Luis)

70

 "resolution": {

 "values": [

 {

 "timex": "2018-02-18T17",

 "type": "datetime",

 "value": "2018-02-18 17:00:00"

 }

]

 }

}

The DatetimeV2 entity can detect various subtypes aside from the

datetime subtype in the previous example. The following is a listing with

sample responses.

This shows builtin.datetimeV2.date with phrases such as “yesterday,”

“next Monday,” and “August 23, 2015”:

{

 "entity": "yesterday",

 "type": "builtin.datetimeV2.date",

 "startIndex": 0,

 "endIndex": 8,

 "resolution": {

 "values": [

 {

 "timex": "2018-02-16",

 "type": "date",

 "value": "2018-02-16"

 }

]

 }

}

Chapter 3 Language understanding inteLLigent serviCe (Luis)

71

This shows builtin.datetimeV2.time with phrases such as “1pm,”

“5:43am,” “8:00,” or “half past eight in the morning”:

{

 "entity": "half past eight in the morning",

 "type": "builtin.datetimeV2.time",

 "startIndex": 0,

 "endIndex": 29,

 "resolution": {

 "values": [

 {

 "timex": "T08:30",

 "type": "time",

 "value": "08:30:00"

 }

]

 }

}

This shows builtin.datetimeV2.daterange with phrases such as “next

week,” “last year,” or “feb 1 until feb 20th”:

{

 "entity": "next week",

 "type": "builtin.datetimeV2.daterange",

 "startIndex": 0,

 "endIndex": 8,

 "resolution": {

 "values": [

 {

 "timex": "2018-W08",

 "type": "daterange",

 "start": "2018-02-19",

Chapter 3 Language understanding inteLLigent serviCe (Luis)

72

 "end": "2018-02-26"

 }

]

 }

}

This shows building.datetimeV2.timerange with phrases such as “1 to

5p” and “1 to 5pm”:

{

 "entity": "from 1 to 5pm",

 "type": "builtin.datetimeV2.timerange",

 "startIndex": 0,

 "endIndex": 12,

 "resolution": {

 "values": [

 {

 "timex": "(T13,T17,PT4H)",

 "type": "timerange",

 "start": "13:00:00",

 "end": "17:00:00"

 }

]

 }

}

This shows builtin.datetimeV2.datetimerange with phrases such as

“tomorrow morning” or “last night”:

{

 "entity": "tomorrow morning",

 "type": "builtin.datetimeV2.datetimerange",

 "startIndex": 0,

Chapter 3 Language understanding inteLLigent serviCe (Luis)

73

 "endIndex": 15,

 "resolution": {

 "values": [

 {

 "timex": "2018-02-19TMO",

 "type": "datetimerange",

 "start": "2018-02-19 08:00:00",

 "end": "2018-02-19 12:00:00"

 }

]

 }

}

This shows builtin.datetimeV2.duration with phrases such as “for an

hour,” “20 minutes,” or “all day.” The value is resolved in second units.

{

 "entity": "an hour",

 "type": "builtin.datetimeV2.duration",

 "startIndex": 0,

 "endIndex": 6,

 "resolution": {

 "values": [

 {

 "timex": "PT1H",

 "type": "duration",

 "value": "3600"

 }

]

 }

 }

Chapter 3 Language understanding inteLLigent serviCe (Luis)

74

The builtin.datetimeV2.set type represents a set of dates and is detected

by including phrases like “daily,” “monthly,” “every week,” or “every

Thursday.” The resolution for this type is different in that there is no single

value to represent a set. The timex resolution will be resolved in either of

two ways. First, the timex string will follow the pattern P[n][u], where [n] is a

number and [u] is the date unit like D for day, M for month, W for week, and

Y for year. The meaning is “every [n] [u] units.” P4W means every four weeks,

and P2Y means every other year. The second timex resolution is a date

pattern with Xs representing any value. For example, XXXX-10 means every

October, and XXXX-WXX-6 means every Saturday of any week in the year.

{

 "entity": "daily",

 "type": "builtin.datetimeV2.set",

 "startIndex": 0,

 "endIndex": 4,

 "resolution": {

 "values": [

 {

 "timex": "P1D",

 "type": "set",

 "value": "not resolved"

 }

]

 }

}

{

 "entity": "every saturday",

 "type": "builtin.datetimeV2.set",

 "startIndex": 0,

 "endIndex": 13,

Chapter 3 Language understanding inteLLigent serviCe (Luis)

75

 "resolution": {

 "values": [

 {

 "timex": "XXXX-WXX-6",

 "type": "set",

 "value": "not resolved"

 }

]

 }

}

If there is ambiguity in the dates and/or times, LUIS will return multiple

resolutions demonstrating the options. For example, ambiguity in dates

means that if it is July 20 today and we enter an utterance of “July 21,” the

system will return July 21 of this and last year. Likewise, if your query does not

specify a.m. or p.m., LUIS will return both times. You can see both cases here:

{

 "entity": "july 21",

 "type": "builtin.datetimeV2.date",

 "startIndex": 0,

 "endIndex": 6,

 "resolution": {

 "values": [

 {

 "timex": "XXXX-07-21",

 "type": "date",

 "value": "2017-07-21"

 },

 {

 "timex": "XXXX-07-21",

 "type": "date",

Chapter 3 Language understanding inteLLigent serviCe (Luis)

76

 "value": "2018-07-21"

 }

]

 }

}

{

 "entity": "tomorrow at 5",

 "type": "builtin.datetimeV2.datetime",

 "startIndex": 0,

 "endIndex": 12,

 "resolution": {

 "values": [

 {

 "timex": "2018-02-19T05",

 "type": "datetime",

 "value": "2018-02-19 05:00:00"

 },

 {

 "timex": "2018-02-19T17",

 "type": "datetime",

 "value": "2018-02-19 17:00:00"

 }

]

 }

}

The Datetime V2 entity is powerful and really showcases some of the

great LUIS NLU features.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

77

 E-mails, Phone Numbers, and URLs
These three types are all text-based. LUIS can identify when one of them

exists in the user input. It is convenient to have this be done by LUIS as

opposed to having to implement regular expression logic in our systems.

We demonstrate the three types here:

{

 "entity": "srozga@bluemetal.com",

 "type": "builtin.email",

 "startIndex": 0,

 "endIndex": 19

}

{

 "entity": "212-222-1234",

 "type": "builtin.phonenumber",

 "startIndex": 0,

 "endIndex": 11

}

{

 "entity": "https://luis.ai",

 "type": "builtin.url",

 "startIndex": 0,

 "endIndex": 14

}

 Number, Percentage, and Ordinal
LUIS can extract and resolve numbers and percentages for us as well. User

input can be in either numerical or textual format. It even handles inputs

like “thirty-eight and a half.”

Chapter 3 Language understanding inteLLigent serviCe (Luis)

78

 {

 "entity": "one hundred",

 "type": "builtin.number",

 "startIndex": 0,

 "endIndex": 10,

 "resolution": {

 "value": "100"

 }

}

{

 "entity": "52 percent",

 "type": "builtin.percentage",

 "startIndex": 0,

 "endIndex": 9,

 "resolution": {

 "value": "52%"

 }

}

The Ordinal entity allows us to identity ordinal numbers either in

textual or numeric form.

{

 "entity": "second",

 "type": "builtin.ordinal",

 "startIndex": 0,

 "endIndex": 5,

 "resolution": {

 "value": "2"

 }

}

Chapter 3 Language understanding inteLLigent serviCe (Luis)

79

 Entity Training
Let’s go back into our application and apply some of what we just learned.

Being as we are writing an application related to calendars, the most

obvious prebuilt entity of choice for us is datetimeV2. On the Entities page,

click “Manage prebuilt entities” and select the datetimeV2, as shown in

Figure 3-18.

Figure 3-18. Adding the datetimeV2 entity to the model

Chapter 3 Language understanding inteLLigent serviCe (Luis)

80

After adding the entity, we should train our model. In the interactive

testing UI, when we enter “add calendar entry tomorrow at 5pm,” we

should see the result in Figure 3-19.

That was easy. We publish the application to the Staging slot one more

time. Using curl to run the same query, we receive the following JSON:

{

 "query": "add calendar entry tomorrow at 5pm",

 "topScoringIntent": {

 "intent": "AddCalendarEntry",

 "score": 0.42710492

Figure 3-19. The datetimeV2 entity is alive!

Chapter 3 Language understanding inteLLigent serviCe (Luis)

81

 },

 "entities": [

 {

 "entity": "tomorrow at 5pm",

 "type": "builtin.datetimeV2.datetime",

 "startIndex": 19,

 "endIndex": 33,

 "resolution": {

 "values": [

 {

 "timex": "2018-02-19T17",

 "type": "datetime",

 "value": "2018-02-19 17:00:00"

 }

]

 }

 }

]

}

Perfect. We can now utilize datetime entities in any of our intents.

This is going to be relevant for us in all our application’s intents, not just

the AddCalendarEntry. In addition, we will go ahead and add the e-mail

prebuilt entity, retrain, and publish to the Staging slot again. Now we can

try an utterance like “meet with szymon.rozga@gmail.com at 5p tomorrow”

to get the kind of result we have come to expect.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

82

{

 "query": "meet with szymon.rozga@gmail.com at 5p tomorrow",

 "topScoringIntent": {

 "intent": "AddCalendarEntry",

 "score": 0.3665758

 },

 "entities": [

 {

 "entity": "szymon.rozga@gmail.com",

 "type": "builtin.email",

 "startIndex": 10,

 "endIndex": 31

 },

 {

 "entity": "5p tomorrow",

 "type": "builtin.datetimeV2.datetime",

 "startIndex": 36,

 "endIndex": 46,

 "resolution": {

 "values": [

 {

 "timex": "2018-02-19T17",

 "type": "datetime",

 "value": "2018-02-19 17:00:00"

 }

]

 }

 }

]

}

Chapter 3 Language understanding inteLLigent serviCe (Luis)

83

EXERCISE 3-3

Adding Datetime and E-mail Entity Support

in this exercise, you will enable prebuilt entities on the Luis app you have

been working on so far.

• add the email and datetimev2 prebuilt entities into your

application. train your app.

• go into your addCalendarentry intent and try to add several

utterances with a datetime and e-mail expression in them. note

that Luis highlights those entities for you.

• publish the Luis app into the staging slot.

• use curl to examine the resulting JsOn.

prebuilt entities are incredibly easy to use. as a further exercise, add some

other prebuilt entities into your model to learn how they work and how they

are picked up in different types of inputs. if you want to prevent Luis from

recognizing them, just remove them from your application’s entities.

 Custom Entities
Prebuilt entities can do a lot for our models without any extra training.

It would be surprising if everything that we need could be provided by

the existing prebuilt entities. In our example of a calendar app, calendar

entries, by definition, include a few more attributes that we would be

interested in.

For starters, we usually want to give meetings a subject (not only

“Meet with Bob”) and a location. Both would be arbitrary strings for

meetings subjects and locations. How do we accomplish that?

Chapter 3 Language understanding inteLLigent serviCe (Luis)

84

LUIS gives us the ability to train custom entities to detect such

concepts and extract their values from the users’ inputs. This is where the

power of the entity extraction algorithms really comes in; we show LUIS

samples of when words should be identified as entities and when they

should be ignored. The NLP algorithms consider context. For instance,

given multiple samples of utterances, we can teach LUIS and ensure it

doesn’t confuse Starbucks with Starbuck, the character from Moby Dick.

There are four different types of custom entities that we can utilize in

LUIS: simple, composite, hierarchical, and list. Let’s examine each one.

 Simple Entities
A simple custom entity is an entity such as a calendar entry subject or the

prebuilt e-mail, phone number, and URL entities. One segment of the user

input can be identified as an entity of said type based on its position in

the utterance and the context of the words around it. LUIS makes it easy

to create and train these types of entities. Let’s create the calendar subject

entity.

Let’s say we want to be clear when we are telling the calendar bot

about a subject name for the entry. Let’s say that we want to accept inputs

like “meet with Kim about mortgage application at 5pm.” In this example,

the subject will be “mortgage application.” Let’s get this in place.

Navigate to the Entities page and click the “Create new entity” button

to create a new simple entity called Subject, as illustrated in Figure 3-20.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

85

Once you click Done, the entry is added to the list of entities in your

application. The process of training an entity occurs in the same interface

as training intents. Let’s navigate into the AddCalendarEntry intent and

add the utterance “meet with Kim about mortgage application at 5pm,”

as shown in Figure 3-21. Note that this is just a vanilla utterance and no

entities are being identified.

We now mouse over the mortgage and application words and notice

that LUIS is allowing us to select the words. Click mortgage and then click

application so LUIS has the phrase “mortgage application” selected. The

pop-up will list all the custom entity types in your application. Select

Subject. The utterance in LUIS should now look like Figure 3-22.

Figure 3-20. Creating a new simple entity

Figure 3-21. Adding utterance. LUIS does not yet know about subjects.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

86

Save the utterance and train your app. At this point, LUIS won’t be

that great at identifying subjects quite yet. After all, we just provide one

example, and entity identification is more difficult to do properly than

intent classification. It needs more samples. We can enter a few more

utterances in the utterances editor for the add calendar entry intent. A few

samples are shown in Figure 3-23.

Note that no subjects at all were identified. Let’s reinforce the concept. It

will take quite a few examples for the system to start recognizing the entity.

I added more than ten utterances that had some type of subject somewhere

in the utterance, as shown in Figure 3-24. Also, be sure to mark the subject

of any utterances you may have added yourself. The process of what I call

“bending LUIS to your will” can be more of an art than a science. The key

point to remember is that there’s going to be an inflection point at which

the algorithms start realizing that something following a word is always an

entity until some other key words, based on statistical inference. Think of a

scale that you are slowly trying to tip into balance. Our utterances should be

carefully crafted to ensure we’re capturing as many variations as possible to

show LUIS. Often, each variation will also need to include a few samples to

really capture the essence of where within the context of an utterance the

algorithm can find specific entities.

Figure 3-22. Entity highlighted and assigned

Figure 3-23. Adding more utterances with subjects. None of them
was identified after training LUIS with one sample.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

87

After training this data set, we see that the interactive testing tool is

getting better at identifying the entity. I entered “hi let’s meet about lawn

care and harmonicas at 1:45p” (don’t ask how I came up with that…) and

received the result in Figure 3-25. We are making good progress. However,

if we start entering inputs of different lengths and variations, LUIS may not

identify the entities correctly. It just means we need to further train our

entity model. We will leave this as an exercise to the reader.

Figure 3-24. Training LUIS with many different flavors of subject
utterances. Note that we change the toggle to the right of the Entity
drop-down to Tokens View. This allows us to see which tokens are
being identified as entities.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

88

We now have a good grasp of the calendar subject entity even though

there are probably many cases that won’t yet work. And truth be told, you

won’t be able to capture all the different types of ways users will ask things

until you have a good testing phase. That’s how LUIS app development

goes. It is worth looking at the resulting JSON when this application is

published.

{

 "query": "hi let's meet about lawn care and harmonicas at

1:45pm",

 "topScoringIntent": {

 "intent": "AddCalendarEntry",

 "score": 0.8653278

 },

Figure 3-25. Our model is now identifying the subject in some test
cases. Great!

Chapter 3 Language understanding inteLLigent serviCe (Luis)

89

 "entities": [

 {

 "entity": "1:45pm",

 "type": "builtin.datetimeV2.time",

 "startIndex": 48,

 "endIndex": 53,

 "resolution": {

 "values": [

 {

 "timex": "T13:45",

 "type": "time",

 "value": "13:45:00"

 }

]

 }

 },

 {

 "entity": "lawn care and harmonicas",

 "type": "Subject",

 "startIndex": 20,

 "endIndex": 43,

 "score": 0.587688446

 }

]

}

Note that the time entity is being identified as expected. The Subject entity

comes back with the relevant entity value. It also comes back with a score. The

score in this case is again a similar measure to intent scores; it’s a measure

of distance from the ideal entity. Unlike intents, LUIS will not return all your

entities and their scores. LUIS will return only simple and hierarchical entities

with scores above a threshold. For built-in entities, this score is hidden.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

90

The nice thing about training the entity is that even though the

samples with the entity are defined in the AddCalendarEntry intent, they

carry over to other intents. Intents and entities are not tied directly to each

other. I can say “cancel meeting about olympic hockey” and it works as

shown in Figure 3-26.

Another observation is the lower score in terms of identifying

the DeleteCalendarEntry intent. We’ve added many more utterances

to the AddCalendarEntry intent, but DeleteCalendarEntry and

EditCalendarEntry have much fewer examples. Take some time to improve

that. Add some alternate phrasings and examples with our new Subject

entity before we continue.

Figure 3-26. Entity training within one intent can carry over to other
intents

Chapter 3 Language understanding inteLLigent serviCe (Luis)

91

EXERCISE 3-4

Training the Subject Entity and Strengthening Our LUIS App

in this exercise, we will improve our Luis app by training it to do some

additional training.

• add a subject entity, as per the directions in the previous

section.

• add utterances into your intents to support the subject entity.

train and test often to see your progress.

• aim for at least 25 to 30 samples for Luis to start. Make sure to

convey multiple instances of different ways of expressing ideas.

• ensure all your intents are getting your attention. Make sure

every intent has 15 to 20 samples. include entities in each

intent.

• train and publish the Luis app into the staging slot.

• use curl to examine the resulting JsOn.

training custom entities, especially ones that are a bit vague in terms of

positioning and context, can be challenging, but after some practice, you will

start seeing patterns in Luis’s ability to extract them. note things that need to

be explicitly trained: number of words in the subject, subjects with the word

and, subjects followed by datetime, and so forth. You may have noticed the

explicit mention of number of samples. these are just starting points. an nLu

system like Luis gets better the more sample data it has. do not overlook this

point. if Luis is not behaving the way you expect it, chances are it is not a Luis

performance problem but rather that your application needs more training.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

92

The second entity we planned to add was the Location entity. Let’s

create a new simple custom entity and call it Location. Like the Subject

entity, the location is going to be a free text entity, so we’re going to need to

train LUIS with many samples.

We’re going to take a stab at this by adding utterances into the

AddCalendarEntry intent again. We need to add utterances in these forms:

Meet with kim to talk about {Subject} at {Location}

Meet about {Subject} at {Location}

Add entry with teddy for {Subject} at {Location}

Add meeting at {Location}

Meet at {Location}

Meet in {Location} at {Subject}

You get it. You should also add datetime instances into these

utterances. Training the location is going to be trickier as we are teaching

LUIS to distinguish between a location and subject, two concepts that

simply need a lot of data for LUIS to begin distinguishing since these

are two free-text entities. In the end, I ended up adding more than 30

utterances that contained either just a location or a location combined

with other entities. After that amount of training, we get decent

performance. I can type “meet for dinner at the diner tomorrow at 8pm”

and get the following JSON result:

{

 "query": "meet for dinner at the diner tomorrow at 8pm",

 "topScoringIntent": {

 "intent": "AddCalendarEntry",

 "score": 0.979418

 },

 "entities": [

 {

 "entity": "tomorrow at 8pm",

 "type": "builtin.datetimeV2.datetime",

Chapter 3 Language understanding inteLLigent serviCe (Luis)

93

 "startIndex": 29,

 "endIndex": 43,

 "resolution": {

 "values": [

 {

 "timex": "2018-02-19T20",

 "type": "datetime",

 "value": "2018-02-19 20:00:00"

 }

]

 }

 },

 {

 "entity": "the diner tomorrow",

 "type": "Location",

 "startIndex": 19,

 "endIndex": 36,

 "score": 0.392795324

 },

 {

 "entity": "dinner",

 "type": "Subject",

 "startIndex": 9,

 "endIndex": 14,

 "score": 0.5891273

 }

]

}

We suggest you take some time to strengthen the entities even further. It

would be a good experience to really gain an appreciation for the complexities

and ambiguities in natural language and in training an NLU system like LUIS.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

94

EXERCISE 3-5

Training the Location Entity

in this exercise, you will be adding the Location entity into your Luis app. You

will find that this will take a bit longer than the subject entity by itself.

• add a subject entity, as per the directions in the previous

section.

• add utterances into your addCalendarentry to support the

Location entity. train and test often to see your progress.

• aim to start with 35 to 40 samples for Luis, probably more. as

your intents support more entities, you may have to provide

more samples to Luis to properly distinguish. as you add

utterances, constantly train and test to see how Luis is learning.

Make sure to use many variations and examples.

• publish the Luis app into the staging slot.

• use curl to examine the resulting JsOn.

this exercise should have been a good experience in strengthening entity

resolution when a single utterance contains many entities.

 Composite Entities
Congratulations. The work we have done so far is a significant portion

of what LUIS can accomplish. Using the intent classification and simple

entity extraction techniques described, we can go off and work on our

calendar application. Although we went over simple entities, we quickly

ran into some complex NLU scenarios. Without a tool like LUIS, doing this

kind of language recognition would be incredibly tedious and challenging.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

95

There is another interesting scenario that comes up in natural

language. Our model currently supports a user saying a phrase like this:

"Meet at Starbucks for coffee at 2pm"

What if the user wanted to add multiple calendar entries? What if the

user wants to say something like the following utterance?

"Meet at trademark for lunch at noon and at Starbucks for

coffee at 2pm"

There’s isn’t anything not allowing a user to say that right now. If we’ve

trained our app enough, it will certainly handle this input, and it will

identify two Subject instances, two Location instances, and two datetime

instances, as shown here:

{

 "query": "meet at culture for coffee at 11am and at the

office for a code review at noon",

 "topScoringIntent": {

 "intent": "AddCalendarEntry",

 "score": 0.996190667

 },

 "entities": [

 {

 "entity": "11am",

 "type": "builtin.datetimeV2.time",

 "startIndex": 30,

 "endIndex": 33,

 "resolution": {

 "values": [

 {

 "timex": "T11",

 "type": "time",

Chapter 3 Language understanding inteLLigent serviCe (Luis)

96

 "value": "11:00:00"

 }

]

 }

 },

 {

 "entity": "noon",

 "type": "builtin.datetimeV2.time",

 "startIndex": 74,

 "endIndex": 77,

 "resolution": {

 "values": [

 {

 "timex": "T12",

 "type": "time",

 "value": "12:00:00"

 }

]

 }

 },

 {

 "entity": "culture",

 "type": "Location",

 "startIndex": 8,

 "endIndex": 14,

 "score": 0.770069957

 },

 {

 "entity": "the office",

 "type": "Location",

 "startIndex": 42,

Chapter 3 Language understanding inteLLigent serviCe (Luis)

97

 "endIndex": 51,

 "score": 0.9432623

 },

 {

 "entity": "coffee",

 "type": "Subject",

 "startIndex": 20,

 "endIndex": 25,

 "score": 0.9667959

 },

 {

 "entity": "a code review",

 "type": "Subject",

 "startIndex": 57,

 "endIndex": 69,

 "score": 0.9293087

 }

]

}

And yet, parsing this using code would be quite challenging. How do

we tell which entities should be grouped together? Which location goes

with which subject? You should be able to use the startIndex property to

figure it out I suppose, but that’s not always as obvious.

Lucky for us, LUIS can group the entities into what are called composite

entities. Rather than the messy result shown previously, LUIS will tell us

which entities are part of which composite entity. This makes it way easier

for us to know that there were two separate AddCalendar requests, one

for 11 a.m. coffee at Culture and another one for a code review in the office

at noon.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

98

Composite entities can be created on the Entities page of

LUIS. Figure 3-27 illustrates the process. Click the Create new entity button,

enter a name for the entity, select the Composite entity type, and select the

child entity types to be included as part of the new entity. We will use the

name CalendarEntry to identify our composite entity.

Figure 3-27. Creating a new composite entity

Chapter 3 Language understanding inteLLigent serviCe (Luis)

99

Once it is created, we need to properly train LUIS to recognize it. Let’s

look at the AddCalendarEntry intent again. The easiest way to train LUIS

would be to find all utterances that have the required three entities and

wrap the entities into the composite entity. Figure 3-28 shows an example.

Click the first Location entity. A pop-up will appear asking you to

relabel the entity or wrap it in a composite entity. Click “Wrap in composite

entity” (Figure 3-29).

We move our mouse over the Subject and datetimeV2 entities. Note

the green underline expands to cover each entity (Figure 3-30). Click

datetimeV2 so that it is included in the composite entity and click the

CalendarEntry name.

Figure 3-28. A “proper” CalendarEntry with a datetime, subject, and
location. This is a perfect candidate to wrap in a composite entity.

Figure 3-29. Clicking the Location entity will allow us to wrap parts
of the utterance in a composite entity

Figure 3-30. Once the beginning of the composite entity is selected, it
is a matter of showing LUIS where it ends

Chapter 3 Language understanding inteLLigent serviCe (Luis)

100

Do the same for the second instance of the CalendarEntry entity. The

result should look like Figure 3-31.

We should do the same for any other utterance we can find that

includes the three entities. Once we train and publish the app, LUIS should

start extracting this composite entity. We only show the relevant API

section here:

"compositeEntities": [

 {

 "parentType": "CalendarEntry",

 "value": "culture for coffee at 11am",

 "children": [

 {

 "type": "builtin.datetimeV2.time",

 "value": "11am"

 },

 {

 "type": "Subject",

 "value": "coffee"

 },

 {

 "type": "Location",

 "value": "culture"

 }

]

 },

Figure 3-31. LUIS now has an example of how to wrap a composite
entity

Chapter 3 Language understanding inteLLigent serviCe (Luis)

101

 {

 "parentType": "CalendarEntry",

 "value": "the office for a code review at noon",

 "children": [

 {

 "type": "builtin.datetimeV2.time",

 "value": "noon"

 },

 {

 "type": "Subject",

 "value": "a code review"

 },

 {

 "type": "Location",

 "value": "the office"

 }

]

 }

]

Chapter 3 Language understanding inteLLigent serviCe (Luis)

102

EXERCISE 3-6

Composite Entities

in this exercise, you will add composite entities to your Luis app.

• Create a composite entity called Calendarentry, composed of

datetimev2, subject, and Location entities.

• train every utterance that has these three entities to recognize

the composite entity.

• train additional examples with multiple instances of the

Calendarentry composite entity. remember, it takes time,

dedication, and persistence to get it right.

• publish the Luis app into the staging slot.

• use curl to examine the resulting JsOn.

Composite entities are a great feature to group entities into logical

data objects. Composite entities allow us to encapsulate more complex

expressions.

 Hierarchical Entities
A hierarchical entity allows us to define a category of entities and its

children. You can think of hierarchical entities as defining a parent/

subtype relationship between entities. We have run into this type before.

Do you recall the Datetimev2 entity? It had seven subtypes such as

daterange, set, and time.

LUIS allows us to easily create our own subtypes. Say we wanted to add

support in our model to specify the calendar entry visibility as public or

private. We could add support for utterances like this:

Chapter 3 Language understanding inteLLigent serviCe (Luis)

103

"create private entry for interview with competitor at

starbucks"

 "create invisible entry for interview with recruiter at

trademark"

The words private or invisible here indicate the visibility field of the

calendar. Why would we create a hierarchical entity as opposed to a simple

entity? Can’t we just look at the value of a Visibility property and determine

whether it should be a private meeting or not? Yes and no. If the user sticks

to those two words, yes. But remember, natural language is ambiguous

and vague. Phrasings change. The user can say invisible, private, privately,

hidden. It’s the same with public. If we make assumptions about a closed

set of options in our code, then we would have to change our code any

time a new option shows up. The reason a hierarchical entity should be

used as opposed to a simple one is that the statistical models of where in

context the hierarchical entity appears is shared by the subtypes. Once

that is identified, the step of identifying the child entity is essentially a

classification problem. Making the entity hierarchical makes for better

LUIS performance versus two simple entities. Not to mention, it’s more

efficient to have LUIS classify the meaning of an entity in the context of our

application rather than writing code to do so.

Figure 3-32 illustrates the creation of a new hierarchical entity. We

do this by visiting the Entities page, clicking “Create new entity,” and

selecting Hierarchical from the entity type drop-down. We give the parent

entity a name and add the child entities. Once we click Done, it is a

matter of going into the intent utterances and training LUIS. Let's go into

AddCalendarEntry and add a few samples.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

104

You may notice that one or two samples are not sufficient. We need to

give LUIS a really good idea of where and how it may encounter the public

and private visibility modifiers before it can start recognizing the entity in

our inputs. The ten samples in Figure 3-33 were a good start.

Figure 3-32. Creating a new hierarchical entity

Chapter 3 Language understanding inteLLigent serviCe (Luis)

105

Once we train and publish, we can view the resulting JSON via curl, as

shown here:

{

 "query": "create private meeting for tomorrow 6pm with teddy",

 "topScoringIntent": {

 "intent": "AddCalendarEntry",

 "score": 0.9856489

 },

 "entities": [

 {

 "entity": "tomorrow 6pm",

 "type": "builtin.datetimeV2.datetime",

 "startIndex": 27,

 "endIndex": 38,

 "resolution": {

 "values": [

 {

 "timex": "2018-02-19T18",

 "type": "datetime",

Figure 3-33. Sample Visibility hierarchical entity utterances

Chapter 3 Language understanding inteLLigent serviCe (Luis)

106

 "value": "2018-02-19 18:00:00"

 }

]

 }

 },

 {

 "entity": "private",

 "type": "Visibility::Private",

 "startIndex": 7,

 "endIndex": 13,

 "score": 0.9018322

 }

]

}

{

 "query": "create public meeting with jeff",

 "topScoringIntent": {

 "intent": "AddCalendarEntry",

 "score": 0.975892961

 },

 "entities": [

 {

 "entity": "public",

 "type": "Visibility::Public",

 "startIndex": 7,

 "endIndex": 12,

 "score": 0.6018059

 }

]

}

Chapter 3 Language understanding inteLLigent serviCe (Luis)

107

 List Entities
So far, the prebuilt, simple, composite, and hierarchical entities were all

extracted from user input via machine learning techniques. Every time we

added one of these entities and trained LUIS, you may have noticed the

number of models being trained increased. Recall that a LUIS application

is composed of one model per intent/entity. By now, we should be at ten

models. Each of these is rebuilt any time we train our app.

List entities exist outside this machine learning world. A list entity is

simply a collection of terms and synonyms for those terms. For example,

if we want to identify cities, we can add an entry for New York that has the

synonyms NY, The Big Apple, The City That Never Sleeps, Gotham, New

Amsterdam, etc. LUIS will resolve any of these alternate names into New York.

Once a custom list entity type is created, we are redirected to a list

entity editor in which we can enter the canonical term and the synonyms.

This interface allows us to add new terms and their synonyms. It also

makes recommendations to add extra terms that seem related to what we

have added thus far. List entities are limited to 20,000 terms, including

synonyms. We can have up to 50 list entities per application, so there

is a lot of potential for LUIS-based term and synonym lookup features.

Figure 3-34 shows a sample custom list entity definition.

Figure 3-34. LUIS List entity user interface

Chapter 3 Language understanding inteLLigent serviCe (Luis)

108

Since list entities are not learned by LUIS, new values are not

recognized based on context. If LUIS sees “Gotham,” it identifies it as

New York. If it sees “Gohtam,” it does not. It is literally a lookup list.

{

 "query": "meet in the big apple",

 "topScoringIntent": {

 "intent": "AddCalendarEntry",

 "score": 0.943692744

 },

 "entities": [

 {

 "entity": "the big apple",

 "type": "Cities",

 "startIndex": 8,

 "endIndex": 20,

 "resolution": {

 "values": [

 "New York"

]

 }

 }

]

}

When using the API, LUIS will highlight the term that matches a

list entity type and will return the canonical name in the resolution

values. This allows your consuming application to ignore all the possible

synonyms for a term and execute logic based on the canonical names.

List entities are powerful for situations where you know the set of possible

values for terms ahead of time.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

109

Regular Expressions Entities
LUIS allows us to create regular expression entities. These, like the list

entities, are not based on context, but rather on a strict regular expression.

For example, if we expected a knowledge base id to always be presented

using the syntax KB143230, where the text KB is followed by 6 digits,

we could create an entity with the regular expression kb[0-9]{6,6}. Once

trained, the entity will always be identified if any user utterance segment

matches this expression.

 Prebuilt Domains
I hope you have gained an appreciation for some of the challenges of

building NLU models. Machine learning tools allow us to get computers

to start learning, but we need to be sure we are training them with a lot

of good data. It takes years of day-to-day interactions for humans to be

immersed in a language to be able to truly understand it. Yet, we assume

that AI means that a computer will be able to pick up the concepts with ten

samples. When it doesn’t, sometimes we think to ourselves, “Oh, come on,

you should know this by now!”

To help us on our journey, many of the NLU platforms provide what

are called prebuilt models or domains. Essentially, the creators of LUIS

and other platforms want to give us a head start with some domains that

we can easily include in our application, train LUIS, and be off to the races.

Some of LUIS’s prebuilt models are shown in Figure 3-35.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

110

Figure 3-35. Prebuilt domains

We can find prebuilt domains in LUIS by navigating into the Build section

and clicking the Prebuilt Domains link in the bottom left. At the time of this

writing, this feature is still in Preview mode. That is the reason it is so isolated

and why it is dynamic and may change by the time you read this. LUIS

includes a variety of domains from Camera to Home Automation to Gaming

to Music and even Calendar, which is similar to the app we have been working

on in this chapter. In fact, we will do just that in Exercise 3-7. The “Learn more”

text links to a page that describes in detail what intents and entities each

domain pulls in and which domains are supported by which cultures.4

When we add a domain to your application, LUIS will add all the

domain’s intents and entities into our application, and they will count

toward the application’s maximums. At that point, we able to modify the

4 LUIS Pre-built Domains: https://docs.microsoft.com/en-us/azure/
cognitive-services/luis/luis-reference-prebuilt-domains

Chapter 3 Language understanding inteLLigent serviCe (Luis)

https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-reference-prebuilt-domains
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-reference-prebuilt-domains

111

intents and entities as we see fit. Sometimes you may want to get rid of

certain intents or add new ones to complement the prebuilt ones. Other

times we may need to train the system with more samples. We suggest the

prebuilt domains are treated as starting points. Our goal is to extend them

and build great experiences on top of them.

 A Historical Point
LUIS has changed a lot over the years. Even over the course of writing

this book, the system changed user interfaces and feature sets. LUIS used

to have a Cortana app that anyone could tap into by utilizing a known

app ID and using their subscription key. The Cortana app had many of

the prebuilt intents and entities defined, but it was a closed system. You

were not able to customize it or strengthen it to your liking in any way.

Since then, Microsoft has gotten rid of this feature in favor of the prebuilt

domains. However, the idea of openly sharing your model with others so

they can call it using their own subscription key remains available and

accessible via the Settings page.

EXERCISE 3-7

Utilizing Prebuilt Domains

in this exercise, you will utilize the prebuilt Calendar domain to create a Luis

app similar to the one we have built in this chapter.

• Create a new Luis application.

• navigate into the prebuilt domains section and add the

Calendar domain.

• train the application.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

112

• use the interactive testing user interface to examine the

application’s performance. how good is it at detecting intents

and entities? how does it compare to the application we

created both in terms of design and performance?

prebuilt domains can be useful to get started with a domain, but Luis requires

diligent training to have a truly well-performing model.

 Phrase Lists
So far, we have been exploring different techniques to create great

models. We have the tools we need to make sure we can create a good

conversational experience for our users. There are cases when we train

LUIS that the model performance is not as good as we would like. Entities

may not be getting recognized as well as we would like them to. Maybe

we are building a LUIS app that deals specifically with internal terms

that aren’t exactly part of the culture your application is using. Maybe we

haven’t had a chance to train LUIS entities with every known possible

value for an entity and list entities don’t cut it because we want our entities

to remain flexible.

One way to improve LUIS performance under these circumstances

is to use phrase lists. Phrase lists are hints, rather than strict rules, that

LUIS uses when training our app. They are not a silver bullet but can

be very effective. A phrase list allows us to present to LUIS a category of

words or phrases that are related to each other. This grouping is a hint to

LUIS to treat the words in the category in a similar way. In the case of an

entity value not being recognized properly, we could enter all the known

possible values as a phrase list and mark the list as exchangeable, which

indicates to LUIS that in the context of an entity, these values can be

treated in the same way. If we are trying to improve LUIS’s vocabulary with

words it may not be familiar with, the phrase list would not be marked as

nonexchangeable.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

113

Let’s say we wanted to improve our Calendar model’s private visibility

entity performance. After all, there are many ways of expressing that we want

a private meeting. As a starting point, we could add a phrase list with all the

different words we could expect the model to see. Figure 3-36 shows the LUIS

user interface for working on a phrase list. You can get here by selecting the

Phrase Lists item under the Build page and clicking Create new phrase list.

Figure 3-36. I may have gone overboard a bit. I blame the Related
Values function.

A phrase list requires a name and some values. We enter the values

one by one in the Value field. As we press Enter, it adds them to the Phrase

list values field. The Related Values field contains synonyms automatically

loaded by LUIS. We then select the checkbox to tell LUIS that the values are

interchangeable.

Before training, let’s try a few variations of the private meeting

utterances without the phrase list enabled. If you try utterances like “Meet

in private,” “Meet in secret,” or “Create a hidden meeting,” LUIS does not

recognize the entity. However, if we train the app with the phrase list, LUIS

has no problem identifying the entity in those samples and many others.5

5 Microsoft.Recognizers.Text: https://github.com/Microsoft/Recognizers-Text

Chapter 3 Language understanding inteLLigent serviCe (Luis)

https://github.com/Microsoft/Recognizers-Text

114

EXERCISE 3-8

Training Features

in this exercise, you will improve our Luis app by adding features.

• add the visibility hierarchical entity to your Luis app.

• add your own phrase list to improve the private visibility entity

performance.

• publish the Luis app into the staging slot.

• use curl to examine the resulting JsOn.

• how does setting the phrase list as not interchangeable affect

its performance?

phrase lists are powerful features to help our app get better at identifying

different entities.

EXERCISE 3-9

Adding an Invitee Entity

You may have noticed that we have not spoken about how we capture meeting

attendees, and so far, we have ignored this issue. in this exercise, we will

address this.

• add a new custom entity called invitee.

• go over every sample utterance so far and identify the invitee

entity in the utterances.

• if it needs additional training, add more samples. ensure to

include samples where invitee is the only entity or is one of

many entities in an utterance.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

115

• For bonus points, add the invitee entity to the Calendarentry

composite entity.

• train and make sure all intents and entities are still performing

well.

• publish the Luis app into the staging slot.

• use curl to examine the resulting JsOn.

if you have completed this exercise successfully, congratulations! You are

getting darn good at using Luis.

 Active Learning
We’ve spent weeks training a model, we’ve gone through a round of

testing, we’ve deployed the application into production, and we’ve

switched our bot on. Now what? How do we know if the model is

performing the best it can? How do we know whether some user has

thrown unexpected input at the our application that breaks our bot and

results in a bad user experience? Bug reports are one way for sure, but we

would depend on getting that feedback. What if we could find out about

these problems as soon as they occur? We can do so by taking advantage of

LUIS’s active learning abilities.

Recall that supervised learning is machine learning from labeled data,

and unsupervised learning is machine learning from unlabeled data.

Semisupervised learning lives somewhere in between. Active learning is a

type of semisupervised learning in which the learner asks the supervisor to

label new data samples. Based on the inputs that LUIS is seeing, it can ask

you, the LUIS app trainer, for your assistance labeling data that is coming

from your users. This improves model performance and over time makes

our application more intelligent by using real user input as sample data.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

116

You can access this functionality through the Review endpoint

utterances link on the Build page (Figure 3-37). Throughout the training of

the application, we’ve been utilizing the published application endpoint to

test various utterances. LUIS bases its active leaning on the inputs against

the endpoint, not the Interactive Test feature.

Figure 3-37. The active learning interface

The interface allows us to review past utterances and their top-

scoring intent, referred to as the aligned intent. As trainers, we can add

the utterance to the alignment intent, reassign to a different intent, or

altogether get rid of the utterance. We can also zero in on specific intents

or entities if we know there are problems with any of them.

Before adding the utterance to the aligned intent, we need to confirm

that the utterance is correctly labeled and any entities are being correctly

identified. We suggest that using this interface to improve LUIS application

is a common practice for any team.

 Dashboard Overview
Now that we have trained our application and utilized it for testing, it

is well worth highlighting the data that the dashboard provides. The

dashboard allows us to get a good glance at the overall app status, its

usage, and the amount of data we have trained it with.

The very top provides information about the last time we trained

and published the application, as per Figure 3-38. We can also get some

metrics about the number of intents and entities we are using, the number

Chapter 3 Language understanding inteLLigent serviCe (Luis)

117

of list entities we have, and how many total labeled utterances our

application has so far.

Figure 3-38. Application status

The next section displays the kind of usage that the application is

getting through the API. We can monitor the amount of endpoint hits for the

last week up to the last year. This data is available only once an application

is published to the production slot. This is illustrated in Figure 3-39.

Figure 3-39. API endpoint usage summary

Lastly, we are presented with an intent and entity breakdown, as

shown in Figure 3-40. Here we see a distribution of the percentage of

utterances used to train each intent. You can clearly see some of our

intents contain significantly more sample utterances than others. It’s the

same for entities. The uneven distribution does not necessarily mean that

an entity or intent needs more training.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

118

 Managing and Versioning Your Application
Everything we have done so far is part of the common workflow of

adding samples, training, and publishing a LUIS application. During the

development phase, this workflow is repeated over and over again. Once

your application is in production, you should be careful about what you

do to your app. The process of adding a new intent or entity can have

unforeseen effects on the rest of the application, and it is best that editing

an existing application is done in isolation so it can be tested properly.

We have experience with the concepts of the staging and production

deployment slots. This certainly helps; we know that we can test changes

without publishing to our production endpoints. A common rule is to

have the Staging slot host the dev/test version of the application and the

Production slot host the production version. Whenever a new application

is ready for production, we move it from the Staging slot to the Production

slot. But what if we make a mistake in our models? What if we need to roll

the Production slot back? That is where versions come in.

Figure 3-40. Statistics around intent/entity utterance counts and
distributions. Clicking an intent navigates to that intent’s utterances
page.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

119

LUIS allows you to create a named version of the application at any

point in time. So far, by default we have been working on version 0.1.

Once it is ready for production, we can publish it and clone it into a new

version 0.2. At that point, you set the 0.2 version to Active. Now, the LUIS

interface is editing version 0.2. If we accidentally publish version 0.2 into

the production slot, we can easily go back to version 0.1 and publish that.

Once version 0.2 is production ready, we deploy that into the Production

slot and clone it into version 0.3 and set that version as the active version.

And so forth. If at any point you deploy a version into the Production slot

and need to revert, you set your LUIS active back to 0.2 and publish that

version into the Production slot. The workflow is illustrated in Figure 3-41.

Figure 3-41. The LUIS development, training, testing, and publishing
workflow

Chapter 3 Language understanding inteLLigent serviCe (Luis)

120

We access the application version information through the Settings

page. Figure 3-42 and Figure 3-43 show the interface plus what it looks like

after cloning version 0.1 into 0.2.

Note that after closing 0.1, it remains in the Staging slot, but 0.2

becomes the Active version. LUIS also doesn’t allow for easy branching.

If multiple users want to make changes to a single version, they cannot

create a new version and then merge their changes using the user

interface. One way to accomplish this would be to download the LUIS

App JSON by clicking the Export Version button in Figure 3-42, utilizing

a source control tool like Git to branch and merge, and finally, using the

“Import new version” button to upload a new version from a JSON file.

Figure 3-42. The versioning functionality on the Settings page

Figure 3-43. Version 0.1 was cloned into 0.2

Chapter 3 Language understanding inteLLigent serviCe (Luis)

121

The same page also allows us to add collaborators to the application.

This is a great way to give access to other folks in your organization to

assist in editing, training, and testing versions of the app. At the time of

this writing, there are no fine-tuned audit controls; all collaborators can

do anything with the application except add/remove other collaborators

(Figure 3-44).

 Integrating with Spell Checking
One advanced feature in LUIS is the ability to integrate with a spell checker

to automatically fix misspellings in user input. User input is, by its very

nature, messy. Misspellings are immensely common. Combine that with

the common usage of messaging apps, and you have a recipe for consistent

misspelled input.

Figure 3-44. Adding collaborators to your LUIS application

Chapter 3 Language understanding inteLLigent serviCe (Luis)

122

The spell checker integration runs the user query through Bing’s Spell

Checker service, gets a possibly altered query with misspellings fixed, and

runs that altered query through LUIS. This feature is invoked by including

the query parameters spellCheck and bing-spell-check-subscription-

key. You can get a subscription key from the Azure Portal, which we will

introduce in Chapter 5. We will also utilize the Spell Check API more

directly in Chapter 10.

This functionality can be helpful, and we would typically recommend

it with a caveat. If our entities contain domain-specific values or product

names that are not strictly part of the English language, we may get an

altered query in which LUIS is unable to detect an entity. For example,

it may break up one word into multiple words when such behavior is

unwanted. Or, if our application is expecting financial tickers, it may just

change them. For example, VEA, a Vanguard ETF, is changed to VA. In the

United States, that’s a common reference to the state of Virginia. The loss

of meaning is quite significant; I advise caution in using this feature.

The effect of the spell check on the LUIS API result is easy to spot.

The result now includes a field called alteredQuery. This is the text

passed into the LUIS models. A sample curl request and response JSON

is presented here:

curl -X GET -G -H "Ocp-Apim-Subscription-Key:

a9fe39aca38541db97d7e4e74d92268e" -d staging=true -d

spellCheck=true -d bing-spell-check-subscription-key=c23d51fc

861b45c4b3401a6f8d37e47c -d verbose=true -d timezoneOffset=0

"https://westus.api.cognitive.microsoft.com/luis/v2.0/

apps/3a26be6f-6227-4136-8bf4-c1074c9d14b6" --data-urlencode

"q=add privtae meeting wth kim tomoorow at 5pm"

Chapter 3 Language understanding inteLLigent serviCe (Luis)

123

{

 "query": "add privtae meeting wth kim tomoorow at 5pm",

 "alteredQuery": "add private meeting with kim tomorrow

at 5pm",

 "topScoringIntent": {

 "intent": "AddCalendarEntry",

 "score": 0.9612303

 },

 "entities": [

 {

 "entity": "tomorrow at 5pm",

 "type": "builtin.datetimeV2.datetime",

 "startIndex": 29,

 "endIndex": 43,

 "resolution": {

 "values": [

 {

 "timex": "2018-02-20T17",

 "type": "datetime",

 "value": "2018-02-20 17:00:00"

 }

]

 }

 }

]

}

Chapter 3 Language understanding inteLLigent serviCe (Luis)

124

 Import/Export Application
Any application built in LUIS can be exported into a JSON file and

imported back into LUIS. The JSON file format is exactly what we would

expect. There are elements that define which custom intents, custom

entities, and prebuilt entities the application uses. There are additional

elements to capture phrase lists. And, not surprisingly, there is a rather

large segment describing all the sample utterances, their intent label, and

the start and end index of any entities in the utterance. We can export

the application by clicking Export App in the My Apps section of LUIS or

Export Version in the Settings page, as per Figure 3-41.

Although the format of the exported application is specific to LUIS, it

is easy to imagine how we could write code to interpret the data by other

applications. From a governance perspective, it is good practice to export

our applications and store the JSON in source control because the action

of publishing an action is irreversible. This should not be an issue if our

teams follow a strategy in which a publish into the Production slot implies

the creation of a new application version, but mistakes do happen.

One of the most common questions we receive in our work with LUIS

is “why we can’t import an application into an existing application?” The

reason is that this would be tantamount to a smart merge, especially where

there are overlapping utterances with different intents or same name

intents with completely different application connotations. Since every

application has different semantics, this merge would be a nontrivial task.

We suggest either utilizing Git to manage and merge application JSON

code or creating custom code to merge using the LUIS Authoring API.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

125

 Using the LUIS Authoring API
When speaking about LUIS and its capabilities, the first question out of

developers is, “can this be done via an API?” The answer is yes! The Authoring

API allows us to perform all the tasks we have doing using the user interface

via an API. The Authoring API is split into the following resources:

• Apps: Add, manage, remove, and publish applications.

• Examples: Upload a set of sample utterances into a

specific version of your application.

• Features: Add, manage, or remove phrase or pattern

features in a specific version of your application.

• Models: Add, manage or remove custom intent

classifiers and entity extractors; add/remove prebuilt

entities; add/remove prebuilt domain intents and

entities.

• Permissions: Add, manage, and remove users in your

application.

• Train: Queue application version for training and get

the training status.

• User: Manage LUIS subscription keys and external keys

in LUIS application.

• Versions: Add and remove versions; associate keys to

versions; export, import, clone versions

The API is very rich and allows for training, custom active learning,

and enables CI/CD type scenarios. The API Reference Docs6 are a great

place to learn about the API.

6 LUIS Authoring API Reference Documentation: https://westus.dev.
cognitive.microsoft.com/docs/services/5890b47c39e2bb17b84a55ff

Chapter 3 Language understanding inteLLigent serviCe (Luis)

https://westus.dev.cognitive.microsoft.com/docs/services/5890b47c39e2bb17b84a55ff
https://westus.dev.cognitive.microsoft.com/docs/services/5890b47c39e2bb17b84a55ff

126

 Troubleshooting Your Models
We have focused on LUIS itself and the process of creating applications

by combining custom intent classifiers and custom entity extractors with

prebuilt entities and prebuilt domains. Along the way, we have noticed

some interesting behavior with the system. Machine learning is not

perfect. We are all but guaranteed to run into strange scenarios where

we are having trouble with our intents or entities. Here is a list of how we

should approach troubleshooting LUIS issues:

• One of the most common problems is training the

model without publishing it. Make sure that if you are

testing the application using the Staging slot, that you

publish it into the Staging slot. If you are calling your

application’s production slot, make sure the app is

published. And ensure that you pass the staging flag as

needed in your calls to the API.

• If intents are getting misclassified, provide more intent

examples to the intents that are having problems.

If problems persist, spend some time analyzing the

intents themselves. Are they really two separate

intents? Or is it really one intent and we need a custom

entity to tell the difference? Also, make sure to train the

None intent with some inputs that are truly irrelevant

to your application. Test data is great for this purpose.

• If the application is having difficulty recognizing

entities, consider the type of entity you are creating.

There are entities that are usually a one-word modifier

in the same place in an intent, like our Visibility entity.

On the other hand, there are subtler entities that can be

anywhere in the utterance usually prefixed and suffixed

Chapter 3 Language understanding inteLLigent serviCe (Luis)

127

by some words. The former won’t need as many

sample utterances as the latter one. In general, entity

recognition issues can be fixed by doing the following:

• Adding more utterance samples both in terms of

different variations and multiple samples of the

same variation.

• It is worth asking whether the entity should perhaps

be a list entity. A good rule of thumb is, is this

entity a lookup list? Or does the application need

flexibility in how it identifies this type of entity?

• Consider using phrase lists to show LUIS what an

entity may look like.

• Is LUIS getting confused between two entities? Are the

entities similar with a slight variation based on context?

If so, this may be a candidate for a hierarchical entity.

• Utilize composite entities if your users are trying to

communicate higher-level concepts composed of

multiple entities.

Building LUIS applications can be more of an art than science. You

will sometimes spend a lot of time teaching LUIS the difference between

some entities or where in a sentence an entity can appear. Be patient.

Be thorough. And always think of the problem in statistical terms;

the system needs to see enough samples to truly start understanding

what’s happening. As people, we can take our intelligence and language

understanding for granted. In relative terms, it is quite amazing how

quickly we can train a system like LUIS. Remember this as you work with

LUIS or any other NLU system.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

128

 Conclusion
That was quite a lot of information! Congratulations, we are now equipped

to start building our own NLU models using a tool like LUIS. To recap, we

went through the exercise of creating an application by utilizing prebuilt

entities, custom intents, and custom entities. We explored the power of

the various prebuilt entities and dabbled a bit in the prebuilt domains that

LUIS provides. We spent time training and testing our application, before

publishing it into different types of slots and testing the API endpoints

using curl. We optimized our application using phrase features and

further improved it by using LUIS’s active learning abilities. We explored

versioning, collaborating, integrated spell check, exporting and importing

of applications, using the authoring API, and common troubleshooting

techniques in our LUIS applications.

I must reiterate that the concepts and techniques you just learned are

all applicable to other NLU platforms. The process of training intents and

entities and optimizing models is a powerful skill to have in your toolkit,

whether for bots, voice assistants, or any other natural language interface.

We are now ready to start thinking about how we build a bot. As we do,

we’ll keep checking back into this LUIS application as it gets consumed by

our bot.

Chapter 3 Language understanding inteLLigent serviCe (Luis)

129© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_4

CHAPTER 4

Conversation Design
Although the technology allows us to develop a bot that behaves

in just about any way, that doesn’t mean we should. Users have

certain expectations from their messaging communications such as

acknowledgment of the message receipt, a quick response, and the

ability to continue the conversation later. Although conversing with a

bot is not the same as speaking with a human, messaging a friend is the

closest analogous experience. Since users are still getting used to bots, it

is reasonable to take those interactions as samples of how a bot should

behave.

Successful bots can exhibit many types of behaviors, but there are

some common patterns and flavors. That’s not to say innovation has

stagnated; not at all! These use cases are based on commonly observed

patterns in the space given technology and budget constraints. The space

is ripe for innovation, and the only question is, what are the limits of

our collective imagination?

These common use cases also follow certain rules as to how they

communicate with users. During my career, it was essential for me to

internalize that most technology users don’t use the technology the way

that I do. I love the command line and its precision. Not being a native

English speaker, the ambiguity of natural language has been troubling.

But bots give users an ability to use this ambiguous natural language. As a

result, there is a certain amount of self-restraint that bot developers need

to exercise. It is easy for a developer to put together a bot experience that is

more reminiscent of using a command line.

130

Considering the limitations of natural language processing (NLP)

and user expectations, it then becomes more important than ever to be

careful about how the bot behaves when it doesn’t understand things and

when it’s asking for feedback from the user. With a careful approach and

a conscious choice of the type of responses we send our users, creating a

delightful experience is within reach.

 Common Use Cases
Developers are creating all sorts of conversational experiences. We can

experience bots that specialize in tasks such as selling items, answering

questions about products, sending order statuses, answering inquiries

about orders, provisioning cloud infrastructure, searching over multiple

data sources, sharing cat GIFs, and doing millions of other things.

At a high level, we will split the bots into two larger categories:

consumer and enterprise. There is of course overlap in the subcategories

but also some clear dividing lines.

 Common Consumer Cases
Consumer bots are typically available via channels such as Facebook

Messenger, Slack, and the other public messaging apps; web chat; voice

interfaces; or even custom mobile apps when a custom interface is

required. On the lower end of the quality scale, they are no more than toys.

On the higher end, they can be impressive feats of design and engineering.

Because of the general AI and bot fever we discussed in Chapter 1, many

companies are deploying a bot along with their products. Atlassian, for

example, has a Slackbot for its JIRA product. Even Amazon has a chat bot

integrated into its mobile shopping app. You will also find brands dipping

their toes into bots via Facebook Messenger. Facebook Pages makes it

easy for a company to have an outward-facing public channel to talk to

Chapter 4 Conversation Design

131

its customers via either public posts or Messenger. If it is Messenger, a

human agent needs to log into the page inbox and reply to each message.

A first step for many companies is to deploy a Messenger bot that replies

to a few types of user queries, with the rest simply left for humans to reply

to. Utility-wise, we are still trying to answer the question, what makes the

most sense for users? The variety of bots in the space certainly points to

that. The following are some broad categories of effective approaches.

 FAQ Bot

An FAQ bot is typically the first entry into the bot and NLP space by teams

taking the technology for a test run. It is an easy use case: let’s take our

existing FAQ and place it as a bot on Facebook Messenger or enterprise

messaging. That way, the most typically asked questions can be caught by a

bot before an employee spends time answering them. A simple text- based

FAQ bot can turn into something quite interesting and aesthetically pleasing

from a user perspective. An answer to a commonly asked question doesn’t

simply have to be a block of boring text. The answer can include further

content such as images, videos, and links to additional content.

For example, consider a financial services bot that can answer

different types of questions about financial topics. Within its response,

it can embed additional suggested topics of interest as buttons. At that

point, the user can look at related terms and their definitions. If there are

websites that visually represent a concept, for example, the iron condor

option investment strategy, those links can be included in the response

for the user to click to get more information. Of course, our conversation

design needs to balance all that content with possible user overload.

The sweet spot in between can be effective at providing the user with a

pleasant experience with the bot. Figure 4-1 is an example of Child Fund

International’s FAQ bot embedded into a web page.

Chapter 4 Conversation Design

132

 Task-Oriented Bot

A task-oriented bot is a virtual agent that can help users with a variety

of tasks specific to a domain. These types of bots are sometimes called

concierge bots. For example, JIRA’s Slackbot (Figure 4-2) is task oriented.

It can create tasks and assign tasks based on a conversation a team is

having.

Figure 4-1. A basic FAQ bot in action

Chapter 4 Conversation Design

133

I once worked on a diabetes coach chat bot, which could help users

who have Type 2 diabetes ask for meal and exercise advice personalized

according to previous conversations and other data about the users.

There are also financial services bots that connect to a trading account

and update the user on their account balances and positions and even

trade, like the TD Ameritrade bot (Figure 4-3). The Calendar LUIS app we

developed in Chapter 3 is the base for a calendar task bot.

Figure 4-2. JIRA Slackbot

Chapter 4 Conversation Design

134

 Broadcast Bot

A broadcast bot is an interesting concept and is quite common. We can

think of this as a bot that reaches out to the user without prompting, as

opposed to the user contacting the bot first. In some bots, it is more a

pattern to keep bots engaged. For example, different news bots, like the

CNN bot on Facebook Messenger, will reach out daily with the biggest

stories of the day.

Figure 4-3. Trading stocks using the TD Ameritrade bot

Chapter 4 Conversation Design

135

A subset and more nuanced version of this can be seen in some

celebrity bot implementations. Typically, these types of bots exist for fun.

They adopt the personality of a celebrity and can talk to users about topics

of interest, products, and other ways of interacting with the celebrity’s

branch. The bot can navigate you through a script of topics, send you

videos and images, and maybe talk about products that the celebrity is

endorsing. The conversation is almost entirely driven by the bot, instead of

the user. It is an interesting storytelling device, but its success comes down

to consistent fresh content. Figure 4-4 shows an example of Project Cali, a

Snoop Dogg bot created for fun.

Figure 4-4. Project Cali: a Snoop Dogg bot

Chapter 4 Conversation Design

136

 E-commerce Bot

Although not yet big in North America, bots are slowly starting to sell

products to consumers. It is not a terribly challenging task from a technical

perspective; the bigger challenge is getting users to use a messaging

instead of apps or websites. The amount of e-commerce integration in

these kinds of bots varies. For example, some bots provide the complete

end-to-end shopping experience. Looking at clothing items (Figure 4-5)

or flowers (Figure 4-6) through a bot is different from an online shopping

experience. Some bots lean into this and provide quirky or innovative ways

of figuring out what products to show the user to get the impulse buy!

Figure 4-5. Louis Vuitton bot

Chapter 4 Conversation Design

137

We also run into experiences where the bot is responsible only for

broadcasting a receipt for a purchase and order status updates, with

a limited set of bot functionality. Everything else gets automatically

routed to a human customer support representative. Although this kind

of experience is not fully integrated e-commerce, it is a great first step

into that journey and into getting customers acquainted with bots. In

short, companies are embracing what is being called the digitally driven

consumer journey, and bots are part of this strategy.1

1 Brands Must Grasp the Digitally Driven Consumer Journey or Risk Becoming
Prey: www.adweek.com/digital/brands-must-grasp-the-digitally-driven-
consumer-journey-or-risk-becoming-prey/

Figure 4-6. The 1-800-Flowers.com Assistant

Chapter 4 Conversation Design

http://www.adweek.com/digital/brands-must-grasp-the-digitally-driven-consumer-journey-or-risk-becoming-prey/
http://www.adweek.com/digital/brands-must-grasp-the-digitally-driven-consumer-journey-or-risk-becoming-prey/

138

Different messaging platforms provide different levels of payment

support. We could certainly create e-commerce via a bot by providing

a custom checkout page where the user can enter their payment

information. The conversation is paused at this point. Once the payment

is processed, a message is sent to the bot to continue the conversation.

On the other hand, Facebook Messenger provides deeper integration

with systems such as Stripe and PayPal. In that version, the payment

experience stays completely within the Facebook Messenger app. From

a user perspective, the less friction the better. And as users begin placing

more trust in messaging apps to store their payment information, we will

see more and more payment integrations like this. Apple has released its

Business Chat2 product and you bet that Apple Pay payments are fully

integrated.3

 Common Enterprise Cases
Enterprise bots may be more specialized to a domain or subject matter.

They are typically deployed using a web chat component or integrated

into enterprise messaging systems, or even enterprise Call Center

and Interactive Voice Response (IVR) systems such as Cisco's Unified

Communications Center. They can also be deployed on e-mail endpoints.

The bots may be integrated with single sign-on solutions, powerful existing

enterprise back ends, and knowledge management databases. Depending

on the enterprise’s practice, these will range from simple pilot bots to

machine learning–driven large-scale deployments.

2 Apple Business Chat: https://developer.apple.com/business-chat/
3 Sending Apple Pay Payment Requests: https://developer.apple.com/library/
content/documentation/General/Conceptual/MessagesIntegration/
SendingApplePayPaymentRequests.html#//apple_ref/doc/uid/
TP40017634-CH33-SW1

Chapter 4 Conversation Design

https://developer.apple.com/business-chat/
https://developer.apple.com/library/content/documentation/General/Conceptual/MessagesIntegration/SendingApplePayPaymentRequests.html#//apple_ref/doc/uid/TP40017634-CH33-SW1
https://developer.apple.com/library/content/documentation/General/Conceptual/MessagesIntegration/SendingApplePayPaymentRequests.html#//apple_ref/doc/uid/TP40017634-CH33-SW1
https://developer.apple.com/library/content/documentation/General/Conceptual/MessagesIntegration/SendingApplePayPaymentRequests.html#//apple_ref/doc/uid/TP40017634-CH33-SW1
https://developer.apple.com/library/content/documentation/General/Conceptual/MessagesIntegration/SendingApplePayPaymentRequests.html#//apple_ref/doc/uid/TP40017634-CH33-SW1

139

 Self-Service Bots

One of the most common use cases in an enterprise scenario is incident

self-servicing. Enterprises have large knowledge bases that internal help

desk agents use to communicate possible solutions to the user and guide

them through the process of troubleshooting issues. Many of these step-

by- step troubleshooting directions can be communicated to the user by a

bot. For example, one of the most common queries to internal help desks

is password reset. Companies could cut through a lot of volume and,

frankly, money, if they were to handle such requests automatically. You

could imagine an appliance manufacturer releasing a chat bot to assist in

diagnosis and fixing issues before involving a service engineer.

The idea behind these self-service bots is that they can provide a variety

of self-service content for the users, especially for the most common queries,

and can even automate some of the common work that the customer

support team is doing. These bots are usually integrated with live chat

systems so that the user may initially be chatting to a bot but can be quickly

rerouted into a live chat or phone conversation with a human customer

service agent in case the bot’s directions do not solve the problem.

 Process Automation Bots

Robotic Process Automation (RPA) is a huge topic these days. Companies

like IPsoft specialize in building bots and technology that can automate

business and IT tasks.4 In this context, bots are not necessarily chat bots

but rather computer agents that perform the automation. These tasks

can include everything from account provisioning, website automation

and business processes automation. There are companies that focus on

creating automation platforms, such as Automation Anywhere and UiPath.

With machine learning these days being used for everything from contract

4 IPSoft Amelia: https://www.ipsoft.com/amelia/

Chapter 4 Conversation Design

https://www.ipsoft.com/amelia/

140

analysis to skin cancer diagnoses, chat bots can serve as an excellent

front end into these processes. In an RPA scenario, the chat bot is more

of an orchestrator rather than an automator. In addition, these bots may

integrate into ticketing systems such as Remedy and ServiceNow to track

its work.

In other instances, the chat bot is less visible to the user. For example,

Slack is a great platform for bots that listen in to a team conversation and

surface data as the right natural language arises. Bots that simply listen

in to some natural language input and provide answers are a type of

automation bot. Say, for example, a team of medical experts looks through

text descriptions of procedures and is charged with translating them to

insurance codes. That process can be automated by a machine learning

algorithm that observes the team’s behavior and results and can then take

over the data.

Again, the actual brains behind the logic may not be inside the bot

itself. There may be a separate system that implements the machine

learning model for the insurance codes. Or, the automation code may be

Python, PowerShell, or any other script. The bot serves as the front end to

receive the natural language and orchestrate the automation (Figure 4-7).

Figure 4-7. A sample automation bot flow

Chapter 4 Conversation Design

141

 Knowledge Management Bots

Another type of enterprise bot is one that can solve natural language

search problems across a variety of data sources. Many firms have huge

knowledge repositories across disparate sets of systems. Being able to

integrate with all those sources using natural language is important. There

are interesting choices to make in these bots about which content to

display to the user, in what format, and how to collect feedback on which

content was the most useful given a query.

The bigger problems of natural language search that these projects

try to solve are fascinating and beyond the scope of this book. This type of

bot can be extremely interesting in a group conversation context, where

the bot is querying articles, reports, white papers, and case studies as

the group is having a conversation about topics of interest. The group’s

feedback to the bot during the search can further provide supervised

learning data to improve the search experience even further.

 Representing Conversations
How do we start developing a conversational chat bot? A good place is trying

to graphically represent the conversation flow. What kinds of tasks can the

chat bot handle? What intents and entities does it need to look for to achieve

these goals? How does it help fill in missing data?

We will be referring to the conversation as a graph, which is a collection

of nodes connected by edges. Figure 4-8 illustrates an undirected graph.

Every node is connected to at least one other node in the graph. Each node

represents a state of the conversation, and the edges represent a transition

between states.

Chapter 4 Conversation Design

142

We will use arrows in the edges to show the direction of flow. This is

referred to as a directed graph. We start with the root node. The root node is the

state of the beginning of the conversation. Using our Calendar bot as a sample,

we know that our bot should support adding new entries, editing existing

entries, removing entries, checking availability, and providing a summary of

our calendar or an event. We can represent the bot as shown in Figure 4-9.

Figure 4-8. An undirected graph

Figure 4-9. Representation of a calendar concierge bot conversation

Chapter 4 Conversation Design

143

Note that the conversation moves between states based on the

user’s utterance, which resolves to a LUIS intent. Each node along the

conversation has built-in logic to resolve the entities and execute the

correct logic for a state. After a state is done executing its logic, the

conversation transfers back to the root node.

The transitions between states can be invoked either programmatically

or by user input. For example, say our bot supports creating calendar

appointments. Recall in Chapter 3 that we created a LUIS application that

allows us to pass either several or no entities as part of an utterance to add

a calendar entry. If our Add New Entry dialog did not receive information

about a subject and invitee, as for example in the utterance “meet tomorrow

at 2pm,” we could elicit that information in another state. On the other hand,

if the user uses an utterance that contains these entities, such as “meet

with kim for coffee tomorrow at 2pm,” we do not need to elicit this extra

information. This conditional state transition is illustrated in Figure 4-10.

Figure 4-10. Conditionally transfer to state based on user input

Chapter 4 Conversation Design

144

The process of creating a conversation graph is usually referred to as

intent and entity mapping; we model intent and entity combinations as

transitions between state nodes.

 Bot Responses
There are a variety of forms that a bot response to a user’s query may take.

Understanding the different options and how to best leverage them is key

to any bot design. In the following sections we will dig into a number of

concepts found amongst the various channels.

 Building Blocks
We now understand how we can take user input and map it to bot states

and function. We also understand how we can organize our bot code into

various conversation states. The next step in our design is to figure out what

the bot sends to the user in return. Bots can respond in a variety of ways.

By default, we think of text or speech output. Most typically, we simply

send back plain text. Some messaging channels support something more

complex like Markdown or HTML. Markdown is a plain- text formatting

syntax.5 The following Markdown input translates to the formatted content

in Figure 4-11:

H1

H2

Hello, my _name_ is **Szymon Rozga**

I like:

1. Bots

1. Dogs

1. Music

5 Markdown: Syntax: https://daringfireball.net/projects/markdown/syntax

Chapter 4 Conversation Design

https://daringfireball.net/projects/markdown/syntax

145

Bot platforms can also support speech response. Many platforms

also support the Speech Synthesis Markup Language (SSML) as a speech

output format. SSML is a markup language that provides metadata about

how speech should be constructed using elements such as pauses, breaks,

changes of rate and pitch, and others. Here is a self-explanatory sample

from the WC3 Recommendation6:

<?xml version="1.0"?>

<speak version="1.0" xmlns:="http://www.w3.org/2001/10/synthesis"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis

 http://www.w3.org/TR/speech-synthesis/

synthesis.xsd"

 xml:lang="en-US">

 That is a <emphasis> big </emphasis> car!

 That is a <emphasis level="strong"> huge </emphasis>

 bank account!

</speak>

6 Speech Synthesis Markup Language Version 1.1 WC3 Recommendation:
https://www.w3.org/TR/speech-synthesis11/

Figure 4-11. A formatted markdown document

Chapter 4 Conversation Design

https://www.w3.org/TR/speech-synthesis11/

146

Output to users does not always have to be text. We can use images and

videos to communicate many ideas to our users. As part of any message sent

back to the user, we may attach various content such as videos, audio files,

and images. The specific supported formats will depend on the underlying

operating system and channel. Some systems allow other file attachments as

well, for instance XML files or a native format of some sort.

An alternative mechanism for presenting content to our users are

cards. A card is typically a combination of an image, text, and optional

buttons that serve as calls to action. Our YouTube Search bot from

Chapter 1 (Figure 4-12) clearly displayed the video name, description, and

a button to watch it in a set of cards.

Figure 4-12. Horizontal list of cards; also called a carousel

Chapter 4 Conversation Design

147

This layout is called a carousel. It presents several cards side by side

and gives the user the ability to swipe or scroll through the individual

cards.

Buttons are typically sent as part of a card, but they can also be sent as

stand-alone elements without an associate image. There are many types of

buttons. The top three most popular buttons are used to open web pages,

send a message back to the bot (IM back), or post a message back to the

bot (post back). The difference between an IM back and a post back is that

a post back message will not appear in the message history, whereas an IM

back message would. Not all channels support both approaches, but the

overall spirit of sending a message to the bot via a button click is widely

supported.

Another type of button is a sign-in button. Sign-in buttons kick off an

authentication or authorization flow via a login in a web view. Once the

login is completed, the bot receives any necessary access tokens and can

proceed with an authenticated session, as shown in Figure 4-13.

Figure 4-13. Authenticated bot with suggested actions/quick replies

Chapter 4 Conversation Design

148

All the content described previously is kept within a user’s chat

history. The carousels, the cards, the buttons, and, of course, all the text

are available for the user to scroll through. There is one form of element

that is displayed only in the context of the message that it is included in.

That feature is suggested actions, also called quick replies. These buttons

are presented on the bottom of the user interface until the user responds.

These buttons are clear calls to actions and an indispensable tool for

delightful conversational experiences. Figure 4-14 shows an example usage

of suggested actions guiding users to video categories available in the TD

Ameritrade bot.

Figure 4-14. Video category suggested action in the TD Ameritrade bot

Chapter 4 Conversation Design

149

 Authentication and Authorization in Bots
Let’s be honest, no one is going to be sending a username and password

to a bot chat window. This is a security risk. We do not want Facebook or

Slack or any other channel to have our users’ login credentials in their

message history. At the end of the day, a bot is simply a web service, so

using the standard OAuth or OpenID Connect flows is a natural fit.

The right approach is to utilize a sign-in card, which is a card that

includes a button that opens a login web page for the user to enter their

credentials (Figure 4-15).

Typically, this login page will be an OAuth page (Figure 4-16).

Figure 4-15. A standard sign-in card

Chapter 4 Conversation Design

150

OAuth 2.07 is a standard for token-based authorization over the

Internet. There are several different types of authorization flows that

are enabled by OAuth 2.0. A three-legged OAuth flow allows a resource

owner (the user) to grant access to an application (the consumer) to an

API (the service provider). In the context of a bot, it looks as follows:

• The user clicks a button to open a login page to a

service in a web view for the third party and enters their

username/password combination. The URI for this

login page typically includes a client ID and a redirect

URI. The redirect URI is an endpoint on our bot web

service.

7 OAuth 2.0 Documentation: https://oauth.net/2/

Figure 4-16. OAuth authorization code flow

Chapter 4 Conversation Design

https://oauth.net/2/

151

• Once the user logs in successfully, the service redirects

the user back to the bot redirect URI. The bot redirect

URI endpoint receives the authorization code. This is

the user’s grant to the application to use the service.

The bot exchanges the authorization code for an access

token (and an optional refresh token) from the token

endpoint.

• The bot uses the access token when making requests to

the service on behalf of the bot user.

• Typically, the access token is short lived, and the

refresh token is longer lived. At any point, the bot can

request a new access token from the token endpoint by

posting the refresh token.

There is substantial documentation around the specifics of this and other

OAuth flows. The RFC is a great starting point.8 The key point is that a bot is

a web service, and the complete OAuth flows can happen in an integrated

manner. The only tricky part from a UX perspective is to ensure that the

browser window automatically closes when the login is completed. The

various channels approach this in slightly different ways. Although one can

implement the entire flow manually, something we show off in Chapter 8, the

Bot Framework does provide additional tools to facilitate this process.9

 Specialized Cards
On platforms that support them, cards are a key component of the user

experience. We covered the idea of a generic cards. Some channels provide

several specialized cards. For instance, a receipt card (Figure 4-17) can be

8 OAuth 2.0 RFC: https://tools.ietf.org/html/rfc6749
9 https://docs.microsoft.com/en-us/azure/bot- service/bot-builder-
tutorial-authentication?view=azure-bot-service-3.0

Chapter 4 Conversation Design

https://tools.ietf.org/html/rfc6749
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-tutorial-authentication?view=azure-bot-service-3.0
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-tutorial-authentication?view=azure-bot-service-3.0

152

sent to communicate a purchase receipt with information such as totals,

tax, payment confirmation, and so forth.

Figure 4-17. Messenger receipt template

In addition, Messenger gives developers the ability to utilize four air

travel cards such as itinerary, boarding pass (Figure 4-18), check-in, and

flight update.

Chapter 4 Conversation Design

153

Tapping the boarding pass card shows a full-screen version with a QR

code that can be utilized at the airport (Figure 4-19). Depending on which

platform we target, there may be other templates for us to use. If they exist

and match your use cases, use them. They provide a good, native user

experience.

Figure 4-18. Messenger boarding pass template

Chapter 4 Conversation Design

154

Another form of specialized card is one in which you use custom

graphics. A common approach is to generate the custom graphics on a

web service as the bot processes user input. In Chapter 11, we will build

a simple custom graphics renderer using Headless Chrome to show how

easily we can begin building custom graphics using HTML and JavaScript.

Figure 4-19. Messenger boarding pass template details

Chapter 4 Conversation Design

155

Lastly, Microsoft has introduced a new card format called Adaptive

Cards.10 Adaptive cards, which we will explode in Chapter 11, are a

platform-agnostic manner to describe layouts of text, images, and input

fields using a simple container-based layout engine. The Microsoft Bot

channel connectors are then able to render the cards into platform-

specific renderings. Adaptive Cards are a specialized version of the custom

graphics approach integrated with logic to generate buttons and behavior

in a card. It remains to be seen how many channels will end up supporting

this format, but many of the Microsoft-owned channels already do.

Figure 4-20 shows an example of an HTML rendering of an

Adaptive Card.

10 Adaptive Cards: http://adaptivecards.io/

Figure 4-20. Adaptive Card sample

Chapter 4 Conversation Design

http://adaptivecards.io/

156

Figure 4-21 shows the rendering of an input form card on Microsoft’s

Teams app.

 Other Functions
Bots may include several other interesting pieces of functionality that can

really make a bot experience shine. Some of these pieces of functionality

are the following:

• Proactive messaging: A bot can reach out to a user

asynchronously, triggered by an event other than an

incoming message. If the bot stores a user’s address

(combination of service URLs and conversation and

user IDs), it can utilize it to communicate to the user.

• Human handoff: In customer service scenarios and

highly visible public-facing bot deployments, having

a mechanism to seamlessly transfer the conversation

from a bot to a human agent is a requirement for a

successful bot.

Figure 4-21. Input form card sample

Chapter 4 Conversation Design

157

• Payments: More and more platforms are opening their

payment systems for easy conversational integration.

Facebook Messenger has its Payments program with

easy Stripe/PayPal integration. Microsoft provides

easy Stripe integration for payments across the entire

Windows ecosystem and the Bot Framework.

 Conversational Experience Guidelines
There are some key guidelines that we should follow when developing a

bot experience. Some of them may not apply to every type of bot or may

be more relevant to consumer versus enterprise bots, but one should keep

this list in mind at a minimum when designing bots.

 Focus
As discussed in Chapters 1 and 2, there are limits to the technology and

how intelligent a bot can be. Our bots should not try to get too clever;

humans will always be able to break the bot in one way or another. For

example, it is quite OK to handle greetings from the user like “hi” or

“hello. We do not want to go down the rabbit hole of being handling every

different type of greeting. Don’t start creating specialized responses for

“what’s up?” versus “hi.” If you are reading this book, you most likely don’t

have the budget that Microsoft or Google has (Figure 4-22). We are here

to help with tasks, not general AI. It is OK to be honest about our bot’s

limitations.

Chapter 4 Conversation Design

158

 Don’t Pretend the Bot Is a Human
We do not want our bots to end up in the uncanny valley.11 That is, as with

most, if not all, human-like objects, real humans will feel that something

is not quite right, leading to strange and eerie feelings (Figure 4-23). We

do not want our users to get those feelings. This goes hand in hand with

representing your bot with human likeness. If you are representing your

bot via an avatar, use an icon that clearly suggests a nonhuman entity. Siri

and Cortana do this very well.

11 Uncanny valley: why we find human-like robots and dolls so creepy:
https://www.theguardian.com/commentisfree/2015/nov/13/
robots-human-uncanny-valley

Figure 4-22. Good advice for building bots

Chapter 4 Conversation Design

https://www.theguardian.com/commentisfree/2015/nov/13/robots-human-uncanny-valley
https://www.theguardian.com/commentisfree/2015/nov/13/robots-human-uncanny-valley

159

Figure 4-23. We’re definitely in the uncanny valley

Chapter 4 Conversation Design

160

 Do Not Gender Bots
There is plenty of writing around this topic.12 It is worth noting that even

though Siri, Cortana, and Alexa and some of the older virtual assistants

have female names, Google and Facebook have opted for Google Assistant

and M. This trend of nongendered bots has continued in the industry.

Adopting female personas can quickly get weird, as when taken to the

extreme with the sexualization of AI in the movie Her.

 Always Present the Next Best Action
Our bot should never leave a user hanging without the user knowing what

to do next. The bot should have a welcome message introducing itself,

its capabilities, and some options to the user about what it is capable

of. When the user is confused and asks for help or the bot is unable

to recognize the user’s input, the bot should suggest some options as

well. The key point is that if at any point of the conversation the user is

met by a blank message box with no suggested next steps, it becomes a

confusing conversational experience. Facebook Messenger, Skype, and

other channels have a contextual quick-reply feature that presents button

options of the bottom of the chat interface (Figure 4-24). Presenting such

suggestions is a great way to communicate our bot’s capabilities and

limitations.

12 It took (only) six years for bots to start ditching outdated gender stereotypes:
https://qz.com/1033587/it-took-only-six-years-for-bots-to-start-
ditching-outdated-gender-stereotypes/

Chapter 4 Conversation Design

https://qz.com/1033587/it-took-only-six-years-for-bots-to-start-ditching-outdated-gender-stereotypes/
https://qz.com/1033587/it-took-only-six-years-for-bots-to-start-ditching-outdated-gender-stereotypes/

161

 Have a Consistent Tone
Bots typically will end up getting a name and personality. Although I don’t

think gendered names make sense, your bot should have a personality and

a consistent tone. Remember, these are brands speaking to your customers.

Some bots are chatty. Others are less so. Some are formal. Others are more

relaxed. Choose one for your bot and keep it consistent. And, although it is

interesting technology, we should avoid using natural language generative

models (machine learning algorithms that automatically generate

responses) if we want to keep a brand-centric voice.

Figure 4-24. Next best actions

Chapter 4 Conversation Design

162

 Utilize Rich Content
Bots provide us with the opportunity to utilize more than just text. We can

format text and include images, videos, and audio files. We can render

cards (Figure 4-25) and even create some custom graphics in your cards.

We need to utilize those features to their fullest extent

 Be Forgiving
Natural language is tricky. Expect user inputs to be vague. Our bots

should have conversational paths to confirm information or elicit

missing data. If the user is expected to enter a number, we should parse

any possible input but also be clear about the bot’s expectations. If

possible, provide some suggestions to the user of possible values they

could enter by using a quick reply feature. The user will be pleased by

Figure 4-25. Rich bot content is a good idea

Chapter 4 Conversation Design

163

such suggestions. There’s nothing more frustrating than not knowing and

not being instructed how to communicate to a bot.

 Avoid Getting Stuck
At any point in our bot, the user should be able to change the conversation

topic. Our bot should try to get stuck in a conversation context, unless

absolutely necessary. For example, let’s assume a calendar bot is asking

the user for date. Our bot expects a string that resolves to a date. If the user

enters “delete tomorrow’s 9am appointment,” our bot should handle the

query gracefully instead of saying something like “I’m sorry that is not a

date. Please enter a date in the format mm/dd/yyyy.”

 Don’t Abuse Proactive Messaging
Bots give us an ability to reach out to user at any time, even without the bot

seeing a message from the user. Do not abuse that privilege. In messaging

applications, users get a notification any time they receive a message.

There isn’t an easier way to get removed from the messaging app than

constantly sending reminders or trying to re-engage. Some channels

have specific policies around this as well. Be a good citizen within the

messaging channels.

 Provide a Clear Path to Humans
If there is one thing that should be clear by now, it is that bots cannot

understand everything. Even with a limited scope of functions, there are

going to be questions and issues that the bot will not be able to handle.

Our bots should have an ability to somehow connect users to a human

agent, if relevant to the use case. Whether it is displaying a phone number

with a case number or having seamless integration into a live chat system,

Chapter 4 Conversation Design

164

our bots should be clear in how our users can speak to humans for help

with their issues (Figure 4-26). For example, I once encountered a bot that

could answer frequently asked questions. I read a press release about the

bot, so I decided to try it. I started the conversation and got a message

about clicking a button. There were no buttons. I asked, “What can I do?” I

got redirected to a human agent. At this point, I couldn’t do anything until

a human dealt with my case. I also had no indication of how long it would

take. Was their call center even open? Once the agent came around, I

spoke to them and got sent back to the bot. I had total silence, no buttons. I

said “Test.” The next message I got was that I was getting transferred again.

At this point, I just quit. Don’t make your users quit in frustration.

Figure 4-26. Clear path to talking to a human

Chapter 4 Conversation Design

165

 Learn from Your Users
It is simple to use a conversational experience to collect data from users.

It also easy to use user input in resolving conflicting intents from LUIS

and then utilizing that data to train LUIS. Of course, the importance

given to user input should be very different than the weight given to the

utterances provided by a trainer. But if we have the data, we should use it

to our advantage. Figure 4-27 shows an example of how we can implement

such an approach. In the diagram we store user feedback into an active

learning data store, and our active learning process determines how much

of the same feedback it should observe before using the data point to train

LUIS. Be careful with automated training based on user input. You do not

want to go the way of Tay.13

There are more rules you may pick up on as you gain experience in this

space across different messaging channels, but this list is a good starting

point and something I suggest we follow on every chat bot project.

13 Microsoft Silences its new AI Bot Tay: https://techcrunch.com/2016/03/24/
microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-
racism/

Figure 4-27. Implementing active learning

Chapter 4 Conversation Design

https://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-racism/
https://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-racism/
https://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-racism/

166

 Conclusion
Conversation design is a rich field. We have numerous options for how

we interact with users and how we communicate ideas in formats other

than text. When developing bots, our approach should always be “do right

by the user.” A user’s conversational experience can be very sensitive to

tone, branding, verbosity, and overuse (you don’t need to use a card for

everything). Although in the early phases there are some key abstractions,

such as cards, the space has developed to best handle bot-to-user

interactions. As bots become more commonplace, these mechanisms

will improve and increase in number. Microsoft’s adaptive cards, for

example, is a project that attempts to push the boundaries of what kind of

functionality a bot can provide in conversation with users. My hope is that

as bot become more and more commonplace, the messaging channels will

support more and more types of behavior from bot cards.

We now have a good base understanding of the common operations

bots perform and how they do so. The only remaining question is, how do

we put all of this together in code? In the following chapter, we’ll do just

that and put these ideas into practice.

Chapter 4 Conversation Design

167© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_5

CHAPTER 5

Introducing
the Microsoft Bot
Framework
Microsoft’s Bot Builder SDK comes in two flavors: C# and Node.js. As

mentioned in Chapter 1, for the purposes of this book, we are going with

the Node.js version. Node.js is a cross-platform JavaScript runtime; the

fact that it is cross platform and based on a low barrier of entry language

such as JavaScript means we can more easily show how easy it is to build

bots using the technology. We stay within the confines of EcmaScript6;

however, Bot Framework bots can be built using just about any flavor

of JavaScript. The Bot Builder framework itself is written in TypeScript,

a superset of JavaScript that includes optional static typing and can be

compiled into JavaScript.

For this chapter, we should have an introductory-level knowledge of

Node.js and npm (the node package manager). Code provided throughout

the book will include the npm package definition, so we will need to run

only two commands.

npm install

npm start

168

Our aim in this chapter is to write a basic echo bot and deploy it to

Facebook Messenger using Microsoft’s channel connectors. Once we have

the basic bot set up, we’ll dive into the different concepts in the Bot Builder

SDK that really allow us to write killer bots: waterfalls, dialogs, recognizers,

sessions, cards, and much more. Let’s go!

 Microsoft Bot Builder SDK Basics
The core library we will be using to write the bot is called the Bot Builder

SDK (https://github.com/Microsoft/BotBuilder). To get started, you

will need to create a new node package and install the botbuilder, dotenv-

extended, and restify packages. You can do so by creating a new directory

and typing these commands:

npm init

npm install botbuilder dotenv-extended restify --save

Figure 5-1 shows the typical high-level bot architecture on a local

machine. The idea is that the node app relies, principally, on two

components. First, the Bot Builder SDK is the bot engine we use to build

our bots. Second, all messages from any channel, either external to the

machine or the Bot Framework Emulator from the developer machine,

are sent to the bot via an HTTP endpoint. We use restify to listen to HTTP

messages and to send those to the SDK.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://github.com/Microsoft/BotBuilder

169

As an alternative to creating the package.json file manually, we can

bootstrap this exercise using the echo-bot code provided with the book.

The package.json for the echo-bot looks like this. Note that the eslint

dependencies are purely for our development environment, so we can run

a JavaScript linter1 to check for stylistic and potential programmatic errors.

{

 "name": "practical-bot-development-echo-bot",

 "version": "1.0.0",

 " description": "Echo Bot from Chapter 1, Practical Bot

Development",

 "scripts": {

 "start": "node app.js"

 },

Figure 5-1. Typical high-level bot architecture

1 There are a few different linter options for JavaScript, namely, ESLint, JSLint, and
JSHint. ESLint is one of the more extensible and powerful options. See https://
eslint.org/.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://eslint.org/
https://eslint.org/

170

 "author": "Szymon Rozga",

 "license": "MIT",

 "dependencies": {

 "botbuilder": "^3.9.0",

 "dotenv-extended": "^1.0.4",

 "restify": "^4.3.0"

 },

 "devDependencies": {

 "eslint": "^4.10.0",

 "eslint-config-google": "^0.9.1",

 "eslint-config-standard": "^10.2.1",

 "eslint-plugin-import": "^2.8.0",

 "eslint-plugin-node": "^5.2.1",

 "eslint-plugin-promise": "^3.6.0",

 "eslint-plugin-standard": "^3.0.1"

 }

}

The bot itself is defined in the app.js file. Note that the start script in the

package definition specifies app.js as the entry point of our bot.

// load env variables

require('dotenv-extended').load();

const builder = require('botbuilder');

const restify = require('restify');

// setup our web server

const server = restify.createServer();

server.listen(process.env.port || process.env.PORT || 3978, ()

=> {

 console.log('%s listening to %s', server.name, server.url);

});

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

171

// initialize the chat bot

const connector = new builder.ChatConnector({

 appId: process.env.MICROSOFT_APP_ID,

 appPassword: process.env.MICROSOFT_APP_PASSWORD

});

server.post('/api/messages', connector.listen());

const bot = new builder.UniversalBot(connector, [

 (session) => {

 // for every message, send back the text prepended by echo:

 session.send('echo: ' + session.message.text);

 }

]);

Let’s walk thought this code. We use a library called dotenv to load

environment variables.

require('dotenv-extended').load();

The environment variables are loaded from a file called .env into

the process.env JavaScript object. The .env.defaults file includes default

environment variables and can be used to specify the values our Node.js

requires. In this case, the file looks like this:

MICROSOFT_APP_ID=

MICROSOFT_APP_PASSWORD=

We require the botbuilder and restify libraries. Botbuilder is self-

explanatory. Restify is used to run a web server endpoint for us.

const builder = require('botbuilder');

const restify = require('restify');

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

172

Now we set up our web server to listen for messages on port 3978.

const server = restify.createServer();

server.listen(process.env.port || process.env.PORT || 3978, () => {

 console.log('%s listening to %s', server.name, server.url);

});

Next, we create what is called a chat connector. In the context of

the Bot Framework, the channel connectors are endpoints created and

maintained by Microsoft that help translate messages from the native

platform format to the Bot Builder SDK format. The builder.ChatConnector

object knows how to receive HTTP messages from these connectors, pass

them to the bot conversation engine, and send any outgoing messages

back to the connectors, as in Figure 5-2.

The environment variables MICROSOFT_APP_ID and MICROSOFT_

APP_PASSWORD are our bot’s credentials. We will set them up in the

Bot Framework at a later point when we create the Azure Bot Service

Figure 5-2. Microsoft Bot Framework connectors

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

173

registration with Azure. For now, we can leave those values blank because

we don’t care to secure our bot quite yet.

const connector = new builder.ChatConnector({

 appId: process.env.MICROSOFT_APP_ID,

 appPassword: process.env.MICROSOFT_APP_PASSWORD

});

Next we tell restify that any requests into the /api/messages endpoint, or,

more specifically, http://localhost:3978/api/messages, should be handled

by the function returned by connector.listen(). That is, we are allowing the Bot

Framework to handle all incoming messages into that endpoint.

server.post('/api/messages', connector.listen());

Lastly, we create the universal bot. It is called a universal bot because it

is not tied to any specific platform. It uses the connector for receiving and

sending data. Any message that comes into the bot will be sent to the array

of functions. For now, we have only one function. The function takes in a

session object. This object contains data such as the message but also data

about the user and conversation. The bot responds to the user by calling

the session.send function.

const bot = new builder.UniversalBot(connector, [

 (session) => {

 // for every message, send back the text prepended by echo:

 session.send('echo: ' + session.message.text);

 }

]);

Notice that the Bot Builder SDK takes care of providing the right HTTP

response to the incoming HTTP request. In practice, the internals will

return an HTTP Accepted (202) if Bot Builder processes the code without a

problem and will return an HTTP Internal Server Error (500) otherwise.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

174

The content of our response is asynchronous, meaning that the

response to the original request our bot receives does not contain any

content. An incoming request, as we will see in the following chapter,

includes a channel ID, the name of the connector such as slack or

facebook, and a response URL where our bot sends messages. The URL

typically looks like https://facebook.botframework.com. Session.send

will send an HTTP POST request to the response URL.

We can run this bot by simply executing the following:

npm install

npm start

We will see some Node.js output in our console. There should be a

server running on port 3978, on the path /api/messages. Depending on

our local Node.js setup and the preexisting software on our machine, we

may need to update to the latest version of the node-gyp package, a tool for

compiling native addon tools.

How do we actually converse with the bot? We could try sending

messages by using a command-line HTTP tool like curl, but we would have

to host a response URL to see any responses. Additionally, we would need

to add logic to obtain an access token to pass any security checks. Seems

like too much work to simply test the bot.

Of course, we do not have to do any of this. Microsoft provides an

emulator for us to test our bots. It is available at https://emulator.

botframework.com/ for download. The emulator supports Linux,

Windows, and OS X (Figure 5-3).

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://facebook.botframework.com/
https://emulator.botframework.com/
https://emulator.botframework.com/

175

Get ready because we will be using the emulator a lot. Here are some

points we should be aware of:

• We can input our bot URL (/api/messages) into the

address bar. The emulator also allows us to deal with

bot security and specify the app ID/password. We’ll get

into that later.

• The log section shows us all the messages sent between

the bot and emulator. We can see that the emulator

opened a port to host a response URL. In this example,

it is port 58462.

• The emulator log indicates when there is an update, so

we are always running the latest and greatest version.

Figure 5-3. Bot Framework Emulator

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

176

• There is some verbiage about ngrok. Ngrok is a reverse

proxy that lets us tunnel requests from a public HTTPS

endpoint into a local web server. It is incredibly useful

when testing bot connectivity from remote computers,

for example, if we want to run a local bot on Facebook

Messenger. We can also use the emulator to send

messages to remote bots.

• The details section shows the JSON for each message

sent between the bot and the emulator.

Let’s go ahead and connect to our bot. We enter http://

localhost:3978/api/messages into the address bar and leave the

Microsoft App ID and Microsoft App Password fields empty for now

(Figure 5-4) since we haven’t set up a .env file. We will receive security

warnings in the console; these are fine to ignore for now. At this point, we

are really to click the Connect button.

We will see two messages appear in the emulator log. Both are of type

conversationUpdate (Figure 5-5).

Figure 5-4. Emulator connection UI

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

177

What does this mean? Each message between the bot and consuming

connector (Emulator in this case) is called an activity, and each activity

has a type. There are types like message or typing. If the activity is of type

message, then it is literally a message between the bot and the user. A

typing activity tells the connector to display a typing indicator. Previously,

we saw the conversationUpdate type. This type indicates there is a

change in the conversation; most commonly, users have joined or left

the conversation. In a 1:1 conversation between a user and a bot, the

user and bot will be the two members of a conversation. In a group chat

scenario, the bot plus all the users would be part of the conversation. The

message metadata will include information about which users joined

or left the conversation. In fact, if we click the POST link for the two

conversationUpdate activities, we find the JSON in the Details section.

Here is the content for both messages:

{

 "type": "conversationUpdate",

 "membersAdded": [

 {

 "id": "default-user",

 "name": "User"

 }

Figure 5-5. conversationUpdate messages when establishing a
connection from the emulator to our bot

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

178

],

 "id": "hg71ma8cfj27",

 "channelId": "emulator",

 "timestamp": "2018-02-22T22:02:10.507Z",

 "localTimestamp": "2018-02-22T17:02:10-05:00",

 "recipient": {

 "id": "8k53ghlggkl2jl0a3",

 "name": "Bot"

 },

 "conversation": {

 "id": "mf24ln43lde3"

 },

 "serviceUrl": "http://localhost:58462"

}

{

 "type": "conversationUpdate",

 "membersAdded": [

 {

 "id": "8k53ghlggkl2jl0a3",

 "name": "Bot"

 }

],

 "id": "jfcdbhek0m4m",

 "channelId": "emulator",

 "timestamp": "2018-02-22T22:02:10.502Z",

 "localTimestamp": "2018-02-22T17:02:10-05:00",

 "recipient": {

 "id": "8k53ghlggkl2jl0a3",

 "name": "Bot"

 },

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

179

 "conversation": {

 "id": "mf24ln43lde3"

 },

 "from": {

 "id": "default-user",

 "name": "User"

 },

 "serviceUrl": "http://localhost:58462"

}

Now, let’s send a message to the bot with the text “echo!” and look at

the Emulator logs (Figure 5-6). Note that if we do not set up an explicit bot

storage implementation, we might get a warning like this: “Warning: The Bot

Framework State API is not recommended for production environments,

and may be deprecated in a future release.” We will dive into this in the next

chapter. Suffice it to say, it is strongly suggested that we use do not use the

default bot storage. We can use the following code to replace it for now:

const inMemoryStorage = new builder.MemoryBotStorage();

bot.set('storage', inMemoryStorage);

Figure 5-6. It’s alive!

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

180

Aha! Our bot is alive. The emulator now contains a few more things.

An incoming POST of type message with the text “echo!” and an outgoing

POST of type message with the text “echo: echo!” and a POST with Debug

Event data. Clicking the POST link will, again, display the JSON received

or sent in this request. Note that both payloads are different, though

underneath they utilize the same interface called IMessage. We will dig

deeper into this in Chapter 6. Here is a list of some of the data that is part of

either an incoming or outgoing message:

• Sender info (id/name): The channel-specific identifier

and username for the sender. If the message is from

the user to bot, this is the user. In the reverse direction,

the sender is the bot. The Bot Builder SDK takes care of

populating this data. In our JSON, this is the from field.

• Recipient info (id/name): The inverse of the sender info.

This is the recipient field.

• Timestamp: The date and time when the message

was sent. Typically, timestamp will be in UTC, and

localTimestamp will be in the local time zone, though

confusingly enough, the bot response’s localTimestamp

is a UTC timestamp.

• ID: Unique activity identifier. This typically maps to the

channel-specific message ID. The IDs are assigned by

the channel. In the Emulator, the incoming message

will have an ID assigned. The outgoing message will not.

• ReplyToId: The identifier of the activity for which the

current message is a response. This is used to thread

conversations in messaging clients.

• Conversation: The conversation identifier on the

platform.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

181

• Type: The type of the activity. Possible values are

message, conversationUpdate, contactRelationUpdate,

typing, ping, deleteUserData, endOfConversation,

event, and invoke.

• Text: The message’s text.

• TextFormat: Text field format. Possible values are plain,

markdown, and xml.

• Attachments: This is the structure through which the

Bot Framework sends media attachments such as

video, images, audio, or other types like hero cards. We

can utilize this field for any kind of custom attachment

type as well.

• Text Local: The user’s language.

• ChannelData: Channel-specific data. For incoming

messages, this may include the raw native message

from a channel, for instance the native Facebook

Messenger SendAPI. For outgoing messages, this would

be a raw native message we want to pass through to

the channel. This is typically used when the Microsoft

channel connectors don’t implement a specific type

of message against a channel. We will explore some

examples in Chapters 8 and 9.

• ChannelId: The messaging platform channel identifier.

• ServiceUrl: The endpoint to which the bot sends

messages.

• Entities: A collection of data objects passed between the

user and bot.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

182

Let’s examine the messages exchanged in more detail. The incoming

message from the emulator looks as follows:

{

 "type": "message",

 "text": "echo!",

 "from": {

 "id": "default-user",

 "name": "User"

 },

 "locale": "en-US",

 "textFormat": "plain",

 "timestamp": "2018-02-22T22:03:40.871Z",

 "channelData": {

 "clientActivityId": "1519336929414.7950057585459784.0"

 },

 "entities": [

 {

 "type": "ClientCapabilities",

 "requiresBotState": true,

 "supportsTts": true,

 "supportsListening": true

 }

],

 "id": "50769feaaj9j",

 "channelId": "emulator",

 "localTimestamp": "2018-02-22T17:03:40-05:00",

 "recipient": {

 "id": "8k53ghlggkl2jl0a3",

 "name": "Bot"

 },

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

183

 "conversation": {

 "id": "mf24ln43lde3"

 },

 "serviceUrl": "http://localhost:58462"

}

There should be no surprises here. The response looks similar though

a lot less verbose. This is typical. The incoming message will be populated

by the channel connector with as much supporting data as possible. The

response does not need to have all of this. One item of note is the fact that ID

is not populated; the channel connector will typically take care of this for us.

{

 "type": "message",

 "text": "echo: echo!",

 "locale": "en-US",

 "localTimestamp": "2018-02-22T22:03:41.136Z",

 "from": {

 "id": "8k53ghlggkl2jl0a3",

 "name": "Bot"

 },

 "recipient": {

 "id": "default-user",

 "name": "User"

 },

 "inputHint": "acceptingInput",

 "id": null,

 "replyToId": "50769feaaj9j"

}

We also note the existence of the inputHint field, which is mostly

relevant to a voice assistant system and is an indication to the messaging

platform on the suggested state for the microphone. For example,

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

184

acceptingInput would indicate the user may respond to a bot message, and

expectingInput would indicate that a user response is expected right now.

Lastly, the Debug Event provides data on how the bot executed the

request.

{

 "type": "event",

 "name": "debug",

 "value": [

 {

 "type": "log",

 "timestamp": 1519337020880,

 "level": "info",

 "msg": "UniversalBot(\"*\") routing \"echo!\" from

\"emulator\"",

 "args": []

 },

 {

 "type": "log",

 "timestamp": 1519337020881,

 "level": "info",

 "msg": "Session.beginDialog(/)",

 "args": []

 },

 {

 "type": "log",

 "timestamp": 1519337020882,

 "level": "info",

 "msg": "waterfall() step 1 of 1",

 "args": []

 },

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

185

 {

 "type": "log",

 "timestamp": 1519337020882,

 "level": "info",

 "msg": "Session.send()",

 "args": []

 },

 {

 "type": "log",

 "timestamp": 1519337021136,

 "level": "info",

 "msg": "Session.sendBatch() sending 1 message(s)",

 "args": []

 }

],

 "relatesTo": {

 "id": "50769feaaj9j",

 "channelId": "emulator",

 "user": {

 "id": "default-user",

 "name": "User"

 },

 "conversation": {

 "id": "mf24ln43lde3"

 },

 "bot": {

 "id": "8k53ghlggkl2jl0a3",

 "name": "Bot"

 },

 "serviceUrl": "http://localhost:58462"

 },

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

186

 "text": "Debug Event",

 "localTimestamp": "2018-02-22T22:03:41.157Z",

 "from": {

 "id": "8k53ghlggkl2jl0a3",

 "name": "Bot"

 },

 "recipient": {

 "id": "default-user",

 "name": "User"

 },

 "id": null,

 "replyToId": "50769feaaj9j"

}

Note, these are the same values as are printed in the bot console

output. Again, if we did not override the default bot state, we would see

more data here related to the deprecated code. The console output is

shown here:

UniversalBot("*") routing "echo!" from "emulator"

Session.beginDialog(/)

/ - waterfall() step 1 of 1

/ - Session.send()

/ - Session.sendBatch() sending 1 message(s)

This output tracks how the user’s request is executed and how it traverses

the conversation dialogs. We will address this further in this chapter.

If we were to send more messages using the emulator, we would see

the same type of output since this bot is very simple. As we gain more

experience with features such as cards, we will benefit from using the

Emulator and examining the JSON messages further. The protocol is a

huge part of the Bot Framework’s power: we should be as familiar with it as

we can.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

187

EXERCISE 5-1

Connecting to the Emulator

retrieve the echo bot code and run it locally using npm install and npm start.
download the emulator and connect it to the bot.

 1. examine the request/response messages carefully.

 2. observe the behavior between the emulator and the bot.

 3. explore the emulator. use the settings menu to create new

conversations or send system activity messages to the bot.

how does it react? Can you write some code to handle any of

these messages?

at the end of this exercise you should be familiar with running an

unauthenticated local bot and connecting to it via the emulator.

 Bot Framework End-to-End Setup
We now have a bot. How do we connect it to all these different channels?

The Bot Framework makes this simple. Our goal here will be to register our

bot and its endpoint with the Bot Framework through the Azure Portal and

subscribe the bot to the Facebook Messenger channel.

There are a few things we will have to do. First, we have to create

an Azure Bot service registration on the Azure Portal. We may need to

create our first Azure Subscription. Part of this setup is using ngrok to

allow the bot to be accessible from the Internet, so we should make sure

that we have ngrok installed from here: https://ngrok.com/. Lastly,

we will deploy the bot to Facebook Messenger. This means we need to

create a Facebook page, a Facebook app, and Messenger and Webhook

integrations, and connect all that back to the Bot Framework. There are

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://ngrok.com/

188

quite a few steps, but once we become familiar with Azure and Facebook

terminology, it is not that cumbersome. We will first quickly walk through

the directions and then go back and explain what was done at each step.

 Step 1: Connecting to Azure
Our first step is to log into the Azure Portal. If you have an Azure account,

excellent. Skip ahead to step 2 if you have an Azure subscription already. If

you do not, you are able to create a free developer account with a $200 30-

day credit by going to https://azure.microsoft.com/en-us/free/.

Click “Start free.” You will need to log in using a Microsoft or work

account. If you have neither, you can easily create a Microsoft account at

https://account.microsoft.com/account. Once you’re authenticated,

you will see a page like in Figure 5-7. This page will collect your personal

information and verify your identity via a text message and a valid credit

card. Don’t be alarmed. The credit card is necessary to verify your identity.

Chances are, you will not come even close to using the $200 credit, and if

you do, you will not be charged; you will just not be able to use the services

further. Much of what we use Azure for in this book can be accommodated

via a free tier of the various Azure services.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://azure.microsoft.com/en-us/free/
https://account.microsoft.com/account

189

Figure 5-7. Azure sign-up page

Once the process is done, you will be able to go into the Azure Portal

at https://portal.azure.com. It looks something like Figure 5-8. On

the top right, you will see the email address you signed up with and your

directory name. For example, if my email were szymon.rozga@aol.com (it’s

not), then my directory name would be SZYMONROZGAAOL. If you were

added into other directories, that menu would be a drop-down for you to

select to which directory you are navigating.

An Azure account contains subscriptions. A subscription is a billing

entity. If we navigate to https://portal.azure.com/#blade/Microsoft_

Azure_Billing/SubscriptionsBlade, or the Subscriptions service in

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://portal.azure.com/
https://portal.azure.com/#blade/Microsoft_Azure_Billing/SubscriptionsBlade
https://portal.azure.com/#blade/Microsoft_Azure_Billing/SubscriptionsBlade

190

the portal, and we had just created the $200 trial account, we should see

one subscription with the name Free Trial. Each Azure subscription can

also contain one or more resource groups. A resource group is a logical

container for resources, which are individual Azure services. All costs

associated with resources in each resource group are charged against

the payment method associated with the containing subscription. With

the $200 trial account, services are automatically shut down when the

combined costs reach the spending limit. If desired, the free account can

be converted to a paid account that will accrue additional charges to your

credit card (or alternative payment options).

Figure 5-8. Empty Azure Portal

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

191

 Step 2: Creating the Bot Registration
In the Azure Portal, click the “Create a resource” button in the top-left

pane. In the Search the Marketplace text field, enter azure bot. You will get

many results, but we are interested in the top three (Figure 5-9).

These are the three options:

• Web App Bot: A bot registration pointing to a web app

deployed on Azure

• Functions Bot: A bot registration pointing to a bot

running as an Azure function, one of Azure’s serverless

computing options

• Bot Channels Registration: A bot registration with no

cloud-based back end

For our purposes, we will create a Bot Channels Registration bot, as

we will keep on running the bot locally on our laptop. Click Bot Channels

Registration and then click Create. As per Figure 5-10, enter a bot name,

the name for the resource group that will contain this registration, and the

resource location, namely, the Azure region that will host the registration.

For Pricing Tier, select F0; this is the free option and sufficient for our

needs. Leave the messaging endpoint empty for now and leave Application

Insights selected to On. Application Insights is one of Microsoft’s cloud

telemetry and logging services. The Bot Framework uses this to store data

Figure 5-9. Azure bot resources

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

192

and analytics on your bot registration usage. By default, this will create the
basic and free tier of Application Insights. Select as close a location to the

Bot Channels Registration location as possible. Click Create when ready.

There is a progress indicator across the top of the portal, and we will
receive a notification when the registration is ready. We can also navigate
into the resource group by using the Resource Groups button on the left

pane (Figure 5-11).

Figure 5-10. Creating a new bot channel registration

Figure 5-11. The resources in our resource group

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

193

Navigate into the bot channel registration and then navigate to the

Settings blade (Figure 5-12). Note that Azure automatically populated

the Application Insights identifiers and keys. These will be used to track

analytics data for our bot. We will see one of the resulting analytics

dashboards in Chapter 13.

Figure 5-12. The Bot Channels Registration Settings blade

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

194

We will also be shown the Microsoft App ID. Take note of this value.

Click the Manage link directly above it to navigate to the Microsoft

Application Portal. This may ask for our login information once again

because it is a separate site from Azure. Once we locate the newly created

bot in the list of applications, click Generate New Password (in the

Application Secrets section) and save the value; you will see it once only!

Recall that we were seeing warnings that our bot was not secure in the bot

console output? We will now fix that.

 Step 3: Securing Our Bot
In the directory containing the echo bot code, create a file called .env and

provide the Microsoft App ID and the password:

Bot Framework Credentials

MICROSOFT_APP_ID={ID HERE}

MICROSOFT_APP_PASSWORD={PASSWORD HERE}

Shut down and restart the bot (npm start).

If we try to connect from the emulator now, the emulator will show the

following log messages:

[08:00:16] -> POST 401 [conversationUpdate]

[08:00:16] Error: The bot's MSA appId or password is incorrect.

[08:00:16] Edit your bot's MSA info

The bot console output will contain the following message:

ERROR: ChatConnector: receive - no security token sent.

It seems a bit more secure now, right? We must enter the same app

ID and password on the emulator side. Click the “Edit our bot’s MSA

(Microsoft Account) info” link, and enter the data into the emulator. If we

try to connect using the emulator now, it will work fine. Send a message to

the bot to confirm before continuing.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

195

 Step 4: Setting Up Remote Access
We could deploy the bot to Azure, connect the Facebook connector to that

endpoint, and call it a day. But how do we develop or debug Facebook-

specific features? The Bot Framework way is to run a local instance of the

bot and connect a test Facebook page to the local bot for development.

To achieve this, run ngrok from the command line.

ngrok http 3978

We will be presented with the data in Figure 5-13. By default, ngrok

assigns a random subdomain (paid ngrok versions allow you to specify a

domain name). In this case, my URL is https://cc6c5d5f.ngrok.io. Note

that the free version of ngrok provides a random subdomain each time

we run it. We can get around this by either upgrading to a paid version or

simply leaving the ngrok session up for as long as possible.

Let’s see if this works. In the emulator, enter the ngrok URL followed by

/api/messages. For instance, for the previous URL, the correct messaging

endpoint is https://cc6c5d5f.ngrok.io/api/messages. Add the app ID

and app password information into the emulator. Once you click Connect,

the emulator should successfully connect to and chat with the bot.

Figure 5-13. Ngrok forwarding HTTP/HTTPS requests to our local bot

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://cc6c5d5f.ngrok.io/
https://cc6c5d5f.ngrok.io/api/messages

196

Now, assign the same messaging endpoint URL in the Bot Channels

Registration Settings blade, Figure 5-12. Next, navigate to the Test with Web

Chat blade and try to send a message to the bot. It should work. You’ve

connected your first channel to your bot (Figure 5-14)!

Figure 5-14. It works! Our bot is connected to our first channel!

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

197

 Step 5: Connecting to Facebook Messenger
Pretty cool, right? The Bot Framework is almost completely integrated

with our bot. We will now proceed to integrate our bot with Facebook

Messenger. The Channels blade on the Bot Channels Registration gives us

an ability to connect to the Microsoft-supported channels (Figure 5-15).

Figure 5-15. Channel dashboard

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

198

Click the Facebook Messenger button to go into the Messenger

configuration screen (Figure 5-16). We are going to need to get four pieces

of data from Facebook: page ID, app ID, app secret, and page access token.

Lastly, we should take note of the callback URL and verify token. We will

need these to set up connectivity between Facebook and the Bot Framework.

Figure 5-16. Facebook Messenger Bot Framework connector settings

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

199

Let’s now set up the necessary Facebook assets. We must have a

Facebook account to complete the following tasks. Navigate to Facebook.

com and use the top-right drop-down menu to create a new page

(Figure 5-17). Facebook will ask for the type of page. For the purposes

of this example, we can select the Brand/Product type and App Page

subcategory.

Figure 5-17. Creating a new Facebook page

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

200

I created a page called Szymon Test Page. We can find the page ID by

clicking to the About link on the left navigation pane (Figure 5-18). On

the very bottom we will find the page ID. We need to copy that value into

the Bot Framework Facebook Messenger channel configuration form

(Figure 5-16).

Figure 5-18. Facebook Page About page, including the page ID

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

201

Next, in a new browser tab or window, navigate to https://developers.

facebook.com. If you have not yet done so, register for a developer account.

Create a new app (Figure 5-19). Give it any name you like.

Once you do, navigate to the Settings ➤ Basic page via the left

sidebar menu and copy the Facebook app ID and app secret into the Bot

Framework form (Figure 5-20).

Next, navigate to the Dashboard (from the link on the left sidebar) and

set up the Messenger product. Scroll down the page until you get to the

Token Generation section. Generate a page access token by selecting the

page in the Token Generation section (Figure 5-21). Copy the token into

the Bot Framework form within the Azure Portal.

Figure 5-19. Creating a new Facebook app

Figure 5-20. App ID and app secret

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://developers.facebook.com/
https://developers.facebook.com/

202

Next, scroll to the Webhooks section (just below the Token Generation

section of the Facebook App Dashboard) and click Setup Webhooks. You

will see a pop-up that asks you for a callback URL and the verify token.

Copy and paste both of those from the Configure Facebook Messenger

form in the Azure Portal.

In the Subscription Fields section, select the following fields:

• messages

• message_deliveries

• message_reads

• messaging_postbacks

• messaging_optins

• message_echoes

Click Verify and Save. Lastly, select the page you would like your bot

to subscribe to from the drop-down and click Subscribe. Your setup page

should look as shown in Figure 5-22.

Figure 5-21. Generating the page access token

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

203

Make sure to save the Bot Framework configuration. That’s it! You can

find the page in your Messenger contacts. You can send it a message, and

you should get it echoed back (Figure 5-23).

Figure 5-22. Subscribing to messages on our test page

Figure 5-23. Echo bot working in Messenger

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

204

 Step 6: Deploying to Azure
It would not be a complete tutorial if we did not deploy the code into the

cloud. We will create a web app and deploy our Node.js app using Kudu

ZipDeploy. Lastly, we will point the bot channel registration to the web app.

Go into your Azure resource group that we created in step 2 and create

a new resource. Search for web app. Select Web App and not Web App Bot.

The Web App Bot is a combination of a bot channel registration and an

app service. We have no need for this combination since we have already

created a bot channel registration.

When creating the web app, we will need to give it a name. Also ensure the

correct resource group is selected (Figure 5-24). Azure will add it to our existing

resource group and create a new app service plan for us. An app service plan

is a container for web apps and similar compute resources; it defines the

hardware on which our apps run as well as the costs. In Figure 5-24, we create

a new app service plan and choose the Free pricing tier. Free is good.

Figure 5-24. Creating a new app service and app service plan

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

205

Before we deploy our echo bot, we need to add two things. First, we

add a response to the base URL endpoint to validate our bot was deployed.

Add this code to the end of the app.js file:

server.get('/', (req, res, next) => {

 res.send(200, { "success": true });

 next();

});

Second, for a Windows-based Azure setup, we also need to include a

custom web.config file to tell Internet Information Services (IIS)2 how to

run a Node app.3

<?xml version="1.0" encoding="utf-8"?

<!--

 This configuration file is required if iisnode is used to

run node processes behind

 IIS or IIS Express. For more information, visit:

 https://github.com/tjanczuk/iisnode/blob/master/src/

samples/configuration/web.config

-->

<configuration>

 <system.webServer>

 <!-- Visit http://blogs.msdn.com/b/windowsazure/

archive/2013/11/14/introduction-to-websockets-on-windows-

azure-web-sites.aspx for more information on WebSocket

support -->

2 Internet Information Services (IIS) is Microsoft’s rich and extensible web server. It
runs all Azure Windows web apps. See https://www.iis.net/.

3 Using a custom web.config for Node apps: https://github.com/projectkudu/
kudu/wiki/Using-a-custom-web.config-for-Node-apps

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://www.iis.net/
https://github.com/projectkudu/kudu/wiki/Using-a-custom-web.config-for-Node-apps
https://github.com/projectkudu/kudu/wiki/Using-a-custom-web.config-for-Node-apps

206

 <webSocket enabled="false" />

 <handlers>

 <!-- Indicates that the server.js file is a node.js site

to be handled by the iisnode module -->

 <add name="iisnode" path="app.js" verb="*"

modules="iisnode"/>

 </handlers>

 <rewrite>

 <rules>

 <!-- Do not interfere with requests for node-inspector

debugging -->

 <rule name="NodeInspector" patternSyntax="ECMAScript"

stopProcessing="true">

 <match url="^app.js\/debug[\/]?" />

 </rule>

 <!-- First we consider whether the incoming URL matches

a physical file in the /public folder -->

 <rule name="StaticContent">

 <action type="Rewrite" url="public{REQUEST_URI}"/>

 </rule>

 <!-- All other URLs are mapped to the node.js site

entry point -->

 <rule name="DynamicContent">

 <conditions>

 <add input="{REQUEST_FILENAME}" matchType="IsFile"

negate="True"/>

 </conditions>

 <action type="Rewrite" url="app.js"/>

 </rule>

 </rules>

 </rewrite>

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

207

 <!-- 'bin' directory has no special meaning in node.js and

apps can be placed in it -->

 <security>

 <requestFiltering>

 <hiddenSegments>

 <remove segment="bin"/>

 </hiddenSegments>

 </requestFiltering>

 </security>

 <!-- Make sure error responses are left untouched -->

 <httpErrors existingResponse="PassThrough" />

 <!--

 You can control how Node is hosted within IIS using the

following options:

 * watchedFiles: semi-colon separated list of files that

will be watched for changes to restart the server

 * node_env: will be propagated to node as NODE_ENV

environment variable

 * debuggingEnabled - controls whether the built-in

debugger is enabled

 See https://github.com/tjanczuk/iisnode/blob/master/

src/samples/configuration/web.config for a full list of

options

 -->

 <!--<iisnode watchedFiles="web.config;*.js"/>-->

 </system.webServer>

</configuration>

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

208

Next, we visit our bot web app via the browser. In my case, I navigate to

https://srozga-test-bot-23.azurewebsites.net. There will be a default

“Your App Service app is up and running” page. Before we deploy, we

must zip the echo bot for transfer to Azure. We zip all the application files,

including the node-modules directory. We can use the following commands:

Bash

zip -r echo-bot.zip .

PowerShell

Compress-Archive -Path * -DestinationPath echo-bot.zip

Now that we have a zip file, we have two options as to how we deploy.

In option 1, we use a command line to deploy the bot by using the Kudu4

endpoint at https://{WEB_APP_NAME}.scm.azurewebsites.net. To enable

this, we must first visit the Deployment Credentials blade in the app service

(Figure 5-25) to set up a deployment username and password combination.

Figure 5-25. Setting up deployment credentials

4 Kudu is the engine behind Azure web site deployment. It can also run outside of
Azure. See https://github.com/projectkudu/kudu/wiki.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://srozga-test-bot-23.azurewebsites.net/
https://github.com/projectkudu/kudu/wiki

209

Once done, we are ready to roll. Running the following curl command

will kick off the deployment process:

curl -v POST -u srozga321 --data-binary @echo-bot.zip https://

srozga-test-bot-23.scm.azurewebsites.net/api/zipdeploy

Once you run this, curl will ask for the password that was provided in

Figure 5-25. It will upload the zip and set up the app on the app service.

Once done, make a request to your app’s base URL, and you should see a

200 response with success set to true.

$ curl -X GET https://srozga-test-bot-23.azurewebsites.net

{"success":true}

The alternative way to deploy is to use the Kudu interface on the

SCM website: https://srozga-test-bot-23.scm.azurewebsites.net/

ZipDeploy. You can simply drag and drop your zip file on the file listing in

Figure 5-26.

Figure 5-26. Kudu ZipDeploy user interface

There’s one more step. Go into the Settings blade in the Bot Channels

Registration entry and set the messages endpoint setting to your new app

service (Figure 5-27). Make sure to click the Save button.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://srozga-test-bot-23.scm.azurewebsites.net/ZipDeploy
https://srozga-test-bot-23.scm.azurewebsites.net/ZipDeploy

210

Save and test on Web Chat and Messenger to your heart’s content.

Congratulations! We accomplished a lot! We now have a bot running on

Azure using Node.js and the Microsoft Bot Framework talking to Web Chat

and Facebook Messenger. Up next, we will dive into a description of what

we just accomplished.

 What Did We Just Do?
We went through quite a lot in the previous section. There are many

moving parts in terms of registering and creating a bot, establishing

connectivity to Facebook and deploying to Azure. Many of these action

only need to be performed once, but as a bot developer you should have

a solid understanding of the different systems, how they connect to each

other and how they can be set up.

 Microsoft Azure
Microsoft Azure is Microsoft’s cloud platform. There are many types of

resources ranging from infrastructure-as-a-service to platform-as-a- service

and even software-as-a-service. We can provision new virtual machines

as easily as creating new application services. We can create, modify, and

edit resources using Azure PowerShell, Azure CLI (or the Cloud Shell), the

Azure Portal (as we did in the example), or the Azure Resource Manager.

The details of these are outside the scope of this book, and we refer you to

the Microsoft online documentation for more information.

Figure 5-27. Final update to the messaging endpoint

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

211

 Bot Channels Registration Entry
When we create the bot channels registration, we are creating a global

registration that can be used by all of the channel connectors to identify,

authenticate, and communicate with our bot. Each connector, whether

it communicates to Messenger, Slack, Web Chat, or Skype, knows about

our bot, its Microsoft app ID/password, the messages endpoint, and other

settings (Figure 5-28). The bot channels registration is the starting point for

Bot Framework bots.

We skipped the other two types of bot resources in Azure: Web App

Bot and Functions Bot. A Web App Bot is exactly what we just set up;

we provision a server to run bot app. Azure Functions is one of Azure’s

approaches to serverless computing. It allows us to host different code, or

functions, in a cloud environment to be run on demand. We pay only for

the resources we use. Azure scales the infrastructure dynamically based

on load. Functions is a perfectly valid approach to bot development. For

more complex scenarios, we need to be careful about architecting the

function code for scale-out and multiserver deployment. For the purposes

of this book, we do not utilize Functions Bots. However, we suggest you

experiment with the topic as serverless computing is becoming more and

more prominent.

Figure 5-28. Conceptual Bot Framework architecture

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

212

 Authentication
How do we ensure that only authorized channel connectors or

applications can communicate with our bot? That’s where the Microsoft

app ID and app password come in. When a connector sends a message to

our bot, it will include a token in the HTTP authorization header. Our bot

must validate this token. When our bot sends outgoing messages to the

connector, our bot must retrieve a valid token from Azure or the connector

will reject the message.

The Bot Builder SDK provides all the code so that this process

is transparent to the developer. The Bot Framework documentation

describes the steps in both flows in detail: https://docs.microsoft.

com/en-us/bot-framework/rest-api/bot-framework-rest-connector-

authentication.

 Connectivity and Ngrok
Although ngrok is not part of the Bot Framework, it is an indispensable

part of our toolset. Ngrok is a reverse proxy that tunnels all requests

through an externally accessible subdomain on ngrok.io to a port on our

computer. The free version creates a new random subdomain each time

we run it; the pro version allows us to have a static subdomain. Ngrok also

exposes an HTTPS endpoint, which makes local development setup a

breeze.

Typically, we will not typically experience any problems with Ngrok. If

our ngrok is correctly configured, any issues could be narrowed down to

either an external service or our bot.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://docs.microsoft.com/en-us/bot-framework/rest-api/bot-framework-rest-connector-authentication
https://docs.microsoft.com/en-us/bot-framework/rest-api/bot-framework-rest-connector-authentication
https://docs.microsoft.com/en-us/bot-framework/rest-api/bot-framework-rest-connector-authentication

213

 Deploying to Facebook Messenger
Every platform is different, but we learned a bit about the intricacies

of bots on Facebook. First, Facebook users interact with brands and

companies using Facebook Pages. User requests on a page are typically

responded to by a human who has enough access to the page to view

and respond via the page’s inbox. There are many enterprise live chat

systems that connect to Facebook Pages and allow a team of customer

service representatives to respond to users’ queries in real time. With the

Bot Framework’s Facebook Messenger connector, we can now have a

bot respond to those queries. We will discuss the idea of a bot handing a

conversation over to an agent, known as human handover, in Chapter 13.

A bot on Facebook is a Facebook app that subscribes to messages

coming into a Facebook page via web hooks. We registered the Bot

Framework web hook endpoint that is called by Facebook when a message

comes into our Facebook page. The bot channels registration page also

provided the verify token that Facebook uses to make sure it is connecting

to the right web hook. Azure’s Bot Connectors need to know the Facebook

app ID and app secret to verify the signature of each incoming message.

We need the page access token to send a message back to a user in a chat

with a page. We can find more details about Facebook’s SendAPI and

Messenger Webhooks in Facebook’s documentation pages: https://

developers.facebook.com/docs/messenger-platform/reference/

send-api/ and https://developers.facebook.com/docs/messenger-

platform/webhook/.

Once all these things are in place, messages easily flow between

Facebook and our bot. Although Facebook has some unique concepts like

the page access tokens and specific names for webhook types, the overall

idea behind what we did is similar to other channels. Generally, we will

be creating an app on the platform and establishing a tie between that

app and the Bot Framework endpoints. It is the Bot Framework’s role to

forward the messages to us.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://developers.facebook.com/docs/messenger-platform/reference/send-api/
https://developers.facebook.com/docs/messenger-platform/reference/send-api/
https://developers.facebook.com/docs/messenger-platform/reference/send-api/
https://developers.facebook.com/docs/messenger-platform/webhook/
https://developers.facebook.com/docs/messenger-platform/webhook/

214

 Deploying to Azure
There are many approaches to deploying code to Azure. Kudu, the tool we

used, allows us to deploy via a REST API. Kudu can also be configured to

deploy from a git repo or other locations. There are also other tools that

make deployment easier. If we were to write a bot using Microsoft’s Visual

Studio or Visual Studio Code, there are extensions that allow us to easily

deploy our code into Azure. Again, this is a topic beyond the scope of this

book. For our purposes of running a Node.js bot on a Linux app service,

using the ZipDeploy REST API is sufficient.

Because we can develop our bot locally by use of the emulator and

test a local bot on various channels by running ngrok, we do not deploy to

Azure anymore throughout the rest of this book. If necessary, take down

the web app instance so the subscription is not charged. Make sure to

delete the app service plan; simply stopping the web app will not work.

 Key Bot Builder SDK Concepts
It feels good to have worked through the details of getting a bot running

via the emulator and Facebook Messenger, but the bot doesn’t do anything

useful! In this section, we will delve into the Bot Builder SDK for Node.

js library. This is the focus for the rest of this chapter and the following

chapter. For now, we will go over four foundational concepts of the Bot

Builder SDK. Afterward, we show the skeleton code for a calendar bot

conversation, based on the NLU work on LUIS from Chapter 3. This

bot will know how to talk to users about many calendar tasks but will

not integrate with any APIs quite yet. This is a common approach to

demonstrate the conversation flow and how it may work without going

through the entire back-end integration effort. Let’s dive in.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

215

 Sessions and Messages
Session is an object that represents the current conversation and the

operations that can be invoked on it. At the most basic level, we can use

the Session object to send messages.

const bot = new builder.UniversalBot(connector, [

 session => {

 // for every message, send back the text prepended by

echo:

 session.send('echo: ' + session.message.text);

 }

]);

Messages can include images, videos, files, and custom attachment

types. Figure 5-29 shows the resulting message.

session => {

 session.send({

 text: 'hello',

 attachments: [{

 contentType: 'image/png',

 contentUrl: 'https://upload.wikimedia.org/

wikipedia/commons/b/ba/New_York-Style_Pizza.png',

 name: 'image'

 }]

 });

}

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

216

Figure 5-29. Sending an image

We also can send a hero card. Hero cards are stand-alone containers

that include an image, title, subtitle, and text plus an optional list of

buttons. Figure 5-30 shows the resulting exchange.

let msg = new builder.Message(session);

msg.text = 'Pizzas!';

msg.attachmentLayout(builder.AttachmentLayout.carousel);

msg.attachments([

 new builder.HeroCard(session)

 .title('New York Style Pizza')

 .subtitle('the best')

 .text("Really, the best pizza in the world.")

 .images([builder.CardImage.create(session, 'https://

upload.wikimedia.org/wikipedia/commons/b/ba/New_York-

Style_Pizza.png')])

 .buttons([

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

217

Figure 5-30. A sample pizza carousel

 builder.CardAction.imBack(session, "I love New York

Style Pizza!", "LOVE THIS")

]),

 new builder.HeroCard(session)

 .title('Chicago Style Pizza')

 .subtitle('not bad')

 .text("some people don't believe this is pizza.")

 .images([builder.CardImage.create(session, 'https://

upload.wikimedia.org/wikipedia/commons/3/33/

Ginoseastdeepdish.jpg')])

 .buttons([

 builder.CardAction.imBack(session, "I love Chicago

Style Pizza!", "LOVE THIS")

]),

]);

session.send(msg);

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

218

This example introduces some new concepts. The hero card is just one

type of card that the Bot Builder SDK supports. The following are other

supported cards:

• Adaptive card: A flexible card with a combination

of items including containers, buttons, input fields,

speech, text, and images; not supported by all

channels. We dive into adaptive cards in Chapter 11.

• Animation card: A card that supports animated GIFs or

short videos.

• Audio card: A card to play audio.

• Thumbnail card: Similar to a hero card but with a

smaller image size.

• Receipt card: Renders a receipt including common line

items such as description, tax, totals, etc.

• Sign in card: A card to initiate a sign-in flow.

• Video card: A card to play videos.

Another interesting point is the attachment layout. By default,

attachments are sent in a vertical list. We chose to use the carousel, a

scrollable horizontal list, to provide a better experience for the user.

The buttons in this code use the IM Back action. This sends the

button’s value field (“I love New York Style Pizza!” or “I love Chicago Style

Pizza!”) as a text message to the bot when the LOVE THIS buttons are

clicked. Other action types are described below. Each messaging platform

has different levels of support for these types.

• postBack: Same as IM back, but the user doesn’t see the

message.

• openUrl: Opens a URL in a browser. This can be the

default browser on the desktop or an in-app web view.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

219

• call: Calls a phone number.

• downloadFile: Downloads a file to the user’s device.

• playAudio: Plays an audio file.

• playVideo: Plays a video file.

• showImage: Shows an image in an image viewer.

We can also use the Session object to send speech consent in channels

that support both written and spoken responses. We can either build

a message object like we did in the carousel hero card sample or use a

convenience method on the session. The input hint in the following code

snippet tells the user interface whether the bot is expecting a response,

accepting input, or not accepting input at all. For developers who have a

background in voice assistant skill development, like for Amazon’s Alexa,

this should be a familiar concept.

const bot = new builder.UniversalBot(connector, [

 session => {

 session.say('this is just text that the user will

see', 'hello', { inputHint: builder.InputHint.

acceptingInput});

 }

]);

Session is also the object that helps us access relevant user

conversation data. For example, we can store the last message the user

sent to the bot inside the session’s privateConversationData and utilize it

later in the conversation as shown in the following sample (Figure 5-31):

session => {

 var lastMsg = session.privateConversationData.last;

 session.privateConversationData.last = session.message.text;

 if(lastMsg) {

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

220

 session.send(lastMsg);

 } else {

 session.send('i am memorizing what you are saying');

 }

}

The Bot Builder SDK makes it easy to store three types of data in the

session object.

• privateConversationData: Private user data scoped to a

conversation

• conversationData: Data for a conversation, shared

between all users who are part of the conversation

• userData: Data for a user across all conversations on

one channel

Figure 5-31. Storing session data between messages

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

221

By default, these objects are all stored in memory, but we can easily

provide an alternate storage service implementation. We will see an

example in Chapter 6.

 Waterfalls and Prompts
A waterfall is a sequence of functions that process incoming messages

on a bot. The Universal Bot constructor takes an array of functions as a

parameter. This is the waterfall. The Bot Builder SDK calls each function

in succession, passing the result of the previous step into the current step.

The most common use of this approach is to query the user for more

information using a prompt. In the following code, we use a text prompt,

but the Bot Builder SDK supports inputs such as numbers, dates, or

multiple choice (Figure 5-32).

const bot = new builder.UniversalBot(connector, [

 session => {

 session.send('echo 1: ' + session.message.text);

 builder.Prompts.text(session, 'enter for another echo!');

 },

 (session, results) => {

 session.send('echo 2: ' + results.response);

 }

]);

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

222

Figure 5-32. Basic waterfall sample

We can also advance the waterfall manually, using the next function, in

which case the bot would not wait for additional input (Figure 5-33). This

is useful in cases where the first step may conditionally ask for additional

input. We will use this in our calendar bot code.

const bot = new builder.UniversalBot(connector, [

 (session, args, next) => {

 session.send('echo 1: ' + session.message.text);

 next({response: 'again!'});

 },

 (session, results, next) => {

 session.send('echo 2: ' + results.response);

 }

]);

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

223

The following is an even more complex data-gathering waterfall:

const bot = new builder.UniversalBot(connector, [

 session => {

 builder.Prompts.choice(session, "What do you want to

do?", "add appointment|delete appointment", builder.

ListStyle.button);

 },

 (session, results) => {

 session.privateConversationData.action = { type:

results.response.index };

 builder.Prompts.time(session, "when?");

 },

 (session, results, next) => {

 session.privateConversationData.action.datetime =

results.response.resolution.start;

 if (session.privateConversationData.action.type == 0) {

 builder.Prompts.text(session, "where?");

 } else {

 next({ response: null });

 }

 },

Figure 5-33. Programmatic waterfall progression

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

224

 (session, results, next) => {

 session.privateConversationData.action.location =

results.response;

 let summary = null;

 const dt = moment(session.privateConversationData.

action.datetime).format('M/D/YYYY h:mm:ss a');

 if (session.privateConversationData.action.type == 0) {

 summary = 'Add Appointment ' + dt + ' at location '

+ session.privateConversationData.action.location;

 } else {

 summary = 'Delete appointment ' + dt;

 }

 const action = session.privateConversationData.action;

 // do something with action

 session.endConversation(summary);

 }

]);

In this sample, we use a couple more types of prompts: Choice and

Time. The Choice prompt asks the user to select an option. The prompt

can render the choice using inline text (relevant in SMS scenarios for

example) or buttons. The Time prompt uses the chronos Node.js library to

parse a string representation of a datetime into a datetime object. An input

like “tomorrow at 5pm” can resolve to a value that a computer can use.

Note that we use logic to skip certain waterfall steps. Specifically,

if we are in the delete appointment branch, we do not need the event

location. As such, we do not even ask for it. We take advantage of the

privateConversationData object to the store action object, which

represents the operation we will want to invoke against an API. Lastly, we

use the session.endConversation method to finalize the conversation. This

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

225

method will clear the user’s state so that the next time the user interacts

with the bot, it is as if the bot is seeing a new user.

Figure 5-34 shows the resulting conversation.

 Dialogs
Let’s bring this full circle with conversational design. In Chapter 4, we

discussed how we can model a conversation using a graph of nodes we

called dialogs. So far in this chapter, we have learned about waterfalls and

how we can model a conversation in code.

We have also learned how we can utilize prompts to gather data from

the user. Recall that prompts are simple mechanisms to collect data from

users.

builder.Prompts.text(session, "where?");

Figure 5-34. Data gathering waterfall

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

226

Prompts are interesting. We call a function (builder. Prompts.text),

yielding the conversation to the prompt. Once a valid response is sent

by the user, the next step in our waterfall can access the prompt’s result.

Figure 5-35 shows the overall process. From our waterfall’s perspective, we

don’t really know what the Prompts.choice call is doing, nor do we care. It is

listening for user input, doing some validation, reprompting on bad input,

and returning only a valid result, unless the user cancels. All that logic is

hidden from us.

This interaction is the same model as a programming function call.

The way a function call is typically implemented is using a stack. Examine

Figure 5-36 and the following code:

function f(a,b) { return a + b; }

When the function f is called, the function’s arguments are pushed on

the top of the stack. The function’s code then processes the stack. In this

example, the function adds the parameters. At the end, the only value left

at the top of the stack is the function’s return value. The calling function

can then do whatever it wants with the return value.

Figure 5-35. Conceptual transfer of control between dialogs

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

227

This is the way prompts work in a conversation. The generic concept

in the Bot Builder SDK is a dialog. A prompt is a type of dialog. A dialog

is nothing more than an encapsulation of conversation logic and is

analogous to a function call. A dialog is initialized with some parameters.

It receives input from the user, executing its own code or calling into other

dialogs along the way, and can send responses back to the user. Once the

dialog’s purpose is accomplished, it returns a value to the calling dialog. In

short, a calling dialog pushes a child dialog to the top of the stack. When

the child dialog is done, it pops itself from the stack.

Let’s go back to our Choice prompt example. In the dialog stack model,

the Root dialog places the Prompt.Choice dialog on the top of the stack.

After the dialog finishes executing, the resulting user input object is passed

back down to the Root dialog. The Root dialog then does whatever it needs

to do with the resulting object. The behavior over time is captured in

Figure 5-37.

Figure 5-36. Function calls on a stack

Figure 5-37. Dialogs on the dialog stack over time

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

228

We could take this concept even further. We could imagine a flow in

our calendar bot in which adding a new calendar entry invokes a new

dialog. Let’s call it AddCalendarEntry. It then invokes a Prompt.Time

dialog to gather the date and time of the event, and it invokes a Prompt.

Text dialog to gather the event’s subject. The AddCalendarEntry packages

the collected data and creates a new calendar entry by calling some

calendar API. Control is then returned to the Root dialog. We illustrate this

in Figure 5-32. We could even have AddCalendarEntry call another dialog

that encapsulates the logic to call the API if there was enough complexity

in that process and we wanted to reuse the logic from other dialogs

(Figure 5-38).

Waterfalls and dialogs are the workhorses that translate a conversation

design into actual working code. There are, of course, more details around

them, and we’ll get into those during the next chapters, but this is the

magic behind the Bot Builder SDK. Its key value is an engine that can drive

a conversation using the dialog abstractions. At each point during the

conversation, the dialog stack and the supporting user and conversation

data are stored. This means that depending on the conversation’s storage

implementation, the user may stop talking to the bot for days, come back,

and the bot can pick up from where the user left off.

How do we apply some of these concepts? Revisiting the add and

remove appointment waterfall sample, we can create a bot that, based on

a Choice prompt, starts one of two dialogs: one to add a calendar entry or

another to remove it. The dialogs have all the necessary logic to figure out

which appointment to add or remove, resolve conflicts, prompt for user

confirmation, and so forth.

Figure 5-38. A more complex dialog stack, illustrated over time

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

229

const bot = new builder.UniversalBot(connector, [

 session => {

 builder.Prompts.choice(session, "What do you want to

do?", "add appointment|delete appointment", builder.

ListStyle.button);

 },

 (session, results) => {

 if (results.response.index == 0) {

 session.beginDialog('AddCalendarEntry');

 } else if (results.response.index == 1) {

 session.beginDialog('RemoveCalendarEntry');

 }

 },

 (session, results) => {

 session.send('excellent! we are done!');

 }

]);

bot.dialog('AddCalendarEntry', [

 (session, args) => {

 builder.Prompts.time(session, 'When should the

appointment be added?');

 },

 (session, results) => {

 session.dialogData.time = results.response.resolution.

start;

 builder.Prompts.text(session, 'What is the meeting

subject?');

 },

 (session, results) => {

 session.dialogData.subject = results.response;

 builder.Prompts.text(session, 'Where should the meeting

take place?');

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

230

 },

 (session, results) => {

 session.dialogData.location = results.response;

 // TODO: take the data and call an API to add the

calendar entry

 session.endDialog('Your appointment has been added!');

 }]);

bot.dialog('RemoveCalendarEntry', [

 (session, args) => {

 builder.Prompts.time(session, 'Which time do you want

to clear?');

 },

 (session, results) => {

 var time = results.response.resolution.start;

 // TODO: find the relevant appointment, resolve

conflicts, confirm prompt, and delete

 session.endDialog('Your appointment has been

removed!');

 }]);

We start a new dialog by calling the session.beginDialog method and

pass in the dialog name. We may also pass an optional argument object,

which would be accessible via the args parameter in the called dialog.

We use the session.dialogData object to store dialog state. We’ve run into

userData, privateConversationData, and conversationData before. Those

are scoped to the entire conversation. DialogData, however, is scoped

only to the lifetime of the current dialog instance. To end a dialog, we

call session.endDialog. This returns control to the next step in the root

waterfall. There is a method called session.endDialogWithResult that

allows us to pass data back to the calling dialog.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

231

The conversation in Messenger ends up looking like Figure 5-39.

This code has a few shortcomings. First, if we want to cancel either

adding or deleting an appointment, there’s no way to do that. Second, if we

are the middle of adding an appointment and decide we want to delete an

appointment, we cannot easily switch to the remove appointment dialog.

We must finish the current dialog and then switch over. Third, but not

essential, it would be nice to connect the bot to our LUIS model so users

can interact with the bot using natural language. We’ll address the first two

points next and then follow with connecting to our LUIS models to really

build some intelligence into the bot.

Figure 5-39. A demonstration of an AddCalendarEntry dialog
implementation

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

232

 Invoking Dialogs
Let’s continue with the following exercise. Say we want to allow the user

to ask for help at any point in the conversation; this is a typical scenario.

Sometimes the help will be contextual to the dialog. At other times, the

help will be a global action, a bot behavior that can be accessed from

anywhere within the conversation. The Bot Builder SDK allows us to insert

both types of behaviors into our dialogs.

We introduce a simple help dialog.

bot.dialog('help', (session, args, next) => {

 session.endDialog("Hi, I am a calendar concierge bot. I can

help you make and cancel appointments!");

})

.triggerAction({

 matches: /^help$/i

});

This code defines a new dialog with a global action handler that

matches the “help” input. TriggerAction defines a global action. We are

saying that the help dialog will be triggered globally whenever the user’s

input matches the regular expression ^help$. The ^ character denotes the

start of a line, and the $ character denotes the end of a line. A problem

arises, though. As we can see in Figure 5-40, it looks as if when we ask for

help, our bot forgets we were in the add appointment dialog. In fact, the

default behavior for global action matching is to replace the dialog on top

of the stack. In other words, the add appointment dialog was removed and

replaced with the help dialog.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

233

We can override this behavior by implementing the onSelectAction

callback.

bot.dialog('help', (session, args, next) => {

 session.endDialog("Hi, I am a calendar concierge bot. I can

help you make and cancel appointments!");

})

.triggerAction({

 matches: /^help$/i,

 onSelectAction: (session, args, next) => {

 session.beginDialog(args.action, args);

 }

});

Figure 5-40. Help cancels the previous dialog. Not good.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

234

This brings up an interesting question: how can we affect the dialog

stack? When we are working on a dialog flow and want to transition control

over to another dialog, we can use either beginDialog or replaceDialog.

replaceDialog replaces the dialog on top of the stack, and beginDialog

pushes a dialog to the top of the stack. The session also has a method

called reset, which resets the entire dialog stack. The default behavior is to

reset the stack and push the new dialog on top.

What if we wanted to include contextual help? Let’s create a new

dialog to handle help for the add calendar entry dialog. We can use the

beginDialogAction method on a dialog to define triggers that start new

dialogs on top of the AddCalendarEntry dialog.

bot.dialog('AddCalendarEntry', [

 ...

])

 .beginDialogAction('AddCalendarEntryHelp',

'AddCalendarEntryHelp', { matches: /^help$/ });

bot.dialog('AddCalendarEntryHelp', (session, args, next) => {

 let msg = "Add Calendar Entry Help: we need the time of

the meeting, the subject and the location to create a new

appointment for you.";

 session.endDialog(msg);

});

When we run this, we get the desired effect, as shown in Figure 5-41.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

235

We will dive deeper into actions and their behavior in the following

chapter.

 Recognizers
Recall we defined that the help dialog will be triggered via a regular

expression. How does the Bot Builder SDK implement this? This is where

recognizers come in. A recognizer is a piece of code that accepts incoming

messages and determines what the user’s intent was. A recognizer returns

an intent name and a score. The intent and score can come from an NLU

service like LUIS, but they do not have to.

Figure 5-41. Properly handling contextual actions

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

236

By default, as seen in the previous examples, the only recognizer

in our bot is a regular expression or plain-text matcher. It takes in a

regular expression or a hard-coded string and matches it to the incoming

message’s text. We could utilize an explicit version of this recognizer by

adding a RegExpRecognizer to our bot’s list of recognizers. The following

implementation states that if the user’s input matches the provided regular

expression, an intent called HelpIntent is resolved with a score of 1.0.

Otherwise, the score is 0.0.

bot.recognizer(new builder.RegExpRecognizer('HelpIntent',
/^help$/i));

bot.dialog('help', (session, args, next) => {
 session.endDialog("Hi, I am a calendar concierge bot. I can

help you make and cancel appointments!");
})
 .triggerAction({
 matches: 'HelpIntent',
 onSelectAction: (session, args, next) => {
 session.beginDialog(args.action, args);
 }
 });

Another thing that the recognizer model allows us to do is to create a

custom recognizer that executes any code we want and resolves an intent

with a score. Here’s an example:

bot.recognizer({
 recognize: (context, done) => {
 var intent = { score: 0.0 };

 if (context.message.text) {
 if (context.message.text.toLowerCase().

startsWith('help')) intent = { score: 1.0, intent:
'HelpIntent' };

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

237

 }

 done(null, intent);

 }

});

Now this is quite a simple example, but our minds should be racing

with the possibilities. For example, if the user’s input is nontext media such

as an image or video, we can write a custom recognizer that validates the

media and responds accordingly.

The Bot Builder SDK allows us to register multiple recognizers to our

bot. Whenever a message comes into the bot, each recognizer is invoked,

and the recognizer with the highest score is deemed the winner. If two

or more recognizers result in the same score, the recognizer that was

registered first wins.

Lastly, this same mechanism can be used to connect our bot to

LUIS, and in fact the Bot Builder SDK includes a recognizer for this very

case. To do this, we take the endpoint URL for our LUIS application

(perhaps the one we created in Chapter 3) and use it as a parameter to the

LuisRecognizer.

bot.recognizer(new builder.LuisRecognizer('https://westus.api.

cognitive.microsoft.com/luis/v2.0/apps/{APP_ID}?subscription-

key={SUBSCRIPTION_KEY}}'));

Once we set this up, we add a triggerAction call for each intent we

would like to handle globally, as we did with the help dialog. The strings

passed as the “matches” member must correspond to our LUIS intent

names.

bot.dialog('AddCalendarEntry', [

 ...

])

.beginDialogAction('AddCalendarEntryHelp',

'AddCalendarEntryHelp', { matches: /^help$/ })

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

238

.triggerAction({matches: 'AddCalendarEntry'});

bot.dialog('RemoveCalendarEntry', [

 ...

])

.triggerAction({matches: 'DeleteCalendarEntry'});

At this point, our bot conversation can navigate between the dialogs

by using LUIS intents (Figure 5-42). LUIS’s intent and entity objects are

passed into the dialogs.

EXERCISE 5-2

Connecting Your Bot to LUIS

In this task you will connect a bot to the LuIs application you created in

Chapter 3.

 1. Create an empty bot and create a dialog to handle each type

of intent created in Chapter 3. for each dialog, simply send a

message with the dialog name.

Figure 5-42. Finally powered by our LUIS models!

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

239

 2. register the LuIs recognizer with your bot and confirm that it

works.

 3. the first method of every dialog waterfall is passed the session

object and an args object. use a debugger to explore the

objects.5 what is the structure of data from LuIs? alternatively,

send the Json string representing the args object to the user.

recognizers are a powerful feature in the Bot Builder sdk, allowing us to

equip our bots with a variety of behaviors based on incoming messages.

 Building a Simple Calendar Bot
Ideally the patterns around how we structure a conversation are becoming

clear. The git repos provided with the book include a Calendar Concierge

Bot that we build on throughout the remaining chapters in the book. Every

chapter that makes changes to the bot has its own folder in the repo. The

Chapter 5 folder includes the skeleton code that integrates with LUIS

and sends back a message saying what the bot understood. Auth and API

integration will be covered in Chapter 7. We add basic multilanguage

support in Chapter 10, human handover in Chapter 12, and analytics

integration in Chapter 13.

These are some of the questions that we intend to answer with the

Chapter 5:

• In the context of Node, how do we structure a bot and

its component dialogs?

• What is the general pattern of the code that interprets

the data passed into dialogs?

5 Debugging Node.js applications: https://nodejs.org/en/docs/guides/
debugging-getting-started/. A rich IDE like VS Code makes it really easy:
https://code.visualstudio.com/docs/nodejs/nodejs-debugging

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://code.visualstudio.com/docs/nodejs/nodejs-debugging

240

• Although it is possible to create end-to-end tests with

the Bot Builder SDK, in its current form, unit testing

dialog logic is not the most straightforward task. How

do we structure our code so that it can be unit tested as

best as possible?

As we dive into the code and examine the different components, keep

the following in mind:

• As the code is being built and tested, we will find that

there are gaps in our LUIS applications. During the

construction of this code, my model has changed a

bit from what was produced in Chapter 3. These are

not breaking changes but rather new utterances and

entities. The code samples include this version of the

model.

• We need to define the scope of each dialog. For

example, the edit calendar entry dialog was repurposed

to focus on moving appointments.

• We have created some helper classes that contain

some of the trickiest logic, which is reading each type

of entity from the LUIS results and translating them to

objects that can be used in the dialogs. For example,

many of our dialogs perform actions on the calendar

based on datetimes or ranges and subject or invitee.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

241

We take advantage of Bot Builder libraries to properly modularize the

dialogs into libraries. Don’t worry about this for now. It is simply a way

to bundle dialog functionality. We will go over this concept in the next

chapter. Start reviewing the code, and we’ll dive into more Bot Builder

details in the following chapter. The code is structured as follows:

• Constants and helpers

• Code that translates LUIS intents and entities into

application objects

• Dialogs to support adding, moving, and removing an

appointment; checking availability; and getting an

agenda for the day

• Lastly, an app.js entry point that ties it all together

 Conclusion
This was quite an introduction into the Bot Framework and Bot Builder

SDK. We are now equipped to build basic bot experiences. The core

concepts of creating bot channel registrations, connecting our bots to

channel connectors, debugging using the Bot Framework Emulator and

ngrok, and building bots using the Bot Builder SDK are the key pieces we

need to understand to be productive. The Bot Builder SDK is a powerful

library to assist us in the process. We introduced the core concepts

from the SDK. Without getting too deep into the details of the SDK, we

developed a chat bot that can interpret a large variety of natural language

inputs that execute the use cases we aimed to support from Chapter 3.

The only thing left to do is to pull in a calendar API and translate the LUIS

intent and entity combinations into the right API calls.

Before we jump into this, we will dive deeper into the Bot Builder

SDK to make sure we are selecting the correct approach in our final

implementation.

Chapter 5 IntroduCIng the MICrosoft Bot fraMework

243© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_6

CHAPTER 6

Diving into the Bot
Builder SDK
In the previous chapter, we built a simple bot that can utilize an existing

LUIS application and the Bot Builder SDK to enable a conversational flow

for a calendar bot. As it stands, the bot is useless. It responds with text

describing what it understood from user input, but it does not accomplish

anything of substance. We’re building up to connecting our bot to the

Google Calendar API, but in the meantime, we need to figure out what

tools the Bot Builder SDK provides at our disposal to create meaningful

conversational experiences.

In this chapter, we will elaborate on some of the techniques we used in

our Chapter 5 code and more thoroughly explore some of the Bot Builder

SDK features. We will figure out how the SDK stores state, builds messages

with rich content, builds actions and cards, and allows the framework to

customize channel behavior, dialog behavior, and user action handling. Lastly,

we will look at how we best group bot functionality into reusable components.

 Conversation State
As mentioned throughout the previous chapters, a good conversational

engine will store each user and conversation’s state so that whenever a

user communicates with the bot, the right state of the conversation flow

244

is retrieved, and there is a coherent experience for the user. In the Bot

Builder SDK, this state is, by default, stored in memory via the aptly named

MemoryBotStorage. Historically, state was stored in a cloud endpoint;

however, this has been deprecated. Every so often, we may run into a

reference to the state service in some older documentation, so be aware

that it no longer exists.

The state for every conversation is composed of three buckets

accessible to bot developers. We introduced all of them in the previous

chapter, but to reiterate they are as follows:

• userData: Data for a user across all conversations in a

channel

• privateConversationData: Private user data scoped to a

conversation

• conversationData: Data for a conversation, shared for

any users who are part of the conversation

In addition, as a dialog is executing, we have access to its state object

referred to as dialogData. Any time a message is received from a user,

the Bot Builder SDK will retrieve the user’s state from the state storage,

populate the three data objects plus dialogData on the session object,

and execute the logic for the current step in the conversation. Once all

responses are sent out, the framework will save the state back into the state

storage.

let entry = new et.EntityTranslator(session.dialogData.

addEntry);

if (!entry.hasDateTime) {

 entry.setEntity(results.response);

}

session.dialogData.addEntry = entry;

Chapter 6 Diving into the Bot BuilDer SDK

245

In some of the code from the previous chapter, there were instances

where we had to re-create a custom object from dialogData and then

store the object into the dialogData. The reason for this is that saving an

object into the dialogData (or any of the other state containers) will turn

the object into a vanilla JavaScript object, like using JSON.stringify would.

Trying to invoke any method on session.dialogData.addEntry in the

previous code, before resetting to a new object, would cause an error.

The storage mechanism is implemented by an interface called

IBotStorage.

export interface IBotStorage {

 getData(context: IBotStorageContext, callback: (err: Error,

data: IBotStorageData) => void): void;

 saveData(context: IBotStorageContext, data:

IBotStorageData, callback?: (err: Error) => void): void;

}

The ChatConnector class that we instantiate when building a new

instance of a bot installs the default MemoryBotStorage instance, which

is a great option for development. The SDK allows us to provide our own

implementation to replace the default functionality, something you will most

likely want to do in a production deployment as this ensures that states are

stored instead of being erased any time your instances restarts. For instance,

Microsoft provides two additional implementations of the interface, a NoSQL

implementation for Azure Cosmos DB1 and an implementation for Azure

Table Storage.2 Both are Azure services available through the Azure Portal.

You can find the two storage implementations in the botbuilder-azure node

package, documented at https://github.com/Microsoft/BotBuilder-

Azure. You are also able to write your own IBotStorage implementation and

1 Azure Cosmos DB: https://azure.microsoft.com/en-us/services/cosmos-db/
2 Azure Table Storage: https://azure.microsoft.com/en-us/services/storage/
tables/

Chapter 6 Diving into the Bot BuilDer SDK

https://github.com/Microsoft/BotBuilder-Azure
https://github.com/Microsoft/BotBuilder-Azure
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/storage/tables/
https://azure.microsoft.com/en-us/services/storage/tables/

246

to register it with the SDK. Writing your own implementation is a matter of

following the simple IBotStorage interface.

const bot = new builder.UniversalBot(connector, (session) => {

 // ... Bot code ...

})

.set('storage', storageImplementation);

 Messages
In the previous chapter, our bot communicated to the user by sending text

messages using either the session.send or session.endDialog method. This

is fine, but it limits our bot a fair amount. A message between a bot and a

user is composed of a variety of pieces of data that we ran into in the “Bot

Builder SDK Basics” section in the previous chapter.

The Bot Builder IMessage interface defines what a message is really

composed of.

interface IEvent {

 type: string;

 address: IAddress;

 agent?: string;

 source?: string;

 sourceEvent?: any;

 user?: IIdentity;

}

interface IMessage extends IEvent {

 timestamp?: string; // UTC Time when message

was sent (set by service)

 localTimestamp?: string; // Local time when message

was sent (set by client

or bot, Ex: 2016-09-

23T13:07:49.4714686-07:00)

Chapter 6 Diving into the Bot BuilDer SDK

247

 summary?: string; // Text to be displayed by

as fall-back and as short

description of the message

content in e.g. list of

recent conversations

 text?: string; // Message text

 speak?: string; // Spoken message as

Speech Synthesis Markup

Language (SSML)

 textLocale?: string; // Identified language of

the message text.

 attachments?: IAttachment[]; // This is placeholder

for structured objects

attached to this message

 suggestedActions: ISuggestedActions; // Quick reply actions

that can be suggested

as part of the message

 entities?: any[]; // This property is

intended to keep

structured data objects

intended for Client

application e.g.:

Contacts, Reservation,

Booking, Tickets.

Structure of these object

objects should be known to

Client application.

 textFormat?: string; // Format of text fields

[plain|markdown|xml]

default:markdown

Chapter 6 Diving into the Bot BuilDer SDK

248

 attachmentLayout?: string; // AttachmentLayout -

hint for how to deal with

multiple attachments

Values: [list|carousel]

default:list

 inputHint?: string; // Hint for clients to

indicate if the bot is

waiting for input or not.

 value?: any; // Open-ended value.

 name?: string; // Name of the operation

to invoke or the name of

the event.

 relatesTo?: IAddress; // Reference to another

conversation or message.

 code?: string; // Code indicating why the

conversation has ended.

}

For this chapter, we will be most interested in the text, attachments,

suggestedActions, and attachmentLayout as they form the basis of a good

conversational UX.

To create a message object in code, we create a builder.Message object.

At that point, you can assign the properties as per the following example. A

message can then be passed into the session.send method.

const reply = new builder.Message(session)

 .text('Here are some results for you')

 .attachmentLayout(builder.AttachmentLayout.carousel)

 .attachments(cards);

session.send(reply);

Chapter 6 Diving into the Bot BuilDer SDK

249

Likewise, when a message comes into your bot, the session object

contains a message object. Same interface. Same type of data. But, this

time, it is coming in from the channel rather than from the bot.

const bot = new builder.UniversalBot(connector, [

 (session) => {

 const input = session.message.text;

 }]);

Note that IMessage inherits from IEvent, which means it has a type

field. This field is set to message for an IMessage, but there are other events

that may come from either the framework or a custom app.

Some of the other event types that the bot framework supports, based

on channel support, are the following:

• conversationUpdate: Raised when a user has been

added or removed from a conversation or some

metadata about the conversation has changed; used for

group chat management.

• contactRelationUpdate: Raised when the bot was either

added or removed from a user’s contact list.

• typing: Raised when a user is typing a message; not

supported by all channels.

• ping: Raised to figure out if the bot endpoint is

available.

• deleteUserData: Raised when the user requests to have

their user data deleted.

• endOfConversation: Raised when a conversation has

ended.

Chapter 6 Diving into the Bot BuilDer SDK

250

• invoke: Raised when a request is sent for the bot

to perform some custom logic. For example, some

channels may need to invoke a function on the bot and

expect a response. The Bot Framework would send this

request as an invoke request, expecting a synchronous

HTTP reply. This is not a common scenario.

We can register a handler for each event type by using the on method

on the UniversalBot. The resulting conversation with a bot that handles

events can provide for more immersive conversational experiences for

your users (Figure 6-1).

const bot = new builder.UniversalBot(connector, [

 (session) => {

 }

]);

bot.on('conversationUpdate', (data) => {

 if (data.membersAdded && data.membersAdded.length > 0) {

 if (data.address.bot.id === data.membersAdded[0].id)

return;

 const name = data.membersAdded[0].name;

 const msg = new builder.Message().address(data.

address);

 msg.text('Welcome to the conversation ' + name + '!');

 msg.textLocale('en-US');

 bot.send(msg);

 }

});

bot.on('typing', (data) => {

 const msg = new builder.Message().address(data.address);

Chapter 6 Diving into the Bot BuilDer SDK

251

 msg.text('I see you typing... You\'ve got me hooked! Reel

me in!');

 msg.textLocale('en-US');

 bot.send(msg);

});

 Addresses and Proactive Messages
In the message interface, the address property uniquely represents a user

in a conversation. It looks like this:

interface IAddress {

 channelId: string; // Unique identifier for

channel

 user: IIdentity; // User that sent or should

receive the message

 bot?: IIdentity; // Bot that either received

or is sending the message

 conversation?: IIdentity; // Represents the current

conversation and tracks

where replies should be

routed to.

}

Figure 6-1. A bot responding to typing and conversationUpdate
events

Chapter 6 Diving into the Bot BuilDer SDK

252

The importance behind an address is that we can use it to send a

message proactively outside the scope of a dialog. For example, we could

create a process that sends a message to a random address every five

seconds. This message has zero effect on the user’s dialog stack.

const addresses = {};

const bot = new builder.UniversalBot(connector, [

 (session) => {

 const userid = session.message.address.user.id;

 addresses[userid] = session.message.address;

 session.send('Give me a couple of seconds');

 }

]);

function getRandomInt(min, max) {

 return Math.floor(Math.random() * (max - min + 1)) + min;

}

setInterval(() => {

 const keys = Object.keys(addresses);

 if (keys.length == 0) return;

 const r = getRandomInt(0, keys.length-1);

 const addr = addresses[keys[r]];

 const msg = new builder.Message().address(addr).text('hello

from outside dialog stack!');

 bot.send(msg);

}, 5000);

If we did want to modify the dialog stack, perhaps by calling into a

complex dialog operation, we can utilize the beginDialog method on the

UniversalBot object.

Chapter 6 Diving into the Bot BuilDer SDK

253

setInterval(() => {

 var keys = Object.keys(addresses);

 if (keys.length == 0) return;

 var r = getRandomInt(0, keys.length-1);

 var addr = addresses[keys[r]];

 bot.beginDialog(addr, "dialogname", { arg: true});

}, 5000);

The significance of these concepts that we can have external events in

disparate systems begin affecting the state of a user’s conversation within

the bot. We will see this applied in the context of OAuth web hooks in the

next chapter.

 Rich Content
Rich content can be sent to the user using the attachments functionality in

the BotBuilder IMessage interface. In the Bot Builder SDK, an attachment

is simply a name, content URL, and a MIME type.3 A message in the Bot

Builder SDK accepts zero or more attachments. It is up to the bot connectors

to translate that message into something that the channel will understand.

All types of messages and attachments are not supported by every channel.

Be careful when creating attachments of various MIME types.

For example, to share an image, we can use the following code:

const bot = new builder.UniversalBot(connector, [

 (session) => {

 session.send({

 text: "Here, have an apple.",

 attachments: [

3 MIME Types: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Basics_of_HTTP/MIME_types

Chapter 6 Diving into the Bot BuilDer SDK

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

254

 {

 contentType: 'image/jpeg',

 contentUrl: 'https://upload.wikimedia.org/

wikipedia/commons/thumb/1/15/Red_Apple.

jpg/1200px-Red_Apple.jpg',

 name: 'Apple'

 }

]

 })

 }

]);

Figure 6-2 shows the resulting user interface in the emulator, and

Figure 6-3 shows it in Facebook Messenger. We could imagine similar

rendering in other platforms.

Figure 6-2. Emulator image attachment

Chapter 6 Diving into the Bot BuilDer SDK

255

This code will send audio file attachments, which can be played right

from within the messaging channel.

const bot = new builder.UniversalBot(connector, [

 (session) => {

 session.send({

 text: "Here, have some sound!",

 attachments: [

 {

 contentType: 'audio/ogg',

 contentUrl: 'https://upload.wikimedia.

org/wikipedia/en/f/f4/Free_as_a_

Bird_%28Beatles_song_-_sample%29.ogg',

 name: 'Free as a bird'

 }

]

 })

 }

]);

Figure 6-3. Facebook Messenger image attachment

Chapter 6 Diving into the Bot BuilDer SDK

256

Figure 6-4 shows the emulator, and Figure 6-5 shows Facebook

Messenger ().

Whoops! It seems like OGG4 files are not supported. This is a good

example of Bot Framework behavior when our bot sends an invalid

message to Facebook or any other channel. We will investigate this further

in the “Channel Errors” section later in this chapter. My console error log

has this message:

Error: Request to 'https://facebook.botframework.com/v3/

conversations/1912213132125901-1946375382318514/activities/

mid.%24cAAbqN9VFI95k_ueUOVezaJiLWZXe' failed: [400] Bad Request

If we look at the error list in the Bot Framework Messenger Channels

page, we should find another clue like in Figure 6-6.

4 OGG Format, a free, open container format: https://en.wikipedia.org/wiki/
Ogg

Figure 6-4. An OGG sound file attachment in the Emulator

Figure 6-5. An OGG sound file attachment in Facebook Messenger

Chapter 6 Diving into the Bot BuilDer SDK

https://en.wikipedia.org/wiki/Ogg
https://en.wikipedia.org/wiki/Ogg

257

OK, so they make it somewhat easy to diagnose the problem. We know

we must provide a different file format. Let’s try an MP3.

const bot = new builder.UniversalBot(connector, [

 (session) => {

 session.send({

 text: "Ok have a vulture instead!",

 attachments: [

 {

 contentType: 'audio/mp3',

 contentUrl: 'http://static1.grsites.com/

archive/sounds/birds/birds004.mp3',

 name: 'Vulture'

 }

]

 })

 }

]);

You can see the resulting Emulator and Facebook Messenger

renderings in Figure 6-7 and Figure 6-8.

Figure 6-6. Bot Framework error for an OGG sound file on Messenger

Figure 6-7. Emulator MP3 file attachment

Chapter 6 Diving into the Bot BuilDer SDK

258

The Emulator still produces a link, but Messenger has a built-

in audio player you can utilize! The experience uploading a video is

similar. Messenger will provide a built-in video player right within the

conversation.

EXERCISE 6-1

Experimenting with Attachments

the goal of this exercise is to write a simple bot that can send different types

of attachments to users and observe the behavior of the emulator and another

channel, like Facebook Messenger.

 1. Create a basic bot using the echo bot as a starting point.

 2. From the bot function, send different types of attachments in

your message such as JSon, XMl, or file. experiment with

some types of rich media such as video. how does the emulator

render these types of attachments? how about Messenger?

 3. try sending an image to the bot from the emulator. What data

does the incoming message contain? is this any different from

when you send an image via Messenger?

attachments are an easy way to share all kinds of rich content with your users.

use them wisely to create colorful and engaging conversational experiences.

Figure 6-8. Facebook Messenger MP3 file attachment

Chapter 6 Diving into the Bot BuilDer SDK

259

 Buttons
Bots can also send buttons to users. A button is a distinct call to action

for a user to perform a task. Each button has a label associated with it, as

well as a value. A button also has an action type, which will determine

what the button does with the value when the button is clicked. The three

most common types of actions are open URL, post back, and IM back.

Open URL typically opens a web view within the messaging app or a new

browser window in a desktop setting. Both post back and IM back send the

value of the button as a message to the bot. The difference between the two

is that clicking the post back should not display a message from the user in

the chat history, whereas the IM back should. Not all channels implement

both types of buttons.

const bot = new builder.UniversalBot(connector, [

 (session) => {

 const cardActions = [

 builder.CardAction.openUrl(session,

'http://google.com', "Open Google"),

 builder.CardAction.imBack(session, "Hello!",

"Im Back"),

 builder.CardAction.postBack(session, "Hello!",

"Post Back")

];

 const card = new builder.HeroCard(session).

buttons(cardActions);

Chapter 6 Diving into the Bot BuilDer SDK

260

 const msg = new builder.Message(session).text("sample

actions").addAttachment(card);

 session.send(msg);

 }

]);

Note that in the previous code we used a CardAction object. A

CardAction is an encapsulation of the data we discussed earlier: a type

of action, a title, and value. The channel connectors will usually render a

CardAction into a button on the individual platforms.

Figure 6-9 shows what running this code looks like in the emulator, and

Figure 6-10 shows it in Facebook Messenger. If we click the Open Google

button in the emulator, it opens the web page in your default browser. We

first click Im Back, and then once we receive the response card, we click

Post Back. Note that Im Back sent a message and the message appears in

the chat history, whereas the Post Back button sent a message that the bot

responds to, but the message does not appear in the chat history.

Chapter 6 Diving into the Bot BuilDer SDK

261

Figure 6-9. A sampling of Bot Builder button behaviors in the emulator

Chapter 6 Diving into the Bot BuilDer SDK

262

Messenger works a bit differently.5 Let’s look at the mobile app

behavior. If we click Open Google, a web view will show up that covers

about 90 percent of the screen. If we click Im Back and Post Back, the

app exhibits the same behavior. Messenger only supports post back; in

addition, the message value is never showed to the user. The chat history

contains only the title of the button that was clicked.

5 Facebook Messenger SendAPI Button Documentation:https://developers.
facebook.com/docs/messenger-platform/send-messages/buttons

Figure 6-10. Sampling of button behaviors in Facebook Messenger

Chapter 6 Diving into the Bot BuilDer SDK

https://developers.facebook.com/docs/messenger-platform/send-messages/buttons
https://developers.facebook.com/docs/messenger-platform/send-messages/buttons

263

The Bot Builder SDK supports the following action types:

• openUrl: Opens a URL in a browser

• imBack: Sends a message to the bot from the user,

which is visible to all conversation participants

• postBack: Sends a message to the bot from the

user, which may not be visible to all conversation

participants

• call: Places a call

• playAudio: Plays an audio file within the bot interface

• playVideo: Plays a video file within the bot interface

• showImage: Shows an image within the bot interface

• downloadFile: Downloads a file to the device

• signin: Kicks off an OAuth flow

Of course, not all channels support all types. In addition, channels

may natively support other functionality that the Bot Builder SDK is not.

For example, Figure 6-11 shows the documentation for actions Messenger

supports through its button templates as of the time of this writing. We will

look at utilizing native channel functionality later in this chapter.

Figure 6-11. Messenger button template types

Chapter 6 Diving into the Bot BuilDer SDK

264

In the Bot Builder SDK, every card action can be created by using the

static factory methods in the CardAction class. Here is the relevant code

from the Bot Builder source:

 CardAction.call = function (session, number, title) {

 return new CardAction(session).type('call').

value(number).title(title || "Click to call");

 };

 CardAction.openUrl = function (session, url, title) {

 return new CardAction(session).type('openUrl').

value(url).title(title || "Click to open website in

your browser");

 };

 CardAction.openApp = function (session, url, title) {

 return new CardAction(session).type('openApp').

value(url).title(title || "Click to open website in a

webview");

 };

 CardAction.imBack = function (session, msg, title) {

 return new CardAction(session).type('imBack').

value(msg).title(title || "Click to send response to

bot");

 };

 CardAction.postBack = function (session, msg, title) {

 return new CardAction(session).type('postBack').

value(msg).title(title || "Click to send response to

bot");

 };

 CardAction.playAudio = function (session, url, title) {

 return new CardAction(session).type('playAudio').

value(url).title(title || "Click to play audio file");

 };

Chapter 6 Diving into the Bot BuilDer SDK

265

 CardAction.playVideo = function (session, url, title) {

 return new CardAction(session).type('playVideo').

value(url).title(title || "Click to play video");

 };

 CardAction.showImage = function (session, url, title) {

 return new CardAction(session).type('showImage').

value(url).title(title || "Click to view image");

 };

 CardAction.downloadFile = function (session, url, title) {

 return new CardAction(session).type('downloadFile').

value(url).title(title || "Click to download file");

 };

 Cards
Another type of Bot Builder attachment is the hero card. In our previous

example with button actions, we conveniently ignored the fact that button

actions need to be part of a hero card object, but what is that?

The term hero card originates from the racing world. The cards themselves

are usually bigger than baseball cards and are designed to promote a

race team, specifically the driver and sponsors. It would include photos,

information about the driver and sponsors, contact information, and so on.

But really the concept is reminiscent of typical baseball or Pokémon cards.

In the context of UX design, a card is an organized way of displaying

images, text, and actions. Google brought cards to the masses when it

introduced the world to its Material Design6 on Android and the Web.

Figure 6-12 shows two examples of card design from Google’s Material

Design documentation. Notice the distinct usage of images, titles, subtitles,

and calls to action.

6 Google Material Design: https://material.io/guidelines/

Chapter 6 Diving into the Bot BuilDer SDK

https://material.io/guidelines/

266

In the context of bots, the term hero card refers to a grouping of an

image with text, buttons for actions, and an optional default tap behavior.

Different channels will call cards different things. Facebook loosely refers

to them as templates. Other platforms just refer to the idea as attaching

content to a message. At the end of the day, the UX concepts are the same.

In the Bot Builder SDK, we can create a card using the following code.

We also show how this card renders in the emulator (Figure 6-13) and on

Facebook Messenger (Figure 6-14).

Figure 6-12. Google’s Material Design card samples

Chapter 6 Diving into the Bot BuilDer SDK

267

const bot = new builder.UniversalBot(connector, [

 (session) => {

 const cardActions = [

 builder.CardAction.openUrl(session, 'http://google.

com', "Open Google"),

 builder.CardAction.imBack(session, "Hello!",

"Im Back"),

 builder.CardAction.postBack(session, "Hello!",

"Post Back")

];

 const card = new builder.HeroCard(session)

 .buttons(cardActions)

 .text('this is some text')

 .title('card title')

 .subtitle('card subtitle')

 .images([new builder.CardImage(session).

url("https://bot-framework.azureedge.net/bot-

icons-v1/bot- framework- default-7.png").toImage()])

 .tap(builder.CardAction.openUrl(session, "http://

dev.botframework.com"));

 const msg = new builder.Message(session).text("sample

actions").addAttachment(card);

 session.send(msg);

 }

]);

Chapter 6 Diving into the Bot BuilDer SDK

268

Figure 6-13. A hero card as rendered by the emulator

Chapter 6 Diving into the Bot BuilDer SDK

269

Cards are a great way to communicate the results of a bot action invoked

by the user. If you would like to display some data with an image and follow-

up actions, there is no better way to do so than using cards. The fact that you

get only a few different text fields, with limited formatting abilities, means that

the UX resulting in this approach can be a bit limited. That is by design. For

more complex visualizations and scenarios, you can either utilize adaptive

cards or render custom graphics. We will explore both topics in Chapter 11.

The next question is, can we display cards side by side in a carousel

style? Of course, we can. A message in the Bot Builder SDK has a property

called attachmentLayout. We set this to carousel, add more cards,

and we’re done! The emulator (Figure 6-15) and Facebook Messenger

(Figure 6-16) take care of laying the cards out in a friendly carousel format.

The default attachmentLayout is a list. Using this layout, the cards would

appear one below the other. It is not the most user-friendly approach.

Figure 6-14. Same hero card in Facebook Messenger

Chapter 6 Diving into the Bot BuilDer SDK

270

const bot = new builder.UniversalBot(connector, [

 (session) => {

 const cardActions = [

 builder.CardAction.openUrl(session, 'http://google.

com', "Open Google"),

 builder.CardAction.imBack(session, "Hello!",

"Im Back"),

 builder.CardAction.postBack(session, "Hello!",

"Post Back")

];

 const msg = new builder.Message(session).text("sample

actions");

 for(let i=0;i<3;i++) {

 const card = new builder.HeroCard(session)

 .buttons(cardActions)

 .text('this is some text')

 .title('card title')

 .subtitle('card subtitle')

 .images([new builder.CardImage(session).

url("https://bot-framework.azureedge.net/

bot-icons-v1/bot- framework- default-7.png").

toImage()])

 .tap(builder.CardAction.openUrl(session,

"http://dev.botframework.com"));

 msg.addAttachment(card);

 }

 msg.attachmentLayout(builder.AttachmentLayout.carousel);

 session.send(msg);

 }

]);

Chapter 6 Diving into the Bot BuilDer SDK

271

Figure 6-15. A hero card carousel in the emulator

Chapter 6 Diving into the Bot BuilDer SDK

272

Cards can be a bit tricky because there are many ways of laying out

buttons and images. Each platform has ever so slightly different rules. On

some platforms, openUrl buttons (but not others) must point to an HTTPS

address. There may also be rules that limit the number of buttons per card,

number of cards in a carousel and image aspect ratios. Microsoft’s Bot

Framework will handle all this in the best way it can, but being aware of

these limitations will help us debug our bots.

 Suggested Actions
We’ve discussed suggested actions in the context of conversational

design; they are message-context-specific actions that can be performed

immediately after a message is received. If another message comes in, the

context is lost, and the suggested actions disappear. This is in opposition to

card actions, which stay on the card in the chat history pretty much forever.

Figure 6-16. Same hero card carousel on Messenger

Chapter 6 Diving into the Bot BuilDer SDK

273

The typical UX for suggested actions, also referred to as quick replies, is as a

horizontally laid out list of buttons along the bottom of the screen.

The code for building suggested actions is similar to a hero card,

except the only data we need is a collection of CardActions. The type of

actions allowed in the suggested actions area will depend on the channel.

Figure 6-17 and Figure 6-18 shows renderings on the emulator and

Facebook Messenger, respectively.

msg.suggestedActions(new builder.SuggestedActions(session).

actions([

 builder.CardAction.postBack(session, "Option 1", "Option 1"),

 builder.CardAction.postBack(session, "Option 2", "Option 2"),

 builder.CardAction.postBack(session, "Option 3", "Option 3")

]));

Figure 6-17. Suggested actions rendered in the emulator

Chapter 6 Diving into the Bot BuilDer SDK

274

The suggested actions buttons are great to keep the conversation with

the user going without asking the user to guess what they can type into the

text message field.

Figure 6-18. Same suggested actions in Messenger

Chapter 6 Diving into the Bot BuilDer SDK

275

EXERCISE 6-2

Cards and Suggested Actions

a dictionary and thesaurus are good inspirations for a good bot navigation

experience. a user can input a word. the resulting card may show an image of

the word and the definition. a button below may allow us to open a reference

page, such as on https://www.merriam-webster.com/. the suggested

actions could be a set of buttons of synonyms for the current word. let's put

this kind of interaction in place.

 1. Create an account with and establish connectivity to https://

dictionaryapi.com. this api will allow you to use the

Dictionary and thesaurus apis.

 2. Create a bot that can look up a word based on user input using

the Dictionary api and responds with a hero card that includes

the word and the definition text. include a button that opens the

word’s page on the dictionary website.

 3. Connect to the thesaurus api to return the first ten synonyms

as suggested actions.

 4. as a bonus, use the Bing image Search api to populate the

image in the card. You can get an access key in azure and use

the following sample as a guide: https://docs.microsoft.

com/en-us/azure/cognitive-services/bing-image-

search/image-search-sdk-node-quickstart.

You now have experience connecting your bot to different apis and translating

those api responses into hero cards, buttons, and suggested actions. Well

done!

Chapter 6 Diving into the Bot BuilDer SDK

https://www.merriam-webster.com/
https://dictionaryapi.com/
https://dictionaryapi.com/
https://docs.microsoft.com/en-us/azure/cognitive-services/bing-image-search/image-search-sdk-node-quickstart
https://docs.microsoft.com/en-us/azure/cognitive-services/bing-image-search/image-search-sdk-node-quickstart
https://docs.microsoft.com/en-us/azure/cognitive-services/bing-image-search/image-search-sdk-node-quickstart

276

 Channel Errors
In the “Rich Content” section, we noted that when a bad request is sent

by our bot to the Facebook Messenger connector, our bot will receive an

HTTP error. This error was also printed out in the console output of the bot.

It seems that the Facebook Bot connector is reporting an error from the

Facebook APIs back to our bot. That is cool. The additional feature we saw

was that the channel detail page in Azure also contained all those errors.

Although minor, this is a powerful feature. It allows us to quickly see how

many messages were rejected by the API and the error codes. The case we

ran into, that a specific file type format was not supported, was just one of

many possible errors. We would see errors if the message is malformed, if

there are authentication issues, or if Facebook rejects the connector message

for any other reason. Similar ideas apply to the other set of connectors. In

general, the connectors are good at translating Bot Framework activities into

something that will not be rejected by the channels, but it happens.

In general, if our bot sends a message to a Bot Framework connector

and the message does not appear on the interface, chances are there was

an issue with the interaction between the connector and channel, and this

online error log will contain information about the failure.

 Channel Data
We have mentioned several times that different channels may render

messages differently or have different rules about certain items, such as the

number of hero cards in a carousel or the number of buttons in a hero card.

We have been showing examples of Messenger and emulator renderings,

as those channels typically work well. Skype is another one that supports

a lot of the Bot Builder features (which makes sense, as both are owned by

Microsoft). Slack does not have as much rich support for these features, but

its editable messages are a slick feature we will visit in Chapter 8.

Chapter 6 Diving into the Bot BuilDer SDK

277

For illustration purposes, Figure 6-19 is what the carousel with the

suggested actions discussed earlier looks like in Slack.

Figure 6-19. Same Bot Builder object rendered in Slack

Chapter 6 Diving into the Bot BuilDer SDK

278

That’s not a carousel. There is no such concept in Slack! There are also

no cards to speak of; it is just messages with attachments. The images are

not clickable either; the default link is displayed above the image. Both

the Im Back and Post Back buttons appear to do a post back. There is no

concept of suggested actions/quick replies. You can find more information

about the Slack Message format online.7

However, the team behind the Bot Builder SDK has thought of the issue

where you may want to specify the exact native channel message, distinct

from the default Bot Framework connector rendering for that channel. The

solution is to provide a field on the Message object that contains the native

channel JSON data for incoming messages and a field that may contain

native channel JSON responses.

The terminology used in the Node SDK is sourceEvent (the C# version

of Bot Builder refers to this concept as channelData). The sourceEvent

in the Node SDK exists on the IEvent interface. Remember, this is the

interface that IMessage implements as well. This means any event from a

bot connector may include the raw channel JSON.

Let’s look at a feature in Facebook Messenger that is not readily

supported by the Bot Framework. By default, cards in Messenger require

an image with a 1.91:1 aspect ratio.8 The default conversion of a hero card

by the connector utilizes this template. There is, however, the ability to

utilize a 1:1 image ratio. There are other options in the documentation that

are hidden by the Bot Framework. For example, Facebook has a specific

flag around setting cards as sharable. Furthermore, you can control the size

of the WebView invoked by an openURL button in Messenger. For now, we

will stick to modifying the image aspect ratio.

For starters, let’s see the code to send the same card we have been

sending using the hero card object but using Facebook’s native format:

7 Slack Messages: https://api.slack.com/docs/messages
8 Facebook Generic Template Reference: https://developers.facebook.com/
docs/messenger-platform/send-messages/template/generic

Chapter 6 Diving into the Bot BuilDer SDK

https://api.slack.com/docs/messages
https://developers.facebook.com/docs/messenger-platform/send-messages/template/generic
https://developers.facebook.com/docs/messenger-platform/send-messages/template/generic

279

const bot = new builder.UniversalBot(connector, [

 (session) => {

 if (session.message.address.channelId == 'facebook') {

 const msg = new builder.Message(session);

 msg.sourceEvent({

 facebook: {

 attachment: {

 type: 'template',

 payload: {

 template_type: 'generic',

 elements: [

 {

 title: 'card title',

 subtitle: 'card subtitle',

 image_url: 'https://bot-

framework.azureedge.net/

bot-icons-v1/bot-framework-

default-7.png',

 default_action: {

 type: 'web_url',

 url: 'http://dev.

botframework.com',

 webview_height_ratio:

'tall',

 },

 buttons: [

 {

 type: "web_url",

 url: "http://

google.com",

Chapter 6 Diving into the Bot BuilDer SDK

280

 title: "Open

Google"

 },

 {

 type: 'postback',

 title: 'Im Back',

 payload: 'Hello!'

 },

 {

 type: 'postback',

 title: 'Post Back',

 payload: 'Hello!'

 }

]

 }

],

 }

 }

 }

 });

 session.send(msg);

 } else {

 session.send('this bot is unsupported outside of

facebook!');

 }

 }

]);

The rendering (Figure 6-20) looks identical to the rendering using the

hero card.

Chapter 6 Diving into the Bot BuilDer SDK

281

We set image_aspect_ratio to square, and now Facebook renders it as a

square (Figure 6-21)!

const msg = new builder.Message(session);

msg.sourceEvent({

 facebook: {

 attachment: {

 type: 'template',

 payload: {

 template_type: 'generic',

 image_aspect_ratio: 'square',

 // more...

 }

 }

 }

});

session.send(msg);

Figure 6-20. Rendering a generic template in Messenger

Chapter 6 Diving into the Bot BuilDer SDK

282

It’s that easy! This is just a taste. In Chapter 8, we will explore using the

Bot Framework to integrate with native Slack features.

 Group Chat
Some types of bots are meant to be used in a group setting. In the context

of Messenger, Twitter direct messages, or similar platforms, the interaction

between a user and a bot is typically one on one. However, some channels,

most notably Slack, are focused on collaboration. In such a context,

Figure 6-21. Rendering a generic template with a square image on
Messenger

Chapter 6 Diving into the Bot BuilDer SDK

283

the ability to converse with multiple users simultaneously becomes

important. Giving your bot the ability to productively participate in a group

conversation as well as to handle mention tags correctly is important.

Some channels will allow the bot to view every single message that is

sent between users in a channel. Other channels will only send messages

to the bot if it is mentioned (for example, “hey @szymonbot, write a book

on bots will ya?”).

If we are in a channel that allows our bot to see all messages in a group

setting, our bot could monitor the conversation and silently execute code

based on the discussion (because replying to every message on a group

conversation is kind of annoying), or it could ignore everything that

doesn’t have a mention of the bot. It could also implement a combination

of the two behaviors, where the bot is activated by a mention with a certain

command and becomes chatty.

In the “Messages” section, we showed the interface for a message. We

glossed over the entities list, but it becomes relevant here. One type of

entity we may receive from a connector is mentions. The object includes

the name and id of the mentioned user and looks as follows:

{

 mentioned: {

 id: '',

 name: ''

 },

 text: ''

};

Chapter 6 Diving into the Bot BuilDer SDK

284

Facebook does not support this type of entity, but Slack does. We will

connect a bot to Slack in Chapter 8, but in the meantime, here is the code

that could always reply in a direct messaging scenario but only reply in a

group chat if it is mentioned:

const bot = new builder.UniversalBot(connector, [

 (session) => {

 const botMention = _.find(session.message.entities,

function (e) { return e.type == 'mention' &&

e.mentioned.id == session.message.address.bot.id; });

 if (session.message.address.conversation.isGroup &&

botMention) {

 session.send('hello ' + session.message.user

.name + '!');

 }

 else if (!session.message.address.conversation.isGroup) {

 // 1 on 1 session

 session.send('hello ' + session.message.user

.name + '!');

 } else {

 // silently looking at non-mention messages

 // session.send('bein creepy...');

 }

 session.send(msg);

 }

]);

Chapter 6 Diving into the Bot BuilDer SDK

285

Figure 6-22 is what the experience looks like in Slack in a direct

conversation.

Figure 6-23 shows the behavior in a group chat (excuse the overly

original username srozga2).

Figure 6-22. Direct messaging a group chat–enabled bot in Slack

Figure 6-23. Group chat–enabled bot ignoring messages without a
mention

Chapter 6 Diving into the Bot BuilDer SDK

286

 Custom Dialogs
We have constructed our dialogs by using the bot.dialog(…) method. We

also discussed the concept of a waterfall. In the calendar bot we started in

the previous chapter, each of our dialogs was implemented via waterfalls:

a set of steps that will execute in sequence. We can skip some steps or

end the dialog before all steps are completed, but the idea of a predefined

sequence is key. This logic is implemented by a class in the Bot Builder

SDK called WaterfallDialog. If we look at the code behind the dialog(…)

call, we will find this bit:

if (Array.isArray(dialog) || typeof dialog === 'function') {

 d = new WaterfallDialog(dialog);

} else {

 d = <any>dialog;

}

What if the conversation piece we would like to encode is not easily

represented in a waterfall abstraction? What choices do we have? We can

create a custom implementation of a dialog!

In the Bot Builder SDK, a dialog is a class that represents some

interaction between the user and the bot. Dialogs can call other dialogs

and accept return values from those child dialogs. They live on a dialog

stack, not unlike a function call stack. Using the default waterfall helper

hides some of these details; implementing a custom dialog brings us closer

to the dialog stack reality. The abstract Dialog class from the Bot Builder is

shown here:

export abstract class Dialog extends ActionSet {

 public begin<T>(session: Session, args?: T): void {

 this.replyReceived(session);

 }

Chapter 6 Diving into the Bot BuilDer SDK

287

 abstract replyReceived(session: Session, recognizeResult?:

IRecognizeResult): void;

 public dialogResumed<T>(session: Session, result:

IDialogResult<T>): void {

 if (result.error) {

 session.error(result.error);

 }

 }

 public recognize(context: IRecognizeDialogContext, cb:

(err: Error, result: IRecognizeResult) => void): void {

 cb(null, { score: 0.1 });

 }

}

Dialog is just a class that we can inherit from that has four important

methods.

• Begin: Called when the dialog is first placed on the

stack.

• ReplyReceived: Called anytime a message arrives from

a user.

• DialogResumed: Called when a child dialog ends and

the current dialog becomes active again. One of the

parameters received by the dialogResumed method is

the child dialog’s result object.

• Recognize: Allows us to add custom dialog recognition

logic. By default, BotBuilder provides declarative

methods to set up custom global or dialog-scoped

recognition. However, if we would like to add further

recognition logic, we can do so using this approach.

We’ll get more into this in the “Actions” section.

Chapter 6 Diving into the Bot BuilDer SDK

288

To illustrate the concepts, we create a BasicCustomDialog. Since Bot

Builder is written in TypeScript,9 a typed superset of JavaScript, we went

ahead and wrote the subclass in TypeScript, compiled into JavaScript using

the TypeScript Compiler (tsc), and then used it in app.js.

Let’s look at the custom dialog’s code. This happens to be TypeScript

as it has a cleaner interface when using inheritance; the compiled

JavaScript is shown later. When the dialog begins, it send the “begin” text.

When it receives a message, it responds with the “reply received” text. If

the user sent the “prompt” text, the dialog will ask the user for some text

input. It would then receive the text input in the dialogResumed method,

which prints that result. If the user had entered “done,” the dialog finishes

and returns to the root dialog.

import { Dialog, ResumeReason, IDialogResult, Session, Prompts

} from 'botbuilder'

export class BasicCustomDialog extends Dialog {

 constructor() {

 super();

 }

 // called when the dialog is invoked

 public begin<T>(session: Session, args?: T): void {

 session.send('begin');

 }

 // called any time a message is received

 public replyReceived(session: Session): void {

 session.send('reply received');

 if(session.message.text === 'prompt') {

 Prompts.text(session, 'please enter any text!');

9 TypeScript: http://www.typescriptlang.org/

Chapter 6 Diving into the Bot BuilDer SDK

http://www.typescriptlang.org/

289

 } else if(session.message.text == 'done') {

 session.endDialog('dialog ending');

 } else {

 // no-op

 }

 }

 public dialogResumed(session: Session, result: any): void {

 session.send('dialog resumed with value: ' + result);

 }

}

We use an instance of the dialog directly in app.js. In the default

waterfall, we echo any message, except the “custom” input, which begins

the custom dialog.

const bot = new builder.UniversalBot(connector, [

 (session) => {

 if(session.message.text === 'custom') {

 session.beginDialog('custom');

 } else {

 session.send('echo ' + session.message.text);

 }

 }

]);

const customDialogs = require('./customdialogs');

bot.dialog('custom', new customDialogs.BasicCustomDialog());

Chapter 6 Diving into the Bot BuilDer SDK

290

Figure 6-24 shows what a sample interaction looks like.

Incidentally, the Promps.text, Prompts.number, and other Prompt

dialogs are all implemented as custom dialogs.

Figure 6-24. Interacting with a custom dialog

Chapter 6 Diving into the Bot BuilDer SDK

291

The compiled JavaScript for the custom dialog is shown next. It is a bit

more challenging to reason about, but at the end of the day, it is standard

ES5 JavaScript prototype inheritance.10

"use strict";

var __extends = (this && this.__extends) || (function () {

 var extendStatics = Object.setPrototypeOf ||

 ({ __proto__: [] } instanceof Array && function (d, b)

{ d.__proto__ = b; }) ||

 function (d, b) { for (var p in b) if

(b.hasOwnProperty(p)) d[p] = b[p]; };

 return function (d, b) {

 extendStatics(d, b);

 function __() { this.constructor = d; }

 d.prototype = b === null ? Object.create(b) : (__.

prototype = b.prototype, new __());

 };

})();

exports.__esModule = true;

var botbuilder_1 = require("botbuilder");

var BasicCustomDialog = /** @class */ (function (_super) {

 __extends(BasicCustomDialog, _super);

 function BasicCustomDialog() {

 return _super.call(this) || this;

 }

 // called when the dialog is invoked

 BasicCustomDialog.prototype.begin = function (session,

args) {

 session.send('begin');

10 Classical Inheritance in JavaScript ES5: https://eli.thegreenplace.
net/2013/10/22/classical-inheritance-in-javascript-es5

Chapter 6 Diving into the Bot BuilDer SDK

https://eli.thegreenplace.net/2013/10/22/classical-inheritance-in-javascript-es5
https://eli.thegreenplace.net/2013/10/22/classical-inheritance-in-javascript-es5

292

 };

 // called any time a message is received

 BasicCustomDialog.prototype.replyReceived = function

(session) {

 session.send('reply received');

 if (session.message.text === 'prompt') {

 botbuilder_1.Prompts.text(session, 'please enter

any text!');

 }

 else if (session.message.text == 'done') {

 session.endDialog('dialog ending');

 }

 else {

 // no-op

 }

 };

 BasicCustomDialog.prototype.dialogResumed = function

(session, result) {

 session.send('dialog resumed with value: ' + result);

 };

 return BasicCustomDialog;

}(botbuilder_1.Dialog));

exports.BasicCustomDialog = BasicCustomDialog;

Chapter 6 Diving into the Bot BuilDer SDK

293

EXERCISE 6-3

Implementing a Custom Prompts.number

as an exercise of the concept of a custom dialog, you will now create a

custom prompts.number dialog. this exercise is purely academic; it is

interesting to know how framework-level behavior may be implemented.

 1. Create a bot with a two-step waterfall that uses the standard

prompts.number to collect a numerical value and send the

number back to the user in the second waterfall step. note that

you will be using the response field on the args parameter to

the waterfall functions.

 2. Create a custom dialog that collects user input until it receives

a number. You can use parseFloat for the purposes of the

exercise. When a valid number is received, call session.

endDialogWithresult with an object of the same structure as

the one returned by prompts.number. if the user’s input is

invalid, return an error message and ask for a number again.

 3. in your waterfall, instead of calling prompts.number, call your

new custom dialog. Your waterfall should still work!

 4. as a bonus, add logic to your custom dialog to allow a

maximum of five tries. after that, return a canceled result to

your waterfall.

You now understand the building blocks of all dialogs in the Bot Builder SDK!

We can use this knowledge to build just about any sort of interaction.

Chapter 6 Diving into the Bot BuilDer SDK

294

 Actions
We now have a good idea of how powerful abstraction dialogs are and

how the Bot Builder SDK manages the dialog stack. One of the key pieces

of the framework that we do not have good insight into is how to link user

actions to transformations of the dialog stack. At the most basic level,

we can write code that simply calls beginDialog. But how do we make

that determination based on user input? How can we hook that into the

recognizers that we learned about in the previous chapter and specifically

LUIS? That is what actions allow us to do.

The Bot Builder SDK contains six types of actions, with two being

global and four scoped to a dialog. The two global actions are triggerAction

and customAction. We’ve run into triggerAction before. It allows the

bot to invoke a dialog when an intent is matched at any point during

the conversation, assuming the intent does not match a dialog-scoped

action beforehand. These are evaluated any time user input is received.

The default behavior is to clear the entire dialog stack before the dialog is

invoked.

lib.dialog(constants.dialogNames.AddCalendarEntry, [

 function (session, args, next) {

 ...

]).triggerAction({

 matches: constants.intentNames.AddCalendarEntry

});

Each of our main dialogs in our code in the calendar bot from the

previous chapter uses the default triggerAction behavior, except for Help.

The Help dialog is invoked on top of the dialog stack, so when it completes,

we are back to whatever dialog the user was on to begin on. To achieve this

effect, we override the onSelectAction method and specify the behavior we

want.

Chapter 6 Diving into the Bot BuilDer SDK

295

lib.dialog(constants.dialogNames.Help, (session, args, next) => {

...

}).triggerAction({

 matches: constants.intentNames.Help,

 onSelectAction: (session, args, next) => {

 session.beginDialog(args.action, args);

 }

});

A customAction binds directly to the bot object, instead of a

dialog. It allows us to bind a function to respond to user input. We

don’t get a chance to query the user for more information like a dialog

implementation would. This is good for functionality that simply returns

a message or performs some HTTP call based on user input. In fact,

we could as far as to rewrite the Help dialog like this. The code looks

straightforward, but we lose the encapsulation and extensibility of the

dialog model. In other words, we no longer have the logic in its own dialog,

with the ability to execute several steps, collect user input, or provide a

result to the calling object.

lib.customAction({

 matches: constants.intentNames.Help,

 onSelectAction: (session, args, next) => {

 session.send("Hi, I am a calendar concierge bot. I

can help you create, delete and move appointments. I

can also tell you about your calendar and check your

availability!");

 }

});

The four types of contextual actions are beginDialogAction,

reloadAction, cancelAction, and endConversationAction. Let’s examine

each one.

Chapter 6 Diving into the Bot BuilDer SDK

296

BeginDialogAction creates an action that pushes a new dialog on the

stack whenever the action is matched. Our contextual help dialogs in

the calendar bot used this approach. We created two dialogs: one as the

help for the AddCalendarEntry dialog and the second as a help for the

RemoveCalendarEntry dialog.

// help message when help requested during the add calendar

entry dialog

lib.dialog(constants.dialogNames.AddCalendarEntryHelp,

(session, args, next) => {

 const msg = "To add an appointment, we gather the following

information: time, subject and location. You can also

simply say 'add appointment with Bob tomorrow at 2pm for an

hour for coffee' and we'll take it from there!";

 session.endDialog(msg);

});

// help message when help requested during the remove calendar

entry dialog

lib.dialog(constants.dialogNames.RemoveCalendarEntryHelp,

(session, args, next) => {

 const msg = "You can remove any calendar either by subject

or by time!";

 session.endDialog(msg);

});

Our AddCalendarEntry dialog can then bind the beginDialogAction to

its appropriate help dialog.

Chapter 6 Diving into the Bot BuilDer SDK

297

lib.dialog(constants.dialogNames.AddCalendarEntry, [

 // code

]).beginDialogAction(constants.dialogNames.

AddCalendarEntryHelp, constants.dialogNames.

AddCalendarEntryHelp, { matches: constants.intentNames.Help })

.triggerAction({ matches: constants.intentNames.

AddCalendarEntry });

Note that the behavior of this action is the same as calling beginDialog

manually. The new dialog is placed on top of the dialog stack, and the

current dialog is continued when done.

The reloadAction call performs a replaceDialog. replaceDialog is a

method on the session object that ends the current dialog and replaces

it with an instance of a different dialog. The parent dialog does not get a

result until the new dialog finishes. In practice, we can utilize this to restart

an interaction or to switch into a more appropriate dialog in the middle of

a flow.

Here is the code for the conversation (see Figure 6-25):

lib.dialog(constants.dialogNames.AddCalendarEntry, [

 // code

])

 .beginDialogAction(constants.dialogNames.

AddCalendarEntryHelp, constants.dialogNames.

AddCalendarEntryHelp, { matches: constants.intentNames.Help

})

 .reloadAction('startOver', "Ok, let's start over...", {

matches: /^restart$/i })

 .triggerAction({ matches: constants.intentNames.

AddCalendarEntry });

Chapter 6 Diving into the Bot BuilDer SDK

298

CancelAction allows us to cancel the current dialog. The parent dialog

will receive a cancelled flag set to true in its resume handler. This allows

the dialog to properly act on the cancellation. The code follows (the

conversation visualization is shown in Figure 6-26):

lib.dialog(constants.dialogNames.AddCalendarEntry, [

 // code

])

 .beginDialogAction(constants.dialogNames.AddCalendarEntryHelp,

constants.dialogNames.AddCalendarEntryHelp, { matches:

constants.intentNames.Help })

Figure 6-25. Sample conversation triggering the reloadAction

Chapter 6 Diving into the Bot BuilDer SDK

299

 .reloadAction('startOver', "Ok, let's start over...", {

matches: /^restart$/i })

 .cancelAction('cancel', 'Cancelled.', { matches: /^cancel$/i})

 .triggerAction({ matches: constants.intentNames.

AddCalendarEntry });

Lastly, the endConversationAction allows us to bind to the session.

endConversation call. Ending a conversation implies that the entire dialog

stack is cleared and that all the user and conversation data is removed from

the state store. If a user starts messaging the bot again, a new conversation

is created without any knowledge of the previous interactions. The code is

as follows (Figure 6-27 shows the conversation visualization):

lib.dialog(constants.dialogNames.AddCalendarEntry, [

 // code

])

 .beginDialogAction(constants.dialogNames.AddCalendarEntryHelp,

constants.dialogNames.AddCalendarEntryHelp, { matches:

constants.intentNames.Help })

Figure 6-26. Sample conversation triggering the cancelAction

Chapter 6 Diving into the Bot BuilDer SDK

300

 .reloadAction('startOver', "Ok, let's start over...", {

matches: /^restart$/i })

 .cancelAction('cancel', 'Cancelled.', { matches:

/^cancel$/i})

 .endConversationAction('end', "conversation over!", {

matches: /^end!$/i })

 .triggerAction({ matches: constants.intentNames.

AddCalendarEntry });

 Extra Notes on Actions
Recall from the previous chapter that each recognizer accepts a user input

and returns an object with an intent text value and a score. We touched

upon the fact that we can use recognizers that determine the intent from

LUIS, that use regular expressions, or that implement any custom logic.

Figure 6-27. A sample conversation triggering an
endConversationAction

Chapter 6 Diving into the Bot BuilDer SDK

301

The matches object in each of the actions that we have created is a way

for us to specify which recognizer intent an action is interested in. The

matches object implements the following interface:

export interface IDialogActionOptions {

 matches?: RegExp|RegExp[]|string|string[];

 intentThreshold?: number;

 onFindAction?: (context: IFindActionRouteContext,

callback: (err: Error | null, score: number, routeData?:

IActionRouteData) => void) => void;

 onSelectAction?: (session: Session, args?: any, next?:

Function) => void;

}

Here is what this object contains:

• Matches is the intent name or regular expression the

action is looking for.

• intentThreshold is the minimum score a recognizer

must assign to an intent for this action to get invoked.

• onFindAction allows us to invoke custom logic when

an action is being checked for whether it should be

triggered.

• onSelectAction allows you to customize the behavior

for an action. For instance, use it if you don’t want to

clear the dialog stack but would rather place the dialog

on top of the stack. We have seen this in action in our

previous action samples.

In addition to this level of customization, the Bot Builder SDK has

very specific rules around actions and their precedence. Recall that we’ve

looked at global actions, dialog-scoped actions, and a possible recognize

implementation on each dialog in our discussion on custom dialogs. The

Chapter 6 Diving into the Bot BuilDer SDK

302

order of action resolution when a message arrives is as follows. First, the

system tries to locate the current dialog’s implementation of the recognize

function. After that, the SDK looks at the dialog stack, starting from the

current dialog all the way to the root dialog. If no action matches along that

path, the global actions are queried. This order makes sure that actions

closest to the current user experience are processed first. Keep this in mind

as you design your bot interactions.

 Libraries
Libraries are a way of packaging and distributing related bot dialogs,

recognizers, and other functionality. Libraries can reference other libraries,

resulting in bots with highly composed pieces of functionality. From the

developer perspective, a library is simply a nicely packaged collection

of dialogs, recognizers, and other Bot Builder objects with a name and,

commonly, a set of helper methods to aid in invoking the dialogs and other

library-specific features. In our Calendar Concierge Bot in Chapter 5, each

dialog was part of a library related to a high-level bot feature. The app.js

code loads all the modules and then installs them into the main bot via the

bot.library call.

const helpModule = require('./dialogs/help');

const addEntryModule = require('./dialogs/addEntry');

const removeEntryModule = require('./dialogs/removeEntry');

const editEntryModule = require('./dialogs/editEntry');

const checkAvailabilityModule = require('./dialogs/

checkAvailability');

const summarizeModule = require('./dialogs/summarize');

Chapter 6 Diving into the Bot BuilDer SDK

303

const bot = new builder.UniversalBot(connector, [

 (session) => {

 // code

 }

]);

bot.library(addEntryModule.create());

bot.library(helpModule.create());

bot.library(removeEntryModule.create());

bot.library(editEntryModule.create());

bot.library(checkAvailabilityModule.create());

bot.library(summarizeModule.create());

This is library composition in action: UniversalBot is itself a subclass

of Library. Our main UniversalBot library imports six other libraries. A

reference to a dialog from any other context must be namespaced using

the library name as a prefix. From the perspective of the root library or

dialogs in the UniversalBot object, invoking any other library’s dialog

must use a qualified name in the format: libName:dialogName. This fully

qualified dialog name referencing process is necessary only when crossing

library boundaries. Within the context of the same library, the library

prefix is not necessary.

A common pattern is to expose a helper method in your module that

invokes library dialog. Think of it as library encapsulation; a library should

not know anything about the internals of another library. For example, our

help library exposes a method to do just that.

const lib = new builder.Library('help');

exports.help = (session) => {

 session.beginDialog('help:' + constants.dialogNames.Help);

};

Chapter 6 Diving into the Bot BuilDer SDK

304

 Conclusion
Microsoft’s Bot Builder SDK is a powerful bot construction library and

conversation engine that helps us develop all types of asynchronous

conversational experiences from simple back and forth to complex bots

with a multitude of behaviors. The dialog abstraction is a powerful way

of modeling a conversation. Recognizers define the mechanisms that our

bot utilizes to translate user input into machine-readable intents. Actions

map those recognizer results into operations on the dialog stack. A dialog

is principally concerned with three things: what happens when it begins,

what happens when a user’s message is received, and what happens

when a child dialog returns its result. Every dialog utilizes the bot context,

called the session, to retrieve the user message and to create responses. A

response may be composed of text, video, audio, or images. In addition,

cards can produce richer and context-sensitive experiences. Suggested

actions are responsible for keeping the user from guessing what to do next.

In the following chapter, we’ll apply these concepts to integrate our bot

with the Google Calendar API, and we’ll take steps to creating a compelling

first version of our calendar bot experience.

Chapter 6 Diving into the Bot BuilDer SDK

305© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_7

CHAPTER 7

Building an Integrated
Bot Experience
So far, we have built a pretty good LUIS application that has been evolving

over time. We also utilized the Bot Builder dialog engine that employs our

natural language models, extracts the relevant intents and entities from user

utterances, and contains conditional logic around many of the different

permutations of inputs coming into the bot. But our code does not really do

anything. How do we make it do something useful and real? Throughout the

book, we’ve been exploring the idea of a calendar bot. This means we need

to integrate with some kind of calendar API. For the purposes of this book,

we’re going to integrate with Google’s Calendar API. After that is set up, we

will explore how to integrate those calls into the bot flow. In this day and

age of OAuth, we are not going to spend time collecting a user’s name and

password in our chat window. That would not be secure. Instead, we will

implement a three-legged OAuth flow using the Google OAuth libraries. We’ll

then go ahead and make the changes in our code to support communication

with the Google Calendar API. At the end of the chapter, we’ll end up with a

bot that we can use to create appointments and view entries in our calendar!

306

Note, the code for this chapter is available as part of the code repository.

Throughout the bot code and the code in this book, you’ll find use of many

libraries. One of the more used ones is Underscore. Underscore is a nifty

library that provides a series of useful utility functions, especially around

collections.

 A Word on OAuth 2.0
This isn’t a book about security, but understanding basic authentication

and authorization mechanisms is essential to be a developer. OAuth 2.0 is

a standard authorization protocol. The three-legged OAuth 2.0 flow allows

third-party applications to access services on behalf of another entity. In

our case, we will be accessing a user’s Google Calendar data on behalf of

that user. At the end of the three-legged OAuth flow, we end up with two

tokens: an access token and a refresh token. The access token is included

in requests to an API in the authorization HTTP header and provides data

to the API declaring which user we are requesting data. Access tokens are

typically short-lived to reduce the window during which a compromised

access token can be utilized. When an access token expires, we can use the

refresh token to receive a new access token.

To initiate the flow, we first redirect the user to a service that they can

authenticate against, say, Google. Google presents an OAuth 2.0 login

page where it authenticates the user and asks the user for their consent so

that the bot can access the user’s data from Google on their behalf. When

authentication and consent are successful, Google sends an authorization

code back into the bot’s API, via what’s known as the redirect URI. Finally,

our bot requests the access and refresh tokens by presenting the

authorization code to Google’s token endpoint. Google’s OAuth libraries

will help us implement the three-legged flow in our calendar bot.

Chapter 7 Building an integrated Bot experienCe

307

 Setting Up Google APIs
Before we jump into it, we should set ourselves up to be able to use the

Google APIs. Luckily, Google makes this quite easy via the Google Cloud

Platform API console. Google Cloud Platform is Google’s Azure or AWS; it

is Google’s one-stop shop for provisioning and managing different cloud

services. To get started, we navigate to https://console.cloud.google.

com. If this is our first time visiting the site, we will be asked to accept the

terms of service. After that, we will be placed in the dashboard (Figure 7-1).

Figure 7-1. Google Cloud Platform dashboard

Chapter 7 Building an integrated Bot experienCe

https://console.cloud.google.com/
https://console.cloud.google.com/

308

Our next steps are as follows. We will create a new project. Within that

project, we will ask for access to the Calendar API. We will also give our

project the ability to log in on behalf of users using OAuth2. Once done, we

will receive a client ID and secret. Those two pieces of data, plus our redirect

URI, are sufficient for us to use the Google API libraries within our bot.

Click the Select a Project drop-down. You’ll be met with a pop-up that,

if you have not used this console before, should be empty (Figure 7-2).

Figure 7-2. Google Cloud Platform Dashboard projects

Chapter 7 Building an integrated Bot experienCe

309

Click the + button to add a new project. Give the project a name. Once

the project is created, we will be able to navigate to it through the Select

a Project functionality (Figure 7-3). The project is also assigned an ID,

prefixed by the project name.

When the open the project, we see the project dashboard, which

initially looks intimidating (Figure 7-4). There are many things we can do

here.

Figure 7-3. Our project is created!

Chapter 7 Building an integrated Bot experienCe

310

Let’s begin by getting access to the Google Calendar API. We first

click APIs & Services. We can find this link in the first few items on the left

navigation pane. The page already has quite a few things populated. These

are the default Google Cloud Platform services. Since we’re not using

them, we can disable each one. Once ready, we can click the Enable APIs

and Services button. We search for Calendar and click Google Calendar

API. Finally, we click the Enable button to add it to our project (Figure 7-5).

We will receive a warning indicating that we may need credentials to use

the API. No problem, we will do this next.

Figure 7-4. There are many things to do with a project

Chapter 7 Building an integrated Bot experienCe

311

To set up authorization, we click the Credentials link on the left pane.

We will be met with a prompt to create credentials. For our use case, in

which we will be accessing the user’s calendar, we need an OAuth Client

ID1 (Figure 7-6).

1 Google Cloud Platform supports three types of credentials for their services. API
keys are a way to identify a project and receive API access, quotas, and reports.
An OAuth Client ID allows your application to make requests on behalf of a
user. Lastly, service accounts allow applications to make requests on behalf of
applications. You can find more information at https://support.google.com/
cloud/answer/6158857?hl=en.

Figure 7-5. Enabling the Calendar API for our project

Chapter 7 Building an integrated Bot experienCe

https://support.google.com/cloud/answer/6158857?hl=en
https://support.google.com/cloud/answer/6158857?hl=en

312

We will first be asked to set up the consent screen (Figure 7-7). This

is the screen that the user will be shown when authenticating against

Google. Most of us have probably encountered these types of screens

across different web applications. For example, whenever we log into an

app via Facebook, we will be presented with a page telling us that the app

needs permission to read all your contact information and photos and

even deepest secrets. This is Google’s way of setting up a similar page. It

asks for data such as the product name, logos, terms of service, privacy

policy URLs, and so on. To test the functionality we minimally need a

product name.

Figure 7-6. Setting up our client credentials

Chapter 7 Building an integrated Bot experienCe

313

At this point, we will be taken back to the Create Client ID function.

As the Application Type setting, we should select Web Application and

give our client a name and a redirect URI (Figure 7-8). We utilize our

ngrok proxy URI (see Chapter 5 for more on ngrok). For local testing, we

are free to enter a localhost address. For example, you can enter http://

localhost:3978.

Figure 7-7. OAuth consent configuration

Chapter 7 Building an integrated Bot experienCe

314

Once we click the Create button, we will receive a pop-up with the

client ID and client secret (Figure 7-9). Copy them because we will need

the values in our bot. If we lose the client ID and secret, we can always

access them by navigating to the Credentials page for the project and

selecting the entry we created in the OAuth 2.0 Client IDs.

Figure 7-8. Creating a new OAuth 2.0 Client ID and providing a
redirect URI

Chapter 7 Building an integrated Bot experienCe

315

At this point we are ready to hook our bot up to the Google OAuth2

provider.

 Integrating Authentication with Bot Builder
We will need to install the googleapis node package as well as crypto-js, a

library that lets us encrypt data. When we send the user to the OAuth login

page, we also include a state in the URL. A state is simply a payload that

our application can use to identify a user and their conversation. When

Google sends back an authorization code as part of the OAuth 2.0 three-

legged flow, it will also send back the state. The state parameter should be

something recognizable to our API but very hard for a malicious actor to

guess, such as a session hash or some other information we are interested

in. Once we receive it from Google’s auth page, we can continue the user’s

conversation using the data in the state parameter.

Figure 7-9. We can always find a missing ID and secret

Chapter 7 Building an integrated Bot experienCe

316

To mask the data from bad actors, we will encode this object as a

Base64 string. Base64 is an ASCII representation of binary data.2 Since

a malicious actor could easily compromise this information by simply

decoding from Base64, we will use crypto-js to encrypt the state string.

First, let’s install the two packages.

npm install googleapis crypto-js --save

Second, let’s add three variables to our .env file representing the

client ID, secret, and redirect URI. We use the redirect URI we provided in

Figure 7-8 and the client ID and secret we received in Figure 7-9.

GOOGLE_OAUTH_CLIENT_ID=693978449559- 8t03j8064o6hfr1f8lh47s9gvc4

afed4.apps.googleusercontent.com

GOOGLE_OAUTH_CLIENT_SECRET=X6lzSlw500t0wmQQ2SpF6YV6

GOOGLE_OAUTH_REDIRECT_URI=https://a4b5518e.ngrok.io

Third, we need to generate the URL to the login page and send a button

that can open this URL. The Google Auth APIs can do a lot of this for us.

We will do a few things in our code. First, we import the crypto-js and

googleapis packages. Next, we create an OAuth2 client instance including

our client data. The state that we will send as part of the login URL

contains the user’s address. As shown in the previous chapter, an address

is sufficient to uniquely identify a user’s conversation, and Bot Builder

contains the facilities to help us send messages to that user by simply

presenting the conversation address. We use crypto-js to encrypt the state,

using the ASE algorithm.3 AES is a symmetric-key algorithm, which means

that the data is encrypted and decrypted using the same key or passphrase.

We add the passphrase into our .env file with the name AES_PASSPHRASE.

2 Base64: https://en.wikipedia.org/wiki/Base64
3 CryptoJS supports quite a few different hashing and cipher algorithms. The
full list can be found on the project’s GitHub page at https://github.com/
jakubzapletal/crypto-js. You can find more information on the AES algorithm
at https://en.wikipedia.org/wiki/Advanced_Encryption_Standard.

Chapter 7 Building an integrated Bot experienCe

https://en.wikipedia.org/wiki/Base64
https://github.com/jakubzapletal/crypto-js
https://github.com/jakubzapletal/crypto-js
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

317

GOOGLE_OAUTH_CLIENT_ID=693978449559- 8t03j8064o6hfr1f8lh47s9gvc4

afed4.apps.googleusercontent.com

GOOGLE_OAUTH_CLIENT_SECRET=X6lzSlw500t0wmQQ2SpF6YV6

GOOGLE_OAUTH_REDIRECT_URI=https://a4b5518e.ngrok.io/

oauth2callback

AES_PASSPHRASE=BotsBotsBots!!!

Another thing to note is the scopes array. When requesting

authorization to the Google APIs, we specify to Google which APIs we are

looking for access to using scopes. We can think of each item in the scopes

array as a piece of data we want to access about the user from Google’s

APIs. Of course, this array needs to be a subset of the APIs our Google

project may access to begin with. If we added a scope we did not enable for

our project earlier, the authorization process would fail.

const google = require('googleapis');

const OAuth2 = google.auth.OAuth2;

const CryptoJS = require('crypto-js');

const oauth2Client = getAuthClient();

const state = {

 address: session.message.address

};

const googleApiScopes = [

 'https://www.googleapis.com/auth/calendar'

];

const encryptedState = CryptoJS.AES.encrypt(JSON.

stringify(state), process.env.AES_PASSPHRASE).toString();

const authUrl = oauth2Client.generateAuthUrl({

 access_type: 'offline',

 scope: googleApiScopes,

 state: encryptedState

});

Chapter 7 Building an integrated Bot experienCe

318

Figure 7-10. A SigninCard rendered in the Bot Framework emulator

We also need to be able to send a button for the user to utilize to

authorize the bot. We utilize the built-in SigninCard for this purpose.

const card = new builder.SigninCard(session).button('Login to

Google', authUrl).text('Need to get your credentials. Please

login here.');

const loginReply = new builder.Message(session)

 .attachmentLayout(builder.AttachmentLayout.carousel)

 .attachments([card]);

The emulator renders the SigninCard as per Figure 7-10.

At this point we can click the Login button to log into Google and

authorize our bot to access our data, but it would fail because we have

not yet provided the code to handle the message from the return URI. We

use the same approach to install a handler for the https://a4b5518e.

ngrok.io/oauth2callback endpoint as we did to install the API messages

endpoint. We also enable restify.queryParser, which will expose each

parameter in the query string as a field in the req.query object. For

example, a callback in the form redirectUri?state=state&code=code will

result in a query object with two properties, state and code.

Chapter 7 Building an integrated Bot experienCe

https://a4b5518e.ngrok.io/oauth2callback
https://a4b5518e.ngrok.io/oauth2callback

319

const server = restify.createServer();

server.use(restify.queryParser());

server.listen(process.env.port || process.env.PORT || 3978,

function () {

 console.log('%s listening to %s', server.name, server.url);

});

server.get('/oauth2callback', function (req, res, next) {

 const code = req.query.code;

 const encryptedState = req.query.state;

 ...

});

We read the authorization code from the callback and use the Google

OAuth2 client to get the tokens from the token endpoint. The tokens JSON

will look like the following data. Note that expiry_date is the datetime in

milliseconds since the epoch.4

{

 "access_token": "ya29.GluMBfdm6hPy9QpmimJ5qjJpJXThL1y

 GcKHrOI7JCXQ46XdQaCDBcJzgp1gWcWFQNPTXjbBYoBp43BkEAyLi3

 ZPsR6wKCGlOYNCQIkeLEMdRTntTKIf5CE3wkolU",

 "refresh_token": "1/GClsgQh4BvHTxPdbQgwXtLW2hBza6FPLXDC9zBJ

sKf4NK_N7AfItv073kssh5VHq",

 "token_type": "Bearer",

 "expiry_date": 1522261726664

}

4 UNIX Epoch Time is the number of milliseconds elapsed since January 1, 1970
00:00:00 UTC: https://en.wikipedia.org/wiki/Unix_time

Chapter 7 Building an integrated Bot experienCe

https://en.wikipedia.org/wiki/Unix_time

320

Once we receive the tokens, we call setCredentials on the OAuth2

object, and it can now be used to access the Google Calendar API!

server.get('/oauth2callback', function (req, res, next) {

 const code = req.query.code;

 const encryptedState = req.query.state;

 const oauth2Client = new OAuth2(

 process.env.GOOGLE_OAUTH_CLIENT_ID,

 process.env.GOOGLE_OAUTH_CLIENT_SECRET,

 process.env.GOOGLE_OAUTH_REDIRECT_URI

);

 res.contentType = 'json';

 oauth2Client.getToken(code, function (error, tokens) {

 if (!error) {

 oauth2Client.setCredentials(tokens);

 // We can now use the oauth2Client to call the

calendar API

 next();

 } else {

 res.send(500, {

 status: 'error',

 error: error

 });

 next();

 }

 });

});

Chapter 7 Building an integrated Bot experienCe

321

In the code location where we have access to the Calendar API, we

can write code that gets a list of calendars that we own and prints out their

names. Note that calapi in the following code is a helper object that wraps

the Google Calendar API in JavaScript promises. The code is available in

the chapter’s code library.

calapi.listCalendars(oauth2Client).then(function (data) {

 const myCalendars = _.filter(data, p => p.accessRole ===

'owner');

 console.log(_.map(myCalendars, p => p.summary));

});

This code results in the following console output, which is an

unfortunate reminder of the rather lonely workout schedule that has not

seen much action since I became a dad.

Array(5) ["BotCalendar", "Szymon Rozga", "Work", "Szymon WFH

Schedule", "Workout schedule"]

Fatherhood weight gain aside, this is great! We do have a few

challenges. We need to store the users’ OAuth tokens so we can access

them any time the users message us. Where do we store them? This one

is easy: private conversation data. How do we get access to that data

dictionary in this context? We do this by passing the user’s address to the

bot.loadSession method.

Recall that we stored in the user’s address into the encrypted state

variable. We can decrypt that object by using the same passphrase we used

to encrypt the data.

const state = JSON.parse(CryptoJS.AES.decrypt(encryptedState,

process.env.AES_PASSPHRASE).toString(CryptoJS.enc.Utf8));

After we receive the token, we can load the bot session from the

address. At that point, we have a session object that has all the dialog

methods such as beginDialog for us to use.

Chapter 7 Building an integrated Bot experienCe

322

oauth2Client.getToken(code, function (error, tokens) {

 bot.loadSession(state.address, (sessionLoadError, session)

=> {

 if (!error && !sessionLoadError) {

 oauth2Client.setCredentials(tokens);

 calapi.listCalendars(oauth2Client).then(function

(data) {

 const myCalendars = _.filter(data, p =>

p.accessRole === 'owner');

 session.beginDialog('processUserCalendars', {

tokens: tokens, calendars: myCalendars });

 res.send(200, {

 status: 'success'

 });

 next();

 });

 // We can now use the oauth2Client to call the

calendar API

 } else {

 res.send(500, {

 status: 'error',

 error: error

 });

 next();

 }

 });

});

The processUserCalendars dialog could look something like this. It sets

the tokens into the private conversation data, lets the user know they are

logged in, and displays the names of all of the client’s calendars.

Chapter 7 Building an integrated Bot experienCe

323

Figure 7-11. Login flow integrated with a dialog

bot.dialog('processUserCalendars', (session, args) => {

 session.privateConversationData.userTokens = args.tokens;

 session.send('You are now logged in!');

 session.send('You own the following calendars. ' +

_.map(args.calendars, p => p.summary).join(', '));

 session.endDialog();

});

The interaction would look like Figure 7-11.

 Seamless Login Flow
We have successfully logged in and stored the access token, but we have

not yet demonstrated a seamless mechanism to redirect to a login flow

when a dialog requires our users to be logged in. More specifically, if in

the context of the calendar bot a user is not logged in and asks the bot to

add a new calendar entry, the bot should show the login button and then

continue with the Add Entry dialog once login is successful.

Chapter 7 Building an integrated Bot experienCe

324

There are a few requirements to integrating with the existing dialog

flow, listed here:

 1. We want to allow users to message the bot with the

text login or logout at any time and have the bot do

the correct thing.

 2. When a dialog that requires authorization begins, it

needs to validate that the user authorization exists.

If the auth does not exist, the login button should

show up and block the user from continuing with

said dialog until the user is authorized.

 3. If the user says logout, the tokens should be cleared

from the private conversation data and revoked with

Google.

 4. If the user says login, the bot needs to render the

login button. This button will point the user to the

authorization URL. This is the same as described

earlier. We must, however, ensure that clicking

the button twice does not confuse the bot and its

understanding of the user’s state.

We will naturally implement a Login dialog and a Logout dialog. Logout

simply checks the existence of tokens in the conversation state. If we do

not have the tokens, we are already logged out. If we do, we use Google’s

library to revoke the user’s credentials.5 The tokens are no longer valid.

function getAuthClientFromSession(session) {

 const auth = getAuthClient(session.privateConversation

Data.tokens);

5 OAuth Token Revocation: https://tools.ietf.org/html/rfc7009

Chapter 7 Building an integrated Bot experienCe

https://tools.ietf.org/html/rfc7009

325

 return auth;

};

function getAuthClient(tokens) {

 const auth = new OAuth2(

 process.env.GOOGLE_OAUTH_CLIENT_ID,

 process.env.GOOGLE_OAUTH_CLIENT_SECRET,

 process.env.GOOGLE_OAUTH_REDIRECT_URI

);

 if (tokens) {

 auth.setCredentials(tokens);

 }

 return auth;

}

bot.dialog('LogoutDialog', [(session, args) => {

 if (!session.privateConversationData.tokens) {

 session.endDialog('You are already logged out!');

 } else {

 const client = getAuthClientFromSession(session);

 client.revokeCredentials();

 delete session.privateConversationData['tokens'];

 session.endDialog('You are now logged out!');

 }

}]).triggerAction({

 matches: /^logout$/i

});

Login is a waterfall dialog that begins an EnsureCredentials dialog

before it gets to the next step. In the second step, it verifies whether it is

logged in. See the following code. It does this by verifying that it receives the

authenticated flag from the EnsureCredentials dialog. If yes, it simply lets

the user know that she is logged in. Otherwise, an error is shown to the user.

Chapter 7 Building an integrated Bot experienCe

326

Notice what we did here. We outsourced the logic of figuring out if we

are logged in, logging in, and then sending the result back to a different

dialog. As long as that dialog returns with an object with fields authenticated

and, optionally, error, this just works. We will use the same technique to

inject an authorization flow into any other dialog that requires it.

bot.dialog('LoginDialog', [(session, args) => {

 session.beginDialog(constants.dialogNames.Auth.

EnsureCredentials);

}, (session, args) => {

 if (args.response.authenticated) {

 session.send('You are now logged in!');

 } else {

 session.endDialog('Failed with error: ' + args.

response.error)

 }

}]).triggerAction({

 matches: /^login$/i

});

So, the most important question becomes, what does

EnsureCredentials do? There are four cases that this code needs to handle.

The first two are simple.

• What happens if a dialog requires credentials and the

authorization is successful?

• What happens if a dialog requires credentials and the

authorization fails?

The second two are a bit more nuanced. Our

question is specifically around what the bot should

do if a dialog is not awaiting authorization but it

comes in anyway. Or said differently, what happens

if EnsureCredentials is not on top of the stack?

Chapter 7 Building an integrated Bot experienCe

327

• What happens if the user clicks the login button outside

the scope of a dialog that needs it and the authorization

is successful?

• What happens if the user clicks the login button outside

the scope of a dialog that needs it and the authorization

fails?

We illustrate the flow for the first case in Figure 7-12. A dialog requests

that we have the user’s authorizations before continuing, like the Login

dialog did in the previous code. The user is sent to the auth page. Once the

auth page returns a successful authorization code, it sends a callback to

our oauth2callback. Once we get the tokens, we call a StoreTokens dialog

to store the tokens into the conversation data. That dialog will return a

success message to EnsureCredentials. In turn, this returns a successful

authentication message to the calling dialog.

If an error occurs, the flow is similar except that we replace the

EnsureCredentials dialog with the Error dialog. The Error dialog will then

return a failed authenticate message to the calling dialog, which can

Figure 7-12. Dialog requires authorization, successful
authorization

Chapter 7 Building an integrated Bot experienCe

328

handle the error as it best sees fit (Figure 7-13). Recall, as we noted in

Chapter 5, replaceDialog is a call that replaces the current dialog on top of

the stack with an instance of another dialog. The calling dialog does not

know, nor care, about this implementation detail.

In the case that the user clicks the login button when a dialog is not

expecting a reply and EnsureCredentials is not on top of the stack, the flow

is slightly different. We want to display a success or failure message to the

user if the authorization succeeds or fails. To achieve this, we will put a

confirmation dialog, AuthConfirmation, on the stack before invoking the

StoreTokens dialog (Figure 7-14).

Figure 7-13. Dialog requires authorization, failed authorization

Chapter 7 Building an integrated Bot experienCe

329

Likewise, in the case we receive an authorization error, we push the

AuthConfirmation dialog on top of the stack, before pushing the Error

 dialog (Figure 7-15). This will ensure that the confirmation dialog displays

the right type of message to the user.

Figure 7-14. User says login, successful authorization

Figure 7-15. User says login, failed authorization

Chapter 7 Building an integrated Bot experienCe

330

Let’s see what the code for this looks like. The Login and Logout dialogs

are done, but let’s look at EnsureCredentials, StoreTokens, and Error.

EnsureCredentials is composed of two steps. First, if the user has a

set of tokens defined, the dialog finishes passing a result indicating that

the user is good to go. Otherwise, we create the auth URL and send a

SigninCard to the user, just like we did in the previous section. The second

step also executes in case 1. It simply tells the calling dialog that the user is

authorized.

bot.dialog('EnsureCredentials', [(session, args) => {

 if(session.privateConversationData.tokens) {

 // if we have the tokens... we're good. if we have the

tokens for too long and the tokens expired

 // we'd need to somehow handle it here.

 session.endDialogWithResult({ response: {

authenticated: true } });

 return;

 }

 const oauth2Client = getAuthClient();

 const state = {

 address: session.message.address

 };

 const encryptedState = CryptoJS.AES.encrypt(JSON.

stringify(state), process.env.AES_PASSPHRASE).toString();

 const authUrl = oauth2Client.generateAuthUrl({

 access_type: 'offline',

 scope: googleApiScopes,

 state: encryptedState

 });

 const card = new builder.HeroCard(session)

 .title('Login to Google')

Chapter 7 Building an integrated Bot experienCe

331

 .text("Need to get your credentials. Please login

here.")

 .buttons([

 builder.CardAction.openUrl(session, authUrl,

'Login')

]);

 const loginReply = new builder.Message(session)

 .attachmentLayout(builder.AttachmentLayout.carousel)

 .attachments([card]);

 session.send(loginReply);

}, (session, args) => {

 session.endDialogWithResult({ response: { authenticated:

true } });

}]);

StoreTokens and Error are similar. Both essentially return an

authorization result to its parent dialog. In the case of StoreTokens, we also

store the tokens into the conversation data.

bot.dialog('Error', [(session, args) => {

 session.endDialogWithResult({ response: { authenticated:

false, error: args.error } });

}]);

bot.dialog('StoreTokens', function (session, args) {

 session.privateConversationData.tokens = args.tokens;

 session.privateConversationData.calendarId = args.

calendarId;

 session.endDialogWithResult({ response: { authenticated:

true }});

});

Chapter 7 Building an integrated Bot experienCe

332

Note that EnsureCredentials is going to consume the result of either

of these two and simply pass it down to the calling dialog. It is up to the

calling dialog to display a success or error message. There may not even be

a success message; the calling dialog may just jump into its own steps.

That covers cases 1 and 2. To ensure cases 3 and 4 are covered, we

need to implement this AuthConfirmation dialog. The role of this dialog is

to display either a success or failure message. Recall that we place either an

Error (case 3) or StoreTokens (case 4) dialog on top of AuthConfirmation.

The idea is that AuthConfirmation will receive the name of the dialog to

place on top of itself and then send the appropriate message to the user

when it receives a result.

bod.dialog('AuthConfirmation', [

 (session, args) => {

 session.beginDialog(args.dialogName, args);

 },

 (session, args) => {

 if (args.response.authenticated) {

 session.endDialog('You are now logged in.')

 }

 else {

 session.endDialog('Error occurred while logging in.

' + args.response.error);

 }

 }

]);

Lastly, how do we change our endpoint callback code? Before

we get there, we write a few helpers to invoke the different dialogs.

We expose a function called isInEnsure that verifies whether we are

getting into this piece of code from the EnsureCredentials dialog. This

Chapter 7 Building an integrated Bot experienCe

333

will dictate whether we need the AuthConfirmation. beginErrorDialog

and beginStoreTokensAndResume both utilize this approach. Finally,

ensureLoggedIn is the function that each dialog that requires authorization

must call to kick off the flow.

function isInEnsure(session) {

 return _.find(session.dialogStack(), function (p) { return

p.id.indexOf('EnsureCredentials') >= 0; }) != null;

}

const beginErrorDialog = (session, args) => {

 if (isInEnsure(session)) {

 session.replaceDialog('Error', args);

 }

 else {

 args.dialogName = 'Error';

 session.beginDialog('AuthConfirmation', args);

 }

};

const beginStoreTokensAndResume = (session, args) => {

 if (isInEnsure(session)) {

 session.beginDialog('StoreTokens', args);

 } else {

 args.dialogName = 'StoreTokens';

 session.beginDialog('AuthConfirmation', args);

 }

};

const ensureLoggedIn = (session) => {

 session.beginDialog('EnsureCredentials');

};

Chapter 7 Building an integrated Bot experienCe

334

Finally, let’s look at the callback. The code looks similar to our callback

in the previous section, except we need to add the logic to begin the right

dialogs. If we encounter any errors while loading our session object or we

get an OAuth error, such as the user declining access to our bot, we redirect

the user to the Error dialog. Otherwise, we use the authorization code

from Google to get the tokens, set the credentials in the OAuth client, and

call into the StoreTokens or AuthConfirmation dialog. The following code

covers the four cases highlighted at the beginning of this section:

exports.oAuth2Callback = function (bot, req, res, next) {

 const code = req.query.code;

 const encryptedState = req.query.state;

 const oauthError = req.query.error;

 const state = JSON.parse(CryptoJS.AES.decrypt

(encryptedState, process.env.AES_PASSPHRASE).

toString(CryptoJS.enc.Utf8));

 const oauth2Client = getAuthClient();

 res.contentType = 'json';

 bot.loadSession(state.address, (sessionLoadError,

session) => {

 if (sessionLoadError) {

 console.log('SessionLoadError:' +

sessionLoadError);

 beginErrorDialog(session, { error: 'unable to load

session' });

 res.send(401, {

 status: 'Unauthorized'

 });

 } else if (oauthError) {

 console.log('OAuthError:' + oauthError);

 beginErrorDialog(session, { error: 'Access Denied'

});

Chapter 7 Building an integrated Bot experienCe

335

 res.send(401, {

 status: 'Unauthorized'

 });

 } else {

 oauth2Client.getToken(code, (error, tokens) => {

 if (!error) {

 oauth2Client.setCredentials(tokens);

 res.send(200, {

 status: 'success'

 });

 beginStoreTokensAndResume(session, {

 tokens: tokens

 });

 } else {

 beginErrorDialog(session, {

 error: error

 });

 res.send(500, {

 status: 'error'

 });

 }

 });

 }

 next();

 });

};

Chapter 7 Building an integrated Bot experienCe

336

EXERCISE 7-1

Setting Up Google Auth with Gmail Access

the goal of this exercise to create a bot that allows a user to authorize against

the gmail api. Your goal is to follow these steps:

 1. Set up a google project and enable access to the google

gmail api.

 2. Create an oauth client id and secret.

 3. Create a basic workflow in your bot that allows users to log into

google with the gmail scope and store the tokens in the user’s

private conversation data.

at the end of this exercise, you will have created a bot that is ready to access

the gmail api on behalf of the bot user.

 Integrating with the Google Calendar API
We are now ready to integrate with the Google Calendar API. There are a

few things we should address first. Google Calendar allows users to have

access to multiple calendars and, further, to have a different permission

level for each calendar. In our bot, we assume that at any point we are

querying or adding events into only one calendar, as flawed as that may

seem. We could extend the LUIS application and bot to include the ability

to specify a calendar for each utterance.

To handle this, we create a PrimaryCalendar dialog that allows

users to set, reset, and retrieve their primary calendar. Similar to the

EnsureCredentials dialog being called at the beginning of each dialog that

requires authentication, we create a similar mechanism to guarantee that a

calendar is set as primary.

Chapter 7 Building an integrated Bot experienCe

337

Before we get there, let’s talk about connecting to the Google Calendar

API. The googleapis node package includes the Calendar APIs, among

others. The API utilizes the following format:

API.Resource.Method(args, function (error, response) {

});

A calendar call would look as follows:

calendar.events.get({

 auth: auth,

 calendarId: calendarId,

 eventId: eventId

}, function (err, response) {

 // do stuff with the error and/or response

});

First, we will adapt this to the JavaScript Promise6 pattern. Promises

make it easy to work with asynchronous calls. A promise in JavaScript

represents an eventual completion or failure of an operation, as well as its

return value. It supports a then method that allows us to perform an action

on the result and a catch method that allows us to perform an action on

the error object. Promises can be chained: the result of a promise can be

passed to another promise that produces a result that can get passed into

another promise and so forth, resulting in code that look as follows:

promise1()

 .then(r1 => promise2(r2))

 .then(r2 => promise3(r2))

 .catch(err => console.log('Error in promise chain. ' + err));

6 Mozilla Developer Network: Promise Object: https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Chapter 7 Building an integrated Bot experienCe

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

338

Our modified Google Calendar Promise API will look as follows:

gcalapi.getCalendar(auth, temp)

 .then(function (result) {

 // do something with result

 }).catch(function (err) {

 // do something with err

 });

We wrap all the necessary functions in a module called calendar-api.

Some of the code is presented here:

const google = require('googleapis');

const calendar = google.calendar('v3');

function listEvents (auth, calendarId, start, end, subject) {

 const p = new Promise(function (resolve, reject) {

 calendar.events.list({

 auth: auth,

 calendarId: calendarId,

 timeMin: start.toISOString(),

 timeMax: end.toISOString(),

 q: subject

 }, function (err, response) {

 if (err) reject(err);

 resolve(response.items);

 });

 });

 return p;

}

function listCalendars (auth) {

 const p = new Promise(function (resolve, reject) {

 calendar.calendarList.list({

Chapter 7 Building an integrated Bot experienCe

339

 auth: auth

 }, function (err, response) {

 if (err) reject(err);

 else resolve(response.items);

 });

 });

 return p;

};

With the API working, we now turn our focus to the PrimaryCalendar

dialog. This dialog must handle several scenarios.

• What happens if a user sends utterances such as “get

primary calendar” or “set primary calendar”? The

former should return a card representation of the

calendar, and the latter should allow the user to select a

calendar card.

• What happens if a user logs in and a primary calendar

isn’t set? At that point, we automatically try to get the

user to select a calendar.

• What happens if the user selects a calendar via the

action button on the calendar card?

• What happens if the user selects a calendar by typing

the calendar’s name?

• What happens if the user tries to perform an action

that requires a calendar to be set (such as adding a new

appointment)?

The PrimaryCalendar dialog is a waterfall dialog with three steps. Step

1 ensures that the user is logged in by calling EnsureCredentials. Step 2

expects to receive a command from a user. We can either get our current

primary calendar, set a calendar, or reset our calendar; thus, the three

Chapter 7 Building an integrated Bot experienCe

340

commands are get, set, or reset. Set calendar takes an optional calendar

ID. If a calendar ID is not passed, the set command is treated equivalently

to reset. Reset simply sends the user a list of all available calendars to

which a user has write access to (another simplifying assumption).

The get case is handled by this code:

let temp = null;

if (calendarId) { temp = calendarId.entity; }

if (!temp) {

 temp = session.privateConversationData.calendarId;

}

gcalapi.getCalendar(auth, temp).then(result => {

 const msg = new builder.Message(session)

 .attachmentLayout(builder.AttachmentLayout.carousel)

 .attachments([utils.createCalendarCard

(session, result)]);

 session.send(msg);

}).catch(err => {

 console.log(err);

 session.endDialog('No calendar found.');

});

The reset case sends the user a carousel of calendar cards. If the user

enters a text input, the third step of the waterfall assumes that the input is a

calendar name and sets the right calendar. If the input isn’t recognized, an

error message is sent.

handleReset(session, auth);

function handleReset (session, auth) {

 gcalapi.listCalendars(auth).then(result => {

 const myCalendars = _.filter(result, p => { return

p.accessRole !== 'reader'; });

Chapter 7 Building an integrated Bot experienCe

341

 const msg = new builder.Message(session)

 .attachmentLayout(builder.AttachmentLayout.

carousel)

 .attachments(_.map(myCalendars, item => { return

utils.createCalendarCard(session, item); }));

 builder.Prompts.text(session, msg);

 }).catch(err => {

 console.log(err);

 session.endDialog('No calendar found.');

 });

}

The createCalendarCard method simply sends a card with a title,

subtitle, and a button that sends the set calendar command. The button

posts back this value: Set primary calendar to {calendarId}.

function createCalendarCard (session, calendar) {

 const isPrimary = session.privateConversationData.

calendarId === calendar.id;

 let subtitle = 'Your role: ' + calendar.accessRole;

 if (isPrimary) {

 subtitle = 'Primary\r\n' + subtitle;

 }

 let buttons = [];

 if (!isPrimary) {

 let btnval = 'Set primary calendar to ' + calendar.id;

 buttons = [builder.CardAction.postBack(session, btnval,

'Set as primary')];

 }

 const heroCard = new builder.HeroCard(session)

 .title(calendar.summary)

 .subtitle(subtitle)

Chapter 7 Building an integrated Bot experienCe

342

 .buttons(buttons);

 return heroCard;

};

This presents an interesting challenge. If a calendar card is sent in any

context other than the PrimaryCalendar dialog, we need a full utterance

like to resolve to a global action, which then invokes the PrimaryCalendar

dialog. However, if we serve a card like this in the context of the primary

calendar dialog, the button will still trigger the global action, therefore

resetting our entire stack. We don’t want to set different text based on

which dialog created the card because these buttons remain in the chat

history and can be clicked any time.

In addition, if the PrimaryCalendar dialog is invoked, we would like to

ensure that it does not get rid of the current dialog. For example, if I am in

the middle of adding an appointment, I should be able to switch calendars

and come back to the right step in the process afterward.

We override the triggerAction and selectAction methods to ensure the

right behavior. If another instance of the PrimaryCalendar dialog is on the

stack, we replace it. Otherwise, we push the PrimaryCalendar dialog to the

top of the stack.

.triggerAction({

 matches: constants.intentNames.PrimaryCalendar,

 onSelectAction: (session, args, next) => {

 if (_.find(session.dialogStack(), function (p) { return

p.id.indexOf(constants.dialogNames.PrimaryCalendar)

>= 0; }) != null) {

 session.replaceDialog(args.action, args);

 } else {

 session.beginDialog(args.action, args);

 }

 }

});

Chapter 7 Building an integrated Bot experienCe

343

If a PrimaryCalendar dialog is invoked while the user is within another

instance of the PrimaryCalendar dialog, we replace the top dialog with

another instance of the PrimaryCalendar dialog. In reality, and bear with

me here, this will occur only in the reset command, and it will actually

replace the builder.Prompts.text dialog that we invoke in handleReset.

So, in essence we end up with a PrimaryCalendar dialog waiting for a

response object that can now come from another PrimaryCalendar dialog.

We can have the topmost instance return a flag when it is done so that the

other instance simply exits when the third step resumes. Here is the final

waterfall step to illustrate this logic:

function (session, args) {

 // if we have a response from another primary calendar

dialog, we simply finish up!

 if (args.response.calendarSet) {

 session.endDialog({ response: { calendarSet: true } });

 return;

 }

 // else we try to match the user text input to a calendar

name

 var name = session.message.text;

 var auth = authModule.getAuthClientFromSession(session);

 // we try to find the calendar with a summary that matches

the user's input.

 gcalapi.listCalendars(auth).then(function (result) {

 var myCalendars = _.filter(result, function (p) {

return p.accessRole != 'reader'; });

 var calendar = _.find(myCalendars, function (item)

{ return item.summary.toUpperCase() === name.

toUpperCase(); });

 if (calendar == null) {

Chapter 7 Building an integrated Bot experienCe

344

 session.send('No such calendar found.');

 session.replaceDialog(constants.dialogNames.

PrimaryCalendar);

 }

 else {

 session.privateConversationData.calendarId =

result.id;

 var card = utils.createCalendarCard(session, result);

 var msg = new builder.Message(session)

 .attachmentLayout(builder.AttachmentLayout.

carousel)

 .attachments([card])

 .text('Primary calendar set!');

 session.send(msg);

 session.endDialog({ response: { calendarSet: true }

});

 }

 }).catch(function (err) {

 console.log(err);

 session.endDialog('No calendar found.');

 });

}

The set action is less complex. If we receive a calendar ID along with

the user message, we simply set that message and send back a card of the

calendar. If we do not receive a calendar ID, we assume the same behavior

as reset.

let temp = null;

if (calendarId) { temp = calendarId.entity; }

if (!temp) {

 handleReset(session, auth);

} else {

Chapter 7 Building an integrated Bot experienCe

345

 gcalapi.getCalendar(auth, temp).then(result => {

 session.privateConversationData.calendarId = result.id;

 const card = utils.createCalendarCard(session, result);

 const msg = new builder.Message(session)

 .attachmentLayout(builder.AttachmentLayout.

carousel)

 .attachments([card])

 .text('Primary calendar set!');

 session.send(msg);

 session.endDialog({ response: { calendarSet: true } });

 }).catch(err => {

 console.log(err);

 session.endDialog('this calendar does not exist');

 // this calendar id doesn't exist...

 });

}

That was a lot to process, but it is a good illustration of some the dialog

gymnastics that need to occur to ensure a consistent and comprehensive

conversational experience. In the following section, we will integrate the

authentication and primary calendar flows into the dialogs we developed

in Chapter 6 and connect the logic to calls into the Google Calendar API.

 Implementing the Bot Functionality
At this point, we are ready to connect our bot code to the Google Calendar

API. Our code doesn’t change too much from its Chapter 5 state. These are

the main changes to our dialogs:

• We must ensure that the user is logged in.

• We must ensure a primary calendar is set.

• Utilize the Google Calendar APIs to finally make things

happen!

Chapter 7 Building an integrated Bot experienCe

346

Let’s start with the first two items. We have created the

EnsureCredentials and PrimaryCalendar dialogs for this very purpose.

In the provided code, our authModule and primaryCalendarModule

modules contain a couple of helpers to call the EnsureCredentials and

PrimaryCalendar dialogs. Each of our functions can utilize the helpers to

ensure that the credentials and the primary calendar are set.

This is too much responsibility for those dialogs. We would have to

add two steps into every single dialog. Instead, let’s create a dialog that can

evaluate all the prechecks in the correct order and simply pass one result

to the calling dialog. Here’s how we would achieve this. We create a dialog

called PreCheck. This dialog will make the necessary checks and return

a response object with an error set if there is an error as well as a flag

indicating which check failed.

bot.dialog('PreCheck', [

 function (session, args) {

 authModule.ensureLoggedIn(session);

 },

 function (session, args) {

 if (!args.response.authenticated) {

 session.endDialogWithResult({ response: { error:

'You must authenticate to continue.', error_auth:

true } });

 } else {

 primaryCalendarModule.ensurePrimaryCalendar

(session);

 }

 },

 function (session, args, next) {

 if (session.privateConversationData.calendarId)

session.endDialogWithResult({ response: { } });

Chapter 7 Building an integrated Bot experienCe

347

 else session.endDialogWithResult({ response: { error:

'You must set a primary calendar to continue.', error_

calendar: true } });

 }

]);

Any dialog that needs auth and a primary calendar to be set only needs

to invoke the PreCheck dialog and ensure there was no error. Here is an

example from the ShowCalendarSummary dialog in the sample code.

Note that the first step in the waterfall calls PreCheck, and the second step

ensures all prechecks successfully passed.

lib.dialog(constants.dialogNames.ShowCalendarSummary, [

 function (session, args) {

 g = args.intent;

 prechecksModule.ensurePrechecks(session);

 },

 function (session, args, next) {

 if (args.response.error) {

 session.endDialog(args.response.error);

 return;

 }

 next();

 },

 function (session, args, next) {

 // do stuff

 }

]).triggerAction({ matches: constants.intentNames.

ShowCalendarSummary });

So that’s it for the first two items. At this point, all that is left is the

third one; we need to implement the actual integration with the Google

 Calendar API. The following is the example of what the third step of the

Chapter 7 Building an integrated Bot experienCe

348

ShowCalendarSummary dialog looks like. Notice that we gather the

datetimeV2 entities to figure out what time period we need to retrieve

events for, we optionally use the Subject entity to filter out calendar

items, and we build a carousel of event cards, ordered by date. The

createEventCard method creates a HeroCard object for every Google

Calendar API event object.

The implementation of the remaining dialogs is available in the

calendar- bot-buildup repository included with the book.

 function (session, args, next) {

 var auth = authModule.getAuthClientFromSession(session);

 var entry = new et.EntityTranslator();

 et.EntityTranslatorUtils.attachSummaryEntities(entry,

session.dialogData.intent.entities);

 var start = null;

 var end = null;

 if (entry.hasRange) {

 if (entry.isDateTimeEntityDateBased) {

 start = moment(entry.range.start).

startOf('day');

 end = moment(entry.range.end).endOf('day');

 } else {

 start = moment(entry.range.start);

 end = moment(entry.range.end);

 }

 } else if (entry.hasDateTime) {

 if (entry.isDateTimeEntityDateBased) {

 start = moment(entry.dateTime).startOf('day');

 end = moment(entry.dateTime).endOf('day');

 } else {

 start = moment(entry.dateTime).add(-1, 'h');

Chapter 7 Building an integrated Bot experienCe

349

 end = moment(entry.dateTime).add(1, 'h');

 }

 }

 else {

 session.endDialog("Sorry I don't know what you

mean");

 return;

 }

 var p = gcalapi.listEvents(auth, session.

privateConversationData.calendarId, start, end);

 p.then(function (events) {

 var evs = _.sortBy(events, function (p) {

 if (p.start.date) {

 return moment(p.start.date).add(-1, 's').

valueOf();

 } else if (p.start.dateTime) {

 return moment(p.start.dateTime).valueOf();

 }

 });

 // should also potentially filter by subject

 evs = _.filter(evs, function(p) {

 if(!entry.hasSubject) return true;

 var containsSubject = entry.subject.

toLowerCase().indexOf(entry.subject.

toLowerCase()) >= 0;

 return containsSubject;

 });

 var eventmsg = new builder.Message(session);

 if (evs.length > 1) {

Chapter 7 Building an integrated Bot experienCe

350

 eventmsg.text('Here is what I found...');

 } else if (evs.length == 1) {

 eventmsg.text('Here is the event I found.');

 } else {

 eventmsg.text('Seems you have nothing going on

then. What a sad existence you lead.');

 }

 if (evs.length >= 1) {

 var cards = _.map(evs, function (p) {

 return utils.createEventCard(session, p);

 });

 eventmsg.attachmentLayout

(builder.AttachmentLayout.

carousel);

 eventmsg.attachments(cards);

 }

 session.send(eventmsg);

 session.endDialog();

 });

 }

function createEventCard(session, event) {

 var start, end, subtitle;

 if (!event.start.date) {

 start = moment(event.start.dateTime);

 end = moment(event.end.dateTime);

 var diffInMinutes = end.diff(start, "m");

 var diffInHours = end.diff(start, "h");

 var duration = diffInMinutes + ' minutes';

Chapter 7 Building an integrated Bot experienCe

351

 if (diffInHours >= 1) {

 var hrs = Math.floor(diffInHours);

 var mins = diffInMinutes - (hrs * 60);

 if (mins == 0) {

 duration = hrs + 'hrs';

 } else {

 duration = hrs + (hrs > 1 ? 'hrs ' : 'hr ') +

(mins < 10 ? ('0' + mins) : mins) + 'mins';

 }

 }

 subtitle = 'At ' + start.format('L LT') + ' for ' +

duration;

 } else {

 start = moment(event.start.date);

 end = moment(event.end.date);

 var diffInDays = end.diff(start, 'd');

 subtitle = 'All Day ' + start.format('L') +

(diffInDays > 1 ? end.format('L') : '');

 }

 var heroCard = new builder.HeroCard(session)

 .title(event.summary)

 .subtitle(subtitle)

 .buttons([

 builder.CardAction.openUrl(session, event.htmlLink,

'Open Google Calendar'),

 builder.CardAction.postBack(session, 'Delete event

with id ' + event.id, 'Delete')

]);

 return heroCard;

};

Chapter 7 Building an integrated Bot experienCe

352

EXERCISE 7-2

Integrating with the Gmail API

although you are welcome to follow the code in the previous section and then

use the code provided with the book to put together a calendar bot, the goal

of this exercise is to create a bot that can send emails from the user’s gmail

account. this way, you can exercise your authentication logic from exercise

7-1 and integrate with a client api you have not seen before.

 1. taking your code from exercise 7-1 as a starting point, create

a bot that contain two dialogs, one for sending mail and one for

viewing unread messages. there is no need to create a luiS

application (though you are certainly free to work on that). use

keywords like send and list to invoke the dialogs.

 2. For the send operation, create a dialog called SendMail. this

dialog should collect an email address, a title, and message

body text. ensure the dialog is integrated with an auth flow.

 3. integrate with the gmail client library to send an email using

the user’s access tokens collected during the auth flow. use the

documentation here for the messages.send api call: https://

developers.google.com/gmail/api/v1/reference/

users/messages/send.

 4. For the list operation, create a dialog called ListMail. this dialog

should get all unread mail from the user’s inbox using the

user’s access tokens collected during the auth flow. use the

documentation here for the messages.list api call: https://

developers.google.com/gmail/api/v1/reference/

users/messages/list.

Chapter 7 Building an integrated Bot experienCe

https://developers.google.com/gmail/api/v1/reference/users/messages/send
https://developers.google.com/gmail/api/v1/reference/users/messages/send
https://developers.google.com/gmail/api/v1/reference/users/messages/send
https://developers.google.com/gmail/api/v1/reference/users/messages/list
https://developers.google.com/gmail/api/v1/reference/users/messages/list
https://developers.google.com/gmail/api/v1/reference/users/messages/list

353

 5. render the list of unread messages as a carousel. display the

title, date received, and a button to open the email message

in a web browser. You can find the reference for the messages

object here: https://developers.google.com/gmail/

api/v1/reference/users/messages#resource.

the url for a message is https://mail.google.com/

mail/#inbox/{MESSAGE_ID}.

if you succeeded in creating this bot, congratulations! this is not the easiest

of exercises, but the results is well worth it. You now have the skills to create

a bot, integrate it with an oauth flow, use a third-party api to make your bot

functional, and render items as cards. great work!

 Conclusion
Building bots is both easy and challenging. It is easy to set up a basic bot

with some simple commands. It is easy to get user utterances and execute

code based on them. It is, however, quite challenging to get the user

experience just right. As we have observed, the challenges in developing

bots are twofold.

First, we need to make sense of the many permutations of natural

language utterances. Our users can say the same things in numerous ways

with nuanced variations. The LUIS application we’ve built for this book are

a good start, but there are many other ways of expressing the same ideas.

We’ll need to exercise judgment on when we say that a LUIS application

is good enough. Bot testing is where a lot of this kind of evaluation occurs.

Once we unleash a set of users on your bot, we will see how users end

up using your bot and what type of inputs and behaviors they expect to

be handled. This is the data we need to improve our natural language

understanding and decide what features to build next. We will cover

analytics tools that help with this task in Chapter 13.

Chapter 7 Building an integrated Bot experienCe

https://developers.google.com/gmail/api/v1/reference/users/messages#resource
https://developers.google.com/gmail/api/v1/reference/users/messages#resource
https://mail.google.com/mail/#inbox/{MESSAGE_ID
https://mail.google.com/mail/#inbox/{MESSAGE_ID

354

Second, it is important to spend time on the overall conversations

experience. Although this is not the focus of this book, a proper experience

is key to our bots’ success. We did spend some time thinking around how

to ensure that the user is logged in before we proceed into dialogs with

any actions against the Calendar API. This is an example of the type of

behaviors and flows that need to be thought through as we develop a bot.

A more naïve bot may simply send the user an error saying they need to

log in first, after which the user would have to repeat their input. A better

implementation is the redirection through dialogs that we created in this

chapter. Lucky for us, the Bot Builder SDK and its dialog model help us

describe these complex flows in code.

We now have the skills and experience to develop complex and

amazing bot experiences, with all types of API integrations. This is the real

combined power of LUIS and the Microsoft Bot Framework!

Chapter 7 Building an integrated Bot experienCe

355© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_8

CHAPTER 8

Extending Channel
Functionality
We have spent a substantial amount of time so far discussing NLU systems,

conversational experiences, and how we can develop bots in a generic

manner using a common format via the Bot Builder SDK. The Bot Builder

SDK lets us get up and running quickly. This is part of why it is such a

powerful abstraction. But frankly, a lot of the innovation in the space

is coming from the various messaging platforms. For example, Slack is

leading the pack in terms of collaboration software. Slack’s ability to edit

messages, allowing for interactive workflows, is very powerful.

In this chapter, we will explore the ability to invoke native functionality

from within a Bot Framework bot. We will learn to invoke Slack’s feature to

transform simple text-based workflows into rich button and menu-based

experiences. Along the way, we will sign up for a Slack integration, connect

our bot to our Slack workspace, and then use native Slack calls to create a

compelling and straightforward workflow. Let's dive in.

 Deeper Slack Integration
Slack is a rich platform that allows close collaboration among different

members of internal and external teams. The interface is simple, yet the

messaging framework is quite different from something like Facebook

356

Messenger. For example, although there is a facility called attachments

that results in a user interface similar to cards, it is not treated in the same

way. There are no carousels, and there are no requirements around aspect

ratios for images.

A message in Slack is simply a JSON object with a text property, where

the text can have special sequences that reference users, channels, or

teams. These references, called @mentions, are text strings like @channel,

which notifies all users in a channel to pay attention to a message. Other

examples are @here and @everyone. A message can include up to 20

attachments. An attachment is simply an object that provides additional

context to the message. The JSON object looks as follows:

{

 "attachments": [

 {

 "fallback": "Required plain-text summary of the

attachment.",

 "color": "#36a64f",

 "pretext": "Optional text that appears above the

attachment block",

 "author_name": "Bobby Tables",

 "author_link": "http://flickr.com/bobby/",

 "author_icon": "http://flickr.com/icons/bobby.jpg",

 "title": "Slack API Documentation",

 "title_link": "https://api.slack.com/",

 "text": "Optional text that appears within the

attachment",

Chapter 8 extending Channel FunCtionality

357

 "fields": [

 {

 "title": "Priority",

 "value": "High",

 "short": false

 }

],

 "image_url": "http://my-website.com/path/to/image.

jpg",

 "thumb_url": "http://example.com/path/to/thumb.png",

 "footer": "Slack API",

 "footer_icon": "https://platform.slack-edge.com/

img/default_application_icon.png",

 "ts": 123456789

 }

]

}

Like a HeroCard, we can include title, text, and images. In addition,

there are various other parameters we can provide to Slack. We can include

references to a message author, data fields or theme colors.

To aid in the nuances of attachments, Slack includes a Message Builder

(Figure 8-1), which can be used to visualize how a JSON object will render

in the Slack user interface.

Chapter 8 extending Channel FunCtionality

358

Slack also provides best practices documentation for messages.1

Among the advice on the site is to use as few attachments as makes sense

for our application (Figure 8-2).

1 Slack Message guidelines: https://api.slack.com/docs/message-guidelines

Figure 8-1. Slack Message Builder and preview

Figure 8-2. Good direction…

Chapter 8 extending Channel FunCtionality

https://api.slack.com/docs/message-guidelines

359

Unfortunately, this does not seem to be the way that the Bot

Framework works. In fact, the Slack Bot channel connector renders a

HeroCard object as multiple attachments (Figure 8-3).

It’s a small detail, but it just does not look good. The default styling for

an image and buttons is to render the buttons below the image (Figure 8- 4).

Unfortunately, the rendering is violating the direction provided by Slack.

Figure 8-3. Except that the Slack guidelines are not fully respected by
the Slack Bot channel connector

Chapter 8 extending Channel FunCtionality

360

Naturally, this is the kind of detail the Bot Framework team will most

likely support in the future. Until then, if there is a mismatch in terms of

the type of interface we want to render and what the platform supports, we

can drop into the native JSON to achieve our goals.

Slack also includes a few features that we have no way of accessing as

first-class citizens in the bot service. Slack supports ephemeral messages,

which are messages that are visible to only one user in a group setting.

The Bot Builder SDK does not provide an easy way to achieve this.

Furthermore, Slack supports the idea of interactive messages, which are

messages with buttons and menus that users can act on. Even better, a

user’s action can trigger an update to the message rendering! A message

can include buttons as a way to gather data from the user (as shown in

Figures 8-3 and 8-4), or a message can include menus to select an option

(Figure 8-5).

Figure 8-4. What a well-formed attached could look like

Chapter 8 extending Channel FunCtionality

361

In this section, we will explore how to achieve the interactive message

effect by integrating closely via native messages.

First, we will integrate our bot with a Slack workspace. Second, we

will create a one-step interactive message. Third, we’ll create a multistep

interactive message that provides a rich, Slack-native data-gathering

experience.

Before we continue, let’s go over a few ground rules. This chapter is not

intended to give you a deep dive into Slack’s Messaging APIs and features.

We encourage you to read about these on your own; Slack has very

rich documentation on the subject. What we do want to show is how we

can leverage the bot service to provide that deeper integration with Slack.

You may ask, why not just develop a native Slackbot using Slack’s Node

Developer Kit? You certainly can, but there are two big reasons for using

the Bot Builder library. One, you get the dialog and conversation engine to

help guide a user through a conversation, and two, if you are exposing an

experience on multiple messaging channels, one codebase enables code

reuse.

Figure 8-5. A Slack menu

Chapter 8 extending Channel FunCtionality

362

 Connecting to Slack
Let’s assume you have never used Slack. We will first need to create a

Slack workspace. A workspace is simply a Slack environment for a team to

collaborate in. We can create these for free. There are some limitations, but

free teams remain very functional and will certainly allow us to develop

and demo Slack bots. Go to https://slack.com/create to create a

workspace. Slack will ask for an email (Figure 8-6) and send a confirmation

code to verify our identity.

Once we enter the confirmation code, it will ask us for our name,

password, (group) workspace name, target audience, and workspace

URL. We can send invitations to the workspace, but we will skip this for

now. We will not be redirected to the workspace. For the purposes of this

demo, mine is https://srozgaslacksample.slack.com.

Figure 8-6. Creating a new Slack workspace

Chapter 8 extending Channel FunCtionality

https://slack.com/create
https://srozgaslacksample.slack.com/

363

At this point, we should integrate the bot service and Slack. In our Bot

Service entry on Azure, click the Slack channel. We’ll be greeted with the

Slack Configuration screen (Figure 8-7).

The interface is like the Facebook Messenger channel configuration

interface but asks for differrent data. We will need three pieces of

information from Slack: the client ID, the client secret, and the verification

token.

Figure 8-7. Configuring our bot’s Slack integration

Chapter 8 extending Channel FunCtionality

364

Log into Slack and create a new app at https://api.slack.com/apps.

Enter an app name and select the development workspace that we just

created (Figure 8-8). Lastly click the Create App button.

Once the app is created, we will be redirected to the app page. Click

Permissions to set up a redirect URL (Figure 8-9). You will be taken to a

page called OAuth & Permissions.

Figure 8-8. Creating a Slack app

Chapter 8 extending Channel FunCtionality

https://api.slack.com/apps

365

Click Add a new Redirect URL and enter https://slack.

botframework.com. Next select the Bot Users item in the left sidebar, and

add a user for the bot. This allows us to assign a username to the bot and

indicate whether it should always appear online (Figure 8-10).

Figure 8-9. Setting up the bot service redirect URI

Chapter 8 extending Channel FunCtionality

https://slack.botframework.com/
https://slack.botframework.com/

366

Next, we will subscribe to several events that will be sent to the bot

service web hooks. This will ensure that the bot service can properly send

the relevant Slack events into our bot. Navigate to Event Subscriptions,

enable events via the toggle at the right, and enter https://slack.

botframework.com/api/Events/{YourBotHandle} as the request URL. A

bot handle was assigned to our bot channel registration in Chapter 5 and

can be found in the Settings blade. Once entered, Slack will establish

connectivity to the endpoint. Lastly, under Subscribe to Bot Events (not

Workspace Events!) add the following events:

• member_joined_channel

• member_left_channel

• message.channels

Figure 8-10. Creating a bot user that represents a bot in a channel

Chapter 8 extending Channel FunCtionality

https://slack.botframework.com/api/Events/{YourBotHandle
https://slack.botframework.com/api/Events/{YourBotHandle

367

• message.groups

• message.im

• message.mpim

Figure 8-11 shows the resulting configuration.

Figure 8-11. Subscribing our bot to Slack events

Chapter 8 extending Channel FunCtionality

368

We also need to enable interactive components to support receiving

a message with a menu, button, or interactive dialog. Select Interactive

Components from the left menu, click Enable Interactive Messages, and enter

the following request URL: https://slack.botframework.com/api/Actions

(Figure 8-12). Click Enable Interactive Components and save the changes.

Lastly, we extract the credentials from the App Credentials section

(accessible via the Basic Information menu item) and enter the client

ID, client secret, and verification token into the Configure Slack screen

within the Channels blade of your bot channels registration in the Azure

Portal. Once submitted, you will be asked to log into your Slack workspace

and verify the app. After authorization, your bot will appear in your Slack

workspace interface (under the Apps category), and you will be able to

communicate with it (Figure 8-13).

Figure 8-12. Enabling interactive components in our bot. That
means buttons and menus!

Chapter 8 extending Channel FunCtionality

https://slack.botframework.com/api/Actions

369

Remember to run ngrok! You can tell I forgot to run my ngrok in

Figure 8-13.

EXERCISE 8-1

Basic Slack Integration and Message Rendering

the goal of this exercise is to connect a bot into Slack so you can get familiar

with Slack as a messaging and bot platform. your goal is to take the calendar

bot you created in the Chapters 5 and 7 and deploy it to Slack. once deployed,

you may examine how the different elements are rendered in Slack versus the

emulator or Facebook Messenger.

 1. Create a test Slack workspace.

 2. Connect your azure Bot service bot to the workspace by

following the steps in the previous section.

Figure 8-13. We’ve connected to the Azure bot service

Chapter 8 extending Channel FunCtionality

370

 3. Confirm you can communicate with your bot via Slack.

 4. test the bot and answer the following questions: how does the

bot render the sign-in button? how does the bot render the

primary card selection cards? how does the bot behave in a

multi-user conversation (you may need to add a new test user

to the workspace)?

great work. you are now able to connect an existing bot to Slack, and you are

learning about Slack, its message, and attachments.

 Experimenting with the Slack APIs
We just send a message to Slack using the Bot Builder SDK and the

Bot Framework, but we can also access the Slack APIs directly. We are

interested in several Slack API methods.2

• Chat.postMessage: Posts a new message into a Slack

channel

• Chat.update: Updates an existing message in Slack

• Chat.postEphemeral: Posts a new ephemeral message,

one visible to only one user, into a Slack channel

• Chat.delete: Deletes a Slack message

To invoke any of these, we need an access token. For example,

assuming we have a token, we could use the following Node.js code to

create a new message:

function postMessage(token, channel, text, attachments) {

 return new Promise((resolve, reject) => {

 let client = restify.createJsonClient({

2 Slack API Methods: https://api.slack.com/methods

Chapter 8 extending Channel FunCtionality

https://api.slack.com/methods

371

 url: 'https://slack.com/api/chat.postMessage',

 headers: {

 Authorization: 'Bearer ' + token

 }

 });

 client.post('',

 {

 channel: channel,

 text: text,

 attachments: attachments

 },

 function (err, req, res, obj) {

 if (err) {

 console.log('%j', err);

 reject(err);

 return;

 }

 console.log('%d -> %j', res.statusCode,

res.headers);

 console.log('%j', obj);

 resolve(obj);

 });

 });

}

A natural question is how do we obtain the token? If we examine the

message coming in from the bot service channel connector, we notice that

we have all that information at our disposal. The full incoming message

from Slack looks like this:

{

 "type": "message",

 "timestamp": "2017-11-23T17:27:13.5973326Z",

Chapter 8 extending Channel FunCtionality

372

 "text": "hi",

 "attachments": [],

 "entities": [],

 "sourceEvent": {

 "SlackMessage": {

 "token": "fffffffffffffffffffffff",

 "team_id": "T84FFFFF",

 "api_app_id": "A84SFFFFF",

 "event": {

 "type": "message",

 "user": "U85MFFFFF",

 "text": "hi",

 "ts": "1511458033.000193",

 "channel": "D85TN0231",

 "event_ts": "1511458033.000193"

 },

 "type": "event_callback",

 "event_id": "Ev84PDKPCK",

 "event_time": 1511458033,

 "authed_users": [

 "U84A79YTB"

]

 },

 "ApiToken": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 },

 "address": {

 "id": "ffffffffffffffffffffffffffffffffff",

 "channelId": "slack",

 "user": {

 "id": "U85M9EQJ2:T84V64ML5",

 "name": "szymon.rozga"

 },

Chapter 8 extending Channel FunCtionality

373

 "conversation": {

 "isGroup": false,

 "id": "B84SQJLLU:T84V64ML5:D85TN0231"

 },

 "bot": {

 "id": "B84SQJLLU:T84V64ML5",

 "name": "szymontestbot"

 },

 "serviceUrl": "https://slack.botframework.com"

 },

 "source": "slack",

 "agent": "botbuilder",

 "user": {

 "id": "U85M9EQJ2:T84V64ML5",

 "name": "szymon.rozga"

 }

}

Note that the sourceEvent includes an ApiToken and a SlackMessage

with all the details about which channel the bot is in and the user from

which the original message originated. In this example, the channel is

D85TN0231, and the user is U85M9EQJ2. Further, we can find the IDs

for the team, the bot, the bot user, and the app. An incoming message

doesn’t really have an ID in Slack; each message has a unique-per-channel

timestamp referred to as ts.

So, once we have the first message from a user, we can easily respond

either by using the Bot Builder’s session.send method or by using the chat.

postMessage endpoint directly (Figure 8-14). Of course, session.send is

doing all the token work for us underneath the covers by calling to the

Slack channel connector, which then calls chat.postMessage.

Chapter 8 extending Channel FunCtionality

374

const bot = new builder.UniversalBot(connector, [

 session => {

 let token = session.message.sourceEvent.ApiToken;

 let channel = session.message.sourceEvent.SlackMessage.

event.channel;

 postMessage(token, channel, 'POST!');

 }

]);

postMessage does not really get us anything better than session.send,

except that chat.postMessage returns the message’s native ts value, whereas

session.send does not. Very cool. That means we can now update the

message! We define an updateMessage method as follows:

function updateMessage(token, channel, ts, text, attachments) {

 return new Promise((resolve, reject) => {

 let client = restify.createJsonClient({

 url: 'https://slack.com/api/chat.update',

 headers: {

 Authorization: 'Bearer ' + token

 }

 });

 client.post('',

 {

 channel: channel,

 ts: ts,

Figure 8-14. Responding using a native Slack call

Chapter 8 extending Channel FunCtionality

375

 text: text,

 attachments: attachments

 },

 function (err, req, res, obj) {

 if (err) {

 console.log('%j', err);

 reject(err);

 return;

 }

 console.log('%d -> %j', res.statusCode,

res.headers);

 console.log('%j', obj);

 resolve(obj);

 });

 });

};

Now we can write code to send a message and update it whenever any

other response comes in (see Figure 8-15, Figure 8-16, and Figure 8-17).

let msgts = null;

const bot = new builder.UniversalBot(connector, [

 session => {

 let token = session.message.sourceEvent.ApiToken;

 let channel = session.message.sourceEvent.SlackMessage.

event.channel;

 let user = session.message.sourceEvent.SlackMessage.

event.user;

 if (msgts) {

 updateMessage(token, channel, msgts, '<@' + user +

'> said ' + session.message.text);

 } else {

Chapter 8 extending Channel FunCtionality

376

 postMessage(token, channel, 'A placeholder...').

then(r => {

 msgts = r.ts;

 });

 }

 }

]);

Figure 8-15. So far so good…

Figure 8-16. Seems to be working…

Figure 8-17. Exactly as designed

Chapter 8 extending Channel FunCtionality

377

Now this is a contrived example, but it illustrates our ability to call a

postMessage followed by an update to modify the contents of a message.

There are some rules around what exactly update can do, but we leave

reading that documentation3 as an exercise to the developer.

Another example of what we can accomplish with the APIs is posting

and removing ephemeral messages. An ephemeral message is visible only

to the recipient of the message. The bot can, for example, give feedback to

a user without displaying the result in the channel until all the necessary

data has been gathered. Although a slightly different interaction model, the

giphy4 Slash command is a great example of this model.

Using /giphy allows us to search for any text and brings up a few GIF

options in an ephemeral message. You may have to enable the integration

first, before utilizing it. Once we decide which one we want to use and click

Send, the GIF is sent to the channel on our behalf (Figure 8-18, Figure 8-19,

and Figure 8-20).

3 Slack API chat.update: https://api.slack.com/methods/chat.update
4 Giphy for Slack: https://get.slack.help/hc/en-us/
articles/204714258-Giphy-for-Slack

Figure 8-18. Invoking the /giphy Slash command

Chapter 8 extending Channel FunCtionality

https://api.slack.com/methods/chat.update
https://get.slack.help/hc/en-us/articles/204714258-Giphy-for-Slack
https://get.slack.help/hc/en-us/articles/204714258-Giphy-for-Slack

378

We could use the postEphemeral message to give feedback to only

certain users. And, of course, delete gives us the ability to delete old

messages from the bot. From a usability perspective, the delete feature

is not interesting. It is a better experience to update a message with a

correction or to notify the user that a message has been deleted, rather

than to simply get rid of it without any explanation.

Figure 8-19. A preview of a cool mom mean girls GIF

Figure 8-20. I’ve now immortalized in Slack conversation the 2004
cult classic Mean Girls by using /giphy mean girls

Chapter 8 extending Channel FunCtionality

379

 Simple Interactive Message
Slack allows us to instrument better conversational experiences using what

are known as interactive messages.5 An interactive message is a message

that includes the usual message data plus buttons and menus. In addition,

as users interact with the user interface elements, the message can change

to reflect that.

Here is an example: the bot would send a message asking for approval,

and when the user clicks the yes or no button, our bot modifies the

message to reflect the selection (Figure 8-21, Figure 8-22, and Figure 8-23).

5 Slack Interactive Messages: https://api.slack.com/interactive-messages

Figure 8-21. A simple interactive message

Figure 8-22. Request approved

Figure 8-23. Request was not approved

Chapter 8 extending Channel FunCtionality

https://api.slack.com/interactive-messages

380

Certainly, we can orchestrate this type of behavior using postMessage

and updateMessage, but there’s an easier and more integrated way to do

it. First, we define a dialog called simpleflow that uses a Choice Prompt to

send a message with buttons.

const bot = new builder.UniversalBot(connector, [

 session => {

 session.beginDialog('simpleflow');

 },

 session => {

 session.send('done!!!');

 session.endConversation();

 }

]);

bot.dialog('simpleflow',

[

 (session, arg) =>{

 builder.Prompts.choice(session, 'A request for access

to /SYS13/ABD has come in. Do you want to approve?',

'Yes|No');

 },

 ... // next code snippet goes here

]);

Then we handle the response to the button click by making a POST

request to a response_url.

(session, arg) =>{

 let r = arg.response.entity;

 let responseUrl = session.message.sourceEvent.Payload.

response_url;

 let token = session.message.sourceEvent.Payload.token;

Chapter 8 extending Channel FunCtionality

381

 let client = restify.createJsonClient({

 url: responseUrl

 });

 let userId = session.message.sourceEvent.Payload.user.id;

 let attachment ={

 color: 'danger',

 text: 'Rejected by <@' + userId + '>'

 };

 if (r === 'No'){} else if (r === 'Yes'){

 attachment ={

 color: 'good',

 text: 'Approved by <@' + userId + '>'

 };

 }

 client.post('',

 {

 token: token,

 text: 'Request for access to /SYS13/ABD',

 attachments: [attachment

]

 }, function (err, req, res, obj){

 if (err) console.log('Error -> %j', err);

 console.log('%d -> %j', res.statusCode, res.headers);

 console.log('%j', obj);

 session.endDialog();

 });

}

A few things are happening here. First, we grab the response from

Slack, which is resolved to the entity value. Second, we grab what’s known

as the response_url from the Slack message. A response_url is a URL that

Chapter 8 extending Channel FunCtionality

382

allows us to modify the interactive message that a user just responded to

or to create a new message in the channel. Next, we grab the token that

authorizes us to send POST requests to the response_url. Lastly, we POST

to the response_url with the updated message.

We will get into more details around interactive message structure,

but let’s discuss user experience. When developing a bot that utilizes

this functionality, we have to make a decision: when the bot presents

an interactive message, does the user have to answer it immediately,

or can the interactive message remain in the history while the user

and bot discuss other topics? In the latter case, at any time later in the

conversation, the user could scroll back up and click a button to complete

the action. The previous sample utilizes the former approach; that is the

way Bot Builder prompts work. Figure 8-24 shows what this looks like if the

user doesn’t respond to the message.

OK, we have the two set of buttons. That makes sense. If we click either

the Yes or No button, that message will be modified per Figure 8-25. The

dialog finished, and the second step of the bot waterfall sends the “done!!!”

message. However, the conversation is left in a weird state; it appears as if

the original request is still open.

Figure 8-24. Hmm…seems I have two sets of buttons to answer the
same question

Chapter 8 extending Channel FunCtionality

383

Now, the dialog stack no longer contains the choice prompt on top

of the stack. This means that if we click the Yes or No button in the upper

message, we will run into a problem because our code is not expecting that

type of response (Figure 8-26). In fact, we will receive yet another prompt

because the bot once again calls beginDialog. Having multiple unresolved

interaction messages without the ability to resolve all of them is bad UX.

Figure 8-25. Shouldn’t the first message update as well?

Figure 8-26. Oh, that makes no sense…

Chapter 8 extending Channel FunCtionality

384

The experience can get complicated quickly. That’s the problem with

rendering buttons on any platform: the buttons stay in the chat history and

can be clicked any time. Our role as developers is to make sure the bot can

handle the buttons and their payloads at any time.

Here is one approach to solve the previous problem. We leave the

default behavior as is, but we create a custom recognizer that handles

interactive message inputs and redirects the message to a dialog that

tells the user that the action has expired, if these inputs are not expected.

Let’s start with the dialog. It will read the response_url for the interactive

message and simply post a “Sorry, this action has expired.” message to it.

The dialog is invoked when the bot resolves the intent practicalbot.expire.

A naming convention like that allows us to draw a distinction between

LUIS intents and intents internal to the bot.

bot.dialog('remove_action',

[

 (session, arg) =>{

 let responseUrl = session.message.sourceEvent.Payload.

response_url;

 let token = session.message.sourceEvent.Payload.token;

 let client = restify.createJsonClient({

 url: responseUrl

 });

 client.post('',

 {

 token: token,

 text: 'Sorry, this action has expired.'

 }, function (err, req, res, obj){

 if (err) console.log('Error -> %j', err);

 console.log('%d -> %j', res.statusCode, res.

headers);

 console.log('%j', obj);

Chapter 8 extending Channel FunCtionality

385

 session.endDialog();

 });

 }

]).triggerAction({ matches: 'practicalbot.expire'

});

The custom recognizer would look like this:

bot.recognizer({

 recognize: function (context, done){

 let intent = { score: 0.0 };

 if (context.message.sourceEvent &&

 context.message.sourceEvent.Payload &&

 context.message.sourceEvent.Payload.response_url)

 {

 intent = { score: 1.0, intent: 'practicalbot.

expire' };

 }

 done(null, intent);

 }

});

In short, we are saying that if our dialog cannot explicitly handle an

action response from the user, the global practicalbot.expire intent will be

hit. In that case, we simply tell the user that the action has expired. The

net effect can be seen in Figure 8-27 and Figure 8-28. We first get into the

scenario where we have two interaction messages asking us for Yes or No

input. We approve the second one. In Figure 8-28, we click Yes on the first

button set.

Chapter 8 extending Channel FunCtionality

386

There are a couple of caveats we should mention. First, if you tried

responding to the prompt using text instead of clicking a button, the code

provided would fail. Why is this? Slack does not send a Payload object with

details about the message interaction. It would just be considered text input,

and we would not have a way to properly update the message to be approved

or rejected. One way of dealing with this is to simply require button inputs

instead of text input. Another way is to accept it but send the confirmation

as a new message. Here is the code with that behavior with the resulting

conversation after responding with a text message in Figure 8- 29:

Figure 8-27. OK, back to this scenario

Figure 8-28. It works. We can now act of older interactive messages
without creating UX chaos.

Chapter 8 extending Channel FunCtionality

387

(session, arg) => {

 let r = arg.response.entity;

 let userId = null;

 const isTextMessage = session.message.sourceEvent.

SlackMessage; // this means we receive a slack message

 if (isTextMessage) {

 userId = session.message.sourceEvent.SlackMessage.

event.user;

 } else {

 userId = session.message.sourceEvent.Payload.user.id;

 }

 Let attachment = {

 color: 'danger',

 text: 'Rejected by <@' + userId + '>'

 };

 if (r === 'No') {

 } else if (r === 'Yes') {

 attachment = {

 color: 'good',

 text: 'Approved by <@' + userId + '>'

 };

 }

 if (isTextMessage) {

 // if we got a text message, reply using

 // session.send with the confirmation message

 let msg = new builder.Message(session).

sourceEvent({

 'slack': {

 text: 'Request for access to /SYS13/ABD',

 attachments: [attachment]

Chapter 8 extending Channel FunCtionality

388

 }

 });

 session.send(msg);

 } else {

 let responseUrl = session.message.sourceEvent.

Payload.response_url;

 let token = session.message.sourceEvent.Payload.

token;

 let client = restify.createJsonClient({

 url: responseUrl

 });

 client.post('', {

 token: token,

 text: 'Request for access to /SYS13/ABD',

 attachments: [attachment]

 }, function (err, req, res, obj) {

 if (err) console.log('Error -> %j', err);

 console.log('%d -> %j', res.statusCode,

res.headers);

 console.log('%j', obj);

 session.endDialog();

 });

 }

 }

}

Chapter 8 extending Channel FunCtionality

389

The second caveat is that in the previous example we use the choice

prompt that blocks the conversation until a yes or no response is sent by

the user. We want to avoid this behavior so that the user can continue

working with the bot without necessarily having to answer the prompt

immediately. A better approach would be to install a global recognizer

that is able to map interactive message responses to intents that, in turn,

map to dialogs that fulfill certain actions. We will be looking at this in

Exercise 8-2.

EXERCISE 8-2

Exploring Nonblocking Interactive Messages in Slack

in the previous section we explored how we can utilize the choice prompt to

ask the user for input using an interactive message. in this exercise, you will

create a custom recognizer to map interactive message responses to dialogs.

the dialogs will contain logic to update the interactive messages by using the

response_url provided by Slack.

 1. Create a universal bot that begins a dialog called

sendExpenseApproval.

Figure 8-29. We can now handle text responses as well

Chapter 8 extending Channel FunCtionality

390

 2. Create a dialog called sendExpenseApproval. the dialog should

create a random expense object with four fields: ID, user, type,

amount. this object would represent the fact that user spent

$amount on an item of type type. id should just be a random

unique identifier. For example, create an object representing

the fact that Szymon spent $60 on a taxi ride or that Bob spent

$20 on a case of flavored sparkling water. after generating the

random expense, send a hero card to the user summarizing the

expense and two buttons with the labels Approve and Reject.
after sending the response using session.send, end the dialog.

 3. at this point, the bot doesn’t do anything. Modify the approve

and reject buttons in the hero card so that the value sent to the

bot is approved request with id {id} and reject request with

id {id}.

 4. Create a custom recognizer to match these patterns and

extract the id. your custom recognizer should return the intent

ApproveRequestIntent or RejectRequestIntent based on the input.

Make sure to include the id in the resulting recognizer object.

 5. Create two dialogs, one called ApproveRequestDialog and one

called RejectRequestDialog. use triggerAction to connect the

dialogs to the corresponding intents.

 6. ensure the two dialogs send the correct approved or rejected

response to the response_url so that the original hero card is

updated.

the technique used in this exercise to handle all the interactive messages

globally is powerful and extensible. you can easily add more message types,

intents, and dialogs for any future behavior. in practice, you may end up with

a mix of blocking and nonblocking messages. you are now equipped to handle

both styles.

Chapter 8 extending Channel FunCtionality

391

 Multistep Experience
In the previous section, we created a single-step interactive message. We

will continue our exploration of interactive messages on Slack with a more

complex, multistep interaction. Let’s say we want to guide the user through

a multistep process of selecting a type of pizza, some ingredients, and a

size. We will build the experience using a multistep interactive message.

The code for this section is included in the book’s git repos; we will share

the most relevant bits in the following pages.

Our experience will look as follows. The bot will first ask the user for a

sauce type for their pizza (Figure 8-30).

If the user responds tomato sauce, our limited bot will ask the user to

select one of two types of pies: regular or pepperoni (Figure 8-31).

Figure 8-30. What pizza sauce would you like?

Figure 8-31. Pizza type options with tomato sauce

Chapter 8 extending Channel FunCtionality

392

If the user had selected the Oil & Garlic sauce, they would get a

different set of options (Figure 8-32).

The last step requires the user to select a size. We render a menu for

this step (Figure 8-33).

Once done, the message will turn into a summary of the order

(Figure 8-34).

Figure 8-32. Extra ingredient options for an Oil & Garlic base pizza

Figure 8-33. Which size would you like?

Figure 8-34. User order summary

Chapter 8 extending Channel FunCtionality

393

As an exercise, we will utilize the native Slack APIs. The Bot Builder SDK

needs a dialog step to explicitly use prompts to proceed from one step to the

next. Since we will be using the Slack API directly, we will have a one-step

waterfall dialog. This means the same function will be called over and over

until a different global action is recognized or our dialog calls endDialog.

You’ll recall that in the previous example, we took advantage of Bot

Builder’s prompts to send buttons back and collect the results back to

logic in our bot. One of the things that the Bot Framework abstracts for us

is that sending a prompt to a user actually sends a Slack message with an

attachment that includes a set of actions where each button is a different

action. When the user taps or clicks a button, a callback is made into our

bot with a callback ID to identify the action.

For example, if we send this message to Slack, it will render a message

that looks like Figure 8-31.

pizzatype: {

 text: 'Sauce',

 attachments: [

 {

 callback_id: 'pizzatype',

 title: 'Choose a Pizza Sauce',

 actions: [

 {

 name: 'regular',

 value: 'regular',

 text: 'Tomato Sauce',

 type: 'button'

 },

 {

 name: 'step2b',

 value: 'oilandgarlic',

 text: 'Oil & Garlic',

Chapter 8 extending Channel FunCtionality

394

 type: 'button'

 }

]

 }

]

}

When either button is clicked, our bot will receive a message with a

callback ID of pizzatype and the selected value. Here is the relevant JSON

fragment of the message we receive when we click Tomato Sauce:

"sourceEvent": {

 "Payload": {

 "type": "interactive_message",

 "actions": [

 {

 "name": "regular",

 "type": "button",

 "value": "regular"

 }

],

 "callback_id": "pizzatype",

 ...

 },

 "ApiToken": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

}

So, the logic to figure out whether we are getting a callback of a type is

easy. In fact, the code is similar to our recognizer code shown earlier. We

create an isCallbackResponse function that can tell us whether a message is

a callback and, optionally, whether it is a callback of a certain type.

const isCallbackResponse = function (context, callbackId){

 const msg = context.message;

Chapter 8 extending Channel FunCtionality

395

 let result = msg.sourceEvent &&

 msg.sourceEvent.Payload &&

 msg.sourceEvent.Payload.response_url;

 if (callbackId){

 result = result && msg.sourceEvent.Payload.callback_id

=== callbackId;

 }

 return result;

};

We can then configure our recognizer to use this function instead.

bot.recognizer({

 recognize: function (context, done) {

 let intent = { score: 0.0 };

 if (isCallbackResponse(context)) {

 intent = { score: 1.0, intent: 'practicalbot.

expire' };

 }

 done(null, intent);

 }

});

Now we can build a dialog that is able to walk users through a process.

We first declare the messages that we will send for each step. We will send

one of five messages:

• The first message to select a pizza type

• Based on the pizza type selected, one of two ingredient

selections

• A selection for the pizza size

• A final confirmation message

Chapter 8 extending Channel FunCtionality

396

Here is the JSON we use:

exports.multiStepData = {

 pizzatype: {

 text: 'Sauce',

 attachments: [

 {

 callback_id: 'pizzatype',

 title: 'Choose a Pizza Sauce',

 actions: [

 {

 name: 'regular',

 value: 'regular',

 text: 'Tomato Sauce',

 type: 'button'

 },

 {

 name: 'step2b',

 value: 'oilandgarlic',

 text: 'Oil & Garlic',

 type: 'button'

 }

]

 }

]

 },

 regular: {

 text: 'Pizza Type',

 attachments: [

 {

 callback_id: 'ingredient',

Chapter 8 extending Channel FunCtionality

397

 title: 'Do you want a regular or pepperoni

pie?',

 actions: [

 {

 name: 'regular',

 value: 'regular',

 text: 'Regular',

 type: 'button'

 },

 {

 name: 'pepperoni',

 value: 'pepperoni',

 text: 'Pepperoni',

 type: 'button'

 }

]

 }

]

 },

 oilandgarlic: {

 text: 'Extra Ingredients',

 attachments: [

 {

 callback_id: 'ingredient',

 title: 'Do you want ricotta or caramelized

onions?',

 actions: [

 {

 name: 'ricotta',

 value: 'ricotta',

 text: 'Ricotta',

Chapter 8 extending Channel FunCtionality

398

 type: 'button'

 },

 {

 name: 'carmelizedonions',

 value: 'carmelizedonions',

 text: 'Caramelized Onions',

 type: 'button'

 }

]

 }

]

 },

 collectsize: {

 text: 'Size',

 attachments: [

 {

 text: 'Which size would you like?',

 callback_id: 'finish',

 actions: [

 {

 name: 'size_list',

 text: 'Pick a pizza size...',

 type: 'select',

 options: [

 {

 text: 'Small',

 value: 'small'

 },

 {

 text: 'Medium',

 value: 'medium'

Chapter 8 extending Channel FunCtionality

399

 },

 {

 text: 'Large',

 value: 'large'

 }

]

 }

]

 }

]

 },

 finish: {

 attachments: [{

 color: 'good',

 text: 'Well done'

 }]

 }

};

We then create a waterflow dialog with one step. If the message

we receive from the user is not a callback, we send the first step using

postMessage.

let apiToken = session.message.sourceEvent.ApiToken;

let channel = session.message.sourceEvent.SlackMessage.event.

channel;

let user = session.message.sourceEvent.SlackMessage.event.user;

let typemsg = multiFlowSteps.pizzatype;

session.privateConversationData.workflowData ={};

postMessage(apiToken, channel, typemsg.text, typemsg.

attachments).then(function (){

 console.log('created message');

});

Chapter 8 extending Channel FunCtionality

400

Otherwise, if the message is a callback, we determine the callback type,

get the data passed in the message (which is slightly different depending

on whether it is coming from a button press or a menu), save the response

data appropriately, and respond with the next relevant message. We track

that state using privateConversationData. One caveat is that we need to

explicitly save the state.

session.save();

Typically, the state would be saved as part of the session.send call. Since

we don’t use this mechanism anymore because we are using the Slack API

directly, we’ll call it explicitly at the end of our method. We detect if the

user says “quit” to exit the flow. Here’s what the entire method looks like:

(session, arg, next) => {

 if (session.message.text === 'quit') {

 session.endDialog();

 return;

 }

 if (isCallbackResponse(session)) {

 let responseUrl = session.message.sourceEvent.Payload.

response_url;

 let token = session.message.sourceEvent.Payload.token;

 console.log(JSON.stringify(session.message));

 let client = restify.createJsonClient({

 url: responseUrl

 });

 let text = '';

 let attachments = [];

 let val = null;

 const payload = session.message.sourceEvent.Payload;

 const callbackChannel = payload.channel.id;

Chapter 8 extending Channel FunCtionality

401

 if (payload.actions && payload.actions.length > 0) {

 val = payload.actions[0].value;

 if (!val) {

 val = payload.actions[0].selected_options[0].

value;

 }

 }

 if (isCallbackResponse(session, 'pizzatype')) {

 session.privateConversationData.workflowData.

pizzatype = val;

 let ingredientStep = multiFlowSteps[val

];

 text = ingredientStep.text;

 attachments = ingredientStep.attachments;

 }

 else if (isCallbackResponse(session, 'ingredient')) {

 session.privateConversationData.workflowData.

ingredient = val;

 var ingredientstep = multiFlowSteps.collectsize;

 text = ingredientstep.text;

 attachments = ingredientstep.attachments;

 }

 else if (isCallbackResponse(session, 'finish')) {

 session.privateConversationData.workflowData.size =

val;

 text = 'Flow completed with data: ' + JSON.

stringify(session.privateConversationData.

workflowData);

 attachments = multiFlowSteps.finish.attachments;

 }

 client.post('',

Chapter 8 extending Channel FunCtionality

402

 {

 token: token,

 text: text,

 attachments: attachments

 }, function (err, req, res, obj) {

 if (err) console.log('Error -> %j', err);

 console.log('%d -> %j', res.statusCode, res.

headers);

 console.log('%j', obj);

 if (isCallbackResponse(session, 'finish')) {

 session.send('The flow is completed!');

 session.endDialog();

 return;

 }

 });

 } else {

 let apiToken = session.message.sourceEvent.ApiToken;

 let channel = session.message.sourceEvent.SlackMessage.

event.channel;

 let user = session.message.sourceEvent.SlackMessage.

event.user;

 // we are beginning the flow... so we send an ephemeral

message

 let typemsg = multiFlowSteps.pizzatype;

 session.privateConversationData.workflowData = {};

 postMessage(apiToken, channel, typemsg.text, typemsg.

attachments).then(function () {

 console.log('created message');

 });

 }

 session.save();

}

Chapter 8 extending Channel FunCtionality

403

After writing all that code, let us see what happens (Figure 8-35 and 8-36).

So, what happened? As it turns out, the recognizer we previously

created to reject interactive message responses when they were not

expected kicked in and told us the action is expired. It seems that the

prompt code pre-empted the global recognizer, whereas if we use a

waterfall dialog, there is no way for us to control the recognition process.

In Chapter 6, when we discussed custom dialogs, we briefly touched

on a method called recognize. This method allows us to indicate to the

Bot Builder SDK that we want our current dialog to be first in line in

interpreting a user message. In this case, we have specific callbacks coming

in from Slack. This is a great use case for the recognize feature. But how do

we access it? Turns out, we can create a custom subclass of WaterfallDialog

and define a custom recognize implementation.

Figure 8-35. So far so good

Figure 8-36. Yikes!

Chapter 8 extending Channel FunCtionality

404

class WaterfallWithRecognizeDialog extends builder.

WaterfallDialog {

 constructor(callbackId, steps) {

 super(steps);

 this.callbackId = callbackId;

 }

 recognize(context, done) {

 var cb = this.callbackId;

 if (_.isFunction(this.callbackId)) {

 cb = this.callbackId();

 // callback can be a function that returns an ID

 }

 if (!_.isArray(cb)) cb = [cb]; // or a list of IDs

 let intent = { score: 0.0 };

 // lastly we evaluate each ID to see if it matches the

message.

 // if yes, handle within this dialog

 for (var i = 0; i < cb.length; i++) {

 if (isCallbackResponse(context, cb[i])) {

 intent = { score: 1.0 };

 break;

 }

 }

 done(null, intent);

 }

}

In short, recognize is called any time a message comes in. We resolve

the supported callbacks in the dialog from the this.callbackId object. We

Chapter 8 extending Channel FunCtionality

405

support a single callback value, an array of callback values, or a function

that returns callback values. If the callback is of any of the supported

callback IDs, we return a score of 1.0, which means that our dialog will

handle the message. Otherwise, we pass a score of 0.0. This means these

callbacks will go up to the global recognizers, as discussed in Chapter 6.

Any other callback ID will be considered expired.

We can easily use this class as follows:

bot.dialog('multi-step-flow', new WaterfallWithRecognizeDialog(

['pizzatype', 'ingredient', 'finish'], [

 ...

]));

If we run the code now, we get the same resulting flow as in Figures 8- 30

through 8-33.

EXERCISE 8-3

Interactive Messages

in this exercise, you will create a multistep interactive flow to support a bot

that could filter clothing products. the goal will be to utilize a similar approach

to the previous section to guide the user through a multistep data input

process.

 1. Create a universal bot with two steps. the first step calls a

dialog called filterClothing, and the second step prints the

dialog’s result to the console and ends the conversation.

 2. Follow the structure of the latest section to create a multistep

interactive message dialog called filterClothing. Collect three

pieces of data to filter a hypothetical clothing collection:

garment type, size, and color. exclusively use menus.

Chapter 8 extending Channel FunCtionality

406

 3. Make sure to utilize http requests against response_url to

update the interactive message.

you are now well-versed in exercising the Slack api for multistep interactive

messages, one of the cooler Slack features.

 Conclusion
The code demonstrated in this chapter is just scratching the surface of

the integration possibilities between our Bot Builder bots and different

channels. Although we have deliberately focused on Slack use cases, we

hope it is clear there are plenty opportunities to reuse our bot code across

a spectrum of different experiences both generic and platform-specific in

nature.

The powerful abstractions of dialogs, state, and recognizers can be

applied across all channels, even when using native mechanisms to invoke

the dialogs. We have not yet explored creating a connector for a custom

channel. We will examine this in the next chapter.

Chapter 8 extending Channel FunCtionality

407© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_9

CHAPTER 9

Creating a New
Channel Connector
It should now be clear that integrating all kinds of channels with built-in

bot service support is feasible. The Bot Builder SDK designers were aware

that not every single feature of every channel can be handled by the bot

service and kept the SDK flexible to support extensibility.

The bot service supports quite a few channels, but what if our bot

needs to support a channel like the Twitter Direct Messages API? What if

we need to integrate with a live chat platform that integrates directly with

Facebook Messenger and we cannot utilize the Bot Framework Facebook

channel connector? The bot service includes support for SMS via Twilio,

but what if we want to extend it to Twilio’s Voice APIs so we can literally

talk to our bot?

All of this is possible via a facility offered by Microsoft called the Direct

Line API. In this chapter, we will walk through what this is, how to build

a custom web chat interface that communicates with our bot, and finally

how to hook our bot into Twilio’s Voice APIs. By the end of the chapter,

we will be calling a phone number, speaking to our bot, and listening to it

respond to us!

408

 The Direct Line API
If you explored the channels section in your bot service entry, you may

have run into something called Direct Line. The Direct Line channel is

simply a way for us to call into the bot via an easy-to-use API from client

applications that do not have the ability to host a webhook to receive

responses. That was a mouthful. Let’s review. Typically, as per Figure 9- 1,

a channel communicates to our bot by calling into the bot’s messages

endpoint. The incoming message is processed by the bot. As responses

are created, our bot sends message to the channel’s response URL with

the response messages. Recall that the incoming message includes a

serviceUrl. This is where the response HTTP endpoint resides. If we were

to write a custom client app, such as a mobile app, this URL must be

an endpoint hosted by the client application on the user’s phone. This

asynchronous model is quite powerful; there are no restrictions around

when a message must come back, if ever, and how many messages need

to come back. The downside, of course, is that our client app needs to

host a web server. This is a nonstarter with many environments. Can one

even host an HTTP server on an iOS device?

Figure 9-1. Interaction between a client application and an Bot
Framework bot

Chapter 9 Creating a new Channel ConneCtor

409

The solution offered by Microsoft is to create a channel that

encapsulates an HTTP server for us. Direct Line can easily post messages

into our bot and provides an interface for our client application to poll for

any responses sent by the bot back to the user. Microsoft’s Direct Line API,

currently in its third version, also supports WebSockets,1 so developers do

not need to use a polling mechanism. Figure 9-2 presents the general design.

The Direct Line channel is also convenient because it handles bot

authentication for us. We only need to pass a Direct Line key as the Bearer

token into the Direct Line channel.

The Direct Line v3 API contains the following operations around

conversations:

• StartConversation: Begins a new conversation with

the bot. The bot will receive the necessary messages to

indicate that a new conversation is starting.

• GetConversation: Gets details around an existing

conversation including a streamUrl that the client can

use to connect via WebSocket.

• GetActivities: Gets all the activities exchanged between the

bot and the user. This provides an optional ability to pass a

watermark to only get activities after the watermark.

Figure 9-2. Direct Line obviating the need for the client to host an
HTTP server

1 WebSocket Protocol: https://en.wikipedia.org/wiki/WebSocket

Chapter 9 Creating a new Channel ConneCtor

https://en.wikipedia.org/wiki/WebSocket

410

• PostActivity: Sends a new activity from the user to the bot.

• UploadFile: Uploads a file from the user to the bot.

The API also contains two authentication methods.

We can access the Direct Line API with a shared Direct Line secret.

However, if a malicious actor obtains the key, he can do start any number

of new conversations with our bot as a new or known user. If we are

only doing server-to-server communication, this should not be a huge

risk, provided we correctly manage the key. However, if we want a client

application to talk to the API, we need another solution. Direct Line

provides two token endpoints for us to use.

• Generate token: POST /v3/directline/tokens/

generate

• Refresh token: POST /v3/directline/tokens/refresh

The Generate endpoint generates a token to be used for one and only

one conversation. The response also includes an expires_in field. If there

is a need to extend the timeline, the API provides the Refresh endpoint to

refresh the token for another expires_in value at a time. At the time of this

writing, the value of expires_in is 30 minutes.

The API is invoked as REST calls to the following endpoints (all hosted

at https://directline.botframework.com):

• Start Conversation: POST /v3/conversations

• Get Conversation: GET /v3/conversations/{conversa

tionId}?watermark={watermark}

• GetActivities: GET /v3/conversations/

{conversationId}/activities?watermark={watermark}

• PostActivity: POST /v3/conversations/

{conversationId}/activities

• UploadFile: POST /v3/conversations/{conversation

Id}?userId={userId}

Chapter 9 Creating a new Channel ConneCtor

https://directline.botframework.com/

411

You can find more details about the Direct Line API in the online

documentation.2

 Custom Web Chat Interface
There are many Direct Line samples online; one in the context of a

console node app can be found here: https://github.com/Microsoft/

BotBuilder-Samples/tree/master/Node/core-DirectLine/

DirectLineClient.

We’ll take this code as a template and create a custom web chat

interface to discuss connecting to a bot from a client application. Although

the Bot Builder SDK already includes a componentized version of a web

chat,3 building it ourselves will be great experience with Direct Line.

First, we need to enable Direct Line. In our bot’s Channels blade, click the

Direct Line button (Figure 9-3) to get to the Direct Line configuration screen.

Figure 9-3. The Direct Line channel icon

2 Key Concepts in the Bot Framework Direct Line API: https://docs.microsoft.com/
en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-
0-concepts

3 The Bot Framework WebChat is a React component. The code can be
extended to provide different rendering behavior or to change the control’s
styling. You can find more information at https://github.com/Microsoft/
BotFramework-WebChat.

Chapter 9 Creating a new Channel ConneCtor

https://github.com/Microsoft/BotBuilder-Samples/tree/master/Node/core-DirectLine/DirectLineClient
https://github.com/Microsoft/BotBuilder-Samples/tree/master/Node/core-DirectLine/DirectLineClient
https://github.com/Microsoft/BotBuilder-Samples/tree/master/Node/core-DirectLine/DirectLineClient
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-concepts
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-concepts
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-direct-line-3-0-concepts
https://github.com/Microsoft/BotFramework-WebChat
https://github.com/Microsoft/BotFramework-WebChat

412

We can create multiple keys to authenticate our client against Direct

Line. In this example, we will simply use the Default Site keys (Figure 9-4).

Now that we have the keys ready, we will create a node package that

contains a bot and a simple jQuery-enabled web page to illustrate how to

wire the bot together with a client app. The full code for the following work

is included as part of our git repo.

We will create a basic bot that can respond to some simple input, so we

will create an index.html page that hosts our web chat component. The

bot’s .env file should include the MICROSOFT_APP_ID and MICROSOFT_

APP_PASSWORD values as usual. We also add DL_KEY, which is the value

Figure 9-4. The Direct Line configuration interface

Chapter 9 Creating a new Channel ConneCtor

413

of our shared Direct Line key from Figure 9-4. When the page opens, the

code will fetch a token from the bot so that we do not expose the secret to

the client. This requires implementing endpoints on our bot.

To get started, set up an empty bot with our typical dependencies. The

basic conversation code is shown next. We support some silly things such

as “hello,” “quit,” “meaning of life,” “where’s waldo,” and “apple.” If the input

doesn’t match any of these, we default with the dismissive “oh, that’s cool.”

const bot = new builder.UniversalBot(connector, [

 session => {

 session.beginDialog('sampleConversation');

 },

 session => {

 session.send('conversation over');

 session.endConversation();

 }

]);

bot.dialog('sampleConversation', [

 (session, arg) => {

 console.log(JSON.stringify(session.message));

 if (session.message.text.indexOf('hello') >= 0 ||

session.message.text.indexOf('hi') >= 0)

 session.send('hey!');

 else if (session.message.text === 'quit') {

 session.send('ok, we\'re done');

 return;

 } else if (session.message.text.indexOf('meaning of

life') >= 0) {

 session.send('42');

 } else if (session.message.text.indexOf('waldo') >= 0) {

 session.send('not here');

 } else if (session.message.text === 'apple') {

Chapter 9 Creating a new Channel ConneCtor

414

 session.send({

 text: "Here, have an apple.",

 attachments: [

 {

 contentType: 'image/jpeg',

 contentUrl: 'https://upload.wikimedia.

org/wikipedia/commons/thumb/1/15/Red_

Apple.jpg/1200px- Red_Apple.jpg',

 name: 'Apple'

 }

]

 });

 }

 else {

 session.send('oh that\'s cool');

 }

 }

]);

Second, we want to create a web chat page index.html page that

includes jQuery and Bootstrap from a CDN.

server.get(/\/?.*/, restify.serveStatic({

 directory: './app',

 default: 'index.html'

}))

Our index.html provides a simple user experience. We will have a chat

client container with two elements: a chat history view that will render any

messages between the user and the bot and a text entry box. We’ll assume

that pressing the Return key sends the message. For the chat history, we will

insert chat entry elements and use CSS and JavaScript to size and position the

entry elements correctly. We will use the messaging paradigm of messages

from the user being on the left and messages from the other party on the right.

Chapter 9 Creating a new Channel ConneCtor

415

<!doctype html>

<html lang="en">

 <head>

 <title>Direct Line Test</title>

 <link rel="stylesheet" href="https://stackpath.

bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"

type="text/css" />

 <link rel="stylesheet" href="app/chat.css" type="text/

css" />

 </head>

 <body>

 <script src="https://code.jquery.com/jquery- 3.3.1.min.

js" integrity="sha256-FgpCb/KJQlLNfOu91ta32o/

NMZxltwRo8QtmkMRdAu8=" crossorigin="anonymous">

</script>

 <script src="https://stackpath.bootstrapcdn.com/

bootstrap/4.0.0/js/bootstrap.min.js"></script>

 <script src="app/chat.js"></script>

 <h1>Sample Direct Line Interface</h1>

 <div class="chat-client">

 <div class="chat-history">

 </div>

 <div class="chat-controls">

 <input type="text" class="chat-text-entry" />

 </div>

 </div>

 </body>

</html>

Chapter 9 Creating a new Channel ConneCtor

416

The chat.css style sheet looks as follows:

body {

 font-family: Helvetica, Arial, sans-serif;

 margin: 10px;

}

.chat-client {

 max-width: 600px;

 margin: 20px;

 font-size: 16px;

}

.chat-history {

 border: 1px solid lightgray;

 height: 400px;

 overflow-x: hidden;

 overflow-y: scroll;

}

.chat-controls {

 height: 20px;

}

.chat-img {

 background-size: contain;

 height: 160px;

 max-width: 400px;

}

.chat-text-entry {

 width: 100%;

 border: 1px solid lightgray;

 padding: 5px;

}

Chapter 9 Creating a new Channel ConneCtor

417

.chat-entry-container {

 position: relative;

 margin: 5px;

 min-height: 40px;

}

.chat-entry {

 color: #666666;

 position: absolute;

 padding: 10px;

 min-width: 10px;

 max-width: 400px;

 overflow-y: auto;

 word-wrap: break-word;

 border-radius: 10px;

}

.chat-from-bot {

 right: 10px;

 background-color: #2198F4;

 border: 1px solid #2198F4;

 color: white;

 text-align:right;

}

.chat-from-user {

 background-color: #E5E4E9;

 border: 1px solid #E5E4E9;

}

Our client-side logic lives in chat.js. In this file, we declare a few

functions to help us call the necessary Direct Line endpoints.

const pollInterval = 1000;

const user = 'user';

Chapter 9 Creating a new Channel ConneCtor

418

const baseUrl = 'https://directline.botframework.com/v3/

directline';

const conversations = baseUrl + '/conversations';

function startConversation(token) {

 // POST to conversations endpoint

 return $.ajax({

 url: conversations,

 type: 'POST',

 data: {},

 datatype: 'json',

 headers: {

 'authorization': 'Bearer ' + token

 }

 });

}

function postActivity(token, conversationId, activity) {

 // POST to conversations endpoint

 const url = conversations + '/' + conversationId +

'/activities';

 return $.ajax({

 url: url,

 type: 'POST',

 data: JSON.stringify(activity),

 contentType: 'application/json; charset=utf-8',

 datatype: 'json',

 headers: {

 'authorization': 'Bearer ' + token

 }

 });

}

Chapter 9 Creating a new Channel ConneCtor

419

function getActivities(token, conversationId, watermark) {

 // GET activities from conversations endpoint

 let url = conversations + '/' + conversationId +

'/activities';

 if (watermark) {

 url = url + '?watermark=' + watermark;

 }

 return $.ajax({

 url: url,

 type: 'GET',

 data: {},

 datatype: 'json',

 headers: {

 'authorization': 'Bearer ' + token

 }

 });

}

function getToken() {

 return $.getJSON('/api/token').then(function (data) {

 // we need to refresh the token every 30 minutes at

most.

 // we'll try to do it every 25 minutes to be sure

 window.setInterval(function () {

 console.log('refreshing token');

 refreshToken(data.token);

 }, 1000 * 60 * 25);

 return data.token;

 });

}

Chapter 9 Creating a new Channel ConneCtor

420

function refreshToken(token) {

 return $.ajax({

 url: '/api/token/refresh',

 type: 'POST',

 data: token,

 datatype: 'json',

 contentType: 'text/plain'

 });

}

To support the getToken() and refreshToken() client-side functions, we

expose two endpoints on the bot. /api/token generates a new token, and

/api/token/refresh accepts a token as input and refreshes it, extending

its lifetime.

server.use(restify.bodyParser({ mapParams: false }));

server.get('/api/token', (req, res, next) => {

 // make a request to get a token from the secret key

 const jsonClient = restify.createStringClient({ url:

'https://directline.botframework.com/v3/directline/tokens/

generate' });

 jsonClient.post({

 path: '',

 headers: {

 authorization: 'Bearer ' + process.env.DL_KEY

 }

 }, null, function (_err, _req, _res, _data) {

 let jsonData = JSON.parse(_data);

 console.log('%d -> %j', _res.statusCode, _res.headers);

 console.log('%s', _data);

 res.send(200, {

 token: jsonData.token

 });

Chapter 9 Creating a new Channel ConneCtor

421

 next();

 });

});

server.post('/api/token/refresh', (req, res, next) => {

 // make a request to get a token from the secret key

 const token = req.body;

 const jsonClient = restify.createStringClient({ url:

'https://directline.botframework.com/v3/directline/tokens/

refresh' });

 jsonClient.post({

 path: '',

 headers: {

 authorization: 'Bearer ' + token

 }

 }, null, function (_err, _req, _res, _data) {

 let jsonData = JSON.parse(_data);

 console.log('%d -> %j', _res.statusCode, _res.headers);

 console.log('%s', _data);

 res.send(200, {

 success: true

 });

 next();

 });

});

When the page is loaded on the browser, we start a conversation, fetch

a token for it, and listen for incoming messages.

getToken().then(function (token){

 startConversation(token)

 .then(function (response){

 return response.conversationId;

 })

Chapter 9 Creating a new Channel ConneCtor

422

 .then(function (conversationId){

 sendMessagesFromInputBox(conversationId, token);

 pollMessages(conversationId, token);

 });

});

Here is what sendMessagesFromInputBox looks like:

function sendMessagesFromInputBox(conversationId, token) {

 $('.chat-text-entry').keypress(function (event) {

 if (event.which === 13) {

 const input = $('.chat-text-entry').val();

 if (input === '') return;

 const newEntry = buildUserEntry(input);

 scrollToBottomOfChat();

 $('.chat-text-entry').val('');

 postActivity(token, conversationId, {

 textFormat: 'plain',

 text: input,

 type: 'message',

 from: {

 id: user,

 name: user

 }

 }).catch(function (err) {

 $('.chat-history').remove(newEntry);

 console.error('Error sending message:', err);

 });

 }

 });

}

Chapter 9 Creating a new Channel ConneCtor

423

function buildUserEntry(input) {

 const c = $('<div/>');

 c.addClass('chat-entry-container');

 const entry = $('<div/>');

 entry.addClass('chat-entry');

 entry.addClass('chat-from-user');

 entry.text(input);

 c.append(entry);

 $('.chat-history').append(c);

 const h = entry.height();

 entry.parent().height(h);

 return c;

}

function scrollToBottomOfChat() {

 const el = $('.chat-history');

 el.scrollTop(el[0].scrollHeight);

}

The code listens to a Return key press on the textbox. If the user input

is not empty, it sends the message to the bot and adds the user’s message

to the chat history. If the message to the bot fails for any reason, the user’s

message is removed from the chat history. We also make sure that the chat

history control scrolls to the bottom so the newest messages are visible. On

the receiving end, we poll Direct Line for messages. Here is the supporting

code:

function pollMessages(conversationId, token) {

 console.log('Starting polling message for conversationId: '

+ conversationId);

 let watermark = null;

 setInterval(function () {

Chapter 9 Creating a new Channel ConneCtor

424

 getActivities(token, conversationId, watermark)

 .then(function (response) {

 watermark = response.watermark;

 return response.activities;

 })

 .then(insertMessages);

 }, pollInterval);

}

function insertMessages(activities) {

 if (activities && activities.length) {

 activities = activities.filter(function (m) { return

m.from.id !== user });

 if (activities.length) {

 activities.forEach(function (a) {

 buildBotEntry(a);

 });

 scrollToBottomOfChat();

 }

 }

}

function buildBotEntry(activity) {

 const c = $('<div/>');

 c.addClass('chat-entry-container');

 const entry = $('<div/>');

 entry.addClass('chat-entry');

 entry.addClass('chat-from-bot');

 entry.text(activity.text);

 if (activity.attachments) {

 activity.attachments.forEach(function (attachment) {

 switch (attachment.contentType) {

Chapter 9 Creating a new Channel ConneCtor

425

 case 'application/vnd.microsoft.card.hero':

 console.log('hero card rendering not

supported');

 // renderHeroCard(attachment, entry);

 break;

 case 'image/png':

 case 'image/jpeg':

 console.log('Opening the requested image '

+ attachment.contentUrl);

 entry.append("<div class='chat-img'

style='background-size: cover; background-

image: url(" + attachment.contentUrl + ")'

/>");

 break;

 }

 });

 }

 c.append(entry);

 $('.chat-history').append(c);

 const h = entry.height();

 entry.parent().height(h);

}

Notice that Direct Line API returns all messages between the user

and bot, so we must filter out anything sent by the user since we already

appended those when the message was initially sent. Beyond that, we have

custom logic to support image attachments.

entry.append("<div class='chat-img' style='background-size:

cover; background-image: url(" + attachment.contentUrl + ")'

/>");

Chapter 9 Creating a new Channel ConneCtor

426

We could extend that piece to support hero (we have a switch case for

this in our code already, but we have not implemented a renderHeroCard

function) or adaptive cards, audio attachments, or any other kind of

custom rendering our application needs.

A quick note: since we are using the Direct Line API and a custom

client application, we have the option of defining custom attachments.

Thus, if our bot has a need of rendering some application user interface

within the web chat, we could specify this rendering logic by using our own

attachment. The code in buildBotEntry would simply know how to do so.

If we build the bot and run it on localhost:3978, we can access

our web chat by pointing the browser to http://localhost:3978. The

interface looks plain when we run it as Figure 9-5. Figure 9-6 shows the

conversation after a few interactions with our bot working as intended!

Figure 9-5. Plain empty chat interface

Chapter 9 Creating a new Channel ConneCtor

427

EXERCISE 9-1

Node Console Interface

For this exercise, you will create a bot with some basic commands that return

text and create a command-line interface to communicate with it. the goal

will be to utilize both a polling client and a web sockets client and compare the

performance.

 1. Create a simple bot that can respond to several user utterance options

with text. ensure the bot works as expected by using the emulator.

 2. Configure your bot to accept Direct line input on the bot

channel registration Channels blade.

Figure 9-6. Oh, wait, there we go! That’s pretty cool

Chapter 9 Creating a new Channel ConneCtor

428

 3. write a node command-line app that listens to user's console input

and sends the input to Direct line when the user presses return.

 4. For incoming messages, write the code to poll for messages

and print them out on the screen. poll every 1 to 2 seconds. Use

the console app to send multiple messages to the bot and see

how fast it responds.

 5. as a second exercise, write code that utilizes the streamUrl

to initialize a new webSocket connection. You can use the ws
node.js package, documented here: https://github.com/

websockets/ws. print incoming messages to the screen.

 6. how does the performance of the polling solution compare to

the webSocket option?

You are now well versed in integrating with the Direct line api. if you are

developing custom channel adapters, this is the place to start.

 Voice Bots
OK, so we have a lot of flexibility with the Bot Framework. There is one

more area around channels we planned to address, and that’s custom

channel implementations. Say, for example, you are building a bot

for a client, and everything is going well and on schedule. On a Friday

afternoon, the client comes by and asks you, “Hey, Ms. Bot Developer, can

a user call an 800 number to talk to our bot?”

Well, uh, sure I suppose anything is possible with enough time and

money, but how do we get started? Something very similar happened to

me once, and my initial reaction was “No way, this is crazy. There’s too

many issues. Voice is not the same as chat.” Some of these reservations

remain; reusing a bot between a messaging and voice channel is a tricky

area that requires a lot of care because the two interfaces are quite

different. Of course, that doesn’t mean we are not going to try!

Chapter 9 Creating a new Channel ConneCtor

https://github.com/websockets/ws
https://github.com/websockets/ws

429

As it turns out, Twilio is a solid and easy-to-use provider of voice

calls and SMS APIs. Lucky for us, not too long ago, Twilio added speech

recognition to its platform, and it can now translate a user’s voice into text.

In the future, intent recognition will be integrated into the system. In the

meantime, what is there now should be sufficient for our purposes. In fact,

the Bot Framework is already integrated into SMS via Twilio; maybe one

day we’ll have full voice support as well.

 Twilio
Before we get jump into the bot code, let’s talk a bit about Twilio and

how it works. One of Twilio’s products is called Programmable Voice.

Any time a call comes into a registered phone number, a Twilio server

will send a message to a developer-defined endpoint. The endpoint must

respond informing Twilio the actions it should perform, for example,

speak an utterance, dial another number into the call, gather data, pause,

etc. Anytime an interaction occurs, such as Twilio gathering user input

via speech recognition, Twilio calls into this endpoint to receive its

instructions on what to do next. This is good for us. It means our code does

not need to know anything about phone calls. It’s just APIs!

The way that we instruct Twilio what to do is via an XML markup

language called TwiML.4 A sample is shown here:

<?xml version="1.0" encoding="UTF-8"?

<Response>

 <Say voice="woman">Please leave a message after the tone.

</Say>

 <Record maxLength="20" />

</Response>

4 TwiML documentation: https://www.twilio.com/docs/api/twiml

Chapter 9 Creating a new Channel ConneCtor

https://www.twilio.com/docs/api/twiml

430

In this context, the XML elements named Say and Record are called

verbs. Twilio includes a total of 13 verbs at the time of this writing.

• Say: Speak text to the caller

• Play: Play an audio file for the caller

• Dial: Add another party to the call

• Record: Record the caller’s voice

• Gather: Collect digits the caller types on their keypad,

or translate voice into text

• SMS: Send an SMS message during a phone call

• Hangup: Hang up the call

• Enqueue: Add the caller to a queue of callers

• Leave: Remove a caller from a queue of callers

• Redirect: Redirect call flow to a different TwiML

document

• Pause: Wait before executing more instructions

• Reject: Decline an incoming call without being billed

• Message: Send an MMS or SMS message reply

Your TwiML response can have one or multiple verbs. Some verbs can

be nested for specific behaviors on the system. If your TwiML document

contains multiple verbs, Twilio will execute each verb one after another

in sequential order. For example, we could create the following TwiML

document:

<?xml version="1.0" encoding="UTF-8"?

<!-- page located at http://example.com/complex_gather.xml -->

<Response>

 <Gather action="/process_gather.php" method="GET">

Chapter 9 Creating a new Channel ConneCtor

431

 <Say>

 Please enter your account number,

 followed by the pound sign

 </Say>

 </Gather>

 <Say>We didn't receive any input. Goodbye!</Say>

</Response>

This document will start by trying to gather user input. It will first

prompt the user to enter their account number, followed by the pound

sign. The nested behavior of Say within a Gather means that the user can

speak their response before the Say speech content is done. This is a great

feature for returning users. If the Gather verb results in no user input,

Twilio proceeds to the next element, which is a Say element notifying the

user that Twilio did not receive a response. At this point, since there are no

more verbs, the phone call ends.

There are detailed documentation and samples for each verb, and as

we would expect, a full-fledged TwiML application can get complex. As

with all user interfaces, there are many details. For our purposes, we will

create a basic integration so that we can talk to the same bot that we just

created for our custom web chat.

 Integrating Our Bot with Twilio
We will begin by registering our app with Twilio. First, we need to create a

trial account with Twilio. Visit www.twilio.com and click Sign Up. Fill out

the form with the relevant information, as per Figure 9-7. Once you do,

you’ll enter your phone number and a verification code.

Chapter 9 Creating a new Channel ConneCtor

http://www.twilio.com/

432

Figure 9-7. Signing up for a Twilio account

Chapter 9 Creating a new Channel ConneCtor

433

Twilio will next ask for our project name. Feel free to provide

something more interesting than the name in Figure 9-8.

We will be redirected to the Twilio dashboard (Figure 9-9).

Figure 9-8. Creating a new Twilio project

Figure 9-9. The Twilio project dashboard

Chapter 9 Creating a new Channel ConneCtor

434

Our next task is for us to set up a phone number and point it at our bot.

Click the Numbers navigation item in the left pane, and we will be taken to

the Phone Numbers dashboard (Figure 9-10).

Click Get a Number. Twilio will assign a number to you. Since we’re

just testing, any number will do. You may also buy a toll-free number or

transfer one from a different service.5 Afterward, click Manage Numbers

and then click the number you were just assigned. Find the field for the

URL to contact on incoming calls and copy in your bot’s ngrok endpoint

(Figure 9-11). We will create this endpoint in the coming pages.

Figure 9-10. Let’s get a phone number for our project!

5 Buying a toll-free number from Twilio: https://support.twilio.com/hc/en-us/
articles/223183168-Buying-a-toll-free-number-with-Twilio

Chapter 9 Creating a new Channel ConneCtor

https://support.twilio.com/hc/en-us/articles/223183168-Buying-a-toll-free-number-with-Twilio
https://support.twilio.com/hc/en-us/articles/223183168-Buying-a-toll-free-number-with-Twilio

435

Now, any time that anyone calls that number, our endpoint will receive

an HTTP POST request with all the information relevant to the call. We will

be able to accept this call and respond using TwiML documents like the

ones we previously discussed.

OK, so what now? In our bot code, we can add the /api/voice

endpoint to start accepting calls. For now, we simply added a log but

return no response. Let’s see what kind of data we get from Twilio.

server.post('/api/voice', (req, res, next) => {

 console.log('%j', req.body);

});

{

 "Called": "+1xxxxxxxxxx",

 "ToState": "NJ",

 "CallerCountry": "US",

 "Direction": "inbound",

 "CallerState": "NY",

Figure 9-11. Configuring the endpoint Twilio will send a message to
on an incoming call

Chapter 9 Creating a new Channel ConneCtor

436

 "ToZip": "07050",

 "CallSid": "xxxxxxxxxxxxxxxxxxxxxx",

 "To": "+1xxxxxxxxxx",

 "CallerZip": "10003",

 "ToCountry": "US",

 "ApiVersion": "2010-04-01",

 "CalledZip": "07050",

 "CalledCity": "ORANGE",

 "CallStatus": "ringing",

 "From": "+1xxxxxxxxxx",

 "AccountSid": "xxxxxxxxxxxxxxxxxxxxx",

 "CalledCountry": "US",

 "CallerCity": "MANHATTAN",

 "Caller": "+1xxxxxxxxxx",

 "FromCountry": "US",

 "ToCity": "ORANGE",

 "FromCity": "MANHATTAN",

 "CalledState": "NJ",

 "FromZip": "10003",

 "FromState": "NY"

}

Twilio sends some interesting data. Since we get the caller number, we

can easily use that as the user ID in interactions with our bot. Let’s create a

response to the API call. Let’s first install the Twilio node API.

npm install twilio –-save

We can then import the relevant types into our node app.

const twilio = require('twilio');

const VoiceResponse = twilio.twiml.VoiceResponse;

Chapter 9 Creating a new Channel ConneCtor

437

VoiceResponse is a convenient type that helps generate the response

XML. Here is a sample of how we can return a basic TwiML response:

server.post('/api/voice', (req, res, next) => {

 let twiml = new VoiceResponse();

 twiml.say('Hi, I\'m Direct Line bot!', { voice: 'Alice' });

 let response = twiml.toString();

 res.writeHead(200, {

 'Content-Length': Buffer.byteLength(response),

 'Content-Type': 'text/html'

 });

 res.write(response);

 next();

});

Now, when we call the phone number provided by Twilio, after

a disclaimer, we should see a request to our API endpoint, and a

female voice should speak to us over the phone and then hang up.

Congratulations! You’ve established connectivity!

It is not a great experience when our bot hangs up pretty much

immediately, but we can improve on that. First, let’s gather some input

from the user.

The Gather verb includes several different options, but we are mainly

concerned with the fact that Gather can be used to accept either voice or

dual-tone multi-frequency (DTMF) signals from the user’s phone. DTMF

are just the signals sent when you press a key on your phone. That is how a

phone system can reliably gather information such as a credit card number

without the user speaking it. For the purposes of this example, we are

solely concerned with collecting speech.

Chapter 9 Creating a new Channel ConneCtor

438

Here is a Gather sample, like what we will be using:

<?xml version="1.0" encoding="UTF-8"?

<Response>

 <Gather input="speech" action="/api/voice/gather"

method="POST">

 <Say>

 Tell me what's on your mind

 </Say>

 </Gather>

 <Say>We didn't receive any input. Goodbye!</Say>

</Response>

This snippet tells Twilio to gather speech from the user and for Twilio to

send the recognized speech using a POST to /api/voice/gather. That’s it!

Gather has many other options around timeouts and sending partial speech

recognition results as well, but those are unnecessary for our purposes.6

Let’s establish an echo Twilio integration. We extend our code for

/api/voice to include the Gather verb and then create the endpoint for

/api/voice/gather that echoes back what the user said and gathers more

information, establishing a virtually endless conversation loop.

server.post('/api/voice', (req, res, next) => {

 let twiml = new VoiceResponse();

 twiml.say('Hi, I\'m Direct Line bot!', { voice: 'Alice' });

 let gather = twiml.gather({ input: 'speech', method:

'POST', action: '/api/voice/gather' });

 gather.say('Tell me what is on your mind', { voice: 'Alice' });

 let response = twiml.toString();

6 Twilio Gather Verb: https://www.twilio.com/docs/voice/twiml/gather

Chapter 9 Creating a new Channel ConneCtor

https://www.twilio.com/docs/voice/twiml/gather

439

 res.writeHead(200, {

 'Content-Length': Buffer.byteLength(response),

 'Content-Type': 'text/html'

 });

 res.write(response);

 next();

});

server.post('/api/voice/gather', (req, res, next) => {

 let twiml = new VoiceResponse();

 const input = req.body.SpeechResult;

 twiml.say('Oh hey! That is so interesting. ' + input, {

voice: 'Alice' });

 let gather = twiml.gather({ input: 'speech', method:

'POST', action: '/api/voice/gather' });

 gather.say('Tell me what is on your mind', { voice: 'Alice'

});

 let response = twiml.toString();

 res.writeHead(200, {

 'Content-Length': Buffer.byteLength(response),

 'Content-Type': 'text/html'

 });

 res.write(response);

 next();

});

Go ahead and run this code in your bot. Call the phone number. Talk

to you bot. That’s cool, right? Great. It’s not useful, but we’ve establish

a working conversation loop between a Twilio phone conversation and

our bot.

Chapter 9 Creating a new Channel ConneCtor

440

Lastly, let’s integrate this into our bot by using Direct Line. Before we

jump into the code, we write a few functions to help our bot invoke Direct

Line.

const baseUrl = 'https://directline.botframework.com/v3/

directline';

const conversations = baseUrl + '/conversations';

function startConversation (token) {

 return new Promise((resolve, reject) => {

 let client = restify.createJsonClient({

 url: conversations,

 headers: {

 'Authorization': 'Bearer ' + token

 }

 });

 client.post('', {},

 function (err, req, res, obj) {

 if (err) {

 console.log('%j', err);

 reject(err);

 return;

 }

 console.log('%d -> %j', res.statusCode,

res.headers);

 console.log('%j', obj);

 resolve(obj);

 });

 });

}

function postActivity (token, conversationId, activity) {

 // POST to conversations endpoint

Chapter 9 Creating a new Channel ConneCtor

441

 const url = conversations + '/' + conversationId + '/

activities';

 return new Promise((resolve, reject) => {

 let client = restify.createJsonClient({

 url: url,

 headers: {

 'Authorization': 'Bearer ' + token

 }

 });

 client.post('', activity,

 function (err, req, res, obj) {

 if (err) {

 console.log('%j', err);

 reject(err);

 return;

 }

 console.log('%d -> %j', res.statusCode,

res.headers);

 console.log('%j', obj);

 resolve(obj);

 });

 });

}

function getActivities (token, conversationId, watermark) {

 // GET activities from conversations endpoint

 let url = conversations + '/' + conversationId + '/

activities';

 if (watermark) {

 url = url + '?watermark=' + watermark;

 }

Chapter 9 Creating a new Channel ConneCtor

442

 return new Promise((resolve, reject) => {

 let client = restify.createJsonClient({

 url: url,

 headers: {

 'Authorization': 'Bearer ' + token

 }

 });

 client.get('',

 function (err, req, res, obj) {

 if (err) {

 console.log('%j', err);

 reject(err);

 return;

 }

 console.log('%d -> %j', res.statusCode,

 res.headers);

 console.log('%j', obj);

 resolve(obj);

 });

 });

}

 We will extract the creation and sending of the TwiML response into

its own function called buildAndSendTwimlResponse. We have added a bit

more structure into the act of listening to input and, if none is received, to

ask for input again before hanging up.

function buildAndSendTwimlResponse(req, res, next, userId,

text) {

 const twiml = new VoiceResponse();

 twiml.say(text, { voice: 'Alice' });

Chapter 9 Creating a new Channel ConneCtor

443

 twiml.gather({ input: 'speech', action: '/api/voice/

gather', method: 'POST' });

 twiml.say('I didn\'t quite catch that. Please try again.',

{ voice: 'Alice' });

 twiml.gather({ input: 'speech', action: '/api/voice/

gather', method: 'POST' });

 twiml.say('Ok, call back anytime!');

 twiml.hangup();

 const response = twiml.toString();

 console.log(response);

 res.writeHead(200, {

 'Content-Length': Buffer.byteLength(response),

 'Content-Type': 'text/html'

 });

 res.write(response);

 next();

}

When a call first starts, we need to create a Direct Line conversation

for our bot to use. We also need to cache the mapping of user ID (caller

phone number) to conversation ID. We do so in a local JavaScript object

(cachedConversations). If we were to scale this service out to multiple

servers, this approach will break; we can get around this by utilizing a

cache such as Redis.

server.post('/api/voice', (req, res, next) => {

 let userId = req.body.Caller;

 console.log('starting convo for user id %s', userId);

 startConversation(process.env.DL_KEY).then(conv => {

 cachedConversations[userId] = { id: conv.

conversationId, watermark: null, lastAccessed:

moment().format() };

Chapter 9 Creating a new Channel ConneCtor

444

 console.log('%j', cachedConversations);

 buildAndSendTwimlResponse(req, res, next, userId,

'Hello! Welcome to Direct Line bot!');

 });

});

The code for the Gather element should retrieve the conversation ID,

get the user input, send the activity to the bot via the Direct Line API, and

then wait for the response to come back before sending it back to Twilio

as TwiML. Since we need to poll for the new messages, we need to use

setInterval until we get a response from the bot. The code doesn’t include

any kind of timeout, but we should certainly consider it in case something

goes wrong with the bot. We also only support one response from the bot

per message. Voice interactions are not a place to exercise a bot’s ability to

send multiple responses asynchronously, although we could certainly try.

One approach would be to include custom channel data communicating

the number of messages expected to return or to wait a predefined number

of seconds and then send all messages back.

server.post('/api/voice/gather', (req, res, next) => {

 const input = req.body.SpeechResult;

 let userId = req.body.Caller;

 console.log('user id: %s | input: %s', userId, input);

 let conv = cachedConversations[userId];

 console.log('got convo: %j', conv);

 conv.lastAccessed = moment().format();

 postActivity(process.env.DL_KEY, conv.id, {

 from: { id: userId, name: userId },

 type: 'message',

 text: input

 }).then(() => {

 console.log('posted activity to bot with input %s',

input);

Chapter 9 Creating a new Channel ConneCtor

445

 console.log('setting interval');

 let interval = setInterval(function () {

 console.log('getting activities...');

 getActivities(process.env.DL_KEY, conv.id, conv.

watermark).then(activitiesResponse => {

 console.log("%j", activitiesResponse);

 let temp = _.filter(activitiesResponse.

activities, (m) => m.from.id !== userId);

 if (temp.length > 0) {

 clearInterval(interval);

 let responseActivity = temp[0];

 console.log('got response %j',

responseActivity);

 conv.watermark = activitiesResponse.

watermark;

 buildAndSendTwimlResponse(req, res, next,

userId, responseActivity.text);

 conv.lastAccessed = moment().format();

 } else {

 console.log('no activities for you...');

 }

 });

 }, 500);

 });

});

If you run this, you should now be able to talk to the same bot that we

exposed via our webchat via Twilio!

Chapter 9 Creating a new Channel ConneCtor

446

EXERCISE 9-2

Twilio Voice Integration

the goal of this exercise is to create a bot and call it by integrating with twilio.

 1. Sign up for a trial twilio account and get a testing phone

number.

 2. enter your bot voice endpoint for twilio to use when your phone

number receives a call.

 3. integrate the voice endpoint with a Direct line call into your bot.

return the first reply you receive from your bot.

 4. explore twilio’s voice dashboard. the dashboard provides

information about each call and, more importantly, a

functionality to view all errors and warnings. if your bot

appears to be working correctly but the phone call to your bot

fails, the “errors & warnings” section is a great place to start

investigating what may have happened.

 5. add the Gather verb into your response so the user can have a

conversation with the bot. how long of a conversation can you

have before the novelty of a dumb bot wears off and you want

to implement something meaningful?

 6. Substitute the polling mechanism for a webSocket, like you did

in exercise 9-1. Does it help with this solution?

 7. play around a bit with twilio’s speech recognition. how good is

it? how good is it at recognizing your name? how easily can it

be broken?

Chapter 9 Creating a new Channel ConneCtor

447

 8. applying speech recognition to arbitrary voice data is challenging

enough as it is, not to mention when applied to phone quality

voice data. twilio's Gather verb allows for hints7 to prime the

speech recognition engine8 with a vocabulary of words or phrases.

typically, this improves the voice recognition performance. go

ahead and add some hints that contain words supported by your

bot. Does the speech recognition behave any better?

You just created your own voice-enabled chat bot and experimented with

some interesting twilio features. You can use similar techniques to create

connectors for just about any other channel.

 Integrating with SSML
Recall that systems like Google Assistant and Amazon’s Alexa support

voice output via Speech Synthesis Markup Language (SSML). Using this

markup language, developers can specify tone, speed, emphasis, and

pauses in the bot’s voice responses. Unfortunately, Twilio does not support

SSML at the time of this writing. Lucky for us, Microsoft has some APIs that

can convert text to speech using SSML.

One such APIs is Microsoft’s Bing Speech API.9 This service provides

both speech-to-text and text-to-speech functionality. For the text-to-

speech functionality, we provide an SSML document and receive an audio

file in response. We have some control over the output format, though for

our sample we will receive a wave file. Once we have the file, we can utilize

the Play verb to play the audio to the phone call. Let’s see how this works.

7 TwiML Gather Verb Hints Attribute: https://www.twilio.com/docs/voice/
twiml/gather#attributes-hints

8 Speech Priming in the Context of a Bot Framework Bot: https://docs.microsoft.
com/en-us/azure/bot-service/bot-service-manage-speech-priming

9 Bing Speech API: https://azure.microsoft.com/en-us/services/
cognitive-services/speech/

Chapter 9 Creating a new Channel ConneCtor

https://www.twilio.com/docs/voice/twiml/gather#attributes-hints
https://www.twilio.com/docs/voice/twiml/gather#attributes-hints
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-manage-speech-priming
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-manage-speech-priming
https://azure.microsoft.com/en-us/services/cognitive-services/speech/
https://azure.microsoft.com/en-us/services/cognitive-services/speech/

448

We’ll first pull in the bing-speechclient-api Node.js package.

npm install --save bingspeech-api-client

A sample Play TwiML document looks like this:

<?xml version="1.0" encoding="UTF-8"?

<Response>

 <Play loop="10">https://api.twilio.com/cowbell.mp3</Play>

</Response>

Twilio accepts a URI in the Play verb. As such, we will need to save the

output from the Bing Speech API to a file on the file system and generate a

URI that Twilio can use to retrieve the audio file. We are going to write all

output audio files into a directory called audio. We will also set up a new

restify route to retrieve those files.

First, let’s create our function to generate the audio file and store it in

the right location. Given some text, we want to return a URI for the calling

function to utilize. We will use an MD5 hash of the text as the identifier for

the audio file.

npm install md5 --save

This is what the code looks like to generate an audio file and save it

locally. There are two prerequisites. First, we need to generate an API key

to utilize Microsoft’s Bing Speech API. We can achieve this by creating a

new Bing Speech API resource in the Azure Portal. There is a free plan

version of this API. Once we have the key, we add it to the .env file and

name it MICROSOFT_BING_SPEECH_KEY. Second, we add our base

ngrok URI to the .env file as BASE_URI.

const md5 = require('md5');

const BingSpeechClient = require('bingspeech-api-client').

BingSpeechClient;

const fs = require('fs');

Chapter 9 Creating a new Channel ConneCtor

449

const bing = new BingSpeechClient(process.env.MICROSOFT_BING_

SPEECH_KEY);

function generateAudio (text) {

 const id = md5(text);

 const file = 'public\\audio\\' + id + '.wav';

 const resultingUri = process.env.BASE_URI + '/audio/' + id

+ '.wav';

 if (!fs.existsSync('public')) fs.mkdirSync('public');

 if (!fs.existsSync('public/audio')) fs.mkdirSync('public/

audio');

 return bing.synthesize(text).then(result => {

 const wstream = fs.createWriteStream(file);

 wstream.write(result.wave);

 console.log('created %s', resultingUri);

 return resultingUri;

 });

}

To test this, we create a test endpoint that creates an audio file and

responds with the URI. We could then use the browser to point at the URI

and download the resulting sound file. The following SSML is borrowed

from Google’s SSML documentation, and I’ve added the current time using

Date().getTime() so that we generate a unique MD5 each time.

server.get('/api/audio-test', (req, res, next) => {

 const sample = 'Here are <say-as interpret-

as="characters">SSML</say-as> samples. I can pause <break

time="3s"/>.' +

 'I can speak in cardinals. Your number is <say-as

interpret-as="cardinal">10</say-as>.' +

Chapter 9 Creating a new Channel ConneCtor

450

 'Or I can even speak in digits. The digits for ten are

<say-as interpret-as="characters">10</say-as>.' +

 'I can also substitute phrases, like the <sub

alias="World Wide Web Consortium">W3C</sub>.' +

 'Finally, I can speak a paragraph with two sentences.' +

 '<p><s>This is sentence one.</s><s>This is sentence

two.</s></p>';

 generateAudio(sample + ' ' + new Date().getTime()).then(uri

=> {

 res.send(200, {

 uri: uri

 });

 next();

 });

});

If we invoke the URL from curl, we get the following result. The

audio file referenced by the URI is clearly a speech synthesis of the SSML

document.

$ curl https://botbook.ngrok.io/api/audio-test

{"uri":"https://botbook.ngrok.io/audio/1ce776f3560e54064979c4eb

69bbc308.wav"}

Finally, we integrate this into our code. We change the

buildAndSendTwimlResponse function to generate the audio files for any

text we send. We also make a change in the generateAudio function to use

any previously generated audio files based on the MD5 hash. That means

we’ll have to generate only one audio file per input.

function buildAndSendTwimlResponse(req, res, next, userId, text) {

 const twiml = new VoiceResponse();

 Promise.all(

Chapter 9 Creating a new Channel ConneCtor

451

 [

 generateAudio(text),

 generateAudio('I didn\'t quite catch that. Please

try again.'),

 generateAudio('Ok, call back anytime!')]).then(

 uri => {

 let msgUri = uri[0];

 let firstNotCaughtUri = uri[1];

 let goodbyeUri = uri[2];

 twiml.play(msgUri);

 twiml.gather({ input: 'speech', action: '/api/

voice/gather', method: 'POST' });

 twiml.play(firstNotCaughtUri);

 twiml.gather({ input: 'speech', action: '/api/

voice/gather', method: 'POST' });

 twiml.play(goodbyeUri);

 twiml.hangup();

 const response = twiml.toString();

 console.log(response);

 res.writeHead(200, {

 'Content-Length': Buffer.byteLength(response),

 'Content-Type': 'text/html'

 });

 res.write(response);

 next();

 });

}

Chapter 9 Creating a new Channel ConneCtor

452

function generateAudio (text) {

 const id = md5(text);

 const file = 'public\\audio\\' + id + '.wav';

 const resultingUri = process.env.BASE_URI + '/audio/' + id

+ '.wav';

 if (!fs.existsSync('public')) fs.mkdirSync('public');

 if (!fs.existsSync('public/audio')) fs.mkdirSync('public/

audio');

 if (fs.existsSync(file)) {

 return Promise.resolve(resultingUri);

 }

 return bing.synthesize(text).then(result => {

 const wstream = fs.createWriteStream(file);

 wstream.write(result.wave);

 console.log('created %s', resultingUri);

 return resultingUri;

 });

}

 Final Touches
We are almost done. One thing we have not yet done is to have the bot

respond with SSML, instead of using the text. We do not utilize all the

speech features from the Bot Builder. As shown in Chapter 6, we could

have each message populate the inputHint to assist in determining which

TwiML verbs should be used and even to consolidate multiple response

from the bot. We stick to simply populating the speak field in each message

with the appropriate SSML. We must also modify our connector code to

use the speak field, instead of the text field.

Chapter 9 Creating a new Channel ConneCtor

453

bot.dialog('sampleConversation', [

 (session, arg) => {

 console.log(JSON.stringify(session.message));

 if (session.message.text.toLowerCase().indexOf('hello')

>= 0 || session.message.text.indexOf('hi') >= 0)

 session.send({

 text: 'hey!',

 speak: '<emphasis level="strong">really like</

emphasis> hey!</emphasis>'

 });

 else if (session.message.text.toLowerCase() === 'quit') {

 session.send({

 text: 'ok, we\'re done!',

 speak: 'ok, we\'re done',

 sourceEvent: {

 hangup: true

 }

 });

 session.endDialog();

 return;

 } else if (session.message.text.toLowerCase().indexOf('

meaning of life') >= 0) {

 session.send({

 text: '42',

 speak: 'It is quite clear that the meaning

of life is <break time="2s" /><emphasis

level="strong">42</emphasis>'

 });

 } else if (session.message.text.toLowerCase().

indexOf('waldo') >= 0) {

 session.send({

Chapter 9 Creating a new Channel ConneCtor

454

 text: 'not here',

 speak: '<emphasis level="strong">Definitely</

emphasis> not here'

 });

 } else if (session.message.text.toLowerCase() ===

'apple') {

 session.send({

 text: "Here, have an apple.",

 speak: "Apples are delicious!",

 attachments: [

 {

 contentType: 'image/jpeg',

 contentUrl: 'https://upload.wikimedia.

org/wikipedia/commons/thumb/1/15/Red_

Apple.jpg/1200px- Red_Apple.jpg',

 name: 'Apple'

 }

]

 });

 }

 else {

 session.send({ text: 'oh that\'s cool', speak: 'oh

that\'s cool' });

 }

 }

]);

Note that we also added an extra metadata control field. The response

to input quit includes a field called hangup, set to true. This is an indicator

to our connector to include the Hangup verb. We create a function called

buildAndSendHangup to generate that response.

Chapter 9 Creating a new Channel ConneCtor

455

function buildAndSendHangup(req, res, next) {

 const twiml = new VoiceResponse();

 Promise.all([generateAudio('Ok, call back anytime!')]).

then(

 (uri) => {

 twiml.play(uri[0]);

 twiml.hangup();

 const response = twiml.toString();

 console.log(response);

 res.writeHead(200, {

 'Content-Length': Buffer.byteLength(response),

 'Content-Type': 'text/html'

 });

 res.write(response);

 next();

 });

}

We modify the /api/voice/gather handler to use the speak property

and interpret the hangup field correctly.

server.post('/api/voice/gather', (req, res, next) => {

 const input = req.body.SpeechResult;

 let userId = req.body.Caller;

 console.log('user id: %s | input: %s', userId, input);

 let conv = cachedConversations[userId];

 console.log('got convo: %j', conv);

 conv.lastAccessed = moment().format();

 postActivity(process.env.DL_KEY, conv.id, {

Chapter 9 Creating a new Channel ConneCtor

456

 from: { id: userId, name: userId }, // required (from.

name is optional)

 type: 'message',

 text: input

 }).then(() => {

 console.log('posted activity to bot with input %s',

input);

 console.log('setting interval');

 let interval = setInterval(function () {

 console.log('getting activities...');

 getActivities(process.env.DL_KEY, conv.id, conv.

watermark).then(activitiesResponse => {

 console.log("%j", activitiesResponse);

 let temp = _.filter(activitiesResponse.

activities, (m) => m.from.id !== userId);

 if (temp.length > 0) {

 clearInterval(interval);

 let responseActivity = temp[0];

 console.log('got response %j',

responseActivity);

 conv.watermark = activitiesResponse.

watermark;

 if (responseActivity.channelData &&

responseActivity.channelData.hangup) {

 buildAndSendHangup(req, res, next);

 } else {

 buildAndSendTwimlResponse(req, res,

next, userId, responseActivity.speak);

 conv.lastAccessed = moment().format();

 }

Chapter 9 Creating a new Channel ConneCtor

457

 } else {

 console.log('no activities for you...');

 }

 });

 }, 500);

 });

});

Now we can call and have a great conversation with a witty bot that

pauses before saying the meaning of life is 42 and places emphasis on the

fact that Waldo is definitely not where the bot is!

 Conclusion
Direct Line is a powerful feature and is the main interface for calling into our

bot from a client app. Having the ability to consider other channels as sort

of a client app is how we can create custom channel connectors. One of the

more interesting tasks we accomplished in this chapter was adding SSML

support to our bot integration. This kind of integration is just a taste of the

intelligence that we can begin building into our bot experience. The Bing

Speech API that we utilized is just one of numerous Microsoft APIs known

as the Cognitive Services APIs. In the next chapter, we’ll look at applying

other APIs in that family to tasks we may encounter in the bot space.

Chapter 9 Creating a new Channel ConneCtor

459© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_10

CHAPTER 10

Making the Chat Bot
Smarter
In the previous chapter, we spent time connecting our chat bot’s Speech

Synthesis Markup Language (SSML) output into a cloud-based text-to-

speech engine to give our chat bot as human a voice as possible. The Bing

Speech API that we utilized is an example of what is collectively being

called cognitive services. These are typically services that enable more

natural human-like interactions with applications. Originally, Microsoft

referred to these as Project Oxford.1 These days, the suite of APIs is now

branded as Azure Cognitive Services.

At a more technical level, these are services that allow easy access

to machine learning (ML) algorithms that perform cognitive-type tasks,

for example, speech recognition, speech synthesis, spell-checking, auto-

correction, recommendation engines, decision engines, and visual object

recognition. LUIS, which we explored in depth in Chapter 3, is another

example of an Azure Cognitive Service. Microsoft is obviously not the only

player in this space. IBM has many similar services under its Watson umbrella.

Google’s Cloud Platform includes similar services on the Google stack.

1 Original Project Oxford blog announcement: https://blogs.microsoft.com/
ai/microsofts-project-oxford-helps-developers-build-more-intelligent-
apps/

https://blogs.microsoft.com/ai/microsofts-project-oxford-helps-developers-build-more-intelligent-apps/
https://blogs.microsoft.com/ai/microsofts-project-oxford-helps-developers-build-more-intelligent-apps/
https://blogs.microsoft.com/ai/microsofts-project-oxford-helps-developers-build-more-intelligent-apps/

460

This ML-as-a-service approach is extremely convenient for many tasks.

Although it may not be appropriate from a latency and cost perspective

for all workloads, for many it just makes sense to use for prototyping, pilot

and production deployments. In this chapter, we will explore a few of

Microsoft's Azure Cognitive Services at our disposal. This is not meant to

be an exhaustive treatment of the subject but rather an introduction to the

type of services that may be of interest to chat bot developers.

In either case, it is worth exploring these services to understand what

is being offered, to learn what types of technologies can be applied to our

business problems applications, and, most importantly, to engender our

chat bots with some relevant intelligence.

Before we jump in, please note that all the cognitive services can be

provisioned by using the Azure Portal at https://portal.azure.com.

Adding the desired service resource into a resource group will allow us to

get an access key. For example, when we try to add a “bing spell check”

resource into the “book test” resource group, we can select Bing Spell

Check v7 API (Figure 10-1).

Figure 10-1. Adding the Bing Spell Check v7 API in Azure

Chapter 10 Making the Chat Bot SMarter

https://portal.azure.com/

461

After we give the service a name and select the pricing tier (Figure 10- 2),

we can see the access keys. There are typically two access keys available for

us to use (Figure 10-3). Having two keys allows for easy key rotation.

Figure 10-2. Creating the Bing Spell Check v7 API resource

Chapter 10 Making the Chat Bot SMarter

462

This process works similarly for the rest of the services; no advanced

level of knowledge of the portal is needed to get started.

When the services were first being developed in public preview,

most were offered free. As the services moved from preview into general

availability, tiered pricing models were established. Lucky for us, most

of the services still have a free tier that permits a substantial amount of

usage. For example, LUIS allows us to call the endpoint 10,000 times per

month for free. We can use the Translator Text API to translate 2,000,000

characters per month free. You can find more pricing details for all the

services at https://azure.microsoft.com/en-us/pricing/details/

cognitive-services/.

 Spell-Checking
One feature for any application that deals with user-generated text input

is spell-checking. We would like an engine that is flexible and can handle

common spelling issues such as dealing with slang, handling proper name

Figure 10-3. Finding the access keys for the Bing Spell Check v7 API
resource

Chapter 10 Making the Chat Bot SMarter

https://azure.microsoft.com/en-us/pricing/details/cognitive-services/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/

463

errors within a context, figuring out word breaks, and spotting errors with

homophones. Additionally, the engine should be continually updated with

new entities such as brands and popular cultural expressions. That is no

small feat, yet Microsoft offers its Spell Check API that does just that.

Microsoft’s Bing Spell Check API provides two spell-checker modes:

Proof and Spell. Proof is designed for document spell-checking including

capitalization and punctuation suggestions to help with document

authoring (the type of spell checking you may find in Microsoft Word).

Spell is designed for correcting the spelling in web searches. Microsoft

claims the Spell mode to be more aggressive as it is designed to optimize

for search results.2 The context of chat bots is closer to a web search than

drafting long documents, so Spell is probably the better choice.

We will begin with the basics, passing the mode, the culture for which

we want to spell check (referred to as the market), and the text itself. We

also have the option of adding the context before and after the input text.

In many scenarios, context can be important and relevant for the spell

checker. You can find more details in the API reference documentation.3

To demonstrate the APIs usage, we will create a basic chat bot that

simply passes the user input through the spell-checker and responds

by modifying the user’s input with suggested improvements that have a

score higher than 0.5. The bot will first prompt for the user to select the

spell- check mode. At that point, any input will be sent to the Spell Check

API using the selected mode. Finally, we can send the message “exit” at

any time to return to the main menu and select the mode again. This is

basic, but it will illustrate interacting with the API. You can find the code

for this bot under the chapter10-spell-check-bot folder in the book’s

GitHub repo.

2 More information about the Bing Spell Check API: https://azure.microsoft.
com/en-us/services/cognitive-services/spell-check/

3 Bing Spell Check API V7 API documentation: https://docs.microsoft.com/
en-us/rest/api/cognitiveservices/bing-spell-check-api-v7-reference

Chapter 10 Making the Chat Bot SMarter

https://azure.microsoft.com/en-us/services/cognitive-services/spell-check/
https://azure.microsoft.com/en-us/services/cognitive-services/spell-check/
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-spell-check-api-v7-reference
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-spell-check-api-v7-reference

464

We first create the Bing Spell Check v7 API resource in Azure, so we

can get a key. Although we could write our own client library to use with

the service, we will use a Node.js package called cognitive-services4 that

includes client implementations for most of Microsoft’s cognitive services.

npm install cognitive-services --save

const cognitiveServices = require('cognitive-services');

We set up our UniversalBot as usual. We add the Spell Check API key

into our .env file and call the field SC_KEY.

const welcomeMsg = 'Say \'proof\' or \'spell\' to select spell

check mode';

const bot = new builder.UniversalBot(connector, [

 (session, arg, next) => {

 if (session.message.text === 'proof') {

 session.beginDialog('spell-check-dialog', { mode:

'proof' });

 } else if (session.message.text === 'spell') {

 session.beginDialog('spell-check-dialog', { mode:

'spell' });

 } else {

 session.send(welcomeMsg);

 }

 },

 session => {

 session.send(welcomeMsg);

 }

]);

const inMemoryStorage = new builder.MemoryBotStorage();

bot.set('storage', inMemoryStorage);

4 Node.js cognitive-services package and Cognitive Service API support listing:
https://www.npmjs.com/package/cognitive-services

Chapter 10 Making the Chat Bot SMarter

https://www.npmjs.com/package/cognitive-services

465

Next, we create a dialog called spell-check-dialog. In this code we

send a request to the Spell Check API any time a new message is sent by

the user. When we receive the result, we replace the segments flagged as

problematic with a suggested correction that has a score greater or equal

to 0.5. Why 0.5? It is a bit of an arbitrary decision, and it is suggested to

modify the score threshold and input option to find the best values for your

application.

bot.dialog('spell-check-dialog', [

 (session, arg) => {

 session.dialogData.mode = arg.mode;

 builder.Prompts.text(session, 'Enter your input text.

Say \'exit\' to reconfigure mode.');

 },

 (session, arg) => {

 session.sendTyping();

 const text = arg.response;

 if (text === 'exit') {

 session.endDialog('ok, done.');

 return;

 }

 spellCheck(text, session.dialogData.mode).

then(resultText => {

 session.send(resultText);

 session.replaceDialog('spell-check-dialog', { mode:

session.dialogData.mode });

 });

 }

]);

Chapter 10 Making the Chat Bot SMarter

466

We define the spellCheck function to call the Bing Spell Check API and

replace misspelled words with the suggested correction.

function spellCheck(text, mode) {

 const parameters = {

 mkt: 'en-US',

 mode: mode,

 text: text

 };

 const spellCheckClient = new cognitiveServices.

bingSpellCheckV7({

 apiKey: process.env.SC_KEY

 })

 return spellCheckClient.spellCheck({

 parameters

 }).then(response => {

 console.log(response); // we do this so we can easily

inspect the resulting object

 const resultText = applySpellCheck(text, response.

flaggedTokens);

 return resultText;

 });

}

function applySpellCheck(originalText, possibleProblems) {

 let tempText = originalText;

 let diff = 0;

Chapter 10 Making the Chat Bot SMarter

467

 for (let i = 0; i < possibleProblems.length; i++) {

 const problemToken = possibleProblems[i];

 const offset = problemToken.offset;

 const originalTokenLength = problemToken.token.length;

 const suggestionObj = problemToken.suggestions[0];

 if (suggestionObj.score < .5) {

 continue;

 }

 const suggestion = suggestionObj.suggestion;

 const lengthDiff = suggestion.length -

originalTokenLength;

 tempText = tempText.substring(0, offset + diff) +

suggestion + tempText.substring(offset + diff +

originalTokenLength);

 diff += lengthDiff;

 }

 return tempText;

}

Figure 10-4 shows the resulting conversation.

Chapter 10 Making the Chat Bot SMarter

468

It works well! Another approach is to always run input through the

spell-checker before it even reaches the dialog stack. We can do this by

installing custom middleware in the bot. The idea behind middleware is to

be able to add logic into the pipeline that the Bot Builder uses to process

every incoming and outgoing message. The structure of a middleware

object is as follows. The method bot.use adds the middleware object to Bot

Builder’s pipeline.

Figure 10-4. Spell-checker bot in action

Chapter 10 Making the Chat Bot SMarter

469

bot.use({

 receive: function (event, next) {

 logicOnIncoming(event);

 next();

 },

 send: function (event, next) {

 logicOnOutgoing(event);

 next();

 }

});

We could create the following middleware using our previously

defined code. We spell-check incoming input, overwriting the input with

the autocorrected text. We do not define any logic on outgoing messages.

bot.use({

 receive: function (event, next) {

 if (event.type === 'message') {

 spellCheck(event.text, 'spell').then(resultText => {

 event.text = resultText;

 next();

 });

 }

 },

 send: function (event, next) {

 next();

 }

});

Chapter 10 Making the Chat Bot SMarter

470

That’s it! Now our dialog can be so much simpler!

bot.dialog('middleware-dialog', [

 (session, arg) => {

 let text = session.message.text;

 session.send(text);

 }

]);

The resulting conversation looks something like Figure 10-5.

In Chapter 3 we explored the options the Language Understanding

Intelligence Service (LUIS) offers when it comes to spell-checking. As

mentioned previously, LUIS is another one of Microsoft’s cognitive

services; it is an NLU system that allows us to classify intents and extract

named entities. One of the tasks it can accomplish is to integrate with

Figure 10-5. Spell-checking using the middleware approach

Chapter 10 Making the Chat Bot SMarter

471

the Bing Spell Check API and run the spell-checked query (versus the

raw input) through the NLU models. The benefit to this approach is that

our LUIS app does not need to be trained with misspelled words. The

disadvantage is that our scenario may include domain-specific language

that the spell-checker does not recognize but our LUIS model does.

The approach of using middleware to completely change the user’s

input so that the bot never sees the raw input is not something we

recommend. Minimally, we should be logging the raw input and raw

output. If enabling spell-checking on LUIS itself yields problematic

behaviors in our model, we could move some of that logic into our bot.

One option would be to wrap the LUIS recognizer around a custom spell-

check LUIS recognizer. In this custom recognizer, you would have logic to

ensure that spell-checker never modifies a certain vocabulary subset. In

effect, we would be performing a partial spell-check.

 Sentiment
In the first chapter, we demonstrated a bot that can respond to the

sentiment it detects from the user’s input (Figure 10-6). Basic sentiment

analysis can be simply implemented using lookups of “good” and “bad”

words.

Chapter 10 Making the Chat Bot SMarter

472

Obviously, this approach has limitations such as not considering the

word’s context. If we were to develop our own lookups, we would need

to make sure the list keeps up-to-date as cultural norms change. More

advanced approaches use machine learning classification techniques to

create a sentiment function to score an utterance’s sentiment. Microsoft

offers an ML algorithm based on a large corpus of text prelabeled with

sentiment.

Microsoft’s sentiment analysis is part of its Text Analytics API. The

service offers three main functions: sentiment analysis, key phrase

extraction, and language detection. We will first focus on sentiment

analysis.

Figure 10-6. A bot that can respond to sentiment

Chapter 10 Making the Chat Bot SMarter

473

The API allows us to send one or more text strings and receive a

response with one or more numeric scores between 0 and 1, where 0 is

negative sentiment and 1 is positive. Here is an example (and you can tell

my son woke me up way too early with this one):

{

 "documents": [

 {

 "id": "1",

 "language": "en",

 "text": "i hate early mornings"

 }

]

}

Here is the result:

{

 "documents": [

 {

 "score": 0.073260486125946045,

 "id": "1"

 }

],

 "errors": []

}

Sentiment analysis has some interesting applications in the chat bot

space. We can utilize the data after the fact in analytics reports to see which

features challenge users the most. Or, we can utilize the live sentiment

score to automatically transfer the conversation to a human agent to

immediately address a user’s concern or frustration.

Chapter 10 Making the Chat Bot SMarter

474

 Supporting Multiple Languages
Supporting multiple languages in a chat bot is a complex topic in and of

itself that we cannot fully cover in the scope of this book. Nevertheless,

we demonstrate how to update the calendar bot we have been working

on throughout the book to support multiple languages by using the

Text Analytics and Translator APIs. The code can be found under the

chapter10-calendar-bot folder of the book’s GitHub repo. We are going

to approach this task as follows:

• Anytime a user sends a message to the bot, our chat bot will

use the Text Analytics API to identify the user’s language.

• If the language is English, continue as normal. If not,

translate the utterance into English.

• Run the English phrase through LUIS.

• On the way out, if the user’s language was English,

continue as normal. Otherwise, translate the bot’s

response into the user’s language before sending to user.

In essence, we are using English as an intermediary language to provide

LUIS support. This approach isn’t foolproof. There are reasons LUIS supports

multiple cultures, like the many nuances and cultural variations in language.

A direct literal translation without extra context may not make sense. And

in fact, we may want to support completely different ways of saying things

in one language than in English. A correct approach to the problem is to

develop detailed LUIS applications for each culture for which we want

to provide first-class support, use those applications based on language

detection, and use the Translator API and intermediary English only when

we don’t have LUIS support for a language. Or maybe we even avoid the

Translator API altogether because of the possible issues with translation.

Chapter 10 Making the Chat Bot SMarter

475

Although we do not use this approach in the following example,

since we can control the bot’s text output, we could provide those static

strings localized across all languages we want to support (instead of using

translation services). We could fall back on automatic translation for

anything not explicitly scripted.

From a technology perspective, we must make a choice of when the

translation is going to occur. For example, is it the role of the recognizer

or the dialog? Or should we add middleware to translate the input into

English? For this example, we will utilize the middleware approach

because we are utilizing the translation service on both the incoming

and outgoing content and want it to be as transparent to the rest of the

bot as possible. If we had a set of culture-specific LUIS applications and

localized output strings, we could use a mix of recognizers with dialog

logic.

Before we begin, make sure you have created a Text Analytics API

and Translator Text API resource in the Azure Portal, in the same way we

created the Bing Spell Check v7 API resource. Both APIs have a free pricing

tier, so make sure to select that. Note that the Text Analytics API requires

that we select a region. All the cognitive services unrelated to Bing require

this to be set. This obviously has availability and latency implications

that are outside the scope of this book. Once created, we must save the

keys into the .env file. Name the Text Analytics key as TA_KEY and the

Translator key as TRANSLATOR_KEY. In addition, the cognitive-services

package requires the endpoint to be specified. The endpoint maps to

the region, so if we selected West US as the Text Analytics service region,

the endpoint value is westus.api.cognitive.microsoft.com.5 Set this to the

TA_ENDPOINT key in the .env file.

5 We can find all the other possible endpoint values in the Node.js package code;
see https://github.com/joshbalfour/node-cognitive-services/blob/
master/src/language/textAnalytics.js.

Chapter 10 Making the Chat Bot SMarter

https://github.com/joshbalfour/node-cognitive-services/blob/master/src/language/textAnalytics.js
https://github.com/joshbalfour/node-cognitive-services/blob/master/src/language/textAnalytics.js

476

We will use the cognitive-services Node.js package to interact with

the Text Analytics API; however, the Translator API is one of the services

not supported by this package. We can install the mstranslator Node.js

package.

npm install mstranslator --save

const translator = require('mstranslator');

Next, we can create a middleware module that contains the translation

logic so that we can easily apply this functionality to any bot.

const TranslatorMiddleware = require('./translatorMiddleware').

TranslatorMiddleware;

bot.use(new TranslatorMiddleware());

The middleware code itself will depend on using the Text Analytics and

Translator APIs.

const textAnalytics = new cognitiveServices.textAnalytics({

 apiKey: process.env.TA_KEY,

 endpoint: process.env.TA_ENDPOINT

});

const translatorApi = new translator({ api_key: process.env.

TRANSLATOR_KEY }, true); // the second parameter ensures that

the token is autogenerated

After that, we create a class TranslatorMiddleware with a map that

tells us which users are using which language. This is needed to store a

user’s incoming language for the outgoing logic to be able to translate from

English back into it.

const userLanguageMap = {};

class TranslatorMiddleware {

 ...

}

Chapter 10 Making the Chat Bot SMarter

477

The receive logic skips anything that is not a message. If we have a

message, the user’s language is detected. If the language is English, we

continue; otherwise, we translate the message into English, reset the

message text to the English version (thereby losing the original language

input), and continue. If there is an error while we translate the incoming

message, we simply assume English.

receive(event, next) {

 if (event.type !== 'message') { next(); return; }

 if (event.text == null || event.text.length == 0) {

 // if there is not input and we already have a

language, leave as is, otherwise set to English

 userLanguageMap[event.user.id] = userLanguageMap[event.

user.id] || 'en';

 next();

 return;

 }

 textAnalytics.detectLanguage({

 body: {

 documents: [

 {

 id: "1",

 text: event.text

 }

]

 }

 }).then(result => {

 const languageOptions = _.find(result.documents, p =>

p.id === "1").detectedLanguages;

 let lang = 'en';

Chapter 10 Making the Chat Bot SMarter

478

 if (languageOptions && languageOptions.length > 0) {

 lang = languageOptions[0].iso6391Name;

 }

 this.userLanguageMap[event.user.id] = lang;

 if (lang === 'en') next();

 else {

 translatorApi.translate({

 text: event.text,

 from: languageOptions[0].iso6391Name,

 to: 'en'

 }, function (err, result) {

 if (err) {

 console.error(err);

 lang = 'en';

 userLanguageMap[event.user.id] = lang;

 next();

 }

 else {

 event.text = result;

 next();

 }

 });

 }

 });

}

On the way out, we simply figure out the user’s language and translate

the outgoing message into that language. If the user’s language is English,

we skip the translation step.

Chapter 10 Making the Chat Bot SMarter

479

send(event, next) {

 if (event.type === 'message') {

 const userLang = this.userLanguageMap[event.address.

user.id] || 'en';

 if (userLang === 'en') { next(); }

 else {

 translatorApi.translate({

 text: event.text,

 from: 'en',

 to: userLang

 }, (err, result) => {

 if (err) {

 console.error(err);

 next();

 }

 else {

 event.text = result;

 next();

 }

 });

 }

 }

 else {

 next();

 }

}

Figure 10-7 displays the responses to a greeting in different languages.

Chapter 10 Making the Chat Bot SMarter

480

Congratulations, we now have a naïve multilanguage chat bot!

Basic requests and responses seem OK, but there are some issues with

collecting data. For example, the bot seems to switch languages midstream

(Figure 10-8).

Figure 10-7. Bot responding in different languages

Chapter 10 Making the Chat Bot SMarter

481

The problem is that the word café is valid in both English and Spanish.

This perhaps calls for some sort of language lock-in during dialogs. The

translation of “when is the meeting?” does not sound right either. The

word cuál translates to which, not when. We could solve this by providing

static localized output strings.

Figure 10-8. Create appointment flow in Spanish, with a blip

Chapter 10 Making the Chat Bot SMarter

482

There is much more to implementing a production-grade

multilanguage bot, but this is a good proof-of-concept to show how we can

detect and translate languages using Azure Cognitive Services.

 QnA Maker
A common use case for bots is to provide an FAQ for users to get information

about a topic, brand, or product. Usually, this is similar to a web FAQ but

geared more to a conversational interaction. A typical approach is to create

a database of question-and-answer pairs and provide some sort of fuzzy

matching algorithm to search over the data set given a user input.

One implementation approach would be to load all the question-and-

answer data into a search engine such as Lucene and use its fuzzy search

algorithm to search for the right pair. In Microsoft Azure, the equivalent

would be to load the data into a repository such as Cosmos DB and use

Azure Search to create a search index over the data.

For our purposes, we will use a simpler option called QnA Maker,

another one of the cognitive services at our disposal. QnA Maker

(https://qnamaker.ai/) went into general availability in May 2018. The

system is straightforward: we enter a set of question-and-answer pairs into

a knowledge base, train the system and publish it as an API. Fuzzy logic

matching is then made available via an API that we host in an Azure App

Service Plan, so we can tune its performance as necessary.

We must first log into the Azure Portal and create a new QnA Maker

instance (Figure 10-9). The UI will collect a few pieces of data from us.

We enter a name, the management service pricing tier (free pricing!), the

resource group, the search service pricing tier (again, free!), search service

location, service location, and whether we want to include Application

Insights. The service will work just as well if you enable or disable

Application Insights. Leaving it enabled allows you to view the logs of what

users asked QnA Maker.

Chapter 10 Making the Chat Bot SMarter

https://qnamaker.ai/

483

After the Azure Portal does its thing, we end up with several resources.

The search service hosts the search index, the app service hosts the API

we will call, and Application Insights provides analytics around our service

usage. Make sure to change the app service plan pricing tier to free!

At this point, we can go to the QnA Maker Portal. Log into https://

www.qnamaker.ai using the same account you use for Azure. Click Create

a knowledge base. You will see the screen in Figure 10-10. Select the QnA

Service from your Azure subscription and name your knowledge base.

There are several options to populate the content: you can supply a URL

with an FAQ, upload a TSV file that contains the data, a PDF file, or enter

the data manually. These are very interesting options we suggest you

explore on your own.

Figure 10-9. Creating a new QnA Maker service

Chapter 10 Making the Chat Bot SMarter

https://www.qnamaker.ai/
https://www.qnamaker.ai/

484

For our purposes, we will use the manual interface. After entering a

service name, click Create new KB. We are met with a rich interface that

allows us to edit content in our knowledge base and to save and retrain or

publish it (Figure 10-11). We add a few pairs using the + Add new QnA pair

link in the top right.

Figure 10-10. Creating a new QnA knowledge base

Chapter 10 Making the Chat Bot SMarter

485

We can now click Save and train and then click Publish. Clicking

the Publish button will move the knowledge base into the Azure Search

instance created in the Azure Portal. Once it’s published, we will be

presented with details on how to call the API (see Figure 10-12). Note that

the URL corresponds to the app service we created in the Azure Portal.

Figure 10-11. Adding more QnA pairs to our knowledge base

Figure 10-12. We published a QnA Maker KB!

Chapter 10 Making the Chat Bot SMarter

486

Let’s use curl to see the API in action. We’ll try something we have not

explicitly trained it with like “whats your name.” Note that we can include

the top parameter to indicate to QnA Maker how many results we are

willing to process. If QnA Maker finds multiple possible candidate answers

with a close enough score, it will return up to the value of top options.

curl -X POST

-H "Authorization: EndpointKey f3c15268-40c1-4e66-8790-

392c29f2f704"

-H "Content-Type: application/json" "https://booktestqna.

azurewebsites.net/qnamaker/knowledgebases/ce45743a-62e5-42b1-

a572-f912ea6836f9/generateAnswer"

-d '{ "question": "whats your name?", "top": 5 }'

The response is as follows:

{

 "answers": [

 {

 "questions": [

 "what is your name?"

],

 "answer": "Szymon",

 "score": 60.98,

 "id": 3,

 "source": "Editorial",

 "metadata": []

 }

]

}

Chapter 10 Making the Chat Bot SMarter

487

The response looks good. If we ask a question we have not trained, we

get a “No good match found in the KB” response.

curl -X POST

-H "Authorization: EndpointKey f3c15268-40c1-4e66-8790-

392c29f2f704"

-H "Content-Type: application/json" "https://booktestqna.

azurewebsites.net/qnamaker/knowledgebases/ce45743a-62e5-42b1-

a572-f912ea6836f9/generateAnswer"

-d '{ "question": "when are you going to give me your

bitcoin?", "top": 5 }'

{

 "answers": [

 {

 "questions": [],

 "answer": "No good match found in KB.",

 "score": 0.0,

 "id": -1,

 "metadata": []

 }

]

}

The result is what we would expect: no match. The user interface also

provides a test capability that lets us ask the knowledge base questions in

different phrasings to see what the model returns before we publish to a

public API. If the algorithm picks up the wrong answer, we can point it to

the right answer. You can also easily add alternative question phrasings

(Figure 10-13).

Chapter 10 Making the Chat Bot SMarter

488

Microsoft provides a QnA Maker recognizer and dialog as part of

its BotBuilder-CognitiveServices6 Node.js package. If we would like our

chat bot to utilize both QnA Maker and LUIS, we could use a custom

recognizer that queries both services and picks the right course of action

depending on the results from both services.

EXERCISE 10-1

Integrating with QnA Maker

the goal of this exercise is to add question-and-answer functionality to an

existing chat bot.

 1. Create a simple Qna Maker knowledge base that has answers

to some questions about yourself. name, date of birth, and

number of siblings are some possibilities.

6 The BotBuilder-CognitiveServices Node.js package provides helpers around
accessing QnA Maker. The code can be found on GitHub at https://github.com/
Microsoft/BotBuilder-CognitiveServices/tree/master/Node.

Figure 10-13. QnA Maker test interface, a powerful way to add new
question phrasings and add new pairs

Chapter 10 Making the Chat Bot SMarter

https://github.com/Microsoft/BotBuilder-CognitiveServices/tree/master/Node
https://github.com/Microsoft/BotBuilder-CognitiveServices/tree/master/Node

489

 2. Create a chat that utilizes the BotBuilder-CognitiveServices
node.js package to connect to your Qna Maker service.

 3. integrate your Qna Maker dialog and recognizer into a bot that

also connects to LUiS. You can use Chapter 7’s calendar bot as

an example. is the framework good at distinguishing between

LUiS queries and Qna queries?

 4. try to train Qna Maker with utterances that are like those with

which you trained your LUiS model. how does the bot behave?

Does the behavior change if we change the order of recognizer

registrations?

in this exercise you explored integrating Qna Maker into a chat bot. You also

explored mixing the Qna Maker and LUiS recognizers, a good exercise in both

Bot Builder mechanics and possible ordering pitfalls.

 Computer Vision
Until now, all the cognitive services we have explored had some form

of obvious application to chat bots. Spell-checking, sentiment analysis,

translation and language detection, and fuzzy input matching are all

clearly applicable to our everyday bot interactions. On the other hand,

there are many machine learning tasks whose applicability to bots is not as

clear. Computer Vision is one such example.

Microsoft’s Azure Cognitive Services includes the Computer Vision

family of services that provide several functions. For example, there is a

service to detect and analyze faces and another one to analyze people’s

emotions. There is a content moderations service and a service that

allows you to customize existing computer vision models to fit our use

case (imagine trying to get an algorithm to become good at recognizing

different types of trees). There is also a more general-purpose service

called Computer Vision that returns a set of tags for the image with a

Chapter 10 Making the Chat Bot SMarter

490

confidence score. It can also create a text summary of the image and

determine whether an image is racy or contains adult content, among

other tasks.

Because of my unending amusement with mobile apps whose only

task is to determine whether a photo is a hot dog or not, we will look at

code for a bot that can tell whether the image sent by the user is a hot dog

or not. The code can be found under the chapter10-hot-dog-or-not-hot-

dog-bot folder of the book’s GitHub repo.

Principally, we will exercise this bot using the emulator to ensure

we can develop locally. When a user sends an image via any channel,

the bot usually receives a URL for the image. We could send that URL to

the service, but since the emulator sends a localhost address, this won’t

work. What our code will need to do is to download said image to a

temporary directory and then upload it to the Computer Vision API. We

will download the image using this code and using the request Node.js

package.

const getImage = function (uri, filename) {

 return new Promise((resolve, reject) => {

 request.head(uri, function (err, res, body) {

 request(uri).pipe(fs.createWriteStream(filename))

 .on('error', () => { reject(); })

 .on('close', () => {

 resolve();

 });

 });

 });

};

Chapter 10 Making the Chat Bot SMarter

491

We then create a simple dialog that takes any input and runs it through

the service to figure out whether a hot dog was identified.

bot.dialog('hot-dog-or-not-hot-dog', [

 (session, arg) => {

 if (session.message.attachments == null || session.

message.attachments.length == 0 || session.message.

attachments[0].contentType.indexOf('image') < 0) {

 session.send('Not supported. Require an image to be

sent!');

 return;

 }

 // let them know we're thinking....

 session.sendTyping();

 const id = uuid();

 const dirName = 'images';

 if (!fs.existsSync(dirName)) {

 fs.mkdirSync(dirName);

 }

 const imagePath = dirName + '/' + id;

 const imageUrl = session.message.attachments[0].

contentUrl;

 getImage(imageUrl, imagePath).then(() => {

 const cv = new cognitiveServices.computerVision({

apiKey: process.env.CV_KEY, endpoint: process.env.

CV_ENDPOINT });

 return cv.describeImage({

 headers: { 'Content-Type': 'application/octet-

stream' },

Chapter 10 Making the Chat Bot SMarter

492

 body: fs.readFileSync(imagePath)

 });

 }).then((analysis) => {

 // let's look at the raw object

 console.log(JSON.stringify(analysis));

 if (analysis.description.tags &&) {

 if (_.find(analysis.description.tags, p => p

=== 'hotdog')) {

 session.send('HOT DOG!');

 }

 else {

 session.send('not hot dog');

 }

 }

 else {

 session.send('not hot dog');

 }

 fs.unlinkSync(imagePath);

 });

 }

]);

If we upload this beautiful image of a hot dog (Figure 10-14), we get the

following JSON result.

Chapter 10 Making the Chat Bot SMarter

493

{

 "description": {

 "tags": [

 "sitting", "food", "paper", "hot",

 "piece", "bun", "table", "orange",

 "top", "dog", "laying", "hotdog",

 "sandwich", "yellow", "close", "plate",

 "cake", "phone"

],

 "captions": [

 {

 "text": "a close up of a hot dog on a bun",

 "confidence": 0.5577123828705269

 }

]

 },

 "requestId": "4fa77b1a-1b27-491c-b895-8640d6a196fd",

 "metadata": {

 "width": 1200,

 "height": 586,

 "format": "Png"

 }

}

Figure 10-14. A plain old hot dog

Chapter 10 Making the Chat Bot SMarter

494

If we upload this Sonoran hot dog photo (Figure 10-15), whatever that

is, we still get decent results.

{

 "description": {

 "tags": [

 "food", "sandwich", "dish", "box",

 "dog", "table", "hot", "sitting",

 "piece", "top", "square", "toppings",

 "paper", "slice", "close", "different",

 "hotdog", "holding", "pizza", "plate",

 "laying"

],

 "captions": [

Figure 10-15. Another type of hot dog?

Chapter 10 Making the Chat Bot SMarter

495

 {

 "text": "a close up of a hot dog",

 "confidence": 0.9727350601423388

 }

]

 },

 "requestId": "11a12305-d36a-4db0-aca0-2a1870a8b9e7",

 "metadata": {

 "width": 1280,

 "height": 960,

 "format": "Jpeg"

 }

}

I don’t know what a Sonoran hot dog is, but after reading about it, it

sounds really tasty. I am slightly amused that the service could correctly

determine it is a hotdog. I’m further amused that it also tagged the image

with the tags pizza and different. It would be a fun exercise to see how crazy

a hot dog one needs to completely trick this model.

There are a lot of fun things we can do with image detection and

analysis, and although hot dog or not hot dog is a silly example, it should

be clear how powerful this kind of general image description generation

can be. Of course, more specific application requirements might mean

that the general models provided by Microsoft or other providers are

insufficient, and a custom model is more appropriate. The Custom Vision

Service7 has you covered for those use cases. In either case, the ability to

quickly prototype these functions using an easy-to-use REST API cannot

be understated.

7 The Custom Vision Services allows us to augment the existing Computer Vision
models with our application-specific imagery: https://azure.microsoft.com/
en-us/services/cognitive-services/custom-vision-service/

Chapter 10 Making the Chat Bot SMarter

https://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-service/
https://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-service/

496

EXERCISE 10-2

Exploring Computer Vision

Computer Vision allows us to do things other than just get tags. one of

the more compelling actions we can do with the api is optical character

recognition (oCr).

 1. get an access key for the Computer Vision api by using the

azure portal. the process is the same as any other cognitive

service.

 2. Create a chat bot that accepts photos and extracts the text

information from the photos. handle image upload similarly as

we did in the hot dog chat bot.

 3. try writing some text on a piece of paper and running it through

your chat bot. Can it properly recognize your writing?

 4. how bad can the contrast be in the image, or how bad can your

writing get before the oCr struggles to recognize the text?

You have now exercised the Computer Vision api and tested its oCr

algorithm’s performance in an ad hoc manner.

 Conclusion
The world is making much progress in the accuracy of machine learning

algorithms, enough so that much of this functionality has been exposed

to developers via REST APIs. The ability to access some of these

algorithms through a simple REST endpoint, without the need to learn

new environments and languages (like Anaconda, Python, and scikit-

learn), has spurred a rush of developers to try new ideas and include

AI functionality in their applications. Some services provided by big

Chapter 10 Making the Chat Bot SMarter

497

tech companies may not be as performant, cost effective, or accurate as

custom-developed and curated models would be, but their ease of use

and increasing accuracy and cost effectiveness over time is a catalyst for

consideration in production scenarios.

As professionals in the chat bot space, we should have an idea of the

type of cognitive offerings that can assist in our chat bot’s development.

Using all these great features can improve the conversational experience

by leaps and bounds.

Chapter 10 Making the Chat Bot SMarter

499© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_11

CHAPTER 11

Adaptive Cards
and Custom Graphics
Throughout the book we have discussed the different ways in which bots

can communicate to users. Bots can use text, voice, images, buttons,

or carousels. These combined with the right tone and data become a

powerful interface for users to quickly and efficiently accomplish their

goals. We can easily build text with correct data, but text may not always

be the most effective mechanism to communicate certain ideas. Let’s take

the example of a stock quote. What kind of data are users looking for when

they ask for a quote for, say, Twitter?

Are they looking for the last price? Are they looking for volume? Are

they looking for the bid/ask? Maybe they are looking to see what the

52-week high and low prices are. The truth is, each user may be looking

for something slightly different. A text description of the stock may make

sense to be read by a voice assistant. We would expect Alexa to say,

“Twitter, symbol TWTR, is trading at $24.47 with a volume of 8.1 million.

The 52-week range is $14.12 to $25.56. The current bid is $24.46, and the

current ask is $24.47.” Could you imagine receiving this data in a bot?

Parsing through the text is, quite frankly, painful.

An appealing option is to lay out content inside a card, as in Figure 11- 1.

This sample comes from the TD Ameritrade Messenger bot. A lot of the

same data that is included in the text message is communicated via the

figure, yet this format is much easier for a human to consume.

500

A common hero card does not leave much room to create an interface

like this. The title, subtitle, and buttons are easy, but the image is not. How

do we include such visuals in our bot? In this chapter, we will explore

two approaches: custom image rendering using headless browsers and

Adaptive Cards, a format that Microsoft’s connectors can render in a

channel-specific manner. We will delve into Adaptive Cards first.

Figure 11-1. A stock quote card

Chapter 11 adaptive Cards and Custom GraphiCs

501

 Adaptive Cards
When the Bot Framework was first released, Microsoft created hero cards.

The hero card, as we explored in Chapters 4 and 5, is a great abstraction

over the distinct ways in which different messaging platforms render

images with text and buttons. However, it became evident that hero cards

are a bit limiting since they are only composed of an image, title, subtitle,

and optional buttons.

To provide more flexible user interfaces, Microsoft created Adaptive Cards.

The Adaptive Card object model describes a much richer set of user interfaces

within a messaging application. It is the channel connector’s responsibility

to render an Adaptive Card definition into whatever form is supported by the

channel. Basically, it’s a much richer version of the hero card.

Adaptive Cards were announced at the Build 2017 conference. As

chat bot developers, we now have one format to describe a rich user

interface. The format itself is a mix of a XAML-like layout engine with

HTML-like concepts in a JSON format.

Here is an example of a restaurant card and its rendering in Figure 11- 2:

{

 "$schema": "http://adaptivecards.io/schemas/adaptive-card.

json",

 "type": "AdaptiveCard",

 "version": "1.0",

 "body": [

 {

 "speak": "Tom's Pie is a Pizza restaurant which is

rated 9.3 by customers.",

 "type": "ColumnSet",

 "columns": [

 {

 "type": "Column",

 "width": 2,

Chapter 11 adaptive Cards and Custom GraphiCs

502

 "items": [

 {

 "type": "TextBlock",

 "text": "PIZZA"

 },

 {

 "type": "TextBlock",

 "text": "Tom's Pie",

 "weight": "bolder",

 "size": "extraLarge",

 "spacing": "none"

 },

 {

 "type": "TextBlock",

 "text": "4.2 ★★★☆ (93) · $$",

 "isSubtle": true,

 "spacing": "none"

 },

 {

 "type": "TextBlock",

 "text": "**Matt H. said** \"I'm

compelled to give this place 5

stars due to the number of times

I've chosen to eat here this past

year!\"",

 "size": "small",

 "wrap": true

 }

]

 },

 {

 "type": "Column",

Chapter 11 adaptive Cards and Custom GraphiCs

503

 "width": 1,

 "items": [

 {

 "type": "Image",

 "url": "https://picsum.

photos/300?image=882",

 "size": "auto"

 }

]

 }

]

 }

],

 "actions": [

 {

 "type": "Action.OpenUrl",

 "title": "More Info",

 "url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"

 }

]

}

Figure 11-2. A restaurant card rendering

Chapter 11 adaptive Cards and Custom GraphiCs

504

In an Adaptive Card, almost everything is a container that can include

other containers or UI elements. The result is a UI object tree, just like any

other standard UI platform. In this example we have a container with two

columns. The first column is double the width of the second column and

contains four TextBlock elements. The second column simply contains an

image. Lastly, the card includes one action that opens a web URL. Here is

another example and its rendering (Figure 11-3):

{

 "$schema": "http://adaptivecards.io/schemas/adaptive-card.json",

 "type": "AdaptiveCard",

 "version": "1.0",

 "body": [

 {

 "type": "ColumnSet",

 "columns": [

 {

 "type": "Column",

 "width": 2,

 "items": [

 {

 "type": "TextBlock",

 "text": "Tell us about yourself",

 "weight": "bolder",

 "size": "medium"

 },

 {

 "type": "TextBlock",

 "text": "We just need a few more details to get

you booked for the trip of a lifetime!",

 "isSubtle": true,

 "wrap": true

 },

Chapter 11 adaptive Cards and Custom GraphiCs

505

 {

 "type": "TextBlock",

 "text": "Don't worry, we'll never share or sell

your information.",

 "isSubtle": true,

 "wrap": true,

 "size": "small"

 },

 {

 "type": "TextBlock",

 "text": "Your name",

 "wrap": true

 },

 {

 "type": "Input.Text",

 "id": "myName",

 "placeholder": "Last, First"

 },

 {

 "type": "TextBlock",

 "text": "Your email",

 "wrap": true

 },

 {

 "type": "Input.Text",

 "id": "myEmail",

 "placeholder": "youremail@example.com",

 "style": "email"

 },

 {

 "type": "TextBlock",

 "text": "Phone Number"

 },

Chapter 11 adaptive Cards and Custom GraphiCs

506

 {

 "type": "Input.Text",

 "id": "myTel",

 "placeholder": "xxx.xxx.xxxx",

 "style": "tel"

 }

]

 },

 {

 "type": "Column",

 "width": 1,

 "items": [

 {

 "type": "Image",

 "url": "https://upload.wikimedia.org/wikipedia/

commons/b/b2/Diver_Silhouette%2C_Great_Barrier_

Reef.jpg",

 "size": "auto"

 }

]

 }

]

 }

],

 "actions": [

 {

 "type": "Action.Submit",

 "title": "Submit"

 }

]

}

Chapter 11 adaptive Cards and Custom GraphiCs

507

This has a similar overall layout with two columns that have a 2:1 width

ratio. The first column contains text of varying sizes as well as three input

fields. The second column contains an image.

We present one more example in Figure 11-4, recalling our stock ticker

card discussion.

{

 "$schema": "http://adaptivecards.io/schemas/adaptive-card.

json",

 "type": "AdaptiveCard",

 "version": "1.0",

 "speak": "Microsoft stock is trading at $62.30 a share,

which is down .32%",

Figure 11-3. A data-gathering template

Chapter 11 adaptive Cards and Custom GraphiCs

508

 "body": [

 {

 "type": "Container",

 "items": [

 {

 "type": "TextBlock",

 "text": "Microsoft Corp (NASDAQ: MSFT)",

 "size": "medium",

 "isSubtle": true

 },

 {

 "type": "TextBlock",

 "text": "September 19, 4:00 PM EST",

 "isSubtle": true

 }

]

 },

 {

 "type": "Container",

 "spacing": "none",

 "items": [

 {

 "type": "ColumnSet",

 "columns": [

 {

 "type": "Column",

 "width": "stretch",

 "items": [

 {

 "type": "TextBlock",

 "text": "75.30",

 "size": "extraLarge"

Chapter 11 adaptive Cards and Custom GraphiCs

509

 },

 {

 "type": "TextBlock",

 "text": "▼ 0.20 (0.32%)",

 "size": "small",

 "color": "attention",

 "spacing": "none"

 }

]

 },

 {

 "type": "Column",

 "width": "auto",

 "items": [

 {

 "type": "FactSet",

 "facts": [

 {

 "title": "Open",

 "value": "62.24"

 },

 {

 "title": "High",

 "value": "62.98"

 },

 {

 "title": "Low",

 "value": "62.20"

 }

]

 }

]

Chapter 11 adaptive Cards and Custom GraphiCs

510

 }

]

 }

]

 }

]

}

This template introduces a few more concepts. First, the card has two

containers instead of columns. The first container simply displays the two

TextBlocks with the data around the company name/ticker and the quote

date. The second container contains two columns. One has the last price

and change data, and the other has the Open/High/Low data. The latter

data is stored in an object of type FactSet, a collection of name-value pairs

that are rendered as a tightly spaced group.

The Adaptive Cards website provide a variety of rich samples.1 On

the same site, the Visualizer2 makes it clear that Bot Framework chat bots

are only a small part of Adaptive Cards. The individual Bot Framework

channels are supported with varying degrees of fidelity. The emulator

1 Adaptive cards samples: http://adaptivecards.io/samples/
2 Adaptive cards Visualizer: http://adaptivecards.io/visualizer/index.html

Figure 11-4. A stock quote rendering

Chapter 11 adaptive Cards and Custom GraphiCs

http://adaptivecards.io/samples/
http://adaptivecards.io/visualizer/index.html

511

renders the cards faithfully, but many other channels like Facebook

Messenger result in images (Figure 11-5).

To be fair, Microsoft’s Facebook connector returns a Bad Request

(400) status code to any Adaptive Card with unsupported features. This

truly captures the dilemma here. Having a common rich card format is a

positive development, but only if it is widely supported. Lacking support in

a platform like Facebook is detrimental. It is worth noting that the host app

allowed in the Visualizer tells a broader adaptive cards story (Figure 11-6).

Figure 11-5. Messenger renders the Adaptive Cards as images

Chapter 11 adaptive Cards and Custom GraphiCs

512

Note the first seven items (WebChat, Cortana Skills, Windows Timeline,

Skype, Outlook Actionable Messages, Microsoft Team, and Windows

Notifications) are all systems within Microsoft’s control. Microsoft is

building a common format to render cards across its numerous properties.

In short, if your application is targeting many of the Microsoft systems

like Windows 10, Teams, and Skype, investing in reusable and consistent

cross-platform Adaptive Cards is a good idea.

Microsoft also provides several SDKs to help your custom app render

Adaptive Cards. For instance, there is an iOS SDK, a client-side JavaScript

SDK, and a Windows SDK; each can take adaptive card JSON and render a

native UI from it.

 A Working Example
We will now look at a sample to get a better idea of how Adaptive Cards

render and how they send input form messages back to the bot. We will

use the Emulator as our channel since it implements all the important

features. We will use a slightly modified card from a previous example to

collect a user’s name, phone number, and e-mail address.

Figure 11-6. Possible rendering options in the Adaptive Card
Visualizer

Chapter 11 adaptive Cards and Custom GraphiCs

513

{

 "$schema": "http://adaptivecards.io/schemas/adaptive-

card.json",

 "type": "AdaptiveCard",

 "version": "1.0",

 "body": [

 {

 "type": "TextBlock",

 "text": "Tell us about yourself",

 "weight": "bolder",

 "size": "medium"

 },

 {

 "type": "TextBlock",

 "text": "Don't worry, we'll never share or sell

your information.",

 "isSubtle": true,

 "wrap": true,

 "size": "small"

 },

 {

 "type": "TextBlock",

 "text": "Your name",

 "wrap": true

 },

 {

 "type": "Input.Text",

 "id": "name",

 "placeholder": "First Last"

 },

 {

 "type": "TextBlock",

Chapter 11 adaptive Cards and Custom GraphiCs

514

 "text": "Your email",

 "wrap": true

 },

 {

 "type": "Input.Text",

 "id": "email",

 "placeholder": "youremail@example.com",

 "style": "email"

 },

 {

 "type": "TextBlock",

 "text": "Phone Number"

 },

 {

 "type": "Input.Text",

 "id": "tel",

 "placeholder": "xxx.xxx.xxxx",

 "style": "tel"

 }

],

 "actions": [

 {

 "type": "Action.Submit",

 "title": "Submit"

 },

 {

 "type": "Action.ShowCard",

 "title": "Terms and Conditions",

 "card": {

 "type": "AdaptiveCard",

 "body": [

 {

Chapter 11 adaptive Cards and Custom GraphiCs

515

 "type": "TextBlock",

 "text": "We will not share your

data with anyone. Ever.",

 "size": "small",

 }

]

 }

 }

]

 }

We will also allow the user to click any of two items: a Submit button

to send the data and a Terms and Conditions button that displays some

extra information when clicked. When a user clicks Submit, the data from

the fields is gathered and sent to the bot as an object exposed via the

message’s value property. The object sent by the Adaptive Card defined

in the previous JSON will have three properties: name, email, and tel. The

property names correspond to the field id.

It follows that the code that gets the values is straightforward. It could

be as basic as simply checking whether the value exists and executing logic

based on it. If we send multiple cards, since they stay in the user’s chat

history, it is again critical to ensure a consistent conversational experience.

const bot = new builder.UniversalBot(connector, [

 (session) => {

 let incoming = session.message;

 if (incoming.value) {

 // this means we are getting data from an adaptive

card

 let o = incoming.value;

 session.send('Thanks ' + o.name.split(' ')[0] + ".

We'll be in touch!");

 } else {

Chapter 11 adaptive Cards and Custom GraphiCs

516

 let msg = new builder.Message(session);

 msg.addAttachment({

 contentType: 'application/vnd.microsoft.card.

adaptive',

 content: adaptiveCardJson

 });

 session.send(msg);

 }

 }

]);

Figure 11-7 illustrates how this conversation can develop. Note that

there is no actual logic within the cards themselves, save for some minor

validation. There may be an ability to do so in the future, but for now all

such logic must occur in the bot code.

Figure 11-7. An input form Adaptive Card after expanding the Terms
and Conditions and clicking Submit

Chapter 11 adaptive Cards and Custom GraphiCs

517

EXERCISE 11-1

Creating a Custom Adaptive Card

 1. the goal of this exercise is to create a functioning weather

update adaptive Card. You will integrate with a Weather api

to provide live weather to your chat bot’s users. Create a bot

that collects a user’s location, perhaps simply a Zip code, and

returns a text message echoing the location.

 2. Write the code necessary to integrate with the Yahoo

Weather api. You can find information about using it at

https://developer.yahoo.com/weather/.

 3. Create an adaptive Card that includes the various data points

that the service provides. the adaptive Cards website provides

two weather samples; you can use one of these if you would

prefer. once done, switch some of the ui elements around in

the adaptive card Json. how easy is it to do so?

 4. add graphic image elements. For example, display a different

graphic to represent sunny versus overcast weather. You may

find some assets using an image search online or host some

images locally. if you host them locally, make sure you are set

up to serve static content.

Well done! You are now able to enrich your bot’s conversational experience

with adaptive Cards.

Chapter 11 adaptive Cards and Custom GraphiCs

https://developer.yahoo.com/weather/

518

 Rendering Custom Graphics
Adaptive Cards simplify some types of layouts and allow us to declaratively

define custom layouts that can be rendered into images. We do not,

however, have control over how the image is utilized; as we saw on

Messenger, the image is sent as a stand-alone image, devoid of any

contextual buttons or text in card format. Among other minor limitations

around sizing, margins, and layout control, we do not have a way to

generate graphics. Say we wanted to generate a chart to represent a stock

price over time. There is no way to do this using Adaptive Cards. What if we

had an alternate way of doing this?

The best way to create custom graphics is to utilize technologies we

are already familiar with, such as HTML, JavaScript, and CSS! If we could

use HTML and CSS directly, we could create custom, branded, beautiful

layouts to represent the various concepts in our conversational experience.

Using SVG and JavaScript, we would enable us to create stunning data-

driven graphics that bring our bot’s content to life.

OK, we are sold. But how do we do this? We’ll take a slight detour into a

mechanism we can use to render these artifacts: headless browsers.

A standard run-of-the-mill browser like Firefox or Chrome has many

components: the network layer; standards-compliant HTML engines

such as Gecko, WebKit, or Chromium; and lastly the UI that allows you

to view the actual content. A headless browser is a browser without the

UI components. Typically, these browsers are controlled using either the

command line or a scripting language. The original and most important

use cases that headless browsers address are tasks such as functional tests

in an environment where JavaScript and AJAX are enabled. Search engines,

for example, can use headless browsers to index dynamic web page

content. Phantom3 is an example of a WebKit-based headless browser that

3 PhantomJs: http://phantomjs.org/

Chapter 11 adaptive Cards and Custom GraphiCs

http://phantomjs.org/

519

was used heavily during the early AngularJS days. Firefox4 and Chrome5

have recently added support for headless modes in both of their browsers.

One of the uses that is becoming more common in this space is image

rendering. All headless browsers implement a screenshot functionality

that we can leverage for image rendering needs.

We will continue with our stock quote example and build something

that can return a quote as text. The full working code sample can be found

under the chapter11-image-rendering-bot folder in the book’s GitHub

repo. To do so, we need access to a financial data provider. One easy-to-

use provider is called Intrinio, which provides free accounts to start using

their API. Go to http://intrinio.com and click the Start for Free button to

create an account to use their APIs. Once we have completed the account

creation process, we can access our access keys, which must be passed to

the API via Basic HTTP authentication. Using a URL like https://api.

intrinio.com/data_point?ticker=AAPL&item=last_price,volume, we

receive the last price and volume for AAPL. The resulting data JSON is

shown here:

{

 "data": [

 {

 "identifier": "AAPL",

 "item": "last_price",

 "value": 174.32

 },

 {

 "identifier": "AAPL",

 "item": "volume",

4 Firefox Headless Mode: https://developer.mozilla.org/en-US/Firefox/
Headless_mode

5 Getting Started with Headless Chrome: https://developers.google.com/web/
updates/2017/04/headless-chrome

Chapter 11 adaptive Cards and Custom GraphiCs

http://intrinio.com/
https://api.intrinio.com/data_point?ticker=AAPL&item=last_price,volume
https://api.intrinio.com/data_point?ticker=AAPL&item=last_price,volume
https://developer.mozilla.org/en-US/Firefox/Headless_mode
https://developer.mozilla.org/en-US/Firefox/Headless_mode
https://developers.google.com/web/updates/2017/04/headless-chrome
https://developers.google.com/web/updates/2017/04/headless-chrome

520

 "value": 20179172

 }

],

 "result_count": 2,

 "api_call_credits": 2

}

Creating a bot to use this API can be done by using the following code,

resulting in the conversation in Figure 11-8:

require('dotenv-extended').load();

const builder = require('botbuilder');

const restify = require('restify');

const request = require('request');

const moment = require('moment');

const _ = require('underscore');

const puppeteer = require('puppeteer');

const vsprintf = require('sprintf').vsprintf;

// declare all of the data points we will be interested in

const datapoints = {

 last_price: 'last_price',

 last_year_low: '52_week_low',

 last_year_high: '52_week_high',

 ask_price: 'ask_price',

 ask_size: 'ask_size',

 bid_price: 'bid_price',

 bid_size: 'bid_size',

 volume: 'volume',

 name: 'name',

 change: 'change',

Chapter 11 adaptive Cards and Custom GraphiCs

521

 percent_change: 'percent_change',

 last_timestamp: 'last_timestamp'

};

const url = "https://api.intrinio.com/data_

point?ticker=%s&item=" + _.map(Object.keys(datapoints), p =>

datapoints[p]).join(',');

// Setup Restify Server

const server = restify.createServer();

server.listen(process.env.port || process.env.PORT || 3978, ()

=> {

 console.log('%s listening to %s', server.name, server.url);

});

// Create chat bot and listen to messages

const connector = new builder.ChatConnector({

 appId: process.env.MICROSOFT_APP_ID,

 appPassword: process.env.MICROSOFT_APP_PASSWORD

});

server.post('/api/messages', connector.listen());

const bot = new builder.UniversalBot(connector, [

 session => {

 // get ticker and create request URL

 const ticker = session.message.text.toUpperCase();

 const tickerUrl = vsprintf(url, [ticker]);

 // make request to get the ticker data

 request.get(tickerUrl, {

 auth:

 {

 user: process.env.INTRINIO_USER,

 pass: process.env.INTRINIO_PASS

 }

Chapter 11 adaptive Cards and Custom GraphiCs

522

 }, (err, response, body) => {

 if (err) {

 console.log('error while fetching data:\n' +

err);

 session.endConversation('Error while fetching

data. Please try again later.');

 return;

 }

 // parse JSON response and extract the last price

 const results = JSON.parse(body).data;

 const lastPrice = getval(results, ticker,

datapoints.last_price).value;

 // send the last price as a response

 session.endConversation(vsprintf('The last price

for %s is %.2f', [ticker, lastPrice]));

 });

 }

]);

const getval = function(arr, ticker, data_point) {

 const r = _.find(arr, p => p.identifier === ticker &&

p.item === data_point);

 return r;

}

const inMemoryStorage = new builder.MemoryBotStorage();

bot.set('storage', inMemoryStorage);

Chapter 11 adaptive Cards and Custom GraphiCs

523

Great. We will now create an adaptive card and see how we can utilize

what we just covered with headless browsers to render a richer graphic.

For the adaptive card, we will use a template modified from the previous

stock update scenario. Instead of sending a string in the endConversation

call, we send back a stock card. The renderStockCard function takes the data

returned from the API and renders the adaptive card JSON.

const cardData = renderStockCard(results, ticker);

const msg = new builder.Message(session);

msg.addAttachment({

 contentType: 'application/vnd.microsoft.card.adaptive',

 content: cardData

});

session.endConversation(msg);

function renderStockCard(data, ticker) {

Figure 11-8. Text stock quotes

Chapter 11 adaptive Cards and Custom GraphiCs

524

 const last_price = getval(data, ticker, datapoints.last_

price).value;

 const change = getval(data, ticker, datapoints.change).

value;

 const percent_change = getval(data, ticker, datapoints.

percent_change).value;

 const name = getval(data, ticker, datapoints.name).value;

 const last_timestamp = getval(data, ticker, datapoints.

last_timestamp).value;

 const open_price = getval(data, ticker, datapoints.open_

price).value;

 const low_price = getval(data, ticker, datapoints.low_

price).value;

 const high_price = getval(data, ticker, datapoints.high_

price).value;

 const yearhigh = getval(data, ticker, datapoints.last_year_

high).value;

 const yearlow = getval(data, ticker, datapoints.last_year_

low).value;

 const bidsize = getval(data, ticker, datapoints.bid_size).

value;

 const bidprice = getval(data, ticker, datapoints.bid_

price).value;

 const asksize = getval(data, ticker, datapoints.ask_size).

value;

 const askprice = getval(data, ticker, datapoints.ask_

price).value;

 let color = 'default';

 if (change > 0) color = 'good';

 else if (change < 0) color = 'warning';

Chapter 11 adaptive Cards and Custom GraphiCs

525

 let facts = [

 { title: 'Bid', value: vsprintf('%d x %.2f', [bidsize,

bidprice]) },

 { title: 'Ask', value: vsprintf('%d x %.2f', [asksize,

askprice]) },

 { title: '52-Week High', value: vsprintf('%.2f',

[yearhigh]) },

 { title: '52-Week Low', value: vsprintf('%.2f',

[yearlow]) }

];

 let card = {

 "$schema": "http://adaptivecards.io/schemas/adaptive-

card.json",

 "type": "AdaptiveCard",

 "version": "1.0",

 "speak": vsprintf("%s stock is trading at $%.2f a

share, which is down %.2f%%", [name, last_price,

percent_change]),

 "body": [

 {

 "type": "Container",

 "items": [

 {

 "type": "TextBlock",

 "text": vsprintf("%s (%s)", [name,

ticker]),

 "size": "medium",

 "isSubtle": false

 },

Chapter 11 adaptive Cards and Custom GraphiCs

526

 {

 "type": "TextBlock",

 "text": moment(last_timestamp).

format('LLL'),

 "isSubtle": true

 }

]

 },

 {

 "type": "Container",

 "spacing": "none",

 "items": [

 {

 "type": "ColumnSet",

 "columns": [

 {

 "type": "Column",

 "width": "stretch",

 "items": [

 {

 "type": "TextBlock",

 "text":

vsprintf("%.2f", [last_

price]),

 "size": "extraLarge"

 },

 {

 "type": "TextBlock",

 "text": vsprintf("%.2f

(%.2f%%)", [change,

percent_change]),

 "size": "small",

Chapter 11 adaptive Cards and Custom GraphiCs

527

 "color": color,

 "spacing": "none"

 }

]

 },

 {

 "type": "Column",

 "width": "auto",

 "items": [

 {

 "type": "FactSet",

 "facts": facts

 }

]

 }

]

 }

]

 }

]

 }

 return card;

}

Now, if we send a ticker symbol to the bot, we will get a resulting

adaptive card. The rendering on the emulator looks good (Figure 11-9).

The Messenger rendering is a bit choppy and pixelated (Figure 11-10). We

have also uncovered an inconsistency in how the two channels render the

“warning” color. We can certainly do better.

Chapter 11 adaptive Cards and Custom GraphiCs

528

Figure 11-9. Emulator rendering of the stock update card

Chapter 11 adaptive Cards and Custom GraphiCs

529

We will now create our own custom HTML template. Now, by trade,

as an engineer, I do not do design, but Figure 11-11 is the card that I came

up with. We display all the same pieces of data as earlier, but we also add a

sparkline for the last 30 days of data.

Figure 11-10. Messenger rendering of the stock u-update card

Chapter 11 adaptive Cards and Custom GraphiCs

530

The HTML and CSS for the earlier template is presented here:

<html>

<head>

 <style>

 body {

 background-color: white;

 font-family: 'Roboto', sans-serif;

 margin: 0;

 padding: 0;

 }

 .card {

 color: #dddddd;

 background-color: black;

 width: 564px;

 height: 284px;

 padding: 10px;

 }

Figure 11-11. The custom quote card we would like to support

Chapter 11 adaptive Cards and Custom GraphiCs

531

 .card .symbol {

 font-size: 48px;

 vertical-align: middle;

 }

 .card .companyname {

 font-size: 52px;

 display: inline-block;

 vertical-align: middle;

 overflow-x: hidden;

 white-space: nowrap;

 text-overflow: ellipsis;

 max-width: 380px;

 }

 .card .symbol::before {

 content: '(';

 }

 .card .symbol::after {

 content: ')';

 }

 .card .priceline {

 margin-top: 20px;

 }

 .card .price {

 font-size: 36px;

 font-weight: bold;

 }

 .card .change {

 font-size: 28px;

 }

Chapter 11 adaptive Cards and Custom GraphiCs

532

 .card .changePct {

 font-size: 28px;

 }

 .card .positive {

 color: darkgreen;

 }

 .card .negative {

 color: darkred;

 }

 .card .changePct::before {

 content: '(';

 }

 .card .changePct::after {

 content: ')';

 }

 .card .factTable {

 margin-top: 10px;

 color: #dddddd;

 width: 100%;

 }

 .card .factTable .factTitle {

 width: 50%;

 font-size: 24px;

 padding-bottom: 5px;

 }

 .card .factTable .factValue {

 width: 50%;

 text-align: right;

 font-size: 24px;

 font-weight: bold;

Chapter 11 adaptive Cards and Custom GraphiCs

533

 padding-bottom: 5px;

 }

 .sparkline {

 padding-left: 10px;

 }

 .sparkline embed {

 width: 300px;

 height: 40px;

 }

 </style>

 <link href="https://fonts.googleapis.com/css?family=Roboto"

rel="stylesheet">

</head>

<body>

 <div class="card">

 <div class="header">

 Microsoft

 MSFT

 </div>

 <div class="priceline">

 88.22

 -0.06

 -0.07%

 <embed src="http://sparksvg.me/line.svg?174.33,

174.35,175,173.03,172.23,172.26,169.23,171.08,

170.6,170.57,175.01,175.01,174.35,174.54,176.42,

173.97,172.22,172.27,171.7,172.67,169.37,169.32,

169.01,169.64,169.8,171.05,171.85,169.48,173.07,

174.09&rgba:255,255,255,0.7"

 type="image/svg+xml">

Chapter 11 adaptive Cards and Custom GraphiCs

534

 </div>

 <table class="factTable">

 <tr>

 <td class="factTitle">Bid</td>

 <td class="factValue">100 x 87.98</td>

 </tr>

 <tr>

 <td class="factTitle">Ask</td>

 <td class="factValue">200 x 89.21</td>

 </tr>

 <tr>

 <td class="factTitle">52 Week Low</td>

 <td class="factValue">80.22</td>

 </tr>

 <tr>

 <td class="factTitle">52 Week High</td>

 <td class="factValue">90.73</td>

 </tr>

 </table>

 </div>

</body>

</html>

Note that we are doing three things that are not obviously possible

with adaptive cards: the fine granular control over styling that CSS allows,

custom web fonts (in this case, Google’s Roboto font), and an SVG object

to draw the sparkline. At this point, all we really must do is modify the

appropriate data in the HTML template and render it. How do we do this?

From the different options we mentioned earlier, one of the better

options today is Chrome. The easiest way to integrate with headless

Chapter 11 adaptive Cards and Custom GraphiCs

535

Chrome is to use the Node.js package called Puppeteer.6 This library can

be used for many tasks such as automating Chrome, taking screenshots,

gathering timeline data for websites, and running automated test suites.

We’ll use the basic API to take a screenshot of a page.

Puppeteer samples use the async/await7 features introduced in Node

version 7.6. The syntax waits for a Promise value to return in one line,

instead of writing chains of then method calls. The code for rendering an

HTML snippet will look as follows:

async function renderHtml(html, width, height) {

 var browser = await puppeteer.launch();

 const page = await browser.newPage();

 await page.setViewport({ width: width, height: height });

 await page.goto(`data:text/html,${html}`, { waitUntil:

'load' });

 const pageResultBuffer = await page.screenshot({

omitBackground: true });

 await page.close();

 browser.disconnect();

 return pageResultBuffer;

}

We launch a new instance of headless chrome, open a new page, set

the size of the viewport, load the HTML, and then take a screenshot. The

omitBackground option allows us to have transparent backgrounds in the

HTML, which result in transparent screenshot backgrounds.

The resulting object is a Node.js buffer. A buffer is simply a collection

of binary data, and Node.js provides numerous functions to consume this

6 Puppeteer, the headless Chrome Node.js API: https://github.com/
GoogleChrome/puppeteer

7 Mozilla Developers Networks await Documentation: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

Chapter 11 adaptive Cards and Custom GraphiCs

https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

536

data. We can call our renderHtml method and convert the buffer into a

base64 string. Once we have this, we can simply send the base64 image as

part of a Bot Builder attachment.

renderHtml(html, 600, 312).then(cardData => {

 const base64image = cardData.toString('base64');

 const contentType = 'image/png';

 const attachment = {

 contentUrl: util.format('data:%s;base64,%s',

contentType, base64image),

 contentType: contentType,

 name: ticker + '.png'

 }

 const msg = new builder.Message(session);

 msg.addAttachment(attachment);

 session.endConversation(msg);

});

Constructing the HTML is string manipulation to ensure that the

proper values are populated. We add some placeholders into the HTML to

make it easy to do string replace calls to place the data into the appropriate

locations. A snippet of this is shown here:

<div class="priceline">

 ${last_price}

 ${change}

 ${percent_change}

 <embed src="http://sparksvg.me/line.svg?${sparklinedata

}&rgba:255,255,255,0.7" type="image/svg+xml">

</div>

Chapter 11 adaptive Cards and Custom GraphiCs

537

The following is the full code to fetch the data from the Intrinio

endpoints, read the card template HTML, substitute the right values,

render the HTML, and send it as an attachment. Some sample results are

illustrated in Figure 11-12.

 request.get(tickerUrl, opts, (quote_error, quote_

response, quote_body) => {

 request.get(pricesTickerUrl, opts, (prices_error,

prices_response, prices_body) => {

 if (quote_error) {

 console.log('error while fetching data:\n'

+ quote_error);

 session.endConversation('Error while

fetching data. Please try again later.');

 return;

 } else if (prices_error) {

 console.log('error while fetching data:\n'

+ prices_error);

 session.endConversation('Error while

fetching data. Please try again later.');

 return;

 }

 const quoteResults = JSON.parse(quote_body).data;

 const priceResults = JSON.parse(prices_body).data;

 const prices = _.map(priceResults, p => p.close);

 const sparklinedata = prices.join(',');

 fs.readFile("cardTemplate.html", "utf8",

function (err, data) {

 const last_price = getval(quoteResults,

ticker, datapoints.last_price).value;

 const change = getval(quoteResults, ticker,

datapoints.change).value;

Chapter 11 adaptive Cards and Custom GraphiCs

538

 const percent_change = getval(quoteResults,

ticker, datapoints.percent_change).value;

 const name = getval(quoteResults, ticker,

datapoints.name).value;

 const last_timestamp = getval(quoteResults,

ticker, datapoints.last_timestamp).value;

 const yearhigh = getval(quoteResults,

ticker, datapoints.last_year_high).value;

 const yearlow = getval(quoteResults,

ticker, datapoints.last_year_low).value;

 const bidsize = getval(quoteResults,

ticker, datapoints.bid_size).value;

 const bidprice = getval(quoteResults,

ticker, datapoints.bid_price).value;

 const asksize = getval(quoteResults,

ticker, datapoints.ask_size).value;

 const askprice = getval(quoteResults,

ticker, datapoints.ask_price).value;

 data = data.replace('${bid}', vsprintf('%d

x %.2f', [bidsize, bidprice]));

 data = data.replace('${ask}', vsprintf('%d

x %.2f', [asksize, askprice]));

 data = data.replace('${52weekhigh}',

vsprintf('%.2f', [yearhigh]));

 data = data.replace('${52weeklow}',

vsprintf('%.2f', [yearlow]));

 data = data.replace('${ticker}', ticker);

 data = data.replace('${companyName}', name);

 data = data.replace('${last_price}',

last_price);

 let changeClass = '';

Chapter 11 adaptive Cards and Custom GraphiCs

539

 if(change > 0) changeClass = 'positive';

 else if(change < 0) changeClass = 'negative';

 data = data.replace('${changeClass}',

changeClass);

 data = data.replace('${change}',

vsprintf('%.2f%%', [change]));

 data = data.replace('${percent_change}',

vsprintf('%.2f%%', [percent_change]));

 data = data.replace('${last_timestamp}',

moment(last_timestamp).format('LLL'));

 data = data.replace('${sparklinedata}',

sparklinedata);

 renderHtml(data, 584, 304).then(cardData => {

 const base64image = cardData.

toString('base64');

 const contentType = 'image/png';

 const attachment = {

 contentUrl: util.

format('data:%s;base64,%s',

contentType, base64image),

 contentType: contentType,

 name: ticker + '.png'

 }

 const msg = new builder.Message(session);

 msg.addAttachment(attachment);

 session.endConversation(msg);

 });

 });

 });

 });

Chapter 11 adaptive Cards and Custom GraphiCs

540

Figure 11-12. Different renderings of the custom HTML images

Chapter 11 adaptive Cards and Custom GraphiCs

541

These are really good results considering the short amount of time we

spent on this! The image renders great on Messenger as well (Figure 11- 13).

However, we had set a goal of creating custom cards. OK, so we change

the code to the following:

const card = new builder.HeroCard(session)

 .buttons([

 builder.CardAction.postBack(session, ticker, 'Quote

Again')])

 .images([

 builder.CardImage.create(session, imageUri)

])

 .title(ticker + ' Quote')

 .subtitle('Last Updated: ' + moment(last_timestamp).

format('LLL'));

const msg = new builder.Message(session);msg.

addAttachment(card.toAttachment());

session.send(msg);

Figure 11-13. Image rendering in Messenger

Chapter 11 adaptive Cards and Custom GraphiCs

542

This renders perfectly fine in the emulator, but we get no result in

Messenger. If we look at the Node output, we will quickly notice that

Facebook returns an HTTP 400 (BadRequest) response. What’s happening?

Although Facebook supports data URIs with an embedded Base64 image,

it does not support this format for card images. We can go through the

effort of creating an endpoint in our bot that returns the image, but

Facebook has yet another limitation: a webhook and the URI for the card

image cannot have the same hostname.

The solution is for our bot to host the resulting images elsewhere. A great

place to start is a cloud-based Blob store like Amazon’s S3 or Microsoft’s

Azure Storage. Since we are focusing on Microsoft’s stack, we’ll go ahead

and use Azure’s Blob Storage. We will use the relevant Node.js package.

npm install azure-storage --save

const blob = azureStorage.createBlobService(process.env.IMAGE_

STORAGE_CONNECTION_STRING);

IMAGE_STORAGE_CONNECTION_STRING is an environment

variable that stores the Azure Storage connection string, which can be

found in the Azure Portal after creating a storage account resource. After

we generate the image into a local file, our code must ensure a blob

container exists and create the blob from our image. We then use the new

blob’s URL as the source of our image.

renderHtml(data, 584, 304).then(cardData => {

 const uniqueId = uuid();

 const name = uniqueId + '.png';

 const pathToFile = 'images/' + name;

 fs.writeFileSync(pathToFile, cardData);

 const containerName = 'image-rendering-bot';

 blob.createContainerIfNotExists(containerName, {

 publicAccessLevel: 'blob'

 }, function (error, result, response) {

Chapter 11 adaptive Cards and Custom GraphiCs

543

 if (!error) {

 blob.createBlockBlobFromLocalFile(containerNa

me, name, pathToFile, function (error, result,

response) {

 if (!error) {

 fs.unlinkSync(pathToFile);

 const imageUri = blob.getUrl(containerName,

name);

 const card = new builder.HeroCard(session)

 .buttons([

 builder.CardAction.postBack(session,

ticker, 'Quote Again')])

 .images([

 builder.CardImage.create(session,

base64Uri)

])

 .title(ticker + ' Quote')

 .subtitle('Last Updated: ' +

moment(last_timestamp).format('LLL'));

 const msg = new builder.Message(session);

 msg.addAttachment(card.toAttachment());

 session.send(msg);

 } else {

 console.error(error);

 }

 });

 } else {

 console.error(error);

 }

 });

});

Chapter 11 adaptive Cards and Custom GraphiCs

544

The card is now rendering as expected, as per Figure 11-14.

EXERCISE 11-2

Rendering Your Graphic Using Headless Chrome

in this exercise, you will take the code from your weather bot from

exercise 11-1 and add custom htmL rendering.

 1. in your adaptive card, add a placeholder that can contain an

image to represent the temperature forecast in a chart.

 2. render an image using headless chrome that shows the

forecast using a line chart. You can utilize the same sparkline

approach as earlier.

 3. store the resulting image in blob storage.

Figure 11-14. The card now renders!

Chapter 11 adaptive Cards and Custom GraphiCs

545

 4. ensure the adaptive card includes the custom rendered image

in the designated spot and that it can render in the emulator

and Facebook messenger.

You have now mixed a custom htmL rendering with an adaptive card. no one

said we couldn’t do that, right?

 Conclusion
In this chapter, we explored two approaches to communicating complex

ideas and our chat bot’s brand via rich graphics. Adaptive Cards are a quick

way to get started and allow for deeper integration with platforms that

support the format natively. Custom HTML-based image rendering allows

for much more customization and control over the resulting graphic and is

especially valuable where there is no native Adaptive Card support. Both

are great choices for highly engaging chat bot experiences.

Chapter 11 adaptive Cards and Custom GraphiCs

547© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_12

CHAPTER 12

Human Handoff
Chat bots almost never live in isolation. Companies and brands have

invested significant time, energy, and money interacting with their

customers via social media, such as Twitter, Facebook, Instagram,

Snapchat, and others. There is an ongoing competition among social

media companies to provide the best platform for businesses to interact

with their customers. Each of these platforms wants to connect its users

in the interest of driving platform usage and selling products. In addition,

customer service systems from Zendesk, LiveChat, FreshDesk, and

ServiceNow, as well as tech behemoths like Oracle Service Cloud, Remedy,

and Salesforce Service Cloud, are building up systems that connect

consumers to a brand’s customer service representatives (CSRs) over all

types of channels from SMS to Messenger to live chat.

Today, chat bots are taking on workloads that have much to gain by

being automated. As discussed throughout this book, however, there

are many limitations to what a chat bot can do. In its current state, the

technology is not able to handle some requests that a human customer

service representative could easily solve. Despite the amount of

investment put into the different customer service systems, team training,

and reporting, it would be shortsighted to exclude humans from the

conversations with a product’s users. In this chapter, we will address what

a customer service system does and, most important, what are our options

when it comes to integrating with them and providing a seamless chat bot

to CSR handoff.

548

 We Still Need Humans
Chat bots are starting to handle some of the queries being asked of

businesses. Even though some of these questions might be easily answered

via a simple Google search or by looking at the company’s FAQ page, a

segment of customers will still reach out via a live chat or the company’s

Facebook page. There is a significant opportunity to automate some of the

work to answer these customers’ questions.

That said, bots currently cannot always handle questions gracefully.

As a relatively new technology, chat bots may be insufficiently tested

and yield confusing or inconsistent experiences. A bug in the chat bot

itself may create a situation where the bot becomes unresponsive, and a

CSR must step in and manually take over a conversation to ensure client

satisfaction. As such, a company that automates a workload using chat bot

technology typically will not see an immediate reduction in workload. In

fact, it is not uncommon that a new set of skills focused on working with

the bot itself becomes necessary. As the technology and our understanding

of its uses improve, we may get to a point where humans are replaced, but

do not expect that to happen immediately. Human CSRs must remain in

the loop to intercede as needed.

 Chat Bots from a Customer Service
Perspective
There are three main classes of chat bots popular in the customer service

industry. The type of bot a company builds is directly correlated to the

number of cases it thinks a chat bot can handle correctly and to its users’

willingness and savvy to talk to a computer via natural language.

Chapter 12 human handoff

549

 Always-On Chat Bot
An always-on chat bot is directly connected to the user’s channel and

awaits questions or instructions. It assumes that it can handle every

input, even if it is by saying the dreaded “I don’t know” response. The

key here is balance; a bot can try to handle every query, but it must be

clear in its limitations and in its ability to point users to possible sources

of help. Of course, if the bot is not able to handle the request, providing

an alternate way of contacting a human is suggested. If seamless human

escalation integration is unavailable, even providing a reference number

for continuity is better than not.

 Sometimes-On Chat Bot
A sometimes-on chat bot can handle a smaller closed set of questions and

user inputs, but if it is not sure or does not know an answer, it immediately

forwards the question to a human agent. This is an effective way of

mitigating the risk of a user being stuck in a loop with a chat bot and

not being able to get any help. On the other hand, if a forward-thinking

customer is trying to explore bot functionality and is being redirected to a

human on pretty much any input, it can become a frustrating experience.

A nice compromise is to suggest to the user that they can speak to a human

agent when, at any point, the bot does not understand the user’s intent.

Again, if no seamless human escalation functionality exists, any way of

contacting the business is better than none.

Chapter 12 human handoff

550

 CSR-Facing Chat Bot
A CSR-facing bot acts as an extension of the CSR system and provides

suggestions to the human agent about what the response to a user’s query

should be. This one is an interesting approach if only because it slightly

inverts the concept of a chat bot. It is also a great way to gather data to train

a chat bot based on user queries and the agent’s responses. This approach

is an effective technique to build up use cases and content for a chat bot.

We have also observed this type of chat bot to perform well in cases where a

business’s customers are not tech savvy or much rather prefer to speak to a

human.

 Typical Customer Service System Concepts
A customer service system can be many things. It can be a knowledge

base. It can be a ticketing system. It can be a call center system. It can be a

messaging system. Among the big players in the space mentioned in the

chapter introduction, all include some combination of these functionalities

in their products. In fact, because of the rich set of data that these systems

obtain from their customers, such as detailed knowledge bases and rich

conversation histories, many of these players are developing their own

virtual assistant solutions. For instance, an obvious start is to create a

virtual assistant that queries a knowledge base for answers to known

problems. A ticketing system could very well provide a chat bot that can

check on ticket status and perform basic edits on existing tickets.

Customer service systems will generally organize every interaction

between a user and the business into an item known as a case. A customer

asking the business for help with a password issue, for example, opens a

new case in the system. The new item might come into an inbox that all

active agents see on their desktops. The case gets assigned to whoever

Chapter 12 human handoff

551

selects the item, or maybe the system automatically assigns the case to a

CSR who is available and not handling many cases at the moment. Once

the agent is done helping the customer with the issue, the case is closed.

The agent may have created a new ticket for the customer, linking the

case with the ticket. The CSR system is aware of multiple pieces of data. It

knows when an agent is available. It knows how quickly agents typically

handle cases. It knows the call center’s operating hours, thus perhaps not

allowing any live chats during off-hours.

All this data makes for very rich reporting. These systems will

typically provide detailed reports for everything such as total chats, chat

engagement, queue waiting times, time to close cases, first response time,

and many other interesting data points. Naturally, the CSR team will be

evaluated and compensated on these kinds of measures.

As bot developers, we should not expect the CSR team to change

its workflow or data reporting structure. In fact, many of these systems

provide bot integration points that treat the chat bot as an agent. Every

system is slightly different, but they generally follow this paradigm. One of

the benefits of this approach is that the system’s reporting capabilities are

not broken by introducing a chat bot as a virtual CSR.

Integrating with a customer service system means that we need to

write code to initiate and close out cases. Case initiation may happen

automatically when a new message arrives from a customer. Case close-

out occurs when the chat bot is finished helping the user with their

query. The definition of a case will vary. A case may be defined as from

the moment that a user asks a question until an answer is presented by

the chat bot. Alternatively, a case may be defined as any interactions

between the chat bot and user until there is 15 minutes of activity in the

conversation.

Chapter 12 human handoff

552

 Integration Approaches
There are multiple approaches to seamlessly integrate chat bots with

customer service systems. We will take a look at three options. The level

of integration we select is dictated by the support team’s maturity and

available tools. We will address this as we explore each type of integration.

 Custom-Built Interface
A custom-built interface might be the best for teams with a highly

specialized workflow or teams that do not have any existing customer

service staff or systems. Furthermore, if we are deploying the bot to a

channel without existing affordable tools, we may not have an option

other than building your own. Although a custom-built interface is not

recommended, there are developers who have created the interfaces

themselves. Here is an example: https://ankitbko.github.io/2017/03/

human-handover-bot. The general approach is to build a customer service–

like system on top of existing bot functionality. Obviously, the issue is now

that our development team owns the customer service interface and has

the added responsibility of keeping that system live.

 On Platform
If you do not have an existing customer service system but are aiming

to deploy to a channel that has its own support tools, you are in luck.

Facebook pages, for example, allow customers to interact with businesses

via Messenger. Pages include many features for page owners, one of them

being a sleek inbox (Figure 12-1). As messages from customers arrive, they

will appear on the left-side panel. The page body contains the chat history

and allows the business to interact with the user.

Chapter 12 human handoff

https://ankitbko.github.io/2017/03/human-handover-bot
https://ankitbko.github.io/2017/03/human-handover-bot

553

Suffice it to say that the user interface is a powerful way for page

owners to respond to many types of user queries. The challenge, of course,

is that if the bot is deployed to channels other than Facebook, an on-

platform interface will not support those live chat scenarios.

Figure 12-1. Facebook page inbox user interface

Chapter 12 human handoff

554

 Product
If a team already has a customer service system with live chat support in

place, we will most likely want to develop an integration into the existing

system. The process for doing this is highly dependent on the system. One

of the most important tasks in this approach is that the bot must be a good

citizen to the customer Service system and must not break the experience

for the other agents. This means that case opening and resolution rules

must be obeyed, and all messages exchanged between the user and bot

must be logged. If an agent opens a case that is missing a conversation

history, it would prove to be a bad customer experience. You want to

witness a frustrated customer? Ask them the same question multiple times.

If we naively begin implementing a human handover flow, we might

end up with what’s shown in Figure 12-2. We will use Facebook Messenger

as an example. The chat bot communicates with Messenger via the bot

connector. In the normal conversation flow, the bot forwards all incoming

messages to the customer service system and responds to the user. The bot

is also responsible for opening a case if one is not yet open.

When the flow of the conversation necessitates human handover, the

chat bot acts as a proxy, sending the user’s messages into the agent chat

and forwarding the agent’s responses back to the user. This is illustrated

in Figure 12-3. If the case has been solved by the agent, the case must be

closed.

Figure 12-2. A normal conversation flow without a human agent

Chapter 12 human handoff

555

This model is not popular. The main reason is that the customer

service system is typically connected to an existing social channel, such

as Facebook. The connections between the chat bot, Facebook, and the

customer service system look more like Figure 12-4.

Social platforms typically do not support having multiple applications

listen to a conversation simultaneously. As such, a choice needs to be

made around which system owns the connection. Since customer service

systems can provide integration above and beyond chat integration and

are usually in place before a decision to build a chat bot is made, they end

up owning the connection.

Figure 12-3. Customer interacting with human agent

Figure 12-4. Connections between the chat bot, Facebook, and
customer service system in practice

Chapter 12 human handoff

556

In the case of Facebook, we can use something called the Handover

Protocol, which allows us to work around the limitation of only one

application owning the connection at a time. Using this protocol, we

can designate one app as the primary, and any others are secondary.

The primary app will always be contacted when a user first starts

a conversation with a page. The primary app can then transfer the

conversation thread to a secondary app. When an app is not active in a

user’s conversation, it is in standby mode. There is a way to ensure that the

apps receive the user’s messages when in standby mode by implementing

the standby channel. You can find more documentation at https://

developers.facebook.com/docs/messenger-platform/handover-

protocol. Figure 12-5 shows the setup described.

Unfortunately for us, not every channel supports the multi-application

paradigm, and not every customer service system implements the

handover protocol. Not to mention, we are assuming a Facebook-only

bot. Adding more channels would create further challenges within this

approach.

Figure 12-5. A Handover Protocol implementation on Facebook
Messenger. Out bot app is designated as primary, and the live chat
platform of our choice is secondary.

Chapter 12 human handoff

https://developers.facebook.com/docs/messenger-platform/handover-protocol
https://developers.facebook.com/docs/messenger-platform/handover-protocol
https://developers.facebook.com/docs/messenger-platform/handover-protocol

557

Figure 12-6 illustrates another approach to integrating human

handover. Using this approach, the customer service system acts as a proxy

for messages intended for the bot until the conversation is transferred

to a human. At that point, the chat bot does not see any pieces of the

conversation. This setup also means that the Facebook channel connector

is out of the loop, so we need to implement a custom translator that

receives Messenger format messages, converts them to the Bot Builder

SDK format, and forwards the messages into the chat bot using Direct Line,

like we did in Chapter 9.

This approach is a lot more common since it is easier to integrate

the back end into the customer service system’s ecosystem than share

the Facebook page between two systems. This approach is also effective

at supporting human handoff on any system that the customer service

system supports.

 Facebook Messenger Handover Sample
It would be difficult to demonstrate a fully integrated product-based

human handover scenario, but if we pretend that Facebook pages are the

customer service system in the previous figures, it becomes easier to do so.

In this section, we will add human handover integration to the calendar

bot that we have been building throughout the book.

Figure 12-6. A more common architectural approach to chat bot
integration with customer service systems

Chapter 12 human handoff

558

The approach that we use will be the following. First, we will create

a new intent to handle a customer’s explicit request to speak to a human

agent. Next, we will create a dialog to handle the logic to transfer the user.

We will designate our bot as the primary app and the inbox as the secondary

app. We will demonstrate how to transfer thread control over from our app

to the inbox. Lastly, we will show how we can support a customer via the

Facebook page inbox and then send control back to the chat bot.

Let’s create a new version of our calendar bot model. In this version,

we will create an intent called HumanHandover and provide it with sample

utterances like the following:

• “Talk to agent”

• “Give me a human”

• “I want to speak with a human”

We train and publish the LUIS app. Our chat bot will not be able to

receive the intent and do something with it.

{

 "query": "take me to your leader",

 "topScoringIntent": {

 "intent": "HumanHandover",

 "score": 0.883278668

 },

 "intents": [

 {

 "intent": "HumanHandover",

 "score": 0.883278668

 },

 {

 "intent": "None",

 "score": 0.3982243

 },

Chapter 12 human handoff

559

 {

 "intent": "EditCalendarEntry",

 "score": 0.00692663854

 },

 {

 "intent": "Login",

 "score": 0.00396537

 },

 {

 "intent": "CheckAvailability",

 "score": 0.00346317887

 },

 {

 "intent": "AddCalendarEntry",

 "score": 0.00215073861

 },

 {

 "intent": "ShowCalendarSummary",

 "score": 0.0006825995

 },

 {

 "intent": "PrimaryCalendar",

 "score": 2.43631575E-07

 },

 {

 "intent": "DeleteCalendarEntry",

 "score": 4.69401E-08

 },

 {

 "intent": "Help",

 "score": 2.26313137E-08

 }

Chapter 12 human handoff

560

],

 "entities": []

}

The Facebook Handoff Protocol is composed of two main actions:

passing thread control and taking thread control. Any time a new

conversation begins, the primary app receives the user’s message. The

primary app determines when to pass control to a secondary app. The

primary app will either know the hard-coded identifier of the secondary

app, or it can query the page for a list of secondary apps and select one

at runtime. If our page has multiple secondary apps depending on the

functional area, the chat bot can figure out the destination of the transfer

based on the user’s input. After the secondary app is done, it can pass

control back to the primary app.

In the context of Facebook pages, the page’s inbox can be considered

a secondary application. From a functional perspective, this means

that anyone managing the page inbox should not see a message unless

the chat bot has handed it to the inbox. We can set this up in the page’s

Messenger Platform settings (Figure 12-7).

Figure 12-7. Setting up the primary and secondary receivers for a
Facebook page

Chapter 12 human handoff

561

Next, we create the dialog responsible for invoking the handover logic.

The requests to the Facebook APIs will be to either of these two endpoints,

although our demo will only need to contact the pass_thread_control

endpoint.

const pass_thread_control = 'https://graph.facebook.com/v2.6/

me/pass_thread_control?access_token=' + pageAccessToken;

const take_thread_control = 'https://graph.facebook.com/v2.6/

me/take_thread_control?access_token=' + pageAccessToken;

No matter which endpoint we call, we must include the user’s ID

and may include some metadata. The pass_thread_control method also

requires a target_app_id to be passed to indicate which application the

thread is being transferred to. The Facebook documentation states that

handing over to the page inbox requires the target_app_id to be the value

263902037430900. The code then to call Facebook endpoints is shown

next. We use the request Node.js package to make new HTTP requests.

function makeFacebookGraphRequest(d, psid, metadata, procedure,

pageAccessToken) {

 const data = Object.assign({}, d);

 data.recipient = { 'id': psid };

 data.metadata = metadata;

 const options = {

 uri: "https://graph.facebook.com/v2.6/me/" + procedure +

"?access_token=" + pageAccessToken,

 json: data,

 method: 'POST'

 };

 return new Promise((resolve, reject) => {

 request(options, function (error, response, body) {

 if (error) {

 console.log(error);

Chapter 12 human handoff

562

 reject(error);

 return;

 }

 console.log(body);

 resolve();

 });

 });

}

const secondaryApp = 263902037430900; // Inbox App ID

function handover(psid, pageAccessToken) {

 return makeFacebookGraphRequest({ 'target_app_id':

secondaryApp }, psid, 'test', 'pass_thread_control',

pageAccessToken);

}

function takeControl(psid, pageAccessToken) {

 return makeFacebookGraphRequest({}, psid, 'test',

'take_thread_control', pageAccessToken);

}

The code for the dialog quite simply calls the handover method.

const builder = require('botbuilder');

const constants = require('../constants');

const request = require('request');

const libName = 'humanEscalation';

const escalateDialogName = 'escalate';

Chapter 12 human handoff

563

const lib = new builder.Library(libName);

let pageAccessToken = null;

exports.pageAccessToken = (val) => {

 if(val) pageAccessToken = val;

 return pageAccessToken;

};

exports.escalateToHuman = (session, pageAccessTokenArg, userId)

=> {

 session.beginDialog(libName + ':' + escalateDialogName, {

pageAccessToken: pageAccessTokenArg || pageAccessToken });

};

lib.dialog(escalateDialogName, (session, args, next) => {

 handover(session.message.address.user.id, args.

pageAccessToken || pageAccessToken);

 session.endDialog('Just hold tight... getting someone for

you...');

}).triggerAction({

 matches: constants.intentNames.HumanHandover

});

exports.create = () => { return lib.clone(); }

Chapter 12 human handoff

564

Let’s see what this interaction looks like on the Facebook inbox. Before

we run the bot, we note that the inbox in the Facebook page is empty

(Figure 12-8).

Figure 12-8. Empty inbox

Chapter 12 human handoff

565

We can exchange a few messages with the calendar bot. Figure 12-9

shows a sample interaction.

Figure 12-9. Warming up

Chapter 12 human handoff

566

Note that the Facebook page inbox remains empty; that is by design.

Since the primary app is taking care of the user’s messages, there is no

need for the page inbox to get involved. If we expand the hamburger menu

on the top left of the interface, we will find that the inbox has multiple

folders (Figure 12-10).

Lo and behold, if we click the Done folder, we will find the

conversation we just had with the chat bot (Figure 12-11). We could very

well type our reply into the response textbox, but that will just confuse

the user as both the bot and a human would be responding to the

customer since the bot is still in the loop.

Figure 12-10. We have located the inbox folders

Chapter 12 human handoff

567

Let’s back up into the Inbox folder. We also go back into Messenger as

the customer and ask to speak to a human (Figure 12-12).

Figure 12-11. We found our conversation!

Figure 12-12. I demand to speak to her!

Chapter 12 human handoff

568

If you refresh the page inbox, you’ll note that the conversation appears

in the inbox (Figure 12-13).

At this point the chat bot does not see any customer messages, and any

message sent from the Facebook page inbox appear in the customer’s chat

(Figure 12-14).

Figure 12-13. OK, it’s time to talk to our customer!

Figure 12-14. Oh wow, seamless human escalation integration!

Chapter 12 human handoff

569

Now, the next step is to disconnect from the secondary app. If we had

two Facebook apps, we would have to either take control back or pass

control back to the primary app using the code we wrote. In this instance,

the page inbox has the functionality built right in. In the top-right corner

of any conversation, we will find a button with green text labeled “Mark as

done” (Figure 12-15).

Once the conversation is over, the agent clicks that button, and the

conversation is transferred back to the bot. From the Facebook page inbox

perspective, the conversation is moved back into the Done folder, and the

bot is once again active (Figure 12-16)! From a customer’s perspective, it is

completely seamless.

Figure 12-15. Transferring the user back to the chat bot by clicking
the “Mark as done” button

Chapter 12 human handoff

570

If the user gets into trouble again, he can once again ask for a human

agent and resolve an issue.

 Conclusion
The focus of our work in this chapter has been seamless human handover.

That is a key experience requirement for our customers and agents. The

experience provided for both parties should be as frictionless as possible. The

chat bot should be a helpful assistant, which will increase the likelihood that

the chat bot gains support from both internal and external parties.

Although the sample we demonstrated in this chapter was limited in

scope to Facebook, it illustrates the general approach that most chat bot

integrations with live chat systems will follow. There are, of course, many

details to figure out, and there is no single approach to the problem, but

the work we did in this chapter should be sufficient to get our chat bot’s

human handoff functionality going in the right direction.

Figure 12-16. The bot is once again active

Chapter 12 human handoff

571© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_13

CHAPTER 13

Chat Bot Analytics
Now that we are equipped with the necessary skills to develop great

conversational experiences for our customers, it is clear you will create the

next killer bot. It will integrate with a bunch of APIs and accomplish things

unheard of in the industry to date. I’m not a great sales guy, but you get it.

You are excited about your idea, and you are even more excited to bring

it to market. The bot is deployed, and, to everyone’s disappointment, it is

not gaining traction. Users do not engage with it. Suddenly, you realize you

do not have a good understanding of what users are doing and when they

abandon the conversation with your chat bot. What we need is analytics!

All chat bots constantly generate data. Every interaction between a

user and a bot, every time the NLU platform resolves a user’s intent, every

time the user curses at the bot, and every time the bot has no idea what

users are asking it to do are critical points in the conversation that lend

insight into users’ behaviors and, more importantly, into how to improve

the conversational experience.

What are the ways in which we can capture all this data? What kinds of

questions are we trying to answer? How do we get to this data? This chapter

aims to answer some of these questions and provide an introduction to

integrating a Bot Framework chat bot with an analytics platform.

572

 Common Data Questions
It is worth examining what insights we should be looking to gain from user

interactions with our chat bot. We are certainly interested in how long our

users converse with the bot. We are also interested in what topics users are

messaging about. Surely, we are interested in the raw input, but we can

probably get better insights if we knew the exact intent that was resolved.

We also want to know what percentage of user input our bot knew how to

handle versus, perhaps, what it should know how to handle.

In general, chat bot analytics platforms all gather and report similar

data. On top of generic analytics functions, many can perform channel-

specific analytics on the bot. For example, Dashbot, one of the platforms

we will look at in the next section, can gather specific analytics data from

Slack and Facebook Messenger among others. On Slack, we can see

statistics such as how many Slack channels have installed our bot. Not

surprisingly, analytics tools should allow us to ask for channel-specific

data. In the general case, the questions we will be asking are not novel:

web analytics platforms answer a lot of similar questions. For chat bots we

look at several categories of analytics next.

 Generic Data
Generic data is raw, numerical data such as number of messages, number

of user sessions, number of messages exchanged per session, session

duration, number of sessions per user, and so on. This data should be

displayed in a chart plotted against time and, ideally, aggregated by any

time bucket. This data allows us to see some simple trends such as when

users typically interact with the bot, how many times, and for how long.

If you have a million users, congratulations! But if they interact with your

bot for only two messages ever, that is not success. Figure 13-1 illustrates a

simple active users chart provided by Google’s Chatbase. Figure 13-2 is an

example of a user engagement chart by Dashbot.

Chapter 13 Chat Bot analytiCs

573

 Demographics
This category comprises data such as location, gender, age, and language.

This data is not available for all channels. Figure 13-3 is an example of user

language distribution from Dashbot.

Figure 13-1. Chatbase’s active users chart

Figure 13-2. Dashbot’s engagement chart

Chapter 13 Chat Bot analytiCs

574

 Sentiment
Now we are getting into some interesting territory. Ideally, we would like to

examine average conversation sentiment correlated with other measures

such as session duration and intent. For example, does one piece of

functionality really frustrate users? Does the user get more frustrated with

the bot over time? This might indicate a need for aggressive transfer to a

human live chat, if supported. Does sentiment correlate with something

beyond our control like time of day? Figure 13-4 is an example of Dashbot’s

overall sentiment visualization.

Figure 13-3. This chat bot should definitely support multiple
languages

Chapter 13 Chat Bot analytiCs

575

 User Retention
As a chat bot developer or product owner, one of the most interesting

bits of data is how often users come back to the experience. We want our

conversational experience to be “sticky.” The analytics platforms will

typically include some visualization showing how many users return to

the chat bot week after week. Of course, a good analytics tool will also let

us explore the retention metrics based on the manner in which the users

initially interacted with the chat bot. Google’s Chatbase is a platform that

does just that (Figure 13-5). By default, we see what percentage of users

come back to the bot a week after interacting with it in any way whatsoever.

We can break this down to consider intent as part of the equation, leading

us to correlate intents with retention. This can be a good metric to

understand which pieces of functionality may be driving user retention

and which areas need work.

Figure 13-4. Overall sentiment tracking. June 26 was not a good day.

Chapter 13 Chat Bot analytiCs

576

 User Session Flows
There are many ways of visualizing user behavior, but user flows are among

the most common approaches. Typically, the analytics platform will show

the most common actions that users took upon session start and what

percentage of users took this action. Next, for every action, it will show

every subsequent action that users took, including the percentage of users

who did so and the drop-off rate. That is, we gain an understanding of how

many users kept interacting with the bot and through which actions versus

how many users simply stopped talking to the bot altogether. Again, this

Figure 13-5. User retention table

Chapter 13 Chat Bot analytiCs

577

kind of visualization is common in the web analytics space, and it is natural

to use it with chat bots. Figure 13-6 shows an example from Chatbase. One

of the insights we may gain from this visualization is that the team might

consider supporting rental car customers that specify they want the car

today as opposed to requiring them to enter the date. Note that the path to

Rent-Car Today indicates the Today intent is not supported.

 Analytics Platforms
There are several chat bot analytics platforms. First, most chat bot

development platforms and some channels have some sort of analytics

dashboards. For example, Microsoft’s Bot Framework includes an analytics

Figure 13-6. A sample Chatbase session flow diagram

Chapter 13 Chat Bot analytiCs

578

dashboard (Figure 13-7) that provides the total number of messages and

users, a basic retention table, number of users per channel over time, and

number of messages per channel over time.

Figure 13-7. Azure Bot Service analytics dashboard

Chapter 13 Chat Bot analytiCs

579

Facebook provides Facebook Analytics (Figure 13-8), a platform-wide

analytics dashboard that includes detailed Facebook bot data. Amazon

provides an Alexa Skill dashboard. The problem is that the Bot Service

analytics are somewhat lacking in their depth and usability, and the

Facebook and Alexa dashboards each support only one channel.

Many customers have existing investments in analytics platforms

spanning multiple product lines. For example, one analytics system

may own all the data gathered from web properties, mobile apps, and

multiple chat bot. In such an environment, the data and user behavior can

be correlated across the different platforms. If there is a way to identify

a user on a mobile device and correlate that to a user on the chat bot

(perhaps via an account linking process), then we can gain a much broader

understanding of that user’s behavior across the platforms and cater to their

Figure 13-8. Facebook Analytics for bots

Chapter 13 Chat Bot analytiCs

580

needs accordingly. Typically, this would involve an enterprise data storage

solution, either on premises or in the cloud, with custom visualizations

built using something like Microsoft’s Power BI (Figure 13-9) or Tableau.

There are also flexible third-party chat bot analytics solutions that

provide APIs and SDKs that we can integrate with our bot. We mentioned

two that we will work with in the rest of the chapter: Dashbot (https://

dashbot.io) and Google’s Chatbase (https://chatbase.com). There are

other options such as Botanalytics (https://botanalytics.co/) and

BotMetrics (https://www.getbotmetrics.com/). Many of these vendors

also support analytics for voice interfaces such as Alexa, Cortana, and

Google Home. We encourage you to do your own research to understand

the options and make the best choice based on their requirements.

Figure 13-9. A sample Power BI dashboard

Chapter 13 Chat Bot analytiCs

https://dashbot.io/
https://dashbot.io/
https://chatbase.com/
https://botanalytics.co/
https://www.getbotmetrics.com/

581

 Integrating with Dashbot and Chatbase
We have chosen these two platforms to show two styles of analytics

integration and the kinds of reports they provide. We will look at Dashbot’s

out-of-the-box Node Bot Builder support, which leverages Bot middleware

to install incoming and outgoing message handlers to send analytics data

to Dashbot. (Recall that we used the concept of bot middleware before in

the context of multilanguage support in Chapter 10.) That is a great start.

Google’s Chatbase, in contrast, is a bit more focused on ensuring a richer

story around the analytics data. Specifically, when reporting data to an

analytics system, it may be useful not only to send the user’s input but also

to determine whether the input resolved to an intent, whether the input

was handled, and whether the input was a command or simply feedback to

a bot question. This additional metadata, something that simple integration

via middleware will be pressed to capture, can yield incredibly rich

analytics. Getting it done right requires effort to make each dialog analytics-

aware. Let’s look at a couple of samples that illustrate the two approaches.

Let’s start with Dashbot. First, we sign up for a free account by going to

https://dashbot.io/. Once logged in, we will be taken to an empty bots

list. Click the Add a Bot, Skill, or Action button (Dashbot supports Alexa

skills and Google actions, could you tell?). The interface will ask us for the

platform or channel we are targeting (Figure 13-10). This is Dashbot’s way

of providing analytics optimizations and opportunities for further data

integration based on the channel.

Chapter 13 Chat Bot analytiCs

https://dashbot.io/

582

Once created, Dashbot will show us the bot’s analytics API key. Let’s

connect our chat bot to this Dashbot entry. First, install the Node.js package.

npm install dashbot –-save

Lastly, we add the following code to our app.js file after we create a bot:

// setup dashbot

const dashbotApiMap = {

 facebook: process.env.DASHBOT_FB_KEY

};

const dashbot = require('dashbot')(dashbotApiMap).microsoft;

// optional and recommended for Facebook Bots

dashbot.setFacebookToken(process.env.PAGE_ACCESS_TOKEN);

bot.use(dashbot);

Figure 13-10. Creating a new Dashbot entry

Chapter 13 Chat Bot analytiCs

583

There are several things happening here. First, we are specifying the

Dashbot API keys. In Dashbot, each platform can get its own distinct

dashboard, or you can create multiplatform dashboards. If the bot

supported additional channels and we had additional API keys for those

channels, we would set them in the dashbotApiMap. Next, we import

the Dashbot middleware for the Bot Framework and add it to the bot by

using bot.use. As we do so, we are also providing the Facebook page access

token. This isn’t required, but it provides Dashbot with the ability to fetch

additional data from Facebook and integrate it into the dashboards.

And, that’s it! The code for Dashbot’s Bot Framework middleware is

very concise. We present it here for reference:

that.receive = function (session, next) {

 logDashbot(session, true, next);

};

that.send = function (session, next) {

 logDashbot(session, false, next);

};

function logDashbot(session, isIncoming, next) {

 if (that.debug) {

 //console.log('\n*** MSFTBK Debug: ', (isIncoming ?

'incoming' : 'outgoing'), JSON.stringify(session,

null, 2))

 }

 var data = {

 is_microsoft: true,

 dashbot_timestamp: new Date().getTime(),

 json: session

 };

 var platform = session.source ? session.source :

_.get(session, 'address.channelId');

Chapter 13 Chat Bot analytiCs

584

 // hack for facebook token

 if (platform === 'facebook' && that.facebookToken != null)

{

 data.token = that.facebookToken;

 }

 var apiKey = apiKeyMap[platform]

 if (!apiKey) {

 console.warn('**** Warning: No Dashbot apiKey for

platform:(' + platform + ') Data not saved. ')

 next();

 return;

 }

 // if the platform is not supported by us, use generic

 if (_.indexOf(['facebook', 'kik', 'slack'], platform) ===

-1) {

 platform = 'generic';

 }

 var url = that.urlRoot + '?apiKey=' +

 apiKey + '&type=' + (isIncoming ? 'incoming' :

'outgoing') +

 '&platform=' + platform + '&v=' + VERSION + '-npm';

 if (that.debug) {

 console.log('\n*** Dashbot MSFT Bot Framework Debug **');

 console.log(' *** platform is ' + platform);

 console.log(' *** Dashbot Url: ' + url);

 console.log(JSON.stringify(data, null, 2));

 }

 makeRequest({

 uri: url,

 method: 'POST',

Chapter 13 Chat Bot analytiCs

585

 json: data

 }, that.printErrors, that.config.redact);

 next();

}

After speaking to our bot for a couple of minutes, we produced the data

in Figure 13-11.

That was easy. There are many other data points we can look at on

Dashbot. Figure 13-12 shows a listing of the possibilities and includes

details about users, retention, demographics, top messages and intents,

and even raw conversation transcriptions. Naturally, things like intent data

are not populated. Per our earlier point, if we wanted to support that, our

dialogs would have to incorporate analytics reporting functions.

Figure 13-11. One conversation’s worth of data

Chapter 13 Chat Bot analytiCs

586

Google’s Chatbase API does not contain prebuilt Bot Framework

middleware integration; however, building this out ourselves is not too

challenging. We could take Dashbot’s code as a starting point. In fact, we

do so but only for outgoing messages. The incoming message data will be

sent from within the individual dialogs.

To begin, we create a new bot on https://chatbase.com, via the Add

Your Bot button. We will need to enter a name, country, industry, and

business case. As a result, we will get an API key from Chatbase. We first

install the Node.js package.

npm install @google/chatbase –-save

Figure 13-12. Different analytics provided by Dashbot

Chapter 13 Chat Bot analytiCs

https://chatbase.com/

587

We then write a few helper methods to build Chatbase messages and

the middleware send handler. We can place this in its own Node.js module.

In the following build method, we ask the caller for the message text, user

ID, dialog arguments (from which we can try extracting the intent), and

handled flag. Chatbase allows us to report whether a certain input was

handled or not. For example, if there is unrecognized input from users, we

would want to report it as such.

require('dotenv-extended').load();

const chatbase = require('@google/chatbase')

 .setApiKey(process.env.CHATBASE_KEY) // Your Chatbase API Key

 .setAsTypeUser()

 .setVersion('1.0')

 .setPlatform('SAMPLE'); // The platform you are interacting

with the user over

exports.chatbase = chatbase;

chatbase.build = function (text, user_id, args, handled) {

 let intent = args;

 if (typeof (intent) !== 'string') {

 intent = args && args.intent && args.intent.intent;

 }

 var msg = chatbase.newMessage();

 msg.setIntent(intent).setUserId(user_id).setMessage(text);

 if (handled === undefined && !intent) {

 msg.setAsNotHandled();

 } else if (handled === true) {

 msg.setAsHandled();

 } else if (handled === false) {

 msg.setAsNotHandled();

 }

Chapter 13 Chat Bot analytiCs

588

 return msg;

}

exports.middleware = {

 send: function (event, next) {

 if (event.type === 'message') {

 const msg = chatbase.newMessage()

 .setAsTypeAgent()

 .setUserId(event.address.user.id)

 .setMessage(event.text);

 if (!event.text && event.attachments) {

 msg.setMessage(event.attachmentLayout);

 }

 msg.send()

 .then(() => {

 next();

 })

 .catch(err => {

 console.error(err);

 next();

 });

 } else {

 next();

 }

 }

};

All that is left to do in our app.js is to install the Bot Builder middleware.

const chatbase = require('./chatbase');

bot.use(chatbase.middleware); // install the sender middleware

Chapter 13 Chat Bot analytiCs

589

Next, we need to add the analytics call wherever in our dialogs it is

needed. For example, in the summarize dialog, we can use this call to

report a successful entry into the dialog.

chatbase.build(session.message.text, session.message.address.

user.id, args, true).send();

This code has been integrated into the calendar bot we have been

working on throughout the book. The branch chapter-13 in the repo has

been integrated with the previous code.

Figure 13-13 is a sample dashboard of data gathered using this

approach. We are particularly interested in the messages that were not

handled by the chat bot. We did ask the calendar bot for the meaning of

life, something we would not expect to get a satisfactory answer to. The

unhandled utterance data certainly is important information for us to

consider. Figure 13-14 displays the handled inputs.

Figure 13-13. A dashboard consisting of one conversation with the bot

Chapter 13 Chat Bot analytiCs

590

Again, the previous data is scarce, but as your chat bot gains usage, the

picture will become clearer and much more valuable.

 Conclusion
This chapter only scratched the surface of how to properly instrument a

chat bot for analytics collection. The different analytics platforms are not

yet as rich as the mature web analytics platforms, but they are making good

progress. Our focus as a chat bot developer is to become familiar with the

systems and be able to integrate them in our code so that the right data is

flowing into the analytics dashboards. Then, our team can make informed

decisions on what chat bot functionality should be improved, what new

features might be added, and which features may not be resonating with

your users. Chat bots are still a new space; customers are going to react

in all kinds of ways to a conversational interface, especially if deployed to

customers who are not tech savvy or who are not enamored in messaging

with a computer. Understanding those challenges and improving the

conversational experience based on analytics is essential to ensuring

successful adoption over the years to come. Analytics will play a lead role

in that evolution.

Figure 13-14. The handled messages for the same conversation

Chapter 13 Chat Bot analytiCs

591© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9_14

CHAPTER 14

Applying Our
Learnings: Alexa
Skills Kit
One of book’s goals is to emphasize that the ideas, techniques, and skills

introduced throughout apply to many types of applications. In this chapter,

by creating a simple Alexa skill, we demonstrate how we can apply our

knowledge of intent classification, entity extraction, and dialog construction

to create a natural language voice experience. We begin by creating an

Alexa skill in the simplest way possible, by using the Alexa Skills Kit SDK for

Node.js. Since we already have a bot service back end, you may inevitably

ask whether we can integrate Alexa with this back end. The answer is a

resounding yes. Once we have our Alexa skill basics down, we will show

how to power an Alexa skill via Direct Line and a Bot Framework bot.

 Introduction
Alexa is Amazon’s intelligent personal assistant. The first Alexa-enabled

devices were the Echo and Echo Dot followed by the screen-enabled

Echo Show and Spot. Amazon is also exploring a chat bot platform called

Lex. Alexa skills are developed by declaring a set of intents and slots

(another name for entities) and writing a webhook to handle incoming

Alexa messages. A message from Alexa will include the resolved intent

592

and slot data. Our webhook responds with data that includes speech and

user interface elements. In the first iteration of the Echo and Echo Dot,

there was no physical screen, so the only user interface was the Alexa

app on the user’s phone. The main user interface element on the app is a

card, not much different from the hero cards we encountered in the Bot

Builder SDK. For instance, a message from Alexa to our webhook will look

as follows. Note that the message formats presented in this section are

pseudocode because the actual messages are significantly more verbose.

{

 "id": "0000001",

 "session": "session00001",

 "type": "IntentRequest",

 "intent": {

 "intent": "QuoteIntent",

 "slots": [

 {

 "type": "SymbolSlot",

 "value": "apple"

 }

]

 }

}

The response would look like this:

{

 "speech": "The latest price for AAPL is 140.61",

 "card": {

 "title": "AAPL",

 "text": "The latest price for Apple (AAPL) is $140.61.",

 "img": "https://fakebot.ngrok.io/img/d5fa618b"

 }

}

Chapter 14 applying Our learnings: alexa skills kit

593

We may want to allow additional functionality such as playing audio

files. In keeping with the financial scenario, maybe we have audio briefing

content that we would like to play for our users. A message to accomplish

this task would look something like this:

{

 "speech": "",

 "directives": [

 {

 "type": "playAudio",

 "parameters": {

 "href": "https://fakebot.ngrok.io/audio/

audiocontent1",

 "type": "audio/mpeg"

 }

 }

]

}

In addition, the system may want to provide an indication of whether

the user cancelled audio playback or listened to the entire clip. More

generically, the system may need a way to send events to our webhook. In

those cases, an incoming message may look like this:

{

 "id": "0000003",

 "session": "session00001",

 "type": " AudioFinished"

}

If we gain use of a screen like the Echo Show device provides, the

potential for more actions and behaviors grows. For example, we can now

play videos. Or we can present a user interface with images and buttons

to our users. If we display a list of items, perhaps we want the device to

Chapter 14 applying Our learnings: alexa skills kit

594

send an event when an item is tapped. We will then create a user interface

render directive, so perhaps our earlier response for a quote will now

include a user interface element as follows:

{

 "speech": "The latest price for AAPL is 140.61",

 "card": {

 "title": "AAPL",

 "text": "The latest price for Apple (AAPL) is $140.61.",

 "img": "https://fakebot.ngrok.io/img/d5fa618b"

 },

 "directives": [

 {

 "type": "render",

 "template": "single_image_template",

 "param": {

 "title": "AAPL",

 "subtitle": "Apple Corp.",

 "img": "https://fakebot.ngrok.io/img/

largequoteaapl"

 }

 }

]

}

The great thing about directives is that they are declarative; it is up to

the device to determine what to do with them. The Echo Show and Echo

Spot devices, for example, may render templates in a slightly different but

consistent manner. The Echo and Echo Dot might ignore or raise an error in

the case that they receive an unsupported directive, such as playing a video.

Chapter 14 applying Our learnings: alexa skills kit

595

 Creating a New Skill
Creating a new Alexa skill requires having access to an Amazon developer

account for skill registration and an Amazon Web Services (AWS) account

to host the skill code. To get started, navigate to https://developer.

amazon.com and click the Developer Console link. If you have an account,

sign into it. Otherwise, click Create your Amazon Developer Account.

We will be asked for an e-mail and a password, our contact information,

and a developer or company name; we will also need to accept the app

distribution agreement and to answer a couple of questions about whether

our skill will accept payments or display ads. We can leave both answers

selected as No to those last two questions. At this point, we will be taken to

the dashboard (Figure 14-1).

Click the Alexa Skills Kit header item. We will now be placed in the

Alexa Skills Kit Developer Console, with an empty list of skills. After

clicking Create Skill, we must enter a skill name. After that, we must select a

model to add to the skill. There are a few types of skills with prebuilt natural

Figure 14-1. Not much on this dashboard

Chapter 14 applying Our learnings: alexa skills kit

https://developer.amazon.com/
https://developer.amazon.com/

596

language models to choose from, but for this case we choose to build our

own models, so we select the Custom skill.1 After selecting the Custom

type, click the Create Skill button. We are now met with the skill dashboard

(Figure 14-2). The dashboard includes the ability to create the skill’s

language models, as well as configure, test, and even publish the skill.

There is a convenient Skill builder checklist area on the right side of

the page that we will follow. We will begin by setting our skill’s invocation

name. This is the phrase used to identify the skill when users want to invoke

it on their Alexa device. For example, in the “Alexa, ask Finance Bot to

quote Apple” utterance, Finance Bot is the invocation name. Clicking the

Invocation Name checklist item loads the screen to set this up (Figure 14- 3).

After entering the name, click Save Model.

1 Understanding the Different Types of Alexa Skills: https://developer.amazon.
com/docs/ask-overviews/understanding-the-different-types-of-skills.
html

Figure 14-2. New custom skill dashboard

Chapter 14 applying Our learnings: alexa skills kit

https://developer.amazon.com/docs/ask-overviews/understanding-the-different-types-of-skills.html
https://developer.amazon.com/docs/ask-overviews/understanding-the-different-types-of-skills.html
https://developer.amazon.com/docs/ask-overviews/understanding-the-different-types-of-skills.html

597

Before we jump into setting up our natural language model, or

interaction model, we need to enable the right interfaces. Recall that

we spoke about the ability to send directives to the device such as to

play audio files or render a user interface element. We have to explicitly

enable those features in our skill. Click the Interfaces link on the left-side

navigation pane. Within this UI, enable Audio Player, Display Interface,

and Video App (Figure 14-4). We will experiment with all of these in our

chapter exercises.

Figure 14-3. Setting up a skill invocation name

Figure 14-4. Enabling Alexa interfaces

Chapter 14 applying Our learnings: alexa skills kit

598

We are now ready to work on the Alexa interaction model.

 Alexa NLU and Automatic Speech
Recognition
You may have noticed that when we first created the skill, we had three

built-in intents in our skill’s model. These are displayed on the left-side

pane. After enabling the various interfaces, we now have about 16 intents.

As the Alexa system adds more features, more and more intents will be

added to all the skills.

This highlights the first difference between the Alexa interaction model

and Language Understanding Intelligent Service (LUIS), explored in depth

in Chapter 3. LUIS is a general-purpose natural language understanding

(NLU) platform that can be utilized in just about any natural language

application. Alexa is a specific ecosystem around digital assistant devices.

To create a consistent experience across all Alexa skills, Amazon provides

a set of common built-in intents for all skills prefixed by AMAZON.

(Figure 14-5). For the best user experience, our skill should implement as

many of these as possible or fail gracefully if they do not apply. Amazon

will review all of these during the skill review process. As an aside, we do

not cover skill review and certification in this book; Amazon provides

ample detailed documentation around this process.

Chapter 14 applying Our learnings: alexa skills kit

599

As if the set of 16 listed is not enough, Amazon provides a total of

133 built-in intents for our skills to take advantage of. It is useful for us to

become familiar with the set provided by Amazon, as the list continues

evolving independent of our skills. Of course, writing a custom skill implies

adding custom intents. As we create a finance bot skill, we will create a

quote intent that will allow us to get a quote either for a company or for

a symbol. To add a new custom intent, click the Add button next to the

Intents header on the left. Select the Create custom intent checkbox, enter

the name, and click the Create custom intent button (Figure 14-6).

Figure 14-5. Built-in Alexa intents

Chapter 14 applying Our learnings: alexa skills kit

600

We are taken to the Intents screen where we can enter sample

utterances (Figure 14-7). Note that the intent is added on the left-side pane

and there is a trash button next to it should we choose to remove the intent

from our model.

Figure 14-6. Adding the QuoteIntent custom intent

Figure 14-7. Populating sample utterance for QuoteIntent

Chapter 14 applying Our learnings: alexa skills kit

601

Next, we need to be able to extract the name of the company or symbol

that we want to get a quote for. In LUIS we would create a new entity for

this purpose; in the Alexa world, this is known as a slot. We will create a

custom slot type called QuoteItem and give it a few examples of company

names or symbols. We first add a new slot type by clicking the Add button

next to the Slot Types header in the left pane (Figure 14-8). Note that

there are 96 built-in slot types! Those include everything from dates and

numbers to actors, sports, and even video games. There is a Corporation

slot type that could fit our purpose, but we choose to proceed with a

custom slot type as an exercise. Select the Create custom slot type radio

button, enter a name, and click the Create custom slot type button.

Next, we enter the various values for the QuoteItem slot type

(Figure 14-9).

Figure 14-8. Adding a new slot type

Chapter 14 applying Our learnings: alexa skills kit

602

This is a limited set, of course, but it will do for now. The universe

of company names and ticker symbols is quite large, and we are not

expecting to enter all of them in the sample slot values. However, the

more examples we provide, the better the NLU engine will be at correctly

identifying QuoteItems, and the better the Automatic Speech Recognition

(ASR) engine will be. The reason for this latter point is that speech

recognition systems such as Alexa, Google Home, and Microsoft’s Cortana

can all be primed with different utterances. Priming is an important step

in the ASR process as it gives clear hints to the engine about the skill’s

vocabulary. This allows the ASR system to understand context and better

transcribe users’ utterances.

Let’s go back into the QuoteIntent. In Alexa’s NLU, we must explicitly

add slot types to intents. Below the sample utterances, the intent user

interface lets us add slots. Give the slot a name and click the + button.

Now, we are able to assign a slot type (Figure 14-10).

Figure 14-9. Adding new values to a custom slot type

Chapter 14 applying Our learnings: alexa skills kit

603

Finally, we must correctly label the slot in each utterance. We can

do this by selecting a word or set of consecutive words in the sample

utterance interface. We will see a pop-up with the intent slots you can

assign to the selected substring. After choosing QuoteItem for each one,

our QuoteIntent will look like Figure 14-11.

We will add one more intent. We want the ability to ask for

information about specific account types using utterances like “get

information for 401k account” or “what is a roth ira?” Let’s call this intent

GetAccountTypeInfoIntent. Before we create the intent, let’s create the

supporting slot type. In the same way that we added the QuoteItem slot

type, let’s add an AccountType custom slot type.

Figure 14-10. Adding the QuoteItem slot type to QuoteIntent

Figure 14-11. The QuoteIntent is now ready

Chapter 14 applying Our learnings: alexa skills kit

604

Once it’s created, enter a set of different account types and different

ways of expressing them. For example, 401k can also be referred to as

401(k). Note, we also specify the word spelling of each account type

(Figure 14-12). The reason for this is that the ASR system may transcribe

user input as words, not numbers. Note that the set of account types will

most likely be a closed set for our application, so this presents a different

use case from the open concept of a QuoteItem in our QuoteIntent.

Figure 14-12. Creating a custom slot type with synonyms

Chapter 14 applying Our learnings: alexa skills kit

605

Now we can create a new custom intent called

GetAccountTypeInformationIntent. Add the AccountType as an intent

slot. Then we can enter some sample utterances. The result is found in

Figure 14-13.

At this point, we have finished the first draft of our interaction model.

Click the Save Model button, followed by the Build Model button. Building

the model will utilize all the data we have provided to train the system.

Note that at any point we can see the model JSON format using the JSON

Editor link in the left pane. The JSON encapsulates everything that was

added to the model. Figure 14-14 shows an excerpt of it. The easiest way

to share a model is to share this JSON content. Of course, there are also

command-line tools to further automate this process.

Figure 14-13. Finalized GetAccountTypeInformationIntent

Chapter 14 applying Our learnings: alexa skills kit

606

For the purposes of this chapter, this is all we will cover about Alexa’s

NLU. To be clear, we did not do it justice. The system is rich and worth

learning about.

Figure 14-14. An excerpt of the Alexa interaction model we just
created

Chapter 14 applying Our learnings: alexa skills kit

607

 Diving Into Alexa Skills Kit for Node
Back in the dashboard, the last step in the Skill builder checklist is to set

up the endpoint. The endpoint is the code that will receive the incoming

messages from Amazon and respond with speech, cards, and directives.

There are two approaches we can take here. First, we can host an

endpoint ourselves, give Amazon the URL, parse each request, and

respond accordingly. Using this approach, we gain control but must

implement the verification and parsing logic ourselves. We would also own

the deployment tasks.

The second alternative, which is quite common these days, is to use

serverless computing.2 This gives us the ability to create bits of code in the

cloud that run and scale according to demand. On AWS, this is Lambda. In

Azure, the equivalent would be Functions. Amazon provides the Amazon

Alexa Skills Kit SDK for Node.js for this very purpose (https://github.

com/alexa/alexa-skills-kit-sdk-for-nodejs). In this section, we dive

into running Alexa Skills on AWS Lambda.

The structure of a skill built using the Alexa Skills Kit SDK is shown

next. We register all the intents we want to handle in the code. The emit

function sends responses to Alexa. There are many different overloads of

emit documented on the SDK’s GitHub site.3

const handlers = {

 'LaunchRequest': function () {

 this.emit('HelloWorldIntent');

 },

2 What Serverless Computing Really Means:https://www.infoworld.com/
article/3093508/cloud-computing/what-serverless-computing-really-
means.html

3 Alexa Skill Kit for Node.js: Response vs. ResponseBuilder: https://github.com/
alexa/alexa-skills-kit-sdk-for-nodejs#response-vs-responsebuilder

Chapter 14 applying Our learnings: alexa skills kit

https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs
https://www.infoworld.com/article/3093508/cloud-computing/what-serverless-computing-really-means.html
https://www.infoworld.com/article/3093508/cloud-computing/what-serverless-computing-really-means.html
https://www.infoworld.com/article/3093508/cloud-computing/what-serverless-computing-really-means.html
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs#response-vs-responsebuilder
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs#response-vs-responsebuilder

608

 'HelloWorldIntent': function () {

 this.emit(':tell', 'Hello World!');

 }

};

Finally, we register the skill and handlers with the Alexa SDK.

const Alexa = require('alexa-sdk');

exports.handler = function(event, context, callback) {

 const alexa = Alexa.handler(event, context, callback);

 alexa.registerHandlers(handlers);

 alexa.execute();

};

This code is sufficient to run a basic skill that responds with “hello

world” when launched or when the HelloWorldIntent intent is matched.

Conceptually, we will follow the same approach when creating the code

for our financial skill. Before we continue, though, how do we connect our

skill to an AWS Lambda?

First, we will need to have an AWS account. We can create an AWS

free tier account here: https://aws.amazon.com/free/. The free tier is a

perfect way to get started and become familiar with AWS. Click Create Free

Account. We will be asked for an e-mail address, a password, and an AWS

account name (Figure 14-15).

Chapter 14 applying Our learnings: alexa skills kit

https://aws.amazon.com/free/

609

Next, we will enter our personal contact information. We will need to

enter our payment information for identity verification purposes (you will

not be charged while in the free tier) and verify our phone number. Once

completed, we will be taken to the AWS Management Console. At this

point, we can find Lambda in the “All services” list and navigate to it.

Now we can start creating a Lambda function. Click “Create a

function,” select Blueprints, find and select the alexa-skill-kit-sdk-factskill,

and click the Configure button. We give the function a name unique to our

account’s function list, set Role to Create new role from template(s), give

the role a name, and select the Simple Microservice permissions template

(Figure 14-16).

Figure 14-15. Creating a new AWS account

Chapter 14 applying Our learnings: alexa skills kit

610

Below the data entry fields, we will see our Lambda code. The runtime

should be set to Node.js 6.10, though it is safe to assume Amazon may

update this any time. We leave the code as is for now. After clicking the

Create Function button, you will be taken to the function configuration

screen (Figure 14-17).

Figure 14-16. Creating a new Lambda function

Figure 14-17. Function configuration screen

Chapter 14 applying Our learnings: alexa skills kit

611

There are many actions we can perform on this screen. First, the top

right shows the Lambda identifier. We will need to present this to the Alexa

skill momentarily. We also see that the function has access to CloudWatch

logs (all Lambda logs are sent to CloudWatch) and DynamoDB, Amazon’s

managed cloud NoSQL database. Alexa skills can use DynamoDB to store

skill state.

In the Designer section, we need to set a trigger that can invoke our

new function. For our purposes, find and click the Alexa Skills Kit trigger.

Once you do so, a Configure Triggers section will appear below. Enter

the skill ID from the Alexa Skill dashboard. It should look like amzn1.ask.

skill.5d364108-7906-4612-a465-9f560b0bc16f. Once you have entered the

ID, click Add for the trigger and then save the function configuration. At

this point, the Lambda function is ready to be called from our skill.

Before we do so, we select the function in the Designer (in this case,

srozga-finance-skill-function as per Figure 14-17); we will be greeted with

the code editor. We have a few different options of how code is loaded into

Lambda. One option is to write the code manually in the editor; another

option is to upload a zip with all the code. Doing this manual labor in a real

application gets tiring very quickly; you can utilize the AWS4 and ASK CLI5

to deploy a skill from the command line. For now, we will simply use the

editor. Replace the code in the editor with the following:

'use strict';

const Alexa = require('alexa-sdk');

const handlers = {

 'LaunchRequest': function () {

 this.emit(':tell', 'Welcome!');

 },

4 AWS CLI: https://aws.amazon.com/cli/
5 Alexa Skills Kit (ASK) CLI: https://developer.amazon.com/docs/smapi/quick-
start-alexa-skills-kit-command-line-interface.html

Chapter 14 applying Our learnings: alexa skills kit

https://aws.amazon.com/cli/
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html

612

 'QuoteIntent': function () {

 this.emit(':tell', 'Quote by company.');

 },

 'GetAccountTypeInformationIntent': function () {

 this.emit(':tell', 'Getting account type.');

 }

};

exports.handler = function (event, context, callback) {

 const alexa = Alexa.handler(event, context, callback);

 alexa.registerHandlers(handlers);

 alexa.execute();

};

Before we leave, copy the Lambda function’s Amazon Resource Name

(ARN) from the top-right area of the screen. The identifier looks like this:

arn:aws:lambda:us-east-1:526347705809:function:srozga-finance-skill-

function.

Let’s switch back into the Alexa Skill configuration screen for our skill.

Select the Endpoint link in the right-side pane. Select the AWS Lambda

ARN checkbox and enter the Lambda ARN in the Default Region text box

(Figure 14-18).

Chapter 14 applying Our learnings: alexa skills kit

613

Click the Save Endpoints button. If there are issues here, you may not

have correctly added the Alexa Skills Kit trigger for the Lambda function.

At this point we can navigate into the Test section, using the top

navigation panel. By default, the skill is not enabled for test. Toggle the

checkbox. Now, we can test the skill from the Alexa test interface, any Echo

device connected to the developer account, or third-party tools such as

EchoSim.6 You may be prompted to allow microphone access if you want

to speak to the test application.

We can send input utterances by either speaking or typing, and we will

receive our lambda function’s response, as shown in Figure 14-19. Make

sure to preface your utterances with “Ask {Invocation Name}.” Note that

this interface presents the raw input and output JSON content. Take some

time to examine it; it contains a lot of information we covered earlier in the

chapter. For example, the incoming request includes the resolved intent

and slots from our interaction model. The output contains SSML for the

6 EchoSim is a browser-based interface to Alexa. It helps in testing development
skills. As the Alexa test tool has improved substantially in recent months, it remains
to be seen how effective of a tool EchoSim will be; see https://echosim.io.

Figure 14-18. Alexa skill Lambda ARN endpoint configuration

Chapter 14 applying Our learnings: alexa skills kit

https://echosim.io/

614

Echo device to speak. The output also indicates that the session should

end. We will dive a bit deeper into sessions later.

Now that we see the incoming JSON and the slot format, we can extend

the code to extract the slot values. In the context of an intent handler, the

this.event.request object contains the resolved intent and slot values. From

there, it’s simply a matter of extracting the values and doing something

with them. The following code extracts the slot values and includes them

in the Alexa voice response:

'use strict';

const Alexa = require('alexa-sdk');

const handlers = {

 'LaunchRequest': function () {

 this.emit(':tell', 'Welcome!');

 },

 'QuoteIntent': function () {

 console.log(JSON.stringify(this.event));

 let intent = this.event.request.intent;

 let quoteitem = intent.slots['QuoteItem'].value;

Figure 14-19. Success!

Chapter 14 applying Our learnings: alexa skills kit

615

 this.emit(':tell', 'Quote for ' + quoteitem);

 },

 'GetAccountTypeInformationIntent': function () {

 console.log(JSON.stringify(this.event));

 let intent = this.event.request.intent;

 let accountType = intent.slots['AccountType'].value;

 this.emit(':tell', 'Getting information for account

type ' + accountType);

 }

};

exports.handler = function (event, context, callback) {

 const alexa = Alexa.handler(event, context, callback);

 alexa.registerHandlers(handlers);

 alexa.execute();

};

A sample interaction with input “ask finance bot what is an ira” is

presented in Figure 14-20. If you speak the utterance, it will come through

as “ask finance bot what is an I R A.” Make sure “I R A” is one of the

synonyms for the IRA account type slot type.

Figure 14-20. Successfully extracting AccountType slot values from
Alexa request

Chapter 14 applying Our learnings: alexa skills kit

616

Note that if we send the skill something that the built-in Amazon

intents should handle, as perhaps “cancel,” the skill might return an error.

The reason for this is that we do not yet handle some of those built-in

intents. In addition, we do not include unhandled intent logic. We can

easily handle both cases by adding the following handlers:

 'AMAZON.CancelIntent': function() {

 this.emit(':tell', 'Ok. Bye.');

 },

 'Unhandled': function() {

 this.emit(':tell', "I'm not sure what you are talking

about.");

 }

Now, telling the skill “cancel” results in a good-bye message (Figure 14- 21).

Figure 14-21. The sassy message we promised when asking the skill
to cancel

Chapter 14 applying Our learnings: alexa skills kit

617

Great. This works well, but how do we model a dialog into an Alexa

Skill? The SDK for Node.js includes the concept of state. Think of it as the

user’s current dialog. For each state, we provide a set of handlers for each

intent supported by that state. Essentially, we are encoding a dialog graph

by using a set of state names and handlers. The code for this skill follows:

'use strict';

const Alexa = require('alexa-sdk');

const defaultHandlers = {

 'LaunchRequest': function () {

 this.emit(':ask', 'Welcome to finance skill! I can get

your information about quotes or account types.', 'What

can I help you with?');

 },

 'GetAccountTypeInformationIntent': function () {

 this.handler.state = 'AccountInfo';

 this.emitWithState(this.event.request.intent.name);

 },

 'QuoteIntent': function () {

 this.handler.state = 'Quote';

 this.emitWithState(this.event.request.intent.name);

 },

 'AMAZON.CancelIntent': function () {

 this.emit(':tell', 'Ok. Bye.');

 },

 'Unhandled': function () {

 console.log(JSON.stringify(this.event));

 this.emit(':ask', "I'm not sure what you are talking

about.", 'What can I help you with?');

 }

};

Chapter 14 applying Our learnings: alexa skills kit

618

const quoteStateHandlers = Alexa.CreateStateHandler('Quote', {

 'LaunchRequest': function () {

 this.handler.state = '';

 this.emitWithState('LaunchRequest');

 },

 'AMAZON.MoreIntent': function () {

 this.emit(':ask', 'More information for quote item ' +

this.attributes.quoteitem, 'What else can I help you

with?');

 },

 'AMAZON.CancelIntent': function () {

 this.handler.state = '';

 this.emitWithState(this.event.request.intent.name);

 },

 'QuoteIntent': function () {

 console.log(JSON.stringify(this.event));

 let intent = this.event.request.intent;

 let quoteitem = null;

 if (intent && intent.slots.QuoteItem) {

 quoteitem = intent.slots.QuoteItem.value;

 } else {

 quoteitem = this.attributes.quoteitem;

 }

 this.attributes.quoteitem = quoteitem;

 this.emit(':ask', 'Quote for ' + quoteitem, 'What else

can I help you with?');

 },

 'GetAccountTypeInformationIntent': function () {

 this.handler.state = '';

 this.emitWithState(this.event.request.intent.name);

 },

Chapter 14 applying Our learnings: alexa skills kit

619

 'Unhandled': function () {

 console.log(JSON.stringify(this.event));

 this.emit(':ask', "I'm not sure what you are talking

about.", 'What can I help you with?');

 }

});

const accountInfoStateHandlers =

Alexa.CreateStateHandler('AccountInfo', {

 'LaunchRequest': function () {

 this.handler.state = '';

 this.emitWithState('LaunchRequest');

 },

 'AMAZON.MoreIntent': function () {

 this.emit(':ask', 'More information for account ' +

this.attributes.accounttype, 'What else can I help you

with?');

 },

 'AMAZON.CancelIntent': function () {

 this.handler.state = '';

 this.emitWithState(this.event.request.intent.name);

 },

 'GetAccountTypeInformationIntent': function () {

 console.log(JSON.stringify(this.event));

 let intent = this.event.request.intent;

 let accounttype = null;

 if (intent && intent.slots.AccountType) {

 accounttype = intent.slots.AccountType.value;

 } else {

 accounttype = this.attributes.accounttype;

 }

Chapter 14 applying Our learnings: alexa skills kit

620

 this.attributes.accounttype = accounttype;

 this.emit(':ask', 'Information for ' + accounttype,

'What else can I help you with?');

 },

 'QuoteIntent': function () {

 this.handler.state = '';

 this.emitWithState(this.event.request.intent.name);

 },

 'Unhandled': function () {

 console.log(JSON.stringify(this.event));

 this.emit(':ask', "I'm not sure what you are talking

about.", 'What can I help you with?');

 }

});

exports.handler = function (event, context, callback) {

 const alexa = Alexa.handler(event, context, callback);

 alexa.registerHandlers(defaultHandlers, quoteStateHandlers,

accountInfoStateHandlers);

 alexa.execute();

};

Note that this skill has two states: Quote and AccountInfo. Within the

context of these states, each intent may produce different behavior. If a user

asks about an account in the Quote state, the skill redirects to the default

state to decide what to do with the request. Likewise, if a user asks about

a quote in the AccountInfo state, similar logic happens. An illustration

of the dialogs is presented in Figure 14-22. Note that in the code, we use

this.emit(‘:ask’) if we want to keep the session open and this.emit(‘:tell’) if

we simply want to speak and answer and close the session. If the session

stays open, we do not have to preface each utterance to Alexa with ask

finance bot.” It is implicit since the session between the user and our

Chapter 14 applying Our learnings: alexa skills kit

621

skill stays open.7 There is another way to build responses by utilizing the

ResponseBuilder. We can read about it in SDK documentation, and we will

use it in Exercise 14-1 to build responses with render template directives.

Go ahead and run this sample to gain familiarity with the ideas

behind the flow. Of importance is that we take advantage of two fields

for state storage: this.handler.state for the name of the current state and

this.attributes, which acts as a user conversation data store. Think of this.

attributes as the privateConversationData dictionary in Bot Builder. These

values are not persisted when a session ends by default, but the Alexa Skills

Kit for Node.js supports DynamoDB integration for state storage. This

would enable our skill to continue an interaction with a user whenever

they invoke the skill again.

 Other Options
We conveniently ignored a few other options along the way. The skill

developer console for our skill contains the Account Linking and

Permissions links. Account linking is the process of redirecting the user to

7 Alexa sessions are an interesting topic that deserves more
examination. More information can be found online at https://
developer.amazon.com/alexa-skills-kit/big-nerd-ranch/
alexa-voice-user-interfaces-and-sessions.

Figure 14-22. An illustration of the dialogs and transitions in our skill

Chapter 14 applying Our learnings: alexa skills kit

https://developer.amazon.com/alexa-skills-kit/big-nerd-ranch/alexa-voice-user-interfaces-and-sessions
https://developer.amazon.com/alexa-skills-kit/big-nerd-ranch/alexa-voice-user-interfaces-and-sessions
https://developer.amazon.com/alexa-skills-kit/big-nerd-ranch/alexa-voice-user-interfaces-and-sessions

622

an authorization experience via an OAuth flow managed by Alexa. Alexa

stores the tokens and sends them to our endpoint as part of each request.

Part of the reason this is managed in this manner is that the original

Echo did not have a screen. As an affordance, authorization is conducted

through the Alexa mobile app, so the Alexa servers need to own the entire

OAuth flow.

The Permissions screen lets us request access to certain data on the user’s

device such as the device address or Alexa shopping lists (Figure 14- 23).

You can find more information on both topics in the Alexa

documentation.8

EXERCISE 14-1

Connecting to Real Data and Rendering Imagery

in Chapter 11 we integrated with a service called intrinio to fetch financial data

and render it in an image. the goal of this exercise is to connect your alexa skill

code to the same service and render the image on screen-enabled echo devices.

8 Account Linking Documentation: https://developer.amazon.com/docs/
custom-skills/link-an-alexa-user-with-a-user-in-your-system.html.
Using the Device Address API: https://developer.amazon.com/docs/custom-
skills/device-address-api.html. Working with Alexa’s To Do and Shopping
Lists: https://developer.amazon.com/docs/custom-skills/access-the-
alexa-shopping-and-to-do-lists.html.

Figure 14-23. The Alexa Permissions screen

Chapter 14 applying Our learnings: alexa skills kit

https://developer.amazon.com/docs/custom-skills/link-an-alexa-user-with-a-user-in-your-system.html
https://developer.amazon.com/docs/custom-skills/link-an-alexa-user-with-a-user-in-your-system.html
https://developer.amazon.com/docs/custom-skills/device-address-api.html
https://developer.amazon.com/docs/custom-skills/device-address-api.html
https://developer.amazon.com/docs/custom-skills/access-the-alexa-shopping-and-to-do-lists.html
https://developer.amazon.com/docs/custom-skills/access-the-alexa-shopping-and-to-do-lists.html

623

 1. use the code in the previous section as a starting point. revisit

the code from Chapter 11 and ensure that your quote state

Quoteintent handler retrieves quote data from intrinio and

responds with the latest price in voice.

 2. integrate Chapter 11’s htMl-to-image generation code into

your alexa skill. remember to add the necessary packages into

the package.json file in the lambda function.

 3. Visit https://developer.amazon.com/docs/custom-

skills/display-interface-reference.html to get

familiar with how to render display templates. specifically, you

will be using Bodytemplate7 to render the image generated in

the previous step.

 4. to render the template using the node.js sDk for alexa skills

kit you will need to utilize the response builder (https://

github.com/alexa/alexa-skills-kit-sdk-for-

nodejs#response-vs-responsebuilder). the sDk

has helpers to generate the template JsOn (https://

github.com/alexa/alexa-skills-kit-sdk-for-

nodejs#display-interface).

 5. test the functionality in the alexa test utility, echosim, and, if

available, real echo devices. What is the behavior of the code in

a device without a display?

your skill should now be rendering your financial quote image on display-

enabled echo devices, and you should have gained hands-on experience

testing an alexa skill using several methods.

Chapter 14 applying Our learnings: alexa skills kit

https://developer.amazon.com/docs/custom-skills/display-interface-reference.html
https://developer.amazon.com/docs/custom-skills/display-interface-reference.html
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs#response-vs-responsebuilder
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs#response-vs-responsebuilder
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs#response-vs-responsebuilder
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs#display-interface
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs#display-interface
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs#display-interface

624

 Connecting to Bot Framework
The features we have presented thus far are just a fraction of the Alexa

Skills Kit capabilities but are sufficient to gain an appreciation for

applying this book’s concepts to emerging voice platforms. The process of

connecting an Alexa skill to a Bot Framework bot follows a recipe similar

to our voice bot implementation for Twilio in Chapter 8. We will show code

on how to accomplish this connection given our existing Alexa Skills Kit

interaction model. Before we dive into the code, we will discuss several

implementation decisions for our solution.

 Implementation Decisions Around Bot
Framework and Alexa Skills Kit Integration
Typically, we do not suggest that a stand-alone Alexa skill be implemented

by using the Bot Framework. If the requirements truly suggest a single

platform, staying within the confines of an Alexa interaction model and

the Alexa Skills Kit SDK for Node.js running on an AWS Lambda function

is sufficient. In the case that our product should support multiple natural

language text and voice interfaces, we may want to consider one platform

to run our business logic, and the Bot Framework lends itself well to this

approach. Once we start down the path of connecting an Alexa skill to the

Bot Framework, several important implementation decisions follow. These

apply to all types of systems, not just Alexa.

 Natural Language Understanding

In the context of our current effort, which NLU platform should we utilize:

LUIS or Alexa’s interaction model? If we were to use Alexa’s interaction

model, we would have to pass the Alexa intent and slot objects through

Direct Line calls into our bot implementation. We could then build a

custom recognizer that detects this object’s existence and translates it to

Chapter 14 applying Our learnings: alexa skills kit

625

the correct intent and entity response object in the Bot Builder SDK. To

make it very clear, this is where the utility of recognizers shines: the bot

doesn’t care where the intent data comes from.

On the other hand, if we choose to utilize LUIS, we must find a way

to pass raw input from Alexa into the bot. The way to achieve this is to

mark the entire user input as an AMAZON.LITERAL slot type.9 This allows

developers to pass the raw user input into the skill code. This does not mean

our skill interaction model becomes nonexistent. Remember, Alexa uses

the interaction model for its ASR, so we want to give as many examples of

utterances and input types that we expect in our skill’s vocabulary. We would

need to include all our LUIS utterances in the Alexa interaction model.

In general, since the bot may support more channels than Alexa,

maintaining one NLU system, such as LUIS, is be a more maintainable

approach. There is no way to break away completely. We still need to

ensure our bot correctly handles the built-in intents, such as Stop and

Cancel. In the following code sample, in the interest of expediency, we will

assume the entire NLU model lives in Alexa and demonstrate a custom

recognizer approach.

 Channel-Agnostic vs. Channel-Specific Dialogs

When we develop one bot that handles multiple channels, we must decide

whether the one dialog implementation can handle all channels or whether

each channel should have its own dialog implementation. There are

arguments to be made for each, although if you think in terms of the Model

9 There has been much debate around the LITERAL slot type and its use.
Amazon has tried to deprecate the slot type for some time now. It is easy to
understand why. The natural language models and Alexa’s ability to prime
the Automatic Speech Recognition engine by using the models are only as
good as the models’ content. If some of the NLU is offloaded to a separate
system, the Alexa NLU and Speech Recongition suffer. That being said, even
though Amazon has espoused alternatives, the slot type has not yet been
removed. See https://developer.amazon.com/post/Tx3IHSFQSUF3RQP/
Why-a-Custom-Slot-is-the-Literal-Solution.

Chapter 14 applying Our learnings: alexa skills kit

https://developer.amazon.com/post/Tx3IHSFQSUF3RQP/Why-a-Custom-Slot-is-the-Literal-Solution
https://developer.amazon.com/post/Tx3IHSFQSUF3RQP/Why-a-Custom-Slot-is-the-Literal-Solution

626

View Controller (MVC) pattern,10 we can come up with an elegant solution.

If we consider a dialog to be the controller and the APIs we talk to the model,

then we are left with the question of what takes on the role of the view.

We want to create separate pieces of code that can render messages

based on the channel. Although the bot service attempts to abstract the

channel, we will run into channel-specific behavior at one point or another.

For example, we will treat Alexa differently from a text channel. One approach

is to create a default view renderer that is used in the dialog with the addition

of channel-specific view renderers to support behavior or imagery that

diverges from the default. A more generic approach is to simply have different

view renderers for voice versus text channels. Figure 14-24 shows a sample

flow of this approach in the case of a message from a voice channel.

10 Model View Controller: https://en.wikipedia.org/wiki/Model%E2%80%93view
%E2%80%93controller

Figure 14-24. A sample flow of a message incoming from a voice
channel such as Alexa and its flow through our system all the way to
the view renderers

Chapter 14 applying Our learnings: alexa skills kit

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

627

 Alexa Constructs

The Bot Builder SDK abstracts the concept of a text conversation well, but

mapping the concepts directly to Alexa is nontrivial. A couple of examples

come to mind.

First, when a speech utterance is sent to the Alexa service, it may

include an initial speech string plus a re-prompt speech string. The re-

prompt is spoken to the user if Alexa poses a question, and the user does

not respond in time. Bot Builder activities contain a property for speech

but not for re-prompt. In our sample code, we leverage the custom

Channel Data field to send this information.

A second example is the Alexa render templates. Although we are

not covering them here, Alexa supports a number (seven by the latest

count) of templates to display content on display-enabled Echo devices.

Each template is a different JSON structure representing a user interface.

Although we could try to come up with a way to utilize the hero card

objects to communicate these templates to a connector, it is simpler to

generate the JSON in a renderer and send in the channel data. Instructing

the Echo device to play a video presents a similar dilemma.

A solution to all these problems is to try to render as much as possible

using the Bot Builder SDK objects and drop to channel data only when

necessary. As illustrated in Figure 14-24, we could even utilize the Bot

Builder SDK objects and translate them to channel-specific constructs on

the connector layer. In general, though, is it easier to generate the Alexa

channel data for each response in an Alexa renderer.

 Callback Support

Most channels can send events that have nothing to do with user

messages. For example, Facebook sends events about referrals, app

handover, checkouts, and payments among others. These are channel-

specific messages that need to be handled in the bot, sometimes outside

the structure of a dialog. Alexa is no stranger to such events. When a video

Chapter 14 applying Our learnings: alexa skills kit

628

or audio file is playing on an Echo device, various events about progress,

interruptions, and errors are sent to the skill. It is up to our bot code to

interpret those events correctly.

A good approach to this interaction is to create custom recognizers that

can identify the different types of messages and then direct these messages

to the right dialogs. For events that require a JSON response, the dialogs

should send a payload using the channel data.

 Sample Integration
Let’s dig into what a sample integration would look like. We split the

implementation into three components: the connector, the recognizer, and

the bot. The full sample code can be found under the chapter14-alexa-

skill-connector-bot folder in the book’s GitHub repo.

The connector consists of an HTTP handler that Alexa will send

messages to. The goal of the handler is to resolve the conversation, call the

bot, wait for a response from the bot, and send the message back to Alexa.

There is a bit of code here, so let’s walk through it step-by-step.

The message comes into the handler. We extract the request body

and the user ID. We then create an MD5 hash of the user ID. The reason

for doing this is that Alexa user IDs are longer than the Bot Framework

supports. A hash helps us keep the length manageable.

const cachedConversations = {};

exports.handler = function (req, res, next) {

 const reqContents = req.body;

 console.log('Incoming message', reqContents);

 const userId = reqContents.session.user.userId;

 const userIdHash = md5(userId);

 ...

};

Chapter 14 applying Our learnings: alexa skills kit

629

We next either retrieve a cached conversation for that user or create

a new one. Note, we store the conversations in memory, so every server

restart will create new Direct Line conversations. In production, we would

use a persistent store using a service such as Cosmos DB or Azure Table

Storage. Alexa also includes a flag that informs us whether a session has

just started. In the case that we do not have a cached conversation or the

session is new, we create a new Direct Line conversation and cache it.

const cachedConv = cachedConversations[userId];

let p = Promise.resolve(cachedConv);

if (reqContents.session.new || !cachedConv) {

 p = startConversation(process.env.DL_KEY).then(conv => {

 cachedConversations[userId] = { id: conv.

conversationId, watermark: null, lastAccessed:

moment().format() };

 console.log('created conversation [%s] for user [%s]

hash [%s]', conv.conversationId, userId, userIdHash);

 return cachedConversations[userId];

 });

}

p.then(conv => {

 ...

});

After we retrieve the conversation, we post an activity to the bot. Note

that since we decided to pass the resolved Alexa interaction model intents

and slots, we simply pass the Alexa message through the channel data in

the sourceEvent property.

postActivity(process.env.DL_KEY, conv.id, {

 from: { id: userIdHash, name: userIdHash }, // required

(from.name is optional)

 type: 'message',

Chapter 14 applying Our learnings: alexa skills kit

630

 text: '',

 sourceEvent: {

 'directline': {

 alexaMessage: reqContents

 }

 }

}).then(() => {

 ...

});

If Alexa sent a SessionEndedRequst, we automatically respond with an

HTTP 200 status code.

if (reqContents.request.type === 'SessionEndedRequest') {

 buildAndSendSessionEnd(req, res, next);

 return;

}

function buildAndSendSessionEnd(req, res, next) {

 let responseJson =

 {

 "version": "1.0"

 };

 res.send(200, responseJson);

 next();

}

Otherwise, we use the Direct Line polling mechanism to try to get

the activity response from the bot. We time out after six seconds. Once

a response activity has been identified, we extract some Alexa-specific

information from the activity and build a response to Alexa. If the message

had timed out, we send back an HTTP 504 status code.

let timeoutAttempts = 0;

const intervalSleep = 500;

Chapter 14 applying Our learnings: alexa skills kit

631

const timeoutInMs = 10000;

const maxTimeouts = timeoutInMs / intervalSleep;

const interval = setInterval(() => {

 getActivities(process.env.DL_KEY, conv.id, conv.watermark).

then(activitiesResponse => {

 const temp = _.filter(activitiesResponse.activities,

(m) => m.from.id !== userIdHash);

 if (temp.length > 0) {

 clearInterval(interval);

 const responseActivity = temp[0];

 console.log('Bot response:', responseActivity);

 conv.watermark = activitiesResponse.watermark;

 conv.lastAccessed = moment().format();

 const keepSessionOpen = responseActivity.

channelData && responseActivity.channelData.

keepSessionOpen;

 const reprompt = responseActivity.channelData &&

responseActivity.channelData.reprompt;

 buildAndSendSpeech(responseActivity.speak,

keepSessionOpen, reprompt, req, res, next);

 } else {

 // no-op

 }

 timeoutAttempts++;

 if (timeoutAttempts >= maxTimeouts) {

 clearInterval(interval);

 buildTimeoutResponse(req, res, next);

 }

 });

}, intervalSleep);

Chapter 14 applying Our learnings: alexa skills kit

632

That’s it! The code to build the response messages follows.

function buildTimeoutResponse(req, res, next) {

 res.send(504);

 next();

}

function buildAndSendSpeech(speak, keepSessionOpen, reprompt,

req, res, next) {

 let responseJson =

 {

 "version": "1.0",

 "response": {

 "outputSpeech": {

 "type": "PlainText",

 "text": speak

 },

 // TODO REPROMPT

 "shouldEndSession": !keepSessionOpen

 }

 };

 if (reprompt) {

 responseJson.reprompt = {

 outputSpeech: {

 type: 'PlainText',

 text: reprompt

 }

 };

 }

 console.log('Final response to Alexa:', responseJson);

 res.send(200, responseJson);

 next();

}

Chapter 14 applying Our learnings: alexa skills kit

633

function buildAndSendSessionEnd(req, res, next) {

 let responseJson =

 {

 "version": "1.0"

 };

 res.send(200, responseJson);

 next();

}

The Direct Line functions are the same as those we showed in Chapter 9.

What happens with the message on the bot side of things? First it will

hit our custom recognizer. The recognizer first ensures we are getting an

Alexa message and that it is either an IntentRequest, LaunchRequest, or

SessionEndedRequest request. If it is an IntentRequest, we resolve the

Alexa intent and slots as the intent and entities for LUIS. As the comments

note, the format of the slots object is different from the LUIS entities object.

If we were to mix both NLU systems in one bot to use the same dialogs,

we would have to ensure that the format is normalized. If the request is

LaunchRequest or SessionEndedRequest, we simply pass through those

strings as bot intents.

exports.recognizer = {

 recognize: function (context, done) {

 const msg = context.message;

 // we only look at directline messages that include

additional data

 if (msg.address.channelId === 'directline' && msg.

sourceEvent) {

 const alexaMessage = msg.sourceEvent.directline.

alexaMessage;

Chapter 14 applying Our learnings: alexa skills kit

634

 // skip if no alexaMessage

 if (alexaMessage) {

 if (alexaMessage.request.type ===

'IntentRequest') {

 // Pass IntentRequest into the dialogs.

 // The odd thing is that the slots and

entities structure is different. If we mix

LUIS/Alexa

 // it would make sense to normalize the

format.

 const alexaIntent = alexaMessage.request.

intent;

 const response = {

 intent: alexaIntent.name,

 entities: alexaIntent.slots,

 score: 1.0

 };

 done(null, response);

 return;

 } else if (alexaMessage.request.type ===

'LaunchRequest' || alexaMessage.request.type

=== 'SessionEndedRequest') {

 // LaunchRequest and SessionEndedRequest

are simply passed through as intents

 const response = {

 intent: alexaMessage.request.type,

 score: 1.0

 };

 done(null, response);

 return;

 }

 }

Chapter 14 applying Our learnings: alexa skills kit

635

 }

 done(null, { score: 0 });

 }

};

Let’s come back to the bot code. We first register our custom Alexa

HTTP handler, custom recognizer, and the default response. Note our

use of the custom Direct Line data. If we ask the skill something it doesn’t

support, the session is terminated.

server.post('/api/alexa', (req, res, next) => {

 alexaConnector.handler(req, res, next);

});

const bot = new builder.UniversalBot(connector, [

 session => {

 let response = 'Sorry, I am not sure how to help you on

this one. Please try again.';

 let msg = new builder.Message(session).text(response).

speak(response).sourceEvent({

 directline: {

 keepSessionOpen: false

 }

 });

 session.send(msg);

 }

]);

bot.recognizer(alexaRecognizer);

Next, we create the QuoteDialog dialog. Note the following:

• It reads the quote item from the entities as our Alexa

skill code did.

• It sends a response via the speak property but also includes

a reprompt in the custom Direct Line channel data.

Chapter 14 applying Our learnings: alexa skills kit

636

• Within the context of this dialog, if the bot detects the

AMAZON.MoreIntent, the MoreQuoteDialog dialog is

invoked.

• After the MoreQuoteDialog dialog executes, it yields

control back to QuoteDialog.

bot.dialog('QuoteDialog', [

 (session, args) => {

 let quoteitem = args.intent.entities.QuoteItem.value;

 session.privateConversationData.quoteitem = quoteitem;

 let response = 'Looking up quote for ' + quoteitem;

 let reprompt = 'What else can I help you with?';

 let msg = new builder.Message(session).text(response).

speak(response).sourceEvent({

 directline: {

 reprompt: reprompt,

 keepSessionOpen: true

 }

 });

 session.send(msg);

 }

])

 .triggerAction({ matches: 'QuoteIntent' })

 .beginDialogAction('moreQuoteAction', 'MoreQuoteDialog', {

matches: 'AMAZON.MoreIntent' });

bot.dialog('MoreQuoteDialog', session => {

 let quoteitem = session.privateConversationData.quoteitem;

 let response = 'Getting more quote information for ' +

quoteitem;

 let reprompt = 'What else can I help you with?';

Chapter 14 applying Our learnings: alexa skills kit

637

 let msg = new builder.Message(session).text(response).

speak(response).sourceEvent({

 directline: {

 reprompt: reprompt,

 keepSessionOpen: true

 }

 });

 session.send(msg);

 session.endDialog();

});

The same pattern is repeated for the

GetAccountTypeInformationIntent intent. Lastly, we add some handlers to

support things such as canceling the skill and handling the LaunchRequest

and SessionEndedRequest events.

bot.dialog('CloseSession', session => {

 let response = 'Ok. Good bye.';

 let msg = new builder.Message(session).text(response).

speak(response).sourceEvent({

 directline: {

 keepSessionOpen: false

 }

 });

 session.send(msg);

 session.endDialog();

}).triggerAction({ matches: 'AMAZON.CancelIntent' });

bot.dialog('EndSession', session => {

 session.endConversation();

}).triggerAction({ matches: 'SessionEndedRequest' });

Chapter 14 applying Our learnings: alexa skills kit

638

bot.dialog('LaunchBot', session => {

 let response = 'Welcome to finance skill! I can get your

information about quotes or account types.';

 let msg = new builder.Message(session).text(response).

speak(response).sourceEvent({

 directline: {

 keepSessionOpen: true

 }

 });

 session.send(msg);

 session.endDialog();

}).triggerAction({ matches: 'LaunchRequest' });

That completes our integration with Alexa. If we run the code, we will

see similar behavior to the Lambda skill we had developed earlier. There

are many unhandled intents and contingencies in both the bot code and

the connector code, but we are well on our way to integrating the Alexa

Skills Kit with Microsoft’s Bot Framework.

EXERCISE 14-2

Integrate Data and Quote Imagery into Bot Builder Code

in exercise 14-1, we connected the lambda function code to data and

generated an image to render the quote on screen-enabled echo devices. in

this exercise, we will migrate both components into our Bot Builder code.

 1. utilize the previous section’s code as a starting point.

 2. extract the appropriate image generation code from the

lambda function and add it to your bot. Make sure you install

the necessary node.js packages.

Chapter 14 applying Our learnings: alexa skills kit

639

 3. generate the display template within the dialog and add it into

your custom channel data. you can include the alexa skills kit

sDk for node.js as a dependency to use the template builder

types.

 4. ensure the connector is translating the channel data template

correctly into a final response back to alexa.

 5. run your integrated alexa skill and Bot Framework bot and test

it using the same methods you used in exercise 14-2.

 6. What does it take to modify the bot code so that you can utilize

your bot through the Bot Framework emulator? after all the

knowledge you have gained in this book, you should be able to

create a luis application to complete the experience.

What a great feeling getting this one working! it can be quite fun and

interesting to develop voice chat bots, especially on a rich ecosystem like

alexa.

 Conclusion
This chapter has enabled us to coalesce the learnings of this book to

leverage Amazon’s Alexa platform and, additionally, integrate it with the

Bot Builder SDK. A modern conversational interface can be reduced to

NLU intents and entities plus a dialog engine to drive the conversation.

Whether it is Alexa or other channels like Google Assistant, all these

systems share common core concepts. There are those who will draw a

strong enough distinction between voice and text communications to

argue for a need for distinct ways of handling both interactions. Although

it is true that the voice and text communications are distinct enough to

warrant different front-end experiences, the ability to handle the generic

idea of a conversation is well developed in the Bot Builder SDK. The idea

Chapter 14 applying Our learnings: alexa skills kit

640

that we can connect different NLU systems to pass their own intents into

our Bot Framework bot is powerful. It means that a message into our bot

can be much more than just text. It can be any kind of complex object

only limited by our imagination. Granted, there is always some level of

overhead to run a generic system connected to many specific interfaces,

but, as we hope to have demonstrated in this chapter, the extra effort

required to build the connecting layer is well within our grasp.

Chapter 14 applying Our learnings: alexa skills kit

641© Szymon Rozga 2018
S. Rozga, Practical Bot Development, https://doi.org/10.1007/978-1-4842-3540-9

Index

A
Action parameters, 24
Active learning, 115–116
Adaptive cards, 155, 166, 218, 501

creating custom, 517
data-gathering template, 507
example, 507–509
Facebook Messenger, 511
rendering, 504–506
rendering custom graphics, 518

AAPL, 519–520, 522

Azure’s Blob Storage, 542–543

custom quote card, 530

emulator rendering, 528

fetching data, 537, 539

headless browsers, 518

headless Chrome, 544–545

HTML and CSS, 530–534

Intrinio, 519

Messenger rendering, 529
Puppeteer, 535
rendering HTML, 535–536, 540
rendering in Messenger, 541
renderStockCard function,

523–525, 527
string manipulation, 536
text stock quotes, 523

restaurant card, 501–504
SDKs, 512
stock quote rendering, 510
Visualizer, 512
working example, 512, 514–516

Alexa Skills Kit
connecting to Bot

Framework, 624
Alexa constructs, 627
callback support, 627
channel-agnostic vs.

channel-specific
dialogs, 625–626

implementations, 624
NLU, 624–625
sample integration, 628–630,

632–636, 638
creating new skill, 595
interfaces, 597
invocation name, 597
NLU and ASR, 598

AccountType, 605
Amazon, 598–599
Build Model button, 605–606
Intents, 600
LUIS, 598
QuoteIntent, 602–604
QuoteItem, 601–602

https://doi.org/10.1007/978-1-4842-3540-9

642

for node, 607, 616
AccountInfo state, 620
ARN, 612–613
code editor, 611–612
dialog graph, 617
DynamoDB, 611, 621
good-bye message, 616
HelloWorldIntent, 608
Lambda code, 610
sample interaction, 615
SDK documentation, 621
SDK’s GitHub site, 607–608
serverless computing, 607
this.event.request object, 614
verification purposes, 609

options, 621–622
real data to rendering imagery,

622–623
Skill builder checklist, 596

Alexa voice assistant, 15
Aligned intent, 116
AlphaZero, 3
Amazon Resource Name (ARN), 612
Amazon’s Lex, 45
Animation card, 218
Artificial intelligence (AI), 4
Artificial neural network

(ANN), 38–40
Asimov’s Three Laws of Robotics, 3
Authoring API, 125
Automatic Speech Recognition

(ASR) engine, 602
Azure Bot Service, 2, 578

Azure Cognitive Services, 459, 482
Azure Portal

bot channel registration
create, 191–192
resource group, 192
Settings blade, 193–194

create .env file, 194
Facebook Messenger

(see Facebook Messenger)
function bot, 191
remote access, 195–196
sign-up page, 188–189
subscription, 189–190
web app

bot, 191
create, 204–205
deployment process, 209
Kudu ZipDeploy, 209
save, 209
Windows-based Azure

setup, 205
zip files, 208

B
Bing Speech API, 459
Bing Spell Check API, 471
Boarding pass card, 152–154
BotBuilder-CognitiveServices, 488
Bot Builder SDK, 1–2

actions
beginDialogAction, 294, 296
cancelAction, 298–299
conversation, 297–298

Alexa Skills Kit (cont.)

Index

643

customAction, 295
customization, 301
default behavior, 294
endConversationAction,

299–300
matches object, 301
onSelectAction

method, 294
reloadAction, 298
replaceDialog, 297
triggerAction, 294

addresses and proactive
messages, 251–252

buttons
action types, 263
CardAction, 260, 264
emulator, 260–261
Facebook Messenger,

260–262
open URL, 259
templates, 263
types, 259

cards (see Hero card)
channel data

Facebook Messenger,
278–280

Facebook renders, square,
281–282

hero cards, 276
JSON data, 278
Node SDK, 278
rendering, hero card, 280
Slack, 276–278

channel errors, 276

conversation state, 243–245
custom dialogs

abstract Dialog class, 286
bot.dialog(…) method, 286
custom input, 289
custom Prompts.number, 293
dialogResumed method, 288
JavaScript ES5, 291
methods, 287
sample interaction, 290
TypeScript, 288
WaterfallDialog, 286

group chat, 282–283, 285
libraries, 302–303
messages

builder.Message object, 248
contactRelationUpdate, 249
conversational experiences,

250–251
conversationUpdate, 249
deleteUserData, 249
endOfConversation, 250
IMessage interface, 246
invoke, 250
ping, 249
typing, 249
UniversalBot, 250

rich content
attachments, MIME

types, 253
Bot Framework error, 257
emulator, 254, 256, 257
Facebook Messenger, 254–258
file format, MP3, 257

Index

644

suggested actions
CardActions, 273
cards, 275
conversational design, 272
emulator, 273
Facebook Messenger, 273–274
quick replies, 273

Bot Framework Emulator
connecting to, 187
connection UI, 176
console output, 186
conversationUpdate, 177, 179
Debug Event, 184
incoming/outgoing

message, 180–183
ngrok, 176

Bot responses
adaptive cards, 155
authentication and

authorization, 149–151
boarding pass card, 152–154
building blocks

authenticated bot, 147
buttons, 147
carousel, 146–147
conversation states, 144
images and videos, 146
markdown, 144–145
quick replies, 148
SSML, 145
TD Ameritrade bot, 148
WC3 Recommendation, 145
YouTube Search bot, 146

input form card, 156
receipt card, 151–152

Broadcast bot, 134–135

C
Calendar subject entity

create new, 84
empty list of, 64
JSON, 66, 88–91
mortgage application, 85–86
prebuilt entities, 65
test cases, 87–88
training, 86–87
value resolution, 66

Channel errors, 276
Channel integrations, 26
Chat bot, 547–548

action parameters, 24
analytics platforms

Azure Bot Service analytics
dashboard, 578

demographics, 573–574
Facebook analytics, 579
generic data, 572–573
Power BI dashboard, 580
sentiment, 574–575
user retention, 575–576
user session flows, 576–577

bug in, 548
from customer service, 548

always-on chat bot, 549
CSR-facing bot, 550
sometimes-on chat bot, 549

Bot Builder SDK (cont.)

Index

645

definition, 4
Dialogflow, 23, 25
echo bot, 5
fraud alert bot, 9–10
Google Calendar, 10–11
messaging app, 4
messaging platform, 18, 20
NLU engines, 20–21
REST API, 9
on Slack, 16–17
supporting multiple languages

appointment flow in
Spanish, 481

approach, 474
automatic translation, 475
bot responding, 480
cognitive-services Node.js

package, 476
LUIS support, 474
middleware, 475, 476
recognizers, dialog

logic, 475
Text Analytics and Translator

APIs, 476
translate, 477–478
TranslatorMiddleware, 476
user’s language, 477–478

thermostat-controlling bot, 21–24
YouTube bot, 6–7, 9

Chat connector, 172–173
Cognitive-services, 464
Composite entities

AddCalendarEntry, 99
API section, 100, 102

CalendarEntry entity, 100
create new, 97, 99
datetimeV2 entities, 99
Location entity, 99

Computer programs, 1
Computer Vision, 489
Concierge bots, 132
Consumer bots

broadcast, 134–135
channels, 130
e-commerce, 136–138
Facebook Messenger, 130–131
FAQ, 131–132
task-oriented, 132–134

Conversation design
calendar bot, 142
common patterns and

flavors, 129
conditional state transition, 143
consumer (see Consumer bots)
directed graph, 142
enterprise (see Enterprise bots)
functions, 156–157
guidelines

active learning process, 165
avoid getting stuck, 163
clear path to humans, 163–164
consistent tone, 161
focus, 157
gender bots, 160
learn from users, 165
natural language, 162
next best actions, 160–161
proactive messaging, 163

Index

646

rich bot content, 162
uncanny valley, 158–159

LUIS application, 143
messaging communications, 129
technology users, 129
undirected graph, 141–142

Cortana Assistant (Microsoft), 14–15
Customer service systems, 547, 550

bot developers, 551
case, 550
integration

custom-built interface, 552
on platform, 552–553
product, 554–557

Custom spell-check LUIS
recognizer, 471

Custom web chat interface
buildBotEntry, 426
chat.css style sheet, 416–417
chat entry elements, 414
chat history control, 423
Direct Line

channel icon, 411
configuration interface, 412
functions, 417–418, 420
messages, 423
plain empty chat

interface, 426
getToken() and refreshToken()

client-side functions,
420–421

jQuery and bootstrap, 414
messaging paradigm, 414

MICROSOFT_APP_ID and
MICROSOFT_APP_
PASSWORD values, 412

renderHeroCard function, 426
sendMessagesFromInputBox,

422–423
text entry box, 414

D
Dashbot

analytics, 586
API keys, 583
code, Bot Framework

middleware, 583–585
dashboard of data

gathered, 589
dashbotApiMap, 583
entry, creation, 582
sign up, account, 581

DatetimeV2 entity
AddCalendarEntry, 81, 83
ambiguity, 75–76
date, 70
daterange, 71
datetimerange, 72
duration, 73
JSON, 80–81
prebuilt entity, 79
set type, 74–75
subtype, 70
time, 71
timerange, 72
TIMEX, 69

Conversation design (cont.)

Index

647

DialogData, 244–245
Dialogflow, 23, 25
Digitally driven consumer

journey, 137
Dimension entity, 68
Direct Line API, 408–410
Direct Message API, 16
Dual-tone multi-frequency

(DTMF) signals, 438

E
E-commerce bot, 136–138
Enterprise bots

call center and IVR, 138
knowledge management, 141
process automation, 139–140
self-servicing, 139

Enterprise space, 45–46

F
Facebook Messenger, 557

app ID and app secret, 201
bot, 25–27, 569
configuration, 198–199
conversation, 567
create new page, 199–201
customer messages, 568
echo bot, 203–204
Facebook Handoff Protocol, 560
functional perspective, 560
handover method, 562–563
HumanHandover, 558

inbox, 564, 566
LUIS app, 558
Mark as done button, 569
Node.js package, 561–562
page ID, 200–201
pass_thread_control method, 561
subscribe, 202
Subscription Fields section, 202
Token Generation section, 201
web hook, 213

Facebook’s Wit.ai, 45
FAQ bot, 131–132
Flight-booking bot, 24
Fuzzy matching algorithm, 482

G
Gmail API, 336, 352–353
Google Calendar API

calendar call, 337
client secret, 314–315
createCalendarCard method, 341
create Client ID, 313–314
create PrimaryCalendar, 336
credentials, 311
DateTimeV2 entities, 348
enabling project, 311
get case, 340
with Gmail API, 352–353
JavaScript Promise, 337
module, 338
OAuth consent configuration,

312–313
PreCheck dialog, 346

Index

648

PrimaryCalendar dialog, 339, 342
reset case, 340
set action, 344–345
ShowCalendarSummary

dialog, 347
waterfall step, 343–344

Google Cloud Platform API
create project, 309
dashboard, 307
select project, 308–309

Google’s Chatbase, 581,
586–588

Google’s Dialogflow (Api.ai), 44
Google’s OAuth, (see OAuth 2.0)

H
Hangup verb, 455
Hero card

attachmentLayout, 269–270
carousel

emulator, 269, 271
Facebook Messenger, 269, 272

emulator, 266, 268
Facebook Messenger,

266, 269
Google’s Material Design

card, 265–266
openUrl buttons, 272
Pokémon cards, 265
templates, 266
text fields, 269
UX design, 265

Hierarchical entities, 102,
104–105, 107

Human-level intelligence, 4

I
IBM Watson Conversation, 45
Input form card, 156
Interactive Voice Response

(IVR), 138
Intrinio, 519
IRC bots, 11
I, Robot (book), 12

J
JIRA’s Slackbot, 132–133

K
Knowledge management

bots, 141

L
Language Understanding

Intelligence Service (LUIS),
2, 29, 44–45, 237–239,
470, 598

active learning, 115–116
add collaborators, 121
age entity, 67–68
Authoring API, 125
Build section, 49
calendar entry, 64, 66

Google Calendar API (cont.)

Index

649

composite entities
AddCalendarEntry, 99
API section, 100, 102
CalendarEntry entity, 100
create new, 97, 99
datetimeV2 entities, 99
Location entity, 99

create new, 48
currency entity, 68
dashboard, 116–117
DatetimeV2 (see DatetimeV2

entity)
dimension entity, 68
e-mails, phone numbers, and

URLs, 77
export application, 124
hierarchical entities, 102,

104–105, 107
import application, 124
intent

AddCalendarEntry intent,
51–52

CheckAvailability, 55
create new, 50–51
DeleteCalendarEntry, 56
EditCalendarEntry, 55
None intent, 54–55
ShowCalendarSummary, 56
testing, 53
top-scoring, 56
training, 57–58

list entities, 107–108
Location entity, 92–94
numbers and percentages, 77–78

ordinal entity, 78
phrase lists, 112–113
prebuilt domains, 109–110
RegEx features, 113–114
spell checking, 121–122, 124
temperature entity, 68
troubleshooting, 126–127
versions, 119–120

Lex, 591
LINE messaging apps, 13
List entities, 107–108
Location entity, 92–94
Louis Vuitton bot, 136

M
Machine learning (ML)

algorithms, 13, 459
M and Google Assistant, 15
Messaging apps

Asia-based, 13
mobile, 13–14

Microsoft Azure Portal
REST API, 214
web app, save, 210

Microsoft’s Bing Speech API, 448
Microsoft’s Bot Builder SDK

app.js file, 170–171
authentication, 212
chat connector, 172–173
choice prompt, 224
create bot channels

registration, 211
create new directory, 168

Index

650

dialogs
AddCalendarEntry,

228, 230–231
contextual help, 234
help, 232–233
stack model, 226–227

dotenv, 171
echo-bot code, 169–170
emulator (see Bot Framework

Emulator)
.env.defaults file, 171
high-level architecture, 168–169
HTTP request, 173
LUIS model, 237–239
messages

attachment types, 215
cards, 218
hero card, 216

ngrok, 212
Node.js, 167
port 3978, 172
recognizer model, 236
restify library, 171
sessions

messages platform, 218
object, 220
privateConversation

Data, 219
universal bot, 173
waterfall, 221–225

Microsoft’s Cognitive Services, 13
Mobile messaging apps, 13

N
Natural language processing (NLP)

communication skills, 30
discourse analysis, 42
JavaScript version of Eliza, 32–33
semantics, 41–42
syntax, 41

Natural language understanding
(NLU)

bare-bones basic functionality, 42
brute-force approach, 29–30
cloud-based systems, 44–45
command line, 31
conversational intelligence, 31
enterprise space, 45–46
features, 42
human intelligence, 31
machine learning

ANN, 38–40
criticism, 38
cross validation, 34
deep learning, 38–40
domain and intent

classifications, 33
Google’s Translate, 38–39
JavaScript version of Eliza,

32–33
NLP concerns, 38
NLP field, 32
regression, 35
reinforcement learning, 36–37
rule-based approach, 33

Microsoft’s Bot Builder SDK (cont.)

Index

651

speech recognition and
translation, 40

supervised learning, 34–35
training data set, 34
unsupervised learning,

35–36
platform, 598
Python/R ML tools, 29
regular expression, 30
SetTemperature intent, 30

O
OAuth 2.0

AES_PASSPHRASE, 316
Base64 string, 316
beginDialog, 321–322
Calendar API, 320–321
console output, 321
.env file, 316
login page, 315
processUserCalendars

dialog, 322
query object, 318–319
scopes array, 317
seamless mechanism

AuthConfirmation, 332
cases, 334, 336
dialog flow, 324
EnsureCredentials dialog,

325–328, 330–331
ensureLoggedIn, 333–334
Error dialog, 327–329

Gmail API, 336
login and logout dialog,

324–325
StoreTokens, 331

SigninCard, 318
tokens JSON, 319

OAuth flows, 149–151
Ordinal entity, 78

P
Phrase lists, 112–113
Prebuilt domains, 109–110
Process automation bots, 139–140
Programmable voice, 429
Programming a Computer for

Playing Chess, 12
Publish app

Add Key button, 59
JSON, 61–62
production slot, 58
query parameters, 60
staging slot, 58–59
subscription key, 61

Puppeteer, 535

Q
QnA Maker

fuzzy search algorithm, 482
knowledge base, creation,

483–485
LUIS, 488

Index

652

question phrasings and
pairs, 488

recognizer and dialog, 488
response, 487
search service, 483
service, creation, 483
test interface, 488

R
Receipt card, 151–152, 218
Regular expressions (RegEx), 114

S
Self-service bots, 139
Sentiment analysis, 471–473
Siri app, 14
Slack app

APIs
ephemeral message, 377
GIF, 377–378
/giphy Slash command, 377
incoming message, 371–373
methods, 370
Node.js code, 370–371
postEphemeral

message, 378
postMessage, 374, 377
session.send method, 373
sourceEvent, 373
updateMessage

method, 374, 376

attachments, 356–358
Azure bot service, 368–369
bot users, 365–366
clothing products, 405
configuration screen, 363
Create App button, 364
default styling, image and

buttons, 359
ephemeral messages, 360
events, 366–367
Facebook Messenger, 355
interactive components, 368
interactive messages

beginDialog, 383
custom recognizer, 385
default behavior, 384
global recognizer, 389
message update, 382–383
naming convention, 384
Payload object, 386
postMessage and

updateMessage, 380
POST request to

response_url, 380–381
practicalbot.expire, 384–385
request approval, 379
response_url, 389
simpleflow, 380
text message, results,

386–388
user experience, 382
user interface elements, 379
UX chaos, 386
Yes or No input, 385–386

QnA Maker (cont.)

Index

653

JSON object, 356
menu, 361
Message Builder and preview,

357–358
message rendering, 369
pizza, multistep interaction

callback ID, 393, 405
callback values, 405
endDialog, 393
isCallbackResponse, 394
JSON object, 396–399
messages, 395
Oil & Garlic sauce, 392
pizzatype, 393–394
postMessage, 399
privateConversationData, 400
recognizer, 395, 403
sauce type, 391
session.send call, 400–402
size, 392
this.callbackId object, 404
tomato sauce, 391
user order summary, 392
WaterfallDialog and custom

recognize, 403–404
set up redirect URL, 364–365
Slack Bot channel connector,

359
text-based workflows, 355
tool, 16–17
workspace, 362

Snoop Dogg bot, 135
Speech Synthesis Markup

Language (SSML), 145

audio file, 448–449
Bing Speech API, 448
bing-speechclient-api

Node.js, 448
buildAndSendHangup, 455
buildAndSendTwiml

Response, 450
Date().getTime(), 449
generateAudio function,

450, 452
Play verb, 448
Microsoft, 447
speech-to-text and text-to-

speech functionality, 448
Spell-checking, 121–123

Bing Spell Check API, 466
bot in action, 468
dialog, 465
function, 466
LUIS, 471
Microsoft’s cognitive services, 464
middleware approach, 469–470
misspelled words, 466
mode, 463
proof and spell, 463

Staging slot, 58–59, 118

T
Task-oriented bot, 132–134
TD Ameritrade bot, 133–134, 148
Temperature entity, 68
Text Analytics API, 476
Thermostat-controlling bot, 21–24

Index

654

Three-legged OAuth 2.0,
(see OAuth 2.0)

TIMEX format, 69
Twilio

bot code, 435
buildAndSendTwiml

Response, 442
configuration, 435
conversation ID, 444
conversation loop, 438, 440
create project, 433
creating and sending, TwiML

response, 442
custom channel data

communication, 444
Direct Line, 440–443
Gather verb, 431, 437, 438
node API, install, 436
phone number, 434
POST, 438
project dashboard, 433
setInterval, 444

signing up, account, 432
verbs, 430
voice interactions, 444
VoiceResponse, 437

U
Universal bot, 173
Universal Turing Machine, 12

V
Value resolution, 66
Voice assistants, 3
Voice bots, 428

W, X
WeChat messaging apps, 13

Y, Z
YouTube bot, 6–8

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Preface
	Chapter 1: Introduction to Chat Bots
	The Expectations Game
	What Is a Chat Bot?
	Why Now?
	Advancements in Artificial Intelligence
	Messaging Apps as a Conversational Intelligence Platform
	Voice-Activated Intelligent Assistants

	Why Should We Create Bots?
	Bot Anatomy
	Bot Runtime
	Natural Language Understanding Engine
	Conversation Engine
	Aside: Intents, Entities, Actions, Slots, Oh My!

	Channel Integration

	Conclusion

	Chapter 2: Chat Bot Natural Language Understanding
	Natural Language Machine Learning Background
	Common NLP Tasks
	Syntax
	Semantics
	Discourse Analysis

	Common Bot NLU Tasks
	Cloud-Based NLU Systems
	Enterprise Space
	Conclusion

	Chapter 3: Language Understanding Intelligent Service (LUIS)
	Classifying Intents
	Publishing Your Application
	Extracting Entities
	Age, Dimension, Money, and Temperature
	DatetimeV2
	E-mails, Phone Numbers, and URLs
	Number, Percentage, and Ordinal

	Entity Training
	Custom Entities
	Simple Entities
	Composite Entities
	Hierarchical Entities
	List Entities
	Regular Expressions Entities

	Prebuilt Domains
	A Historical Point

	Phrase Lists
	Active Learning
	Dashboard Overview
	Managing and Versioning Your Application
	Integrating with Spell Checking
	Import/Export Application
	Using the LUIS Authoring API
	Troubleshooting Your Models
	Conclusion

	Chapter 4: Conversation Design
	Common Use Cases
	Common Consumer Cases
	FAQ Bot
	Task-Oriented Bot
	Broadcast Bot
	E-commerce Bot

	Common Enterprise Cases
	Self-Service Bots
	Process Automation Bots
	Knowledge Management Bots

	Representing Conversations
	Bot Responses
	Building Blocks
	Authentication and Authorization in Bots
	Specialized Cards

	Other Functions
	Conversational Experience Guidelines
	Focus
	Don’t Pretend the Bot Is a Human
	Do Not Gender Bots
	Always Present the Next Best Action
	Have a Consistent Tone
	Utilize Rich Content
	Be Forgiving
	Avoid Getting Stuck
	Don’t Abuse Proactive Messaging
	Provide a Clear Path to Humans
	Learn from Your Users

	Conclusion

	Chapter 5: Introducing the Microsoft Bot Framework
	Microsoft Bot Builder SDK Basics
	Bot Framework End-to-End Setup
	Step 1: Connecting to Azure
	Step 2: Creating the Bot Registration
	Step 3: Securing Our Bot
	Step 4: Setting Up Remote Access
	Step 5: Connecting to Facebook Messenger
	Step 6: Deploying to Azure

	What Did We Just Do?
	Microsoft Azure
	Bot Channels Registration Entry
	Authentication
	Connectivity and Ngrok
	Deploying to Facebook Messenger
	Deploying to Azure

	Key Bot Builder SDK Concepts
	Sessions and Messages
	Waterfalls and Prompts
	Dialogs
	Invoking Dialogs
	Recognizers

	Building a Simple Calendar Bot
	Conclusion

	Chapter 6: Diving into the Bot Builder SDK
	Conversation State
	Messages
	Addresses and Proactive Messages
	Rich Content
	Buttons
	Cards
	Suggested Actions
	Channel Errors
	Channel Data
	Group Chat
	Custom Dialogs
	Actions
	Extra Notes on Actions

	Libraries
	Conclusion

	Chapter 7: Building an Integrated Bot Experience
	A Word on OAuth 2.0
	Setting Up Google APIs
	Integrating Authentication with Bot Builder
	Seamless Login Flow
	Integrating with the Google Calendar API
	Implementing the Bot Functionality
	Conclusion

	Chapter 8: Extending Channel Functionality
	Deeper Slack Integration
	Connecting to Slack
	Experimenting with the Slack APIs
	Simple Interactive Message
	Multistep Experience
	Conclusion

	Chapter 9: Creating a New Channel Connector
	The Direct Line API
	Custom Web Chat Interface
	Voice Bots
	Twilio

	Integrating Our Bot with Twilio
	Integrating with SSML
	Final Touches
	Conclusion

	Chapter 10: Making the Chat Bot Smarter
	Spell-Checking
	Sentiment
	Supporting Multiple Languages
	QnA Maker
	Computer Vision
	Conclusion

	Chapter 11: Adaptive Cards and Custom Graphics
	Adaptive Cards
	A Working Example

	Rendering Custom Graphics
	Conclusion

	Chapter 12: Human Handoff
	We Still Need Humans
	Chat Bots from a Customer Service Perspective
	Always-On Chat Bot
	Sometimes-On Chat Bot
	CSR-Facing Chat Bot

	Typical Customer Service System Concepts
	Integration Approaches
	Custom-Built Interface
	On Platform
	Product

	Facebook Messenger Handover Sample
	Conclusion

	Chapter 13: Chat Bot Analytics
	Common Data Questions
	Generic Data
	Demographics
	Sentiment
	User Retention
	User Session Flows

	Analytics Platforms
	Integrating with Dashbot and Chatbase
	Conclusion

	Chapter 14: Applying Our Learnings: Alexa Skills Kit
	Introduction
	Creating a New Skill
	Alexa NLU and Automatic Speech Recognition
	Diving Into Alexa Skills Kit for Node
	Other Options
	Connecting to Bot Framework
	Implementation Decisions Around Bot Framework and Alexa Skills Kit Integration
	Natural Language Understanding
	Channel-Agnostic vs. Channel-Specific Dialogs
	Alexa Constructs
	Callback Support

	Sample Integration

	Conclusion

	Index

