

Practical	Internet	of	Things	with
JavaScript
	

	

	

	

	

	

Build	standalone	exciting	IoT	projects	with	Raspberry	Pi	3	and
JavaScript	(ES5/ES6)

	

	

	

	

	

	

	

	

Arvind	Ravulavaru

	

	

	

	

BIRMINGHAM	-	MUMBAI

Practical	Internet	of	Things	with
JavaScript
	

Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval
system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written
permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in
critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	either	express	or	implied.	Neither	the	author(s),	nor	Packt
Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for	any	damages
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

	

First	published:	December	2017

	

Production	reference:	1211217

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham

B3	2PB,	UK.

ISBN	978-1-78829-294-8

	

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Arvind	Ravulavaru

Copy	Editor

Safis	Editing

Reviewers

	

Vijaya	Kumar	Suda

Project	Coordinator

	

Kinjal	Bari

Commissioning	Editor

	

Vijin	Boricha

Proofreader

	

Safis	Editing

Acquisition	Editor

	

Reshma	Raman

Indexer

	

Pratik	Shirodkar

Content	Development	Editor

	

Eisha	Dsouza

Graphics

	

Kirk	D'Penha

Technical	Editor

	

Varsha	Shivhare

Production	Coordinator

	

Shantanu	Zagade

About	the	Author
Arvind	Ravulavaru	is	a	platform	architect	at	Ubiconn	IoT	Solutions,	with	over
9	years	of	experience	in	software	development	and	2	years	in	hardware	and
product	development.	For	the	last	5	years,	he	has	been	working	extensively	on
JavaScript,	both	on	the	server	side	and	the	client	side,	and	for	the	last	couple	of
years	in	IoT,	building	a	platform	for	rapidly	developing	IoT	solutions,	named	the
IoT	Suitcase.	Prior	to	this,	he	has	worked	on	big	data,	cloud	computing,	and
orchestration.

Arvind	has	already	written	couple	of	books	named	Learning	Ionic	and	Learning
Ionic	-	Second	Edition,	which	talks	about	building	Mobile	Hybrid	applications
using	Ionic	framework	v1,	v2,	and	v3.

First	off,	I	would	like	to	thank	all	the	people	who	have	purchased	my	Learning
Ionic	and	Learning	Ionic	second	edition	books.	The	support	from	you	guys	has
been	tremendous.	I	really	appreciate	it.	I	would	like	to	thank	the	Packt	team	for
doing	an	amazing	job	in	releasing	and	promoting	the	book.	A	very	special	thanks
to	my	4-month-old	lab,	Dexter	for	letting	me	write	my	book	without	bothering
much	to	play	with	him	at	nights.	Thanks	to	the	team	at	Ubiconn	IoT	Solutions
who	were	behind	me	in	getting	this	book	out.	Special	thanks	to	Ramesh	Noothi,
for	helping	me	set	up	the	hardware	as	well	Nagesh	Adicharla,	who	has	also
created	all	the	schematic	images	for	the	book.
Last	but	not	the	least,	thanks	to	the	entire	team	at	Packt	for	supporting	me.	I
sincerely	thank	my	content	development	editor,	Eisha	Dsouza	and	technical
editor,	Varsha	Shivhare	for	their	awesome	support.	Thanks	to	Reshma	Raman
and	the	production	team	for	taking	the	book	to	press.	Special	thanks	to	my
family,	without	whose	support	this	book	wouldn’t	have	been	possible.	Thank	you.

About	the	Reviewer
Vijay	Suda	has	over	17	years	of	experience	in	the	IT	industry.	He	works	as	a
solution	architect	for	a	major	consulting	firm	in	the	USA,	operating	in	the	Java,
cloud,	IoT,	big	data,	and	machine	learning	spaces.	He	worked	for	Tata
Consultancy	Services	and	Wipro	Technologies	in	solution	architecture,	design
and	development	of	enterprise	level	systems	with	Java/J2EE,	and	SOA-related
technologies.	He	has	experience	with	various	clients	in	the	banking,	telecom,
and	retail	domains	in	Switzerland,	Belgium,	Mexico,	Bahrain,	India,	and	the
USA.

He	is	passionate	about	implementing	AI	and	machine	learning	algorithms	to
make	a	positive	impact	on	society.	He	has	recently	been	working	on	deep
learning	technologies	such	as	TensorFlow,	scikit-learn,	and	pandas	for	machine
learning.

	

I	would	like	to	thank	my	father,	Koteswara	Rao	Suda,	and	my	mother,
Rajyalakshmi	Suda,	for	watching	my	first	steps	and	supporting	me	in	every	step
to	reach	here;	my	dear	wife	Radhika	for	everything	she	has	done	for	me;	my
lovely	son	Chandra;	and	my	cute	daughter	Akshaya	for	her	warming	smile.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.co
m.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.Packt
Pub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to
all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you
plan	your	personal	development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
	

Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our
editorial	process.	To	help	us	improve,	please	leave	us	an	honest	review	on	this
book's	Amazon	page	at	https://www.amazon.com/dp/1788292944.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	email	us	at
customerreviews@packtpub.com.	We	award	our	regular	reviewers	with	free	eBooks	and
videos	in	exchange	for	their	valuable	feedback.	Help	us	be	relentless	in
improving	our	products!

	

	

	

https://www.amazon.com/dp/1788292944

Fear	lies	in	the	unknown

Table	of	Contents

	

Preface
What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support
Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	 The	World	of	IoT
The	world	of	IoT

What	is	IoT?

A	bit	of	history

IoT	use	cases

Technology	overview

Product	engineering

Summary

2.	 IoTFW.js	-	I
Designing	a	reference	architecture

Architecture
Smart	device

Gateway

MQTTS	broker

API	engine

MongoDB

Web	app

Mobile	app

Desktop	app

Data	flow
Smart	device	to	the	apps

App	to	the	smart	device

Building	the	reference	architecture
Installing	Node.js	on	the	server

Installing	nodemon

MongoDB
Local	installation

Using	mLab

MQTTS	broker	-	Mosca

API	engine	-	Node.js	and	Express
Authorization

MQTT	client

API	engine	testing

Communication	between	broker	and	API	engine

Raspberry	Pi	software
Setting	up	Raspberry	Pi

Raspberry	Pi	MQTTS	client

Communication	between	the	broker	and	the	Raspberry	Pi
Troubleshooting

Communication	between	the	Raspberry	Pi,	the	broker	and	the	API	engine

Web	app
Setting	up	the	app

Project	structure

App	module

Web	app	services

Web	app	components

Launching	the	app

Summary

3.	 IoTFW.js	-	II
Updating	the	API	engine

Integrating	web	app	and	API	engine

Testing	an	end-to-end	flow	using	DHT11	and	LED
Setting	up	and	updating	the	Raspberry	Pi

Updating	the	API	engine

Updating	the	web	app

Building	the	desktop	app	and	implementing	an	end-to-end	flow

Building	the	mobile	app	and	implementing	an	end-to-end	flow

Troubleshooting

Summary

4.	 Smart	Agriculture
Agriculture	and	IoT

Designing	a	smart	weather	station

Setting	up	Raspberry	Pi	3
Raspberry	Pi	and	MCP3208

Moisture	sensor	and	MCP3208

Raspberry	Pi	and	DHT11

Setting	up	the	API	engine

Setting	up	the	web	app

Setting	up	the	desktop	app

Setting	up	the	mobile	app

Summary

5.	 Smart	Agriculture	and	Voice	AI
Voice	AI

Test	drive

Building	a	smart	socket
Setting	up	relay	with	Raspberry	Pi

Managing	relay	in	an	API	engine

Updating	the	web	app	template

Updating	the	desktop	app

Updating	the	mobile	app	template

Developing	Alexa	skill
Creating	skill

Training	the	voice	model

ngrok	the	API	engine

Defining	the	lambda	function

Deploying	and	testing

Summary

6.	 Smart	Wearable
IoT	and	healthcare

Smart	wearable
Setting	up	smart	wearable

Updating	the	API	engine

Updating	the	web	app

Updating	a	desktop	app

Updating	the	mobile	app	template

Summary

7.	 Smart	Wearable	and	IFTTT
IFTTT	and	IoT

Fall	detection

Updating	Raspberry	Pi

Building	the	IFTTT	rules	engine

Updating	the	web	app

Updating	the	desktop	app

Updating	the	mobile	app

Summary

8.	 Raspberry	Pi	Image	Streaming
MJPEG

Setting	up	Raspberry	Pi
Setting	up	the	camera

Testing	the	camera

Developing	the	logic

Updating	the	API	engine

Updating	the	web	app

Updating	the	desktop	app

Updating	the	mobile	app

Motion-based	video	capture
Updating	the	Raspberry	Pi

Testing	the	code

Summary

9.	 Smart	Surveillance
AWS	Rekognition

Setting	up	smart	surveillance
Setting	up	AWS	credentials

Seeding	the	authorized	faces

Testing	the	seed

Deploying	to	Raspberry	Pi

Summary

Preface
We	are	part	of	a	generation	where	people	have	already	started	adapting	to	IoT
products.	There	is	a	lot	of	hype	about	IoT.	This	book	will	focus	on	building	IoT-
based	applications	that	will	help	you	to	achieve	a	higher	level	of	understanding
when	it	comes	to	IoT.	It	will	follow	a	project-based	approach	that	will	teach	you
to	build	standalone	exciting,	applications	and	will	also	teach	you	to	extend	your
project	to	another	level.	We	are	going	to	use	JavaScript	as	our	programming
language	and	Raspberry	Pi	3	as	our	hardware	to	build	interesting	IoT	solutions.

	

What	this	book	covers
Chapter	1,	The	World	of	IoT,	introduces	you	to	the	world	of	IoT.	We	will	be
looking	at	the	history	of	IoT,	identifying	a	few	use	cases,	and	getting	a	technical
overview	of	what	were	are	going	to	cover	in	this	book.

Chapter	2,	IoTFW.js	-	I,	walks	you	through	how	to	build	a	reference	framework	for
developing	IoT	solutions	using	JavaScript.	In	this	chapter,	we	cover	the	high-
level	architecture	and	get	started	with	installing	the	required	software.	We	will
start	with	downloading	the	base	application	and	stitching	the	Raspberry	Pi
together	with	the	MQTTS	broker	and	API	engine.

Chapter	3,	IoTFW.js	-	II,	continues	from	where	we	left	off	in	the	previous	chapter
and	completes	the	implementation	of	the	API	engine,	web	app,	desktop	app,	and
mobile	app.	At	the	end	of	this	chapter,	we	implement	a	simple	example	with	an
LED	and	a	temperature	sensor,	where	instructions	from	the	apps	will	turn	the
LED	on/off	and	the	value	of	the	temperature	sensor	updates	in	real	time.

Chapter	4,	Smart	Agriculture,	talks	about	building	a	simple	weather	station	using
the	reference	architecture	we	have	built.	The	weather	station	consists	of	four
sensors,	and	using	these	we	can	monitor	farm	conditions.	We	will	be	making	the
required	changes	to	the	API	engine,	web	app,	desktop	app,	and	mobile	app.

Chapter	5,	Smart	Agriculture	and	Voice	AI,	shows	how	we	can	leverage	the	power
of	voice	AI	technology	to	build	interesting	IoT	solutions.	We	are	going	to	work
with	the	smart	weather	station	and	add	a	one-channel	mechanical	relay	to	this
setup.	Then,	using	voice	commands	and	Amazon	Alexa,	we	are	going	to	manage
the	weather	station.

Chapter	6,	Smart	Wearable,	talks	about	an	interesting	use	case	in	the	healthcare
sector,	postoperation	patient	care.	Using	a	smart	wearable	device	equipped	with
a	simple	accelerometer,	one	can	easily	detect	whether	a	patient	has	fallen	down.
In	this	chapter,	we	build	the	required	setup	comment	to	gather	the	accelerometer
values	from	the	sensor.

Chapter	7,	Smart	Wearable	and	IFTTT,	explains	how	the	data	collected	from	the

accelerometer	can	be	used	to	detect	falls	and	at	the	same	time	notify	the	API
engine.	Using	a	popular	concept	named	If	This	Then	That	(IFTTT)—we	will
be	building	our	own	rules	engine,	which	will	process	predefined	rules	and	take
action	accordingly.	In	our	example,	we	are	going	to	send	an	email	to	the	patient's
carer	if	a	fall	is	detected.

Chapter	8,	Raspberry	Pi	Image	Streaming,	shows	how	to	take	advantage	of	the
Raspberry	Pi	camera	module	to	build	a	real-time	image	streaming	(MJPEG
technology)	solution	to	monitor	your	surroundings	from	anywhere	in	the	world.
We	will	also	implement	motion-based	video	capture	to	capture	video	when
motion	is	detected.

Chapter	9,	Smart	Surveillance,	walks	you	through	the	process	of	image	recognition
using	Amazon's	Rekognition	platform.	We	will	be	capturing	an	image	when
motion	is	detected	using	the	Raspberry	Pi	3	camera	module.	Then,	we	will	send
this	image	to	Amazon	Rekognition	platform	to	detect	whether	the	image	we
have	taken	is	of	an	intruder	or	of	someone	we	know.

What	you	need	for	this	book
	

To	start	building	IoT	solutions	using	JavaScript,	you	need	to	have	the	following:

Medium	to	advanced	knowledge	of	JavaScript	–	ES5	and	ES6
Medium	to	advanced	knowledge	of	MEAN	stack	application	development
Medium	to	advanced	knowledge	of	Angular	4
Medium	to	advanced	knowledge	of	Electron	Framework
Medium	to	advanced	knowledge	of	Ionic	Framework	3
Novice	to	medium	knowledge	of	digital	electronic	circuits
Novice	to	medium	knowledge	of	Raspberry	Pi
Novice	to	medium	knowledge	on	sensors	and	actuators

	

	

Who	this	book	is	for
It	is	for	readers	who	are	already	well	versed	with	JavaScript	and	want	to	extend
their	JavaScript	knowledge	to	building	hardware	solutions	in	the	field	of	IoT.
IoT	enthusiasts	interested	in	creating	exciting	projects	will	also	find	this	book
useful.	This	book	is	also	useful	for	readers	who	are	good	at	developing
standalone	solutions	using	Raspberry	Pi;	this	book	will	help	them	add	IoT
capabilities	to	their	existing	projects	using	the	world's	most	misunderstood
programming	language.

	

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.	Code	words	in	text,	database	table	names,	folder
names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and
Twitter	handles	are	shown	as	follows:	"Now,	inside	the	broker	folder,	create
another	folder	named	certs	and	cd	into	that	folder."	A	block	of	code	is	set	as
follows:

//	MongoDB	connection	options

				mongo:	{

								uri:	'mongodb://admin:admin123@ds241055.mlab.com:41055/iotfwjs'

				},

				mqtt:	{

								host:	process.env.EMQTT_HOST	||	'127.0.0.1',

								clientId:	'API_Server_Dev',

								port:	8883

				}

};

Any	command-line	input	or	output	is	written	as	follows:

openssl	req	-newkey	rsa:2048	-nodes	-keyout	key.pem	-x509	-days	365	-out	

certificate.pem	

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"Once
logged	in,	click	on	the	Create	New	button	to	create	a	new	DB."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book-what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.	To	send	us
general	feedback,	simply	email	feedback@packtpub.com,	and	mention	the	book's	title
in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have	expertise	in	and
you	are	interested	in	either	writing	or	contributing	to	a	book,	see	our	author
guide	at	www.packtpub.com/authors.

	

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
	

You	can	download	the	example	code	files	for	this	book	from	your	account	at	http:/
/www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	http://www.pack
tpub.com/support	and	register	to	have	the	files	emailed	directly	to	you.	You	can
download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	email	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublis
hing/Practical-Internet-of-Things-with-JavaScript.	We	also	have	other	code	bundles	from	our
rich	catalog	of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check
them	out!

	

	

	

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this
book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	The	color	images	will	help	you	better
understand	the	changes	in	the	output.	You	can	download	this	file	from	https://www.
packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake
in	the	text	or	the	code-we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your
errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata
section	of	that	title.	To	view	the	previously	submitted	errata,	go	to	https://www.packtp
ub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search	field.	The
required	information	will	appear	under	the	Errata	section.

	

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.	Please	contact	us	at
copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.	We	appreciate
your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

	

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

The	World	of	IoT
	

Welcome	to	advanced	IoT	with	JavaScript.	In	this	book,	we	will	look	at	building
IoT	solutions	using	JavaScript	as	our	programming	language.	Before	we	start
with	the	technical	deep	dive,	I	would	like	to	talk	about	the	world	of	IoT,	the
solutions	offered	by	it,	and	what	responsibilities	fall	on	bestows	on	us	developers
who	make	these	products.	In	this	chapter,	we	will	look	at	the	following	topics:

The	world	of	IoT
History	of	IoT
IoT	uses	cases
Technology	overview
Product	engineering

	

	

The	world	of	IoT
Imagine	a	scenario	where	you	have	run	out	of	milk;	you	have	noticed	it	and	put
it	on	your	shopping	list.	But	due	to	unforeseen	reasons,	you	forgot	to	buy	milk;
well,	you	don't	have	milk	for	the	next	day.

Now	imagine	another	scenario:	you	have	a	smart	fridge,	and	it	noticed	that	you
are	running	out	of	milk,	puts	milk	on	your	shopping	list,	and	then	updates	your
GPS	route	to	come	home	via	the	supermarket,	but	you	still	forget	it.

You	have	to	now	face	the	wrath	of	your	refrigerator.

Now	that	things	are	getting	real,	imagine	another	situation	where	your	fridge	has
skipped	the	middleman,	you,	and	now	directly	places	an	order	on	Amazon,	and
Amazon	delivers	it	by	the	time	you	need	your	breakfast	the	next	day.

Scenario	three	is	what	is	we	are	after.	Let	one	machine	talk	to	another	machine
and	take	decisions	accordingly;	things	such	as	the	type	of	milk,	quantity,	and
expiry	date	are	automatically	validated	before	purchase.

We	humans	are	now	using	the	world	of	connected	devices	and	smart	devices	to
make	our	lives	better.

What	is	IoT?
If	you	have	been	breathing	for	at	least	a	decade,	you	must	have	heard	terms	such
as	smart	living,	smart	spaces,	and	intelligent	devices.	All	these	refer	to	a	parent
concept	called	the	Internet	of	Things	(IoT).

In	simple	words,	IoT	is	when	we	have	our	electronic,	electrical,	or	electro-
mechanical	devices	connect	to	the	internet	and	talk	to	each	other.

Smart	devices	primarily	revolve	around	two	things:

Sensors
Actuators

Any	solution	in	the	IoT	space	is	either	sensing	something	or	actuating
something.

With	this	technology,	we	have	found	the	solution	for	Sheldon	Cooper	(from	the
Big	Bang	theory,	CBS	TV	series),	where	he	wants	to	know	who	sits	on	his	spot
as	soon	as	someone	sits	on	it:

Source:	http://bigbangtheory.wikia.com/wiki/Sheldon%27s_Spot

All	we	do	is	place	a	weight	sensor	underneath	the	cushion,	and	if	the	weight
increases,	the	sensor	will	trigger	the	camera	pointing	at	the	sofa	to	take	a	picture
and	send	a	push	notification	to	him	with	the	picture.	How	about	that?

I	know	I	have	pushed	the	examples	a	bit,	but	you	get	the	point,	right?

A	bit	of	history
IoT	has	existed	in	various	forms	for	more	than	35	years.	The	earliest	example	I
found	was	a	Coke	machine	at	Carnegie	Mellon	University	in	1982.	Developed
by	four	graduate	students,	Mike	Kazar,	David	Nichols,	John	Zsarnay,	and	Ivor
Durham,	they	hooked	up	the	Coke	machine	to	the	internet	so	that	they	could
check	from	their	desks	whether	the	machine	was	loaded	with	cold	Coke.	Source
(https://www.cs.cmu.edu/~coke/).

Sir	Timothy	John	Berners-Lee	invented	the	first	webpage	in	1991.

Another	example	is	the	internet	toaster	by	John	Romkey.	He	connected	his
toaster	to	the	internet	using	the	TCP/IP	protocol.	He	created	one	control	to	turn
on	the	toaster	and	one	control	to	turn	it	off.	Of	course,	someone	had	to	put	the
bread	in	the	toaster:

Source:	http://ieeexplore.ieee.org/document/7786805/

Another	interesting	IoT	example	is	the	Trojan	Room	coffee	pot.	This	was	created
by	Quentin	Stafford-Fraser	and	Paul	Jardetzky	in	1993.	A	camera	was	located	in
the	Trojan	Room	in	the	computer	laboratory	of	the	University	of	Cambridge.	It

https://www.cs.cmu.edu/~coke/

monitored	the	coffee	pot	levels,	with	an	image	being	updated	about	three	times	a
minute	and	sent	to	the	building's	server:

Source:	https://en.wikipedia.org/wiki/Trojan_Room_coffee_pot

As	mentioned	previously,	we	can	see	that	even	before	we	could	imagine	the
possibilities,	people	had	already	worked	on	internet-related	solutions.

Over	the	past	2	years,	there	was	one	thing	that	I	kept	on	seeing	and	started
believing	strongly:

"Laziness	is	the	mother	of	Invention."

Not	necessity,	not	boredom,	but	laziness.	In	this	day	and	age,	nobody	wants	to
do	mundane	things	such	as	grocery	shopping,	walking	up	to	a	switch,	and
turning	on	a	light	or	AC.	So,	we	are	searching	for	new	and	innovative	ways	to
solve	these	problems.

IoT	use	cases
Now	that	you	have	a	feel	for	IoT,	you	can	imagine	the	literally	infinite
possibilities	that	can	be	built	using	this	piece	of	technology.

Based	on	my	observations,	IoT	use	cases	can	be	crudely	classified	into	three
parts:

Problem	solving
Convenience
Showing	off

The	problem	solving	part	comes	in	where	IoT	is	used	to	solve	a	real-world
problem,	for	instance,	a	farmer	whose	farm	is	located	half	a	kilometre	from	their
home,	and	they	have	to	walk	all	the	way	to	the	farm	to	turn	on	their	water
pumps/motors	.	Another	scenario	is	where	a	post-operation	patient's	vital
statistics	can	be	sent	to	the	hospital	periodically	after	his/her	discharge,	to
monitor	the	patient	for	any	abnormalities.	This	is	where	IoT	fits	in	pretty	well.

Convenience	is	where	you	can	turn	on	your	air	conditioner	30	mins	before	you
reach	your	home	so	you	can	chill	as	you	enter	or	unlock	your	door	from	your
work	if	someone	you	know	knocks	at	your	door	and	you	are	not	nearby.

showing	off	is	where	you	go	to	another	country	just	to	turn	on	or	off	your	porch
light,	just	to	show	that	IoT	works.

All	of	them	are	forms	of	consumption	of	this	technology.

In	this	book,	we	will	look	at	covering	a	few	solutions	that	fall	into	previous	use
cases.

Technology	overview
Now	that	we	know	what	IoT	is,	we	can	start	defining	the	technology	stack.	In
this	book,	we	will	build	a	generic	framework	using	JavaScript	for	developing
IoT	applications.

We	will	follow	the	approach	of	cloud	computing,	where	we	have	a	bunch	of
devices	that	are	connected	to	the	cloud,	compared	to	a	fog	computing	approach,
where	there	is	a	gateway	that	can	do	almost	all	the	things	a	cloud	can	but	is
locally	available	in	the	on-premises.

Our	smart	devices	will	be	powered	by	Raspberry	Pi	3,	which	has	the	ability	to
talk	to	the	cloud	over	Wi-Fi	and	also,	using	its	GPIO	pins,	talk	to	the	sensors	and
actuators.	Using	this	simple	piece	of	hardware,	we	will	connect	sensors	and
actuators	and	build	some	real-world	solutions	in	this	book.

Another	alternative	to	Raspberry	Pi	3	is	Raspberry	Pi	Zero	W,	which	is	a
miniature	version	of	Raspberry	Pi	3,	in	case	you	are	looking	to	build	a	compact
solution.

We	will	walk	through	each	piece	of	technology	in	Chapter	2,	IoTFW.js	-	I	and	Chapte
r	3,	IoTFW.js	-	II,	and	from	there	on	use	these	technologies	to	build	IoT	solutions
in	various	domains.

Product	engineering
Unlike	software	development,	hardware	development	is	well	hard.	The	time
taken,	the	complexity,	and	the	execution	are	expensive.	Imagine	a	syntax	error	in
a	JavaScript	console;	all	we	need	to	do	is	go	to	the	specific	line	number,	make
the	changes,	and	then	refresh	the	browser.

Now	compare	this	with	hardware	product	development.	From	the	time	a	piece	of
hardware	is	identified	to	when	it	is	put	on	a	supermarket	shelf	as	a	shrink-
wrapped	product	takes	at	least	8	months,	with	at	least	four	iterations	of	the
product	being	made	to	validate	and	test	it	in	the	real	world.

To	give	another	example,	the	positioning	of	components	on	a	product	makes	or
breaks	it.	Imagine	if	there	were	no	ridges	or	grip	on	a	charger	plug;	your	hand
will	always	slip	while	pulling	the	charger	out	of	the	socket.	This	is	value
engineering.

Putting	together	a	Proof	Of	Concept	(POC)	is	very	simple,	as	you	will	see	in
the	rest	of	this	book.	Turning	this	POC	into	a	shrink-wrapped	product	is	a
different	ball	game	altogether.	The	difference	is	the	same	as	between	singing	in
your	bathroom	and	singing	on	a	stage	with	millions	of	people	watching	you.

Remember	that	the	examples	that	we	will	build	in	this	book	are	all	POCs,	and
none	of	them	are	remotely	close	to	being	used	in	the	production	of	a	product.
You	can	always	use	the	solutions	we	will	work	on	in	this	book	to	gain	a	better
understanding	of	implementation	and	then	design	your	own	solution	around
them.

Summary
	

In	this	chapter,	we	looked	at	what	IoT	is	and	a	bit	of	history	about	it.	Next,	we
saw	a	couple	of	use	cases,	a	high-level	technology	overview,	and	a	bit	about
product	engineering.

In	Chapter	2,	IoTFW.js	-	I,	we	will	get	started	with	building	the	IoT	framework	on
which	we	will	build	our	solutions.

	

	

	

IoTFW.js	-	I
	

In	this	chapter	and	Chapter	3,	IoTFW.js	-	II,	we	are	going	to	develop	a	reference
architecture	for	building	various	IoT	solutions.	The	reference	architecture	or	the
IoT	framework	will	be	serving	as	a	base	for	our	future	IoT	solutions	that	we	are
going	to	be	working	on	in	this	book.	We	will	be	calling	this	reference
architecture	or	framework	as	IoTFW.js.	We	will	be	working	on	the	following
topics	to	bring	IoTFW.js	to	life:

Designing	an	IoTFW.js	architecture
Developing	a	Node.js	based	server-side	layer
Developing	an	Angular	4	based	web	app
Developing	an	Ionic	3	based	mobile	app
Developing	an	Angular	4	and	Electron.js	desktop	app
Setting	up	and	installing	the	required	dependencies	on	a	Raspberry	Pi	3
Integrating	all	the	pieces

We	are	going	to	cover	some	of	the	previous	topics	in	this	chapter	and	some	in	Cha
pter	3,	IoTFW.js	-	II.

	

	

	

Designing	a	reference	architecture
As	we	have	seen	in	Chapter	1,	The	World	of	IoT,	all	the	examples	we	are	going	to
work	on	have	a	common	setup.	That	would	be	the	hardware,	firmware	(software
running	on	the	hardware),	broker,	API	engine	and	the	user	apps.

We	will	be	expanding	on	the	relevant	pieces	of	framework	as	we	come	across	it.

As	and	when	we	need	to,	we	will	be	expanding	on	the	hardware,	or	mobile	app,
or	the	API	engine.

With	this	reference	architecture,	we	are	going	to	establish	a	pipeline	between	the
devices	present	in	the	real	world	to	the	cloud	in	the	virtual	world.	In	other	words,
IoT	is	a	last	mile	solution	between	devices	and	the	internet.

Architecture
A	simple	reference	architecture	with	Raspberry	Pi,	Wi-Fi	gateway,	the	cloud
engine,	and	the	user	interface	apps	stitched	together	would	look	as	shown	in	the
following	diagram:	

At	a	very	high	level,	we	have	smart	devices	on	the	left-hand	side	and	the	user
devices	on	the	right-hand	side.	All	of	the	communication	between	them	happens
through	the	cloud.

Following	is	a	description	of	each	key	entity	in	the	previous	architecture.	We	are
going	to	start	from	the	left-hand	side	and	move	towards	the	right.

Smart	device
Smart	devices	are	hardware	entities	that	consist	of	a	sensor,	or	actuator,	or	both,
any	micro	controller	or	micro	processor,	in	our	case,	a	Raspberry	pi	3.

A	sensor	is	an	electronic	component	that	can	sense	or	measure	a	physical
property	and	relay	it	back	to	a	microcontroller	or	a	microprocessor.	The	data
relayed	back	can	be	periodic	or	event-driven;	event-driven	as	in	when	there	is
change	in	data	only.	A	temperature	sensor	such	as	an	LM35	or	DHT11	is	an
example	of	a	sensor.

An	actuator	is	also	an	electro-mechanical	component	that	can	trigger	actions	in
the	real	world.	Generally,	the	actuators	do	not	act	by	themselves.	A
microcontroller,	a	microprocessor,	or	an	electronic	logic	sends	signals	to	the
actuator.	An	example	of	an	actuator	is	a	mechanical	relay.

The	micro-processor	we	were	referring	would	be	a	Raspberry	Pi	3	for	this	book.

The	Raspberry	Pi	3	is	a	single-board	computer,	designed	and	developed	by	the
Raspberry	Pi	foundation.	The	Raspberry	Pi	3	is	the	third-generation	Raspberry
Pi.

In	this	book,	we	are	going	to	use	a	Raspberry	Pi	3	model	B	for	all	the	examples.
Some	of	the	specifications	of	the	Raspberry	Pi	3	model	B	are	as	follows:

Feature Specification

Generation 3

Release	date February	2016

Architecture ARMv8-A	(64/32-bit)

System	on	a
Chip	(SoC) Broadcom	BCM2837

CPU 1.2	GHz	64-bit	quad-core	ARM	Cortex-A53

Memory
(SDRAM) 1	GB	(shared	with	GPU)

USB	2.0
ports 4	(via	the	on-board	5-port	USB	hub)

On-board
network 10/100	Mbit/s	Ethernet,	802.11n	wireless,	Bluetooth	4.1

Low-level
peripherals 17×	GPIO	plus	the	same	specific	functions,	and	HAT	ID	bus

Power
ratings

300	mA	(1.5	W)	average	when	idle,	1.34	A	(6.7	W)	maximum	under
stress	(monitor,	keyboard,	mouse,	and	Wi-Fi	connected)

Power
source 5	V	via	MicroUSB	or	GPIO	header

For	more	information	on	the	specifications,	please	refer	to	the
specifications	of	Raspberry	Pi:	https://en.wikipedia.org/wiki/Raspberry_Pi#Spe
cifications.

https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications

Gateway
The	next	piece	in	our	architecture	is	the	Wi-Fi	router.	A	common	household	Wi-
Fi	router	will	act	as	a	gateway	for	us.	As	we	have	seen	in	Chapter	1,	The	World	of
IoT,	in	the	Clustered	devices	versus	standalone	devices	section,	we	are	following
the	approach	of	standalone	devices,	where	each	device	is	self-sufficient	and	has
a	radio	of	its	own	to	communicate	with	the	outside	world.	All	the	projects	we	are
going	to	build	consist	of	a	Raspberry	Pi	3,	which	has	a	microprocessor	as	well	as
the	radio	to	interface	with	the	sensors,	and	actuators	with	the	internet.

	

MQTTS	broker
The	next	important	piece	in	our	reference	framework	is	the	secure
communication	channel	between	the	device	and	the	cloud.	We	are	going	to	use
MQTT	as	our	communication	channel.	MQTT	is	described	in	the	following
quote	from	http://mqtt.org/faq:	MQTT	stands	for	MQ	Telemetry	Transport.	It	is	a
publish/subscribe,	extremely	simple	and	lightweight	messaging	protocol,
designed	for	constrained	devices	and	low-bandwidth,	high-latency	or	unreliable
networks.	The	design	principles	are	to	minimise	network	bandwidth	and	device
resource	requirements	whilst	also	attempting	to	ensure	reliability	and	some
degree	of	assurance	of	delivery.

We	are	going	to	use	the	MQTT	over	SSL	or	MQTTS.	In	our	architecture,	we	are
going	to	use	Mosca	(http://www.mosca.io/)	as	our	MQTTS	broker.	Mosca	is	a	Node.js
MQTT	broker.	We	will	talk	more	about	Mosca	when	we	start	working	with	it.

http://mqtt.org/faq
http://www.mosca.io/

API	engine
	

An	API	engine	is	a	web	server	application,	written	on	Node.js,	Express	with
persistence	layer	as	MongoDB.	This	engine	is	responsible	for	communicating
with	Mosca	as	a	MQTT	client,	persisting	data	into	MongoDB	as	well	as	to
expose	APIs	using	Express.	These	APIs	are	then	consumed	by	the	apps	to
display	the	data.

We	will	also	be	implementing	a	socket-based	API	for	user	interfaces	to	get
notified	in	real	time	from	the	devices	between	the	apps	and	the	server.

	

	

	

MongoDB
We	are	going	to	use	MongoDB	as	our	data	persistence	layer.	MongoDB	is	a
NoSQL	document	database	that	allows	us	to	save	documents	with	different
schemas	in	one	collection.	This	kind	of	database	is	well	suited	for	dealing	with
sensor	data	from	various	devices,	as	the	data	structure	or	the	parameters	vary
from	solution	to	solution.	To	know	more	about	MongoDB,	refer	to	https://www.mong
odb.com/.

	

https://www.mongodb.com/

Web	app
The	web	app	is	a	simple	web/mobile	web	interface,	which	will	implement	the
APIs	exposed	by	the	API	engine.	These	APIs	will	include	authentication,	access
a	particular	smart	device,	get	the	latest	data	from	the	smart	device,	and	send	data
back	to	the	smart	device	over	APIs.	We	are	going	to	use	Angular	4	(https://angular.io
/)	and	Twitter	Bootstrap	3	(http://getbootstrap.com/)	technologies	to	build	the	web	app.

	

https://angular.io/
http://getbootstrap.com/

Mobile	app
We	are	going	to	follow	a	mobile	hybrid	approach	for	building	our	mobile	app.
The	mobile	app	implements	the	APIs	exposed	by	the	API	engine.	These	APIs
will	include	authentication,	access	a	particular	smart	device,	get	the	latest	data
from	the	smart	device	and	send	data	back	to	the	smart	device	over	APIs.	We	are
going	to	use	Ionic	3	(http://ionicframework.com/),	which	is	powered	by	Angular	4,	to
build	the	mobile	app.

	

http://ionicframework.com/

Desktop	app
We	are	going	to	follow	a	desktop	hybrid	approach	for	building	our	desktop	app.
The	desktop	app	will	implement	the	APIs	exposed	by	the	API	engine.	These
APIs	will	include	authentication,	access	a	particular	smart	device,	get	the	latest
data	from	the	smart	device,	and	send	data	back	to	the	smart	device	over	APIs.
We	are	going	to	use	Electron	(https://electron.atom.io/)	as	the	shell	for	building	the
desktop	app.	We	will	be	using	Angular	4	and	Twitter	Bootstrap	3	(http://getbootstrap.
com/)	technologies	to	build	the	desktop	app.	We	try	and	reuse	as	much	code	as
possible	between	the	web	and	desktop	apps.

	

https://electron.atom.io/
http://getbootstrap.com/

Data	flow
Now	that	we	have	an	understanding	of	the	various	pieces	of	the	architecture,	we
will	now	look	at	the	data	flow	between	the	components.	We	are	going	to	talk
about	the	data	flow	from	the	smart	device	to	the	apps	and	vice	versa.

Smart	device	to	the	apps
A	simple	flow	of	data	from	a	sensor	to	a	user	device	will	be	as	follows:	

As	you	can	see	from	the	previous	figure,	the	data	originates	at	the	sensor;	this
data	is	read	by	the	Raspberry	Pi	3	and	published	to	the	MQTTS	broker	(Mosca)
via	the	Wi-Fi	router.	Once	the	broker	receives	the	data,	it	will	send	the	same	to
the	API	engine,	which	will	persist	the	data	to	the	DB.	Once	the	data	has	been
successfully	saved,	the	API	engine	will	send	the	new	data	to	our	app,	to	show
the	data	in	real	time.

An	important	thing	to	notice	here	is	that	the	API	engine	will	act	as	an	MQTT
client	and	subscribe	to	topics	on	which	the	device	publishes	the	data.	We	will
look	at	these	topics	when	we	go	over	the	implementation.

Generally,	the	data	in	this	flow	would	be	a	typical	sensor	transmitting	data.

App	to	the	smart	device
The	following	diagram	shows	how	the	data	flows	from	an	app	to	the	smart
device:

As	we	can	see	from	the	previous	diagram,	if	the	app	wishes	to	send	an
instruction	to	the	smart	device,	it	sends	that	message	to	the	API	engine.	The	API
engine	then	persists	that	data	into	the	database	and	publishes	the	same	to	the
MQTTS	broker,	to	be	passed	on	to	the	device.	The	device	then	reacts	to	that	data
on	the	actuator.

Do	note	that	in	both	the	flows,	the	MQTTS	broker	manages	the	devices	and	the
API	engine	manages	the	apps.

Building	the	reference	architecture
In	this	section,	we	are	going	to	start	putting	together	all	the	pieces	and	stitch
together	the	required	setup.	We	are	going	to	start	with	Node.js	installation,	then
the	database,	and	after	that,	move	on	to	other	pieces.

Installing	Node.js	on	the	server
Before	we	continue	with	our	development,	we	need	Node.js	on	our	server.	The
server	here	could	be	your	own	desktop,	laptop,	an	AWS	machine,	or	a
digitalocean	instance,	which	may	or	may	not	have	a	public	IP	(https://www.iplocation.
net/public-vs-private-ip-address).

To	install	Node.js,	navigate	to	https://nodejs.org/en/	and	download	the	appropriate
version	for	your	machine.	Once	installation	is	completed,	you	can	test	the
installation	by	running	the	from	a	command	prompt/terminal:

node	-v

#	v6.10.1

and

npm	-v

#	3.10.10		

You	may	have	a	later	version	than	the	one	shown	previously.

Now	that	we	have	the	required	software,	we	will	continue.

https://www.iplocation.net/public-vs-private-ip-address
https://nodejs.org/en/

Installing	nodemon
Now	that	we	have	Node.js	installed,	we	will	install	nodemon.	This	will	take	care
of	auto	restarting	our	node	application.	Run:

npm	install	-g	nodemon

MongoDB
You	can	follow	one	of	the	following	two	ways	listed	to	set	up	the	database.

Local	installation
We	can	set	up	MongoDB	on	our	server	as	a	stand-alone	installation.	This	way,
the	DB	is	running	on	the	server	and	the	data	is	persisted	there.

Depending	on	your	OS,	you	can	follow	the	instructions	provided	at	https://docs.mon
godb.com/manual/installation/	to	set	up	the	database.

Once	you	have	installed	the	DB,	to	test	whether	everything	is	working	fine,	you
can	open	a	new	terminal	and	start	the	Mongo	daemon	by	running	the	following:
mongod

You	should	see	something	similar	to	the	following:	

I	am	running	the	database	on	the	default	port	27017.

Now	we	will	interact	with	the	database	using	the	mongo	shell.	Open	a	new
command	prompt/terminal	and	run	the	following:	mongo

https://docs.mongodb.com/manual/installation/

This	will	take	us	to	the	mongo	shell,	using	which	we	can	interface	with	the
MongoDB.	The	following	are	a	few	handy	commands:

Description Command

Show	all	databases show	dbs

Use	a	specific	database use	local

Create	a	database use	testdb

Check	database	in	use db

Create	a	collection db.createCollection("user");

Show	all	collections	in	a	DB show	collections

(Create)	insert	a	document	in	a
collection

db.user.insert({"name":"arvind"});

(Read)	query	a	collection db.user.find({});

(Update)	modify	a	document	in
collection

db.user.update({"name":	"arvind"},	{"name"	:	"arvind2"},

{"upsert":true});

(Delete)	Remove	a	document db.user.remove({"name":	"arvind2"});

	

Using	the	previous	commands,	you	can	get	acquainted	with	the	Mongo	shell.	In
our	API	engine,	we	are	going	to	use	Mongoose	ODM	(http://mongoosejs.com/)	to
manage	from	the	Node.js/Express--API	engine.

http://mongoosejs.com/

Using	mLab
If	you	don’t	want	to	go	through	the	hassle	of	setting	up	the	DB	locally,	you	can
use	a	MongoDB	as	a	service	such	as	mLab	(https://mlab.com/)	for	this.	In	this	book,
I	am	going	to	follow	this	approach.	Instead	of	having	a	local	database,	I	will	be
using	an	instance	of	mLab.

To	setup	an	mLab	MongoDB	instance,	first	navigate	to	https://mlab.com/login/	and
login.	If	you	do	not	have	an	account,	you	can	create	one	by	navigating	to	https://ml
ab.com/signup/.

mLab	has	a	free	tier,	which	we	are	going	to	leverage	to	build	our	reference
architecture.	The	free	tire	is	perfect	for	development	and	prototyping	projects
like	ours.	Once	we	are	done	with	the	actual	development	and	we	are	ready	for	a
production	grade	application,	we	can	look	at	some	more	reliable	plans.	You	can
get	an	idea	of	pricing	at	https://mlab.com/plans/pricing/.`

Once	you	are	logged	in,	click	on	the	Create	New	button	to	create	a	new	DB.
Now,	select	amazon	web	services	under	Cloud	Provider	and	then	select	the	Plan
Type	as	FREE,	as	shown	in	the	following	screenshot:

https://mlab.com/
https://mlab.com/login/
https://mlab.com/signup/
https://mlab.com/plans/pricing/

And	finally,	name	the	database	as	iotfwjs	and	click	on	CREATE.	And	in	a	few
seconds,	a	new	MongoDB	instance	should	be	created	for	us.

Once	the	database	has	been	created,	open	the	iotfwjs	DB.	We	should	see	a	couple
of	warnings:	one	stating	that	this	sandbox	database	should	not	be	used	for
production,	which	we	are	aware	of,	and	the	second	one	that	there	is	no	database
user	present.

So,	let's	go	ahead	and	create	one.	Click	on	the	Users	tab	and	click	on	the	Add
database	user	button	and	fill	in	the	form	with	the	username	as	admin	and	password
as	admin123	as	follows:

You	can	choose	your	own	username	and	password	and	update	it	accordingly	in
the	remaining	part	of	the	book.

Now	to	test	the	connection	to	our	database,	use	the	section	at	the	top	of	the	page
to	connect	using	the	mongo	shell.	In	my	case,	it	is	as	follows:

Open	a	new	command	prompt	and	run	the	following	(after	updating	the	mLab
URL	and	credentials	accordingly):

mongo	ds241055.mlab.com:41055/iotfwjs	-u	admin	-p	admin123		

We	should	be	able	to	log	in	to	the	shell	and	we	can	run	queries	from	here	as
follows:

This	completes	our	setup	of	MongoDB.

MQTTS	broker	-	Mosca
In	this	section,	we	are	going	to	put	together	the	MQTTS	broker.	We	are	going	to
use	Mosca	(http://www.mosca.io/)	as	a	standalone	service	(https://github.com/mcollina/mosca/
wiki/Mosca-as-a-standalone-service).

Create	a	new	folder	named	chapter2.	Inside	the	chapter2	folder,	create	a	new	folder
named	broker	and	open	a	new	command	prompt/terminal	inside	the	folder.	Then
run	the	following:

npm	install	mosca	pino	-g		

This	will	install	Mosca	and	Pino	globally.	Pino	(https://github.com/pinojs/pino)	is	a
Node.js	logger,	which	logs	all	the	messages	to	the	console	thrown	by	Mosca.

Now,	the	default	version	of	Mosca	implements	MQTT.	But	we	want	to	secure
our	communication	between	the	smart	device	and	cloud	to	avoid	man-in-the-
middle	attacks.

So,	for	us	to	set	up	MQTTS,	we	would	need	an	SSL	key	and	SSL	certificate.	To
create	the	SSL	key	and	certificate	locally,	we	will	use	openssl.

To	check	whether	openssl	is	present	on	your	machine,	run	openssl	version	-a	and
you	should	see	the	information	about	your	local	installation	of	openssl.

If	you	don't	have	openssl,	you	can	download	the	same	from	https://www.openssl.org/sour
ce/.

Now,	inside	the	broker	folder,	create	another	folder	named	certs	and	cd	into	that
folder.	Run	the	following	to	generate	the	required	key	and	certificate	file:

openssl	req	-newkey	rsa:2048	-nodes	-keyout	key.pem	-x509	-days	365	-out	

certificate.pem		

This	will	prompt	a	few	questions	and	you	can	fill	in	the	same	along	the
following	lines:

http://www.mosca.io/
https://github.com/mcollina/mosca/wiki/Mosca-as-a-standalone-service
https://github.com/pinojs/pino
https://www.openssl.org/source/

This	will	create	two	new	files	inside	the	certs	folder	named	key.pem	and
certificate.pem.	We	will	be	using	these	in	our	Mosca	setup.

Next,	at	the	root	of	the	broker	folder,	create	a	new	file	named	index.js	and	update
it	as	follows:

let	SSL_KEY	=	__dirname	+	'/certs/key.pem';

let	SSL_CERT	=	__dirname	+	'/certs/certificate.pem';

let	MONGOURL	=	'mongodb://admin:admin123@ds241055.mlab.com:41055/iotfwjs';

module.exports	=	{

				id:	'broker',

				stats:	false,

				port:	8443,

				logger:	{

								name:	'iotfwjs',

								level:	'debug'

				},

				secure:	{

								keyPath:	SSL_KEY,

								certPath:	SSL_CERT,

				},

				backend:	{

								type:	'mongodb',

								url:	MONGOURL

				},

				persistence:	{

								factory:	'mongo',

								url:	MONGOURL

				}

};

The	previous	code	is	the	configuration	with	which	we	are	going	to	launch
Mosca.	The	config	here	loads	the	SSL	certificates	and	keys	and	sets	Mongo	as
our	persistence	layer.

Save	index.js	and	head	back	to	the	terminal/prompt	and	cd	into	the	location	where
we	have	the	index.js	file.	Next,	run	the	following:

mosca	-c	index.js	-v	|	pino		

And	we	should	see	the	following:

As	you	can	see	from	the	previous,	we	are	connected	to	the	iotfwjs	database	and
the	broker	is	going	to	listen	to	port	8883	for	connections.

This	wraps	up	our	setup	of	the	MQTTS	broker	using	Mosca.

In	the	next	step,	we	will	implement	the	API	engine	and	at	that	point,	we	are
going	to	test	the	integration	of	the	MQTTS	broker	with	the	API	engine.

API	engine	-	Node.js	and	Express
In	this	section,	we	are	going	to	build	the	API	engine.	This	engine	interfaces	with
our	apps	and	cascades	the	information	from	and	to	the	smart	device,	connecting
as	an	MQTT	client	with	the	broker.

To	get	started,	we	are	going	to	clone	a	repository	that	we	have	created	using	a
Yeoman	(http://yeoman.io/)	generator	named	generator-node-express-mongo	(https://www.npm
js.com/package/generator-node-express-mongo).	We	have	taken	the	code	scaffolded	by
generator-node-express-mongo	and	modified	it	a	bit	for	our	needs.

Somewhere	on	your	machine,	download	the	complete	code	base	of	this	book
using	the	following	command:

git	clone	https://github.com/PacktPublishing/Practical-Internet-of-Things-with-

JavaScript.git

Or,	you	can	download	the	zip	file	from	https://github.com/PacktPublishing/Practical-Internet-o
f-Things-with-JavaScript	as	well.

Once	the	repository	has	been	downloaded,	cd	into	the	base	folder	and	make	a
copy	of	api-engine-base	folder	into	chapter2	folder.

This	will	download	the	api-engine	boilerplate	code.	Once	the	repo	is	cloned,	cd	into
the	folder	and	run	the	following:

npm	install		

This	will	install	the	needed	dependencies.

If	we	open	the	cloned	folder,	we	should	see	the	following:

.

├──	package.json

└──	server

				├──	api

				│	└──	user

				│	├──	index.js

				│	├──	user.controller.js

				│	├──	user.model.js

				├──	app.js

				├──	auth

http://yeoman.io/
https://www.npmjs.com/package/generator-node-express-mongo
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

				│	├──	auth.service.js

				│	├──	index.js

				│	└──	local

				│	├──	index.js

				│	└──	passport.js

				├──	config

				│	├──	environment

				│	│	├──	development.js

				│	│	├──	index.js

				│	│	├──	production.js

				│	│	└──	test.js

				│	├──	express.js

				│	└──	socketio.js

				├──	mqtt

				│	└──	index.js

				└──	routes.js

This	folder	has	all	the	bare	bones	needed	for	us	to	get	started	with	our	API
engine.

As	you	can	see	from	the	previous	structure,	we	have	a	package.json	at	the	root	of
the	folder.	This	file	consists	of	all	the	dependencies	needed.	We	have	also
defined	our	startup	script	here.

All	our	application	files	are	present	inside	the	server	folder.	Everything	starts	at
api-engine/server/app.js.	We	initialize	mongoose,	express,	socketio,	config,	routes,	and
mqtt.	And	finally,	we	start	our	server	and	listen	to	port	9000	on	localhost	with	the
help	of	server.listen().

api-engine/server/config/express.js	has	the	required	setup	to	initialize	the	Express
middleware.	api-engine/server/config/socketio.js	consists	of	the	logic	needed	to
manage	web	sockets.

We	will	be	using	api-engine/server/config/environment	to	configure	the	environment
variables.	For	most	of	the	book,	we	are	going	to	work	with	the	development
environment.	If	we	open	api-engine/server/config/environment/development.js,	we
should	see	the	configuration	for	mongo	and	mqtt.	Update	them	as	follows:

//	MongoDB	connection	options

				mongo:	{

								uri:	'mongodb://admin:admin123@ds241055.mlab.com:41055/iotfwjs'

				},

				mqtt:	{

								host:	process.env.EMQTT_HOST	||	'127.0.0.1',

								clientId:	'API_Server_Dev',

								port:	8883

				}

};

Update	the	mongo	URL	as	per	your	setup	(mLab	or	local).	Since
we	are	going	to	connect	to	the	Mosca	broker	running	on	our	local
machine,	we	are	using	127.0.0.1	as	the	host.

Authorization
Next,	we	are	going	to	look	at	out-of-the-box	auth.	We	will	be	using	JSON	Web
Tokens	(JWTs)	to	authenticate	the	clients	that	are	going	to	communicate	with
our	API	engine.	We	will	be	using	Passport	(http://passportjs.org/)	for	authentication.

Open	api-engine/server/auth/index.js	and	we	should	see	the	Passport	setup	using
require('./local/passport').setup(User,	config);	and	we	are	creating	a	new	route	for
authentication.

The	routes	are	configured	in	api-engine/server/routes.js.	If	we	open	api-
engine/server/routes.js,	we	should	see	app.use('/auth',	require('./auth'));.	This	will
create	a	new	endpoint	named	/auth	and	inside	the	api-engine/server/auth/index.js,
we	have	added	router.use('/local',	require('./local'));	now,	if	we	wanted	to	access
the	POST	method	inside	api-engine/server/auth/local/index.js,	we	would	make	a
HTTP	POST	request	to	/auth/local.

In	the	api-engine,	we	are	using	the	passport	local	authentication	strategy	(https://githu
b.com/jaredhanson/passport-local)	to	authenticate	the	user	using	MongoDB	for
persistence.

To	create	a	new	user,	we	are	going	to	use	the	user	API.	If	we	open	api-
engine/server/routes.js,	we	should	see	a	route	defined	to	access	the	users	collection
app.use('/api/v1/users',	require('./api/user'));.	We	have	prefixed	with	/api/v1/users
so	we	can	version	our	API	layer	later	on.

If	we	open	api-engine/server/api/user/index.js,	we	should	the	see	the	following	six
routes	defined:

router.get('/',	auth.hasRole('admin'),	controller.index);

router.delete('/:id',	auth.hasRole('admin'),	controller.destroy);

router.get('/me',	auth.isAuthenticated(),	controller.me);

router.put('/:id/password',	auth.isAuthenticated(),	controller.changePassword);

router.get('/:id',	auth.isAuthenticated(),	controller.show);

router.post('/',	controller.create);

http://passportjs.org/
https://github.com/jaredhanson/passport-local

The	first	route	is	for	fetching	all	the	users	in	the	database	and,	using	the
auth.hasRole	middleware	defined	in	api-engine/server/auth/auth.service.js,	we	will	be
checking	whether	the	user	is	authenticated	and	has	the	admin	role.

The	next	route	is	to	delete	a	user	with	an	ID;	after	that,	we	have	a	route	to	get	a
user's	information	based	on	the	token.	We	have	a	PUT	route	to	update	the	user's
information;	one	GET	route	to	get	a	user's	information	based	on	the	user	ID;	and
finally,	a	POST	route	to	create	a	user.	Do	note	that	the	POST	route	doesn't	have	any
authentication	or	authorization	middleware,	as	the	user	accessing	this	endpoint
will	be	using	our	app	for	the	first	time	(or	is	trying	to	register	with	us).

Using	the	POST	route,	we	will	be	creating	a	new	user;	this	is	how	we	register	a
user:	api-engine/server/api/user/user.model.js	consists	of	the	Mongoose	schema	for
the	user	and	api-engine/server/api/user/user.controller.js	consists	of	the	logic	for	the
routes	we	have	defined.

MQTT	client
Finally,	we	are	going	to	look	at	the	MQTT	client	integration	with	our	api-engine.
If	we	open	api-engine/server/mqtt/index.js,	we	should	see	the	default	setup	of	the
MQTTS	client.

We	are	using	the	following	configuration	to	connect	to	the	Mosca	broker	over
MQTTS:

var	client	=	mqtt.connect({

				port:	config.mqtt.port,

				protocol:	'mqtts',

				host:	config.mqtt.host,

				clientId:	config.mqtt.clientId,

				reconnectPeriod:	1000,

				username:	config.mqtt.clientId,

				password:	config.mqtt.clientId,

				keepalive:	300,

				rejectUnauthorized:	false

});

And	we	are	subscribing	to	two	events:	one	when	the	connection	is	established
and	the	other	when	we	receive	a	message.	On	the	connect	event,	we	subscribe	to	a
topic	named	greet	and	we	are	publishing	a	simple	message	to	that	topic	in	the
next	line.	And	on	the	message	event,	we	are	listening	for	any	messages	from	the
broker	and	we	are	printing	the	topic	and	the	message.

With	this,	we	are	aware	of	most	of	the	pieces	of	code	needed	to	work	with	api-
engine.	To	start	the	api-engine,	cd	into	the	chapter2/api-engine	folder	and	run	the
following:

npm	start		

This	will	start	a	new	Express	server	application	on	port	9000.

API	engine	testing
To	quickly	check	out	the	API	that	we	have	created,	we	will	be	using	a	Chrome
extension	named	Postman.	You	can	set	up	the	Chrome	extension	from	here:	https:/
/chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en.

Once	Postman	is	set	up,	we	will	be	testing	two	API	calls	to	validate	the	register
and	login	methods.

Open	Postman	and	enter	the	requested	URL	as	http://localhost:9000/api/v1/users.
Next,	select	the	method	type	as	POST.	Once	that	is	done,	we	will	set	the	headers.
Add	a	new	header	with	key	as	content-type	and	value	as	application/json.

Now	we	will	construct	the	request	body/payload.	Click	on	the	Body	tab,	next	to
Headers,	and	select	Raw	request.	And	update	it	with	the	following:

{	

			"email"	:	"arvind@myapp.com",	

			"password"	:	"123456",	

			"name"	:	"Arvind"	

}	

You	can	update	the	data	as	applicable.	And	then	click	on	Send.	This	makes	a
request	to	the	API	engine,	which	will	in	turn	save	the	data	to	the	database	and
respond	with	the	new	user	object,	along	with	the	auth	token.

Our	output	should	be	as	follows:

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en

Now,	if	we	hit	the	Send	button	again	with	the	same	data,	we	should	see	a
validation	error	something	the	same	as	the	following:

Now,	to	validate	the	newly	registered	user,	we	will	fire	a	request	to
http://localhost:9000/auth/local	with	only	the	email	and	password.	And	we	should
see	something	the	same	as	the	following:

This	validates	the	API	we	have	created.

With	this,	we	complete	the	walk-through	of	the	API	engine.	In	the	next	section,
we	are	going	to	integrate	the	api-engine	with	the	broker	and	test	the	connectivity
between	them.

Communication	between	broker	and
API	engine
Now	that	we	are	done	with	the	two	pieces	of	software	on	the	cloud,	we	will	be
interfacing	them.	In	api-engine/server/config/environment/development.js,	we	have
defined	the	broker	IP	and	port	that	the	api-engine	needs	to	connect	to.

Later	on,	if	we	deploy	these	two	pieces	on	different	machines,	this	is	the	place
where	we	update	the	IP	and	port	so	the	api-engine	refers	to	the	broker.

Now,	to	test	the	communication,	cd	into	chapter2/broker	folder	and	run	the
following:	mosca	-c	index.js	-v	|	pino

And	we	should	see	the	following:

Next,	open	a	new	command	prompt/terminal,	cd	into	chapter2/api-engine	folder,
and	run	the	following:	npm	start

And	we	should	see	the	following:

The	API	engine	connected	to	the	mLab	MongoDB	instance,	post	that	it	started	a
new	Express	server	and	finally,	it	connected	to	the	Mosca	broker	and	the	posted
a	message	to	the	greet	topic.

Now,	if	we	look	at	the	Mosca	terminal,	we	should	see	the	following:

The	broker	logged	the	activity	that	has	happened	so	far.	A	client	connected	with
username	API_Server_Dev	and	subscribed	to	a	topic	named	greet	with	Quality	of
Service	(QoS)	as	0.

With	this,	our	integration	between	the	broker	and	API	engine	is	complete.

Next,	we	are	going	to	move	towards	the	Raspberry	Pi	3	and	start	working	on	an
MQTTS	client.

If	you	are	new	to	MQTT	protocol,	you	can	refer	to	MQTT
Essentials:	Part	1	-	Introducing	MQTT	(http://www.hivemq.com/blog/mqtt-e

http://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt

ssentials-part-1-introducing-mqtt)	and	the	subsequent	parts.	To	know	more
about	QoS,	refer	to	MQTT	Essentials	Part	6:	Quality	of	Service	0,
1	&	2	(https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-lev
els).

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels

Raspberry	Pi	software
	

In	this	section,	we	are	going	to	build	the	required	software	to	make	the
Raspberry	Pi	a	client	to	our	Mosca	broker	via	the	Wi-Fi	router.

We	have	already	seen	in	the	data	flow	diagram	how	the	Raspberry	Pi	stands
between	the	sensor	and	the	Mosca	broker.	Now	we	are	going	to	set	up	the
required	code	and	software.

	

	

	

Setting	up	Raspberry	Pi
In	this	section,	we	will	look	at	installing	the	required	software	on	the	Raspberry
Pi.

A	Raspberry	Pi,	installed	with	Raspbian	OS	(https://www.raspberrypi.org/downloads/raspbia
n/),	is	a	prerequisite.	The	Wi-Fi	should	have	already	been	set	up	and	connected
before	we	continue.

If	you	are	new	to	setting	up	a	Raspberry	Pi	3,	refer	to	the
Beginner's	Guide	to	Installing	Node.js	on	a	Raspberry	Pi	(http://thisd
avej.com/beginners-guide-to-installing-node-js-on-a-raspberry-pi/).	We	will,
however,	cover	the	Node.js	part,	you	can	refer	until	you	bring	up
the	Pi	and	configure	the	Wi-Fi.

Once	the	OS	is	installed,	boot	up	the	Raspberry	Pi	and	log	in	to	it.	At	this	point
in	time,	it	will	be	connected	to	the	internet	over	your	own	access	point	and	you
should	be	able	to	browse	the	internet	without	issues.

I	am	accessing	my	Raspberry	Pi	3	from	my	Apple	MacBook	Pro
using	VNC	Viewer.	This	way,	I	am	not	always	connected	to	the
Raspberry	Pi	3.

We	will	start	off	by	downloading	Node.js.	Open	a	new	terminal	and	run	the
following	commands:

$	sudo	apt	update

$	sudo	apt	full-upgrade	

This	will	upgrade	all	the	packages	which	need	upgrades.	Next,	we	will	install	the
latest	version	of	Node.js.	At	the	time	of	writing,	Node	7.x	is	the	latest:

$	curl	-sL	https://deb.nodesource.com/setup_7.x	|	sudo	-E	bash	-

$	sudo	apt	install	nodejs		

This	will	take	a	moment	to	install	and	once	your	installation	is	done,	you	should
be	able	to	run	the	following	commands	to	see	the	version	of	Node.js	and	npm:

node	-v

https://www.raspberrypi.org/downloads/raspbian/
http://thisdavej.com/beginners-guide-to-installing-node-js-on-a-raspberry-pi/

npm	-v		

With	this,	we	are	done	with	setting	up	the	required	software	for	running	our
MQTTS	client	on	the	Raspberry	Pi	3.

Raspberry	Pi	MQTTS	client
Now	we	are	going	to	work	with	the	MQTTS	client	of	Node.js.

On	the	desktop	of	the	Raspberry	Pi	3,	create	a	folder	named	pi-client.	Open	a
terminal	and	cd	into	the	pi-client	folder.

The	first	thing	we	are	going	to	do	is	create	a	package.json	file.	From	inside	the	pi-
client	folder,	run	the	following:

$	npm	init

Then	answer	the	question	as	applicable.	Once	you	are	done	with	that,	next	we
will	install	MQTT.js	(https://www.npmjs.com/package/mqtt)	on	the	Raspberry	Pi	3.	Run
the	following:

$	npm	install	mqtt	-save		

Once	this	installation	is	also	done,	the	final	package.json	will	look	the	same	as	this:

{

				"name":	"pi-client",

				"version":	"0.1.0",

				"description":	"",

				"main":	"index.js",

				"scripts":	{

								"start":	"node	index.js"

				},

				"keywords":	["pi",	"mqtts"],

				"author":	"Arvind	Ravulavaru",

				"private":	true,

				"license":	"ISC",

				"dependencies":	{

								"mqtt":	"^2.7.1"

				}

}

Do	note	that	we	have	added	a	start	script	to	launch	our	index.js	file.	We	will	be
creating	the	index.js	file	in	a	moment.

Next,	at	the	root	of	the	pi-client	folder,	create	a	file	named	config.js.	Update
config.js	as	follows:

module.exports	=	{	

				mqtt:	{	

https://www.npmjs.com/package/mqtt

								host:	'10.2.192.141',	

								clientId:	'rPI_3',	

								port:	8883	

				}	

};	

Do	notice	the	host	property.	This	is	set	to	the	IP	address	of	my
MacBook	and	my	MacBook	is	where	I	am	going	to	run	the	Mosca
broker	API	engine.	Make	sure	all	three	(Mosca	broker,	API	engine,
and	Raspberry	Pi	3)	of	them	are	on	the	same	Wi-Fi	network.

Next,	we	will	write	the	required	MQTT	client	code.	Create	a	file	named	index.js
at	the	root	of	the	pi-client	folder	and	update	it	as	follows:

var	config	=	require('./config.js');	

var	mqtt	=	require('mqtt')	

var	client	=	mqtt.connect({	

				port:	config.mqtt.port,	

				protocol:	'mqtts',	

				host:	config.mqtt.host,	

				clientId:	config.mqtt.clientId,	

				reconnectPeriod:	1000,	

				username:	config.mqtt.clientId,	

				password:	config.mqtt.clientId,	

				keepalive:	300,	

				rejectUnauthorized:	false	

});	

		

client.on('connect',	function()	{	

				client.subscribe('greet')	

				client.publish('greet',	'Hello,	IoTjs!')	

});	

	

client.on('message',	function(topic,	message)	{	

				//	message	is	Buffer	

				console.log('Topic	>>	',	topic);	

				console.log('Message	>>	',	message.toString())	

});	

This	is	the	same	test	code	we	have	written	on	the	API	engine	to	test	the
connectivity.	Save	all	the	files	and	move	towards	your	Mosca	broker.

Communication	between	the	broker
and	the	Raspberry	Pi
In	this	section,	we	are	going	to	communicate	between	the	broker	and	the
Raspberry	Pi	over	MQTTS.

Navigate	to	the	broker	folder	and	run	the	following:	mosca	-c	index.js	-v	|	pino

Next,	head	over	to	the	Raspberry	Pi,	cd	into	the	pi-client	folder,	and	run	the
following:	$	npm	start

And	we	should	see	the	following	message	on	the	Raspberry	Pi:

>

And	when	we	look	at	the	console	of	Mosca,	we	should	see	the	following:

This	wraps	up	our	connectivity	test	between	the	Raspberry	Pi	3	and	the	Mosca
broker.

Troubleshooting
If	you	are	not	able	to	see	the	previous	messages,	check	the	following:

Check	whether	the	Raspberry	Pi	and	the	machine	running	the	broker	are	on
the	same	Wi-Fi	network
Cross-check	the	IP	address	of	the	machine	running	the	broker

Communication	between	the
Raspberry	Pi,	the	broker	and	the	API
engine
Now	we	are	going	to	integrate	the	Raspberry	Pi,	the	broker,	and	the	API	engine
and	pass	the	data	from	the	Pi	to	the	API	engine.

The	way	we	are	going	to	achieve	this	is	that	we	are	going	create	a	topic	named
api-engine	and	another	topic	named	rpi.

To	send	data	from	the	Raspberry	Pi	to	the	API	engine,	we	will	be	using	the	api-
engine	topic	and	when	we	need	to	send	data	from	the	API	engine	to	the	Raspberry
Pi,	we	will	use	the	rpi	topic.

In	this	example,	we	are	going	to	get	the	MAC	address	of	the	Raspberry	Pi	and
send	that	to	the	API	engine.	The	API	engine	will	acknowledge	the	same	by
sending	the	same	MAC	address	back	to	the	Raspberry	Pi.	The	communication
between	the	API	engine	and	Raspberry	Pi	will	happen	over	the	two	topics
mentioned	previously.

So	first,	we	will	update	the	api-engine/server/mqtt/index.js	as	follows:

var	mqtt	=	require('mqtt');	

var	config	=	require('../config/environment');	

	

var	client	=	mqtt.connect({	

				port:	config.mqtt.port,	

				protocol:	'mqtts',	

				host:	config.mqtt.host,	

				clientId:	config.mqtt.clientId,	

				reconnectPeriod:	1000,	

				username:	config.mqtt.clientId,	

				password:	config.mqtt.clientId,	

				keepalive:	300,	

				rejectUnauthorized:	false	

});	

	

client.on('connect',	function()	{	

				client.subscribe('api-engine');	

});	

	

client.on('message',	function(topic,	message)	{	

				//	message	is	Buffer	

				//	console.log('Topic	>>	',	topic);	

				//	console.log('Message	>>	',	message.toString());	

				if	(topic	===	'api-engine')	{	

								var	macAddress	=	message.toString();	

								console.log('Mac	Address	>>	',	macAddress);	

								client.publish('rpi',	'Got	Mac	Address:	'	+	macAddress);	

				}	else	{	

								console.log('Unknown	topic',	topic);	

				}	

});	

Here,	once	the	MQTT	connection	is	established,	we	are	subscribing	to	the	api-
engine	topic.	When	we	receive	any	data	from	the	api-engine	topic,	we	will	send
back	the	same	to	the	rpi	topic.

From	inside	the	broker	folder,	run	the	following:

mosca	-c	index.js	-v	|	pino		

Next,	from	inside	the	api-engine	folder,	run	the	following:

npm	start		

Next,	head	back	to	the	Raspberry	Pi.	We	are	going	to	install	the	getmac	module	(htt
ps://www.npmjs.com/package/getmac)	that	will	help	us	to	get	the	MAC	address	of	a
device.

From	inside	the	pi-client	folder,	run	the	following:

$	npm	install	getmac	--save		

Once	this	is	done,	update	/home/pi/Desktop/pi-client/index.js	as	follows:

var	config	=	require('./config.js');	

var	mqtt	=	require('mqtt');	

var	GetMac	=	require('getmac');	

	

var	client	=	mqtt.connect({	

				port:	config.mqtt.port,	

				protocol:	'mqtts',	

				host:	config.mqtt.host,	

				clientId:	config.mqtt.clientId,	

				reconnectPeriod:	1000,	

				username:	config.mqtt.clientId,	

				password:	config.mqtt.clientId,	

				keepalive:	300,	

				rejectUnauthorized:	false	

});	

	

client.on('connect',	function()	{	

				client.subscribe('rpi');	

https://www.npmjs.com/package/getmac

				GetMac.getMac(function(err,	macAddress)	{	

								if	(err)	throw	err;	

								client.publish('api-engine',	macAddress);	

				});	

});	

	

client.on('message',	function(topic,	message)	{	

				//	message	is	Buffer	

				//	console.log('Topic	>>	',	topic);	

				//	console.log('Message	>>	',	message.toString());	

				if	(topic	===	'rpi')	{	

								console.log('API	Engine	Response	>>	',	message.toString());	

				}	else	{	

								console.log('Unknown	topic',	topic);	

				}	

});	

In	the	previous	code,	we	have	waited	for	the	connection	to	establish	between	the
Raspberry	Pi	and	the	broker.	Once	that	is	done,	we	have	subscribed	to	the	rpi
topic.	Next,	we	fetched	the	MAC	address	of	the	Raspberry	Pi	using
GetMac.getMac()	and	published	the	same	to	the	api-engine	topic.

In	the	message	event	callback,	we	are	listening	for	the	rpi	topic.	If	we	receive	any
data	from	the	server,	it	will	be	printed	here.

Save	the	file	and	from	inside	the	pi-client	folder,	run	the	following:

$	npm	start		

Now,	if	we	look	at	the	broker	terminal/prompt,	we	should	see	the	following:

Both	the	devices	are	connected	and	subscribed	to	the	topic	of	interest.

Next,	if	we	look	at	the	api-engine	terminal/prompt,	we	should	see	the	following:

And	finally,	the	Raspberry	Pi	terminal	should	look	the	same	as	this:

With	this,	we	conclude	the	integration	of	the	Raspberry	Pi	with	the	broker	and
API	engine.

In	the	next	section,	we	will	implement	a	web	application	that	can	send	and
receive	data	from	the	Raspberry	Pi	through	the	broker	and	API	engine.

Web	app
In	this	section,	we	are	going	to	build	a	web	app	that	interfaces	with	our	API
engine.	The	web	app	is	the	primary	interface	with	which	we	will	be	interacting
with	our	smart	devices.

We	are	going	to	build	the	web	app	using	Angular	(4)	and	Twitter	Bootstrap	(3).
There	is	no	rule	that	the	interface	should	be	built	with	Angular	and	Bootstrap;	it
can	be	built	using	jQuery	or	React.js	as	well.	All	we	will	be	doing	is	interfacing
with	the	APIs	of	the	API	engine	using	JavaScript	from	the	browser.	The	only
reason	we	are	using	Angular	is	to	keep	the	framework	consistent	across	all	our
apps.	Since	we	will	be	using	the	Ionic	framework,	which	also	follows	the
Angular	approach,	things	will	be	easy	for	us	to	manage	as	well	as	reuse.

To	get	started	with	the	web	application,	we	are	going	to	install	Angular	CLI	(https
://github.com/angular/angular-cli).

On	the	machine	that	was	running	our	broker	and	API	engine,	we	will	be	setting
up	the	web	app	as	well.

https://github.com/angular/angular-cli

Setting	up	the	app
From	inside	the	chapter2	folder,	open	a	new	command	prompt/terminal	and	run
the	following:

npm	install	-g	@angular/cli		

This	will	install	the	Angular	CLI	generator.	If	you	run	ng	-v	after	the	installation
is	done,	you	should	see	a	version	number	greater	than	or	equal	to	1.0.2.

If	you	are	facing	any	issues	while	setting	up	and	running	the
IoTFW.js,	feel	free	to	drop	your	comment	here:
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1

For	the	web	app,	we	have	already	created	a	base	project	using	Angular	CLI	and
have	added	the	essential	pieces	to	integrate	with	the	API	engine.	We	will	clone
the	project	as	is	and	then	start	working	on	top	of	it.

To	get	started,	we	need	the	web	app	base.	If	you	have	not	already	cloned	the
book's	code	repository,	you	can	do	so	using	the	following	command-line
(anywhere	on	your	machine):	git	clone
git@github.com:PacktPublishing/Practical-Internet-of-Things-with-
JavaScript.git

Or	you	can	download	the	zip	file	from	https://github.com/PacktPublishing/Practical-Internet-of
-Things-with-JavaScript	as	well.

Once	the	repository	has	been	downloaded,	cd	into	the	base	folder	and	make	a
copy	of	web-app-base	folder	into	chapter2	folder.

Once	the	base	has	been	copied,	cd	into	the	web-app	folder,	and	run	the	following
command:

npm	install		

This	will	install	the	needed	dependencies.

https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

Project	structure
If	we	open	the	cloned	folder,	we	should	see	the	following:

.

├──	README.md

├──	e2e

│	├──	app.e2e-spec.ts

│	├──	app.po.ts

│	└──	tsconfig.e2e.json

├──	karma.conf.js

├──	package.json

├──	protractor.conf.js

├──	src

│	├──	app

│	│	├──	add-device

│	│	│	├──	add-device.component.css

│	│	│	├──	add-device.component.html

│	│	│	├──	add-device.component.spec.ts

│	│	│	└──	add-device.component.ts

│	│	├──	app.component.css

│	│	├──	app.component.html

│	│	├──	app.component.spec.ts

│	│	├──	app.component.ts

│	│	├──	app.global.ts

│	│	├──	app.module.ts

│	│	├──	device

│	│	│	├──	device.component.css

│	│	│	├──	device.component.html

│	│	│	├──	device.component.spec.ts

│	│	│	└──	device.component.ts

│	│	├──	device-template

│	│	│	├──	device-template.component.css

│	│	│	├──	device-template.component.html

│	│	│	├──	device-template.component.spec.ts

│	│	│	└──	device-template.component.ts

│	│	├──	guard

│	│	│	├──	auth.guard.spec.ts

│	│	│	└──	auth.guard.ts

│	│	├──	home

│	│	│	├──	home.component.css

│	│	│	├──	home.component.html

│	│	│	├──	home.component.spec.ts

│	│	│	└──	home.component.ts

│	│	├──	login

│	│	│	├──	login.component.css

│	│	│	├──	login.component.html

│	│	│	├──	login.component.spec.ts

│	│	│	└──	login.component.ts

│	│	├──	nav-bar

│	│	│	├──	nav-bar.component.css

│	│	│	├──	nav-bar.component.html

│	│	│	├──	nav-bar.component.spec.ts

│	│	│	└──	nav-bar.component.ts

│	│	├──	register

│	│	│	├──	register.component.css

│	│	│	├──	register.component.html

│	│	│	├──	register.component.spec.ts

│	│	│	└──	register.component.ts

│	│	└──	services

│	│	├──	auth.service.spec.ts

│	│	├──	auth.service.ts

│	│	├──	data.service.spec.ts

│	│	├──	data.service.ts

│	│	├──	devices.service.spec.ts

│	│	├──	devices.service.ts

│	│	├──	http-interceptor.service.spec.ts

│	│	├──	http-interceptor.service.ts

│	│	├──	loader.service.spec.ts

│	│	├──	loader.service.ts

│	│	├──	socket.service.spec.ts

│	│	└──	socket.service.ts

│	├──	assets

│	├──	environments

│	│	├──	environment.prod.ts

│	│	└──	environment.ts

│	├──	favicon.ico

│	├──	index.html

│	├──	main.ts

│	├──	polyfills.ts

│	├──	styles.css

│	├──	test.ts

│	├──	tsconfig.app.json

│	├──	tsconfig.spec.json

│	└──	typings.d.ts

├──	tsconfig.json

└──	tslint.json

Now,	for	the	walk-through	of	the	project	structure	and	code	setup.

At	a	high	level,	we	have	an	src	folder,	where	we	will	have	all	the	source	code
and	unit	test	code,	and	an	e2e	folder,	which	consists	of	the	end-to-end	test.

We	will	be	spending	most	of	the	time	inside	the	src/app	folder.	Before	we	go	into
this	folder,	open	web-app/src/main.ts	and	this	is	where	everything	begins.	Next,	we
have	added	the	Twitter	Bootstrap	Cosmos	theme	(https://bootswatch.com/cosmo/)	here
and	defined	a	few	layout	styles.

Now,	the	app/src	folder:	here,	we	have	defined	the	root	component,	the	root
module,	and	the	required	components	and	services.

https://bootswatch.com/cosmo/

App	module
	

Open	web-app/src/app/app.module.ts.	This	file	consists	of	the	@NgModule	declaration,
which	defines	all	the	components	and	services	that	we	are	going	to	use.

We	have	created	the	following	components:

AppComponent:	Application	root	component	that	holds	the	router	outlet
NavBarComponent:	This	is	the	navigation	bar	component	that	appears	on	the	all
the	pages.	This	component	automatically	detects	the	authentication	state
and	shows	the	menu	bar	accordingly
LoginComponent:	This	deals	with	the	login	feature
RegisterComponent:	To	work	with	registration	with	the	API	engine
HomeComponent:	This	component	displays	all	the	devices	attached	to	the	current
logged-in	user
DeviceComponent:	This	component	displays	information	about	one	device
AddDeviceComponent:	This	component	lets	us	add	a	new	component	to	our
device	list
DeviceTemplateComponent:	A	common	template	that	is	used	to	represent	a	device
in	our	application

Apart	from	the	previous,	we	have	also	added	the	required	modules	to	the
imports:

RouterModule:	To	manage	the	routing
LocalStorageModule:	To	manage	the	user	data	within	the	browser,	we	are	going
to	use	LocalStorgae
SimpleNotificationsModule	:	To	show	the	notifications	using	Angular	2
notifications	(https://github.com/flauc/angular2-notifications)

And	for	the	services,	we	have	the	following:

AuthService:	To	manage	the	authentication	APIs	exposed	by	the	API	engine

https://github.com/flauc/angular2-notifications

DevicesService:	To	manage	the	device	API	exposed	by	the	API	engine
DataService:	To	manage	the	Data	API	exposed	by	the	API	engine
SocketService:	To	manage	web	sockets	that	send	data	from	the	API	engine	in
real	time
AuthGuard:	An	Angular	Guard	that	protects	routes	which	need	authentication.
Read	Protecting	Routes	using	Guards	in	Angular	(https://blog.thoughtram.io/angula
r/2016/07/18/guards-in-angular-2.html)	for	more	information	on	Guards
LoaderService:	That	shows	and	hides	a	loader	bar	when	an	activity	is	going	on
Http:	The	HTTP	service	that	we	use	to	make	HTTP	requests.	Here,	we	have
not	used	the	HTTP	service	as	is,	but	extended	the	class	and	added	our	logic
in	between	to	manage	the	HTTP	request	experience	better	using	the	loader
service

Do	note	that	at	this	point,	the	API	engine	does	not	have	APIs	for	devices	and
data,	and	sockets	are	not	set	up	for	the	data.	We	will	be	implementing	in	the	API
engine,	once	we	are	done	with	the	web	app	completely.

In	this	web	application,	we	are	going	to	have	the	following	routes:

login:	To	let	the	user	log	in	to	the	application
register:	To	register	with	our	application
home:	A	page	that	displays	all	the	devices	in	a	user	account
add-device:	A	page	to	add	a	new	device	to	the	user's	device	list
view-device/:id:	A	page	to	view	one	device,	identified	by	the	id	parameter	in
the	URL
**:	The	default	route	is	set	to	login
'':	If	no	route	matches,	we	redirect	the	user	to	the	login	page

	

	

https://blog.thoughtram.io/angular/2016/07/18/guards-in-angular-2.html

Web	app	services
Now	that	we	understand	at	a	high	level	all	that	is	present	in	this	web	app,	we	will
walk	through	the	services	and	components.

Open	web-app/src/app/services/http-interceptor.service.ts;	in	this	class,	we	have
extended	the	Http	class	and	implemented	the	class	methods.	We	have	added	two
methods	of	our	own	named	requestInterceptor()	and	responseInterceptor(),	which
intercept	the	request	and	response	respectively.

When	the	request	is	about	to	be	sent,	we	call	the	requestInterceptor()	to	show	a
loader,	indicating	the	HTTP	activity,	and	we	use	the	responseInterceptor()	to	hide
the	loader	once	the	response	arrives.	This	way,	the	user	is	clearly	aware	if	there
is	any	background	activity	going	on.

Next	is	the	LoaderService	class;	open	web-app/src/app/services/loader.service.ts	and,	as
we	can	see	from	here,	we	have	added	a	class	property	named	status	of	the	type
BehaviorSubject<boolean>	(to	know	more	about	Behaviour	subject,	refer	to	https://github.co
m/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md).	And	we	have	a
method,	which	will	be	called	by	the	HTTP	service	or	any	other	component	if
they	would	like	to	show	or	hide	the	loader	bar	and	then	set	the	value	as	true	or
false.

The	required	HTML	for	the	loader	service	is	present	in	web-
app/src/app/app.component.html	and	the	required	styles	are	present	in	web-
app/src/app/app.component.css.

We	are	going	to	use	web	sockets	for	streaming	data	in	real	time	between	the	web
app	and	the	API	engine.	Open	web-app/src/app/services/socket.service.ts	and	we
should	see	the	constructor	and	the	getData()	method.	We	are	using	socket.io-client
(https://github.com/socketio/socket.io-client)	to	manage	web	sockets	in	our	web	app.

In	the	constructor,	we	have	created	a	new	socket	connection	to	our	API	engine
and	passed	the	auth	token	as	a	query	parameter.	We	are	going	to	validate	the
incoming	connections	via	web	sockets	as	well.	And	only	if	the	token	is	valid	will
we	allow	the	connection,	else	we	close	the	web	socket.

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md
https://github.com/socketio/socket.io-client

Inside	getData(),	we	subscribe	to	the	data:save	topic	for	a	device.	This	is	how	we
get	notified	from	the	API	engine	when	there	is	new	data	available	from	a	device.

Now	we	will	look	at	the	three	API	services	with	which	we	authenticate	the	user,
get	the	user's	devices	and	get	data	for	a	device:

AuthService:	Open	web-app/src/app/services/auth.service.ts.	Here,	we	have
defined	the	register(),	login(),	and	logout(),	which	takes	care	of	managing	the
authentication	state	and	we	have	isAuthenticated(),	which	returns	the	current
state	of	authentication,	as	in	whether	the	user	is	logged	in	or	logged	out.
DevicesService:	Open	web-app/src/app/services/devices.service.ts.	Here,	we	have
implemented	three	methods:	one	to	create,	one	to	read,	and	one	to	delete.
With	this,	we	manage	our	devices	for	a	user.
DataService:	Open	web-app/src/app/services/data.service.ts,	which	manages	the
data	for	a	device.	We	have	only	two	methods	here:	one	to	create	a	new	data
record	and	one	to	fetch	the	last	30	records	of	a	device.

Do	notice	that	we	are	using	web-app/src/app/app.global.ts	to	save	all	our	constant
global	variables.

Now	that	we	are	done	with	the	required	services,	we	will	walk	through	the
components.

Web	app	components
We	will	start	with	the	app	component.	The	app	component	is	the	root
component,	which	holds	the	router	outlet,	loader	service	HTML,	and	notification
service	HTML.	You	can	find	the	same	here:	web-app/src/app/app.component.html.	In
web-app/src/app/app.component.ts,	we	have	defined	showLoader	that	decides	whether	the
loader	should	be	shown	or	not.	We	have	also	defined	notification	options,	which
stores	the	notification	service	configurations.

Inside	the	constructor,	we	are	listening	for	route	change	events	on	the	router,	so
we	can	show	a	loading	bar	on	page	change.	We	are	also	listening	to	the	loader
service	status	variable.	If	this	changes,	we	show	or	hide	the	loader.

The	first	page	that	the	user	lands	on	is	the	login	page.	The	login
page/component,	web-app/src/app/login/login.component.ts,	has	only	one	method,	the
takes	the	user's	email	and	password	from	web-app/src/app/login/login.component.html
and	authenticates	the	user.

Using	the	register	button	on	the	home	page,	the	user	registers	themself.	Inside
the	RegisterComponent	class,	web-app/src/app/register/register.component.ts,	we	have
defined	register(),	which	takes	the	user's	information	and,	using	the	AuthService,
registers	a	user.

Once	the	user	has	been	successfully	authenticated,	we	redirect	the	user	to	the
LoginComponent.	In	the	HomeComponent,	web-app/src/app/home/home.component.ts,	we	fetch	all
the	devices	associated	with	the	user	and	display	them	on	load.	This	page	also	has
a	button	for	adding	a	new	device	using	the	AddDeviceComponent.

To	view	one	device,	we	use	the	DeviceComponent	to	view	one	device.

As	of	now,	we	do	not	have	any	APIs	available	to	work	with	devices	and	data.
We	will	revisit	this	page	once	we	finish	the	API	engine	update	in	the	next
section.

Launching	the	app
To	run	the	app,	open	a	terminal/prompt	inside	the	web-app	folder	and	run	the
following:	ng	serve

Make	sure	the	API	engine	and	Mosca	are	running	before	you	run
the	previous	command.

Once	the	webpack	compilation	is	successful,	navigate	to
http://localhost:4200/login	and	we	should	see	the	login	page,	this	is	the	first	page:	

We	can	use	the	account	we	have	created	while	testing	the	API	engine,	using
Postman,	or	we	can	create	a	new	account	by	clicking	on	Register	with	Web	App

as	follows:	

If	the	registration	is	successful,	we	should	be	redirected	to	the	home	page	as
follows:

If	we	open	the	developer	tools,	we	should	see	the	previous	message.	The	API
engine	does	not	have	APIs	for	devices	implemented,	hence	the	previous	404s.	We
will	fix	that	in	Chapter	3,	IoTFW.js	-	II.

We	will	also	walk	through	the	remaining	part	of	the	web	app	in	Chapter	3,
IoTFW.js	-	II,	once	we	are	done	with	the	API	engine	update.

Summary
In	this	chapter,	we	have	gone	through	the	process	of	setting	up	a	frame	to	work
with	internet	of	Things	solutions.	We	have	built	most	of	the	framework	using
only	JavaScript	as	our	programming	language.

We	started	by	understanding	the	architecture	and	data	flow	from	a	Raspberry	Pi
to	an	end	user	device	such	as	a	web	app,	desktop	app,	or	mobile	app.	Then	we
started	working	on	the	broker	using	Mosca,	after	setting	up	the	MongoDB.	Next,
we	designed	and	developed	the	API	engine	and	completed	the	basic	Raspberry
Pi	setup.

We	have	worked	on	the	web	app	and	set	up	the	necessary	templates	to	work	with
the	remaining	part	of	the	application.	In	Chapter	3,	IoTFW.js	-	II,	we	will	complete
the	entire	framework	and	also	integrate	a	DHT11	(temperature	and	humidity)
sensor	and	an	LED	to	validate	the	two-way	data	flow	end	to	end.

IoTFW.js	-	II
	

In	the	previous	chapter,	we	have	seen	the	basic	setup	among	Raspberry	Pi,
broker,	API	engine,	and	the	web	app.	In	this	chapter,	we	will	work	on	the
remaining	part	of	the	framework.	We	will	also	build	a	simple	example	that
involves	sensing	and	actuating.	We	will	read	temperature	and	humidity	using	a
temperature	and	humidity	sensor	and	also	turn	on/off	an	LED	connected	to	our
Raspberry	Pi	using	web,	desktop,	or	mobile	app.

We	will	cover	the	following	topics	in	this	chapter:

Updating	the	API	engine
Integrating	the	API	engine	with	web	app
Building	an	end-to-end	example	using	DHT11	and	LED
Building	a	desktop	app
Building	a	mobile	app

	

	

Updating	the	API	engine
	

Now	that	we	are	done	with	the	web	app	development,	we	will	update	the	API
engine	to	add	the	device's	API	and	data	service,	along	with	web	sockets.

Open	api-engine/server/routes.js;	we	will	add	two	routes	here.	Update	api-
engine/server/routes.js,	as	follows:	'use	strict';

var	path	=	require('path');

	

module.exports	=	function(app)	{

//	Insert	routes	below

app.use('/api/v1/users',	require('./api/user'));	app.use('/api/v1/devices',
require('./api/device'));	app.use('/api/v1/data',	require('./api/data'));

app.use('/auth',	require('./auth'));	};

Now,	we	will	add	the	definitions	for	these	routes.	Inside	the	api-engine/server/api
folder,	create	a	new	folder	named	device.	Inside	the	device	folder,	create	a	new	file
named	index.js.	Update	api-engine/server/api/device/index.js,	as	follows:	'use	strict';

var	express	=	require('express');	var	controller	=
require('./device.controller');	var	config	=
require('../../config/environment');	var	auth	=
require('../../auth/auth.service');

var	router	=	express.Router();

	

router.get('/',	auth.isAuthenticated(),	controller.index);
router.delete('/:id',	auth.isAuthenticated(),	controller.destroy);
router.put('/:id',	auth.isAuthenticated(),	controller.update);
router.get('/:id',	auth.isAuthenticated(),	controller.show);	router.post('/',
auth.isAuthenticated(),	controller.create);

module.exports	=	router;

Here,	we	have	added	five	routes,	as	follows:

Get	all	devices
Delete	a	device
Update	a	device
Get	one	device
Create	a	device

Next,	create	another	file	inside	the	api-engine/server/api/device/	folder	named
device.model.js.	This	file	will	consist	of	the	mongoose	schema	for	the	device
collection.	Update	api-engine/server/api/device/device.model.js,	as	follows:	'use
strict';

var	mongoose	=	require('mongoose');	var	Schema	=
mongoose.Schema;

	

var	DeviceSchema	=	new	Schema({

name:	String,

macAddress:	String,

createdBy:	{

type:	String,

default:	'user'

},

createdAt:	{

type:	Date

},

updatedAt:	{

type:	Date

}

});

	

DeviceSchema.pre('save',	function(next)	{

var	now	=	new	Date();

this.updatedAt	=	now;

if	(!this.createdAt)	{

this.createdAt	=	now;

}

next();

});

	

module.exports	=	mongoose.model('Device',	DeviceSchema);

Finally,	the	controller	logic.	Create	a	file	named	device.controller.js	inside	the	api-
engine/server/api/device	folder	and	update	api-
engine/server/api/device/device.controller.js,	as	follows:	'use	strict';

var	Device	=	require('./device.model');

/**

*	Get	list	of	all	devices	for	a	user	*/

exports.index	=	function(req,	res)	{

var	currentUser	=	req.user._id;	//	get	only	devices	related	to	the
current	user	Device.find({

createdBy:	currentUser

},	function(err,	devices)	{

if	(err)	return	res.status(500).send(err);	res.status(200).json(devices);
});

};

	

/**

*	Add	a	new	device

*/

exports.create	=	function(req,	res,	next)	{

var	device	=	req.body;

//	this	device	is	created	by	the	current	user	device.createdBy	=
req.user._id;	Device.create(device,	function(err,	device)	{

if	(err)	return	res.status(500).send(err);	res.json(device);

});

};

	

/**

*	Get	a	single	device

*/

exports.show	=	function(req,	res,	next)	{

var	deviceId	=	req.params.id;	//	the	current	user	should	have	created
this	device	Device.findOne({

_id:	deviceId,

createdBy:	req.user._id	},	function(err,	device)	{

if	(err)	return	res.status(500).send(err);	if	(!device)	return
res.status(404).end();	res.json(device);

});

};

	

/**

*	Update	a	device

*/

exports.update	=	function(req,	res,	next)	{

var	device	=	req.body;

device.createdBy	=	req.user._id;

Device.findOne({

_id:	deviceId,

createdBy:	req.user._id	},	function(err,	device)	{

if	(err)	return	res.status(500).send(err);	if	(!device)	return
res.status(404).end();

device.save(function(err,	updatedDevice)	{

if	(err)	return	res.status(500).send(err);	return
res.status(200).json(updatedDevice);	});

});

};

	

/**

*	Delete	a	device

*/

exports.destroy	=	function(req,	res)	{

Device.findOne({

_id:	req.params.id,

createdBy:	req.user._id	},	function(err,	device)	{

if	(err)	return	res.status(500).send(err);

device.remove(function(err)	{

if	(err)	return	res.status(500).send(err);	return	res.status(204).end();	});

});

};

Here,	we	have	defined	the	logic	for	the	routes.

The	device	API	manages	the	device	for	us.	To	manage	the	data	for	each	device,
we	will	use	this	collection.

Now,	we	will	define	the	data	APIs.	Create	a	new	folder	named	data	inside	the	api-
engine/server/api	folder.	Inside	the	api-engine/server/api/data	folder,	create	a	new	file
named	index.js	and	update	api-engine/server/api/data/index.js,	as	follows:	'use
strict';

var	express	=	require('express');	var	controller	=
require('./data.controller');	var	auth	=	require('../../auth/auth.service');

var	router	=	express.Router();

	

router.get('/:deviceId/:limit',	auth.isAuthenticated(),	controller.index);
router.post('/',	auth.isAuthenticated(),	controller.create);

module.exports	=	router;

We	have	defined	two	routes	here:	one	to	view	data	based	on	a	device	ID	and
another	to	create	data.	The	view	data	route	returns	the	data	from	a	device	that	is
limited	to	the	number	passed	in	as	part	of	the	request.	If	you	remember,	in	the
web-app/src/app/services/data.service.ts,	we	have	defined	the	dataLimit	class	variable
as	30.	This	is	the	number	of	records	we	get,	at	a	given	time,	from	the	API.

Next,	for	the	mongoose	schema,	create	a	new	file	named	data.model.js	inside	the
api-engine/server/api/data	folder	and	update	api-engine/server/api/data/data.model.js,
as	follows:	'use	strict';

var	mongoose	=	require('mongoose');	var	Schema	=
mongoose.Schema;

	

var	DataSchema	=	new	Schema({

macAddress:	{

type:	String

},

data:	{

type:	Schema.Types.Mixed	},

createdBy:	{

type:	String,

default:	'raspberrypi3'

},

createdAt:	{

type:	Date

},

updatedAt:	{

type:	Date

}

});

	

DataSchema.pre('save',	function(next)	{

var	now	=	new	Date();

this.updatedAt	=	now;

if	(!this.createdAt)	{

this.createdAt	=	now;

}

next();

});

DataSchema.post('save',	function(doc)	{	

				//console.log('Post	Save	Called',	doc);	require('./data.socket.js').onSave(doc)	

});	

	

module.exports	=	mongoose.model('Data',	DataSchema);	

Now,	the	controller	logic	for	the	data	API.	Create	a	file	named	data.controller.js
inside	api-engine/server/api/data	and	update	api-
engine/server/api/data/data.controller.js,	as	follows:	'use	strict';

var	Data	=	require('./data.model');

/**

*	Get	Data	for	a	device

*/

exports.index	=	function(req,	res)	{

var	macAddress	=	req.params.deviceId;	var	limit	=
parseInt(req.params.limit)	||	30;	Data.find({

macAddress:	macAddress

}).limit(limit).exec(function(err,	devices)	{

if	(err)	return	res.status(500).send(err);	res.status(200).json(devices);
});

};

	

/**

*	Create	a	new	data	record

*/

exports.create	=	function(req,	res,	next)	{

var	data	=	req.body;

data.createdBy	=	req.user._id;	Data.create(data,	function(err,	_data)	{

if	(err)	return	res.status(500).send(err);	res.json(_data);

if(data.topic	===	'led'){

require('../../mqtt/index.js').sendLEDData(data.data.l);//	send	led	value
}

});

};

Here,	we	have	defined	two	methods:	one	for	getting	data	for	a	device	and	one	for
creating	a	new	data	record	for	a	device.

For	the	data	API,	we	will	implement	sockets	as	well,	so	when	a	new	record
comes	from	the	Raspberry	Pi,	we	immediately	notify	the	web	app,	desktop	app,
or	mobile	app	so	that	the	data	can	be	displayed	in	real	time.

As	we	see	from	the	preceding	code,	if	the	incoming	topic	is	LED,	we	will	call	the
sendLEDData(),	which	in	turns	publishes	the	data	to	the	device.

Create	a	file	named	data.socket.js	inside	the	api-engine/server/api/data	folder	and
update	api-engine/server/api/data/data.socket.js,	as	follows:	/**

*	Broadcast	updates	to	client	when	the	model	changes	*/

	

'use	strict';

	

var	data	=	require('./data.model');	var	socket	=	undefined;

	

exports.register	=	function(_socket)	{

socket	=	_socket;

}

	

function	onSave(doc)	{

//	send	data	to	only	the	intended	device	socket.emit('data:save:'	+
doc.macAddress,	doc);	}

	

	

module.exports.onSave	=	onSave;

This	will	take	care	of	sending	a	new	data	record	as	it	successfully	gets	saved	in
the	database.

Next,	we	need	to	add	the	socket	to	the	socket	configuration.	Open	api-
engine/server/config/socketio.js	and	update	it,	as	follows:	'use	strict';

var	config	=	require('./environment');

//	When	the	user	disconnects..	perform	this	function
onDisconnect(socket)	{}

	

//	When	the	user	connects..	perform	this	function	onConnect(socket)	{

//	Insert	sockets	below

require('../api/data/data.socket').register(socket);	}

module.exports	=	function(socketio)	{

socketio.use(require('socketio-jwt').authorize({

secret:	config.secrets.session,	handshake:	true

}));

	

socketio.on('connection',	function(socket)	{

var	socketId	=	socket.id;	var	clientIp	=
socket.request.connection.remoteAddress;

socket.address	=	socket.handshake.address	!==	null	?

socket.handshake.address.address	+	':'	+
socket.handshake.address.port	:	process.env.DOMAIN;

socket.connectedAt	=	new	Date();

//	Call	onDisconnect.

socket.on('disconnect',	function()	{

onDisconnect(socket);	//	console.info('[%s]	DISCONNECTED',
socket.address);	});

	

//	Call	onConnect.

onConnect(socket);

console.info('[%s]	Connected	on	%s',	socketId,	clientIp);	});

};

Note	that	we	are	using	socketio-jwt	to	validate	the	socket	connection	to	see	if	it
has	JWT.	If	a	valid	JWT	is	not	provided,	we	do	not	allow	the	client	to	connect.

With	this,	we	are	done	with	the	required	changes	to	the	API	engine.	Save	all	the
files	and	launch	the	API	engine	by	running	the	following	command:	npm	start

This	will	launch	the	API	engine.	In	the	next	section,	we	will	test	the	integration
between	the	web	app	and	API	engine	and	continue	our	walk	through	from	the
previous	section.

	

	

	

Integrating	web	app	and	API	engine
Launch	the	broker,	API	engine,	and	web	app.	Once	all	of	them	are	successfully
launched,	navigate	to	http://localhost:4200/.	Log	in	with	the	credentials	we	have
created.	Once	we	have	successfully	logged	in,	we	should	see	the	following
screen:	

Which	is	true,	as	we	do	not	have	any	devices	in	our	account.	Click	on	Add
Device	and	we	should	see	something	as	follows:	

Add	a	new	device	by	giving	it	a	name.	I	named	my	device	Pi	1	and	added	the
mac	address.	We	will	use	the	mac	address	of	the	device	as	a	unique	way	of
identifying	the	device.

Click	on	Create	and	we	should	see	a	new	device	created,	it	will	redirect	us	to	the
home	page	and	display	the	newly	created	device,	which	can	be	seen	in	the
following	screenshot:	

Now,	when	we	click	on	the	View	button,	we	should	see	the	following	page:

In	the	examples	across	this	book,	we	will	keep	updating	this	template	and	keep
modifying	it	as	we	need	to.	For	now,	this	is	a	dummy	template	represented	by
web-app/src/app/device/device.component.html.

If	we	open	the	developer	tools	and	look	at	the	network	tab	WS	section,	as	shown
in	the	following	screenshot,	we	should	be	able	to	see	that	a	web	socket	request	is
sent	to	our	server	with	the	JWT	token:	

With	this,	we	are	done	with	stitching	the	Raspberry	Pi	with	the	broker,	the
broker	with	the	API	engine,	and	the	API	engine	with	the	web	app.	To	complete
the	entire	round	trip	of	data	from	the	device	to	the	web	app,	we	will	implement	a
simple	use	case	in	the	next	section.

Testing	an	end-to-end	flow	using
DHT11	and	LED
Before	we	start	working	on	the	desktop	and	mobile	app,	we	will	implement	an
end-to-end	data	flow	for	the	Raspberry	Pi	to	the	web	app	and	back.

The	example	that	we	will	work	on	implements	an	actuator	and	a	sensor	use	case.
We	will	connect	an	LED	to	the	Raspberry	Pi	and	turn	the	LED	on/off	from	the
web	app,	and	we	will	also	connect	a	DHT11	temperature	sensor	to	the	Raspberry
Pi	and	view	its	values	in	real	time	on	the	web	app.

We	will	get	started	with	the	Raspberry	Pi,	implement	the	required	logic	there;
next,	work	with	the	API	engine,	make	the	required	changes,	and	finally	the	web
app	to	represent	the	data.

Setting	up	and	updating	the
Raspberry	Pi
First,	we	will	set	up	the	circuit,	as	follows:	

Now,	we	will	make	the	following	connections:

Source	pin Component	pin

Raspberry	Pi	pin	1	-	3.3V Breadboard	+	railing

Raspberry	Pi	pin	6	-	Ground Breadboard	-	railing

Raspberry	Pi	pin	3	-	GPIO	2 Temperature	sensor	signal	pin

Raspberry	Pi	pin	12	-	GPIO	18 LED	anode	pin

LED	cathode	pin Breadboard	-	railing

Temperature	sensor	+	pin Breadboard	+	railing

Temperature	sensor	-	pin Breadboard	-	railing

We	have	used	a	current	limiting	resistor	of	220	ohms	between	pin
12/GPIO	18	and	the	anode	of	a	LED	pin.

Once	this	connection	has	been	set	up,	we	will	write	the	required	logic.	On	the
Raspberry	Pi,	open	the	pi-client/index.js	file	and	update	it,	as	follows:	var	config
=	require('./config.js');	var	mqtt	=	require('mqtt');	var	GetMac	=
require('getmac');	var	rpiDhtSensor	=	require('rpi-dht-sensor');	var	rpio	=
require('rpio');	var	dht11	=	new	rpiDhtSensor.DHT11(2);	var	temp	=	0,
prevTemp	=	0;	var	humd	=	0,	prevHumd	=	0;	var	macAddress;	var	state	=	0;	//
Set	pin	12	as	output	pin	and	to	low	rpio.open(12,	rpio.OUTPUT,	rpio.LOW);	var
client	=	mqtt.connect({	port:	config.mqtt.port,	protocol:	'mqtts',	host:
config.mqtt.host,	clientId:	config.mqtt.clientId,	reconnectPeriod:	1000,
username:	config.mqtt.clientId,	password:	config.mqtt.clientId,	keepalive:	300,
rejectUnauthorized:	false	});	client.on('connect',	function()	{
client.subscribe('rpi');	client.subscribe('led');	GetMac.getMac(function(err,	mac)
{	if	(err)	throw	err;	macAddress	=	mac;	client.publish('api-engine',	mac);	});	});
client.on('message',	function(topic,	message)	{	message	=	message.toString();	if
(topic	===	'rpi')	{	console.log('API	Engine	Response	>>	',	message);	}	else	if
(topic	===	'led')	{	state	=	parseInt(message)	console.log('Turning	LED',	state	?
'On'	:	'Off');	//	If	we	get	a	1	we	turn	on	the	led,	else	off	rpio.write(12,	state	?
rpio.HIGH	:	rpio.LOW);	}	else	{	console.log('Unknown	topic',	topic);	}	});	//
infinite	loop,	with	3	seconds	delay	setInterval(function()	{	getDHT11Values();
console.log('Temperature:	'	+	temp	+	'C,	'	+	'humidity:	'	+	humd	+	'%');	//	if	the
temperature	and	humidity	values	change	//	then	only	publish	the	values	if	(temp
!==	prevTemp	||	humd	!==	prevHumd)	{	var	data2Send	=	{	data:	{	t:	temp,	h:

humd,	l:	state	},	macAddress:	macAddress	};	console.log('Data	Published');
client.publish('dht11',	JSON.stringify(data2Send));	//	reset	prev	values	to	current
//	for	next	loop	prevTemp	=	temp;	prevHumd	=	humd;	}	//	else	chill!	},	3000);	//
every	three	second	function	getDHT11Values()	{	var	readout	=	dht11.read();	//
update	global	variable	temp	=	readout.temperature.toFixed(2);	humd	=
readout.humidity.toFixed(2);	}

In	the	preceding	code,	we	have	added	a	couple	of	node	modules,	as	follows:

rpi-dht-sensor:	https://www.npmjs.com/package/rpi-dht-sensor;	this	module	will	help	us
in	reading	the	values	of	the	DHT11	sensor
rpio:	https://www.npmjs.com/package/rpio;	this	module	will	help	us	manage	GPIOs
on	the	board,	using	which	we	will	manage	the	LED

We	have	written	a	setInterval()	that	keeps	running	forever,	every	3	seconds.
Inside	the	callback,	we	call	the	getDHT11Values()	that	read	the	temperature	and
humidity	from	the	sensor.	If	there	is	any	change	in	the	temperature	and	humidity
values,	we	publish	this	data	to	the	broker.

Also,	notice	the	client.on('message');	here,	we	have	added	another	if	condition	and
are	listening	for	the	LED	topic.	If	the	current	message	is	from	the	LED	topic,	we
know	that	we	will	receive	either	a	1	or	0	indicating	to	switch	on	or	switch	off	the
LED.

Now,	finally	we	will	install	the	two	modules,	run:	npm	install	rpi-dht-sensor	-
save	npm	install	rpio	-save

Save	all	the	files	and	run	npm	start;	this	should	connect	the	Raspberry	Pi	to	the
broker	and	subscribe	to	the	LED	topic,	as	follows:	

https://www.npmjs.com/package/rpi-dht-sensor
https://www.npmjs.com/package/rpio

Additionally,	if	we	see	the	console	out	from	the	Raspberry	Pi,	we	should	see

something	as	follows:	

Whenever	there	is	a	change	in	the	data,	the	data	is	published	to	the	broker.	We
have	not	yet	implemented	the	logic	for	reacting	to	this	data	on	the	API	engine,
which	we	will	do	in	the	next	section.

Updating	the	API	engine
	

Now,	we	will	add	the	required	code	to	the	MQTT	client	running	on	the	API
engine	to	handle	the	data	from	the	device.	Update	api-engine/server/mqtt/index.js,
as	follows:	var	Data	=	require('../api/data/data.model');	var	mqtt	=	require('mqtt');

var	config	=	require('../config/environment');

var	client	=	mqtt.connect({

port:	config.mqtt.port,

protocol:	'mqtts',

host:	config.mqtt.host,

clientId:	config.mqtt.clientId,	reconnectPeriod:	1000,

username:	config.mqtt.clientId,	password:	config.mqtt.clientId,
keepalive:	300,

rejectUnauthorized:	false

});

	

client.on('connect',	function()	{

console.log('Connected	to	Mosca	at	'	+	config.mqtt.host	+	'	on	port	'	+
config.mqtt.port);	client.subscribe('api-engine');
client.subscribe('dht11');

});

	

client.on('message',	function(topic,	message)	{

//	message	is	Buffer

//	console.log('Topic	>>	',	topic);	//	console.log('Message	>>	',
message.toString());	if	(topic	===	'api-engine')	{

var	macAddress	=	message.toString();	console.log('Mac	Address	>>	',
macAddress);	client.publish('rpi',	'Got	Mac	Address:	'	+	macAddress);
}	else	if	(topic	===	'dht11')	{

var	data	=	JSON.parse(message.toString());	//	create	a	new	data	record
for	the	device	Data.create(data,	function(err,	data)	{

if	(err)	return	console.error(err);	//	if	the	record	has	been	saved
successfully,	//	websockets	will	trigger	a	message	to	the	web-app
console.log('Data	Saved	:',	data.data);	});

}	else	{

console.log('Unknown	topic',	topic);	}

});

	

exports.sendLEDData	=	function(data)	{

console.log('Sending	Data',	data);	client.publish('led',	data);	}

Here,	we	have	subscribed	to	a	topic	named	dht11,	to	listen	for	a	message

published	by	the	Raspberry	Pi	about	the	temperature	and	humidity	values.	We
have	also	exposed	another	method	named	sendLEDData	that	will	accept	the	data	that
needs	to	be	sent	to	the	device.

If	we	save	all	the	files	and	restart	the	API	engine,	we	should	see	something	as
follows:	

From	the	preceding	screenshot,	we	can	see	that	the	data	comes	from	the
Raspberry	Pi	and	gets	saved	to	MongoDB.	To	validate	if	the	data	is	saved,	we
can	head	over	to	the	mlab	DB	and	look	for	a	collection	named	datas	and	it	should

look	as	follows:	

Whenever	the	data	is	saved	successfully,	the	same	copy	will	be	sent	to	the	web
app	as	well.	In	the	next	section,	we	will	display	this	data	in	real	time	on	the	web
dashboard.

	

	

	

Updating	the	web	app
	

In	this	section,	we	will	develop	the	code	needed	to	display	the	data	in	real	time
inside	the	web	app,	as	well	as	provide	an	interface,	using	which	we	can	turn
on/off	the	LED.

We	will	get	started	by	adding	a	toggle	switch	component.	We	will	use	the	ngx-ui-
switch	(https://github.com/webcat12345/ngx-ui-switch)	for	the	same.

From	inside	the	web-app-base	folder,	run	the	following	command:	npm	install
ngx-ui-switch	-save

We	will	use	the	ng2-charts	https://valor-software.com/ng2-charts/	for	plotting	charts	of	our
temperature	and	humidity	values.	We	will	install	this	module	as	well	by	running
the	following	command:	npm	install	ng2-charts	--save	npm	install	chart.js	--
save

This	will	install	the	toggle	switch	and	ng2-charts	modules.	Next,	we	need	to	add
this	to	@NgModule.	Open	web-app/src/app/app.module.ts	and	add	the	following	command
to	the	imports:	import	{	UiSwitchModule	}	from	'ngx-ui-switch';	import	{
ChartsModule	}	from	'ng2-charts';

Then,	add	UiSwitchModule	and	ChartsModule	to	the	imports	array:	//	snipp	snipp

imports:	[

RouterModule.forRoot(appRoutes),	BrowserModule,

BrowserAnimationsModule,

FormsModule,

HttpModule,

https://github.com/webcat12345/ngx-ui-switch
https://valor-software.com/ng2-charts/

LocalStorageModule.withConfig({

prefix:	'web-app',

storageType:	'localStorage'

}),

SimpleNotificationsModule.forRoot(),	UiSwitchModule,

ChartsModule

],

//	snipp	snipp

Once	this	is	done,	we	need	to	import	chart.js	into	our	application.	Open	web-
app/.angular-cli.json	and	update	the	scripts	section,	as	follows:	//	snipp	snipp

"scripts":	[

"../node_modules/chart.js/dist/Chart.js"

],

//	snipp	snipp

Save	all	the	files	and	restart	the	web	app,	if	it	is	already	running.

Now,	we	can	use	this	directive	in	the	device	component.

In	our	current	use	case,	we	have	to	display	the	temperature	and	humidity	values
as	well	as	provide	a	toggle	switch	to	turn	the	LED	on/off.	For	this,	our	template
in	web-app/src/app/device/device.component.html	will	be	as	follows:	<div
class="container">	

<div	*ngIf="!device">

<h3	class="text-center">Loading!</h3>	</div>

<div	class="row"	*ngIf="lastRecord">	<div	class="col-md-12">	<div
class="panel	panel-info">	<div	class="panel-heading">	<h3
class="panel-title">	{{device.name}}

</h3>

	<i	class="fa	fa-chevron-circle-
up"></i>	

</div>

<div	class="clearfix"></div>	<div	class="table-responsive">	<table
class="table	table-striped">	<tr>

<td>Toggle	LED</td>	<td>	<ui-switch	[(ngModel)]="toggleState"
(change)="toggleChange($event)"></ui-switch>	</td>	</tr>

<tr	*ngIf="lastRecord">	<td>Temperature</td>	<td>
{{lastRecord.data.t}}</td>	</tr>

<tr	*ngIf="lastRecord">	<td>Humidity</td>	<td>
{{lastRecord.data.h}}</td>	</tr>

<tr	*ngIf="lastRecord">	<td>Received	At</td>	<td>
{{lastRecord.createdAt	|	date:	'medium'}}</td>	</tr>

</table>

<div	class="col-md-10	col-md-offset-1"	*ngIf="lineChartData.length
>	0">	<canvas	baseChart	[datasets]="lineChartData"
[labels]="lineChartLabels"	[options]="lineChartOptions"
[legend]="lineChartLegend"	[chartType]="lineChartType"></canvas>
</div>

</div>

</div>

</div>

</div>

</div>

The	required	code	for	the	DeviceComponent	class:	web-
app/src/app/device/device.component.ts	will	be	as	follows:	import	{	Component,
OnInit,	OnDestroy	}	from	'@angular/core';	import	{	DevicesService	}	from
'../services/devices.service';	import	{	Params,	ActivatedRoute	}	from
'@angular/router';	import	{	SocketService	}	from	'../services/socket.service';
import	{	DataService	}	from	'../services/data.service';	import	{
NotificationsService	}	from	'angular2-notifications';

@Component({

selector:	'app-device',

templateUrl:	'./device.component.html',	styleUrls:
['./device.component.css']

})

export	class	DeviceComponent	implements	OnInit,	OnDestroy	{

device:	any;

data:	Array<any>;

toggleState:	boolean	=	false;

private	subDevice:	any;

private	subData:	any;

lastRecord:	any;

	

//	line	chart	config

public	lineChartOptions:	any	=	{

responsive:	true,

legend:	{

position:	'bottom',

},	hover:	{

mode:	'label'

},	scales:	{

xAxes:	[{

display:	true,

scaleLabel:	{

display:	true,	labelString:	'Time'

}

}],

yAxes:	[{

display:	true,

ticks:	{

beginAtZero:	true,	steps:	10,	stepValue:	5,	max:	70

}

}]

},

title:	{

display:	true,

text:	'Temperature	&	Humidity	vs.	Time'

}

};

public	lineChartLegend:	boolean	=	true;	public	lineChartType:	string
=	'line';	public	lineChartData:	Array<any>	=	[];	public
lineChartLabels:	Array<any>	=	[];

constructor(private	deviceService:	DevicesService,	private
socketService:	SocketService,	private	dataService:	DataService,
private	route:	ActivatedRoute,	private	notificationsService:
NotificationsService)	{	}

	

ngOnInit()	{

this.subDevice	=	this.route.params.subscribe((params)	=>	{

this.deviceService.getOne(params['id']).subscribe((response)	=>	{

this.device	=	response.json();	this.getData();	this.socketInit();	});

});

}

	

getData()	{

this.dataService.get(this.device.macAddress).subscribe((response)	=>
{

this.data	=	response.json();	this.genChart();

this.lastRecord	=	this.data[0];	//	descending	order	data	if
(this.lastRecord)	{

this.toggleState	=	this.lastRecord.data.l;	}

});

}

	

toggleChange(state)	{

let	data	=	{

macAddress:	this.device.macAddress,	data:	{

t:	this.lastRecord.data.t,	h:	this.lastRecord.data.h,	l:	state	?	1	:	0

},

topic:	'led'

}

	

this.dataService.create(data).subscribe((resp)	=>	{

if	(resp.json()._id)	{

this.notificationsService.success('Device	Notified!');	}

},	(err)	=>	{

console.log(err);

this.notificationsService.error('Device	Notification	Failed.	Check
console	for	the	error!');	})

}

	

socketInit()	{

this.subData	=
this.socketService.getData(this.device.macAddress).subscribe((data)
=>	{

if(this.data.length	<=	0)	return;	this.data.splice(this.data.length	-	1,	1);
//	remove	the	last	record	this.data.push(data);	//	add	the	new	one

this.lastRecord	=	data;	this.genChart();

});

}

	

ngOnDestroy()	{

this.subDevice.unsubscribe();	this.subData	?
this.subData.unsubscribe()	:	'';	}

	

genChart()	{

	

let	data	=	this.data;

let	_dtArr:	Array<any>	=	[];	let	_lblArr:	Array<any>	=	[];

let	tmpArr:	Array<any>	=	[];	let	humArr:	Array<any>	=	[];

for	(var	i	=	0;	i	<	data.length;	i++)	{

let	_d	=	data[i];

tmpArr.push(_d.data.t);	humArr.push(_d.data.h);
_lblArr.push(this.formatDate(_d.createdAt));	}

	

//	reverse	data	to	show	the	latest	on	the	right	side	tmpArr.reverse();

humArr.reverse();

_lblArr.reverse();

	

_dtArr	=	[

{

data:	tmpArr,

label:	'Temperature'

},

{

data:	humArr,

label:	'Humidity	%'

},

]

	

this.lineChartData	=	_dtArr;	this.lineChartLabels	=	_lblArr;	}

	

private	formatDate(originalTime)	{

var	d	=	new	Date(originalTime);	var	datestring	=	d.getDate()	+	"-"	+
(d.getMonth()	+	1)	+	"-"	+	d.getFullYear()	+	"	"	+

d.getHours()	+	":"	+	d.getMinutes();	return	datestring;

}	

}	

The	key	methods	to	notice	are	as	follows:

getData():	This	method	is	used	to	get	the	last	30	records	on	page	load.	We	are
sending	the	data	in	the	descending	order	from	the	API	engine;	hence	we
extract	the	last	record	and	save	it	as	the	last	record.	We	can	use	the
remaining	records	to	plot	a	chart	if	needed
toggleChange():	This	method	will	get	fired	when	the	toggle	switch	is	clicked.
This	method	will	send	the	data	to	the	API	engine	to	save	it
socketInit():	This	method	keeps	listening	to	the	data	save	event	on	the
device.	Using	this,	we	update	the	lastRecord	variable	with	the	latest	data
from	the	device
genChart():	This	method	takes	the	data	collection	and	then	plots	a	graph.
When	a	new	data	arrives	over	the	socket,	we	remove	the	last	record	in	the
data	array	and	push	the	new	record,	keeping	the	total	size	of	30	records	at
all	times

With	this,	we	are	done	with	the	development	of	the	template	needed	to	process
this	setup.

Save	all	files,	launch	the	broker,	API	engine,	and	the	web	app	and	then	log	in	to
the	application	and	then	navigate	to	the	device	page.

If	everything	is	set	up	correctly,	we	should	see	the	following	screen:	

Now,	whenever	the	data	comes	via	sockets,	the	chart	updates	automatically!

Now	to	test	the	LED,	toggle	the	LED	button	to	on	and	you	should	see	that	the
LED	that	we	have	set	up	on	the	Raspberry	Pi	will	light	up	and	similarly	if	we
turn	it	off,	it	will	turn	off	the	LED.

	

	

	

Building	the	desktop	app	and
implementing	an	end-to-end	flow
Now	that	we	are	done	with	an	end-to-end	flow	with	the	web	app,	we	will	extend
the	same	to	the	desktop	and	mobile	apps.	We	will	start	off	by	building	a	desktop
client	for	the	same	API	engine.	So,	if	a	user	is	more	comfortable	in	using	a
desktop	app	over	a	web	or	mobile	app,	he/she	could	use	this.

This	desktop	app,	we	will	have	all	the	same	features	as	the	web	app.

For	building	the	desktop	app,	we	will	use	the	electron	(https://electron.atom.io/)
framework.	Using	a	Yeoman	(http://yeoman.io/)	generator	named	generator-electron	(ht
tps://github.com/sindresorhus/generator-electron),	we	will	scaffold	the	base	application.
Then,	we	will	build	our	web	app	and	use	the	dist	folder	from	that	build	as	an
input	to	the	desktop	app.	All	this	will	be	more	clear	once	we	start	working.

To	get	started,	run	the	following	command:

npm	install	yo	generator-electron	-g		

This	will	install	the	yeoman	generator	and	the	electron	generator.	Next,	inside
the	chapter2	folder,	create	a	folder	named	desktop-app	and	then,	open	a	new
command	prompt/terminal	and	run	the	following	command:

yo	electron

This	wizard	will	ask	a	few	questions	and	you	can	answer	them	accordingly:

This	will	go	ahead	and	install	the	required	dependencies.	Once	the	installation	is

https://electron.atom.io/
http://yeoman.io/
https://github.com/sindresorhus/generator-electron

completed,	we	should	see	a	folder	structure,	as	follows:

.

├──	index.css

├──	index.html

├──	index.js

├──	license

├──	package.json

└──	readme.md

With	the	node_modules	folder	present	at	the	root.

Everything	starts	with	desktop-app/package.json	start	script,	which	launches	the
desktop-app/index.js.	desktop-app/index.js	creates	a	new	browser	window	and
launches	the	desktop-app/index.html	page.

To	quickly	test	drive	from	inside	the	desktop-app	folder,	run	the	following
command:

npm	start			

As	a	result,	we	should	see	the	following	screen:

Now,	we	will	add	the	required	code.	At	the	root	of	the	desktop-app	folder,	create	a
file	named	freeport.js	and	update	desktop-app/freeport.js,	as	follows:

var	net	=	require('net')	

module.exports	=	function(cb)	{	

				var	server	=	net.createServer(),	

								port	=	0;	

				server.on('listening',	function()	{	

								port	=	server.address().port	

								server.close()	

				});	

				server.on('close',	function()	{	

								cb(null,	port)	

				})	

				server.on('error',	function(err)	{	

								cb(err,	null)	

				})	

				server.listen(0,	'127.0.0.1')	

}	

With	the	preceding	code,	we	will	find	a	free	port	on	the	end	user's	machine	and
launch	our	web	app	inside	the	electron	shell.

Next,	create	a	folder	named	app	at	the	root	of	the	desktop-app	folder.	We	will	dump
files	into	this	in	a	moment.	Next,	at	the	root	of	the	desktop-app	folder,	create	a	file
named	server.js.	Update	server.js,	as	follows:

var	FreePort	=	require('./freeport.js');	

var	http	=	require('http'),	

				fs	=	require('fs'),	

				html	=	'';	

	

module.exports	=	function(cb)	{	

				FreePort(function(err,	port)	{	

								console.log(port);	

								http.createServer(function(request,	response)	{	

												if	(request.url	===	'/')	{	

																html	=	fs.readFileSync('./app/index.html');	

												}	else	{	

																html	=	fs.readFileSync('./app'	+	request.url);	

												}	

												response.writeHeader(200,	{	"Content-Type":	"text/html"	});	

												response.write(html);	

												response.end();	

								}).listen(port);	

								cb(port);	

				});	

}	

Here,	we	listen	to	a	free	port	and	launch	index.html.	Now,	all	we	need	to	do	is
update	createMainWindow()	in	desktop-app/index.js,	as	follows:

//	snipp	snipp	

function	createMainWindow()	{	

				const	{	width,	height	}	=	electron.screen.getPrimaryDisplay().workAreaSize;	

				const	win	=	new	electron.BrowserWindow({	width,	height	})	

				const	server	=	require("./server")(function(port)	{	

								win.loadURL('http://localhost:'	+	port);	

								win.on('closed',	onClosed);	

								console.log('Desktop	app	started	on	port	:',	port);	

				});	

	

				return	win;	

}	

//	snipp	snipp	

That	is	all	the	setup	we	need.

Now,	head	back	to	the	terminal/prompt	of	the	web-app	folder	(yes	web-app,	not
desktop-app)	and	run	the	following	command:

ng	build	--env=prod

This	will	create	a	new	folder	inside	the	web	app	folder	named	dist.	The	contents	of
the	dist	folder	should	be	on	the	following	lines:

.

├──	favicon.ico

├──	index.html

├──	inline.bundle.js

├──	inline.bundle.js.map

├──	main.bundle.js

├──	main.bundle.js.map

├──	polyfills.bundle.js

├──	polyfills.bundle.js.map

├──	scripts.bundle.js

├──	scripts.bundle.js.map

├──	styles.bundle.js

├──	styles.bundle.js.map

├──	vendor.bundle.js

└──	vendor.bundle.js.map

All	code	we	have	written	in	the	web	app	is	finally	bundled	into	the	preceding
files.	We	will	grab	all	the	files	(not	the	dist	folder)	present	inside	the	dist	folder
and	then	paste	it	inside	the	desktop-app/app	folder.	The	final	structure	of	the
desktop	app	after	the	preceding	changes	will	be	as	follows:

.

├──	app

│	├──	favicon.ico

│	├──	index.html

│	├──	inline.bundle.js

│	├──	inline.bundle.js.map

│	├──	main.bundle.js

│	├──	main.bundle.js.map

│	├──	polyfills.bundle.js

│	├──	polyfills.bundle.js.map

│	├──	scripts.bundle.js

│	├──	scripts.bundle.js.map

│	├──	styles.bundle.js

│	├──	styles.bundle.js.map

│	├──	vendor.bundle.js

│	└──	vendor.bundle.js.map

├──	freeport.js

├──	index.css

├──	index.html

├──	index.js

├──	license

├──	package.json

├──	readme.md

└──	server.js

From	now	on,	we	are	just	going	to	paste	the	contents	of	the	web-app/dist	folder
into	the	app	folder	of	the	desktop-app.

To	test	drive,	run	the	following	command:

npm	start	

This	will	bring	up	the	log	in	screen,	as	follows:

If	you	see	a	pop	up	as	shown	previously,	allow	it.	Once	you	have	successfully
logged	in,	you	should	be	able	to	see	all	the	devices	in	your	account,	as	follows:

And	finally,	the	device	information	screen:

Now	we	can	turn	the	LED	on/off	and	it	should	react	accordingly.

With	this,	we	are	done	with	the	desktop	app.

In	the	next	section,	we	will	build	a	mobile	app	using	the	Ionic	framework.

Building	the	mobile	app	and
implementing	an	end-to-end	flow
In	this	section,	we	will	build	our	mobile	companion	app	using	the	Ionic
framework	(http://ionicframework.com/).	The	output	or	the	example	would	be	the	same
as	what	we	have	done	for	the	web	and	desktop	app.

To	get	started,	we	will	install	the	latest	version	of	ionic	and	cordova	by	running	the
following	command:

npm	install	-g	ionic	cordova		

Now,	we	need	the	mobile	app	base.	If	you	have	not	already	cloned	the	book's
code	repository,	you	can	do	so	using	the	following	command	(anywhere	on	your
machine):

git	clone	git@github.com:PacktPublishing/Practical-Internet-of-Things-with-

JavaScript.git

or	you	can	download	the	zip	file	from	https://github.com/PacktPublishing/Practical-Internet-of-
Things-with-JavaScript	as	well.

Once	the	repository	has	been	downloaded,	cd	into	the	base	folder	and	make	a
copy	of	mobile-app-base	folder	into	chapter2	folder.

Once	the	copy	is	completed,	cd	into	the	mobile-app	folder	and	run	the	following
command:

npm	install

And	then

ionic	cordova	platform	add	android	

Or

	ionic	cordova	platform	add	ios	

http://ionicframework.com/
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

This	will	take	care	of	installing	the	required	dependencies	and	adding	Android	or
iOS	platforms.

If	we	look	at	the	mobile-app	folder,	we	should	see	the	following:

.

├──	README.md

├──	config.xml

├──	hooks

│	└──	README.md

├──	ionic.config.json

├──	package.json

├──	platforms

│	├──	android

│	└──	platforms.json

├──	plugins

│	├──	android.json

│	├──	cordova-plugin-console

│	├──	cordova-plugin-device

│	├──	cordova-plugin-splashscreen

│	├──	cordova-plugin-statusbar

│	├──	cordova-plugin-whitelist

│	├──	fetch.json

│	└──	ionic-plugin-keyboard

├──	resources

│	├──	android

│	├──	icon.png

│	├──	ios

│	└──	splash.png

├──	src

│	├──	app

│	├──	assets

│	├──	declarations.d.ts

│	├──	index.html

│	├──	manifest.json

│	├──	pages

│	├──	service-worker.js

│	├──	services

│	└──	theme

├──	tsconfig.json

├──	tslint.json

└──	www

├──	assets

├──	build

├──	index.html

├──	manifest.json

└──	service-worker.js

In	our	mobile-app	folder,	the	most	important	file	is	mobile-app/config.xml.	This	file
consists	of	the	definitions	needed	by	cordova	to	convert	the	HTML/CSS/JS
application	into	a	hybrid	mobile	app.

Next,	we	have	the	mobile-app/resources,	mobile-app/plugins,	and	mobile-app/platforms
folder	that	will	consist	of	the	cordova	wrapped	code	for	the	app	we	are
developing.

And	finally,	the	mobile-app/src	folder,	this	folder	is	where	we	have	all	our	source
code.	The	setup	for	the	mobile	is	similar	to	what	we	had	for	the	web	app	and	the
desktop	app.	We	have	a	service	folder	that	has	the	mobile-
app/src/services/auth.service.ts	for	authentication,	mobile-
app/src/services/device.service.ts	for	interfacing	with	the	devices	API,	mobile-
app/src/services/data.service.ts	for	fetching	the	latest	data	from	the	device,	mobile-
app/src/services/socket.service.ts	to	set	up	web	sockets	in	our	mobile	app,	and
finally,	mobile-app/src/services/toast.service.ts	to	show	notifications,	tailored	to	a
mobile.	mobile-app/src/services/toast.service.ts	is	similar	to	the	notification	service
we	have	used	in	the	web	and	desktop	apps.

Next,	we	have	the	needed	pages.	The	mobile	app	implements	only	the	login
page.	We	are	forcing	the	user	to	use	the	web	or	desktop	app	to	create	a	new

account.	mobile-app/src/pages/login/login.ts	consists	of	the	authentication	logic.
mobile-app/src/pages/home/home.ts	consists	of	the	list	of	all	devices	that	a	user	is
registered	with.	mobile-app/src/pages/add-device/add-device.ts	has	the	logic	needed	to
add	a	new	device	and	mobile-app/src/pages/view-device/view-device.ts	to	view	the
device	information.

Now,	from	inside	the	mobile-app	folder,	run	the	following	command:

ionic	serve		

This	will	launch	the	app	in	the	browser.	If	you	would	like	to	test	it	on	an	actual
app,	you	can	run	the	following	command:

ionic	cordova	run	android			

Alternatively,	you	can	run	the	following	command:

ionic	cordova	run	ios		

This	will	launch	the	app	on	the	device.	In	either	case,	the	app	will	behave	the
same.

Once	the	app	is	launched,	we	will	see	the	login	page:

Once	we	have	successfully	logged	in,	we	should	see	the	home	page	as	follows.
We	can	add	a	new	device	using	the	+	icon	in	the	header:

The	newly	created	device	should	reflect	on	our	home	screen,	as	follows:

If	we	click	on	VIEW	DEVICE,	we	should	see	the	device	information,	as
follows:

When	we	toggle	the	button	on/off,	the	LED	on	the	Raspberry	Pi	should	turn
on/off:

Another	view	of	the	same	setup	is	shown	as	follows:

The	preceding	is	the	setup	of	the	Raspberry	Pi	3	with	a	DHT11	sensor	and	LED.

With	this,	we	have	successfully	established	an	end-to-end	architecture	for
executing	out	the	Internet	of	Things	examples.	From	now	on,	we	will	work	with
the	web	app,	mobile	app,	desktop	app,	Raspberry	Pi,	and	a	bit	of	API	engine	for
our	next	examples.	The	changes	we	will	make	are	minimal.	We	will	focus	on	the
use	case	rather	than	building	the	setup	again	and	again.

Troubleshooting
	

In	case	you	do	not	see	the	expected	output,	check	the	following:

Check	if	the	broker,	API	engine,	web	app,	and	Raspberry	Pi	app	are	running
Check	the	IP	address	of	the	broker	provided	to	the	Raspberry	Pi
Check	the	IP	address	of	the	API	engine	provided	to	the	mobile	app

	

	

Summary
In	Chapter	2,	IoTFW.js	-	I	and	in	this	chapter,	we	went	through	the	entire	process	of
setting	up	an	entire	frame	to	work	with	the	Internet	of	Things	solutions.	We	built
the	entire	framework	using	only	JavaScript	as	our	programming	language.

We	started	with	understanding	the	architecture	and	data	flow	from	Raspberry	Pi
to	an	end	user	device,	such	as	a	web	app,	desktop	app,	or	a	mobile	app.	Then	we
started	working	on	the	broker	using	Mosca,	after	setting	up	MongoDB.	Next	we
designed	and	developed	the	API	engine	and	completed	the	basic	Raspberry	Pi
setup.

We	worked	on	the	web	app	and	desktop	app	and	integrated	a	simple	LED	and	a
DHT11	temperature	and	humidity	sensor	with	the	Raspberry	Pi,	and	saw	a
simple	flow	from	one	end	to	another.	We	streamed	the	temperature	and	humidity
in	real	time	to	the	web	app	and	desktop	app,	and	using	the	toggle	button,	we
turned	on	the	LED.

And	finally,	we	built	a	mobile	app	and	implemented/validated	the	LED	and
DHT11	setup.

In	the	Chapter	4,	Smart	Agriculture,	using	the	current	setup	as	a	base,	we	will	build
a	smart	agriculture	solution.

	

Smart	Agriculture
	

In	this	chapter,	we	are	going	to	take	our	framework	which	we	built	in	Chapter	2,
IoTFW.js	-	I	and	Chapter	3,	IoTFW.js	-	II,	and	start	working	on	various	use	cases.
We	are	going	to	start	with	the	agricultural	sector	and	build	a	smart	weather
station	in	this	chapter.

A	simple	requirement	for	any	farmer	is	to	have	the	ability	to	understand	the
environmental	factors	near	and	around	their	farm.	So,	we	are	going	to	build	a
prototype	of	a	portable	weather	station.	We	are	going	to	work	on	the	following
topics	in	this	chapter:

Agriculture	and	IoT
Designing	a	smart	weather	station
Developing	the	code	for	Raspberry	Pi	3
Updating	MQTT	code	in	the	API	engine
Modifying	the	templates	for	web	apps,	desktop	apps,	and	mobile	apps

	

	

Agriculture	and	IoT
A	report	by	Beecham	Research	predicts	that	the	world	population	will	reach	8
billion	by	2025	and	9.6	billion	by	2050,	and	in	order	to	keep	pace,	food
production	must	increase	by	70%	by	2050.	Here	is	the	report:	https://www.beechamres
earch.com/files/BRL%20Smart%20Farming%20Executive%20Summary.pdf

This	means	that	we	need	to	find	quicker	and	more	productive	ways	of	farming.
Land	and	resources	are	going	to	get	scarcer	as	we	keep	moving	toward	2050.
This	is	when,	given	the	resources,	we	would	need	to	feed	more	mouths	than	ever
before,	unless	a	zombie	apocalypse	comes	and	all	of	us	get	eaten	up	by	other
zombies!

This	is	a	very	good	opportunity	for	technology	to	provide	solutions	to	make	this
happen.	IoT	has	almost	always	been	about	smart	homes,	smart	offices,	and
convenience,	but	it	can	do	more	than	that.	That	is	what	we	are	going	to	cover	in
this	chapter.	We	are	going	to	build	a	smart	weather	station	that	a	farmer	can
deploy	in	their	farm	to	get	real-time	metrics	such	as	temperature,	humidity,	soil
moisture,	and	rain	detection.

Other	sensors	can	be	added	based	on	availability	and	need.

https://www.beechamresearch.com/files/BRL%20Smart%20Farming%20Executive%20Summary.pdf

Designing	a	smart	weather	station
Now	that	we	have	an	idea	of	what	we	are	building	and	why,	let	us	get	started
with	the	design.	The	first	thing	we	are	going	to	do	is	identify	the	sensors	needed.
In	this	smart	weather	station,	we	are	going	to	use	the	following:

A	temperature	sensor
A	humidity	sensor
A	soil	moisture	sensor
A	rain	detector	sensor

I	have	picked	sensors	that	are	available	off	the	shelf,	to	showcase	the	proof	of
concept.	Most	of	them	will	work	well	for	testing,	and	validating	an	idea,	or	as	a
hobby,	but	are	not	suitable	for	production.

We	are	going	to	connect	these	sensors	to	our	Raspberry	Pi	3.	We	are	going	to	use
the	following	models	for	the	sensors:

Temperature	and	humidity:	https://www.amazon.com/Gowoops-Temperature-Humidity-Dig
ital-Raspberry/dp/B01H3J3H82/ref=sr_1_5
Soil	moisture	sensor:	https://www.amazon.com/Hygrometer-Humidity-Detection-Moisture-Ar
duino/dp/B01FDGUHBM/ref=sr_1_4
Rain	detector	sensor:	https://www.amazon.com/Uxcell-a13082300ux1431-Rainwater-Detectio
n-3-3V-5V/dp/B00GN7O7JE

You	can	buy	these	sensors	elsewhere	as	well.

As	we	have	seen	in	Chapter	3,	IoTFW.js	-	II,	the	temperature	and	humidity	sensor
is	a	digital	sensor,	and	we	are	going	to	use	the	node-dht-sensor	module	to	read	the
temperature	and	humidity	values.	The	soil	moisture	sensor	is	an	analog	sensor,
and	Raspberry	Pi	3	does	not	have	any	analog	pins.	For	this,	we	are	going	to	use	a
12-bit	A/D	IC	from	Microchip	named	MCP3208,	to	convert	the	analog	output
from	the	sensor	and	feed	it	to	Raspberry	Pi	over	the	SPI	protocol.

Wikipedia	defines	the	SPI	protocol	in	the	following	way:

https://www.amazon.com/Gowoops-Temperature-Humidity-Digital-Raspberry/dp/B01H3J3H82/ref=sr_1_5
https://www.amazon.com/Hygrometer-Humidity-Detection-Moisture-Arduino/dp/B01FDGUHBM/ref=sr_1_4
https://www.amazon.com/Uxcell-a13082300ux1431-Rainwater-Detection-3-3V-5V/dp/B00GN7O7JE
https://cdp.packtpub.com/b07286advancediotwithjavascripteas/wp-admin/post.php?post=266&action=edit#post_235

The	Serial	Peripheral	Interface	(SPI)	bus	is	a	synchronous	serial
communication	interface	specification	used	for	short	distance	communication,
primarily	in	embedded	systems.	The	interface	was	developed	by	Motorola	in	the
late	1980s	and	has	become	a	de	facto	standard.

For	more	information	on	SPI,	refer	to:	https://en.wikipedia.org/wiki/Serial_P
eripheral_Interface_Bus.

The	rain	detector	sensor	can	be	read	as	both	analog	and	digital.	We	are	going	to
use	the	analog	output	to	detect	the	level	of	rain,	and	not	just	whether	it	is	raining
or	not.

Going	back	to	MCP3208,	it	is	a	16-pin	package	that	can	read	eight	analog	inputs
at	once	and	can	convert	them	and	feed	to	Raspberry	Pi	over	the	SPI	protocol.
You	can	read	more	about	MCP3208	IC	here:	http://ww1.microchip.com/downloads/en/De
viceDoc/21298c.pdf.	You	can	purchase	it	from	here:	https://www.amazon.com/Adafruit-MCP3
008-8-Channel-Interface-Raspberry/dp/B00NAY3RB2/ref=sr_1_1.

We	are	going	to	connect	the	temperature	and	humidity	sensor	directly	to
Raspberry	Pi	3,	and	the	moisture	sensor	and	the	rain	sensor	to	MCP3208,	and
MCP3208	will	connect	to	Raspberry	Pi	3	over	SPI.

And	on	the	broker,	we	are	not	going	to	change	anything.	In	the	API	engine,	we
are	going	to	add	a	new	topic	to	the	MQTT	client	named	weather-status,	and	then
send	the	data	from	Raspberry	Pi	3	to	this	topic.

On	the	web	app,	we	are	going	to	update	the	template	for	viewing	the	weather
metrics.	The	same	goes	for	the	desktop	app	and	mobile	app.

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://ww1.microchip.com/downloads/en/DeviceDoc/21298c.pdf
https://www.amazon.com/Adafruit-MCP3008-8-Channel-Interface-Raspberry/dp/B00NAY3RB2/ref=sr_1_1

Setting	up	Raspberry	Pi	3
Let	us	get	started	with	the	schematics.

Set	up	Raspberry	Pi	3	and	the	sensors	as	shown	here:

Here	is	a	table	showing	these	connections:

Raspberry	Pi	and	MCP3208
Refer	to	the	following	table:

Raspberry	Pi	pin	number	-	pin	name MCP3208	pin	number	-	pin	name

1	-	3.3V 16	-	VDD

1	-	3.3V 15	-	AREF

6	-	GND 14	-	AGND

23	-	GPIO11,	SPI0_SCLK 13	-	CLK

21	-	GPIO09,	SPI0_MISO 12	-	DOUT

19	-GPIO10,	SPI0_MOSI 11	-	DIN

24	-	GPIO08,	CEO 10	-	CS

6	-	GND 9	-	DGND

Moisture	sensor	and	MCP3208
Refer	to	the	following	table:

MCP3208	pin	number	-	pin	name Sensor	name	-	pin	number

1	-	A0 Rain	sensor	-	A0

2	-	A1 Moisture	sensor	-	A0

Raspberry	Pi	and	DHT11
Refer	to	the	following	table:

Raspberry	Pi	number	-	pin	name Sensor	name	-	pin	number

3	-	GPIO2 DHT11	-	Data

	

All	grounds	and	all	3.3V	are	connected	to	a	common	point.

Once	we	have	connected	the	sensors	as	shown	previously,	we	will	write	the	code
needed	to	interface	with	the	sensors.

Before	we	go	further,	we	are	going	to	copy	the	entire	Chapter	2,	IoTFW.js	-	I,	and	C
hapter	3,	IoTFW.js	-	II,	code	into	another	folder	named	chapter4.

The	chapter4	folder	should	look	as	shown	here:

.

├──	api-engine

│	├──	package.json

│	└──	server

├──	broker

│	├──	certs

│	└──	index.js

├──	desktop-app

│	├──	app

│	├──	freeport.js

│	├──	index.css

│	├──	index.html

│	├──	index.js

│	├──	license

│	├──	package.json

│	├──	readme.md

│	└──	server.js

├──	mobile-app

│	├──	config.xml

│	├──	hooks

│	├──	ionic.config.json

│	├──	package.json

│	├──	platforms

│	├──	plugins

│	├──	resources

│	├──	src

│	├──	tsconfig.json

│	├──	tslint.json

│	└──	www

└──	web-app

├──	README.md

├──	e2e

├──	karma.conf.js

├──	package.json

├──	protractor.conf.js

├──	src

├──	tsconfig.json

└──	tslint.json

We	will	head	back	to	the	Raspberry	Pi	and	inside	the	pi-client	folder,	we	will
update	the	index.js	file.	Update	pi-client/index.js,	as	shown	here:

var	config	=	require('./config.js');

var	mqtt	=	require('mqtt');

var	GetMac	=	require('getmac');

var	async	=	require('async');

var	rpiDhtSensor	=	require('rpi-dht-sensor');

var	McpAdc	=	require('mcp-adc');

var	adc	=	new	McpAdc.Mcp3208();

var	dht11	=	new	rpiDhtSensor.DHT11(2);

var	temp	=	0,

prevTemp	=	0;

var	humd	=	0,

prevHumd	=	0;

var	macAddress;

var	state	=	0;

var	moistureVal	=	0,

prevMoistureVal	=	0;

var	rainVal	=	0,

prevRainVal	=	0;

var	client	=	mqtt.connect({

port:	config.mqtt.port,

protocol:	'mqtts',

host:	config.mqtt.host,

clientId:	config.mqtt.clientId,

reconnectPeriod:	1000,

username:	config.mqtt.clientId,

password:	config.mqtt.clientId,

keepalive:	300,

rejectUnauthorized:	false

});

client.on('connect',	function()	{

client.subscribe('rpi');

GetMac.getMac(function(err,	mac)	{

if	(err)	throw	err;

macAddress	=	mac;

client.publish('api-engine',	mac);

});

});

client.on('message',	function(topic,	message)	{

message	=	message.toString();

if	(topic	===	'rpi')	{

console.log('API	Engine	Response	>>	',	message);

}	else	{

console.log('Unknown	topic',	topic);

}

});

//	infinite	loop,	with	3	seconds	delay

setInterval(function()	{

readSensorValues(function(results)	{

console.log('Temperature:	'	+	temp	+	'C,	'	+	'humidity:	'	+	humd	+	'%,	'	+	'	Rain	

level	(%):'	+	rainVal	+	',	'	+	'moistureVal	(%):	'	+	moistureVal);

//	if	the	temperature	and	humidity	values	change

//	then	only	publish	the	values

if	(temp	!==	prevTemp	||	humd	!==	prevHumd	||	moistureVal	!==	prevMoistureVal	||	

rainVal	!=	prevRainVal)	{

var	data2Send	=	{

data:	{

t:	temp,

h:	humd,

r:	rainVal,

m:	moistureVal

},

macAddress:	macAddress

};

//	console.log('Data	Published');

client.publish('weather-status',	JSON.stringify(data2Send));

//	reset	prev	values	to	current

//	for	next	loop

prevTemp	=	temp;

prevHumd	=	humd;

prevMoistureVal	=	moistureVal;

prevRainVal	=	rainVal;

}

});

},	3000);	//	every	three	second

//	`CB`	expects	{

//	dht11Values:	val,

//	rainLevel:	val,

//	moistureLevel:	val

//	}

function	readSensorValues(CB)	{

async.parallel({

dht11Values:	function(callback)	{

var	readout	=	dht11.read();

//	update	global	variable

temp	=	readout.temperature.toFixed(2);

humd	=	readout.humidity.toFixed(2);

callback(null,	{	temp:	temp,	humidity:	humd	});

},

rainLevel:	function(callback)	{

//	we	are	going	to	connect	rain	sensor

//	on	channel	0,	hence	0	is	the	first	arg	below

adc.readRawValue(0,	function(value)	{

//	update	global	variable

rainVal	=	value;

rainVal	=	(100	-	parseFloat((rainVal	/	4096)	*	100)).toFixed(2);

callback(null,	{	rain:	rainVal	});

});

},

moistureLevel:	function(callback)	{

//	we	are	going	to	connect	moisture	sensor

//	on	channel	1,	hence	1	is	the	first	arg	below

adc.readRawValue(1,	function(value)	{

//	update	global	variable

moistureVal	=	value;

moistureVal	=	(100	-	parseFloat((moistureVal	/	4096)	*	100)).toFixed(2);

callback(null,	{	moisture:	moistureVal	});

});

}

},	function	done(err,	results)	{

if	(err)	{

throw	err;

}

//	console.log(results);

if	(CB)	CB(results);

});

}

In	the	preceding	code,	we	have	left	the	MQTT	setup	as	is.	We	have	added	the
mcp-adc	(https://github.com/anha1/mcp-adc)	and	async	(https://github.com/caolan/async)	modules.
mcp-adc	manages	the	SPI	protocol	interface	exposed	by	MCP3208,	and	we	are
using	the	async	module	to	read	data	from	all	sensors	in	parallel.

We	have	started	off	by	establishing	a	connection	with	the	broker	over	MQTTS.
Then,	we	have	set	up	an	infinite	loop	using	setInterval()	with	a	time	delay	of	3
seconds	between	executions.	Inside	the	callback	of	setInterval(),	we	have	invoked
readSensorValues()	to	get	the	latest	sensor	values.

readSensorValues()	uses	async.parallel()	to	read	the	three	sensors	in	parallel	and
update	the	data	in	the	global	variables	we	have	defined.	Once	all	the	sensor	data
is	gathered,	we	are	passing	the	results	to	the	callback	function	as	an	argument.

Once	we	receive	the	sensor	data,	we	are	going	to	check	whether	something	has
changed	between	the	temperature,	humidity,	rain,	and	moisture	values.	If	nothing
has	changed,	we	chill;	otherwise,	we	will	publish	this	data	to	the	broker	on	the
weather-status	topic.

https://github.com/anha1/mcp-adc
https://github.com/caolan/async

Save	all	the	files.	Now,	we	will	start	the	Mosca	broker	from	our	desktop
machine:

mosca	-c	index.js	-v	|	pino

Once	you	have	started	the	Mosca	server,	check	the	IP	address	of
the	server	on	which	Mosca	is	running.	Update	the	same	IP	in	your
Raspberry	Pi	config.js	file.	Otherwise,	Raspberry	Pi	cannot	post
data	to	the	broker.

Once	Mosca	has	started	successfully	and	we	have	validated	the	IP,	run	this	on
Raspberry	Pi:

sudo	node	index.js

This	will	start	the	server,	and	we	should	see	the	following:

When	I	started	the	Raspberry	Pi,	the	rain	sensor	was	dry	and	the	moisture	sensor
was	placed	inside	dry	soil.	Initially,	the	value	of	the	rain	sensor	was	1.86%	and	the
moisture	sensor	value	was	4.57%.

When	I	added	water	to	the	plant/moisture	sensor,	the	percentage	increased	to
98.83%;	similarly,	when	I	simulated	rainfall	on	the	rain	sensor,	the	value	went	up
to	89.48%.

Here	is	my	prototype	setup	of	the	smart	weather	station:

The	blue	chip	is	DHT11,	the	moisture	sensor	is	plotted	inside	my
desk-side	plant,	and	the	rain	sensor	is	placed	inside	a	plastic	tray
for	collecting	rainwater.	The	breadboard	has	the	MCP3208	IC	and
the	required	connections.

Lots	of	wires!

With	this,	we	complete	the	code	needed	for	Raspberry	Pi	3.	In	the	next	section,
we	are	going	to	set	up	the	code	needed	for	the	API	engine.

Setting	up	the	API	engine
In	this	last	section,	we	have	seen	how	to	set	up	the	components	and	code	needed
to	set	up	our	smart	weather	station	using	Raspberry	Pi	3.	Now,	we	will	work	on
managing	the	data	that	we	receive	on	the	API	engine	from	the	Raspberry	Pi	3.

Open	api-engine/server/mqtt/index.js	and	update	it,	as	shown	here:

var	Data	=	require('../api/data/data.model');	

var	mqtt	=	require('mqtt');	

var	config	=	require('../config/environment');	

	

var	client	=	mqtt.connect({	

port:	config.mqtt.port,	

protocol:	'mqtts',	

host:	config.mqtt.host,	

clientId:	config.mqtt.clientId,	

reconnectPeriod:	1000,	

username:	config.mqtt.clientId,	

password:	config.mqtt.clientId,	

keepalive:	300,	

rejectUnauthorized:	false	

});	

	

client.on('connect',	function()	{	

console.log('Connected	to	Mosca	at	'	+	config.mqtt.host	+	'	on	port	'	+	

config.mqtt.port);	

client.subscribe('api-engine');	

client.subscribe('weather-status');	

});	

	

client.on('message',	function(topic,	message)	{	

				//	message	is	Buffer	

				//	console.log('Topic	>>	',	topic);	

				//	console.log('Message	>>	',	message.toString());	

if	(topic	===	'api-engine')	{	

varmacAddress	=	message.toString();	

console.log('Mac	Address	>>	',	macAddress);	

client.publish('rpi',	'Got	Mac	Address:	'	+	macAddress);	

				}	else	if	(topic	===	'weather-status')	{	

var	data	=	JSON.parse(message.toString());	

								//	create	a	new	data	record	for	the	device	

Data.create(data,	function(err,	data)	{	

if	(err)	return	console.error(err);	

												//	if	the	record	has	been	saved	successfully,		

												//	websockets	will	trigger	a	message	to	the	web-app	

console.log('Data	Saved	:',	data.data);	

								});	

				}	else	{	

console.log('Unknown	topic',	topic);	

				}	

});	

Here,	we	are	waiting	for	a	message	on	the	weather-status	topic,	and	when	we

receive	the	data	from	the	Raspberry	Pi,	we	save	it	to	our	database	and	that
pushes	the	data	to	the	web	app,	mobile	app,	and	desktop	app.

Those	are	all	the	changes	we	need	to	make	to	absorb	the	data	from	the	Raspberry
Pi	3	and	pass	it	on	to	the	web,	desktop,	and	mobile	apps.

Save	all	the	files	and	run	the	following	code:

npm	start		

This	will	start	the	API	engine	and	connect	to	Mosca,	along	with	Raspberry	Pi:

And	if	we	leave	the	API	engine	running	for	a	while,	we	should	see	the
following:

The	data	from	the	device	is	logged	here.

In	the	next	section,	we	are	going	to	update	the	web	app	so	it	can	represent	the
data	from	the	API	engine.

Setting	up	the	web	app
	

Now	that	we	are	done	with	the	API	engine,	we	are	going	to	develop	the	interface
needed	to	show	the	weather	output	from	the	Raspberry	Pi	3.

Open	web-app/src/app/device/device.component.html	and	update	it,	as	shown	here:	<div
class="container">	

<div	*ngIf="!device">

<h3	class="text-center">Loading!</h3>	</div>

<div	class="row"	*ngIf="lastRecord">	<div	class="col-md-12">	<div
class="panel	panel-info">	<div	class="panel-heading">	<h3
class="panel-title">	{{device.name}}

</h3>

	<i	class="fa	fa-chevron-circle-
up"></i>		</div>

<div	class="clearfix"></div>	<div	class="table-responsive">	<table
class="table	table-striped">	<tr	*ngIf="lastRecord">
<td>Temperature</td>	<td>{{lastRecord.data.t}}</td>	</tr>	<tr
*ngIf="lastRecord">	<td>Humidity</td>	<td>{{lastRecord.data.h}}
%</td>	</tr>	<tr	*ngIf="lastRecord">	<td>Rain	Level</td>	<td>
{{lastRecord.data.r}}	%</td>	</tr>	<tr	*ngIf="lastRecord">
<td>Mositure	Level</td>	<td>{{lastRecord.data.m}}	%</td>	</tr>
<tr	*ngIf="lastRecord">	<td>Received	At</td>	<td>
{{lastRecord.createdAt	|	date:	'medium'}}</td>	</tr>	</table>	<div
class="col-md-6"	*ngIf="tempHumdData.length	>	0">	<canvas

baseChart	[datasets]="tempHumdData"	[labels]="lineChartLabels"
[options]="lineChartOptions"	[legend]="lineChartLegend"
[chartType]="lineChartType"></canvas>	</div>

	

<div	class="col-md-6"	*ngIf="rainMoisData.length	>	0">	<canvas
baseChart	[datasets]="rainMoisData"	[labels]="lineChartLabels"
[options]="lineChartOptions"	[legend]="lineChartLegend"
[chartType]="lineChartType"></canvas>	</div>

</div>

</div>

</div>

</div>

</div>

In	the	preceding	code,	we	have	added	four	rows	in	a	table	that	displays
temperature,	humidity,	rain	level,	and	moisture	level.	We	have	also	set	up	the
canvas	to	display	the	values	in	the	chart.

Next	is	the	class	definition	for	DeviceComponent,	present	in	web-
app/src/app/device/device.component.ts.	Update	web-
app/src/app/device/device.component.ts,	as	shown	here:	import	{	Component,	OnInit,
OnDestroy	}	from	'@angular/core';	import	{	DevicesService	}	from
'../services/devices.service';	import	{	Params,	ActivatedRoute	}	from
'@angular/router';	import	{	SocketService	}	from	'../services/socket.service';
import	{	DataService	}	from	'../services/data.service';	import	{
NotificationsService	}	from	'angular2-notifications';

@Component({

selector:	'app-device',

templateUrl:	'./device.component.html',	styleUrls:
['./device.component.css']

})

export	class	DeviceComponent	implements	OnInit,	OnDestroy	{

device:	any;

data:	Array<any>;

toggleState:	boolean	=	false;

privatesubDevice:	any;

privatesubData:	any;

lastRecord:	any;

	

//	line	chart	config

publiclineChartOptions:	any	=	{

responsive:	true,

legend:	{

position:	'bottom',	},	hover:	{

mode:	'label'

},	scales:	{

xAxes:	[{

display:	true,	scaleLabel:	{

display:	true,	labelString:	'Time'

}

}],

yAxes:	[{

display:	true,	ticks:	{

beginAtZero:	true,	//	steps:	10,	//	stepValue:	5,	//	max:	70

}

}]

},

title:	{

display:	true,

text:	'Sensor	Data	vs.	Time'

}

};

publiclineChartLegend:	boolean	=	true;	publiclineChartType:	string	=
'line';	publictempHumdData:	Array<any>	=	[];	publicrainMoisData:
Array<any>	=	[];	publiclineChartLabels:	Array<any>	=	[];

constructor(private	deviceService:	DevicesService,
privatesocketService:	SocketService,	privatedataService:	DataService,
private	route:	ActivatedRoute,	privatenotificationsService:
NotificationsService)	{	}

	

ngOnInit()	{

this.subDevice	=	this.route.params.subscribe((params)	=>	{

this.deviceService.getOne(params['id']).subscribe((response)	=>	{

this.device	=	response.json();	this.getData();	this.socketInit();	});

});

}

	

getData()	{

this.dataService.get(this.device.macAddress).subscribe((response)	=>
{

this.data	=	response.json();	this.lastRecord	=	this.data[0];	//
descending	order	data	this.genChart();

});

}

	

socketInit()	{

this.subData	=
this.socketService.getData(this.device.macAddress).subscribe((data)
=>	{

if	(this.data.length<=	0)	return;	this.data.splice(this.data.length	-	1,	1);
//	remove	the	last	record	this.data.push(data);	//	add	the	new	one
this.lastRecord	=	data;	this.genChart();

});

}

	

ngOnDestroy()	{

this.subDevice.unsubscribe();	this.subData	?
this.subData.unsubscribe()	:	'';	}

	

genChart()	{

let	data	=	this.data;

let	_thArr:	Array<any>	=	[];	let	_rmArr:	Array<any>	=	[];	let	_lblArr:
Array<any>	=	[];

lettmpArr:	Array<any>	=	[];	lethumArr:	Array<any>	=	[];	letraiArr:
Array<any>	=	[];	letmoiArr:	Array<any>	=	[];

for	(vari	=	0;	i<data.length;	i++)	{

let	_d	=	data[i];

tmpArr.push(_d.data.t);	humArr.push(_d.data.h);
raiArr.push(_d.data.r);	moiArr.push(_d.data.m);
_lblArr.push(this.formatDate(_d.createdAt));	}

	

//	reverse	data	to	show	the	latest	on	the	right	side	tmpArr.reverse();

humArr.reverse();

raiArr.reverse();

moiArr.reverse();

_lblArr.reverse();

	

_thArr	=	[

{

data:	tmpArr,	label:	'Temperature'

},

{

data:	humArr,	label:	'Humidity	%'

}

]

	

_rmArr	=	[

{

data:	raiArr,	label:	'Rain	Levels'

},

{

data:	moiArr,	label:	'Moisture	Levels'

}

]

	

this.tempHumdData	=	_thArr;	this.rainMoisData	=	_rmArr;

this.lineChartLabels	=	_lblArr;	}

	

privateformatDate(originalTime)	{

var	d	=	new	Date(originalTime);	vardatestring	=	d.getDate()	+	"-"	+
(d.getMonth()	+	1)	+	"-"	+	d.getFullYear()	+	"	"	+

d.getHours()	+	":"	+	d.getMinutes();	returndatestring;

}

	

}

In	the	preceding	code,	we	have	used	the	ngOnInit	hook	and	have	made	a	request	to
get	the	device	data.	Using	socketInit(),	along	with	the	data,	we	are	going	to
register	for	socket	data	events	for	the	current	device.

In	getData(),	we	fetch	the	data	from	the	server,	extract	the	latest	record,	and	set	it
to	the	lastRecord	property.	And	finally,	we	call	genChart()	to	draw	a	chart.

Now,	we	are	done	with	the	required	changes.	Save	all	the	files	and	run	the
following:	ng	server

If	we	navigate	to	http://localhost:4200,	log	in,	and	click	on	VIEW	DEVICE,	we
should	see	the	following:	

Whenever	there	is	change	in	the	data,	we	should	see	the	UI	update	automatically.

In	the	next	section,	we	are	going	to	build	the	same	app	and	show	it	inside	the
electron	shell.

	

	

	

Setting	up	the	desktop	app
In	the	last	section,	we	developed	the	template	and	interface	for	the	web	app.	In
this	section,	we	are	going	to	build	the	same	thing	and	dump	it	inside	the	desktop
app.

To	get	started,	head	back	to	the	terminal/prompt	of	the	web-app	folder,	and	run	the
following:	ng	build	--env=prod

This	will	create	a	new	folder	inside	the	web-app	folder	named	dist.	The	contents	of
the	dist	folder	should	consist	of:	.

├──	favicon.ico

├──	index.html

├──	inline.bundle.js

├──	inline.bundle.js.map

├──	main.bundle.js

├──	main.bundle.js.map

├──	polyfills.bundle.js

├──	polyfills.bundle.js.map

├──	scripts.bundle.js

├──	scripts.bundle.js.map

├──	styles.bundle.js

├──	styles.bundle.js.map

├──	vendor.bundle.js

└──	vendor.bundle.js.map

All	the	code	we	have	written	is	finally	bundled	into	the	preceding	files.	We	will
grab	all	the	files	(not	the	dist	folder)	present	inside	the	dist	folder	and	then	paste
them	inside	the	desktop-app/app	folder.	The	final	structure	of	desktop-app	after	the
preceding	changes	will	be	as	follows:	.

├──	app

│	├──	favicon.ico

│	├──	index.html

│	├──	inline.bundle.js

│	├──	inline.bundle.js.map

│	├──	main.bundle.js

│	├──	main.bundle.js.map

│	├──	polyfills.bundle.js

│	├──	polyfills.bundle.js.map

│	├──	scripts.bundle.js

│	├──	scripts.bundle.js.map

│	├──	styles.bundle.js

│	├──	styles.bundle.js.map

│	├──	vendor.bundle.js

│	└──	vendor.bundle.js.map

├──	freeport.js

├──	index.css

├──	index.html

├──	index.js

├──	license

├──	package.json

├──	readme.md

└──	server.js

To	test	drive	the	process,	run	the	following:

npm	start

Navigate	to	the	VIEW	DEVICE	page,	and	we	should	see	the	following:	

Whenever	there	is	a	change	in	the	data,	we	should	see	the	UI	update
automatically.

With	this,	we	are	done	with	the	development	of	the	desktop	app.	In	the	next
section,	we	will	update	the	mobile	app.

Setting	up	the	mobile	app
In	the	last	section,	we	saw	how	to	build	and	run	the	desktop	app	for	the	smart
weather	station.	In	this	section,	we	are	going	to	update	the	template	of	the
mobile	app	to	show	the	weather	station	data.

Open	mobile-app/src/pages/view-device/view-device.html	and	update	it,	as	shown	here:

<ion-header>

				<ion-navbar>

								<ion-title>Mobile	App</ion-title>

				</ion-navbar>

</ion-header>

<ion-content	padding>

				<div	*ngIf="!lastRecord">

								<h3	class="text-center">Loading!</h3>

				</div>

				<div	*ngIf="lastRecord">

								<ion-list>

												<ion-item>

																<ion-label>Name</ion-label>

																<ion-label>{{device.name}}</ion-label>

												</ion-item>

												<ion-item>

																<ion-label>Temperature</ion-label>

																<ion-label>{{lastRecord.data.t}}</ion-label>

												</ion-item>

												<ion-item>

																<ion-label>Humidity</ion-label>

																<ion-label>{{lastRecord.data.h}}	%</ion-label>

												</ion-item>

												<ion-item>

																<ion-label>Rain	Level</ion-label>

																<ion-label>{{lastRecord.data.r}}	%</ion-label>

												</ion-item>

												<ion-item>

																<ion-label>Moisture	Level</ion-label>

																<ion-label>{{lastRecord.data.m}}	%</ion-label>

												</ion-item>

												<ion-item>

																<ion-label>Received	At</ion-label>

																<ion-label>{{lastRecord.createdAt	|	date:	'medium'}}</ion-label>

												</ion-item>

								</ion-list>

				</div>

</ion-content>

In	the	preceding	code,	we	have	created	four	items	inside	the	list	view	to	display
the	temperature,	humidity,	rain	level,	and	moisture	level.	And	the	required	logic
for	ViewDevicePage	class	would	be	present	in	mobile-app/src/pages/view-device/view-
device.ts.	Update	mobile-app/src/pages/view-device/view-device.ts,	as	shown	here:

import	{	Component	}	from	'@angular/core';	

import	{	IonicPage,	NavController,	NavParams	}	from	'ionic-angular';	

	

import	{	DevicesService	}	from	'../../services/device.service';	

import	{	DataService	}	from	'../../services/data.service';	

import	{	ToastService	}	from	'../../services/toast.service';	

import	{	SocketService	}	from	'../../services/socket.service';	

	

@IonicPage()	

@Component({	

			selector:	'page-view-device',	

			templateUrl:	'view-device.html',	

})	

export	class	ViewDevicePage	{	

			device:	any;	

			data:	Array<any>;	

			toggleState:	boolean	=	false;	

			privatesubData:	any;	

			lastRecord:	any;	

	

	

			constructor(private	navCtrl:	NavController,	

									privatenavParams:	NavParams,	

									privatesocketService:	SocketService,	

									privatedeviceService:	DevicesService,	

									privatedataService:	DataService,	

									privatetoastService:	ToastService)	{	

									this.device	=	navParams.get("device");	

									console.log(this.device);	

			}	

	

			ionViewDidLoad()	{	

									this.deviceService.getOne(this.device._id).subscribe((response)	=>	{	

															this.device	=	response.json();	

															this.getData();	

															this.socketInit();	

									});	

			}	

	

			getData()	{	

									this.dataService.get(this.device.macAddress).subscribe((response)	=>	{	

															this.data	=	response.json();	

															this.lastRecord	=	this.data[0];	//	descending	order	data	

									});	

			}	

	

			socketInit()	{	

									this.subData	=	

this.socketService.getData(this.device.macAddress).subscribe((data)	=>	{	

															if(this.data.length<=	0)	return;	

															this.data.splice(this.data.length	-	1,	1);	//	remove	the	last	record	

															this.data.push(data);	//	add	the	new	one	

															this.lastRecord	=	data;	

									});	

			}	

	

			ionViewDidUnload()	{	

									this.subData&&this.subData.unsubscribe&&this.subData.unsubscribe();	

//unsubscribe	if	subData	is	defined	

			}	

}	

In	the	preceding	code,	we	are	getting	the	latest	data	from	the	API	engine	using

getData().	Then,	using	socketInit(),	we	are	subscribing	to	the	latest	changes	to	the
data.

Check	the	IP	address	of	the	server	on	which	the	API	engine	is
running.	Update	the	same	IP	in	your	mobile	app's	mobile-
app/src/app/app.globals.ts	file.	Otherwise,	the	mobile	app	cannot
communicate	with	the	API	engine.

Now,	save	all	the	files	and	run	the	following:

ionic	serve

Or,	you	can	deploy	the	same	to	your	device	as	well,	by	running	the	following:

ionic	run	android	

Or

	ionic	run	ios

Once	the	app	is	launched,	and	when	we	navigate	to	the	VIEW	DEVICE	page,
we	should	see	the	following	on	our	screen:

As	we	can	see	from	the	image,	we	are	able	to	view	the	data	updating	in	real
time.

Summary
In	this	chapter,	we	used	the	knowledge	we	gained	in	chapters	two	and	three	and
built	a	prototype	of	a	smart	weather	station.	We	started	by	identifying	the	sensors
needed	to	build	the	weather	station.	Next,	we	set	them	up	on	the	Raspberry	Pi	3.
We	wrote	the	code	needed	to	interface	with	the	sensors.	Once	this	was	done,	we
updated	the	API	engine	to	read	the	data	from	the	Raspberry	Pi	3	on	the	new
topic.	Once	the	API	engine	received	the	data,	we	saved	it	in	the	database	and
then	sent	it	to	the	web,	desktop,	and	mobile	apps	over	web-sockets.	Finally,	we
updated	the	presentation	templates	on	the	web,	desktop,	and	mobile	apps;	then,
we	displayed	the	data	from	the	Raspberry	Pi	on	the	web,	desktop,	and	mobile
apps.

In	Chapter	5,	Smart	Agriculture	and	Voice	AI,	we	are	going	to	work	with	voice
artificial	intelligence,	using	Alexa	from	Amazon	and	the	smart	weather	station
we	built.

	

Smart	Agriculture	and	Voice	AI
In	Chapter	4,	Smart	Agriculture,	we	have	seen	one	of	the	mainstream	areas	in
which	IoT	can	create	an	impact;	the	agriculture	sector.	In	this	chapter,	we	are
going	to	take	that	to	a	new	level.	Using	a	voice	AI	engine	such	as	Amazon
Alexa,	we	are	going	to	talk	to	the	smart	weather	station	that	we	have	built.

For	example,	a	farmer	can	ask	Alexa	`Alexa,	ask	smarty	app	the	moisture	level	in
my	farm,	and	Alexa	would	go	the	moisture	level	in	your	farm	is	20%.	Consider
watering	now.	Then,	the	farmer	would	go,	Alexa,	ask	smarty	app	to	turn	on	my
motor	and	Alexa	would	turn	it	on.	Fascinating,	isn't	it?

Generally,	voice	AI	based	IoT	is	more	common	in	the	concepts	of	smart	home
and	smart	office.	I	wanted	to	implement	it	with	smart	agriculture.

In	this	chapter,	we	are	going	to	work	on	the	following:

Understand	Amazon	Alexa
Build	an	IoT.js	controlled	water	motor
Understand	AWS	lambda
Develop	a	skillset	for	Amazon	Alexa
Test	the	weather	station	as	well	as	the	water	motor

Voice	AI
There	was	a	time	when	turning	something	on/off	using	a	smart	phone	was
exciting.	Times	have	changed	and	things	have	evolved	quite	a	bit	since	in	the
space	of	voice	AI.	A	lot	of	people	use	their	voice	to	do	a	lot	of	things,	right	from
making	notes,	building	their	grocery	lists,	to	searching	the	internet.	We	no	longer
use	hands	for	mundane	activities.

"Look	Ma,	No	hands!"

What's	next?	Think	of	it	and	it	happens?	I	would	love	to	be	alive	to	see	that,	as	I
could	do	things	at	the	speed	of	thought.

If	you	are	new	to	the	world	of	Voice	AI,	you	can	start	looking	up	Amazon	Alexa,
Google	Now/Google	Assistant,	Apple	Siri,	or	Windows	Cortana	to	see	what	I	am
talking	about.	Since	we	are	going	to	work	with	Amazon	Alexa	in	this	chapter,
we	will	explore	only	that.

Amazon	recently	launched	a	couple	of	devices	named	Amazon	Echo	and
Amazon	Echo	Dot	(recently	made	available	in	India	too),	which	are	smart
speakers,	enabled	by	Alexa,	Amazon's	voice	AI	software.	If	you	want	to
experience	Alexa	for	yourself,	without	buying	buying	echo	products,	download
the	reverb	app	for	Android:	https://play.google.com/store/apps/details?id=agency.rain.android.alex
a&hl=en	or	iOS:	https://itunes.apple.com/us/app/reverb-for-amazon-alexa/id1144695621?mt=8	and
launch	the	app.

You	should	see	an	interface	with	a	microphone	icon.	Press	and	hold	the
microphone	and	you	should	see	the	text	Listening...	on	the	top,	as	shown	in	the
following	screenshot:

https://play.google.com/store/apps/details?id=agency.rain.android.alexa&hl=en
https://itunes.apple.com/us/app/reverb-for-amazon-alexa/id1144695621?mt=8

Now	say,	Alexa,	tell	me	a	joke	and	get	entertained	by	Alexa!

Test	drive
To	test	what	we	are	going	to	build,	press	the	microphone	icon	in	the	reverb	app
and	say,	Alexa,	ask	smarty	app	for	the	weather	report	and	you	should	hear	the
latest	data	that	is	persisted	in	the	database	for	the	smart	weather	station.	And
then	you	can	say,	Alexa,	ask	smarty	app	to	turn	on	the	motor,	or	Alexa,	ask
smarty	app	to	turn	off	the	motor;	if	my	device	is	online,	it	will	turn	it	off.

Along	with	smart	weather	station,	we	are	going	to	build	a	smart	socket,	which
can	be	connected	to	a	motor	in	a	farm.	And	using	Alexa,	we	are	going	to	turn
on/off	the	motor.

Now,	if	you	have	an	Amazon	echo	or	echo	dot,	you	can	test	the	skill	we	are
going	to	build.	Or,	you	can	do	the	same	using	the	reverb	app.	You	can	also	use	htt
ps://reverb.ai/	or	https://echosim.io/	for	the	same.

Till	your	Alexa	skill	is	published,	it	will	be	only	accessible	on
devices	that	are	linked	with	your	Amazon	account	only.	If	you	have
enabled	beta	testing,	then	you	can	allow	multiple	people	to	access
this	skill	on	their	Amazon	account	linked	Alexa	powered	devices.

If	you	are	facing	issues	to	explore	the	demo,	check	out	this	video	recording:
/videos/chapter5/alexa_smarty_app_demo.mov

So,	let's	get	started!

https://reverb.ai/
https://echosim.io/

Building	a	smart	socket
In	this	section,	we	are	going	to	build	a	smart	socket.	The	setup	is	going	to	be
quite	similar	to	what	we	had	in	Chapter	4,	Smart	Agriculture.	Create	a	new	folder
named	chapter5	and	copy	the	contents	of	the	chapter4	folder	into	it.	The	chapter4
folder	has	the	code	for	the	smart	weather	station,	and	now,	we	are	going	to	add
the	required	code	for	smart	socket.

The	smart	socket	is	a	simple	electrical	socket	that	can	be	controlled	over	the
internet.	That	is,	turn	on	the	socket	and	turn	off	the	socket.	We	are	going	to	use	a
mechanical	relay	to	achieve	this.

We	are	going	to	start	off	by	setting	up	the	relay	with	the	other	sensors	on	the
Raspberry	Pi.	I	am	going	to	use	one	Raspberry	Pi	to	demonstrate	the	smart
weather	station	as	well	as	the	smart	socket.	You	can	use	two	Raspberry	Pis	as
well	for	this.

We	are	going	to	add	the	appropriate	MQTT	client	code	to	the	API	engine;	next,
update	the	web,	desktop,	and	mobile	app	to	have	a	toggle	switch	to	turn	on/off
the	relay.

We	are	going	to	create	a	new	topic	named	socket	on,	which	we	would	send	either
1	or	0	to	turn	on/off	the	relay,	thus	turning	the	load	on	the	other	end	of	the	relay
on/off.

Do	remember	that	we	are	exploring	the	various	solutions	that	can	be	built	with
IoT	and	we	are	not	building	the	final	product	itself.

Setting	up	relay	with	Raspberry	Pi
As	of	now,	Raspberry	Pi	has	the	smart	weather	station	sensors	attached	to	it.
Now,	we	are	going	to	add	a	relay	to	the	setup.

A	relay	is	an	electrical	switch	that	is	driven	by	an	electronic	signal.	That	is,
triggering	the	relay	with	logic	high	1	will	turn	on	the	relay	and	logic	low	0	will
turn	off	the	relay.

Some	relays	work	the	other	way	around,	depending	on	the	component.	To	know
more	about	types	of	relay	and	how	they	work,	refer	to,	https://www.phidgets.com/docs/M
echanical_Relay_Primer.

You	can	purchase	a	simple	5V	driven	relay	from	Amazon:	(https://www.amazon.com/D
AOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3).

Relays	deal	with	AC	current,	and	in	our	examples,	we	are	not	going
to	connect	any	AC	power	supply	to	the	relay.	We	are	going	to
power	it	using	a	5V	DC	supply	from	Raspberry	Pi	and	using	the
LED	indicator	on	the	relay	identify	if	the	relay	has	been	turned	on
or	off.	In	case	you	want	to	connect	it	to	an	actual	power	supply,
please	take	adequate	precaution	before	doing	so.	The	results	might
be	shocking	if	proper	care	is	not	taken.

Along	with	the	weather	station,	we	are	going	to	connect	the	relay	as	well	to	the
Raspberry	Pi	3.	Connect	the	relay,	as	shown	in	the	following	figure.

Connection	of	Raspberry	Pi	with	the	smart	weather	station:	

https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3

Connection	of	Raspberry	Pi	with	a	relay	(module):	

If	you	purchased	a	standalone	relay,	you	need	to	set	up	the	circuit,
as	shown	previously.	And,	if	you	have	purchased	the	relay	module,
you	need	to	connect	pin	18/GPIO24	to	the	trigger	pin,	after

powering	the	relay.

To	reiterate	the	previous	connection,	please	see	the	tables	shown,	as	follows:

Raspberry	Pi	and	MCP3208:

Raspberry	Pi	number	-	Pin	name MCP	3208	pin	number	-	Pin	name

1	-	3.3V 16	-	VDD

1	-	3.3V 15	-	AREF

6	-	GND 14	-	AGND

23	-	GPIO11,	SPI0_SCLK 13	-	CLK

21	-	GPIO09,	SPI0_MISO 12	-	DOUT

19	-	GPIO10,	SPI0_MOSI 11	-	DIN

24	-	GPIO08,	CEO 10	-	CS

6	-	GND 9	-	DGND

Moisture	sensor	and	MCP3208:

MCP	3208	pin	number	-	Pin	name Sensor	pin

1	-	A0 Rain	sensor	-	A0

1	-	A1 Moisture	sensor	-	A0

Raspberry	Pi	and	DHT11:

Raspberry	Pi	number	-	Pin	name Sensor	pin

3	-	GPIO2 DHT11	-	data

Raspberry	Pi	and	relay:

Raspberry	Pi	number	-	Pin	name Sensor	pin

12	-	GPIO18 Relay	-	trigger	pin

All	grounds	and	all	3.3V	pins	are	connected	to	a	common	point.	All	the	relay
needs	is	a	5V	power	supply	from	the	Raspberry	Pi,	which	is	pin	2.

Once	we	have	connected	the	sensors	as	shown	previously,	we	will	write	the
required	code	needed	to	interface	with	the	sensors.

Head	towards	the	pi-client	folder	inside	Raspberry	Pi	3,	open	pi-client/index.js,	and
update	it	as	follows:	var	config	=	require('./config.js');	var	mqtt	=	require('mqtt');
var	GetMac	=	require('getmac');	var	async	=	require('async');	var	rpiDhtSensor	=
require('rpi-dht-sensor');	var	McpAdc	=	require('mcp-adc');	var	adc	=	new
McpAdc.Mcp3208();	var	rpio	=	require('rpio');	//	Set	pin	12	as	output	pin	and	to
low	rpio.open(12,	rpio.OUTPUT,	rpio.LOW);	var	dht11	=	new
rpiDhtSensor.DHT11(2);	var	temp	=	0,	prevTemp	=	0;	var	humd	=	0,	prevHumd
=	0;	var	macAddress;	var	state	=	0;	var	mositureVal	=	0,	prevMositureVal	=	0;
var	rainVal	=	0,	prevRainVal	=	0;	var	client	=	mqtt.connect({	port:

config.mqtt.port,	protocol:	'mqtts',	host:	config.mqtt.host,	clientId:
config.mqtt.clientId,	reconnectPeriod:	1000,	username:	config.mqtt.clientId,
password:	config.mqtt.clientId,	keepalive:	300,	rejectUnauthorized:	false	});
client.on('connect',	function()	{	client.subscribe('rpi');	client.subscribe('socket');
GetMac.getMac(function(err,	mac)	{	if	(err)	throw	err;	macAddress	=	mac;
client.publish('api-engine',	mac);	});	});	client.on('message',	function(topic,
message)	{	message	=	message.toString();	if	(topic	===	'rpi')	{	console.log('API
Engine	Response	>>	',	message);	}	else	if	(topic	===	'socket')	{	state	=
parseInt(message)	console.log('Turning	Relay',	!state	?	'On'	:	'Off');	//	Relays	are
almost	always	active	low	//console.log(!state	?	rpio.HIGH	:	rpio.LOW);	//	If	we
get	a	1	we	turn	on	the	relay,	else	off	rpio.write(12,	!state	?	rpio.HIGH	:
rpio.LOW);	}	else	{	console.log('Unknown	topic',	topic);	}	});	//	infinite	loop,
with	3	seconds	delay	setInterval(function()	{	readSensorValues(function(results)
{	console.log('Temperature:	'	+	temp	+	'C,	'	+	'humidity:	'	+	humd	+	'%,	'	+	'	Rain
level	(%):'	+	rainVal	+	',	'	+	'mositureVal	(%):	'	+	mositureVal);	//	if	the
temperature	and	humidity	values	change	//	then	only	publish	the	values	if	(temp
!==	prevTemp	||	humd	!==	prevHumd	||	mositureVal	!==	prevMositureVal	||
rainVal	!=	prevRainVal)	{	var	data2Send	=	{	data:	{	t:	temp,	h:	humd,	r:	rainVal,
m:	mositureVal,	s:	state	},	macAddress:	macAddress	};	//	console.log('Data
Published');	client.publish('weather-status',	JSON.stringify(data2Send));	//	reset
prev	values	to	current	//	for	next	loop	prevTemp	=	temp;	prevHumd	=	humd;
prevMositureVal	=	mositureVal;	prevRainVal	=	rainVal;	}	});	},	3000);	//	every
three	second	function	readSensorValues(CB)	{	async.parallel({	dht11Values:
function(callback)	{	var	readout	=	dht11.read();	//	update	global	variable	temp	=
readout.temperature.toFixed(2);	humd	=	readout.humidity.toFixed(2);
callback(null,	{	temp:	temp,	humidity:	humd	});	},	rainLevel:	function(callback)
{	//	we	are	going	to	connect	rain	sensor	//	on	channel	0,	hence	0	is	the	first	arg
below	adc.readRawValue(0,	function(value)	{	//	update	global	variable	rainVal	=
value;	rainVal	=	(100	-	parseFloat((rainVal	/	4096)	*	100)).toFixed(2);
callback(null,	{	rain:	rainVal	});	});	},	moistureLevel:	function(callback)	{	//	we
are	going	to	connect	mositure	sensor	//	on	channel	1,	hence	1	is	the	first	arg
below	adc.readRawValue(1,	function(value)	{	//	update	global	variable
mositureVal	=	value;	mositureVal	=	(100	-	parseFloat((mositureVal	/	4096)	*
100)).toFixed(2);	callback(null,	{	moisture:	mositureVal	});	});	}	},	function
done(err,	results)	{	if	(err)	{	throw	err;	}	//	console.log(results);	if	(CB)
CB(results);	});	}

To	the	Weather	Station	code,	we	have	added	the	rpio	module	and	using	the
rpio.open(),	we	have	made	pin	12	as	an	output	pin.	We	are	also	listening	to	the
topic	named	socket.	And,	when	we	get	a	response	from	the	broker	on	this	topic,
we	set	pin	12	to	high	or	low	based	on	the	data.

Now,	we	will	install	the	rpio	module	inside	the	Raspberry	Pi	pi-client	folder,	and
run	the	following	command:	npm	install	rpio	-save

Save	all,	the	files.	Now,	we	will	start	the	Mosca	broker	from	our
desktop/machine:	mosca	-c	index.js	-v	|	pino

Once	you	have	started	Mosca	server,	do	check	the	IP	address	of	the
server	on	which	Mosca	is	running.	Update	the	same	IP	in	your
Raspberry	Pi	config.js	file	or	else	Raspberry	Pi	cannot	post	data	to
the	broker.

Once	Mosca	has	started	successfully	and	we	have	validated	the	IP	on	the
Raspberry	Pi,	run:	sudo	node	index.js

This	will	start	the	server	and	keep	sending	the	weather	information	to	the	broker.

In	the	next	section,	we	are	going	to	write	the	required	logic	needed	for	the	API
engine	to	process	the	relay.

Managing	relay	in	an	API	engine
	

Now	that	the	relay	is	connected	to	the	Raspberry	Pi,	we	will	write	the	logic	that
will	send	the	on/off	command	to	the	socket	topic.	Open	api-
engine/server/mqtt/index.js	and	update	it,	as	follows:	var	Data	=
require('../api/data/data.model');	var	mqtt	=	require('mqtt');

var	config	=	require('../config/environment');

var	client	=	mqtt.connect({

port:	config.mqtt.port,

protocol:	'mqtts',

host:	config.mqtt.host,

clientId:	config.mqtt.clientId,	reconnectPeriod:	1000,

username:	config.mqtt.clientId,	password:	config.mqtt.clientId,
keepalive:	300,

rejectUnauthorized:	false

});

	

client.on('connect',	function()	{

console.log('Connected	to	Mosca	at	'	+	config.mqtt.host	+	'	on	port	'	+
config.mqtt.port);	client.subscribe('api-engine');

client.subscribe('weather-status');	});

	

client.on('message',	function(topic,	message)	{

//	message	is	Buffer

//	console.log('Topic	>>	',	topic);	//	console.log('Message	>>	',
message.toString());	if	(topic	===	'api-engine')	{

var	macAddress	=	message.toString();	console.log('Mac	Address	>>	',
macAddress);	client.publish('rpi',	'Got	Mac	Address:	'	+	macAddress);
}	else	if	(topic	===	'weather-status')	{

var	data	=	JSON.parse(message.toString());	//	create	a	new	data	record
for	the	device	Data.create(data,	function(err,	data)	{

if	(err)	return	console.error(err);	//	if	the	record	has	been	saved
successfully,	//	websockets	will	trigger	a	message	to	the	web-app
console.log('Data	Saved	:',	data.data);	});

}	else	{

console.log('Unknown	topic',	topic);	}

});

	

exports.sendSocketData	=	function(data)	{

console.log('Sending	Data',	data);	client.publish('socket',
JSON.stringify(data));	}

We	have	added	a	method	named	sendSocketData	and	exported	it.	We	are	going	to
call	this	method	in	the	api-engine/server/api/data/data.controller.jscreate	method,	as
follows:	exports.create	=	function(req,	res,	next)	{

var	data	=	req.body;

data.createdBy	=	req.user._id;	Data.create(data,	function(err,	_data)	{

if	(err)	return	res.status(500).send(err);	if	(data.topic	===	'socket')	{

require('../../mqtt/index.js').sendSocketData(_data.data.s);	//	send	relay
value	}

return	res.json(_data);	});

};

Save	all,	the	files	and	run:	npm	start

You	should	get	the	following	on	your	screen:	

Do	note,	the	last	value	in	the	data	string	printed	in	the	console;	s,	we	are	sending
the	status	of	the	relay	as	well	to	display	in	the	UI,	if	the	relay	is	on/off.

With	this,	we	are	done	with	the	code	needed	to	develop	the	API	engine.	In	the
next	section,	we	are	going	to	work	on	the	web	app.

	

	

	

Updating	the	web	app	template
	

In	this	section,	we	are	going	to	update	the	web	app	template	to	have	a	toggle
button,	quite	similar	to	what	we	had	in	Chapter	2,	IoTFW.js	-	I,	and	Chapter	3,
IoTFW.js	-	II.	Using	the	toggle	button,	we	are	going	to	turn	on/off	the	relay
manually.	In	the	later	sections,	we	are	going	to	automate	them.

Open,	web-app/src/app/device/device.component.html	and	update	it,	as	follows:	<div
class="container">	

<div	*ngIf="!device">

<h3	class="text-center">Loading!</h3>	</div>

<div	class="row"	*ngIf="lastRecord">	<div	class="col-md-12">	<div
class="panel	panel-info">	<div	class="panel-heading">	<h3
class="panel-title">	{{device.name}}

</h3>

	<i	class="fa	fa-chevron-circle-
up"></i>	

</div>

<div	class="clearfix"></div>	<div	class="table-responsive">	<table
class="table	table-striped">	<tr>	<td>Toggle	Socket</td>	<td>	<ui-
switch	[(ngModel)]="toggleState"	(change)="toggleChange($event)">
</ui-switch>	</td>	</tr>	<tr	*ngIf="lastRecord">
<td>Temperature</td>	<td>{{lastRecord.data.t}}</td>	</tr>	<tr
*ngIf="lastRecord">	<td>Humidity</td>	<td>{{lastRecord.data.h}}

%</td>	</tr>	<tr	*ngIf="lastRecord">	<td>Rain	Level</td>	<td>
{{lastRecord.data.r}}	%</td>	</tr>	<tr	*ngIf="lastRecord">
<td>Mositure	Level</td>	<td>{{lastRecord.data.m}}	%</td>	</tr>
<tr	*ngIf="lastRecord">	<td>Received	At</td>	<td>
{{lastRecord.createdAt	|	date:	'medium'}}</td>	</tr>	</table>	<div
class="col-md-6"	*ngIf="tempHumdData.length	>	0">	<canvas
baseChart	[datasets]="tempHumdData"	[labels]="lineChartLabels"
[options]="lineChartOptions"	[legend]="lineChartLegend"
[chartType]="lineChartType"></canvas>	</div>

<div	class="col-md-6"	*ngIf="rainMoisData.length	>	0">	<canvas
baseChart	[datasets]="rainMoisData"	[labels]="lineChartLabels"
[options]="lineChartOptions"	[legend]="lineChartLegend"
[chartType]="lineChartType"></canvas>	</div>

</div>

</div>

</div>

</div>

</div>

All	we	have	done	is	added	a	new	row	that	shows	a	toggle	button,	and	using	this,
we	turn	on/off	the	socket.	Next,	the	required	logic	to	manage	the	toggle	button,
open	web-app/src/app/device/device.component.ts	and	update	it,	as	follows:	import	{
Component,	OnInit,	OnDestroy	}	from	'@angular/core';	import	{	DevicesService
}	from	'../services/devices.service';	import	{	Params,	ActivatedRoute	}	from
'@angular/router';	import	{	SocketService	}	from	'../services/socket.service';
import	{	DataService	}	from	'../services/data.service';	import	{
NotificationsService	}	from	'angular2-notifications';

@Component({

selector:	'app-device',

templateUrl:	'./device.component.html',	styleUrls:
['./device.component.css']

})

export	class	DeviceComponent	implements	OnInit,	OnDestroy	{

device:	any;

data:	Array<any>;

toggleState:	boolean	=	false;

private	subDevice:	any;

private	subData:	any;

lastRecord:	any;

	

//	line	chart	config

public	lineChartOptions:	any	=	{

responsive:	true,

legend:	{

position:	'bottom',	},	hover:	{

mode:	'label'

},	scales:	{

xAxes:	[{

display:	true,	scaleLabel:	{

display:	true,	labelString:	'Time'

}

}],

yAxes:	[{

display:	true,	ticks:	{

beginAtZero:	true,	//	steps:	10,	//	stepValue:	5,	//	max:	70

}

}]

},

title:	{

display:	true,

text:	'Sensor	Data	vs.	Time'

}

};

public	lineChartLegend:	boolean	=	true;	public	lineChartType:	string
=	'line';	public	tempHumdData:	Array<any>	=	[];	public
rainMoisData:	Array<any>	=	[];	public	lineChartLabels:	Array<any>
=	[];

constructor(private	deviceService:	DevicesService,	private
socketService:	SocketService,	private	dataService:	DataService,
private	route:	ActivatedRoute,	private	notificationsService:
NotificationsService)	{	}

	

ngOnInit()	{

this.subDevice	=	this.route.params.subscribe((params)	=>	{

this.deviceService.getOne(params['id']).subscribe((response)	=>	{

this.device	=	response.json();	this.getData();	this.socketInit();	});

});

}

	

getData()	{

this.dataService.get(this.device.macAddress).subscribe((response)	=>
{

this.data	=	response.json();	this.lastRecord	=	this.data[0];	//
descending	order	data	this.toggleState	=	this.lastRecord.data.s;
this.genChart();

});

}

	

socketInit()	{

this.subData	=
this.socketService.getData(this.device.macAddress).subscribe((data)
=>	{

if	(this.data.length	<=	0)	return;	this.data.splice(this.data.length	-	1,	1);
//	remove	the	last	record	this.data.push(data);	//	add	the	new	one
this.lastRecord	=	data;	this.toggleState	=	this.lastRecord.data.s;
this.genChart();

});

}

	

toggleChange(state)	{

let	data	=	{

macAddress:	this.device.macAddress,	data:	{

t:	this.lastRecord.data.t,	h:	this.lastRecord.data.h,	m:
this.lastRecord.data.m,	r:	this.lastRecord.data.r,	s:	state	?	1	:	0

},

topic:	'socket'

}

	

this.dataService.create(data).subscribe((resp)	=>	{

if	(resp.json()._id)	{

this.notificationsService.success('Device	Notified!');	}

},	(err)	=>	{

console.log(err);

this.notificationsService.error('Device	Notification	Failed.	Check
console	for	the	error!');	})

}

	

ngOnDestroy()	{

this.subDevice.unsubscribe();	this.subData	?
this.subData.unsubscribe()	:	'';	}

	

genChart()	{

let	data	=	this.data;

let	_thArr:	Array<any>	=	[];	let	_rmArr:	Array<any>	=	[];	let	_lblArr:
Array<any>	=	[];

let	tmpArr:	Array<any>	=	[];	let	humArr:	Array<any>	=	[];	let	raiArr:
Array<any>	=	[];	let	moiArr:	Array<any>	=	[];

for	(var	i	=	0;	i	<	data.length;	i++)	{

let	_d	=	data[i];

tmpArr.push(_d.data.t);	humArr.push(_d.data.h);
raiArr.push(_d.data.r);	moiArr.push(_d.data.m);
_lblArr.push(this.formatDate(_d.createdAt));	}

	

//	reverse	data	to	show	the	latest	on	the	right	side	tmpArr.reverse();

humArr.reverse();

raiArr.reverse();

moiArr.reverse();

_lblArr.reverse();

	

_thArr	=	[

{

data:	tmpArr,	label:	'Temperature'

},

{

data:	humArr,	label:	'Humidity	%'

}

]

	

_rmArr	=	[

{

data:	raiArr,	label:	'Rain	Levels'

},

{

data:	moiArr,	label:	'Moisture	Levels'

}

]

	

this.tempHumdData	=	_thArr;	this.rainMoisData	=	_rmArr;

this.lineChartLabels	=	_lblArr;	}

	

private	formatDate(originalTime)	{

var	d	=	new	Date(originalTime);	var	datestring	=	d.getDate()	+	"-"	+
(d.getMonth()	+	1)	+	"-"	+	d.getFullYear()	+	"	"	+

d.getHours()	+	":"	+	d.getMinutes();	return	datestring;

}

	

}

All	we	have	done	here	is	manage	the	toggle	button	state.	Save	all	the	files	and
run	the	following:	ng	serve

Navigate	to	http://localhost:4200	and	then	navigate	to	the	device	page.	Now,	using
the	toggle	button	on	the	page,	we	can	turn	the	relay	on/off,	as	shown	in	the
following	screenshot:	

If	everything	is	set	up	correctly,	you	should	see	the	relay	LED	turn	on/off	on	the
relay,	as	shown	in	the	following	photograph:	

Wires!	Duh!

With	this,	we	are	done	with	the	web	app.	In	the	next	section,	we	are	going	to
build	the	same	web	app	and	deploy	it	inside	our	desktop	app.

	

	

	

Updating	the	desktop	app
Now	that	the	web	app	is	done,	we	are	going	to	build	the	same	and	deploy	it
inside	our	desktop	app.

To	get	started,	head	back	to	the	terminal/prompt	of	the	web-app	folder	and	run:	ng
build	--env=prod

This	will	create	a	new	folder	inside	the	web-app	folder	named	dist.	The	contents	of
the	dist	folder	should	be	on	the	lines	of:	.

├──	favicon.ico

├──	index.html

├──	inline.bundle.js

├──	inline.bundle.js.map

├──	main.bundle.js

├──	main.bundle.js.map

├──	polyfills.bundle.js

├──	polyfills.bundle.js.map

├──	scripts.bundle.js

├──	scripts.bundle.js.map

├──	styles.bundle.js

├──	styles.bundle.js.map

├──	vendor.bundle.js

└──	vendor.bundle.js.map

All,	the	code	we	have	written	is	finally	bundled	into	the	preceding	files.	We	will
grab	all	of	the	files	(not	the	dist	folder)	present	inside	the	dist	folder	and	then
paste	it	inside	the	desktop-app/app	folder.	The	final	structure	of	the	desktop-app	after
the	previous	changes	will	be	as	follows:	.

├──	app

│	├──	favicon.ico

│	├──	index.html

│	├──	inline.bundle.js

│	├──	inline.bundle.js.map

│	├──	main.bundle.js

│	├──	main.bundle.js.map

│	├──	polyfills.bundle.js

│	├──	polyfills.bundle.js.map

│	├──	scripts.bundle.js

│	├──	scripts.bundle.js.map

│	├──	styles.bundle.js

│	├──	styles.bundle.js.map

│	├──	vendor.bundle.js

│	└──	vendor.bundle.js.map

├──	freeport.js

├──	index.css

├──	index.html

├──	index.js

├──	license

├──	package.json

├──	readme.md

└──	server.js

To	test	drive,	run	the	following	command:

npm	start		

Then,	when	we	navigate	to	the	VIEW	DEVICE	page,	we	should	see	the
following:

Using	the	toggle	button,	we	should	be	able	to	turn	the	relay	on/off.

With	this,	we	are	done	with	the	development	of	the	desktop	app.	In	the	next
section,	we	will	update	the	mobile	app.

Updating	the	mobile	app	template
	

In	the	last	section,	we	have	updated	the	desktop	app.	In	this	section,	we	are
going	to	update	the	mobile	app	template	with	the	toggle	switch	component.	So,
using	this	toggle	switch,	we	can	turn	the	smart	socket	on/off.

First,	we	are	going	to	update	the	view-device	template.	Update	mobile-
app/src/pages/view-device/view-device.html,	as	follows:	<ion-header>
<ion-navbar>
<ion-title>Mobile	App</ion-title>
</ion-navbar>
</ion-header>
<ion-content	padding>
<div	*ngIf="!lastRecord">
<h3	class="text-center">Loading!</h3>
</div>
<div	*ngIf="lastRecord">
<ion-list>
<ion-item>
<ion-label>Name</ion-label>
<ion-label>{{device.name}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Toggle	LED</ion-label>
<ion-toggle	[(ngModel)]="toggleState"	(click)="toggleChange($event)"></ion-
toggle>
</ion-item>
<ion-item>
<ion-label>Temperature</ion-label>
<ion-label>{{lastRecord.data.t}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Humidity</ion-label>

<ion-label>{{lastRecord.data.h}}	%</ion-label>
</ion-item>
<ion-item>
<ion-label>Rain	Level</ion-label>
<ion-label>{{lastRecord.data.r}}	%</ion-label>
</ion-item>
<ion-item>
<ion-label>Moisture	Level</ion-label>
<ion-label>{{lastRecord.data.m}}	%</ion-label>
</ion-item>
<ion-item>
<ion-label>Received	At</ion-label>
<ion-label>{{lastRecord.createdAt	|	date:	'medium'}}</ion-label>
</ion-item>
</ion-list>
</div>
</ion-content>

Next,	we	are	going	to	add	the	required	logic	to	manage	the	toggle	button.	Update
mobile-app/src/pages/view-device/view-device.ts,	as	follows:	import	{	Component	}
from	'@angular/core';	import	{	IonicPage,	NavController,	NavParams	}	from
'ionic-angular';

import	{	DevicesService	}	from	'../../services/device.service';	import	{
DataService	}	from	'../../services/data.service';	import	{	ToastService	}
from	'../../services/toast.service';	import	{	SocketService	}	from
'../../services/socket.service';

@IonicPage()

@Component({

selector:	'page-view-device',

templateUrl:	'view-device.html',	})

export	class	ViewDevicePage	{

device:	any;

data:	Array<any>;

toggleState:	boolean	=	false;

private	subData:	any;

lastRecord:	any;

	

	

constructor(private	navCtrl:	NavController,	private	navParams:
NavParams,	private	socketService:	SocketService,	private
deviceService:	DevicesService,	private	dataService:	DataService,
private	toastService:	ToastService)	{

this.device	=	navParams.get("device");	console.log(this.device);	}

	

ionViewDidLoad()	{

this.deviceService.getOne(this.device._id).subscribe((response)	=>	{

this.device	=	response.json();	this.getData();

this.socketInit();

});

}

	

getData()	{

this.dataService.get(this.device.macAddress).subscribe((response)	=>
{

this.data	=	response.json();	this.lastRecord	=	this.data[0];	//
descending	order	data	if	(this.lastRecord)	{

this.toggleState	=	this.lastRecord.data.s;	}

});

}

socketInit()	{

this.subData	=
this.socketService.getData(this.device.macAddress).subscribe((data)
=>	{

if	(this.data.length	<=	0)	return;	this.data.splice(this.data.length	-	1,	1);
//	remove	the	last	record	this.data.push(data);	//	add	the	new	one
this.lastRecord	=	data;	});

}

	

toggleChange(state)	{

let	data	=	{

macAddress:	this.device.macAddress,	data:	{

t:	this.lastRecord.data.t,	h:	this.lastRecord.data.h,	m:
this.lastRecord.data.m,	r:	this.lastRecord.data.r,	s:	!state

},

topic:	'socket'

}

	

console.log(data);

	

this.dataService.create(data).subscribe((resp)	=>	{

if	(resp.json()._id)	{

this.toastService.toggleToast('Device	Notified!');	}

},	(err)	=>	{

console.log(err);

this.toastService.toggleToast('Device	Notification	Failed.	Check
console	for	the	error!');	})

}

	

ionViewDidUnload()	{

this.subData	&&	this.subData.unsubscribe	&&
this.subData.unsubscribe();	//unsubscribe	if	subData	is	defined	}

}

Here,	we	have	added	the	required	logic	to	manage	the	toggle	button.	Save	all,
the	files	and	run:	ionic	serve

Or,	you	can	deploy	the	same	to	your	device	as	well,	by	running:	ionic	run
android

Or:

ionic	run	ios		

Once	the	app	is	launched,	and	when	we	navigate	to	VIEW	DEVICE	page,	we

should	see	the	following:	

We	should	be	able	to	control	the	socket	using	the	toggle	button	on	the	mobile

app.

With	this,	we	are	done	with	the	set	up	of	smart	motor.

In	the	next	section,	we	are	going	to	build	a	new	skill	for	Amazon	Alexa.

	

	

	

Developing	Alexa	skill
In	the	last	section,	we	have	seen	how	to	build	a	smart	socket	and	integrate	it	with
our	existing	smart	weather	station.	In	this	section,	we	are	going	to	build	a	new
skill	for	interfacing	our	smart	devices	with	Amazon	Alexa.

We	are	going	to	create	a	new	skill	named	smarty	app	and	then	add	two	voice
models	to	it:

To	get	the	latest	weather	status
To	turn	on/off	the	socket

If	you	are	new	to	Alexa	and	its	skill	development,	I	would
recommend	watching	the	following	series	before	you	continue:
Developing	Alexa	skills:	https://www.youtube.com/playlist?list=PL2KJmkHeYQT
O6ci5KF08mvHYdAZu2jgkJ

To	give	a	quick	overview	of	our	skill	creation,	we	are	going	to	follow	these
steps:

1.	 Log	in	to	the	Amazon	developer	portal	and	create	and	set	up	a	new	skill
2.	 Train	the	voice	model
3.	 Write	the	required	business	logic	in	AWS	lambda	service
4.	 Deploy	and	test	the	setup

So,	let's	get	started.

https://www.youtube.com/playlist?list=PL2KJmkHeYQTO6ci5KF08mvHYdAZu2jgkJ

Creating	skill
The	first	thing	we	are	going	to	do	is	log	in	to	https://developer.amazon.com.	Once	we
are	logged	in,	click	on	Alexa	on	the	top	section	of	the	page.	You	should	land	on
a	page	that	should	look	as	follows:

Click	on	Get	Started	>	below	Alexa	Skills	Kit	and	you	should	be	redirected	to	a
page	where	you	can	view	your	existing	skill	sets	or	create	a	new	one.	Click	on
the	golden	button	on	the	top	right-hand	corner	named	Add	a	new	skill.

You	should	be	redirected	to	a	page,	as	follows:

https://developer.amazon.com

I	have	given	the	preceding	information.	You	can	configure	it	as	you	please.	Click
Save	and	then	click	on	Interaction	Model	on	the	left	menu,	and	you	should	be
redirected	to	the	Interactive	Model	settings,	as	follows:

We	are	going	to	use	the	skill	builder,	which	is	still	in	beta	at	the	time	of	writing.
Skill	builder	is	an	easy	interface	to	train	our	voice	model.

Click	on	the	Launch	Skill	Builder	button.

Training	the	voice	model
Once	we	are	inside	the	skill	builder,	we	are	going	to	start	training	the	models.	In
our	application,	we	are	going	to	have	two	intents:

WeatherStatusIntent:	To	get	the	values	of	all	four	sensors
ControlMotorIntent:	To	turn	the	motor	on/off

Apart	from	this,	you	can	also	add	other	intents	based	on	your	requirements.	You
can	add	a	moisture	sensor	only	intent	to	get	the	values	of	moisture	sensor	only	or
rain	sensor	intent	for	only	rain	sensor	values.

Now,	we	will	go	ahead	and	set	up	these	intents	and	create	slots.

Once	you	are	inside	the	skill	builder,	you	should	see	something	similar	to	the
following:

Now,	using	Add	+	next	to	the	intents	on	the	left-hand	side,	create	a	new	custom
intent	and	name	it	WeatherStatusIntent,	as	follows:

Now,	we	are	going	to	train	the	voice	model.	Once	the	intent	has	been	created,
click	on	the	intent	name	on	the	left	menu.	Now,	we	should	see	a	section	named
Sample	Utterances.	We	are	going	to	feed	the	sample	utterances	of	how	the	user
is	going	to	invoke	our	service.

To	keep	things	simple,	I	have	added	only	three	samples:

Alexa,	ask	smarty	app:

The	weather	report
The	weather	status
The	field	conditions

You	can	see	this	in	the	following	screenshot:

Next,	we	are	going	to	create	another	intent	named	ControlMotorIntent	using	the
same	process.	Click	on	ControlMotorIntent	on	the	left-hand	side	menu	and	we
should	see	the	sample	utterances	section.

For	this	intent,	we	are	going	to	do	something	different;	we	are	going	to	create
something	called	slots.	We	are	going	to	take	the	sample	utterance	that	the	user
would	utter	and	extract	a	piece	of	it	as	a	variable.

For	example,	if	the	user	says,	Alexa,	ask	smarty	app	to	turn	on	the	motor,	or
Alexa,	ask	smarty	app	to	turn	off	the	motor,	everything	is	the	same	except	for
turn	on	or	turn	off,	so	we	want	to	convert	these	to	variables	and	handle	each
instruction	differently.

If	the	slot	is	turned	on,	we	turn	on	the	motor	and	if	the	slot	is	turned	off,	we	are
going	to	turn	off	the	motor.

So,	once	you	have	entered	the	sample	utterance	such	as	to	turn	on	the	motor,
select	the	text	turn	on,	as	shown	in	the	following	screenshot:

Once	you	have	selected	the	text,	enter	a	custom	intent	slot	name	motorAction
and	click	on	the	plus	icon.

We	will	have	only	one	utterance	for	this	intent.	Next,	we	need	to	configure	the
motorAction	intent	slot.

On	the	right-hand	side	of	the	page,	you	should	see	the	newly	created	intent	slot.
Check	the	checkbox	under	the	REQ	column.	This	means	that	this	value	is
required	for	the	intent	to	be	called.	Next,	click	on	Choose	a	slot	type	below	the
slot	name.

Here,	we	have	to	define	a	custom	intent	slot	type.	Add	motorActionIntentSlot,	as
follows:

Next,	we	have	to	set	up	the	values.	Click	on	motorActionIntentSlot	from	the	left-
hand	side	menu	and	add	two	values;	turn	on	and	turn	off,	as	follows:

Once	this	is	done,	we	need	to	set	up	the	prompt	that	will	be	spoken	when	the
user	doesn't	utter	the	two	slot	values	we	have	defined.	Click	on	{motorAction}
under	ControlMotorIntent	and	below	Dialog	Model,	and	enter	a	prompt	such	as
Do	you	want	me	to	turn	on	or	turn	off	the	motor?,	as	follows:

With	this,	we	are	done	with	defining	our	voice	model.

Now,	we	need	to	ask	the	Alexa	skill	engine	to	build	our	voice	model	and	add	it
to	its	skill	engine.	Using	the	Save	Model	button	at	the	top	of	the	page,	save	the
model	and	then	Build	Model:

The	build	generally	takes	five	minutes	or	less	to	complete.

ngrok	the	API	engine
Before	we	go	ahead	and	start	working	on	the	lambda	service,	we	need	to	first
expose	our	API	engine	to	be	available	with	a	public	URL,	as	in	http://iotfwjs.com/api,
so	when	the	user	asks	the	Alexa	skill	service	a	question	or	issues	a	command,	the
Alexa	skill	service	can	contact	us	via	the	lambda	service.

So	far,	we	have	been	using	a	local	IP-based	configuration	to	interact	with	the
API	engine,	broker,	web	app,	or	Raspberry	Pi.	But,	that	doesn't	work	when	we
want,	Alexa	skill	service	to	find	us.

Hence,	we	are	going	to	use	a	service	named	ngrok	(https://ngrok.com/)	to	temporarily
host	our	local	code	with	a	public	URL	that	Amazon	Alexa	service	can	use	to	find
us	via	lambda	service.

To	set	up	ngrok,	please	follow	these	steps:

1.	 Download	the	ngrok	installer	from	here:	https://ngrok.com/download	for	your	OS,
which	is	running	the	API	engine

2.	 Unzip	and	copy	the	contents	of	the	ngrok	downloaded	ZIP	file	at	the	root	of
the	api-engine	folder

3.	 Start	Mosca	from	the	root	of	the	broker	folder,	by	running	the	following
command:

mosca	-c	index.js	-v	|	pino		

4.	 Start	the	API	engine	from	the	root	of	api-engine	folder,	by	running:

npm	start		

5.	 Start	tunneling	with	ngrok	now.	From	the	root	of	the	api-engine	folder,	where
we	have	copied	the	ngrok	executable,	run:

./ngrok	http	9000		

Running	./ngrok	http	9000	will	start	a	new	tunnel	between	the	local	host	and	a
public	instance	of	ngrok	server,	and	we	should	see	the	following:

http://iotjs.com/api
https://ngrok.com/
https://ngrok.com/download

The	forwarding	URL	changes	every	time	you	kill	and	restart	ngrok.	In	the
preceding	case,	the	public	URL	of	ngrok:	http://add7231d.ngrok.io	is	mapped	to	my
local	server:	http://localhost:9000.	Isn't	this	easy?

To	quickly	test	the	public	URL,	open	web-app/src/app/app.global.ts	and	update	it,	as
follows:

export	const	Globals	=	Object.freeze({	

			//	BASE_API_URL:	'http://localhost:9000/',	

			BASE_API_URL:	'https://add7231d.ngrok.io/',	

			API_AUTH_TOKEN:	'AUTH_TOKEN',	

			AUTH_USER:	'AUTH_USER'	

});	

Now,	you	can	launch	your	web	app	from	anywhere	and	it	will	talk	to	the	API
engine	using	the	public	URL.

Do	read	the	terms	of	service	(https://ngrok.com/tos)	and	privacy	policy	(
https://ngrok.com/privacy)	of	ngrok	before	proceeding	further.

https://ngrok.com/tos
https://ngrok.com/privacy

Defining	the	lambda	function
	

Now	that	the	voice	model	is	trained	and	we	have	a	public	URL	to	access	the	API
engine,	we	are	going	to	write	the	required	service	to	respond	to	the	user's
interactions.

When	a	user	goes,	Alexa,	ask	smarty	app	the	weather	report,	Alexa	will	make	a
request	to	the	AWS	lambda	function	and	the	lambda	function	will	call	the	API
engine	for	appropriate	activity.

Quoting	from	AWS:	https://aws.amazon.com/lambda/details/

The	AWS	Lambda	is	a	serverless	compute	service	that	runs	your	code	in
response	to	events	and	automatically	manages	the	underlying	compute	resources
for	you.	You	can	use	AWS	Lambda	to	extend	other	AWS	services	with	custom
logic,	or	create	your	own	back-end	services	that	operate	at	AWS	scale,
performance,	and	security.

To	know	more	about	AWS	lambda,	refer	to:	https://aws.amazon.com/lambda/details/.

To	get	started,	head	to	AWS	console:	https://console.aws.amazon.com/	and	select	the
region	as	North	Virginia.	As	of	today,	AWS	lambda	services	hosted	in	North
America	and	Europe	are	only	allowed	to	be	linked	with	the	Alexa	Skill.

Next,	from	the	Service	menu	on	top,	select	Lambda	under	the	Compute	section.
This	will	take	us	to	the	Functions	screen	of	the	lambda	service.	Click	on	Create	a
Lambda	function	and	we	will	be	asked	to	select	a	blueprint.	Select	Blank
Function.	Next,	you	will	be	asked	to	select	a	trigger;	select	Alexa	Skill	Set,	as
follows:	

https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://console.aws.amazon.com/

Click	on	Next.	Now,	we	need	to	configure	the	function.	Update	it,	as	follows:	

For	Lambda	function	code,	enter	the	following	code:	'use	strict';

//	Route	the	incoming	request	based	on	type	(LaunchRequest,
IntentRequest,	//	etc.)	The	JSON	body	of	the	request	is	provided	in	the
event	parameter.

exports.handler	=	function(event,	context)	{

try	{

console.log("event.session.application.applicationId="	+
event.session.application.applicationId);

if	(event.session.new)	{

onSessionStarted({	requestId:	event.request.requestId	},
event.session);	}

	

if	(event.request.type	===	"LaunchRequest")	{

onLaunch(event.request,	event.session,

function	callback(sessionAttributes,	speechletResponse)	{

context.succeed(buildResponse(sessionAttributes,
speechletResponse));	});

}	else	if	(event.request.type	===	"IntentRequest")	{

onIntent(event.request,	event.session,

function	callback(sessionAttributes,	speechletResponse)	{

context.succeed(buildResponse(sessionAttributes,
speechletResponse));	});

}	else	if	(event.request.type	===	"SessionEndedRequest")	{

onSessionEnded(event.request,	event.session);	context.succeed();

}

}	catch	(e)	{

context.fail("Exception:	"	+	e);	}

};

	

/**

*	Called	when	the	session	starts.

*/

function	onSessionStarted(sessionStartedRequest,	session)	{

console.log("onSessionStarted	requestId="	+
sessionStartedRequest.requestId	+	",	sessionId="	+	session.sessionId);

//	add	any	session	init	logic	here	}

	

/**

*	Called	when	the	user	invokes	the	skill	without	specifying	what	they
want.

*/

function	onLaunch(launchRequest,	session,	callback)	{

console.log("onLaunch	requestId="	+	launchRequest.requestId	+	",
sessionId="	+	session.sessionId);

var	cardTitle	=	"Smarty	App"

var	speechOutput	=	"Hello,	What	would	you	like	to	know	about	your
farm	today?"

callback(session.attributes,

buildSpeechletResponse(cardTitle,	speechOutput,	"",	true));	}

	

/**

*	Called	when	the	user	specifies	an	intent	for	this	skill.

*/

function	onIntent(intentRequest,	session,	callback)	{

console.log("onIntent	requestId="	+	intentRequest.requestId	+	",
sessionId="	+	session.sessionId);

var	intent	=	intentRequest.intent,	intentName	=
intentRequest.intent.name;

//	dispatch	custom	intents	to	handlers	here	if	(intentName	==
'WeatherStatusIntent')	{

handleWSIRequest(intent,	session,	callback);	}	else	if	(intentName	==
'ControlMotorIntent')	{

handleCMIRequest(intent,	session,	callback);	}	else	{

throw	"Invalid	intent";

}

}

	

/**

*	Called	when	the	user	ends	the	session.

*	Is	not	called	when	the	skill	returns	shouldEndSession=true.

*/

function	onSessionEnded(sessionEndedRequest,	session)	{

console.log("onSessionEnded	requestId="	+
sessionEndedRequest.requestId	+	",	sessionId="	+	session.sessionId);

//	Add	any	cleanup	logic	here	}

	

function	handleWSIRequest(intent,	session,	callback)	{

getData(function(speechOutput)	{

callback(session.attributes,
buildSpeechletResponseWithoutCard(speechOutput,	"",	"true"));	});

}

	

function	handleCMIRequest(intent,	session,	callback)	{

var	speechOutput	=	'Got	';

var	status;

var	motorAction	=	intent.slots.motorAction.value;	speechOutput	+=
motorAction;

if	(motorAction	===	'turn	on')	{

status	=	1;

}

	

if	(motorAction	===	'turn	off')	{

status	=	0;

}

setData(status,	function(speechOutput)	{

callback(session.attributes,
buildSpeechletResponseWithoutCard(speechOutput,	"",	"true"));	});

	

}

	

	

function	getData(cb)	{

var	http	=	require('http');

var	chunk	=	'';

var	options	=	{

host:	'31d664cf.ngrok.io',	port:	80,

path:	'/api/v1/data/b8:27:eb:39:92:0d/30',	agent:	false,

timeout:	10000,

method:	'GET',

headers:	{

'AlexSkillRequest':	true,	'authorization':	'Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJfaWQiOiI1OTFmZGI5ZGNlYjBiODM2YjIzMmI3MjMiLCJpYXQiOjE0OTcxNjE4MTUsImV4cCI6MTQ5NzI0ODIxNX0.ua-
SXAqLb-XUEtbgY55TX_pKdD2Xj5OSM7b9Iox_Rd8'

}

};

	

var	req	=	http.request(options,	function(res)	{

res.on('data',	function(_chunk)	{

chunk	+=	_chunk;

});

	

res.on('end',	function()	{

var	resp	=	chunk;

if	(typeof	chunk	===	'string')	{

resp	=	JSON.parse(chunk);	}

	

if	(resp.length	===	0)	{

cb('Looks	like	we	have	not	gathered	any	data	yet!	Please	try	again
later!');	}

	

var	d	=	resp[0].data;

if	(!d)	{

cb('Looks	like	there	is	something	wrong	with	the	data	we	got!	Please
try	again	later!');	}

	

var	temp	=	d.t	||	'invalid';	var	humd	=	d.h	||	'invalid';	var	mois	=	d.m	||
'invalid';	var	rain	=	d.r	||	'invalid';

cb('The	temperature	is	'	+	temp	+	'	degrees	celsius,	the	humidity	is	'	+
humd	+	'	percent,	The	moisture	level	is	'	+	mois	+	'	percent	and	the
rain	level	is	'	+	rain	+	'	percent!');

});

	

res.on('error',	function()	{

console.log(arguments);	cb('Looks	like	something	went	wrong.');	});

});

req.end();

}

	

function	setData(status,	cb)	{

var	http	=	require('http');

var	chunk	=	'';

var	data	=	{

'status':	status,

'macAddress':	'b8:27:eb:39:92:0d'

};

	

data	=	JSON.stringify(data);

	

var	options	=	{

host:	'31d664cf.ngrok.io',	port:	80,

path:	'/api/v1/data',

agent:	false,

timeout:	10000,

method:	'POST',

headers:	{

'AlexSkillRequest':	true,	'Content-Type':	'application/json',	'Content-
Length':	Buffer.byteLength(data),	'authorization':	'Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJfaWQiOiI1OTFmZGI5ZGNlYjBiODM2YjIzMmI3MjMiLCJpYXQiOjE0OTcxNjE4MTUsImV4cCI6MTQ5NzI0ODIxNX0.ua-
SXAqLb-XUEtbgY55TX_pKdD2Xj5OSM7b9Iox_Rd8'

}

};

	

var	req	=	http.request(options,	function(res)	{

res.on('data',	function(_chunk)	{

chunk	+=	_chunk;

});

	

res.on('end',	function()	{

var	resp	=	chunk;

if	(typeof	chunk	===	'string')	{

resp	=	JSON.parse(chunk);	}

	

cb('Motor	has	been	successfully	'	+	(status	?	'turned	on'	:	'turned	off'));

});

	

res.on('error',	function()	{

console.log(arguments);	cb('Looks	like	something	went	wrong.');	});

});

	

//	post	the	data

req.write(data);

req.end();

}

	

	

//	-------	Helper	functions	to	build	responses	-------

	

function	buildSpeechletResponse(title,	output,	repromptText,
shouldEndSession)	{

return	{

outputSpeech:	{

type:	"PlainText",

text:	output

},

card:	{

type:	"Simple",

title:	title,

content:	output

},

reprompt:	{

outputSpeech:	{

type:	"PlainText",	text:	repromptText	}

},

shouldEndSession:	shouldEndSession	};

}

	

function	buildSpeechletResponseWithoutCard(output,	repromptText,
shouldEndSession)	{

return	{

outputSpeech:	{

type:	"PlainText",

text:	output

},

reprompt:	{

outputSpeech:	{

type:	"PlainText",	text:	repromptText	}

},

shouldEndSession:	shouldEndSession	};

}

	

function	buildResponse(sessionAttributes,	speechletResponse)	{

return	{

version:	"1.0",

sessionAttributes:	sessionAttributes,	response:	speechletResponse	};

}

There	is	a	lot	going	on	in	the	code.	exports.handler()	is	the	default	function	that	we
need	to	set	up	for	lambda	to	work.	Inside	that,	we	have	defined	the	type	of
incoming	request.	And,	if	the	incoming	is	an	IntentRequest,	we	call	onIntent().
Inside	onIntent(),	we	fetch	the	intentName	and	invoke	the	appropriate	logic.

If	the	intentName	is	WeatherStatusIntent,	we	invoke	handleWSIRequest(),	or	else	if	the
intentName	is	ControlMotorIntent,	we	call	handleCMIRequest().

Inside	handleWSIRequest()	we	invoke	the	getData(),	which	will	make	a	HTTP	GET
request	to	our	ngrok	URL.	Once	the	data	arrives,	we	construct	a	response	and
return	it	to	the	skill	service.

And,	handleCMIRequest()	does	the	same,	except	it	first	gets	the	motorAction	slot	value
and	then	calls	setData(),	which	will	call	or	either	turn	the	motor	on/off.

Once	the	code	has	been	copied,	you	should	find	additional	configuration	at	the
bottom.	We	are	going	to	leave	the	handler	as-is.	For	the	role,	click	on	Create	a
custom	role,	and	set	it	up,	as	follows:	

And	click	on	Allow.	This	will	create	a	new	role	that	will	get	populated	in
Existing	role*,	as	follows:	

Once	this	is	done,	click	on	Next.	Verify	the	summary	and	click	on	Create
function	at	the	bottom	of	the	page.

If	everything	goes	well,	you	should	see	the	following	screen:	

Do	notice	the	ARN	in	the	top	right	corner.	This	is	the	Amazon	Resource	Name
(ARN)	for	our	lambda	function.	We	need	to	provide	this	as	an	input	to	the	Alexa
Skills	Kit.

	

	

	

Deploying	and	testing
Now	that	we	have	all	the	pieces,	we	will	configure	the	ARN	in	the	Alexa	skill
we	have	created.	Head	back	to	Alexa	skill	and	click	on	Configuration,	and
update	the	configuration	as	follows:

Click	Next.	If	everything	is	set	up	correctly,	we	can	test	the	setup.

Towards	the	bottom	of	the	Test	page,	we	should	see	a	section	named	Service
Emulator.	You	can	test	it,	as	follows:

The	following	screenshot	shows	the	request	received	by	lambda	from	Alexa:

With	this,	we	are	done	with	integrating	Alexa	with	our	IoT.js	framework.

Summary
In	this	chapter,	we	have	explored	how	to	integrate	a	voice	AI	service	such	as
Alexa	with	the	IoTFW.js	framework	we	have	developed.	We	continued	with	the
same	example	from	Chapter	4,	Smart	Agriculture,	and	started	off	this	chapter	by
setting	up	the	relay	that	can	turn	the	motor	on/off.	Next,	we	have	understood
how	Alexa	works.	We	have	created	a	new	custom	skill	and	then	set	up	the
required	voice	model.	After	that,	we	have	written	the	required	business	logic	in
AWS	lambda,	which	will	get	the	latest	weather	status	as	well	as	control	the
motor.

We	have	finally	tested	everything	using	the	reverb	app	and	also	validated
everything.

In	Chapter	6,	Smart	Wearable,	we	are	going	to	look	at	IoT	and	healthcare.

	

Smart	Wearable
	

In	this	chapter,	we	are	going	to	look	at	a	simple	healthcare	application	that	can
be	created	using	Raspberry	Pi	3.	We	are	going	to	build	a	smart	wearable	with	a
16x2	LCD	that	displays	the	location	of	the	user,	and	also	displays	an
accelerometer's	values	on	the	web/desktop/mobile	interface.	The	target	audience
for	this	product	would	primarily	be	elderly	people	and	the	main	use	case	being
fall	detection,	which	we	are	going	to	work	with	in	Chapter	7,	Smart	Wearable	and
IFTTT	.

We	are	going	to	look	at	the	following	in	this	chapter:

IoT	and	healthcare
Set	up	the	required	hardware
Integrate	the	accelerometer	and	view	live	data

	

	

IoT	and	healthcare
Imagine	a	patient	who	successfully	underwent	a	heart	transplant	surgery	and	is
being	sent	home	after	post	operational	care	in	the	hospital.	The	amount	of
attention	on	this	patient	would	significantly	reduce,	as	the	facilities	in	the	home
would	be	minimal	compared	to	a	hospital.	This	is	where	IoT	comes	in	with	its
real-time	capability.

IoT	and	healthcare	is	a	match	made	in	heaven.	The	risks	and	rewards	are	equally
high.	Ability	to	monitor	a	patient's	health	in	real	time	and	get	information	about
their	pulse	rate,	body	temperature,	and	other	vital	statistics,	diagnose	and	act	on
it	is	quite	precious.	At	the	same	time,	if	the	connectivity	was	lost	for	two
minutes,	a	life	would	be	at	stake.

In	my	opinion,	to	realize	the	full	potential	of	IoT	in	healthcare,	we	may	need	to
wait	for	another	5	-	10	years,	where	the	connectivity	is	absolutely	seamless	and
packet	loss	is	a	word	of	ancient	history.

Smart	wearable
As	mentioned	in	the	preceding	section,	we	are	going	to	do	one	of	the	critical
things	in	healthcare	using	IoT.	The	main	purpose	of	the	smart	wearable	we	are
going	to	build	is	to	identify	fall	detection.	Once	fall	detection	is	identified,	we
notify	the	cloud	about	it.	This	is	a	very	precious	feature	when	we	have	elderly	or
sick	people	around	who	collapse	due	to	unexpected	reasons.	Identifying	the	fall
immediately	and	taking	an	action	on	it	can	be	life	saving	at	times.

To	detect	falls,	we	are	going	to	use	an	accelerometer.	Quoting	from	Wikipedia:

"An	accelerometer	is	a	device	that	measures	proper	acceleration.	Proper
acceleration,	being	the	acceleration	(or	rate	of	change	of	velocity)	of	a	body	in
its	own	instantaneous	rest	frame,	is	not	the	same	as	coordinate	acceleration,
being	the	acceleration	in	a	fixed	coordinate	system.	For	example,	an
accelerometer	at	rest	on	the	surface	of	the	Earth	will	measure	an	acceleration
due	to	Earth's	gravity,	straight	upwards	(by	definition)	of	g	≈	9.81	m/s2.	By
contrast,	accelerometers	in	free	fall	(falling	toward	the	centre	of	the	Earth	at	a
rate	of	about	9.81	m/s2)	will	measure	zero."

To	know	more	about	an	accelerometer	and	how	it	works,	refer	to	How	an
accelerometer	works	at:	https://www.youtube.com/watch?v=i2U49usFo10.

In	this	chapter,	we	are	going	to	implement	the	basic	system	that	gathers	the	X,	Y,
and	Z	axis	acceleration	raw	values	and	gets	displayed	on	web,	desktop,	and
mobile	apps.	In	Chapter	7,	Smart	Wearable	and	IFTTT,	we	are	going	to	implement
fall	detection	using	these	values.

Along	with	gathering	the	accelerometer	values	in	real	time,	we	are	going	to	use
the	16x2	LCD	display	to	show	the	current	time	and	the	geolocation	of	the	user.	If
needed,	we	can	add	other	texts	to	this	display	as	well.	16x2	is	a	simple	interface
to	display	content.	This	can	be	extended	with	Nokia	5110	LCD	(http://www.amazon.in
/inch-Nokia-5110-KG075-KitsGuru/dp/B01CXNSJOA)	to	have	a	more	advanced	display	with
graphics.

In	the	next	section,	we	are	going	to	put	together	the	required	hardware	and	then

https://www.youtube.com/watch?v=i2U49usFo10
http://www.amazon.in/inch-Nokia-5110-KG075-KitsGuru/dp/B01CXNSJOA

update	the	Raspberry	Pi	code.	After	that	we	are	going	to	start	working	on	the
API	engine	and	the	UI	templates.

Setting	up	smart	wearable
The	first	thing	to	note	about	the	hardware	setup	is	that	it	is	big	and	bulky.	This	is
only	a	POC	and	is	not	even	a	remotely	close	production	setup.	The	hardware
setup	would	consist	of	an	accelerometer	connected	to	Raspberry	Pi	3	and	a	16X2
LCD.

The	accelerometer	ADXL345	gives	the	acceleration	of	X,	Y,	and	Z	axis	over	I2C
protocol.

Connect	the	hardware	as	follows:	

As	you	can	see	in	the	preceding	schematic,	we	have	made	the	following
connections:

Raspberry	Pi	and	LCD:

Raspberry	Pi	number	-	Pin	name 16x2	LCD	Pi	name

6	-	GND	-	Breadboard	rail	1 1	-	GND

2	-	5V	-	Breadboard	rail	2 2	-	VCC

1	k	Ohm	potentiometer 3	-	VEE

32	-	GPIO	12 4	-	RS

6	-	GND	-	Breadboard	rail	1 5	-R/W

40	-	GPIO	21 6	-	EN

NC 7	-	DB0

NC 8	-	DB1

NC 9	-	DB2

NC 10	-	DB3

29	-	GPIO	5 11	-	DB4

31	-	GPIO	6 12	-	DB5

11	-	GPIO	17 13	-	DB6

12	-	GPIO	18 14	-	DB7

2	-	5V	-	Breadboard	rail	2 15	-	LED+

6	-	GND	-	Breadboard	rail	1 16	-	LED-

Raspberry	Pi	and	ADXL345:

Raspberry	Pi	number	-	Pin	name ADXL345	pin	number	-	Pin	name

1	-	3.3V VCC

6	-	GND	-	Breadboard	rail	1 GND

5	-	GPIO3/SCL1 SCL

3	-	GPIO2/SDA1 SDA

6	-	GND	-	Breadboard	rail	1 SDO

	

We	will	add	the	required	code:

1.	 First	create	a	folder	named	chapter6	and	then	copy	the	contents	of	chapter4
into	it.	We	will	update	this	code	as	we	go	along

2.	 Now,	we	will	start	with	the	pi-client.	On	the	Raspberry	Pi,	open	pi-
client/index.js	and	update	it	as	follows:

var	config	=	require('./config.js');	

var	mqtt	=	require('mqtt');	

var	GetMac	=	require('getmac');	

var	request	=	require('request');	

var	ADXL345	=	require('adxl345-sensor');	

require('events').EventEmitter.prototype._maxListeners	=	100;	

	

var	adxl345	=	new	ADXL345();	//	defaults	to	i2cBusNo	1,	i2cAddress	0x53	

	

var	Lcd	=	require('lcd'),	

				lcd	=	new	Lcd({	

								rs:	12,	

								e:	21,	

								data:	[5,	6,	17,	18],	

								cols:	8,	

								rows:	2	

				});	

	

var	aclCtr	=	0,	

				locCtr	=	0;	

	

var	x,	prevX,	y,	prevY,	z,	prevZ;	

var	locationG;	//	global	location	variable	

	

var	client	=	mqtt.connect({	

				port:	config.mqtt.port,	

				protocol:	'mqtts',	

				host:	config.mqtt.host,	

				clientId:	config.mqtt.clientId,	

				reconnectPeriod:	1000,	

				username:	config.mqtt.clientId,	

				password:	config.mqtt.clientId,	

				keepalive:	300,	

				rejectUnauthorized:	false	

});	

	

client.on('connect',	function()	{	

				client.subscribe('rpi');	

				client.subscribe('socket');	

				GetMac.getMac(function(err,	mac)	{	

								if	(err)	throw	err;	

								macAddress	=	mac;	

								displayLocation();	

								initADXL345();	

								client.publish('api-engine',	mac);	

				});	

});	

	

client.on('message',	function(topic,	message)	{	

				message	=	message.toString();	

				if	(topic	===	'rpi')	{	

								console.log('API	Engine	Response	>>	',	message);	

				}	else	{	

								console.log('Unknown	topic',	topic);	

				}	

});	

	

function	initADXL345()	{	

				adxl345.init().then(function()	{	

												console.log('ADXL345	initialization	succeeded');	

												//	init	loop	after	ADXL345	has	been	setup	

												loop();	

								})	

								.catch(function(err)	{	

												console.error('ADXL345	initialization	failed:	',	err);	

								});	

}	

	

function	loop()	{	

				//	infinite	loop,	with	1	seconds	delay	

				setInterval(function()	{	

								//	wait	till	we	get	the	location	

								//	then	start	processing	

								if	(!locationG)	return;	

	

								if	(aclCtr	===	3)	{	//	every	3	seconds	

												aclCtr	=	0;	

												readSensorValues(function(acclVals)	{	

																var	x	=	acclVals.x;	

																var	y	=	acclVals.y;	

																var	z	=	acclVals.z;	

	

																var	data2Send	=	{	

																				data:	{	

																								acclVals:	acclVals,	

																								location:	locationG	

																				},	

																				macAddress:	macAddress	

																};	

	

																//	no	duplicate	data	

																if	(x	!==	prevX	||	y	!==	prevY	||	z	!==	prevZ)	{	

																				console.log('data2Send',	data2Send);	

																				client.publish('accelerometer',	

JSON.stringify(data2Send));	

																				console.log('Data	Published');	

																				prevX	=	x;	

																				prevY	=	y;	

																				prevZ	=	z;	

																}	

												});	

								}	

	

								if	(locCtr	===	300)	{	//	every	300	seconds	

												locCtr	=	0;	

												displayLocation();	

								}	

	

								aclCtr++;	

								locCtr++;	

				},	1000);	//	every	one	second	

}	

	

function	readSensorValues(CB)	{	

				adxl345.getAcceleration(true)	//	true	for	g-force	units,	else	false	

for	m/s²	

								.then(function(acceleration)	{	

												if	(CB)	CB(acceleration);	

								})	

								.catch((err)	=>	{	

												console.log('ADXL345	read	error:	',	err);	

								});	

}	

	

function	displayLocation()	{	

				request('http://ipinfo.io',	function(error,	res,	body)	{	

								var	info	=	JSON.parse(body);	

								//	console.log(info);	

								locationG	=	info;	

								var	text2Print	=	'';	

								text2Print	+=	'City:	'	+	info.city;	

								text2Print	+=	'	Region:	'	+	info.region;	

								text2Print	+=	'	Country:	'	+	info.country	+	'	';	

								lcd.setCursor(16,	0);	//	1st	row					

								lcd.autoscroll();	

								printScroll(text2Print);	

				});	

}	

	

//	a	function	to	print	scroll	

function	printScroll(str,	pos)	{	

				pos	=	pos	||	0;	

	

				if	(pos	===	str.length)	{	

								pos	=	0;	

				}	

	

				lcd.print(str[pos]);	

				//console.log('printing',	str[pos]);	

									

				setTimeout(function()	{	

								return	printScroll(str,	pos	+	1);	

				},	300);	

}	

	

//	If	ctrl+c	is	hit,	free	resources	and	exit.	

process.on('SIGINT',	function()	{	

				lcd.clear();	

				lcd.close();	

				process.exit();	

});	

As	you	can	see	from	the	preceding	code,	we	are	displaying	the
location,	using	displayLocation(),	every	one	hour,	as	we	are	assuming
that	the	location	would	not	change	frequently.	We	are	using	the	http://ip
info.io/	service	to	get	the	user's	location.

3.	 Finally,	using	readSensorValues()	we	get	the	value	of	accelerometer	every	3
seconds	and	publish	this	data	to	a	topic	named	accelerometer

4.	 Now,	we	will	install	the	required	dependencies.	From	inside	the	pi-client
folder,	run	the	following	command:

npm	install	async	getmac	adxl345-sensor	mqtt	request	--save

5.	 Save	all	the	files	and	start	the	mosca	broker	on	the	server	or	our	desktop
machine	by	running:

mosca	-c	index.js	-v	|	pino		

6.	 Next,	run	the	code	on	Raspberry	Pi:

npm	start		

This	will	start	the	pi-client	and	will	start	collecting	the	accelerometer	and	display

http://ipinfo.io/

the	location	on	the	LCD	display	as	follows:	

My	setup	is	shown	as	follows:	

Next,	we	will	work	with	the	API	engine.

Updating	the	API	engine
	

Now	that	we	have	the	smart	wearable	running	and	sending	the	three	axis	data,
we	will	now	implement	the	required	logic	needed	to	accept	that	data	in	the	API
engine	and	send	the	data	to	the	web/desktop/mobile	app:	Open	api-
engine/server/mqtt/index.js	and	update	it	as	follows:	var	Data	=
require('../api/data/data.model');	var	mqtt	=	require('mqtt');

var	config	=	require('../config/environment');

var	client	=	mqtt.connect({

port:	config.mqtt.port,

protocol:	'mqtts',

host:	config.mqtt.host,

clientId:	config.mqtt.clientId,	reconnectPeriod:	1000,

username:	config.mqtt.clientId,	password:	config.mqtt.clientId,
keepalive:	300,

rejectUnauthorized:	false

});

	

client.on('connect',	function()	{

console.log('Connected	to	Mosca	at	'	+	config.mqtt.host	+	'	on	port	'	+

config.mqtt.port);	client.subscribe('api-engine');
client.subscribe('accelerometer');	});	

client.on('message',	function(topic,	message)	{

//	message	is	Buffer

//	console.log('Topic	>>	',	topic);	//	console.log('Message	>>	',
message.toString());	if	(topic	===	'api-engine')	{

var	macAddress	=	message.toString();	console.log('Mac	Address	>>	',
macAddress);	client.publish('rpi',	'Got	Mac	Address:	'	+	macAddress);
}	else	if	(topic	===	'accelerometer')	{

var	data	=	JSON.parse(message.toString());	//	create	a	new	data	record
for	the	device	Data.create(data,	function(err,	data)	{

if	(err)	return	console.error(err);	//	if	the	record	has	been	saved
successfully,	//	websockets	will	trigger	a	message	to	the	web-app
console.log('Data	Saved	:',	data.data);	});

}	else	{

console.log('Unknown	topic',	topic);	}

});

Here,	we	are	subscribing	to	a	topic	named	accelerometer	and	listening	for	changes
on	it.	Next,	we	update	api-engine/server/api/data/data.controller.js	as	follows:	'use
strict';

var	Data	=	require('./data.model');

/**

*	Get	Data	for	a	device

*/

exports.index	=	function(req,	res)	{

var	macAddress	=	req.params.deviceId;	var	limit	=
parseInt(req.params.limit)	||	30;

Data

.find({

macAddress:	macAddress	})

.sort({	'createdAt':	-1	})	.limit(limit)

.exec(function(err,	data)	{

if	(err)	return	res.status(500).send(err);	res.status(200).json(data);	});

};

	

/**

*	Create	a	new	data	record

*/

exports.create	=	function(req,	res,	next)	{

var	data	=	req.body	||	{};

data.createdBy	=	req.user._id;

Data.create(data,	function(err,	_data)	{

if	(err)	return	res.status(500).send(err);	return	res.json(_data);	});

};

The	preceding	code	is	used	to	save	the	data	to	database	and	fetch	the	data	from
database	when	requested	from	web,	desktop,	and	mobile	apps.

Save	all	the	files	and	run	the	API	engine:	npm	start

This	will	start	the	API	engine,	if	needed	we	can	restart	the	smart	wearable	and
we	should	see	the	following:	

In	the	next	section,	we	will	work	on	the	web	app	to	display	the	data.

	

	

	

Updating	the	web	app
Now	that	we	are	done	with	the	API	engine,	we	will	update	the	template	in	the
web	app	to	display	the	three	axis	data.	Open	web-
app/src/app/device/device.component.html	and	update	it	as	follows:

<div	class="container">

		

		<div	*ngIf="!device">

				<h3	class="text-center">Loading!</h3>

		</div>

		<div	class="row"	*ngIf="lastRecord">

				<div	class="col-md-12">

						<div	class="panel	panel-info">

								<div	class="panel-heading">

										<h3	class="panel-title">

																								{{device.name}}

																				</h3>

										

																								<i	class="fa	fa-chevron-circle-up"></i>

																				

								</div>

								<div	class="clearfix"></div>

								<div	class="table-responsive">

										<table	class="table	table-striped">

												<tr	*ngIf="lastRecord">

														<td>X-Axis</td>

														<td>{{lastRecord.data.acclVals.x}}	{{lastRecord.data.acclVals.units}}

</td>

												</tr>

												<tr	*ngIf="lastRecord">

														<td>Y-Axis</td>

														<td>{{lastRecord.data.acclVals.y}}	{{lastRecord.data.acclVals.units}}

</td>

												</tr>

												<tr	*ngIf="lastRecord">

														<td>Z-Axis</td>

														<td>{{lastRecord.data.acclVals.z}}	{{lastRecord.data.acclVals.units}}

</td>

												</tr>

												<tr	*ngIf="lastRecord">

														<td>Location</td>

														<td>{{lastRecord.data.location.city}},	

{{lastRecord.data.location.region}},	{{lastRecord.data.location.country}}</td>

												</tr>

												<tr	*ngIf="lastRecord">

														<td>Received	At</td>

														<td>{{lastRecord.createdAt	|	date	:	'medium'}}</td>

												</tr>

										</table>

										<hr>

										<div	class="col-md-12"	*ngIf="acclVals.length	>	0">

												<canvas	baseChart	[datasets]="acclVals"	[labels]="lineChartLabels"	

[options]="lineChartOptions"	[legend]="lineChartLegend"	[chartType]="lineChartType">

</canvas>

										</div>

								</div>

						</div>

				</div>

		</div>

</div>

The	required	logic	will	be	inside	device.component.ts.	Open	web-
app/src/app/device/device.component.ts	and	update	it	as	follows:

import	{	Component,	OnInit,	OnDestroy	}	from	'@angular/core';

import	{	DevicesService	}	from	'../services/devices.service';

import	{	Params,	ActivatedRoute	}	from	'@angular/router';

import	{	SocketService	}	from	'../services/socket.service';

import	{	DataService	}	from	'../services/data.service';

import	{	NotificationsService	}	from	'angular2-notifications';

@Component({

		selector:	'app-device',

		templateUrl:	'./device.component.html',

		styleUrls:	['./device.component.css']

})

export	class	DeviceComponent	implements	OnInit,	OnDestroy	{

		device:	any;

		data:	Array<any>;

		toggleState:	boolean	=	false;

		private	subDevice:	any;

		private	subData:	any;

		lastRecord:	any;

		//	line	chart	config

		public	lineChartOptions:	any	=	{

				responsive:	true,

				legend:	{

						position:	'bottom',

				},	hover:	{

						mode:	'label'

				},	scales:	{

						xAxes:	[{

								display:	true,

								scaleLabel:	{

										display:	true,

										labelString:	'Time'

								}

						}],

						yAxes:	[{

								display:	true,

								ticks:	{

										beginAtZero:	true,

										//	steps:	10,

										//	stepValue:	5,

										//	max:	70

								}

						}],

						zAxes:	[{

								display:	true,

								ticks:	{

										beginAtZero:	true,

										//	steps:	10,

										//	stepValue:	5,

										//	max:	70

								}

						}]

				},

				title:	{

						display:	true,

						text:	'X,Y,Z	vs.	Time'

				}

		};

		public	lineChartLegend:	boolean	=	true;

		public	lineChartType:	string	=	'line';

		public	acclVals:	Array<any>	=	[];

		public	lineChartLabels:	Array<any>	=	[];

		constructor(private	deviceService:	DevicesService,

				private	socketService:	SocketService,

				private	dataService:	DataService,

				private	route:	ActivatedRoute,

				private	notificationsService:	NotificationsService)	{	}

		ngOnInit()	{

				this.subDevice	=	this.route.params.subscribe((params)	=>	{

						this.deviceService.getOne(params['id']).subscribe((response)	=>	{

								this.device	=	response.json();

								this.getData();

						});

				});

		}

		getData()	{

				this.dataService.get(this.device.macAddress).subscribe((response)	=>	{

						this.data	=	response.json();

						this.lastRecord	=	this.data[0];	//	descending	order	data

						this.toggleState	=	this.lastRecord.data.s;

						this.genChart();

						this.socketInit();

				});

		}

		socketInit()	{

				this.subData	=	this.socketService.getData(this.device.macAddress).subscribe((data)	

=>	{

						if	(this.data.length	<=	0)	return;

						this.data.splice(this.data.length	-	1,	1);	//	remove	the	last	record

						this.data.push(data);	//	add	the	new	one

						this.lastRecord	=	data;

						this.toggleState	=	this.lastRecord.data.s;

						this.genChart();

				});

		}

		ngOnDestroy()	{

				this.subDevice.unsubscribe();

				this.subData	?	this.subData.unsubscribe()	:	'';

		}

		genChart()	{

				let	data	=	this.data;

				let	_acclVals:	Array<any>	=	[];

				let	_lblArr:	Array<any>	=	[];

				let	xArr:	Array<any>	=	[];

				let	yArr:	Array<any>	=	[];

				let	zArr:	Array<any>	=	[];

				

				for	(var	i	=	0;	i	<	data.length;	i++)	{

						let	_d	=	data[i];

						xArr.push(_d.data.acclVals.x);

						yArr.push(_d.data.acclVals.y);

						zArr.push(_d.data.acclVals.z);

						_lblArr.push(this.formatDate(_d.createdAt));

				}

				//	reverse	data	to	show	the	latest	on	the	right	side

				xArr.reverse();

				yArr.reverse();

				zArr.reverse();

				_lblArr.reverse();

				_acclVals	=	[

						{

								data:	xArr,

								label:	'X-Axis'

						},

						{

								data:	yArr,

								label:	'Y-Axis'

						},

						{

								data:	zArr,

								label:	'Z-Axis'

						}

]

				this.acclVals	=	_acclVals;

				this.lineChartLabels	=	_lblArr;

		}

		private	formatDate(originalTime)	{

				var	d	=	new	Date(originalTime);

				var	datestring	=	d.getDate()	+	"-"	+	(d.getMonth()	+	1)	+	"-"	+	d.getFullYear()	+	

"	"	+

						d.getHours()	+	":"	+	d.getMinutes();

				return	datestring;

		}

}

Save	all	the	files	and	run	the	following	command:

npm	start		

Navigate	to	http://localhost:4200	and	view	the	device	and	we	should	see	the
following:

With	this,	we	are	done	with	the	web	app.

Updating	a	desktop	app
Now	that	the	web	app	is	done,	we	are	going	to	build	the	same	and	deploy	it
inside	our	desktop	app.

To	get	started,	head	back	to	the	terminal/prompt	of	the	web-app	folder	and	run:	ng
build	--env=prod

And	this	will	create	a	new	folder	inside	the	web-app	folder	named	dist.	The
contents	of	the	dist	folder	should	be	similar	to	the	following:	.

├──	favicon.ico

├──	index.html

├──	inline.bundle.js

├──	inline.bundle.js.map

├──	main.bundle.js

├──	main.bundle.js.map

├──	polyfills.bundle.js

├──	polyfills.bundle.js.map

├──	scripts.bundle.js

├──	scripts.bundle.js.map

├──	styles.bundle.js

├──	styles.bundle.js.map

├──	vendor.bundle.js

└──	vendor.bundle.js.map

All	the	code	we	have	written	is	finally	bundled	into	the	preceding	files.	We	will
grab	all	the	files	(not	the	dist	folder)	present	inside	the	dist	folder	and	then	paste
it	inside	the	desktop-app/app	folder.	The	final	structure	of	the	desktop	app	after	the
preceding	changes	will	be	as	follows:	.

├──	app

│	├──	favicon.ico

│	├──	index.html

│	├──	inline.bundle.js

│	├──	inline.bundle.js.map

│	├──	main.bundle.js

│	├──	main.bundle.js.map

│	├──	polyfills.bundle.js

│	├──	polyfills.bundle.js.map

│	├──	scripts.bundle.js

│	├──	scripts.bundle.js.map

│	├──	styles.bundle.js

│	├──	styles.bundle.js.map

│	├──	vendor.bundle.js

│	└──	vendor.bundle.js.map

├──	freeport.js

├──	index.css

├──	index.html

├──	index.js

├──	license

├──	package.json

├──	readme.md

└──	server.js

To	test	drive,	run	the	following:

npm	start

And	then	when	we	navigate	to	the	VIEW	DEVICE	page,	we	should	see	the
following	screen:

With	this	we	are	done	with	the	development	of	the	desktop	app.	In	the	next
section,	we	will	update	the	mobile	app.

Updating	the	mobile	app	template
	

In	the	last	section,	we	have	updated	the	desktop	app.	In	this	section,	we	are
going	to	update	the	mobile	app	template	to	display	the	three	axis	data.

First	we	are	going	to	update	the	view-device	template.	Update	mobile-
app/src/pages/view-device/view-device.html	as	follows:	<ion-header>
<ion-navbar>
<ion-title>Mobile	App</ion-title>
</ion-navbar>
</ion-header>
<ion-content	padding>
<div	*ngIf="!lastRecord">
<h3	class="text-center">Loading!</h3>
</div>
<div	*ngIf="lastRecord">
<ion-list>
<ion-item>
<ion-label>Name</ion-label>
<ion-label>{{device.name}}</ion-label>
</ion-item>
<ion-item>
<ion-label>X-Axis</ion-label>
<ion-label>{{lastRecord.data.acclVals.x}}	{{lastRecord.data.acclVals.units}}
</ion-label>
</ion-item>
<ion-item>
<ion-label>Y-Axis</ion-label>
<ion-label>{{lastRecord.data.acclVals.y}}	{{lastRecord.data.acclVals.units}}
</ion-label>
</ion-item>
<ion-item>
<ion-label>Z-Axis</ion-label>

<ion-label>{{lastRecord.data.acclVals.z}}	{{lastRecord.data.acclVals.units}}
</ion-label>
</ion-item>
<ion-item>
<ion-label>Location</ion-label>
<ion-label>{{lastRecord.data.location.city}},
{{lastRecord.data.location.region}},	{{lastRecord.data.location.country}}</ion-
label>
</ion-item>
<ion-item>
<ion-label>Received	At</ion-label>
<ion-label>{{lastRecord.createdAt	|	date:	'medium'}}</ion-label>
</ion-item>
</ion-list>
</div>
</ion-content>

Next,	we	update	mobile-app/src/pages/view-device/view-device.ts	as	follows:	import	{
Component	}	from	'@angular/core';	import	{	IonicPage,	NavController,
NavParams	}	from	'ionic-angular';

import	{	DevicesService	}	from	'../../services/device.service';	import	{
DataService	}	from	'../../services/data.service';	import	{	ToastService	}
from	'../../services/toast.service';	import	{	SocketService	}	from
'../../services/socket.service';

@IonicPage()

@Component({

selector:	'page-view-device',

templateUrl:	'view-device.html',	})

export	class	ViewDevicePage	{

device:	any;

data:	Array<any>;

toggleState:	boolean	=	false;

private	subData:	any;

lastRecord:	any;

	

	

constructor(private	navCtrl:	NavController,	private	navParams:
NavParams,	private	socketService:	SocketService,	private
deviceService:	DevicesService,	private	dataService:	DataService,
private	toastService:	ToastService)	{

this.device	=	navParams.get("device");	console.log(this.device);

}

	

ionViewDidLoad()	{

this.deviceService.getOne(this.device._id).subscribe((response)	=>	{

this.device	=	response.json();	this.getData();

this.socketInit();

});

}

	

getData()	{

this.dataService.get(this.device.macAddress).subscribe((response)	=>
{

this.data	=	response.json();	this.lastRecord	=	this.data[0];	//
descending	order	data	});

}

	

socketInit()	{

this.subData	=
this.socketService.getData(this.device.macAddress).subscribe((data)
=>	{

if	(this.data.length	<=	0)	return;	this.data.splice(this.data.length	-	1,	1);
//	remove	the	last	record	this.data.push(data);	//	add	the	new	one
this.lastRecord	=	data;	});

}

	

ionViewDidUnload()	{

this.subData	&&	this.subData.unsubscribe	&&
this.subData.unsubscribe();	//unsubscribe	if	subData	is	defined	}

}

Save	all	the	files	and	run	the	mobile	app	either	by	using	ionic	serve	or	ionic	cordova
run	android.

And	we	should	see	the	following:	

With	this	we	are	done	with	displaying	the	data	from	the	smart	wearable	on	the
mobile	app.

	

	

	

Summary
In	this	chapter,	we	have	seen	how	to	build	a	simple	smart	wearable	using
Raspberry	Pi	3.	We	have	set	up	a	LCD	and	a	three-axis	accelerometer	and	we
displayed	the	location	information	on	the	display.	We	have	posted	the
accelerometer	data	in	real	time	to	the	cloud	and	displayed	it	on	the	web,	desktop,
and	mobile	apps.

In	Chapter	7,	Smart	Wearable	and	IFTTT,	we	are	going	to	take	the	smart	wearable
to	the	next	level	by	implementing	IFTTT	rules	on	top	of	it.	We	are	going	to
perform	actions	such	as	making	a	phone	call	or	sending	an	SMS	to	the	patience
emergency	contact	so	that	immediate	care	can	be	given.

	

Smart	Wearable	and	IFTTT
	

In	Chapter	6,	Smart	Wearable,	we	looked	at	how	to	build	a	simple	wearable	that
displays	a	user's	location	and	also	reads	accelerometer	values.	In	this	chapter,	we
are	going	to	take	that	application	to	the	next	level	by	implementing	fall	detection
logic	on	the	device	and	then	adding	If	This	Then	That	(IFTTT)	rules	on	top	of
the	data	to	execute	actions	when	certain	events	happen.	We	will	look	at	the
following	topics:

What	is	IFTTT
IFTTT	and	IoT
Understanding	fall	detection
Accelerometer-based	fall	detection
Building	an	IFTTT	rules	engine

	

	

IFTTT	and	IoT
This	reactive	pattern	can	be	easily	applied	to	certain	situations.	For	example,	if	a
patient	falls	down,	then	call	an	ambulance,	or	if	the	temperature	goes	below	15
degrees,	then	turn	off	the	AC,	and	so	on.	These	are	simple	rules	that	we	define
that	can	help	us	automate	a	lot	of	processes.

In	IoT,	rules	engines	are	key	to	automating	most	monotonous	tasks.	In	this
chapter,	we	are	going	to	build	a	simple	hardcoded	rules	engine	that	will
continuously	monitor	the	incoming	data.	If	the	incoming	data	matches	any	of	our
rules,	it	will	execute	a	response.

What	we	are	building	is	a	similar	concept	to	ifttt.com	(https://ifttt.com/disc
over),	but	is	very	specific	to	IoT	devices	that	are	present	inside	our
framework.	IFTTT	(https://ifttt.com/discover)	has	no	relation	to	what	we
are	building	in	our	book.

https://ifttt.com/
https://ifttt.com/discover
https://ifttt.com/discover

Fall	detection
In	Chapter	6,	Smart	Wearable,	we	gathered	three	axis	values	from	the
accelerometer.	Now,	we	are	going	to	make	use	of	this	data	to	detect	falls.

I	would	recommend	watching	the	video	Accelerometer	in	Freefall	(https://www.yout
ube.com/watch?v=-om0eTXsgnY),	which	explains	how	an	accelerometer	behaves	both
when	it	is	stationary	and	in	motion.

Now	that	we	understand	the	basic	concept	of	fall	detection,	let's	talk	about	our
specific	use	case.

The	biggest	challenge	in	fall	detection	is	to	distinguish	falling	from	other
activities,	such	as	running	and	jumping.	In	this	chapter,	we	are	going	to	keep
things	simple	and	work	on	very	basic	conditions,	where	a	user	at	rest	or	in
constant	motion	suddenly	falls	down.

To	identify	whether	the	user	has	fallen	down,	we	use	the	signal	magnitude	vector
or	SMV.	SMV	is	the	root	mean	square	of	the	values	of	the	three	axes.	That	is:

If	we	start	plotting	the	SMV	over	Time	for	a	user	who	is	standing	idle	and	then
falls	down,	we	will	end	up	with	a	graph,	as	follows:

https://www.youtube.com/watch?v=-om0eTXsgnY

Note	the	spike	at	the	end	of	the	chart.	This	is	the	point	at	which	the	user	actually
fell.

Now,	when	we	gather	the	accelerometer	values	from	ADXL345,	we	will
calculate	the	SMV.	Based	on	multiple	iterations	using	the	smart	wearable	we
have	built,	I	was	consistently	able	to	detect	falls	at	an	SMV	value	of	1	g.	For
anything	less	than	1	g	SMV,	the	user	is	almost	always	considered	to	be	stationary
and	anything	greater	than	1	g	SMV	is	considered	a	fall.

Do	note	that	I	have	placed	the	accelerometer	in	such	a	way	that	the	y-axis	is
perpendicular	to	the	ground.

Once	we	put	the	setup	together	,	you	can	see	for	yourself	how	the	SMV	values
change	with	a	change	in	the	accelerometer's	position.

Do	note	that	if	you	are	performing	other	activities,	such	as	jumping	or	squatting,
the	fall	detection	might	be	triggered.	You	can	play	around	with	the	threshold
value	of	1	g	SMV	to	get	consistent	fall	detection.

You	can	also	refer	to	Detecting	Human	Falls	with	a	3-Axis	Digital
Accelerometer:	(http://www.analog.com/en/analog-dialogue/articles/detecting-falls-
3-axis-digital-accelerometer.html),	or	Accelerometer-based	on-body	sensor
localization	for	health	and	medical	monitoring	applications	(https://w
ww.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/),	and	Development	of	the

http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/

Algorithm	for	Detecting	Falls	during	Daily	Activity	using	2	Tri-
Axial	Accelerometers	(http://waset.org/publications/2993/development-of-the-algo
rithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers)	to	get
a	greater	understanding	of	this	topic	and	improve	the	efficiency	of
the	system.

http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers

Updating	Raspberry	Pi
	

Now	that	we	know	what	needs	to	be	done,	we	will	get	started	with	the	code.

Before	we	proceed,	create	a	folder	named	chapter7	and	make	a	copy	of	the	chapter6
code	in	the	chapter7	folder.

Next,	open	the	pi/index.js	file.	We	will	update	the	ADXL345	initialization	setup
and	then	start	working	with	the	values.	Update	pi/index.js,	as	follows:	var	config
=	require('./config.js');	var	mqtt	=	require('mqtt');

var	GetMac	=	require('getmac');	var	request	=	require('request');	var
ADXL345	=	require('adxl345-sensor');
require('events').EventEmitter.prototype._maxListeners	=	100;

var	adxl345	=	new	ADXL345();	//	defaults	to	i2cBusNo	1,	i2cAddress
0x53

	

var	Lcd	=	require('lcd'),

lcd	=	new	Lcd({

rs:	12,

e:	21,

data:	[5,	6,	17,	18],

cols:	8,

rows:	2

});

	

var	aclCtr	=	0,

locCtr	=	0;

	

var	prevX,	prevY,	prevZ,	prevSMV,	prevFALL;	var	locationG;	//
global	location	variable

var	client	=	mqtt.connect({

port:	config.mqtt.port,

protocol:	'mqtts',

host:	config.mqtt.host,

clientId:	config.mqtt.clientId,	reconnectPeriod:	1000,

username:	config.mqtt.clientId,	password:	config.mqtt.clientId,
keepalive:	300,

rejectUnauthorized:	false

});

	

client.on('connect',	function()	{

client.subscribe('rpi');

client.subscribe('socket');	GetMac.getMac(function(err,	mac)	{

if	(err)	throw	err;

macAddress	=	mac;

displayLocation();

initADXL345();

client.publish('api-engine',	mac);	});

});

	

client.on('message',	function(topic,	message)	{

message	=	message.toString();	if	(topic	===	'rpi')	{

console.log('API	Engine	Response	>>	',	message);	}	else	{

console.log('Unknown	topic',	topic);	}

});

	

function	initADXL345()	{

adxl345.init()

.then(()	=>
adxl345.setMeasurementRange(ADXL345.RANGE_2_G()))	.then(()

=>	adxl345.setDataRate(ADXL345.DATARATE_100_HZ()))	.then(()
=>	adxl345.setOffsetX(0))	//	measure	for	your	particular	device
.then(()	=>	adxl345.setOffsetY(0))	//	measure	for	your	particular
device	.then(()	=>	adxl345.setOffsetZ(0))	//	measure	for	your
particular	device	.then(()	=>	adxl345.getMeasurementRange())
.then((range)	=>	{

console.log('Measurement	range:',
ADXL345.stringifyMeasurementRange(range));	return
adxl345.getDataRate();	})

.then((rate)	=>	{

console.log('Data	rate:	',	ADXL345.stringifyDataRate(rate));	return
adxl345.getOffsets();	})

.then((offsets)	=>	{

console.log('Offsets:	',	JSON.stringify(offsets,	null,	2));
console.log('ADXL345	initialization	succeeded');	loop();

})

.catch((err)	=>	console.error('ADXL345	initialization	failed:',	err));	}

	

function	loop()	{

//	infinite	loop,	with	3	seconds	delay	setInterval(function()	{

//	wait	till	we	get	the	location	//	then	start	processing	if	(!locationG)
return;

readSensorValues(function(acclVals)	{

var	x	=	acclVals.x;	var	y	=	acclVals.y;	var	z	=	acclVals.z;	var	fall	=	0;

var	smv	=	Math.sqrt(x	*	x,	y	*	y,	z	*	z);

if	(smv	>	1)	{

fall	=	1;

}

	

acclVals.smv	=	smv;	acclVals.fall	=	fall;

var	data2Send	=	{

data:	{

acclVals:	acclVals,	location:	locationG

},

macAddress:	macAddress	};

	

//	no	duplicate	data	if	(fall	===	1	&&	(x	!==	prevX	||	y	!==	prevY	||	z
!==	prevZ	||	smv	!==	prevSMV	||	fall	!==	prevFALL))	{

console.log('Fall	Detected	>>	',	acclVals);
client.publish('accelerometer',	JSON.stringify(data2Send));
console.log('Data	Published');	prevX	=	x;

prevY	=	y;

prevZ	=	z;

}

});

	

if	(locCtr	===	600)	{	//	every	5	mins	locCtr	=	0;

displayLocation();

}

	

aclCtr++;

locCtr++;

},	500);	//	every	one	second	}

	

function	readSensorValues(CB)	{

adxl345.getAcceleration(true)	//	true	for	g-force	units,	else	false	for
m/s²

.then(function(acceleration)	{

if	(CB)	CB(acceleration);	})

.catch((err)	=>	{

console.log('ADXL345	read	error:	',	err);	});

}

	

function	displayLocation()	{

request('http://ipinfo.io',	function(error,	res,	body)	{

var	info	=	JSON.parse(body);	//	console.log(info);

locationG	=	info;

var	text2Print	=	'';

text2Print	+=	'City:	'	+	info.city;	text2Print	+=	'	Region:	'	+
info.region;	text2Print	+=	'	Country:	'	+	info.country	+	'	';
lcd.setCursor(16,	0);	//	1st	row	lcd.autoscroll();

printScroll(text2Print);	});

}

	

//	a	function	to	print	scroll

function	printScroll(str,	pos)	{

pos	=	pos	||	0;

	

if	(pos	===	str.length)	{

pos	=	0;

}

	

lcd.print(str[pos]);

//console.log('printing',	str[pos]);

setTimeout(function()	{

return	printScroll(str,	pos	+	1);	},	300);

}

	

//	If	ctrl+c	is	hit,	free	resources	and	exit.

process.on('SIGINT',	function()	{

lcd.clear();

lcd.close();

process.exit();

});

Note	initADXL345().	We	define	the	measurement	range	as	2_G,	clear	the	offsets,	and
then	we	invoke	the	infinite	loop	function.	In	this	scenario,	we	run	the
setInterval()	every	500	ms	instead	of	every	1	second.	readSensorValues()	is	invoked
every	500	ms	instead	of	every	3	seconds.	This	is	to	make	sure	that	we	capture
falls	without	much	delay.

In	the	readSensorValues(),	once	the	x,	y,	and	z	values	are	available,	we	calculate	the
SMV.	Then,	we	check	whether	the	SMV	value	is	greater	than	1:	if	it	is,	then	we

have	detected	a	fall.

Along	with	the	x,	y,	and	z	values,	we	send	the	SMV	value	as	well	as	the	fall	value
to	the	API	engine.	Also,	do	note	that	in	this	example,	we	are	not	sending	all
values	as	we	collect	them.	We	send	data	only	if	the	fall	is	detected.

Save	all	of	the	files.	Start	the	broker	by	running	the	following	command	from
the	chapter7/broker	folder:	mosca	-c	index.js	-v	|	pino

Next,	start	the	API	engine	by	running	the	following	command	from	the
chapter7/api-engine	folder:	npm	start

We	are	yet	to	add	the	IFTTT	logic	to	the	API	engine,	which	we	will	do	in	the
next	section.	For	now,	to	validate	our	setup,	let's	run	the	index.js	file	on	the
Raspberry	Pi	by	executing:	npm	start

If	everything	goes	well,	the	accelerometer	should	be	initialized	successfully	and
the	data	should	start	coming	in.

If	we	simulate	a	free	fall,	we	should	see	our	first	piece	of	data	going	to	the	API
engine,	and	it	should	look	something	like	the	following	screenshot:	

As	you	can	see,	the	simulated	free	fall	gave	an	SMV	of	2.048	g.

My	hardware	setup	is	as	shown	here:	

I	have	glued	the	entire	setup	to	a	Styrofoam	sheet,	so	I	can	comfortably	test	the
fall	detection	logic.

I	removed	the	16	x	2	LCD	from	the	setup	while	I	was	identifying	the
SMV	for	free	fall.

In	the	next	section,	we	are	going	to	read	the	data	that	we	received	from	the
device	and	then	execute	rules	based	on	it.

	

	

	

Building	the	IFTTT	rules	engine
	

Now	that	we	are	sending	the	required	data	to	the	API	engine,	we	will	be	doing
two	things:

1.	 Showing	data	that	we	got	from	the	smart	wearable	on	the	web,	desktop,	and
mobile	apps

2.	 Executing	rules	on	top	of	the	data

We	will	get	started	with	the	second	objective	first.	We	will	be	building	a	rules
engine	to	execute	rules	based	on	the	data	we	have	received.

Let's	get	started	by	creating	a	folder	named	ifttt	at	the	root	of	the	api-
engine/server	folder.	Inside	the	ifttt	folder,	create	a	file	named	rules.json.	Update
api-engine/server/ifttt/rules.json,	as	follows:	[{

"device":	"b8:27:eb:39:92:0d",	"rules":	[

{

"if":

{

"prop":	"fall",

"cond":	"eq",

"valu":	1

},

"then":

{

"action":	"EMAIL",	"to":	"arvind.ravulavaru@gmail.com"

}

}]

}]

As	you	can	see	from	the	preceding	code,	we	are	maintaining	a	JSON	file	with	all
of	our	rules.	In	our	scenario,	we	have	only	one	rule	for	one	device,	and	the	rule
has	two	parts:	the	if	part	and	the	then	part.	The	if	refers	to	the	property,	which
needs	to	be	checked	against	the	incoming	data,	the	checking	condition,	and	the
value	against	which	it	needs	to	be	checked.	The	then	part	refers	to	the	action	that
needs	to	be	taken	if	the	if	matches.	In	the	preceding	case,	this	action	involves
sending	an	email.

Next,	we	are	going	to	build	the	rules	engine	itself.	Create	a	file	named	ifttt.js
inside	the	api-engine/server/ifttt	folder	and	update	api-engine/server/ifttt/ifttt.js,
as	follows:	var	Rules	=	require('./rules.json');

exports.processData	=	function(data)	{

	

for	(var	i	=	0;	i	<	Rules.length;	i++)	{

if	(Rules[i].device	===	data.macAddress)	{

//	the	rule	belows	to	the	incoming	device's	data	for	(var	j	=	0;	j	<
Rules[i].rules.length;	j++)	{

//	process	one	rule	at	a	time	var	rule	=	Rules[i].rules[j];	var	data	=
data.data.acclVals;	if	(checkRuleAndData(rule,	data))	{

console.log('Rule	Matched',	'Processing	Then.');	if	(rule.then.action
===	'EMAIL')	{

console.log('Sending	email	to',	rule.then.to);	EMAIL(rule.then.to);	}
else	{

console.log('Unknown	Then!	Please	re-check	the	rules');	}

}	else	{

console.log('Rule	Did	Not	Matched',	rule,	data);	}

}

}

}

}

	

/*	Rule	process	Helper	*/

function	checkRuleAndData(rule,	data)	{

var	rule	=	rule.if;

if	(rule.cond	===	'lt')	{

return	rule.valu	<	data[rule['prop']];	}	else	if	(rule.cond	===	'lte')	{

return	rule.valu	<=	data[rule['prop']];	}	else	if	(rule.cond	===	'eq')	{

return	rule.valu	===	data[rule['prop']];	}	else	if	(rule.cond	===	'gte')	{

return	rule.valu	>=	data[rule['prop']];	}	else	if	(rule.cond	===	'gt')	{

return	rule.valu	>	data[rule['prop']];	}	else	if	(rule.cond	===	'ne')	{

return	rule.valu	!==	data[rule['prop']];	}	else	{

return	false;

}

}

	

	

/*Then	Helpers*/

function	SMS()	{

///	AN	EXAMPLE	TO	SHOW	OTHER	THENs	}

	

function	CALL()	{

///	AN	EXAMPLE	TO	SHOW	OTHER	THENs	}

	

function	PUSHNOTIFICATION()	{

///	AN	EXAMPLE	TO	SHOW	OTHER	THENs	}

	

function	EMAIL(to)	{

///	AN	EXAMPLE	TO	SHOW	OTHER	THENs	var	email	=
require('emailjs');	var	server	=	email.server.connect({

user:	'arvind.ravulavaru@gmail.com',	password:	'XXXXXXXXXX',
host:	'smtp.gmail.com',	ssl:	true

});

	

server.send({

text:	'Fall	has	been	detected.	Please	attend	to	the	patient',	from:
'Patient	Bot	<arvind.ravulavaru@gmail.com>',	to:	to,

subject:	'Fall	Alert!!'

},	function(err,	message)	{

if	(err)	{

console.log('Message	sending	failed!',	err);	}

});

}

The	logic	is	quite	simple.	processData()	gets	called	when	a	new	data	record	comes
to	the	API	engine.	Then,	we	load	all	of	the	rules	from	the	rules.json	file	and	we
iterate	over	them	to	check	whether	or	not	the	current	rule	is	meant	for	the
incoming	device.

If	yes,	then	checkRuleAndData()	is	called	by	passing	the	rule	and	incoming	data	to
check	whether	the	current	data	set	matches	any	of	the	predefined	rules.	If	it	does,

we	check	the	action,	which	in	our	case	is	the	sending	of	an	email.	You	can
update	the	appropriate	email	credentials	in	the	code.

Once	this	is	done,	we	need	to	invoke	processData()	from	api-
engine/server/mqtt/index.js	client.on('message')	with	the	topic	equaling	accelerometer.

Update	client.on('message'),	as	follows:	client.on('message',	function(topic,
message)	{

//	message	is	Buffer

//	console.log('Topic	>>	',	topic);	//	console.log('Message	>>	',
message.toString());	if	(topic	===	'api-engine')	{

var	macAddress	=	message.toString();	console.log('Mac	Address	>>	',
macAddress);	client.publish('rpi',	'Got	Mac	Address:	'	+	macAddress);
}	else	if	(topic	===	'accelerometer')	{

var	data	=	JSON.parse(message.toString());	console.log('data	>>	',
data);	//	create	a	new	data	record	for	the	device	Data.create(data,
function(err,	data)	{

if	(err)	return	console.error(err);	//	if	the	record	has	been	saved
successfully,	//	websockets	will	trigger	a	message	to	the	web-app	//
console.log('Data	Saved	:',	data.data);	//	Invoke	IFTTT	Rules	Engine
RulesEngine.processData(data);	});

}	else	{

console.log('Unknown	topic',	topic);	}

});

That	is	it.	We	have	all	the	pieces	needed	for	the	IFTTT	engine	to	run.

Save	all	of	the	files	and	restart	the	API	engine.	Now,	simulate	a	fall	and	we

should	see	an	email	coming	our	way,	which	should	look	something	like	this:	

Now	that	we	are	done	with	the	IFTTT	engine,	we	will	update	the	interfaces	to
reflect	the	new	data	we	have	gathered.

	

	

	

Updating	the	web	app
	

To	update	the	web	app,	open	web-app/src/app/device/device.component.html	and	update
it,	as	follows:	<div	class="container">	

<div	*ngIf="!device">

<h3	class="text-center">Loading!</h3>	</div>

<div	class="row"	*ngIf="lastRecord">	<div	class="col-md-12">

<div	class="panel	panel-info">	<div	class="panel-heading">	<h3
class="panel-title">	{{device.name}}

</h3>

	<i	class="fa	fa-chevron-circle-
up"></i>	

</div>

<div	class="clearfix"></div>	<div	class="table-responsive">	<table
class="table	table-striped">	<tr	*ngIf="lastRecord">	<td>X-
Axis</td>	<td>{{lastRecord.data.acclVals.x}}
{{lastRecord.data.acclVals.units}}</td>	</tr>

<tr	*ngIf="lastRecord">	<td>Y-Axis</td>	<td>
{{lastRecord.data.acclVals.y}}	{{lastRecord.data.acclVals.units}}
</td>	</tr>

<tr	*ngIf="lastRecord">	<td>Z-Axis</td>	<td>

{{lastRecord.data.acclVals.z}}	{{lastRecord.data.acclVals.units}}
</td>	</tr>

<tr	*ngIf="lastRecord">	<td>Signal	Magnitude	Vector</td>	<td>
{{lastRecord.data.acclVals.smv}}</td>	</tr>

<tr	*ngIf="lastRecord">	<td>Fall	State</td>	<td>
{{lastRecord.data.acclVals.fall	?	'Patient	Down'	:	'All	is	well!'}}</td>
</tr>

<tr	*ngIf="lastRecord">	<td>Location</td>	<td>
{{lastRecord.data.location.city}},
{{lastRecord.data.location.region}},
{{lastRecord.data.location.country}}</td>	</tr>

<tr	*ngIf="lastRecord">	<td>Received	At</td>	<td>
{{lastRecord.createdAt	|	date	:	'medium'}}</td>	</tr>

</table>

<hr>

<div	class="col-md-12"	*ngIf="acclVals.length	>	0">	<canvas
baseChart	[datasets]="acclVals"	[labels]="lineChartLabels"
[options]="lineChartOptions"	[legend]="lineChartLegend"
[chartType]="lineChartType"></canvas>	</div>

</div>

</div>

</div>

</div>

</div>

Save	the	file	and	run:	npm	start

We	should	see	the	following	once	we	navigate	to	the	device	page:	

In	the	next	section,	we	will	update	the	desktop	app.

	

	

	

Updating	the	desktop	app
Now	that	the	web	app	is	done,	we	are	going	to	build	the	same	and	deploy	it
inside	our	desktop	app.

To	get	started,	head	back	to	the	terminal/prompt	of	the	web-app	folder	and	run:

ng	build	--env=prod

This	will	create	a	new	folder	inside	the	web-app	folder	named	dist.	The	contents	of
the	dist	folder	should	be	along	the	lines	of:

.

├──	favicon.ico

├──	index.html

├──	inline.bundle.js

├──	inline.bundle.js.map

├──	main.bundle.js

├──	main.bundle.js.map

├──	polyfills.bundle.js

├──	polyfills.bundle.js.map

├──	scripts.bundle.js

├──	scripts.bundle.js.map

├──	styles.bundle.js

├──	styles.bundle.js.map

├──	vendor.bundle.js

└──	vendor.bundle.js.map

All	the	code	we	have	written	is	finally	bundled	into	the	preceding	files.	We	will
grab	all	of	the	files	(not	the	dist	folder)	present	inside	the	dist	folder	and	then
paste	them	inside	the	desktop-app/app	folder.	The	final	structure	of	the	desktop	app
after	these	changes	will	be	as	follows:

.

├──	app

│	├──	favicon.ico

│	├──	index.html

│	├──	inline.bundle.js

│	├──	inline.bundle.js.map

│	├──	main.bundle.js

│	├──	main.bundle.js.map

│	├──	polyfills.bundle.js

│	├──	polyfills.bundle.js.map

│	├──	scripts.bundle.js

│	├──	scripts.bundle.js.map

│	├──	styles.bundle.js

│	├──	styles.bundle.js.map

│	├──	vendor.bundle.js

│	└──	vendor.bundle.js.map

├──	freeport.js

├──	index.css

├──	index.html

├──	index.js

├──	license

├──	package.json

├──	readme.md

└──	server.js

To	test	drive,	run:

npm	start		

Then,	when	we	navigate	to	the	VIEW	DEVICE	page,	we	should	see	the
following:

Now	that	we	are	done	with	the	desktop	app,	we	will	work	on	the	mobile	app.

Updating	the	mobile	app
	

To	reflect	the	new	template	in	the	mobile	app,	we	will	update	mobile-
app/src/pages/view-device/view-device.html,	as	follows:	<ion-header>	<ion-navbar>

<ion-title>Mobile	App</ion-title>	</ion-navbar>

</ion-header>

<ion-content	padding>

<div	*ngIf="!lastRecord">

<h3	class="text-center">Loading!</h3>	</div>

<div	*ngIf="lastRecord">

<ion-list>

<ion-item>

<ion-label>Name</ion-label>	<ion-label>{{device.name}}</ion-
label>	</ion-item>

<ion-item>

<ion-label>X-Axis</ion-label>	<ion-label>
{{lastRecord.data.acclVals.x}}	{{lastRecord.data.acclVals.units}}
</ion-label>	</ion-item>

<ion-item>

<ion-label>Y-Axis</ion-label>	<ion-label>
{{lastRecord.data.acclVals.y}}	{{lastRecord.data.acclVals.units}}
</ion-label>	</ion-item>

<ion-item>

<ion-label>Z-Axis</ion-label>	<ion-label>
{{lastRecord.data.acclVals.z}}	{{lastRecord.data.acclVals.units}}
</ion-label>	</ion-item>

<ion-item>

<ion-label>Signal	Magnitude	Vector</ion-label>	<ion-label>
{{lastRecord.data.acclVals.smv}}</ion-label>	</ion-item>

<ion-item>

<ion-label>Fall	State</ion-label>	<ion-label>
{{lastRecord.data.acclVals.fall	?	'Patient	Down'	:	'All	is	well!'}}</ion-
label>	</ion-item>

<ion-item>

<ion-label>Location</ion-label>	<ion-label>
{{lastRecord.data.location.city}},
{{lastRecord.data.location.region}},
{{lastRecord.data.location.country}}</ion-label>	</ion-item>

<ion-item>

<ion-label>Received	At</ion-label>	<ion-label>
{{lastRecord.createdAt	|	date:	'medium'}}</ion-label>	</ion-item>

</ion-list>

</div>

</ion-content>

Save	all	of	the	files	and	run	the	mobile	app	by	using:	ionic	serve

You	could	also	use:

ionic	cordova	run	android	

We	should	see	the	following:	

	

	

	

Summary
In	this	chapter,	we	worked	with	the	concept	of	fall	detection	and	IFTTT.	Using
the	smart	wearable	we	built	in	Chapter	6,	Smart	Wearable,	we	added	the	fall
detection	logic.	Then,	we	posted	the	same	data	to	the	API	engine,	and	in	the	API
engine,	we	built	our	own	IFTTT	rules	engine.	We	defined	one	rule	for	sending
an	email	when	a	fall	was	detected.

As	well	as	this,	we	also	updated	the	web,	desktop,	and	mobile	apps	to	reflect	the
new	data	we	collected.

In	Chapter	8,	Raspberry	Pi	Image	Streaming,	we	are	going	to	work	with	video
surveillance	using	Raspberry	Pi.

Raspberry	Pi	Image	Streaming
	

In	this	chapter,	we	are	going	to	look	at	live	video	streaming	with	Raspberry	Pi	3
and	Raspberry	Pi	camera.	We	are	going	to	stream	live	video	from	Raspberry	Pi	3
to	our	web	browser	and	access	this	feed	from	anywhere	in	the	world.	As	a	next
step,	we	are	going	to	add	a	motion	detector	to	the	current	setup	and	if	the	motion
is	detected,	we	then	start	streaming	the	video.	In	this	chapter,	we	will	go	through
the	following	topics:

Understanding	MJPEGs
Setting	up	Raspberry	Pi	with	Raspberry	Pi	camera
Stream	the	images	from	the	camera	to	the	dashboard	in	real	time
Capturing	video	in	motion

	

	

MJPEG
Quoting	from	Wikipedia,	https://en.wikipedia.org/wiki/Motion_JPEG.

In	multimedia,	Motion	JPEG	(M-JPEG	or	MJPEG)	is	a	video	compression
format	in	which	each	video	frame	or	interlaced	field	of	a	digital	video	sequence
is	compressed	separately	as	a	JPEG	image.	Originally	developed	for	multimedia
PC	applications,	M-JPEG	is	now	used	by	video-capture	devices	such	as	digital
cameras,	IP	cameras,	and	webcams,	as	well	as	by	non-linear	video	editing
systems.	It	is	natively	supported	by	the	QuickTime	Player,	the	PlayStation
console,	and	web	browsers	such	as	Safari,	Google	Chrome,	Mozilla	Firefox	and
Microsoft	Edge.

As	described	previously,	we	are	going	to	capture	a	series	of	images,	every	100ms
apart	and	stream	the	image	binary	data	on	a	topic	to	the	API	engine,	where	we
override	an	existing	image	with	the	latest	image.

This	streaming	system	is	very	simple	and	old-fashioned.	There	are	no	rewinds	or
pauses	while	streaming.	We	can	always	see	the	last	frame.

Now	that	we	have	a	high	level	of	understanding	of	what	we	are	going	to	achieve,
let	us	get	started.

https://en.wikipedia.org/wiki/Motion_JPEG

Setting	up	Raspberry	Pi
Raspberry	Pi	3	set	up	with	Raspberry	Pi	camera	is	quite	simple.	You	can
purchase	a	Raspberry	Pi	3	camera	(https://www.raspberrypi.org/products/camera-module-v2/)
from	any	of	the	popular	online	vendors.	Then	you	can	follow	this	video	to	setup:
camera	board	setup:	https://www.youtube.com/watch?v=GImeVqHQzsE.

My	camera	setup	is	as	follows:

I	have	used	a	stand	and	hoisted	my	camera	on	top	of	it.

https://www.raspberrypi.org/products/camera-module-v2/
https://www.youtube.com/watch?v=GImeVqHQzsE

Setting	up	the	camera
	

Now	that	we	have	the	camera	connected	and	powered	by	the	Raspberry	Pi	3,	we
will	set	up	the	camera,	as	shown	in	the	following	steps:

1.	 From	inside	the	Raspberry	Pi,	launch	a	new	terminal	and	run:

sudo	raspi-config

2.	 This	will	launch	the	Raspberry	Pi	configuration	screen.	Select	Interfacing
options:

3.	 On	the	next	screen,	select	P1	Camera	and	enable	it:

4.	 This	will	trigger	a	reboot,	complete	the	reboot	and	log	back	into	the	Pi.

Once	your	camera	is	set	up,	we	will	test	it.

	

	

	

Testing	the	camera
Now	that	the	camera	is	set	up	and	powered,	let's	test	it.	Open	a	new	terminal	and
cd	on	the	desktop.	Then	run	the	following:	raspistill	-o	test.jpg

This	will	take	a	screenshot	in	the	present	working	directory,	Desktop.	The	screen
will	look	something	like	the	following:

As	you	can	see,	test.jpg	is	created	on	the	Desktop	and	when	I	double-click	it	shows
a	picture	of	the	glass	wall	of	my	office.

Developing	the	logic
	

Now	that	we	are	able	to	test	the	camera,	we	will	integrate	this	setup	with	our	IoT
platform.	We	are	going	to	stream	these	images	100ms	apart	continuously	to	our
API	engine	and	then	through	web	sockets	update	the	UI	on	the	web.

To	get	started,	we	will	make	a	copy	of	chapter4	and	dump	it	into	a	folder	named
chapter8.	Inside	the	chapter8	folder,	open	pi/index.js	and	update	it	as	follows:	var
config	=	require('./config.js');	var	mqtt	=	require('mqtt');	var	GetMac	=
require('getmac');	var	Raspistill	=	require('node-raspistill').Raspistill;	var
raspistill	=	new	Raspistill({

noFileSave:	true,

encoding:	'jpg',

width:	640,

height:	480

});

	

	

var	crypto	=	require("crypto");	var	fs	=	require('fs');

var	client	=	mqtt.connect({

port:	config.mqtt.port,	protocol:	'mqtts',

host:	config.mqtt.host,	clientId:	config.mqtt.clientId,	reconnectPeriod:
1000,	username:	config.mqtt.clientId,	password:	config.mqtt.clientId,
keepalive:	300,

rejectUnauthorized:	false	});

	

client.on('connect',	function()	{

client.subscribe('rpi');	GetMac.getMac(function(err,	mac)	{

if	(err)	throw	err;	macAddress	=	mac;	client.publish('api-engine',
mac);	startStreaming();	});

	

});

	

client.on('message',	function(topic,	message)	{

message	=	message.toString();	if	(topic	===	'rpi')	{

console.log('API	Engine	Response	>>	',	message);	}	else	{

console.log('Unknown	topic',	topic);	}

});

	

function	startStreaming()	{

raspistill

.timelapse(100,	0,	function(image)	{	//	every	100ms	~~FOREVER~~

var	data2Send	=	{

data:	{

image:	image,	id:	crypto.randomBytes(8).toString("hex")	},

macAddress:	macAddress	};

	

client.publish('image',	JSON.stringify(data2Send));
console.log('[image]',	'published');	})

.then(function()	{

console.log('Timelapse	Ended')	})

.catch(function(err)	{

console.log('Error',	err);	});

}

As	we	can	see	from	the	preceding	code,	we	are	waiting	for	the	MQTT
connection	to	be	completed,	once	the	connection	is	completed,	we	call
startStreaming()	to	start	streaming.	Inside	startStreaming(),	we	are	calling
raspistill.timelapse()	passing	in	100ms,	as	time	difference	between	each	click	and	0
indicates	that	the	capture	should	continue	perpetually.

Once	the	image	is	captured,	we	construct	the	data2Send	object	with	a	random	ID,
the	image	buffer,	and	the	device	macAddress.	Before	publishing	to	the	image	topic,
we	stringify	the	data2Send	object.

Now,	move	this	file	to	Raspberry	Pi's	pi-client	folder,	present	on	the	desktop.

And	from	inside	Raspberry	Pi's,	pi-client	folder,	run:	npm	install	&&	npm
install	node-raspistill	--save

These	two	commands	will	install	the	node-raspistill	and	other	node	modules
present	inside	the	package.json	file.

With	this,	we	are	done	with	the	setup	of	the	Raspberry	Pi	and	the	camera.	In	the
next	section,	we	will	update	the	API	engine	to	accept	the	live	streaming	of
images.

	

	

	

Updating	the	API	engine
Now	that	we	are	done	with	the	Raspberry	Pi	setup,	we	will	update	the	API
engine	to	accept	the	incoming	data.

The	first	thing	we	are	going	to	do	is	update	api-engine/server/mqtt/index.js	as
follows:

var	Data	=	require('../api/data/data.model');	

var	mqtt	=	require('mqtt');	

var	config	=	require('../config/environment');	

var	fs	=	require('fs');	

var	client	=	mqtt.connect({	

				port:	config.mqtt.port,	

				protocol:	'mqtts',	

				host:	config.mqtt.host,	

				clientId:	config.mqtt.clientId,	

				reconnectPeriod:	1000,	

				username:	config.mqtt.clientId,	

				password:	config.mqtt.clientId,	

				keepalive:	300,	

				rejectUnauthorized:	false	

});	

	

client.on('connect',	function()	{	

				console.log('Connected	to	Mosca	at	'	+	config.mqtt.host	+	'	on	port	'	+	

config.mqtt.port);	

				client.subscribe('api-engine');	

				client.subscribe('image');	

});	

	

client.on('message',	function(topic,	message)	{	

				//	message	is	Buffer	

				//	console.log('Topic	>>	',	topic);	

				//	console.log('Message	>>	',	message.toString());	

				if	(topic	===	'api-engine')	{	

								var	macAddress	=	message.toString();	

								console.log('Mac	Address	>>	',	macAddress);	

								client.publish('rpi',	'Got	Mac	Address:	'	+	macAddress);	

				}	else	if	(topic	===	'image')	{	

								message	=	JSON.parse(message.toString());	

								//	convert	string	to	buffer	

								var	image	=	Buffer.from(message.data.image,	'utf8');	

								var	fname	=	'stream_'	+	((message.macAddress).replace(/:/g,	'_'))	+	'.jpg';	

								fs.writeFile(__dirname	+	'/stream/'	+	fname,	image,	{	encoding:	'binary'	},	

function(err)	{	

												if	(err)	{	

																console.log('[image]',	'save	failed',	err);	

												}	else	{	

																console.log('[image]',	'saved');	

												}	

								});	

	

								//	as	of	now	we	are	not	going	to	

								//	store	the	image	buffer	in	DB.		

								//	Gridfs	would	be	a	good	way	

								//	instead	of	storing	a	stringified	text	

								delete	message.data.image;	

								message.data.fname	=	fname;	

	

								//	create	a	new	data	record	for	the	device	

								Data.create(message,	function(err,	data)	{	

												if	(err)	return	console.error(err);	

												//	if	the	record	has	been	saved	successfully,		

												//	websockets	will	trigger	a	message	to	the	web-app	

												//	console.log('Data	Saved	:',	data);	

								});	

				}	else	{	

								console.log('Unknown	topic',	topic);	

				}	

});	

As	we	can	see	from	the	preceding	code,	inside	the	message	event	of	MQTT,	we
have	added	a	new	topic	named	image.	Inside	this	topic,	we	extract	the	string
format	of	the	image	buffer	and	convert	it	back	to	the	image	binary	data.	Then
using	the	fs	module,	we	overwrite	the	same	image	again	and	again.

We	also	keep	saving	the	data	simultaneously	to	MongoDB	and	this	will	trigger	a
socket	emit.

As	the	next	step,	we	need	to	create	a	folder	named	stream	inside	the	mqtt	folder.
And	inside	this	folder,	drop	an	image	present	here:
http://www.iconarchive.com/show/small-n-flat-icons-by-paomedia/sign-ban-icon.html.	This
image	will	be	shown	if	there	is	no	feed	available	for	a	camera.

All	the	images	will	be	saved	inside	the	stream	folder	and	the	same	image	will	be
updated	for	the	same	device,	as	mentioned	earlier,	there	will	not	be	any	rewinds
or	replays.

Now,	the	images	get	saved	inside	the	stream	folder	and	we	need	to	expose	an	end
point	to	send	this	image	to	the	request	clients.	For	that,	open	api-
engine/server/routes.js	and	add	the	following	to	the	module.exports	function:

app.get('/stream/:fname',	function(req,	res,	next)	{	

								var	fname	=	req.params.fname;	

								var	streamDir	=	__dirname	+	'/mqtt/stream/';	

								var	img	=	streamDir	+	fname;	

								console.log(img);	

								fs.exists(img,	function(exists)	{	

									if	(exists)	{	

																return	res.sendFile(img);	

												}	else	{	

																//	http://www.iconarchive.com/show/small-n-flat-icons-by-

paomedia/sign-ban-icon.html	

																return	res.sendFile(streamDir	+	'/no-image.png');	

												}	

								});	

				});		

This	will	take	care	of	dispatching	the	image	to	the	client	(web,	desktop,	and
mobile).

With	this,	we	are	done	with	setting	up	the	API	engine.

Save	all	the	files	and	start	the	broker,	API	engine,	and	the	pi-client.	If	everything
is	successfully	set	up,	we	should	see	the	data	being	posted	from	the	Raspberry
Pi:

And	the	same	data	appearing	in	the	API	engine:

At	this	point,	the	images	are	being	captured	and	sent	to	the	API	engine	over
MQTTs.	The	next	step	is	to	view	these	images	in	real	time.

Updating	the	web	app
	

Now	that	the	data	is	streaming	to	the	API	engine,	we	will	show	it	on	the	web
app.	Open	web-app/src/app/device/device.component.html	and	update	it	as	follows:	<div
class="container">	

<div	*ngIf="!device">

<h3	class="text-center">Loading!</h3>	</div>

<div	class="row"	*ngIf="!lastRecord">	<h3	class="text-center">No
Data!</h3>	</div>

<div	class="row"	*ngIf="lastRecord">	<div	class="col-md-12">	<div
class="panel	panel-info">	<div	class="panel-heading">	<h3
class="panel-title">	{{device.name}}

</h3>

	<i	class="fa	fa-chevron-circle-
up"></i>	

</div>

<div	class="clearfix"></div>	<div	class="table-responsive"
*ngIf="lastRecord">	<table	class="table	table-striped">	<tr>

<td	colspan="2"	class="text-center"></td>	</tr>

<tr	class="text-center"	>	<td>Received	At</td>	<td>

{{lastRecord.createdAt	|	date:	'medium'}}</td>	</tr>

</table>

</div>

</div>

</div>

</div>

</div>

Here,	we	are	displaying	the	image	that	we	have	created	in	real	time.	Next,
update	web-app/src/app/device/device.component.ts	as	follows:	import	{	Component,
OnInit,	OnDestroy	}	from	'@angular/core';	import	{	DevicesService	}	from
'../services/devices.service';	import	{	Params,	ActivatedRoute	}	from
'@angular/router';	import	{	SocketService	}	from	'../services/socket.service';
import	{	DataService	}	from	'../services/data.service';	import	{
NotificationsService	}	from	'angular2-notifications';	import	{	Globals	}	from
'../app.global';

@Component({

selector:	'app-device',

templateUrl:	'./device.component.html',	styleUrls:
['./device.component.css']

})

export	class	DeviceComponent	implements	OnInit,	OnDestroy	{

device:	any;

data:	Array<any>;

toggleState:	boolean	=	false;

private	subDevice:	any;

private	subData:	any;

lastRecord:	any;

	

//	line	chart	config

	

constructor(private	deviceService:	DevicesService,	private
socketService:	SocketService,	private	dataService:	DataService,
private	route:	ActivatedRoute,	private	notificationsService:
NotificationsService)	{	}

	

ngOnInit()	{

this.subDevice	=	this.route.params.subscribe((params)	=>	{

this.deviceService.getOne(params['id']).subscribe((response)	=>	{

this.device	=	response.json();	this.getData();	});

});

}

	

getData()	{

this.dataService.get(this.device.macAddress).subscribe((response)	=>
{

this.data	=	response.json();	let	d	=	this.data[0];	d.data.fname	=
Globals.BASE_API_URL	+	'stream/'	+	d.data.fname;	this.lastRecord
=	d;	//	descending	order	data	this.socketInit();

});

}

	

socketInit()	{

this.subData	=
this.socketService.getData(this.device.macAddress).subscribe((data:
any)	=>	{

if	(this.data.length	<=	0)	return;	this.data.splice(this.data.length	-	1,	1);
//	remove	the	last	record	data.data.fname	=	Globals.BASE_API_URL
+	'stream/'	+	data.data.fname	+	'?t='	+	(Math.random()	*	100000);	//
cache	busting	this.data.push(data);	//	add	the	new	one	this.lastRecord
=	data;	});

}

ngOnDestroy()	{	

									this.subDevice.unsubscribe();	this.subData	?	this.subData.unsubscribe()	:	'';	

}	

}	

Here	we	are	constructing	the	image	URL	and	pointing	it	to	the	API	engine.	Save
all	the	files	and	launch	the	web	app	by	running	the	following	command	from
inside	the	web-app	folder:	npm	start

If	everything	works	as	expected,	upon	navigating	to	the	VIEW	DEVICE	page,
we	should	see	the	video	stream	very	slowly.	I	am	monitoring	a	cup	placed	in
front	of	my	chair	as	follows:	

	

	

	

Updating	the	desktop	app
Now	that	the	web	app	is	done,	we	are	going	to	build	the	same	and	deploy	it
inside	our	desktop	app.

To	get	started,	head	back	to	the	terminal/prompt	of	the	web-app	folder	and	run	the
following:	ng	build	--env=prod

This	will	create	a	new	folder	inside	the	web-app	folder	named	dist.	The	contents	of
the	dist	folder	should	be	along	the	lines	of:	.

├──	favicon.ico

├──	index.html

├──	inline.bundle.js

├──	inline.bundle.js.map

├──	main.bundle.js

├──	main.bundle.js.map

├──	polyfills.bundle.js

├──	polyfills.bundle.js.map

├──	scripts.bundle.js

├──	scripts.bundle.js.map

├──	styles.bundle.js

├──	styles.bundle.js.map

├──	vendor.bundle.js

└──	vendor.bundle.js.map

All	the	code	we	have	written	is	finally	bundled	into	the	preceding	files.	We	will
grab	all	the	files	(not	the	dist	folder)	present	inside	the	dist	folder	and	then	paste
it	inside	the	desktop-app/app	folder.	The	final	structure	of	the	desktop-app	after	the
preceding	changes	will	be	as	follows:	.

├──	app

│	├──	favicon.ico

│	├──	index.html

│	├──	inline.bundle.js

│	├──	inline.bundle.js.map

│	├──	main.bundle.js

│	├──	main.bundle.js.map

│	├──	polyfills.bundle.js

│	├──	polyfills.bundle.js.map

│	├──	scripts.bundle.js

│	├──	scripts.bundle.js.map

│	├──	styles.bundle.js

│	├──	styles.bundle.js.map

│	├──	vendor.bundle.js

│	└──	vendor.bundle.js.map

├──	freeport.js

├──	index.css

├──	index.html

├──	index.js

├──	license

├──	package.json

├──	readme.md

└──	server.js

To	test	drive,	run	the	following:

npm	start	

And	then	when	we	navigate	to	the	VIEW	DEVICE	page,	we	should	see:

With	this	we	are	done	with	the	development	of	the	desktop	app.	In	the	next
section,	we	will	update	the	mobile	app.

Updating	the	mobile	app
	

In	the	last	section,	we	have	updated	the	desktop	app.	In	this	section,	we	are
going	to	update	the	mobile	app	template	to	stream	images.

First	we	are	going	to	update	the	view-device	template.	Update	mobile-
app/src/pages/view-device/view-device.html	as	follows:	<ion-header>	<ion-navbar>

<ion-title>Mobile	App</ion-title>	</ion-navbar>

</ion-header>

<ion-content	padding>

<div	*ngIf="!lastRecord">	<h3	class="text-center">Loading!</h3>
</div>

<div	*ngIf="lastRecord">	<ion-list>

<ion-item>

	</ion-item>

<ion-item>

<ion-label>Received	At</ion-label>	<ion-label>
{{lastRecord.createdAt	|	date:	'medium'}}</ion-label>	</ion-item>

</ion-list>

</div>

</ion-content>

The	logic	for	displaying	the	image	stream	on	a	mobile	is	the	same	as
web/desktop.	Next,	update	mobile-app/src/pages/view-device/view-device.ts	as	follows:
import	{	Component	}	from	'@angular/core';	import	{	IonicPage,	NavController,
NavParams	}	from	'ionic-angular';	import	{	Globals	}	from	'../../app/app.globals';
import	{	DevicesService	}	from	'../../services/device.service';	import	{
DataService	}	from	'../../services/data.service';	import	{	ToastService	}	from
'../../services/toast.service';	import	{	SocketService	}	from
'../../services/socket.service';

@IonicPage()

@Component({

selector:	'page-view-device',	templateUrl:	'view-device.html',	})

export	class	ViewDevicePage	{

device:	any;

data:	Array<any>;

toggleState:	boolean	=	false;	private	subData:	any;

lastRecord:	any;

	

	

constructor(private	navCtrl:	NavController,	private	navParams:
NavParams,	private	socketService:	SocketService,	private
deviceService:	DevicesService,	private	dataService:	DataService,
private	toastService:	ToastService)	{

this.device	=	navParams.get("device");	console.log(this.device);	}

	

ionViewDidLoad()	{

this.deviceService.getOne(this.device._id).subscribe((response)	=>	{

this.device	=	response.json();	this.getData();

});

}

	

getData()	{

this.dataService.get(this.device.macAddress).subscribe((response)	=>
{

this.data	=	response.json();	let	d	=	this.data[0];	d.data.fname	=
Globals.BASE_API_URL	+	'stream/'	+	d.data.fname;	this.lastRecord
=	d;	//	descending	order	data	this.socketInit();	});

}

	

socketInit()	{

this.subData	=
this.socketService.getData(this.device.macAddress).subscribe((data:
any)	=>	{

if(this.data.length	<=	0)	return;	this.data.splice(this.data.length	-	1,	1);
//	remove	the	last	record	data.data.fname	=	Globals.BASE_API_URL
+	'stream/'	+	data.data.fname	+	'?t='	+	(Math.random()	*	100000);
this.data.push(data);	//	add	the	new	one	this.lastRecord	=	data;	});

}

	

ionViewDidUnload()	{

this.subData	&&	this.subData.unsubscribe	&&
this.subData.unsubscribe();	//unsubscribe	if	subData	is	defined	}

}

Save	all	the	files	and	run	the	mobile	app	either	by	using:	ionic	serve

Or	by	using	the	following	code:	ionic	cordova	run	android

And	we	should	see	the	following:	

With	this	we	are	done	with	displaying	the	data	from	the	camera	on	the	mobile
app.

	

	

	

Motion-based	video	capture
	

As	we	could	see	that	the	stream	was	kind	of	choppy,	slow,	and	not	real	time,
another	probable	solution	is	to	put	a	motion	detector	along	with	our	Raspberry	Pi
and	camera.	Then	when	a	motion	is	identified,	we	start	taking	a	video	for	10
seconds.	Then	we	email	this	video	to	the	user	as	an	attachment.

Now,	we	will	start	updating	our	existing	code.

	

	

	

Updating	the	Raspberry	Pi
	

To	get	started,	we	will	update	our	Raspberry	Pi	setup	to	accommodate	an	HC-
SR501	PIR	sensor.	You	can	find	a	PIR	sensor	here:	https://www.amazon.com/Motion-HC-
SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it.

We	will	connect	the	PIR	sensor	to	the	Raspberry	Pi	on	pin	17	and	the	camera	to
the	camera	slot	as	we	have	seen	earlier.

Once	the	connections	are	made	as	previously	discussed,	update	pi/index.js	as
follows:	var	config	=	require('./config.js');	var	mqtt	=	require('mqtt');	var	GetMac
=	require('getmac');	var	Raspistill	=	require('node-raspistill').Raspistill;	var
crypto	=	require("crypto");	var	fs	=	require('fs');

var	Gpio	=	require('onoff').Gpio;	var	exec	=
require('child_process').exec;

var	pir	=	new	Gpio(17,	'in',	'both');	var	raspistill	=	new	Raspistill({

noFileSave:	true,

encoding:	'jpg',

width:	640,

height:	480

});

	

	

https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it

var	client	=	mqtt.connect({

port:	config.mqtt.port,	protocol:	'mqtts',

host:	config.mqtt.host,	clientId:	config.mqtt.clientId,	reconnectPeriod:
1000,	username:	config.mqtt.clientId,	password:	config.mqtt.clientId,
keepalive:	300,

rejectUnauthorized:	false	});

	

client.on('connect',	function()	{

client.subscribe('rpi');	GetMac.getMac(function(err,	mac)	{

if	(err)	throw	err;	macAddress	=	mac;

client.publish('api-engine',	mac);	//	startStreaming();	});

	

});

	

client.on('message',	function(topic,	message)	{

message	=	message.toString();	if	(topic	===	'rpi')	{

console.log('API	Engine	Response	>>	',	message);	}	else	{

console.log('Unknown	topic',	topic);	}

});

	

function	startStreaming()	{

raspistill

.timelapse(100,	0,	function(image)	{	//	every	100ms	~~FOREVER~~

var	data2Send	=	{

data:	{

image:	image,	id:	crypto.randomBytes(8).toString("hex")	},

macAddress:	macAddress	};

	

client.publish('image',	JSON.stringify(data2Send));
console.log('[image]',	'published');	})

.then(function()	{

console.log('Timelapse	Ended')	})

.catch(function(err)	{

console.log('Error',	err);	});

}

	

var	isRec	=	false;

	

//	keep	watching	for	motion	pir.watch(function(err,	value)	{

if	(err)	exit();

if	(value	==	1	&&	!isRec)	{

console.log('Intruder	detected');	console.log('capturing	video..	');
isRec	=	true;

var	videoPath	=	__dirname	+	'/video.h264';	var	file	=
fs.createWriteStream(videoPath);	var	video_path	=	'./video/video'	+
Date.now()	+	'.h264';	var	cmd	=	'raspivid	-o	'	+	video_path	+	'	-t
5000';

exec(cmd,	function(error,	stdout,	stderr)	{

//	output	is	in	stdout	console.log('Video	Saved	@	:	',	video_path);
require('./mailer').sendEmail(video_path,	true,	function(err,	info)	{

setTimeout(function()	{

//	isRec	=	false;	},	3000);	//	don't	allow	recording	for	3	sec	after	});

});

}

});

	

function	exit()	{

pir.unexport();

process.exit();

}

As	we	can	see	from	the	preceding	code,	we	have	marked	GPIO	17	as	an	input
pin	and	assigned	it	to	a	variable	named	pir.	Next,	using	pir.watch(),	we	keep
looking	for	a	change	in	value	on	the	motion	detector.	If	the	motion	detector	has
detected	some	change,	we	will	check	if	the	value	is	1,	which	indicates	that	a
motion	is	triggered.	Then	using	raspivid	we	record	a	5	second	video	and	email	it.

For	the	logic	needed	to	send	an	email	from	Raspberry	Pi	3,	create	a	new	file
named	mailer.js	at	the	root	of	the	pi-client	folder	and	update	it	as	follows:	var	fs	=
require('fs');	var	nodemailer	=	require('nodemailer');

var	transporter	=	nodemailer.createTransport({

service:	'Gmail',

auth:	{

user:	'arvind.ravulavaru@gmail.com',	pass:	'**********'

}

});

	

var	timerId;

	

module.exports.sendEmail	=	function(file,	deleteAfterUpload,	cb)	{

if	(timerId)	return;

	

timerId	=	setTimeout(function()	{

clearTimeout(timerId);	timerId	=	null;

},	10000);

	

console.log('Sendig	an	Email..');

var	mailOptions	=	{

from:	'Pi	Bot	<pi.intruder.alert@gmail.com>',	to:	'user@email.com',
subject:	'[Pi	Bot]	Intruder	Detected',	html:	'Intruder	Detected.	Please
check	the	video	attached.	

	Intruder	Detected	At	:	'	+	Date(),
attachments:	[{

path:	file

}]

};

	

transporter.sendMail(mailOptions,	function(err,	info)	{

if	(err)	{

console.log(err);	}	else	{

console.log('Message	sent:	'	+	info.response);	if	(deleteAfterUpload)	{

fs.unlink(path);	}

}

	

if	(cb)	{

cb(err,	info);	}

});

}

We	are	using	nodemailer	to	send	an	email.	Update	the	credentials	as	applicable.

Next,	run	the	following	command:	npm	install	onoff	-save

In	the	next	section,	we	are	going	to	test	this	setup.

	

	

	

Testing	the	code
Now	that	we	are	done	with	the	setup,	let	us	test	it.	Power	Raspberry	Pi,	upload
the	code	if	not	done	already,	and	run	the	following:	npm	start

Once	the	code	is	running,	trigger	a	motion.	This	will	start	the	camera	recording
and	save	the	video	for	five	seconds.	Then	this	video	will	be	emailed	to	the	user.
The	following	is	a	list	of	the	output:	

The	received	email	would	be	as	follows:	

This	is	an	alternative	of	using	Raspberry	Pi	3	for	surveillance.

Summary
In	this	chapter,	we	have	seen	two	methods	of	surveillance	using	Raspberry	Pi.
The	first	approach	is	where	we	have	streamed	images	to	the	API	engine	and	then
visualized	the	same	on	the	mobile	web	and	desktop	applications	using	MJPEG.
The	second	approach	is	to	detect	a	motion	and	then	start	recording	a	video.	Then
email	this	video	as	an	attachment.	The	two	approaches	can	be	combined	together
as	well	and	the	MJPEG	streaming	can	be	started	if	a	motion	is	detected	in
approach	one.

In	Chapter	9,	Smart	Surveillance,	we	are	going	to	take	this	to	the	next	level,	we	are
going	to	add	face	recognition	on	top	of	our	captures	and	perform	face
recognition	(not	face	detection)	using	the	AWS	Rekognition	platform.

	

Smart	Surveillance
	

In	Chapter	8,	Raspberry	Pi	Image	Streaming,	we	learned	how	to	connect	a
Raspberry	Pi	camera	module	to	Raspberry	Pi	3,	grab	a	picture	or	video,	and	then
upload/stream	it	in	real	time.	In	this	chapter,	we	are	going	to	take	this	logic	to	the
next	level.	We	are	going	to	take	a	picture	when	there	is	an	intrusion	detected,	and
then	send	that	image	to	the	Amazon	Rekognition	platform	and	compare	the
image	against	a	set	of	images.

In	this	chapter,	we	are	going	to	cover	the	following	points:

Understanding	AWS	Rekognition
Seeding	an	AWS	Rekognition	collection	with	authorized	faces
Taking	pictures	from	Raspberry	Pi	3	upon	intrusion	and	comparing	them
with	the	seed	faces

	

	

AWS	Rekognition
The	following	quote	is	from	Amazon	Rekognition	(https://aws.amazon.com/rekognition/):
"Amazon	Rekognition	is	a	service	that	makes	it	easy	to	add	image	analysis	to
your	applications.	With	Rekognition,	you	can	detect	objects,	scenes,	faces;
recognize	celebrities;	and	identify	inappropriate	content	in	images.	You	can	also
search	and	compare	faces.	Rekognition's	API	enables	you	to	quickly	add
sophisticated	deep	learning-based	visual	search	and	image	classification	to	your
applications."

In	this	chapter,	we	are	going	to	leverage	the	AWS	Rekognition	feature	to	help	us
set	conditional	surveillance	based	on	face	recognition,	not	face	detection.

Let's	say	that	you	had	set	up	a	camera	at	your	house	entrance	using	Raspberry	Pi,
and	programmed	it	to	keep	taking	pictures	of	intruders	and	sending	them	to	you.
In	this	setup,	you	will	be	receiving	images	of	everyone	who	comes	to	your	door,
for	instance,	your	family,	neighbors,	and	so	on.	But	what	if	you	are	notified	only
if	the	intruder	is	an	unknown	person?	Now,	that	is	what	I	call	smart	surveillance.

In	Chapter	8,	Raspberry	Pi	Image	Streaming,	we	built	a	setup	that	captured	images
when	intrusion	is	detected	and	which	then	send	an	email	and	updated	the	apps	in
real	time.

In	this	chapter,	we	are	going	seed	AWS	Rekognition	with	a	set	of	faces	that	are
trusted.	Then,	when	there	is	an	image	captured	by	the	camera,	upon	intrusion
detection,	we	send	it	to	AWS	Rekognition	to	perform	facial	recognition.	If	the
image	matches	one	of	the	trusted	images,	nothing	happens;	otherwise,	an	email
notification	is	sent.

To	understand	more	about	AWS	Rekogniton	and	how	it	works,	take	a	look	at
Announcing	Amazon	Rekognition	-	Deep	Learning-Based	Image	Analysis	(https://
www.youtube.com/watch?v=b6gN9jCmq3w).

https://aws.amazon.com/rekognition/
https://www.youtube.com/watch?v=b6gN9jCmq3w

Setting	up	smart	surveillance
Now	that	we	have	an	understanding	of	what	we	are	going	to	do,	we	will	get
started	with	the	setup	of	Raspberry	Pi.

We	are	going	to	set	up	the	camera	and	a	motion	detector,	as	we	did	in	Chapter	8,
Raspberry	Pi	Image	Streaming.	Next,	we	will	be	adding	the	logic	required	to
capture	an	image	upon	the	detection	of	motion	and	then	send	it	for	processing.

Before	we	do	that,	we	need	to	seed	the	Rekognition	collection	with	authorized
faces.

This	script	can	be	an	API	as	part	of	the	API	engine,	and	using	the	web	dashboard
we	can	upload	and	seed	the	images.	But	to	keep	things	simple,	we	are	going	to
run	this	standalone	script	from	a	machine.

Setting	up	AWS	credentials
Before	we	get	started	with	development,	we	need	to	set	up	our	local	machine
with	the	AWS	CLI	and	AWS	credentials.

First,	we	need	to	install	the	AWS	CLI.	Head	over	to	https://aws.amazon.com/cli	and
follow	the	instructions	on	the	page.	To	test	the	installation	from	the	command
prompt,	run:

aws	--version

You	should	see	something	like:

aws-cli/1.7.38	Python/2.7.9	Darwin/16.1.0

Once	the	setup	is	complete	we	need	to	configure	the	AWS	credentials,	so	that	as
long	as	we	are	using	this	machine,	we	need	not	enter	any	credentials	within	the
code.

Run	the	following:

aws	configure

You	should	be	presented	with	four	questions;	fill	them	with	the	appropriate
information:

If	you	are	facing	issues	when	configuring	AWS	credentials,	refer	to	http://docs.aws.a
mazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration.

Another	option	is	to	add	the	accessKeyId	and	secretAccessKey	in	the	code	itself.	But
we	would	still	need	the	accessKeyId	and	secretAccessKey	to	continue.

Once	the	configuration	is	done,	we	will	get	started	interfacing	with	AWS
Rekognition.

https://aws.amazon.com/cli
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration

Seeding	the	authorized	faces
	

Create	a	folder	named	chapter9,	and	inside	this	folder,	create	a	folder	named
rekogniton_seed.	Inside	this	folder,	create	a	file	named	seed.js.

Update	seed.js	as	follows:	var	config	=	{

collectionName:	'AIOWJS-FACES',	region:	'eu-west-1',

//	If	the	credentials	are	set	using	`aws	configure`,	below	two	properties
are	not	needed.

accessKeyId:	'YOUR-ACCESSKEYID',	secretAccessKey:	YOUR-
SECRETACCESSKEY'

};

	

var	AWS	=	require('aws-sdk');	var	fs	=	require('fs-extra');	var	path	=
require('path');

var	klawSync	=	require('klaw-sync')

AWS.config.region	=	config.region;

var	rekognition	=	new	AWS.Rekognition({

region:	config.region,

//	accessKeyId:	config.accessKeyId,	//	uncomment	as	applicable	//
secretAccessKey:	config.secretAccessKey	//	uncomment	as	applicable

});

	

function	createCollection()	{

rekognition.createCollection({

'CollectionId':	config.collectionName	},	(err,	data)	=>	{

if	(err)	{

console.log(err,	err.stack);	//	an	error	occurred	}	else	{

console.log(data);	//	successful	response	}

});

}

	

function	indexFaces()	{

var	paths	=	klawSync('./faces',	{

nodir:	true,

ignore:	['*.json']

});

	

paths.forEach((file)	=>	{

var	p	=	path.parse(file.path);	var	name	=	p.name.replace(/\W/g,	'');	var
bitmap	=	fs.readFileSync(file.path);

rekognition.indexFaces({

'CollectionId':	config.collectionName,	'DetectionAttributes':	['ALL'],
'ExternalImageId':	name,	'Image':	{

'Bytes':	bitmap	}

},	(err,	data)	=>	{

if	(err)	{

console.log(err,	err.stack);	//	an	error	occurred	}	else	{

console.log(data.FaceRecords);	//	successful	response
fs.writeJson(file.path	+	'.json',	data,	(err)	=>	{

if	(err)	return	console.error(err)	});

}

});

});

}

	

createCollection();

indexFaces();

Please	refer	to	the	source	code	for	the	additional	comments:	https://gi

https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

thub.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript.

As	we	see	from	the	preceding	code	snippet,	we	are	creating	a	new	collection
named	AIOWJS-FACES	in	the	eu-west-1	region.	You	can	either	use	the	accessKeyId	and
secretAccessKey	from	within	the	code,	or	you	can	use	the	ones	from	AWS	CLI
configure.	If	you	are	using	the	key	and	secret	from	AWS	CLI	configure,	you	can
comment	these	two	lines	out	while	initializing	a	new	instance	of	rekognition.

We	call	the	createCollection()	to	create	a	new	collection	and	this	needs	to	be	run
only	once.

You	can	seed	data	as	many	times	as	you	want,	but	collection
creation	should	happen	only	once.

Once	the	collection	is	created,	we	will	index	a	few	images	from	a	folder	named
faces,	which	we	will	create	now.	Create	a	folder	named	faces	at	the	root	of	the
rekogniton_seed	folder.	Inside	this	folder,	upload	clear	images	with	faces.	The
better	the	quality	and	clarity	of	the	image	is,	the	better	chance	it	has	of	being
recognized.

I	have	dumped	a	couple	of	pictures	of	mine	inside	the	faces	folder.	Before	we
start	the	seeding,	we	need	to	install	the	required	dependencies:

1.	 Open	command	prompt/terminal	inside	the	rekogniton_seed	folder	and	run:

npm	init	--yes

2.	 Next,	run:

npm	install	aws-sdk	fs-extra	klaw-sync	--save

3.	 Once	the	installation	is	complete,	create	the	collection	and	seed	the	faces	by
running:

node	seed.js

4.	 We	should	see	an	output	something	like	the	following	for	each	uploaded
image:

[{	Face:	{	FaceId:	'2d7ac2b3-fa84-5a16-ad8c-7fa670b8ec8c',	BoundingBox:	[Object],	

ImageId:	'61a299b6-3004-576d-b966-31fb6780f1c7',	ExternalImageId:	'photo',	Confidence:	

99.96211242675781	},	FaceDetail:		

					{	BoundingBox:	[Object],	AgeRange:	[Object],	

							Smile:	[Object],	

							Eyeglasses:	[Object],	Sunglasses:	[Object],	Gender:	[Object],	

							Beard:	[Object],	

							Mustache:	[Object],	

							EyesOpen:	[Object],	

							MouthOpen:	[Object],	

							Emotions:	[Object],	

							Landmarks:	[Object],	

							Pose:	[Object],	

							Quality:	[Object],	

							Confidence:	99.96211242675781	}	}]	

This	object	will	consist	of	information	about	the	image	that	was	analyzed	by
Rekognition.

You	can	look	up	the	*.json	files	inside	the	faces	folder	once	the	seeding	is
complete.	These	JSON	files	will	consist	of	more	information	about	the	image.

	

	

	

Testing	the	seed
	

Now	that	the	seed	is	completed,	let's	validate	the	seed.	This	step	is	totally
optional;	you	can	skip	this	step	if	you	want	to.

Create	a	new	folder	named	rekogniton_seed_test	at	the	root	of	the	chapter9	folder.
Then	create	a	folder	named	faces	at	the	root	of	rekogniton_seed_test	and	dump	the
image	that	you	would	like	to	test	into	this	folder.	In	my	case,	the	picture	is	of	me
at	a	different	location.

Next,	create	a	file	named	seed_test.js	and	update	it,	as	shown	here:	var	config	=	{

collectionName:	'AIOWJS-FACES',	region:	'eu-west-1',

accessKeyId:	'ACCESSKEYID',	secretAccessKey:
SECRETACCESSKEY'

};

	

var	AWS	=	require('aws-sdk');	var	fs	=	require('fs-extra');	var	path	=
require('path');

var	klawSync	=	require('klaw-sync')

AWS.config.region	=	config.region;

var	rekognition	=	new	AWS.Rekognition({

region:	config.region,

//	accessKeyId:	config.accessKeyId,	//	uncomment	as	applicable	//
secretAccessKey:	config.secretAccessKey	//	uncomment	as	applicable
});

	

	

//	Once	you've	created	your	collection	you	can	run	this	to	test	it	out.

function	FaceSearchTest(imagePath)	{

var	bitmap	=	fs.readFileSync(imagePath);

rekognition.searchFacesByImage({

"CollectionId":	config.collectionName,	"FaceMatchThreshold":	80,
"Image":	{

"Bytes":	bitmap,

},

"MaxFaces":	1

},	(err,	data)	=>	{

if	(err)	{

console.error(err,	err.stack);	//	an	error	occurred	}	else	{

//	console.log(data);	//	successful	response
console.log(data.FaceMatches.length	>	0	?	data.FaceMatches[0].Face
:	data);	}

});

}

	

FaceSearchTest(__dirname	+	'/faces/arvind_2.jpg');

In	the	preceding	code,	we	pick	up	the	image	from	the	faces	folder	and	submit	it
for	recognition,	and	then	we	print	the	appropriate	response.

Once	that	is	done,	we	will	install	the	required	dependencies:

1.	 Open	command	prompt/terminal	inside	the	rekogniton_seed_test	folder	and
run:

npm	init	--yes

2.	 Then	run:

npm	install	aws-sdk	fs-extra	path	--save

3.	 Now,	we	are	all	set	to	run	this	example.	From	inside	the	rekogniton_seed_test
folder,	run:

node	seed_test.js

4.	 We	should	see	something	like	the	following:

{	FaceId:	'2d7ac2b3-fa84-5a16-ad8c-7fa670b8ec8c',	BoundingBox:		

			{	Width:	0.4594019949436188,	Height:	0.4594019949436188,	Left:	

0.3076919913291931,	Top:	0.2820509970188141	},	ImageId:	'61a299b6-3004-576d-

b966-31fb6780f1c7',	ExternalImageId:	'photo',	

		Confidence:	99.96209716796875	}	

There	are	a	couple	of	things	to	note	from	the	preceding	response:

FaceId:	This	is	the	ID	against	which	the	current	face	has	been	matched
ImageId:	This	is	the	image	against	which	the	current	face	has	been	matched

With	this,	we	can	even	tag	users	from	the	images	that	we	have	indexed/seeded.

You	can	do	a	negative	test	by	putting	an	image	that	doesn't	match	our	seed	data
and	updating	the	last	line	in	the	preceding	code	as	follows:
FaceSearchTest(__dirname	+	'/faces/no_arvind.jpg');

We	should	see	something	like	the	following:

{	SearchedFaceBoundingBox:

{	Width:	0.5322222113609314,

Height:	0.5333333611488342,

Left:	0.2777777910232544,

Top:	0.12444444745779037	},

SearchedFaceConfidence:	99.76634979248047,

FaceMatches:	[]	}

As	you	can	see,	there	were	no	matches	found.

We	are	going	to	use	the	preceding	method	in	our	Raspberry	Pi,	once	we	have
captured	an	image.

	

	

	

Deploying	to	Raspberry	Pi
	

Now	that	we	have	seeded	a	Rekognition	collection,	as	well	as	tested	it	(an
optional	step),	we	are	now	going	to	start	setting	up	the	Raspberry	Pi	code.

We	will	be	using	all	the	other	code	pieces	from	the	chapter8	folder	as	is	and	only
modifying	the	Raspberry	Pi	client	in	the	chapter9	folder.

Copy	the	entire	code	from	the	chapter8	folder	into	the	chapter9	folder.	Then,	open
the	pi-client	folder	either	on	your	desktop	or	on	the	Raspberry	Pi	itself,	and
update	it	as	follows:	var	config	=	require('./config.js');	var	mqtt	=	require('mqtt');
var	GetMac	=	require('getmac');	var	Raspistill	=	require('node-
raspistill').Raspistill;	var	crypto	=	require("crypto");	var	Gpio	=
require('onoff').Gpio;	var	exec	=	require('child_process').exec;

var	AWS	=	require('aws-sdk');

var	pir	=	new	Gpio(17,	'in',	'both');	var	raspistill	=	new	Raspistill({

noFileSave:	true,

encoding:	'bmp',

width:	640,

height:	480

});

	

//	Rekognition	config

var	config	=	{

collectionName:	'AIOWJS-FACES',	region:	'eu-west-1',

accessKeyId:	'ACCESSKEYID',	secretAccessKey:
'SECRETACCESSKEY'

};

	

AWS.config.region	=	config.region;

var	rekognition	=	new	AWS.Rekognition({

region:	config.region,	accessKeyId:	config.accessKeyId,
secretAccessKey:	config.secretAccessKey	});

	

var	client	=	mqtt.connect({

port:	config.mqtt.port,	protocol:	'mqtts',

host:	config.mqtt.host,	clientId:	config.mqtt.clientId,	reconnectPeriod:
1000,	username:	config.mqtt.clientId,	password:	config.mqtt.clientId,
keepalive:	300,

rejectUnauthorized:	false	});

	

client.on('connect',	function()	{

client.subscribe('rpi');	GetMac.getMac(function(err,	mac)	{

if	(err)	throw	err;	macAddress	=	mac;

client.publish('api-engine',	mac);	//	startStreaming();	});

	

});

	

client.on('message',	function(topic,	message)	{

message	=	message.toString();	if	(topic	===	'rpi')	{

console.log('API	Engine	Response	>>	',	message);	}	else	{

console.log('Unknown	topic',	topic);	}

});

	

	

var	processing	=	false;

	

//	keep	watching	for	motion	pir.watch(function(err,	value)	{

if	(err)	exit();

if	(value	==	1	&&	!processing)	{

raspistill.takePhoto()	.then((photo)	=>	{

console.log('took	photo');	checkForMatch(photo,	function(err,
authorizedFace)	{

if	(err)	{

console.error(err);	}	else	{

if	(authorizedFace)	{

console.log('User	Authorized');	}	else	{

//	unauthorized	user,	//	send	an	email!

require('./mailer').sendEmail(photo,	function(err,	info)	{

if	(err)	{

console.error(err);	}	else	{

console.log('Email	Send	Success',	info);	}

});	}

}

});

})

.catch((error)	=>	{

console.error('something	bad	happened',	error);	});

}

});

	

function	checkForMatch(image,	cb)	{

rekognition.searchFacesByImage({

'CollectionId':	config.collectionName,	'FaceMatchThreshold':	80,
'Image':	{

'Bytes':	image,	},

'MaxFaces':	1

},	(err,	data)	=>	{

if	(err)	{

console.error(err,	err.stack);	//	an	error	occurred	cb(err,	null);	}	else	{

//	console.log(data);	//	successful	response
console.log(data.FaceMatches.length	>	0	?	data.FaceMatches[0].Face
:	data);	cb(null,	data.FaceMatches.length	>=	1);	}

});

}

	

function	exit()	{

pir.unexport();

process.exit();

}

In	the	preceding	code,	we	have	the	required	configuration	to	make	a	request	to
AWS	Rekognition,	and	then	we	run	checkForMatch(),	which	will	take	the	raw	photo
and	check	for	matches.	If	any	matches	are	found,	we	will	not	get	an	email,	and	if
no	matches	are	found,	we	will	get	an	email.

Next,	we	will	install	the	required	dependencies.

Run	the	following:	npm	install	getmac	mqtt	node-raspistill	aws-sdk	--save

Once	the	installation	is	done,	start	the	broker,	api-engine,	and	web	dashboard.
Then	run	the	following:	node	index.js

Trigger	a	motion	to	capture	the	image.	If	the	captured	image	matches	one	of	the
faces	we	indexed,	we	will	not	get	an	email;	if	it	does,	we	will	get	an	email.

Simple	isn't	it?	This	is	a	very	powerful	setup	that	we	have	built	to	provide
surveillance	at	our	homes	or	offices,	where	simple	false	alarms	can	be	identified
easily.

This	example	can	be	extended	further	to	send	push	notifications	or	call
neighbours	using	cloud-based	calling	services	such	as	Twilio.

	

	

	

Summary
In	this	chapter,	we	have	seen	how	to	set	up	a	smart	surveillance	system	with
Raspberry	Pi	and	the	AWS	Rekognition	platform.

We	started	by	understanding	the	AWS	Rekognition	platform	and	then
indexing/seeding	a	collection	with	our	images.	Next,	we	updated	the	Raspberry
Pi	code	to	take	a	picture	when	motion	is	detected	and	then	send	that	image	to
AWS	Rekognition	to	identify	whether	the	face	in	the	current	photo	matches	any
of	the	indexed	images.	If	it	does,	we	ignore	the	image;	if	it	does	not,	we	send	an
email	with	that	image.

With	this,	we	complete,	Practical	Internet	of	Things	with	JavaScript.	I	hope	you
have	learned	a	few	ways	to	leverage	JavaScript	and	Raspberry	Pi	to	build	simple
yet	powerful	IoT	solutions.

	

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	The World of IoT
	The world of IoT
	What is IoT?
	A bit of history
	IoT use cases

	Technology overview
	Product engineering
	Summary

	IoTFW.js - I
	Designing a reference architecture
	Architecture
	Smart device
	Gateway
	MQTTS broker
	API engine
	MongoDB
	Web app
	Mobile app
	Desktop app

	Data flow
	Smart device to the apps
	App to the smart device

	Building the reference architecture
	Installing Node.js on the server
	Installing nodemon
	MongoDB
	Local installation
	Using mLab

	MQTTS broker - Mosca
	API engine - Node.js and Express
	Authorization
	MQTT client
	API engine testing

	Communication between broker and API engine
	Raspberry Pi software
	Setting up Raspberry Pi
	Raspberry Pi MQTTS client

	Communication between the broker and the Raspberry Pi
	Troubleshooting

	Communication between the Raspberry Pi, the broker and the API engine
	Web app
	Setting up the app
	Project structure
	App module
	Web app services
	Web app components
	Launching the app

	Summary

	IoTFW.js - II
	Updating the API engine
	Integrating web app and API engine
	Testing an end-to-end flow using DHT11 and LED
	Setting up and updating the Raspberry Pi
	Updating the API engine
	Updating the web app

	Building the desktop app and implementing an end-to-end flow
	Building the mobile app and implementing an end-to-end flow
	Troubleshooting
	Summary

	Smart Agriculture
	Agriculture and IoT
	Designing a smart weather station
	Setting up Raspberry Pi 3
	Raspberry Pi and MCP3208
	Moisture sensor and MCP3208
	Raspberry Pi and DHT11

	Setting up the API engine
	Setting up the web app
	Setting up the desktop app
	Setting up the mobile app
	Summary

	Smart Agriculture and Voice AI
	Voice AI
	Test drive

	Building a smart socket
	Setting up relay with Raspberry Pi
	Managing relay in an API engine
	Updating the web app template
	Updating the desktop app
	Updating the mobile app template

	Developing Alexa skill
	Creating skill
	Training the voice model
	ngrok the API engine
	Defining the lambda function
	Deploying and testing

	Summary

	Smart Wearable
	IoT and healthcare
	Smart wearable
	Setting up smart wearable
	Updating the API engine
	Updating the web app
	Updating a desktop app
	Updating the mobile app template

	Summary

	Smart Wearable and IFTTT
	IFTTT and IoT
	Fall detection
	Updating Raspberry Pi
	Building the IFTTT rules engine
	Updating the web app
	Updating the desktop app
	Updating the mobile app
	Summary

	Raspberry Pi Image Streaming
	MJPEG
	Setting up Raspberry Pi
	Setting up the camera
	Testing the camera
	Developing the logic

	Updating the API engine
	Updating the web app
	Updating the desktop app
	Updating the mobile app
	Motion-based video capture
	Updating the Raspberry Pi
	Testing the code

	Summary

	Smart Surveillance
	AWS Rekognition
	Setting up smart surveillance
	Setting up AWS credentials
	Seeding the authorized faces
	Testing the seed

	Deploying to Raspberry Pi
	Summary

