
Practical
Contiki-NG

Programming for Wireless Sensor
Networks
—
Agus Kurniawan

www.allitebooks.com

http://www.allitebooks.org

Practical Contiki-NG
Programming for Wireless

Sensor Networks

Agus Kurniawan

www.allitebooks.com

http://www.allitebooks.org

Practical Contiki-NG: Programming for Wireless Sensor Networks

ISBN-13 (pbk): 978-1-4842-3407-5 ISBN-13 (electronic): 978-1-4842-3408-2
https://doi.org/10.1007/978-1-4842-3408-2

Library of Congress Control Number: 2018947346

Copyright © 2018 by Agus Kurniawan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3407-5.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Agus Kurniawan
Depok, Jawa Barat, Indonesia

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3408-2
http://www.allitebooks.org

iii

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

Table of Contents

Chapter 1: Introduction to Wireless Sensor Networks ������������������������1

Introduction to Wireless Sensor Networks ��2

Introduction to Contiki OS ���4

Reviewing WSN Hardware for Contiki ���6

MICAz ��7

Mica2 ���7

TelosB ��8

Iris��9

Custom TinyOS Motes ��10

Z1 Platform ��11

Contiki-NG ARM-based Boards ��12

Introducing Contiki-NG ��13

Set Up Development Environment for Contiki ���13

Instant Contiki ���13

Manual Installation ��18

Set Up Contiki-NG Development Environment ���19

Connect WSN Hardware to Computer ���22

Contiki and Raspberry Pi ���25

www.allitebooks.com

http://www.allitebooks.org

iv

Hello World Application for Contiki ��26

Explanation ��28

Contiki Simulator ��35

Setting Up ��36

Running Contiki Application ���37

Debugging Contiki Application ��44

Hardware Debugger ��44

LED Indicators ���45

Debugging Using Contiki Simulator ���45

The Contiki printf() Function��45

Summary���46

Chapter 2: Basic Contiki-NG Programming ��47

Contiki-NG Programming Model ���47

Contiki-NG Basic Syntax ���49

Creating a Project ��49

Contiki-NG Basic Programming Language ��50

Review Protothreads ���52

Extending the Contiki-NG Library ��55

Contiki-NG Demo: Threading App ��57

Contiki-NG Coding Conventions ��61

Demo: Build Contiki-NG Application ��61

Summary���66

Chapter 3: Concurrency ��67

Introduction to Concurrency ��67

Concurrency Approach in Contiki-NG ��68

Introducing Contiki-NG Processes ��69

Working with Timers ���72

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Clock Library��72

Timer Library ���73

Stimer Library ��74

Etimer Library ��75

CTimer Library ���76

Rtimer Library ��77

Put It All Together���78

Threading ��83

Task Scheduling ��88

Summary���94

Chapter 4: Contiki-NG and Computer Communication ������������������������95

Communication Models for Contiki-NG ���96

Serial Communication ���97

Communication Between Contiki Mote and Computer ���������������������������������������97

Access Contiki Motes via Serial Communication ��98

Contiki Shell ��104

Contiki-NG Shell ��112

Customizing Contiki Shell ��115

Communication among Contiki Motes ��126

Sending Broadcast Messages ���127

Receiving Broadcast Messages ���128

Demo: Middleware Application ��129

Middleware Application for Contiki-NG ���132

What Is Middleware? ���133

Middleware Architecture for Contiki-NG ��133

Implementation ���134

Testing ���134

Summary���135

Table of ConTenTsTable of ConTenTs

vi

Chapter 5: Sensing and Actuating ��137

What Are Sensing and Actuating? ���137

Review Sensor and Actuator Devices ���139

Temperature and Humidity ��139

Soil Moisture ���141

Gas Sensor ��142

LED ��143

Active Buzzer ���144

Motor ���144

Sensing in Contiki-NG ���145

Demo ���146

Creating a Project ��147

Writing a Program ���148

Testing ���151

Actuating in Contiki-NG ���152

Creating a Project ��153

Writing a Program ���154

Testing ���155

Customizing Sensor and Actuator Devices ���156

Expansion Connector ���156

Sensor and Actuator Drivers for Contiki-NG ��159

Summary���165

Chapter 6: Networking ��167

Networking in Contiki-NG ���168

Network Layer ���170

MAC Layer ���172

RDC Layer ��173

Radio Layer ��173

Table of ConTenTsTable of ConTenTs

vii

Network Simulation Using COOJA ���174

Creating Simulation Project ���174

Adding UDP Server Mote ���177

Adding UDP Client Motes ���180

Running a Simulation ��183

IPv6 Networking ��185

Routing on Contiki-NG ���189

Introducing Basic Routing ���189

Single-Hop and Multi-Hop Networking ��190

Routing on Contiki-NG ���191

IPv6 Multicast ���194

Contiki-NG NullNet ��199

6 LoWPAN Network ���201

A Brief Introduction��201

Implementing a 6LoWPAN Network on Contiki- NG ��������������������������������������203

6 LoWPAN Implementation using COOJA ���209

Build Your Own RESTful Server for Contiki- NG ���214

Preparation ��215

Implementing the Demo ��215

Testing the Demo ���223

Summary���224

Chapter 7: Storage ��225

Storage Models in Contiki-NG ���225

Working with Local Storage ��227

Coffee: File System in Contiki-NG ���231

Demo: Contiki-NG and MySQL ���238

Preparation ��239

Design a Database ���239

Table of ConTenTsTable of ConTenTs

viii

Build a 6LoWPAN Router ���241

Develop a Contiki-NG Sensor Application ��241

Develop Middleware Application ���242

Testing the Project ���246

Summary���248

Chapter 8: Contiki-NG and Cloud Server ��249

Introduce Cloud Server ���250

Why Use Cloud Computing? ��251

Cloud-Computing Services ���252

Types of Cloud-Computing Deployments ��252

Review Cloud Server Platforms ��253

Microsoft Azure ���253

Amazon AWS��254

Google Cloud ���254

IBM Cloud ��254

Comparing Features of All Global Clouds ��255

Connecting Contiki-NG Motes to Cloud Servers ���255

Demo 1: Contiki-NG and Microsoft Azure ��256

Preparation ��257

Developing Application ��261

Testing Contiki-NG and Azure Application ���268

Demo 2: Contiki-NG and Amazon AWS ��271

Preparation ��272

Developing Application ��282

Testing Contiki-NG and AWS IoT ��285

Summary���287

Index ���289

Table of ConTenTsTable of ConTenTs

ix

About the Author

Agus Kurniawan is a lecturer, researcher, IT consultant, and author. He

has 17 years of experience in various software and hardware development

projects, delivering materials in training and workshops, and technical

writing. He has been awarded the Microsoft Most Valuable Professional

(MVP) award 14 years in a row.

His topic interests are software engineering, embedded systems,

networking, and security systems. He has been working as a lecturer and

researcher at the Faculty of Computer Science, Universitas Indonesia.

Currently, he is pursuing a PhD in computer science at the Freie

Universität in Berlin, Germany. He can be reached on his blog at

http://blog.aguskurniawan.net and Twitter at @agusk2010.

http://blog.aguskurniawan.net/

xi

About the Technical Reviewer

Chaim Krause is first and foremost a #geek. Other hashtags used to

define him are (in no particular order) #autodidact, #maker, #gamer,

#raver, #teacher, #adhd, #edm, #wargamer, #privacy, #liberty, #civilrights,

#computers, #developer, #software, #dogs, #cats, #opensource,

#technicaleditor, #author, #polymath, #polyglot, #american, #unity3d,

#javascript, #smartwatch, #linux, #energydrinks, #midwesterner,

#webmaster, #robots, #sciencefiction, #sciencefact, #universityofchicago,

#politicalscience, and #bipolar. He can always be contacted at

chaim@chaim.com and goes by the Nom de Net Tinjaw.

xiii

Acknowledgments

I would like to thank Apress for all their help in making this book possible.

Specifically, I would like to thank Natalie Pao and Jessica Vakili, my

coordinating editors, for helping me to stay focused and to overcome many

obstacles. Without them, this book would not have been possible.

Special thanks to James Markham, my development editor, and Chaim

Krause, technical reviewer, Nirmal Selvaraj, Production Editor, C. Dulcy

Nirmala, Senior Executive Project Manager for all his suggestions during

the editorial review process to help make this a great book.

I would also like to thank the Contiki and Contiki-NG communities

anywhere in the world for contributing and making learning and

developing Contiki-NG easy.

Last, but not least, a thank you to my wife, Ela, and my children, Thariq

and Zahra, for their great support while I completed this book.

xv

Introduction

Wireless Sensor Networks (WSN) are one of the research and technology

topics for which researchers, developers, and makers develop applications

with specific purposes. Contiki-NG is one of the WSN platforms used to

build WSN programs supported by various hardware platforms. This book

is designed for developers and researchers who want to build Contiki-NG

programs for general and specific purposes.

 For the Readers
This book assumes you have some programming experience. It is also

written for someone who has developed programs using C/C++ and wants

to develop a Wireless Sensor Network (WSN) application with the Contiki-

NG platform.

 How This Book Is Organized
This book is designed with a step-by-step approach. You will learn how to

develop a WSN with the Contiki-NG platform. You will also explore some

Contiki-NG libraries and APIs to implement certain scenarios.

You will learn how to develop a Contiki-NG program. This book

explains how Contiki-NG performs sensing and actuating. You will also

see how to communicate with other Contiki-NG platforms and external

systems, such as cloud servers.

xvi

 Required Software, Materials, and Equipment
In general, you need a computer with Linux, Windows, or Mac OS

installed. Linux is recommended. You should install all toolchains and

Contiki-NG project codes on your computer.

We need Contiki-NG mote hardware to implement our demo. This

book uses Telosb/sky and TI LaunchPad CC2650 boards for testing.

InTroduCTIonInTroduCTIon

1© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_1

CHAPTER 1

Introduction to
Wireless Sensor
Networks
Wireless Sensor Networks (WSN) are a research and technology topic

for which researchers, developers, and makers develop applications for

specific purposes. In this chapter, we will learn and explore what a WSN

is and try to develop one using the WSN platform Contiki and its update,

Contiki-NG.

The following is a list of topics we will cover in this chapter:

• Introduce Wireless Sensor Networks.

• Introduce Contiki OS.

• Explore WSN hardware and platform.

• Introduce Contiki-NG project.

• Set up Contiki-NG development environment.

• Build a simple Contiki application.

• Work with Contiki simulator.

• Debug Contiki application.

2

 Introduction to Wireless Sensor Networks
A Wireless Sensor Network (WSN) is a board system with the connectivity

capability to sense data and/or to perform actions. Sometimes the WSN

board is called a WSN mote. The main objective of implementing a WSN

mote is to capture physical objects in digital form and then transfer them

to a certain server. Research on WSN topics is an intense study area since

there are a lot of problems in need of solving, such as mote hardware

design, networking, infrastructure, and security.

Nowadays, hardware manufacturers grow up fast. You will find that

there are a lot of new boards on the market, such as Arduino, Raspberry Pi,

BeagleBone, Intel Edison, NodeMCU, Teensy, Tessel, and so on. This is the

era of the Internet of Things (IoT). It’s estimated that there are billions of

IoT devices connected to the Internet, based on Gatner’s report. Since IoT

board demand is high, the board price could be quite cheap. Furthermore,

the open source hardware movement has had an impact on the growing

board industry. People can design and make their own boards for special

purposes.

Back to our WSN mote topic—how to describe a WSN mote? In

general, a WSN mote consists of a microcontroller (MCU), sensor/

actuator, and wireless module. You can see it in Figure 1-1. The MCU is

the center of processing in a WSN mote. It has a responsibility to ensure

the system runs well. In other designs, the MCU can be replaced by an

MPU (microprocessor), depending on whether there is a battery issue or

not. The second part is the sensor/actuator. A sensor can capture physical

objects, such as temperature, humidity, and compass direction. An actuator

can perform a certain action, such as lighting an LED, generating sound,

or running a motor. Some WSN motes may provide sensor devices only,

but other WSN motes may use both a sensor and an actuator inside the

board. Again, it depends on your design. The last part is the wireless

module. It’s used to transfer data from the mote to a network device; for

instance, gateway, server application, or cloud application. Selecting the

Chapter 1 IntroduCtIon to WIreless sensor netWorks

3

wireless module type will have an impact on what protocol will be used to

communicate with other motes and servers. Most WSN motes use IEEE

802.15.4 as their network protocol.

Figure 1-1. General model of Wireless Sensor Network (WSN) mote

Sometimes makers will build WSN devices in several forms based on

their roles. A WSN mote may only consist of an MCU and a radio module,

without sensor and actuator devices. Some WSN motes will provide an

MCU, sensor/actuator devices, and a radio module.

How can the WSN mote reach the server? This is a common issue in

WSN implementation. If a WSN mote has the same protocol as the servers

on the network module, it can communicate with the server directly.

This method may take more battery usage in the mote since most servers

use advanced protocol without battery issues. Alternatively, we can use

a gateway, which is used as a bridge between WSN motes and servers.

Some gateways have the capability to translate the WSN mote’s protocol

to the target server’s protocol so they can exchange data. The gateway

can be implemented to monitor the existing WSN motes. You can see

how WSN motes communicate with another system through a gateway

in Figure 1-2.

Chapter 1 IntroduCtIon to WIreless sensor netWorks

4

 Introduction to Contiki OS
Contiki is a WSN platform that provides software and hardware. Contiki

was created by Adam Dunkels in 2002. Now, the Contiki project involves

both companies and contributors. This project has released open

source software and hardware. The operating system (OS) in Contiki

uses Protothread, which combines multithreading and event-driven

programming. On the hardware side, the Contiki project provides

hardware schemes so that we can build our own Contiki boards. You can

reach the official website for Contiki at http://www.contiki-os.org.

The programming model of the Contiki platform implements

a preemptive multithreading architecture and an event-driven model.

The Contiki programming language uses C syntax for writing programs.

Contiki provides hardware abstractions that encapsulate hardware

complexity. This approach makes Contiki work with various hardware,

including MCUs and radio modules. General libraries for sensing,

actuating, and communication are also provided by Contiki. Users should

get more attention on their problems. You can see the general architecture

of Contiki in Figure 1-3.

Figure 1-2. A connectivity model for several WSN motes

Chapter 1 IntroduCtIon to WIreless sensor netWorks

http://www.contiki-os.org/

5

Kernel, the program loader, the language run-time, and the

communication service are static modules within the ROM of Contiki OS.

All user programs will be loaded into Loaded Program. Only the kernel

and the communication service will be used by the Contiki OS RAM.

Contiki uses a GCC compiler to compile C source code files. We

develop Contiki applications written in *.c files. After they are compiled,

we obtain the binary file. Basically, it converts the application from C

program syntax to a native binary file for a specific hardware target. We

also can run a C program on the Contiki simulator to verify program

behaviors. You can see the flow of programming in Figure 1-4.

Figure 1-3. Contiki general architecture

Chapter 1 IntroduCtIon to WIreless sensor netWorks

6

 Reviewing WSN Hardware for Contiki
To run Contiki on top of hardware, that hardware needs to fulfill some

requirements, especially about the MCU and network module. In this

section, we will explore various WSN hardware types that we can use to

implement Contiki. A box that consists of a WSN board that has some

sensors or actuators is called a WSN mote. If you have a TinyOS mote, you

can use that mote to run a Contiki application.

In general, a list of supported Contiki OS can be found on the official

website at this link: http://www.contiki-os.org/hardware.html. For

Contiki-NG, you can see a list of Contiki-NG boards at https://github.

com/contiki-ng/contiki-ng/wiki#the-contiki-ng-platforms. We

will next review some famous WSN mote models that you can use for

experimental purposes.

Figure 1-4. Programming flow for Contiki

Chapter 1 IntroduCtIon to WIreless sensor netWorks

http://www.contiki-os.org/hardware.html
https://github.com/contiki-ng/contiki-ng/wiki#the-contiki-ng-platforms
https://github.com/contiki-ng/contiki-ng/wiki#the-contiki-ng-platforms

7

 MICAz
MICAz is a mote from Crossbow Technology, MEMSIC. This mote uses

an ATmega128L microcontroller and the CC2420 radio chip. ATmega128L

is an 8-bit microcontroller from Atmel. This MCU has capabilities such

as 128K of in-system, self-programmable flash program memory, 4K of

EEPROM, and 4K of internal SRAM. You can explore this MCU by reading

its datasheet at http://www.atmel.com/images/doc2467.pdf.

On the radio side, this mote uses a CC2420 chip that implements IEEE

802.15.4 protocol. This chip has energy-saving capabilities. You can work

in sleep mode on a network layer stack. You can read more information

about MICAz at http://www.memsic.com/wireless-sensor-networks/.

You can see a MICAz board form in Figure 1-5 (source: http://www.

memsic.com/wireless-sensor-networks/).

Figure 1-5. MICAz mote model

 Mica2
Mica2 is similar to the MICAz mote in that the mote uses an Atmel

ATmega128L microcontroller; it uses the CC1000 radio chip for the

wireless module. The battery connector is also provided to work

Chapter 1 IntroduCtIon to WIreless sensor netWorks

http://www.atmel.com/images/doc2467.pdf
http://www.memsic.com/wireless-sensor-networks/
http://www.memsic.com/wireless-sensor-networks/permission to use photo?
http://www.memsic.com/wireless-sensor-networks/permission to use photo?

8

standalone. You can see the Mica2 mote in Figure 1-6 (source:

http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/mica2.jpg).

To develop a program for this mote, you should use a development board

to flash the program.

Figure 1-6. Mica2 mote model

 TelosB
TelosB is the famous model that researchers and makers use for TinyOS

implementation. This mote also can be used for the Contiki platform.

TelosB motes use an MSP430 microcontroller from Texas Instruments (TI).

The MSP340 series in TelosB are built from MSP430x15x, MSP430x16x, and

MSP430x161x. Many manufacturers build WSN motes based on the TelosB

design. You can see a TelosB mote in Figure 1-7 (source: https://www.

advanticsys.com/shop/mtmcm5000msp-p-14.html).

Chapter 1 IntroduCtIon to WIreless sensor netWorks

http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/mica2.jpg
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.htmlpermission to use?
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.htmlpermission to use?

9

 Iris
Iris is a WSN mote from Crossbow. It’s built from an ATmega1281

microcontroller and the Atmel AT86RF230 radio chip. Atmel ATmega1281

has a flash memory that is about 128K and 8K of RAM so you can write

programs in more spaces. You can see Iris mote in this site, http://www.

memsic.com/wireless-sensor-networks/. In Figure 1-8, you can see my

Iris mote from Crossbow, which is connected to my notebook.

Figure 1-7. MTM-CM5000-MSP board based on TelosB from
Advanticsys

Chapter 1 IntroduCtIon to WIreless sensor netWorks

http://www.memsic.com/wireless-sensor-networks/
http://www.memsic.com/wireless-sensor-networks/

10

 Custom TinyOS Motes
Independent makers or manufacturers can build their own TinyOS motes,

including sensors with specific purposes. The scheme and layout of the

TinyOS mote have already been shared so it’s not difficult to build your own.

BTnode is a mote based on TinyOS and uses an Atmel ATmega 128K

MCU and Chipcon CC1000 radio module. This mote was developed by

ETH Zurich. Currently, they have released BTnode revision 3. You can

see it in Figure 1-9. Further information about BTnode can be found at

http://www.btnode.ethz.ch/.

Figure 1-8. Iris mote from Crossbow

Chapter 1 IntroduCtIon to WIreless sensor netWorks

http://www.btnode.ethz.ch/

11

For more information, you can get a list of compatible TinyOS

and Contiki motes at https://en.wikipedia.org/wiki/List_of_

wireless_sensor_nodes. You can review some WSN motes for your own

development.

 Z1 Platform
The Z1 platform is a general-purpose development platform for WSN. This

board uses an MSP430F2617 low-power microcontroller. The Z1 platform

radio modules use a CC2420 transceiver and are IEEE 802.15.4 compliant,

which operates at 2.4GHz with an effective data rate of 250Kbps.

For further information, you can visit https://zolertia.io/. You can see

a form of Z1 platform in Figure 1-10.

Figure 1-9. BTnode revision 3 from ETH Zurich

Chapter 1 IntroduCtIon to WIreless sensor netWorks

https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
https://zolertia.io/

12

 Contiki-NG ARM-based Boards
Currently, Contiki-NG offers support for boards with ARM MCU. Based

the Contiki-NG document at https://github.com/contiki-ng/contiki-

ng/wiki#the-contiki-ng-platforms, we can use several boards with

ARM MCU to develop Contiki-NG applications. The following is the list of

supported Contiki-NG boards:

• cc2538dk: TI cc2538 development kit

• jn516x: NXP jn516x series

• nrf52dk: Nordic Semiconductor nRF52 development kit

• openmote-cc2538: OpenMote cc2538

• srf06-cc26xx: TI cc26xx and cc13xx platforms

• zoul: Zolertia Zoul platforms: Firefly, RE-mote, and

Orion

In this book, I use five board models: Telosb, TI CC2650 LaunchPad,

TI CC2650 Sensortag, TI CC1350 LaunchPad, and TI CC1350 Sensortag.

Figure 1-10. Z1 platform hardware

Chapter 1 IntroduCtIon to WIreless sensor netWorks

https://github.com/contiki-ng/contiki-ng/wiki#the-contiki-ng-platforms
https://github.com/contiki-ng/contiki-ng/wiki#the-contiki-ng-platforms

13

 Introducing Contiki-NG
Contiki-NG is a new version of the Contiki project. Contiki-NG provides an

RFC-compliant, low-power IPv6 communication stack, enabling Internet

connectivity. If you are working with Contiki, I recommend using the latest

version—Contiki-NG. This project can be found at https://github.com/

contiki-ng/contiki-ng.

One advantage of Contiki-NG is that it supports many hardware

platforms, including MCU-based ARM. You can bring your favorite boards

to build applications for Contiki-NG. This book will cover Contiki-NG for

developing and implementing.

 Set Up Development Environment
for Contiki
To build a Contiki application, we need to prepare our development

environment. Currently, the Contiki development environment can be

deployed on the Linux platform. There are two methods: instant Contiki

and manual installation. Then, we will set up a Contiki-NG development

environment.

We will review deployment for both Contiki and Contiki-NG in the next

section.

 Instant Contiki
Contiki provides a complete development environment under Ubuntu

Linux that is available in virtual-machine form. This approach is easy and

low risk without breaking your current OS.

Chapter 1 IntroduCtIon to WIreless sensor netWorks

https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng

14

Follow these steps:

• Download instant Contiki from http://sourceforge.

net/projects/contiki/files/Instant%20Contiki/.

• Download VMWare Workstation player (Free) or

VMWare Workstation (not free). For VMWare player,

you can download it from http://www.vmware.com/go/

downloadplayer/. You can also use Virtualbox instead

of VMWare.

• After downloading Instant Contiki, you can extract it to

a specific folder. You should see some files as shown in

Figure 1-11.

Figure 1-11. Extracted instant Contiki files

VMWare Workstation Player is free. It is available for Windows and

Linux. For Mac users, there is no free VMWare Workstation Player. You

can use VMWare Fusion. I have installed VMWare Workstation Player on

Windows 10. You can see it in Figure 1-12.

Chapter 1 IntroduCtIon to WIreless sensor netWorks

http://sourceforge.net/projects/contiki/files/Instant Contiki/
http://sourceforge.net/projects/contiki/files/Instant Contiki/
http://www.vmware.com/go/downloadplayer/
http://www.vmware.com/go/downloadplayer/

15

Now, you can open Instant Contiki using VMWare Workstation Player

by clicking Open a Virtual Machine. Navigate to the *.vmdk file in the

folder to which Instant Contiki file was extracted.

After this succeeds, you can see Instant Contiki on VMWare

Workstation Player, as shown in Figure 1-13.

Figure 1-12. VMWare Workstation player 12 on Windows 10

Chapter 1 IntroduCtIon to WIreless sensor netWorks

16

By default, Instant Contiki is configured to use 1GB RAM. You can

customize this by clicking Edit virtual machine settings. You should get a

dialog as shown in Figure 1-14.

Figure 1-13. Instant Contiki has loaded on VMWare Workstation
Player

Chapter 1 IntroduCtIon to WIreless sensor netWorks

17

Since my computer has 16GB of RAM, I set my Instant Contiki with

4GB of RAM. If you are done, click the OK button to save and close the

dialog.

Now, you can run Instant Contiki by clicking Play virtual machine;

you should see the Ubuntu desktop. You can see it in Figure 1-15.

If your WSN mote has an MSP430-based MCU such as Sky and Telosb,

you should install the ggc-msp430 library in order to develop your Contiki

application. You can type this command in Ubuntu Terminal:

$ sudo apt-get install gcc-msp430

Your virtual machine is ready for Contiki development.

Figure 1-14. Customizing Instant Contiki

Chapter 1 IntroduCtIon to WIreless sensor netWorks

18

 Troubleshooting

If you are running VMWare Workstation Player on Windows 8.1/10 or

later, you may get problems due to conflicts with Hyper-V. Since VMWare

Workstation and Hyper-V cannot run together on one computer, you

should uninstall and disable Hyper-V on Windows 8.1/10.

From my experience, I use Windows 10 with installed Hyper-V. When

I use the VMWare application, I disable my Hyper-V. You do so using

command prompts with the Administrator level. Type this command:

$ bcdedit /set hypervisorlaunchtype off

Then, you can restart Windows.

If you want to reenable Hyper-V, you can type this command:

$ bcdedit /set hypervisorlaunchtype on

 Manual Installation
If you have a computer with installed Linux, you can install the Contiki

development environment on your platform.

Figure 1-15. Contiki OS is running on VMWare Workstation
Player

Chapter 1 IntroduCtIon to WIreless sensor netWorks

19

First, you should install all required libraries to run Contiki OS. You can

type these commands in Terminal:

$ sudo apt-get update

$ sudo apt-get install build-essential

$ sudo apt-get install git

$ sudo apt-get install binutils-msp430 gcc-msp430 msp430-libc

msp430mcu mspdebug gcc-arm-none-eabi gdb-arm-none-eabi

You also need the Java run-time and SDK to run the Contiki OS

simulator. In this case, we use Open JDK. You can use Java from Oracle.

Type this command:

$ sudo apt-get install openjdk-8-jdk openjdk-8-jre ant

libncurses5-dev

Since Contiki OS runs a 32-bit environment, if you have Linux OS with

64-bit, you can install these libraries:

$ sudo apt-get install lib32ncurses5

Now, you can download the Contiki OS source code. Open Terminal

and navigate to the specific folder where Contiki OS files will be extracted:

$ git clone https://github.com/contiki-os/contiki

Your computer is ready for Contiki OS development.

 Set Up Contiki-NG Development Environment
Currently, Contiki-NG does not provide an Instant Contiki, so it must be

installed manually. The installation process can be found here: https://

github.com/contiki-ng/contiki-ng/wiki/Toolchain-installation.

Chapter 1 IntroduCtIon to WIreless sensor netWorks

https://github.com/contiki-ng/contiki-ng/wiki/Toolchain-installation
https://github.com/contiki-ng/contiki-ng/wiki/Toolchain-installation

20

In general, setting up Contiki-NG can be done with the following steps:

• Install required libraries.

• Install compiler and its dependences for specific

hardware platform.

• Download and configure Contiki-NG.

The first step to deploy Contiki-NG is to install all required libraries for

development. In this section, I use Ubuntu Linux for development testing.

I use Ubuntu LTS 16.04 with x64 platform. Type these commands on Linux

Terminal to install libraries:

$ sudo apt update

$ sudo apt install build-essential doxygen git curl wireshark

python-serial

While you are installing Wireshark, you should enable the feature that

allows non-superuser capture packets (select “yes”). Add your account

into the wireshark group. You can type this command, substituting <user>

with your Linux account:

$ sudo usermod -a -G wireshark <user>

The next step is to install the compiler and its dependencies, based on

the Contiki mote hardware. If you have a Contiki mote based on MSP430,

you can install the compiler and libraries for MSP430. You can type this

command:

$ sudo apt install gcc-msp430

If you want to install the latest version of the MSP430 compiler, you

can read how at https://github.com/tecip-nes/contiki-tres/wiki/

Building-the-latest-version-of-mspgcc.

For Contiki mote–based ARMs such as CC2538DK and Zoul, you can

install the ARM compiler by typing these commands:

Chapter 1 IntroduCtIon to WIreless sensor netWorks

https://github.com/tecip-nes/contiki-tres/wiki/Building-the-latest-version-of-mspgcc
https://github.com/tecip-nes/contiki-tres/wiki/Building-the-latest-version-of-mspgcc

21

$ sudo add-apt-repository ppa:team-gcc-arm-embedded/ppa

$ sudo apt update

$ sudo apt install srecord gcc-arm-embedded

We also install JDK and Ant for the Contiki simulator, COOJA, that are

built from Java. You can install these libraries by typing this command:

$ sudo apt install default-jdk ant

If you have several Java versions within Linux, you should set your Java

preference. It is done by calling update-alternatives:

$ update-alternatives --config java

Cooja needs to have the environment variable JAVA_HOME set to work

with native Contiki motes. You should set JAVA_HOME with the path found

above in the .profile file:

$ echo 'export JAVA_HOME="/usr/lib/jvm/default-java"'>

~/.profile

Most Contiki motes are attached to the computer via USB. When we

access them, we probably need administrator privileges. To be able to

access the USB without using the administrator level, your account should

be part of the groups plugdev and dialout. You add them by typing these

commands. Be sure to change <user> to your Linux account:

$ sudo usermod -a -G plugdev <user>

$ sudo usermod -a -G dialout <user>

This is the case for an x64 platform. You probably will get an error when

connecting via serial communication on a serial tool from Contiki- NG.

You can install the following required libraries:

$ sudo apt-get update

$ sudo apt-get install lib32ncurses5 lib32z1

Chapter 1 IntroduCtIon to WIreless sensor netWorks

22

After finishing all tasks, you can reboot your computer.

Now, you can download Contiki-NG by cloning using git. Perform the

following commands in Terminal:

$ git clone https://github.com/contiki-ng/contiki-ng.git

$ cd contiki-ng/

$ git submodule update --init --recursive

Now, you are ready to develop Contiki-NG.

 Connect WSN Hardware to Computer
After all required libraries for Contiki are installed, you can connect the

WSN hardware to the computer. Depending on the WSN hardware model,

your WSN mote should be recognized by the computer. Some WSN

hardware may need a hardware driver so your computer detects it. You can

see my WSN mote, TelosB, connected to the computer in Figure 1-16.

After connecting to the WSN mote, you can verify whether the WSN

mote is recognized by the computer. Type this command:

$ ls /dev/ttyUSB*

If your mote isn’t recognized by the computer, it's probably detected as

/dev/ttyACM*.

Chapter 1 IntroduCtIon to WIreless sensor netWorks

23

This program will query all connected WSN motes on your computer.

If found, it will display a list of serial ports from WSN motes. You can see

my WSN mote in Figure 1-17.

Figure 1-16. TelosB mote is connected to computer through USB cable

Figure 1-17. WSN mote is detected on /dev/ttyUSB0

Chapter 1 IntroduCtIon to WIreless sensor netWorks

24

How to transfer a WSN mote from the host to a virtual machine? You

can click menu Player ➤ Removeable Devices ➤ <WSN_mote_name> ➤

Connect. You can see it in Figure 1-19.

If you use Instant Contiki, your WSN mote may be detected on Host

OS. For instance, I use Windows 10 to run Instant Contiki. The detected

WSN mote can be viewed on Device Manager, shown in Figure 1-18.

To connect a WSN mote from the host computer to a virtual machine

on VMWare, you should transfer to a virtual machine. Since the hardware

USB can only attach to one computer, the host computer can’t access the

WSN mote while it is being used by Ubuntu on the virtual machine.

Figure 1-18. WSN mote is detected by Device Manager

Chapter 1 IntroduCtIon to WIreless sensor netWorks

25

After connecting, you can perform Contiki development as usual on

Ubuntu. You can verify the connected mote using Terminal.

 Contiki and Raspberry Pi
Raspberry Pi is a very small computer. This board can run several

operating systems. There are many Raspberry Pi models that you can use

for development. The official OS is Raspbian OS, which is based on Debian

Linux.

To deploy Contiki on Raspberry Pi, I recommend you use Raspbian

OS for your board. Then, you can install Contiki manually without Instant

Contiki since Raspberry Pi has limited RAM. Raspberry Pi has USB

connectors so our WSN mote can be attached to the board. You can see my

TelosB that is attached to a Raspberry Pi in Figure 1-20.

Figure 1-19. Connect WSN mote from Ubuntu in virtual machine

Chapter 1 IntroduCtIon to WIreless sensor netWorks

26

 Hello World Application for Contiki
In this section, we will learn to build the first program for Contiki. We use

the existing program sample from Contiki or Contiki-NG. It’s a hello-world

program, which is located in the <contiki_folder>/examples/hello-

world folder. The Hello World program displays simple words—“Hello,

world”—in the WSN mote’s Terminal. This program consists of hello-

world.c and Makefile files. After the program is compiled, you should see

several files, such as *.obj and *.hex files.

To write a C program, use your favorite editor, such as vi, vim, and

nano. Also, use a visual editor; for instance, Eclipse, Sublime Text, and

Visual Studio Code. I use Visual Studio from Microsoft. You can download

it on https://code.visualstudio.com. It is available for Linux, Mac,

and Windows. Figure 1-21 shows Visual Studio Code to open the Blink

application.

Figure 1-20. Attach WSN mote to a Raspberry Pi

Chapter 1 IntroduCtIon to WIreless sensor netWorks

https://code.visualstudio.com/

27

To start to write a Contiki program from scratch, you create a folder

called hello-world. Then, you create hello-world.c within the hello-

world folder. You also can run a program sample, hello-world, from

<contiki_folder>/examples/hello-world folder. Navigate to your

Terminal and then build that program.

If you want to build a project from scratch, you must continue your

development. The following is the complete code for the hello-world.c file.

include "contiki.h"

#include <stdio.h> /* For printf() */

/*---*/

PROCESS(hello_world_process, "Hello world process");

AUTOSTART_PROCESSES(&hello_world_process);

/*---*/

PROCESS_THREAD(hello_world_process, ev, data)

{

 PROCESS_BEGIN();

 printf("Hello, world\n");

 PROCESS_END();

}

Chapter 1 IntroduCtIon to WIreless sensor netWorks

28

 Explanation
This program declares a Contiki process thread, called hello_world_

process. To print message to Terminal, use the printf() function:

PROCESS_THREAD(hello_world_process, ev, data)

{

 PROCESS_BEGIN();

 printf("Hello, world\n");

 PROCESS_END();

}

hello_world_process will be executed automatically using

AUTOSTART_PROCESSES().

PROCESS(hello_world_process, "Hello world process");

Figure 1-21. Visual Studio code on Ubuntu Linux

Chapter 1 IntroduCtIon to WIreless sensor netWorks

29

AUTOSTART_PROCESSES(&hello_world_process);

Last, you should make a Makefile file. The following is the content of

the Makefile file:

CONTIKI_PROJECT = hello-world

all: $(CONTIKI_PROJECT)

CONTIKI = /home/user/Documents/book/contiki

include $(CONTIKI)/Makefile.include

Three items are required in our Makefile file, which are described as

follows:

• CONTIKI_PROJECT is used to declare our project name.

• CONTIKI is a Contiki root directory where Contiki

libraries are.

• We include $(CONTIKI)/Makefile.include file in our

program.

Change CONTIKI for your Contiki root folder where the Contiki source

code files, https://github.com/contiki-os/contiki or https://github.

com/contiki-ng/ for Contiki-NG, are located.

If all required program setup is done, we can compile C program using

make by passing in the WSN platform. For our demo, we use the native app

as the target, so we pass native while compiling:

$ make TARGET=native

This compiling generates a <project_name>.native binary file. You

can see it in Figure 1-22. A hello-world.native file is generated.

Chapter 1 IntroduCtIon to WIreless sensor netWorks

https://github.com/contiki-os/contiki
https://github.com/contiki-ng/
https://github.com/contiki-ng/

30

To run the Contiki app, you can type this command:

$./hello-world.native

If you get an error due to security issues, you probably need to run this

program with administrator privilege. You can type this command:

$ sudo ./hello-world.native

It shows THE IPv6 address and displays “Hello, world” in Terminal.

You can see it in Figure 1-23(a) for Contiki app and (b) for Contiki-NG app.

To stop your Contiki program, you can press CTRL+C.

Figure 1-22. Compiling Contiki application on native target

Chapter 1 IntroduCtIon to WIreless sensor netWorks

31

(a) Contiki app

(b) Contiki-NG app

Figure 1-23. Running Contiki application as native, (a) Contiki app
and (b) Contiki-NG app

Chapter 1 IntroduCtIon to WIreless sensor netWorks

32

Next, we deploy the Contiki application to the Contiki hardware. For

instance, I use TelosB as my WSN mote target. TelosB is a Sky platform

from Contiki because TelosB uses MSP430 MCU.

Before deploying the Contiki program to the Contiki mote, make sure

your Contiki mote is already attached to your computer. For instance,

my Contiki mote, TelosB, is detected as /dev/ttyUSB0. You can verify the

attached Contiki mote using the following command:

$ ls /dev/ttyUSB*

Now, you can compile and save the target platform by typing this

command:

$ make TARGET=sky

$ make TARGET=sky savetarget

A sample of the compiling output is shown in Figure 1-24.

Figure 1-24. Flashing Contiki program to Sky platform on TelosB
hardware

Chapter 1 IntroduCtIon to WIreless sensor netWorks

33

This compiling will generate a <project_name>.<platform> file. In my

case, this will generate a hello-world.sky.ihex file:

$ make hello-world.upload

If you get a permission error, you can run it using the administrator

level:

$ sudo make hello-world.upload

This program will be flashed to Contiki hardware. It may take several

minutes.

For Contiki-NG motes from Texas Instruments, you will probably get

errors while uploading a program to the board. You can use SmartRF Flash

Programmer. You can download it from http://www.ti.com/tool/FLASH-

PROGRAMMER. Unfortunately, this tool currently only runs on Windows

platforms.

To see the program output from the Contiki hardware, we listen to

incoming messages from the serial port of the Contiki hardware. You can

type this command:

$ sudo make login

You also can specify a serial port of the Contiki hardware. For

instance, Contiki hardware on serial port /dev/ttyUSB0. You can type this

command:

$ sudo make MOTES=/dev/ttyUSB0 login

You can see the running Contiki program in Figure 1-25.

Chapter 1 IntroduCtIon to WIreless sensor netWorks

http://www.ti.com/tool/FLASH-PROGRAMMER
http://www.ti.com/tool/FLASH-PROGRAMMER

34

You may not get any message from the hello-world program. Since this

program runs the first process, we may miss this process. Try to reset the

Contiki hardware so Contiki OS will reboot. Then, run the program.

It displays “Hello, world” in the listening program. You can see it

in Figure 1-26. To stop your Contiki listening program, you can press

CTRL+C.

Figure 1-25. Listening to messages from Contiki hardware

Chapter 1 IntroduCtIon to WIreless sensor netWorks

35

 Contiki Simulator
If you don’t have a WSN mote on which to run the Contiki program, you

can use the Contiki simulator, COOJA. Although COOJA has limitations,

it's still useful for reviewing and debugging. COOJA is a part of the Contiki

tools. Its location is <contiki_root>/tools/cooja; see Figure 1-27.

Further information about COOJA can be found at https://github.com/

contiki-os/contiki/wiki/An-Introduction-to-Cooja.

In this section, we will set up COOJA. Then, we will run a simple

Contiki program on COOJA.

Let’s start.

Figure 1-26. Getting messages from Contiki hardware

Chapter 1 IntroduCtIon to WIreless sensor netWorks

https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja

36

 Setting Up
Before you run COOJA, you should configure your computer to update and

check missing libraries for the COOJA application. Your computer should

connect to the Internet.

You can configure COOJA by typing these commands:

$ cd /<contiki-ng_path>/tools/cooja

$ git submodule update --init

If this succeeds, you can run the COOJA application by typing this

command:

$ ant run

You should get the COOJA application, shown in Figure 1-28.

Figure 1-27. Contiki simulator, COOJA, path on Contiki-NG

Chapter 1 IntroduCtIon to WIreless sensor netWorks

37

 Running Contiki Application
After you launch the COOJA application, you can run the Contiki

application using COOJA. First, create a new simulation on COOJA. You

can click File ➤ New simulation. You can see it in Figure 1-29.

Figure 1-28. Running COOJA for Contiki simulator

Chapter 1 IntroduCtIon to WIreless sensor netWorks

38

You should get the dialog shown in Figure 1-30. Fill in the simulation

name. If done, click the Create button.

Figure 1-29. Add a new simulation for Contiki

Figure 1-30. Filling in simulation name

Chapter 1 IntroduCtIon to WIreless sensor netWorks

39

Now, you will get the Contiki simulator editor, COOJA, that is shown in

Figure 1-31.

The next step is to add the WSN motes on the simulator. You can do it

by clicking menu Motes ➤ Add motes ➤ Mote platform (see Figure 1-32).

Please select your Mote platform preference. For demo, I use Sky platform.

Figure 1-31. Contiki simulator with Cooja

Chapter 1 IntroduCtIon to WIreless sensor netWorks

40

Then, you will get the dialog shown in Figure 1-33. In the Contiki

process/Firmware field, select your Contiki program. For demo purposes,

we use the hello-world application. Select the hello-world.c file.

Figure 1-32. Adding WSN motes

Figure 1-33. Select Contiki program for running

Chapter 1 IntroduCtIon to WIreless sensor netWorks

41

Compile the Contiki program by clicking the Compile button. You can

see the sample of compilation output in Figure 1-34.

Figure 1-34. Compiling Contiki program on COOJA

After compiling has completed, you will be asked to enter a number

of WSN motes with their positions. For demo purposes, I fill in one WSN

mote, as in Figure 1-35.

Figure 1-35. Filling in number of WSN motes

Chapter 1 IntroduCtIon to WIreless sensor netWorks

42

If done, click the Add motes button.

Now you can see your motes in the network map. For instance, you can

see my WSN mote in Figure 1-36.

Figure 1-36. A WSN mote on COOJA Contiki simulator

To run the simulation, you can click the Start button on the Simulation

Control dialog. See it in Figure 1-37.

Chapter 1 IntroduCtIon to WIreless sensor netWorks

43

Figure 1-38. Running hello-world Contiki program on COOJA

After the Start button has been clicked, the Contiki program will run on

COOJA. You should see the message “Hello, world” on the output panel.

You can see it in Figure 1-38.

Figure 1-37. Running Contiki simulator by clicking Start button

Chapter 1 IntroduCtIon to WIreless sensor netWorks

44

 Debugging Contiki Application
Sometimes you want to trace your program after the program has

been deployed into a WSN mote. In another scenario, you may want to

investigate your Contiki program before deploying it to a WSN mote.

Debugging is one solution for investigating your Contiki program.

In this section, you will learn various debugging methods with which

to check your program. You can choose the best method that fits your case.

 Hardware Debugger
Most WSN motes do not provide built-in hardware debuggers, so if you

want to debug a Contiki-NG program through the hardware approach, you

need additional hardware. Regarding what WSN mote model you want to

perform debugging on, you should check your MCU model.

For Atmel MCU on MICAz, Mica2, and Iris platforms, you need

JTAG Atmel. Otherwise, for MCU-based MSP430, you use MSP430 USB

Debugging Interface from Texas Instruments (TI). This tool is shown in

Figure 1-39 (source: http://www.ti.com/tool/msp-fet). You can buy it on

this site: http://www.ti.com/tool/msp-fet.

Figure 1-39. MSP430 USB debugging interface

Chapter 1 IntroduCtIon to WIreless sensor netWorks

http://www.ti.com/tool/msp-fet
http://www.ti.com/tool/msp-fet

45

Hardware debuggers usually have capabilities in a remote debugger.

For professional purposes, I recommend you use this tool.

 LED Indicators
In general, a WSN mote is equipped with several LEDs. We can use these

LEDs to indicate a specific task; for instance, we turn on a specific LED

to inform us that the WSN mote performs sensing. You can find an LED

library in the <contiki>/core/dev/leds.h header file. In the next chapter,

we will try to develop a Contiki application utilizing GPIO (General

Purpose Input/Output).

Based on my experience, this approach is easy to implement.

The downside of this method is having no more information; for instance,

you might want to get a certain value from a specific task on your program.

 Debugging Using Contiki Simulator
With the third approach, you can use the Contiki simulator, COOJA. You

can compile and attach a Contiki program to the Contiki simulator.

You can see messages that are generated using the printf() method.

For instance, the hello-world application prints messages using printf().

 The Contiki printf() Function
The last method that I like is using the printf() function. The idea is that

our program writes messages using printf(), and then the messages will

pass through to the serial port. To listen to incoming messages from the

serial port, we can use the login command on Terminal.

This approach is easy and low cost for debugging your Contiki

application. Just place a printf() function on the code you are

investigating.

Chapter 1 IntroduCtIon to WIreless sensor netWorks

46

 Summary
We have learned what Wireless Sensor Networks (WSN) and Contiki are.

We also have set up Contiki and Contiki-NG development environments

and run a sample program to the WSN mote and a simulator. Last, we

learned how to debug the Contiki program.

In the next chapter, we will focus on the Contiki-NG programming

language. We will learn how to build a Contiki-NG program and run it on

Contiki-NG hardware and a simulator.

Chapter 1 IntroduCtIon to WIreless sensor netWorks

47© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_2

CHAPTER 2

Basic Contiki-NG
Programming
Contiki-NG uses the C programming language to develop applications for

WSN motes. In this chapter, you will learn this basic language for creating

Contiki-NG programs. Program samples are provided to accelerate your

learning speed.

The following is a list of topics that will be covered:

• Contiki-NG programming model

• Contiki-NG basic syntax

• reviewing protothreads

• extending the Contiki-NG library

• Contiki-NG coding conventions

• showing a demo for building a Contiki-NG application

 Contiki-NG Programming Model
Contiki-NG uses the C programming language, which is component-

driven. You build some components and then connect each component.

Most WSN motes work in sleep mode. If there is any task to be executed,

the program will perform the task through hardware interrupts. If the task

is completed, the Contiki-NG program will go back to sleep mode.

48

Contiki-NG programming applies protothreads. In general, you can

develop Contiki-NG applications using the approach shown in Figure 2- 1.

Start by creating a project. Then, create a C program and apply the

protothreads approach for developing a Contiki-NG program. When finished

writing the program, compile and upload it to the WSN mote.

Figure 2-1. Programming flow of a Contiki-NG program

If you open the source code of Contiki-NG OS, you can see several

folders, shown in Figure 2-2. Information about these folders can be read

in Table 2-1.

Figure 2-2. Contiki-NG program structure

Chapter 2 BasiC Contiki-nG proGramminG

49

In the next section, we will review the basics of C programming, such

as the language syntax used to develop Contiki-NG programs.

 Contiki-NG Basic Syntax
In general, Contiki-NG adopts the C programming language. In this

section, we will review some C programming language basics. You can use

any text editor to write C code.

 Creating a Project
The Contiki-NG program does not provide project templates to build a

program. If you want to create a new project, you start by creating a new

folder and a Makefile file. Figure 2-3 shows a collection of Contiki-NG

project samples.

Table 2-1. Information for Contiki-NG OS Folders

Folder Description

arch Contains CpU, platform, and dev for development

arch/cpu specific mCU information

arch/dev external chip and devices

arch/platform specific files and platform drivers

os Contiki-nG core files and libraries

tools tools for flashing, debugging, simulating

examples several Contiki-nG program samples

tests several test programs

Chapter 2 BasiC Contiki-nG proGramminG

50

You also can use program samples from the Contiki project

(https://github.com/contiki-os/contiki). You should check if the one

you choose is compatible with the Contiki-NG project (https://github.com/

contiki-ng/contiki-ng).

 Contiki-NG Basic Programming Language
Contiki-NG adopts the C general programming language for

implementation. If you have experience in C programming, it won’t

require much effort to learn Contiki-NG programming. Contiki-NG

programming is similar to C as far as declaring variables and using

conditional statements and looping. You can see samples of the C

programming language in Table 2-2.

Figure 2-3. A collection of Contiki-NG project samples

Chapter 2 BasiC Contiki-nG proGramminG

https://github.com/contiki-os/contiki
https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng

51

Table 2-2. Basic Programming for C Language

C Basic Programming Example

Declare variables int num;

int_t a, b, c;

unsigned int isDone;

assign variables num = 3;

isDone = 0;

unsigned int m = 10;

if-conditional if(running){

doSomething();

}else {

perform();

}

Looping int len = 10;

for(int i=0;i<len;i++) {

foo();

}

Comment codes // this comment

/*

this is also comment

*/

To improve your skills in the Contiki-NG programming language,

I recommend you practice writing Contiki-NG programs.

Chapter 2 BasiC Contiki-nG proGramminG

52

 Review Protothreads
Protothreads are lightweight threads designed for memory-constrained

systems, such as small embedded systems or WSN nodes. You can see a

protothreads implementation for Contiki-NG at <contiki_root>/os/

sys/pt.h.

The following is the content of the pt.h file:

#ifndef PT_H_

#define PT_H_

#include "sys/lc.h"

struct pt {

 lc_t lc;

};

#define PT_WAITING 0

#define PT_YIELDED 1

#define PT_EXITED 2

#define PT_ENDED 3

#define PT_INIT(pt) LC_INIT((pt)->lc)

#define PT_THREAD(name_args) char name_args

#define PT_BEGIN(pt) { char PT_YIELD_FLAG = 1; if (PT_YIELD_

FLAG) {;} LC_RESUME((pt)->lc)

#define PT_END(pt) LC_END((pt)->lc); PT_YIELD_FLAG = 0; \

 PT_INIT(pt); return PT_ENDED; }

#define PT_WAIT_UNTIL(pt, condition) \

 do { \

 LC_SET((pt)->lc); \

 if(!(condition)) { \

 return PT_WAITING; \

 } \

Chapter 2 BasiC Contiki-nG proGramminG

53

 } while(0)

#define PT_WAIT_WHILE(pt, cond) PT_WAIT_UNTIL((pt), !(cond))

#define PT_WAIT_THREAD(pt, thread) PT_WAIT_WHILE((pt), PT_

SCHEDULE(thread))

#define PT_SPAWN(pt, child, thread) \

 do { \

 PT_INIT((child)); \

 PT_WAIT_THREAD((pt), (thread)); \

 } while(0)

#define PT_RESTART(pt) \

 do { \

 PT_INIT(pt); \

 return PT_WAITING; \

 } while(0)

#define PT_EXIT(pt) \

 do { \

 PT_INIT(pt); \

 return PT_EXITED; \

 } while(0)

#define PT_SCHEDULE(f) ((f) < PT_EXITED)

#define PT_YIELD(pt) \

 do { \

 PT_YIELD_FLAG = 0; \

 LC_SET((pt)->lc); \

 if(PT_YIELD_FLAG == 0) { \

 return PT_YIELDED; \

 } \

 } while(0)

Chapter 2 BasiC Contiki-nG proGramminG

54

#define PT_YIELD_UNTIL(pt, cond) \

 do { \

 PT_YIELD_FLAG = 0; \

 LC_SET((pt)->lc); \

 if((PT_YIELD_FLAG == 0) || !(cond)) { \

 return PT_YIELDED; \

 } \

 } while(0)

#endif /* PT_H_ */

The following is a list of function descriptions based on the pt.h

header:

• PT_INIT(pt) function is used to initialize a

protothread.

• PT_THREAD(name_args) is a macro that is used to

declare a protothread.

• PT_BEGIN(pt) is used to declare the starting point of a

protothread.

• PT_END(pt) is used to end a protothread.

• PT_WAIT_UNTIL(pt, condition) is used for blocking

the protothread until the specified condition is true.

• PT_WAIT_WHILE(pt, cond) is used for blocking and

waiting while the condition is true.

• PT_WAIT_THREAD(pt, thread) is used to schedule a

child protothread. The current protothread will block

until the child protothread completes.

• PT_SPAWN(pt, child, thread) is used to spawn a

child protothread and waits until it exits.

Chapter 2 BasiC Contiki-nG proGramminG

55

• PT_RESTART(pt) will block and cause the running

protothread to restart its execution at the place of the

PT_BEGIN() call.

• PT_EXIT(pt) is used to exit from a protothread.

• PT_SCHEDULE(f) is used to schedule a protothread.

The return value of the function is non-zero if the

protothread is running or zero if the protothread has

exited.

• PT_YIELD(pt) yields from the current protothread.

• PT_YIELD_UNTIL(pt, cond) yields from the

protothread until a condition occurs.

 Extending the Contiki-NG Library
Contiki-NG OS consists of several libraries and apps that you can extend

based on your case. To extend Contiki-NG OS functionalities, you can

follow the same approach used while building C programs.

You add additional libraries by adding a C header and source code.

Our Contiki-NG program will consume our libraries. For this demo, we

create a header file called mycounter.h with the following code:

#ifndef MYCOUNTER_H

#define MYCOUNTER_H

int next_counter(int current);

#endif

Chapter 2 BasiC Contiki-nG proGramminG

56

This C header provides one function, next_counter(). This

function will be implemented into the mycounter.c file. We perform

a counterincrement with a maximum value of 99. You can write the

complete code as follows:

#include "mycounter.h"

int next_counter(int current)

{

 if(current>99)

 current = 1;

 else

 current++;

 return current;

}

To access the extended library, we declare that header file. Then,

we call library functions from our code. The following is a skeleton code

sample to access the header file in a C program:

#include "mycounter.h"

...

static int counter = 0;

counter = next_counter(counter);

printf("Counter: %d\n", counter);

Next, we will implement our extended library and use it in a Contiki-

NG program.

Chapter 2 BasiC Contiki-nG proGramminG

57

 Contiki-NG Demo: Threading App
Now, we will try to build a Contiki-NG program that uses a header file.

We create a folder called demo-counter. Then, we create several files as

follows:

• mycounter.h

• mycounter.c

• demo-counter.c

• Makefile

You can see the project structure in Figure 2-4.

Figure 2-4. Project structure for demo-counter project

In this demo, we create a header file called mycounter.h. This C

header provides one function, next_counter(), that generates an

incremented number based on the input. The next_counter() function

will be implemented into the mycounter.c file. In the previous section, we

declared this library.

Next, we access mycounter.h in our main program. It’s implemented

in the demo-counter.c file. We use an event timer library from Contiki-NG,

etimer. We generate an incremented number every three seconds.

Chapter 2 BasiC Contiki-nG proGramminG

58

The following is the complete code for demo-counter.c:

#include "contiki.h"

#include "sys/etimer.h"

#include "mycounter.h"

#include <stdio.h> /* For printf() */

PROCESS(counter_process, "Counter process");

AUTOSTART_PROCESSES(&counter_process);

static struct etimer timer;

static int counter = 0;

PROCESS_THREAD(counter_process, ev, data)

{

 PROCESS_BEGIN();

 printf("Demo Counter\n");

 while(1) {

 etimer_set(&timer, 3 * CLOCK_SECOND);

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

 counter = next_counter(counter);

 printf("Counter: %d\n", counter);

 }

 PROCESS_END();

}

We also create a Makefile to configure our compiling. You can write

these scripts for the Makefile. Change the CONTIKI value with your

Contiki-NG root folder:

CONTIKI_PROJECT = demo-counter

all: $(CONTIKI_PROJECT)

Chapter 2 BasiC Contiki-nG proGramminG

59

PROJECT_SOURCEFILES += mycounter.c

CONTIKI = /home/user/Documents/book/contiki

include $(CONTIKI)/Makefile.include

Save the program.

For testing, we run this program with a native target. You can open

Terminal and navigate to the project folder. Then, you can compile and run

the program. Type these commands:

$ make TARGET=native

$./demo-counter.native

If it succeeds, you will see an incremented number in Terminal. You

can see a sample of the program output in Figure 2-5.

Figure 2-5. Program output for demo-counter

Chapter 2 BasiC Contiki-nG proGramminG

60

How does it work?

This program is simple. First, we declare our Contiki-NG process,

counter_process. We also declare our event timer and number variable:

PROCESS(counter_process, "Counter process");

AUTOSTART_PROCESSES(&counter_process);

static struct etimer timer;

static int counter = 0;

PROCESS_THREAD(counter_process, ev, data)

{

}

Inside the counter_process function, we perform looping with the

event timer. After raising an event, we call the next_counter() function to

get an incremented number. Then, we print this value in Terminal:

PROCESS_THREAD(counter_process, ev, data)

{

 PROCESS_BEGIN();

 printf("Demo Counter\n");

 while(1) {

 etimer_set(&timer, 3 * CLOCK_SECOND);

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

 counter = next_counter(counter);

 printf("Counter: %d\n", counter);

 }

 PROCESS_END();

}

Chapter 2 BasiC Contiki-nG proGramminG

61

 Contiki-NG Coding Conventions
Imagine you’re developing a program with a team of more than three

developers. Each developer has a programming style and method. When

the codes are merged, it may raise problems since the codes are not

consistent in writing style. This problem could be solved if the code was

written in the same style.

Contiki coding conventions are rules for a writing style. They consist

of guidelines for how to write Contiki-NG programs. You can read the full

coding conventions for Contiki at https://github.com/contiki-os/

contiki/blob/master/doc/code-style.C.

 Demo: Build Contiki-NG Application
In this section, we are going to develop a Contiki-NG application called

virtual-sensor. We will use the general library for the sensor, which will

be used for temperature and humidity readings. We will create a virtual

sensor in a header file that exposes two functions, read_temperature()

and read_humidity(). You can see this in Figure 2-6.

Figure 2-6. A simple library for virtual sensor

Chapter 2 BasiC Contiki-nG proGramminG

https://github.com/contiki-os/contiki/blob/master/doc/code-style.c
https://github.com/contiki-os/contiki/blob/master/doc/code-style.c

62

Now, we can start to develop. Create a project folder called demo-

sensor. Then, create files as follows:

• mysensor.h is a header file that declares read_

temperature() and read_humidity() functions.

• mysensor.c implements read_temperature() and

read_humidity() functions.

• demo-sensor.c is the main program that uses mysensor

library.

• Makefile is used for compiler parameters.

This project structure is shown in Figure 2-7.

Figure 2-7. Project structure for demo-sensor

Now, we implement all files, starting with mysensor.h. It's a header file

that exposes two functions:

// mysensor.h

#ifndef MYSENSOR_H

#define MYSENSOR_H

struct Sensor {

 char name[15];

 float value;

 };

Chapter 2 BasiC Contiki-nG proGramminG

63

struct Sensor read_temperature();

struct Sensor read_humidity();

#endif

These sensor functions will be used as a general sensor that is

implemented for temperature and humidity in the mysensor.c file.

The following is the complete code for mysensor.c:

// mysensor.c

#include "mysensor.h"

#include <string.h>

#include <stdlib.h>

float random_value(float min, float max)

{

 float scale = rand() / (float) RAND_MAX;

 return min + scale * (max - min);

}

struct Sensor read_temperature()

{

 struct Sensor temp;

 strncpy(temp.name, "Temperature", 15);

 temp.value = random_value(0, 35);

 return temp;

}

struct Sensor read_humidity()

{

 struct Sensor humdidty;

 strncpy(humdidty.name, "Humidity", 15);

 humdidty.value = random_value(40, 80);

 return humdidty;

}

Chapter 2 BasiC Contiki-nG proGramminG

64

We generate a random number for our functions. Moreover, we use

the Sensor library in our main program, demo-sensor.c. We use an event

timer for the reading period. The following is the complete code for

demo- sensor.c:

// demo-sensor.c

#include "contiki.h"

#include "sys/etimer.h"

#include "mysensor.h"

#include <stdio.h>

PROCESS(sensor_process, "Sensor process");

AUTOSTART_PROCESSES(&sensor_process);

static struct etimer timer;

PROCESS_THREAD(sensor_process, ev, data)

{

 PROCESS_BEGIN();

 printf("Demo Virtual Sensor\n");

 while(1) {

 etimer_set(&timer, 3 * CLOCK_SECOND);

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

 struct Sensor temp = read_temperature();

 printf("%s: %.2f\n", temp.name, temp.value);

 struct Sensor hum = read_humidity();

 printf("%s: %.2f\n", hum.name, hum.value);

 printf("------------\n");

 }

 PROCESS_END();

}

Chapter 2 BasiC Contiki-nG proGramminG

65

Last, we create a Makefile for compiler parameters. We set PROJECT_

SOURCEFILES with mysensor.c. Change the CONTIKI value to your Contiki

root folder. The following is the content of the Makefile:

CONTIKI_PROJECT = demo-sensor

all: $(CONTIKI_PROJECT)

PROJECT_SOURCEFILES += mysensor.c

CONTIKI = /home/user/Documents/book/contiki

include $(CONTIKI)/Makefile.include

Now, we can compile and upload the program into the WSN mote.

We can compile and run it for targeting native. Open Terminal and

navigate to the project folder. Then, type these commands:

$ make TARGET=native

$./demo-sensor.native

This program will display sensor values after the event timer is raised.

You can see my program output in Figure 2-8.

Chapter 2 BasiC Contiki-nG proGramminG

66

 Summary
We have explored the Contiki-NG basic programming language. This is a

core language based on the C programming language that will help you

to develop a Contiki-NG application. We built a Contiki-NG application

that utilized a header library and event timer with Contiki-NG program

features.

In the next chapter, we will learn how to work with concurrency in

Contiki-NG programs in order to deal with multiple jobs.

Figure 2-8. Program output for demo-sensor application

Chapter 2 BasiC Contiki-nG proGramminG

67© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_3

CHAPTER 3

Concurrency
Multi-tasking can increase the scalability of your Contiki-NG applications.

This chapter will explore how to work with concurrency in Contiki-NG

applications.

The following is a list of topics that will be covered in this chapter:

• Introduction to concurrency

• Concurrency approach in Contiki-NG

• Threading

• Task scheduling

 Introduction to Concurrency
Concurrency is the ability to perform more than one task at the same time.

Let’s say you have a WSN mote with multiple sensor devices. You want to

sense through all the sensors at the same time.

We illustrate a concurrency in Figure 3-1. A process can handle

multiple tasks with different problem models. We can achieve concurrency

by applying a queue that is either FIFO (First In First Out) or LIFO (Last In

First Out). Another solution is to apply asynchronous code in our program.

In this chapter, we will explore how to implement concurrency in

Contiki-NG applications. Some samples are provided to show how to do it.

68

 Concurrency Approach in Contiki-NG
Contiki-NG provides concurrency features. We can use several approaches

to develop application-based concurrency. There are four methods with

which we can implement concurrency in Contiki-NG applications, as

follows:

• Processes

• Timers

• Threading

• Task scheduling

We will discuss and implement these methods in the next section.

Figure 3-1. A process performs some tasks

Chapter 3 ConCurrenCy

69

 Introducing Contiki-NG Processes
Contiki-NG applications can run on a process that executes in either

cooperative or preemptive mode. Cooperative mode is regular execution

in the microcontroller. A process with preemptive mode runs with

interruptions resulting from I/O or timers.

In general, we can create a process in Contiki-NG by calling PROCESS().

We can define a process as

PROCESS(name, process_name);

where

• name is a variable of the process, and

• process_name is a process name that is represented as

a string.

Then, we implement this process using PROCESS_THREAD. We can

declare this as follows:

PROCESS_THREAD(name, ev, data)

{

 PROCESS_BEGIN();

 // do semothing

 PROCESS_END();

}

The following is a list of macros APIs for processes:

• PROCESS_BEGIN(): Declares the beginning of a process

protothread

• PROCESS_END(): Declares the end of a process

protothread

• PROCESS_EXIT(): Exits the process

Chapter 3 ConCurrenCy

70

• PROCESS_WAIT_EVENT(): Waits for any event

• PROCESS_WAIT_EVENT_UNTIL(): Waits for an event, but

with conditions

• PROCESS_YIELD(): Waits for any event; equivalent to

PROCESS_WAIT_EVENT()

• PROCESS_WAIT_UNTIL(): Waits for a given condition;

may not yield the microcontroller

• PROCESS_PAUSE(): Temporarily yields the

microcontroller

For demo purposes, we will create a simple Contiki-NG app. Create

a folder called demo-process. Then, create two files, demo-process.c

and Makefile. The first step is to write a program for demo-process.c.

We define three processes as follows:

#include "contiki.h"

#include <stdio.h>

PROCESS(myprocess1, "process 1");

PROCESS(myprocess2, "process 2");

PROCESS(myprocess3, "process 3");

AUTOSTART_PROCESSES(&myprocess1,&myprocess2,&myprocess3);

You can see that we created three processes. We pass these process

variables to AUTOSTART_PROCESSES(). We implement the following code for

our processes:

PROCESS_THREAD(myprocess1, ev, data)

{

 PROCESS_BEGIN();

 printf("This message from process 1\n");

Chapter 3 ConCurrenCy

71

 PROCESS_END();

}

PROCESS_THREAD(myprocess2, ev, data)

{

 PROCESS_BEGIN();

 printf("This message from process 2\n");

 PROCESS_END();

}

PROCESS_THREAD(myprocess3, ev, data)

{

 PROCESS_BEGIN();

 printf("This message from process 3\n");

 PROCESS_END();

}

Save this program. We continue to Makefile. We declare our program

and the path of the Contiki-NG root directory via CONTIKI:

CONTIKI_PROJECT = demo-process

all: $(CONTIKI_PROJECT)

CONTIKI = /home/user/Documents/book/contiki

include $(CONTIKI)/Makefile.include

Change the Contiki-NG path directory in CONTIKI.

To compile and run the program, you can open Terminal and navigate

to a program folder. You can type the following commands. For instance,

we run on local native OS:

$ make TARGET=native

$./demo-process.native

Chapter 3 ConCurrenCy

72

If this succeeds, you will see messages from each process in Terminal.

See Figure 3-2.

Figure 3-2. Running demo-process app

 Working with Timers
We can perform some activities by utilizing timer objects. Contiki-NG

has one clock and several timer modules, such as timer, stimer, ctimer,

etimer, and rtimer. All these libraries can be found in the <contiki>/os/

sys folder.

We will explore these libraries in the next section.

 Clock Library
The Clock library can be used for doing general activities with time.

It is declared in clock.h from the <contiki>/os/sys folder. You can see

the content of the clock.h file here:

Chapter 3 ConCurrenCy

73

clock_time_t clock_time(); // Get the system time.

unsigned long clock_seconds(); // Get the system time in

seconds.

void clock_delay(unsigned int delay); // Delay the CPU.

void clock_wait(int delay); // Delay the CPU for a number of

clock ticks.

void clock_init(void); // Initialize the clock module.

CLOCK_SECOND; // The number of ticks per second.

To use this library, call these functions directly from the program. For

instance, you can access a clock time by calling the clock_time() function:

 clock_time_t t = clock_time();

 printf("Timer start: %lu \n", t);

 Timer Library
The Timer library provides functions for setting, resetting, and restarting

timers, and for checking if a timer has expired. This library is found in the

timer.h file and defines several functions as follows:

void timer_set(struct timer *t, clock_time_t interval);

// Start the timer.

void timer_reset(struct timer *t); // Restart the timer from

the previous expiration time.

void timer_restart(struct timer *t); // Restart the timer from

current time.

int timer_expired(struct timer *t); // Check if the timer has

expired.

clock_time_t timer_remaining(struct timer *t); // Get the time

until the timer expires.

Chapter 3 ConCurrenCy

74

An application must manually check if its timers have expired. To use

the Timer library, we call timer_set(). Then, we can verify an expired

timer by calling the timer_expired() function:

timer_set(&timer_timer, 3 * CLOCK_SECOND);

if(timer_expired(&timer_timer)){

 t = clock_time();

 printf("timer expired: %lu \n", t);

}

 Stimer Library
The Stimer library is similar to the timer library, but uses time values

in seconds. The following is a list of Stimer functions defined in the

stimer.h file.

void stimer_set(struct stimer *t, unsigned long interval);

// Start the timer.

void stimer_reset(struct stimer *t); // Restart the stimer from

the previous expiration time.

void stimer_restart(struct stimer *t); // Restart the stimer

from current time.

int stimer_expired(struct stimer *t); // Check if the stimer

has expired.

unsigned long stimer_remaining(struct stimer *t); // Get the

time until the timer expires.

We can use the Stimer library with the same approach as the timer

library. We set a time by calling stimer_set(). Then, we check for an

expired timer using the stimer_expired() function:

Chapter 3 ConCurrenCy

75

 stimer_set(&stimer_timer, 3);

 if(stimer_expired(&stimer_timer)){

 t = clock_time();

 printf("stimer expired: %lu \n", t);

 }

 Etimer Library
The Etimer library is an event timer library that generates an event. We can

verify this event using PROCESS_WAIT_EVENT_UNTIL(). You can see event

timer declarations in the etimer.h file:

void etimer_set(struct etimer *t, clock_time_t interval);

// Start the timer.

void etimer_reset(struct etimer *t); // Restart the timer from

the previous expiration time.

void etimer_restart(struct etimer *t); // Restart the timer

from current time.

void etimer_stop(struct etimer *t); // Stop the timer.

int etimer_expired(struct etimer *t); // Check if the timer has

expired.

int etimer_pending(); // Check if there are any non-expired

event timers.

clock_time_t etimer_next_expiration_time(); // Get the next

event timer expiration time.

void etimer_request_poll(); // Inform the etimer library that

the system clock has changed.

Chapter 3 ConCurrenCy

76

For demo purposes, we can call etimer_set() to set our event timer.

Then, we wait for the expired event using PROCESS_WAIT_EVENT_UNTIL():

 etimer_set(&etimer_timer, 3 * CLOCK_SECOND);

 while(1){

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&etimer_timer));

 etimer_reset(&etimer_timer);

 }

 CTimer Library
The CTimer library provides a function callback that will be called when

timer expiration occurs. CTimer functions are defined in the ctimer.h file:

void ctimer_set(struct ctimer *c, clock_time_t t, void(*f)(void *),

void *ptr); // Start the timer.

void ctimer_reset(struct ctimer *t); // Restart the timer from

the previous expiration time.

void ctimer_restart(struct ctimer *t); // Restart the timer

from current time.

void ctimer_stop(struct ctimer *t); // Stop the timer.

int ctimer_expired(struct ctimer *t); // Check if the timer has

expired.

For this demo, we can define a function, perform_ctime_function().

This function is passed to ctimer_set() when we set the ctimer library:

void

perform_ctime_callback()

{

 printf("Process demo_timer3: ctimer callback called\n");

}

Chapter 3 ConCurrenCy

77

ctimer_set(&ctimer_timer, CLOCK_SECOND, perform_ctime_callback,

NULL);

 Rtimer Library
The Rtimer library provides scheduling and execution for real-time

tasks. We can define a specific execution time when we set rtimer

using the rtimer_set() function. You can see the rtimer function in

the rtimer.h file:

RTIMER_CLOCK_LT(a, b); // This should give TRUE if 'a' is less

than 'b', otherwise false.

RTIMER_ARCH_SECOND; // The number of ticks per second.

void rtimer_arch_init(void); // Initialize the rtimer

architecture code.

rtimer_clock_t rtimer_arch_now(); // Get the current time.

int rtimer_arch_schedule(rtimer_clock_t wakeup_time);

// Schedule a call to rtimer_run_next().

For implementation, we declare a function that is passed in the

rtimer_set() function. We also set the execution time:

static rtimer_clock_t timeout_rtimer = RTIMER_SECOND / 2;

void

perform_rtime_callback()

{

 printf("Process demo_timer3: rtimer callback called\n");

}

rtimer_set(&rtimer_timer, RTIMER_NOW() + timeout_rtimer, 0,

perform_rtime_callback, NULL);

Chapter 3 ConCurrenCy

78

 Put It All Together
Now, we will try to use Contiki-NG to run a demo about timers. We create a

folder, called demo-timer. We create two files, demo-timer.c and Makefile.

We put all code from all the timer libraries in the demo-timer.c file.

The following is the complete code for the demo-timer.c file:

#include "contiki.h"

#include "sys/clock.h"

#include "sys/timer.h"

#include "sys/stimer.h"

#include "sys/etimer.h"

#include "sys/ctimer.h"

#include "sys/rtimer.h"

#include <stdio.h>

static int counter;

static struct timer timer_timer;

static struct stimer stimer_timer;

static struct etimer etimer_timer;

static struct ctimer ctimer_timer;

static struct rtimer rtimer_timer;

PROCESS(demo_timer1, "demo timer stimer");

PROCESS(demo_timer2, "demo etimer");

PROCESS(demo_timer3, "demo ctime");

PROCESS(demo_timer4, "demo rtime");

AUTOSTART_PROCESSES(&demo_timer1, &demo_timer2,

 &demo_timer3, &demo_timer4);

static rtimer_clock_t timeout_rtimer = RTIMER_SECOND / 2;

void

perform_ctime_callback()

Chapter 3 ConCurrenCy

79

{

 printf("Process demo_timer3: ctimer callback called\n");

 if(counter>=2){

 printf("ctimer is stopped\n");

 ctimer_stop(&ctimer_timer);

 }

 else

 ctimer_reset(&ctimer_timer);

}

void

perform_rtime_callback()

{

 printf("Process demo_timer3: rtimer callback called\n");

 if(counter<2){

 rtimer_set(&rtimer_timer, RTIMER_NOW() + timeout_rtimer, 0,

 perform_rtime_callback, NULL);

 }

 else

 printf("rtimer is stopped\n");

}

PROCESS_THREAD(demo_timer1, ev, data)

{

 PROCESS_BEGIN();

 counter = 0;

 clock_time_t t = clock_time();

 printf("Timer start: %lu \n", t);

 timer_set(&timer_timer, 3 * CLOCK_SECOND);

 stimer_set(&stimer_timer, 3);

Chapter 3 ConCurrenCy

80

 while(1){

 if(timer_expired(&timer_timer)){

 t = clock_time();

 printf("timer expired: %lu \n", t);

 timer_reset(&timer_timer);

 counter++;

 }

 if(stimer_expired(&stimer_timer)){

 t = clock_time();

 printf("stimer expired: %lu \n", t);

 stimer_reset(&stimer_timer);

 counter++;

 }

 if(counter>=2)

 break;

 }

 printf("demo_timer1 process end\n");

 PROCESS_END();

}

PROCESS_THREAD(demo_timer2, ev, data)

{

 PROCESS_BEGIN();

 printf("demo etimer\n");

 clock_time_t t = clock_time();

 printf("etimer start: %lu \n", t);

 printf("set etimer 3 clock_second\n");

 etimer_set(&etimer_timer, 3 * CLOCK_SECOND);

 while(1){

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&etimer_timer));

Chapter 3 ConCurrenCy

81

 etimer_reset(&etimer_timer);

 if(counter>=2)

 break;

 }

 printf("demo_timer2 process end\n");

 PROCESS_END();

}

PROCESS_THREAD(demo_timer3, ev, data)

{

 PROCESS_BEGIN();

 printf("demo ctime\n");

 while(1) {

 ctimer_set(&ctimer_timer, CLOCK_SECOND, perform_ctime_

callback, NULL);

 PROCESS_YIELD();

 }

 PROCESS_END();

}

PROCESS_THREAD(demo_timer4, ev, data)

{

 PROCESS_BEGIN();

 printf("demo rtime\n");

 while(1) {

 rtimer_set(&rtimer_timer, RTIMER_NOW() + timeout_rtimer, 0,

 perform_rtime_callback, NULL);

 PROCESS_YIELD();

 }

 PROCESS_END();

}

Chapter 3 ConCurrenCy

82

Next, we write the Makefile file with the following code:

CONTIKI_PROJECT = demo-timer

all: $(CONTIKI_PROJECT)

CONTIKI = /home/user/Documents/book/contiki

include $(CONTIKI)/Makefile.include

Change CONTIKI to your Contiki-NG root folder. Now, you can compile

and run this program. Open Terminal and navigate to your program folder.

Then, type these commands:

$ make TARGET=native

$./demo-timer.native

This program will run in Terminal. You can run it on your Contiki-NG

hardware. You can see the program output on Terminal in Figure 3-3.

Figure 3-3. Running demo-timer app

Chapter 3 ConCurrenCy

83

 Threading
Contiki-NG OS removes multithreading from the source code. You

can read about it at https://github.com/contiki-ng/contiki-ng/

pull/172. This probably is also supported in the next version. If you

want to work with multithreading, you can use regular Contiki. Contiki

provides threading so that we can perform many tasks through mt_thread

in the mt.h header file. This file is found in the Contiki source code in the

<contiki_root>/core/sys/ folder. You can see several functions in the

mt.h file as follows:

void mt_init(void) : Initializes the library.

void mt_remove(void) : Uninstalls the library.

void mt_start(struct mt_thread *thread, void (* function)(void *),

void *data) : Starts a thread.

void mt_exit(void) : Exits a thread.

void mt_exec(struct mt_thread *thread) : Execute as thread.

void mt_yield(void) : Release control voluntarily.

void mt_stop(struct mt_thread *thread) : Stops a thread.

In this section, we will develop multithreading using Contiki. Please

skip this section if you still work with Contiki-NG.

You can see threading states for a Contiki app in Figure 3-4.

Chapter 3 ConCurrenCy

https://github.com/contiki-ng/contiki-ng/pull/172
https://github.com/contiki-ng/contiki-ng/pull/172

84

Each thread runs on a process. Each thread can communicate by either

sharing resources or exchanging data. Figure 3-5 shows three threads

running on a process.

We can create a thread within a Contiki process with the following

method:

static struct mt_thread thread1;

int n1=10;

mt_init();

mt_start(&thread1, thread_compute, &n1);

Our thread is passed a function, called thread_compute. We also give

a parameter for our function. The thread_compute() function can be

declared as follows:

void

thread_compute(void *data)

{

 printf("calling thread_compute()\n");

Figure 3-4. Threading states for a Contiki app

Chapter 3 ConCurrenCy

85

 // do something

 mt_yield();

 mt_exit();

}

You can see that our function is executed and then that thread is closed

using mt_yield() and mt_exit().

Figure 3-5. Threads in Contiki process

For demo purposes, we create two threads. Each thread will execute a

loop for a certain time based on the input data. You can start by creating

a folder, called demo-thread. Then, create two files, demo-thread.c and

Makefile.

First, we write code in the demo-thread.c file. We define two threads.

We also create a function, called thread_compute(), that will be passed on

our threads.

You can write the following complete code for the demo-thread.c file:

#include "contiki.h"

#include "sys/mt.h"

#include <stdio.h>

PROCESS(mythread, "demo thread");

AUTOSTART_PROCESSES(&mythread);

Chapter 3 ConCurrenCy

86

static int count;

void

thread_compute(void *data)

{

 printf("calling thread_compute()\n");

 int num = *((int*)data);

 printf("num: %d\n", num);

 int i;

 int val = 0;

 for(i=0;i<num;i++){

 val+=2;

 }

 printf("num: %d, total: %d\n", num, val);

 count++;

 mt_yield();

 mt_exit();

}

PROCESS_THREAD(mythread, ev, data)

{

 PROCESS_BEGIN();

 printf("demo threading\n");

 static struct mt_thread thread1;

 static struct mt_thread thread2;

 int n1=10, n2=20;

 mt_init();

 mt_start(&thread1, thread_compute, &n1);

 mt_start(&thread2, thread_compute, &n2);

Chapter 3 ConCurrenCy

87

 mt_exec(&thread1);

 mt_exec(&thread2);

 while(1) {

 if(count>1) {

 mt_stop(&thread1);

 mt_stop(&thread2);

 break;

 }

 }

 printf("thread exit\n");

 mt_remove();

 PROCESS_END();

}

Now, we can create the Makefile. We declare the project name and

Contiki path, which is defined ion CONTIKI:

CONTIKI_PROJECT = demo-thread

all: $(CONTIKI_PROJECT)

CONTIKI_WITH_RIME = 1

CONTIKI = /home/user/Documents/book/contiki

include $(CONTIKI)/Makefile.include

You can save all the files. You can compile and run the program with

these commands in Terminal:

$ make TARGET=native

$./demo-thread.native

Chapter 3 ConCurrenCy

88

 Task Scheduling
Task scheduling means that all tasks are scheduled to be executed. In

a Contiki-NG application, task scheduling collects all tasks in process,

timers, and threading.

In this section, we will try to implement task scheduling by utilizing the

Etimer library. Our task list will be stored on the Contiki-NG list that you

can find in the <contiki>/os/lib/list.h file. Figure 3-7 shows our demo

to implement task scheduling.

Figure 3-6. Program output for demo-thread

A sample of the program output can be seen in Figure 3-6.

Chapter 3 ConCurrenCy

89

Now, create a folder, called demo-scheduling. We also create a demo-

scheduling.c file for our main program. The following is a complete

program for the demo-scheduling.c file:

#include "contiki.h"

#include "sys/clock.h"

#include "sys/rtimer.h"

#include "lib/list.h"

#include <stdio.h>

PROCESS(demo_taskscheduling, "demo task scheduling");

AUTOSTART_PROCESSES(&demo_taskscheduling);

static struct rtimer rtimer_timer;

struct simple_task {

 struct simple_task *next;

 int value;

};

static struct simple_task *s;

static int number_task = 10;

static int is_completed = -1;

Figure 3-7. Executing tasks

Chapter 3 ConCurrenCy

90

LIST(task_list);

void

perform_rtime_callback(struct rtimer *t, void *ptr)

{

 printf("task callback called\n");

 int num = *((int*)ptr);

 printf("perform task=%d\n", num);

 s = list_item_next(s);

 if(s!=NULL){

 rtimer_set(&rtimer_timer, RTIMER_NOW() + (RTIMER_SECOND/2), 1,

 perform_rtime_callback,&s->value);

 }else{

 printf("all tasks completed\n");

 is_completed = 1;

 }

}

PROCESS_THREAD(demo_taskscheduling, ev, data)

{

 PROCESS_BEGIN();

 printf("demo task schedule\n");

 list_init(task_list);

 int i;

 printf("prepare task data\n");

 struct simple_task task[10];

 for(i=0;i<number_task;i++){

 task[i].value = i + 1;

 list_add(task_list, &task[i]);

 }

Chapter 3 ConCurrenCy

91

 s = list_head(task_list);

 rtimer_set(&rtimer_timer, RTIMER_NOW() + (RTIMER_SECOND/2), 1,

 perform_rtime_callback,&s->value);

 while(1) {

 if(is_completed>0)

 break;

 }

 printf("program exit\n");

 PROCESS_END();

}

To compile and run the program, you should create a Makefile file

with the compiler configuration. We can create these scripts:

CONTIKI_PROJECT = demo-scheduling

all: $(CONTIKI_PROJECT)

CONTIKI = /home/user/Documents/book/contiki

include $(CONTIKI)/Makefile.include

Change CONTIKI to your Contiki-NG root path.

Now, you can compile and run this program. For instance, we

compile and run it for a local native app. Open a Terminal and type these

commands:

$ make TARGET=native

$./demo-scheduling.native

If it succeeds, all tasks will be executed. You can see the program

output in Figure 3-8.

How does this work?

Chapter 3 ConCurrenCy

92

This program starts by declaring a task list in the struct model:

struct simple_task {

 struct simple_task *next;

 int value;

};

static struct simple_task *s;

static int number_task = 10;

static int is_completed = -1;

LIST(task_list);

Figure 3-8. Program output for demo-scheduling

Chapter 3 ConCurrenCy

93

Then, it generates the task list in the main process:

 list_init(task_list);

 int i;

 printf("prepare task data\n");

 struct simple_task task[10];

 for(i=0;i<number_task;i++){

 task[i].value = i + 1;

 list_add(task_list, &task[i]);

 }

Next, it runs a task by picking it up from the task list:

 s = list_head(task_list);

 rtimer_set(&rtimer_timer, RTIMER_NOW() + (RTIMER_SECOND/2), 1,

 perform_rtime_callback,&s->value);

Each task will be executed in the perform_rtime_callback() function.

After completion, it gets a task again and then executes it:

void

perform_rtime_callback(struct rtimer *t, void *ptr)

{

 printf("task callback called\n");

 int num = *((int*)ptr);

 printf("perform task=%d\n", num);

 s = list_item_next(s);

 if(s!=NULL){

 rtimer_set(&rtimer_timer, RTIMER_NOW() + (RTIMER_SECOND/2), 1,

 perform_rtime_callback,&s->value);

 }else{

 printf("all tasks completed\n");

 is_completed = 1;

 }

}

Chapter 3 ConCurrenCy

94

To exit from our program, we can check our program state:

 while(1) {

 if(is_completed>0)

 break;

 }

 Summary
We have learned how to implement concurrency in Contiki-NG OS.

Performing several tasks in the Contiki-NG application has been reviewed.

We explored process, timers, threading, and task scheduling.

In the next chapter, we will learn how to communicate between a

Contiki-NG application and the computer.

Chapter 3 ConCurrenCy

95© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_4

CHAPTER 4

Contiki-NG
and Computer
Communication
Dada communication capabilities available on WSN motes enable the

exchange of data among WSN motes. In this chapter, we will learn how

Contiki- NG aids communication among WSN motes and from a WSN

mote to a computer. We will also explore how to build middleware that

enables WSN motes to communicate with other systems.

The following is a list of topics we will cover in this chapter:

• Communication models for Contiki-NG

• Serial communication

• Building communication among Contiki-NG motes

• Building communication between computer and

Contiki-NG motes

• Developing middleware

96

 Communication Models for Contiki-NG
How you want to communicate between WSN motes and computers will

determine what kind of communication model you use. As you know, each

WSN mote usually has network capability so it can exchange data with

WSN motes and computers.

A communication model for Contiki-NG is depicted in Figure 4-1.

Some WSN motes have the capability to connect to servers directly, but

other motes may not, so those motes use a hub/gateway/middleware to

communicate with servers.

Figure 4-1. Communication models in Contiki-NG

In this chapter, we will learn how WSN motes communicate with

others. We need at least two motes to implement our demo.

Chapter 4 Contiki-nG and Computer CommuniCation

97

 Serial Communication
Serial communication can be defined as a process used to send and

receive a bit at a time sequentially. Sometimes serial communication is

called UART (Universal Asynchronous Receiver/Transmitter). Technically,

we already used serial communication when we uploaded Contiki-NG

programs to WSN motes in previous chapters. We also communicate with

WSN motes via the printf() function. Then, we listen to the messages

from printf() using the command make login.

A serial communication protocol is represented in Figure 4-2. In

hardware implementation, a serial communication needs at least three

pinouts. These are Rx (Receiver), Tx (Transmitter), and GND (Ground) pins.

Figure 4-2. Serial communication

 Communication Between Contiki
Mote and Computer
In this section, we will build Contiki and Contiki-NG programs to

communicate between a Contiki mote and a computer. This is useful

because we can control our Contiki motes from the computer. Running

applications on a computer has benefits, such as interacting with the

database server and communicating with the cloud server.

Chapter 4 Contiki-nG and Computer CommuniCation

98

There are a lot of methods used to communicate between a computer

and a Contiki mote. We will focus on two methods: serial communication

and shell. We will explore these methods in the next section.

Let’s build!

 Access Contiki Motes via Serial Communication
Since our WSN motes are attached to the computer through serial

communication, we can initiate communication between the computer

and a WSN mote. Some application platforms, such as C/C++, Java,

Python, C#, and Node.js, provide libraries with which to implement serial

communication.

In this section, we will try to access WSN motes using Python through

serial communication. To implement serial communication in Python,

we use the pyserial library. You can find this library at https://pypi.

python.org/pypi/pyserial. This library can be installed using pip.

You can verify if your computer has installed pip or not. You can type

this command in Terminal:

$ which pip

If you don’t get a response, it means your computer is missing the pip

program. You can install pip using this command in Terminal:

$ sudo apt-get install python-pip

Now, you can install the pyserial library by typing this command in

Terminal:

$ pip install pyserial

You also can install the pyserial library using easy_install. You can

type this command in Terminal:

$ easy_install -U pyserial

Chapter 4 Contiki-nG and Computer CommuniCation

https://pypi.python.org/pypi/pyserial
https://pypi.python.org/pypi/pyserial

99

Make sure your computer is connected to the Internet.

Next, you must write a Python program to listen for incoming messages

on a specific serial port. You should know which serial port is used by the

Contiki mote. You need it because you will use it on your program.

To find a serial port from the Contiki mote, you can open Terminal and

type this command:

$ ls /dev/tty*

You should see a list of connected serial ports available on your

computer. Depending on your Contiki mote model, you can verify the port

by turning the mote on/off so you should which a new attached serial port.

For instance, my Contiki mote is detected as /dev/ttyUSB0. You can see it

in Figure 4-3.

Now, you will develop the Python program. You will print all incoming

data from the serial port to the console. Set the baudrate to 115200 for the

serial-port speed. Create a file, called contiki-viewer.py, and write these

complete scripts. Change the PORT value to that for your Contiki-NG mote:

#!/usr/bin/python

import serial

PORT ='/dev/ttyUSB0'

ser = serial.Serial(

 port=PORT,\

 baudrate=115200,\

 parity=serial.PARITY_NONE,\

 stopbits=serial.STOPBITS_ONE,\

 bytesize=serial.EIGHTBITS,\

 timeout=0)

print("connected to: " + ser.portstr)

ser.write("help\n")

while True:

Chapter 4 Contiki-nG and Computer CommuniCation

100

 line = ser.readline()

 if line:

 print(line),

ser.close()

Save this program.

Figure 4-3. Getting a list of serial ports in your computer

To simulate this demo, you should upload the Contiki-NG program to

a Contiki-NG mote. You can use the same program from Chapter 1, Hello

World. You should upload that program into the Contiki mote.

After Contiki-NG is deployed with a Contiki-NG program, you can run

the Python program, contiki-viewer.py, by typing this command:

$ python contiki-viewer.py

Chapter 4 Contiki-nG and Computer CommuniCation

101

If you have error issues related to security access, you probably should

run it with administrator privileges. Type this command:

$ sudo python contiki-viewer.py

After it has executed, you will see that this program is waiting for

incoming messages from the serial port, as shown in Figure 4-4.

Figure 4-4. Executing Python program for listening to the serial port

If you do not see anything, you should reset your Contiki mote. Now

the message from the Hello World program can be seen on the console.

You can see my program depicted in Figure 4-5.

Chapter 4 Contiki-nG and Computer CommuniCation

102

I have also tested with Contiki-NG on a TelosB mote. It works. You can

see that program output in Figure 4-6.

Figure 4-5. Reading data from serial port of Contiki using Python

Chapter 4 Contiki-nG and Computer CommuniCation

103

How does this work?

This program starts by initializing the serial library and activating the

serial port of the Contiki-NG mote:

import serial

PORT ='/dev/ttyUSB0'

ser = serial.Serial(

 port=PORT,\

 baudrate=115200,\

 parity=serial.PARITY_NONE,\

 stopbits=serial.STOPBITS_ONE,\

 bytesize=serial.EIGHTBITS,\

 timeout=0)

Figure 4-6. Reading data from serial port of Contiki-NG using Python

Chapter 4 Contiki-nG and Computer CommuniCation

104

After the serial port is activated, we listen for incoming message from

that serial port. We call readline() to read data from the serial port. Once

we receive data, we print the data to the console:

while True:

 line = ser.readline()

 if line:

 print(line),

ser.close()

Last, we close our serial port by calling the close() method.

 Contiki Shell
Contiki OS provides a shell API that we can utilize to communicate with

internal Contiki-NG motes. We find the shell API in the Contiki source

code in <Contiki-root>/apps/shell. You should see several API objects,

shown in Figure 4-7.

Contiki shell is very useful. Let’s say you build and deploy a Contiki

application onto a Contiki mote. Then, you want to analyze what is

happening inside the Contiki mote. To do this, you can build a custom

Contiki shell related to your needs. You call the shell from the Contiki-NG

mote and perform your analysis.

One important thing that you should know is the limitations on Contiki

mote storage and resources. Building more Contiki shell APIs means using

more mote resources. Make sure your Contiki shell is optimal for your

Contiki mote model.

In this section, we will learn how to build a Contiki shell application

and then deploy it to a Contiki mote. For this simple demo, we will use a

Contiki sample from the Contiki source code. You can see it at <Contiki-

root>examples/example-shell. This program runs for native platforms

such as a computer.

Chapter 4 Contiki-nG and Computer CommuniCation

105

Open the example-shell.c file. You should see the PROCESS_

THREAD(example_shell_process, ev, data) function, as follows:

PROCESS_THREAD(example_shell_process, ev, data)

{

 PROCESS_BEGIN();

 serial_shell_init();

 shell_base64_init();

 shell_blink_init();

 /*shell_coffee_init();*/

 shell_download_init();

 /*shell_exec_init();*/

 shell_file_init();

 shell_httpd_init();

 shell_irc_init();

 /*shell_ping_init();*/ /* uIP ping */

 shell_power_init();

 /*shell_profile_init();*/

 shell_ps_init();

 /*shell_reboot_init();*/

 shell_rime_debug_init();

 shell_rime_netcmd_init();

 shell_rime_ping_init(); /* Rime ping */

 shell_rime_sendcmd_init();

 shell_rime_sniff_init();

 shell_rime_init();

 /*shell_rsh_init();*/

 shell_run_init();

 shell_sendtest_init();

 /*shell_sky_init();*/

 shell_tcpsend_init();

Chapter 4 Contiki-nG and Computer CommuniCation

106

 shell_text_init();

 shell_time_init();

 shell_udpsend_init();

 shell_vars_init();

 shell_wget_init();

 PROCESS_END();

}

Figure 4-7. Contiki shell APIs in Contiki source code

Each shell API is defined as shell_xxx(). Remarked codes are not

supported for native platforms such as a computer.

Chapter 4 Contiki-nG and Computer CommuniCation

107

Now, you can compile and run this program. Open Terminal and

navigate to the <Contiki-root>examples/example-shell folder. Then,

type these commands:

$ make TARGET=native

$./example-shell.native

If it succeeds, you should see the Contiki shell that is shown in

Figure 4-8.

Figure 4-8. Executing example-shell application

For this demo, you call one of the Contiki shells. To get a list of Contiki

shells, you can call the help shell command:

Contiki > help

Contiki > echo hello world!

Chapter 4 Contiki-nG and Computer CommuniCation

108

You should get a list of supported shells in the console. Then, execute

echo shell command. A sample of the program’s output can be seen in

Figure 4-9.

Figure 4-9. Running shell sample

You have run a Contiki shell on the computer as a native application.

Now, you will build a Contiki shell for a Contiki mote. For demo purposes,

I will use TelosB hardware that’s type is Sky.

You will use a sample program from the Contiki source code. You

can find shell-sky at <Contiki-root>examples/shell-sky folder.

Chapter 4 Contiki-nG and Computer CommuniCation

109

If you open the sky-shell.c file, you should see the PROCESS_THREAD(sky_

shell_process, ev, data) code as follows:

PROCESS_THREAD(sky_shell_process, ev, data)

{

 PROCESS_BEGIN();

#if WITH_PERIODIC_DEBUG

 ctimer_set(&debug_timer, 20 * CLOCK_SECOND, periodic_debug, NULL);

#endif /* WITH_PERIODIC_DEBUG */

 serial_shell_init();

 shell_blink_init();

 /* shell_file_init();

 shell_coffee_init();*/

 /* shell_download_init();*/

 shell_rime_sendcmd_init();

 /* shell_ps_init();*/

 shell_reboot_init();

 shell_rime_init();

 shell_rime_netcmd_init();

 /* shell_rime_ping_init();

 shell_rime_debug_init();

 shell_rime_debug_runicast_init();*/

 /* shell_rime_sniff_init();*/

 shell_sky_init();

 shell_power_init();

 shell_powertrace_init();

 /* shell_base64_init();*/

 shell_text_init();

 shell_time_init();

 /* shell_sendtest_init();*/

 shell_collect_view_init();

Chapter 4 Contiki-nG and Computer CommuniCation

110

#if DEBUG_SNIFFERS

 rime_sniffer_add(&s);

#endif /* DEBUG_SNIFFERS */

 PROCESS_END();

}

You only use some essential shells due to the Contiki mote’s resource

limitation. Other shell APIs are remarked.

Now, compile and upload this program into your Contiki mote. For

instance, I use the Contiki-NG mote–based Sky. Open Terminal and

navigate to the <Contiki-root>examples/shell-sky folder. You can type

these commands to compile and upload the program to the Contiki-NG

mote with sky as target:

$ make TARGET=sky

$ make TARGET=sky savetarget

$ make shell-sky.upload

After it has completed, you can monitor your Contiki mote. You can

type this command:

$ make login

Then, reset your Contiki mote in order to use the Contiki shell. If it

succeeds, you should see the Contiki shell terminal as follows:

$./example-shell.native

Contiki-3.x-3330-g719f712 started

Rime started with address 2.1

MAC nullmac RDC nullrdc NETWORK Rime

2.1: Contiki>

Chapter 4 Contiki-nG and Computer CommuniCation

111

You can see a sample of the Contiki shell in Figure 4-10.

Figure 4-10. Running Contiki shell on Contiki-NG mote

From the Contiki shell, you can test it using the commands help and

echo. You can type these commands:

Contiki> help

Contiki> echo hello world!

A sample of the program output from the Contiki shell can be seen in

Figure 4-11.

If you want to exit from the Contiki shell, you can type exit. If you get

problems quitting from the Contiki shell, you can press CTRL+C to enforce

the exit.

Chapter 4 Contiki-nG and Computer CommuniCation

112

 Contiki-NG Shell
Contiki-NG has modified Contiki shell. Contiki-NG shell is defined into a

module. You should enable a shell module if you want to use it. The shell

structure can be found in the <Contiki-NG-root>/os/services/shell

folder. You can see it in Figure 4-12.

Figure 4-11. Running shell sample on Contiki mote

Chapter 4 Contiki-nG and Computer CommuniCation

113

You can enable the shell module in the Makefile file from your

projects. Put this script in to enable this module:

MODULES += os/services/shell

Then, you can compile and upload your project program into your

Contiki mote. Since Contiki-NG needs more space on the Contiki mote,

your mote probably does not fit the program, so you will get an error while

compiling and flashing the program.

After you succeed in uploading program, you can test it by connecting

to the Contiki mote via a serial tool. You should get “>” on the serial

Terminal. Not all Contiki motes can run the Contiki-NG shell due to ROM

space size. My TelosB board cannot work with this shell. So, I tested it with

the TI CC2650 LaunchPad board. It works. I then run this command to

access the Contiki-NG serial:

$ make login PORT=/dev/ttyACM0 BOARD=launchpad/cc2650

TARGET=srf06-cc26xx

Figure 4-12. Code structure of Contiki-NG shell

Chapter 4 Contiki-nG and Computer CommuniCation

114

If you do not see “>,” try to reset the board. Then, press Enter. The

program output can be seen in Figure 4-13.

Now, you can test Contiki-NG with several commands. Try to execute

these shell commands:

> help

> ip-addr

Figure 4-13. Running Contiki-NG shell on TI CC2650 LaunchPad
board

These commands will list all registered Contiki-NG shells and display

current IP address. You can see my program output in Figure 4-14.

Chapter 4 Contiki-nG and Computer CommuniCation

115

 Customizing Contiki Shell
In some cases you may need to customize the Contiki shell to fit your

problems. The thing that you should be aware of is your space and

resource usage while implementing a Contiki shell.

In this section, we will learn how to customize a Contiki shell on both

Contiki and Contiki-NG. In Contiki-NG, a Contiki shell is called an NG

shell. Each customizing shell topic will be explored in the next sections.

 Custom Contiki Shell

In the previous section, we learned how to access Contiki and Contiki

shells. Now, we will build our own Contiki shell API. For this simple demo,

we will develop a Contiki shell with an addition math operation. This API

will receive two number parameters. These number parameters will be

added and then sent back as the Contiki shell output.

Figure 4-14. Sample of executing Contiki-NG shell

Chapter 4 Contiki-nG and Computer CommuniCation

116

To build our own Contiki shell, we can add our shell objects to the

<Contiki-root>/apps/shell folder. For our scenario, we add two files,

shell-math.c and shell-math.h. You can see them in Figure 4-15.

There are two steps to building a custom Contiki shell. First, we create

an object file (*.c) in which to declare all Contiki shell implementations.

We declare the Contiki shell API using SHELL_COMMAND(). Then, we

implement the shell API on a process by declaring it in PROCESS().

Last, we register and initialize our Contiki shell API by calling the

shell_register_command() function. This function will be called on the

shell_math_init() function. The Contiki program that will use this shell

should call shell_math_init() function to access the shell API.

Figure 4-15. Adding an additional Contiki shell API

Chapter 4 Contiki-nG and Computer CommuniCation

117

For implementation, we start to write the program in the shell-math.c

file. We receive two number input parameters. Then, we perform the

addition operation. The following is the complete program for the

shell- math.c file:

#include "contiki.h"

#include "shell.h"

#include <ctype.h>

#include <stdio.h>

#include <string.h>

/*---*/

PROCESS(shell_math_process, "math");

SHELL_COMMAND(math_command,

 "math",

 "math: math number1 number2",

 &shell_math_process);

/*---*/

PROCESS_THREAD(shell_math_process, ev, data)

{

 char *numbers;

 int n1 = 0;

 int n2 = 0;

 char buf[32];

 PROCESS_BEGIN();

 numbers = data;

 if(numbers == NULL || strlen(numbers) == 0) {

 shell_output_str(&math_command,

 "math number1 number2: number must be given", "");

 PROCESS_EXIT();

 }

Chapter 4 Contiki-nG and Computer CommuniCation

118

 char * pch;

 pch = strtok (numbers," ");

 if (pch != NULL)

 {

 n1 = atoi(pch);

 pch = strtok (NULL, " ");

 if (pch != NULL)

 {

 n2 = atoi(pch);

 }else

 {

 shell_output_str(&math_command,

 "math number1 number2: number must be given", "");

 PROCESS_EXIT();

 }

 }else

 {

 shell_output_str(&math_command,

 "math number1 number2: number must be given", "");

 PROCESS_EXIT();

 }

 int s = n1 + n2;

 sprintf(buf, "%d + %d= %d", n1, n2, s);

 shell_output_str(&math_command, buf, "");

 PROCESS_END();

}

/*---*/

void

shell_math_init(void)

Chapter 4 Contiki-nG and Computer CommuniCation

119

{

 shell_register_command(&math_command);

}

/*---*/

Input data from the user can be obtained from the data variables in the

function parameters. We parse the data into two number variables.

Next, we write a header file, called shell-math.h, for our Contiki shell

API. We only declare our function, shell_math_init(). The following is

the complete program for the shell-math.h file:

#ifndef __SHELL_MATH_H__

#define __SHELL_MATH_H__

#include "shell.h"

void shell_math_init(void);

#endif

Save all the files.

Now, we should configure Makefile to include these files in

compilation. You can open Makefile.shell in the same folder with the

shell API files. Open this file and add your shell files. You can see them in

the codes here:

...

shell_src = shell.c shell-reboot.c shell-vars.c shell-ps.c \

 shell-blink.c shell-text.c shell-time.c \

 shell-file.c shell-run.c \

 shell-coffee.c \

 shell-power.c \

 shell-base64.c \

 shell-memdebug.c \

Chapter 4 Contiki-nG and Computer CommuniCation

120

 shell-math.c \

 shell-powertrace.c shell-crc.c

shell_dsc = shell-dsc.c

...

Our Contiki shell API is now ready for compiling.

The next step is to develop a Contiki application to use our Contiki

shell API, math shell. We create a folder, called shell-math-demo. Then, we

create two files:

• shell-math-demo.c

• Makefile

The shell-math-demo.c file consists of a program to use the Contiki

math shell API. The following is the complete program in the shell-math-

demo.c file:

#include "contiki.h"

#include "shell.h"

#include "serial-shell.h"

#include "collect-view.h"

/*---*/

PROCESS(sky_shell_process, "Sky Contiki shell");

AUTOSTART_PROCESSES(&sky_shell_process);

/*---*/

#define WITH_PERIODIC_DEBUG 0

#if WITH_PERIODIC_DEBUG

static struct ctimer debug_timer;

static void

periodic_debug(void *ptr)

{

Chapter 4 Contiki-nG and Computer CommuniCation

121

 ctimer_set(&debug_timer, 20 * CLOCK_SECOND, periodic_debug, NULL);

 collect_print_stats();

}

#endif /* WITH_PERIODIC_DEBUG */

/*---*/

PROCESS_THREAD(sky_shell_process, ev, data)

{

 PROCESS_BEGIN();

#if WITH_PERIODIC_DEBUG

 ctimer_set(&debug_timer, 20 * CLOCK_SECOND, periodic_debug, NULL);

#endif /* WITH_PERIODIC_DEBUG */

 serial_shell_init();

 shell_blink_init();

 shell_reboot_init();

 shell_sky_init();

 shell_power_init();

 shell_powertrace_init();

 shell_text_init();

 shell_time_init();

 shell_collect_view_init();

 shell_math_init();

 PROCESS_END();

}

/*---*/

Chapter 4 Contiki-nG and Computer CommuniCation

122

Furthermore, we write scripts in the Makefile. We include Contiki and

the project path. You write these complete scripts as follows:

CONTIKI_PROJECT = shell-math-demo

all: $(CONTIKI_PROJECT)

APPS = serial-shell powertrace collect-view

CONTIKI = ../..

CONTIKI_WITH_RIME = 1

include $(CONTIKI)/Makefile.include

CONTIKI_WITH_RIME = 1 is used to enable the RIME protocol since

Contiki shell uses it on some shell commands. We also supply a testing

configuration by including this Makefile, /home/user/nes/testbed-

scripts/Makefile.include, because some shell commands need it.

Save all files.

Now, we compile our program, shell-math-demo. Open Terminal and

navigate to the shell-math-demo folder. Type these commands:

$ make TARGET=sky

$ make shell-math-demo.sky.upload TARGET=sky

After our program is uploaded to Contiki mote, we can monitor the

mote. You can type this command:

$ make login

If it succeeds, you should see the Contiki shell. Now, we can call our

Contiki shell API. We can type this command in the Contiki shell:

Contiki> math 10 5

This shell will call our Contiki shell API. Value inputs 10 and 5 will be

executed to perform the addition operation. You can see a sample of the

program output in Figure 4-16.

Chapter 4 Contiki-nG and Computer CommuniCation

123

 Custom Contiki-NG Shell

Contiki-NG applies shell with a different approach. To customize a shell,

we can add our shell command to the shell-commands.c file. You can find

that file in the <contiki-ng-root>/os/services/shell folder. You can see

it in Figure 4-17.

We add a new shell command to the shell-commands.c file. We define a

“hello” command. We print the message "Hi, this is a custom shell"

to Terminal. Write this code:

static

PT_THREAD(cmd_hello(struct pt *pt, shell_output_func output,

char *args))

{

 PT_BEGIN(pt);

Figure 4-16. Running custom Contiki shell API

Chapter 4 Contiki-nG and Computer CommuniCation

124

 SHELL_OUTPUT(output, "Hi, this custom shell\n")

 PT_END(pt);

}

Next, we also register our shell in the shell_command_t shell_commands

struct. We define the shell name, method call, and description. For instance,

you can see the code for our custom NG-shell here:

struct shell_command_t shell_commands[] = {

 { "hello", cmd_hello, "'> hello': say hello" },

 { "help", cmd_help, "'> help': Shows this help" },

 { "reboot", cmd_reboot, "'> reboot': Reboot the board by

watchdog_reboot()" },

 ...

};

Save all files.

Chapter 4 Contiki-nG and Computer CommuniCation

125

Now, you can use the NG shell on your project. For instance, we can

use a hello-world project and enable the Contiki-NG shell. We only enable

shell service on Makefile:

MODULES += os/services/shell

After that, we compile and flash this program onto the Contiki-NG

mote. You can now remote into the Contiki mote Terminal using mote

login. For instance, I remote access my TI LaunchPad CC2650 using this

command:

$ make login TARGET=srf06-cc26xx PORT=/dev/ttyUSB0

Figure 4-17. NG shell in Contiki-NG source code

Chapter 4 Contiki-nG and Computer CommuniCation

126

You should change TARGET and PORT to reflect your Contiki board.

Please press the Reset button on the Contiki mote if you do not see

anything in Terminal. Now, you can test your own shell:

shell> help

shell> hello

After calling our NG shell, we can see the shell response. You can see

my shell output in Figure 4-18.

Figure 4-18. Running custom NG shell on TI LaunchPad CC260

 Communication among Contiki Motes
In this section, we will build a communication among Contiki-NG motes.

There are a lot of methods for communicating among Contiki-NG motes.

To show how to communicate among Contiki motes, we use broadcast

via UDP protocol in Contiki-NG OS. UDP is a communication stack that

provides a set of lightweight communication primitives ranging from local-

area broadcast to reliable network flooding.

Chapter 4 Contiki-nG and Computer CommuniCation

127

For this demo, we need at least two Contiki-NG motes. One mote will

act as a sender and the other mote will be a receiver. You can see our demo

scenario in Figure 4-19.

Figure 4-19. Communication among Contiki-NG motes

Our demo scenario is that a mote sends data to all motes. If a mote

receives data, it will be shown in Terminal. We use a program sample from

Contiki-NG.

 Sending Broadcast Messages
The objective of a mote sender is to broadcast data to other motes. For this

demo, we use the simple-udp module that is located in the <contiki-ng-

root>/os/net folder. We can use the simple_udp_sendto() function to

broadcast a message. This method is defined in the simple-udp.h header file:

int simple_udp_sendto_port(struct simple_udp_connection *c,

 const void *data, uint16_t datalen,

 const uip_ipaddr_t *to, uint16_t to_

port);

Chapter 4 Contiki-nG and Computer CommuniCation

128

Note:

• simple_udp_connection is simple-udp object

• data is data that will be sent

• datalen is length of data

• to is ip address of target

• to_port is the port of the target

For instance, we send data to a specific IP address:

simple_udp_sendto(&udp_conn, &count, sizeof(count), &dag->dag_id);

 Receiving Broadcast Messages
A mote receiver listens for an incoming message that is sent by a mote

sender. To build a mote receiver, we can listen for broadcast messages by

creating a callback/event function. We can use simple_udp_register() to

register our callback function.

For instance, we listen for incoming broadcast messages using this

code:

static void

udp_rx_callback(struct simple_udp_connection *c,

 const uip_ipaddr_t *sender_addr,

 uint16_t sender_port,

 const uip_ipaddr_t *receiver_addr,

 uint16_t receiver_port,

 const uint8_t *data,

 uint16_t datalen)

{

 unsigned count = *(unsigned *)data;

 LOG_INFO("Received response %u from ", count);

Chapter 4 Contiki-nG and Computer CommuniCation

129

 LOG_INFO_6ADDR(sender_addr);

 LOG_INFO_("\n");

}

...

simple_udp_register(&udp_conn, UDP_CLIENT_PORT, NULL,

 UDP_SERVER_PORT, udp_rx_callback);

 Demo: Middleware Application
Now, we implement our sender and receiver program for Contiki-NG

motes. We use a program sample from Contiki-NG, rpl-udp. You can find

this project in the <contiki-ng-root>/examples/ folder.

The rpl-udp project consists of two programs, udp-client.c and

udp-server.c. The UDP client app (udp-client.c) will send and receive

broadcast messages. The UDP server (udp-server.c) will listen for

incoming broadcast messages.

In the Makefile file, we configure our project and Contiki-NG paths.

Write these scripts for the Makefile file:

all: udp-client udp-server

.PHONY: renode

renode: all

ifneq ($(TARGET),cc2538dk)

 $(error Only the cc2538dk TARGET is supported for

Renode demo scripts)

endif

ifndef SCRIPT

 $(warning SCRIPT not defined! Using "rpl-udp.resc" as

default)

Chapter 4 Contiki-nG and Computer CommuniCation

130

 renode rpl-udp.resc

else

ifeq ($(wildcard $(SCRIPT)),)

 $(error SCRIPT "$(SCRIPT)" does not exist!)

endif

 renode $(SCRIPT)

endif

CONTIKI=../..

include $(CONTIKI)/Makefile.include

Save all files.

Since we need at least two Contiki-NG motes, we should know the

serial ports that are used by our Contiki-NG motes. You can check this

using this command:

$ ls /dev/ttyUSB*

You should see a list of serial ports that are used by the Contiki-NG

motes. For instance, my two TelosB motes are detected, shown in Figure 4- 20.

Figure 4-20. Getting a list of connected Contiki-NG motes

Chapter 4 Contiki-nG and Computer CommuniCation

131

To compile and upload the program to a specific Contiki-NG mote, we

should pass MOTES with the serial port of the targeted Contiki-NG mote.

For instance, we flash a program to a Contiki mote on serial port /dev/

ttyUSB0. You can type these commands:

$ make TARGET=sky

$ make TARGET=sky savetarget

$ make udp-client.upload TARGET=sky MOTES=/dev/ttyUSB0

For the second Contiki-NG mote, you can type these commands:

$ make udp-server.upload TARGET=sky MOTES=/dev/ttyUSB1

After all programs are uploaded to the Contiki-NG motes, we can

monitor the data exchange among Contiki-NG motes. For Contiki-NG

mote 1, we can monitor messages using this command:

$ make login TARGET=sky MOTES=/dev/ttyUSB0

For Contiki-NG mote 2, we can execute this command to see exchange

data in Terminal. Type this command:

$ make login TARGET=sky MOTES=/dev/ttyUSB1

You should see an incoming message in Terminal. You can see it in

Figure 4-21.

Chapter 4 Contiki-nG and Computer CommuniCation

132

 Middleware Application for Contiki-NG
In this section, we will explore using middleware for a Contiki-NG

application. In our scenario, WSN motes will broadcast sensor data. Then,

we will use a Java tool application from Contiki-NG to read these sensor

data on a computer. The result of reading this data will be displayed in

Terminal.

Let’s build!

Figure 4-21. Running Contiki-NG application on mote 1 and mote 2

Chapter 4 Contiki-nG and Computer CommuniCation

133

 What Is Middleware?
Middleware is a “bridge” application that connects Contiki-NG motes to

other systems in internal and external networks. A sink can be represented

as middleware. You can see a general architecture scenario of middleware

for a Contiki-NG application in Figure 4-22.

Figure 4-22. General scenario model of middleware for Contiki- NG

Implementing middleware for a Contiki-NG application could enhance

Contiki-NG’s capabilities. As you know, Contiki-NG applications have a

limitation in protocol stacks since they have limited hardware resources.

Middleware can act as a bridge to connect Contiki-NG motes to other

systems, such as database servers, external servers, and RESTful servers.

 Middleware Architecture for Contiki-NG
In this section, we will build simple middleware for a Contiki-NG

application. For this demo scenario, the middleware will listen for sensor

data and print them to Terminal using Python. A general design for our

demo is shown in Figure 4-23.

Chapter 4 Contiki-nG and Computer CommuniCation

134

 Implementation
To implement our demo, we use our previous program, rpl-udp

(<contiki-ng_root/examples/rpl-udp), to be flashed into the Contiki-NG

motes. We also use a previous Python program (section: “Access Contiki

Motes via Serial”) to listen on the serial port contiki-viewer.py.

 Testing
First, we compile the program and upload it to the motes. For instance,

I have two WSN motes that are attached on serial ports /dev/USB0 and

/dev/USB1. Then, we run contiki-viewer.py with a specific port. You can

see the program output in Figure 4-24. In the next chapter, we will work

more with middleware.

Figure 4-23. Middleware architecture for demo

Chapter 4 Contiki-nG and Computer CommuniCation

135

Figure 4-24. Listening for incoming message from Python

 Summary
We have learned to communicate among Contiki-NG motes. We also

developed an application to communicate with Contiki-NG motes

from a computer. Finally, we built simple middleware for a Contiki-NG

application using a Python application tool.

In the next chapter, we will learn to focus on sensing and actuating in

Contiki-NG motes.

Chapter 4 Contiki-nG and Computer CommuniCation

137© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_5

CHAPTER 5

Sensing
and Actuating
Sensing and actuating are core activities in the Wireless Sensor Network

lifecycle. Most WSN makers build WSN motes that include sensor or/and

actuator devices. In this chapter, we will explore various sensor and

actuator devices. Moreover, we will build a Contiki-NG program to access

these sensor devices and control the actuator devices.

The following is a list of topics we will cover in this chapter:

• What are sensing and actuating?

• Reviewing sensors and actuators

• Sensing in Contiki-NG

• Actuating in Contiki-NG

• Customizing sensor and actuator devices

 What Are Sensing and Actuating?
Sensing and actuating are two common terms that are used in embedded

topics. In the WSN context, sensing is a process that converts a physical

object to digital data. For instance, sensing temperature. The sensor

device senses the environment’s temperature and then converts it to

digital form. Actuating is a process in which the MCU sends digital data

138

to an actuator device to perform some tast, such as turning on LED lights,

sounds, or a motor.

Figure 5-1. Sensing and actuating in a WSN mote

Sensing and actuating are shown in Figure 5-1. Sensor devices that

are attached to a WSN mote will sense and then convert the information

to digital data form. A WSN mote also can send digital data to the outside

environment through actuator devices. Both sensor and actuator devices

can communicate to the MCU via I/O interfaces. These interfaces provide

various protocols depending on how they are implemented. You can see a

communication model in Figure 5-2.

Figure 5-2. Communication model for sensor/actuator devices and
MCU

Chapter 5 SenSing and aCtuating

139

We will start to explore sensor and actuator devices in the next section.

Then, we will develop a Contiki-NG program for accessing those devices.

 Review Sensor and Actuator Devices
In this section, we will explore common sensor and actuator devices

that are used in embedded development environments, including in real

applications. All sensor and actuator devices may be found in your local

store. However, you can buy them in online stores such as Element14,

Digikey, Mouser, SparkFun, Adafruit, DFRobot, SeeedStudio, and more.

You can also find them on cheap online stores from China, like Alibaba,

Aliexpress, Banggood, and DealeXtreme.

We will now review some sensor and actuator devices that are easier to

find. Sensor device samples are temperature, humidity, soil moisture, and

gas sensor. Actuator device samples can be LED, active buzzer, and motor.

We will check them in the next section.

 Temperature and Humidity
Temperature and humidity sensors are used to measure current

environment temperature and humidity levels. Some manufactures make

these sensors into one chip, but others are still available in separation

sensors for temperature and humidity.

Most WSN motes are designed to include these temperature and

humidity sensors. This is useful for our development and testing. We can

verify that our program performs sensing and actuating. One example

is the SHT1x (SHT10, SHT11, SHT15) chip from Sensirion. You can read

its datasheet at https://www.sparkfun.com/datasheets/Sensors/

SHT1x_datasheet.pdf. SparkFun provides the SHT15 sensor in a module

that is ready to use. It’s the SparkFun Humidity and Temperature Sensor

Chapter 5 SenSing and aCtuating

https://www.sparkfun.com/datasheets/Sensors/SHT1x_datasheet.pdf
https://www.sparkfun.com/datasheets/Sensors/SHT1x_datasheet.pdf

140

Breakout—SHT15. This product can be bought on the SparkFun website at

https://www.sparkfun.com/products/13683. You can see the module in

Figure 5-3.

Figure 5-3. SparkFun Humidity and Temperature Sensor Breakout—
SHT15

In general, SHT1x provides two-wire pins to be used to access sensor

data. If you see a SparkFun Humidity and Temperature Sensor Breakout

(Figure 5-3), this module has four pins: VCC, GND, DATA, and SCK. We

can develop a program to access this sensor data from MCU.

We also can use a low-cost humidity and temperature sensor. It’s the

DHT22 module. This sensor is easier to find. You can check it out on the

SparkFun website at https://www.sparkfun.com/products/10167; it is

called Humidity and Temperature Sensor—RHT03 (DHT22). The DHT22

sensor provides a single-wire digital interface that is used to access sensor

data for temperature and humidity. The DHT22 sensor form is shown in

Figure 5-4.

Chapter 5 SenSing and aCtuating

https://www.sparkfun.com/products/13683
https://www.sparkfun.com/products/10167

141

 Soil Moisture
A soil moisture sensor can be used to measure the moisture level in

soil. This sensor can be applied in monitoring systems for gardens.

There are many soil-moisture models that you can use in your design.

One with a low cost is a Soil Moisture Sensor from SparkFun, found at

https://www.sparkfun.com/products/13322. The SparkFun Soil Moisture

Sensor can be attached via an analog pin (ADC pin) to obtain the moisture

level. You can see a SparkFun Soil Moisture Sensor in Figure 5-5.

Figure 5-4. Humidity and Temperature Sensor—RHT03 (DHT22)

Chapter 5 SenSing and aCtuating

https://www.sparkfun.com/products/13322

142

 Gas Sensor
In some scenarios, you may need to monitor for gas such as carbon

monoxide (CO). You can attach a carbon monoxide sensor to a WSN

mote through an analog pin so as to detect it. One such sensor is Carbon

Monoxide Sensor (MQ-7). This sensor can detect gas concentrations

anywhere from 20 to 2000 ppm. You can find it on the SparkFun website at

https://www.sparkfun.com/products/9403. Figure 5-6 shows the Carbon

Monoxide Sensor (MQ-7). Further information about this gas sensor

(MQ- 7) can be found at https://cdn.sparkfun.com/datasheets/Sensors/

Biometric/MQ-7%20Ver1.3%20-%20Manual.pdf.

Figure 5-5. SparkFun Soil Moisture Sensor

Chapter 5 SenSing and aCtuating

https://www.sparkfun.com/products/9403
https://cdn.sparkfun.com/datasheets/Sensors/Biometric/MQ-7 Ver1.3 - Manual.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Biometric/MQ-7 Ver1.3 - Manual.pdf

143

 LED
An LED is a simple actuator device. It can be used for lighting indicator

and notification, processing status, or indicating a certain state. There are

various models and colors for LEDs. You can choose it to fit with your case.

Figure 5-7 shows a sample LED.

Figure 5-6. Carbon Monoxide Sensor (MQ-7)

Figure 5-7. A LED with red color in 5mm size
(Source: https://www.sparkfun.com/products/9590)

Chapter 5 SenSing and aCtuating

https://www.sparkfun.com/products/9590

144

 Active Buzzer
Sometimes you need an actuator that generates a continuous sound

to inform the user of a particular state, such as low power on battery,

problem on a certain system module, or waiting for an action. An active

buzzer can be used as an actuator device to indicate a certain notification.

This actuator is low cost and easier to find.

In general, an active buzzer has two pins, GND and SIG. It’s easy to use

because we just send a digital value (3.3V or 5V) on the SIG pin to generate

a continuous sound. The sound will be stopped if we set 0V (GND) on the

SIG pin. You can see this actuator in Figure 5-8.

Figure 5-8. Active buzzer

 Motor
To control mechanical stuff, you may need a motor that is designed for the

MCU to make a movement or rotation. There are various motor models.

A servo motor is a basic motor that can be integrated with a WSN mote.

You should keep in mind that some motor models need a lot of power,

and they should not get that power from your WSN mote. You can use an

external power adapter for your motor. The manufacturer also provides a

motor driver that addresses motor power issues.

One servo motor is the Hitec HS-5035HD servo with Ultra Nano Size.

You can buy it on the SparkFun website at https://www.sparkfun.com/

products/14210. Figure 5-9 shows a Hitec HS-5035HD servo.

Chapter 5 SenSing and aCtuating

https://www.sparkfun.com/products/14210
https://www.sparkfun.com/products/14210

145

 Sensing in Contiki-NG
Each sensor in Contiki-NG should implement sensors.h from the

<contiki-ng-root>/os/lib folder. We can access the sensor device library

using the following code:

SENSORS_ACTIVATE(sensor_xyz);

...

val = sensor_xyz.value(SENSOR_XYZ_TYPE);

sensor_xyz is a defined variable for the sensor device. This is a part

of each Contiki-NG device platform. Each sensor device has sensor types

that will be called on the value() method. Your sensor code (*.c and *.h)

should be put in the dev/ folder from the Contiki-NG platfom. You can see

a list of sensor codes in Figure 5-10.

Figure 5-9. Hitec HS-5035HD servo with Ultra Nano Size

Chapter 5 SenSing and aCtuating

146

In the next section, we will build a simple demo for sensing using the

existing sensor in Contiki-NG. I use a TelosB for testing.

 Demo
We will build a Contiki-NG application to read the current temperature

and humidity via a Contiki-NG mote. For testing, I use TelosB as

Contiki-NG mote. This board provides an SHT11 sensor that can sense

temperature and humidity. You can read the sensor datasheet at

https://www.sensirion.com/en/environmental-sensors/humidity-

sensors/digital-humidity-sensors-for-accurate-measurements/.

For this demo, we will build the scenario that is shown in Figure 5-11.

A Contiki-NG mote with sensor device is attached to a computer. We will

sense temperature and humidity via the SHT11 sensor. After acquiring

Figure 5-10. Sensor and actuator libraries for Sky platform

Chapter 5 SenSing and aCtuating

https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-accurate-measurements/
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-accurate-measurements/

147

the temperature, the mote will send this sensor data to a serial port on

the computer. We will print this sensor data in Terminal by reading the

serial port.

Figure 5-11. Sensing demo scenario

 Creating a Project
To create a new project on Contiki-NG, you can create a folder, for

instance, sensing. Then, add sensing.c and Makefile files. Our program

that uses the sensor device will be implemented in the sensing.c file. We

define our project configuration in the Makefile file.

The following is the content of the Makefile file:

CONTIKI_PROJECT = sensing

all: $(CONTIKI_PROJECT)

CONTIKI = /home/agusk/contiki-ng/

include $(CONTIKI)/Makefile.include

Change CONTIKI to your Contiki-NG path.

Next, we will write a Contiki-NG program on the sensing.c file.

Chapter 5 SenSing and aCtuating

148

 Writing a Program
We will build a Contiki-NG program to acquire the temperature every five

seconds. We use etimer to implement our timer object.

The following is the complete program in the sensing.c file:

#include "contiki.h"

#include "dev/sht11/sht11-sensor.h"

#include <math.h>

#include <stdio.h> /* For printf() */

/*---*/

PROCESS(sensing_process, "Sensing process");

AUTOSTART_PROCESSES(&sensing_process);

/*---*/

PROCESS_THREAD(sensing_process, ev, data)

{

 static struct etimer et;

 static int val;

 static float s = 0;

 static int dec;

 static float frac;

 PROCESS_BEGIN();

 printf("Demo sensing...\n");

 while(1)

 {

 etimer_set(&et, CLOCK_SECOND * 5);

 SENSORS_ACTIVATE(sht11_sensor);

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

 val = sht11_sensor.value(SHT11_SENSOR_TEMP);

 if(val != -1)

Chapter 5 SenSing and aCtuating

149

 {

 s= ((0.01*val) - 39.60);

 dec = s;

 frac = s - dec;

 // print float data

 printf("Temperature=%d.%02u C . VAL=%d\n", dec, (unsigned

int)(frac * 100),val);

 }

 val=sht11_sensor.value(SHT11_SENSOR_HUMIDITY);

 if(val != -1)

 {

 s= (((0.0405*val) - 4) + ((-2.8 *

0.000001)*(pow(val,2))));

 dec = s;

 frac = s - dec;

 // print float data

 printf("Humidity=%d.%02u %% . VAL=%d\n", dec, (unsigned

int)(frac * 100),val);

 }

 etimer_reset(&et);

 SENSORS_DEACTIVATE(sht11_sensor);

 }

 PROCESS_END();

}

/*---*/

Chapter 5 SenSing and aCtuating

150

How does it work?

Firstly, we activate the timer and our SHT11 sensor on the TelosB:

etimer_set(&et, CLOCK_SECOND * 5);

SENSORS_ACTIVATE(sht11_sensor);

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

After etimer has raised the time, we sense temperature by calling

value() from the sht11_sensor object and passing the SHT11_SENSOR_TEMP

parameter. Since we face displaying float data, we calculate decimal and

fraction separately:

val = sht11_sensor.value(SHT11_SENSOR_TEMP);

if(val != -1)

{

 s= ((0.01*val) - 39.60);

 dec = s;

 frac = s - dec;

 // print float data

 printf("Temperature=%d.%02u C . VAL=%d\n", dec, (unsigned

int)(frac * 100),val);

}

We also do a similar task to sense humidity. We pass SHT11_SENSOR_

HUMIDITY to read humidity from sensor:

val=sht11_sensor.value(SHT11_SENSOR_HUMIDITY);

if(val != -1)

{

 s= (((0.0405*val) - 4) + ((-2.8 * 0.000001)*(pow(val,2))));

 dec = s;

 frac = s - dec;

Chapter 5 SenSing and aCtuating

151

 // print float data

 printf("Humidity=%d.%02u %% . VAL=%d\n", dec, (unsigned int)

(frac * 100),val);

}

Last, we reset our timer and sensor objects:

etimer_reset(&et);

SENSORS_DEACTIVATE(sht11_sensor);

 Testing
Now, you can test the program. You should compile and deploy this

program into Contiki-NG:

$ make TARGET=sky

$ make TARGET=sky savetarget

$ make sensing.upload TARGET=sky

After uploading a program into Contiki-NG, we try to monitor the

serial output from the Contiki-NG mote. You can type this command to

do so:

$ make login TARGET=sky

If it succeeds, you should see the current temperate and humidity

values in Terminal. You can see my program output in Figure 5-12.

Chapter 5 SenSing and aCtuating

152

 Actuating in Contiki-NG
In this section, we will learn how to work with actuating in Contiki- NG.

There are a lot of actuator devices that you can use with Contiki- NG.

For this demo, I will use a button and an LED as actuator devices.

In general, these actuator devices are available on some Contiki-NG motes.

This demo is shown in Figure 5-13. If the user presses the button, the

LED will be toggled. I use TelosB for this demo as it already has a button

and an LED.

Figure 5-12. Program output on sensing application

Chapter 5 SenSing and aCtuating

153

 Creating a Project
You can start a new project by creating a folder, called actuating. Then,

add Makefile and actuating.c files. In the Makefile file, we configure our

project. You can write the following Makefile content:

CONTIKI_PROJECT = actuating

all: $(CONTIKI_PROJECT)

CONTIKI = /home/agusk/contiki-ng/

include $(CONTIKI)/Makefile.include

Change CONTIKI to your Contiki-NG path.

Next, we will build a program in the actuating.c file.

Figure 5-13. Actuating demo scenario

Chapter 5 SenSing and aCtuating

154

 Writing a Program
The program will listen for the pressed button from the user. If the user

presses the button, we toggle the LED. The following is the content of the

actuating.c file:

#include "contiki.h"

#include "leds.h"

#include "dev/button-sensor.h"

#include <stdio.h>

/*---*/

PROCESS(sensing_process, "Sensing process");

AUTOSTART_PROCESSES(&sensing_process);

/*---*/

PROCESS_THREAD(sensing_process, ev, data)

{

 PROCESS_BEGIN();

 printf("Demo actuating...\n");

 SENSORS_ACTIVATE(button_sensor);

 leds_off(LEDS_ALL);

 while(1)

 {

 PROCESS_WAIT_EVENT_UNTIL(ev == sensors_event &&

 data == &button_sensor);

 leds_toggle(LEDS_BLUE);

 }

 SENSORS_DEACTIVATE(button_sensor);

 PROCESS_END();

}

/*---*/

Chapter 5 SenSing and aCtuating

155

How does it work?

First, we active the button by calling SENSOR_ACTIVATE(). We then turn

all LEDs off for initialization.

 SENSORS_ACTIVATE(button_sensor);

 leds_off(LEDS_ALL);

Then, we wait for the button to be pressed by the user. We can use

PROCESS_WAIT_EVENT_UNTIL() to detect the pressed button. We will toggle

the LED after the button is pressed:

 while(1)

 {

 PROCESS_WAIT_EVENT_UNTIL(ev == sensors_event &&

 data == &button_sensor);

 leds_toggle(LEDS_BLUE);

 }

 Testing
Now, you can test the program. You should compile and deploy this

program into Contiki-NG:

$ make TARGET=sky

$ make TARGET=sky savetarget

$ make actuating.upload TARGET=sky

You can press a user button on the Contiki-NG mote. You will see an

LED light up while you press the button. You can see the user button and

the LED on a TelosB in Figure 5-14.

Chapter 5 SenSing and aCtuating

156

 Customizing Sensor and Actuator Devices
You probably want to expand your sensors and actuators on your

Contiki- NG mote. In the real world, some Contiki-NG motes do not

provide built- in sensors and actuators. Others only have one or two sensor

devices.

In this section, we will explore how to add additional sensor and

actuator devices to Contiki-NG motes.

 Expansion Connector
Some Contiki-NG motes are designed to enable you to expand their

board. One option is to provide an expansion connector. The board design

exposes MCU pins in order to make additional external sensors, actuators,

or other devices interact with the system.

Figure 5-14. User button and LED on TelosB

Chapter 5 SenSing and aCtuating

157

For instance, TelosB has an expansion connector available to enable

makers to attach sensors and actuators to the board. You can see it in

Figure 5-15.

Figure 5-15. Expansion connector on TelosB

I bought my TelosB from ADVANTICSYS. This product is

MTM- CM5000- MSP. Based on its document, found at https://www.

advanticsys.com/shop/mtmcm5000msp-p-14.html, these expansion

connectors are as depicted in Figure 5-16.

As seen in Figure 5-16, we can attach sensor and actuator devices to

the mote. GPIO pins such as ADC and I2C are accessible from the main

board. You can do wiring for your sensor and actuator devices.

Chapter 5 SenSing and aCtuating

https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html

158

Another board, such as Zoul from Zolertia, https://zolertia.io/

zoul-module/, can be attached to your own board. Zolertia also

provides a complete development kit, Firefly. You can develop Contiki-NG

on top of the board. Further information about Firefly can be found at

https://zolertia.io/product/firefly/. Figure 5-17 shows a form of the

Firefly board.

Figure 5-16. Expansion connector pinout from TelosB

Chapter 5 SenSing and aCtuating

https://zolertia.io/zoul-module/
https://zolertia.io/zoul-module/
https://zolertia.io/product/firefly/

159

 Sensor and Actuator Drivers for Contiki-NG
Each sensor or actuator device attached to Contiki-NG should provide an

API driver. In this section, we will explore how to make device drivers for

Contiki-NG.

Each Contiki-NG mote platform has a different development style. You

should decide what Contiki-NG platform you will use for additional sensor

and actuator devices. If you have a plan to develop sensors and actuators

for all platforms, you can put your drivers at <contiki-ng-root>/

arch/dev. Otherwise, you can put them at <contiki-ng-root>/arch/

platforms/<your-platform>. You can see it in Figure 5-18.

Figure 5-17. Expansion connector on Firefly

Chapter 5 SenSing and aCtuating

160

For demo purposes, we will develop a driver for the Sky platform. We

build a sensor that is attached into TelosB via an ADC0 pin. Next, we will

write a driver program for the Sky platform.

We add two files, mycustom-sensor.h and mycustom-sensor.c. These

files are put in the <contiki-ng-root>/arch/platform/sky/dev folder.

You can see them in Figure 5-19. We extend our custom sensor driver from

the sensors.h and sky-sensors.h files.

The following is the content of the mycustom-sensor.h file:

#ifndef MYCUSTOM_SENSOR_H_

#define MYCUSTOM_SENSOR_H_

#include "lib/sensors.h"

extern const struct sensors_sensor mycustom_sensor;

#define MY_CUSTOM_SENSOR 0

#endif /* MYCUSTOM_SENSOR_H_ */

Figure 5-18. Platform API on Contiki-NG

Chapter 5 SenSing and aCtuating

161

Now we implement the mycustom-sensor.c file. The ADC0 pin is

attached on ADC12MEM0. Since we implement sky-sensors.h, we

should implement the value(), configure(), and status() methods.

The following is the content of the mycustom-sensor.c file:

#include "contiki.h"

#include "dev/mycustom-sensor.h"

#include "dev/sky-sensors.h"

#define INPUT_CHANNEL (1 << INCH_11)

#define INPUT_REFERENCE SREF_0

#define MYCUSTOM_MEM ADC12MEM0

Figure 5-19. Adding driver files into Sky platform

Chapter 5 SenSing and aCtuating

162

const struct sensors_sensor mycustom_sensor;

/*---*/

static int

value(int type)

{

 switch(type) {

 case MY_CUSTOM_SENSOR:

 return MYCUSTOM_MEM;

 }

 return 0;

}

/*---*/

static int

configure(int type, int c)

{

 return sky_sensors_configure(INPUT_CHANNEL, INPUT_REFERENCE,

type, c);

}

/*---*/

static int

status(int type)

{

 return sky_sensors_status(INPUT_CHANNEL, type);

}

/*---*/

SENSORS_SENSOR(mycustom_sensor, "MYCUSTOMSENSOR", value,

configure, status);

Last, we should add our driver file into the Makefile.sky file from the

Sky platform. It is located at <contiki-ng-root>/arch/platform/sky/

Makefile.sky. In our case, we move the mycustom-sensor.c file into the

Makefile.sky file. You can see the bold code for adding the driver file here:

Chapter 5 SenSing and aCtuating

163

CONTIKI_TARGET_SOURCEFILES += contiki-sky-platform.c \

 sht11.c sht11-sensor.c light-sensor.c battery-sensor.c \

 button-sensor.c mycustom-sensor.c

include $(CONTIKI)/arch/platform/sky/Makefile.common

MODULES += os/net/mac os/net/mac/framer os/net \

 arch/dev/cc2420 arch/dev/sht11 arch/dev/ds2411 \

 os/storage/cfs

Your custom sensor driver is ready for Sky platform. You can use it

as usual. For instance, you create a project by creating a folder, custom-

sensing. Then, you add Makefile and custom-sensing.c files.

We will access our driver, mycustom-sensor, in our project. We use the

same program from the sensing project but change it to use our own sensor.

The following is the complete program for the custom-sensing.c file:

#include "contiki.h"

#include "dev/mycustom-sensor.h"

#include <stdio.h> /* For printf() */

/*---*/

PROCESS(sensing_process, "Sensing process");

AUTOSTART_PROCESSES(&sensing_process);

/*---*/

PROCESS_THREAD(sensing_process, ev, data)

{

 static struct etimer et;

 static int val;

 PROCESS_BEGIN();

 printf("Demo sensing...\n");

 while(1)

 {

Chapter 5 SenSing and aCtuating

164

 etimer_set(&et, CLOCK_SECOND * 5);

 SENSORS_ACTIVATE(mycustom_sensor);

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

 val = mycustom_sensor.value(MY_CUSTOM_SENSOR);

 if(val != -1)

 {

 printf("CUSTOM SENSOR VAL=%d\n",val);

 }

 etimer_reset(&et);

 SENSORS_DEACTIVATE(mycustom_sensor);

 }

 PROCESS_END();

}

Last, we should configure our project in the Makefile file:

CONTIKI_PROJECT = custom-sensing

all: $(CONTIKI_PROJECT)

CONTIKI = /home/agusk/contiki-ng/

include $(CONTIKI)/Makefile.include

Change the CONTIKI value to your Contiki-NG path. Now, you can

compile and upload this program to TelosB:

$ make TARGET=sky

$ make TARGET=sky savetarget

$ make custom-sensing.upload TARGET=sky

Chapter 5 SenSing and aCtuating

165

After uploading a program into Contiki-NG, we try to monitor the

serial output to see our custom sensor on Terminal:

$ make login TARGET=sky

You should see your reading values from ADC on Terminal.

 Summary
We have reviewed some sensor and actuator devices. We also have learned

how to work with sensing and actuating in Contiki-NG. Last, we developed

a custom sensor to attach to a Contiki-NG mote through its expansion

connector.

In the next chapter, we will learn how to build networking and

communication in Contiki-NG. That is at the core of Contiki-NG’s features.

Chapter 5 SenSing and aCtuating

167© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_6

CHAPTER 6

Networking
Contiki-NG comes with rich network-stack features to allow

communication with others. In this chapter, we will explore the available

network features on the Contiki-NG platform. Several scenarios will be

provided to enable practice with implementing projects-based Contiki-

NG, either in physical motes or in mote simulations.

The following is a list of topics that will be covered in this chapter:

• Networking in Contiki-NG

• Working with network simulation using COOJA

• IPv6 networking

• Routing on Contiki-NG

• IPv6 Multicast

• Working with Contiki-NG NullNet

• Working with a 6LoWPAN network

• Building a RESTful server for Contiki-NG

168

 Networking in Contiki-NG
Contiki-NG still uses a traditional OSI (Open Systems Interconnection)

stack to implement the Contiki-NG Network Protocol stack, called

NETSTACK, to communicate among nodes. The Contiki-NG NETSTACK

is shown in Figure 6-1. In this figure, we can see that the Contiki-NG

NETSTACK implements four layers, as follows:

• Network layer (NETSTACK_NETWORK)

• MAC layer (NETSTACK_MAC)

• RDC (Radio Duty Cycling) layer (NETSTACK_RDC)

• Radio layer (NETSTACK_RADIO)

The Network layer (NETSTACK_NETWORK) in an OSI layer can be

represented as Application, Transport, Network, Routing, and Adaptation.

I will introduce each layer in the next section.

Figure 6-1. Contiki-NG Network Protocol stack

Chapter 6 NetworkiNg

169

In NETSTACK implementation, Contiki-NG provides network libraries.

You can find them in the <contiki-ng>/os/net folder. You can see this

folder in Figure 6-2. The following is several code-sample implementations

for Contiki-NG NETSTACK:

• Application layer: http-socket.c, websocket.c,

websocket-http-client.c, and mqtt.c

• Transport: udp-socket.c and tcp-socket.c

• Network & Routing: uip6.c and rpl.c

• MAC: mac.c and csma.c

I recommend you review and learn the code for the Contiki-NG

network stack, found in the <contiki-ng>/os/net folder. Thus, you will get

more knowledge about how Network project builds Contiki-NG system.

Chapter 6 NetworkiNg

170

 Network Layer
Contiki-NG relies on an IPv6 stack. All TCP/UDP sockets in Contiki-NG

use uIP (uip.h and uip6.c from <contiki-ng>/os/net/ipv6), which

implements for IP, UDP, and TCP protocols in minimized models.

Currently, the network layer contains two sublayers, the upper IPv6

layer and the lower adaptation layer. These sublayers run on the top of

IEEE 802.15.4 with Time-Slotted Channel Hopping (TSCH).

Regarding routing, Contiki-NG applies RPL (Routing Protocol for Low-

power and Lossy Networks (LLNs)), which adopts the RFC standard, RFC

6550. RPL develops a routing graph from the root node or AP (Access Point).

Figure 6-2. NETSTACK code implementations in Contiki-NG

Chapter 6 NetworkiNg

171

If the routing graph has a form as cyclic graph and is built from a root node,

it is called a DODAG (Destination Oriented Directed Acyclic Graph). A

DODAG routing graph form can be seen in Figure 6-3.

Figure 6-3. DODAG routing graph form

RPL routing in Contiki-NG supports three directions of traffic, as

follows:

• Upward: from any node toward a root

• Downward: from the root to any node

• Any-to-any: flows among arbitrary pairs of nodes in the

DODAG graph

For RPL implementation, Contiki-NG provides RPL classic and

RPL lite. RPL classic is the original Contiki RPL implementation, called

ContikiRPL. I recommend you read the ContikiRPL paper on this site:

http://www.diva-portal.org/smash/get/diva2:1042739/FULLTEXT01.pdf.

You can find code implementations for both RPL classic and RPL lite in

Contiki-NG. RPL classic can be found at /net/rpl-classic and RPL lite at

/net/rpl-lite from the Contiki-NG code root. See them in Figure 6-4.

Chapter 6 NetworkiNg

http://www.diva-portal.org/smash/get/diva2:1042739/FULLTEXT01.pdf

172

The nullnet library from Contiki-NG can be used to test your packet

from upper to lower layers. This library can be found at <contiki-ng>/os/

net/nullnet.

 MAC Layer
The MAC layer is designed to address collisions in packet traffic and

to apply back-off if there is traffic. Contiki-NG applies CSMA/CA

(Carrier Sense Multiple Access with Collision Avoidance) for MAC

layer implementation. Contiki-NG uses CSMA/CA on the IEEE 802.15.4

protocol. You can see program implementation in the <contiki-ng>/os/

net/mac folder.

In the CSMA/CA algorithm, a mote will sense the medium before

sending packets. If another mote is sending a packet, the mote will apply

back-off with a certain value depending on the RDC layer. If the medium

is free, the mote will send packets that have been prepared by the network

layer.

Contiki-NG also provides nullmac for testing that is a part of nullnet

from the network layer. nullmac will forward packets from the upper layer

to the radio driver and vice versa.

Chapter 6 NetworkiNg

173

 RDC Layer
The Radio Duty Cycling (RDC) layer saves energy by allowing a node to

keep its radio transceiver off most of the time. Contiki-NG supports the

ContikiMAC protocol based on the principles behind low-power listening.

ContikiMAC uses Time Slotted Channel Hopping (TSCH) that is a part of

the MAC layer of the IEEE 802.15.4e-2012 amendment.

 Radio Layer
The radio layer is the lowest layer in the Contiki-NG NETSTACK. The radio

layer is handled by radio module from the Contiki-NG mote. Most radio

layers work on the IEEE 802.15.4 protocol mechanism.

Figure 6-4. RPL classic and lite libraries in Contiki-NG

Chapter 6 NetworkiNg

174

 Network Simulation Using COOJA
In Chapter 1, we learned how to work with COOJA to build a Contiki-NG

simulation. In this section, we will continue to apply COOJA to create a

network simulation. For this simple demo, we will use the same scenario

as in Chapter 4. We will perform broadcasting among Contiki-NG motes.

To implement the demo, we will perform the following tasks:

• Create a simulation project.

• Add a UDP server mote.

• Add UDP client motes.

• Run the simulation.

Each task will be performed in the following sections.

 Creating Simulation Project
The first step is to create a simulation project using COOJA. From your

platform Terminal, you can run the COOJA tool. For instance, I run it from

Ubuntu Linux. You can type these commands:

$ cd contiki-ng/tools/cooja

$ sudo ant run

After it has executed, you should get the COOJA application that is

shown in Figure 6-5.

Chapter 6 NetworkiNg

175

To start a new simulation, you can click File ➤ New simulation, shown

in Figure 6-6.

Figure 6-5. COOJA application

Figure 6-6. Create a new simulation in COOJA

Chapter 6 NetworkiNg

176

Then, you should get the dialog that is shown in Figure 6-7. Fill in the

simulation name with default settings on the Advanced Settings panel. For

instance, I fill in the simulation name with My simulation.

Figure 6-7. Fill in simulation name and other settings

If done, you can click the Create button to create the simulation.

After that, COOJA will create a new simulation for you. Figure 6- 8 shows

a simulation dashboard from COOJA. Now you are ready to configure the

simulation.

In the next section, we will add a UDP server mote to our simulation.

Chapter 6 NetworkiNg

177

 Adding UDP Server Mote
In this section, we will add a mote as the UDP server. This mote will listen

to incoming messages. Once a message is received from a client, the UDP

server will reply by sending that message. For the demo, we will use a mote

with the Sky platform type.

To add a new mote on COOJA, go to Add Motes ➤ Create a mote type ➤

Sky mote. You can see this menu in Figure 6-9.

Figure 6-8. Cooja with simulation dashboard

Chapter 6 NetworkiNg

178

You will get the dialog shown in Figure 6-10. You can fill in the description

of the mote. Then, set the Contiki firmware from the UDP server, udp-

server.c. You can find udp-server.c in the <contiki-ng>/examples/rpl-

udp/ folder. Click the Browse button and navigate to the udp-server.c file.

Figure 6-9. Adding a new mote

Figure 6-10. Add the UDP server mote

Chapter 6 NetworkiNg

179

After selecting the udp-server.c file, you can compile this file to

ensure there are no errors in the program. Click the Compile button

to compile the program. If it succeeds, you should see the successful

compilation on the Compilation Output tab, shown in Figure 6-11.

Figure 6-11. Compile the UDP server mote

If you have compiled the program, you can click the Create button.

Then, you should get the dialog that is shown in Figure 6-12.

Figure 6-12. Configure the mote number and its position

Chapter 6 NetworkiNg

180

In this scenario, we only add one mote for the UDP server. You can fill

in 1 for the “Number of new motes” field and select Random positioning

for the “Positioning” dropdown.

If done, you can click the Add Motes button. You should see this mote

on the Network panel in the simulation dashboard. You can see it in

Figure 6-13.

Figure 6-13. UDP server is deployed on COOJA

Next, we will add some motes for the UDP client. We will perform this

task in the next section.

 Adding UDP Client Motes
After we have created one UDP server mote, we can create some UDP

client motes. For this demo, we will add five motes. To add a new mote,

you perform this task as in the previous section.

Chapter 6 NetworkiNg

181

For a UDP client mote, you can put udp-client.c as the Contiki

firmware. You can find it in the <contiki-ng>/examples/rpl-udp/ folder.

You can see the UDP client program in Figure 6-14.

Figure 6-14. Adding UDP client mote

Then, you should compile the UDP client firmware to ensure there are

no errors in the program. You can click the Compile button. You can see

my successful compilation from the UDP client in Figure 6-15.

Figure 6-15. Compiling UDP client mote

Chapter 6 NetworkiNg

182

You can add motes to the Network panel by clicking the Create button

in the dialog shown in Figure 6-15. After clicking, you should get the dialog

that is shown in Figure 6-16. For this demo, fill in 5 in the “Number of new

motes” field. All fields are default values.

Figure 6-16. Adding five UDP client motes

After filling in the number of motes, you can click the Add Motes

button. Then, you should see five UDP client motes in the Network panel

in the simulation dashboard. Now you have six motes in the simulation,

shown in Figure 6-17.

Chapter 6 NetworkiNg

183

 Running a Simulation
Once we have added the UDP server and client motes into the COOJA

simulation, we can run the simulation. To do so, click the Start button on

the Simulation Control dialog, as shown in Figure 6-18. If you don’t see this

dialog, you can open it by going to Simulation ➤ Control panel.

Figure 6-17. Deployed UDP client motes on COOJA

Chapter 6 NetworkiNg

184

After clicking the Start button, you should see the packet network and

graphic simulation on COOJA. You can see it in Figure 6-19.

Figure 6-18. Starting a simulation

Figure 6-19. A simulation is running on COOJA

Chapter 6 NetworkiNg

185

If the distance between motes is far, some motes probably won’t

connect or receive UDP messages. You can change the mote location so

each mote can be connected.

Now you can run the simulation again. You should see a graphic

simulation on COOJA. A sample of the simulation can be seen in Figure 6- 20.

Figure 6-20. Changing mote location

 IPv6 Networking
IPv6 (Internet Protocol Version 6) is the Internet’s next-generation

protocol, designed to replace the current protocol, IP Version 4 (IPv4).

Most network systems still use IPv4 to communicate with other systems.

Sample IP addresses from IPv4 and IPv6 are shown here:

// IPv4

192.168.0.2

// IPv6

2021:db8:ffff:1:201:02ff:fe03:0415

Chapter 6 NetworkiNg

186

To test whether your network uses IPv4, IPv6, or both, you use a

browser and navigate to http://test-ipv6.com. Based on IPv6 and

IPv4 statistics from http://ipv6-test.com/stats/, IPv6 penetration in

the market still does not dominate. Figure 6-21 shows a comparison of

protocol support for IPv6 and IPv4. For instance, on July 2017, IPv6-only

dominates at about 54.7 percent.

Figure 6-21. Comparing IPv4 and IPv6 protocol support
worldwide

For more learning material about IPv6, I recommend you read some

textbooks or technical articles related to IPv6 technology. This book does

not cover IPv6 technology in any depth.

Contiki-NG can work with an IPv6 network by default. Contiki-NG

projects provide uIP as the network stack implementation for IP, UDP, and

TCP protocols included in the basic ICMP protocol. The uIP library can

run on constrained devices, such as Tmote Sky/TelosB, TI cc26xx/cc13xx,

Firefly, RE-mote, and Orion.

For our IPv6 demo on Contiki-NG, we can perform testing using a

Contiki-NG shell (NG shell). To enable an NG shell for your program, you

should add a shell module to your Makefile file:

MODULES += os/services/shell

Chapter 6 NetworkiNg

http://test-ipv6.com/
http://ipv6-test.com/stats/

187

Then, you can compile and upload to your mote. Since the shell

module needs more space, you should use a mote platform that can

handle NG shell spaces. In this demo, I use a TI CC2650 LaunchPad board.

For testing, we need two motes at least. Upload your project; for instance,

hello-world with NG shell enabled. After uploading Contiki-NG firmware

onto the boards, we can remote into the NG shell from a serial terminal.

For instance, I remote into the TI CC2650 LaunchPad via the /dev/

ttyACM0 port:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 login PORT=/

dev/ttyACM0

Open a new Terminal window. Then, perform a serial remote on the

second mote. For instance, my second mote runs on the /dev/ttyACM2 port:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 login PORT=/

dev/ttyACM2

After connecting to the NG shell, we can perform some tests related

to IPv6 operations. You can check the current IPv6 address on each mote.

You can type this command in the NG shell:

> ip-addr

You should see an IPv6 address for each mote. Next, you can perform a

ping to one of the motes. For instance, I perform a ping on a mote with the

IPv6 address fe80::212:4b00:d77:6f82:

> ping fe80::212:4b00:d77:6f82

You should get a response from ping operations. Last, our mote can

discover its neighbor. By default, Contiki-NG enables UIP_ND6_AUTOFILL_

NBR_CACHE to be discoverable. You can perform this command to discover

a mote’s neighbor:

> ip-nbr

Chapter 6 NetworkiNg

188

All these operations can be seen in Figure 6-22.

Figure 6-22. IPv6 testing via Contiki-NG shell

Chapter 6 NetworkiNg

189

 Routing on Contiki-NG
Routing is the process of moving packets across a network from source

to destination. This process is usually performed by dedicated network

devices, such as routers and computers. Routing is a key feature of the

Internet. Routing topics as a research area is still popular. Some researchers

propose algorithms to address routing problems. In this section, we will

review routing and how to implement it in the Contiki-NG platform.

 Introducing Basic Routing
We already know that routing is applied to address how the packet is

delivered from one point to another. Consider the paths depicted in

Figure 6-23. For instance, we want to send a packet from A to D. Which path

do you want to take?

Figure 6-23. Data network flow on some motes

Figure 6-23 shows a number of path options to send a packet from

A to D. We can take one of three path options: A-B-D, A-D, and A-C-D. Which

one is the best path? This is a challenge.

Chapter 6 NetworkiNg

190

When selecting a path, you must consider what your goal is and what

your success criteria are. We can define a cost for each path. Then, we can

select the best path with the lowest cost. Battery usage can be one of the

cost parameters when you want to perform a certain routing algorithm.

That is one routing issue. Unfortunately, this book does not focus

on routing algorithms. I recommend you read about routing topics in

textbooks or technical articles. We will use the current routing algorithms

that are applied in Contiki-NG.

 Single-Hop and Multi-Hop Networking
When a packet is transferred from the source to the final destination, it

probably goes through a number of network devices. In networking, we

will find a term called a hop. Hop is a term used to describe the different

network devices a packet has to go through to reach its final destination

point.

We can categorize networking models by the number of hops, such as

single-hop and multi-hop networks. To better understand these network

models, see the network topology depicted in Figure 6-24. A single-hop

network would be pointed to the A-D path. The packet is sent from A to D

through a single router.

Multi-hop networks send a packet through two or more networks to

reach its final destination address. From Figure 6-24, we can see that the

E-F path is considered a multi-hop network.

Chapter 6 NetworkiNg

191

The Contiki-NG platform supports both single-hop and multi-hop

networks. Depending on your network design, your Contiki-NG program

should be aware of single-hop and multi-hop networks.

 Routing on Contiki-NG
Currently, Contiki-NG supports two RPL routing methods: RPL classic and

RPL lite. RPL classic is the original Contiki’s RPL implementation, called

ContikiRPL. If you want to read further about ContikiRPL, I recommend

you read this paper: http://www.diva-portal.org/smash/get/

diva2:1042739/FULLTEXT01.pdf. Otherwise, Contiki-NG applies RPL lite

for default RPL implementation.

Figure 6-24. A network topology

Chapter 6 NetworkiNg

http://www.diva-portal.org/smash/get/diva2:1042739/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1042739/FULLTEXT01.pdf

192

Since Contiki-NG applies RPL lite by default, we test RPL. For instance,

we have two motes for testing. Enable NG shell on your program. You can

use the hello-world program with NG shell enabled. Flash this program to

all motes.

Now you can access the Contiki-NG motes via NG shell. First, test an

RPL root on the first mote. You can type this command:

> rpl-set-root 1

Then, you can check the RPL status using this command:

> rpl-status

You also can check the RPL route table that is applied on this mote.

Type this command:

> routes

You can see my program output that has performed those tasks in

Figure 6-25.

Chapter 6 NetworkiNg

193

Figure 6-25. RPL operations on the first mote

Chapter 6 NetworkiNg

194

Next, you also can check the RPL status and its routes on another mote.

You can type these commands in the NG shell:

> rpl-status

> routes

A sample of the program output is shown in Figure 6-26.

Figure 6-26. RPL operations on the second mote

 IPv6 Multicast
We can categorize data communication based on how the data is

transferred. There are three models in data communication: unicast,

broadcast, and multicast.

Unicast describes communication where a piece of information is sent

from one point to another point. In the Unicast model, there is one sender

and one receiver. Network protocols–based TCP transport such as http,

smtp, ftp, and telnet support the unicast transfer mode.

Chapter 6 NetworkiNg

195

Broadcast is a communication model where a piece of information

is sent from one point to all other points. In this model, there is still one

sender, but the information is sent to all connected receivers. There may

be no receivers. ARP (Address Resolution Protocol) uses broadcast to send

an address resolution query to all computers.

Multicast describes communication where a piece of information is

sent from one or more points to a set of other points. In this model, there

may be one or more senders. The information is distributed to a number of

receivers.

The main difference between multicast and broadcast is to provide

opt-in option for receivers. The receiver that wants to receive data should

register to gain access to the sender. This registration will inform the

network that you are interested and have opted in to receiving data.

Otherwise, the receiver never receives the data. To compare how unicast,

broadcast, and multicast send packets, see Figure 6-27.

Figure 6-27. Unicast, broadcast, and multicast

To work with IPv6 multicast in a Contiki-NG project, you should

add the multicast module to your project. You can add this script in the

Makefile file:

MODULES += os/net/ipv6/multicast

Chapter 6 NetworkiNg

196

We also activate RPL classic routing on the Contiki-NG project. You

can add this script into the Makefile file:

MAKE_ROUTING = MAKE_ROUTING_RPL_CLASSIC

For testing, we can use a program sample from Contiki-NG. We can

use the multicast project from the <contiki-ng>/examples/multicast/

folder. For this demo, we need at least three motes. One mote is deployed

for sink.c and another mote is deployed for root.c. The rest should be

flashed for intermediate.c.

After deploying all programs to the motes, you can try to remote in

to each mote. In general, the sink.c program will listen for incoming

messages from root.c. Before listening for the message, the sink.c

program should join the existing multicast group by calling the join_

mcast_group() function. This program listens on port 3001:

if(join_mcast_group() == NULL) {

 PRINTF("Failed to join multicast group\n");

 PROCESS_EXIT();

}

The root.c program will send a UDP message every second.

This is done by calling the uip_udp_packet_send() function. The

intermediate.c program does not join the existing multicast group. Since

the intermediate.c program has been activated for RPL classic routing,

this program can forward any multicast message.

The demo of the multicast project can be seen in Figure 6-28. You can

see the program output from the sink.c and root.c programs.

Chapter 6 NetworkiNg

197

Figure 6-28. Multicast demo on Sky mote

If you don’t have three motes or more, you still can simulate this

project using COOJA. You can open the <contiki-ng>/examples/

multicast/multicast.csc file in the COOJA application. There are eight

Chapter 6 NetworkiNg

198

motes in this simulation. After loading the project into COOJA, you can run

the multicast simulation. You can see the simulation output in Figure 6-29.

You can see all messages from the motes in the Radio Messages window.

Figure 6-29. Multicast demo on COOJA tool

Chapter 6 NetworkiNg

199

 Contiki-NG NullNet
If you want to investigate a packet among Contiki-NG network stack

layers, you can use NullNet. To work with NullNet, add this script to the

Makefile file:

MAKE_NET = MAKE_NET_NULLNET

If you want to send data, you should the data and its size in the

nullnet_buf and nullnet_len variables, which are pre-defined from net/

nullnet/nullnet.h. Then, send the data by calling NETSTACK_NETWORK.

output(NULL). To receive packets from NullNet, you call the nullnet_

set_input_callback(callback_func) function with the passing callback

function.

For this demo, you can run program samples from the <contiki- ng>/

examples/nullnet folder. There are two demos: broadcast and unicast.

You can run these programs on motes directly or in the COOJA application.

You can see my program output in Figure 6-30 on a mote from the demo

samples on Contiki-NG motes.

Chapter 6 NetworkiNg

200

You can also test this program demo using COOJA. Just select the

nullnet-broadcast.csc and nullnet-unicast.csc files from the COOJA

application. After they are loaded, you can run these demos and see radio

messages from COOJA application and review pack flow.

Figure 6-30. NullNet demo on Sky mote

Chapter 6 NetworkiNg

201

 6LoWPAN Network
6LoWPAN is an acronym for IPv6 over Low-Power Wireless Personal

Area Networks. 6LoWPAN is an open standard defined in RFC 6282. This

standard enables WSN motes to communicate with other systems via an

Internet network.

In this section, we will learn the basics of 6LoWPAN and how to

implement it on the Contiki-NG platform.

 A Brief Introduction
6LoWPAN is a network standard used to enable WSN motes to communicate

with external networks, such as Internet networks. 6LoWPAN uses IPv6 as

the identity for all motes. A 6LoWPAN network is shown in Figure 6-31.

Figure 6-31. 6LoWPAN network

Chapter 6 NetworkiNg

202

WSN networks apply IPv6 for all communication. Each mote can

communicate with the other motes. If one mote wants to communicate

with an external system, such as a server, computer, or any legacy

application in a different network, the mote just sends a message as usual.

The 6LoWPAN router will take responsibility for communication between

internal and external networks.

A 6LoWPAN router will record all addresses from motes and other

network devices that are connected to the 6LoWPAN router. If an external

system such as a server sends a message to one of the WSN motes in the

WSN network, the 6LoWPAN router will forward the message to the mote.

Otherwise, 6LoWPAN will inform the requester of failure.

In a network-stack view, we can compare a 6LoWPAN network to a

WiFi network from the OSI layer side. You can see this comparison in

Figure 6-32.

As you can see in Figure 6-32, 6LoWPAN works on the data-link layer

in the OSI model. This standard uses IEEE 802.15.4 for physical layer

implementation. In the upper layer of the 6LoWPAN, this standard applies

IPv6 on RPL.

Figure 6-32. Comparing WiFi and 6LoWPAN to OSI model

In the next section, we will try to implement 6LoWPAN on Contiki-NG.

Chapter 6 NetworkiNg

203

 Implementing a 6LoWPAN Network
on Contiki- NG
Contiki-NG implements the 6LoWPAN network stack via an RPL border

router that acts as a 6LoWPAN router. You can see a network diagram in

Figure 6-33 for implementing 6LoWPAN on the Contiki-NG platform.

You can put the RPL border router on a computer or a Raspberry Pi or any

network device.

How do you implement an RPL border router in Contiki-NG?

Basically, you need a Contiki-NG mote as the RPL border router mote.

This mote will work as a bridge to serve all requests from motes in the

WSN network or network devices from an external network. To create an

RPL border router mote, you should add the rpl-border-router library

into your project. You can add this script to your Makefile file:

MODULES += os/services/rpl-border-router

Then, run a program, called tunslip6, from Contiki-NG. You can find

it in the <contiki-ng>/tools/ folder. This tool will communicate with a

mote that has already been deployed as an RPL border router via serial

port. You can type this command:

$ sudo ./tunslip6 <prefic> -s <serial_port>

<prefic> is a prefix from the IPv6 address that will assign to all motes

on the RPL border router application. <serial_port> is a serial port from

the mote running the RPL border router program.

Chapter 6 NetworkiNg

204

For this demo, we can run a program sample from the <contiki-

ng>/examples/rpl-border-router/ folder. This project includes an RPL

border router and web server modules. We need at least two motes to

simulate the 6LoWPAN router and its communication.

Compile this project and flash it to one of the Contiki-NG motes. After

it has been deployed to the mote, you can work remotely on the non–

border router mote to see the assigned IPv6 address.

Last, you should run the tunslip6 program on the computer/Raspberry

Pi to which the RPL border router mote was attached. You can run this

command on the rpl-border-router project:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 connect-

router

Figure 6-33. Implementing 6LoWPAN network on Contiki-NG

Chapter 6 NetworkiNg

205

After being executed, that command will run tunslip6 with a default

port. You should probably change the values for the target mote platform

and its serial port.

By default, the RPL border router has an IPv6 address of fd00::1/64.

You can change it in your Makefile. For instance, if you define the prefix

of your IPv6 address as fd00::1/64, all motes within the WSN network

will be assigned as fd00::xxxx. In this demo, my mote is assigned as

fd00::212::4b00::d77::6fd2.

Now you can ping the mote using the assigned IPv6 address from your

computer. For instance, type this command:

$ ping6 fd00::212:4b00:d77:6fd2

This program will get a response from the target mote because this

mote can communicate with the computer through the RPL border router.

You can see the program output in Figure 6-34. I ping my mote from Linux

Ubuntu. It shows my computer can contact the Contiki-NG mote.

If you do not see a list of IPv6 addresses from your motes, you can

restart your RPL border router application, tunslip6. Then, see the list of

IPv6 addresses from the motes.

Chapter 6 NetworkiNg

206

Figure 6-34. Performing ping on one of the Contiki-NG motes from a
computer

Chapter 6 NetworkiNg

207

If you use a program sample from <contiki-ng>/examples/rpl-

border- router/, you should get the web server within the program. You

can test by opening a browser and navigating to http://[ip6_address_

from_mote]. You can see my browser output in Figure 6-35.

Figure 6-35. Accessing web server on Contiki-NG mote from
computer browser

Figure 6-36. Displaying mote neighbor on RPL border router

If you have another mote, you can upload the Contiki-NG firmware to

that mote. Then, the RPL border router will detect it. If you open a browser

and navigate to the IPv6 address from the RPL border router mote, you

should show its neighbor. You should see the IPv6 address from that mote.

For instance, you can see it in Figure 6-36.

Chapter 6 NetworkiNg

208

You can also test it by performing a ping. For instance, the target mote

is fd00::212:4b00:6083. We can perform a ping as follows:

$ ping6 fd00::212:4b00:6083

You should get a response from that mote. You can see it in Figure 6-37.

Sometimes you don’t see the IPv6 address from a new mote in

your browser (Figure 6-36), but you know the local IPv6 address of the

new mote. You can verify it by remoting into the mote with the local

IPv6 address. For instance, the IPv6 address is fe80::212:4b00:6083.

Now, change the prefix to fd00::xxx. The new IPv6 address shows

fd00::212:4b00:6083. Try to ping it.

If you still have problems in which motes are not detected by the RPL

border router, you probably need to restart the RPL border router mote.

Figure 6-37. Performing ping on other mote in WSN network from
computer

Chapter 6 NetworkiNg

209

 6LoWPAN Implementation using COOJA
In the previous section, we learned how to implement 6LoWPAN on

a physical device from a Contiki-NG mote. In this section, we want to

implement 6LoWPAN on a simulation platform through the COOJA tool.

For this demo, we will use the program sample from the <contiki-

ng>/examples/rpl-border-router/ folder. First, you can run the COOJA

application. Create a new simulation project.

Next, you should add a new mote with the Sky platform. You can set

<contiki-ng>/examples/rpl-border-router/border-router.c for the

Contiki firmware, shown in Figure 6-38.

Figure 6-38. Add RPL border router into COOJA

You can compile this Contiki firmware. If there is no error, you can

click the Create button. In this demo, you will create one mote.

The next step is to add the serial socket tool to the mote. You can

do this by right-clicking on the mote. Then, you will see the context

menu shown in Figure 6-39. Select Mote tools for Sky 1 ➤ Serial Socket

(SERVER).

Chapter 6 NetworkiNg

210

You should now see the dialog shown in Figure 6-40. You can run it by

clicking the Start button. We use the default listen port, 60001.

Figure 6-39. Add serial socket tool on RPL border router mote

Figure 6-40. A serial socket dialog to set a listen port

Chapter 6 NetworkiNg

211

Next, you should run tunslip6 from the <contiki-ng>/tools/ folder.

You can open Terminal and navigate to <contiki-ng>/tools/. Then, you

can run this command:

$ sudo ./tunslip6 -a 127.0.0.1 aaaa::1/64

Tunslip6 will run and connect to the RPL border router from a mote

within the COOJA application. You can see the program output from

tunslip6 in Figure 6-41.

Figure 6-41. Running tunslip6 program on local computer

Once tunslip6 is running, you can run the simulation on COOJA. This

makes the mote run. You can see the IPv6 translator of the mote from

tunslip6 in Figure 6-42.

Chapter 6 NetworkiNg

212

You should see the IPv6 address of the COOJA mote in Terminal. For

instance, my mote IPv6 address is aaaa::212:7401:1:101. Now, you can

open a new Terminal. Then, try to perform ping6.

You can type this command:

$ ping6 aaaa::212:7401:1:101

You should get responses from your COOJA mote. You can see my

ping6 response in Figure 6-43.

Figure 6-42. Detecting IPv6 address on tunslip6 tool

Chapter 6 NetworkiNg

213

To get more practice, you can run a web server program on a new mote

in COOJA. Then, you can access that web server from a browser on a local

computer.

Figure 6-43. Pinging a mote from computer

Chapter 6 NetworkiNg

214

 Build Your Own RESTful Server
for Contiki- NG
You have learned how to build a 6LoWPAN with RPL border router. In this

section, we will build a simple project based on 6LoWPAN. We will develop

WebSense, which publishes sensor values to the web server. Since a

Contiki-NG mote has limited resources, it cannot serve many requests. To

address this issue, we can implement a middleware server—for instance, a

RESTful server.

Each mote will send a result of sensing to the RESTful server. Then,

the RESTful server will take over to distribute the data to all requesters.

A RESTful server can run on top of a proven web server, such as Apache,

nginx, and IIS.

WebSense is shown in Figure 6-44. Each mote can communicate with

the RESTful server through the 6LoWPAN router. A client that wants to

consume sensor data should open a connection to the RESTful server

through WebSocket.

Figure 6-44. Logic design for the WebSense project

Chapter 6 NetworkiNg

215

A client system will be implemented using HTML5 with WebSocket

API. Sensor data will be visualized in the HTML5 application. Also, the

WebSense RESTful server will apply Node.js.

We will implement this WebSense project in the next section.

 Preparation
First, we should have two mote devices. One mote will be used for

the 6LoWPAN router. The rest will be applied for WebSense node

implementation.

Since our RESTful server uses Node.js, your computer should install

Node.js runtime. You should install all required libraries to run Node.js.

Type these commands:

$ sudo apt-get update

$ sudo apt-get install build-essential

We will use Node.js LTS version. For instance, I use Node.js LTS 6.x.

You can install it by typing these commands:

$ curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -

$ sudo apt-get install nodejs

The next step is to develop a program for the project. We will do so in

the next section.

 Implementing the Demo
We will implement the WebSense project as shown in Figure 6-45. It is a

physical design from our demo. We deploy the RPL border router into one

of the motes. This mote will be attached to a computer that will deploy

Node.js too. This project will use real mote devices. You can also use

COOJA for testing.

Chapter 6 NetworkiNg

216

Computers and server machines should be connected to a network in

order to simulate sensor data visualization.

Figure 6-45. Implementing WebSense project

To implement this demo, we will perform the following tasks:

• Implement 6LoWPAN router.

• Develop a program for WebSense node.

• Develop a program for RESTful server.

• Test the project.

Each task will be presented in the following sections.

Chapter 6 NetworkiNg

217

 Implementing 6LoWPAN Router

To implement the 6LoWPAN router, we deploy the RPL border router

module into the mote. In a previous section, you learned about 6LoWPAN

router implementation. We will use it again in this project.

Select one of the motes to become a 6LoWPAN router. Attach it into a

computer and run connect-router or run tunslip6 programs manually

with specific port and address settings.

 Writing a Program for WebSense Node

In this section, we will develop a program for the WebSense node. The

goal of this program is to serve all requests for sensor data. Technically, the

program will run a mini web server and serve HTTP requests. Once the

RESTful server requests sensor data, this node will send it. To simplify this

demo, the program will generate a random value for sensor data.

You can see the project structure in Figure 6-46. You can create a

folder, called websense. We put some files in it, such as Makefile, project-

conf.h, and websense.c. For web server implementation, we use the

httpd-simple module from Contiki-NG.

Figure 6-46. Project structure for WebSense node

Chapter 6 NetworkiNg

218

The application will serve requests for sensor data. This task will be

handled in websense.c in generate_routes() function. You can write this

code as follows:

static

PT_THREAD(generate_routes(struct httpd_state *s))

{

 char buff[15];

 PSOCK_BEGIN(&s->sout);

 int temperature = 15 + rand() % 25;

 sprintf(buff,"{\"temp\":%u}", temperature);

 printf("send json to requester\n");

 SEND_STRING(&s->sout, buff);

 PSOCK_END(&s->sout);

}

We also need to modify httpd-simple.c in order to cover JSON

requests. We declare http_content_type_json for JSON content. Then, we

pass it into the HTTP header as follows:

const char http_content_type_json[] = "Content-type:

application/json\r\n\r\n";

static

PT_THREAD(send_headers(struct httpd_state *s, const char

*statushdr))

{

 /* char *ptr; */

 PSOCK_BEGIN(&s->sout);

 SEND_STRING(&s->sout, statushdr);

Chapter 6 NetworkiNg

219

 SEND_STRING(&s->sout, http_content_type_json);

 PSOCK_END(&s->sout);

}

 Writing a Program for RESTful Server

A RESTful server will run a web server on top of Node.js. We build the

project structure that is shown in Figure 6-47. To visualize sensor data, we

apply jQuery (https://jquery.com) and Flot (http://www.flotcharts.

org) libraries for JavaScript. Download those files. Then, you can put those

files into the <project>/public/js folder.

Figure 6-47. Project structure for RESTful server

The application runs with the Node.js runtime. Make sure you

have already installed it. Next, we install required the libraries for the

RESTful server. We will use Express (http://expressjs.com) for the

web framework and Socket.io (https://socket.io) for WebSocket

implementation for Node.js.

First, create a package.json file inside the project folder. You can type

these scripts:

{

 "name": "sensor",

 "version": "1.0.0",

 "description": "visualizing real-time sensor",

Chapter 6 NetworkiNg

https://jquery.com/
http://www.flotcharts.org/
http://www.flotcharts.org/
http://expressjs.com/
https://socket.io/

220

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Agus Kurniawan",

 "dependencies": {

 "express": "^4.15.2",

 "socket.io": "^2.0.4",

 "request": "latest"

 }

}

If done, save this file. Now, you can install all required libraries. You

can type this command in the project folder. Make sure your computer is

connected to the Internet:

$ npm install

Now you can write index.js for the application. This program will

open a port 3000 to listen for HTTP requests. The program also requests

sensor data from the WebSense node every three seconds. You can type

these scripts for index.js:

var express = require('express');

var request = require('request');

var app = express();

var http = require('http').Server(app);

var io = require('socket.io')(http);

app.use(express.static('public'));

app.get('/', function(req, res){

 res.sendFile(__dirname + '/index.html');

});

Chapter 6 NetworkiNg

221

io.on('connection', function(socket) {

 var dataPusher = setInterval(function () {

 request.get('http://[fd00::212:4b00:797:6083]/',function

(err,res,body){

 if(err){

 console.log(err);

 return;

 }

 var obj = JSON.parse(body);

 socket.broadcast.emit('data', obj.temp);

 });

 }, 3000);

 socket.on('disconnect', function() {

 console.log('closing');

 });

});

http.listen(3000, function(){

 console.log('listening on *:3000');

});

You should change the IPv6 address of the WebSense node.

Next, we create index.html in the <project>/public folder. This

program will communicate with the RESTful server though JSON

communication. If the program receives sensor data, it will be stored into

an array.

Chapter 6 NetworkiNg

222

Then, the program will create a graphic for visualizing sensor data. You

can type theses scripts for index.html:

<html>

<head>

 <meta http-equiv="Content-Type" content="text/html;

charset=utf-8">

 <title>Visualizing Real-Time Sensor Data</title>

 <script language="javascript" type="text/javascript"

src="/js/jquery-3.2.1.js"></script>

 <script language="javascript" type="text/javascript"

src="/js/jquery.flot.js"></script>

 <script src="/socket.io/socket.io.js"></script>

 <script language="javascript" type="text/javascript">

 var socket = io.connect();

 var items = [];

 var counter = 0;

 socket.on('data', function (data) {

 items.push([counter, data]);

 counter = counter + 1;

 if (items.length > 20)

 items.shift();

 $.plot($("#placeholder"), [items]);

 });

 </script>

</head>

<body>

<h1>Real-Time Sensor Data Visualization</h1>

<div id="placeholder" style="width:600px;height:300px;"></div>

</body>

</html>

Chapter 6 NetworkiNg

223

 Testing the Demo
Ensure the programs for the motes are already deployed. Now you can run

the RESTful server by typing this command:

$ node index.js

Firstly, we open a browser and navigate to the IPv6 address of the

6LoWPAN router. You should see the IPv6 addresses from the motes as

shown in Figure 6-48.

Figure 6-48. Accessing web server from RPL border router mote

After the RESTful server is running, you can test it by opening a

browser. Navigate to the RESTful server’s IP address with port 3000.

For instance, you can open a browser on your local server and navigate

to http://localhost:3000. You should see sensor data visualization.

You can see this in Figure 6-49.

Chapter 6 NetworkiNg

224

What’s next?

You can create more sensor sources in different sensor types from

several motes. Then, you can modify sensor data visualization to cover

multiple sensor types.

 Summary
We have explored Contiki-NG networking. We have learned about

routing models in Contiki-NG. Furthermore, we have worked with IPv6

multicast. We also implemented 6LoWPAN on physical motes and COOJA

simulations. Last, we build sensor data visualization in real-time from a

physical mote.

In the next chapter, we will learn to work with storage management in

Contiki-NG.

Figure 6-49. Accessing WebSense application using a browser

Chapter 6 NetworkiNg

225© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_7

CHAPTER 7

Storage
Wireless Sensor Networks (WSN) are designed to perform sensing and

then send the sensing data to a gateway or a certain server. You probably

will want to perform some computations before sending the data. These

computations involve some parameters that should be kept by WSN

devices. Keeping data in a WSN device requires storage. In this chapter, we

will learn how to work with storage in Contiki-NG.

The following is a list of topics that will be covered in this chapter:

• Storage models in Contiki-NG

• Working with local storage

• Working with Coffee file system

• Contiki-NG and MySQL

 Storage Models in Contiki-NG
Contiki-NG is designed for small devices with optimized computation.

You will probably need to store data from your project, such as sensor data

or program parameters. These data can be persistent data. The data also is

used to analyze and investigate something from your project.

226

Storage models in Contiki-NG are shown in Figure 7-1. We define a

storage model of Contiki-NG based on where the data will be stored. We

can put our data in internal or external storage. Internal storage is a part

of the internal MCU storage, such as ROM and RAM. Otherwise, we can

extend our Contiki-NG storage by adding external storage.

From Figure 7-1, we can see that external storage comes in two models:

local storage and external storage. We can attach any external storage, such

as SD card and micro SD card, to a Contiki-NG mote. Then, we can save

our data into these storage devices through SPI or I2C protocols. Remote

storage can be represented as network storage. This means Contiki-NG

will save data to a remote data server, such as MySQL, PostgreSQL, SQL

Server, or Oracle, via a network protocol.

Figure 7-1. Storage models in Contiki-NG

Chapter 7 Storage

227

Each storage model in Contiki-NG has advantages and disadvantages.

You can choose which model based on your needs. You can see the storage

model comparison table in Table 7-1.

Table 7-1. Comparing Storage Mmodels in Contiki-NG

Features ROM RAM Local Storage Remote Storage

Can read? Yes Yes Yes Yes

Can write? No Yes Yes Yes

access speed Fast Fast Moderate Moderate/Slow

access

protocols

Check MCU

datasheet

from the mote

Check MCU

datasheet from

the mote

SpI, I2C http, reStful,

tCp

ROM and RAM provide good speed for reading and writing data, but

not all MCU devices have large storage sizes for the ROM and RAM. A local

storage approach is a good choice if you plan to perform logging for system

evaluation. The remote storage option is best if you need to perform data

consolidation. You can do data analysis and predictive analytics from your

collected data.

 Working with Local Storage
In this section, we will learn how to work with local storage in Contiki-

NG. We will review how a program uses resources in RAM and ROM via

Contiki-NG. For instance, we want to analyze the hello-world program from

Contiki-NG samples. I will test it with targeting on LaunchPad CC2650.

First, we compile the hello-world program. You can type these commands:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 savetarget

Chapter 7 Storage

228

Then, we analyze resource allocation for the hello-world program

using this command:

$ size hello-world.srf06-cc26xx

You can see the program output in Figure 7-2. text shows the size of the

code section in bytes that will be stored in ROM. data and bss show sections

that contain variables and will be stored in RAM. From Figure 7-2, we can

see that the hello-world program fits in ROM with its 50644-byte size.

Figure 7-2. Analyzing binary program on Contiki-NG with
LaunchPad CC2650 platform

If you use the Sky platform, you can verify the hello-world program size

with a similar approach. You can type these commands:

$ make TARGET=sky

$ make TARGET=sky savetarget

$ size hello-world.sky

Chapter 7 Storage

229

After executing those commands, you can see the program output in

Figure 7-3. This program reserves 41126 bytes in ROM.

Figure 7-3. Analyzing binary program on Contiki-NG with Sky
platform

If you want to get a detail of the program address usage from RAM, call

this command:

$ make hello-world.ramprof

After it has been executed, you should see a list of program addresses

in RAM. A sample of program output for the LaunchPad CC2650 board

can be seen in Figure 7-4. For instance, the events program is fitted on

00000384.

Chapter 7 Storage

230

We also can analyze program addresses in ROM from our program.

You can type this command from the hello-world program:

$ make hello-world.flashprof

You should see a list of program addresses. A program output can be

seen in Figure 7-5 for the LaunchPad CC2650 board.

Figure 7-4. A list of symbol program sizes on Contiki-NG RAM

Chapter 7 Storage

231

Figure 7-5. A list of symbol program sizes on Contiki-NG ROM

 Coffee: File System in Contiki-NG
Coffee is one type of file system implementation in Contiki- NG.

Technically, Coffee is designed for making a virtual file system on a

RAM stack of Contiki-NG. We can find the Coffee library in the

Chapter 7 Storage

232

<contiki- ng- root>/os/storage/cfs/ folder. There are three files:

cfs.h, cfs- coffee.h, and cfs-coffee.c. This module implements basic

operations for reading and writing files, like the POSIX file API.

Since Coffee uses RAM as storage, it’s a temporary storage option. You

can use this storage to store your temporary data, such as computation

parameters and a counter number. You should be aware that Coffee data is

deleted when the Contiki-NG mote is restarting or stopping.

We access a file through the Coffee File System (CFS) library. This library

API interface can be found in the <contiki-ng-root>/os/storage/cfs/

cfs.h file. You can see a list of functions from the cfs.h file in Table 7- 2.

Table 7-2. CFS Functions from cfs.h Header File

Functions Description

int cfs_open(const char *name, int flags) open a file

void cfs_close(int fd) Close a file

int cfs_read(int fd, void *buf,

unsigned int len)

read data from a file

int cfs_write(int fd, const void *buf,

unsigned int len)

Write data to a file

cfs_offset_t cfs_seek(int fd,

cfs_offset_t offset, int whence)

Move to a specific position in

a file

int cfs_remove(const char *name) remove a file

int cfs_opendir(struct cfs_dir *dirp,

const char *name)

open a directory

int cfs_readdir(struct cfs_dir *dirp,

struct cfs_dirent *dirent)

read a directory entry

void cfs_closedir(struct cfs_dir *dirp) Close a directory

Chapter 7 Storage

233

To work with CFS, your project should include the cfs library. You can

add it to the Makefile file. Add this script:

MODULES += os/storage/cfs

For this demo, we will create a simple program to show how to work

with CFS on Contiki-NG. We will create a file and write data to that file.

Next, we will open a file and read data from the file. In this demo, I will use

the Sky platform.

First, create a folder, called file-cfs-demo. You can add two files,

Makefile and file-cfs-demo.c. Configure the project in Makefile. You

can write these scripts for the Makefile file:

CONTIKI_PROJECT = file-cfs-demo

MODULES += os/storage/cfs

CONTIKI = ../..

all: $(CONTIKI_PROJECT)

include $(CONTIKI)/Makefile.include

You probably need to change the CONTIKI value to your Contiki-NG

project directory. Now, you can write the program for the file-cfs-

demo.c file. Write the following code skeleton from our demo:

#include "contiki.h"

#include "cfs/cfs.h"

#include "cfs/cfs-coffee.h"

#include "lib/crc16.h"

#include "lib/random.h"

#include <stdio.h>

#include <string.h>

Chapter 7 Storage

234

PROCESS(coffee_demo_process, "CFS/Coffee demo process");

AUTOSTART_PROCESSES(&coffee_demo_process);

static void

coffee_file_demo(void)

{

 // coffee file demo

}

PROCESS_THREAD(coffee_demo_process, ev, data)

{

 PROCESS_BEGIN();

 printf("Coffee file demo...\n");

 coffee_file_demo();

 PROCESS_END();

}

This program will run the coffee_file_demo() function on the main

program. We will implement the CFS demo on that function.

First, we initialize program variables, including file descriptors for

opening and reading file handlers:

 int wfd, rfd, afd;

 unsigned char buf[32];

 int r;

 wfd = rfd = afd = -1;

We set all buffer data with certain values:

 for(r = 0; r < sizeof(buf); r++) {

 buf[r] = r + 4;

 }

Chapter 7 Storage

235

We open a file, mycfs, by calling the cfs_open() function:

 printf("opening file for writing\n");

 wfd = cfs_open("mycfs", CFS_WRITE);

 if(wfd < 0) {

 printf("Error creating file\n");

 return;

 }

Next, we write data to a file by calling the cfs_write() function. We

also print all data to Terminal so you can see the data on the Contiki-NG

Terminal:

 printf("writing data into file\n");

 printf("write: ");

 for(r = 0; r < sizeof(buf); r++) {

 printf("%d ", buf[r]);

 }

 printf("\n");

 r = cfs_write(wfd, buf, sizeof(buf));

 if(r < 0) {

 printf("Error writing data into file\n");

 cfs_close(wfd);

 cfs_remove("mycfs");

 return;

 } else if(r < sizeof(buf)) {

 printf("Error writing data into file\n");

 cfs_close(wfd);

 cfs_remove("mycfs");

 return;

 }

Chapter 7 Storage

236

After writing the data, we should close the opened file:

 printf("close file\n");

 cfs_close(wfd);

We have created a file and written data into the file. We will continue to

read data from a file. We use a different file descriptor that we have declared.

We open a file and read data from the file using the cfs_read() function:

 printf("opening file for reading\n");

 rfd = cfs_open("mycfs", CFS_READ);

 if(rfd < 0) {

 printf("Error opening file\n");

 cfs_remove("mycfs");

 return;

 }

 printf("reading data\n");

 memset(buf, 0, sizeof(buf));

 r = cfs_read(rfd, buf, sizeof(buf));

 if(r < 0) {

 printf("Error reading file\n");

 cfs_close(rfd);

 cfs_remove("mycfs");

 return;

 }

After reading the data, we print it to Terminal. Then, we close that file:

 printf("read: ");

 for(r = 0; r < sizeof(buf); r++) {

 printf("%d ", buf[r]);

 }

 printf("\n");

 printf("close file\n");

 cfs_close(rfd);

Chapter 7 Storage

237

Last, we delete our created file, since Contiki-NG has limited resources.

Save this program. Then, you can compile and flash it to your Contiki-

NG board. For instance, I flash this program to my Sky board:

$ make TARGET=sky

$ make TARGET=sky savetarget

$ make file-cfs-demo.upload

Now, you can perform monitoring on the target board. You can type

this command:

$ make login

You should see the program output in Terminal. If not, you can reset

your board. A sample of the program output can be seen in Figure 7-6.

Figure 7-6. Coffee file system demo on Sky platform

Chapter 7 Storage

238

 Demo: Contiki-NG and MySQL
In this section, we will build a Contiki-NG program that interacts with

MySQL. The object of the demo is to show how Contiki-NG can store

sensor data in a DBMS (Database Management System) system.

For this demo, we choose MySQL for the DBMS. In general, we will

build our demo implementation as shown in Figure 7-7.

Figure 7-7. A design for Contiki-NG and MySQL demo

All sensor devices are attached to Contiki-NG motes that are deployed on

a private WSN network. To communicate with an outside network, we will use

a 6LoWPAN router. You learned about the 6LoWPAN router in Chapter 6.

We also implement middleware that works as a gateway. The middleware

retrieves sensor data from Contiki-NG. Then, it stores sensor data into

MySQL. We will develop this middleware using Node.js. Data communication

between a middleware application and Contiki-NG uses JSON.

This demo needs two Contiki-NG motes at least. One mote will be

used as the 6LoWPAN router. The rest will be deployed as sensor programs.

In this demo, we will perform some tasks as follows:

• Design and build database

• Build 6LoWPAN router

Chapter 7 Storage

239

• Develop Contiki-NG sensor application

• Develop Middleware application

We implement each task in the next sections.

 Preparation
We need to prepare our demo. First, we install MySQL on a computer that

is connected to the same network. For Ubuntu/Debian, you can install

MySQL by typing these commands in Terminal:

$ sudo apt-get update

$ sudo apt-get install mysql-server

$ mysql_secure_installation

Another option is to download MySQL for your platform from

https://www.mysql.com/downloads/.

You also should install MySQL Workbench. This is an optional

task. MySQL Workbench is designed to build a design database and

manage MySQL Server. You can install MySQL Workbench by typing this

command:

$ sudo apt install mysql-workbench

 Design a Database
In this section, we will build a database on MySQL. We create a database,

called contiki-ng-db. Furthermore, we should create a table to store the

sensor data.

We can create the database and table using MySQL Workbench. Create

a table on the database, called sensor. You can create a table with the

scheme that is shown in Table 7-3.

Chapter 7 Storage

https://www.mysql.com/downloads/

240

This design is shown in Figure 7-8.

Figure 7-8. Database design for the project

Table 7-3. Designing a Table for Demo

Table Field Properties

idsensor Datatype: INt

Checked: primary Key (pK), Not Null (NN), auto Increment (aI)

sensor_name Datatype: VarChar (15)

Checked: Not Null (NN)

sensor_val Datatype: FLoat

Checked: Not Null (NN)

created Datatype: DatetIMe

Once done, you should deploy the database and table designs to

MySQL Server. You also must configure security access, creating one user

to access the database that will used for your application.

Chapter 7 Storage

241

 Build a 6LoWPAN Router
In this section, we will develop programs for Contiki-NG, using one

Contiki-NG mote as a 6LoWPAN router. You already learned about that

topic in Chapter 6. You can run the program sample from the <contiki-

ng>/examples/rpl-border-router/ folder.

Compile this project and flash it to one of the Contiki-NG motes. In

this demo, I use a LaunchPad CC2560 board for testing. After deploying it

to the mote, you can build the 6LoWPAN router by typing this command

in Terminal:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 connect- router

You can change the TARGET and BOARD if you use a different Contiki-NG

platform.

 Develop a Contiki-NG Sensor Application
We build sensor applications to perform sensing. For simple problems, I

generate random values for the temperature and humidity sensors. You

can implement your own real sensors for your project.

We will modify the websense program from the previous chapter.

We call this project websense-db. You can see the project structure in

Figure 7-9. We construct two sensor data: temperature and humidity. In

the websense-db.c file, we add our sensor data in the generate_routes()

process:

static

PT_THREAD(generate_routes(struct httpd_state *s))

{

 char buff[35];

 PSOCK_BEGIN(&s->sout);

 //SEND_STRING(&s->sout, TOP);

Chapter 7 Storage

242

 int temperature = 15 + rand() % 25;

 int humidity = 80 + rand() % 10;

 sprintf(buff,"{\"temp\":%u,\"hum\":%u}", temperature, humidity);

 printf("send json to requester\n");

 SEND_STRING(&s->sout, buff);

 //SEND_STRING(&s->sout, BOTTOM);

 PSOCK_END(&s->sout);

}

You can modify this code to replace the random values with real results

from your sensor readings.

Figure 7-9. Project structure of websense-db

 Develop Middleware Application
This middleware application has the responsibility of retrieving sensor

data from Contiki-NG and then sending these data to MySQL Server.

This application will be developed using Node.js. Set up the Node.js

development environment by downloading it from http://nodejs.org.

To access MySQL from the Node.js application, you should install the

MySQL driver for Node.js. You can use the official driver from MySQL. In this

demo, we will use the mysql library. You can see it at https://github.com/

mysqljs/mysql.

Chapter 7 Storage

http://nodejs.org/
https://github.com/mysqljs/mysql
https://github.com/mysqljs/mysql

243

First, we create a folder, called sensor-db. Then, we create a package.

json file that consists of the required libraries for our application. You can

write the following scripts to the package.json file:

{

 "name": "sensor-db",

 "version": "1.0.0",

 "description": "saving sensor data to MySQL",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Agus Kurniawan",

 "dependencies": {

 "express": "^4.15.2",

 "mysql": "^2.15.0",

 "request": "latest"

 }

}

Save these scripts. Now, you should install all the required libraries by

typing this command:

$ npm install

This action will download all declared libraries in the package.json file.

Next, we build the Node.js program by creating a file, index.js. The

program will run as web server and retrieve sensor data every five seconds.

First, we declare our variables and database parameters in the index.js file:

var express = require('express');

var request = require('request');

var app = express();

var http = require('http').Server(app);

Chapter 7 Storage

244

var mysql = require('mysql');

var connection = mysql.createConnection({

 host : 'localhost',

 user : '<user>',

 password : '<db-password>',

 database : 'contiki-ng-db'

});

Change MySQL database parameters such as user and password as

needed.

We connect to MySQL and run a web server through an ExpressJS

engine. In this case, I use a web server with port 3000. You should change it

to your own port. See here:

connection.connect();

app.use(express.static('public'));

app.get('/', function(req, res){

 res.send('WebSense DB');

});

http.listen(3000, function(){

 console.log('listening on *:3000');

 console.log('websense db was started');

});

Last, we retrieve the sensor data from the Contiki-NG mote. For

this demo, I set a specific IPv6 address from the Contiki-NG mote:

fd00::212:4b00:797:6083. You can change it to your Contiki-NG IPv6

address.

Chapter 7 Storage

245

After obtaining the sensor data, we send this data to MySQL by calling

query(). We use a SQL statement to insert the data into the MySQL

database:

var dataPusher = setInterval(function () {

 request.get('http://[fd00::212:4b00:797:6083]/',

function(err,res,body){

 if(err){

 console.log(err);

 return;

 }

 var obj = JSON.parse(body);

 console.log(obj);

 connection.query({

 sql: 'INSERT INTO sensor(sensor_name,sensor_val,

created) values(?,?,now())',

 timeout: 40000, // 40s

 values: [obj.temp,obj.hum]

 }, function (error, results, fields) {

 if(error){

 console.log(err);

 return;

 }

 console.log('inserted data to MySQL');

 });

 });

}, 5000);

Save all the code. We will now test our program.

Chapter 7 Storage

246

 Testing the Project
In this section, we will test our project. Make sure you have deployed the

Contiki-NG program for the 6LoWPAN router and sensor mote.

First, we activate the 6LoWPAN router. Navigate to the <contiki-ng>/

examples/rpl-border-router/ folder. Then, run the 6LoWPAN router

application. I run it on LaunchPad CC2650:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 connect- router

You should change the target and board to your own Contiki-NG board.

After running the program, you should turn on all sensor devices on

the Contiki-NG motes. You should see all neighboring Contiki-NG motes.

You can see my program output from the 6LoWPAN router program in

Figure 7-10.

Figure 7-10. Program output from rpl-border-router application

Chapter 7 Storage

247

Now, you can run the middleware application. Open a new Terminal

window and navigate to the middleware application. Then, type this

command to run it:

$ node index.js

You should see sensor data from the Contiki-NG mote. Then, it is

stored in the MySQL database. You can see the program output from the

middleware application in Figure 7-11.

Figure 7-11. Program output from middleware application

You also can verify the sensor data in MySQL. Open MySQL

Workbench. You should see all sensor data, as in Figure 7-12.

Chapter 7 Storage

248

Figure 7-12. Viewing data in MySQL

 Summary
We have learned how to work with storage. We also reviewed the Coffee File

System (CFS) in Contiki-NG. We also tested for file manipulation using

CFS. Last, we developed a project to interact with the MySQL database.

We store all sensor data in the database.

In the next chapter, we will learn how to work with a Cloud platform in

Contiki-NG and then interact with it.

Chapter 7 Storage

249© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2_8

CHAPTER 8

Contiki-NG and
Cloud Server
Cloud technology provides a serverless solution to many IT problems. It

eliminates the effort required to provide hardware and software. These

services could be SaaS (Software as Service), PaaS (Platform as Service), or

IaaS (Infrastructure as Service). In this chapter, we will integrate Contiki-

NG with Cloud servers. We will also review several Cloud platforms and

then try to work with them.

The following is a list of topics we will cover in this chapter:

• Introduce Cloud server

• What is Cloud computing?

• Types of Cloud-computing deployments

• Review of Cloud server platforms

• Working with Contiki-NG and Microsoft Azure

• Working with Contiki-NG and Amazon AWS

250

 Introduce Cloud Server
If you have experience with the software development cycle, you know it

starts with getting requirements and ends with developing and deploying

to the production machine servers. We should provide a server location,

called a data center, which is used to house the machine servers.

Building a data center is not easy. Technically, a data center has class

levels. Each class level has some criteria that should be met. We also

should factor in electricity usage. The physical security of the server can be

one of the key factors when you build your own data center.

You can also bring your machine servers to commercial data centers.

In this option, you should think about security and policy. Whether you

put your machine servers in your own data center or in a commercial data

center, you still should manage all software within the machines yourself.

Decide whether you should manage all your machines in one location.

Cloud computing can solve some issues related to configuring and

deploying applications on machines. Several Cloud-computing companies

provide automatic deployment and configuration for your application.

They also provide geo-location server services that enable your application

to deploy only in some regions. These services can serve all requests from

different locations. You can optimize customer relationships by bringing

your application to a customer’s local region.

Figure 8-1 shows how to deploy an application to a physical machine.

You can select one of the options based on your needs. Each option has

pros and cons. In this chapter, we will focus on how to integrate Contiki-

NG with Cloud-computing technology. We will communicate with Cloud

servers from the Contiki-NG environment.

Chapter 8 Contiki-nG and Cloud Server

251

 Why Use Cloud Computing?
Cloud computing is designed to offer high flexibility for computing

processes performed over the Internet. One of the big questions related

to Cloud computing is why do we use it? This is a challenging question,

especially for those who have already deployed an application or system

on on-premises servers (local servers). For newcomers, bringing a

deployment to Cloud computing is new ground.

Figure 8-1. Application deployment strategies on physical machine

Chapter 8 Contiki-nG and Cloud Server

252

 Cloud-Computing Services
To integrate our application with Cloud computing, we should know the

types of Cloud-computing services. In general, we can categorize Cloud-

computing services as one of the following:

• Infrastructure-as-a-service (IaaS)

• Platform-as-a-service (PaaS)

• Software-as-a-service (SaaS)

Infrastructure-as-a-service (IaaS) provides a rent infrastructure, such

as virtual machines (VMs), storage, networks, and operating systems.

These providers serve your needs for machine servers, which are included

in its managing dashboard. In general, you just pay for the resources you

have already used.

Platform-as-a-service (PaaS) supplies an on-demand environment

for developing and testing. You can create server and mobile applications

without worrying about setting up or managing resource infrastructure.

Software-as-a-service (SaaS) provides all delivering software for your

daily activities or certain projects. Providers usually offer subscription

schemes for all delivering software. We can subscribe to and stop SaaS at

any time.

 Types of Cloud-Computing Deployments
To understand how to deploy Cloud computing, we should know several

types of Cloud computing, such as the following:

• Public Cloud

• Private Cloud

• Hybrid Cloud

Chapter 8 Contiki-nG and Cloud Server

253

Public Cloud is a common type of Cloud deployment. You install and

configure your application/platform on a provider’s Cloud. Your data will

be stored into their storage. Some companies probably decline to store

their data on public storage servers due to compliance policies.

A private Cloud enables your solution to be deployed into local servers.

Cloud providers usually provide software to build a private Cloud with

their platform.

Last, a hybrid Cloud combines the public and private Cloud

approaches. You can work with a hybrid Cloud to ensure your business is

run well.

 Review Cloud Server Platforms
In this section, we will review several Cloud platforms that provide Cloud

services–based IoT (Internet of Thing). This is a brief review so you are

familiar with them when we implement IoT by enabling Cloud technology.

 Microsoft Azure
Microsoft is a well-known company that provides software services.

We all know Microsoft products, such as Windows, Microsoft Office,

and SQL Server. Now, Microsoft has expanded its software business by

implementing Cloud services, called Microsoft Azure.

You can easily set up Windows servers on Microsoft Azure. All

configurations are done though the Azure portal. You can access it at

https://azure.microsoft.com. If you are a developer or a consultant with

a Microsoft technology background, Microsoft Azure is a good choice to

deploy Cloud computing.

Microsoft Azure is a global Cloud provider that provides Cloud services

in several country regions. It can serve your needs locally.

Chapter 8 Contiki-nG and Cloud Server

https://azure.microsoft.com/

254

 Amazon AWS
Amazon started with its e-Commerce business. To support that business,

Amazon built an IT business with Cloud technology, called Amazon AWS.

Now Amazon AWS is a leading Cloud provider worldwide, available in

most IT market segments. Storage and push notification services from

Amazon AWS can be integrated with your mobile application. There are

a lot of AWS services for your project needs. You can learn more about

Amazon AWS, including registration, from the official website at

 https://aws.amazon.com.

You can integrate IoT projects with Amazon AWS. It provides a Cloud

service, called AWS IoT. This service can serve your IoT needs. You can

find it at https://aws.amazon.com/iot/.

 Google Cloud
If you want to search for something online, you probably use Google.

That’s Google. Google Cloud provides a solution for your Cloud needs. You

can find Google Cloud services at https://Cloud.google.com.

If you are an Android developer, Google Cloud is probably the best

choice to integrate with your mobile application.

 IBM Cloud
IBM has long history with servers and software. This software provides

most IT services. In the Cloud-computing era, IBM now offers Cloud

services, called IBM Cloud, to leverage your business. To get more

information about IBM Cloud, you can visit the IBM Cloud site at

https://www.ibm.com/Cloud/.

Chapter 8 Contiki-nG and Cloud Server

https://aws.amazon.com/
https://aws.amazon.com/iot/
https://cloud.google.com/
https://www.ibm.com/Cloud/

255

 Comparing Features of All Global Clouds
If you are interested in Cloud services from various worldwide Cloud

providers, I recommend to read this site: http://compareCloud.in. You

can see a feature comparison among Cloud providers such as AWS, Azure,

Google Cloud, IBM Cloud, Oracle Cloud, and Alibaba Cloud.

 Connecting Contiki-NG Motes to
Cloud Servers
Contiki-NG is designed for IPv6 networks. Several Contiki-NG hardware

devices have network protocol capabilities to connect to Cloud servers

directly. In general, we need a 6LoWPAN router as a bridge between

Contiki-NG motes and a Cloud server.

In Figure 8-2, we show a simple model of how Contiki-NG motes

communicate with Cloud servers. We put in a 6LoWPAN router as a bridge

to all Contiki-NG motes. The 6LoWPAN router will perform request/

response mapping between Contiki-NG motes and outside servers.

Figure 8-2. Communicating between Contiki-NG and Cloud
server

Chapter 8 Contiki-nG and Cloud Server

http://comparecloud.in/

256

In the next section, we will build two demos to perform a

communication between Contiki-NG and Cloud servers. For these demos,

we will use Microsoft Azure and Amazon AWS.

 Demo 1: Contiki-NG and Microsoft Azure
This demo has the objective of showing how to communicate between

Contiki-NG and Microsoft Azure. We will perform the demo described in

Figure 8-3. We will develop three applications to implement this demo, as

follows:

• Sensor application on Contiki-NG

• 6LoWPAN router application on Contiki-NG and

computer

• Middleware application

• Azure IoT Hub application

The middleware application will retrieve sensor data from Contiki-NG

and then push that data to the Azure IoT Hub. Furthermore, the Azure IoT

Hub will distribute the sensor data to all subscribed devices. You can see

this process in Figure 8-3.

Chapter 8 Contiki-nG and Cloud Server

257

Next, we will implement our demo by performing some tasks, as follows:

• Prepare to set up Azure IoT.

• Develop application for Contiki-NG and middleware

application.

• Test all programs.

Each task will be implemented in the next section.

 Preparation
Before we develop a program in which Contiki-NG will access Azure

IoT Hub, we should prepare Microsoft Azure. You should have an active

account for Microsoft Azure to perform this demo. To prepare our

development for Azure IoT Hub, we perform the following tasks:

• Create Azure IoT Hub.

• Add a new IoT device for Azure IoT.

• Copying IoT device keys for developing program.

Each step will be performed in the next section.

Figure 8-3. Contiki-NG motes communicate with AWS IoT Hub

Chapter 8 Contiki-nG and Cloud Server

258

 Creating Azure IoT Hub

To create Azure IoT Hub, you should have an active Azure account. You

can log on to https://portal.azure.com/ with your account. On the left-

hand menu on the Azure dashboard, click “IoT Hub” so you see the Azure

IoT Hub dashboard, as shown in Figure 8-4.

Figure 8-4. Azure IoT Hub dashboard

Fill in all required fields to create a new IoT Hub, which is included in

your Azure subscription scheme. For instance, I created an Azure IoT Hub,

called contiki-ng. After creating an Azure IoT Hub, you should see it on the

Azure IoT Hub dashboard, which is shown in Figure 8-5.

Chapter 8 Contiki-nG and Cloud Server

https://portal.azure.com/

259

The next step is to register a new IoT device in order for it to access

Azure IoT Hub. We will perform this task in the next section.

 Registering a New IoT Device

Each IoT device that will access Azure IoT Hub should be registered in

order to get an access key. Open your Azure IoT Hub and then click the

“IoT Devices” menu so you see a list of IoT devices.

You can register a new IoT device by clicking the “+ Add” icon. You

should get a registration form, shown in Figure 8-6.

Fill in your IoT device name. Select “Symmetric Key” for authentication

type. You can check the box for “Auto Generate Keys” to generate keys

automatically. Please select “Enable” for activating your IoT device. Click

the Save button if you are done to add the IoT device.

Figure 8-5. Created Azure IoT Hub for Contiki-NG

Chapter 8 Contiki-nG and Cloud Server

260

 Copying Device Keys

After you have registered all IoT devices that will access Azure IoT Hub,

you need to copy all IoT device keys. To obtain these keys, you can click

your IoT devices on the Azure IoT Hub to get detailed information from the

device.

You should see the IoT device key in the “Primary key” and

“Connection string” fields. You can see it in Figure 8-7. You can copy the

text that is indicated by an arrow. We will use these keys in our program.

Next, we will develop programs for Contiki-NG and a middleware

application to communicate with the Azure IoT Hub. We will perform this

task in the next section.

Figure 8-6. Creating a new IoT device

Chapter 8 Contiki-nG and Cloud Server

261

 Developing Application
There are three applications that we are going to develop. First, we will

develop two programs for Contiki-NG, starting with the 6LoWPAN router and

sensor application. A 6LoWPAN router will be implemented by deploying an

rpl-border-router program to the Contiki-NG mote. The sensor application

runs a web server that waits for incoming requests from the sensor.

The second program that we will develop is a middleware application.

This program will request sensor data from Contiki-NG. Then, this

program will push it to the Azure IoT Hub.

The last program is a sensor consumer program. The program will

subscribe to the Azure IoT Hub to get sensor data from Contiki-NG. Once

the middleware application pushes the sensor data to the Azure IoT Hub,

Figure 8-7. Copy the IoT device key and its connection string

Chapter 8 Contiki-nG and Cloud Server

262

the sensor consumer program will get the sensor data that is pushed by the

Azure IoT Hub.

We will implement these programs in the next section.

 Developing Programs for Contiki-NG

On the Contiki-NG side, we develop two programs for Contiki-NG, starting

with the rpl-border-router and sensor program. You can find the rpl-

border- router in the Contiki-NG program samples. You should compile

and upload rpl-border-router to one of the Contiki-NG motes. You can

read how to implement rpl-border-router in Chapter 6.

A sensor program is a web server that serves requests for sensor data.

We use the websense program from Chapter 6. We set our project name as

websense-Cloud. We rename websense.c as websense-Cloud.c. You can

see the project structure of websense-Cloud in Figure 8-8.

Figure 8-8. Project structure for Contiki-NG and Azure

In the Makefile file, you can configure the demo project to include

http-simple.c and the Contiki-NG project. You can write these scripts:

CONTIKI_PROJECT = websense-Cloud

all: $(CONTIKI_PROJECT)

CONTIKI = ../..

PROJECT_SOURCEFILES += httpd-simple.c

include $(CONTIKI)/Makefile.include

Chapter 8 Contiki-nG and Cloud Server

263

We also modify the websense-Cloud.c file that is copied from the

websense.c file (Chapter 6). In the generate_routes() method, we modify

code in order to serve requests for sensor data. You can write this code:

static

PT_THREAD(generate_routes(struct httpd_state *s))

{

 char buff[35];

 PSOCK_BEGIN(&s->sout);

 //SEND_STRING(&s->sout, TOP);

 int temperature = 15 + rand() % 25;

 int humidity = 80 + rand() % 10;

 sprintf(buff,"{\"temp\":%u,\"hum\":%u}", temperature, humidity);

 printf("send json to requester\n");

 SEND_STRING(&s->sout, buff);

 //SEND_STRING(&s->sout, BOTTOM);

 PSOCK_END(&s->sout);

}

Save all changes. Compile the rpl-border-router and websense-Cloud

programs. Then, upload those to your Contiki-NG motes.

Next, we will develop the middleware application using Node.js.

 Building Azure Middleware Application

We will develop an Azure middleware application to request sensor data from

Contiki-NG and push sensor data to Azure IoT Hub. For implementation,

we use Node.js.

Chapter 8 Contiki-nG and Cloud Server

264

First, create a folder for your project. Open Terminal and navigate

to your project folder. Then, initialize your project, including required

libraries. Type these commands:

$ npm init

$ npm install azure-iot-device azure-iot-device-mqtt express

--save

Now, we will start to write a middleware application for Azure. Create

a file, called middleware-azure.js. Initialize all required libraries and run

the web server on port 3000. You also need information such as hostname,

device ID, and shared access key. Write this code:

'use strict';

var express = require('express');

var request = require('request');

var app = express();

var http = require('http').Server(app);

var clientFromConnectionString = require('azure-iot-device-

mqtt').clientFromConnectionString;

var Message = require('azure-iot-device').Message;

var connectionString = 'HostName={youriothostname};DeviceId=myF

irstNodeDevice;SharedAccessKey={yourdevicekey}';

var mydeviceId = 'contiki-ng-01';

var client = clientFromConnectionString(connectionString);

app.get('/', function(req, res){

 res.send('WebSense Azure Cloud');

});

http.listen(3000, function(){

 console.log('listening on *:3000');

 console.log('websense azure Cloud was started');

});

Chapter 8 Contiki-nG and Cloud Server

265

You should change value connectionString to the following values:

• {youriothostname} is your domain address (IP

address) from your Azure IoT Hub

• myFirstNodeDevice and mydeviceId are your

registered device ID

• {yourdevicekey} is a shared access key. You can find it

in the primary key field from your registered IoT device;

see Figure 8-7.

Next, we declare two functions. One of these functions, printResultFor(),

is used to print all messages to Terminal. The other is the callback function,

connectCallback, which requests sensor data from Contiki-NG motes:

function printResultFor(op) {

 return function printResult(err, res) {

 if (err) console.log(op + ' error: ' + err.toString());

 if (res) console.log(op + ' status: ' + res.constructor.

name);

 };

 }

var connectCallback = function (err) {

 if (err) {

 console.log('Could not connect: ' + err);

 } else {

 console.log('Client connected');

 // Create a message and send it to the IoT Hub every

second

 setInterval(function(){

 request.get('http://[fd00::212:4b00:797:6083]/',

function(err,res,body){

Chapter 8 Contiki-nG and Cloud Server

266

 if(err){

 console.log(err);

 return;

 }

 var obj = JSON.parse(body);

 console.log(obj);

 var temperature = obj.temp;

 var humidity = obj.hum;

 var data = JSON.stringify({ deviceId:

mydeviceId, temperature: temperature, humidity:

humidity });

 var message = new Message(data);

 message.properties.add('temperatureAlert',

(temperature > 30) ? 'true' : 'false');

 console.log("Sending message: " + message.

getData());

 client.sendEvent(message,

printResultFor('send'));

 });

 }, 3000);

 }

};

You should replace the value [fd00::212:4b00:797:6083] with the

IPv6 address from the Contiki-NG mote that runs the websense-Cloud

application.

Finally, we call our callback function from the Azure object:

client.open(connectCallback);

console.log('Contiki-NG Azure Middleware started.');

Save all these codes.

Chapter 8 Contiki-nG and Cloud Server

267

 Developing Sensor Consumer Program

The last step is to develop a sensor consumer program to subscribe to

Azure IoT Hub in order to retrieve sensor data.

We use the same project from the previous section. We need the

azure-vent-hubs library to create the subscription. Type this command:

$ npm install azure-event-hubs --save

Then, we create a file, called azure-sensor-subscriber.js. We

initialize a required library and configure a connection string for the Azure

IoT Hub. Write this code:

'use strict';

var EventHubClient = require('azure-event-hubs').Client;

var connectionString = ' HostName={youriothostname};DeviceId=

myFirstNodeDevice;SharedAccessKey=

{yourdevicekey}';

var printError = function (err) {

 console.log(err.message);

};

var printMessage = function (message) {

 console.log('Message received: ');

 console.log(JSON.stringify(message.body));

 console.log('');

};

Change connectionString to the previous value.

Chapter 8 Contiki-nG and Cloud Server

268

Now, we subscribe and listen to incoming messages from Azure IoT

Hub. Write this code:

var client = EventHubClient.fromConnectionString(connectionString);

client.open()

 .then(client.getPartitionIds.bind(client))

 .then(function (partitionIds) {

 return partitionIds.map(function (partitionId) {

 return client.createReceiver('$Default',

partitionId, { 'startAfterTime' : Date.now()}).

then(function(receiver) {

 console.log('Created partition receiver: ' +

partitionId)

 receiver.on('errorReceived', printError);

 receiver.on('message', printMessage);

 });

 });

 })

.catch(printError);

Save all files.

We have written all programs for this demo. Next, we will test our

project.

 Testing Contiki-NG and Azure Application
In this section, I will assume you have already deployed all programs into

your Contiki-NG motes. First, run the rpl-border-router program on the

6LoWPAN router. For instance, I run it on a TI LaunchPad CC2650. Then,

navigate to the rpl-border-router project folder. Then, run this:

$ make TARGET=srf06-cc26xx BOARD=launchpad/cc2650 connect- router

Chapter 8 Contiki-nG and Cloud Server

269

After execution, that command will run tunslip6. Change TARGET to

your Contiki-NG platform. If it succeeds, you can turn on another Contiki-

NG mote that has installed the sensor application.

Try to perform ping6 to check that your Contiki-NG mote can be

reached from a computer. You can see the program output from the rpl-

border- router application in Figure 8-9.

Figure 8-9. Running 6LoWPAN router application

Now, you can run the middleware application in Terminal. You can

type this command:

$ node middleware-azure.js

Then, you can run the sensor application to listen for incoming

sensor data from Azure IoT Hub. Open a new Terminal and then type this

command:

$ node azure-sensor-subscriber.js

Chapter 8 Contiki-nG and Cloud Server

270

The middleware application will request sensor data from the Contiki- NG

mote every three seconds. After obtaining sensor data, the middleware

application will push the data to the Azure IoT Hub.

Once sensor data has reached the Azure IoT Hub, it will be distributed

to all subscribers.

You can see a sample of the program output of the middleware

application and the sensor application in Figure 8-10.

Figure 8-10. Running middleware application and sensor program

Chapter 8 Contiki-nG and Cloud Server

271

 Demo 2: Contiki-NG and Amazon AWS
In this demo, we will perform the same scenario as in the first demo.

We will use Amazon AWS. To communicate with IoT devices, Amazon

AWS provides a service called AWS IoT. You can read about it at

https://aws.amazon.com/iot/.

Our demo scenario can be seen in Figure 8-11. This is similar to the

first demo. A middleware application will get sensor data from Contiki-NG

and then push it to Amazon AWS IoT.

Next, we will implement our demo by performing some tasks, as

follows:

• Prepare to set up AWS IoT.

• Develop applications for Contiki-NG and middleware.

• Test all programs.

Each task will be implemented in the next section.

Figure 8-11. Demo project scenario for Contiki-NG and Amazon
AWS IoT

Chapter 8 Contiki-nG and Cloud Server

https://aws.amazon.com/iot/

272

 Preparation
In this section, we will set up AWS IoT to create a thing. Then, we will

configure security tasks, such as creating a certificate and its keys. To set up

AWS IoT for our demo, we will perform the following tasks:

• Create a new IoT thing.

• Create a policy for AWS IoT.

• Attach a policy and a thing to a certificate.

These tasks will be explained in the next section.

 Creating a New IoT Thing

Each IoT device that wants to access AWS IoT should be registered so as to

obtain the access keys included with the security certificate.

First, open a browser and navigate to https://aws.amazon.com/iot/,

so you should see the AWS IoT dashboard shown in Figure 8-12.

Figure 8-12. AWS IoT console management

Chapter 8 Contiki-nG and Cloud Server

https://aws.amazon.com/iot/

273

On the left-hand menu, click “Manage Things.” If you don’t create

things yet, you can click “Register a thing” to register a new IoT device.

After clicking, you should get a form like that shown in Figure 8-13. To

simply begin a registration process, click “Create a single thing.”

Figure 8-13. Creating AWS IoT things

You should fill in the IoT device information. A thing name is required.

For instance, I called my thing contiki-ng-middleware. You can see it in

Figure 8-14.

Chapter 8 Contiki-nG and Cloud Server

274

If you have finished creating a thing, you should get the form that is

shown in Figure 8-15. To access AWS IoT, we need a certificate. In this

demo, we create a new certificate. You can use your own certificate. Click

“Create certification.”

Figure 8-15. Adding a certificate

Figure 8-14. Setting an IoT device

Chapter 8 Contiki-nG and Cloud Server

275

After clicking that button, you should see the form that is shown in

Figure 8-16. To activate your certificate, click the “Activate” button.

Figure 8-16. Generating certificate and keys

Download all files for the certificate and public/private keys. You also

need to download a root CA (Certificate Authority) for AWS IoT from the link

shown in Figure 8- 16. Put them in a folder; for instance, certs. You can see

my certificate and key files in Figure 8-17.

Chapter 8 Contiki-nG and Cloud Server

276

Now, you should see the created thing in the Manage Things dashboard,

shown in Figure 8-18. You can create more than two things for AWS IoT.

Figure 8-17. Download certificate and key files

Figure 8-18. A new thing shown on Manage Things dashboard

Next, we will create a policy to enable our thing to access the AWS

IoT Hub.

Chapter 8 Contiki-nG and Cloud Server

277

 Creating a Policy for AWS IoT

In this section, we will create a policy for AWS IoT. We need this policy

to manage all device access. You can find a policy dashboard by clicking

“Secure,” then “Policies.” You can see it in Figure 8-19.

Figure 8-19. AWS IoT policy dashboard

Click “Create a policy.” Then, you should see the form shown in

Figure 8-20. Fill in the policy name. Next, you should add statements to

work with AWS IoT. You should add resource, action, and effect for four

items, as follows:

{

 "Version": "2012-10-17",

 "Statement": [

Chapter 8 Contiki-nG and Cloud Server

278

 {

 "Effect": "Allow",

 "Action": "iot:Connect",

 "Resource": "*"

 },

 {

 "Effect": "Allow",

 "Action": "iot:Publish",

 "Resource": "*"

 },

 {

 "Effect": "Allow",

 "Action": "iot:Subscribe",

 "Resource": "*"

 },

 {

 "Effect": "Allow",

 "Action": "iot:Receive",

 "Resource": "*"

 }

]

}

Chapter 8 Contiki-nG and Cloud Server

279

After creating a policy, you can verify your policy in Secure ➤ Policies

from the AWS IoT dashboard. You can see it in Figure 8-21.

Figure 8-20. Adding a new policy for AWS IoT

Figure 8-21. A created policy shows up in Policies dashboard.

Next, we map a policy and a thing to a certificate. We will perform this

in the next section.

Chapter 8 Contiki-nG and Cloud Server

280

 Attaching a Policy and a Thing to a Certificate

Your policy and thing should be mapped to a certificate that is already

activated in AWS IoT. To perform this task, you can visit Secure ➤ Certificates.

You should see your certificate. Click the ... icon so you see the context

menu shown in Figure 8-22.

Figure 8-22. Open context menu of a certificate of AWS IoT

Click menu Attach policy so you see the form dialog that is shown in

Figure 8-23. Select your policy that has already been created. If done, click

the Attach button.

Chapter 8 Contiki-nG and Cloud Server

281

Next, we should attach the thing to a certificate. From Figure 8-22,

select menu “Attach thing” so you get the form dialog shown in Figure 8- 24.

Figure 8-23. Attach a policy to a certificate

Figure 8-24. Add an IoT device (thing) to a certificate

Chapter 8 Contiki-nG and Cloud Server

282

Select your thing that was already created.

Finally, you have to set up AWS IoT. Next, we will develop programs for

Contiki-NG and the middleware application.

 Developing Application
In this section, we will develop applications for Contiki-NG and Node.js to

access AWS IoT.

 Developing Programs for Contiki-NG

Since our demo scenario is similar to the previous demo, we use the same

configuration. You need one Contiki-NG mote as the 6LoWPAN router.

Other Contiki-NG motes run the sensor application.

Please read the first demo to build programs for Contiki-NG.

 Building Middleware Application for AWS IoT

We build an AWS middleware application to request sensor data from

Contiki-NG and push sensor data to AWS IoT. For implementation, we use

Node.js.

To create a project, you can create a folder. Then, open Terminal and

navigate to your project folder. Then, initialize your project, including the

required libraries. Type these commands:

$ npm init

$ npm install aws-iot-device-sdk request express --save

Now, we start to write a middleware application for AWS. Create a

file, called middleware-aws.js. We now call the required libraries and

configure AWS IoT. You can write this code:

var awsIot = require('aws-iot-device-sdk');

var express = require('express');

var request = require('request');

Chapter 8 Contiki-nG and Cloud Server

283

var app = express();

var http = require('http').Server(app);

var device = awsIot.device({

 keyPath: 'certs/private.pem.key',

 certPath: 'certs/certificate.pem.crt',

 caPath: 'certs/root-CA.pem',

 host: '<hostname>.iot.<region>.amazonaws.com',

 clientId: 'contiki-ng',

 region: '<region>'

 });

You should change the values for keyPath, certPath, caPath, and

region to those for AWS IoT.

We also run a web server using Express on port 3000:

app.get('/', function(req, res){

 res.send('WebSense Azure Cloud');

});

http.listen(3000, function(){

 console.log('listening on *:3000');

 console.log('websense aws Cloud was started');

});

Next, we listen for the connect event from AWS IoT. Once the

middleware application is connected to AWS IoT, we request sensor data

from Contiki-NG every three seconds. For testing, I request data from

Contiki-NG with the IPv6 address [fd00::212:4b00:797:6083]. You can

change it. You also can change mydeviceId:

var isSubscribe = true;

device

.on('connect', function() {

 console.log('connected to AWS IoT.');

Chapter 8 Contiki-nG and Cloud Server

284

 // optional to subscribe

 if(isSubscribe)

 device.subscribe('contiki-ng-sensor');

 setInterval(function(){

 request.get('http://[fd00::212:4b00:797:6083]/',function

(err,res,body){

 if(err){

 console.log(err);

 return;

 }

 var obj = JSON.parse(body);

 console.log(obj);

 var temperature = obj.temp;

 var humidity = obj.hum;

 mydeviceId = 'fd00::212:4b00:797:6083';

 var data = JSON.stringify({ deviceId: mydeviceId,

temperature: temperature, humidity: humidity });

 device.publish('contiki-ng-sensor', data);

 console.log('sent: ', JSON.stringify(data));

 });

 }, 3000);

});

Chapter 8 Contiki-nG and Cloud Server

285

Last, we can subscribe to the contiki-ng-sensor channel:

// optional to subscribe

device

 .on('message', function(topic, payload) {

 console.log('recv: ', topic, payload.toString());

});

console.log('Contiki-NG AWS Middleware started.');

Save all code.

Next, we will test this project.

 Testing Contiki-NG and AWS IoT
Deploy all programs to Contiki-NG. Then, run the 6LoWPAN router and

the middleware application:

$ node middleware-aws.js

This program will connect to AWS IoT. After connecting, this

application will retrieve sensor data from Contiki-NG. It will then push the

sensor data to AWS IoT.

Since the middleware application subscribes to AWS IoT, this program

will receive incoming data from AWS IoT. You can see my program output

in Figure 8-25.

Chapter 8 Contiki-nG and Cloud Server

286

For a subscriber tool, you can use the Subscription test application.

You can find it on the Test menu.

After clicking it, you will see the form shown in Figure 8-26. Select

“Subscribe to a topic.” Then, fill in “contiki-ng-sensor” for listening

incoming messages.

Figure 8-25. Program output from executing middleware application

Chapter 8 Contiki-nG and Cloud Server

287

Figure 8-26. Listening for incoming messages from AWS IoT Test

You have finished integrating between Contiki-NG and the Cloud

server. You practice more to hone your skills.

 Summary
We have learned what Cloud computing is. We also developed programs

to allow interaction between Contiki-NG motes and Cloud servers. We

tested these programs using Microsoft Azure and Amazon AWS. Next, you

could explore various features in Azure and AWS. You can use other Cloud

platforms to integrate with Contiki-NG.

Chapter 8 Contiki-nG and Cloud Server

289© Agus Kurniawan 2018
A. Kurniawan, Practical Contiki-NG, https://doi.org/10.1007/978-1-4842-3408-2

Index

A, B
Address Resolution

Protocol (ARP), 195
Amazon AWS, Contiki-NG and

add IoT device to certificate, 281
attach policy, 280, 281
AWS IoT policy, 277

policy creation, 277, 279
AWS IoT registration, 272

certificate creation, 274
console management, 272
contiki-ng-middleware, 273
Creating AWS IoT things, 273
public/private keys, 275

AWS IoT service, 271
AWS IoT setup, 272
AWS middleware application, 282

contiki-ng-sensor channel, 285
programs, 282
testing

incoming messages, 287
6LoWPAN router, 285
middleware application,

285–286
Azure IoT Hub

Azure middleware
application, 263

copying IoT device keys, 260–261

creation
Azure IoT Hub

dashboard, 258
contiki-ng, 258–259

register new IoT device, 259
Auto Generate Keys, 259
registration form, 260

sensor consumer program
azure-vent-hubs library, 267
connectionString value, 267

Azure middleware application
callback functions, 265–266
connectionString value, 265
printResultFor() functions, 265
requests sensor data, 265–266
sensor data, 263
shared access key, 264

C
Carbon monoxide sensor, 143
Cloud computing, 251

services
infrastructure-as-a-service

(IaaS), 252
platform-as-a-service

(PaaS), 252
software-as-a-service

(SaaS), 252

https://doi.org/10.1007/978-1-4842-3408-2

290

types
hybrid cloud, 253
private cloud, 253
public cloud, 253

Cloud server
Amazon AWS, 254
data center, 250
geo-location server

services, 250
Google Cloud, 254
IBM Cloud, 254
Microsoft Azure, 253
physical machine

deployment, 250–251
Coding conventions, 61
Coffee File System (CFS), 248
Communication models, 96

Contiki motes, 97, 126–127
receiving broadcast

messages, 128–131
sending broadcast

messages, 127–128
serial communication, 98,

100–104
Concurrency, 67

demo-process app, 72
process, 69–70
task scheduling, 88, 90, 92–94
threading, 83–88
working with timers, 72

Clock library, 72–73
CTimer library, 76
demo-timer, 78–82

Etimer library, 75
RTimer library, 77
Stimer library, 74, 75
Timer library, 73, 74

Contiki-NG, 13
middleware application, 132

architecture, 133
defined, 133
implementation, 134
testing, 134–135

set up development
environment, 19–21

Contiki-NG motes
connecting to Cloud Servers, 255
6LoWPAN router, 255

Contiki-NG programs
rpl-border-router program, 262
sensor program, 262
websense-Cloud project, 262

generate_routes()
method, 263

Contiki-NG shell, 112
code structure, 113
customizing, 123–126
executing sample, 115
TI CC2650 LaunchPad

board, 114
Contiki OS, 4

architecture, 5
programming flow, 6
set up development

environment, 13
Instant Contiki, 13–18
manual installation, 18–19

Cloud computing (cont.)

Index

291

WSN hardware, 6
Iris, 9–10
Mica2, 7–8
MICAz, 7
TelosB, 8–9
TinyOS motes, 10–11
Z1 platform, 11–12

Contiki simulator, 35
application

debugging, 45
hardware debugger, 44–45
LED indicators, 45
printf() function, 45
running, 37–43

setting up, 36
counter_process function, 60

D, E, F, G
Demo-counter, 57

H
Hello World Application for

Contiki, 26, 28–30, 32–34
Humidity and Temperature

Sensor, 140–141

I, J, K
Internet Protocol Version 6 (IPv6)

networking, 185–188

L
Libraries, 55–56

M
Microcontroller (MCU), 2
Microsoft Azure, Contiki-NG and

Azure IoT Hub
application, 256
communication, 257

6LoWPAN router application, 256
middleware application, 256
sensor application, 256
testing

6LoWPAN router
application, 269

middleware application, 270
rpl-border-router

program, 268
sensor application, 270

N, O
NETSTACK, 168
Networking

Contiki-NG NullNet, 199–200
IPv6, 185–188, 194–198
6LoWPAN network, 201

implementing, 203–205,
207–208

overview, 201–202
using COOJA, 209–212

MAC layer, 172
NETSTACK, 168–169
network layer, 170–171
radio layer, 173
RDC layer, 173

Index

292

RESTful server for
Contiki-NG, 214

implementing demo,
215–216

6LoWPAN router, 217
preparation, 215
program, 219–222
testing demo, 223–224
WebSense node, 217–218

routing on Contiki-NG, 189
basic routing, 189–190
operations on first mote, 193
operations on second

mote, 194
single-hop and multi-hop

networking, 190–191
simulation using COOJA, 174

running, 183, 185
simulation project, 174–176
UDP client motes, 180–182
UDP server mote, 177,

179–180

P, Q
Programming model, 47–48

basic syntax, 49
creating project, 49–50
programming language,

50–51
program structure, 48

Protothreads, 52–53, 55

R
Radio Duty Cycling (RDC)

layer, 173
Raspberry Pi, Contiki and, 25

S
Sensing and actuating, 137

communication model, 138
in Contiki-NG, 145

demo, 146–147
program, writing, 148–150,

154–155
project, creating, 147, 153
testing, 151–152, 155–156

customizing, 156
drivers for Contiki-NG,

159–165
expansion connector, 156,

158–159
sensor and actuator

devices, 139
active buzzer, 144
gas sensor, 142–143
LED, 143
motor, 144–145
soil moisture sensor,

141–142
temperature and humidity

sensors, 139–141
WSN mote, 138

Serial communication, 97

Networking (cont.)

Index

293

Shell, Contiki, 104
API, 106
application, 107
customizing, 115–120, 122
example, 105
help command, 111
limitations, 104
running sample, 108–109
sky as target, 110

Storage models, 225–227
CFS, 231–234, 236–237
Contiki-NG and

MySQL, 238
database, designing,

239–240
6LoWPAN router, 241
middleware application,

242–245
preparation, 239
sensor application, 241–242
testing the project, 246–248

local storage,
working with, 227–231

T
TelosB, 146

U
Universal Asynchronous Receiver/

Transmitter (UART), 97

V
Virtual-sensor, 61

code for, 64–65
functions, 63
program output, 65
project structure, 62

W, X, Y, Z
Wireless Sensor

Networks (WSN), 1–3, 225
connectivity model, 4
general model of, 3

hardware to computer, 22–25

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Wireless Sensor Networks
	Introduction to Wireless Sensor Networks
	Introduction to Contiki OS
	Reviewing WSN Hardware for Contiki
	MICAz
	Mica2
	TelosB
	Iris
	Custom TinyOS Motes
	Z1 Platform
	Contiki-NG ARM-based Boards

	Introducing Contiki-NG
	Set Up Development Environment for Contiki
	Instant Contiki
	Troubleshooting

	Manual Installation
	Set Up Contiki-NG Development Environment

	Connect WSN Hardware to Computer
	Contiki and Raspberry Pi
	Hello World Application for Contiki
	Explanation

	Contiki Simulator
	Setting Up
	Running Contiki Application

	Debugging Contiki Application
	Hardware Debugger
	LED Indicators
	Debugging Using Contiki Simulator
	The Contiki printf() Function

	Summary

	Chapter 2: Basic Contiki-NG Programming
	Contiki-NG Programming Model
	Contiki-NG Basic Syntax
	Creating a Project
	Contiki-NG Basic Programming Language

	Review Protothreads
	Extending the Contiki-NG Library
	Contiki-NG Demo: Threading App
	Contiki-NG Coding Conventions
	Demo: Build Contiki-NG Application
	Summary

	Chapter 3: Concurrency
	Introduction to Concurrency
	Concurrency Approach in Contiki-NG
	Introducing Contiki-NG Processes
	Working with Timers
	Clock Library
	Timer Library
	Stimer Library
	Etimer Library
	CTimer Library
	Rtimer Library
	Put It All Together

	Threading
	Task Scheduling
	Summary

	Chapter 4: Contiki-NG and Computer Communication
	Communication Models for Contiki-NG
	Serial Communication
	Communication Between Contiki Mote and Computer
	Access Contiki Motes via Serial Communication
	Contiki Shell
	Contiki-NG Shell
	Customizing Contiki Shell
	Custom Contiki Shell
	Custom Contiki-NG Shell

	Communication among Contiki Motes
	Sending Broadcast Messages
	Receiving Broadcast Messages
	Demo: Middleware Application

	Middleware Application for Contiki-NG
	What Is Middleware?
	Middleware Architecture for Contiki-NG
	Implementation
	Testing

	Summary

	Chapter 5: Sensing and Actuating
	What Are Sensing and Actuating?
	Review Sensor and Actuator Devices
	Temperature and Humidity
	Soil Moisture
	Gas Sensor
	LED
	Active Buzzer
	Motor

	Sensing in Contiki-NG
	Demo
	Creating a Project
	Writing a Program
	Testing

	Actuating in Contiki-NG
	Creating a Project
	Writing a Program
	Testing

	Customizing Sensor and Actuator Devices
	Expansion Connector
	Sensor and Actuator Drivers for Contiki-NG

	Summary

	Chapter 6: Networking
	Networking in Contiki-NG
	Network Layer
	MAC Layer
	RDC Layer
	Radio Layer

	Network Simulation Using COOJA
	Creating Simulation Project
	Adding UDP Server Mote
	Adding UDP Client Motes
	Running a Simulation

	IPv6 Networking
	Routing on Contiki-NG
	Introducing Basic Routing
	Single-Hop and Multi-Hop Networking
	Routing on Contiki-NG

	IPv6 Multicast
	Contiki-NG NullNet
	6LoWPAN Network
	A Brief Introduction
	Implementing a 6LoWPAN Network on Contiki-NG
	6LoWPAN Implementation using COOJA

	Build Your Own RESTful Server for Contiki-NG
	Preparation
	Implementing the Demo
	Implementing 6LoWPAN Router
	Writing a Program for WebSense Node
	Writing a Program for RESTful Server

	Testing the Demo

	Summary

	Chapter 7: Storage
	Storage Models in Contiki-NG
	Working with Local Storage
	Coffee: File System in Contiki-NG
	Demo: Contiki-NG and MySQL
	Preparation
	Design a Database
	Build a 6LoWPAN Router
	Develop a Contiki-NG Sensor Application
	Develop Middleware Application
	Testing the Project

	Summary

	Chapter 8: Contiki-NG and Cloud Server
	Introduce Cloud Server
	Why Use Cloud Computing?
	Cloud-Computing Services
	Types of Cloud-Computing Deployments
	Review Cloud Server Platforms
	Microsoft Azure
	Amazon AWS
	Google Cloud
	IBM Cloud
	Comparing Features of All Global Clouds

	Connecting Contiki-NG Motes to Cloud Servers
	Demo 1: Contiki-NG and Microsoft Azure
	Preparation
	Creating Azure IoT Hub
	Registering a New IoT Device
	Copying Device Keys

	Developing Application
	Developing Programs for Contiki-NG
	Building Azure Middleware Application
	Developing Sensor Consumer Program

	Testing Contiki-NG and Azure Application

	Demo 2: Contiki-NG and Amazon AWS
	Preparation
	Creating a New IoT Thing
	Creating a Policy for AWS IoT
	Attaching a Policy and a Thing to a Certificate

	Developing Application
	Developing Programs for Contiki-NG
	Building Middleware Application for AWS IoT

	Testing Contiki-NG and AWS IoT

	Summary

	Index

