Practical |
Contiki-NG

Programming for Wireless Sensor
Networks

Agus Kurniawan

ApPress’

http://www.allitebooks.org

Practical Contiki-NG

Programming for Wireless
Sensor Networks

Agus Kurniawan

Apress’

vww . allitebooks.con

http://www.allitebooks.org

Practical Contiki-NG: Programming for Wireless Sensor Networks

Agus Kurniawan
Depok, Jawa Barat, Indonesia

ISBN-13 (pbk): 978-1-4842-3407-5 ISBN-13 (electronic): 978-1-4842-3408-2
https://doi.org/10.1007/978-1-4842-3408-2

Library of Congress Control Number: 2018947346

Copyright © 2018 by Agus Kurniawan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3407-5.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-3408-2
http://www.allitebooks.org

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s ix
About the Technical ReVIEWErccuvcesssessssmssssnsssassssnsssssssssssssnsssassssass xi
Acknowledgments.......cccermssssssssnnnnsmmsssssssssssnnsssssssssssssnssnnsssssssssnnnnnns Xiii
Introduction........cccccnnsmmmmsmmmmnn s ————————— Xv
Chapter 1: Introduction to Wireless Sensor Networkscccesseeessssnns 1
Introduction to Wireless Sensor Networks........c.coocovvevnnenenesenssesssesesssesessesenns 2
Introduction to ContiKi 0Scccovvirinrer s 4
Reviewing WSN Hardware for ContiKi.........ccccvrererrerierernnensensenesessessesessssessessenees 6
IMICAZcovtreeetse et 7
1T 7
TEIOSB....ee e ———————————— 8

IEiS ittt ———————————————— 9
Custom TiNYOS MOLES.......cuvrrrrererirrirere s s se s sse s 10

A N o 11 11
Contiki-NG ARM-based BOards............cucurerruserensessssnessssessssessssssessssessssenessanes 12
Introducing CONtiKi-NG.........cccovvrrrerieriennrerserere e se e ssessssessesaees 13
Set Up Development Environment for ContiKi.........cveevererveriereressensessesesessensenees 13
INStANt CONTIKIccovrereirieecrer s 13
Manual InStallationccovrrnrnn e —————— 18

Set Up Contiki-NG Development Environment..........cccveevievnienieriernsessensenens 19
Connect WSN Hardware to COMPULENcccvcvnenrcirnscnne s 22
Contiki and Raspherty Pi........ccccciinnninens s ssssessesnes 25
iii

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Hello World Application for CONtiKi..........ccuerreriererserseriessnsensessessssessessesessssessessens 26
EXPlANAtion.......ccceviiiirire i e 28
Contiki SIMUIALON ..ot s 35
SEHING UP ..o s 36
Running Contiki Application.........c.ccvvvvveriernressenseresessesesessesessessessesessessesees 37
Debugging Contiki Application.........cccovcnvnininnsnnr e 44
Hardware DEDUGUETcccccvivrrrrern st ses e 44
(D[T2 (0] 45
Debugging Using Contiki Simulator...........cccccovenvninnininnenesnsesse s 45
The Contiki printf() FUNCHION........c.cccorecrrcerr e 45
SUMIMANY.....eeeerireeeeee e se e r e se e e re e e e e 46
Chapter 2: Basic Contiki-NG Programmingcccccessssssssssssssssssnssnnas 47
Contiki-NG Programming MOdelccocueerrernnnenninnernsessnesessse s ssssesenns 47
ContiKi-NG BasiC SYNTAXccccvvrvererinrrierese s ses s s ssssessessessesessesaesaes 49
Creating @ ProjECt.......ccccvvvrvriererr e se s s sas e 49
Contiki-NG Basic Programming LANQUAQJEc.cceerrvrerrerereenensersessessssessessenes 50
Review Protothreads..........ccovrninnnnncsirrse s 52
Extending the ContiKi-NG LiDrary..........ccucvrrennnnnninnnsensesssesessesesesesessesenns 55
Contiki-NG Demo: Threading APP...c.ccocvcrrrerinnnnensesese s s ssessssessesnes 57
Contiki-NG Coding CONVENTIONSccocveeereererenesesese s senns 61
Demo: Build Contiki-NG Application...........cccccvivnnnininnininens e sessesennens 61
U] 4= S 66
Chapter 3: CONCUITENCYccursusssassssassssnsssanssssssssnssssnsssassssassssnsssansssans 67
Introduction t0 CONCUITENCY.......ccvrerrerrererreresesessesessessssessessessessssessessessssessessens 67
Concurrency Approach in Contiki-NG.........c..cccoovrerrrrrinsennneneneseres e sesessesenns 68
Introducing Contiki-NG PrOCESSEScccceeerererermererenererenesese s e sesesenns 69
WOrking With TIMEISccvveernierereserssesese s sessssesssanns 72
iv

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

ClOCK LIDFAIY..ccucivevresererrersesessessessessssesessessssessessessessssessessesssssssessessesasssnsessees 72
L0 T=] g 0] U 73
SHMEE LIDIary...co.ocecveereresersere v s s s s sse e s e ssesaesassessesne s 74
L] (e g 0 TS 75
T (T I o 76
RUMET LIDrary....ccoooecrcere s senese s ssese e s ssssesesnesassessesaesaes 77
Put [t All TOQETNEN ...t 78

LI 1= T 1 o 83
Task SCheduling.........ccuciricrcrr e ——— 88
SUMIMANY....eieeercserre e r e se s e re e nre e 94
Chapter 4: Contiki-NG and Computer Communication..........ccccusssennnes 95
Communication Models for ContiKi-NG...........c.cueeererrinsnnrenenesernsesese e 96
Serial CommUNICALION........ccccciririrr s 97
Communication Between Contiki Mote and COmMPULErc.ceeevrvverierrereesensenennes 97
Access Contiki Motes via Serial Communicationc.ccoveevenenernnssescnenens 98
CONLIKi SNEII ... 104
CONtIKI=NG SHEIIceeeeeceirrnr s 112
Customizing ContiKi SNEIl..........ccoevrrrrerierrrrrerere e sesseenes 115
Communication among ContiKi MOtESc.ccervrerveriererenrersererssesseressesessesensens 126
Sending Broadcast MESSAQESccuvrerrerrererrerersessssersersessessssessessessessssesseses 127
Receiving Broadcast MESSAQES.........cucrverererserreenersersesssessessessesssessessensens 128
Demo: Middleware Application..........ccccuccevercrinvenensrrensee s 129
Middleware Application for ContiKi-NG............ccocveerriereriniennrenre e 132
What IS MiddIEWArE?cccoeeererreeercreresseese e sesssssssseens 133
Middleware Architecture for Contiki-NG............ccocerrrererrrssnsseseseressseenes 133
IMpIemMeNtation ... ————— 134
TESHING e —————————— 134
SUMMAIY..c..citiiiirer e s e s e e s ae s r e e e nne s 135

TABLE OF CONTENTS

Chapter 5: Sensing and Actuatingccusccmrmsssssnnnmssssnnsnesssssnsssssssnns 137
What Are Sensing and Actuating?.........ccoccvrvnriennecnncc s 137
Review Sensor and Actuator DEVICESccovecrerrererenermnserenese e 139

Temperature and HUMIditY ... 139
SOIl MOISTUE ... 141
L€ I 1] T 142
LED «.oveteecceseee et 143
ACHIVE BUZZET ... 144
0] (0 TSR 144
Sensing in CONtiKi-NGccovrererenernsererese s e 145
D o S 146
Creating @ ProjEC........ccoorecrererereer e 147
Writing @ Program ... sse s sssssssessesnens 148
TSN o ————————— 151
Actuating in CONtiKi-NG........c.covrermrirrrierre e 152
Creating @ ProjECE........coccoveeerrerereer s 153
Writing @ Prograimcccoceveerenenerenessscsese s sessse s sss e sessesenns 154
L] T S 155
Customizing Sensor and Actuator DEVICESccvveererenereserrssesesesesesesessesenns 156
EXpansion CONNECLON..........cccvvrereninsine s ses e snens 156
Sensor and Actuator Drivers for Contiki-NG...........ccocveerrrenernnernsesesresenennes 159
SUMMANY....ceivierreerirese e r e p e e npn e 165

Chapter 6: NetWoOrking.......ccusseersessssnssssssssssssssssssnssssssssnssssssssnsnsssssnns 167

Networking in ContiKi-NGcccoeevrrerrinnrnirre e 168
NEIWOIK LAYETcvereircriecie s sns s sre s sresnssessesnens 170
MACG LAYETcvrueirieierieerinse s ses e se st ss s sesss e sssse st ssesessssesessessnsenens 172
31 0O I T S 173
3T [0l I 173

TABLE OF CONTENTS

Network Simulation USing COOUJA.........cccvrrrermrmserernsessesessesessessessessssessessenes 174
Creating Simulation Project.........ccoevrvrerievnrnseniesssensensesessssessessessssessessesees 174
Adding UDP SErver MOTEcevererrererrerensessersessssessessessessssessessessssssssssessens 177
Adding UDP Client MOTES....c.ccorvverreriererrerersereressssessessessessssessessesssssssessessens 180
Running a Simulationccvevrerienennnieniessserere e sessese s s sessessessssessessens 183

IPVB NETWOIKING.....ccceieecererste st a e s s 185

Routing on Contiki=NG...........ccoeorrrininnnnns s 189
Introducing Basic ROULINGccccoevrvvrinincsn e 189
Single-Hop and Multi-Hop Networking.........ccccvvvnvninnnsnsnicsesesenennens 190
Routing on ContiKi=NGccccureriirnnniniennsnsse e sessssessessens 191

IPVE MURCASL ... s 194

CONtiKi-NG NUIINEL.......eeererererreerseresese s s s srenes 199

6 LOWPAN NELWOTKccvevriririrererereresesese st ss e e se e sesens 201
A Brief INtroduCtion..........ccvveerneserese s 201
Implementing a 6LOWPAN Network on Contiki-NG...........ccccorvvrnrenenenernnne 203
6 LoWPAN Implementation using COOJA.........ccvverrnsrnsennnesessese e 209

Build Your Own RESTful Server for ContiKi-NGccooounmnnmnnnnscsnsnnens 214
Preparation......c.ccevevvinennsensen s e 215
Implementing the DEMOcccvvvrienncs e 215
Testing the DeMO.......ccveeervierre e 223

SUMMAIY.c.veiteitrere s serse e sre s s e s e s e e e s e s s sae s e e e s aesaesaese e e saesaense e naenaees 224

Chapter 7: STOrage.....ccuccurrssmmrmsssnsssssnsmsssnsssssnsesssnsesssnssssssnssssnnssssnnssss 225

Storage Models in Contiki-NGi...........cccorerrerrenrnrrrese e 225

Working with Local STOrage.........ccccvvenerenmrrnsesessesesesessssesesesesssessssesesssssssenens 227

Coffee: File System in Contiki-NGccocurerrnnrinsnnesnnesesssesesese e 231

Demo: Contiki-NG and MySQL..........cccoovrrvrinnrrinere e ses s sessens 238
Preparation........ccoevevvcenennsersere s e ene 239
Design @ Database........ccocevvververerenersirese s s ss e nnens 239

TABLE OF CONTENTS

Build @ BLOWPAN ROULETcccvveeeeesssssssssnssssssssssssssssesesesesesessssssssssaens 241
Develop a Contiki-NG Sensor Application..........cccvvvvverieresensensenenessensensens 241
Develop Middleware Applicationcccveririninnninsensee e 242
Testing the ProjecCt ... 246
SUMMAIY.c.veiteerereresessere e sese e s ssesessessesaesssesaesaese s e saesaesaessssesaesaesessensessens 248
Chapter 8: Contiki-NG and Cloud Server........c.ccousmmmmssnsssssnsssssansnas 249
INtroduCe ClOUd SEIVEN ..o s 250
Why Use Cloud CompULiNg?.......coovcevrenerenmrrnsesesesessesessssesessesessssessssesessssssssnens 251
Cloud-Computing SEIVICEScuvueerermrrnsesrneserese s s seans 252
Types of Cloud-Computing Deploymentscccvcvvevnrenreniernnessensessessesessensenees 252
Review Cloud Server PIAtforms ... 253
MICIOSOTt AZUIE ... e 253
AMAZON AWS.........oiiriee s 254

6T T | LN 0 [R 254
IBM ClIOUAcoceueenncsssessssssssssssssssssss e e e e ssssssssssssssssssasanas 254
Comparing Features of All Global Cloudsc.ccoevvrverierennsensessesssessensenees 255
Connecting Contiki-NG Motes t0 Cloud SErvers........ccuvverrernrerrerseseressensersens 255
Demo 1: Contiki-NG and Microsoft AZUre............cccceerernieneseserenssesesesesessseenes 256
Preparation........ccovcninnisnsne s e 257
Developing Applicationc.ccucreinsniniennsene e 261
Testing Contiki-NG and Azure Applicationcccvrenrnvvnicsennesennsenene 268
Demo 2: Contiki-NG and Amazon AWS.............correrrnrerereser e 271
Preparation........ccovcnininnnnsn s e 272
Developing Application ... e 282
Testing Contiki-NG and AWS 10T ... sessesnens 285

E 10T 111 T o S 287
INA@X . iiiiisssnnnnnnnnnnnnsssssssnnnnnnnnnssssssssnnnnnnnnnssssssssnnnnnnnnenssssssnsnnnnnnnnesssssnnn 289

viii

About the Author

Agus Kurniawan is a lecturer, researcher, IT consultant, and author. He
has 17 years of experience in various software and hardware development
projects, delivering materials in training and workshops, and technical
writing. He has been awarded the Microsoft Most Valuable Professional
(MVP) award 14 years in a row.

His topic interests are software engineering, embedded systems,
networking, and security systems. He has been working as a lecturer and
researcher at the Faculty of Computer Science, Universitas Indonesia.
Currently, he is pursuing a PhD in computer science at the Freie
Universitét in Berlin, Germany. He can be reached on his blog at
http://blog.aguskurniawan.net and Twitter at @agusk2010.

ix

http://blog.aguskurniawan.net/

About the Technical Reviewer

Chaim Krause is first and foremost a #geek. Other hashtags used to
define him are (in no particular order) #autodidact, #maker, #gamer,
#raver, #teacher, #adhd, #edm, #wargamer, #privacy, #liberty, #civilrights,
#computers, #developer, #software, #dogs, #cats, #opensource,
#technicaleditor, #author, #polymath, #polyglot, #american, #unity3d,
#javascript, #smartwatch, #linux, #energydrinks, #midwesterner,
#webmaster, #robots, #sciencefiction, #sciencefact, #universityofchicago,
#politicalscience, and #bipolar. He can always be contacted at
chaim@chaim. com and goes by the Nom de Net Tinjaw.

Acknowledgments

I'would like to thank Apress for all their help in making this book possible.
Specifically, I would like to thank Natalie Pao and Jessica Vakili, my
coordinating editors, for helping me to stay focused and to overcome many
obstacles. Without them, this book would not have been possible.

Special thanks to James Markham, my development editor, and Chaim
Krause, technical reviewer, Nirmal Selvaraj, Production Editor, C. Dulcy
Nirmala, Senior Executive Project Manager for all his suggestions during
the editorial review process to help make this a great book.

I would also like to thank the Contiki and Contiki-NG communities
anywhere in the world for contributing and making learning and
developing Contiki-NG easy.

Last, but not least, a thank you to my wife, Ela, and my children, Thariq
and Zahra, for their great support while I completed this book.

xiii

Introduction

Wireless Sensor Networks (WSN) are one of the research and technology
topics for which researchers, developers, and makers develop applications
with specific purposes. Contiki-NG is one of the WSN platforms used to
build WSN programs supported by various hardware platforms. This book
is designed for developers and researchers who want to build Contiki-NG
programs for general and specific purposes.

For the Readers

This book assumes you have some programming experience. It is also
written for someone who has developed programs using C/C++ and wants
to develop a Wireless Sensor Network (WSN) application with the Contiki-
NG platform.

How This Book Is Organized

This book is designed with a step-by-step approach. You will learn how to
develop a WSN with the Contiki-NG platform. You will also explore some
Contiki-NG libraries and APIs to implement certain scenarios.

You will learn how to develop a Contiki-NG program. This book
explains how Contiki-NG performs sensing and actuating. You will also
see how to communicate with other Contiki-NG platforms and external
systems, such as cloud servers.

INTRODUCTION

Required Software, Materials, and Equipment

In general, you need a computer with Linux, Windows, or Mac OS
installed. Linux is recommended. You should install all toolchains and
Contiki-NG project codes on your computer.

We need Contiki-NG mote hardware to implement our demo. This
book uses Telosb/sky and TI LaunchPad CC2650 boards for testing.

CHAPTER 1

Introduction to
Wireless Sensor
Networks

Wireless Sensor Networks (WSN) are a research and technology topic
for which researchers, developers, and makers develop applications for
specific purposes. In this chapter, we will learn and explore what a WSN
is and try to develop one using the WSN platform Contiki and its update,
Contiki-NG.

The following is a list of topics we will cover in this chapter:

e Introduce Wireless Sensor Networks.

e Introduce Contiki OS.

o Explore WSN hardware and platform.

e Introduce Contiki-NG project.

e Setup Contiki-NG development environment.
e Build a simple Contiki application.

o Work with Contiki simulator.

e Debug Contiki application.

© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_1

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Introduction to Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a board system with the connectivity
capability to sense data and/or to perform actions. Sometimes the WSN
board is called a WSN mote. The main objective of implementing a WSN
mote is to capture physical objects in digital form and then transfer them
to a certain server. Research on WSN topics is an intense study area since
there are a lot of problems in need of solving, such as mote hardware
design, networking, infrastructure, and security.

Nowadays, hardware manufacturers grow up fast. You will find that
there are a lot of new boards on the market, such as Arduino, Raspberry Pi,
BeagleBone, Intel Edison, NodeMCU, Teensy, Tessel, and so on. This is the
era of the Internet of Things (IoT). It’s estimated that there are billions of
IoT devices connected to the Internet, based on Gatner’s report. Since IoT
board demand is high, the board price could be quite cheap. Furthermore,
the open source hardware movement has had an impact on the growing
board industry. People can design and make their own boards for special
purposes.

Back to our WSN mote topic—how to describe a WSN mote? In
general, a WSN mote consists of a microcontroller (MCU), sensor/
actuator, and wireless module. You can see it in Figure 1-1. The MCU is
the center of processing in a WSN mote. It has a responsibility to ensure
the system runs well. In other designs, the MCU can be replaced by an
MPU (microprocessor), depending on whether there is a battery issue or
not. The second part is the sensor/actuator. A sensor can capture physical
objects, such as temperature, humidity, and compass direction. An actuator
can perform a certain action, such as lighting an LED, generating sound,
or running a motor. Some WSN motes may provide sensor devices only,
but other WSN motes may use both a sensor and an actuator inside the
board. Again, it depends on your design. The last part is the wireless
module. It's used to transfer data from the mote to a network device; for
instance, gateway, server application, or cloud application. Selecting the

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

wireless module type will have an impact on what protocol will be used to
communicate with other motes and servers. Most WSN motes use IEEE
802.15.4 as their network protocol.

Sensor

MCU Actuator

Wireless Module

Figure 1-1. General model of Wireless Sensor Network (WSN) mote

Sometimes makers will build WSN devices in several forms based on
their roles. A WSN mote may only consist of an MCU and a radio module,
without sensor and actuator devices. Some WSN motes will provide an
MCU, sensor/actuator devices, and a radio module.

How can the WSN mote reach the server? This is a common issue in
WSN implementation. If a WSN mote has the same protocol as the servers
on the network module, it can communicate with the server directly.
This method may take more battery usage in the mote since most servers
use advanced protocol without battery issues. Alternatively, we can use
a gateway, which is used as a bridge between WSN motes and servers.
Some gateways have the capability to translate the WSN mote’s protocol
to the target server’s protocol so they can exchange data. The gateway
can be implemented to monitor the existing WSN motes. You can see
how WSN motes communicate with another system through a gateway
in Figure 1-2.

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Sensor
Mcu Actuator Public
Wireless Module | \ / Network
Gateway
\ Private
] Network
Sensor
Mcu Actuator —
Wireless dul l

Sensor
Mcu Actuator
| Wireless Module |

Figure 1-2. A connectivity model for several WSN motes

Introduction to Contiki 0S

Contiki is a WSN platform that provides software and hardware. Contiki
was created by Adam Dunkels in 2002. Now, the Contiki project involves
both companies and contributors. This project has released open
source software and hardware. The operating system (OS) in Contiki
uses Protothread, which combines multithreading and event-driven
programming. On the hardware side, the Contiki project provides
hardware schemes so that we can build our own Contiki boards. You can
reach the official website for Contiki at http://www.contiki-os.org.
The programming model of the Contiki platform implements
a preemptive multithreading architecture and an event-driven model.
The Contiki programming language uses C syntax for writing programs.
Contiki provides hardware abstractions that encapsulate hardware
complexity. This approach makes Contiki work with various hardware,
including MCUs and radio modules. General libraries for sensing,
actuating, and communication are also provided by Contiki. Users should
get more attention on their problems. You can see the general architecture
of Contiki in Figure 1-3.

http://www.contiki-os.org/

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

ROM

Loaded Program

L . Loaded Program
Communication Service

Language run-time

Program Loader Communication Service

1
1
1
1
Kernel : : Kernel
1
1
1

Figure 1-3. Contiki general architecture

Kernel, the program loader, the language run-time, and the
communication service are static modules within the ROM of Contiki OS.
All user programs will be loaded into Loaded Program. Only the kernel
and the communication service will be used by the Contiki OS RAM.

Contiki uses a GCC compiler to compile C source code files. We
develop Contiki applications written in *. c files. After they are compiled,
we obtain the binary file. Basically, it converts the application from C
program syntax to a native binary file for a specific hardware target. We
also can run a C program on the Contiki simulator to verify program
behaviors. You can see the flow of programming in Figure 1-4.

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Contiki
Simulator
“(@
. Contiki
* ¢ - Binary - M —
*.c C compiler flashing

Figure 1-4. Programming flow for Contiki

Reviewing WSN Hardware for Contiki

To run Contiki on top of hardware, that hardware needs to fulfill some
requirements, especially about the MCU and network module. In this
section, we will explore various WSN hardware types that we can use to
implement Contiki. A box that consists of a WSN board that has some
sensors or actuators is called a WSN mote. If you have a TinyOS mote, you
can use that mote to run a Contiki application.

In general, a list of supported Contiki OS can be found on the official
website at this link: http://www.contiki-os.org/hardware.html. For
Contiki-NG, you can see a list of Contiki-NG boards at https://github.
com/contiki-ng/contiki-ng/wiki#the-contiki-ng-platforms. We
will next review some famous WSN mote models that you can use for
experimental purposes.

http://www.contiki-os.org/hardware.html
https://github.com/contiki-ng/contiki-ng/wiki#the-contiki-ng-platforms
https://github.com/contiki-ng/contiki-ng/wiki#the-contiki-ng-platforms

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

MICAz

MICAz is a mote from Crossbow Technology, MEMSIC. This mote uses
an ATmegal28L microcontroller and the CC2420 radio chip. ATmegal28L
is an 8-bit microcontroller from Atmel. This MCU has capabilities such

as 128K of in-system, self-programmable flash program memory, 4K of
EEPROM, and 4K of internal SRAM. You can explore this MCU by reading
its datasheet at http://www.atmel.com/images/doc2467.pdf.

On the radio side, this mote uses a CC2420 chip that implements IEEE
802.15.4 protocol. This chip has energy-saving capabilities. You can work
in sleep mode on a network layer stack. You can read more information
about MICAz at http://www.memsic.com/wireless-sensor-networks/.
You can see a MICAz board form in Figure 1-5 (source: http://www.
memsic.com/wireless-sensor-networks/).

Figure 1-5. MICAz mote model

Mica2

Micaz2 is similar to the MICAz mote in that the mote uses an Atmel
ATmegal28L microcontroller; it uses the CC1000 radio chip for the
wireless module. The battery connector is also provided to work

http://www.atmel.com/images/doc2467.pdf
http://www.memsic.com/wireless-sensor-networks/
http://www.memsic.com/wireless-sensor-networks/permission to use photo?
http://www.memsic.com/wireless-sensor-networks/permission to use photo?

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

standalone. You can see the Mica2 mote in Figure 1-6 (source:
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/micaz2.jpg).
To develop a program for this mote, you should use a development board
to flash the program.

Figure 1-6. Mica2 mote model

TelosB

TelosB is the famous model that researchers and makers use for TinyOS
implementation. This mote also can be used for the Contiki platform.
TelosB motes use an MSP430 microcontroller from Texas Instruments (TT).
The MSP340 series in TelosB are built from MSP430x15x, MSP430x16x, and
MSP430x161x. Many manufacturers build WSN motes based on the TelosB
design. You can see a TelosB mote in Figure 1-7 (source: https://www.
advanticsys.com/shop/mtmecm5000msp-p-14.html).

http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/mica2.jpg
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.htmlpermission to use?
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.htmlpermission to use?

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Figure 1-7. MTM-CM5000-MSP board based on TelosB from
Advanticsys

Iris

Iris is a WSN mote from Crossbow. It’s built from an ATmega1281
microcontroller and the Atmel AT86RF230 radio chip. Atmel ATmegal281
has a flash memory that is about 128K and 8K of RAM so you can write
programs in more spaces. You can see Iris mote in this site, http://www.
memsic.com/wireless-sensor-networks/. In Figure 1-8, you can see my
Iris mote from Crossbow, which is connected to my notebook.

http://www.memsic.com/wireless-sensor-networks/
http://www.memsic.com/wireless-sensor-networks/

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Crossbgw.

Figure 1-8. Iris mote from Crossbow

Custom Tiny0S Motes

Independent makers or manufacturers can build their own TinyOS motes,
including sensors with specific purposes. The scheme and layout of the
TinyOS mote have already been shared so it’s not difficult to build your own.
BTnode is a mote based on TinyOS and uses an Atmel ATmega 128K
MCU and Chipcon CC1000 radio module. This mote was developed by
ETH Zurich. Currently, they have released BTnode revision 3. You can
see it in Figure 1-9. Further information about BTnode can be found at
http://www.btnode.ethz.ch/.

10

http://www.btnode.ethz.ch/

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Figure 1-9. BTnode revision 3 from ETH Zurich

For more information, you can get a list of compatible TinyOS
and Contiki motes at https://en.wikipedia.org/wiki/List_of_
wireless_sensor_nodes. You can review some WSN motes for your own
development.

Z1 Platform

The Z1 platform is a general-purpose development platform for WSN. This
board uses an MSP430F2617 low-power microcontroller. The Z1 platform
radio modules use a CC2420 transceiver and are IEEE 802.15.4 compliant,
which operates at 2.4GHz with an effective data rate of 250Kbps.

For further information, you can visit https://zolertia.io/. You can see
a form of Z1 platform in Figure 1-10.

11

https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
https://zolertia.io/

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

LA X RN E NN

C

K " bt

v

e w) [eeGOE® e [
sessvvce

Figure 1-10. Z1 platform hardware

Contiki-NG ARM-based Boards

Currently, Contiki-NG offers support for boards with ARM MCU. Based
the Contiki-NG document at https://github.com/contiki-ng/contiki-
ng/wiki#the-contiki-ng-platforms, we can use several boards with
ARM MCU to develop Contiki-NG applications. The following is the list of
supported Contiki-NG boards:

e cc2538dk: TI cc2538 development kit

e jn516x: NXP jn516x series

o nrf52dk: Nordic Semiconductor nRF52 development kit
e openmote-cc2538: OpenMote cc2538

o srf06-cc26xx: TI cc26xx and cc13xx platforms

e zoul: Zolertia Zoul platforms: Firefly, RE-mote, and
Orion

In this book, I use five board models: Telosb, TI CC2650 LaunchPad,
TI CC2650 Sensortag, TI CC1350 LaunchPad, and TI CC1350 Sensortag.

12

https://github.com/contiki-ng/contiki-ng/wiki#the-contiki-ng-platforms
https://github.com/contiki-ng/contiki-ng/wiki#the-contiki-ng-platforms

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Introducing Contiki-NG

Contiki-NG is a new version of the Contiki project. Contiki-NG provides an
RFC-compliant, low-power IPv6 communication stack, enabling Internet
connectivity. If you are working with Contiki, I recommend using the latest
version—Contiki-NG. This project can be found at https://github.com/
contiki-ng/contiki-ng.

One advantage of Contiki-NG is that it supports many hardware
platforms, including MCU-based ARM. You can bring your favorite boards
to build applications for Contiki-NG. This book will cover Contiki-NG for
developing and implementing.

Set Up Development Environment
for Contiki

To build a Contiki application, we need to prepare our development
environment. Currently, the Contiki development environment can be
deployed on the Linux platform. There are two methods: instant Contiki
and manual installation. Then, we will set up a Contiki-NG development
environment.

We will review deployment for both Contiki and Contiki-NG in the next
section.

Instant Contiki

Contiki provides a complete development environment under Ubuntu
Linux that is available in virtual-machine form. This approach is easy and
low risk without breaking your current OS.

13

https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Follow these steps:

o Download instant Contiki from http://sourceforge.
net/projects/contiki/files/Instant%20Contiki/.

e Download VMWare Workstation player (Free) or
VMWare Workstation (not free). For VMWare player,
you can download it from http://www.vmware.com/go/
downloadplayer/. You can also use Virtualbox instead
of VMWare.

o After downloading Instant Contiki, you can extract it to
a specific folder. You should see some files as shown in

Figure 1-11.
v b 30 o
- v This PC > DATA (D) » ¥YM v instaniContic3 0
s Ousck acoess
& OreDrive
& This PC
P DIGITAL L8 (E

W Network

2 st

2 imstant_Contild_Ubunby_12.04_32-bit-

Figure 1-11. Extracted instant Contiki files

VMWare Workstation Player is free. It is available for Windows and
Linux. For Mac users, there is no free VMWare Workstation Player. You
can use VMWare Fusion. I have installed VMWare Workstation Player on
Windows 10. You can see it in Figure 1-12.

14

http://sourceforge.net/projects/contiki/files/Instant Contiki/
http://sourceforge.net/projects/contiki/files/Instant Contiki/
http://www.vmware.com/go/downloadplayer/
http://www.vmware.com/go/downloadplayer/

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

| Welcome to VMware
Workstation 12 Player

Create a New Virtual Machine

Create a new virtual machine, which will then be added to
the top of your library.

Open a Virtual Machine

Open an existing virtual machine, which will then be added
1 the top of your library.

Get pdvanced features such 83 snapshots, virtual network
management, and more.

Help

%
P l Upgrade to VMware Workstation Pro

WView onling help.

= This product i not kcensed and i suthorized for non-
W commercial use only. For commercial use, purchase 3
i 2 license. fuy nov,

Figure 1-12. VMWare Workstation player 12 on Windows 10

Now, you can open Instant Contiki using VMWare Workstation Player
by clicking Open a Virtual Machine. Navigate to the *.vmdk file in the
folder to which Instant Contiki file was extracted.

After this succeeds, you can see Instant Contiki on VMWare
Workstation Player, as shown in Figure 1-13.

15

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Plager = | [= B =
75 oo
Oy

Y mstanecontios.0

InstantContiki3.0

State: Powered Off
OS5: Ubuntu
Version: Workstation 8.x virtual machine
RAM: 1G8

P Play virtual machine

.
S Edit virtual machine settings

Figure 1-13. Instant Contiki has loaded on VMWare Workstation
Player

By default, Instant Contiki is configured to use 1GB RAM. You can
customize this by clicking Edit virtual machine settings. You should get a
dialog as shown in Figure 1-14.

16

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Hardware Options
Devce Summary wh—y
- pemany 168 Speciy the amount of memory slocated to this

3 Processers 1 machine. The memory e must be a multiphe of 4 l«l

2 Hord Desk (SCST) 10 GB

7 Mamory for this virtual machine: 1024 2 g
JCD/DVD (IDE) Using file C:\Program Fies [x86)\
e Fopoy Auto detect
T otwork Adapter NAT &4 08
&3 US8 Controer Fresent 12 68
&) Sound Card Auto detect 1668 4
- Frivtes Fresent 86k B Mmamum recommended memory
B Desplay Auto detect 468 [Memery swapping may
ooour beyond this size. 3
268
13780 M8
166 4 4
s12 M8 9 & recom
256 M8
1024 Mg
128 B
"] Guest 05 recommended minimum
nwe
512 M8
16 M8
B M
4 M@
rad

Figure 1-14. Customizing Instant Contiki

Since my computer has 16GB of RAM, I set my Instant Contiki with
4GB of RAM. If you are done, click the OK button to save and close the
dialog.

Now, you can run Instant Contiki by clicking Play virtual machine;
you should see the Ubuntu desktop. You can see it in Figure 1-15.

If your WSN mote has an MSP430-based MCU such as Sky and Telosb,
you should install the ggc-msp430 library in order to develop your Contiki
application. You can type this command in Ubuntu Terminal:

$ sudo apt-get install gcc-msp430

Your virtual machine is ready for Contiki development.

17

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Figure 1-15. Contiki OS is running on VMWare Workstation
Player

Troubleshooting

If you are running VMWare Workstation Player on Windows 8.1/10 or
later, you may get problems due to conflicts with Hyper-V. Since VMWare
Workstation and Hyper-V cannot run together on one computer, you
should uninstall and disable Hyper-V on Windows 8.1/10.

From my experience, I use Windows 10 with installed Hyper-V. When
[use the VMWare application, I disable my Hyper-V. You do so using
command prompts with the Administrator level. Type this command:

$ bcdedit /set hypervisorlaunchtype off

Then, you can restart Windows.
If you want to reenable Hyper-V, you can type this command:

$ bcdedit /set hypervisorlaunchtype on

Manual Installation

If you have a computer with installed Linux, you can install the Contiki

development environment on your platform.

18

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

First, you should install all required libraries to run Contiki OS. You can
type these commands in Terminal:

$ sudo apt-get update

$ sudo apt-get install build-essential

$ sudo apt-get install git

$ sudo apt-get install binutils-msp430 gcc-msp430 msp430-libc
msp430mcu mspdebug gcc-arm-none-eabi gdb-arm-none-eabi

You also need the Java run-time and SDK to run the Contiki OS
simulator. In this case, we use Open JDK. You can use Java from Oracle.
Type this command:

$ sudo apt-get install openjdk-8-jdk openjdk-8-jre ant
libncurses5-dev

Since Contiki OS runs a 32-bit environment, if you have Linux OS with
64-bit, you can install these libraries:

$ sudo apt-get install lib32ncursess

Now, you can download the Contiki OS source code. Open Terminal
and navigate to the specific folder where Contiki OS files will be extracted:

$ git clone https://github.com/contiki-os/contiki

Your computer is ready for Contiki OS development.

Set Up Contiki-NG Development Environment

Currently, Contiki-NG does not provide an Instant Contiki, so it must be
installed manually. The installation process can be found here: https://
github.com/contiki-ng/contiki-ng/wiki/Toolchain-installation.

19

https://github.com/contiki-ng/contiki-ng/wiki/Toolchain-installation
https://github.com/contiki-ng/contiki-ng/wiki/Toolchain-installation

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

In general, setting up Contiki-NG can be done with the following steps:
o Install required libraries.

o Install compiler and its dependences for specific
hardware platform.

o Download and configure Contiki-NG.

The first step to deploy Contiki-NG is to install all required libraries for
development. In this section, I use Ubuntu Linux for development testing.
Iuse Ubuntu LTS 16.04 with x64 platform. Type these commands on Linux
Terminal to install libraries:

$ sudo apt update
$ sudo apt install build-essential doxygen git curl wireshark
python-serial

While you are installing Wireshark, you should enable the feature that
allows non-superuser capture packets (select “yes”). Add your account
into the wireshark group. You can type this command, substituting <user>
with your Linux account:

$ sudo usermod -a -G wireshark <user>

The next step is to install the compiler and its dependencies, based on
the Contiki mote hardware. If you have a Contiki mote based on MSP430,
you can install the compiler and libraries for MSP430. You can type this

command:
$ sudo apt install gcc-msp430

If you want to install the latest version of the MSP430 compiler, you
canread how at https://github.com/tecip-nes/contiki-tres/wiki/
Building-the-latest-version-of-mspgcc

For Contiki mote-based ARMs such as CC2538DK and Zoul, you can
install the ARM compiler by typing these commands:

20

https://github.com/tecip-nes/contiki-tres/wiki/Building-the-latest-version-of-mspgcc
https://github.com/tecip-nes/contiki-tres/wiki/Building-the-latest-version-of-mspgcc

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

$ sudo add-apt-repository ppa:team-gcc-arm-embedded/ppa
$ sudo apt update
$ sudo apt install srecord gcc-arm-embedded

We also install JDK and Ant for the Contiki simulator, COOJA, that are
built from Java. You can install these libraries by typing this command:

$ sudo apt install default-jdk ant

If you have several Java versions within Linux, you should set your Java
preference. It is done by calling update-alternatives:

$ update-alternatives --config java

Cooja needs to have the environment variable JAVA_HOME set to work
with native Contiki motes. You should set JAVA_HOME with the path found
above in the .profile file:

$ echo 'export JAVA HOME="/usr/lib/jvm/default-java"'>
~/.profile

Most Contiki motes are attached to the computer via USB. When we
access them, we probably need administrator privileges. To be able to
access the USB without using the administrator level, your account should
be part of the groups plugdev and dialout. You add them by typing these
commands. Be sure to change <user> to your Linux account:

$ sudo usermod -a -G plugdev <user>
$ sudo usermod -a -G dialout <user>

This is the case for an x64 platform. You probably will get an error when
connecting via serial communication on a serial tool from Contiki-NG.
You can install the following required libraries:

$ sudo apt-get update
$ sudo apt-get install lib32ncurses5 lib32z1

21

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

After finishing all tasks, you can reboot your computer.
Now, you can download Contiki-NG by cloning using git. Perform the
following commands in Terminal:

$ git clone https://github.com/contiki-ng/contiki-ng.git
$ cd contiki-ng/
$ git submodule update --init --recursive

Now, you are ready to develop Contiki-NG.

Connect WSN Hardware to Computer

After all required libraries for Contiki are installed, you can connect the
WSN hardware to the computer. Depending on the WSN hardware model,
your WSN mote should be recognized by the computer. Some WSN
hardware may need a hardware driver so your computer detects it. You can
see my WSN mote, TelosB, connected to the computer in Figure 1-16.

After connecting to the WSN mote, you can verify whether the WSN
mote is recognized by the computer. Type this command:

$ 1s /dev/ttyUSB*

If your mote isn’t recognized by the computer, it's probably detected as
/dev/ttyACM*.

22

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Figure 1-16. TelosB mote is connected to computer through USB cable

This program will query all connected WSN motes on your computer.
If found, it will display a list of serial ports from WSN motes. You can see
my WSN mote in Figure 1-17.

[& - o user@instant-contiki: ~

File Edit View Search Terminal Help
user@instant-contiki:~$ 1s /dev/ttyuss*
Jdev/ttyUsse

user@instant-contiki:~S [

Figure 1-17. WSN mote is detected on /dev/ttyUSBO

23

CHAPTER 1

INTRODUCTION TO WIRELESS SENSOR NETWORKS

If you use Instant Contiki, your WSN mote may be detected on Host

OS. For instance, I use Windows 10 to run Instant Contiki. The detected

WSN mote can be viewed on Device Manager, shown in Figure 1-18.

To connect a WSN mote from the host computer to a virtual machine

on VMWare, you should transfer to a virtual machine. Since the hardware

USB can only attach to one computer, the host computer can’t access the

WSN mote while it is being used by Ubuntu on the virtual machine.

|
File Action View Help

o mE Bm &

€ Bluetcoth -

B Computer

w= Disk drives

B Display adapters

A8 Human Interface Devices

= |DE ATA/ATAPI controllers

.‘|“.‘ Imaging devices

& Jungo Connectivity

== Keyboards

' Mice and other pointing devices

@ Monitors

!? Network adapters

k! Other devices

@ Forts (COM & LPT)
‘ Standard Serial over Bluetooth link {COM10)
P USB Serial Port (COM3)

= Print queues

n Processors

I SO host adapters

B scftware devices

i Sound, video and game controllers

& Star Micronics Port Device

S Storage controllers

B= System devices

§ Universal Serial Bus controllers

Figure 1-18. WSN mote is detected by Device Manager

How to transfer a WSN mote from the host to a virtual machine? You

can click menu Player » Removeable Devices » <WSN_mote_name> »

Connect. You can see it in Figure 1-19.

24

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

48 InstantContiki3.0 - VMware Workstation 12 Player (Non-commercial use only)

- =

Prayer'k ‘ e [
File

Lli‘ Power ’ »
' Remavable Devices 2 CD/DVD (IDE)

< Send Ctri+Alt+Del Floppy >
A, Manage 3 @ MNetwork Adapter >

hew R Printer » lesfhelle-world
L1 Full Screen Ctrl+Alt+Enter B cound Card
] Unity

Future Devices MTM-CM5000MSP
Chicony Lenovo EasyCamera

Connect (Disconnect from host)

Change lcon...
~| Show lcon

Help H]

Exit

Figure 1-19. Connect WSN mote from Ubuntu in virtual machine

After connecting, you can perform Contiki development as usual on
Ubuntu. You can verify the connected mote using Terminal.

Contiki and Raspberry Pi

Raspberry Pi is a very small computer. This board can run several
operating systems. There are many Raspberry Pi models that you can use
for development. The official OS is Raspbian OS, which is based on Debian
Linux.

To deploy Contiki on Raspberry Pi, I recommend you use Raspbian
OS for your board. Then, you can install Contiki manually without Instant
Contiki since Raspberry Pi has limited RAM. Raspberry Pi has USB
connectors so our WSN mote can be attached to the board. You can see my
TelosB that is attached to a Raspberry Pi in Figure 1-20.

25

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Figure 1-20. Attach WSN mote to a Raspberry Pi

Hello World Application for Contiki

In this section, we will learn to build the first program for Contiki. We use
the existing program sample from Contiki or Contiki-NG. It’s a hello-world
program, which is located in the <contiki folder>/examples/hello-
world folder. The Hello World program displays simple words—“Hello,
world”—in the WSN mote’s Terminal. This program consists of hello-
world.c and Makefile files. After the program is compiled, you should see
several files, such as *.0bj and *. hex files.

To write a C program, use your favorite editor, such as vi, vim, and
nano. Also, use a visual editor; for instance, Eclipse, Sublime Text, and
Visual Studio Code. I use Visual Studio from Microsoft. You can download
iton https://code.visualstudio.com. It is available for Linux, Mac,
and Windows. Figure 1-21 shows Visual Studio Code to open the Blink
application.

26

https://code.visualstudio.com/

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

To start to write a Contiki program from scratch, you create a folder
called hello-world. Then, you create hello-world. c within the hello-
world folder. You also can run a program sample, hello-world, from
<contiki folder>/examples/hello-world folder. Navigate to your
Terminal and then build that program.

If you want to build a project from scratch, you must continue your
development. The following is the complete code for the hello-world.c file.

include "contiki.h"
#include <stdio.h> /* For printf() */

PROCESS(hello world process, "Hello world process");
AUTOSTART PROCESSES(&hello world process);

PROCESS THREAD(hello world process, ev, data)

{
PROCESS_BEGIN();

printf("Hello, world\n");

PROCESS_END();
}

27

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

r
£3 hello-world.c — contiki — Visual Studio Code
File Edit Selection View Go Debug Tasks Help

C hello-worlde x

0,

Pmasterr C QOA Ln1,Col1 Spaces:2 UTF8 LF C Linux @

Figure 1-21. Visual Studio code on Ubuntu Linux

Explanation

This program declares a Contiki process thread, called hello world
process. To print message to Terminal, use the printf() function:

PROCESS_THREAD(hello world process, ev, data)

{
PROCESS_BEGIN();

printf("Hello, world\n");

PROCESS_END();
}

hello world process will be executed automatically using
AUTOSTART _PROCESSES().

PROCESS(hello world process, "Hello world process");

28

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

AUTOSTART_PROCESSES(&hello_world_process);
Last, you should make a Makefile file. The following is the content of
the Makefile file:

CONTIKI PROJECT = hello-world
all: $(CONTIKI PROJECT)

CONTIKI = /home/usexr/Documents/book/contiki
include $(CONTIKI)/Makefile.include

Three items are required in our Makefile file, which are described as
follows:

e CONTIKI_PROJECT is used to declare our project name.

o CONTIKI is a Contiki root directory where Contiki
libraries are.

o Weinclude $(CONTIKI)/Makefile.include file in our
program.

Change CONTIKI for your Contiki root folder where the Contiki source
code files, https://github.com/contiki-os/contiki or https://github.
com/contiki-ng/ for Contiki-NG, are located.

If all required program setup is done, we can compile C program using
make by passing in the WSN platform. For our demo, we use the native app
as the target, so we pass native while compiling:

$ make TARGET=native

This compiling generates a <project_name>.native binary file. You
can see it in Figure 1-22. A hello-world.native file is generated.

29

https://github.com/contiki-os/contiki
https://github.com/contiki-ng/
https://github.com/contiki-ng/

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

[@ - o user@instant-contiki: ~/Documents/book/hello-world]
File Edit View Search Terminal Help
/home fuser /contiki-3.0/core/ctk/ctk-filedialog.c: In function ‘ctk_filedialog_ev
enthandler’:
/home fuser /contiki-3.0/core/ctk/ctk-filedialog.c:158:10: warning: cast from poin
ter to integer of different size [-Wpointer-to-int-cast]

if((ctk_arch_key_t)data == CH_CURS_UP) {

/home fuser /contiki-3.0/core/ctk/ctk-filedialog.c:165:17: warning: cast from poin
ter to integer of different size [-Wpointer-to-int-cast]
} else if((ctk_arch_key_t)data == CH_CURS_DOWN) {
A

cc /home fuser /contiki-3.0/core/ctk/ctk-textentry-checkbox.c
cC /home fuser /contiki-3.0/core/ctk/ctk-textentry-cmdline.c

cc /home/user /contiki-3.0/core/ctk/ctk-textentry-multiline.c
cc /home fuser /contiki-3.0/core/net/1lsec/anti-replay.c

cC /home /user fcontiki-3.0/core/net/l1lsec/ccm-star-packetbuf.c
cc /home fuser /contiki-3.0/core/net/1lsec/nullsec.c

cp /homefuser/contiki-3.8/tools/empty-symbols.c symbols.c
cp /home/user/contiki-3.0/tools/empty-symbols.h symbols.h

cC symbols.c

AR contiki-native.a
cc hello-world.c

LD hello-world.native

rm hello-world.co
user@instant-contiki:~/Documents/book/hello-world$ i |

Figure 1-22. Compiling Contiki application on native target

To run the Contiki app, you can type this command:
$./hello-world.native

If you get an error due to security issues, you probably need to run this
program with administrator privilege. You can type this command:

$ sudo ./hello-world.native

It shows THE IPv6 address and displays “Hello, world” in Terminal.
You can see it in Figure 1-23(a) for Contiki app and (b) for Contiki-NG app.
To stop your Contiki program, you can press CTRL+C.

30

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

r -

@ - o user@instant-contiki: ~/Documents/book/hello-world

File Edit View Search Terminal Help
cc /home fuser /contiki-3.0/core/ctk/ctk-textentry-checkbox.c
cC /home fuser /contiki-3.0/core/ctk/ctk-textentry-cmdline.c
cc /home fuser /fcontiki-3.0/core/ctk/ctk-textentry-multiline.c
cc /home fuser /contiki-3.0/core/net/1llsec/anti-replay.c
cc /home fuser /contiki-3.0/core/net/11lsec/ccm-star-packetbuf.c
cc /home fuser /contiki-3.0/core/net/1llsec/nullsec.c

cp /home/fuser/contiki-3.0/tools/empty-symbols.c symbols.c
cp /homefuser/contiki-3.0/tools/empty-symbols.h symbols.h

cc symbols.c

AR contiki-native.a
cc hello-world.c

LD hello-world.native

rm hello-world.co

user@instant-contiki:~/Documents/book/hello-worlds$ 1s

contiki-native.a hello-world-example.csc Makefile~ symbols.c
contiki-native.map hello-world.native obj_native symbols.h
|hello-world.c Makefile README . md
user@instant-contiki:~/Documents/book/hello-world$./hello-world.native
Contiki 3.0 started with IPV6, RPL

Rime started with address 1.2.3.4.5.6.7.8

MAC nullmac RDC nullrdc NETWORK sicslowpan

Tentative link-local IPvé address fe860:0000:0000:0000:0302:0304:0506:0708
iello, world

(a) Contiki app

agusk@akuro1: ~/contiki-ng/examples/hello-world

Hello, world

B

agusk@akurei:~/contiki-ng/examples/hello-world$ sudo ./hello-world.native
[sudo] password for agusk:

[INFO: Main] starting Contiki-NG-develop/v4.0-30-g3c9ffed-dirty

[INFO: Main] Net: tun6

[INFO: Main] MAC: nullmac

opened tun device " /dev/tune''

tun® Link encap:UNSPEC HWaddr 00-60-00-00-00-00-00-00-00-00-00-00-00-00-00
-0e

inet addr:127.0.1.1 P-t-P:127.6.1.1 Mask:255.255.255.255
inet6 addr: fe80::820b:8bb9:b8ee:6852/64 Scope:Link

inet6 addr: fde®::1/64 Scope:Global

UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1560 Metric:1
RX packets:@ errors:@ dropped:® overruns:® frame:@

TX packets:@ errors:® dropped:® overruns:® carrier:®
collisions:0 txqueuelen:500

RX bytes:® (0.8 B) TX bytes:e (0.6 B)

[INFO: Main] Link-layer address 0162.0304.0506.08708
[INFO: Main] Tentative link-local IPv6 address fe80::302:304:506:708

[INFO: Native] Added global IPv6 address fdee::302:304:506:708
Hello, world

(b) Contiki-NG app

Figure 1-23. Running Contiki application as native, (a) Contiki app
and (b) Contiki-NG app

31

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Next, we deploy the Contiki application to the Contiki hardware. For
instance, I use TelosB as my WSN mote target. TelosB is a Sky platform
from Contiki because TelosB uses MSP430 MCU.

Before deploying the Contiki program to the Contiki mote, make sure
your Contiki mote is already attached to your computer. For instance,
my Contiki mote, TelosB, is detected as /dev/ttyUSBO. You can verify the
attached Contiki mote using the following command:

$ 1s /dev/ttyUSB*

Now, you can compile and save the target platform by typing this
command:

$ make TARGET=sky
$ make TARGET=sky savetarget

A sample of the compiling output is shown in Figure 1-24.

[@ - o user@instant-contiki: ~/Documents/bookfcontikifexamples/hello-world

File Edit View Search Terminal Help

+++++ Erasing /dev/ttyuUsBe

MSP430 Bootstrap Loader Version: 1.39-telos-7

Use -h for help

Mass Erase...

Transmit default password ...

+++++ Programming /dev/ttyUSBeO

MSP430 Bootstrap Loader Version: 1.39-telos-7

Invoking BSL...

Transmit default password ...

Current bootstrap loader version: 1.61 (Device ID: fi16c)

Changing baudrate to 38400 ...

Program ...

47180 bytes programmed.

+++++ Resetting /dev/ttyUSBO

MSP430 Bootstrap Loader Version: 1.39-telos-7

Use -h for help

Reset device ...

Done

make[2]: Leaving directory °/home/user/Documents/book/contiki/examples/hello-wor
1d’

make[1]: Leaving directory °/home/user /Documents/book/contiki/examples/hello-wor]
1d’

rm hello-world.ihex
user@instant-contiki:~/Documents/book/contiki/examples/hello-worlds l

Figure 1-24. Flashing Contiki program to Sky platform on TelosB
hardware

32

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

This compiling will generate a <project_name>.<platform> file. In my
case, this will generate a hello-world.sky.ihex file:

$ make hello-world.upload

If you get a permission error, you can run it using the administrator
level:

$ sudo make hello-world.upload

This program will be flashed to Contiki hardware. It may take several
minutes.

For Contiki-NG motes from Texas Instruments, you will probably get
errors while uploading a program to the board. You can use SmartRF Flash
Programmer. You can download it from http://www.ti.com/tool/FLASH-
PROGRAMMER. Unfortunately, this tool currently only runs on Windows
platforms.

To see the program output from the Contiki hardware, we listen to
incoming messages from the serial port of the Contiki hardware. You can
type this command:

$ sudo make login

You also can specify a serial port of the Contiki hardware. For
instance, Contiki hardware on serial port /dev/ttyUSBO. You can type this
command:

$ sudo make MOTES=/dev/ttyUSBO login

You can see the running Contiki program in Figure 1-25.

33

http://www.ti.com/tool/FLASH-PROGRAMMER
http://www.ti.com/tool/FLASH-PROGRAMMER

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

@ - o user@instant-contiki: ~/Documents/book fcontikifexamples/hello-world

File Edit View Search Terminal Help

+++++ Programming fdev/ttyUSBe

MSP430 Bootstrap Loader Version: 1.39-telos-7

Invoking BSL...

Transmit default password ...

Current bootstrap loader version: 1.61 (Device ID: fi6c)
Changing baudrate to 38400 ...

Program ...

47180 bytes programmed.

+++++ Resetting /dev/ttyUSBO

MSP430 Bootstrap Loader Version: 1.39-telos-7

Use -h for help

Reset device ...

Done

make[2]: Leaving directory °/home/user /Documents/book/contiki/examples/hello-wor
1d’

make[1]: Leaving directory °/home/user /Documents/book/contiki/examples/hello-won
1d’

rm hello-world.ihex
user@instant-contiki:~/Documents/book/contiki/examples/hello-worldS sudo make lo
gin

using saved target 'sky'

../../tools/sky/serialdump-linux -b115200 /dev/ttyUSBO

connecting to /dev/ttyUsBe (115200) [O0K]

Figure 1-25. Listening to messages from Contiki hardware

You may not get any message from the hello-world program. Since this
program runs the first process, we may miss this process. Try to reset the
Contiki hardware so Contiki OS will reboot. Then, run the program.

It displays “Hello, world” in the listening program. You can see it
in Figure 1-26. To stop your Contiki listening program, you can press
CTRL+C.

34

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

r 5

@ - o user@instant-contiki: ~/Documents/book/contiki/examples/hello-world
File Edit View Search Terminal Help

+++++ Resetting /dev/ttyUsBe

MSP430 Bootstrap Loader Version: 1.39-telos-7

Use -h for help

Reset device ...

Done

make[2]: Leaving directory ' /homefuser/Documents/book/contiki/examples/hello-wor
d’

make[1]: Leaving directory " /homefuser/Documents/book/contiki/examples/hello-wor
1d’

rm hello-world.ihex
user@instant-contiki:~/Documents/book/contiki/examples/hello-worldS sudo make lo
gin

using saved target 'sky'

..f../tools/sky/serialdump-1inux -b115200 /dev/ttyusBo

connecting to /dev/ttyUsBe (115200) [OK]

Rime started with address 0.18.116.6.22.191.129.233

HAC 00:12:74:00:16:bf:81:e9 Contiki-3.x-3330-9719f712 started. Node id is not s]

nullsec CSMA contikiMAC, channel check rate 8 Hz, radio channel 26, CCA thresho
d -45

Tentative link-local IPv6 address fe86:0000:0000:0000:0212:7400:16bf:81e9
Starting 'Hello world process'

Hello, world

Figure 1-26. Getting messages from Contiki hardware

Contiki Simulator

If you don’t have a WSN mote on which to run the Contiki program, you
can use the Contiki simulator, COOJA. Although COO]JA has limitations,
it's still useful for reviewing and debugging. COOJA is a part of the Contiki
tools. Its location is <contiki_root>/tools/cooja; see Figure 1-27.
Further information about COOJA can be found at https://github.com/
contiki-os/contiki/wiki/An-Introduction-to-Cooja.

In this section, we will set up COOJA. Then, we will run a simple
Contiki program on COOJA.

Let’s start.

35

https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

agusk@akur01: ~/contiki-ng/tools/cooja
agusk@akuroli:~/contiki-ng/tools$ ls

cc2538-bsl cooja makefsdata timestamp tunslip.c
code-style doxygen sensniff tools-utils.c viewconf.c
coffee-manager jn516x sky tools-utils.h wpcapslip
collect-view Makefile tapslip6.c tunslip6.c zolertia

agusk@akure1i:~/contiki-ng/tools$ cd cooja/
agusk@akur@i:~/contiki-ng/tools/coojas 1s

apps config java LICENSE.md README.md
build.xml examples 1ib mspsim tools
agusk@akure1i:~/contiki-ng/tools/coojas

Figure 1-27. Contiki simulator, COOJA, path on Contiki-NG

Setting Up

Before you run COOJA, you should configure your computer to update and
check missing libraries for the COOJA application. Your computer should
connect to the Internet.

You can configure COOJA by typing these commands:

$ cd /<contiki-ng path>/tools/cooja
$ git submodule update --init

If this succeeds, you can run the COOJA application by typing this
command:

$ ant run

You should get the COOJA application, shown in Figure 1-28.

36

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Figure 1-28. Running COOJA for Contiki simulator

Running Contiki Application

After you launch the COOJA application, you can run the Contiki
application using COOJA. First, create a new simulation on COOJA. You
can click File » New simulation. You can see it in Figure 1-29.

37

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

@® Applications Places

& - = Cooja: The Contiki Network Simulator
Simulation Motes Tools Settings Help

Mew simulation... Ctrl+N
Open simulation >
ation

Figure 1-29. Add a new simulation for Contiki
You should get the dialog shown in Figure 1-30. Fill in the simulation

name. If done, click the Create button.

r
& Create new simulation

Simulation name 'M'y simulation

Advanced settings
-

-

Radio medium [Unit Disk Graph Medium (UDGM): Distance Loss |']
Mote startup delay (ms) 1,000
Random seed 123,456
New random seed on reload LJ
Cancel Create

Figure 1-30. Filling in simulation name

38

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Now, you will get the Contiki simulator editor, COOJA, that is shown in
Figure 1-31.

® Applications Places ty @) s2rem &
@ - = My simulation - Cooja: The Contiki Network Simulator
Ede Simulation Motes Tools Settings Help
!ﬁ BEE| St il Do Hotes /ol
iew Zaom eed it Enter notes here
tag Reload
00.000
Mote output EJIEJ&)
X View
Hote | Message [

= Timaline =gl

File Edit View Zoom Events Motes

RS

W = [pesktop] @ [software Updater] o user@instant-contiki

Figure 1-31. Contiki simulator with Cooja

The next step is to add the WSN motes on the simulator. You can do it
by clicking menu Motes » Add motes » Mote platform (see Figure 1-32).
Please select your Mote platform preference. For demo, I use Sky platform.

39

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

@® Applications Places
‘ —-a

File Simulation &

The Contiki Network Simulator

My simulatiog

Add motes T
1 Mote types... e Disturber mote...
Import Java mote...

Remove all motes

Cooja mote...

MicaZ mote...

Eth1120...

U Trxebl120...

Trxeb2520...

| Exp2420 mote (MSP430F5438)...
| Expl101 mote (MSP430F5438)...
IH Exp1120 mote (MSP430FS5438)...
CC430 mote...

| ExP430FS438 mote...

Wismote mote...

Z1 mote...

Sky mote...

ESB mote...

Figure 1-32. Adding WSN motes

Then, you will get the dialog shown in Figure 1-33. In the Contiki
process/Firmware field, select your Contiki program. For demo purposes,
we use the hello-world application. Select the hello-world. c file.

. @ Create Mote Type: Compile Contiki for sky

Description: Sky Mote Type #skyl I g
Contiki process / Firmware: /home/user/Documents/book/contiki ples/hell ridhello-world.c Browse

Clean ”._.Comw_ Create

J@M‘Mﬁ.—] Mote interfaces I Tips 1

make hello-world.sky TARGET=sky

Figure 1-33. Select Contiki program for running

40

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Compile the Contiki program by clicking the Compile button. You can
see the sample of compilation output in Figure 1-34.

@ Create Mote Type: Compile Contiki for sky

Description: Sky Mote Type #skyl
Contiki process / Firmware: /homefuser/Documents/bookicontiki plesmell ridihell Id.c Browse |

| Clean | | Compile Jl Cr“ta_]

[compile commands | Mote interfaces | Tips [[Compilation output

= make hello-world.sky TARGET=sky
cC hello-world.c
cC L. iplatformyskyl. fcontiki-sky-main.c
LD hello-world.sky

i | rm hello-world.co obj_sky/contiki-sky-main.o

Figure 1-34. Compiling Contiki program on COOJA

After compiling has completed, you will be asked to enter a number
of WSN motes with their positions. For demo purposes, I fill in one WSN
mote, as in Figure 1-35.

& Add motes (Sky Mote Type #sky1)

Number of new motes I |
Positioning | Random positioning :]
Position interval X 0 <-> 100
Y O—H <-= W
2l O <> 0

[_ Do not add motes j | Add motes |

Figure 1-35. Filling in number of WSN motes

41

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

If done, click the Add motes button.
Now you can see your motes in the network map. For instance, you can
see my WSN mote in Figure 1-36.

® Applications Places ty) s3PM 3%
@ - = My simulation - Cocja: The Contiki Network Simulator
Ede Simulation Motes Tools Settings Help
!ﬁ BEE| St il Do Hotes /ol
View Zoom eed it Enter notes here
L Step || Reload
00.000
Mote output (=1 3}
E View
o) dote | Message [
LE' Timeling showing | motes EJ@@

File Edit View Zoom Events Motes

ja]
1 [
v
I - Cooja: Th tor -

PLAS ¥
W = [pesktop] @ [software Updater] o user@instant-contik

Figure 1-36. A WSN mote on COOJA Contiki simulator

To run the simulation, you can click the Start button on the Simulation
Control dialog. See it in Figure 1-37.

42

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

@ Applications Places

@ - = My simulation - Cooja: The Contiki Network Simulator
File Simulation Motes Tools Settings Help
B Network Note
View Zoom
] simulation control E)=IE3
Run Speed limit
Start Fause | Step || Reload |
Time: 02:21.
Speed: —
0
O File Edit View
| Time Mote | Message
Filter:

Figure 1-37. Running Contiki simulator by clicking Start button

After the Start button has been clicked, the Contiki program will run on
COOJA. You should see the message “Hello, world” on the output panel.
You can see it in Figure 1-38.

@ Applications Places ty [) s34p
® - My simulation - Cooja: The Contiki Network Simulator

Eile Simulation Motes Tools Settings Help

2 Network Hotes =

View Zoom

Simulation control
Aun Speed limit
tart | Pause | Step | Reload

Time: 10:49.670
Speed: 8859.01%

i8]

File Edit View

Time | Mote | Message |

00:00.657 I0D:1 FRame started with address 0.18.116.1.0.1.1.1

00:00.566 I0:1 MAC 00:12:74:01:00:01:00:00 Contiki-3.x-3330-97197712 started. Mode id is se...

00:00.675 I0:1 nullsec CSHA ContikiMAC, channel check rate 8 Hz, radio chanmel 26, CCA thre...
00:00.585 I0:1 Tentative link-local IPv6 address feS0:0000:0000:0000:02]12:740L: 0001 : 0101
00:00.688 I0:1 Starting ‘Hello world process’
00:00.688 ID:1 Hella, world

Figure 1-38. Running hello-world Contiki program on COOJA

43

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Debugging Contiki Application

Sometimes you want to trace your program after the program has
been deployed into a WSN mote. In another scenario, you may want to
investigate your Contiki program before deploying it to a WSN mote.
Debugging is one solution for investigating your Contiki program.

In this section, you will learn various debugging methods with which
to check your program. You can choose the best method that fits your case.

Hardware Debugger

Most WSN motes do not provide built-in hardware debuggers, so if you
want to debug a Contiki-NG program through the hardware approach, you
need additional hardware. Regarding what WSN mote model you want to
perform debugging on, you should check your MCU model.

For Atmel MCU on MICAz, Mica2, and Iris platforms, you need
JTAG Atmel. Otherwise, for MCU-based MSP430, you use MSP430 USB
Debugging Interface from Texas Instruments (TI). This tool is shown in
Figure 1-39 (source: http://www.ti.com/tool/msp-fet). You can buy it on
this site: http://www.ti.com/tool/msp-fet.

Figure 1-39. MSP430 USB debugging interface

44

http://www.ti.com/tool/msp-fet
http://www.ti.com/tool/msp-fet

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Hardware debuggers usually have capabilities in a remote debugger.
For professional purposes, I recommend you use this tool.

LED Indicators

In general, a WSN mote is equipped with several LEDs. We can use these
LEDs to indicate a specific task; for instance, we turn on a specific LED
to inform us that the WSN mote performs sensing. You can find an LED
library in the <contiki>/core/dev/leds.h header file. In the next chapter,
we will try to develop a Contiki application utilizing GPIO (General
Purpose Input/Output).

Based on my experience, this approach is easy to implement.
The downside of this method is having no more information; for instance,
you might want to get a certain value from a specific task on your program.

Debugging Using Contiki Simulator

With the third approach, you can use the Contiki simulator, COOJA. You
can compile and attach a Contiki program to the Contiki simulator.

You can see messages that are generated using the printf() method.

For instance, the hello-world application prints messages using printf().

The Contiki printf() Function

The last method that I like is using the printf() function. The idea is that
our program writes messages using printf(), and then the messages will
pass through to the serial port. To listen to incoming messages from the
serial port, we can use the login command on Terminal.

This approach is easy and low cost for debugging your Contiki
application. Just place a printf() function on the code you are
investigating.

45

CHAPTER 1 INTRODUCTION TO WIRELESS SENSOR NETWORKS

Summary

We have learned what Wireless Sensor Networks (WSN) and Contiki are.
We also have set up Contiki and Contiki-NG development environments
and run a sample program to the WSN mote and a simulator. Last, we
learned how to debug the Contiki program.

In the next chapter, we will focus on the Contiki-NG programming
language. We will learn how to build a Contiki-NG program and run it on
Contiki-NG hardware and a simulator.

46

CHAPTER 2

Basic Contiki-NG
Programming

Contiki-NG uses the C programming language to develop applications for
WSN motes. In this chapter, you will learn this basic language for creating
Contiki-NG programs. Program samples are provided to accelerate your
learning speed.

The following is a list of topics that will be covered:

e Contiki-NG programming model
o Contiki-NG basic syntax

e reviewing protothreads

o extending the Contiki-NG library
o Contiki-NG coding conventions

e showing a demo for building a Contiki-NG application

Contiki-NG Programming Model

Contiki-NG uses the C programming language, which is component-
driven. You build some components and then connect each component.
Most WSN motes work in sleep mode. If there is any task to be executed,
the program will perform the task through hardware interrupts. If the task
is completed, the Contiki-NG program will go back to sleep mode.

© Agus Kurniawan 2018 47
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_2

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

Contiki-NG programming applies protothreads. In general, you can
develop Contiki-NG applications using the approach shown in Figure 2-1.
Start by creating a project. Then, create a C program and apply the
protothreads approach for developing a Contiki-NG program. When finished
writing the program, compile and upload it to the WSN mote.

Flash to WSN .
ash to .‘ Testing ‘

Create a Write Contiki
l . mote

Configure
project folder program . and Compile .

L J

Figure 2-1. Programming flow of a Contiki-NG program

If you open the source code of Contiki-NG OS, you can see several
folders, shown in Figure 2-2. Information about these folders can be read
in Table 2-1.

4 CONTIKI-NG

b arch

b examples

b os

b Lests

b tools
.gitattributes
.gitignore
.gitmodules
Lravis.yml
CONTRIBUTING.md
LICENSE.md

Makefile.identify-target

Makefile.include
README.md

Figure 2-2. Contiki-NG program structure

48

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

Table 2-1. Information for Contiki-NG OS Folders

Folder Description

arch Contains CPU, platform, and dev for development
arch/cpu Specific MCU information

arch/dev External chip and devices

arch/platform Specific files and platform drivers

0s Contiki-NG core files and libraries

tools Tools for flashing, debugging, simulating
examples Several Contiki-NG program samples
tests Several test programs

In the next section, we will review the basics of C programming, such
as the language syntax used to develop Contiki-NG programs.

Contiki-NG Basic Syntax

In general, Contiki-NG adopts the C programming language. In this
section, we will review some C programming language basics. You can use
any text editor to write C code.

Creating a Project

The Contiki-NG program does not provide project templates to build a
program. If you want to create a new project, you start by creating a new
folder and a Makefile file. Figure 2-3 shows a collection of Contiki-NG
project samples.

49

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

4 OPEN EDIT

Welcom:

4 CONTIKI-NG-DEVELOP

Figure 2-3. A collection of Contiki-NG project samples

You also can use program samples from the Contiki project
(https://github.com/contiki-os/contiki). You should check if the one
you choose is compatible with the Contiki-NG project (https://github.com/
contiki-ng/contiki-ng).

Contiki-NG Basic Programming Language

Contiki-NG adopts the C general programming language for
implementation. If you have experience in C programming, it won’t
require much effort to learn Contiki-NG programming. Contiki-NG
programming is similar to C as far as declaring variables and using
conditional statements and looping. You can see samples of the C
programming language in Table 2-2.

50

https://github.com/contiki-os/contiki
https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

Table 2-2. Basic Programming for C Language

C Basic Programming Example

Declare variables int num;
int t a, b, c;
unsigned int isDone;

Assign variables num = 3;
isDone = 0;
unsigned int m = 10;

If-conditional if(running){
doSomething();
}else {
perform();
}
Looping int len = 10;
for(int i=0;i<len;i++) {
foo();
}

Comment codes // this comment
/*
this is also comment
*/

To improve your skills in the Contiki-NG programming language,
I recommend you practice writing Contiki-NG programs.

51

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

Review Protothreads

Protothreads are lightweight threads designed for memory-constrained
systems, such as small embedded systems or WSN nodes. You can see a
protothreads implementation for Contiki-NG at <contiki root>/o0s/
sys/pt.h.

The following is the content of the pt. h file:

#ifndef PT_H_
#define PT H_

#include "sys/lc.h"

struct pt {
lc t 1c;
}s

#define PT WAITING O
#define PT_YIELDED 1
#define PT EXITED 2
#define PT ENDED 3

#define PT_INIT(pt) LC_INIT((pt)->lc)

#define PT_THREAD(name_args) char name_args

#define PT BEGIN(pt) { char PT YIELD FLAG = 1; if (PT YIELD

FLAG) {;} LC_RESUME((pt)->1c)

#define PT_END(pt) LC_END((pt)->1c); PT_YIELD FLAG = 0; \
PT_INIT(pt); return PT_ENDED; }

#define PT_WAIT UNTIL(pt, condition) \
do { \
LC_SET((pt)->1lc); \
if(!(condition)) { \
return PT_WAITING; \

} \

52

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

} while(0)
#define PT WAIT WHILE(pt, cond) PT WAIT UNTIL((pt), !(cond))
#idefine PT WAIT THREAD(pt, thread) PT WAIT WHILE((pt), PT_
SCHEDULE (thread))
#define PT_SPAWN(pt, child, thread)
do {
PT INIT((child));
PT WAIT THREAD((pt), (thread));
} while(0)
#define PT_RESTART(pt)
do {
PT_INIT(pt);
return PT_WAITING;
} while(0)

~ - -

~ - -

#tdefine PT_EXIT(pt)
do {
PT_INIT(pt);
return PT_EXITED;
} while(0)

~ - -

#define PT SCHEDULE() ((f) < PT_EXITED)

#tdefine PT_YIELD(pt)
do {
PT_YIELD FLAG = 0;
LC_SET((pt)->1c);
if(PT_YIELD FLAG == 0) {
return PT_YIELDED;

}
} while(0)

~ - s s s

53

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

#define PT_YIELD UNTIL(pt, cond)
do {
PT_YIELD FLAG = 0;
LC_SET((pt)->1lc);
if((PT_YIELD FLAG == 0) || !(cond)) {
return PT_YIELDED;

}
} while(0)

- - s s s s~

#fendif /* PT_H_ */

The following is a list of function descriptions based on the pt.h
header:

o PT_INIT(pt) function is used to initialize a
protothread.

o PT THREAD(name_args) is a macro that is used to
declare a protothread.

o PT BEGIN(pt) is used to declare the starting point of a
protothread.

o PT_END(pt) is used to end a protothread.

o PT_WAIT UNTIL(pt, condition) isused for blocking
the protothread until the specified condition is true.

o PT_WAIT WHILE(pt, cond) is used for blocking and
waiting while the condition is true.

e PT WAIT THREAD(pt, thread) isused to schedule a
child protothread. The current protothread will block
until the child protothread completes.

o PT SPAWN(pt, child, thread) isused to spawn a
child protothread and waits until it exits.

54

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

o PT_RESTART(pt) will block and cause the running
protothread to restart its execution at the place of the
PT_BEGIN() call.

o PT_EXIT(pt) is used to exit from a protothread.

e PT _SCHEDULE () is used to schedule a protothread.
The return value of the function is non-zero if the
protothread is running or zero if the protothread has
exited.

o PT _YIELD(pt) yields from the current protothread.

o PT_YIELD UNTIL(pt, cond) yields from the
protothread until a condition occurs.

Extending the Contiki-NG Library

Contiki-NG OS consists of several libraries and apps that you can extend
based on your case. To extend Contiki-NG OS functionalities, you can
follow the same approach used while building C programs.

You add additional libraries by adding a C header and source code.
Our Contiki-NG program will consume our libraries. For this demo, we
create a header file called mycounter.h with the following code:

#ifndef MYCOUNTER_H
#define MYCOUNTER H

int next_counter(int current);

#endif

55

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

This C header provides one function, next_counter(). This
function will be implemented into the mycounter. c file. We perform
a counterincrement with a maximum value of 99. You can write the
complete code as follows:

#include "mycounter.h"

int next_counter(int current)

{
if(current>99)
current = 1;
else
current++;
return current;
}

To access the extended library, we declare that header file. Then,
we call library functions from our code. The following is a skeleton code
sample to access the header file in a C program:

#include "mycounter.h"

static int counter = 0;

counter = next_counter(counter);
printf("Counter: %d\n", counter);

Next, we will implement our extended library and use it in a Contiki-
NG program.

56

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

Contiki-NG Demo: Threading App

Now, we will try to build a Contiki-NG program that uses a header file.
We create a folder called demo-counter. Then, we create several files as
follows:

e mycounter.h

e mycounter.c

e demo-counter.c
o Makefile

You can see the project structure in Figure 2-4.

Figure 2-4. Project structure for demo-counter project

In this demo, we create a header file called mycounter.h. This C
header provides one function, next_counter(), that generates an
incremented number based on the input. The next_counter() function
will be implemented into the mycounter. c file. In the previous section, we
declared this library.

Next, we access mycounter.h in our main program. It’s implemented
in the demo-counter.c file. We use an event timer library from Contiki-NG,
etimer. We generate an incremented number every three seconds.

57

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

The following is the complete code for demo-counter.c:

#include "contiki.h"
#include "sys/etimer.h"
#include "mycounter.h"

#include <stdio.h> /* For printf() */

PROCESS(counter process, "Counter process");
AUTOSTART PROCESSES(&counter process);

static struct etimer timer;
static int counter = 0;

PROCESS THREAD(counter process, ev, data)

{
PROCESS_BEGIN();

printf("Demo Counter\n");
while(1) {
etimer set(&timer, 3 * CLOCK SECOND);
PROCESS WAIT EVENT UNTIL(etimer expired(&timer));

counter = next_counter(counter);
printf("Counter: %d\n", counter);

}
PROCESS_END();

We also create a Makefile to configure our compiling. You can write
these scripts for the Makefile. Change the CONTIKI value with your
Contiki-NG root folder:

CONTIKI PROJECT = demo-counter
all: $(CONTIKI PROJECT)

58

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING
PROJECT_SOURCEFILES += mycounter.c

CONTIKI = /home/user/Documents/book/contiki
include $(CONTIKI)/Makefile.include

Save the program.

For testing, we run this program with a native target. You can open
Terminal and navigate to the project folder. Then, you can compile and run
the program. Type these commands:

$ make TARGET=native
$./demo-counter.native

If it succeeds, you will see an incremented number in Terminal. You
can see a sample of the program output in Figure 2-5.

x agusk@akur01: ~/Documents/contiki/demo-counter

agusk@akure1:~/Documents/contiki/demo-counter$./demo-counter.native

[INFO: Main] starting Contiki-NG-develop/v4.0-30-g3co9ffed-dirty

[INFO: Main] Net: tuné

[INFO: Main] MAC: nullmac

[WARN: Tuné] Failed to open tun device (you may be lacking permission). Ru
nning without network.

[INFO: Main] Link-layer address 0102.0304.0506.0708

[INFO: Main] Tentative link-local IPv6 address fe86::302:304:506:708

[INFO: Native] Added global IPv6 address fdee::302:304:506:708
Demo Counter

Counter: 1

Counter: 2

Counter: 3
Counter: 4
Counter: 5
Counter: 6
Counter: 7
Counter: 8
Counter: 9
Counter: 10
Counter: 11
Counter: 12
Counter: 13

Figure 2-5. Program output for demo-counter

59

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

How does it work?
This program is simple. First, we declare our Contiki-NG process,
counter process. We also declare our event timer and number variable:

PROCESS(counter process, "Counter process");
AUTOSTART PROCESSES(&counter process);

static struct etimer timer;
static int counter = 0;

PROCESS_THREAD(counter process, ev, data)
{

}

Inside the counter process function, we perform looping with the
event timer. After raising an event, we call the next_counter() function to
get an incremented number. Then, we print this value in Terminal:

PROCESS THREAD(counter process, ev, data)

{
PROCESS_BEGIN();

printf("Demo Counter\n");
while(1) {
etimer set(&timer, 3 * CLOCK SECOND);
PROCESS WAIT EVENT UNTIL(etimer expired(&timer));

counter = next_counter(counter);
printf("Counter: %d\n", counter);

}
PROCESS_END();

60

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

Contiki-NG Coding Conventions

Imagine you're developing a program with a team of more than three
developers. Each developer has a programming style and method. When
the codes are merged, it may raise problems since the codes are not
consistent in writing style. This problem could be solved if the code was
written in the same style.

Contiki coding conventions are rules for a writing style. They consist
of guidelines for how to write Contiki-NG programs. You can read the full
coding conventions for Contiki at https://github.com/contiki-os/
contiki/blob/master/doc/code-style.C.

Demo: Build Contiki-NG Application

In this section, we are going to develop a Contiki-NG application called
virtual-sensor. We will use the general library for the sensor, which will
be used for temperature and humidity readings. We will create a virtual
sensor in a header file that exposes two functions, read_temperature()
and read_humidity(). You can see this in Figure 2-6.

Contiki Program

: /[read temperature ()]

e

\[read_humidity ()]

Figure 2-6. A simple library for virtual sensor

61

https://github.com/contiki-os/contiki/blob/master/doc/code-style.c
https://github.com/contiki-os/contiki/blob/master/doc/code-style.c

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

Now, we can start to develop. Create a project folder called demo-
sensor. Then, create files as follows:

o mysensor.hisaheader file that declares read
temperature() and read_humidity() functions.

e mysensor.cimplements read temperature() and
read_humidity() functions.

o demo-sensor.c is the main program that uses mysensor
library.

e Makefile is used for compiler parameters.

This project structure is shown in Figure 2-7.

Figure 2-7. Project structure for demo-sensor

Now, we implement all files, starting with mysensor.h. It's a header file
that exposes two functions:

// mysensor.h
#ifndef MYSENSOR_H
#define MYSENSOR H

struct Sensor {
char name[15];
float value;

};

62

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

struct Sensor read temperature();
struct Sensor read humidity();

#endif

These sensor functions will be used as a general sensor that is
implemented for temperature and humidity in the mysensor. c file.
The following is the complete code for mysensor.c:

// mysensor.c
#include "mysensor.h"
#include <string.h>
#include <stdlib.h>

float random value(float min, float max)

{
float scale = rand() / (float) RAND MAX;
return min + scale * (max - min);

}

struct Sensor read temperature()

{
struct Sensor temp;
strncpy(temp.name, "Temperature", 15);
temp.value = random value(0, 35);
return temp;

}

struct Sensor read humidity()

{
struct Sensor humdidty;
strncpy(humdidty.name, "Humidity", 15);
humdidty.value = random value(40, 80);
return humdidty;

}

63

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

We generate a random number for our functions. Moreover, we use
the Sensor library in our main program, demo-sensor.c. We use an event
timer for the reading period. The following is the complete code for
demo-sensor.c

// demo-sensor.c
#include "contiki.h"
#include "sys/etimer.h"
#include "mysensor.h"
#include <stdio.h>

PROCESS(sensor_process, "Sensor process");
AUTOSTART PROCESSES(&sensor process);

static struct etimer timer;

PROCESS _THREAD(sensor_process, ev, data)

{
PROCESS_BEGIN();

printf("Demo Virtual Sensor\n");
while(1) {
etimer set(&timer, 3 * CLOCK SECOND);
PROCESS WAIT EVENT UNTIL(etimer expired(&timer));

struct Sensor temp = read temperature();
printf("%s: %.2f\n", temp.name, temp.value);
struct Sensor hum = read humidity();
printf("%s: %.2f\n", hum.name, hum.value);
printf("------------ \n");

}

PROCESS_END();
}

64

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

Last, we create a Makefile for compiler parameters. We set PROJECT _
SOURCEFILES with mysensor.c. Change the CONTIKI value to your Contiki
root folder. The following is the content of the Makefile:

CONTIKI PROJECT = demo-sensor
all: $(CONTIKI PROJECT)

PROJECT_SOURCEFILES += mysensor.c
CONTIKI = /home/usexr/Documents/book/contiki
include $(CONTIKI)/Makefile.include

Now, we can compile and upload the program into the WSN mote.
We can compile and run it for targeting native. Open Terminal and
navigate to the project folder. Then, type these commands:

$ make TARGET=native
$./demo-sensor.native

This program will display sensor values after the event timer is raised.
You can see my program output in Figure 2-8.

65

CHAPTER 2 BASIC CONTIKI-NG PROGRAMMING

x agusk@akur01: ~/Documents/contiki/demo-sensor

cC demo-sensor.c
GG mysensor.c
LD demo-sensor.native

rm demo-sensor.co obj_native/mysensor.o
agusk@akuroi:~/Documents/contiki/demo-sensor$./demo-sensor.native

[INFO: Main] Starting Contiki-NG-develop/v4.0-30-g3c9ffed-dirty

[INFO: Main] Net: tuné

[INFO: Main] MAC: nullmac

[WARN: Tun6] Failed to open tun device (you may be lacking permission). Ru
nning without network.

[INFO: Main] Link-layer address 0102.0304.0506.0708

[INFO: Main] Tentative link-local IPv6 address fe80::302:304:506:7608

[INFO: Native] Added global IPv6 address fdoe::302:304:506:708
Demo Virtual Sensor

Temperature: 27.95

Humidity: 76.47

Temperature: 6.91
Humidity: 53.41

Temperature: 26.89
Humidity: 51.11

Figure 2-8. Program output for demo-sensor application

Summary

We have explored the Contiki-NG basic programming language. This is a
core language based on the C programming language that will help you
to develop a Contiki-NG application. We built a Contiki-NG application
that utilized a header library and event timer with Contiki-NG program
features.

In the next chapter, we will learn how to work with concurrency in
Contiki-NG programs in order to deal with multiple jobs.

66

CHAPTER 3

Concurrency

Multi-tasking can increase the scalability of your Contiki-NG applications.
This chapter will explore how to work with concurrency in Contiki-NG
applications.

The following is a list of topics that will be covered in this chapter:

e Introduction to concurrency
e Concurrency approach in Contiki-NG
e Threading

o Taskscheduling

Introduction to Concurrency

Concurrency is the ability to perform more than one task at the same time.
Let’s say you have a WSN mote with multiple sensor devices. You want to
sense through all the sensors at the same time.

We illustrate a concurrency in Figure 3-1. A process can handle
multiple tasks with different problem models. We can achieve concurrency
by applying a queue that is either FIFO (First In First Out) or LIFO (Last In
First Out). Another solution is to apply asynchronous code in our program.

In this chapter, we will explore how to implement concurrency in
Contiki-NG applications. Some samples are provided to show how to do it.

© Agus Kurniawan 2018 67
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_3

CHAPTER 3 CONCURRENCY

Concurrency Approach in Contiki-NG

Contiki-NG provides concurrency features. We can use several approaches
to develop application-based concurrency. There are four methods with
which we can implement concurrency in Contiki-NG applications, as
follows:

o Processes
e Timers
e Threading
o Taskscheduling
We will discuss and implement these methods in the next section.

(=)

Task J ’ Task

a4 o
\

b Y

Process

/

Figure 3-1. A process performs some tasks

68

CHAPTER 3 CONCURRENCY

Introducing Contiki-NG Processes

Contiki-NG applications can run on a process that executes in either
cooperative or preemptive mode. Cooperative mode is regular execution
in the microcontroller. A process with preemptive mode runs with
interruptions resulting from I/0 or timers.

In general, we can create a process in Contiki-NG by calling PROCESS().
We can define a process as

PROCESS(name, process name);

where
e name is a variable of the process, and

e process_name is a process name that is represented as
a string.

Then, we implement this process using PROCESS THREAD. We can
declare this as follows:

PROCESS _THREAD(name, ev, data)

{
PROCESS_BEGIN();

// do semothing
PROCESS_END();

}

The following is a list of macros APIs for processes:

o PROCESS BEGIN(): Declares the beginning of a process
protothread

o PROCESS END(): Declares the end of a process
protothread

e PROCESS EXIT(): Exits the process

69

CHAPTER 3 CONCURRENCY

o PROCESS WAIT EVENT(): Waits for any event

o PROCESS WAIT EVENT UNTIL():Waits for an event, but
with conditions

o PROCESS YIELD():Waits for any event; equivalent to
PROCESS_ WAIT EVENT()

o PROCESS WAIT UNTIL(): Waits for a given condition;
may not yield the microcontroller

e PROCESS PAUSE(): Temporarily yields the
microcontroller

For demo purposes, we will create a simple Contiki-NG app. Create
a folder called demo-process. Then, create two files, demo-process.c
and Makefile. The first step is to write a program for demo-process.c.
We define three processes as follows:

#include "contiki.h"
#include <stdio.h>

PROCESS (myprocess1, "process 1");
PROCESS (myprocess2, "process 2");
PROCESS(myprocess3, "process 3");
AUTOSTART _PROCESSES (&myprocessi,&myprocess2,8myprocess3);

You can see that we created three processes. We pass these process
variables to AUTOSTART PROCESSES(). We implement the following code for
our processes:

PROCESS_THREAD(myprocess1, ev, data)

{
PROCESS BEGIN();

printf("This message from process 1\n");

70

CHAPTER 3 CONCURRENCY

PROCESS_END();

}
PROCESS_THREAD(myprocess2, ev, data)

{
PROCESS_BEGIN();

printf("This message from process 2\n");

PROCESS END();

}
PROCESS_THREAD(myprocess3, ev, data)

{
PROCESS BEGIN();

printf("This message from process 3\n");

PROCESS END();
}

Save this program. We continue to Makefile. We declare our program
and the path of the Contiki-NG root directory via CONTIKI:

CONTIKI_PROJECT = demo-process
all: $(CONTIKI PROJECT)

CONTIKI = /home/user/Documents/book/contiki
include $(CONTIKI)/Makefile.include

Change the Contiki-NG path directory in CONTIKI.

To compile and run the program, you can open Terminal and navigate
to a program folder. You can type the following commands. For instance,
we run on local native OS:

$ make TARGET=native
$./demo-process.native

71

CHAPTER 3 CONCURRENCY

If this succeeds, you will see messages from each process in Terminal.
See Figure 3-2.

X agusk@akur01: ~/Documents/contiki/demo-process

cc /home /agusk/contiki-ng//os/net/rpl-lite/rpl-ext-header.c
cc /home fagusk/contiki-ng//os/net/rpl-lite/rpl.c

cc /home fagusk/contiki-ng//os/net/rpl-1ite/rpl-nbr-policy.c
CC J/home fagusk/contiki-ng//os/net/rpl-lite/rpl-mrhof.c

cc /home fagusk/contiki-ng//os/net/rpl-1ite/rpl-ns.c

CC /home fagusk/contiki-ng//os/net/rpl-lite/rpl-dag.c

cc /home fagusk/contiki-ng//os/net/rpl-1lite/rpl-dag-root.c
AR contiki-native.a

cc demo-process.c

LD demo-process.native

rm demo-process.co
agusk@akurel:~/Documents/contiki/demo-process$./demo-process.native

[INFO: Main] Starting Contiki-NG-develop/v4.0-30-g3c9ffed-dirty

[INFO: Main] Net: tuné

[INFO: Main] MAC: nullmac

[WARN: Tun6] Failed to open tun device (you may be lacking permission). Ru
nning without network.

[INFO: Main] Link-layer address 0102.0304.0506.0708

[INFO: Main] Tentative link-local IPv6 address fe86::302:304:506:708

[INFO: Native] Added global IPv6 address fdoo::302:304:506:708
This message from process 1
This message from process 2
This message from process 3

Figure 3-2. Running demo-process app

Working with Timers

We can perform some activities by utilizing timer objects. Contiki-NG
has one clock and several timer modules, such as timer, stimer, ctimer,
etimer, and rtimer. All these libraries can be found in the <contiki>/os/
sys folder.

We will explore these libraries in the next section.

Clock Library

The Clock library can be used for doing general activities with time.
Itis declared in clock.h from the <contiki>/o0s/sys folder. You can see
the content of the clock.h file here:

72

CHAPTER 3 CONCURRENCY

clock time t clock time(); // Get the system time.

unsigned long clock_seconds(); // Get the system time in
seconds.

void clock delay(unsigned int delay); // Delay the CPU.

void clock wait(int delay); // Delay the CPU for a number of
clock ticks.

void clock init(void); // Initialize the clock module.
CLOCK_SECOND; // The number of ticks per second.

To use this library, call these functions directly from the program. For
instance, you can access a clock time by calling the clock time() function:

clock time t t = clock time();
printf("Timer start: %lu \n", t);

Timer Library

The Timer library provides functions for setting, resetting, and restarting
timers, and for checking if a timer has expired. This library is found in the
timer.h file and defines several functions as follows:

void timer set(struct timer *t, clock time t interval);

// Start the timer.

void timer reset(struct timer *t); // Restart the timer from
the previous expiration time.

void timer restart(struct timer *t); // Restart the timer from
current time.

int timer expired(struct timer *t); // Check if the timer has
expired.

clock time t timer remaining(struct timer *t); // Get the time
until the timer expires.

73

CHAPTER 3 CONCURRENCY

An application must manually check if its timers have expired. To use
the Timer library, we call timer set(). Then, we can verify an expired
timer by calling the timer expired() function:

timer set(&timer timer, 3 * CLOCK SECOND);

if(timer expired(&timer timer)){

t = clock time();

printf("timer expired: %lu \n", t);
}

Stimer Library

The Stimer library is similar to the timer library, but uses time values
in seconds. The following is a list of Stimer functions defined in the
stimer.h file.

void stimer set(struct stimer *t, unsigned long interval);

// Start the timer.

void stimer reset(struct stimer *t); // Restart the stimer from
the previous expiration time.

void stimer restart(struct stimer *t); // Restart the stimer
from current time.

int stimer expired(struct stimer *t); // Check if the stimer
has expired.

unsigned long stimer remaining(struct stimer *t); // Get the
time until the timer expires.

We can use the Stimer library with the same approach as the timer
library. We set a time by calling stimer set(). Then, we check for an
expired timer using the stimer expired() function:

74

CHAPTER 3 CONCURRENCY
stimer set(&stimer timer, 3);

if(stimer expired(&stimer timer)){
t = clock time();
printf("stimer expired: %1lu \n", t);

}

Etimer Library

The Etimer library is an event timer library that generates an event. We can
verify this event using PROCESS WAIT EVENT UNTIL().You can see event
timer declarations in the etimer.h file:

void etimer set(struct etimer *t, clock time t interval);

// Start the timer.

void etimer reset(struct etimer *t); // Restart the timer from
the previous expiration time.

void etimer restart(struct etimer *t); // Restart the timer
from current time.

void etimer stop(struct etimer *t); // Stop the timer.

int etimer expired(struct etimer *t); // Check if the timer has
expired.

int etimer pending(); // Check if there are any non-expired
event timers.

clock time t etimer next_expiration time(); // Get the next
event timer expiration time.

void etimer request poll(); // Inform the etimer library that
the system clock has changed.

75

CHAPTER 3 CONCURRENCY

For demo purposes, we can call etimer set() to set our event timer.
Then, we wait for the expired event using PROCESS WAIT EVENT UNTIL():

etimer set(8etimer timer, 3 * CLOCK SECOND);
while(1){

PROCESS WAIT EVENT UNTIL(etimer expired(&etimer timer));
etimer reset(8etimer timer);

CTimer Library

The CTimer library provides a function callback that will be called when
timer expiration occurs. CTimer functions are defined in the ctimer. h file:

void ctimer set(struct ctimer *c, clock time t t, void(*f)(void *),
void *ptr); // Start the timer.

void ctimer reset(struct ctimer *t); // Restart the timer from
the previous expiration time.

void ctimer restart(struct ctimer *t); // Restart the timer
from current time.

void ctimer stop(struct ctimer *t); // Stop the timer.

int ctimer expired(struct ctimer *t); // Check if the timer has
expired.

For this demo, we can define a function, perform_ctime_function().
This function is passed to ctimer set() when we set the ctimer library:

void
perform ctime callback()

{

printf("Process demo timer3: ctimer callback called\n");

76

CHAPTER 3 CONCURRENCY

ctimer set(&ctimer timer, CLOCK SECOND, perform ctime callback,
NULL);

Rtimer Library

The Rtimer library provides scheduling and execution for real-time
tasks. We can define a specific execution time when we set rtimer
using the rtimer_set() function. You can see the rtimer function in
the rtimer.h file:

RTIMER_CLOCK LT(a, b); // This should give TRUE if 'a' is less
than 'b', otherwise false.

RTIMER_ARCH_SECOND; // The number of ticks per second.

void rtimer arch init(void); // Initialize the rtimer
architecture code.

rtimer clock t rtimer arch now(); // Get the current time.

int rtimer arch schedule(rtimer clock t wakeup time);

// Schedule a call to rtimer run next().

For implementation, we declare a function that is passed in the
rtimer set() function. We also set the execution time:

static rtimer clock t timeout rtimer = RTIMER_SECOND / 2;
void
perform rtime callback()

{

printf("Process demo timer3: rtimer callback called\n");

rtimer set(8rtimer timer, RTIMER NOW() + timeout rtimer, o,
perform rtime callback, NULL);

77

CHAPTER 3 CONCURRENCY

Put It All Together

Now, we will try to use Contiki-NG to run a demo about timers. We create a
folder, called demo-timer. We create two files, demo-timer.c and Makefile.
We put all code from all the timer libraries in the demo-timer.c file

The following is the complete code for the demo-timer. c file:

#include "contiki.h"
#include "sys/clock.h"
#include "sys/timer.h"
#include "sys/stimer.h"
#include "sys/etimer.h"
#include "sys/ctimer.h"
#include "sys/rtimer.h"
#include <stdio.h>

static int counter;

static struct timer timer timer;
static struct stimer stimer timer;
static struct etimer etimer timer;
static struct ctimer ctimer timer;
static struct rtimer rtimer timer;

PROCESS(demo_timer1, "demo timer stimer");

PROCESS(demo_timer2, "demo etimer™);

PROCESS(demo_timer3, "demo ctime");

PROCESS(demo_timer4, "demo rtime");

AUTOSTART PROCESSES(&demo_timer1, &demo timer2,
8demo_timer3, &demo timer4);

static rtimer clock_t timeout_rtimer = RTIMER_SECOND / 2;

void
perform ctime callback()

78

CHAPTER 3 CONCURRENCY

printf("Process demo timer3: ctimer callback called\n");

if(counter>=2){
printf("ctimer is stopped\n");
ctimer stop(&ctimer timer);

}

else
ctimer reset(&ctimer timer);

void
perform rtime callback()

{

}

printf("Process demo timer3: rtimer callback called\n");

if(counter<2){

rtimer set(8rtimer timer, RTIMER NOW() + timeout_ rtimer, o,

perform rtime callback, NULL);
}

else
printf("rtimer is stopped\n");

PROCESS THREAD(demo_timeri, ev, data)

{

PROCESS BEGIN();

counter = 0;

clock time t t = clock time();
printf("Timer start: %lu \n", t);

timer set(&timer timer, 3 * CLOCK SECOND);
stimer set(&stimer timer, 3);

79

CHAPTER 3 CONCURRENCY
while(1){

if(timer expired(&timer timer)){
t = clock time();
printf("timer expired: %lu \n", t);
timer reset(&timer timer);
counter++;
}
if(stimer expired(&stimer timer)){
t = clock time();
printf("stimer expired: %1lu \n", t);
stimer reset(&stimer timer);
counter++;
}
if(counter>=2)
break;
}
printf("demo_timer1l process end\n");
PROCESS_END();

}

PROCESS THREAD(demo_timer2, ev, data)

{
PROCESS BEGIN();

printf("demo etimer\n");
clock time t t = clock time();
printf("etimer start: %1lu \n", t);

printf("set etimer 3 clock second\n");
etimer set(8etimer timer, 3 * CLOCK SECOND);

while(1){

PROCESS WAIT EVENT UNTIL(etimer expired(&etimer timer));

80

CHAPTER 3 CONCURRENCY

etimer reset(&etimer timer);
if(counter»=2)
break;

}

printf("demo_timer2 process end\n");

PROCESS_END();

}
PROCESS THREAD(demo_timer3, ev, data)

{
PROCESS_BEGIN();

printf("demo ctime\n");

while(1) {
ctimer set(&ctimer timer, CLOCK SECOND, perform ctime
callback, NULL);
PROCESS YIELD();

}

PROCESS_END();
}

PROCESS THREAD(demo_timer4, ev, data)

{
PROCESS BEGIN();

printf("demo rtime\n");
while(1) {
rtimer set(8rtimer timer, RTIMER NOW() + timeout rtimer, o,
perform rtime_callback, NULL);

PROCESS_YIELD();
}

PROCESS_END();
}

81

CHAPTER 3 CONCURRENCY

Next, we write the Makefile file with the following code:

CONTIKI PROJECT = demo-timer
all: $(CONTIKI PROJECT)

CONTIKI = /home/usexr/Documents/book/contiki
include $(CONTIKI)/Makefile.include

Change CONTIKI to your Contiki-NG root folder. Now, you can compile
and run this program. Open Terminal and navigate to your program folder.
Then, type these commands:

$ make TARGET=native
$./demo-timer.native

This program will run in Terminal. You can run it on your Contiki-NG
hardware. You can see the program output on Terminal in Figure 3-3.

2 agusk@akur01: ~/Documents/contiki/demo-timer

agusk@akurel:~/Documents/contiki/demo-timersS ./demo-timer.native

[INFO: Main] starting Contiki-NG-develop/v4.0-30-g3c9ffed-dirty

[INFO: Main] Net: tun6

[INFO: Main] MAC: nullmac

[WARN: Tun6] Failed to open tun device (you may be lacking permission). Ru
nning without network.

[INFO: Main] Link-layer address 0162.0304.0506.0708

[INFO: Main] Tentative link-local IPv6é address fe80::302:304:506:708

[INFO: Native] Added global IPv6 address fdee::302:304:506:708
Timer start: 1511573896918

stimer expired: 1511573899000

timer expired: 1511573899918

demo_timer1 process end

demo etimer

etimer start: 1511573899918

set etimer 3 clock_second

demo ctime

demo rtime

Process demo_timer3: rtimer callback called
rtimer is stopped

Process demo_timer3: ctimer callback called
ctimer is stopped

demo_timer2 process end

Process demo_timer3: rtimer callback called
rtimer is stopped

Process demo_timer3: ctimer callback called
ctimer is stopped

Figure 3-3. Running demo-timer app

82

CHAPTER 3 CONCURRENCY

Threading

Contiki-NG OS removes multithreading from the source code. You
canread about it at https://github.com/contiki-ng/contiki-ng/
pull/172. This probably is also supported in the next version. If you

want to work with multithreading, you can use regular Contiki. Contiki
provides threading so that we can perform many tasks through mt_thread
in the mt.h header file. This file is found in the Contiki source code in the
<contiki_root>/core/sys/ folder. You can see several functions in the
mt.h file as follows:

void mt_init(void) : Initializes the library.

void mt_remove(void) : Uninstalls the library.

void mt_start(struct mt thread *thread, void (* function)(void *),
void *data) : Starts a thread.

void mt_exit(void) : Exits a thread.

void mt_exec(struct mt_thread *thread) : Execute as thread.
void mt_yield(void) : Release control voluntarily.

void mt_stop(struct mt_thread *thread) : Stops a thread.

In this section, we will develop multithreading using Contiki. Please
skip this section if you still work with Contiki-NG.
You can see threading states for a Contiki app in Figure 3-4.

83

https://github.com/contiki-ng/contiki-ng/pull/172
https://github.com/contiki-ng/contiki-ng/pull/172

CHAPTER 3 CONCURRENCY

Figure 3-4. Threading states for a Contiki app

Each thread runs on a process. Each thread can communicate by either
sharing resources or exchanging data. Figure 3-5 shows three threads
running on a process.

We can create a thread within a Contiki process with the following
method:

static struct mt_thread threadi;

int n1=10;

mt_init();

mt_start(&thread1, thread compute, 8n1);

Our thread is passed a function, called thread_compute. We also give
a parameter for our function. The thread compute() function can be
declared as follows:

void
thread compute(void *data)

{
printf(“"calling thread compute()\n");

84

CHAPTER 3 CONCURRENCY

// do something
mt_yield();
mt_exit();

You can see that our function is executed and then that thread is closed
usingmt_yield() andmt_exit().

RN

Figure 3-5. Threads in Contiki process

N

For demo purposes, we create two threads. Each thread will execute a
loop for a certain time based on the input data. You can start by creating
a folder, called demo-thread. Then, create two files, demo-thread.c and
Makefile.

First, we write code in the demo-thread. c file. We define two threads.
We also create a function, called thread compute(), that will be passed on
our threads.

You can write the following complete code for the demo-thread. c file:

#include "contiki.h"
#include "sys/mt.h"
#include <stdio.h>

PROCESS(mythread, "demo thread");
AUTOSTART PROCESSES(&mythread);

85

CHAPTER 3 CONCURRENCY
static int count;

void
thread compute(void *data)

{
printf("calling thread compute()\n");

int num = *((int*)data);

printf("num: %d\n", num);

int i;

int val = 0;

for(i=0;i<num;i++){
val+=2;

}
printf("num: %d, total: %d\n", num, val);

count++;
mt_yield();
mt_exit();

}

PROCESS THREAD(mythread, ev, data)

{
PROCESS_BEGIN();

printf("demo threading\n");

static struct mt_thread threadi;
static struct mt_thread thread2;

int n1=10, n2=20;

mt_init();
mt_start(&thread1, thread compute, 8n1);
mt_start(&thread2, thread compute, &n2);

86

CHAPTER 3 CONCURRENCY

mt_exec(&thread1);
mt_exec(&thread2);
while(1) {

if(count>1) {
mt_stop(&thread1);
mt_stop(&thread2);

break;

}

printf("thread exit\n");
mt_remove();

PROCESS_END();

Now, we can create the Makefile. We declare the project name and
Contiki path, which is defined ion CONTIKI:

CONTIKI PROJECT = demo-thread
all: $(CONTIKI PROJECT)

CONTIKI WITH RIME = 1
CONTIKI = /home/user/Documents/book/contiki
include $(CONTIKI)/Makefile.include

You can save all the files. You can compile and run the program with
these commands in Terminal:

$ make TARGET=native
$./demo-thread.native

87

CHAPTER 3 CONCURRENCY
A sample of the program output can be seen in Figure 3-6.

"

& 1 user@instant-contiki: ~/Documents/book/demo-thread

File Edit View Search Terminal Help

user@instant-contiki:~/Documents/book/demo-thread$ make TARGET=native
make: Nothing to be done for ‘all'.
user@instant-contiki:~/Documents/book/demo-thread$./demo-thread.native
Contiki-3.x-3330-9719f712 started with IPV6, RPL

Rime started with address 1.2.3.4.5.6.7.8

MAC nullmac RDC nullrdc NETWORK sicslowpan

Tentative link-local IPv6 address fe860:0000:0000:0000:0302:0304:0506:0708
demo threading

calling thread_compute()

num: 10

num: 10, total: 20

calling thread_compute()

num: 20

num: 20, total: 40

hhread exit

Figure 3-6. Program output for demo-thread

Task Scheduling

Task scheduling means that all tasks are scheduled to be executed. In
a Contiki-NG application, task scheduling collects all tasks in process,
timers, and threading.

In this section, we will try to implement task scheduling by utilizing the
Etimer library. Our task list will be stored on the Contiki-NG list that you
can find in the <contiki>/os/1ib/list.h file. Figure 3-7 shows our demo

to implement task scheduling.

88

CHAPTER 3 CONCURRENCY

rtimer

Execute a task

Figure 3-7. Executing tasks

Now, create a folder, called demo-scheduling. We also create a demo-
scheduling.c file for our main program. The following is a complete
program for the demo-scheduling.c file:

#include "contiki.h"
#include "sys/clock.h"
#include "sys/rtimer.h"
#include "lib/list.h"
#include <stdio.h>

PROCESS(demo_taskscheduling, "demo task scheduling");
AUTOSTART _PROCESSES(&demo_taskscheduling);

static struct rtimer rtimer timer;

struct simple task {
struct simple task *next;
int value;

};

static struct simple_task *s;
static int number task = 10;
static int is completed = -1;

89

CHAPTER 3 CONCURRENCY
LIST(task list);

void
perform rtime callback(struct rtimer *t, void *ptr)

{
printf("task callback called\n");

int num = *((int*)ptr);
printf("perform task=%d\n", num);

s = list item next(s);

if(s!=NULL){
rtimer set(&rtimer timer, RTIMER NOW() + (RTIMER SECOND/2), 1,
perform rtime_callback,&s->value);

telse{
printf("all tasks completed\n");
is completed = 1;

}

}

PROCESS_THREAD(demo_taskscheduling, ev, data)

{
PROCESS BEGIN();

printf("demo task schedule\n");

list init(task list);
int i;
printf("prepare task data\n");
struct simple task task[10];
for(i=0;i<number task;i++){
task[i].value = i + 1;
list add(task list, &task[i]);
}

90

CHAPTER 3 CONCURRENCY

s = list head(task list);
rtimer set(&rtimer timer, RTIMER NOW() + (RTIMER SECOND/2), 1,
perform rtime callback,&s->value);

while(1) {
if(is_completed>0)
break;
}
printf("program exit\n");
PROCESS_END();
}

To compile and run the program, you should create a Makefile file
with the compiler configuration. We can create these scripts:

CONTIKI_PROJECT = demo-scheduling
all: $(CONTIKI PROJECT)

CONTIKI = /home/user/Documents/book/contiki
include $(CONTIKI)/Makefile.include

Change CONTIKI to your Contiki-NG root path.

Now, you can compile and run this program. For instance, we
compile and run it for a local native app. Open a Terminal and type these
commands:

$ make TARGET=native
$./demo-scheduling.native

If it succeeds, all tasks will be executed. You can see the program
output in Figure 3-8.
How does this work?

91

CHAPTER 3 CONCURRENCY

agusk@akur01: ~/Documents/contiki/demo-scheduling

agusk@akur®1:~/Documents/contiki/demo-scheduling$./demo-scheduling.native

[INFO: Main] Starting Contiki-NG-develop/v4.8-30-g3c9ffed-dirty

[INFO: Main] Net: tuné

[INFO: Main] MAC: nullmac

[WARN: Tun6] Failed to open tun device (you may be lacking permission). Ru
nning without network.

[INFO: Main] Link-layer address 06102.0304.0506.0708

[INFO: Main] Tentative link-local IPv6 address fe80::302:304:506:708

[INFO: Native] Added global IPv6 address fdoe::302:304:506:708
demo task schedule
prepare task data
task callback called
perform task=1

task callback called
perform task=2

task callback called
perform task=3

task callback called
perform task=4

task callback called
perform task=5

task callback called
perform task=6

task callback called
perform task=7

task callback called
perform task=8

task callback called
perform task=9

task callback called
perform task=16

all tasks completed
irogran exit

Figure 3-8. Program output for demo-scheduling

This program starts by declaring a task list in the struct model:

struct simple task {
struct simple task *next;
int value;

}s

static struct simple_task *s;
static int number task = 10;
static int is completed = -1;
LIST(task list);

92

CHAPTER 3

Then, it generates the task list in the main process:
list init(task list);
int i;
printf("prepare task data\n");
struct simple task task[10];
for(i=0;i<number task;i++){

task[i].value = i + 1;

list add(task list, &task[i]);
}

Next, it runs a task by picking it up from the task list:
s = list head(task list);

CONCURRENCY

rtimer set(&rtimer timer, RTIMER NOW() + (RTIMER SECOND/2), 1,

perform rtime_callback,&s->value);

Each task will be executed in the perform _rtime callback() function.

After completion, it gets a task again and then executes it:

void

perform rtime callback(struct rtimer *t, void *ptr)

{

}

printf("task callback called\n");

int num = *((int*)ptr);
printf("perform task=%d\n", num);

s = list_item next(s);
if(s!=NULL){

rtimer set(&rtimer timer, RTIMER NOW() + (RTIMER SECOND/2), 1,

perform rtime_callback,&s->value);
telse{

printf("all tasks completed\n");

is_completed = 1;

}

93

CHAPTER 3 CONCURRENCY

To exit from our program, we can check our program state:

while(1) {
if(is_completed>0)
break;

Summary

We have learned how to implement concurrency in Contiki-NG OS.
Performing several tasks in the Contiki-NG application has been reviewed.
We explored process, timers, threading, and task scheduling.

In the next chapter, we will learn how to communicate between a

Contiki-NG application and the computer.

94

CHAPTER 4

Contiki-NG
and Computer
Communication

Dada communication capabilities available on WSN motes enable the
exchange of data among WSN motes. In this chapter, we will learn how
Contiki-NG aids communication among WSN motes and from a WSN
mote to a computer. We will also explore how to build middleware that
enables WSN motes to communicate with other systems.

The following is a list of topics we will cover in this chapter:

¢ Communication models for Contiki-NG
e Serial communication
e Building communication among Contiki-NG motes

e Building communication between computer and
Contiki-NG motes

e Developing middleware

© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_4

95

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

Communication Models for Contiki-NG

How you want to communicate between WSN motes and computers will
determine what kind of communication model you use. As you know, each
WSN mote usually has network capability so it can exchange data with
WSN motes and computers.

A communication model for Contiki-NG is depicted in Figure 4-1.
Some WSN motes have the capability to connect to servers directly, but
other motes may not, so those motes use a hub/gateway/middleware to

communicate with servers.

'y

" A 4

Figure 4-1. Communication models in Contiki-NG

In this chapter, we will learn how WSN motes communicate with
others. We need at least two motes to implement our demo.

96

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

Serial Communication

Serial communication can be defined as a process used to send and
receive a bit at a time sequentially. Sometimes serial communication is
called UART (Universal Asynchronous Receiver/Transmitter). Technically,
we already used serial communication when we uploaded Contiki-NG
programs to WSN motes in previous chapters. We also communicate with
WSN motes via the printf() function. Then, we listen to the messages
from printf() using the command make login.

A serial communication protocol is represented in Figure 4-2. In
hardware implementation, a serial communication needs at least three
pinouts. These are Rx (Receiver), Tx (Transmitter), and GND (Ground) pins.

—p 1| 0(1]|2|0(1|0]|1 |1 =—

Tx Tx

=<l

Rx Rx

N
GND GND
Board Board

Figure 4-2. Serial communication

Communication Between Contiki
Mote and Computer

In this section, we will build Contiki and Contiki-NG programs to
communicate between a Contiki mote and a computer. This is useful
because we can control our Contiki motes from the computer. Running
applications on a computer has benefits, such as interacting with the
database server and communicating with the cloud server.

97

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

There are a lot of methods used to communicate between a computer
and a Contiki mote. We will focus on two methods: serial communication
and shell. We will explore these methods in the next section.

Let’s build!

Access Contiki Motes via Serial Communication

Since our WSN motes are attached to the computer through serial
communication, we can initiate communication between the computer
and a WSN mote. Some application platforms, such as C/C++, Java,
Python, C#, and Node.js, provide libraries with which to implement serial
communication.

In this section, we will try to access WSN motes using Python through
serial communication. To implement serial communication in Python,
we use the pyserial library. You can find this library at https://pypi.
python.org/pypi/pyserial. This library can be installed using pip.

You can verify if your computer has installed pip or not. You can type
this command in Terminal:

$ which pip

If you don’t get a response, it means your computer is missing the pip
program. You can install pip using this command in Terminal:

$ sudo apt-get install python-pip

Now, you can install the pyserial library by typing this command in

Terminal:
$ pip install pyserial

You also can install the pyserial library using easy install. You can
type this command in Terminal:

$ easy install -U pyserial

98

https://pypi.python.org/pypi/pyserial
https://pypi.python.org/pypi/pyserial

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

Make sure your computer is connected to the Internet.

Next, you must write a Python program to listen for incoming messages
on a specific serial port. You should know which serial port is used by the
Contiki mote. You need it because you will use it on your program.

To find a serial port from the Contiki mote, you can open Terminal and
type this command:

$ 1s /dev/tty*

You should see a list of connected serial ports available on your
computer. Depending on your Contiki mote model, you can verify the port
by turning the mote on/off so you should which a new attached serial port.
For instance, my Contiki mote is detected as /dev/ttyUSBO. You can see it
in Figure 4-3.

Now, you will develop the Python program. You will print all incoming
data from the serial port to the console. Set the baudrate to 115200 for the
serial-port speed. Create a file, called contiki-viewer.py, and write these
complete scripts. Change the PORT value to that for your Contiki-NG mote:

#!/usxr/bin/python
import serial

PORT ='/dev/ttyUSBO'

ser = serial.Serial(
port=PORT,\
baudrate=115200,\
parity=serial.PARITY_NONE,\
stopbits=serial.STOPBITS_ONE,\
bytesize=serial.EIGHTBITS,\
timeout=0)

print("connected to: " + ser.portstr)
ser.write("help\n")

while True:

99

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

line = ser.readline()
if line:
print(line),

ser.close()

Save this program.

@ - o0 user@instant-contiki: ~

File Edit View Search Terminal Help

user@instant-contiki:~$ 1s /dev/tty*

fdev/tty Jdev/tty23 [dev/tty39 [dev/tty54 [fdev/ttysie [dev/ttyS26
Jdev/ttye [/dev/tty24 [dev/tty4a [dev/tty55 Jdev/ttysi1 [dev/ttys27
Jdev/ttyl /dev/tty25 [dev/tty40 [dev/tty56 /dev/ttysi2 [dev/ttys2s
Jdev/tty10 [dev/tty26 [dev/tty4l [dev/tty57 J/dev/ttysi3 [dev/ttys29
Jdev/ttyll [dev/tty27 [dev/tty42 [dev/tty5e Jdev/ttysi4 [dev/ttysS3
Jdev/tty12 [dev/tty28 [dev/tty43 [dev/tty59 Jdev/ttySi5 [dev/ttysS3e
Jdev/tty13 [dev/tty29 [dev/tty44 [dev/ttyé Jdev/ttySi6 [dev/ttysS31
Jdev/tty14 [dev/tty3 [dev/tty45 [dev/tty60 Jdev/ttysi7 [dev/ttys4
Jdev/tty15 [dev/tty3@ [dev/tty46 [dev/tty61 Jdev/ttysig8 [dev/ttysSs
Jdev/tty16 [dev/tty31 [dev/tty47 [dev/tty62 J/dev/ttys19 [dev/ttys6
Jdev/ttyl? [dev/tty32 [dev/tty48 [dev/ttyé63 Jdev/ttys2 [dev/ttyS7
Jdev/ttyl8 [dev/tty33 [dev/tty49 [dev/tty7 Jdev/ttys2e [dev/ttyss
Jdev/tty1l9 [dev/tty34 [dev/tty5 [dev/ttys Jfdev/ttys21 [dev/ttyS9
Jdev/tty2 /dev/tty35 [dev/tty50 [dev/tty9 J/dev/ttys22 [dev/ttyUSBe
Jdev/tty20 [dev/tty36 [dev/tty51 [dev/ttyprintk /[dev/ttyS23

Jdev/tty21 [dev/tty37 [dev/tty52 [dev/ttySe J/dev/ttys24

Jdev/tty22 [dev/tty38 [dev/tty53 [dev/ttySi J/dev/ttys2s
user@instant-contiki:~$ ‘

Figure 4-3. Getting a list of serial ports in your computer

To simulate this demo, you should upload the Contiki-NG program to
a Contiki-NG mote. You can use the same program from Chapter 1, Hello
World. You should upload that program into the Contiki mote.

After Contiki-NG is deployed with a Contiki-NG program, you can run
the Python program, contiki-viewer.py, by typing this command:

$ python contiki-viewer.py

100

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

If you have error issues related to security access, you probably should
run it with administrator privileges. Type this command:

$ sudo python contiki-viewer.py

After it has executed, you will see that this program is waiting for
incoming messages from the serial port, as shown in Figure 4-4.

i @ - o user@instant-contiki: ~/Documents/book/py

File Edit View Search Terminal Help
user@instant-contiki:~/Documents/book/pyS sudo python contiki-viewer.py
[sudo] password for user:

connected to: fdev/ttyUsBe

Figure 4-4. Executing Python program for listening to the serial port

If you do not see anything, you should reset your Contiki mote. Now
the message from the Hello World program can be seen on the console.
You can see my program depicted in Figure 4-5.

101

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

[@ - o user@instant-contiki: ~/Documents/book/py

File Edit View Search Terminal Help

user@instant-contiki:~/Documents/bookS 1s
contiki demo-counter demo-sensor hello-world py
user@instant-contiki:~/Documents/book$ cd py/
user@instant-contiki:~/Documents/book/pyS 1s
contiki-viewer.py
user@instant-contiki:~/Documents/book/pyS sudo python contiki-viewer.py
connected to: /dev/ttyUSBe

Rime started with addre ss 0.18. 116.0.22.192.94.255
MAC 00:12:74:00:16:c0:5e:ff Con tiki-3.x-33 30-9719f712 started. Node id is not
set.
nullsec CSMA ContikiMAC, channel check rate 8 H z, radio channel 26, CCA thresh
old -45
Tentative link-local IPv6 address feB80:0000:0000:0000:0212:74 00:16c0:5eff
Starting 'Hel lo world pr ocess'
Hello, world

Rime started with a ddress 6. 18.116.0.22.192.94.255
MAC 00:12:74:00:16:c0:5e:ff Contiki-3.x -3330-9719f712 started. Node id is not
set.
nullsec CSMA ContikiMAC, channel ch eck rate 8 Hz, radio channel 26, CCA thresh
old -45
Tentative link-loca 1 IPv6 address fe80:0000:0000:0000:0212: 7400:16 cO:5eff
Starting 'Hello world process'
H ello, world I

Figure 4-5. Reading data from serial port of Contiki using Python

I have also tested with Contiki-NG on a TelosB mote. It works. You can
see that program output in Figure 4-6.

102

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

agusk@akur01: ~/Documents/contiki/py

{MSP430 Bootstrap Loader Version: 1.39-telos-7

Use -h for help

Reset device ...

|Done

make[2]: Leaving directory '/home/agusk/Documents/contiki/hello-world’'
make[1]: Leaving directory '/home/agusk/Documents/contiki/hello-world"'
rm hello-world.ihex

agusk@akurei:~/Documents/contiki/hello-world$ cd ..
agusk@akure1:~/Documents/contikis 1s

demo-counter demo-scheduling demo-thread hello-world

demo-process demo-sensor demo-timer Py
agusk@akurei:~/Documents/contiki$ cd py/
agusk@akur®i:~/Documents/contiki/pys 1s

contiki-viewer.py

agusk@akur@1:~/Documents/contiki/py$ python contiki-viewer.py
connected to: [dev/ttyUSBe

[INFO: Main] starting Contiki-NG-develop/v4.0-30-g9 3c9ffed-dirty
[INFO: Main] Net: sicslowpan
[INFO: Main] MAC: CSMA
[INFO: Main] Link-layer address 0012.7400.16c0.5eff
[INFO: Main] Tentative link-local IPv6 address fe86::212:7400:16¢c0:5eff
[INFO: Sky] Node id is not set.
[INFO: Sky] €SMA, radio channel 26, CCA threshold -45

Hello, world

Figure 4-6. Reading data from serial port of Contiki-NG using Python

How does this work?
This program starts by initializing the serial library and activating the
serial port of the Contiki-NG mote:

import serial

PORT ='/dev/ttyUSBO'

ser = serial.Serial(
port=PORT, \
baudrate=115200,\
parity=serial.PARITY_NONE,\
stopbits=serial.STOPBITS_ONE,\
bytesize=serial.EIGHTBITS,\
timeout=0)

103

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

After the serial port is activated, we listen for incoming message from
that serial port. We call readline() to read data from the serial port. Once
we receive data, we print the data to the console:

while True:
line = ser.readline()
if line:
print(line),
ser.close()

Last, we close our serial port by calling the close() method.

Contiki Shell

Contiki OS provides a shell API that we can utilize to communicate with
internal Contiki-NG motes. We find the shell API in the Contiki source
code in <Contiki-root>/apps/shell. You should see several API objects,
shown in Figure 4-7.

Contiki shell is very useful. Let’s say you build and deploy a Contiki
application onto a Contiki mote. Then, you want to analyze what is
happening inside the Contiki mote. To do this, you can build a custom
Contiki shell related to your needs. You call the shell from the Contiki-NG
mote and perform your analysis.

One important thing that you should know is the limitations on Contiki
mote storage and resources. Building more Contiki shell APIs means using
more mote resources. Make sure your Contiki shell is optimal for your
Contiki mote model.

In this section, we will learn how to build a Contiki shell application
and then deploy it to a Contiki mote. For this simple demo, we will use a
Contiki sample from the Contiki source code. You can see it at <Contiki-
root>examples/example-shell. This program runs for native platforms
such as a computer.

104

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

Open the example-shell.c file. You should see the PROCESS _
THREAD (example shell process, ev, data) function, as follows:

PROCESS THREAD(example shell process, ev, data)

{
PROCESS BEGIN();

serial shell init();

shell base64 init();

shell blink init();
/*shell coffee_init();*/
shell download init();
/*shell exec_init();*/
shell file init();

shell httpd init();

shell irc_init();
/*shell ping init();*/ /* ulIP ping */
shell power init();
/*shell profile init();*/
shell ps init();

/*shell reboot init();*/
shell rime debug init();
shell rime netcmd init();
shell rime ping init(); /* Rime ping */
shell rime_sendcmd_init();
shell rime sniff init();
shell rime init();

/*shell rsh_init();*/
shell run_init();

shell sendtest init();
/*shell sky init();*/
shell tcpsend init();

105

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

shell text init();
shell time init();
shell udpsend init();
shell vars init();
shell wget init();

PROCESS_END();

0.

Figure 4-7. Contiki shell APIs in Contiki source code

Each shell API is defined as shell xxx().Remarked codes are not
supported for native platforms such as a computer.

106

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

Now, you can compile and run this program. Open Terminal and
navigate to the <Contiki-root>examples/example-shell folder. Then,
type these commands:

$ make TARGET=native
$./example-shell.native

If it succeeds, you should see the Contiki shell that is shown in
Figure 4-8.

@ - o user@instant-contiki: ~/Documents/bookfexample-shell
File Edit View Search Terminal Help _
cC /home fuser /Documents fbook/contiki/core/ctk/ctk-filedialog.c
cc /home fuser /Documents /book/contiki/core/ctk/ctk-textentry-checkbox.c
cc /home fuser /Documents /book/contiki/core/ctk/ctk-textentry-cmdline.c
cc /home fuser /Documents /book/contiki/core/ctk/ctk-textentry-multiline.c
cc /home fuser /Documents /book/contiki/core/net/1lsec/anti-replay.c
cc /home fuser /Documents /book/contiki/core/net/11sec/ccm-star-packetbuf.
c
cC /home fuser /Documents /book/contiki/core/net/1lsec/nullsec.c

cp /homefuser/Documents/book/contiki/tools/empty-symbols.c symbols.c
cp /home/fuser/Documents/book/contiki/tools/empty-symbols.h symbols.h

cc symbols.c

AR contiki-native.a

cc example-shell.c

LD example-shell.native

rm example-shell.co

user@instant-contiki:~/Documents/book/example-shells 1s

contiki-native.a example-shell.c Makefile symbols.c
contiki-native.map example-shell.native obj_native symbols.h
user@instant-contiki:~/Documents/book/example-shells ./example-shell.native
Contiki-3.x-3330-9719f712 started

Rime started with address 2.1

MAC nullmac RDC nullrdc NETWORK Rime

2.1: Contiki>

Figure 4-8. Executing example-shell application

For this demo, you call one of the Contiki shells. To get a list of Contiki
shells, you can call the help shell command:

Contiki > help
Contiki > echo hello world!

107

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

You should get a list of supported shells in the console. Then, execute
echo shell command. A sample of the program’s output can be seen in
Figure 4-9.

i @ - o user@instant-contiki: ~/Documents/bookfexample-shell

File Edit View Search Terminal Help

packetize: put data into one packet

power: print power profile

powerconv: convert power profile to human readable output

ps: list all running processes

quit: exit shell

randwait <maxtime> <command>: wait for a random time before running a command
read <filename> [offset] [block size]: read from a file, with the offset and the
block size as options

repeat <num> <time> <command>: run a command every <time> seconds

rime-ping <node addr>: send a message to a specific node and get a reply

rm <filename>: remove the file named filename

routes: dump route list in binary format

run: load and run a PRG file

send <rexmits>: send data to the collector node, with rexmits hop-by-hop retrans
missions

sendcmd <node addr> <command>: send a command to the specified one-hop node
sendtest: measure single-hop throughput

size: print the size of the input

sniff: dump incoming packets

tcpsend <host> <port>: open a TCP connection

time [seconds]: output time in binary format, or set time in seconds since 1970
timestamp: prepend a timestamp to data

udpsend <host> <remote port> [local port]: send UDP data

unicast <node addr>: unicast data to specific neighbor

var <variable>: show content of a variable

vars: list all variables in RAM

wget [URL]: download a file with HTTP

write <filename>: write to file

2.1: Contiki>

1s

Cannot open directory

2.1: Contiki>

echo hello world!

hello world!

2.1: Contiki>

Figure 4-9. Running shell sample

You have run a Contiki shell on the computer as a native application.
Now, you will build a Contiki shell for a Contiki mote. For demo purposes,
I will use TelosB hardware that’s type is Sky.

You will use a sample program from the Contiki source code. You
can find shell-sky at <Contiki-root>examples/shell-sky folder.

108

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

If you open the sky-shell.c file, you should see the PROCESS THREAD(sky
shell process, ev, data) code as follows:

PROCESS THREAD(sky shell process, ev, data)

{
PROCESS BEGIN();

#if WITH_PERIODIC_DEBUG
ctimer set(&debug timer, 20 * CLOCK SECOND, periodic_debug, NULL);
#endif /* WITH_PERIODIC_DEBUG */

serial shell init();
shell blink_init();
/* shell file init();

shell coffee_init();*/
/* shell download init();*/
shell rime sendcmd init();
/* shell ps init();*/
shell reboot init();
shell rime init();
shell rime netcmd init();
/* shell rime ping init();
shell rime debug init();
shell rime debug runicast_init();*/
/* shell rime_sniff init();*/
shell sky init();
shell power init();
shell powertrace init();
/* shell base64 init();*/
shell text init();
shell time init();
/* shell sendtest init();*/

shell collect view init();

109

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

#if DEBUG_SNIFFERS
rime _sniffer add(8&s);
#endif /* DEBUG_SNIFFERS */

PROCESS_END();
}

You only use some essential shells due to the Contiki mote’s resource
limitation. Other shell APIs are remarked.

Now, compile and upload this program into your Contiki mote. For
instance, I use the Contiki-NG mote-based Sky. Open Terminal and
navigate to the <Contiki-root>examples/shell-sky folder. You can type
these commands to compile and upload the program to the Contiki-NG
mote with sky as target:

$ make TARGET=sky
$ make TARGET=sky savetarget
$ make shell-sky.upload

After it has completed, you can monitor your Contiki mote. You can
type this command:

$ make login

Then, reset your Contiki mote in order to use the Contiki shell. If it
succeeds, you should see the Contiki shell terminal as follows:

$./example-shell.native

Contiki-3. X-3330-g719‘F712 started
Rime started with address 2.1

MAC nullmac RDC nullrdc NETWORK Rime
2.1: Contiki»

110

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

You can see a sample of the Contiki shell in Figure 4-10.

r -

@ - 0 user@instant-contiki: ~/Documents/bookfcontikifexamples/sky-shell

File Edit View Search Terminal Help

46214 bytes programmed.

+++++ Resetting /dev/ttyusBoe

MSP430 Bootstrap Loader Version: 1.39-telos-7

Use -h for help

Reset device ...

Done

make[2]: Leaving directory ' /home/user/Documents/book/contiki/examples/sky-shell

make[1]: Leaving directory °/home/user/Documents/book/contiki/examples/sky-shell

rm sky-shell.ihex
user@instant-contiki:~/Documents/book/contiki/examples/sky-shells sudo make logi
n

[sudo] password for user:

using saved target 'sky'

..f../tools/sky/serialdump-1inux -b115200 /dev/ttyUSBe

connecting to /dev/ttyusBe (115200) [O0K]

oo)e#tgekwolll] Rime started with address 255.94

MAC ff:5€:00:00:00:00:00:00 Contiki-3.x-3330-g719f712 started. Node id is not se
t.
nullsec CSMA ContikiMAC, channel check rate 8 Hz, radio channel 26
Starting 'Sky Contiki shell'

255.94: Contiki>

Figure 4-10. Running Contiki shell on Contiki-NG mote

From the Contiki shell, you can test it using the commands help and
echo. You can type these commands:

Contiki> help
Contiki> echo hello world!

A sample of the program output from the Contiki shell can be seen in
Figure 4-11.

If you want to exit from the Contiki shell, you can type exit. If you get
problems quitting from the Contiki shell, you can press CTRL+C to enforce
the exit.

111

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

[@ - o user@instant-contiki: ~/Documents/book fcontikifexamples/sky-shell

File Edit View Search Terminal Help

powerconv: convert power profile to human readable output

powertrace [interval]: turn powertracing on or off, with reporting interval <int
erval>

quit: exit shell

randwait <maxtime> <command>: wait for a random time before running a command
reboot: reboot the system

repeat <num> <time> <command>: run a command every <time> seconds

rfchannel <channel>: change CC2420 radio channel (11 - 26)

routes: dump route list in binary format

send <rexmits>: send data to the collector node, with rexmits hop-by-hop retrans
missions

sendcmd <node addr> <command>: send a command to the specified one-hop node
sense: print out sensor data

senseconv: convert 'sense' data to human readable format

size: print the size of the input

time [seconds]: output time in binary format, or set time in seconds since 1970
timestamp: prepend a timestamp to data

txpower <power>: change CC2420 transmission power (0 - 31)

255.94: Contiki>

echo hello world!

SEND 18 bytes

hello world!

255.94: Contiki>

Figure 4-11. Running shell sample on Contiki mote

Contiki-NG Shell

Contiki-NG has modified Contiki shell. Contiki-NG shell is defined into a
module. You should enable a shell module if you want to use it. The shell
structure can be found in the <Contiki-NG-root>/0s/services/shell
folder. You can see it in Figure 4-12.

112

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

4 CONTIKI-NG-DEVELOP

Figure 4-12. Code structure of Contiki-NG shell

You can enable the shell module in the Makefile file from your
projects. Put this script in to enable this module:

MODULES += os/services/shell

Then, you can compile and upload your project program into your
Contiki mote. Since Contiki-NG needs more space on the Contiki mote,
your mote probably does not fit the program, so you will get an error while
compiling and flashing the program.

After you succeed in uploading program, you can test it by connecting
to the Contiki mote via a serial tool. You should get “>” on the serial
Terminal. Not all Contiki motes can run the Contiki-NG shell due to ROM
space size. My TelosB board cannot work with this shell. So, I tested it with
the TT CC2650 LaunchPad board. It works. I then run this command to
access the Contiki-NG serial:

$ make login PORT=/dev/ttyACMo BOARD=launchpad/cc2650
TARGET=s1f06-cc26xx

113

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

If you do not see “>,” try to reset the board. Then, press Enter. The

program output can be seen in Figure 4-13.
Now, you can test Contiki-NG with several commands. Try to execute

these shell commands:

> help
> ip-addr

agusk@akur01: ~/Documents/contiki/hello-world-shell

/home fagusk fcontiki-ng//arch/cpu/cc26xx-cc13xx/Makefile.cc26xx-cc13xx:172: recip
e for target 'login' failed
imake: *** [login] Error 255
lagusk@akure1:~/Documents/contiki/hello-world-shell$ make login PORT=/dev/ttyACM1
| BOARD=1launchpad/cc2656 TARGET=srf06-cc26xx
'/home/agusk/contiki-ng//tools/sky/serialdump-1linux -b115200 /dev/ttyACM1
lconnecting to /dev/ttyACM1 (115200) [OK]

A

'agusk@akur@1:~/Documents/contiki/hello-world-shell$ make login PORT=/dev/ttyACM®
| BOARD=launchpad/cc2650 TARGET=srfe6-cc26xx

‘/home fagusk/contiki-ng//tools/sky/serialdump-linux -b115200 [dev/ttyACM®
«connecting to /dev/ttyACM® (115200) [OK]

[INFO: Main] starting Contiki-NG-develop/v4.0-30-g3c9ffed-dirty

[INFO: Main] Net: sicslowpan

\[INFO: Main] MAC: CSMA

[INFO: Main] Link-layer address 0012.4b00.0797.6083

[INFO: Main] Tentative link-local IPv6 address fe86::212:4b00:797:6083

[INFO: CC26xx/CC13xx] TI CC2650 LaunchPad

[INFO: CC26xx/CC13xx] RF: Channel 25, PANID @xABCD

[INFO: CC26xx/CC13xx] Node ID: 24707

Hello, world

sas

|COnnand not found. Type 'help' for a list of commands |
#0012.4b00.0797.6083> [

Figure 4-13. Running Contiki-NG shell on TI CC2650 LaunchPad
board

These commands will list all registered Contiki-NG shells and display
current IP address. You can see my program output in Figure 4-14.

114

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

* agusk@akur01: ~/Documents/contiki/hello-world-shell

[INFO: CC26xx/CC13xx] RF: Channel 25, PANID GxABCD

[INFO: CC26xx/CC13xx] Node ID: 24707

Hello, world

sas

Command not found. Type 'help' for a list of commands

#00812.4b00.0797.6083> help

Available commands:

'> help': Shows this help

'> reboot': Reboot the board by watchdog_reboot()

'> ip-addr': Shows all IPv6 addresses

'> ip-nbr': Shows all IPv6 neighbors

'> log module level': Sets log level (0--4) for a given module (or "all"). For m
odule ‘ggc', level 4 also enables per-slot logg'> ping addr': Pings the IPv6 add
ress 'addr'

'> rpl-set-root 0/1 [prefix]': Sets node as root (1) or not (©). A /64 prefix ca
n be optionally specified.

'> rpl-status': Shows a summary of the current RPL state

'> rpl-local-repair': Triggers a RPL local repair

'> rpl-global-repair': Triggers a RPL global repair

'> routes': Shows the route entries

#0012.4b00.0797.6083> ip-addr

Node IPv6 addresses:

-- feB0::212:4b00O:797:6083

#0012.4b00.0797.6083> I

Figure 4-14. Sample of executing Contiki-NG shell

Customizing Contiki Shell

In some cases you may need to customize the Contiki shell to fit your
problems. The thing that you should be aware of is your space and
resource usage while implementing a Contiki shell.

In this section, we will learn how to customize a Contiki shell on both
Contiki and Contiki-NG. In Contiki-NG, a Contiki shell is called an NG
shell. Each customizing shell topic will be explored in the next sections.

Custom Contiki Shell

In the previous section, we learned how to access Contiki and Contiki
shells. Now, we will build our own Contiki shell API. For this simple demo,
we will develop a Contiki shell with an addition math operation. This API
will receive two number parameters. These number parameters will be
added and then sent back as the Contiki shell output.

115

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

To build our own Contiki shell, we can add our shell objects to the
<Contiki-root>/apps/shell folder. For our scenario, we add two files,
shell-math.c and shell-math.h. You can see them in Figure 4-15.

There are two steps to building a custom Contiki shell. First, we create
an object file (*. c) in which to declare all Contiki shell implementations.
We declare the Contiki shell APT using SHELL _COMMAND(). Then, we
implement the shell API on a process by declaring it in PROCESS().

Last, we register and initialize our Contiki shell API by calling the
shell register command() function. This function will be called on the
shell math_init() function. The Contiki program that will use this shell
should call shell math _init() function to access the shell APL

Figure 4-15. Adding an additional Contiki shell API

116

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

For implementation, we start to write the program in the shell-math.c
file. We receive two number input parameters. Then, we perform the
addition operation. The following is the complete program for the
shell-math.c file:

#include "contiki.h"
#include "shell.h"
#include <ctype.h>
#include <stdio.h>
#include <string.h>

PROCESS(shell math process, "math");
SHELL_COMMAND(math_command,
"math",
"math: math numberi number2",
&shell math_process);

PROCESS THREAD(shell math process, ev, data)
{

char *numbers;

int n1 = 0;

int n2 = 0;

char buf[32];

PROCESS BEGIN();

numbers = data;
if(numbers == NULL || strlen(numbers) == 0) {
shell output_str(&math_command,
"math numberl number2: number must be given", "");
PROCESS_EXIT();

}

117

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

VO
sh

11

char * pch;
pch = strtok (numbers,"” ");
if (pch != NULL)

{
nl = atoi(pch);
pch = strtok (NULL, " ");
if (pch !'= NULL)
{
n2 = atoi(pch);
}else
{
shell_output_str(8math_command,
"math numberl number2: number must be given", "");
PROCESS_EXIT();
}
}else
{
shell output str(&math command,
"math numberl number2: number must be given", "");
PROCESS_EXIT();
}

int s = nl1 + n2;
sprintf(buf, "%d + %d= %d", ni, n2, s);

shell output str(8math_command, buf, "");

PROCESS_END();

id
ell math_init(void)

8

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

{

shell register command(&math_command);

Input data from the user can be obtained from the data variables in the
function parameters. We parse the data into two number variables.

Next, we write a header file, called shell-math.h, for our Contiki shell
API. We only declare our function, shell math_init(). The following is
the complete program for the shell-math.h file:

#ifndef SHELL MATH H
#define _ SHELL MATH H _

#include "shell.h"
void shell math_init(void);
#endif

Save all the files.

Now, we should configure Makefile to include these files in
compilation. You can open Makefile.shell in the same folder with the
shell API files. Open this file and add your shell files. You can see them in
the codes here:

shell src = shell.c shell-reboot.c shell-vars.c shell-ps.c \
shell-blink.c shell-text.c shell-time.c \
shell-file.c shell-run.c \
shell-coffee.c \
shell-power.c \
shell-base64.c \
shell-memdebug.c \

119

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

shell-math.c \
shell-powertrace.c shell-crc.c
shell dsc = shell-dsc.c

Our Contiki shell API is now ready for compiling.

The next step is to develop a Contiki application to use our Contiki
shell API, math shell. We create a folder, called shell-math-demo. Then, we
create two files:

¢ shell-math-demo.c
o Makefile

The shell-math-demo. c file consists of a program to use the Contiki
math shell API. The following is the complete program in the shell-math-
demo. c file:

#include "contiki.h"
#include "shell.h"
#include "serial-shell.h"
#include "collect-view.h"

PROCESS(sky_shell process, "Sky Contiki shell");
AUTOSTART PROCESSES(&sky shell process);

#define WITH PERIODIC DEBUG 0
#if WITH PERIODIC DEBUG

static struct ctimer debug timer;
static void

periodic_debug(void *ptr)

{

120

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

ctimer set(8debug timer, 20 * CLOCK SECOND, periodic_debug, NULL);
collect print stats();

}
#fendif /* WITH_PERIODIC DEBUG */

PROCESS THREAD(sky shell process, ev, data)

{
PROCESS BEGIN();

#if WITH PERIODIC DEBUG
ctimer set(8debug timer, 20 * CLOCK SECOND, periodic_debug, NULL);
#endif /* WITH_PERIODIC DEBUG */

serial shell init();
shell blink init();
shell reboot init();
shell sky init();

shell power init();
shell powertrace init();
shell text init();
shell time init();

shell collect view init();
shell math _init();

PROCESS_END();

121

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

Furthermore, we write scripts in the Makefile. We include Contiki and
the project path. You write these complete scripts as follows:

CONTIKI PROJECT = shell-math-demo
all: $(CONTIKI_PROJECT)

APPS = serial-shell powertrace collect-view
CONTIKI = ../..

CONTIKI WITH RIME = 1
include $(CONTIKI)/Makefile.include

CONTIKI WITH RIME = 1isused to enable the RIME protocol since
Contiki shell uses it on some shell commands. We also supply a testing
configuration by including this Makefile, /home/user/nes/testbed-
scripts/Makefile.include, because some shell commands need it.

Save all files.

Now, we compile our program, shell-math-demo. Open Terminal and
navigate to the shell-math-demo folder. Type these commands:

$ make TARGET=sky
$ make shell-math-demo.sky.upload TARGET=sky

After our program is uploaded to Contiki mote, we can monitor the
mote. You can type this command:

$ make login

If it succeeds, you should see the Contiki shell. Now, we can call our
Contiki shell API. We can type this command in the Contiki shell:

Contiki> math 10 5

This shell will call our Contiki shell API. Value inputs 10 and 5 will be
executed to perform the addition operation. You can see a sample of the
program output in Figure 4-16.

122

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

i @ - 0 user@instant-contiki: ~/Documents/book/fcontikifexamples/shell-math-demo

File Edit View Search Terminal Help

Use -h for help

Reset device ...

Done

make[2]: Leaving directory " /home/user/Documents/book/contiki/examples/shell-mat
h-demo'

make[1]: Leaving directory " /home/user/Documents/book/contiki/examples/shell-mat
h-demo'

rm shell-math-demo.ihex
user@instant-contiki:~/Documents/book/contiki/examples/shell-math-demo$ make log
in

using saved target 'sky'

../../tools/sky/serialdump-1linux -b115200 /dev/ttyUSBO

connecting to /dev/ttyUSBO® (115200) [OK]

Rime started with address 255.94

MAC ff:5e:00:00:00:00:00:00 Contiki-3.x-3330-9719f712 started. Node id is not se
t.
nullsec CSMA ContikiMAC, channel check rate 8 Hz, radio channel 26
Starting 'Sky Contiki shell'

255.94: Contiki>

math 10 5

SEND 1@ bytes

18 + 5= 15

255.94: Contiki>

Figure 4-16. Running custom Contiki shell API

Custom Contiki-NG Shell

Contiki-NG applies shell with a different approach. To customize a shell,
we can add our shell command to the shell-commands.c file. You can find
that file in the <contiki-ng-root>/os/services/shell folder. You can see
itin Figure 4-17.

We add a new shell command to the shell-commands.c file. We define a
“hello” command. We print the message "Hi, this is a custom shell"
to Terminal. Write this code:

static
PT_THREAD(cmd_hello(struct pt *pt, shell output func output,
char *args))

{
PT BEGIN(pt);

123

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION
SHELL OUTPUT(output, "Hi, this custom shell\n")

PT_END(pt);
}

Next, we also register our shell in the shell command_t shell commands
struct. We define the shell name, method call, and description. For instance,
you can see the code for our custom NG-shell here:

struct shell command t shell commands[] = {
{ "hello", cmd_hello, "'»> hello': say hello" },
{ "help", cmd_help, "'> help': Shows this help" },
{ "reboot", cmd _reboot, "'> reboot': Reboot the board by
watchdog reboot()" },

};

Save all files.

124

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

mands.c - contlki-ng - Visual Studio Code

u)

4 OPEN EDIT!

e

Lt
41

Figure 4-17. NG shell in Contiki-NG source code

Now, you can use the NG shell on your project. For instance, we can

use a hello-world project and enable the Contiki-NG shell. We only enable
shell service on Makefile:

MODULES += os/services/shell

After that, we compile and flash this program onto the Contiki-NG
mote. You can now remote into the Contiki mote Terminal using mote

login. For instance, I remote access my TI LaunchPad CC2650 using this
command:

$ make login TARGET=srfo6-cc26xx PORT=/dev/ttyUSBO

125

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

You should change TARGET and PORT to reflect your Contiki board.
Please press the Reset button on the Contiki mote if you do not see
anything in Terminal. Now, you can test your own shell:

shell> help
shell> hello

After calling our NG shell, we can see the shell response. You can see
my shell output in Figure 4-18.

0 agusk@akur01: ~/Documents/contikifhello-world-shell

Hello, world

Command not found. Type 'help' for a list of commands

#0012.4b00.0797.6083> hello

Hi, this custom shell

#0012.4b00.0797.6083> help

Available commands:

'> hello': say hello

'> help': Shows this help

's> reboot’': Reboot the board by watchdog_reboot()

'> ip-addr': Shows all IPv6 addresses

'> ip-nbr': Shows all IPv6 neighbors

I'> log module level': Sets log level (©--4) for a given module (or "all"). For m
odule "zac". level 4 also enables per-slot logg'> ping addr': Pings the IPv6é add
'ress 'addr'

"> rpl-set-root @/1 [prefix]': Sets node as root (1) or not (). A /64 prefix ca
n be optionally specified.

"> rpl-status': Shows a summary of the current RPL state

'> rpl-local-repair': Triggers a RPL local repair

"> rpl-global-repair’: Triggers a RPL global repair

I'> routes': Shows the route entries

#0012.4b06.0797.6083> hello

Hi, this custom shell

#0012.4b00.0797.6083>

Figure 4-18. Running custom NG shell on TI LaunchPad CC260

Communication among Contiki Motes

In this section, we will build a communication among Contiki-NG motes.
There are a lot of methods for communicating among Contiki-NG motes.
To show how to communicate among Contiki motes, we use broadcast

via UDP protocol in Contiki-NG OS. UDP is a communication stack that
provides a set of lightweight communication primitives ranging from local-
area broadcast to reliable network flooding.

126

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

For this demo, we need at least two Contiki-NG motes. One mote will
act as a sender and the other mote will be a receiver. You can see our demo

— ’Receiver

Sender \ ' Receiver

Recewer

scenario in Figure 4-19.

Figure 4-19. Communication among Contiki-NG motes

Our demo scenario is that a mote sends data to all motes. If a mote
receives data, it will be shown in Terminal. We use a program sample from
Contiki-NG.

Sending Broadcast Messages

The objective of a mote sender is to broadcast data to other motes. For this
demo, we use the simple-udp module thatis located in the <contiki-ng-
root>/os/net folder. We can use the simple udp sendto() function to
broadcast a message. This method is defined in the simple-udp.h header file:

int simple udp sendto port(struct simple udp connection *c,
const void *data, uint16_ t datalen,
const uip_ipaddr t *to, uint16_t to_
port);

127

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

Note:
o simple udp_connection is simple-udp object
o datais data that will be sent
e datalenislength of data
o toisip address of target
o to_portisthe port of the target

For instance, we send data to a specific IP address:

simple udp sendto(&udp conn, &count, sizeof(count), &dag->dag id);

Receiving Broadcast Messages

A mote receiver listens for an incoming message that is sent by a mote
sender. To build a mote receiver, we can listen for broadcast messages by
creating a callback/event function. We can use simple udp register() to
register our callback function.

For instance, we listen for incoming broadcast messages using this
code:

static void
udp_rx_callback(struct simple udp connection *c,
const uip_ipaddr t *sender addr,
uint16_t sender port,
const uip_ipaddr t *receiver addr,
uint16_t receiver port,
const uint8 t *data,
uint16 t datalen)
{
unsigned count = *(unsigned *)data;
LOG_INFO("Received response %u from

, count);

128

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

LOG_INFO_6ADDR(sender addr);
LOG_INFO_("\n");

}

simple udp register(&udp_conn, UDP_CLIENT PORT, NULL,
UDP_SERVER_PORT, udp rx callback);

Demo: Middleware Application

Now, we implement our sender and receiver program for Contiki-NG
motes. We use a program sample from Contiki-NG, rpl-udp. You can find
this project in the <contiki-ng-root>/examples/ folder.

The rpl-udp project consists of two programs, udp-client.c and
udp-server.c. The UDP client app (udp-client.c) will send and receive
broadcast messages. The UDP server (udp-server.c) will listen for
incoming broadcast messages.

In the Makefile file, we configure our project and Contiki-NG paths.
Write these scripts for the Makefile file:

all: udp-client udp-server

.PHONY: renode

renode: all

ifneq ($(TARGET),cc2538dk)
$(error Only the cc2538dk TARGET is supported for
Renode demo scripts)

endif

ifndef SCRIPT
$(warning SCRIPT not defined! Using "rpl-udp.resc" as
default)

129

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

renode rpl-udp.resc
else

ifeq ($(wildcard $(SCRIPT)),)

$(error SCRIPT "$(SCRIPT)" does not exist!)
endif

renode $(SCRIPT)
endif

CONTIKI=../..
include $(CONTIKI)/Makefile.include

Save all files.

Since we need at least two Contiki-NG motes, we should know the

serial ports that are used by our Contiki-NG motes. You can check this
using this command:

$ 1s /dev/ttyuUsB*

You should see a list of serial ports that are used by the Contiki-NG
motes. For instance, my two TelosB motes are detected, shown in Figure 4-20.

agusk@akur01: ~fcontiki-ng/examples/rpl-udp

agusk@akurel:~/contiki-ng/examples/rpl-udp$S 1s fdev/ttyUsB*
Jdev/ttyUsBe [dev/ttyUSB1
agusk@akure1:~/contiki-ng/examples/rpl-udp$S

Figure 4-20. Getting a list of connected Contiki-NG motes

130

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

To compile and upload the program to a specific Contiki-NG mote, we
should pass MOTES with the serial port of the targeted Contiki-NG mote.
For instance, we flash a program to a Contiki mote on serial port /dev/
ttyUSBO. You can type these commands:

$ make TARGET=sky
$ make TARGET=sky savetarget
$ make udp-client.upload TARGET=sky MOTES=/dev/ttyUSBO

For the second Contiki-NG mote, you can type these commands:
$ make udp-server.upload TARGET=sky MOTES=/dev/ttyUSB1

After all programs are uploaded to the Contiki-NG motes, we can
monitor the data exchange among Contiki-NG motes. For Contiki-NG
mote 1, we can monitor messages using this command:

$ make login TARGET=sky MOTES=/dev/ttyUSBO

For Contiki-NG mote 2, we can execute this command to see exchange
data in Terminal. Type this command:

$ make login TARGET=sky MOTES=/dev/ttyUSB1

You should see an incoming message in Terminal. You can see it in
Figure 4-21.

131

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

+++++ Resetting /dev/ttyuUsBe

MSP430 Bootstrap Loader Version: 1.39-telos-7

Use -h for help

Reset device ...

Done

make[2]: Leaving directory '/home/agusk/contiki-ng/examples/rpl-udp’
make[1]: Leaving directory '/home/agusk/contiki-ng/examples/rpl-udp’
rm udp-client.ihex

agusk@akurei:~/contiki-ng/examples/rpl-udp$ make MOTES=/dev/ttyUSBe login
using saved target 'sky'

../../tools/sky/serialdump-1linux -b115200 [dev/ttyUSBO

connecting to /dev/ttyUSBe (115200) [OK]

[INFO: App] Sending request 2 to fdee::212:7400:16c0:5eff
[INFO: App] Received response 2 from fd@@::212:7400:16c0:5eff
[INFO: App] Sending request 3 to fde©::212:7400:16c0:5eff
INFO: App] Received response 3 from fdO®::212:7400:16cH:5eff

agusk@akur01: ~/contiki-ng/examples/rpl-udp

r++++ Resetting /[dev/ttyusBi

4SP430 Bootstrap Loader Version: 1.39-telos-7

Jse -h for help

eset device ...

Jone

nake[2]: Leaving directory '/home/agusk/contiki-ng/examples/rpl-udp’'
nake[1]: Leaving directory '/home/agusk/contiki-ng/examples/rpl-udp’'
rm udp-server.ihex

agusk@akurei:~/contiki-ng/examples/rpl-udp5 make TARGET=sky MOTES=/dev/ttyusBil 1
’gin

..f../tools/sky/serialdump-1inux -b115200 /dev/ttyUSB1

connecting to /dev/ttyUSB1 (115200) [OK]

[INFO: App] Received request 3 from fdee::212:7400:16bf:81e9
[INFO: App] sending response 3 to fde©::212:7400:16bf:81e9

Figure 4-21. Running Contiki-NG application on mote 1 and mote 2

Middleware Application for Contiki-NG

In this section, we will explore using middleware for a Contiki-NG
application. In our scenario, WSN motes will broadcast sensor data. Then,
we will use a Java tool application from Contiki-NG to read these sensor
data on a computer. The result of reading this data will be displayed in
Terminal.

Let’s build!

132

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

What Is Middleware?

Middleware is a “bridge” application that connects Contiki-NG motes to
other systems in internal and external networks. A sink can be represented
as middleware. You can see a general architecture scenario of middleware
for a Contiki-NG application in Figure 4-22.

&— |
e '

F

RESTful
servers

Internal network External network

Figure 4-22. General scenario model of middleware for Contiki-NG

Implementing middleware for a Contiki-NG application could enhance
Contiki-NG’s capabilities. As you know, Contiki-NG applications have a
limitation in protocol stacks since they have limited hardware resources.
Middleware can act as a bridge to connect Contiki-NG motes to other
systems, such as database servers, external servers, and RESTful servers.

Middleware Architecture for Contiki-NG

In this section, we will build simple middleware for a Contiki-NG
application. For this demo scenario, the middleware will listen for sensor
data and print them to Terminal using Python. A general design for our
demo is shown in Figure 4-23.

133

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

' —y Print Data
Sense /
temperature
and humidity

F

Figure 4-23. Middleware architecture for demo

Implementation

To implement our demo, we use our previous program, rpl-udp
(<contiki-ng_root/examples/rpl-udp), to be flashed into the Contiki-NG
motes. We also use a previous Python program (section: “Access Contiki
Motes via Serial”) to listen on the serial port contiki-viewer.py.

Testing

First, we compile the program and upload it to the motes. For instance,

I have two WSN motes that are attached on serial ports /dev/USB0 and
/dev/USB1. Then, we run contiki-viewer.py with a specific port. You can
see the program output in Figure 4-24. In the next chapter, we will work
more with middleware.

134

CHAPTER 4 CONTIKI-NG AND COMPUTER COMMUNICATION

* agusk@akur01: ~/Documents/contiki/py

agusk@akure1i:~/contiki-ng/examples/rpl-udp$ cd fhome/agusk/Documents/contiki/py/
agusk@akuro1:~/Documents/contiki/py$ 1s

contiki-viewer.py

agusk@akuro1i:~/Documents/contiki/py$ python contiki-viewer.py

connected to: /dev/ttyUSBe

[INFO: App] sending request 52 to fde@::212:740 0:16cO:5eff

iINFO: App] Received response 52 from fdee::212:7400:16c0:5eff

Figure 4-24. Listening for incoming message from Python

Summary

We have learned to communicate among Contiki-NG motes. We also
developed an application to communicate with Contiki-NG motes
from a computer. Finally, we built simple middleware for a Contiki-NG
application using a Python application tool.

In the next chapter, we will learn to focus on sensing and actuating in
Contiki-NG motes.

135

CHAPTER 5

Sensing
and Actuating

Sensing and actuating are core activities in the Wireless Sensor Network
lifecycle. Most WSN makers build WSN motes that include sensor or/and
actuator devices. In this chapter, we will explore various sensor and
actuator devices. Moreover, we will build a Contiki-NG program to access
these sensor devices and control the actuator devices.

The following is a list of topics we will cover in this chapter:

e What are sensing and actuating?
e Reviewing sensors and actuators
e Sensing in Contiki-NG

e Actuating in Contiki-NG

e Customizing sensor and actuator devices

What Are Sensing and Actuating?

Sensing and actuating are two common terms that are used in embedded
topics. In the WSN context, sensing is a process that converts a physical
object to digital data. For instance, sensing temperature. The sensor
device senses the environment’s temperature and then converts it to
digital form. Actuating is a process in which the MCU sends digital data

© Agus Kurniawan 2018 137
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_5

CHAPTER 5 SENSING AND ACTUATING

to an actuator device to perform some tast, such as turning on LED lights,

sounds, or a motor.

A

s 2

A

Physical objects

Actuating

Sensing

Figure 5-1. Sensing and actuating in a WSN mote

rai"H'T\\I

A

Physical objects

Sensing and actuating are shown in Figure 5-1. Sensor devices that

are attached to a WSN mote will sense and then convert the information
to digital data form. A WSN mote also can send digital data to the outside
environment through actuator devices. Both sensor and actuator devices
can communicate to the MCU via I/O interfaces. These interfaces provide

various protocols depending on how they are implemented. You can see a

communication model in Figure 5-2.

Core WSN Mote

Figure 5-2. Communication model for sensor/actuator devices and

MCU

138

GPIO

Analog I/O

UART

One-Wire

jode

SPI

1/O Interfaces

Sensor

Actuator

CHAPTER 5 SENSING AND ACTUATING

We will start to explore sensor and actuator devices in the next section.
Then, we will develop a Contiki-NG program for accessing those devices.

Review Sensor and Actuator Devices

In this section, we will explore common sensor and actuator devices
that are used in embedded development environments, including in real
applications. All sensor and actuator devices may be found in your local
store. However, you can buy them in online stores such as Element14,
Digikey, Mouser, SparkFun, Adafruit, DFRobot, SeeedStudio, and more.
You can also find them on cheap online stores from China, like Alibaba,
Aliexpress, Banggood, and DealeXtreme.

We will now review some sensor and actuator devices that are easier to
find. Sensor device samples are temperature, humidity, soil moisture, and
gas sensor. Actuator device samples can be LED, active buzzer, and motor.
We will check them in the next section.

Temperature and Humidity

Temperature and humidity sensors are used to measure current
environment temperature and humidity levels. Some manufactures make
these sensors into one chip, but others are still available in separation
sensors for temperature and humidity.

Most WSN motes are designed to include these temperature and
humidity sensors. This is useful for our development and testing. We can
verify that our program performs sensing and actuating. One example
is the SHT1x (SHT10, SHT11, SHT15) chip from Sensirion. You can read
its datasheet at https://www.sparkfun.com/datasheets/Sensors/
SHT1x_datasheet.pdf. SparkFun provides the SHT15 sensor in a module
that is ready to use. It’s the SparkFun Humidity and Temperature Sensor

139

https://www.sparkfun.com/datasheets/Sensors/SHT1x_datasheet.pdf
https://www.sparkfun.com/datasheets/Sensors/SHT1x_datasheet.pdf

CHAPTER 5 SENSING AND ACTUATING

Breakout—SHT15. This product can be bought on the SparkFun website at
https://www.sparkfun.com/products/13683. You can see the module in
Figure 5-3.

Figure 5-3. SparkFun Humidity and Temperature Sensor Breakout—
SHTI15

In general, SHT1x provides two-wire pins to be used to access sensor
data. If you see a SparkFun Humidity and Temperature Sensor Breakout
(Figure 5-3), this module has four pins: VCC, GND, DATA, and SCK. We
can develop a program to access this sensor data from MCU.

We also can use a low-cost humidity and temperature sensor. It’s the
DHT22 module. This sensor is easier to find. You can check it out on the
SparkFun website at https://www.sparkfun.com/products/10167; itis
called Humidity and Temperature Sensor—RHT03 (DHT22). The DHT22
sensor provides a single-wire digital interface that is used to access sensor
data for temperature and humidity. The DHT22 sensor form is shown in
Figure 5-4.

140

https://www.sparkfun.com/products/13683
https://www.sparkfun.com/products/10167

CHAPTER 5 SENSING AND ACTUATING

Figure 5-4. Humidity and Temperature Sensor—RHT03 (DHT22)

Soil Moisture

A soil moisture sensor can be used to measure the moisture level in
soil. This sensor can be applied in monitoring systems for gardens.
There are many soil-moisture models that you can use in your design.
One with a low cost is a Soil Moisture Sensor from SparkFun, found at
https://www.sparkfun.com/products/13322. The SparkFun Soil Moisture
Sensor can be attached via an analog pin (ADC pin) to obtain the moisture
level. You can see a SparkFun Soil Moisture Sensor in Figure 5-5.

141

https://www.sparkfun.com/products/13322

CHAPTER 5 SENSING AND ACTUATING

Figure 5-5. SparkFun Soil Moisture Sensor

Gas Sensor

In some scenarios, you may need to monitor for gas such as carbon
monoxide (CO). You can attach a carbon monoxide sensor to a WSN

mote through an analog pin so as to detect it. One such sensor is Carbon
Monoxide Sensor (MQ-7). This sensor can detect gas concentrations
anywhere from 20 to 2000 ppm. You can find it on the SparkFun website at
https://www.sparkfun.com/products/9403. Figure 5-6 shows the Carbon
Monoxide Sensor (MQ-7). Further information about this gas sensor
(MQ-7) can be found at https://cdn.sparkfun.com/datasheets/Sensors/
Biometric/MQ-7%20Ver1.3%20-%20Manual. pdf.

142

https://www.sparkfun.com/products/9403
https://cdn.sparkfun.com/datasheets/Sensors/Biometric/MQ-7 Ver1.3 - Manual.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Biometric/MQ-7 Ver1.3 - Manual.pdf

CHAPTER 5 SENSING AND ACTUATING

Figure 5-6. Carbon Monoxide Sensor (MQ-7)

LED

An LED is a simple actuator device. It can be used for lighting indicator
and notification, processing status, or indicating a certain state. There are
various models and colors for LEDs. You can choose it to fit with your case.
Figure 5-7 shows a sample LED.

Figure 5-7. A LED with red color in 5mm size
(Source: https://www. sparkfun.com/products/9590)

143

https://www.sparkfun.com/products/9590

CHAPTER 5 SENSING AND ACTUATING

Active Buzzer

Sometimes you need an actuator that generates a continuous sound

to inform the user of a particular state, such as low power on battery,
problem on a certain system module, or waiting for an action. An active
buzzer can be used as an actuator device to indicate a certain notification.
This actuator is low cost and easier to find.

In general, an active buzzer has two pins, GND and SIG. It’s easy to use
because we just send a digital value (3.3V or 5V) on the SIG pin to generate
a continuous sound. The sound will be stopped if we set 0V (GND) on the
SIG pin. You can see this actuator in Figure 5-8.

Figure 5-8. Active buzzer

Motor

To control mechanical stuff, you may need a motor that is designed for the
MCU to make a movement or rotation. There are various motor models.
A servo motor is a basic motor that can be integrated with a WSN mote.
You should keep in mind that some motor models need a lot of power,
and they should not get that power from your WSN mote. You can use an
external power adapter for your motor. The manufacturer also provides a
motor driver that addresses motor power issues.

One servo motor is the Hitec HS-5035HD servo with Ultra Nano Size.
You can buy it on the SparkFun website at https://www.sparkfun.com/
products/14210. Figure 5-9 shows a Hitec HS-5035HD servo.

144

https://www.sparkfun.com/products/14210
https://www.sparkfun.com/products/14210

CHAPTER 5 SENSING AND ACTUATING

Figure 5-9. Hitec HS-5035HD servo with Ultra Nano Size

Sensing in Contiki-NG

Each sensor in Contiki-NG should implement sensors.h from the
<contiki-ng-root>/0s/1ib folder. We can access the sensor device library
using the following code:

SENSORS_ACTIVATE(sensor xyz);

val = sensor xyz.value(SENSOR_XYZ _TYPE);

sensor_xyz is a defined variable for the sensor device. This is a part
of each Contiki-NG device platform. Each sensor device has sensor types
that will be called on the value() method. Your sensor code (*.c and *.h)
should be put in the dev/ folder from the Contiki-NG platfom. You can see
a list of sensor codes in Figure 5-10.

145

CHAPTER 5 SENSING AND ACTUATING

4 CONTIKI-NG-DEVELOP
» jn516x
» native
» nrf52dk
» openmote-cc2538
4 gky
b apps
4 dev
C battery-sensor.c
button-sensor.c
i2c.c
i2e.h
light-sensor.c
light-sensor.h
sht11-arch.h
sky-sensors.c
sky-sensors.h
temperature-sensor.c

temperature-sensor.h

C
&
C
Cc
C
Cc
Cc
C
Cc
&
C

xmem.c
Figure 5-10. Sensor and actuator libraries for Sky platform

In the next section, we will build a simple demo for sensing using the
existing sensor in Contiki-NG. I use a TelosB for testing.

Demo

We will build a Contiki-NG application to read the current temperature
and humidity via a Contiki-NG mote. For testing, I use TelosB as
Contiki-NG mote. This board provides an SHT11 sensor that can sense
temperature and humidity. You can read the sensor datasheet at
https://www.sensirion.com/en/environmental-sensors/humidity-
sensors/digital-humidity-sensors-for-accurate-measurements/.

For this demo, we will build the scenario that is shown in Figure 5-11.
A Contiki-NG mote with sensor device is attached to a computer. We will
sense temperature and humidity via the SHT11 sensor. After acquiring

146

https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-accurate-measurements/
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-accurate-measurements/

CHAPTER 5 SENSING AND ACTUATING

the temperature, the mote will send this sensor data to a serial port on
the computer. We will print this sensor data in Terminal by reading the
serial port.

Serial
communication Temperature W
0
<:> OLE
Computer
Humidity 1

Figure 5-11. Sensing demo scenario

Creating a Project

To create a new project on Contiki-NG, you can create a folder, for
instance, sensing. Then, add sensing.c and Makefile files. Our program
that uses the sensor device will be implemented in the sensing. c file. We
define our project configuration in the Makefile file.

The following is the content of the Makefile file:

CONTIKI_PROJECT = sensing
all: $(CONTIKI_PROJECT)

CONTIKI = /home/agusk/contiki-ng/
include $(CONTIKI)/Makefile.include

Change CONTIKI to your Contiki-NG path.
Next, we will write a Contiki-NG program on the sensing.c file.

147

CHAPTER 5 SENSING AND ACTUATING

Writing a Program

We will build a Contiki-NG program to acquire the temperature every five

seconds. We use etimer to implement our timer object.
The following is the complete program in the sensing. c file:

#include "contiki.h"
#include "dev/sht11/shti1-sensor.h"

#include <math.h>
#include <stdio.h> /* For printf() */

PROCESS(sensing process, "Sensing process");
AUTOSTART PROCESSES(&sensing process);

PROCESS_THREAD(sensing process, ev, data)
{

static struct etimer et;

static int val;

static float s = 0;

static int dec;

static float frac;

PROCESS BEGIN();

printf("Demo sensing...\n");
while(1)

{
etimer set(8et, CLOCK SECOND * 5);

SENSORS_ACTIVATE(sht11 sensor);

PROCESS WAIT EVENT UNTIL(etimer expired(&et));
val = sht11 sensor.value(SHT11 SENSOR TEMP);
if(val I= -1)

148

CHAPTER 5 SENSING AND ACTUATING

s= ((0.01*val) - 39.60);

dec = s;

frac = s - dec;

// print float data

printf("Temperature=%d.%02u C . VAL=%d\n", dec, (unsigned
int)(frac * 100),val);

}

val=sht11 sensor.value(SHT11 SENSOR HUMIDITY);
if(val != -1)

{

s= (((0.0405*val) - 4) + ((-2.8 *
0.000001)*(pow(val,2))));

dec = s;

frac = s - dec;

// print float data

printf("Humidity=%d.%02u %% . VAL=%d\n", dec, (unsigned
int) (frac * 100),val);

}

etimer reset(8et);
SENSORS DEACTIVATE(sht11 sensor);

PROCESS_END();

149

CHAPTER 5 SENSING AND ACTUATING

How does it work?
Firstly, we activate the timer and our SHT11 sensor on the TelosB:

etimer set(8et, CLOCK SECOND * 5);
SENSORS_ACTIVATE(sht11 sensor);

PROCESS WAIT EVENT UNTIL(etimer expired(&et));

After etimer has raised the time, we sense temperature by calling
value() from the sht11_sensor object and passing the SHT11 SENSOR_TEMP
parameter. Since we face displaying float data, we calculate decimal and
fraction separately:

val = sht11 sensor.value(SHT11 SENSOR TEMP);
if(val != -1)
{
s= ((0.01*val) - 39.60);
dec = s;
frac = s - dec;
// print float data
printf("Temperature=%d.%02u C . VAL=%d\n", dec, (unsigned
int)(frac * 100),val);

We also do a similar task to sense humidity. We pass SHT11_SENSOR _
HUMIDITY to read humidity from sensor:

val=sht11 sensor.value(SHT11 SENSOR HUMIDITY);

if(val != -1)

{
s= (((0.0405*val) - 4) + ((-2.8 * 0.000001)*(pow(val,2))));
dec = s;
frac = s - dec;

150

CHAPTER 5 SENSING AND ACTUATING

// print float data
printf("Humidity=%d.%02u %% . VAL=%d\n", dec, (unsigned int)
(frac * 100),val);

}

Last, we reset our timer and sensor objects:

etimer reset(8et);
SENSORS DEACTIVATE(sht11 sensor);

Testing

Now, you can test the program. You should compile and deploy this
program into Contiki-NG:

$ make TARGET=sky
$ make TARGET=sky savetarget
$ make sensing.upload TARGET=sky

After uploading a program into Contiki-NG, we try to monitor the
serial output from the Contiki-NG mote. You can type this command to
do so:

$ make login TARGET=sky

Ifit succeeds, you should see the current temperate and humidity
values in Terminal. You can see my program output in Figure 5-12.

151

CHAPTER 5 SENSING AND ACTUATING

x agusk@akur01: ~/Documents/contiki/sensing

Program ...

45662 bytes programmed.

+++++ Resetting /dev/ttyusBe

MSP438 Bootstrap Loader Version: 1.39-telos-7

Use -h for help

Reset device ...

Done

make[2]: Leaving directory '/home/agusk/Documents/contiki/sensing’
make[1]: Leaving directory '/home/agusk/Documents/contiki/sensing’
rm sensing.ihex

agusk@akuro1i:~/Documents/contiki/sensing$ make login TARGET=sky
/home fagusk/contiki-ng//tools/sky/serialdump-linux -b115200 /dev/ttyUSBe
connecting to /dev/ttyusBe (115200) [OK]

Temperature=31.02 C . VAL=7063

Humidity=56.94 ¥ . VAL=1706

Temperature=31.05 C . VAL=7065

Humidity=56.88 ¥ . VAL=1704

Temperature=31.05 C . VAL=7065

Humidity=57.03 % . VAL=1709

Temperature=31.88 C . VAL=7068

Humidity=56.97 % . VAL=1707

Temperature=31.12 C . VAL=7872

Humidity=57.00 % . VAL=1708

Figure 5-12. Program output on sensing application

Actuating in Contiki-NG

In this section, we will learn how to work with actuating in Contiki-NG.

There are a lot of actuator devices that you can use with Contiki-NG.

For this demo, I will use a button and an LED as actuator devices.

In general, these actuator devices are available on some Contiki-NG motes.
This demo is shown in Figure 5-13. If the user presses the button, the

LED will be toggled. I use TelosB for this demo as it already has a button

and an LED.

152

CHAPTER 5 SENSING AND ACTUATING

Serial
communication Button 1
O
s
Computer . 1

Figure 5-13. Actuating demo scenario

Creating a Project

You can start a new project by creating a folder, called actuating. Then,
add Makefile and actuating.c files. In the Makefile file, we configure our
project. You can write the following Makefile content:

CONTIKI_PROJECT = actuating
all: $(CONTIKI_PROJECT)

CONTIKI = /home/agusk/contiki-ng/
include $(CONTIKI)/Makefile.include

Change CONTIKI to your Contiki-NG path.
Next, we will build a program in the actuating.c file.

153

CHAPTER 5 SENSING AND ACTUATING

Writing a Program

The program will listen for the pressed button from the user. If the user

presses the button, we toggle the LED. The following is the content of the

actuating.c file:

#include "contiki.h"
#include "leds.h"
#include "dev/button-sensor.h"

#include <stdio.h>

PROCESS(sensing process, "Sensing process");
AUTOSTART PROCESSES(&sensing process);

PROCESS_THREAD(sensing process, ev, data)

{
PROCESS BEGIN();

printf("Demo actuating...\n");
SENSORS_ACTIVATE(button sensor);
leds off(LEDS ALL);

while(1)
{
PROCESS WAIT EVENT UNTIL(ev == sensors event &&

data == 8button sensor);

leds toggle(LEDS BLUE);

}
SENSORS DEACTIVATE(button sensor);

PROCESS_END();

154

CHAPTER 5 SENSING AND ACTUATING

How does it work?

First, we active the button by calling SENSOR_ACTIVATE (). We then turn
all LEDs off for initialization.

SENSORS_ACTIVATE(button sensor);
leds_off(LEDS_ALL);

Then, we wait for the button to be pressed by the user. We can use
PROCESS_WAIT_EVENT_UNTIL() to detect the pressed button. We will toggle
the LED after the button is pressed:

while(1)

{
PROCESS_WAIT_EVENT UNTIL(ev == sensors_event &&

data == 8button sensor);

leds_toggle(LEDS_BLUE);
}

Testing

Now, you can test the program. You should compile and deploy this
program into Contiki-NG:

$ make TARGET=sky
$ make TARGET=sky savetarget
$ make actuating.upload TARGET=sky

You can press a user button on the Contiki-NG mote. You will see an
LED light up while you press the button. You can see the user button and
the LED on a TelosB in Figure 5-14.

155

CHAPTER 5 SENSING AND ACTUATING

Button

Figure 5-14. User button and LED on TelosB

Customizing Sensor and Actuator Devices

You probably want to expand your sensors and actuators on your
Contiki-NG mote. In the real world, some Contiki-NG motes do not
provide built-in sensors and actuators. Others only have one or two sensor
devices.

In this section, we will explore how to add additional sensor and
actuator devices to Contiki-NG motes.

Expansion Connector

Some Contiki-NG motes are designed to enable you to expand their
board. One option is to provide an expansion connector. The board design
exposes MCU pins in order to make additional external sensors, actuators,
or other devices interact with the system.

156

CHAPTER 5 SENSING AND ACTUATING

For instance, TelosB has an expansion connector available to enable
makers to attach sensors and actuators to the board. You can see it in
Figure 5-15.

Expansion connector

Figure 5-15. Expansion connector on TelosB

I bought my TelosB from ADVANTICSYS. This product is
MTM-CM5000-MSP. Based on its document, found at https://www.
advanticsys.com/shop/mtmecm5000msp-p-14.html, these expansion
connectors are as depicted in Figure 5-16.

As seen in Figure 5-16, we can attach sensor and actuator devices to
the mote. GPIO pins such as ADC and I2C are accessible from the main
board. You can do wiring for your sensor and actuator devices.

157

https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html

CHAPTER 5 SENSING AND ACTUATING
U2
AVCC 1 1 2 2 UARTORX
ADCO 31, 4 14 UARTOTX
ADC1 5 6 |8 12C_SCL
ADC2 i 7 . 8 8 12C_SDA
R16 T ADC3
GIO1 R14
- 10pin Header - 0.1"
GIO0
0 open W\ ALK
ua2s 0 open
ADCB 1 1 P 2 ADC7
" Ris
Gl02 3 GI03
Ti mer A Capt ur1 4 AN —SVSout
UserINT 5 5 6 [RESET
0 open
6pin Header

Figure 5-16. Expansion connector pinout from TelosB

Another board, such as Zoul from Zolertia, https://zolertia.io/
zoul-module/, can be attached to your own board. Zolertia also
provides a complete development kit, Firefly. You can develop Contiki-NG
on top of the board. Further information about Firefly can be found at
https://zolertia.io/product/firefly/. Figure 5-17 shows a form of the

Firefly board.

158

https://zolertia.io/zoul-module/
https://zolertia.io/zoul-module/
https://zolertia.io/product/firefly/

CHAPTER 5 SENSING AND ACTUATING

@on connectoD
ijeles 0090 %) B

Figure 5-17. Expansion connector on Firefly

Sensor and Actuator Drivers for Contiki-NG

Each sensor or actuator device attached to Contiki-NG should provide an
API driver. In this section, we will explore how to make device drivers for
Contiki-NG.

Each Contiki-NG mote platform has a different development style. You
should decide what Contiki-NG platform you will use for additional sensor
and actuator devices. If you have a plan to develop sensors and actuators
for all platforms, you can put your drivers at <contiki-ng-root>/
arch/dev. Otherwise, you can put them at <contiki-ng-root>/arch/
platforms/<your-platform>. You can see it in Figure 5-18.

159

CHAPTER 5 SENSING AND ACTUATING

4 CONTIKI-NG-DEVELOP
4 arch
b Cpu
» dev
4 platform
* cc2538dk

» cooja

jn516x
native
» nrfS2dk
b openmote-cc2538

sky
» srf06-cc26xx

zoul

Figure 5-18. Platform API on Contiki-NG

For demo purposes, we will develop a driver for the Sky platform. We
build a sensor that is attached into TelosB via an ADCO pin. Next, we will
write a driver program for the Sky platform.

We add two files, mycustom-sensor.h and mycustom-sensor.c. These
files are put in the <contiki-ng-root>/arch/platform/sky/dev folder.
You can see them in Figure 5-19. We extend our custom sensor driver from
the sensors.h and sky-sensors.h files.

The following is the content of the mycustom-sensor.h file:

#ifndef MYCUSTOM_SENSOR H_
#define MYCUSTOM_SENSOR H_

#include "lib/sensors.h"
extern const struct sensors_sensor mycustom_sensor;
#define MY_CUSTOM_SENSOR O

#endif /* MYCUSTOM SENSOR H_ */

160

CHAPTER 5 SENSING AND ACTUATING

4 CONTIKI-NG-DEVELOP
4 arch
b cpu
b dev
4 platform
b cc2538dk
cooja
jn516x
> native
nrf52dk
openmote-cc2538
sky
b apps
4 de-.r
battery-sensor.c
button-sensor.c
iZc.c
i2c.h

light-sensor.c

light-sensor.h

mycustom-sensor.c

mycustom-sensor.h

Ao ldIo O 0N 0N

sht11-arch.h

Figure 5-19. Adding driver files into Sky platform

Now we implement the mycustom-sensor.c file. The ADCO pin is
attached on ADC12MEMO. Since we implement sky-sensors.h, we
should implement the value(), configure(), and status() methods.

The following is the content of the mycustom-sensor. c file:

#include "contiki.h"
#include "dev/mycustom-sensor.h"
#include "dev/sky-sensors.h"

#tdefine INPUT CHANNEL (1 << INCH 11)
#define INPUT REFERENCE SREF 0O
#define MYCUSTOM MEM ADC12MEMO

161

CHAPTER 5 SENSING AND ACTUATING

const struct sensors_sensor mycustom sensor;

static int
value(int type)
{
switch(type) {
case MY_CUSTOM_SENSOR:
return MYCUSTOM MEM;

}

return 0;

}

static int

configure(int type, int c)

{
return sky sensors configure(INPUT CHANNEL, INPUT REFERENCE,
type, ¢);

}

static int
status(int type)

{
return sky sensors status(INPUT CHANNEL, type);

}

SENSORS_SENSOR(mycustom_sensor, "MYCUSTOMSENSOR", value,
configure, status);

Last, we should add our driver file into the Makefile.sky file from the
Sky platform. It is located at <contiki-ng-root>/arch/platform/sky/
Makefile.sky. In our case, we move the mycustom-sensor.c file into the
Makefile.sky file. You can see the bold code for adding the driver file here:

162

CHAPTER 5 SENSING AND ACTUATING

CONTIKI_TARGET SOURCEFILES += contiki-sky-platform.c \
shti1.c shtii-sensor.c light-sensor.c battery-sensor.c \
button-sensor.c mycustom-sensor.c

include $(CONTIKI)/arch/platform/sky/Makefile.common

MODULES += os/net/mac os/net/mac/framer os/net \
arch/dev/cc2420 arch/dev/sht11 arch/dev/ds2411 \
os/storage/cfs

Your custom sensor driver is ready for Sky platform. You can use it
as usual. For instance, you create a project by creating a folder, custom-
sensing. Then, you add Makefile and custom-sensing. c files.

We will access our driver, mycustom-sensor, in our project. We use the
same program from the sensing project but change it to use our own sensor.
The following is the complete program for the custom-sensing. c file:

#include "contiki.h"
#include "dev/mycustom-sensor.h"

#include <stdio.h> /* For printf() */

PROCESS(sensing process, "Sensing process");
AUTOSTART _PROCESSES(&sensing process);

PROCESS THREAD(sensing process, ev, data)
{

static struct etimer et;
static int val;

PROCESS BEGIN();

printf("Demo sensing...\n");
while(1)
{

163

CHAPTER 5 SENSING AND ACTUATING

etimer set(&et, CLOCK SECOND * 5);
SENSORS_ACTIVATE(mycustom sensor);

PROCESS WAIT EVENT UNTIL(etimer expired(&et));

val = mycustom sensor.value(MY_CUSTOM SENSOR);

if(val != -1)
{

printf("CUSTOM SENSOR VAL=%d\n",val);
}

etimer reset(8et);
SENSORS_DEACTIVATE(mycustom_sensor);

}

PROCESS END();
}

Last, we should configure our project in the Makefile file:

CONTIKI_PROJECT = custom-sensing
all: $(CONTIKI_PROJECT)

CONTIKI = /home/agusk/contiki-ng/
include $(CONTIKI)/Makefile.include

Change the CONTIKI value to your Contiki-NG path. Now, you can
compile and upload this program to TelosB:

$ make TARGET=sky
$ make TARGET=sky savetarget
$ make custom-sensing.upload TARGET=sky

164

CHAPTER 5 SENSING AND ACTUATING

After uploading a program into Contiki-NG, we try to monitor the
serial output to see our custom sensor on Terminal:

$ make login TARGET=sky

You should see your reading values from ADC on Terminal.

Summary

We have reviewed some sensor and actuator devices. We also have learned
how to work with sensing and actuating in Contiki-NG. Last, we developed
a custom sensor to attach to a Contiki-NG mote through its expansion
connector.

In the next chapter, we will learn how to build networking and
communication in Contiki-NG. That is at the core of Contiki-NG’s features.

165

CHAPTER 6

Networking

Contiki-NG comes with rich network-stack features to allow
communication with others. In this chapter, we will explore the available
network features on the Contiki-NG platform. Several scenarios will be
provided to enable practice with implementing projects-based Contiki-
NG, either in physical motes or in mote simulations.

The following is a list of topics that will be covered in this chapter:

e Networking in Contiki-NG

e Working with network simulation using COOJA
e [Pv6 networking

e Routing on Contiki-NG

o IPv6 Multicast

o Working with Contiki-NG NullNet

e Working with a 6LoWPAN network

o Building a RESTful server for Contiki-NG

© Agus Kurniawan 2018 167
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_6

CHAPTER6 NETWORKING

Networking in Contiki-NG

Contiki-NG still uses a traditional OSI (Open Systems Interconnection)
stack to implement the Contiki-NG Network Protocol stack, called
NETSTACK, to communicate among nodes. The Contiki-NG NETSTACK
is shown in Figure 6-1. In this figure, we can see that the Contiki-NG
NETSTACK implements four layers, as follows:

o Network layer (NETSTACK_NETWORK)

o MAC layer (NETSTACK_MAC)

« RDC (Radio Duty Cycling) layer (NETSTACK_RDC)
o Radio layer (NETSTACK_RADIO)

The Network layer (NETSTACK_NETWORK) in an OSI layer can be
represented as Application, Transport, Network, Routing, and Adaptation.
I'will introduce each layer in the next section.

Application

Transport Network layer

Network, Routing

Adaptation
\i\e —pp MAC layer

Duty Cycllng ——) RDC |ayer

Radio ey Radio layer

Figure 6-1. Contiki-NG Network Protocol stack
168

CHAPTER6 NETWORKING

In NETSTACK implementation, Contiki-NG provides network libraries.
You can find them in the <contiki-ng>/0s/net folder. You can see this
folder in Figure 6-2. The following is several code-sample implementations
for Contiki-NG NETSTACK:

o Application layer: http-socket.c, websocket.c,
websocket-http-client.c, and mqtt.c

o Transport: udp-socket.c and tcp-socket.c
e Network & Routing: uip6.c and rpl.c
e MAC:mac.cand csma.c

I recommend you review and learn the code for the Contiki-NG
network stack, found in the <contiki-ng>/o0s/net folder. Thus, you will get
more knowledge about how Network project builds Contiki-NG system.

169

CHAPTER6 NETWORKING

4 CONTIKI-NG-DEVELOP

2
®

C
C
C
C
Cr
Cn
C
C
C
Cr
C
C
e
C

T

D0A002

Figure 6-2. NETSTACK code implementations in Contiki-NG

Network Layer

Contiki-NG relies on an IPv6 stack. All TCP/UDP sockets in Contiki-NG
use ulP (uip.hand uip6.c from <contiki-ng>/0s/net/ipv6), which
implements for IP, UDP, and TCP protocols in minimized models.

Currently, the network layer contains two sublayers, the upper IPv6
layer and the lower adaptation layer. These sublayers run on the top of
IEEE 802.15.4 with Time-Slotted Channel Hopping (TSCH).

Regarding routing, Contiki-NG applies RPL (Routing Protocol for Low-
power and Lossy Networks (LLNs)), which adopts the RFC standard, RFC
6550. RPL develops a routing graph from the root node or AP (Access Point).

170

CHAPTER6 NETWORKING

If the routing graph has a form as cyclic graph and is built from a root node,
itis called a DODAG (Destination Oriented Directed Acyclic Graph). A
DODAG routing graph form can be seen in Figure 6-3.

Pt
/ N\

A A

/
A A A

Figure 6-3. DODAG routing graph form

RPL routing in Contiki-NG supports three directions of traffic, as
follows:

o Upward: from any node toward a root
e Downward: from the root to any node

e Any-to-any: flows among arbitrary pairs of nodes in the
DODAG graph

For RPL implementation, Contiki-NG provides RPL classic and
RPL lite. RPL classic is the original Contiki RPL implementation, called
ContikiRPL. I recommend you read the ContikiRPL paper on this site:
http://www.diva-portal.org/smash/get/diva2:1042739/FULLTEXTO1. pdf.
You can find code implementations for both RPL classic and RPL lite in
Contiki-NG. RPL classic can be found at /net/rpl-classic and RPL lite at
/net/rpl-lite from the Contiki-NG code root. See them in Figure 6-4.

171

http://www.diva-portal.org/smash/get/diva2:1042739/FULLTEXT01.pdf

CHAPTER6 NETWORKING

The nullnet library from Contiki-NG can be used to test your packet
from upper to lower layers. This library can be found at <contiki-ng>/o0s/
net/nullnet.

MAC Layer

The MAC layer is designed to address collisions in packet traffic and

to apply back-off if there is traffic. Contiki-NG applies CSMA/CA

(Carrier Sense Multiple Access with Collision Avoidance) for MAC

layer implementation. Contiki-NG uses CSMA/CA on the IEEE 802.15.4
protocol. You can see program implementation in the <contiki-ng>/os/
net/mac folder.

In the CSMA/CA algorithm, a mote will sense the medium before
sending packets. If another mote is sending a packet, the mote will apply
back-off with a certain value depending on the RDC layer. If the medium
is free, the mote will send packets that have been prepared by the network
layer.

Contiki-NG also provides nullmac for testing that is a part of nullnet
from the network layer. nullmac will forward packets from the upper layer
to the radio driver and vice versa.

172

CHAPTER6 NETWORKING

L X N
EXPLORER
4 OPEN EDITORS
Welcome

C uip.h

C uipb.c os/netfipve
4 CONTIKI-NG-DEVELOP

» app-layer
ipv6

» mac
nullnet

* rpl-classic
rpl-lite
link-stats.c

C link-stats.h
linkaddr.c

C linkaddr.h

Figure 6-4. RPL classic and lite libraries in Contiki-NG

RDC Layer

The Radio Duty Cycling (RDC) layer saves energy by allowing a node to
keep its radio transceiver off most of the time. Contiki-NG supports the
ContikiMAC protocol based on the principles behind low-power listening.
ContikiMAC uses Time Slotted Channel Hopping (TSCH) that is a part of
the MAC layer of the IEEE 802.15.4e-2012 amendment.

Radio Layer

The radio layer is the lowest layer in the Contiki-NG NETSTACK. The radio
layer is handled by radio module from the Contiki-NG mote. Most radio
layers work on the IEEE 802.15.4 protocol mechanism.

173

CHAPTER6 NETWORKING

Network Simulation Using COOJA

In Chapter 1, we learned how to work with COOJA to build a Contiki-NG

simulation. In this section, we will continue to apply COO]JA to create a

network simulation. For this simple demo, we will use the same scenario

as in Chapter 4. We will perform broadcasting among Contiki-NG motes.
To implement the demo, we will perform the following tasks:

e Create a simulation project.
e Add aUDP server mote.

e Add UDP client motes.

e Run the simulation.

Each task will be performed in the following sections.

Creating Simulation Project

The first step is to create a simulation project using COOJA. From your
platform Terminal, you can run the COOJA tool. For instance, I run it from
Ubuntu Linux. You can type these commands:

$ cd contiki-ng/tools/cooja
$ sudo ant run

After it has executed, you should get the COOJA application that is
shown in Figure 6-5.

174

CHAPTER6 NETWORKING

e Contikl Network Simulator

Fle Semulation Motes Tools Selings Melp

Getting started

Fl: Toggle quick help

Figure 6-5. COOJA application

To start a new simulation, you can click File » New simulation, shown

in Figure 6-6.
Simulation Motes Tools Settings Help

New simulation... Ctri+N
Open simulation >

Close simulation

Figure 6-6. Create a new simulation in COOJA

175

CHAPTER6 NETWORKING

Then, you should get the dialog that is shown in Figure 6-7. Fill in the
simulation name with default settings on the Advanced Settings panel. For
instance, I fill in the simulation name with My simulation.

Create new simulation

Simulation name

Advanced settings

Radio medium | Unit Disk Graph Medium (UDGM): Distance Loss "J
Mote startup delay (ms) 1.000
Random seed 123.456
New random seed on reload)
| cancel | | create

Figure 6-7. Fill in simulation name and other settings

If done, you can click the Create button to create the simulation.
After that, COOJA will create a new simulation for you. Figure 6-8 shows
a simulation dashboard from COOJA. Now you are ready to configure the

simulation.
In the next section, we will add a UDP server mote to our simulation.

176

CHAPTER6 NETWORKING

DD SN @

¥

»!

a
i

Figure 6-8. Cooja with simulation dashboard

Adding UDP Server Mote

In this section, we will add a mote as the UDP server. This mote will listen
to incoming messages. Once a message is received from a client, the UDP
server will reply by sending that message. For the demo, we will use a mote

with the Sky platform type.
To add a new mote on COOJA, go to Add Motes » Create a mote type »

Sky mote. You can see this menu in Figure 6-9.

177

CHAPTER6 NETWORKING

ation - Cooja: The Contiki Network Simulator

Disturber mote...
Mote types...
Rer :;._.s.';.la;. 10 L o Import Java mote... nter notes here
start | Cooja mote...
MicaZ mote...

Time: 00: Ethl120...

Speed: -{ Trxebl1Z20...

Trxeb2520...

- Exp2420 mote (MSP430F5438)...
Expll0l mote (MSP430F5438)...

| File Edit £,01120 mote (MSP430F5438)... |

Time |M CC430 mote...

| EXP430FS438 mote...

Wwismote mote...

Z1 mote...

Sky mote... «

ESB mote...

output

Filter:

Figure 6-9. Adding a new mote

You will get the dialog shown in Figure 6-10. You can fill in the description
of the mote. Then, set the Contiki firmware from the UDP server, udp-
server.c. You can find udp-server.c in the <contiki-ng>/examples/rpl-
udp/ folder. Click the Browse button and navigate to the udp-server.c file.

> Create Mote Type: Compile Contiki

Description: |Coc|'a Mote Type #1 f

Contiki process / Firmware: /h

guskfcontiki-ng plesjrpl-udp/udp-server.c Browse

Clean Compile Create

_I Compile commandsT Mote interfaces T Advanced T Emvironment]

make udp-server.cooja TARGET=co0ja

Figure 6-10. Add the UDP server mote

178

CHAPTER6 NETWORKING

After selecting the udp-server.c file, you can compile this file to
ensure there are no errors in the program. Click the Compile button
to compile the program. If it succeeds, you should see the successful
compilation on the Compilation Output tab, shown in Figure 6-11.

Create Mote Type: Compile Contiki for sky

Description: -Sky Mote Type #skyl

Contiki process / Firmware: /home/agusk/contiki-ng/examples/rpl-udpfudp-server.c Browse

i Clean 11 Compile] [Create]

fccmplle commands TMota interfaces TTips !

= make udp-server.sky TARGET=sky
cc udp-server.c
LD udp-server.sky

rm udp-server.co

Figure 6-11. Compile the UDP server mote

If you have compiled the program, you can click the Create button.
Then, you should get the dialog that is shown in Figure 6-12.

Add motes (Sky Mote Type #sky1)

Number of new motes l |
Positioning | Random positioning .-v]
Position interval X 0 | <> 100

Y 0 <> 100

Z 0 =-> 0

L Do not add motes | | Add motes |

Figure 6-12. Configure the mote number and its position

179

CHAPTER6 NETWORKING

In this scenario, we only add one mote for the UDP server. You can fill
in 1 for the “Number of new motes” field and select Random positioning
for the “Positioning” dropdown.

If done, you can click the Add Motes button. You should see this mote
on the Network panel in the simulation dashboard. You can see it in
Figure 6-13.

My simulation - Cooja: The Contiki Network Simulator

Eile Sémulation Motes Tools Settings Help

=] Metwark = =00 simulation control [-Jiolx]
Run Speed limit

Enter nates here No help available
|| [start | Pauso [step [Reload |

...................................... Time: 00:00.000
| Speed: —

! | Fils Edil View
()] | Time | Mate

Jego i JeR e

5
|

»

@ Timeline showing 1 motes
File Ect View Zoom Events Motes

4

8
7
a

Figure 6-13. UDP server is deployed on COOJA

Next, we will add some motes for the UDP client. We will perform this
task in the next section.

Adding UDP Client Motes

After we have created one UDP server mote, we can create some UDP
client motes. For this demo, we will add five motes. To add a new mote,
you perform this task as in the previous section.

180

CHAPTER6 NETWORKING

For a UDP client mote, you can put udp-client.c as the Contiki
firmware. You can find it in the <contiki-ng>/examples/rpl-udp/ folder.
You can see the UDP client program in Figure 6-14.

Create Mote Type: Compile Contiki For sky

Description: 'sky Mote Type #sky2

Contiki process / Firmware: /homefagusk/contiki-ngfexamples/rpl-udpfudp-client.c Browse

Clean Compile |

_I Compile commands] Mote interfaces | Tips

make udp-client.sky TARGET=sky

Figure 6-14. Adding UDP client mote

Then, you should compile the UDP client firmware to ensure there are
no errors in the program. You can click the Compile button. You can see
my successful compilation from the UDP client in Figure 6-15.

Create Mote Type: Compile Contiki for sky

Description: Sky Mote Type #sky2
Contiki process / Firmware: /home/agusk/contiki-ng/examples/rpl-udpfudp-client.c Browse
| clean | | compile | [create |

[compile commands | Mote interfaces | Tips || ;g@p_!gy_g_r!_ggggtﬂ

= make udp-client.sky TARGET=sky
cC udp-client.c
LD udp-client.sky

rm udp-client.co

Figure 6-15. Compiling UDP client mote

181

CHAPTER6 NETWORKING

You can add motes to the Network panel by clicking the Create button
in the dialog shown in Figure 6-15. After clicking, you should get the dialog
that is shown in Figure 6-16. For this demo, fill in 5 in the “Number of new
motes” field. All fields are default values.

x Add motes (Sky Mote Type #sky2)

Number of new motes ll E |
Positioning | Random posit.ioning q
Position interval X 0 <> 100
y [0 | <> 100
i O =-> 0
| Do not add motes | [m]

Figure 6-16. Adding five UDP client motes

After filling in the number of motes, you can click the Add Motes
button. Then, you should see five UDP client motes in the Network panel
in the simulation dashboard. Now you have six motes in the simulation,
shown in Figure 6-17.

182

My simulation - Cooja: The Contiki Network Simulator
Elle Skmulstion Motes Tools Settings Help

CHAPTER6 NETWORKING

[E[O[x] &

View Zoom

@

@

'TLEPFTE

3
|

3’_’

O]

Flle ECR View Zoom Events Motes

(&)
Run Speed limit

Time: 00:00.000
Speed: -

=) =Blx]
File Ecil Viev

Time |Mote

Timeline showing & motes

HANsD

| Start || Fauss

simulation control [__]@]E]Ej Hotes (S

[step [naoad |

HNetwork
Enter nates here The network window shows
the positions of simulated
motes.

It is possible to zoom
(Mouse wheell and pan
(Shifte Mouse drag) the
current view. Motes can be
moved by dragging them,
¥ou can addiremave motes
toffram selaction (CTRL+ Left
chick) or use the rectangular
selection tool (CTAL+Mouse
dragl. Mouse right-click
mokes for options menuy.

The netwaork windaw
supparts diferent views.
Each view provides some
specific information, such as
the P addresses of mates.
Multiple views can be actve
at the same time, Use the
View menu Lo select views.

Figure 6-17. Deployed UDP client motes on COOJA

Running a Simulation

Once we have added the UDP server and client motes into the COOJA
simulation, we can run the simulation. To do so, click the Start button on

the Simulation Control dialog, as shown in Figure 6-18. If you don'’t see this

dialog, you can open it by going to Simulation » Control panel.

183

CHAPTER6 NETWORKING

Contiki Network Simulator 1y m -

stes Jools Settings Help

Network

8268 |-

)

)

File Edil Viev

Time | Mole'

Figure 6-18. Starting a simulation

_Sa_j Reload | |

~ simulation control Q@_[E @ Notes@@@

Enter notes

Network
here The netwo
the positic
motes.

It is possit
(Mouse wk.
(Shift+Mot
current vie
moved by »
You can as
to/from se
click) or ug
selection t
drag). Mou
motes for

The netwo
supports ¢
Each view
specific inf

PO

After clicking the Start button, you should see the packet network and

graphic simulation on COOJA. You can see it in Figure 6-19.

My simulation - Cooja: The Contiki Network Simulator

Eile_Simulation Motes Jools Settings Help

F—
=i
Aun Speed imit

Network

O]

View Zoom

Simulation control |=j2)ix]

Timeline showing & motes

File Edt View Zoom Events Motes

FRIEELELL LT

® | | Pause | |_Reload |
I Time: 05:09.351
® | Speed: 1157.54%
@ |'@ Mote culpit |
Il File Edt \iew
| Time Mote | Message
| o4:52.523 Il (INFD: Mpp
| 04:52.528 ID:1 [INFO: App
| 04:52.545 [0:2 (INFO: Mpp
05:04.457 ID:S [INFO: Mpp
Il 05:08.428 ID:3 (INFD: App
| 05:08.444 ID:1 [INFO: Bpp
|| 05:08.420 ID:1 [INFO: App
| 05:08.465 ID:3 [INFD: App
|
|
i

(D] anng@_][?g_j“

Enter notes here

Figure 6-19. A simulation is running on COOJA

184

Timeline

The timeline shows
simulation events over
time. The timeline can be
used to inspect acthities
of ndnadual nodes as well
as interactions between
nodes

For each mote. simulation
events are shownon a
celored hne. Diferent
colors correspond to
different events. For more
information about &
particular evant, mouse
chek it

The Events menu control
what event types are
shown in the timelne.
Cufrently, six event types
are supported (see
balow)

All motes are DT detault
shown in the timelne.
Motes can be removed
from the timeline
night-clicking the node ID
on the left

To display a vertical time
markir on tha timaline.
press and hold the
mouse on the tme ruler
(top)

For mare options for a
given event, right-click
the mouse for a popup
menuy.

Radio traffic
Shows radeo traffic
wvants. Transmissions are

|

CHAPTER6 NETWORKING

If the distance between motes is far, some motes probably won't
connect or receive UDP messages. You can change the mote location so
each mote can be connected.

Now you can run the simulation again. You should see a graphic
simulation on COOJA. A sample of the simulation can be seen in Figure 6-20.

|| control Panel

| Enter nates here The control panel controls
the simulation,

Start starts the simulation.
Pause stops the simulation,

The keyboard shorteut for
starting and pausing the
simulation is Ctri+ S,

Step runs the simulation for
one milisecond.

6
Ip:1
Dl
10:6 : ... [| simulation speed is
10:4 L = controlled wa the Spaed
Il : - limit menu.

ID:1 .

Ima

Reload reloads and restans
the simulation.

(

DEPDDUNO:

i

r'l

Figure 6-20. Changing mote location

IPv6 Networking

IPv6 (Internet Protocol Version 6) is the Internet’s next-generation
protocol, designed to replace the current protocol, IP Version 4 (IPv4).
Most network systems still use IPv4 to communicate with other systems.
Sample IP addresses from IPv4 and IPv6 are shown here:

// IPv4
192.168.0.2
// IPv6
2021:db8: ffff:1:201:02ff:fe03:0415
185

CHAPTER6 NETWORKING

To test whether your network uses IPv4, IPv6, or both, you use a
browser and navigate to http://test-ipv6.com. Based on IPv6 and
IPv4 statistics from http://ipv6-test.com/stats/, IPv6 penetration in
the market still does not dominate. Figure 6-21 shows a comparison of
protocol support for IPv6 and IPv4. For instance, on July 2017, IPv6-only
dominates at about 54.7 percent.

Overall IPv6 and v4 protocol support

100%

75%

25%

201 2012 2013 2014 2015 2016 207

© 1Pva @ IPvE

Figure 6-21. Comparing IPv4 and IPv6 protocol support
worldwide

For more learning material about IPv6, I recommend you read some
textbooks or technical articles related to IPv6 technology. This book does
not cover IPv6 technology in any depth.

Contiki-NG can work with an IPv6 network by default. Contiki-NG
projects provide ulP as the network stack implementation for IP, UDP, and
TCP protocols included in the basic ICMP protocol. The ulP library can
run on constrained devices, such as Tmote Sky/TelosB, TI cc26xx/ccl3xx,
Firefly, RE-mote, and Orion.

For our IPv6 demo on Contiki-NG, we can perform testing using a
Contiki-NG shell (NG shell). To enable an NG shell for your program, you
should add a shell module to your Makefile file:

MODULES += os/services/shell

186

http://test-ipv6.com/
http://ipv6-test.com/stats/

CHAPTER6 NETWORKING

Then, you can compile and upload to your mote. Since the shell
module needs more space, you should use a mote platform that can
handle NG shell spaces. In this demo, I use a TI CC2650 LaunchPad board.

For testing, we need two motes at least. Upload your project; for instance,
hello-world with NG shell enabled. After uploading Contiki-NG firmware
onto the boards, we can remote into the NG shell from a serial terminal.

For instance, I remote into the TI CC2650 LaunchPad via the /dev/
ttyACMo port:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 login PORT=/
dev/ttyACMo

Open a new Terminal window. Then, perform a serial remote on the
second mote. For instance, my second mote runs on the /dev/ttyACM2 port:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 login PORT=/
dev/ttyACM2

After connecting to the NG shell, we can perform some tests related
to IPv6 operations. You can check the current IPv6 address on each mote.
You can type this command in the NG shell:

> ip-addr

You should see an IPv6 address for each mote. Next, you can perform a
ping to one of the motes. For instance, I perform a ping on a mote with the
IPv6 address fe80::212:4b00:d77:682:

> ping fe80::212:4b00:d77:6182

You should get a response from ping operations. Last, our mote can
discover its neighbor. By default, Contiki-NG enables UIP_ND6_AUTOFILL_
NBR_CACHE to be discoverable. You can perform this command to discover
a mote’s neighbor:

> ip-nbr

187

CHAPTER6 NETWORKING
All these operations can be seen in Figure 6-22.
RD=1launchpad/cc2650 TARGET=srf06-cc26xx

../ ../tools/sky/serialdump-1inux -b115200 [dev/ttyACM2
connecting to /dev/ttyACM2 (115200) [OK]

[INFO: Main] starting Contiki-NG-release/v4.0-23-g5a8c5a6-dirty

[INFO: Main] MNet: sicslowpan

[INFO: Main] MAC: CSMA

[INFO: Main] Link-layer address 0012.4b00.0797.6083

[INFO: Main] Tentative link-local IPv6 address fe80::212:4b00:797:6083

[INFO: CC26xx/CC13xx] TI CC2650 LaunchPad

[INFO: CC26xx/CC13xx] RF: Channel 25, PANID OxABCD
[INFO: CC26xx/CC13xx] MNode ID: 24707

Hello, world

Command not found. Type 'help' for a list of commands

#0012.4b00.0797.6083> ip-addr

Node IPv6 addresses:

-- fe80::212:4b00O:797:6083

#0012.4b00.0797.6083> ping feB80::212:4b00:d77:6f82

Pinging fe80::212:4b00:d77:6f82

Received ping reply from feg80::212:4b00:d77:6f82, len 4, ttl 64, delay 7 ms
#0012.4b00.06797.6083> ip-nbr

Node IPv6 neighbors:

-- feB80::212:4b00:d77:6f82 <-> 0012.4b00.0d77.6f82, router 0, state Reachable
#0012.4b00.0797.6083> l

agusk@akur01: ~/contiki-ng/examples/hello-world

[INFO: CC26xx/CC13xx] RF: Channel 25, PANID OxABCD
[INFO: CC26xx/CC13xx] Node ID: 28546
Hello, world

[INFO: Main] starting Contiki-NG-release/v4.60-23-g5a8c5a6-dirty

[INFO: Main] Net: sicslowpan

[INFO: Main] MAC: CSMA

[INFO: Main] Link-layer address 0012.4b00.6d77.6f82

[INFO: Main] Tentative link-local IPv6 address fe80::212:4b00:d77:6f82

[INFO: CC26xx/CC13xx] TI C€C2650 LaunchPad

[INFO: CC26xx/CC13xx] RF: Channel 25, PANID OXABCD
[INFO: CC26xx/CC13xx] Node ID: 28546

Hello, world

Command not found. Type 'help' for a list of commands

#0012.4b00.0d77.6f82> ip-addr

Node IPv6 addresses:

-- feB80::212:4b00:d77:6f82

#0012.4b00.0d77.6f82> ping fe80::212:4b00:797:6083

Pinging fe86::212:4b00:797:6083

Received ping reply from feB0::212:4b00:797:6083, len 4, ttl 64, delay 7 ms
#0012.4b00.0d77.6f82> ip-nbr

Node IPv6 neighbors:

-- fe80::212:4bPO:797:6083 <-> 0012.4b00.0797.6083, router @, state Reachable
#0012.4b06.6d77.6f82> 0

Figure 6-22. [Pv6 testing via Contiki-NG shell

188

CHAPTER6 NETWORKING

Routing on Contiki-NG

Routing is the process of moving packets across a network from source

to destination. This process is usually performed by dedicated network
devices, such as routers and computers. Routing is a key feature of the
Internet. Routing topics as a research area is still popular. Some researchers
propose algorithms to address routing problems. In this section, we will
review routing and how to implement it in the Contiki-NG platform.

Introducing Basic Routing

We already know that routing is applied to address how the packet is
delivered from one point to another. Consider the paths depicted in
Figure 6-23. For instance, we want to send a packet from A to D. Which path
do you want to take?

Figure 6-23. Data network flow on some motes

Figure 6-23 shows a number of path options to send a packet from
A to D. We can take one of three path options: A-B-D, A-D, and A-C-D. Which
one is the best path? This is a challenge.

189

CHAPTER6 NETWORKING

When selecting a path, you must consider what your goal is and what
your success criteria are. We can define a cost for each path. Then, we can
select the best path with the lowest cost. Battery usage can be one of the
cost parameters when you want to perform a certain routing algorithm.

That is one routing issue. Unfortunately, this book does not focus
on routing algorithms. I recommend you read about routing topics in
textbooks or technical articles. We will use the current routing algorithms
that are applied in Contiki-NG.

Single-Hop and Multi-Hop Networking

When a packet is transferred from the source to the final destination, it
probably goes through a number of network devices. In networking, we
will find a term called a hop. Hop is a term used to describe the different
network devices a packet has to go through to reach its final destination
point.

We can categorize networking models by the number of hops, such as
single-hop and multi-hop networks. To better understand these network
models, see the network topology depicted in Figure 6-24. A single-hop
network would be pointed to the A-D path. The packet is sent from A to D
through a single router.

Multi-hop networks send a packet through two or more networks to
reach its final destination address. From Figure 6-24, we can see that the
E-F path is considered a multi-hop network.

190

CHAPTER6 NETWORKING

Router

/
Router a \A.
r \ F
o @
B D
O
A

Figure 6-24. A network topology

The Contiki-NG platform supports both single-hop and multi-hop
networks. Depending on your network design, your Contiki-NG program
should be aware of single-hop and multi-hop networks.

Routing on Contiki-NG

Currently, Contiki-NG supports two RPL routing methods: RPL classic and
RPL lite. RPL classic is the original Contiki’s RPL implementation, called
ContikiRPL. If you want to read further about ContikiRPL, I recommend
you read this paper: http://www.diva-portal.org/smash/get/
diva2:1042739/FULLTEXTO1.pdf. Otherwise, Contiki-NG applies RPL lite
for default RPL implementation.

191

http://www.diva-portal.org/smash/get/diva2:1042739/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1042739/FULLTEXT01.pdf

CHAPTER6 NETWORKING

Since Contiki-NG applies RPL lite by default, we test RPL. For instance,
we have two motes for testing. Enable NG shell on your program. You can
use the hello-world program with NG shell enabled. Flash this program to
all motes.

Now you can access the Contiki-NG motes via NG shell. First, test an
RPL root on the first mote. You can type this command:

> rpl-set-root 1
Then, you can check the RPL status using this command:
> rpl-status

You also can check the RPL route table that is applied on this mote.
Type this command:

> routes

You can see my program output that has performed those tasks in
Figure 6-25.

192

CHAPTER6 NETWORKING

X agusk@akur01: ~/contiki-ng/examples/hello-world

[INFO: Main] Net: sicslowpan

[INFO: Main] MAC: CSMA

[INFO: Main] Link-layer address ©012.4b00.0d77.6f82

[[INFO: Main] Tentative link-local IPv6 address fe8@::212:4be0:d77:6f82

[INFO: CC26xx/CC13xx] TI CC2650 LaunchPad

[INFO: CC26xx/CC13xx] RF: Channel 25, PANID OxABCD
[INFO: CC26xx/CC13xx] Node ID: 28546

Hello, world

Command not found. Type 'help' for a list of commands
#0012.4b00.0d77.6f82> rpl-set-root 1

Setting as DAG root with prefix fdee::/64
#0012.4b00.0d77.6f82> rpl-status

RPL status:

-- Instance: ©

-- DAG root

-- DAG: fdee::212:4b00:d77:6f82, version 240

-- Prefix: fdeo::/64

-- MOP: Non-storing

-- OF: MRHOF

-- Hop rank increment: 128

-- Default lifetime: 1800 seconds

-- State: Reachable

-- Preferred parent: (NULL IP addr)

-- Rank: 128

-- Lowest rank: 65535 (1024)

-- DTSN out: 2460

-- DAO sequence: last sent 240, last acked 240

‘-~ Trickle timer: current 14, min 12, max 20, redundancy 6
'#0012.4b00.0d77.6f82> routes

‘Default route:

-- None

‘Routing links (2 in total):

-- fdee::212:4b00:d77:6f82 (DODAG root) (lifetime: infinite)
-- fdee::212:4bee:797:6083 to fdeo::212:4bee:d77:6f82 (lifetime: 1740 seconds)
#0012.4b00.0d77.6782> [l

Ur. mnRnur

- Hop rank increment: 128

- Default lifetime: 1800 seconds

- State: Reachable

- Preferred parent: fe80::212:4b00:d77:6f82

- Rank: 256

- Lowest rank: 256 (1024)

- DTSN out: 240

- DAO sequence: last sent 241, last acked 241
- Trickle timer: current 15, nin 12, max 20, redundancy ©

1012 4b00.0797.6083> routes

:fault route:

- fe80::212:4b00:d77:6f82 (lifetime: infinite)

» routing links

1012.4b00.0797.6083> []

Figure 6-25. RPL operations on the first mote

193

CHAPTER6 NETWORKING

Next, you also can check the RPL status and its routes on another mote.
You can type these commands in the NG shell:

> rpl-status
> routes

A sample of the program output is shown in Figure 6-26.

X agusk@akur01: ~/contiki-ng/examples/hello-world

Command not found. Type 'help' for a list of commands
#0012.4b00.6797.6083> rpl-status

RPL status:

-- Instance: 0

-- DAG node

-- DAG: fdee::212:4b8e:d77:6f82, version 240

-- Prefix: fdee::/64

-- MOP: Non-storing

-- OF: MRHOF

-- Hop rank increment: 128

-- Default lifetime: 18080 seconds

-- State: Reachable

-- Preferred parent: fe80::212:4b00:d77:6f82

-- Rank: 256

-- Lowest rank: 256 (1024)

-- DTSN out: 240

-- DAO sequence: last sent 241, last acked 241
-- Trickle timer: current 15, min 12, max 20, redundancy @
#0012.4b00.6797.6083> routes

Default route:

-- feB0::212:4b00:d77:6f82 (lifetime: infinite)
No routing links

#0012.4b00.0797.6083>

Figure 6-26. RPL operations on the second mote

IPv6 Multicast

We can categorize data communication based on how the data is
transferred. There are three models in data communication: unicast,
broadcast, and multicast.

Unicast describes communication where a piece of information is sent
from one point to another point. In the Unicast model, there is one sender
and one receiver. Network protocols-based TCP transport such as http,
smtp, ftp, and telnet support the unicast transfer mode.

194

CHAPTER6 NETWORKING

Broadcast is a communication model where a piece of information
is sent from one point to all other points. In this model, there is still one
sender, but the information is sent to all connected receivers. There may
be no receivers. ARP (Address Resolution Protocol) uses broadcast to send
an address resolution query to all computers.

Multicast describes communication where a piece of information is
sent from one or more points to a set of other points. In this model, there
may be one or more senders. The information is distributed to a number of
receivers.

The main difference between multicast and broadcast is to provide
opt-in option for receivers. The receiver that wants to receive data should
register to gain access to the sender. This registration will inform the
network that you are interested and have opted in to receiving data.
Otherwise, the receiver never receives the data. To compare how unicast,
broadcast, and multicast send packets, see Figure 6-27.

Unicast

O >0
Broadh’.

o
P i~

~ Tdon't

Multicast .A‘_ opt iD

Figure 6-27. Unicast, broadcast, and multicast

To work with IPv6 multicast in a Contiki-NG project, you should
add the multicast module to your project. You can add this script in the
Makefile file:

MODULES += os/net/ipv6/multicast

195

CHAPTER6 NETWORKING

We also activate RPL classic routing on the Contiki-NG project. You
can add this script into the Makefile file:

MAKE ROUTING = MAKE ROUTING RPL_CLASSIC

For testing, we can use a program sample from Contiki-NG. We can
use the multicast project from the <contiki-ng>/examples/multicast/
folder. For this demo, we need at least three motes. One mote is deployed
for sink.c and another mote is deployed for root.c. The rest should be
flashed for intermediate.c.

After deploying all programs to the motes, you can try to remote in
to each mote. In general, the sink.c program will listen for incoming
messages from root. c. Before listening for the message, the sink.c
program should join the existing multicast group by calling the join_
mcast_group() function. This program listens on port 3001:

if(join_mcast_group() == NULL) {
PRINTF("Failed to join multicast group\n");
PROCESS_EXIT();

The root. c program will send a UDP message every second.
This is done by calling the uip _udp_packet_send() function. The
intermediate.c program does not join the existing multicast group. Since
the intermediate.c program has been activated for RPL classic routing,
this program can forward any multicast message.

The demo of the multicast project can be seen in Figure 6-28. You can
see the program output from the sink.c and root.c programs.

196

CHAPTER6 NETWORKING

yuUsB1 login
..[..[tools/sky/serialdump-linux -b115200 /dev/ttyUSB1
connecting to /dev/ttyUsSB1 (115200) [O0K]

[INFO: Main] Starting Contiki-NG-release/v4.08-23-g5a8c5a6-dirty

[INFO: Main] MNet: sicslowpan

[INFO: Main] MAC: CSMA

[INFO: Main] Link-layer address ©012.7400.16bf.81e9

[INFO: Main] Tentative link-local IPv6 address fe80::212:7400:16bf:81e9
[INFO: Sky] Node id is not set.

[INFO: Sky] CSMA, radio channel 26, CCA threshold -45

Multicast Engine: 'ROLL TM'
Joined multicast group ffile::89:abcd

JListening: :: local/remote port 3001/6

[INFO: Main] starting Contiki-NG-release/v4.0-23-g5a8c5a6-dirty

[INFO: Main] MNet: sicslowpan

[INFO: Main] MAC: CSMA

[INFO: Main] Link-layer address ©012.7400.16bf.81e9

[INFO: Main] Tentative link-local IPv6 address fe80::212:7400:16bf:81e9
[INFO: Sky] Node id is not set.

[INFO: Sky] CSMA, radio channel 26, CCA threshold -45

Multicast Engine: 'ROLL TM'
Joined multicast group ffle::89:abcd
Listening: :: local/remote port 3001/0

agusk@akur01: ~/contiki-ng/examples/multicast

send to: ffle::89:abcd Remote Port 3001, (msg=0x00000006) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x00088007) 4 bytes
send to: ffle::89:abcd Remote Port 3001, (msg=0x00000008) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x00088009) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x0000000a) 4 bytes
send to: ffle::89:abcd Remote Port 3001, (msg=0x0000000b) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x0000000c) 4 bytes
send to: ffle::89:abcd Remote Port 3001, (msg=0x0000000d) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x0000000e) 4 bytes
send to: ffle::89:abcd Remote Port 3001, (msg=0x0000000f) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x00000010) 4 bytes
send to: ffle::89:abcd Remote Port 3001, (msg=0x00000011) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x00088012) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x00000013) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x00088014) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x00000015) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x00000016) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x00000017) 4 bytes
send to: ffle::89:abcd Remote Port 3001, (msg=0x00000018) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x00000019) 4 bytes
send to: ffle::89:abcd Remote Port 3001, (msg=0x0000001a) 4 bytes
Send to: ffle::89:abcd Remote Port 3001, (msg=0x0008801b) 4 bytes
send to: ffle::89:abcd Remote Port 3001, (msg=0x0000001c) 4 bytes

—

Figure 6-28. Multicast demo on Sky mote

If you don’t have three motes or more, you still can simulate this
project using COOJA. You can open the <contiki-ng>/examples/
multicast/multicast.csc file in the COOJA application. There are eight

197

CHAPTER6 NETWORKING

motes in this simulation. After loading the project into COOJA, you can run
the multicast simulation. You can see the simulation output in Figure 6-29.
You can see all messages from the motes in the Radio Messages window.

Elle Simulation Motes Iools Settings Help

O] ISR (820

View Zoom

fe80:21 2’!05 51505

feB0::21 2@\02:2:202

feB0:21 2’4 04:4:404
feB0:21 2’“]1:1:10].

feB0:21 2910?:7:?0?

@ fa@n.. 3] 1’|n1.') ana
1680::212:7408:2:808 (=] _simulation control
Run Speed limit

Start Step Reload

Time: 00:50.117
Radio mesaages: showing 1| speed: 769.53%

fﬁ8D::212‘2106c6:605

No. |Frem |Te | Data
Lo L 301 7O I e U LT TR T O U T U T O U L T TR T UL T OO UL T UL
108 1 [4d] S5: 15.4 A
118 L] 8 §7: 15.4 D 00:12:74:06: 00: 06:06: 05 OuFFFF| IPHC| IPv6| ICHPYS RPL DIO|FDOOO0OD 00000000 02127401 GOGLOLOL 0408
11 7 [3d] 102: 15.4 D 00:12:74:07:060:07:07:07 00:12:74:01:80:01:001:01 | IPHC| IPvS| ICHPyG RPL DIO|FDOOCOOD GOOOO000 02127
112 1L [4 d) 5: 15.4 A
13 2 [3d] 871540 00:12:74:02: 102 OWFFFF| IPHCI IPY6| ICHPYS RPL DIO|FDO00000 00000000 02127401 00010101 040F
ol “Mote output
File Edt View
| Time | Mote | Message
| 00:00.354 ID:8 [INFO: Main | Starting Contiki-NG-release/vd.0-23-g5a8c5a6-dirty
00:00.355 I0:8 [INFO: Main I Net: sicslowpan
00:00.358 ID:8 [INFO: Main | MAC: CSMA
00:00.368 ID:8 [INFO: Main | Link-layer address 0012.7408.0008.0808
00:00.381 ID:8 [INFO: Main | Tentative link-local IPv6 address feB0::212:7408:8: 808
L&mw 0:R [INFD: Sky | Kode id is set to 8 X
- - - o —

Figure 6-29. Multicast demo on COOJA tool

198

CHAPTER6 NETWORKING

Contiki-NG NuliNet

If you want to investigate a packet among Contiki-NG network stack
layers, you can use NullNet. To work with NullNet, add this script to the
Makefile file:

MAKE_NET = MAKE_NET_NULLNET

If you want to send data, you should the data and its size in the
nullnet_buf and nullnet_len variables, which are pre-defined from net/
nullnet/nullnet.h. Then, send the data by calling NETSTACK_NETWORK.
output (NULL). To receive packets from NullNet, you call the nullnet
set_input callback(callback func) function with the passing callback
function.

For this demo, you can run program samples from the <contiki-ng>/
examples/nullnet folder. There are two demos: broadcast and unicast.
You can run these programs on motes directly or in the COOJA application.
You can see my program output in Figure 6-30 on a mote from the demo
samples on Contiki-NG motes.

199

CHAPTER6 NETWORKING

x agusk@akuro1: ~/contiki-ng/examples/nullnet

[INFO: App sending 25 to (NULL LL addr)
[INFO: App Sending 26 to (NULL LL addr)
[INFO: App sending 27 to (NULL LL addr)
[INFO: App Sending 28 to (NULL LL addr)
[INFO: App] sending 29 to (NULL LL addr)
[INFO: App] Sending 30 to (NULL LL addr)
[INFO: Main] starting Contiki-NG-releasefv4.0-23-g5a8c5a6-dirty
[INFO: Main] Net: nullnet

[INFO: Main MAC: CSMA

[INFO: Main Link-layer address 21f0.e713.0074.1200
[INFO: Sky Node id is not set.

[INFO: Sky CSMA, radio channel 26
[INFO: App sending @ to (NULL LL addr)
[INFO: App] Sending 1 to (NULL LL addr)
[INFO: App] Sending 2 to (NULL LL addr)
[INFO: App] Sending 3 to (NULL LL addr)
[INFO: App] Sending 4 to (NULL LL addr)
[INFO: App] Sending 5 to (NULL LL addr)
[INFO: App] Sending 6 to (NULL LL addr)
[INFO: App] Ssending 7 to (NULL LL addr)
[INFO: App] sending 8 to (NULL LL addr)
[INFO: App] Sending 9 to (NULL LL addr)
[INFO: App] sending 10 to (NULL LL addr)

Use -h for help
Reset device ... y
Done
nake[2]: Leaving directory '/homefagusk/contiki-ng/examples/nullnet’
nake[1]: Leaving directory '/home/agusk/contiki-ng/examples/nullnet’
agusk@akurei:~/contiki-ng/examples/nullnet$ sudo make TARGET=sky MOTES=/dev/ttyu
581 login
«of../tools/sky/serialdump-1inux -b115200 [dev/ttyUSB1
connecting to /dev/ttyusel (115200) [OK]

3

[INFO: App] sending 3 to (NULL LL addr)
[INFO: App] Sending 4 to (NULL LL addr)
[INFO: App] sending 5 to (NULL LL addr)
[INFO: App] Sending 6 to (NULL LL addr)
[INFO: App] sending 7 to (NULL LL addr)
[INFO: App] Sending 8 to (NULL LL addr)
[INFO: App] Ssending 9 to (NULL LL addr)
[INFO: App] Sending 16 to (NULL LL addr)
[INFO: App] Sending 11 to (NULL LL addr)
[INFO: App] Sending 12 to (NULL LL addr)
[INFO: App] Sending 13 to (NULL LL addr)
[INFO: App] Sending 14 to (NULL LL addr)
[INFO: App] Sending 15 to (NULL LL addr)
[fHFO: App] Sending 16 to (NULL LL addr)

Figure 6-30. NullNet demo on Sky mote

You can also test this program demo using COOJA. Just select the
nullnet-broadcast.csc and nullnet-unicast.csc files from the COOJA
application. After they are loaded, you can run these demos and see radio
messages from COO]JA application and review pack flow.

200

CHAPTER6 NETWORKING

6LoWPAN Network

6LoWPAN is an acronym for IPv6 over Low-Power Wireless Personal
Area Networks. 6LoWPAN is an open standard defined in RFC 6282. This
standard enables WSN motes to communicate with other systems via an
Internet network.

In this section, we will learn the basics of 6LoWPAN and how to
implement it on the Contiki-NG platform.

A Brief Introduction

6LoWPAN is a network standard used to enable WSN motes to communicate
with external networks, such as Internet networks. 6LoWPAN uses IPv6 as
the identity for all motes. A 6LoWPAN network is shown in Figure 6-31.

Router / Internet Network
smwpya_“........___

[Computer] Computer] [Computer]

WSN Network .
o LAN Network

Figure 6-31. 6LoWPAN network

201

CHAPTER6 NETWORKING

WSN networks apply IPv6 for all communication. Each mote can
communicate with the other motes. If one mote wants to communicate
with an external system, such as a server, computer, or any legacy
application in a different network, the mote just sends a message as usual.
The 6LoWPAN router will take responsibility for communication between
internal and external networks.

A 6LoWPAN router will record all addresses from motes and other
network devices that are connected to the 6LoWPAN router. If an external
system such as a server sends a message to one of the WSN motes in the
WSN network, the 6LoWPAN router will forward the message to the mote.
Otherwise, 6LoWPAN will inform the requester of failure.

In a network-stack view, we can compare a 6LoWPAN network to a
WiFi network from the OSI layer side. You can see this comparison in
Figure 6-32.

As you can see in Figure 6-32, 6LoWPAN works on the data-link layer
in the OSI model. This standard uses IEEE 802.15.4 for physical layer
implementation. In the upper layer of the 6LoWPAN, this standard applies
IPv6 on RPL.

Simple OS5I model WIFI network stack 6LoWPAN network stack
HTTP, CoAP, MQTT,
Application layer HTTP WebSocket, etc
Transport layer TCP UDP, TCP (TLS/DTLS)
Network layer Internet Protocol (IP) IPv6, RPL
BLoWPAN
Data link layer
WIFI IEEE 802.15.4, MAC
EHiscal iV, IEEE 802.15.4

Figure 6-32. Comparing WiFi and 6LoWPAN to OSI model

In the next section, we will try to implement 6LoWPAN on Contiki-NG.

202

CHAPTER6 NETWORKING

Implementing a 6LoWPAN Network
on Contiki-NG

Contiki-NG implements the 6LoWPAN network stack via an RPL border
router that acts as a 6LoWPAN router. You can see a network diagram in
Figure 6-33 for implementing 6LoWPAN on the Contiki-NG platform.
You can put the RPL border router on a computer or a Raspberry Pi or any
network device.

How do you implement an RPL border router in Contiki-NG?

Basically, you need a Contiki-NG mote as the RPL border router mote.
This mote will work as a bridge to serve all requests from motes in the
WSN network or network devices from an external network. To create an
RPL border router mote, you should add the rpl-border-router library
into your project. You can add this script to your Makefile file:

MODULES += os/services/rpl-border-router

Then, run a program, called tunslip6, from Contiki-NG. You can find
itin the <contiki-ng>/tools/ folder. This tool will communicate with a
mote that has already been deployed as an RPL border router via serial
port. You can type this command:

$ sudo ./tunslip6 <prefic> -s <serial port>

<prefic> is a prefix from the IPv6 address that will assign to all motes
on the RPL border router application. <serial port> is a serial port from
the mote running the RPL border router program.

203

CHAPTER6 NETWORKING

LAN network

Computer/Raspberry Pi

@ Serial communication

F!PL Border Router

i 3 - Internet network
. Mote . WSN‘Network

T Mote -

Figure 6-33. Implementing 6LOWPAN network on Contiki-NG

For this demo, we can run a program sample from the <contiki-
ng>/examples/rpl-border-router/ folder. This project includes an RPL
border router and web server modules. We need at least two motes to
simulate the 6LOWPAN router and its communication.

Compile this project and flash it to one of the Contiki-NG motes. After
it has been deployed to the mote, you can work remotely on the non-
border router mote to see the assigned IPv6 address.

Last, you should run the tunslip6 program on the computer/Raspberry
Pi to which the RPL border router mote was attached. You can run this
command on the rpl-border-router project:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 connect-
router

204

CHAPTER6 NETWORKING

After being executed, that command will run tunslip6 with a default
port. You should probably change the values for the target mote platform
and its serial port.

By default, the RPL border router has an IPv6 address of fd00: :1/64.
You can change it in your Makefile. For instance, if you define the prefix
of your IPv6 address as Td00: : 1/64, all motes within the WSN network
will be assigned as £d00: : xxxx. In this demo, my mote is assigned as
1d00::212::4b00: :d77: :6fd2.

Now you can ping the mote using the assigned IPv6 address from your
computer. For instance, type this command:

$ pingb fdoo::212:4b00:d77:6Fd2

This program will get a response from the target mote because this
mote can communicate with the computer through the RPL border router.
You can see the program output in Figure 6-34. I ping my mote from Linux
Ubuntu. It shows my computer can contact the Contiki-NG mote.

If you do not see a list of IPv6 addresses from your motes, you can
restart your RPL border router application, tunslip6. Then, see the list of
IPv6 addresses from the motes.

205

CHAPTER6 NETWORKING

agusk@akur01: ~/contiki1/contiki-ngfexamples/rpl-border-router

[INFO: CC26xx/CC13xx] Node ID: 28546
[INFO: RPL BR] Contiki-NG Border Router started

[INFO: BR] RPL-Border router started

*** Address:fde@::1 => fd0O:0000:0000:0000

[INFO: BR] Waiting for prefix]
[INFO: BR] server IPv6 addresses:

[INFO: BR] fdee::212:4be0:d77:6f82

[INFO: BR] feg0::212:4bo0:d77:6f82

[INFO: Main] Starting Contiki-NG-develop/v4.0-346-g7cbdbee-dirty

[INFO: Main] MNet: sicslowpan

[INFO: Main] MAC: CSMA

[INFO: Main] Link-layer address 0012.4b00.0d77.6f82

[INFO: Main] Tentative link-local IPv6 address fe80::212:4b00:d77:6f82
[INFO: CC26xx/CC13xx] TI CC2650 LaunchPad

[INFO: CC26xx/CC13xx] RF: Channel 25, PANID @xABCD

[INFO: CC26xxfCC13xx] MNode ID: 28546

[INFO: RPL BR] Contiki-NG Border Router started

[INFO: BR] RPL-Border router started

*** Address:fde@::1 => fd0e:0000:0000:0000

[INFO: BR] Waiting for prefix

[INFO: BR] server IPv6 addresses:
[INFO: BR] fdee::212:4bo0:d77:6f82
[INFO: BR] feg0::212:4b00:d77:6f82

agusk@akuro1i:~/contiki-ng$ ping6 fdee::212:4bee:d77:6f82

PING fde®::212:4b00:d77:6f82(fd00::212:4b00:d77:6f82) 56 data bytes
64 bytes from fdeo::212:4be0:d77:6f82: icmp_seq=1 ttl=64 time=34.
64 bytes from fde®::212:4be0:d77:6f82: icmp_seq=2 ttl=64 time=41.
64 bytes from fdeo::212:4be0:d77:6f82: icmp_seq=3 ttl=64 time=39.
64 bytes from fde®::212:4bee:d77:6f82: icmp_seq=4 ttl=64 time=29.
64 bytes from fdeo::212:4b00:d77:6f82: icmp_seq=5 ttl=64 time=36.
64 bytes from fdee::212:4be0:d77:6f82: icmp_seq=6 ttl=64 time=39.
64 bytes from fde0::212:4b00:d77:6782: icmp_seq=7 ttl=64 time=28.
64 bytes from fdee::212:4be0:d77:6f82: icmp_seq=8 ttl=64 time=26.
64 bytes from fde9::212:4b00:d77:6f82: icmp_seq=9 ttl=64 time=40.
64 bytes from fdoo::212:4b00:d77:6f82: icmp_seq=10 ttl=64 time=34.9 ms
64 bytes from fd00::212:4b00:d77:6f82: icmp_seq=11 ttl=64 time=27.5 ms
64 bytes from fdee::212:4be0:d77:6f82: icmp_seq=12 ttl=64 time=26.1 ms
64 bytes from fd00::212:4b00:d77:6f82: icmp_seq=13 ttl=64 time=41.5 ms
64 bytes from fdeo::212:4be0:d77:6f82: icmp_seq=14 ttl=64 time=32.3 ms
64 bytes from fde0::212:4b00:d77:6f82: icmp_seq=15 ttl=64 time=40.3 ms
64 bytes from fdeo::212:4be0:d77:6f82: icmp_seq=16 ttl=64 time=32.9 ms
64 bytes from fde®::212:4b00:d77:6f82: icmp_seq=17 ttl=64 time=24.0 ms
64 bytes from fdeo::212:4be0:d77:6f82: icmp_seq=18 ttl=64 time=38.4 ms
64 bytes from fde®::212:4b00:d77:6f82: icmp_seq=19 ttl=64 time=34.1 ms
64 bytes from fdeo::212:4be0:d77:6f82: icmp_seq=20 ttl=64 time=28.5 ms

OV ONL =D
3
w

Figure 6-34. Performing ping on one of the Contiki-NG motes from a
computer

206

CHAPTER6 NETWORKING

If you use a program sample from <contiki-ng>/examples/rpl-

border-router/, you should get the web server within the program. You

can test by opening a browser and navigating to http://[ip6_address_
from_mote]. You can see my browser output in Figure 6-35.

Contiki-NG - Mozilla Firefox

Contiki-NG

Figure 6-35.

& C e @ [Fd00::212:4b00:d77:6f82)

Neighbors
Routes

Accessing web server on Contiki-NG mote from

computer browser

If you have another mote, you can upload the Contiki-NG firmware to
that mote. Then, the RPL border router will detect it. If you open a browser
and navigate to the IPv6 address from the RPL border router mote, you
should show its neighbor. You should see the IPv6 address from that mote.

For instance, you can see it in Figure 6-36.

Contiki-NG - Mozilla Firefox

==

Figure 6-36.

Contiki-NG B9l Contiki-NG
« c @ 0 [Fdo0:212:4b00:d 77:6F82]
Neighbors
B fe80::212:4b80:797:6083
k Routes
Links

fdee::212:4b60:797:6083 (parent: fdoo::212:4b00:d77:6f82) 1740s

Displaying mote neighbor on RPL border router

207

CHAPTER6 NETWORKING

You can also test it by performing a ping. For instance, the target mote
is fd00: :212:4b00:6083. We can perform a ping as follows:

$ pingb fdoo::212:4b00:6083

You should get a response from that mote. You can see it in Figure 6-37.
Sometimes you don’t see the IPv6 address from a new mote in
your browser (Figure 6-36), but you know the local IPv6 address of the
new mote. You can verify it by remoting into the mote with the local
IPv6 address. For instance, the IPv6 address is fe80: :212:4b00:6083.
Now, change the prefix to fd00: : xxx. The new IPv6 address shows
1d00::212:4b00:6083. Try to ping it.
If you still have problems in which motes are not detected by the RPL
border router, you probably need to restart the RPL border router mote.

X agusk@akuro1: ~/contiki1/contiki-ng/examples

64 bytes from fdee::212:4b00:d77:6f82: icmp_seq=170 ttl=64 time=25.8 ms
64 bytes from fdeo::212:4be0:d77:6f82: icmp_seq=171 ttl=64 time=39.0 ms

64 bytes from fdee::212:4be0:d77:6f82: icmp_seq=172 ttl=64 time=31.4 ms
64 bytes from fde0::212:4b00:d77:6f82: icmp_seq=173 ttl=64 time=22.8 ms

64 bytes from fdee::212:4be0:d77:6f82: icmp_seq=174 ttl=64 time=34.9 ms

64 bytes from fdee::212:4b00:d77:6f82: icmp_seq=175 ttl=64 time=27.8 ms
64 bytes from fdee::212:4be0:d77:6f82: icmp_seq=176 ttl=64 time=40.5 ms

AC

--- fdee::212:4be0:d77:6f82 ping statistics ---

176 packets transmitted, 45 received, 74% packet loss, time 178201ms

rtt minfavg/max/mdev = 22.852/33.595/44.575/5.987 ms
agusk@akur@1:~/contikil/contiki-ng/examplesS ping6 fdee::212:4b0O:797:6083
PING fde®::212:4b00:797:6083(fd00::212:4b00:797:6083) 56 data bytes

64 bytes from fde0::212:4b00:797:6083: icmp_seq=1 ttl=63 time=50.
64 bytes from fdeo::212:4b00:797:6083: icmp_seq=2 ttl=63 time=46.
64 bytes from fde9::212:4b00:797:6083: icmp_seq=3 ttl=63 time=44.
64 bytes from fdeo::212:4b00:797:6083: icmp_seq=4 ttl=63 time=42.
64 bytes from fd0®::212:4b00:797:6083: icmp_seq=5 ttl=63 time=39.
64 bytes from fdeo::212:4b00:797:6083: icmp_seq=6 ttl=63 time=40.
64 bytes from fdee::212:4b00:797:6083: icmp_seq=7 ttl=63 time=44.
64 bytes from fdeo::212:4b00:797:6083: icmp_seq=8 ttl=63 time=41.
64 bytes from fdee::212:4b00:797:6083: icmp_seq=9 ttl=63 time=41.
64 bytes from fde0::212:4b00:797:6083: icmp_seq=10 ttl=63 time=39.2 ms

DO OO DN
3
w

Figure 6-37. Performing ping on other mote in WSN network from
computer

208

CHAPTER6 NETWORKING

6LoWPAN Implementation using COOJA

In the previous section, we learned how to implement 6LoWPAN on
a physical device from a Contiki-NG mote. In this section, we want to
implement 6LoWPAN on a simulation platform through the COOJA tool.
For this demo, we will use the program sample from the <contiki-
ng>/examples/rpl-border-router/ folder. First, you can run the COOJA
application. Create a new simulation project.
Next, you should add a new mote with the Sky platform. You can set
<contiki-ng>/examples/rpl-border-router/border-router.c for the
Contiki firmware, shown in Figure 6-38.

o Create Mote Type: Compile Contiki For sky

Description: Sky Mote Type #skyl
Contiki process / Firmware: /home/agusk/contikil/contiki-ngfexamples/rpl-border-router/border-router.c Browse

Clean | | Compile }i Create]

[compile commands | Mote interfaces | Tips |[Campilation output |

[- ST TSI e LT P PT 15,0 —

cC [josinet/rpllite/rpl-dag.c

cc ..I.Josinetirplitefrpl-dag-root.c

cC ..I..jos/services/rpl-border-routerfembedded/slip-bridge.c

cc ..I.Jos/services/rpl-border-routerfembedded/border-router-embedded.c

AR contiki-sky.a

cc border-router.c

LD border-router.sky
| rm border-router.o v

Figure 6-38. Add RPL border router into COOJA

You can compile this Contiki firmware. If there is no error, you can
click the Create button. In this demo, you will create one mote.

The next step is to add the serial socket tool to the mote. You can
do this by right-clicking on the mote. Then, you will see the context
menu shown in Figure 6-39. Select Mote tools for Sky 1 » Serial Socket
(SERVER).

209

CHAPTER 6

NETWORKING

File Simulation Motes Tools Settings Help

n |

Run Speed limit

Start

Pause _ Rele

Time: 00:00.000
Speed: -

File Edit View
| Time | Mote | Message

Mote tools for Sky 1

Click button on Sky 1

| Show LEDs on Sky 1
| Show serial port on Sky 1

Move Sky 1

Delete Sky 1

Reset viewport
Hide window decorations

Change transmission ranges
Change TX/RX success ratio

Mote Information...
Mote Interface Viewer...
Variable Watcher...

Msp CLL...

Msp Code Watcher...
Msp Stack Watcher...
Msp Cycle Watcher... -
Serial Socket (CLIENT)...
Serial Socket (SERVER)...
Collect View...

Figure 6-39. Add serial socket tool on RPL border router mote

You should now see the dialog shown in Figure 6-40. You can run it by
clicking the Start button. We use the default listen port, 60001.

Listen port: | 60001|

socket -> mote: 0 bytes
mote -> socket: 0 byvtes

Status: Idle

Figure 6-40. A serial socket dialog to set a listen port

210

CHAPTER6 NETWORKING

Next, you should run tunslip6 from the <contiki-ng>/tools/ folder.

You can open Terminal and navigate to <contiki-ng>/tools/. Then, you
can run this command:

$ sudo ./tunslip6 -a 127.0.0.1 aaaa::1/64

Tunslip6 will run and connect to the RPL border router from a mote
within the COOJA application. You can see the program output from
tunslip6 in Figure 6-41.

x agusk@akur01: ~/contiki1/contiki-ng/tools

kollect-vtew jn516x sky tunslipé zolertia
lagusk@akure1:~/contikil/contiki-ng/tools$ sudo ./tunslips -a 127.0.0.1 aaaa::1/6
4

[sudo] password for agusk:

slip connected to "'127.0.0.1:60001"''
opened tun device "’ /dev/tune'’

ifconfig tun@ inet "hostname®™ mtu 1500 up
ifconfig tun® add aaaa::1/64

ifconfig tuno add fe80::0:0:0:1/64
ifconfig tune

tun@ Link encap:UNSPEC HWaddr ©0-00-60-00-00-00-00-00-00-00-00-00-00-00-00
-00
inet addr:127.0.1.1 P-t-P:127.0.1.1 Mask:255.255.255.255
inet6 addr: aaaa::1/64 Scope:Global
inet6 addr: feB0::1/64 Scope:Link
inet6 addr: feB0::c8ba:bfab:56dc:4c5f/64 Scope:Link
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1588 Metric:1
RX packets:0 errors:0® dropped:® overruns:® frame:0
TX packets:@ errors:0 dropped:® overruns:® carrier:0
collisions:® txqueuelen:580
RX bytes:® (0.0 B) TX bytes:0 (0.0 B)

Figure 6-41. Running tunslip6 program on local computer

Once tunslip6 is running, you can run the simulation on COOJA. This
makes the mote run. You can see the IPv6 translator of the mote from
tunslip6 in Figure 6-42.

211

CHAPTER6 NETWORKING

x agusk@akuro1: ~/contikilfcontiki-ng/tools

ifconfig tun@ inet “hostname’ mtu 1500 up
ifconfig tun® add aaaa::1/64

ifconfig tune add fe808::0:0:0:1/64
ifconfig tun®

tunod Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

-00
inet addr:127.0.1.1 P-t-P:127.0.1.1 Mask:255.255.255.255
inet6 addr: aaaa::1/64 Scope:Global
inet6 addr: feg8@::1/64 Scope:Link
inet6 addr: feB80::c8ba:bfab:56dc:4c5f/64 Scope:Link
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:® dropped:® overruns:0 frame:0
TX packets:@ errors:@ dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:® (0.0 B) TX bytes:0 (0.0 B)

[INFO: BR] Waiting for prefix

#** Address:aaaa::l => 3aaa:0000:0000:0000
[INFO: BR] Waiting for prefix
[INFO: BR] Server IPv6 addresses:
[INFO: BR] aaaa::212:7401:1:101
iINFD: BR 1 fe80::212:7401:1:101

Figure 6-42. Detecting IPv6 address on tunslip6 tool

You should see the IPv6 address of the COOJA mote in Terminal. For
instance, my mote IPv6 address is aaaa: :212:7401:1:101. Now, you can

open a new Terminal. Then, try to perform pingé.
You can type this command:

$ pingb aaaa::212:7401:1:101

You should get responses from your COOJA mote. You can see my

ping6 response in Figure 6-43.

212

CHAPTER6 NETWORKING

Lingi iiss nei

ifconfig tun® inet “hostname® mtu 1588 up
ifconfig tund add aaaa::1/64

ifconfig tun® add fe80::0:0:0:1/64
ifconfig tune

~tuné Link encap:UNSPEC HWaddr ©0-80-00-00-00-00-00-00-00-008-00-00-1
-60
inet addr:127.6.1.1 P-t-P:127.8.1.1 Mask:255.255.255.255
® inet6 addr: aaaa::1/64 Scope:Global
inet6 addr: fe8@::1/64 Scope:Link
inet6 addr: fese::cBba:bfab:56dc:4c5f/64 Scope:Link
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1568 Metric:1
RX packets:® errors:0 dropped:® overruns:® frame:@
TX packets:® errors:0 dropped:® overruns:® carrier:@
collisions:® txqueuelen:580
RX bytes:@ (6.0 B) TX bytes:e (8.0 B)

[INFO: BR] Wwaiting for prefix
tefoted nddress aaaa::l => 3a2a:0000:0000:0000
[INFO: B] waiting for prefix
[INFO:] Server IPv6 addresses:
[INFO:] aaaa:r:212:7401:1:161
lINFO: 1 fe80::212:7401:1:161

agusk@akur@i:~/contikil/contiki-ng/toolsS ping6 aaaa::212:7401:1:101
PING aaaa::212:7401:1:101(aaaa::212:7401:1:101) 56 data bytes

64 bytes from 2aaaa::212:7401:1:101: icmp_seq=1 ttl=64 time=31.8 ms
64 bytes from aaaa::212:7401:1:101: icmp_seq=2 ttl=64 time=9.97 ms
64 bytes from 2aaa::212:7401:1:101: icmp_seq=3 ttl=64 time=6.40 ms
64 bytes from a2aa::212:7401:1:101: icmp_seq=4 ttl=64 time=8.40 ms
64 bytes from 23a22a::212:7401:1:101: icmp_seq=5 ttl=64 time=6.71 ms
64 bytes from aaaa::212:7401:1:101: icmp_seq=6 ttl=64 time=10.2 ms
64 bytes from 22aa::212:7401:1:101: icmp_seq=7 ttl=64 time=17.4 ms
64 bytes from 222a::212:74081:1:101: icmp_seq=8 ttl=64 time=6.37 ms
64 bytes from aaaa::212:7401:1:101: icmp_seq=9 ttl=64 time=6.81 ms

Figure 6-43. Pinging a mote from computer

To get more practice, you can run a web server program on a new mote
in COOJA. Then, you can access that web server from a browser on a local
computer.

213

CHAPTER6 NETWORKING

Build Your Own RESTful Server
for Contiki-NG

You have learned how to build a 6LoWPAN with RPL border router. In this
section, we will build a simple project based on 6LoWPAN. We will develop
WebSense, which publishes sensor values to the web server. Since a
Contiki-NG mote has limited resources, it cannot serve many requests. To
address this issue, we can implement a middleware server—for instance, a
RESTful server.

Each mote will send a result of sensing to the RESTful server. Then,
the RESTful server will take over to distribute the data to all requesters.

A RESTful server can run on top of a proven web server, such as Apache,
nginx, and IIS.

WebSense is shown in Figure 6-44. Each mote can communicate with
the RESTful server through the 6LoWPAN router. A client that wants to
consume sensor data should open a connection to the RESTful server
through WebSocket.

Front-End

Web5Socket HTMLS

6LOWPAN router

WebSense RESTful
Server

Front-End
HTMLS

Front-End
HTMLS

Publisher-Subscriber

WebSense Node communication

WSN Network

Figure 6-44. Logic design for the WebSense project

214

CHAPTER6 NETWORKING

A client system will be implemented using HTML5 with WebSocket
API. Sensor data will be visualized in the HTMLS5 application. Also, the
WebSense RESTful server will apply Node.js.

We will implement this WebSense project in the next section.

Preparation

First, we should have two mote devices. One mote will be used for
the 6LOWPAN router. The rest will be applied for WebSense node
implementation.

Since our RESTful server uses Node.js, your computer should install
Node.js runtime. You should install all required libraries to run Node.js.
Type these commands:

$ sudo apt-get update
$ sudo apt-get install build-essential

We will use Node.js LTS version. For instance, I use Node.js LTS 6.x.
You can install it by typing these commands:

$ curl -sL https://deb.nodesource.com/setup 6.x | sudo -E bash -
$ sudo apt-get install nodejs

The next step is to develop a program for the project. We will do so in
the next section.

Implementing the Demo

We will implement the WebSense project as shown in Figure 6-45. It is a
physical design from our demo. We deploy the RPL border router into one
of the motes. This mote will be attached to a computer that will deploy
Node.js too. This project will use real mote devices. You can also use
COOJA for testing.

215

CHAPTER6 NETWORKING

Computers and server machines should be connected to a network in
order to simulate sensor data visualization.

LAN network

Computer with Web
Server Node.js

[Computer] [Computer]
@ Serial communication

RPL Border Router

\ WSN Network

. WebSense Node

TUWete- T

Figure 6-45. Implementing WebSense project

To implement this demo, we will perform the following tasks:
e Implement 6LoWPAN router.
e Develop a program for WebSense node.
e Develop a program for RESTful server.
o Test the project.

Each task will be presented in the following sections.

216

CHAPTER6 NETWORKING

Implementing 6LoOWPAN Router

To implement the 6LoWPAN router, we deploy the RPL border router
module into the mote. In a previous section, you learned about 6LoWPAN
router implementation. We will use it again in this project.

Select one of the motes to become a 6LOWPAN router. Attach it into a
computer and run connect-router or run tunslip6 programs manually
with specific port and address settings.

Writing a Program for WebSense Node

In this section, we will develop a program for the WebSense node. The
goal of this program is to serve all requests for sensor data. Technically, the
program will run a mini web server and serve HTTP requests. Once the
RESTful server requests sensor data, this node will send it. To simplify this
demo, the program will generate a random value for sensor data.

You can see the project structure in Figure 6-46. You can create a
folder, called websense. We put some files in it, such as Makefile, project-
conf.h, and websense. c. For web server implementation, we use the
httpd-simple module from Contiki-NG.

4 websense
visualiz
httpd-simple.c
httpd-simple.h
Makefile

project-conf.h

C websense.c

Figure 6-46. Project structure for WebSense node

217

CHAPTER6 NETWORKING

The application will serve requests for sensor data. This task will be
handled in websense.c in generate_routes() function. You can write this
code as follows:

static
PT_THREAD(generate routes(struct httpd state *s))

{
char buff[15];

PSOCK_BEGIN(&s->sout);
int temperature = 15 + rand() % 25;

sprintf(buff,"{\"temp\":%u}", temperature);
printf("send json to requester\n");

SEND_STRING(&s->sout, buff);

PSOCK_END(&s->sout);

We also need to modify httpd-simple.c in order to cover JSON
requests. We declare http_content_type json for JSON content. Then, we
pass it into the HTTP header as follows:

const char http_content_type_json[] = "Content-type:
application/json\r\n\r\n";

static

PT_THREAD(send headers(struct httpd state *s, const char
*statushdr))

{

/* char *ptr; */
PSOCK_BEGIN(&s->sout);

SEND_STRING(&s->sout, statushdr);

218

CHAPTER6 NETWORKING

SEND_STRING(&s-»>sout, http_content_type_json);
PSOCK_END(&s->sout);

}
Writing a Program for RESTful Server

A RESTf{ul server will run a web server on top of Node.js. We build the
project structure that is shown in Figure 6-47. To visualize sensor data, we
apply jQuery (https://jquery.com) and Flot (http://www.flotcharts.
org) libraries for JavaScript. Download those files. Then, you can put those
files into the <project>/public/js folder.

4 visualiz
4 public
4 js

jquery-3.2.1.js

jquery.fiot.js

index.html
index.js

{} package.json

Figure 6-47. Project structure for RESTful server

The application runs with the Node.js runtime. Make sure you
have already installed it. Next, we install required the libraries for the
RESTful server. We will use Express (http://expressjs.com) for the
web framework and Socket.io (https://socket.io) for WebSocket
implementation for Node.js.

First, create a package. json file inside the project folder. You can type
these scripts:

{

"name": "sensor",
"version": "1.0.0",
"description”: "visualizing real-time sensor",

219

https://jquery.com/
http://www.flotcharts.org/
http://www.flotcharts.org/
http://expressjs.com/
https://socket.io/

CHAPTER6 NETWORKING

"main": "index.js",

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"

}J

"author": "Agus Kurniawan",

"dependencies": {
"express": ""4.15.2",
"socket.io": ""2.0.4",
"request”: "latest"

}

}

If done, save this file. Now, you can install all required libraries. You
can type this command in the project folder. Make sure your computer is
connected to the Internet:

$ npm install

Now you can write index. js for the application. This program will
open a port 3000 to listen for HTTP requests. The program also requests
sensor data from the WebSense node every three seconds. You can type
these scripts for index. js:

var express = require('express');

var request = require('request');

var app = express();

var http = require('http"').Server(app);
var io = require('socket.io")(http);

app.use(express.static('public'));
app.get('/', function(req, res){

res.sendFile(_ dirname + '/index.html");

};

220

CHAPTER6 NETWORKING

io.on('connection', function(socket) {
var dataPusher = setInterval(function () {
request.get("http://[£do0::212:4b00:797:6083]/',function
(err,res,body){
if(err){
console.log(err);
return;
}
var obj = JSON.parse(body);
socket.broadcast.emit('data’, obj.temp);

};

}, 3000);

socket.on('disconnect', function() {
console.log('closing");
D;
IOk

http.listen(3000, function(){
console.log('listening on *:3000');

};

You should change the IPv6 address of the WebSense node.

Next, we create index.html in the <project>/public folder. This
program will communicate with the RESTful server though JSON
communication. If the program receives sensor data, it will be stored into

an array.

221

CHAPTER6 NETWORKING

Then, the program will create a graphic for visualizing sensor data. You
can type theses scripts for index.html:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
<title>Visualizing Real-Time Sensor Data</title>
<script language="javascript" type="text/javascript"
src="/js/jquery-3.2.1.js"></script>
<script language="javascript" type="text/javascript"
src="/js/jquery.flot.js"></script>
<script src="/socket.io/socket.io.js"></script>
<script language="javascript" type="text/javascript">
var socket = io.connect();
var items = [];
var counter = 0;
socket.on('data’, function (data) {
items.push([counter, data]);
counter = counter + 1;
if (items.length > 20)

items.shift();
$.plot($("#placeholder"), [items]);
N3
</script>
</head>
<body>
<h1>Real-Time Sensor Data Visualization</h1>

<div id="placeholder" style="width:600px;height:300px;"></div>
</body>
</html>

222

CHAPTER6 NETWORKING

Testing the Demo

Ensure the programs for the motes are already deployed. Now you can run
the RESTful server by typing this command:

$ node index.js

Firstly, we open a browser and navigate to the IPv6 address of the
6LoWPAN router. You should see the IPv6 addresses from the motes as
shown in Figure 6-48.

Contiki-NG - Mozilla Firefox

Contiki-NG

& C @ 0 [fd00::212:4b00:d77:6f82]

Neighbors
fe80: :212:4b00: 797:6083
Routes

Links
dee: :212:4b68:797:6083 (parent: fdee::212:4b60:d77:6f82) 1748s

Figure 6-48. Accessing web server from RPL border router mote

After the RESTful server is running, you can test it by opening a
browser. Navigate to the RESTful server’s IP address with port 3000.
For instance, you can open a browser on your local server and navigate
to http://localhost:3000. You should see sensor data visualization.
You can see this in Figure 6-49.

223

CHAPTER6 NETWORKING

Visualizing Real-Time Sensor Data - Mozilla Firefox

Visualizing Real-Time Sens: X 8

& ¢ localhost < @ 1

Real-Time Sensor Data Visualization

Al

C
=
£
=)
a
Z

Figure 6-49. Accessing WebSense application using a browser

What'’s next?

You can create more sensor sources in different sensor types from
several motes. Then, you can modify sensor data visualization to cover
multiple sensor types.

Summary

We have explored Contiki-NG networking. We have learned about
routing models in Contiki-NG. Furthermore, we have worked with IPv6
multicast. We also implemented 6LoWPAN on physical motes and COOJA
simulations. Last, we build sensor data visualization in real-time from a
physical mote.

In the next chapter, we will learn to work with storage management in
Contiki-NG.

224

CHAPTER 7

Storage

Wireless Sensor Networks (WSN) are designed to perform sensing and
then send the sensing data to a gateway or a certain server. You probably
will want to perform some computations before sending the data. These
computations involve some parameters that should be kept by WSN
devices. Keeping data in a WSN device requires storage. In this chapter, we
will learn how to work with storage in Contiki-NG.

The following is a list of topics that will be covered in this chapter:

e Storage models in Contiki-NG

o Working with local storage

o Working with Coffee file system
e Contiki-NG and MySQL

Storage Models in Contiki-NG

Contiki-NG is designed for small devices with optimized computation.
You will probably need to store data from your project, such as sensor data
or program parameters. These data can be persistent data. The data also is
used to analyze and investigate something from your project.

© Agus Kurniawan 2018 225
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_7

CHAPTER 7 STORAGE

Storage models in Contiki-NG are shown in Figure 7-1. We define a
storage model of Contiki-NG based on where the data will be stored. We
can put our data in internal or external storage. Internal storage is a part
of the internal MCU storage, such as ROM and RAM. Otherwise, we can
extend our Contiki-NG storage by adding external storage.

From Figure 7-1, we can see that external storage comes in two models:
local storage and external storage. We can attach any external storage, such
as SD card and micro SD card, to a Contiki-NG mote. Then, we can save
our data into these storage devices through SPI or I2C protocols. Remote
storage can be represented as network storage. This means Contiki-NG
will save data to a remote data server, such as MySQL, PostgreSQL, SQL
Server, or Oracle, via a network protocol.

Remote
Storage

External
Storage

Local Storage:
SD card

Internal
Storage

Figure 7-1. Storage models in Contiki-NG

226

CHAPTER 7 STORAGE

Each storage model in Contiki-NG has advantages and disadvantages.
You can choose which model based on your needs. You can see the storage
model comparison table in Table 7-1.

Table 7-1. Comparing Storage Mmodels in Contiki-NG

Features ROM RAM Local Storage Remote Storage
Can read? Yes Yes Yes Yes

Can write? No Yes Yes Yes

Access speed Fast Fast Moderate Moderate/Slow
Access Check MCU Check MCU SPI, 12C HTTP, RESTful,
protocols datasheet datasheet from TCP

from the mote the mote

ROM and RAM provide good speed for reading and writing data, but
not all MCU devices have large storage sizes for the ROM and RAM. A local
storage approach is a good choice if you plan to perform logging for system
evaluation. The remote storage option is best if you need to perform data
consolidation. You can do data analysis and predictive analytics from your
collected data.

Working with Local Storage

In this section, we will learn how to work with local storage in Contiki-

NG. We will review how a program uses resources in RAM and ROM via
Contiki-NG. For instance, we want to analyze the hello-world program from
Contiki-NG samples. I will test it with targeting on LaunchPad CC2650.
First, we compile the hello-world program. You can type these commands:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650
$ make TARGET=srfo6-cc26xx BOARD=launchpad/cc2650 savetarget

227

CHAPTER 7 STORAGE

Then, we analyze resource allocation for the hello-world program
using this command:

$ size hello-world.srf06-cc26xx

You can see the program output in Figure 7-2. text shows the size of the
code section in bytes that will be stored in ROM. data and bss show sections
that contain variables and will be stored in RAM. From Figure 7-2, we can
see that the hello-world program fits in ROM with its 50644-byte size.

X agusk@akur01: ~/contiki1/contiki-ng/examples/hello-world

cc ..f..Jos/net/rpl-lite/rpl-dag.c

cc «of..fos/net/rpl-lite/rpl-dag-root.c

cc .of..Jarch/cpufcc26xx-cc13xx/./fault-handlers.c

cc ..f..farch/cpufcc26xx-cc13xx/lib/cc26xxwarefstartup_files/startup_gc
lece

(o= hello-world.c

LD hello-world.elf

arm-none-eabi-objcopy -0 ihex hello-world.elf hello-world.i16hex

srec_cat hello-world.i16hex -intel -o hello-world.hex -intel
arm-none-eabi-objcopy -0 binary --gap-fill @xff hello-world.elf hello-world.bin
cp hello-world.elf hello-world.srf06-cc26xx

irm hello-world.o obj_srf@6-cc26xx/startup_gcc.o hello-world.i16hex obj_srfe6-cc2
|6xx/fault-handlers.o

agusk@akure1:~/contikil/contiki-ng/examples/hello-world$ 1s

contiki-sky.a hello-world.hex Makefile.target
contiki-sky.map hello-world.sky obj_sky
hello-world.bin hello-world.srfo6-cc26xx obj_srfe6-cc26xx

hello-world.c hello-world-srf@6-cc26xx.map README.md
hello-world.elf Makefile
agusk@akur@1:~/contikil/contiki-ng/examples/hello-world$ size hello-world.srfe6-
cC26XX

text data bss dec hex filename

50644 571 10040 61255 ef47 hello-world.srf@6-cc26xx
agusk@akur@1:~/contikil/contiki-ng/examples/hello-world$

Figure 7-2. Analyzing binary program on Contiki-NG with
LaunchPad CC2650 platform

If you use the Sky platform, you can verify the hello-world program size
with a similar approach. You can type these commands:

$ make TARGET=sky
$ make TARGET=sky savetarget
$ size hello-world.sky

228

CHAPTER 7 STORAGE

After executing those commands, you can see the program output in

Figure 7-3. This program reserves 41126 bytes in ROM.

» agusk@akur01: ~fcontiki1 fcontiki-ng/examples/hello-world

agusk@akur®1:~/contikil/contiki-ng/examples/hello-worldS 1s

contiki-sky.a hello-world.hex Makefile.target
contiki-sky.map hello-world.sky obj_sky
hello-world.bin hello-world.srf@6-cc26xx obj_srfo6-cc26xx

hello-world.c hello-world-srf@6-cc26xx.map README.md

hello-world.elf Makefile
agusk@akur®1:~/contikii/contiki-ng/examples/hello-worldS make clear
using saved target 'srf@6-cc26xx’'

make: *** No rule to make target 'clear'. Stop.
agusk@akurei:~/contikii/contiki-ng/examples/hello-world$ make clean
using saved target 'srf@6-cc26xx’

rm -f *~ *core core *.srec \

* 1st *.map \

* cprg *.bin *.data contiki*.a *.firmware core-labels.S *.ihex *.ini \
rm -rf *.srf@6-cc26xx *.d *.elf *.hex

rm -rf obj_srfe6-cc26xx
agusk@akurol:~/contikili/contiki-ng/examples/hello-worlds 1s
hello-world.c hello-world.sky Makefile Makefile.target obj_sky README.md
agusk@akure1:~/contikil/contiki-ng/examples/hello-world$ make TARGET=sky

AR contiki-sky.a
cc hello-world.c
LD hello-world.sky

rm hello-world.o
agusk@akur®1:~/contikii/contiki-ng/examples/hello-worldS size hello-world.sky
text data bss dec hex filename
41126 288 6644 48058 bbba hello-world.sky
agusk@akure1:~/contikil/contiki-ng/examples/hello-worlds [J

Figure 7-3. Analyzing binary program on Contiki-NG with Sky
platform

If you want to get a detail of the program address usage from RAM, call

this command:

$ make hello-world.ramprof

After it has been executed, you should see a list of program addresses

in RAM. A sample of program output for the LaunchPad CC2650 board

can be seen in Figure 7-4. For instance, the events program is fitted on
00000384.

229

CHAPTER 7 STORAGE

00000020
00000020
00000026
00000032
00000032
00000032
00000032
00000032
00000032
00000032
00000036
00000044
00000064
00000088
00000096
00000096
00000096
00000112
00000128
00000128
00000128
00000128
00000128
00000128
00000144
00000144
00000144
00000144
00000182
00000192
00000192
00000248
00000256
00000256
00000288
00000352
00000368
00000384
00000384
00001286
00001356
00001376

rm hello-

6xx/faul
agusk@ak

agusk@akur01: ~/contiki1 /contiki-ng/examples/hello-world

rng_module

uart_module
packetbuf_attrs
all_tables
bufmem_memb_mem
dis_timer
periodic_timer
periodic_timer
rands_cache
rat_overflow_timer
rpl_mrhof
ieee_overrides
defaultroutermemb_memb_mem
__ccfg
metadata_memb_memb_mem
packet_memb_memb_mem
uip_ds6_prefix_list
neighbor_memb_memb_mem
buf.4475
cmd_ieee_rx_buf
handlers
packetbuf_aligned
_rpl_neighbors_mem
rxbuf_data

rx_buf_oe

rx_buf_1

rx_buf_2

rx_buf_3

tx_buf
_link_stats_mem
neighbor_addr_mem_memb_mem
uip_ds6_1if
receilved_seqnos
uip_udp_conns
_ds6_neighbors_mem
curr_instance
frag_info

events
nodememb_memb_mem
uip_aligned_buf
frag_buf
buframmem_memb_mem
world.o hello-world.i16hex obj_srfe6-cc26xx/startup_gcc.o obj_srfe6-cc2
t-handlers.o
uré1:~/contikii/contiki-ng/examples/hello-worlds [j

Figure 7-4. A list of symbol program sizes on Contiki-NG RAM

We also can analyze program addresses in ROM from our program.

You can
$ make

You

type this command from the hello-world program:
hello-world.flashprof

should see a list of program addresses. A program output can be

seen in Figure 7-5 for the LaunchPad CC2650 board.

230

CHAPTER 7

STORAGE

00000224
00000224
00000228
00000228
00000232
00000236
00000240
00000240
00000244
00000248
00000248
00000256
00000260
00000280
00000292
00000312
00000320
00000348
00000352
00000352
00000364
00000376
00000396
00000400
00000404
00000408
00000408
00000416
00000420
00000440
00000516
00000560
00000588
00000596
00000668
00000692
00000732
00000760
00001316
00001992
00002100
00002264

agusk@akuro1: ~/contiki1 fcontiki-ng/examples/hello-world

ext_hdr_options_process
rpl_ext_header_srh_get_next_hop
handle_dao_timer
TrimAfterColdResetWakeupFromShutDown
rpl_ext_header_srh_update
memcpy

enable

uip_ds6_1init

rf_core_power_down
process_thread_sensors_process
tepip_ipv6_output
link_stats_packet_sent

transmit

uip_ds6_select_src

dao_input

frame802154_parse

rpl_dag_update_state.part.4
csma_output_packet
nbr_table_add_lladdr
uip_icmp6_error_output

main

init

read_frame

NOROM_SetupAfterColdResetWakeupFromShutDownCfg2
set_value

get_value

1pm_shutdown
NOROM_SetupAfterColdResetWakeupFromShutDownCfg3
rpl_process_dio

add_fragment

transmit_from_queue
NOROM_SysCtrlSetRechargeBeforePowerDown
1pm_drop

rpl_icmp6_dio_output

ns_input

dio_input

__udivmoddi4

rpl_ext_header_update

uip_process

input

output

format_str_v

rm hello-world.o hello-world.i16hex obj_srf@6-cc26xx/startup_gcc.o obj_srf@6-cc2

6xx/faul
agusk@ak

t-handlers.o
urdl:~/contikil/contiki-ng/examples/hello-world$

Figure 7-5. A list of symbol program sizes on Contiki-NG ROM

Coffee: File System in Contiki-NG

Coffee is one type of file system implementation in Contiki-NG.

Technically, Coffee is designed for making a virtual file system on a

RAM stack of Contiki-NG. We can find the Coffee library in the

231

CHAPTER 7 STORAGE

<contiki-ng-root>/0s/storage/cfs/ folder. There are three files:

cfs.h, cfs-coffee.h, and cfs-coffee.c. This module implements basic

operations for reading and writing files, like the POSIX file API.

Since Coffee uses RAM as storage, it’s a temporary storage option. You

can use this storage to store your temporary data, such as computation

parameters and a counter number. You should be aware that Coffee data is

deleted when the Contiki-NG mote is restarting or stopping.

We access a file through the Coffee File System (CFS) library. This library
APl interface can be found in the <contiki-ng-root>/os/storage/cfs/
cfs.hfile. You can see a list of functions from the cfs.h file in Table 7-2.

Table 7-2. CFS Functions from cfs.h Header File

Functions Description
int cfs_open(const char *name, int flags) Open afile
void cfs _close(int fd) Close a file

int cfs_read(int fd, void *buf,
unsigned int len)

int cfs write(int fd, const void *buf,
unsigned int len)

cfs_offset t cfs_seek(int fd,
cfs_offset t offset, int whence)

int cfs_remove(const char *name)

int cfs_opendir(struct cfs dir *dirp,
const char *name)

int cfs_readdir(struct cfs dir *dirp,
struct cfs_dirent *dirent)

void cfs closedir(struct cfs dir *dirp)

Read data from a file

Write data to a file

Move to a specific position in
a file

Remove a file

Open a directory

Read a directory entry

Close a directory

232

CHAPTER 7 STORAGE

To work with CFS, your project should include the cfs library. You can
add it to the Makefile file. Add this script:

MODULES += os/storage/cfs

For this demo, we will create a simple program to show how to work
with CFS on Contiki-NG. We will create a file and write data to that file.
Next, we will open a file and read data from the file. In this demo, I will use
the Sky platform.

First, create a folder, called file-cfs-demo. You can add two files,
Makefile and file-cfs-demo.c. Configure the project in Makefile. You
can write these scripts for the Makefile file:

CONTIKI PROJECT = file-cfs-demo

MODULES += os/storage/cfs
CONTIKI = ../..
all: $(CONTIKI PROJECT)

include $(CONTIKI)/Makefile.include

You probably need to change the CONTIKI value to your Contiki-NG
project directory. Now, you can write the program for the file-cfs-
demo. c file. Write the following code skeleton from our demo:

#include "contiki.h"
#include "cfs/cfs.h"
#include "cfs/cfs-coffee.h"
#include "lib/crc16.h"
#include "lib/random.h"

#include <stdio.h>
#include <string.h>

233

CHAPTER 7 STORAGE

PROCESS(coffee demo_process, "CFS/Coffee demo process");
AUTOSTART PROCESSES(&coffee demo process);

static void
coffee file demo(void)

{
// coffee file demo

}
PROCESS THREAD(coffee_demo_process, ev, data)

{
PROCESS_BEGIN();

printf("Coffee file demo...\n");
coffee file demo();

PROCESS_END();
}

This program will run the coffee_file_demo() function on the main
program. We will implement the CFS demo on that function.

First, we initialize program variables, including file descriptors for
opening and reading file handlers:

int wfd, rfd, afd;
unsigned char buf[32];
int 1;

wfd = rfd = afd = -1;
We set all buffer data with certain values:

for(r = 0; r < sizeof(buf); r++) {
buf[r] = 1 + 4;
}

234

CHAPTER7 STORAGE
We open a file, mycfs, by calling the cfs_open() function:

printf("opening file for writing\n");
wfd = cfs_open("mycfs", CFS _WRITE);
if(wfd < 0) {
printf("Error creating file\n");
return;

}

Next, we write data to a file by calling the cfs_write() function. We
also print all data to Terminal so you can see the data on the Contiki-NG
Terminal:

printf("writing data into file\n");
printf("write: ");
for(r = 0; r < sizeof(buf); r++) {
printf("%d ", buf[r]);
}
printf("\n");
r = cfs write(wfd, buf, sizeof(buf));
if(r < 0) {
printf("Error writing data into file\n");
cfs_close(wfd);
cfs_remove("mycfs");
return;
} else if(r < sizeof(buf)) {
printf("Error writing data into file\n");
cfs_close(wfd);
cfs_remove("mycfs");
return;

}

235

CHAPTER 7 STORAGE

After writing the data, we should close the opened file:

printf("close file\n");
cfs_close(wfd);

We have created a file and written data into the file. We will continue to
read data from a file. We use a different file descriptor that we have declared.
We open a file and read data from the file using the cfs_read() function:

printf("opening file for reading\n");
rfd = cfs_open("mycfs", CFS READ);
if(rfd < 0) {
printf("Error opening file\n");
cfs_remove("mycfs");
return;
}
printf("reading data\n");
memset (buf, 0, sizeof(buf));
r = cfs_read(rfd, buf, sizeof(buf));
if(r < 0) {
printf("Error reading file\n");
cfs_close(rfd);
cfs_remove("mycfs");
return;

}

After reading the data, we print it to Terminal. Then, we close that file:

printf("read: ");

for(r = 0; r < sizeof(buf); r++) {
printf("%d ", buf[r]);

}

printf("\n");

printf(“close file\n");
cfs_close(rfd);

236

CHAPTER 7 STORAGE

Last, we delete our created file, since Contiki-NG has limited resources.
Save this program. Then, you can compile and flash it to your Contiki-
NG board. For instance, I flash this program to my Sky board:

$ make TARGET=sky
$ make TARGET=sky savetarget
$ make file-cfs-demo.upload

Now, you can perform monitoring on the target board. You can type
this command:

$ make login

You should see the program output in Terminal. If not, you can reset
your board. A sample of the program output can be seen in Figure 7-6.

x agusk@akur01: ~fcontiki1/contiki-ng/examples/file-cfs-demo

agusk@akurel:~/contikii/contiki-ng/examples/file-cfs-demo$S make login
using saved target 'sky'

../../tools/sky/serialdump-1linux -b115200 /dev/ttyUSBO

connecting to /dev/ttyusBe (115200) [OK]

[INFO: Main] starting Contiki-NG-develop/v4.0-346-g7cbdbee-dirty

[INFO: Main] Net: sicslowpan

[INFO: Main 1 MAC: CSMA

[INFO: Main] Link-layer address ©012.74600.16bf.81e9

[INFO: Main] Tentative link-local IPv6 address fe86::212:7400:16bf:81e9
[INFO: Sky] Node id: N/A

[INFO: Sky] csMA, rf channel 26, CCA threshold -45

Coffee file demo...

opening file for writing

writing data into file

write: 4 5 6 7 B8 9 16 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3
0 31 32 33 34 35

close file

opening file for reading

reading data

read: 4 56 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35

close file

remove file

Figure 7-6. Coffee file system demo on Sky platform

237

CHAPTER 7 STORAGE

Demo: Contiki-NG and MySQL

In this section, we will build a Contiki-NG program that interacts with
MySQL. The object of the demo is to show how Contiki-NG can store
sensor data in a DBMS (Database Management System) system.

For this demo, we choose MySQL for the DBMS. In general, we will
build our demo implementation as shown in Figure 7-7.

Router

ELchV ﬁ one o
& MysQL
: Middleware [Computer } [Computer]

LAN Network

WSN Network

Figure 7-7. A design for Contiki-NG and MySQL demo

All sensor devices are attached to Contiki-NG motes that are deployed on

a private WSN network. To communicate with an outside network, we will use

a 6LoWPAN router. You learned about the 6LoWPAN router in Chapter 6.

We also implement middleware that works as a gateway. The middleware

retrieves sensor data from Contiki-NG. Then, it stores sensor data into

MySQL. We will develop this middleware using Node.js. Data communication

between a middleware application and Contiki-NG uses JSON.
This demo needs two Contiki-NG motes at least. One mote will be

used as the 6LoWPAN router. The rest will be deployed as sensor programs.

In this demo, we will perform some tasks as follows:
o Design and build database

¢ Build 6LoWPAN router

238

CHAPTER 7 STORAGE

e Develop Contiki-NG sensor application
e Develop Middleware application

We implement each task in the next sections.

Preparation

We need to prepare our demo. First, we install MySQL on a computer that
is connected to the same network. For Ubuntu/Debian, you can install
MySQL by typing these commands in Terminal:

$ sudo apt-get update
$ sudo apt-get install mysql-server
$ mysql_secure_installation

Another option is to download MySQL for your platform from
https://www.mysql.com/downloads/.

You also should install MySQL Workbench. This is an optional
task. MySQL Workbench is designed to build a design database and
manage MySQL Server. You can install MySQL Workbench by typing this
command:

$ sudo apt install mysql-workbench

Design a Database

In this section, we will build a database on MySQL. We create a database,
called contiki-ng-db. Furthermore, we should create a table to store the
sensor data.

We can create the database and table using MySQL Workbench. Create
a table on the database, called sensor. You can create a table with the

scheme that is shown in Table 7-3.

239

https://www.mysql.com/downloads/

CHAPTER 7 STORAGE

Table 7-3. Designing a Table for Demo

Table Field Properties

idsensor Datatype: INT
Checked: Primary Key (PK), Not Null (NN), Auto Increment (Al)

$ensor_name Datatype: VARCHAR (15)
Checked: Not Null (NN)

sensor_val Datatype: FLOAT
Checked: Not Null (NN)
created Datatype: DATETIME

This design is shown in Figure 7-8.

] sensor v
idsensor INT
» sensor_name VARCHAR(15)
| & sensor_val FLOAT
| created DATETIME

sensor - Table 3

Table | Columns | Indexes Foreign Keys Triggers Partitioning Options Inserts Privileges

Column Name Datatype PK NN UQ BIN UN ZF Al G D¢ Cec
idsensor INT g & &
Sensor_name VARCHAR(15) &

sensor_val FLOAT =

created DATETIME

Cc
Figure 7-8. Database design for the project

Once done, you should deploy the database and table designs to
MySQL Server. You also must configure security access, creating one user
to access the database that will used for your application.

240

CHAPTER 7 STORAGE

Build a 6LoWPAN Router

In this section, we will develop programs for Contiki-NG, using one
Contiki-NG mote as a 6LoWPAN router. You already learned about that
topic in Chapter 6. You can run the program sample from the <contiki-
ng>/examples/rpl-border-router/ folder.

Compile this project and flash it to one of the Contiki-NG motes. In
this demo, I use a LaunchPad CC2560 board for testing. After deploying it
to the mote, you can build the 6LoWPAN router by typing this command

in Terminal:
$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 connect-router

You can change the TARGET and BOARD if you use a different Contiki-NG
platform.

Develop a Contiki-NG Sensor Application

We build sensor applications to perform sensing. For simple problems, I
generate random values for the temperature and humidity sensors. You
can implement your own real sensors for your project.

We will modify the websense program from the previous chapter.
We call this project websense-db. You can see the project structure in
Figure 7-9. We construct two sensor data: temperature and humidity. In
the websense-db. c file, we add our sensor data in the generate_routes()
process:

static
PT_THREAD(generate routes(struct httpd state *s))

{
char buff[35];

PSOCK_BEGIN(&s->sout);
//SEND_STRING(&s->sout, TOP);

241

CHAPTER 7 STORAGE

int temperature = 15 + rand() % 25;
int humidity = 80 + rand() % 10;

sprintf(buff,"{\"temp\" :%u,\"hum\":%u}", temperature, humidity);
printf("send json to requester\n");

SEND_STRING(&s->sout, buff);
//SEND_STRING(&s->sout, BOTTOM);

PSOCK_END(&s->sout);

You can modify this code to replace the random values with real results
from your sensor readings.

4+ websense-db
» db-server
httpd-simple.c
httpd-simple.h
M Makefile
project-conf.h

{e} websense-db.c
» DOCKER

Q0A0OEG

Figure 7-9. Project structure of websense-db

Develop Middleware Application

This middleware application has the responsibility of retrieving sensor
data from Contiki-NG and then sending these data to MySQL Server.
This application will be developed using Node.js. Set up the Node.js
development environment by downloading it from http://nodejs.org.
To access MySQL from the Node.js application, you should install the
MySQL driver for Node.js. You can use the official driver from MySQL. In this
demo, we will use the mysql library. You can see it at https://github.com/
mysqljs/mysql.

242

http://nodejs.org/
https://github.com/mysqljs/mysql
https://github.com/mysqljs/mysql

CHAPTER 7 STORAGE

First, we create a folder, called sensor-db. Then, we create a package.
json file that consists of the required libraries for our application. You can
write the following scripts to the package. json file:

{

"name": "sensor-db",
"version": "1.0.0",
"description”: "saving sensor data to MySQL",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
})
"author": "Agus Kurniawan",
"dependencies": {
"express": ""4.15.2",
"mysql": "~2.15.0",
"request”: "latest"
}
}

Save these scripts. Now, you should install all the required libraries by
typing this command:

$ npm install

This action will download all declared libraries in the package. json file.

Next, we build the Node.js program by creating a file, index. js. The
program will run as web server and retrieve sensor data every five seconds.
First, we declare our variables and database parameters in the index. js file:

var express = require('express');
var request = require('request');
var app = express();

var http = require('http"').Server(app);

243

CHAPTER 7 STORAGE

var mysql = require('mysql');
var connection = mysql.createConnection({
host : 'localhost’,
user : '<user>',
password : '<db-password>',
database : 'contiki-ng-db'
D;

Change MySQL database parameters such as user and password as
needed.

We connect to MySQL and run a web server through an ExpressJS
engine. In this case, I use a web server with port 3000. You should change it
to your own port. See here:

connection.connect();
app.use(express.static('public'));

app.get('/', function(req, res){
res.send('WebSense DB');

};

http.listen(3000, function(){
console.log('listening on *:3000');
console.log('websense db was started');

};

Last, we retrieve the sensor data from the Contiki-NG mote. For
this demo, I set a specific IPv6 address from the Contiki-NG mote:
£d00::212:4b00:797:6083. You can change it to your Contiki-NG IPv6
address.

244

CHAPTER 7 STORAGE

After obtaining the sensor data, we send this data to MySQL by calling
query(). We use a SQL statement to insert the data into the MySQL
database:

var dataPusher = setInterval(function () {

request.get('http://[fd00::212:4b00:797:6083]/",
function(err,res,body){
if(err){
console.log(err);
return;

}
var obj = JSON.parse(body);

console.log(obj);

connection.query({
sql: "INSERT INTO sensor(sensor_name,sensor val,
created) values(?,?,now())",
timeout: 40000, // 40s
values: [obj.temp,obj.hum]
}, function (error, results, fields) {

if(error){
console.log(err);
return;

}

console.log('inserted data to MySQL');

IOk
1
}, 5000);

Save all the code. We will now test our program.

245

CHAPTER 7 STORAGE

Testing the Project

In this section, we will test our project. Make sure you have deployed the
Contiki-NG program for the 6LoWPAN router and sensor mote.

First, we activate the 6LoOWPAN router. Navigate to the <contiki-ng>/
examples/rpl-border-router/ folder. Then, run the 6LoOWPAN router
application. I run it on LaunchPad CC2650:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 connect-router

You should change the target and board to your own Contiki-NG board.

After running the program, you should turn on all sensor devices on
the Contiki-NG motes. You should see all neighboring Contiki-NG motes.
You can see my program output from the 6LoWPAN router program in
Figure 7-10.

X agusk@akuro1: ~/contiki1/contiki-ng/examples/rpl-border-router

UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:® dropped:® overruns:® frame:@
TX packets:0 errors:@ dropped:® overruns:0 carrier:0
collisions:® txqueuelen:560
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

I

ILINFO: BR] Wwaiting for prefix

1*** Address:fdee::1 => fdoe:0000:0000:0000

I[LINFO: BR] Waiting for prefix

'[INFO: BR] Server IPv6 addresses:

‘[INFO: BR] fdee::212:4boe:d77:6f82

I[INFO: BR 1 feB0::212:4b0B:d77:6f82

'[INFO: Main] starting Contiki-NG-develop/v4.0-346-g7cbdbee-dirty
[INFO: Main] Net: sicslowpan

[INFO: Main] MAC: CSMA

[INFO: Main] Link-layer address ©012.4b08.0d77.682

[INFO: Main] Tentative link-local IPv6 address fe80::212:4b00:d77:6f82

[INFO: CC26xx/CC13xx] TI CC2650 LaunchPad

[INFO: CC26xx/CC13xx] RF: Channel 25, PANID ©xABCD
I[INFO: CC26xx/CC13xx] Node ID: 28546

[INFO: RPL BR] Contiki-NG Border Router started
'[INFO: BR] RPL-Border router started

*** Address:fdee::1 => fdoe:0000:0000:0000

Figure 7-10. Program output from rpl-border-router application

246

CHAPTER 7 STORAGE

Now, you can run the middleware application. Open a new Terminal
window and navigate to the middleware application. Then, type this
command to run it:

$ node index.js

You should see sensor data from the Contiki-NG mote. Then, it is
stored in the MySQL database. You can see the program output from the
middleware application in Figure 7-11.

x agusk@akur01: ~/contiki1/contiki-ngfexamples/websense-db/db-server

agusk@akure1:~/contikii/contiki-ng/examples/websense-db/db-serverS node index.js

listening on *:3000
websense db was started
{ temp: 21, hum: 89 }
inserted data to MySQL
{ temp: 26, hum: 81 }
inserted data to MySQL
{ temp: 33, hum: 85 }
inserted data to MysQL

Figure 7-11. Program output from middleware application

You also can verify the sensor data in MySQL. Open MySQL
Workbench. You should see all sensor data, as in Figure 7-12.

247

CHAPTER 7 STORAGE

* - MySQL Workbench
4 |Local instance 3306 3 | MySQL Model 3 EER Diagram 3¢

PR S COBHEE &

Management | Schemas Query 2 3 sensor %
SCHEMAS o - B ¥ § 6 (23] [&)| | Limit to 1000 rows =5 |
Q Filter objects 1e SELECT * FROM ‘contiki-ng-db’.sensor;
¥ [= contiki-ng-db
v [Tables
v [sensor

¥ [&] Columns
¢ idsensor ResultGrid HH 4% Filter Rows] Q) Edit: g B B Exportin
¢ sensor_name

idsensor sensor_name sensor_val created
¢ sensor_val = =

o craated T 1 21 89 2018-03-10 10:20:22
» B Indexes 2 2 26 81 2018-03-10 10:20:27
» i Foreign Keys S 3 33 85 2018-03-10 10:20:32
> B Triggers 24 23 83 2018-03-10 10:20:37
B Views
B Stored Procedures 5 5 20 86 2018-03-10 10:20:42
B Functions * o [] froow | [Fo]
> sys

Figure 7-12. Viewing data in MySQL

Summary

We have learned how to work with storage. We also reviewed the Coffee File
System (CFS) in Contiki-NG. We also tested for file manipulation using
CFS. Last, we developed a project to interact with the MySQL database.
We store all sensor data in the database.

In the next chapter, we will learn how to work with a Cloud platform in
Contiki-NG and then interact with it.

248

CHAPTER 8

Contiki-NG and
Cloud Server

Cloud technology provides a serverless solution to many IT problems. It

eliminates the effort required to provide hardware and software. These

services could be Saa$S (Software as Service), PaaS (Platform as Service), or

IaaS (Infrastructure as Service). In this chapter, we will integrate Contiki-

NG with Cloud servers. We will also review several Cloud platforms and

then try to work with them.

The following is a list of topics we will cover in this chapter:

Introduce Cloud server

What is Cloud computing?

Types of Cloud-computing deployments
Review of Cloud server platforms

Working with Contiki-NG and Microsoft Azure

Working with Contiki-NG and Amazon AWS

© Agus Kurniawan 2018 249
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_8

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Introduce Cloud Server

If you have experience with the software development cycle, you know it
starts with getting requirements and ends with developing and deploying
to the production machine servers. We should provide a server location,
called a data center, which is used to house the machine servers.

Building a data center is not easy. Technically, a data center has class
levels. Each class level has some criteria that should be met. We also
should factor in electricity usage. The physical security of the server can be
one of the key factors when you build your own data center.

You can also bring your machine servers to commercial data centers.
In this option, you should think about security and policy. Whether you
put your machine servers in your own data center or in a commercial data
center, you still should manage all software within the machines yourself.
Decide whether you should manage all your machines in one location.

Cloud computing can solve some issues related to configuring and
deploying applications on machines. Several Cloud-computing companies
provide automatic deployment and configuration for your application.
They also provide geo-location server services that enable your application
to deploy only in some regions. These services can serve all requests from
different locations. You can optimize customer relationships by bringing
your application to a customer’s local region.

Figure 8-1 shows how to deploy an application to a physical machine.
You can select one of the options based on your needs. Each option has
pros and cons. In this chapter, we will focus on how to integrate Contiki-
NG with Cloud-computing technology. We will communicate with Cloud
servers from the Contiki-NG environment.

250

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Own data center

Deploy application Co-location data center
on machine (commercial servers)

Data center-based Cloud

Figure 8-1. Application deployment strategies on physical machine

Why Use Cloud Computing?

Cloud computing is designed to offer high flexibility for computing
processes performed over the Internet. One of the big questions related
to Cloud computing is why do we use it? This is a challenging question,
especially for those who have already deployed an application or system
on on-premises servers (local servers). For newcomers, bringing a
deployment to Cloud computing is new ground.

251

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Cloud-Computing Services

To integrate our application with Cloud computing, we should know the
types of Cloud-computing services. In general, we can categorize Cloud-
computing services as one of the following:

o Infrastructure-as-a-service (IaaS)
e Platform-as-a-service (PaaS)
e Software-as-a-service (SaaS)

Infrastructure-as-a-service (IaaS) provides a rent infrastructure, such
as virtual machines (VMs), storage, networks, and operating systems.
These providers serve your needs for machine servers, which are included
in its managing dashboard. In general, you just pay for the resources you
have already used.

Platform-as-a-service (PaaS) supplies an on-demand environment
for developing and testing. You can create server and mobile applications
without worrying about setting up or managing resource infrastructure.

Software-as-a-service (SaaS) provides all delivering software for your
daily activities or certain projects. Providers usually offer subscription
schemes for all delivering software. We can subscribe to and stop SaaS at
any time.

Types of Cloud-Computing Deployments

To understand how to deploy Cloud computing, we should know several
types of Cloud computing, such as the following:

e Public Cloud
e Private Cloud

e Hybrid Cloud

252

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Public Cloud is a common type of Cloud deployment. You install and
configure your application/platform on a provider’s Cloud. Your data will
be stored into their storage. Some companies probably decline to store
their data on public storage servers due to compliance policies.

A private Cloud enables your solution to be deployed into local servers.
Cloud providers usually provide software to build a private Cloud with
their platform.

Last, a hybrid Cloud combines the public and private Cloud
approaches. You can work with a hybrid Cloud to ensure your business is
run well.

Review Cloud Server Platforms

In this section, we will review several Cloud platforms that provide Cloud
services-based IoT (Internet of Thing). This is a brief review so you are
familiar with them when we implement IoT by enabling Cloud technology.

Microsoft Azure

Microsoft is a well-known company that provides software services.
We all know Microsoft products, such as Windows, Microsoft Office,
and SQL Server. Now, Microsoft has expanded its software business by
implementing Cloud services, called Microsoft Azure.

You can easily set up Windows servers on Microsoft Azure. All
configurations are done though the Azure portal. You can access it at
https://azure.microsoft.com. If you are a developer or a consultant with
a Microsoft technology background, Microsoft Azure is a good choice to
deploy Cloud computing.

Microsoft Azure is a global Cloud provider that provides Cloud services
in several country regions. It can serve your needs locally.

253

https://azure.microsoft.com/

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Amazon AWS

Amazon started with its e-Commerce business. To support that business,
Amazon built an IT business with Cloud technology, called Amazon AWS.
Now Amazon AWS is a leading Cloud provider worldwide, available in
most IT market segments. Storage and push notification services from
Amazon AWS can be integrated with your mobile application. There are
a lot of AWS services for your project needs. You can learn more about
Amazon AWS, including registration, from the official website at
https://aws.amazon.com.

You can integrate IoT projects with Amazon AWS. It provides a Cloud
service, called AWS IoT. This service can serve your IoT needs. You can
find it at https://aws.amazon.com/iot/.

Google Cloud

If you want to search for something online, you probably use Google.
That’s Google. Google Cloud provides a solution for your Cloud needs. You
can find Google Cloud services at https://Cloud.google.com.

If you are an Android developer, Google Cloud is probably the best
choice to integrate with your mobile application.

IBM Cloud

IBM has long history with servers and software. This software provides
most IT services. In the Cloud-computing era, IBM now offers Cloud
services, called IBM Cloud, to leverage your business. To get more
information about IBM Cloud, you can visit the IBM Cloud site at
https://www.ibm.com/Cloud/.

254

https://aws.amazon.com/
https://aws.amazon.com/iot/
https://cloud.google.com/
https://www.ibm.com/Cloud/

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Comparing Features of All Global Clouds

If you are interested in Cloud services from various worldwide Cloud
providers, I recommend to read this site: http://compareCloud. in. You
can see a feature comparison among Cloud providers such as AWS, Azure,
Google Cloud, IBM Cloud, Oracle Cloud, and Alibaba Cloud.

Connecting Contiki-NG Motes to
Cloud Servers

Contiki-NG is designed for IPv6 networks. Several Contiki-NG hardware
devices have network protocol capabilities to connect to Cloud servers
directly. In general, we need a 6LoOWPAN router as a bridge between
Contiki-NG motes and a Cloud server.

In Figure 8-2, we show a simple model of how Contiki-NG motes
communicate with Cloud servers. We put in a 6LoWPAN router as a bridge
to all Contiki-NG motes. The 6LoWPAN router will perform request/
response mapping between Contiki-NG motes and outside servers.

6LoWPAN Router

Contiki-NG motes

Figure 8-2. Communicating between Contiki-NG and Cloud
server

255

http://comparecloud.in/

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

In the next section, we will build two demos to perform a
communication between Contiki-NG and Cloud servers. For these demos,
we will use Microsoft Azure and Amazon AWS.

Demo 1: Contiki-NG and Microsoft Azure

This demo has the objective of showing how to communicate between
Contiki-NG and Microsoft Azure. We will perform the demo described in
Figure 8-3. We will develop three applications to implement this demo, as

follows:
e Sensor application on Contiki-NG

e 6LoWPAN router application on Contiki-NG and

computer
e Middleware application
e Azure IoT Hub application

The middleware application will retrieve sensor data from Contiki-NG
and then push that data to the Azure IoT Hub. Furthermore, the Azure IoT
Hub will distribute the sensor data to all subscribed devices. You can see
this process in Figure 8-3.

256

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Azure loT
Hub

6LoWPAN Router

—

Public Router

Microsoft Azure

Middleware

Contiki-NG motes Application

Figure 8-3. Contiki-NG motes communicate with AWS IoT Hub

Next, we will implement our demo by performing some tasks, as follows:
o Prepare to set up Azure IoT.

e Develop application for Contiki-NG and middleware

application.
o Testall programs.

Each task will be implemented in the next section.

Preparation

Before we develop a program in which Contiki-NG will access Azure
IoT Hub, we should prepare Microsoft Azure. You should have an active
account for Microsoft Azure to perform this demo. To prepare our
development for Azure IoT Hub, we perform the following tasks:

e Create Azure IoT Hub.
¢ Add anewIoT device for Azure IoT.

o Copying IoT device keys for developing program.

Each step will be performed in the next section.

257

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Creating Azure loT Hub

To create Azure IoT Hub, you should have an active Azure account. You
canlogonto https://portal.azure.com/ with your account. On the left-
hand menu on the Azure dashboard, click “IoT Hub” so you see the Azure
IoT Hub dashboard, as shown in Figure 8-4.

0 & A o7 Hub - Microsoft Az X | 4 o o 0

- o (ny &8 portal.azure.com. ﬁ ﬁ & & e

2d 55 dtcolumrs () Refresh L
Su 5: All 2 selected - Don't see a subscription? Switch duectaries
[| Al subscriptions W A resource groups A locations W No grouping L
0 items
NAME e RESOURCE GR... LOCATION SUBSCRIPTION
T Hub to display
Create loT Hub

Figure 8-4. Azure IoT Hub dashboard

Fill in all required fields to create a new IoT Hub, which is included in
your Azure subscription scheme. For instance, I created an Azure IoT Hub,
called contiki-ng. After creating an Azure IoT Hub, you should see it on the
Azure IoT Hub dashboard, which is shown in Figure 8-5.

258

https://portal.azure.com/

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

B & A loTHub - MicrosoftAnn X | + W - (] x

&= & n | a portslasure.com N S T

o agd E3 edincolumns) Retresh L]

Subseriptions: A

1 items

Figure 8-5. Created Azure IoT Hub for Contiki-NG

The next step is to register a new IoT device in order for it to access
Azure IoT Hub. We will perform this task in the next section.

Registering a New loT Device

Each IoT device that will access Azure IoT Hub should be registered in
order to get an access key. Open your Azure IoT Hub and then click the
“IoT Devices” menu so you see a list of [oT devices.

You can register a new IoT device by clicking the “+ Add” icon. You
should get a registration form, shown in Figure 8-6.

Fill in your IoT device name. Select “Symmetric Key” for authentication
type. You can check the box for “Auto Generate Keys” to generate keys
automatically. Please select “Enable” for activating your IoT device. Click
the Save button if you are done to add the IoT device.

259

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

— O far - portal.azure.com. * 1= ﬂ\' [T

Figure 8-6. Creating a new IoT device

Copying Device Keys

After you have registered all IoT devices that will access Azure IoT Hub,
you need to copy all IoT device keys. To obtain these keys, you can click
your IoT devices on the Azure IoT Hub to get detailed information from the
device.

You should see the IoT device key in the “Primary key” and
“Connection string” fields. You can see it in Figure 8-7. You can copy the
text that is indicated by an arrow. We will use these keys in our program.

Next, we will develop programs for Contiki-NG and a middleware
application to communicate with the Azure IoT Hub. We will perform this
task in the next section.

260

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

M 4 A Device Details - Microsc X | 4+ W = o x

&« o) - portalazure com x4 o= T

LDyPNIrBOILGKZCIHLZIgaqAwiOs + xDEmOZERSOMIA= w

HAZALIKFT Jogn « CSGRYSOF2VZZT eBHGOZAWTMLYEw =
anncition string—primaty key @
Hosthame=contik-ng.anure-devices netDevicedd =contiki-ng-01:SharsdAccessKey « L DyPNIr0i 6KZ03HBZ1gagAwiOs » xDEmOZ)
ey @
ontiki-ng.a. netDevicek ki-ng-01;SharedAccessKey = Hx2RUSKFT Jegn « CSGjySOF 2YZ1 Te8HGOZ4w... m
annict device 10 6T Hub @

Figure 8-7. Copy the IoT device key and its connection string

Developing Application

There are three applications that we are going to develop. First, we will
develop two programs for Contiki-NG, starting with the 6LoWPAN router and
sensor application. A 6LoWPAN router will be implemented by deploying an
rpl-border-router program to the Contiki-NG mote. The sensor application
runs a web server that waits for incoming requests from the sensor.

The second program that we will develop is a middleware application.
This program will request sensor data from Contiki-NG. Then, this
program will push it to the Azure IoT Hub.

The last program is a sensor consumer program. The program will
subscribe to the Azure IoT Hub to get sensor data from Contiki-NG. Once
the middleware application pushes the sensor data to the Azure IoT Hub,

261

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

the sensor consumer program will get the sensor data that is pushed by the
Azure IoT Hub.
We will implement these programs in the next section.

Developing Programs for Contiki-NG

On the Contiki-NG side, we develop two programs for Contiki-NG, starting
with the rpl-border-router and sensor program. You can find the rpl-
border-router in the Contiki-NG program samples. You should compile
and upload rpl-border-router to one of the Contiki-NG motes. You can
read how to implement rpl-border-router in Chapter 6.

A sensor program is a web server that serves requests for sensor data.
We use the websense program from Chapter 6. We set our project name as
websense-Cloud. We rename websense. c as websense-Cloud. c. You can
see the project structure of websense-Cloud in Figure 8-8.

P aws
azure
httpd-simple.c
httpd-simple.h

M Makefile

project-conf.h

Figure 8-8. Project structure for Contiki-NG and Azure

In the Makefile file, you can configure the demo project to include
http-simple.c and the Contiki-NG project. You can write these scripts:

CONTIKI_PROJECT = websense-Cloud
all: $(CONTIKI PROJECT)

CONTIKI = ../..
PROJECT SOURCEFILES += httpd-simple.c

include $(CONTIKI)/Makefile.include

262

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

We also modify the websense-Cloud. c file that is copied from the
websense. c file (Chapter 6). In the generate_routes() method, we modify
code in order to serve requests for sensor data. You can write this code:

static
PT_THREAD(generate routes(struct httpd state *s))

{
char buff[35];

PSOCK_BEGIN(&s->sout);
//SEND_STRING(&s->sout, TOP);

int temperature = 15 + rand() % 25;
int humidity = 80 + rand() % 10;

sprintf(buff,"{\"temp\":%u,\"hum\":%u}", temperature, humidity);
printf("send json to requester\n");

SEND_STRING(&s->sout, buff);
//SEND_STRING(&s->sout, BOTTOM);

PSOCK_END(&s->sout);

Save all changes. Compile the rpl-border-router and websense-Cloud
programs. Then, upload those to your Contiki-NG motes.
Next, we will develop the middleware application using Node.js.

Building Azure Middleware Application

We will develop an Azure middleware application to request sensor data from
Contiki-NG and push sensor data to Azure IoT Hub. For implementation,
we use Node.js.

263

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

First, create a folder for your project. Open Terminal and navigate
to your project folder. Then, initialize your project, including required
libraries. Type these commands:

$ npm init
$ npm install azure-iot-device azure-iot-device-mqtt express
--save

Now, we will start to write a middleware application for Azure. Create
a file, called middleware-azure. js. Initialize all required libraries and run
the web server on port 3000. You also need information such as hostname,
device ID, and shared access key. Write this code:

'use strict';

var express = require('express');

var request = require('request');

var app = express();

var http = require('http').Server(app);

var clientFromConnectionString = require('azure-iot-device-
mqtt').clientFromConnectionString;
var Message = require('azure-iot-device').Message;

var connectionString = 'HostName={youriothostname};DeviceId=myF
irstNodeDevice;SharedAccessKey={yourdevicekey}";

var mydeviceld = 'contiki-ng-01';

var client = clientFromConnectionString(connectionString);

app.get('/', function(req, res){

res.send('WebSense Azure Cloud');

};

http.listen(3000, function(){
console.log('listening on *:3000');
console.log('websense azure Cloud was started');

};

264

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

You should change value connectionString to the following values:

o {youriothostname} is your domain address (IP
address) from your Azure IoT Hub

o myFirstNodeDevice and mydevicelId are your
registered device ID

o {yourdevicekey} is a shared access key. You can find it
in the primary key field from your registered IoT device;
see Figure 8-7.

Next, we declare two functions. One of these functions, printResultFor(),
is used to print all messages to Terminal. The other is the callback function,
connectCallback, which requests sensor data from Contiki-NG motes:

function printResultFor(op) {
return function printResult(err, res) {
if (err) console.log(op + ' error: ' + err.toString());

if (res) console.log(op + ' status: ' + res.constructor.
name);

};

}
var connectCallback = function (err) {
if (err) {
console.log('Could not connect: ' + err);
} else {

console.log('Client connected');

// Create a message and send it to the IoT Hub every
second
setInterval(function(){

request.get('http://[fd0o0::212:4b00:797:6083]/",
function(err,res,body){

265

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

};

if(err){
console.log(err);
return;
}
var obj = JSON.parse(body);
console.log(obj);

var temperature = obj.temp;

var humidity = obj.hum;

var data = JSON.stringify({ deviceld:
mydeviceld, temperature: temperature, humidity:
humidity });

var message = new Message(data);
message.properties.add('temperatureAlert’,
(temperature > 30) ? "true' : 'false');
console.log("Sending message: " + message.
getData());

client.sendEvent(message,
printResultFor('send"));

}, 3000);

}s

You should replace the value [fd00::212:4b00:797:6083] with the
IPv6 address from the Contiki-NG mote that runs the websense-Cloud

application.

Finally, we call our callback function from the Azure object:

client.open(connectCallback);

console.log('Contiki-NG Azure Middleware started.');

Save all these codes.

266

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Developing Sensor Consumer Program

The last step is to develop a sensor consumer program to subscribe to
Azure IoT Hub in order to retrieve sensor data.

We use the same project from the previous section. We need the
azure-vent-hubs library to create the subscription. Type this command:

$ npm install azure-event-hubs --save

Then, we create a file, called azure-sensor-subscriber. js. We
initialize a required library and configure a connection string for the Azure
IoT Hub. Write this code:

'use strict’;

var EventHubClient = require('azure-event-hubs').Client;

var connectionString = 'HostName={youriothostname};Deviceld=
myFirstNodeDevice;SharedAccessKey=
{yourdevicekey}';

var printError = function (err) {
console.log(err.message);

s

var printMessage = function (message) {
console.log('Message received: ');
console.log(JSON.stringify(message.body));
console.log('");

b

Change connectionString to the previous value.

267

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Now, we subscribe and listen to incoming messages from Azure [oT
Hub. Write this code:

var client = EventHubClient.fromConnectionString(connectionString);
client.open()
.then(client.getPartitionIds.bind(client))
.then(function (partitionIds) {
return partitionIds.map(function (partitionId) {
return client.createReceiver('$Default’,
partitionId, { 'startAfterTime' : Date.now()}).
then(function(receiver) {
console.log('Created partition receiver: ' +
partitionId)
receiver.on('errorReceived', printError);
receiver.on('message', printMessage);
D;
D;
1)

.catch(printError);

Save all files.
We have written all programs for this demo. Next, we will test our
project.

Testing Contiki-NG and Azure Application

In this section, I will assume you have already deployed all programs into
your Contiki-NG motes. First, run the rpl-border-router program on the
6LoWPAN router. For instance, I run it on a TI LaunchPad CC2650. Then,
navigate to the rpl-border-router project folder. Then, run this:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 connect-router

268

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

After execution, that command will run tunslip6. Change TARGET to
your Contiki-NG platform. If it succeeds, you can turn on another Contiki-
NG mote that has installed the sensor application.

Try to perform ping6 to check that your Contiki-NG mote can be
reached from a computer. You can see the program output from the rpl-
border-router application in Figure 8-9.

agusk@akur01: ~/contiki1/contiki-ng/examples/rpl-border-router
[INFO: CC26xx/CC13xx] Node ID: 28546
[INFO: RPL BR] contiki-NG Border Router started
[INFO: BR] RPL-Border router started
*** Address:fdee::1 => fdee:0000:0000:0000

[INFO: BR] Waiting for prefix

[INFO: BR] server IPv6 addresses:

[INFO: BR] fdee::212:4bee:d77:6f82

[INFO: BR 1 fe80::212:4b0B:d77:6f82

[INFO: Main] starting Contiki-NG-develop/v4.0-346-g7cbdbee-dirty
[INFO: Main] MNet: sicslowpan

[INFO: Main] MAC: CSMA

[INFO: Main] Link-layer address ©012.4b006.06d77.6f82

[INFO: Main] Tentative link-local IPv6 address fe80::212:4b00:d77:6f82

[INFO: CC26xx/CC13xx] TI CC2650 LaunchPad

[INFO: CC26xx/CC13xx] RF: Channel 25, PANID ©xABCD
[INFO: CC26xx/CC13xx] Node ID: 28546

[INFO: RPL BR] Contiki-NG Border Router started
[INFO: BR] RPL-Border router started

*** pddress:fdeo::1 => fdoe:0000:0000:0000

[INFO: BR] Waiting for prefix

[INFO: BR] Server IPv6 addresses:
[INFO: BR 1 fdee::212:4bo0:d77:6f82
iINFO: BR 1 feB80::212:4b00:d77:682

Figure 8-9. Running 6LoWPAN router application

Now, you can run the middleware application in Terminal. You can
type this command:

$ node middleware-azure.js

Then, you can run the sensor application to listen for incoming
sensor data from Azure IoT Hub. Open a new Terminal and then type this
command:

$ node azure-sensor-subscriber.js

269

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

The middleware application will request sensor data from the Contiki-NG
mote every three seconds. After obtaining sensor data, the middleware
application will push the data to the Azure IoT Hub.

Once sensor data has reached the Azure IoT Hub, it will be distributed
to all subscribers.

You can see a sample of the program output of the middleware
application and the sensor application in Figure 8-10.

agusk@akuro1: ~fcontiki1 fcontiki-ngfexamples/websense-cloudfazure

Sending message: {"deviceld":"contiki-ng-01","temperature®:27,"humidity":89}
send status: MessageEnqueued

{ temp: 15, hum: 88 }

Sending message: {"deviceld”:"contiki-ng-01","temperature”:15,"humidity”:88}
|send status: MessageEngueued

{ temp: 17, hum: 85 }

1Sending message: {"deviceId":"contiki-ng-01","temperature”:17,"humidity"”:86}
send status: MessageEngqueued

{ temp: 21, hum: 89 }

‘sending message: {"deviceId”:"contiki-ng-81","temperature”:21, "humidity”:89}
'send status: MessageEngqueued

{ temp: 26, hum: 81 }

isending message: {"deviceld":"contiki-ng-01","temperature”:26, " humidity”:81}
|send status: MessageEnqueued

{ temp: 33, hum: 85 }

1Sending message: {"deviceId":"contiki-ng-01","temperature”:33,"humidity”:85}
'send status: MessageEnqueued

{ temp: 23, hum: 83 }

iSending message: {"deviceId":"contiki-ng-81","temperature®:23, "humidity”:83}
lsend status: MessageEnqueued

{ temp: 20, hum: 86 }

Sending message: {"deviceld":"contiki-ng-01","temperature”:20,"humidity":86}
send status: MessageEngueued

NOUE LUI £8390
iki-NG Border Router started

agusk@akurdl:~/contikii/contiki-ng/examples/websense-cloud/azureS node azure-sen
sor-subscriber. js

Created partition receiver:
Created partition receiver:
Created partition receiver:
Created partition receiver:
Message received:

{"deviceld”:"contiki-ng-81","temperature”:21, "humidity":89}

W@

Message received:
{"deviceld":"contiki-ng-81","temperature”:26," "humidity":81}

Message received:
{"deviceld”:"contiki-ng-81","temperature”:33, "humidity”:85}

Message received:
{"deviceld":"contiki-ng-81","temperature”:23, "humidity":83}

Message received:
{"deviceld":"contiki-ng-@1","temperature”:20, "hunidity":86}

1]

Figure 8-10. Running middleware application and sensor program

270

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Demo 2: Contiki-NG and Amazon AWS

In this demo, we will perform the same scenario as in the first demo.
We will use Amazon AWS. To communicate with IoT devices, Amazon
AWS provides a service called AWS IoT. You can read about it at
https://aws.amazon.com/iot/.

Our demo scenario can be seen in Figure 8-11. This is similar to the
first demo. A middleware application will get sensor data from Contiki-NG
and then push it to Amazon AWS IoT.

Next, we will implement our demo by performing some tasks, as

follows:
o Prepare to set up AWS IoT.
o Develop applications for Contiki-NG and middleware.
o Testall programs.

Each task will be implemented in the next section.

6LoWPAN Router

Public Router Amazon AWS

1 Middleware
Contiki-NG motes Application

Figure 8-11. Demo project scenario for Contiki-NG and Amazon
AWS IoT

271

https://aws.amazon.com/iot/

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Preparation

In this section, we will set up AWS IoT to create a thing. Then, we will
configure security tasks, such as creating a certificate and its keys. To set up
AWS IoT for our demo, we will perform the following tasks:

e Create a new IoT thing.
o Create a policy for AWS IoT.
» Attach a policy and a thing to a certificate.

These tasks will be explained in the next section.

Creating a New loT Thing

Each IoT device that wants to access AWS IoT should be registered so as to
obtain the access keys included with the security certificate.

First, open a browser and navigate to https://aws.amazon.com/iot/,
so you should see the AWS IoT dashboard shown in Figure 8-12.

soe o a0 southeast-1.conscle awsamaron com ’ o

4
g - EL
:\ —— by
4

You don't have any things yet

Register a thing

& Foocback (3 English (US)

Figure 8-12. AWS IoT console management

272

https://aws.amazon.com/iot/

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

On the left-hand menu, click “Manage Things.” If you don’t create
things yet, you can click “Register a thing” to register a new IoT device.

After clicking, you should get a form like that shown in Figure 8-13. To
simply begin a registration process, click “Create a single thing.

soe < 4] #0-southeast-1.conscle aws.amaton com ’ 0o 0 3

®pD

n Creating AWS loT things

An loT thing is a representation and record of your phyisical device in the cloud. Any physical
device needs a thing record in order to work with AWS loT, Learm more

Register a single AWS loT thing
Create a thing in your registry

Bulk register many AWS loT things
Create things in your registry for a Lirge number of devices already uting AWS loT, or m

register devices 30 they are ready to connect to AWS loT.

@ Foodback (@ English (US)

Figure 8-13. Creating AWS IoT things

You should fill in the IoT device information. A thing name is required.
For instance, I called my thing contiki-ng-middleware. You can see it in
Figure 8-14.

273

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

*ee I (4] B BT 1 COMGO S AMALON Com v 4]

Services ~ Resource Groups ~

CRATE A THNG

Add your device to the thing registry

®@ep

This step creates an entry in the thing registry and a thing shadow For your device.
Name

contiid-ng-middieware

Apply a type to this thing
Using a thing type simglifies device management by prowiding cormsistent registry data for things that share a type. Types provide things with a
comman set of attributes, which describe the identity and capabilities of your device, and a description.

Thing Type
No type selected . Croate 3 type

Add this thing to a group
Adding your thing to 2 group allows you 1o manage devices remotely using jobs.

Thing Group

@ Feecback () English (US)

Figure 8-14. Setting an IoT device

If you have finished creating a thing, you should get the form that is
shown in Figure 8-15. To access AWS IoT, we need a certificate. In this
demo, we create a new certificate. You can use your own certificate. Click
“Create certification.”

see (4] S #D-BCUtTEas1-|.CoNBORE FWS BMATDN Com ” o ¢ '

rdcos ~ Rosource Groups ~ %

Add a certificate for your thing

A certificate is used to lcate your device's 1o AWS loT. @

One-click certificate creation (recommended)

This will generate a certificate, public key, and peivate key using AWS loT's certificate
authority.

Use my certificate
Register your CA certificate and use your own certificates for one or many devices.

Skip certificate and create thing

ou will need to add a certificate to your thing Later befare your device can connect 1o AWS Create thing without certificate
loT.

st [s omeman |
Upload your own certificate signing request ICSR) based on a private key you ewn

@ Foochack @ English [US)

Figure 8-15. Adding a certificate
274

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

After clicking that button, you should see the form that is shown in
Figure 8-16. To activate your certificate, click the “Activate” button.

eoe < (] 4 80-S0utTIMN-1.CONBORM. I SMALON COM ’ (AN P

u Certificate created! 0

Downioad thess files and save them in a safe place. Centficates can be retrieved at any time, but the private and public loeys cannot be retrieved
afer you close this page.

in order to a device, e following:
A certificate for this
54, ¥ ownl
thing €SM2TENM cert.pem Downlosd
A public ey €504 2c 7614, public oy Download
A private key €5H 2T private key Download

ou also need to download a rost CA for AWS loT from Symantec:
A root CA for AWS loT Dewnload

@) Foedback @ English [US)

Figure 8-16. Generating certificate and keys

Download all files for the certificate and public/private keys. You also
need to download a root CA (Certificate Authority) for AWS IoT from the link
shown in Figure 8-16. Put them in a folder; for instance, certs. You can see
my certificate and key files in Figure 8-17.

275

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

certs
Q

youtube nawa . akumbp . =+

aws 'CEETE 5i22c76f4-.icate.pem.crt

azure > ' c5f42c76f4-...vate.pem.key
¢ httpd-simple.c © cb5f42c76f4-...blic.pem.key
h httpd-simple.h
B Makefile

h project-conf.h
¢ websense-cloud.c

Figure 8-17. Download certificate and key files

Now, you should see the created thing in the Manage Things dashboard,
shown in Figure 8-18. You can create more than two things for AWS IoT.

e < (] - seutheat 1 Console aas AmALOn Com v]

& aws toT Things Cad Sesech thing: m B
@
5)
contiki-ng-middleware
© Mansge
Things

@ Fosdback Q) English [US)

Figure 8-18. A new thing shown on Manage Things dashboard

Next, we will create a policy to enable our thing to access the AWS
IoT Hub.

276

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Creating a Policy for AWS loT

In this section, we will create a policy for AWS IoT. We need this policy
to manage all device access. You can find a policy dashboard by clicking
“Secure,” then “Policies.” You can see it in Figure 8-19.

en® < (s B BCUTREAN- T CoNEoe s AMAZON COM v o

X7

You don't have any policies yet

Figure 8-19. AWS IoT policy dashboard

Click “Create a policy.” Then, you should see the form shown in
Figure 8-20. Fill in the policy name. Next, you should add statements to
work with AWS IoT. You should add resource, action, and effect for four
items, as follows:

{
"Version": "2012-10-17",
"Statement": [

277

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

{
"Effect": "Allow",

"Action": "iot:Connect",
"Resource": "*"

b

{
"Effect": "Allow",
"Action": "iot:Publish",
"Resource": "*"

})

{
"Effect": "Allow",
"Action": "iot:Subscribe",
"Resource": "*"

b

{
"Effect": "Allow",
"Action": "iot:Receive",
"Resource": "*"

}

278

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

oL e < (4] o B SO L LOMEOM I AMATON Lo v o

contiki-ng-policy

Add statements
Policy statements define the types of actions that can be performed by a rewource Advanced mode

Action

wt:Connect

Effect

B allow Deny

@ Feecback () English [US)

Figure 8-20. Adding a new policy for AWS IoT

After creating a policy, you can verify your policy in Secure » Policies
from the AWS IoT dashboard. You can see it in Figure 8-21.

e [+] 20-southess! 1 console aws amazon com o

B aws o1 Policies cad n -

contiki-ng-policy

& Secure

poticies

Figure 8-21. A created policy shows up in Policies dashboard.

Next, we map a policy and a thing to a certificate. We will perform this
in the next section.

279

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Attaching a Policy and a Thing to a Certificate

Your policy and thing should be mapped to a certificate that is already
activated in AWS IoT. To perform this task, you can visit Secure » Certificates.
You should see your certificate. Click the ... icon so you see the context
menu shown in Figure 8-22.

e 4] # 8- $0utheast-1.0onscle. S aMALOn Com v o

2 aws o Certificates Card Search certificates n
= cSF2cT6M
v P Deactivate
< Revoke
S secors
Certificates
Artach palicy
Attach thing
h Downioad
& Delete

@ Feacback Q) English [US)

Figure 8-22. Open context menu of a certificate of AWS IoT

Click menu Attach policy so you see the form dialog that is shown in
Figure 8-23. Select your policy that has already been created. If done, click
the Attach button.

280

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

soe < m [+] 5 ap-southeast- 1.conacle.swn.amaton.com v LN

Attach policies to certificate(s)

Policies will be attached ta the following certificate(s):
5fd2c JcBee325661¢. Tebd7c233816da150

Choose ane or more policies
Search polscies.

B contiki-ng-policy

Figure 8-23. Attach a policy to a certificate

Next, we should attach the thing to a certificate. From Figure 8-22,
select menu “Attach thing” so you get the form dialog shown in Figure 8-24.

eee < I 0 = bp-southeast-1

Attach things to certificate(s)

Thirsgs will be attached to the following certificatels):
€5fa2¢76f: fi OcBee32566 f Tebd7c233816da150

Choose one or more things
Search things

@ contiki-ng-middieware

Figure 8-24. Add an IoT device (thing) to a certificate

281

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Select your thing that was already created.
Finally, you have to set up AWS IoT. Next, we will develop programs for
Contiki-NG and the middleware application.

Developing Application

In this section, we will develop applications for Contiki-NG and Node.js to
access AWS IoT.

Developing Programs for Contiki-NG

Since our demo scenario is similar to the previous demo, we use the same
configuration. You need one Contiki-NG mote as the 6LoWPAN router.
Other Contiki-NG motes run the sensor application.

Please read the first demo to build programs for Contiki-NG.

Building Middleware Application for AWS loT

We build an AWS middleware application to request sensor data from
Contiki-NG and push sensor data to AWS IoT. For implementation, we use
Node.js.

To create a project, you can create a folder. Then, open Terminal and
navigate to your project folder. Then, initialize your project, including the
required libraries. Type these commands:

$ npm init
$ npm install aws-iot-device-sdk request express --save

Now, we start to write a middleware application for AWS. Create a
file, called middleware-aws.js. We now call the required libraries and
configure AWS IoT. You can write this code:

var awsIot = require('aws-iot-device-sdk');
var express = require('express');
var request = require('request');

282

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

var app = express();
var http = require('http"').Server(app);

var device = awsIot.device({
keyPath: 'certs/private.pem.key’,
certPath: 'certs/certificate.pem.crt’,
caPath: 'certs/root-CA.pem',
host: '<hostname>.iot.<region>.amazonaws.com',
clientId: 'contiki-ng',
region: '<region>'

};

You should change the values for keyPath, certPath, caPath, and
region to those for AWS IoT.
We also run a web server using Express on port 3000:

app.get('/', function(req, res){
res.send('WebSense Azure Cloud');

1

http.listen(3000, function(){
console.log('listening on *:3000');
console.log('websense aws Cloud was started');

1

Next, we listen for the connect event from AWS IoT. Once the
middleware application is connected to AWS IoT, we request sensor data
from Contiki-NG every three seconds. For testing, I request data from
Contiki-NG with the IPv6 address [fd00::212:4b00:797:6083]. You can
change it. You also can change mydeviceld:

var isSubscribe = true;

device

.on('connect', function() {
console.log('connected to AWS IoT.');

283

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

// optional to subscribe
if(isSubscribe)

device.subscribe('contiki-ng-sensor');

setInterval(function(){

request.get('http://[fd00::212:4b00:797:6083]/",function
(err,res,body){
if(err){
console.log(err);
return;
}
var obj = JSON.parse(body);
console.log(obj);

var temperature = obj.temp;

var humidity = obj.hum;

mydeviceld = 'fd00::212:4b00:797:6083";

var data = JSON.stringify({ deviceld: mydeviceld,
temperature: temperature, humidity: humidity });
device.publish('contiki-ng-sensor', data);
console.log('sent: ', JSON.stringify(data));

};

}, 3000);
};

284

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER
Last, we can subscribe to the contiki-ng-sensor channel:

// optional to subscribe
device
.on('message', function(topic, payload) {
console.log('recv: ', topic, payload.toString());
1;

console.log('Contiki-NG AWS Middleware started.');

Save all code.
Next, we will test this project.

Testing Contiki-NG and AWS loT

Deploy all programs to Contiki-NG. Then, run the 6LoWPAN router and
the middleware application:

$ node middleware-aws.js

This program will connect to AWS IoT. After connecting, this
application will retrieve sensor data from Contiki-NG. It will then push the
sensor data to AWS IoT

Since the middleware application subscribes to AWS IoT, this program
will receive incoming data from AWS IoT. You can see my program output
in Figure 8-25.

285

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

agusk@akur®l:~/contikil/contiki-ng/examples/websense-cloud/aws5S node middleware-
aws.js

Contiki-NG AWS Middleware started.

listening on *:3000

websense aws cloud was started

connected to AWS IoT.

{ temp: 27, hum: 89 }

|sent: "{\"deviceId\":\"fdee::212:4b00:797:6083\",\"temperature\":27,\ "humidity\
":89}"

recv: contiki-ng-sensor {"deviceld":"fdee::212:4b00:797:6083","temperature":27,
"humidity":89}

{ temp: 15, hum: 88 }

sent: "{\"deviceId\":\"fde®::212:4b8B:797:6083\",\"temperature\"”:15,\"humidity\
":88}"

recv: contiki-ng-sensor {"deviceld":"fd®®::212:4b80:797:6083","temperature”:15,
"humidity":88}

{ temp: 17, hum: 86 }

|sent: "{\"deviceId\":\"fdee::212:4b00:797:6083\",\ " "temperature\":17,\ "humidity\
":86}"

recv: contiki-ng-sensor {"deviceld":"fdee::212:4b00:797:6083","temperature":17,
"humidity":86}

Figure 8-25. Program output from executing middleware application

For a subscriber tool, you can use the Subscription test application.
You can find it on the Test menu.

After clicking it, you will see the form shown in Figure 8-26. Select
“Subscribe to a topic.” Then, fill in “contiki-ng-sensor” for listening
incoming messages.

286

CHAPTER 8 CONTIKI-NG AND CLOUD SERVER

Services ~ Resource Groups ~

Subscriptions

& e
G AWS IoT
Subscribe to a toplc ®
Publish
@ Publish to a topic Specity a topic and a meszage to publish with 3 GoS of 0. @
- contiking-sensar Publish to topic
1 contik-ng-sensor x
O
3%
S
&
& ten
contiki-ng-sensor Mar 23, 2018 3:41:14 PM +0700 Export Hide
i
1 *d001121214B00NTITIE0ND",
o1 23,
ty*r 83
®
&)
o contiki-ng-sensor Mar 23, 2016 3:41:11 PM +0700 Export Hide

{
devicold™s “£400:9212:14B00:THTE0RD",

@ Feodback (3 English [US)

Figure 8-26. Listening for incoming messages from AWS IoT Test

You have finished integrating between Contiki-NG and the Cloud
server. You practice more to hone your skills.

Summary

We have learned what Cloud computing is. We also developed programs
to allow interaction between Contiki-NG motes and Cloud servers. We
tested these programs using Microsoft Azure and Amazon AWS. Next, you
could explore various features in Azure and AWS. You can use other Cloud
platforms to integrate with Contiki-NG.

287

Index

A, B
Address Resolution
Protocol (ARP), 195
Amazon AWS, Contiki-NG and
add IoT device to certificate, 281
attach policy, 280, 281
AWS IoT policy, 277
policy creation, 277, 279
AWS IoT registration, 272
certificate creation, 274
console management, 272
contiki-ng-middleware, 273
Creating AWS IoT things, 273
public/private keys, 275
AWS IoT service, 271
AWS IoT setup, 272
AWS middleware application, 282
contiki-ng-sensor channel, 285
programs, 282
testing
incoming messages, 287
6LoWPAN router, 285
middleware application,
285-286
Azure IoT Hub
Azure middleware
application, 263
copying IoT device keys, 260-261

© Agus Kurniawan 2018

creation

Azure IoT Hub
dashboard, 258

contiki-ng, 258-259

register new [oT device, 259
Auto Generate Keys, 259
registration form, 260

Sensor consumer program
azure-vent-hubs library, 267
connectionString value, 267

Azure middleware application

callback functions, 265-266
connectionString value, 265
printResultFor() functions, 265
requests sensor data, 265-266
sensor data, 263

shared access key, 264

Carbon monoxide sensor, 143
Cloud computing, 251

services
infrastructure-as-a-service
(IaaS), 252
platform-as-a-service
(PaaS), 252
software-as-a-service
(SaaS), 252

289

A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2

https://doi.org/10.1007/978-1-4842-3408-2

INDEX

Cloud computing (cont.)
types
hybrid cloud, 253
private cloud, 253
public cloud, 253
Cloud server
Amazon AWS, 254
data center, 250
geo-location server
services, 250
Google Cloud, 254
IBM Cloud, 254
Microsoft Azure, 253
physical machine
deployment, 250-251
Coding conventions, 61
Coffee File System (CFS), 248
Communication models, 96
Contiki motes, 97, 126-127
receiving broadcast
messages, 128-131
sending broadcast
messages, 127-128
serial communication, 98,
100-104
Concurrency, 67
demo-process app, 72
process, 69-70
task scheduling, 88, 90, 92-94
threading, 83-88
working with timers, 72
Clock library, 72-73
CTimer library, 76
demo-timer, 78-82

290

Etimer library, 75
RTimer library, 77
Stimer library, 74, 75
Timer library, 73, 74
Contiki-NG, 13
middleware application, 132
architecture, 133
defined, 133
implementation, 134
testing, 134-135
set up development
environment, 19-21
Contiki-NG motes

connecting to Cloud Servers, 255

6LoWPAN router, 255
Contiki-NG programs
rpl-border-router program, 262
sensor program, 262
websense-Cloud project, 262
generate_routes()
method, 263
Contiki-NG shell, 112
code structure, 113
customizing, 123-126
executing sample, 115
TI CC2650 LaunchPad
board, 114
Contiki OS, 4
architecture, 5
programming flow, 6
set up development
environment, 13
Instant Contiki, 13-18
manual installation, 18-19

WSN hardware, 6
Iris, 9-10
Mica2, 7-8
MICAz, 7
TelosB, 8-9
TinyOS motes, 10-11
71 platform, 11-12
Contiki simulator, 35
application
debugging, 45
hardware debugger, 44-45
LED indicators, 45
printf() function, 45
running, 37-43
setting up, 36
counter_process function, 60

D,E,FG

Demo-counter, 57

H

Hello World Application for
Contiki, 26, 28-30, 32-34

Humidity and Temperature
Sensor, 140-141

,J,K
Internet Protocol Version 6 (IPv6)
networking, 185-188

L

Libraries, 55-56

INDEX

Microcontroller (MCU), 2
Microsoft Azure, Contiki-NG and
Azure IoT Hub
application, 256
communication, 257
6LoWPAN router application, 256
middleware application, 256
sensor application, 256
testing
6LoWPAN router
application, 269
middleware application, 270
rpl-border-router
program, 268
sensor application, 270

N, O
NETSTACK, 168
Networking
Contiki-NG NullNet, 199-200
IPv6, 185-188, 194-198
6LoWPAN network, 201
implementing, 203-205,
207-208
overview, 201-202
using COQOJA, 209-212
MAC layer, 172
NETSTACK, 168-169
network layer, 170-171
radio layer, 173
RDC layer, 173

291

INDEX

Networking (cont.)
RESTful server for
Contiki-NG, 214
implementing demo,
215-216
6LoWPAN router, 217
preparation, 215
program, 219-222
testing demo, 223-224
WebSense node, 217-218
routing on Contiki-NG, 189
basic routing, 189-190
operations on first mote, 193
operations on second
mote, 194
single-hop and multi-hop
networking, 190-191
simulation using COOJA, 174
running, 183, 185
simulation project, 174-176
UDP client motes, 180-182
UDP server mote, 177,
179-180

PQ

Programming model, 47-48
basic syntax, 49
creating project, 49-50
programming language,
50-51
program structure, 48
Protothreads, 52-53, 55

292

R

Radio Duty Cycling (RDC)
layer, 173
Raspberry Pi, Contiki and, 25

S

Sensing and actuating, 137
communication model, 138
in Contiki-NG, 145

demo, 146-147
program, writing, 148-150,
154-155
project, creating, 147, 153
testing, 151-152, 155-156
customizing, 156
drivers for Contiki-NG,
159-165
expansion connector, 156,
158-159
sensor and actuator
devices, 139
active buzzer, 144
gas sensor, 142-143
LED, 143
motor, 144-145
soil moisture sensor,
141-142
temperature and humidity
sensors, 139-141
WSN mote, 138
Serial communication, 97

INDEX

Shell, Contiki, 104 T
API, 106
application, 107
customizing, 115-120, 122
example, 105 U
help command, 111

TelosB, 146

Universal Asynchronous Receiver/

limitations, 104 Transmitter (UART), 97

running sample, 108-109
sky as target, 110
Storage models, 225-227 \"

CFS, 231-234, 236-237 Virtual-sensor, 61

Contiki-NG and
MySQL, 238
database, designing,

code for, 64-65
functions, 63
program output, 65

239-240 project structure, 62
6LoWPAN router, 241

middleware application,

242-245 W XY,Z

preparation, 239 Wireless Sensor
Networks (WSN), 1-3, 225
connectivity model, 4

general model of, 3

sensor application, 241-242
testing the project, 246-248
local storage,

working with, 227-231 hardware to computer, 22-25

293

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Wireless Sensor Networks
	Introduction to Wireless Sensor Networks
	Introduction to Contiki OS
	Reviewing WSN Hardware for Contiki
	MICAz
	Mica2
	TelosB
	Iris
	Custom TinyOS Motes
	Z1 Platform
	Contiki-NG ARM-based Boards

	Introducing Contiki-NG
	Set Up Development Environment for Contiki
	Instant Contiki
	Troubleshooting

	Manual Installation
	Set Up Contiki-NG Development Environment

	Connect WSN Hardware to Computer
	Contiki and Raspberry Pi
	Hello World Application for Contiki
	Explanation

	Contiki Simulator
	Setting Up
	Running Contiki Application

	Debugging Contiki Application
	Hardware Debugger
	LED Indicators
	Debugging Using Contiki Simulator
	The Contiki printf() Function

	Summary

	Chapter 2: Basic Contiki-NG Programming
	Contiki-NG Programming Model
	Contiki-NG Basic Syntax
	Creating a Project
	Contiki-NG Basic Programming Language

	Review Protothreads
	Extending the Contiki-NG Library
	Contiki-NG Demo: Threading App
	Contiki-NG Coding Conventions
	Demo: Build Contiki-NG Application
	Summary

	Chapter 3: Concurrency
	Introduction to Concurrency
	Concurrency Approach in Contiki-NG
	Introducing Contiki-NG Processes
	Working with Timers
	Clock Library
	Timer Library
	Stimer Library
	Etimer Library
	CTimer Library
	Rtimer Library
	Put It All Together

	Threading
	Task Scheduling
	Summary

	Chapter 4: Contiki-NG and Computer Communication
	Communication Models for Contiki-NG
	Serial Communication
	Communication Between Contiki Mote and Computer
	Access Contiki Motes via Serial Communication
	Contiki Shell
	Contiki-NG Shell
	Customizing Contiki Shell
	Custom Contiki Shell
	Custom Contiki-NG Shell

	Communication among Contiki Motes
	Sending Broadcast Messages
	Receiving Broadcast Messages
	Demo: Middleware Application

	Middleware Application for Contiki-NG
	What Is Middleware?
	Middleware Architecture for Contiki-NG
	Implementation
	Testing

	Summary

	Chapter 5: Sensing and Actuating
	What Are Sensing and Actuating?
	Review Sensor and Actuator Devices
	Temperature and Humidity
	Soil Moisture
	Gas Sensor
	LED
	Active Buzzer
	Motor

	Sensing in Contiki-NG
	Demo
	Creating a Project
	Writing a Program
	Testing

	Actuating in Contiki-NG
	Creating a Project
	Writing a Program
	Testing

	Customizing Sensor and Actuator Devices
	Expansion Connector
	Sensor and Actuator Drivers for Contiki-NG

	Summary

	Chapter 6: Networking
	Networking in Contiki-NG
	Network Layer
	MAC Layer
	RDC Layer
	Radio Layer

	Network Simulation Using COOJA
	Creating Simulation Project
	Adding UDP Server Mote
	Adding UDP Client Motes
	Running a Simulation

	IPv6 Networking
	Routing on Contiki-NG
	Introducing Basic Routing
	Single-Hop and Multi-Hop Networking
	Routing on Contiki-NG

	IPv6 Multicast
	Contiki-NG NullNet
	6LoWPAN Network
	A Brief Introduction
	Implementing a 6LoWPAN Network on ­Contiki-­NG
	6LoWPAN Implementation using COOJA

	Build Your Own RESTful Server for Contiki-­NG
	Preparation
	Implementing the Demo
	Implementing 6LoWPAN Router
	Writing a Program for WebSense Node
	Writing a Program for RESTful Server

	Testing the Demo

	Summary

	Chapter 7: Storage
	Storage Models in Contiki-NG
	Working with Local Storage
	Coffee: File System in Contiki-NG
	Demo: Contiki-NG and MySQL
	Preparation
	Design a Database
	Build a 6LoWPAN Router
	Develop a Contiki-NG Sensor Application
	Develop Middleware Application
	Testing the Project

	Summary

	Chapter 8: Contiki-NG and Cloud Server
	Introduce Cloud Server
	Why Use Cloud Computing?
	Cloud-Computing Services
	Types of Cloud-Computing Deployments
	Review Cloud Server Platforms
	Microsoft Azure
	Amazon AWS
	Google Cloud
	IBM Cloud
	Comparing Features of All Global Clouds

	Connecting Contiki-NG Motes to Cloud Servers
	Demo 1: Contiki-NG and Microsoft Azure
	Preparation
	Creating Azure IoT Hub
	Registering a New IoT Device
	Copying Device Keys

	Developing Application
	Developing Programs for Contiki-NG
	Building Azure Middleware Application
	Developing Sensor Consumer Program

	Testing Contiki-NG and Azure Application

	Demo 2: Contiki-NG and Amazon AWS
	Preparation
	Creating a New IoT Thing
	Creating a Policy for AWS IoT
	Attaching a Policy and a Thing to a Certificate

	Developing Application
	Developing Programs for Contiki-NG
	Building Middleware Application for AWS IoT

	Testing Contiki-NG and AWS IoT

	Summary

	Index

