
Practical GameMaker
Projects

T E C H N O L O G Y I N A C T I O N ™

Build Games with GameMaker Studio 2
—
Ben Tyers

www.allitebooks.com

http://www.allitebooks.org

Practical GameMaker
Projects

Build Games with
GameMaker Studio 2

Ben Tyers

www.allitebooks.com

http://www.allitebooks.org

Practical GameMaker Projects: Build Games with GameMaker Studio 2

ISBN-13 (pbk): 978-1-4842-3744-1 ISBN-13 (electronic): 978-1-4842-3745-8
https://doi.org/10.1007/978-1-4842-3745-8

Library of Congress Control Number: 2018950019

Copyright © 2018 by Ben Tyers

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484237441. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Ben Tyers
Worthing, West Sussex, United Kingdom

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3745-8
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: Spot the Difference �� 1

Chapter 2: Quiz ��� 49

Chapter 3: Snake �� 69

Chapter 4: Rock, Paper, Scissors �� 89

Chapter 5: Jet Pack �� 101

Chapter 6: Darts�� 141

Chapter 7: Platform Game �� 155

Chapter 8: Bomber �� 173

Chapter 9: Match 3 ��� 197

Chapter 10: Tower Defense ��� 211

Index ��� 249

About the Author �� v

About the Technical Reviewer �� vii

Acknowledgments ��� ix

Introduction ��� xi

www.allitebooks.com

http://www.allitebooks.org

v

About the Author

Ben Tyers is a freelance programmer and technical writer by day and a sci-fi horror

novel writer by night. He made his first computer game way back in 1984 on a ZX

Spectrum 48K computer when he was eight years old. His passion for creation has

continued since then. He holds a number of computer-related qualifications. When

relaxing, Ben has an infatuation for old-school horror and sci-fi films, particularly 1960s

B movies.

www.allitebooks.com

http://www.allitebooks.org

vii

About the Technical Reviewer

Dickson Law is a GameMaker hobbyist, commentator, and

extension developer with six years of community experience.

In his spare time, he enjoys writing general-purpose

libraries, tools, and articles covering basic techniques for

GameMaker Studio. As a web programmer, his main areas

of interest include integration with server-side scripting and

API design. He lives in Toronto, Canada.

ix

Acknowledgments

Spot the Difference Backgrounds: Natalie Hubbert

Spot the Difference Clock: 123rf.com

Snake Beep Sound: Greencouch/FreeSound.org

Snake Double Beep Sound: InspectorJ Freesound.org

Snake GameOver Voice: (c) Ben Tyers/Monty Lewis Sauerwein

Snake Music: Eric Matyas/www.soundimage.org

Snake Sprites: nido/GraphicRiver.ent

Snake Background: antkevyv/123rf.com

Match Three Sweets: oglsdl/OpenGameArt.org

Match Three Star: Ecrivain/OpenGameArt.org

Dart Dartboard: VectorPortal.com

Dart Font: Darrell Flood

Dart Background: Prasong Takham/123rf.com

Dart Dart: pngtree.com

Dart Voices: (c) Ben Tyers/Monty Lewis Sauerwein

Dart Thud Sounds: Dane S Casperson/FreeSound.org

Quiz Images: Medals Julien/OpenGameArt.org

Rock, Paper, Scissors Images: Komain Techanadt/123rf.com

Rock, Paper, Scissors Audio: (c) Ben Tyers/Monty Lewis Sauerwein

Jet Pack Backgrounds: GameBuildingTools.com

Jet Pack Birds: Bevouliin.com/OpenGameArt.org

Jet Pack Player: Bevouliin.com/OpenGameArt.org

Jet Pack UFO: UFO Carlos Alface/OpenGameArt.org

Jet Pack Bullet: Napoleon/OpenGameArt.org

Jet Pack Explosion: J-Robot/OpenGameArt.org

Jet Pack Voices: (c) Ben Tyers/Monty Lewis Sauerwein

Jet Pack Music and Sound Effects: Eric Matyas/SoundImage.org

http://www.soundimage.org/

x

Platform Game Ladder and Platforms: Kenney.nl

Platform Game Player Sprite: Spyros Kontis

Platform Game Audio: Eric Matyas/SoundImage.org

Bomber Player Sprites: Spyros Kontis

Bomber Sprites: Kenney.nl

Bomber Fruit: keith carnage/OpenGamrArt.org

Bomber Bomb Sprite: truezipp/OpenGameArt.org

Bomber Explosion: Ben Tyers

Bomber Game Audio: Eric Matyas/SoundImage.org

Tower Defense Towers and Missiles: Kenney.nl

Tower Defense Arrow: IgnasD/OpenGameArt.org

Tower Defense Smoke: KnoblePersona/OpenGameArt.org

Tower Defense Explosion: samoliver/OpenGameArt.org

Tower Defense Blood: PWL/OpenGameArt.org

Tower Defense Heart: cdgramos/OpenGameArt.org

Tower Defense Missile: Napoleon/OpenGameArt.org

Tower Defense Coin: galangpiliang/OpenGameArt.org

Acknowledgments

xi

Introduction

Thank you for purchasing my book!

This book offers step-by-step instructions for making 10 mini games. Each chapter

covers a different game.

The games have been chosen to introduce you to some of the features of the

integrated development environment (IDE) and GameMaker Language (GML). It is

strongly suggested that you create these games in the order that they are presented

in this book. Each game assumes you have studied and understood the content and

concepts of the previous chapter(s).

By the end of this book you will have a sound knowledge of the fundamentals of

GameMaker Studio 2. You will have the skills needed to start making your own games

and possibly the start of a career in the game-making industry.

Resources for this book can be accessed via the Download Source Code button

located at www.apress.com/978484237441.

http://www.apress.com/978484237441

1
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8_1

CHAPTER 1

Spot the Difference
In this chapter, you will make a basic Spot the Difference game. The coding is quite

simple, and it’s a great way to start exploring the IDE. All of the images used in the

game are available in the Resources folder that you downloaded. This project uses a

background image and instances of an object to mark where the differences are, plus a

control object for keeping track of the player’s progress.

The aim of this game is for the player to find all of the differences between two

images before time runs out.

When you start GMS2, you will be presented with the start screen shown in Figure 1-1.

2

Figure 1-1. The Start screen

Chapter 1 Spot the DifferenCe

3

Click New, as shown in Figure 1-1, and then select GameMaker Language, as shown

in Figure 1-2.

Figure 1-2. Starting a GameMaker Language project

Chapter 1 Spot the DifferenCe

4

Figure 1-3. Setting a name for a project

Next, give the project a name, for example spot, as shown in Figure 1-3.

Chapter 1 Spot the DifferenCe

5

This may look a little daunting at first, but don’t worry; after you have completed the

first five chapters of this book, you will be comfortable enough to find your way around

this screen. If the Resources tab is not shown on the right of the window, you can click

Windows in the top menu and then Resources.

You will be presented with a screen like the one shown in Figure 1-4.

Figure 1-4. The initial start screen

Chapter 1 Spot the DifferenCe

6

This game of Spot the Difference uses four images, so load them now. In the

Resources tab, right-click Sprites and then Create Sprite, as shown in Figure 1-5.

Figure 1-5. Creating a new sprite

Chapter 1 Spot the DifferenCe

7

Next, name the sprite bg_1 and click Import, as shown in Figure 1-6.

Figure 1-6. Naming the sprite and importing it

Navigate to the Resources folder and load in Spot_Level_1, as shown in Figure 1-7.

Chapter 1 Spot the DifferenCe

8

When the dialog pops up, click Yes, as shown in Figure 1-8. You can also check the

“Don’t show the message again” box, also shown in Figure 1-8.

Figure 1-8. Dialog pop-up

Figure 1-7. Loading in a sprite

Chapter 1 Spot the DifferenCe

9

Your screen will look something like Figure 1-9.

Figure 1-9. A sprite loaded in

Now, save and close this window. There are a few ways to do this. The first is to drag

the window title with the left mouse button held down and then click the X. The second

is to hold down the middle mouse button in an empty area and drag the workspace

contents so you can see the close X box, as shown in Figure 1-10, and click it.

Chapter 1 Spot the DifferenCe

10

You can also right-click the window bar and select Close, as shown in Figure 1-11.

Figure 1-10. One method of closing a window

Figure 1-11. The other method of closing a window

Chapter 1 Spot the DifferenCe

11

Now, create a new sprite named bg_2 and load in another resource so it looks like

Figure 1-12.

Figure 1-12. The bg_2 setup

Chapter 1 Spot the DifferenCe

12

Next, create a sprite named spr_menu_button and load it in. This sprite is a little

different. Set the name of the sprite and click Edit Image, as shown in Figure 1-13.

Figure 1-13. Editing an image

Chapter 1 Spot the DifferenCe

13

Click Image ➤ Import Strip Image. Select spr_menu_button_strip, as shown in

Figure 1-14.

Figure 1-14. Importing a strip image

Chapter 1 Spot the DifferenCe

14

Next, click Convert. You can close this window by clicking the X shown in Figure 1- 16.

Set the number of frames and frames per row to 2, the frame width to 275, and the

frame height to 55, as shown in Figure 1-15.

Figure 1-15. Settings for the sprite strip

Figure 1-16. Closing the sprite editor

Chapter 1 Spot the DifferenCe

15

The final thing to set up for this sprite is the origin. The sprite origin is the place

where the image is anchored when it is placed into a room. Set this as middle center, as

shown in Figure 1-17.

Figure 1-17. Setting the sprite origin as middle center

You can now close this window.

Next, create two sprites named spr_face and spr_difference and set the origin to

middle center for both. The sprites needed for this are in the Resources folder. You

should now be able to do this without screenshots.

Next, create a couple of fonts to use for drawing. You can create a new font by

right- clicking Fonts in the Resources tree, as shown in Figure 1-18. Create two fonts. One

is font_info, which is Arial size 12, and the other is font_hud, which is Arial size 19.

These fonts can then be set to draw text in whatever font style and size you have set.

Chapter 1 Spot the DifferenCe

16

Figure 1-18. Creating a new font

Chapter 1 Spot the DifferenCe

17

In this game, you save the player’s progress in something called an INI file. These

files allow for easy saving and loading of data. This data is generally loaded at the start of

the game. You will create an object to load any data.

First, you need to create an object. Right-click on Objects in the Resources tree and

create a new object named obj_splash, as shown in Figure 1-19.

Figure 1-19. Creating and naming an object

Chapter 1 Spot the DifferenCe

18

Figure 1-20. Adding a Create Event

Next, add some code to an event. Let’s add this code to a Create Event.

Click Events ➤ Add Events ➤ Create, as shown in Figure 1-20.

Chapter 1 Spot the DifferenCe

19

Your screen will look something like Figure 1-21.

Figure 1-21. An object with an event added

It is possible at this stage that you will not be able to see the full window of the Create
Event. By clicking in an empty area of the workspace, you can move it around to make it

visible using middle mouse button, as shown in Figure 1-22.

Figure 1-22. Moving the workspace

Chapter 1 Spot the DifferenCe

20

In the Create Event, type in the following code. Don’t worry if you don’t understand

every line of the code; this understanding will come in time. This code starts with a

comment and then opens save.ini (if it exists) and loads the level that the player picks

or sets it as a default value of 1 if it is not present. It then goes to the room called room_menu.

Note that the code almost reads like English, which makes it easy to understand.

/// @description Load Saved Level

ini_open("save.ini");

global.level = ini_read_real("save", "level", 1);

ini_close();

room_goto(room_menu);

That is all for this object. Move the workspace around and then click the X, as shown

in Figure 1-23.

Figure 1-23. Closing the object and applying changes

Chapter 1 Spot the DifferenCe

21

Next, create two objects for the menu room. They are obj_level_1_button and

obj_level_2_button. Make the objects clickable so the player can choose which room

(level) to go to.

Create a new object by right-clicking Objects in the Resources tree. Name this object

obj_level_1_button and assign it the sprite spr_menu_button, as shown in Figure 1-24.

Figure 1-24. Assigning a sprite to an object

Next, create a Create Event and add the following code, which will set the sprite’s

image index to 0 (green, showing it is unlocked and playable) or 1 (red and not unlocked):

/// @description Set Up Button

image_speed=0;

my_id=1;

if global.level>=my_id

{

 image_index=0;

}

else

{

 image_index=1;

}

Chapter 1 Spot the DifferenCe

22

Next, make a Draw Event by clicking Add Event ➤ Draw ➤ Draw, as shown in Figure 1-25.

Figure 1-25. Making a Draw Event

Chapter 1 Spot the DifferenCe

23

Add the code for the Draw Event. It draws itself (the image index that has been set),

sets the font and drawing color, sets the horizontal alignment to center, and then draws

the text depending whether it is unlocked or locked:

/// @description Draw Button & Info

draw_self();

draw_set_font(font_info);

draw_set_colour(c_white);

draw_set_halign(fa_center);

if global.level>=my_id

{

 draw_text(x,y,"Level"+string(my_id)+"Unlocked");

}

else

{

 draw_text(x,y,"Level"+string(my_id)+"Locked");

}

Next, create the Mouse Left Button Pressed Event. This can be found at Add

Event ➤ Mouse ➤ Left Pressed, as shown in Figure 1-26.

Chapter 1 Spot the DifferenCe

24

Figure 1-26. A Mouse Left Pressed Event

Chapter 1 Spot the DifferenCe

25

The GML for this event takes the player to room room_level_1 if it is unlocked,

which it will be:

/// @description Check If Unlocked

if global.level>=my_id

{

 global.this_level=my_id;

 room_goto(room_level_1);

}

That is all for this object. The next object is obj_level_2_button. Assign the same

sprite to it as before. The Create Event code is similar to the previous object, except my_id

is set to 2:

/// @description Set Up Button

image_speed=0;

my_id=2;

if global.level>=my_id

{

 image_index=0;

}

else

{

 image_index=1;

}

Add the Draw Event code. It is the same as the Draw Event GML for obj_level_1_

button.

/// @description Draw Button & Info

draw_self();

draw_set_font(font_info);

draw_set_colour(c_white);

draw_set_halign(fa_center);

if global.level>=my_id

{

 draw_text(x,y,"Level"+string(my_id)+"Unlocked");

}

else

Chapter 1 Spot the DifferenCe

26

{

 draw_text(x,y,"Level "+string(my_id)+" Locked");

}

Add the Left Mouse Pressed Event code. It will only take the player to room

room_level_2 if the player has successfully completed the first level:

/// @description Check If Unlocked

if global.level>=my_id

{

 global.this_level=my_id;

 room_goto(room_level_2);

}

That is all for this object. You can now close it.

The next object is obj_gameover. There is no sprite for this object. Add a Create
Event with code to start an alarm, which is a timer that counts down and triggers an

Alarm Event. This code sets the alarm to 5 seconds:

/// @description set alarm

alarm[0]=room_speed*5;

Next, add an Alarm 0 Event, which can be accessed by Add Event ➤ Alarm ➤ Alarm 0,

as shown in Figure 1-27.

Chapter 1 Spot the DifferenCe

27

Figure 1-27. Making an Alarm 0 Event

Chapter 1 Spot the DifferenCe

28

The code for this Alarm 0 Event restarts the game when it triggers:

/// @description Restart game

game_restart();

Now add a Draw Event with the following code. This code draws the text “Game

Over” on the screen. Note that you are not setting the font, alignment, or color. The

settings for drawing text from the previous settings still apply. If you want to change the

font, alignment, or color, do so before drawing the text.

/// @description Draw GameOver

draw_text(400,200,"Game Over");

When set up, it will look like Figure 1-28.

Figure 1-28. The obj_gameover setup

Chapter 1 Spot the DifferenCe

29

The next object is obj_clockhand, which makes use of two sprites. Create a new

sprite named spr_clock and load in the sprite spr_clock. This time you want the origin

set at the middle of the clock face. This origin is used to place the clock’s hand in the

correct place. Set the origin to 36 and Custom, as shown in Figure 1-29.

Figure 1-29. Setting the sprite origin in the middle of the clock face

Chapter 1 Spot the DifferenCe

30

Open the object named obj_clockhand and enter the following Create Event code.

This code sets the time to a starting value of 360 and starts an alarm with a time of one

second:

/// @description Set Up

time=360;

alarm[0]=room_speed;

Next, make a Step Event by clicking Add Event ➤ Step ➤ Step, as shown in Figure 1-31.

You can now close this sprite by clicking the X at the top right of the window or right-

clicking the title bar and selecting Close.

Next is the sprite for the hand. It uses a sprite named spr_clockhand. Make it now

and set the origin as 6x31 and Custom, as shown in Figure 1-30.

Figure 1-30. Setting up spr_clockhand

Chapter 1 Spot the DifferenCe

31

Figure 1-31. Adding a Step Event

Chapter 1 Spot the DifferenCe

32

The code for this Step Event tests the value of time. If it is equal to 0, it means that

the player has run out of time and the game is over, so the player is taken to the room

room_gameover:

/// @description check time & Set hand angle

if time==0 room_goto(room_gameover);

image_angle=time;

Next, make an Alarm[0] Event and add the following code, which reduces the value

of time by 1 and then sets the alarm for 1 second again:

/// @description Set Time & Alarm

time--;

alarm[0]=room_speed;

And finally add a Draw Event with the following code, which draws the clock face

and the hand at the angle of the value of time, making the hand slowly move around as

the value of time changes:

/// @description Draw Face & Hand

draw_sprite(clock_face,0,x,y);

draw_self();

The next object is obj_difference_found with the sprite spr_difference_found

set up as 32 x 32, as show in Figure 1-32, and the origin set as middle center.

Chapter 1 Spot the DifferenCe

33

That is all for this object.

The next object is obj_difference and it has the sprite spr_difference with its

origin as center. Go ahead and make this sprite now.

Set this object so that it is not visible to the player when the game is played. This can

be done by unchecking the box shown in Figure 1-33.

Figure 1-32. The sprite set up with origin as middle center

Chapter 1 Spot the DifferenCe

34

Figure 1-33. Visible is unchecked

Chapter 1 Spot the DifferenCe

35

This object has a Left Mouse Button Pressed Event with code that creates an instance

of object obj_difference_found if the player clicks where the instance is placed:

/// @description Insert description here

instance_create_layer(x,y,"Instances",obj_difference_found);

instance_destroy();

This is shown in Figure 1-34.

Figure 1-34. The code for the Left Mouse Button Pressed Event

The final object is obj_hud. There is no sprite for this object. Add a Create Event that

sets the initial value of how many guesses the player has left:

/// @description Setup

guesses_left=15;

Next, add a Step Event with GML that checks whether the player has found all of the

differences. If they haven’t, they go to room_gameover; if they have, it saves the player’s

progress and they go back to room_menu:

/// @description guesses correct / out of moves

guesses_correct=instance_number(obj_difference_found);

if !instance_exists(obj_difference)

{

 if global.this_level==global.level

 {

 global.level++;

Chapter 1 Spot the DifferenCe

36

 ini_open("save.ini");

 ini_write_real("save", "level", global.level);

 ini_close();

 }

 room_goto(room_menu);

}

if guesses_left==0 room_goto(room_gameover);

Next, add a Draw GUI Event by clicking Add Event ➤ Draw ➤ Draw GUI, as shown

in Figure 1-35.

Chapter 1 Spot the DifferenCe

37

Figure 1-35. Adding a Draw GUI Event

Chapter 1 Spot the DifferenCe

38

Use the following code for this Draw GUI Event. It draws text above the standard

Draw Event and is independent of any view. It sets the font, alignment, and color, and

draws the guesses left and how many differences the player has found:

/// @description Draw HUD Info

draw_set_font(font_hud);

draw_set_halign(fa_left);

draw_set_colour(c_blue);

draw_text(40,360,"Guesses Left"+string(guesses_left));

draw_text(240,360,"Found"+string(guesses_correct));

Finally, add a Global Left Pressed Event with code to reduce the value of

guesses_left by 1:

/// @description Draw HUD Info

guesses_left--;

That is all the code.

Next, you need to set up some rooms where the game will take place.

You can create a new room by right-clicking Rooms in the Resources tree. Right-click

four times to create four new rooms, so it looks like Figure 1-36.

Now right-click and rename the rooms as room_splash, room_menu, room_level_1,

room_level_2, and room_gameover, as shown in Figure 1-37.

Figure 1-36. Four new rooms

Chapter 1 Spot the DifferenCe

39

Tip the room order is important because the room at the top is the room that will
run when the game starts.

Now let’s make things happen.

First, you should tidy up the workspace. Create a new workspace by clicking the plus

sign shown in Figure 1-38.

Then right-click Workspace 2 ➤ Close All But This, as shown in Figure 1-39.

Figure 1-37. The room order

Figure 1-38. Creating a new workspace

Figure 1-39. One method of tidying up the workspace

Chapter 1 Spot the DifferenCe

40

Now set up the rooms. Drag room room_splash as shown in Figure 1-40.

Figure 1-40. Dragging a room to open it up

Tip Sometimes when opening a room, not all of the tabs are shown. You can
click reset Windows on Current Desktop to make them visible again.

First, set the dimensions of the room. Click Room ➤ Room Properties, as shown in

Figure 1-41.

Figure 1-41. Opening the room properties

Chapter 1 Spot the DifferenCe

41

Set the height to 400 and width to 800, as shown in Figure 1-42.

Figure 1-42. Setting the room’s dimensions

Now click Room ➤ Layer View. Then click Instances in the Layers section, as shown

in Figure 1-43.

Figure 1-43. Setting a room layer

Chapter 1 Spot the DifferenCe

42

Layers are used to determine the order in which instances are drawn. This game uses

just one instances layer and one background layer. More complex games have multiple

layers.

Now add an object to this room. This can be done by simply dragging an object from

the Resources tree and placing it in the room. Go ahead and drag obj_splash into this

room, as indicated in Figure 1-44.

Figure 1-44. One method of adding an object to a room

That is all for this room. It can be closed now.

The next room is room_menu. Set it to size 800 x 400 and add one instance each of

obj_level_1_button and obj_level_2_button, as shown in Figure 1-45, making sure

the Instances layer is selected.

Chapter 1 Spot the DifferenCe

43

That is all for this room. Close any open boxes.

Next, open up room_gameover, set the size to 800 x 400, and place one instance of

obj_gameover in it on the Instances layer, as shown in Figure 1-46.

Figure 1-45. Instances placed in room on the Instances layer

Figure 1-46. room_gamover with its size set and an instance of obj_gameover
placed

Chapter 1 Spot the DifferenCe

44

That is all for this room.

Next, open up room_level_1 and set the dimensions to 800 x 400. Next, select

Background from the Layers tab. From the Resources tree, drag bg_1 across, as shown in

Figure 1-47.

Figure 1-47. Adding a background

When placed, it will look like Figure 1-48.

Figure 1-48. A room with the background set

Chapter 1 Spot the DifferenCe

45

Next, select the Instances layer, as shown in Figure 1-49.

Figure 1-49. Selecting the Instances layer

Next, add one instance each of obj_clockhand and obj_hud, as shown in Figure 1-50.

Figure 1-50. Instances placed in a room

Next, place 10 instances of obj_difference in the places where the differences are.

Click obj_difference in the Resources tree to highlight it. If you hold down the Alt key,

you can place these instances with the left mouse button. The differences are shown in

Figure 1-51.

Chapter 1 Spot the DifferenCe

46

That is all for this room.

Repeat the process for room_level_2, using sprite bg_2.

Now is a great time to save and test the game. Click File in the top left and select Save.

To play the game, press F5 or click the Play arrow shown in Figure 1-52.

Figure 1-51. Placing the difference objects

Figure 1-52. Click the Play arrow to play the game

Chapter 1 Spot the DifferenCe

47

Your game should look like Figure 1-53.

Figure 1-53. The game in progress

A project file for the completed game is in the Resources folder, which includes an

extra level setup and some images for you to use to make your own levels.

EXTRA IDEAS FOR YOU TO TRY

 1. Create a cool graphical effect when the player finds a difference.

 2. Display a message if the player finds all of the differences in less than

30 seconds.

 3. export the game so it can be played on another computer.

 4. Make the differences fade to 0.5 alpha once created.

 5. there are additional Spot the Difference images in the resources folder. Use

them to make extra levels.

Chapter 1 Spot the DifferenCe

49
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8_2

CHAPTER 2

Quiz
In this chapter, you’ll create a multiple choice quiz. It’s intended as an introduction to

data and file handling. You do not need to understand every single line of the code; just

try to understand the concepts being taught. This game will allow questions to be loaded

from code or downloaded from a website as a text file and imported into the game, with

the player aiming to get as many correct answers as possible.

So, start GameMaker Studio 2, start a new GML project, and name it something

like Quiz.

If you completed Chapter 1 successfully, you should now know how to create and

name sprites and load images in. You can also create a new sprite by right-clicking in an

empty area of the workspace and selecting the resource that you wish to create.

Load in from the Resources folder and name the following sprites:

• spr_button with an origin of middle center

• spr_clock with an origin at the middle of the clock’s face

• spr_clock_hand with an origin at position 6x4

• spr_from_code with an origin of middle center

• spr_from_web with an origin of middle center

• spr_question_bg with an origin of middle center

The sprite named spr_badge is a strip consisting of three frames. Create it and click

Edit ➤ Image ➤ Import From Strip Image. Set the number of frames and frames per row

to 3, frame width to 249, and frame height to 209, as shown in Figure 2-1.

50

The first object is obj_add_from_code, which has no sprite. Add the following code

to the Create Event. It sets up some initial game values and data structures known as

arrays, which hold the question, answer options, and the correct answer:

/// @description Set For Data

global.current_question=1;

global.number_of_questions=5;

global.correct=0;

global.question[1]="What is the capital of England?";

global.option1[1]="London";

global.option2[1]="Paris";

global.option3[1]="New York";

global.answer[1]=1;

global.question[2]="What is a female swan called?";

global.option1[2]="Sow";

global.option2[2]="Pen";

global.option3[2]="Kitten";

global.answer[2]=2;

Figure 2-1. Import settings for the sprite strip

Chapter 2 Quiz

51

global.question[3]="How many legs does a dog have?";

global.option1[3]="1";

global.option2[3]="2";

global.option3[3]="4";

global.answer[3]=3;

global.question[4]="What is the square root of 16?";

global.option1[4]="2";

global.option2[4]="4";

global.option3[4]="8";

global.answer[4]=2;

global.question[5]="What colour is the moon?";

global.option1[5]="Blue";

global.option2[5]="Gray";

global.option3[5]="Purple";

global.answer[5]=2;

room_goto(room_quiz);

That is all for this object.

The next object is obj_add_from_web. It has no sprite. Add a Create Event with

the following code. It downloads a file from a website that holds the questions, answer

options, and correct answer in a text file. This is an asynchronous event, which basically

means it works in the background while the game continues.

/// @description Get File 7 Set up

//Next line sets file to path and target

file = http_get_file("http://www.gamemakerbook.com/quiz.txt",working_

directory +"quiz.txt");

The next event is an Async HTTP Event, which can found by clicking Add Event ➤

Asynchronous ➤ Async - HTTP, as shown in Figure 2-2.

Chapter 2 Quiz

52

Figure 2-2. Adding an asynchronous HTTP event

Chapter 2 Quiz

53

The code for this event sets to true once the file has successfully downloaded:

/// @description async status check

if ds_map_find_value(async_load, "id") == file //sets up map

{

 var status = ds_map_find_value(async_load, "status"); //gets status

 if status == 0//status 0 means file is finished downloading

 {

 //openfile

 file=file_text_open_read(working_directory +"quiz.txt");

 while (!file_text_eof(file))//loops until end of file

 {

 num++;

 global.question[num]=file_text_read_string(file);

 file_text_readln(file);

 global.option1[num]=file_text_read_string(file);

 file_text_readln(file);

 global.option2[num]=file_text_read_string(file);

 file_text_readln(file);

 global.option3[num]=file_text_read_string(file);

 file_text_readln(file);

 global.answer[num]=file_text_read_real(file);

 file_text_readln(file);

 }

 file_text_close(file);//closes file

 //add questions to array

 global.current_question=1;

 global.number_of_questions=num;

 global.correct=0;

 room_goto(room_quiz);

 }

}

Chapter 2 Quiz

54

That is all for this object.

Next is obj_ask. Assign it sprite spr_question_bg and add a Step Event that checks

if all questions have been asked:

/// @description if no more questions

if global.current_question>global.number_of_questions

{

 room_goto(room_result);

}

Next, add a Draw Event that formats text for drawing and then draws the player’s

current progress through the questions:

/// @description draw info & question

draw_self();

draw_set_font(font_info);

draw_set_halign(fa_center);

///Info and questions

draw_text(x,y+10,"Number of Questions"+string(global.number_of_questions));

draw_text(x,y+30,"Current Question"+string(global.current_question));

draw_text(x,y+50,global.question[global.current_question]);

That is all for this object.

Next up is obj_timer. Assign it spr_clockface. Add a Create Event that sets a value

for holding how much time the player has remaining and sets an alarm to reduce it every

second:

/// @description set time and start alarm

global.time=30;

alarm[0]=room_speed;

Next, add a Step Event that keeps the time at a maximum value of 60 and checks if

the player has run out of time. If the player has run out of time, they are sent to the result

room.

/// @description Check time

if global.time>60 global.time=60;

if global.time==0

Chapter 2 Quiz

55

{

 room_goto(room_result);

}

Next, add an Alarm 0 Event with GML that reduces the value of time and resets the

alarm to 1 second. Note that global.time--; reduces the value by 1; it is the same as

using global.time=global.time-1; or global.time-=1;.

/// @description reduce time and set alarm again

global.time--;

alarm[0]=room_speed;

And finally add a Draw Event that draws the clock face, the hand, and some text,

showing the player how much time they have remaining:

/// @description draw clock and face

draw_self();

//draw hand

var hand_angle=180-(global.time*6);

draw_sprite_ext(spr_clock_hand,0,x,y,1,1,hand_angle,c_white,1);

//draw seconds as text

draw_set_font(font_info);

draw_set_halign(fa_center);

draw_set_colour(c_red);

draw_text(x,y+75,string(global.time)+"Seconds");

That’s all for this object.

The next three objects are the buttons that the player presses to select an answer.

The first object is obj_option_1. Assign it spr_button. Add a Draw Event that draws the

button for the question and the appropriate answer for that option:

/// @description draw button and answer option

draw_self();

draw_set_font(font_info);

draw_set_halign(fa_middle);

draw_set_colour(c_black);

draw_text(x,y,global.option1[global.current_question]);

Chapter 2 Quiz

56

Next, add a Left Pressed Mouse Button Event that checks the array to see if the

player has chosen the correct answer option. It shows a message based on whether the

answer was correct and awards a point if so. It then increases the value of the current

question so the next question can be asked.

/// @description check if correct

if global.answer[global.current_question]==1

{

 show_message("correct");

 global.correct++;

 global.current_question++;

 global.time+=10;

}

else

{

 global.current_question++;

 show_message("not correct");

}

That is all for this object. The next two buttons are obj_option_2 and obj_option_3.

They are very similar. In fact, just one line of code needs to be changed, so you can use

the duplicate function to create these objects. In the Resources tree, right-click

obj_option_1 and then Duplicate. Do this twice. This is shown in Figure 2-3.

Chapter 2 Quiz

57

Rename one of these new objects as obj_option_2. Now make the changes to the

code. In the Left Pressed Event, change

if global.answer[global.current_question]==1

to

if global.answer[global.current_question]==2

And in the Draw Event, change

draw_text(x,y,global.option1[global.current_question]);

to

draw_text(x,y,global.option2[global.current_question]);

That is all for this object.

Do the same for obj_option_3 and change

Figure 2-3. Duplicating an object

Chapter 2 Quiz

58

if global.answer[global.current_question]==1

to

if global.answer[global.current_question]==3

And in the Draw Event, change

draw_text(x,y,global.option1[global.current_question]);

to

draw_text(x,y,global.option3[global.current_question]);

That is all for this object.

The next object is obj_from_code. Assign it spr_from_code. Add a Mouse Left
Button Pressed Event that creates an instance of the object that sets the questions and

answers from code, and destroys the two options:

/// @description Create Object To Load From Code

instance_create_layer(x,y,"instances",obj_add_from_code);

with (obj_from_code) instance_destroy();

with (obj_from_web) instance_destroy();

That is all for this object. The next object is obj_from_web. Assign it spr_from_web.

Add a Mouse Left Button Pressed Event that creates an instance of the object that

downloads the question file from the web and destroys the options:

/// @description Create Object to Load From Web

instance_create_layer(x,y,"Instances",obj_add_from_web);

with (obj_from_code) instance_destroy();

with (obj_from_web) instance_destroy();

That is all for this object.

The last object for this game is obj_result. Assign it spr_infobg. Add a Draw Event

that displays the player’s overall score and draws a badge depending on how many

questions the player answered correctly (gold for 100% correct, silver for 50% or more,

and bronze for under 50%):

/// @description Draw Result

if global.correct==global.number_of_questions

Chapter 2 Quiz

59

{

 badge="Gold"; //all correct

 draw_sprite(spr_badge,0,500,100);

}

else if global.correct>(global.number_of_questions/2)

{

 badge="Silver"; //over half

 draw_sprite(spr_badge,1,500,100);

}

else

{

 badge="Bronze"; //otherwise

 draw_sprite(spr_badge,2,500,100);

}

draw_self();

//draw text

draw_set_font(font_info);

draw_set_halign(fa_middle);

draw_set_colour(c_black);

draw_text(x-50,y,"You got"+ string(global.correct) +"Out of

"+string(global.number_of_questions));

draw_text(x-50,y+25,"Your badge is"+badge);

draw_text(x-50,y+75,"Press R to restart");

Next, add a Key Pressed R Event, which can be selected by clicking Add Event ➤

Key Pressed ➤ Letters ➤ R, as shown in Figure 2-4.

Chapter 2 Quiz

60

Figure 2-4. Setting an event for the keypress of r

Chapter 2 Quiz

61

The code for this keypress event restarts the game:

/// @description Restart

game_restart();

That is all the objects.

This game has three rooms. The first is room_setup_quiz. So create this room and

drag it into a new workspace. If the necessary tabs are not showing, they can be selected

from Room at the top of the screen, as shown in Figure 2-5.

Figure 2-5. The options under Room

Chapter 2 Quiz

62

Figure 2-6. Settting the background to white

Set the room size to 800 x 600. Select the Background layer and set it as white, as

shown in Figure 2-6.

Chapter 2 Quiz

63

Next, select the Instances layer and add one each of obj_from_code and obj_from_web,

as shown in Figure 2-7.

Figure 2-7. room_setup_quiz with a white background and instances

Chapter 2 Quiz

64

Figure 2-8. room_quiz with instances placed

That is all for this room.

The next room is room_quiz. It is 800 x 600 in size and has the same background

as the previous room. It has one instance of obj_timer, obj_ask, obj_option_1, obj_

option_2, and obj_option_3, as shown in Figure 2-8.

Chapter 2 Quiz

65

That is all for this room.

The final room is room_result, with the same background of white and size of

800 x 600. It has an instance of obj_result, as shown in Figure 2-9.

Figure 2-9. room_result with an instance of obj_result

Chapter 2 Quiz

66

A project file for the completed game is in the Resources folder. Try making your own

quiz as a text file and uploading it to a website.

Figure 2-10. The quiz game in action

The final step is to create a font named font_info, which is Arial size 20.

When you play the game, it will look like Figure 2-10.

Chapter 2 Quiz

67

EXTRA IDEAS FOR YOU TO TRY

 1. Change the game so there are four answer options to choose from.

 2. Make background music that changes when the player is running out of time.

 3. at game start, give the player a choice of question topics and then load in an

appropriate question file.

 4. Create a program that allows a person to enter a question, possible answers,

and the correct answer, which can be exported as a text file and then imported

by this game.

 5. Make a high score table that takes the player’s name and how many correct

answers they got.

Chapter 2 Quiz

69
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8_3

CHAPTER 3

Snake
In this chapter, you will make a basic Snake game. Doing so will introduce you to using

sounds and music as well as some important programming fundamentals such as

enums and sprite manipulation. It will also build upon and reinforce what you learned

in Chapters 1 and 2.

The aim of this game is to eat as much food as possible, without hitting the red

blocks or any part of your tail.

Create a new GML project and name it Snake.

This game uses just five sprites. You can load them in now. The origin of all sprites is

middle center. They are

• spr_head

• spr_block

• spr_trial

• spr_food

• spr_bg

This game also uses four sounds, one for background music and three sound

effects. You can create a new sound by right-clicking Sounds in the Resources tree or

by right- clicking in an empty area and selecting Resources ➤ Create Sound, as shown

in Figure 3- 1.

70

Figure 3-1. Where to right-click to create a sound resource

Chapter 3 Snake

71

Name the new sound as snd_music and load the music from the Resources folder.

When done, it will look like Figure 3-2.

Figure 3-2. Sound resource added

Chapter 3 Snake

72

Figure 3-3. The Resources tree

Repeat this process for snd_food, snd_move, and snd_gameover. When done, your

Resources tree should look like Figure 3-3.

Chapter 3 Snake

73

The first object is obj_startscreen. There is no sprite for this object. Add a Create
Event with code that opens the ini file called highscore.ini and loads any high score,

if present; otherwise, it sets the high score to 0:

/// @description Load Highscore & Start Music

ini_open("highscore.ini");

global.highscore=ini_read_real("save","highscore",0);

ini_close();

audio_play_sound(snd_music,0,true);

Next, add a Draw Event with GML that draws the current high score and tells the

player to press s to start the game:

/// @description Draw Highscore & info

draw_set_font(fnt_score);

draw_set_colour(c_green);

draw_set_halign(fa_center);

draw_text(320,320,"Highscore"+string(global.highscore));

draw_text(320,400,"Press S To Start Game");

Next, create a font named fnt_score, which is Arial size 20, as shown in Figure 3-4.

Figure 3-4. Font settings

Chapter 3 Snake

74

Finally, add a Key Press S Event with code that takes the player to room_game upon a

key being pressed:

/// @description Go to game room

room_goto(room_game);

That is all for this object.

The next object is obj_food. Assign the spr_food image to it. There is no code for this

object.

Next up is obj_block. Assign sprite spr_block to it. Again, there is no code for this object.

Next is obj_trail. Assign spr_trail to it. This is the tail of the snake. Add a Create
Event with code that sets an alarm based on the length of the snake:

/// @description Set Alarm

alarm[0]=global.length;

Next, add an Alarm 0 Event with GML that destroys the instance when alarm 0

triggers:

/// @description destroy on alarm

instance_destroy();

The next object is obj_head. Assign the spr_head sprite to it. Add a Create Event that

sets up an enum and any initial values that the snake needs. An enum is a type of data

that allows different states to be applied to it, in the direction that the snake can travel in.

enum state

{

 idle,

 up,

 down,

 left,

 right

}

dir=state.right;

move_size=16;

global.length=5;

alarm[0]=1;

room_speed=4;

Chapter 3 Snake

75

Next, add a Step Event. Since there is only one statement after the conditional,

I omitted the use of { and }; you can write the code with these brackets if you wish. The

code for this event states the value of dir to one of the enum states you created, based on

the key presses the player makes. It then plays a beeping sound and moves the snake’s

head to a new position.

/// @description Movement

//Keyboard

if keyboard_check_pressed(vk_left) dir=state.left;

if keyboard_check_pressed(vk_right) dir=state.right;

if keyboard_check_pressed(vk_up) dir=state.up;

if keyboard_check_pressed(vk_down) dir=state.down;

audio_play_sound(snd_move,1,false);

///movement

if dir==state.left//if moving left

{

 x-=move_size;//move

 image_angle=180;

}

if dir==state.right

{

 x+=move_size;

 image_angle=0;

}

if dir==state.up

{

 y-=move_size;

 image_angle=90;

}

if dir==state.down

{

 y+=move_size;

 image_angle=270;

}

Chapter 3 Snake

76

Add an Alarm 0 Event that places an instance of obj_trail at the snake’s position:

/// @description Create trail on alarm

instance_create_layer(x,y,"game",obj_trail);

alarm[0]=1;

score++;

The next event is called a Collision Event. This event is triggered when two instances

(actually their bounding boxes) collide. You can make things happen when this event

triggers. For this game, you want a Collision Event with obj_food. This is shown in

Figure 3-5.

Chapter 3 Snake

77

Figure 3-5. Setting up a Collision Event with obj_food

Chapter 3 Snake

78

The code for this Collision Event with obj_food increases the length value of the

snake, destroys the food, awards points, and creates a new instance in an empty position

within the room but at least 32 pixels away from any border:

/// @description on collision

global.length+=1;

with (other) instance_destroy();

score+=250;

audio_play_sound(snd_food,1,false);

with (obj_trail) alarm[0]+=1;

do

{

 var xx=irandom_range(32,room_width-32;

 var yy= irandom_range(32,room_height-32;

}

until (place_free(xx, yy))//find a free place

food=instance_create_layer(xx,yy,"game",obj_food);

with(food) move_snap(16,16);

Next, add a Collision Event with obj_trail. It has the following code (which should

not require any explanation):

/// @description Go to gameover room

room_goto(room_gameover);

Add another Collision Event with obj_block with the following code:

/// @description Go to gameover room

room_goto(room_gameover);

Next, add an Outside Room Event, which can be found by clicking Add Event

➤ Other ➤ Outside Room, as shown in Figure 3-6. Add the same code you used for

Collision Event with obj_block.

Chapter 3 Snake

79

Figure 3-6. Adding an Outside Room Event

Chapter 3 Snake

80

When done, the Events window will look like Figure 3-7.

Figure 3-7. The events for obj_head

That is all for this object.

The next object is obj_gameover. Add a Create Event that stops the music, plays

some audio, and updates the saved high score if the new score is greater than the

previous high score:

/// @description Set Alarm - Stop Music & Save Score

alarm[0]=room_speed*10;

if audio_is_playing(snd_music)

{

 audio_stop_sound(snd_music);

}

Chapter 3 Snake

81

audio_play_sound(snd_gameover,1,false);

if score>global.highscore

{

 ini_open("highscore.ini");

 ini_write_real("save","highscore",score);

 ini_close();

}

Add an Alarm 0 Event with the following code:

/// @description Restart Game

game_restart();

Add a Draw Event with the following code:

/// @description Draw Final Score

draw_set_font(fnt_score);

draw_set_halign(fa_center);

draw_set_colour(c_green);

draw_text(room_width/2,room_height/2,"Final Score" + string(score));

That is all for this object.

The final object is obj_hud, which has no sprite. The Draw GUI Event code draws the

score and the high score at the top of the window, above any other instances:

/// @description Draw Score

draw_set_font(fnt_score);

draw_set_colour(c_green);

draw_set_halign(fa_center)

draw_text(160,40,"Score" + string(score));

draw_text(360,40,"Highscore" + string(global.highscore));

That is all for this object.

This game has three rooms.

Chapter 3 Snake

82

Room room_start_game has one instance of obj_startscreen placed in it, as shown

in Figure 3-8.

Figure 3-8. room_start_game with an instance of obj_startscreen placed

Chapter 3 Snake

83

If your window is getting a little busy, feel free to close any open workspaces.

Create a new workspace, and drag over room room_game.

You can add instance layers and rename the Instance layer to game, also shown in

Figure 3-9.

Select the Background layer and draw over spr_bg. Set it to Stretch, as shown in

Figure 3-9.

Figure 3-9. Setting the background to stretch

You will now set up a very large room. It’s so large that you can only see one part of it

at any time. This is called a view. You will set this view up to keep the player within this

view. The settings for this are shown in Figure 3-10.

Chapter 3 Snake

84

Figure 3-10. Setup for using a view

Chapter 3 Snake

85

Next, select the game layer and place one instance of obj_head, one of obj_hud, and

a few of obj_food and obj_block, as shown in Figure 3-11.

Figure 3-11. Instances placed in room

Chapter 3 Snake

86

That is all for this room. You can now close it.

The final room is room_gameover, which is 640 x 740 in size and has an instance of

obj_gameover placed in it.

Now is a good point to save and test your game.

Your game will look like Figure 3-12.

Figure 3-12. The game in action

Chapter 3 Snake

87

A project file for the completed game is in the Resources folder.

EXTRA IDEAS FOR YOU TO TRY

 1. Make a two-player version, with the aim of collecting 10 food items first.

 2. Design a level with more objects to avoid.

 3. Change the game so the player needs to eat food at least every 30 seconds.

If they don’t, they die.

 4. Set it so the snake’s tail starts with a length of 50.

 5. Create a system that saves scores and displays the highest five scores on

game start.

Chapter 3 Snake

89
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8_4

CHAPTER 4

Rock, Paper, Scissors
This chapter is a remake of the classic game of Rock, Paper, Scissors. This chapter will

reinforce what you learned in the first three chapters and will introduce new concepts

and coding.

This game has a very basic AI system that randomly allows the computer to choose

either rock, paper, or scissors. The aim of this game is to outwit the computer by making

a play that defeats it.

This game uses just three sprites:

• spr_rock

• spr_paper

• spr_scissors

Load them in now and set the origin of each to middle center.

This game uses four sounds:

• snd_arr

• snd_ouch

• snd_prefect

• snd_yeah

You can go ahead and load them in now.

This game makes use of something called a script. Basically, a script is a special block

of code that can take in arguments (usually variables), perform an action, and return

a result or not. Scripts are useful for a lot of reasons, but the most important use is to

separate out complex code to make editing easier. They’re also useful if you use similar

code in more than one place.

You can create a script by right-clicking Script ➤ Create Script, as shown in Figure 4-1.

90

Figure 4-1. Creating a script

Chapter 4 roCk, paper, SCiSSorS

91

Right-click this in the Resources tree and rename it as scr_play, as shown in

Figure 4-2. This script checks the player’s and computer’s play, returning a value of 0

for a draw, -1 for a loss, or 1 for a win. This code uses enumeration variables, which are

defined elsewhere in this chapter. It tests a variable using a switch statement and finds

the appropriate code section depending on its value. If you must check against multiple

values, a switch statement is preferable; it’s a tidier way of checking the values.

///scr_play(play1,play2)

switch (argument0) {

case play.rock:

 switch (argument1) {

 case play.paper: return -1;

 case play.scissors: return 1;

 default: return 0;

 }; break;

 case play.paper:

 switch (argument1) {

 case play.scissors: return -1;

 case play.rock: return 1;

 default: return 0;

 }; break;

 case play.scissors:

 switch (argument1) {

 case play.rock: return -1;

 case play.paper: return 1;

 default: return 0;

 }; break;

}

Chapter 4 roCk, paper, SCiSSorS

92

Next, set up a font called font_text and set it as Arial size 25.

Create the first object, obj_splash_and_setup. No sprite is needed. Add a Create
Event with code that sets up initial values and an enum. randomize is used to create a

different selection of computer plays each time the game is run.

//set initial variables

global.player_wins=0;

global.computer_wins=0;

global.draws=0;

enum play

{

 none,

 rock,

 paper,

 scissors

}

global.computer_play=play.none

global.player_play=play.none;

global.text="Player To Go - Click To Choose";

Figure 4-2. The script set up with code

Chapter 4 roCk, paper, SCiSSorS

93

randomize();

room_goto(room_game);

That is all for this object.

The next object is obj_player_play, which has no sprite. Add a Create Event code

that places the instances so the player can make their move:

///create buttons

instance_create_layer (200,400, "Instances",obj_button_rock);

instance_create_layer (400,400, "Instances",obj_button_paper);

instance_create_layer (600,400, "Instances",obj_button_scissors);

Add an Alarm 0 Event that removes the player’s options and creates the instance

needed for the computer to play:

///on alarm

instance_create_layer (x,y, "Instances",obj_computer_play);

with obj_button_rock instance_destroy();

with obj_button_paper instance_destroy();

with obj_button_scissors instance_destroy();

instance_destroy();

Next up is obj_computer_play. It has no sprite. Add Create Event code that makes

the computer choose a number (1, 2 or 3) to make its move:

/// @description for Computer Hand

var play=irandom_range(1,3); //choose a random number

switch (play)

{

 case 1:

 {

 global.computer_play=play.rock;

 var hand="Rock";

 break;

 }

 case 2:

 {

Chapter 4 roCk, paper, SCiSSorS

94

 global.computer_play=play.paper;

 var hand="Paper";

 break;

 }

 case 3:

 {

 global.computer_play=play.scissors;

 var hand="Scissors";

 break;

 }

}

global.text="Computer Chooses"+hand;

alarm[0]=room_speed*2;

Next, add an Alarm 0 Event that creates the instance to display the result and then

destroys itself:

///on alarm

instance_create(x,y, "Instances",obj_result);

instance_destroy();

The next object is obj_global_drawing; there is no sprite assigned to this object.

Add a Draw End Event, which is shown in Figure 4-3.

Chapter 4 roCk, paper, SCiSSorS

95

Figure 4-3. The Draw End Event

Chapter 4 roCk, paper, SCiSSorS

96

The code for this event draws the results of the current play:

/// @description draw game results

draw_set_font(font_text);

draw_set_halign(fa_center);

draw_set_colour(c_black);

draw_text(room_width/2,580,global.text);

draw_text(room_width/2,630,"Player Wins"+string(global.player_wins));

draw_text(room_width/2,680,"Computer Wins"+string(global.computer_wins));

draw_text(room_width/2,730,"Draws"+string(global.draws));

switch global.computer_play

{

 case play.rock:

 draw_sprite(spr_rock,0,room_width-200,200);

 break;

 case play.paper:

 draw_sprite(spr_paper,0,200,200);

 break;

 case play.scissors:

 draw_sprite(spr_scissors,0,room_width-200,200);

 break;

}

switch global.player_play

{

 case play.rock:

 draw_sprite(spr_rock,0,200,200);

 break;

 case play.paper:

 draw_sprite(spr_paper,0,200,200);

 break;

 case play.scissors:

 draw_sprite(spr_scissors,0,200,200);

 break;

}

Chapter 4 roCk, paper, SCiSSorS

97

The next object is obj_result, again with no sprite assigned. Add a Create Event

with code that sets the text to display the result and then sets an alarm to 4 seconds:

/// @description do result

var result=scr_play(global.player_play, global.computer_play);

switch (result)

{

 case -1:

 global.computer_wins++;

 global.text="Computer Wins";

 audio_play_sound(choose(snd_arr,snd_ouch),1,false);

 break;

 case 0:

 global.draws++;

 global.text="Draw";

 audio_play_sound(choose(snd_arr,snd_ouch),1,false);

 break;

 case 1:

 global.player_wins++;

 global.text="Player Wins";

 audio_play_sound(choose(snd_perfect,snd_yeah),1,false);

 break;

}

alarm[0]=room_speed*4;

Next, add an Alarm 0 Event with code that resets the plays and restarts the room so

the next round can be played:

///on alarm

global.computer_play=play.none;

global.player_play=play.none;

global.text="Player To Go - Click To Choose";

room_restart();

Chapter 4 roCk, paper, SCiSSorS

98

The next object is obj_button_scissors. Assign it spr_scissors. Add a Mouse Left
Released Event with code that sets that the player has chosen scissors:

///on mouse click

global.player_play=play.scissors;

global.text="Player Chooses Scissors";

obj_player_play.alarm[0]=room_speed*2;

The next object is obj_button_paper. Assign it spr_paper. Add a Left Mouse
Released Event with code that sets that the player has chosen paper:

//on mouse

global.player_play=play.paper;

global.text="Player Chooses Paper";

obj_player_play.alarm[0]=room_speed*2;

The final object is obj_button_rock. Assign it spr_rock. Add a Left Mouse Released
Event with code that sets that the player has chosen rock:

///on mouse

global.player_play=play.rock;

global.text="Player Chooses Rock";

obj_player_play.alarm[0]=room_speed*2;

That’s it. All of the objects are set up.

There are two rooms in this game. The first is room_splash; it is 800 x 768 in size and

has one instance of obj_splash_and_setup.

The second room is room_game. Note that a background color of white is set. This

room has one instance of obj_global_drawing and one of obj_player_play.

You can now save and test the game. It will look like Figure 4-4.

Chapter 4 roCk, paper, SCiSSorS

99

A project file for the completed game is in the Resources folder.

Figure 4-4. The game in action

Chapter 4 roCk, paper, SCiSSorS

100

EXTRA IDEAS FOR YOU TO TRY

 1. Make it so two players can play against each other.

 2. Make the computer play against itself 1,000 times and display the results.

 3. Change the game to the variation known as rock, paper, Scissors, Lizard,

Spock.

 4. Create a save system that saves how many games the player has won, lost,

and drawn.

 5. play an appropriate sound effect based on the outcome.

Chapter 4 roCk, paper, SCiSSorS

101
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8_5

CHAPTER 5

Jet Pack
In this chapter, you will add to what you have learned so far to create a Jet Pack-style

game with lots of features. This game will be made in multiple stages, meaning you can

save and test the progress of the game as you make it.

The aim of this game is to shoot the enemies and destroy them.

So far in this book I have optimized the sprites so they are ready to import straight

into the game. However, usually when you obtain graphics they won’t be the format or

the size you need for your game.

Go ahead and load in the main player’s sprite.

Create a new sprite named spr_player_1. Import it and set it as shown in Figure 5-1.

102

Next, create an object named obj_player_1 and assign it the sprite you just created.

In a Create Event, enter the following code. This variable is used as the y position the

player will return to if they are not moving up or down:

flying_level=200;

Next, create a Key Down W Event. It will trigger as long as the button is being held

down. This event can be found by going to Add Event ➤ Key Down ➤ Letters ➤ W, as

shown in Figure 5-2.

Figure 5-1. The sprite’s initial setting

Chapter 5 Jet paCk

103

Figure 5-2. The Key Down W Event

Chapter 5 Jet paCk

104

Put the following code into this event. It moves the player up 5 pixels for every step

that the key is held down:

/// @description move up

y-=5;

Next, make a Key Down S Event with code that moves the player down 5 pixels for

each step the key is held down:

/// @description move down

y+=5;

Next, make a Step Event and add the following code. It sets a value for global.

difference that is used for a parallax graphical effect. It also checks the value of y and

prevents the player going off the top or bottom of the screen. The final two lines make

the player slowly move back to the value of flying_level.

/// @description Object management

global.difference=(flying_level-y)/10; //set as a global value as it will

be used for parallax background

image_angle=global.difference-10;

//keep in screen

if y<20 y=20;

if y>380 y=380;

//prevent moving if key is being pressed

if !keyboard_check(ord("W")) or !keyboard_check(ord("S"))

{

 if y<flying_level y+=2;

 if y>flying_level y-=2;

}

Next, create a room called room_game, set the dimensions as 1000 x 600, and place in

it one instance of obj_player_1. Now is a good point to save and test the game so far.

Next, add a feature known as parallax. It uses multiple backgrounds to create a sense

of depth.

Load in sprites bg_0, bg_1, bg_2, and bg_3.

Chapter 5 Jet paCk

105

Open up a room and game and create three background layers, as shown in Figure 5- 3.

Ensure that the order of the backgrounds is the same as shown, so that the layers are

drawn in the correct order.

Figure 5-3. Background layers

Set bg_1 as the background image, check the Horizontal Tile box, and set the

horizontal speed to -3, as shown in Figure 5-4.

Chapter 5 Jet paCk

106

Figure 5-4. bg_1 settings

Chapter 5 Jet paCk

107

Repeat the process for bg_2, setting the horizontal speed to -2.

Repeat the process for bg_3, setting the horizontal speed to -1.

Finally, create an object named obj_road and set the sprite bg_0. Select the

Instances layer and add one of this object.

In order to have the player drawn above anything else, select the Instances layer and

click the obj_player_1 in the room and delete it by pressing Delete.

Now create a new instance layer and name it Player, so the order is as shown in

Figure 5-5.

Figure 5-5. Layers in order

Chapter 5 Jet paCk

108

Now you want to make the backgrounds move up or down depending on the player’s

y position on the screen.

Open up obj_player_1 and add the following code to the Step Event. It changes

the y position of the backgrounds based on the value of global.difference, creating a

parallax effect. Change the values to get different amounts of the parallax effect.

layer_y(bg_1,100+global.difference*2);

layer_y(bg_2,30+global.difference*1);

layer_y(bg_3,40+global.difference*0.5);

Figure 5-6. The room all set up

Add one instance of obj_player_1 on this layer. Your room will look like Figure 5-6.

Chapter 5 Jet paCk

109

It should look like Figure 5-7 when done.

Figure 5-7. obj_player_1 Step Event with new code added

Chapter 5 Jet paCk

110

The next thing to do is create a firing system for the player. First, load in the

spritesheet for the bullet. Let’s use a slightly different method than before; once you

know both, you can decide which method you prefer. Create a new sprite named

spr_player_bullet and click Edit Image. Then click Import Strip Image, as shown in

Figure 5-9.

Now is a good point to save and test the game so far.

When you test, it should look like Figure 5-8.

Figure 5-8. The game in action so far

Chapter 5 Jet paCk

111

Figure 5-9. Import the strip image

Chapter 5 Jet paCk

112

Next, select spr_player_bullet from the Resources folder. The origin of this sprite is

middle center. There are 3 images, each 64x64.

Click Convert to apply these settings.

Create an object called obj_player_bullet and set the sprite you just created.

Make a Create Event and add the following code to make it move to the mouse’s

current location at a speed of 6:

/// @description Start moving

direction=point_direction(x,y,mouse_x,mouse_y);

speed=6;

Next, make an Outside Room Event and place the following GML, which destroys

itself when outside the room. It’s always a good idea to do this with an instance when it’s

no longer needed because this helps prevent memory leaks, which can slow down and

crash your game.

/// @description Destroy

instance_destroy();

Next, open obj_player_1 and add a Mouse Global Left Pressed Event by clicking

Mouse ➤ Global ➤ Global Left Pressed, as shown in Figure 5-10. A Global Mouse Event

detects a mouse click anywhere in the game window, not just over the object’s sprite.

Chapter 5 Jet paCk

113

The code for this event, which creates a bullet, is

/// @description Create a Bullet

instance_create_layer(x,y,"Instances",obj_player_bullet);

This is a good point to save and test the game.

If you test the game, you can create bullets by pressing the left mouse button, as

shown in Figure 5-11.

Figure 5-10. Setting a Global Mouse Left Pressed Event

Chapter 5 Jet paCk

114

One issue you will notice is that you can click really fast and make a barrage of

bullets, so let’s limit how quickly you can shoot. There are many methods that can be

used. Let’s use a flag and an alarm. Open up obj_player_1 and add the following to the

current code in the Create Event, which allows the player to shoot again:

can_shoot=true;

Figure 5-11. Showing progress of the game so far

Chapter 5 Jet paCk

115

The Create Event code now looks like Figure 5-12.

Figure 5-12. The updated Create Event

Open the Global Left Pressed Event and change the code to the following, which

shoots a bullet if can_shoot is true, then sets it back to false, and sets an alarm:

/// @description Create a Bullet

if can_shoot

{

 can_shoot=false;

 alarm[0]=room_speed;

 instance_create_layer(x,y,"Instances",obj_player_bullet);

}

This code allows the player to shoot if the flag is true. It also sets the flag to false to

prevent shooting again.

Next, set an Alarm 0 Event to set the flag of can_shoot back to true via the following

code:

/// @description Set flag back to true

can_shoot=true;

Chapter 5 Jet paCk

116

Test the game. The shooting speed is limited to once per second!

The next stage is to create an enemy for the player to shoot. Create a sprite named

spr_bat and load it in from the resources. There are 8 frames, each 64 x 62. Go ahead

and load in this sprite sheet.

Since the game will have more than one enemy, create a parent object for all

enemies. This allows you to use the code once in the parent, rather than having code in

every enemy object.

Create an object named obj_enemy_parent. There is no sprite for this object. That is

all for this object.

Create an object named obj_bat and assign it the sprite spr_bat and set the parent

object as obj_enemy_parent, as shown in Figure 5-13.

Figure 5-13. Setting a parent object

Chapter 5 Jet paCk

117

Next, give the bat object some health. You won’t use the variable health since it is a

global variable; instead use an instance variable named hp. You also want to set the bat

object to move when it’s created, so to do both of these actions, put the following code in

the Create Event of obj_bat, which sets its hp (health) and its speed to a negative value

of hspeed to make it move left:

/// @description Set HP and move

hp=4;

hspeed=-3;

That is all for this object for now.

Next, open the parent object, obj_enemy_parent, and enter the following code

in the Step Event. It destroys the instance if it goes off of the left of the screen. It also

destroys the instance if the hp is less or equal to 0. The code for doing both actions is the

following:

/// @description check position and hp

if x<-100

{

 health-=5;

 instance_destroy();

}

if hp<=0

{

 instance_create_layer(x,y,"Effects",obj_enemy_explosion);

 score+=start_hp*10;

 instance_destroy();

}

Next, you want a Collision Event with obj_player_bullet, so add the following code,

which reduces hp by 1 and destroys the bullet:

/// @description Collision Event code

hp-=1;

with (other) instance_destroy();

See Figure 5-14.

Chapter 5 Jet paCk

118

Next up you need a control object to spawn instances of the bat. Create an object

named obj_spawner. There is no sprite for this object. The Create Event code for this

object, which sets the alarm to 5 seconds, is as follows:

/// @description Start Alarm

alarm[0]=room_speed*5;

The Alarm 0 Event code, which creates a bat at a y position between 100 and 500

and offscreen at x position 1100, is as follows:

/// @description Create instance and restart alarm

var position=irandom_range(100,500);

instance_create_layer(1100,position,"Player",obj_bat);

alarm[0]=room_speed*5;

That is all for this object. Place one instance of obj_spawner in room_game.

Now is great point to save and test the game so far.

If you shoot a bat four times, it will be destroyed.

Next, let’s add some graphical effects.

Figure 5-14. The Collision Event code

Chapter 5 Jet paCk

119

Create a layer for the effects so that they are drawn above other instances. Create a

new layer named Effects, as shown in Figure 5-15.

Figure 5-15. Creating a new layer for effects

Create a new sprite named spr_enemy_explosion, and edit the image. In the Image

options, select Import Sprite Sheet. There are 12 frames, each 96 x 96 in size. When done,

it will look like Figure 5-16.

Chapter 5 Jet paCk

120

Figure 5-16. The sprite strip loaded in

Create an object named obj_enemy_explosion and assign it the sprite you just

created.

In the Create Event, enter the following GML. It sets image_speed to 0, preventing

animation, and chooses a random sub-image.

/// @description Play Sound

audio_play_sound(snd_explosion_1,1,false);

Chapter 5 Jet paCk

121

In an Animation End Event, place the following code, which destroys the instance:

/// @description Destroy

instance_destroy();

That is all for this object.

If you save and test, you will see the explosion when the bat is destroyed. Note

that the player’s bullet gets destroyed before it collides with the bat, so let’s change the

collision mask that detects a Collision Event. This mask will be used to check collisions.

Open up spr_player_bullet. Open the Collision Mask tab and set it as automatic

and rectangle, as shown in Figure 5-17.

Figure 5-17. Manually setting a collision mask

That is all for this sprite. Now open up spr_bat and set it as manual and rectangle,

as shown in Figure 5-18.

Chapter 5 Jet paCk

122

Figure 5-18. Mask settings for spr_bat

That is all for this sprite.

You can now save and test. You should notice better collision detection.

The next thing to do is draw a small health bar above the enemy so there is a visual

indication of how much hp it currently has.

Open up obj_bat and change the Create Event to the following code, which sets an

initial hp, the starting hp (which is used to draw a healthbar), and the horizontal speed:

/// @description Set HP and move

hp=4;

start_hp=hp;

hspeed=-4;

This saves the starting value of the hp so you can use it to draw the health bar. That is

all for this object.

There are several ways to draw a health bar; this is just one method.

Open up obj_enemy_parent and change the Draw Event code to the following,

which draws the sprite and a mini healthbar:

/// @description Drawing stuff

draw_self(); //draw current subimage

draw_healthbar(x-40,y-80,x+40,y-60,(100/start_hp)*hp,c_red,c_green,

c_green,0,true,true);

That is all for this object.

Chapter 5 Jet paCk

123

Figure 5-19. Showing steps to assign a parent

Next, do something similar for the player object. Open up obj_player_1 and change

the Create Event code to the following. At game start, health automatically has a value of

100, but I find it a good practice to define it anyway.

/// @description Set up

flying_level=200;

can_shoot=true;

health=100;

Make a Collision Event with obj_enemy_parent and put in the following code,

which reduces the player’s health if it collides with an enemy:

/// @description Reduce health

health--;

Finally, set the parent of obj_bat to obj_enemy_parent, as shown in Figure 5-19.

That is all for this object.

Chapter 5 Jet paCk

124

Create a new object named obj_hud and place the following code in a Draw GUI
Event. It draws the player’s healthbar. You could use draw_healthbar, but this is an

alternative method using rectangles.

/// @description Draw HUD

draw_set_colour(c_red);

draw_rectangle(50,500,950,550,false);

draw_set_colour(c_green);

var size=(900/100)*health;

draw_rectangle(50,500,50+size,550,false);

draw_set_colour(c_black);

draw_rectangle(50,500,950,550,true);

That is all for this object. Place one instance of it in room_game.

Now is a good time to save and test.

You will see the health bars for the enemy and the player. The enemy will lose hp

when hit by a bullet, and the player will lose health if hits an enemy or an enemy gets

past the player. A preview is shown in Figure 5-20.

Figure 5-20. Showing game in progress so far

Chapter 5 Jet paCk

125

Figure 5-21. Duplicating an asset in the resource tree

Next, add a new enemy that moves on a path and can shoot at the player.

First, create a sprite for the bullet. For this you will use yet another method.

In the Resource tree, right-click spr_player_bullet and select Duplicate, as shown

in Figure 5-21.

Chapter 5 Jet paCk

126

Figure 5-22. Mirroring a sprite

Name this sprite spr_enemy_bullet and set the origin to middle center.

Then click Edit Image. Then click Image ➤ Mirror ➤ All Frames, as shown in

Figure 5- 22.

Chapter 5 Jet paCk

127

Open up room_game and create a new path layer, as shown in Figure 5-23. Name it

Path_Layer.

Figure 5-23. A method to create a new path

Chapter 5 Jet paCk

128

The screen is a little busy right now. Move the Resources tree to one side by clicking

the left edge and moving it. Use the Ctrl key and the middle mouse button on the

preview window to make it large and show the whole room. Next, hide any layers that

you don’t need to see right now. Layers can be shown/hidden by clicking the eye icon.

Hide all layers except Path_Layer, as shown in Figure 5-24.

Figure 5-24. Hiding all layers except Path_Layer

Now click Select Path ➤ Create New, as shown in Figure 5-25.

Chapter 5 Jet paCk

129

Name this path path_enemy_1.

Start the path just outside to the right of the room and create a spiral shape, as shown

in Figure 5-26. Also check the Smooth Curve option. In this case, it doesn’t need to be

100% the same as the example.

Figure 5-25. Creating a new path

Figure 5-26. Showing the path and path points, with the smooth curve selected

Chapter 5 Jet paCk

130

That is all for this path.

Next, create a new object named obj_enemy_bullet and assign it spr_enemy_bullet.

In the Create Event, enter the following code, which fires a bullet towards the player’s

current location:

/// @description Start moving

direction=point_direction(x,y,obj_player_1.x,obj_player_1.y);

speed=6;

In an Outside Room Event, enter the following code:

/// @description Destroy

instance_destroy();

This code has two consequences. First, it destroys itself if it goes past the player to

the left and exits the room. It also destroys if it is created when it is outside the room by

an enemy object, which prevents the enemy from shooting at the player until it is visible.

Next, create an object that is appears when an enemy bullet hits the player. Create

an object named obj_player_explosion and assign it a sprite. Duplicate spr_enemy_

explosion and rename it as spr_player_explosion. In the Create Event, place the

following code, which plays an explosion sound:

/// @description Play Sound

audio_play_sound(snd_explosion_2,1,false);

In an Animation End Event, enter the following code:

/// @description Destroy

instance_destroy();

You can find the Animation End Event at Other ➤ Animation End, as shown in

Figure 5-27.

Chapter 5 Jet paCk

131

Figure 5-27. The location of an Animation End Event

Chapter 5 Jet paCk

132

That is for this object.

Now load in the sprite spr_ufo and resize it to 128 x 128. Set the origin as middle

center.

Create an object named obj_ufo and assign it the sprite spr_ufo.

In the Create Event, enter the following GML to start the instance moving on the

path you created and set an alarm, initial hp values, and hspeed:

/// @description Start moving & set alarm - set hp

path_start(path_enemy_1,4,path_action_stop,true);

alarm[0]=room_speed*10;

/// @description Set HP and move

hp=20;

start_hp=hp;

hspeed=-4;

In an Alarm 0 Event, add code to create a bullet and reset the alarm:

/// @description Create bullet and set alarm again

instance_create_layer(x,y,"Effects",obj_enemy_bullet);

alarm[0]=room_speed*10;

Set the parent object as obj_enemy_parent.

That is all for this object.

Open up object obj_player_1 and make a Collision Event with obj_enemy_bullet,

and add code to reduce the player’s health, create an explosion, and destroy the bullet:

/// @description Upon collision

health-=10;

instance_create_layer(x,y,"Effects",obj_player_explosion);

with (other) instance_destroy();

Next, open object obj_spawner and change the Create Event code to the following

code, which starts the initial alarms:

/// @description Start Alarm

alarm[0]=room_speed*5;

alarm[1]=room_speed*30;

Chapter 5 Jet paCk

133

Figure 5-28. Making the layers visible again

Add an Alarm 1 Event with code that creates an instance of the UFO enemy at a

random position between 100 and 500 and restarts the alarm:

/// @description Create instance and restart alarm

position=irandom_range(100,500);

instance_create_layer(1100,position,"Player",obj_ufo);

alarm[0]=room_speed*5;

That is all. Now open room_game. You need turn the layers back on so they show

when the game is played. If you can’t see this option, you can always click Room ➤ Reset

Windows. When set back on, it should look like Figure 5-28.

Chapter 5 Jet paCk

134

Now is a great point to save and test the game.

Next, you’ll create a menu screen, player health and scores, and saving and loading.

First, load in a sprite to be used as a background for the title and Game Over screen.

This is spr_title.

Create two new rooms, each 1000 x 600 and with spr_title set as a background,

named room_title and room_game_over. Change the room order in the Resources tree

to that shown in Figure 5-29.

Figure 5-29. The new order of the rooms

That is all for the rooms right now.

Next, you need a font to draw info. Create a new font named font_info and set it as

Arial size 20.

You will be drawing the text a little differently this time. You will create a script that

will take in the text to draw and the position and will draw it in red with a black shadow.

Create a new script and name it draw_text_shadow.

There is a cool coding trick you can use so the script shows the arguments to use at

the bottom of the code window as you type. This can be done with the following code:

/// @function draw_text_shadow(xpos, ypos, text)

/// @param {real} xpos

/// @param {real} ypos

/// @param {integer} text

/// @description Draw Text As Shadow

The full code script to draw the text with a shadow is

/// @function draw_text_shadow(xpos, ypos, text)

/// @param {real} xpos

/// @param {real} ypos

Chapter 5 Jet paCk

135

/// @param {integer} text

/// @description Draw Text As Shadow

draw_set_font(font_info);

draw_set_halign(fa_center);

draw_set_valign(fa_middle);

draw_set_colour(c_black);

draw_text(argument0,argument1,argument2);

draw_set_colour(c_red);

draw_text(argument0+2,argument1+2,argument2);

That is all for this script.

Create a new object named obj_startgame. No sprite is needed. Add the following

code in the Create Event:

/// @description Load Highscore

ini_open("highscore.ini");

global.highscore=ini_read_real("save","highscore",0);

ini_close();

Next, make a Draw Event and put the following code in it:

/// @description Draw Info

draw_text_shadow(room_width/2,200,"Jet Pack");

draw_text_shadow(room_width/2,240,"Previous Highscore:");

draw_text_shadow(room_width/2,280,global.highscore);

draw_text_shadow(room_width/2,340,"Press To S Start");

That is all for this object. Place one instance of it in room room_title.

The next object is obj_gameover. There is no sprite. It has the following Create Event

code:

/// @description Load Highscore

if score>global.highscore

{

 ini_open("highscore.ini");

 ini_write_real("save","highscore",score);

 ini_close();

}

Chapter 5 Jet paCk

136

Also, you need a Draw Event with the following code:

/// @description Show Final Score

draw_text_shadow(room_width/2,220,"Previous Highscore:");

draw_text_shadow(room_width/2,260,global.highscore);

draw_text_shadow(room_width/2,300,"Your Score:");

draw_text_shadow(room_width/2,340,score);

draw_text_shadow(room_width/2,400,"Press To S Restart Game");

You also need a Key Press S Event with the following code:

/// @description Restart Game

game_restart();

Place one instance of this object in room room_gameover.

The last object to create is a control object for drawing the player’s score and

monitoring the player’s health.

Create an object named obj_control. Add a Step Event with the following code to

check the player’s health and take the player to room_gameover if 0 or less:

/// @description Check Health

if health<=0 room_goto(room_gameover);

Add a Draw GUI Event with the following code:

/// @description Draw Player's score

draw_text_shadow(200,570,"Your Score:");

draw_text_shadow(800,570,score);

Place one instance of this object in room room_game.

The final step for this game is to add some sound effects.

Load in the sounds now:

• snd_enemy_shoot

• snd_explosion_1

• snd_explosion_2

• snd_music

Chapter 5 Jet paCk

137

• snd_no_ammo

• snd_player_shoot

• snd_you_are_dead

Add the following code to play snd_enemy_shoot in the Create Event of object

obj_enemy_bullet:

/// @description Start moving

direction=point_direction(x,y,obj_player_1.x,obj_player_1.y);

speed=6;

audio_play_sound(snd_enemy_shoot,1,false);

Add the following code to the Create Event of obj_enemy_explosion, so it looks

like this:

/// @description Play Sound

audio_play_sound(snd_explosion_1,1,false);

The code for the Animation End Event is

/// @description Play Sound

audio_play_sound(snd_explosion_1,1,false);

This sets the priority to 0 and sets it to play on a loop.

Next, open up obj_player_1 and change the code in the Global Left Pressed Event to

/// @description Create a Bullet

if can_shoot

{

 can_shoot=false;

 alarm[0]=room_speed;

 instance_create_layer(x,y,"Instances",obj_player_bullet);

 audio_play_sound(snd_player_shoot,1,false);

}

else

{

 audio_play_sound(snd_no_ammo,1,false);

}

Chapter 5 Jet paCk

138

This code will play a sound depending on whether the player can currently shoot or not.

Set the final sound named snd_you_are_dead to play in the Create Event of

obj_gameover as shown:

/// @description Load Highscore & Start Music

if score>global.highscore

{

 ini_open("highscore.ini");

 ini_write_real("save","highscore",score);

 ini_close();

}

audio_play_sound(snd_you_are_dead,1,false);

Now you can save and test your game.

Figure 5-30 shows this game in action.

Figure 5-30. The game in action

A project file for the completed game is in the Resources folder and it’s called

Jet_Pack.

Chapter 5 Jet paCk

139

EXTRA IDEAS FOR YOU TO TRY

 1. keep track of how long the player survives.

 2. Make a tank that moves along the bottom and fires at the player.

 3. Make a two-player version, with one player on the left and one on the right.

the players can shoot at each other.

 4. Create an additional weapon that the player can fire with the right mouse

button.

 5. Make a bonus object that appears after every 10 enemies that the player kills.

award bonus points if the player collects this object.

Chapter 5 Jet paCk

141
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8_6

CHAPTER 6

Darts
In this chapter, you’ll create a darts game. This game will continue to build upon what

you have learned already. It will also show you more things you can do with paths, ds

lists, custom fonts, and by changing the angle of images.

This game is a single-player version of the classic game called 501 Darts. The aim is

to score 501 in as few darts as possible, while finishing on a double.

This time, you must perform a task before you start GMS2. Go to the Darts Resources

folder and double-click font_chalk. Then click Install. This will load the sprite so it can

be used by Windows applications.

You can now start GameMaker Studio 2.

This game only has a handful of resources, so let’s load them now.

First, add the sprites:

• spr_dartboard with the origin set as custom 300 x 346

• spr_center with the origin as middle center

• spr_sight with the origin as middle center

• spr_dart with the origin as custom 2 x 111

• spr_background with the origin as default top left

Next are seven sounds:

• snd_double_points

• snd_triple_points

• snd_take_cover

• snd_perfect

• snd_thud_1

• snd_thud_2

• snd_thud_3

142

Next, make font_chalk and set it as neatchalk size 8.

Create a room named room_game and add layers named Dart, Path_1, Score,

Instances, and Background, as shown in Figure 6-1.

Figure 6-1. The layers setup

Chapter 6 Darts

143

Go to the Background layer and assign it spr_bg.

Next, create the board object, obj_board, and assign it the sprite spr_board. The

origin should be set as center point of the middle of board (center of the red 50 point

circle). You do this first so you can see it in the room to enable you to make a path. You

won’t add any code at this point. Create an object named obj_board and place on the

Instances layer, as shown in Figure 6-2.

Figure 6-2. The dartboard placed in the room

Chapter 6 Darts

144

Next, add the following to the Create Event of obj_board. The item that is created is

used as a reference point to determine where on the board the player’s dart lands.

/// @description Insert Create object at origin

instance_create_layer(x,y,"Instances",obj_center);

That is all for this object.

Next, create an object named obj_control. There is no sprite for this object. Add a

Create Event that sets up the initial variables of the game:

/// @description Set Up

score=501;

global.go=0;

is_round=true;

is_across=false;

Figure 6-3. Showing the path created

Next, select the Path_1 layer and create a path named path_circle that follows the

outer edge of the dart board. Set it as a smooth curve and closed, as shown in Figure 6-3.

Chapter 6 Darts

145

global.scores=ds_list_create();

ds_list_add(global.scores,501);

global.last=ds_list_create();

text="";

enum state

{

 across,

 circle

}

current=state.circle;

Add a Step Event that culls a list to keep it at 12 values, gives some info to the player,

and checks whether the player has won:

/// @description check list size

size=ds_list_size(global.scores);

if size>12

{

 ds_list_delete(global.scores,0);

 ds_list_delete(global.last,0);

}

//set hints text

if (!instance_exists(obj_throw))

{

 text = "Left Click Mouse Button To Start";

}

else

{

 if (current == state.circle)

 {

 text="Click To Stop";

 }

 else if (current == state.across)

 {

Chapter 6 Darts

146

 text="Click To Throw Dart";

 }

}

if score==0

{

 show_message("You Win");

 game_restart();

}

Add a Draw Event that draws the current throw and previous throws, plus the hint:

/// @description Draw Info

draw_set_font(font_chalk);

draw_set_colour(c_white);

draw_set_halign(fa_center);

///draw throw

draw_text(100,20,"Throw = "+string(global.go));

//running total

var size=ds_list_size(global.scores);

for (var i = 0; i < size; i += 1)

{

 draw_text(830,60+(20*i),global.scores[|i]);

}

//previous throws

var size=ds_list_size(global.last);

for (var i = 0; i < size; i += 1)

{

 draw_text(950,60+(20*i),global.last[|i]);

}

draw_text(830,20,"Running Total");

draw_text(950,20,"Throws");

///draw_hints

draw_text(room_width/2,720,text);

Chapter 6 Darts

147

Add a Global Left Pressed Mouse Event that creates an instance of obj_throw:

/// @description Create a throw

if !instance_exists(obj_throw) && !instance_exists(obj_dart_path);

{

 instance_create_layer(x,y,"Dart",obj_throw);

}

That is all for this object. Place one instance of this object on the room’s Score layer.

Next is obj_center. Assign it spr_center. Add a Create Event that sets the starting

values:

/// @description set up

angle=0;

throw=0;

segment=0;

Add a Step Event that calculates the players depending on where on the board the

dart lands:

/// @description Calculate throw

if instance_exists(obj_dart)

{

 var type="single";

 angle=(point_direction(x,y,obj_dart.x,obj_dart.y)+8) mod 360;

 var segment=angle div 18;

 var distance=distance_to_point(obj_dart.x,obj_dart.y);

 //get score for segment

 switch (segment)

 {

 case 0:

 pos=6;

 break;

 case 1:

 pos=13;

 break;

 case 2:

 pos=4;

 break;

Chapter 6 Darts

148

 case 3:

 pos=18;

 break;

 case 4:

 pos=1;

 break;

 case 5:

 pos=20;

 break;

 case 6:

 pos=5;

 break;

 case 7:

 pos=12;

 break;

 case 8:

 pos=9;

 break;

 case 9:

 pos=14;

 break;

 case 10:

 pos=11;

 break;

 case 11:

 pos=8;

 break;

 case 12:

 pos=16;

 break;

 case 13:

 pos=7;

 break;

 case 14:

 pos=19;

 break;

Chapter 6 Darts

149

 case 15:

 pos=2;

 break;

 case 16:

 pos=17;

 break;

 case 17:

 pos=2;

 break;

 case 18:

 pos=15;

 break;

 case 19:

 pos=10;

 break;

 }

 //get if single, double or triple

 //outside board

 if distance>198

 {

 throw=0;

 audio_play_sound(snd_take_cover,0,false);

 }

 else

 if distance>=178 && distance<=197

 {

 throw=pos*2;

 type="double";

 }

 else

 if distance>=108 && distance<=123

 {

 throw=pos*3;

 type="triple";

 }

Chapter 6 Darts

150

 else

 if distance>=9 && distance<=16

 {

 throw=25;

 }

 else

 if distance<9

 {

 throw=50;

 type="double"; //we use this to check player ends on a double

 }else

 throw=pos;

 //destroy dart

 with (obj_dart) instance_destroy();

 //calculate new score

 if score-throw>=2 // only calculate if 2 or more left on board, so

player must end on a double

 {

 score-=throw;

 ds_list_add(global.scores,score);

 ds_list_add(global.last,throw);

 if throw==50 or throw==60

 {

 audio_play_sound(snd_perfect,0,false);

 }

 else if type=="triple"

 {

 audio_play_sound(snd_triple_points,0,false);//play triple if

not 60

 }

 else if type=="double"

 {

 audio_play_sound(snd_double_points,0,false);

 }

 }

Chapter 6 Darts

151

 else if score-throw==0 and type=="double"

 {

 score-=throw;

 ds_list_add(global.scores,score);

 ds_list_add(global.last,throw);

 }

}

else if score==0

{

 show_message("You Win");

 game_restart();

}

The next object is obj_dart_on_board. Assign it the sprite spr_dart. Add a Create
Event that makes a random angle (+ or –20 degrees) for the dart and sets an alarm:

/// @description set up and set alarm

image_angle=image_angle+(irandom_range(-20,20));

alarm[0]=room_speed*4;

Add an Alarm 0 Event with the following code:

/// @description on alarm:

instance_destroy();

The next object is obj_throw. Assign it spr_sight. Add a Create Event that starts the

object on the circular path you created earlier:

/// @description Start in circle

current=state.circle;

path_start(path_circle,12,path_action_continue,true);

Add a Global Left Pressed Event that creates a path that moves across the board:

/// @description upon mouse click:

if current==state.circle

{

 if path_exists(current)

 {

Chapter 6 Darts

152

 path_delete(current);

 }

 path_end();

 current=state.across;

 line=path_add();

 path_add_point(line,x,y,6);

 xx=x-obj_center.x;

 yy=y-obj_center.y;

 path_add_point(line,obj_center.x-xx,obj_center.y-yy,6);

 path_start(line,80,path_action_continue,true);

 exit;

}

if current==state.across

{

 if path_exists(line)

 {

 path_delete(line);

 }

 global.target_x=x;

 global.target_y=y;

 instance_create_layer(x,y,"Dart", obj_dart_path);

 global.go++;

 instance_destroy();

}

Finally, add a Clean Up Event with the following code:

/// @description Remove Paths

if path_exists(current) path_delete(current);

if path_exists(line) path_delete(line);

That is all for this object.

Next is obj_dart. Assign it spr_dart. There is no code for this object.

Chapter 6 Darts

153

The final object is obj_dart_path. Assign it spr_dart. Add a Create Event that

creates a path that makes it look like the dart is being thrown:

/// @description make a path

throw_path=path_add();

path_set_kind(throw_path, 1);

path_set_closed(throw_path, false);

path_add_point(throw_path, room_width, room_height, 50);

path_add_point(throw_path, 600, 60, 50);

path_add_point(throw_path, global.target_x, global.target_y, 50);

path_start(throw_path, 50, path_action_stop, true);

Add a Path Ended Event, which can be found at Add Event ➤ Other ➤ Path Ended.

It places two instances where the dart lands, plays a dart noise, and then destroys itself:

/// @description add dart to board

instance_create_layer(global.target_x,global.target_y,"Dart",obj_dart);

instance_create_layer(global.target_x,global.target_y,"Dart",obj_dart_on_

board);

audio_play_sound(choose(snd_thud_1,snd_thud_2,snd_thud_3),0,false);

path_delete(throw_path);

instance_destroy();

Add a Clean Up Event with the following code:

/// @description Clear Memory

if path_exists(throw) path_delete(throw_path);

That is all for this game.

Now save and test the game. Figure 6-4 shows this game in action.

Chapter 6 Darts

154

A project file for the completed game is in the Resources folder.

EXTRA IDEAS FOR YOU TO TRY

 1. Make a two-player version.

 2. Currently the game is very accurate. Make it so the dart ends up randomly

within 50 pixels of the target area.

 3. Make a computer player that can select one of five skill levels.

 4. Make a variation of Clock, where the player(s) have to hit numbers 1 to 20 in order.

 5. If the player hits treble 20, play some audio and create a graphical effect.

Figure 6-4. The game in action

Chapter 6 Darts

155
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8_7

CHAPTER 7

Platform Game
This chapter will introduce some new concepts, the most important of which is using

code in a Step Event instead of separate events for things like collisions or key presses.

It will also show more things you can do with parent objects, and by using sprite control.

As per the previous chapter, this game will be made in stages, with save points where you

can check the game. To save you time, the sprites have been optimized and are ready to

import without changes, other than setting the sprite origins.

The aim of this game is to collect the eggs while losing as few lives as possible.

There are only a few resources for this game, so go ahead and load them in now.

There are three sounds:

• snd_die

• snd_egg

• snd_jump

There is one background: bg_1.

The way you will load sprites this time is a little different. If you look at the sprite

named spr_idle_strip4, you can see that it ends in _strip4. This tells GameMaker how

many frames the strip has, and most of the time it gets it right and creates the frames as

needed. However, sometimes you may need to manually set the frames.

Go ahead and load the sprites in. The origin of each is middle center, except where

noted.

• spr_player_idle

• spr_player_right

• spr_player_up

• spr_dragonfly

156

• spr_snake

• spr_ladder

• spr_ladder_top

• spr_spikes

• spr_eggs with the origin at the bottom of the egg

• spr_flag

• spr_platform

• spr_platform_left

• spr_platform_right

• spr_platform_border

• spr_full_mask

• spr_change_direction

Now is a good point to save the game.

Next, create some objects.

Create an object named obj_platform_parent; no sprite is needed.

Create another object named obj_platform_left, assign it sprite spr_platform_

left, and set the parent as obj_platform_parent, as shown in Figure 7-1.

Chapter 7 platform Game

157

Repeat the process for obj_platform_middle, obj_platform_right, and

obj_platform_border, remembering to assign the parent object obj_platform_parent

to them.

Now create a new object named obj_ladder_parent; no sprite is needed.

Next, create an object named obj_ladder_top and assign it sprite spr_ladder_top

and parent obj_ladder_parent, as shown in Figure 7-2.

Figure 7-1. Assigning the sprite and parent

Chapter 7 platform Game

158

Repeat the process for obj_ladder, assigning it sprite spr_ladder and parent

obj_ladder_parent.

Next, set up the basics for the player object. Create a new object named obj_player

and assign it sprite spr_player_idle. You will be using three different sprites, which

would create different collision masks if you used the default settings. This may cause

the player to become stuck and unable to move. To prevent this, you set the sprite named

spr_full_mask as the collison mask. This step is shown in Figure 7-3.

Figure 7-2. obj_ladder_top with its parent set

Chapter 7 platform Game

159

In a Create Event, add code to set some initial variables for the player:

/// @description Set Up Player

vsp = 0;

hsp = 0;

grav = 0.3;

grounded = 0;

flip = 1;

djump = 0;

ladder = false;

image_speed=0.5;

x_respawn=x;

y_respawn=y;

Then make a Step Event. This time around, use GML code to detect keypresses

within the Step Event, rather than using separate events for each key. Place the following

in a Step Event to do the movement and sprite control for the player:

Figure 7-3. Setting spr_full_mask as the collision mask

Chapter 7 platform Game

160

/// @description Movement Code

//Get our inputs

var Key_Left=keyboard_check_direct(vk_left);

var Key_Right=keyboard_check_direct(vk_right);

var Key_Jump=keyboard_check_pressed(vk_space);

var Key_Up=keyboard_check_direct(vk_up);

var Key_Down=keyboard_check_direct(vk_down);

if Key_Left or Key_Right

{

 sprite_index=spr_player_right;

}

else

{

 sprite_index=spr_player_idle

}

//Move left and right

if Key_Left

{

 hsp=-2;

 flip=-1;

}

if Key_Right

{

 hsp=2;

 flip=1;

}

//Neutral input = 0 movement

if (Key_Right && Key_Left) or (!Key_Right && !Key_Left)

{

 hsp=0;

}

//Jumping

if (Key_Jump)

{

Chapter 7 platform Game

161

 audio_play_sound(snd_jump,0,false);

 if (grounded)

 {

 vsp=-6;

 }

 else

 {

 if(djump)

 {

 vsp=-6;

 djump=0;

 }

 }

}

vsp +=grav;

//Ladder

if Key_Up || Key_Down

{

 if place_meeting(x,y,obj_ladder_parent)

 {

 ladder = true;

 }

}

if ladder

{

 vsp=0;

 if Key_Up

 {

 vsp=-2;

 }

 if Key_Down

 {

 vsp=2;

 }

Chapter 7 platform Game

162

 if !place_meeting(x,y,obj_ladder_parent)

 {

 ladder=false;

 }

 if (Key_Jump)

 {

 ladder=false;

 }

 sprite_index=spr_player_up;

 if Key_Up or Key_Down

 {

 image_speed=0.5;

 }

 else

 {

 image_speed=0; //if on ladder and moving animate sprite else set to 0

 }

}

else //allow regular animation when off ladder

{

 image_speed=0.5;

}

//Horizontal Collision

if place_meeting(x+hsp,y,obj_platform_parent)

{

 while (!place_meeting(x+sign(hsp),y,obj_platform_parent))

 {

 x+=sign(hsp);

 }

 hsp=0;

}

x+=hsp;

Chapter 7 platform Game

163

//Vertical Collision

if place_meeting(x,y+vsp,obj_platform_parent)

{

 while (!place_meeting(x,y+sign(vsp),obj_platform_parent))

 {

 y+=sign(vsp);

 }

 if (sign(vsp)==1)

 {

 grounded=1;

 djump=1;

 }

 vsp=0;

}

else

{

 grounded=0;

}

y+=vsp;

That is all for now for this object. You will come back to it again later.

Create a room named room_game and set background bg_1 to the Background layer

and set it to stretch.

Place some instances on the Instances layer, as shown in Figure 7-4.

Chapter 7 platform Game

164

Now is a good time to save and test the game.

Next, create the main aim of the game, which is to collect eggs. Create an object

named obj_egg and assign the sprite spr_egg. In the Create Event, add the following

code to set a random subimage:

/// @description set random starting sub image and prevent animation

image_index=irandom(1);

image_speed=0;

That is all for this object.

Next, detect a collision with obj_egg. You won’t use a Collision Event for this;

instead you will use code with the player object’s Step Event. Open up obj_player and

add the following below the current code in the Step Event. This code destroys the egg

and plays a sound effect:

//egg collision

var egg;

egg=instance_place(x,y,obj_egg);

if egg!= noone

Figure 7-4. A testing level

Chapter 7 platform Game

165

{

 with (egg) instance_destroy(egg);

 audio_play_sound(snd_egg,0,false);

}

That is all for now.

Open up room_game and make a new Instances layer named Items. Place it under the

current Instances layer. Add some eggs to the level for the player to collect.

Next, create an object that will be used as a respawn point. Create an object named

obj_flag and assign it the spr_flag. That is all for this object.

Open up object obj_player and add the following code under the current code in

the Step Event. This code remembers the last location where the player collided with

obj_flag and respawns the player after death:

//flag respawn point collision

if place_meeting(x,y,obj_flag)

{

 x_respawn=x;

 y_respawn=y;

 show_debug_message("Met Flag");

}

This code indicates that it is working by displaying a message in the output box.

You don’t yet have any enemies to make the respawn happen, so create a Key
Pressed R Event in obj_player, with the following code, so you can tell that it all works

as intended:

/// @description for testing

x=x_respawn;

y=y_respawn;

Place a few instances of obj_egg and obj_flag on the Items layer in room_game, as

shown in Figure 7-5.

Chapter 7 platform Game

166

Figure 7-5. A test layout

Now save and test the game so far.

Check that you can collect the eggs. Also test that, upon pressing Enter, you return to

the last flag point.

Next, you will create some enemy objects.

First, however, you must create an object that makes the enemies change direction.

Create an object named obj_change_direction; assign it sprite spr_change_direction

and uncheck the Visible option so that it won’t be seen when the game is played, as

shown in Figure 7-6.

Chapter 7 platform Game

167

That is all for this object.

Next, create an object named obj_enemy_parent. Set the mask to spr_full_mask.

In a Create Event, add the following code to start the enemy moving:

/// @description Start Moving

motion_set(0,3);

In a Step Event, enter the following GML. It makes the instance change direction

and flips the sprite so it faces in the direction:

/// @description Detect Collision

if instance_place(x,y,obj_change_direction)

Figure 7-6. Setting the object sprite and unchecking the Visible option

Chapter 7 platform Game

168

{

 hspeed*=-1;

 image_xscale*=-1;

}

That is all for this object.

Now create an object named obj_enemy_snake and assign its parent as obj_enemy_

parent and sprite as spr_snake.

Create an object named obj_enemy_dragonfly and assign its parent as obj_enemy_

parent and sprite as spr_dragonfly.

Create an object named obj_spike; it does not have a parent but it does have a

sprite: spr_spike.

Open the room and place some instances of obj_change_direction and a few of

obj_dragon_fly.

Because the sprite for obj_enemy_snake is a different size than the other sprites, you

must change some room settings in order to place it over the platform objects without a

gap. Change the grid snap settings to 32 x 8, as shown in Figure 7-7.

Figure 7-7. The new grid snap settings

Chapter 7 platform Game

169

Place an instance of the snake and obj_spike as shown in the test layout

in Figure 7- 8.

Figure 7-8. A test layout

Next, make it so the player dies if it hits an enemy. Add the following code under the

current code in the obj_player’s Step Event:

//collision with enemy

if place_meeting(x,y,obj_enemy_parent) or place_meeeting(x,y,obj_spike)

{

 x=x_respawn;

 y=y_respawn;

 lives++;

 audio_play_sound(snd_die,0,false);}

Chapter 7 platform Game

170

Lastly, create an object to show how many lives the player has used and how many

eggs are left.

You need a font for this, so create font_info in Arial size 22.

Create an object named obj_control. Add a Create Event with the following code:

/// @description set lives and starting egg count

lives=1;

egg_count=instance_number(obj_egg);

Add a Step Event with the following code:

/// @description Update egg count and check

egg_count=instance_number(obj_egg);

if egg_count==0

{

 show_message("You Win");

 game_restart();

}

Add a Draw GUI Event with the following GML:

/// @description Draw lives & egg count

draw_set_font(font_info);

draw_set_halign(fa_left);

draw_set_colour(c_black);

draw_text(50,50,"Eggs Left:"+string(egg_count)+"Lives Taken:"+string(lives));

That is all for this object. Place one instance of it in room_game on the Instances layer.

Next, create a new Instances layer called Player and put this at the top of the layers.

This layer is used just for the player object, ensuring that it is drawn above everything

else. Place an instance of obj_player on this layer, remembering to remove it from the

previous layer.

Now is a great point to save and test the game.

Figure 7-9 shows the game in progress.

Chapter 7 platform Game

171

Figure 7-9. The game in action

Chapter 7 platform Game

172

The final thing for this game is to design a level. Change the room size to 2000 x 2000.

Make an active view and port size of 640 x 640 set to follow obj_player with a border

or 240 x 240, and then design a level. Remember that platform and ladder instances

go on the Instances layer and all other instances go on the Items layer. You can place

multiple instances of an object by holding down the Alt key. You can also change the grid

snap settings to 64 x 64, which will make placing the platform objects easier and more

accurate.

A project file for the completed game is in the Resources folder.

EXTRA IDEAS FOR YOU TO TRY

 1. Create a bonus object that allows the player to fly for 20 seconds.

 2. Create a graphical effect when the player collects an egg.

 3. make a menu where the player can select a level to play.

 4. Create another enemy that bounces around the room.

 5. Save how many lives the player used to complete a level and display this

information on game start.

Chapter 7 platform Game

173
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8_8

CHAPTER 8

Bomber
This game you will make in this chapter is a remake of the classic bomber game. It will

introduce more GML coding, creating paths on the fly, and other cool features.

There are two aims to this game: collect the fruit and destroy the enemy. You can

collect ammo, which you can then try to drop on the enemy. However, you can be

damaged by your own as well as enemy bombs.

First, load in the assets needed.

Load in the following sprites; the origin of each is middle center unless indicated

otherwise. Another way of importing sprites is to right-click Sprites in the Resources tree

and select Create Sprite.

• bg_1

• spr_block with an origin of top left

• spr_bomb_crate

• spr_bomb_ticking

• spr_e_move_down

• spr_e_move_left

• spr_e_move_right

• spr_e_move_up

• spr_explosion

• spr_fruit

• spr_p_idle_down

• spr_p_idle_left

• spr_p_idle_right

174

Create three groups (player, enemy, and other) and then drag the resources into

those groups. When done, it will look like Figure 8-2. You can expand/collapse groups

by clicking the small triangle.

• spr_p_idle_up

• spr_p_move_down

• spr_p_move_left

• spr_p_move_right

• spr_p_move_up

Things are a little busy, so let’s tidy up a bit. Right-click Sprites and select Add Group,

as shown in Figure 8-1.

Figure 8-1. Creating a group

Chapter 8 BomBer

175

Figure 8-2. The Resource tree with groups

Chapter 8 BomBer

176

Next, set up a script named scr_move_object. It is used to process the player’s

movements. The code is as follows:

/// @function scr_move_object(dx,dy)

/// @param {real} xpos

/// @param {real} ypos

// Attempts to move the current instance, pushing things around as needed.

// calculate new coordinates:

var dx=argument0,nx=x+dx;

var dy=argument1,ny=y+dy;

if (place_meeting(nx,ny,obj_block))

{

 // if there's a wall there, definitely can't move there

 return false;

}

else if (place_free(nx,ny))

{

 // if there's nothing there, just move there

 x=nx; y=ny;

 return true;

}

Next, set up some basic movements and sprite control for the player.

Create an object named obj_block and assign it the sprite spr_block. There is no

code for this object.

Next, create obj_player and assign it spr_idle_down. Add a Create Event and enter

the following code:

/// @description Set Up

bombs=5;

move_dx=0;

move_dy=0;

move_amt=0;

image_index=0;

image_speed=0;

Chapter 8 BomBer

177

spawnedextra1=false;

spawnedextra2=false;

spawnedextra3=false;

///move control set up

enum player_state

{

 idle,

 up,

 down,

 left,

 right

}

dir=player_state.down;

is_moving=false;

image_speed=0.5;

Next, add a Step Event that takes care of the player’s movement and sets the

appropriate sprite based on which key is being pressed:

/// @description Player Movement & Sprite Control

//get keypresses

var key_left=keyboard_check(vk_left) ;

var key_right=keyboard_check(vk_right)

var key_up=keyboard_check(vk_up)

var key_down=keyboard_check(vk_down)

var key_shoot=keyboard_check_pressed(ord("Z"))

if (move_amt > 0)

{

 // moving towards destination

 if (scr_move_object(move_dx, move_dy))

 {

 move_amt -= 1;

 }

 else move_amt = 0; // if hit a wall, stop moving

}

Chapter 8 BomBer

178

else

{

 var spd = 4; // movement speed (grid size should divide by it w/o remainder)

 move_amt = 64 div spd; // calculate number of steps for movement

 move_dx = 0;

 move_dy = 0;

 if key_left && !position_meeting(x-40,y,obj_block)

 {

 move_dx = -spd;

 dir=player_state.left;

 is_moving=true;

 }

 else if key_right && !position_meeting(x+40,y,obj_block)

 {

 move_dx = spd;

 dir=player_state.right;

 is_moving=true;

 }

 else if key_up && !position_meeting(x,y-40,obj_block)

 {

 move_dy = -spd;

 dir=player_state.up;

 is_moving=true;

 }

 else if key_down && !position_meeting(x,y+40,obj_block)

 {

 move_dy = spd;

 dir=player_state.down;

 is_moving=true;

 }

 else

 {

 move_amt = 0; // don't move if no buttons are pressed

 is_moving=false;

 }

}

Chapter 8 BomBer

179

//set is_moving to true if no keypress but still moving to target position

if xprevious!=x or yprevious!=y is_moving=true;

///animation

if is_moving

{

 switch (dir)

 {

 case player_state.up:

 sprite_index=spr_p_move_up;

 break;

 case player_state.down:

 sprite_index=spr_p_move_down;

 break;

 case player_state.left:

 sprite_index=spr_p_move_left;

 break;

 case player_state.right:

 sprite_index=spr_p_move_right;

 break;

 }

}

else

{

 switch (dir)

 {

 case player_state.up:

 sprite_index=spr_p_idle_up;

 break;

 case player_state.down:

 sprite_index=spr_p_idle_down;

 break;

 case player_state.left:

 sprite_index=spr_p_idle_left;

 break;

Chapter 8 BomBer

180

 case player_state.right:

 sprite_index=spr_p_idle_right;

 break;

 }

}

Make a room named room_game and set it up for testing, as shown in Figure 8-3.

Now is a good point to save and test your game.

Figure 8-3. A level set up for testing

Next, create some bombs and explosions.

Create a new layer in the room_game called bomb. Place it above the Instances layer.

Create a font named font_bomb using Arial size 8.

First, create a sound named snd_explosion from the Resources folder.

Next, create an object named obj_explosion and assign it spr_explosion.

Create an Animation End Event by clicking Add Event ➤ Other ➤ Animation End,

as shown in Figure 8-4.

Chapter 8 BomBer

181

Figure 8-4. Setting an Animation End Event

Chapter 8 BomBer

182

Place the following code in this event:

/// @description Destroy

instance_destroy();

Next, make a Create Event and add this code:

/// @description Play Explosion Sound

audio_play_sound(snd_explosion,0,false);

That is all for this object.

Next, create an object named obj_bomb and assign it the sprite spr_bomb_ticking.

Add a Create Event with the following code:

/// @description snap, set life and alarm

move_snap(32,32);

life=8;

alarm[0]=room_speed/4;

Add an Alarm 0 Event with the following code:

life--;

alarm[0]=room_speed/4;

The Step Event holds code to create an explosion instance in four directions, if the

place doesn’t have a block in it, like so:

/// @description Create explosion in empty space

if life==0

{

 //create exp at position

 instance_create_layer(x,y,"bomb",obj_explosion);

 //create up

 if !position_meeting(x,y-64,obj_block)

 {

 instance_create_layer(x,y-64,"bomb",obj_explosion);

 if !position_meeting(x,y-128,obj_block)

 {

Chapter 8 BomBer

183

 instance_create_layer(x,y-128,"bomb",obj_explosion);

 if !position_meeting(x,y-192,obj_block)

 {

 instance_create_layer(x,y-192,"bomb",obj_explosion);

 }

 }

 }

 //create down

 if !position_meeting(x,y+64,obj_block)

 {

 instance_create_layer(x,y+64,"bomb",obj_explosion);

 if !position_meeting(x,y+128,obj_block)

 {

 instance_create_layer(x,y+128,"bomb",obj_explosion);

 if !position_meeting(x,y+192,obj_block)

 {

 instance_create_layer(x,y+192,"bomb",obj_explosion);

 }

 }

 }

 //create left

 if !position_meeting(x-64,y,obj_block)

 {

 instance_create_layer(x-64,y,"bomb",obj_explosion);

 if !position_meeting(x-128,y,obj_block)

 {

 instance_create_layer(x-128,y,"bomb",obj_explosion);

 if !position_meeting(x-192,y,obj_block)

 {

 instance_create_layer(x-192,y,"bomb",obj_explosion);

 }

 }

}

Chapter 8 BomBer

184

//create right

if !position_meeting(x+64,y,obj_block)

{

 instance_create_layer(x+64,y,"bomb",obj_explosion);

 if !position_meeting(x+128,y,obj_block)

 {

 instance_create_layer(x+128,y,"bomb",obj_explosion);

 if !position_meeting(x+192,y,obj_block)

 {

 instance_create_layer(x+192,y,"bomb",obj_explosion);

 }

 }

}

instance_destroy();

}

//set off bomb if hit by explosion

if position_meeting(x,y,obj_explosion)

{

 life=0;

}

Add a Draw Event with the following code:

/// @description Draw sprite & countdown

draw_set_halign(fa_center);

draw_set_valign(fa_middle)

draw_set_colour(c_red);

draw_set_font(font_bomb);

draw_self();

draw_text(x,y,life);

Finally, add the following code to the bottom of the current code in the player’s

Step Event, creating a bomb at the present location if the player has any bombs:

///create a bomb if player has some

if key_shoot && bombs>0

{

Chapter 8 BomBer

185

 bombs-=1;

 instance_create_layer(x,y,"bomb",obj_bomb);

}

Now is a good point to save and test the game.

Next, we’ll create some items for the players to collect.

Create an object named obj_fruit and assign it the sprite spr_fruit.

Add a Create Event with code for choosing a random sub-image and placing it in a

free location:

/// @description Insert choose random sub-image and jump to free position

image_index=irandom(image_number-1);

image_speed=0;

do

{

 var xx=(random(room_width) div 64) * 64+32;

 var yy =(random(room_height) div 64) * 64+32;

}

until (place_free(xx, yy));

x=xx;

y=yy;

That is all for this object.

Next, create an object named obj_bomb_crate and assign it the sprite spr_bomb_crate.

Add Create Event with the following code:

/// @description jump to free position

do

{

 var xx=(random(room_width) div 64) * 64+32;

 var yy=(random(room_height) div 64) * 64+32;

}

until (place_empty(xx, yy));

x=xx;

y=yy;

That is all for this object.

Chapter 8 BomBer

186

In order to detect a free position, you need to make obj_block, solid, open it, and set

it as visible and solid, as shown in Figure 8-5.

Figure 8-5. Setting an object to solid

Chapter 8 BomBer

187

Next, set up some Collision Events for obj_player. You could do this in code, but to

keep things tidy and easy to understand, you will use Collision Events. There is nothing

wrong with using Collision Events instead of code.

Load in the sounds named snd_collect_item and snd_collect_bomb.

Open obj_player and make a Collision Event with obj_fruit; it has the following

code:

/// @description Permorm Collision code

score+=100;

with (other) instance_destroy();

instance_create_layer(5,5,"bomb",obj_fruit);

audio_play_sound(snd_collect_item,0,false);

Next, make a Collision Event with obj_bomb_crate that contains the following code:

/// @description Perform Collision code

bombs+=5;

if bombs>10 bombs=10;

with (other) instance_destroy();

instance_create_layer(5,5,"bomb",obj_bomb_crate);

audio_play_sound(snd_collect_bomb,0,false);

Next, make a Collision Event with obj_explosion with code that sets a flag and

alarm, and reduces health by 1 for each frame that the player collides with:

/// @description Lose Health

health--;

That is all for now.

Chapter 8 BomBer

188

Figure 8-6. A level for testing

Open room room_game and design it as shown in Figure 8-6. Ensure that the blocks

are on the Instances level.

Chapter 8 BomBer

189

Now is a good point to save and test the game so far.

Next, create a computer player for the player to play against.

Create an object named obj_enemy and assign it spr_e_move_down.

In a Create Event, add the following code. The first part sets a grid that marks off

instances of obj_block so the enemy cannot move there. It then creates a path to the

fruit, crate, or player and starts that path. Finally, it sets initial values and starts an alarm

(which is used to drop bombs).

Note that all of the instances are snapped to a 64 x 64 grid, as shown in Figure 8-7.

Figure 8-7. Close-up of placed instances

Chapter 8 BomBer

190

/// @description Setup

//set up grid

size=64;

grid = mp_grid_create(0,0,ceil(room_width/size),ceil(room_height/size),

size,size);

set_up_grid=true;

mp_grid_add_instances(grid,obj_block,false)

///create path

path=path_add();

do

{

 choose_target=choose(obj_fruit,obj_bomb_crate,obj_player);

}

until distance_to_object(choose_target)>240

mp_grid_path(grid,path,x,y,choose_target.x,choose_target.y,false);

path_start(path,4,path_action_stop,true);

//score

enemy_score=0;

enemy_hp=100;

enemy_bombs=5;

//Start bomb drop alarm

alarm[1]=room_speed*3+(room_speed*irandom(5));

In a Step Event, enter GML that sets the sprite for the direction it is moving:

/// @description Basic control of sprites

ang=round(direction/90)*90;

if ang==0 or ang==360 sprite_index=spr_e_move_right;

if ang==90 sprite_index=spr_e_move_up;

if ang==180 sprite_index=spr_e_move_left;

if ang==270 sprite_index=spr_e_move_down;

Chapter 8 BomBer

191

In an Alarm 1 Event, add GML that creates a bomb (if the enemy has any) and resets

the alarm:

/// @description Create bombs

if enemy_bombs>0

{

 enemy_bombs--;

 instance_create_layer(x,y,"bomb",obj_bomb)

}

alarm[1]=room_speed*3+(room_speed*irandom(5));

In a Collision Event with obj_bomb_crate, add the code that increases the enemy’s

bomb inventory by 5 (up to a maximum of 5), creates a new bomb crate, and plays a

sound:

/// @description Perform Collision code

enemy_bombs+=5;

if enemy_bombs>10 enemy_bombs=10;

with (other) instance_destroy();

instance_create_layer(5,5,"bomb",obj_bomb_crate);

audio_play_sound(snd_collect_bomb,0,false);

In a Collision Event with obj_explosion, enter the following code:

/// @description reduce health

enemy_hp--;

In a Collision Event with obj_fruit, enter the following code:

/// @description Permorm Collision code

enemy_score+=100;

with (other) instance_destroy();

instance_create_layer(5,5,"bomb",obj_fruit);

audio_play_sound(snd_collect_item,0,false);

Chapter 8 BomBer

192

And in a Path Ended Event, add the code below that makes a new path and starts

the enemy on it:

/// @description Choose a new target

path_clear_points(path);

choose_target=choose(obj_fruit,obj_bomb_crate,obj_player);

mp_grid_path(grid,path,x,y,choose_target.x,choose_target.y,false);

path_start(path,5,path_action_stop,true);

Finally, add a Clean Up Event with the following code to free any memory used by

the grid and path:

/// @description Clean Up

path_delete(path);

my_grid_destroy(grid);

Add an instance of obj_enemy into the room in an empty area.

Finally, make a control object to show game details and check for a winner.

Create a font named font_info as Arial size 14.

Create an object named obj_control. In a Create Event, add the following code:

/// @description Set up lives

player_lives=10;

enemy_lives=10;

In a Step Event, add the following code:

/// @description Check health and lives

if obj_enemy.enemy_hp<0

{

 enemy_lives--;

 obj_enemy.enemy_hp=100;

}

if health<0

{

 player_lives--;

 health=100;

}

Chapter 8 BomBer

193

/// @description Check For Winner

if enemy_lives==0

{

 show_message("Player Wins");

 game_restart();

}

if player_lives==0

{

 show_message("Enemy Wins");

 game_restart();

}

In a Draw GUI Event, add the following code:

/// @description Drawing

draw_set_colour(c_black);

draw_set_font(font_info);

draw_set_halign(fa_center);

draw_set_valign(fa_middle);

//draw player stuff

draw_healthbar(10,10,758,30,health,c_blue,c_red,c_green,0,true,true);

draw_text(200,20,"Player Score:"+string(score));

draw_text(400,20,"Bombs:"+string(obj_player.bombs));

draw_text(600,20,"Lives:"+string(player_lives));

//draw enmey stuff

draw_healthbar(10,718,758,738,obj_enemy.enemy_hp,c_blue,c_red,

c_green,0,true,true);

draw_text(200,728,"Enemy Score:"+string(obj_enemy.enemy_score));

draw_text(400,728,"Bombs:"+string(obj_enemy.enemy_bombs));

draw_text(600,728,"Lives:"+string(enemy_lives));

That is all for this object. Place one instance of it in the room.

Chapter 8 BomBer

194

Figure 8-8. The game in action

Figure 8-8 shows this game in action.

Chapter 8 BomBer

195

A project file for the completed game is in the Resources folder.

EXTRA IDEAS FOR YOU TO TRY

 1. make a two-player version.

 2. make a larger play area and set it to keep both player and enemy in the

current camera view.

 3. make a super bomb that appears very occasionally. allow player/enemy to

drop it. make the explosion distance twice that of a regular bomb.

 4. Create extra blocks that are placed randomly in the areas where the player

can move. If these blocks are hit by an explosion three times, destroy them.

 5. Set it up so a player can play with a gamepad.

Chapter 8 BomBer

197
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8_9

CHAPTER 9

Match 3
The little game you’ll make in this chapter is a basic remake of the classic Match 3 game.

The aim of the game is to match three or more of the same sweet, which is done by

swapping over adjacent sweets.

This game makes use of just six sprites, so go ahead and load them in now:

• spr_block (which is a strip of seven images, 32 x 32)

• spr_border

• spr_make_move

• spr_please_wait

• spr_star

• bg_1

The origin of all of the sprites is middle center, except for bg_1, which has a default

setting of top left.

There are two sounds, snd_match and snd_no_match, which can be added now.

There are three scripts. The first is scr_check_match with code that checks for

matches to the left and right, and up and down, to see if there is a match. If there is a

match, that object’s id is saved to a ds_list for use later.

/// @function scr_check_match

if global.on_path exit;

if global.moving exit;

ds_list_clear(global.match_list);

ds_list_clear(global.match_3);

198

//check left and right

with (obj_block)

{

 var a=instance_position(x,y,obj_block);

 var b=instance_position(x-32,y,obj_block);

 var c=instance_position(x+32,y,obj_block);

 if a!=noone && b!=noone && c!=noone

 if a.image_index==b.image_index && a.image_index==c.image_index

 {

 show_debug_message("Match has been found - left right");

 //add to ds list

 ds_list_add(global.match_list,a,b,c); //for destroying

 ds_list_add(global.match_3,a); //for star effect

 }

 else

 {

 show_debug_message("Noooooo has been found - left right");

 show_debug_message(string(a));

 show_debug_message(string(b));

 show_debug_message(string(c));

 }

}

//check up and down

with (obj_block)

{

 var a=instance_position(x,y,obj_block);

 var b=instance_position(x,y-32,obj_block);

 var c=instance_position(x,y+32,obj_block);

 if a!=noone && b!=noone && c!=noone

 if a.image_index==b.image_index && a.image_index==c.image_index

 {

Chapter 9 MatCh 3

199

 show_debug_message("Match has been found - up down");

 //add to ds list

 ds_list_add(global.match_list,a,b,c);//for destroying

 ds_list_add(global.match_3,a);//for star effect

 }

 else

 {

 show_debug_message("No match has been found - up down");

 show_debug_message(string(a));

 show_debug_message(string(b));

 show_debug_message(string(c));

 }

}

if ds_list_empty(global.match_list)

{

 if !global.match && global.this_block!=noone && global.other_block!=noone

 {

 audio_play_sound(snd_no_match,0,false);

 //move back

 global.other_block.x=global.first_x;

 global.other_block.y=global.first_y;

 global.this_block.x=global.second_x;

 global.this_block.y=global.second_y;

 //set back to noone

 global.this_block=noone;

 global.other_block=noone;

 //show_message("Inner Block");

 }

}

else audio_play_sound(snd_match,0,false);

global.this_block=noone;

global.other_block=noone;

if ds_list_size(global.match_list)==0 return false; else return true;

Chapter 9 MatCh 3

200

Next is scr_move_blocks with code to make the instances swap places using a path:

/// @function scr_move_blocks(first,second);

alarm[0]=room_speed*3; //for testing and make slow

show_debug_message("first id="+string(argument0));

show_debug_message("second id="+string(argument1));

var my_startx=x;

var my_starty=y;

global.first_x=argument0.x;

global.first_y=argument0.y;

global.second_x=argument1.x;

global.second_y=argument1.y;

if argument0=id

{

 global.this_block=id;

 global.other_block=argument1;

}

else

{

 global.this_block=argument1;

 global.other_block=argument0;

}

if global.this_block==noone

{

 show_debug_message("Not Selected ID");

 exit;

}

global.on_path=true;

//set depth

if id==global.this_block or id==global.other_block

{

 depth=-10;

}

{

 depth=-1;

}

Chapter 9 MatCh 3

201

if global.this_block==id

 {

 //move the blocks to target

 path_add_point(path,global.second_x,global.second_y,5);

 path_add_point(path,global.second_x-50,global.second_y,5);

 path_add_point(path,global.first_x,global.first_y,5);

 path_set_kind(path,true);

 path_set_closed(path,false);

 path_start(path,50,path_action_stop,true);

 with (global.other_block)

 {

 path_add_point(path,global.first_x,global.first_y,5);

 path_add_point(path,global.first_x+50,global.first_y,5);

 path_add_point(path,global.second_x,global.second_y,5);

 path_set_kind(path,true);

 path_set_closed(path,false);

 path_start(path,50,path_action_stop,true);

 }

}

And finally scr_check_to_drop has code to check for empty spaces at the top of the

sweets grid, creating a new instance if there is a free space:

/// @function scr_check_to_drop

if global.on_path exit;

for (var i=1; i<21; i+= 1)

{

 if collision_rectangle(88+size*i,0,72+size*i,116,obj_block, false,

false)==noone

 {

 instance_create_layer(80+size*i,10,"Instances",obj_block);

 show_debug_message("Intance Created");

 global.moving=true;

 alarm[0]=room_speed;

 }

}

Chapter 9 MatCh 3

202

There is one font, font_info, which is Comic Sans size 24.

The first object is obj_border. Assign it sprite spr_border and uncheck the Visible

setting.

Next is obj_star. Assign it spr_star. The instances of this object have their own

layer named Star, which is the top layer. Add a Create Event with the following code:

/// @description Set Up

alarm[0]=room_speed*3;

scale=0.02;

Add a Step Event that increases and tests the value of scale:

/// @description increase scale

scale+=0.02;

image_angle++;

if scale=1 instance_destroy();

Add an Alarm 0 Event with the following code:

/// @description Destroy

instance_destroy();

Add a Draw Event with the following code:

/// @description Set Scale and Alpha

image_alpha=1-scale;

image_xscale=scale;

image_yscale=scale;

draw_self();

image_alpha=1;

Next is obj_control. There is no sprite for this object.

Add a Create Event with the following code:

/// @description Set Up & Create Play Ares

global.is_selected1=noone;

global.is_selected2=noone;

global.this_block=noone;

Chapter 9 MatCh 3

203

global.other_block=noone;

global.match=false;

global.match_list=ds_list_create();

global.match_3=ds_list_create();

level=6;

score=0;

size=32; //size of sprite dimensions

for (var i = 1; i < 21; i += 1)

{

 for (var j = 1; j < 18; j += 1)

 {

 instance_create_layer(80+size*i,j*size,"Instances",obj_block);

 }

}

//set mmoving flag

global.moving=true;

alarm[0]=room_speed;

random_set_seed(1);

Add a Step Event with the following code:

//set incase moving back

scr_check_to_drop();

Add an Alarm 0 Event with the following code:

// @description No more moving

show_debug_message("No more movement");

global.moving=false;

global.is_selected1=noone;

global.is_selected2=noone;

//destoy instance

show_debug_message("List Size"+string(ds_list_size(global.match_list)));

scr_check_match();

Chapter 9 MatCh 3

204

///create star effect

for (var i = 0; i < ds_list_size(global.match_3); i += 1)

{

 instance_create_layer(global.match_3[|i].x,global.match_3[|i].y,

"Star",obj_star);

}

///create colour effect

for (var i = 0; i < ds_list_size(global.match_list); i += 1)

 {

 if instance_exists(global.match_list[|i])//check if not destroyed already

 //if present make effect in matching colour

 {

 switch global.match_list[|i].image_index

 {

 case 0:

 my_colour=c_red;

 break;

 case 1:

 my_colour=c_yellow;

 break;

 case 2:

 my_colour=c_blue;

 break;

 case 3:

 my_colour=c_green;

 break;

 case 4:

 my_colour=c_aqua;

 break;

 case 5:

 my_colour=c_maroon;

 break;

 case 6:

 my_colour=c_purple;

 break;

 }

Chapter 9 MatCh 3

205

 //create effects in colour

 effect_create_above(ef_firework,global.match_list[|i].x,global.

match_list[|i].y,5,my_colour);

 effect_create_above(ef_flare,global.match_list[|i].x,global.

match_list[|i].y,5,my_colour);

 effect_create_above(ef_spark,global.match_list[|i].x,global.

match_list[|i].y,5,my_colour);

 effect_create_above(ef_star,global.match_list[|i].x,global.

match_list[|i].y,5,my_colour);

 ///add score

 score+=10;

 }

 with (global.match_list[|i]) instance_destroy();

 }

if scr_check_match()

{

 global.moving=true;

 alarm[0]=room_speed*1;

}

Add a Draw Event with the following code:

/// @description Draw Info

//draw hud

draw_set_font(font_info);

draw_set_halign(fa_center);

draw_set_valign(fa_middle);

draw_set_colour(c_black);

draw_text(910,271,score);

draw_text(910,450,level);

if global.moving

{

 draw_sprite(spr_please_wait,0,room_width/2,706);

}

Chapter 9 MatCh 3

206

else

{

 draw_sprite(spr_make_move,0,room_width/2,706);

}

And finally add a Key Press R Event with the following code:

/// @description For Testing

game_restart();

The final object is obj_block. Assign it spr_block.

Add a Create Event with the following code:

/// @description Set a random image && Set Path

image_speed=0;

image_index=irandom(6);

path=path_add();

global.on_path=false;

global.moving=true;

alarm[0]=room_speed*2; //allow time for start blocks to drop

Add a Step Event with the following code:

/// @description Movement

///general movement

if global.on_path exit;

if !place_meeting(x,y+2,obj_border)

{

 y+=2;//make block fall

 global.moving=true;

 obj_control.alarm[0]=room_speed;

}

//show if selected

if global.is_selected1==id && !global.moving or global.is_selected2==id && (

{

 effect_create_above(ef_spark,x,y,1,c_white);

}

Chapter 9 MatCh 3

207

Add an Alarm 0 Event with the following code:

/// @description

global.on_path=false;

Add a Left Pressed Event with the following code:

/// @description check if selected or not

//prevent selection if moving

if global.moving

{

 global.is_selected1=noone;

 global.is_selected2=noone;

 exit;

}

//deselect if selected

if global.is_selected1==id

{

 global.is_selected1=noone;

 exit;

}

if global.is_selected1==noone

{

 global.is_selected1=id;

}

//allow second seleection if id different

else if global.is_selected2==noone && global.is_selected1!=id

{

 global.is_selected2=id;

}

if global.is_selected2!=noone && global.is_selected1!=noone

{

 with (global.is_selected1)

 {

 if distance_to_object(global.is_selected2)>1

 {

Chapter 9 MatCh 3

208

 global.is_selected2=noone;

 global.is_selected1=noone;

 }

 }

}

//check if ok

if global.is_selected2!=noone && global.is_selected1!=noone

{

 show_debug_message("Two Valid Blocks Selected");

 global.moving=true;

 obj_control.alarm[0]=room_speed*2;//allow to time to move and_check

 scr_move_blocks(global.is_selected1,global.is_selected2);

}

else

{

 show_debug_message("No Valid Blocks Selected");

}

Add a Path Ended Event with the following code:

/// @description allign ane check for mach

move_snap(16,16);

path_clear_points(path);

global.on_path=false;

global.moving=true;

obj_control.alarm[0]=room_speed; //allow time for local alarm to trigger

alarm[0]=room_speed;

Finally, add the following code to a Clean Up Event in obj_control:

/// @description Clear path from memory

path_delete(path);

Set up a single room named room_game to a size of 1024 x 768. Set the background

as bg_1.

The final step is to create a new Instances layer named Star, as shown in Figure 9-1.

Chapter 9 MatCh 3

209

Add one instance of obj_control and one of obj_border, which has been stretched

as shown in Figure 9-1. This is achieved by placing an instance and then hovering over a

corner and clicking and dragging it.

Figure 9-2 shows this game in action.

Figure 9-1. The room setup

Chapter 9 MatCh 3

210

A project file for the completed game is in the Resources folder.

EXTRA IDEAS FOR YOU TO TRY

 1. Make it so the initial game setup does not start with matches present.

 2. Create extra bonus effects if the player matches four or four in a row.

 3. Make the pieces twice as big, and change the game code to reflect this.

 4. Make it so a 2 x 2 grid of sweets also counts as a match.

 5. Make a bonus object if the player makes a match of five sweets. If the player then

matches three bonus objects, award a lot of points and create audio and visual effects.

Figure 9-2. The game in action

Chapter 9 MatCh 3

211
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8_10

CHAPTER 10

Tower Defense
This final game will put into practice everything you have learned so far, plus it will

introduce a few more elements.

In this game, you will shoot and damage the enemy from turrets. You can place, buy,

sell, and upgrade the turrets.

So that you can test the game at various points, you will start by creating the rooms.

They are

• room_splash

• room_start

• room_level_1

• room_level_2

• room_level_3

• room_level_4

• room_win

• room_gameover

All of the rooms are 800 x 800 in size.

This game makes use of five scripts. The first is scr_menu_info, which sets the

sub- image and draws text depending on whether player has enough cash:

/// @function scr_menu_info()

if available

{

 image_index=1;

}

212

else

{

 image_index=0;

}

draw_self();

scr_text(center,y+45,"Cost: $"+string(price),c_white);

if available

{

 scr_text(center,y+80,"Available",c_white);

}

else

{

 scr_text(center,y+80,"Not Available",c_red);

}

The next is scr_message, which adds a message to a list:

//add message to a ds list

ds_list_add(global.message,argument0);

The next is scr_angle_rotate, which slowly moves between two angles at a given

speed:

/// @function scr_angle_rotate(angle1,angle2,speed)

return argument0 + clamp(angle_difference(argument1, argument0), -argument2,

argument2)

The next is scr_sound, which plays a given sound:

/// @function scr_sound(sound)

audio_play_sound(argument0,10,false);

And finally, scr_text draws text at given location and color:

/// @function scr_text(x,y,text,colour)

draw_set_colour(c_white);

draw_set_halign(fa_center);

draw_set_valign(fa_middle);

Chapter 10 tower Defense

213

draw_set_colour(c_black);

draw_text(argument0-1,argument1-1,argument2);

draw_set_colour(argument3);

draw_text(argument0,argument1,argument2);

Now, go ahead and load in snd_music from the resources.

The first object is obj_splash. Add a Create Event that sets initial variables and

loads any saved data:

/// @description Set Globals

global.sound=true;

global.message=ds_list_create();

lives=20;

ini_open("save.ini");

global.level=ini_read_real("save", "level", 1);

global.cash=ini_read_real("save", "cash", 800);

ini_close();

//testing

global.cash=20000;

///Go To Menu

room_goto(room_start);

Next up is obj_level_parent. Add a Step Event that sets whether the level is locked

or unlocked:

if my_id>=global.level

{

 unlocked=true;

}

else

{

 unlocked=false;

}

Chapter 10 tower Defense

214

Add a Left Released Event with GML to take the player to the appropriate game

level room:

/// @description Go to room if unlocked

if unlocked

{

 switch (my_id)

 {

 case 1:

 room_goto(room_level_1);

 break;

 case 2:

 room_goto(room_level_2);

 break;

 case 3:

 room_goto(room_level_3);

 break;

 case 4:

 room_goto(room_level_4);

 break;

 }

}

Add a Draw Event with the following code:

draw_self();

scr_text(x,y,my_id,c_red);

Next up is obj_level_1_button. Assign it spr_button, set the origin as middle

center, and set obj_level_parent as its parent. Add a Create Event with the following

code:

///Set Up

my_id=1;

unlocked=false;

Next, create obj_level_2_button, obj_level_3_button, and obj_level_4_button,

changing my_id to 2, 3, and 4, accordingly.

Chapter 10 tower Defense

215

Next, create an object named obj_menu_control with the following Create Event

code:

/// @description Play Music

if audio_is_playing(snd_music) audio_stop_sound(snd_music);

audio_play_sound(snd_music,0,true);

Next, create a group in objects section of the Resources tree and name it “Splash and

Menu” and then move the objects into this group folder.

Open room_splash and place one instance of obj_splash in it.

Open room_start and place one instance each of the level buttons and one of

obj_menu_control.

Next, you’ll design a level. Go ahead and load in spr_tile. Then, in the Resources

tree, right-click tilesets and add a new tile called bg_tiles and select the sprite spr_tile

you just created. Click Tile Set Properties and set the tile width and height as 32 and

output border x and y as 2, as shown in Figure 10-1.

Figure 10-1. Setting the tile properties

Chapter 10 tower Defense

216

Figure 10-2. Adding a tile layer

Open room_level_1 and add a tile layer, as shown in Figure 10-2.

Chapter 10 tower Defense

217

You can now select parts of the tile and place them in the room. Tip: Hold down the

Shift key to place multiple tiles.

Select the tile layer and then choose the tileset you just created, as shown in

Figure 10-3.

Figure 10-3. Choosing the newly created tileset

Chapter 10 tower Defense

218

Next, load in the remaining sounds:

• snd_beep

• snd_missile_launch

• snd_bullet_1

• snd_bullet_2

• snd_hit

• snd_die_1

• snd_die_2

• snd_die_3

Figure 10-4. The level’s layout

Design the level as shown in Figure 10-4.

Chapter 10 tower Defense

219

• snd_die_4

• snd_weapon_selected

• snd_not_enough_cash

• snd_you_are_dead

• snd_level_1

Next, you’ll create a path for the enemy to follow. Open up room_level_1 and create

a Path Layer. Make a new path called path_level_1, as shown in Figure 10-5. Note that

the start and end points are outside the room.

Figure 10-5. Showing the path setup

Chapter 10 tower Defense

220

Next, create an object named obj_level_1_control and add the following Create
Event code to set the wave settings and queue some messages:

/// @description Set Up

global.wave=1;

total_waves=10;

zombie_count=0;

global.zombies_killed=0;

global.message="";

scr_message("Messages Will Appear Here");

scr_message("Click To Select Available Towers");

scr_message("Place On Empty Foundations");

scr_message("Right Click To Upgrade");

scr_message("Left Click To Sell");

alarm[1]=room_speed*5;

scr_sound(snd_level_1);

Add an Alarm 1 Event with the following code:

/// @description spawn zombie

if zombie_count<10

{

 instance_create_layer(x,y,"Instances",obj_enemy_1);

 alarm[1]=room_speed*2;

 zombie_count++;

}

Add an Alarm 2 Event with the following code:

/// @description Next Wave

global.wave+=1;

alarm[1]=room_speed;

Add a Step Event with the following code:

/// @description Level Control

if lives<=0

{

 room_goto(room_gameover);

}

Chapter 10 tower Defense

221

if zombie_count==10 && global.zombies_killed==10

{

 instance_create_layer(250,400,"Instances",obj_level_complete);

 zombie_count=0;

 global.zombies_killed=0;

 alarm[2]=room_speed;

 //destroy any bullets or missiles on screen

 if instance_exists(obj_bullet_parent) with (obj_bullet_parent)

instance_destroy();

 if instance_exists(obj_missile) with (obj_missile) instance_destroy();

}

if global.wave==11

{

 instance_create_layer(400,400,"Instances",obj_level_complete);

 if global.level==3 global.level=4;

 if global.level==2 global.level=3;

 if global.level==1 global.level=2;

 ini_open("save.ini");

 ini_write_real("save", "level", global.level);

 ini_write_real("save", "cash", global.cash);

 ini_close();

 room_goto(room_win);

}

And add a Draw Event with the following code:

/// @description Draw Wave Info

draw_sprite(spr_info_bg,0,x,y);

scr_text(x+60,y,"LEVEL"+string(global.wave)+"Of"+string(total_waves),

c_white);

That is all for this object.

Next is obj_enemy_1. Assign it the sprite named spr_enemy from the Resources

folder.

Chapter 10 tower Defense

222

Add the following Create Event code:

///Start On A Path

path_start(path_level_1,2,path_action_restart,true); hp=1000*global.wave;

max_hp=1000*global.wave;

Add a Step Event with the following code:

/// @description Point in direction and Check hp

image_angle=direction;

///Check if Dead

if hp<0

{

 scr_sound(snd_die_1);

 instance_create_layer(x,y,"Instances",obj_blood_splatter);

 instance_destroy();

 global.zombies_killed+=1;

 global.cash+=50*global.wave;

}

Add a Draw Event to draw the enemy and a mini healthbar above:

/// @description Draw Self & Healthbar

draw_self();

draw_healthbar(x-25,y-25,x+25,y-22,(hp/max_hp)*100,c_red,c_black,

c_green,0,true,true);

Add a Path Ended Event with the following code:

/// @description Reduce Player lives

lives-=1;

Add a Collision Event with obj_missile with the following code:

/// @description Destroy if Hit by Targeted Missile

if other.target==id

{

 hp-=other.strength;

 instance_create_layer(x,y,"Instances",obj_blood_splatter);

 with (other) instance_destroy();

Chapter 10 tower Defense

223

 scr_sound(snd_hit);

}

Add a Collision Event with obj_bullet_parent with the following GML:

/// @description Reduce HP if hit by bullet

hp-=other.strength;

instance_create_layer(x,y,obj_blood_splatter);

scr_sound(snd_hit);

with (other) instance_destroy();

Next is obj_blood_splatter. Assign it the sprite strip spr_blood_1 and set the origin

as 32 x 34.

Add a Create Event with the following code:

/// @description Set animation speed

image_speed=0.5;

Add an Animation End Event with the following code:

/// @description Destroy

instance_destroy();

Add a Draw Event with the following code:

/// @description Draw spread out

for (var i=1; i<7; i+= 1)

{

 draw_sprite_ext(sprite_index,image_index,x,y,1,1,i*60,c_white,1);

}

Next is obj_level_complete; assign it spr_level_complete. Add the following

Create Event code:

/// @description Set Alarm

alarm[0]=room_speed*2;

Add an Alarm 0 Event with this code:

/// @description Destroy

instance_destroy();

Chapter 10 tower Defense

224

Finally, make sure the room layers for room_level_1 are in the order shown in

Figure 10-6.

Figure 10-6. Room layers in order

Next, you’ll create some weapons and some turrets to fire the weapons from.

First, create an object named obj_bullet_parent. There is no code or sprite for this

object.

Next up is obj_bullet. Assign it spr_bullet_1 and set the origin as center. Add the

following Create Event code:

/// @description Play audio

scr_sound(snd_bullet_1);

Add a Step Event with code that destroys itself if outside the range of the turret:

/// @description Destroy

if distance_to_object(source)>range instance_destroy();

Its parent is obj_bullet_parent.

Next is obj_bullet_2. Assign it spr_bullet_2 and set the origin to center.

Add a Create Event with the following code:

scr_sound(snd_bullet_2);

Add a Step Event that destroys itself if outside range:

/// @description Destroy

if distance_to_object(source)>range instance_destroy();

Chapter 10 tower Defense

225

Set obj_bullet_parent as its parent.

Next is obj_missile. Assign it spr_missile, which consists of two images, and set

the origin to 36 x 8.

Add a Create Event with the following code:

/// @description Set Up

live=true;

active=true;

alarm[0]=room_speed*5;

scr_sound(snd_missile_launch);

Add a Step Event that checks whether the target is still present; if not, it looks for the

nearest enemy and makes a new target:

/// @description Look For Target

if !instance_exists(target) && instance_exists(obj_enemy_1)

{

 target=instance_nearest(x,y,obj_enemy_1);

}

///track target

if instance_exists(target)

{

 tx = target.x;

 ty = target.y;

 direction = scr_angle_rotate(direction, point_direction(x, y, tx, ty), 5);

 image_angle = direction;

}

That is all for this object.

Next is obj_flash. Assign it the sprite strip spr_flash and set the origin to 91 x 32.

Add an Animation End Event with the following code:

instance_destroy();

That is all for this object.

Next is obj_tower_parent; it does not have a sprite.

Chapter 10 tower Defense

226

Add a Mouse Left Released Event with the following code:

/// @description Sell

global.cash+=sell;

instance_create_layer(x,y,"Instances",obj_place);

instance_destroy();

Add a Mouse Right Released Event with GML that upgrades if available and if the

player has enough cash to upgrade:

/// @description Upgrade

obj_buyer.selected=0;

if global.cash>=upgrade && level<2

{

 level+=1;

 global.cash-=upgrade;

 range+=range/3;

}

Add a Draw Event with the following code:

draw_sprite(spr_place,0,x,y);

draw_self();

Add a Draw GUI Event with the following code, which draws the current level and

shows the turret’s range as a red circle and whether the turret can be upgraded:

/// @description Draw Info

if position_meeting(mouse_x,mouse_y,id)

{

 scr_text(x,y,"Level="+string(level),c_white);

 draw_set_alpha(0.4);

 draw_set_colour(c_red);

 draw_circle(x,y,range,false);

 draw_set_alpha(1);

 scr_text(x,y,"Level="+string(level),c_white);

 if level<2 && global.cash>=upgrade

 {

Chapter 10 tower Defense

227

 scr_text(x,y-40,"Right Click To Upgrade",c_white);

 }

 scr_text(x,y+40,"Left Click To Sell For $"+string(sell),c_white);

}

Next up is obj_turret_1. Assign it spr_turret_1, set the origin to 45 x 47, and set the

parent as obj_tower_parent.

Add the following Create Event code:

/// @description Set Up

level=0;

range=100;

target=noone;

upgrade=50;

sell=0;

Add a Step Event with the following code:

/// @description Do Various Thyings

///set sub image

image_index=level;

///Look For Target - if destroyed find another

if instance_exists(obj_enemy_1)

{

 target=instance_nearest(x,y,obj_enemy_1);

 if alarm[0]==-1 alarm[0]=room_speed+irandom(10); //for bullet

 if distance_to_object(target)<range

 {

 target=instance_nearest(x,y,obj_enemy_1)

 tx = target.x;

 ty = target.y;

 direction = scr_angle_rotate(direction, point_direction(x, y, tx, ty), 5);

 image_angle = direction;

 }

}

Chapter 10 tower Defense

228

///Set Selling Price:

sell=floor(((level+1)*upgrade)/2);

Add an Alarm 0 Event that creates bullet(s) when the alarm triggers:

/// @description Create Bullet If Target in Range

if distance_to_object(target)<range

{

 if level==0

 {

 var bullet=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Front",obj_bullet_1);

 bullet.image_angle=direction;

 bullet.direction=direction;

 bullet.speed=6;

 bullet.source=id;

 bullet.range=range;

 bullet.strength=50+(level*50);

 var flash=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Front",obj_flash);

 flash.image_angle=direction;

 }

 if level==1

 {

 //first bullet & flash

 var bullet=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(9, image_angle - 90),"Front",obj_bullet_1);

 bullet.image_angle=direction;

 bullet.direction=direction;

 bullet.speed=6;

 bullet.source=id;

 bullet.range=range;

 bullet.strength=50+(level*50);

Chapter 10 tower Defense

229

 var flash=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(9, image_angle - 90),"Front",obj_flash);

 flash.image_angle=direction;

 //second bullet & flash

 var bullet=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(-9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(-9, image_angle - 90),"Front",obj_bullet_1);

 bullet.image_angle=direction;

 bullet.direction=direction;

 bullet.speed=6;

 bullet.source=id;

 bullet.range=range;

 bullet.strength=50+(level*50);

 var flash=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(-9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(-9, image_angle - 90),"Front",obj_flash);

 flash.image_angle=direction;

 }

 if level==2

 {

 var bullet=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Front",obj_bullet_1);

 bullet.image_angle=direction;

 bullet.direction=direction;

 bullet.speed=6;

 bullet.source=id;

 bullet.range=range;

 bullet.strength=50+(level*50);

 var flash=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Front",obj_flash);

 flash.image_angle=direction;

 }

}

That is all for this object.

Chapter 10 tower Defense

230

Create an object named obj_place and assign to it, with the origin as center,

spr_place.

To enable testing at this stage, create an object named obj_buyer. No sprite or code

is needed right now, but you will come back to it later. Place one instance of obj_buyer

in room_level_1.

Place a few instances of obj_turret_1 on the grass areas of room_level_1.

Next, create the other two types of towers.

The first is obj_turret_2. Assign it sprite strip spr_tower_2 and set the origin as

middle center.

Add the following Create Event code:

///Set Up

level=0;

range=200;

target=noone;

upgrade=250;

sell=0;

Add an Alarm 0 Event with the following code:

/// @description Look For Target

if distance_to_object(target)<range

{

 if level==0

 {

 var bullet=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Instances",obj_bullet_2);

 bullet.image_angle=direction;

 bullet.direction=direction;

 bullet.speed=6;

 bullet.source=id;

 bullet.range=range;

 bullet.strength=50+(level*100);

 var flash=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Instances",obj_flash);

 flash.image_angle=direction;

 }

Chapter 10 tower Defense

231

 if level==1

 {

 //Create Bullet & Flash 1

 var bullet=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(9, image_angle - 90),"Instances",obj_bullet_2);

 bullet.image_angle=direction;

 bullet.direction=direction;

 bullet.speed=6;

 bullet.source=id;

 bullet.range=range;

 bullet.strength=50+(level*100);

 var flash=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(9, image_angle - 90),"Instances",obj_flash);

 flash.image_angle=direction;

 //Create Bullet & Flash 2

 var bullet=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(-9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(-9, image_angle - 90),"Instances",obj_bullet_2);

 bullet.image_angle=direction;

 bullet.direction=direction;

 bullet.speed=6;

 bullet.source=id;

 bullet.range=range;

 bullet.strength=50+(level*100);

 var flash=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(-9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(-9, image_angle - 90),"Instances",obj_flash);

 flash.image_angle=direction;

 }

 if level==2

 {

Chapter 10 tower Defense

232

 var bullet=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Instances",obj_bullet_2);

 bullet.image_angle=direction;

 bullet.direction=direction;

 bullet.speed=6;

 bullet.source=id;

 bullet.range=range;

 bullet.strength=50+(level*100);

 var flash=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Instances",obj_flash);

 flash.image_angle=direction;

 }

}

Add a Step Event with the following code:

/// @description Various Checks

///set sub image

image_index=level;

///Look For Target - if destroyed find another

if instance_exists(obj_enemy_1)

{

 target=instance_nearest(x,y,obj_enemy_1);

 if alarm[0]==-1 alarm[0]=room_speed+irandom(10);//for bullet

}

///Set Moving Direction Angle

if instance_exists(obj_enemy_1) && distance_to_object(target)<range

{

 target=instance_nearest(x,y,obj_enemy_1)

 var tx = target.x;

 var ty = target.y;

 direction = scr_angle_rotate(direction, point_direction(x, y, tx, ty), 8);

 image_angle = direction;

}

Chapter 10 tower Defense

233

///Set Selling Price:

sell=floor(((level+1)*upgrade)/2);

Set the parent as obj_tower_parent.

Next is obj_turret_3. Assign it the sprite strip spr_turret_3 and set the origin as

middle center.

Add a Create Event with the following code:

/// @description Set Up

level=0;

range=250;

target=noone;

reload_speed=2;

upgrade=1000;

sell=0;

Add an Alarm 0 Event that creates missile(s) depending on the turret’s level and

whether there is an enemy in range:

/// @description Look For Target

if distance_to_object(target)<range

{

 if level==0

 {

 var missile=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Front",obj_missile);

 missile.image_angle=direction;

 missile.direction=direction;

 missile.speed=6;

 missile.source=id;

 missile.range=range;

 missile.strength=250+(level*100);

 missile.target=target;

 var flash=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Front",obj_flash);

 flash.image_angle=direction;

Chapter 10 tower Defense

234

 }

 if level==1

 {

 //Create First Missile & Flash

 var missile=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(9, image_angle - 90),"Front",obj_missile);

 missile.image_angle=direction;

 missile.direction=direction;

 missile.speed=6;

 missile.source=id;

 missile.range=range;

 missile.strength=250+(level*100);

 missile.target=target;

 var flash=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(9, image_angle - 90),"Front",obj_flash);

 flash.image_angle=direction;

 //Create Second Missile & Flash

 var missile=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(-9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(-9, image_angle - 90),"Front",obj_missile);

 missile.image_angle=direction;

 missile.direction=direction;

 missile.speed=6;

 missile.source=id;

 missile.range=range;

 missile.strength=250+(level*100);

 missile.target=target;

 var flash=instance_create_layer(x+lengthdir_x(35, image_angle)+

lengthdir_x(-9, image_angle - 90),y+lengthdir_y(35, image_angle)+

lengthdir_y(-9, image_angle - 90),"Front",obj_flash);

 flash.image_angle=direction;

 }

Chapter 10 tower Defense

235

 if level==2

 {

 var missile=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Front",obj_missile);

 missile.image_angle=direction;

 missile.direction=direction;

 missile.speed=6;

 missile.source=id;

 missile.range=range;

 missile.strength=250+(level*100);

 missile.target=target;

 var flash=instance_create_layer(x+lengthdir_x(30, image_angle),

y+lengthdir_y(30, image_angle),"Front",obj_flash);

 flash.image_angle=direction;

 }

}

Add a Step Event with the following code:

/// @description Various Steps

///set sub image

image_index=level;

///Look For Target - if destroyed find another

if instance_exists(obj_enemy_1)

{

 target=instance_nearest(x,y,obj_enemy_1);

 if alarm[0]==-1 alarm[0]=room_speed*reload_speed+irandom(10);//for bullet

 ///Set Moving Direction Angle

 if distance_to_object(target)<range

 {

 target=instance_nearest(x,y,obj_enemy_1)

 tx = target.x;

 ty = target.y;

 direction = scr_angle_rotate(direction, point_direction(x, y, tx, ty), 5);

 image_angle = direction;

 }

}

Chapter 10 tower Defense

236

///Set Selling Price:

sell=floor(((level+1)*upgrade)/2);

Set the parent as obj_tower_parent.

Next, let’s set up backgrounds for the other objects that you’ll be using.

First, load in spr_info_bg and set the origin as 40 x 35.

Create an object named obj_coin_hud and set the sprite as spr_info_bg. Make a

Draw Event and add the following code:

/// @description Draw Coin Hud

draw_self();

draw_sprite(spr_cash,0,x,y);

scr_text(x+100,y,global.cash,c_white);

Load in spr_cash with the origin as middle center.

Next, create an object named obj_lives_hud and assign it spr_info_bg. Add the

following Draw Event code:

/// @description Draw Lives

draw_self();

draw_sprite(spr_lives,0,x,y);

scr_text(x+100,y,lives,c_white);

Load in spr_lives and set the origin as middle center.

Open up the obj_level_1 control and assign it the sprite spr_info_bg. Change the

Draw Event to

/// @description Draw Wave Info

draw_sprite(spr_info_bg,0,x,y);

scr_text(x,y,"LEVEL"+string(global.wave)+"Of"+string(total_waves),c_white);

Chapter 10 tower Defense

237

Place one instance each of obj_coin_hud, obj_lives_hud, and obj_level_1_control,

as shown in Figure 10-7.

Figure 10-7. Instances placed in room

Next, open up obj_room_level_1 and delete the tower instances you used for

testing.

Chapter 10 tower Defense

238

Figure 10-8. New instance layers added

Create two instance layers, Front and Back, and set them in the order shown in

Figure 10-8.

Chapter 10 tower Defense

239

Create a new object named obj_menu_parent and set the Step Event code as the

following:

/// @description Draw If Available or Not

scr_menu_info();

Set the Draw Event GML as the following:

/// @description Draw If Available or Not

scr_menu_info();

Next, create an object named obj_turret_1_menu. Assign it the sprite obj_turret_1_

menu and set the origin as center. Add the following Create Event code:

Next, place instances of obj_place in all of the places where the player is allowed to

build their turrets, as shown in Figure 10-9. Do this on the Back instances layer.

Figure 10-9. obj_place instances placed in room

Chapter 10 tower Defense

240

/// @description Set Up

price=50;

available=false;

center=680;

Set the parent as obj_menu_parent.

Next is obj_turret_2_menu. Assign it spr_turret_2_menu. Add the following Create
Event code:

///Set Up

price=250;

available=false;

center=680;

Set the parent as obj_menu_parent.

Next is obj_turret_3_menu. Assign it spr_turret_3_menu. Add the following Create
Event code:

/// @description Set Up

price=1000;

available=false;

center=680;

Set the parent to obj_menu_parent.

Place one instance of each of the three menu turrets in room_level_1 as shown in

Figure 10-10.

Chapter 10 tower Defense

241

Next up is obj_buyer. Open it and assign the sprite spr_arrow to it with the origin at

12 x 12.

Add a Create Event with the following code:

/// @description Set Up

selected=0;

Figure 10-10. Menu objects placed

Chapter 10 tower Defense

242

Add a Step Event with the following code:

/// @description Various Steps

///set at mouse pos

x=mouse_x;

y=mouse_y;

///set mouse and if selected

if mouse_check_button_released(mb_left) && selected==0

{

 if global.cash>=50 && position_meeting(x, y, obj_turret_1_menu)

 {

 selected=1;

 cost=50;

 scr_sound(snd_weapon_selected);

 }

 else if global.cash>=250 && position_meeting(x, y, obj_turret_2_menu)

 {

 selected=2;

 cost=250;

 scr_sound(snd_weapon_selected);

 }

///set if selected

 else if global.cash>=1000 && position_meeting(x, y, obj_turret_3_menu)

 {

 selected=3;

 cost=1000;

 scr_sound(snd_weapon_selected);

 }

 else scr_sound(snd_not_enough_cash);

}

///place grid if allowed

if selected>=1 && mouse_check_button_released(mb_left) && position_

meeting(x, y, obj_place)

{

Chapter 10 tower Defense

243

 if selected==1

 {

 var nearest=instance_nearest(x,y,obj_place);

 instance_create_layer(nearest.x,nearest.y,"Back",obj_turret_1);

 global.cash-=cost;

 selected=0;

 with nearest instance_destroy();

 }

 if selected==2

 {

 var nearest=instance_nearest(x,y,obj_place);

 instance_create_layer(nearest.x,nearest.y,"Back",obj_turret_2);

 global.cash-=cost;

 selected=0;

 with nearest instance_destroy();

 }

 if selected==3

 {

 var nearest=instance_nearest(x,y,obj_place);

 instance_create_layer(nearest.x,nearest.y,"Back",obj_turret_3);

 global.cash-=cost;

 selected=0;

 with nearest instance_destroy();

 }

}

Add a Right Mouse Button Released Event with the following code:

///deselect

selected=0;

Chapter 10 tower Defense

244

Add a Draw Event with the following code:

/// @description Set Sprite

if selected==1

{

 sprite_index=spr_turret_1;

}

else if selected==2

{

 sprite_index=spr_turret_2;

}

else if selected==3

{

 sprite_index=spr_turret_3;

}

else if selected==0

{

 sprite_index=spr_arrow;

}

image_speed=0;

draw_self();

scr_text(x,y,selected,c_white);

Place one instance of this object in room_level_1 on the Front layer.

The final object is obj_message. Add this Create Event code:

/// @description set up

depth=-100;

can_show=true;

to_draw="";

x=400;

y=780;

Add an Alarm 0 Event with this code:

/// @description alarm0 set alarm1

alarm[1]=room_speed*1;

to_draw="";

Chapter 10 tower Defense

245

Add an Alarm 1 Event with this code:

/// @description set as able to show

can_show=true;

Add a Step Event with this code:

/// @description check if message waiting

if !ds_list_empty(global.message) && can_show

{

 to_draw=ds_list_find_value(global.message,0);

 ds_list_delete(global.message,0);

 can_show=false;

 alarm[0]=room_speed*4;

}

Add a Draw Event with code that displays a current message if present:

/// @description draw message

if to_draw!=""

{

 scr_text(400,650,to_draw,c_blue);

}

That is all for this object. Open room_level_1 and place an instance of this object on

the Front layer.

Finally, let’s do a bit of housekeeping so the bullets and missiles appear above other

objects.

Open the Alarm 0 Events for objects obj_turret_1, obj_turret_2, and obj_turret_3

and change the layer that the bullet and missile instances are being created on to the

Front layer.

Next, create an object named obj_gameover. In a Create Event, add the following

code:

/// @description Set Alarm

alarm[0]=room_speed*5;

scr_sound(snd_you_are_dead);

Chapter 10 tower Defense

246

In an Alarm 0 Event, add this code:

/// @description Set Alarm

alarm[0]=room_speed*5;

scr_sound(snd_you_are_dead);

And in a Draw Event, add this code:

/// @description Draw

scr_text(room_width/2,room_height/2,"You Are Dead",c_white);

Place one instance of this object in room_gameover.

Finally, create an object named obj_win with this Create Event code:

/// @description Set Alarm

alarm[0]=room_speed*5;

Make an Alarm 0 Event with this code:

/// @description Restart

room_goto(room_start);

And make a Draw Event with the following code:

/// @description Draw

scr_text(room_width/2,room_height/2,"You Win",c_white);

Place one instance of this object in room_win.

Figure 10-11 shows this game in action.

Chapter 10 tower Defense

247

A project file for the completed game is in the Resources folder. The additional

rooms are present for you to design your own levels.

EXTRA IDEAS FOR YOU TO TRY

 1. for each stage, use multiple paths with slight variations, getting the enemy to

choose one at random when it starts moving.

 2. Create a new weapon that drops nukes over the play area.

 3. Make an enemy parent object, and allow easy integration of new enemies.

 4. Design and set up three of your own stages. You can use the three level rooms

that you created already.

 5. Make a system that allows the player to create (and save) their own level designs.

Figure 10-11. The game in action

Chapter 10 tower Defense

249
© Ben Tyers 2018
B. Tyers, Practical GameMaker Projects, https://doi.org/10.1007/978-1-4842-3745-8

Index

A, B, C
Bomber game

Alarm 1 Event, 191
Animation End Event, 180–181
bomb location, 184
Clean Up Event, 192
collect the fruit and destroy

enemy, 173
Collision Events, 187

with obj_bomb_crate, 187, 191
with obj_explosion, 187, 191
with obj_fruit, 187, 191

Create Event, 176
create explosion, 182–184
creating group, 174
Draw Event, 184
Draw GUI Event, 193
font_bomb, 180
game in action, 194
importing sprites, 173–174
instances, 64 x 64 grid, 189
level for testing, 188
level set up, testing, 180
moving direction, 190
obj_block, 176, 186, 189
obj_bomb_crate, 185
obj_control, 192
obj_enemy, 189, 192
obj_explosion, 180
obj_fruit, 185

obj_player and spr_idle_down, 176
Path Ended Event, 192
player’s movements, 176–179
random sub-image and jump to free

position, 185
resource tree with groups, 174–175
room_game, 180, 188
scr_move_object, 176
set initial values and starts

alarm, 189–190
setting object to solid, 186
snd_explosion, 180
spr_bomb_ticking, 182
Step Event, 177, 192

D, E, F, G, H, I
Darts game

add sprites, 141
Clean Up Event, 152–153
Create Event, 144
dartboard placed in room, 143
Draw Event, 146
game in action, 153–154
Global Left Pressed Event, 151
layers setup, 142
obj_board, 143
obj_center, 147
obj_control, 144
obj_dart, 152

https://doi.org/10.1007/978-1-4842-3745-8

250

obj_dart_on_board, 151
obj_throw, 151
path_circle, 144
Path Ended Event, 153
room_game, 142
set alarm, 151
single-player version, 141
sounds, 141
spr_board, 143
Step Event, 145, 147–149, 151

J, K, L
Jet Pack game

Alarm 0 Event, 118
Alarm 1 Event, 133
Animation End Event, 121, 130–131
background layers, 105
bg_1, bg_2 and bg_3 settings, 106
can_shoot, 115
Collision Event, 132
Collision Event code, 117–118
Collision Mask tab, 121
create bullets, 113–114
Create Event, 102
creating new path, 128–129
destroys the instance, 117
Draw Event, 135–136
Draw GUI Event, 136
draw_healthbar, 124
draw_text_shadow, 134
duplicating asset, resource tree, 125
firing system, 110
flag and alarm, 114
flag of can_shoot, 115
flying_level, 104
font_info, 134

game in action, 110, 138
global.difference, 104, 108
Global Left Pressed Event, 115, 137
graphics, 101
health bars, enemy and player, 124
image_speed, 120
Import Strip Image, 110–111
Instances layer, 107
Key Down S Event, 104
Key Down W Event, 102–103
Key Press S Event, 136
layer for effects, 119
layers in order, 107
mask settings for spr_bat, 121–122
mirroring sprite, 126
Mouse Global Left Pressed

Event, 112–113
obj_bat, 116–117
obj_enemy_bullet, 137
obj_enemy_explosion, 120, 137
obj_enemy_parent, 116–117, 122–123
obj_gameover, 135, 138
obj_hud, 124
obj_player_1, 108–109
obj_player_bullet, 112
obj_player_explosion, 130
obj_spawner, 118, 132
obj_startgame, 135
Outside Room Event, 112, 130
parent object, 116
path and path points,

smooth curve, 129
Path_Layer, 127–128
player’s current location, 130
player’s health, 123
room all set up, 108
room_game, 104, 133
room_gameover, 136

Darts game (cont.)

Index

251

room order, 134
set alarm, initial hp values, and

hspeed, 132
snd_enemy_shoot, 137
snd_you_are_dead, 138
sound effects, 136
spr_bat, 116
spr_enemy_bullet, 126
spr_enemy_explosion, 119, 130
sprites bg_0, bg_1, bg_2, and bg_3, 104
sprite’s initial setting, 101–102
sprite strip loaded in, 119–120
spr_player_bullet, 110, 112, 125
spr_title, 134
spr_ufo, 132
starting value of hp, 122
Step Event, 104, 136
steps to assign parent, 123
updated Create Event, 115

M, N, O
Match 3 game

Alarm 0 Event, 202–205, 207
Clean Up Event, 208
Create Event, 202, 206
Draw Event, 202, 205
font_info, 202
game in action, 209–210
Key Press R Event, 206
Left Pressed Event, 207–208
obj_block, 206
obj_control, 202
obj_control and obj_border, 209
obj_star, 202
Path Ended Event, 208
room_game, 208
room setup, 209

scr_check_match, 197–199
scr_check_to_drop, 201
scr_move_blocks, 200–201
sounds, 197
sprites, 197
Step Event, 202–203, 206

P
Platform game

assigning, sprite and parent, 157
Create Event, initial variables, 159
Draw GUI Event, 170
enemy moving, 167
game in action, 170–171
grid snap settings, 168
Instances layer, 163, 170
Key Pressed R Event, 165
load sprites, 155
obj_change_direction, 166
obj_control, 170
obj_egg, 164
obj_enemy_snake, 168
obj_flag, 165
obj_ladder_parent, 157–158
obj_ladder_top, 157–158
obj_platform_parent, 156–157
obj_player’s Step Event, 169
obj_spike, 168–169
room_game, 163, 165
room size, 172
sounds, 155
spr_full_mask, collision mask, 158–159
spr_platform_left, 156
Step Event, 155
Step Event, movement and sprite

control, 159, 161–163
testing level, 164

Index

252

test layout, 166, 169
unchecking, Visible option, 166–167

Q
Quiz

Alarm 0 Event, 55
Async HTTP Event, 51–53
clock face, 55
Create Event, 50
data and file handling, 49
draw button and answer option, 55
Draw Event, 54
duplicate function, 56–57
font_info, 66
game in action, 66
import settings, sprite strip, 49–50
Key Pressed R Event, 59–61
Left Pressed Event, 57
Left Pressed Mouse Button Event, 56
Mouse Left Button Pressed Event, 58
naming sprites, 49
obj_add_from_code, 50–51
obj_add_from_web, 51
obj_ask, 54
obj_from_code, 58
obj_from_web, 58
obj_result, 58–59
obj_timer, 54
options under room, 61
room_quiz with instances placed, 64
room_result, 65
room_setup_quiz, 61
setting, white background, 62
spr_badge, 49
spr_question_bg, 54
Step Event, 54

value of current question, 56
white background and instances, 63

R
Rock, paper and scissors game

AI system, 89
Alarm 0 Event, 93–94, 97
Create Script, 89–90
Draw End Event, 94–96
enumeration variables, 91
font_text, 92
game in action, 98–99
Mouse Left Released Event, 98
obj_button_paper, 98
obj_button_rock, 98
obj_button_scissors, 98
obj_computer_play, 93
obj_global_drawing, 94
obj_player_play, 93
obj_result, 97
obj_splash_and_setup, 92
room_game, 98
room_splash, 98
script set up with code, 92
scr_play, 91
set up initial values, 92
sounds, 89
sprites, 89

S
Snake game

Alarm 0 Event, 74, 76
background to stretch, 83
Collision Event

with obj_block, 78
with obj_food, 76, 78

Platform game (cont.)

Index

253

with obj_trail, 78
with obj_food, 77

Create Event, 74
direction, 74
Draw GUI Event code, 81
enums and sprite manipulation, 69
events for obj_head, 80
fnt_score, 73
font settings, 73
game in action, 86
highscore.ini, 73
instances placed in room, 85
Key Press S Event, 74
obj_food, 74
obj_gameover, 80–81
obj_head, 74
obj_hud, 81
obj_startscreen, 73
obj_trail, 74
origin of sprites, 69
Outside Room Event, 78–79
position, 75
resources tree, 72
room_start_game, 82
setup views, 83–84
snd_food, snd_move, and

snd_gameover, 72
snd_music, 71
sound resource added, 71
sounds, 69–70
Step Event, 75

Spot the Difference game
adding background, 44
adding object to room, 42
Alarm 0 Event, 26–28
Alarm[0] Event, 32
Alarm Event, 26
assigning sprite to object, 21

bg_2 setup, 11
closing object and applying

changes, 20
closing, sprite editor, 14
Create Event, 18–19, 21
Create Sprite, 6
creating and naming, object, 17
dialog pop-up, 8
Draw Event, 22–23, 25, 28
Draw GUI Event, 36–38
editing an image, 12
events, 18
fonts, 15–16
game in progress, 47
GameMaker Language, 3
“Game Over”, 28
Global Left Pressed Event, 38
importing, strip image, 13
INI file, 17
initial start screen, 5
Instances layer, 42–43, 45
Left Mouse Button Pressed Event, 35
Left Mouse Pressed Event, 26
loading in sprite, 7–8
Mouse Left Button Pressed

Event, 23–24
moving workspace, 19–20
my_id, 25
naming sprite and importing, 7
new rooms, 38
new workspace, 39
obj_clockhand, 30
obj_gameover setup, 28
placing, difference objects, 46
play arrow to play game, 46
project name, 4
Resources tab, 5
room_gameover and obj_gameover, 43

Index

254

room layer, 41
room_level_1, 25
room_level_2, 26
room_menu, 20
room order, 39
room properties, 40
room’s dimensions, 41
room_splash, 40
room with background set, 44
save and close, window, 9–10
settings, sprite strip, 14
spr_clock, 29
spr_clockhand, 30
spr_face and spr_difference 15
sprite loaded in, 9
sprite origin, middle center, 15
sprite set up, middle center, 32–33
spr_menu_button, 12
start screen, 1–2
Step Event, 30–32, 35
visible unchecked, 33–34

T, U, V, W, X, Y, Z
Tower Defense game

adding, tile layer, 216
bg_tiles, 215
creating rooms, 211
game in action, 246–247
instance layers, 238
instances placed in room, 237
level’s layout, 218
loading sounds, 218–219
menu turrets, room_

level_1, 240, 241
obj_blood_splatter

Animation End Event, 223

Create Event, 223
Draw Event, 223
spr_blood_1, 223

obj_bullet
Create Event, 224
spr_bullet_1, 224
Step Event, 224

obj_bullet_2, 224
obj_bullet_parent, 224
obj_buyer

Create Event, 241
Draw Event, 244
Right Mouse Button Released

Event, 243
spr_arrow, 241
Step Event, 242–243

obj_coin_hud, 236
obj_enemy_1

Create Event, 222
Draw Event, 222
Collision Event with

obj_bullet_parent, 223
Collision Event with

obj_missile, 222
Path Ended Event, 222
spr_enemy, 221
Step Event, 222

obj_flash, 225
obj_gameover, 245–246
obj_level_1_button, 214
obj_level_2_button,

obj_level_3_button, and
obj_level_4_button, 214

obj_level_complete
Alarm 0 Event, 223
Create Event, 223
spr_level_complete, 223

obj_level_1_control

Spot the Difference game (cont.)

Index

255

Alarm 1 Event, 220
Alarm 2 Event, 220
Draw Event, 221
Step Event, 220–221
wave settings and queue

messages, 220
obj_level_parent

Draw Event, 214
Left Released Event, 214
locked/unlocked level, 213

obj_lives_hud, 236
obj_menu_control, 215
obj_menu_parent, 239
obj_message

Alarm 0 Event, 244
Alarm 1 Event, 245
Create Event, 244
Draw Event, 245
Step Event, 245

obj_missile
Create Event, 225
spr_missile, 225
Step Event, 225

obj_place instances, 239
obj_room_level_1, 237
obj_splash, 213
obj_tower_parent

Draw Event, 226
Draw GUI Event, 226
Mouse Left Released

Event, 226
Mouse Right Released

Event, 226

obj_turret_1
Alarm 0 Event, 228–229
Create Event, 227
obj_place, 230
spr_turret_1, 227
Step Event, 227

obj_turret_1_menu, 239
obj_turret_2

Alarm 0 Event, 230–232
Create Event, 230
spr_tower_2, 230
Step Event, 232

obj_turret_2_menu, 240
obj_turret_3

Alarm 0 Event, 233–235
Create Event, 233
spr_turret_3, 233
Step Event, 235

obj_turret_3_menu, 240
path setup, 219
room layers, 224
room_splash, 215
scr_angle_rotate, 212
scr_menu_info, 211–212
scr_message, 212
scr_sound, 212
scr_text, 212–213
set up backgrounds, 236
spr_lives, 236
spr_tile, 215
tile properties, 215
tileset, 217
weapons and turrets, 224

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Spot the Difference
	Chapter 2: Quiz
	Chapter 3: Snake
	Chapter 4: Rock, Paper, Scissors
	Chapter 5: Jet Pack
	Chapter 6: Darts
	Chapter 7: Platform Game
	Chapter 8: Bomber
	Chapter 9: Match 3
	Chapter 10: Tower Defense
	Index

