
Practical JSF
in Java EE 8

Web Applications in Java
for the Enterprise
—
Michael Müller

www.allitebooks.com

http://www.allitebooks.org

Practical JSF in Java EE 8
Web Applications in Java

for the Enterprise

Michael Müller

www.allitebooks.com

http://www.allitebooks.org

Practical JSF in Java EE 8: Web Applications in Java for the Enterprise

ISBN-13 (pbk): 978-1-4842-3029-9				 ISBN-13 (electronic): 978-1-4842-3030-5
https://doi.org/10.1007/978-1-4842-3030-5

Library of Congress Control Number: 2018941459

Copyright © 2018 by Michael Müller

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484230299. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Michael Müller
Brühl, Nordrhein-Westfalen, Germany

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3030-5
http://www.allitebooks.org

To my wife Claudia and my kids:

Thank you for your patience during night-writing
and other long sessions.

I love you.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Part I: TinyCalculator... 1

Chapter 1: �TinyCalculator�� 3

Creating the Application��� 3

Working with TinyCalculator�� 14

Managed Beans�� 14

The Page��� 18

The Relationship Between Code and View��� 19

Summary��� 20

Chapter 2: �Foundations��� 21

Web Applications�� 21

HTTP��� 22

HTML�� 24

CSS�� 26

JavaScript�� 27

Java��� 28

Maven�� 29

Selenium and Arquillian��� 29

Servlet�� 29

Deployment�� 33

Summary��� 33

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Preface��xxi

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: �JavaServer Faces��� 35

View Definition Language�� 36

Web vs. Traditional Application�� 36

JSF Lifecycle Overview�� 39

JSF Namespaces and Tags�� 41

Component Tree��� 43

Navigation�� 47

Summary��� 48

Chapter 4: �Expression Language��� 49

Unified Expression Language��� 49

Value Expression�� 51

Operators�� 51

Dot and Square Bracket��� 53

Method Expression�� 53

Implicit Objects�� 53

Summary��� 55

Chapter 5: �HTML-Friendly Markup�� 57

HTML-Friendly TinyCalculator�� 57

Summary��� 60

Chapter 6: �Configuration Files��� 61

pom.xml��� 61

web.xml��� 62

faces-config.xml�� 64

beans.xml�� 65

persistence.xml�� 65

glassfish-resources.xml��� 65

glassfish-web.xml�� 66

Other Files�� 67

Summary��� 67

Table of Contents

vii

Chapter 7: �Testing with Selenium�� 69

Selenium Overview�� 69

Preparing TinyCalculator�� 70

Creating the Test�� 71

Unit Test without Selenium�� 80

Summary��� 82

Chapter 8: �TinyCalculator Recap��� 83

Part II: Books... 85

Chapter 9: �Preparing for Java EE 8��� 87

Current Evolution��� 87

Upgrade the Application Server��� 88

Payara Server�� 90

Summary��� 91

Chapter 10: �Introducing the Books Application��� 93

Books Requirements�� 93

Development Order�� 95

Summary��� 97

Chapter 11: �Starting the Books App�� 99

Page Layout��� 99

HTML Structure�� 100

Basic Styling with CSS��� 103

Design First Data Model��� 113

First Dialog Box (Repeating Structure)��� 115

Summary��� 123

Chapter 12: �Java Persistence API�� 125

Entities��� 125

Persistence Unit��� 130

Data Source�� 135

Entity Manager��� 137

Table of Contents

viii

Service Class��� 137

Using the CategoryService/Injection�� 142

Summary��� 144

Chapter 13: �JSF Templating��� 145

Templating Books��� 145

Summary��� 151

Chapter 14: �Going International�� 153

Internationalization and Localization��� 153

Welcome Page��� 154

Message Bundle��� 154

Naive Welcome Page Implementation�� 162

Use Paragraphs and <ui:repeat>��� 164

Language Switcher�� 166

Localized Content��� 168

Preparing the Administer Area��� 169

Include into Page�� 169

Common Navigation��� 172

Topics��� 173

Enhancing the Category Entity��� 185

The Category Translation Page��� 191

Summary��� 194

Chapter 15: �Bean Validation�� 195

Book Entity��� 196

Book Editor��� 198

Summary��� 200

Chapter 16: �Contexts and Dependency Injection��� 201

From new() to CDI�� 201

Summary��� 204

Table of Contents

ix

Chapter 17: �Conversation Scope��� 205

Multi-page Editor��� 205

POST and GET Navigation�� 209

Begin and End the Conversation�� 210

Summary��� 210

Chapter 18: �Links�� 211

Internal Reviews�� 211

External Reviews��� 213

JSF Links��� 215

commandLink��� 215

link�� 215

outputLink�� 216

Choosing the Right Link�� 216

Draw the Conclusion�� 219

Summary��� 220

Chapter 19: �Responsive Design��� 223

Making Books Responsive��� 223

Responsive Pixel Layouts��� 236

Calculating Sizes�� 237

Mobile-First and Desktop-First�� 238

Summary��� 239

Chapter 20: �Summary and Perspective��� 241

Part III: Intermezzo.. 243

Chapter 21: �Intermezzo��� 245

Chapter 22: �JSF Lifecycle Revisited�� 247

Table of Contents

x

Chapter 23: �Repetitive Structures��� 249

Tag Handler vs. Component��� 249

Performance Issues��� 254

Summary��� 262

Part IV: Alumni... 263

Chapter 24: �Alumni�� 265

Preparing the Application��� 265

Registration Form�� 270

Summary��� 274

Chapter 25: �Validation��� 275

Bean Validation�� 275

Creating a Customized Message�� 279

Details of Customized Messages�� 281

Null Handling�� 282

Validation Method�� 283

Validator��� 284

Multi-Component Validation��� 285

Self-Made�� 291

Summary��� 293

Chapter 26: �AJAX Components�� 295

Using AJAX for Immediate Feedback��� 295

Summary��� 300

Chapter 27: �Building Composite Components��� 301

Transform into a Composition�� 301

Enable Child Element for the Composition��� 305

Pass In Validation Method�� 308

Ubiquitous Input Component�� 310

Summary��� 312

Table of Contents

xi

Chapter 28: �Secure Passwords�� 313

Hash��� 313

Security Issues and Mitigation��� 314

Password Algorithm��� 316

Summary��� 317

Chapter 29: �Data Facade��� 319

Abstract Data Service�� 319

Concrete Facade�� 322

Account Entity�� 324

Summary��� 329

Chapter 30: �Activation Mail��� 331

Config Mail Properties by Code�� 331

Mail Session��� 335

Send Activation�� 339

Summary��� 341

Chapter 31: �Scheduled Tasks�� 343

Scheduler��� 343

Delete Query�� 344

Becoming Asynchronous�� 346

Summary��� 347

Chapter 32: �Authentication and Authorization�� 349

Security Basics�� 349

Basic Authentication and fileRealm��� 351

Form Login��� 361

Programmatic Login��� 364

Programmatic Logout��� 367

jdbcRealm�� 367

Custom Realm�� 372

Summary��� 377

Table of Contents

xii

Chapter 33: �Account Handling��� 379

Micro Service��� 379

Account Service��� 381

Testing��� 387

Summary��� 388

Chapter 34: �Classroom Chat (WebSockets)��� 389

HTTP Protocol and Alternatives�� 390

WebSocket��� 391

Endpoint��� 392

Simple Chat�� 393

ClassRoom Chat��� 404

JSF 2.3 websocket��� 411

Summary��� 413

Chapter 35: �Changing Look and Feel��� 415

Resource Library�� 415

Immediately Change the Look and Feel��� 416

Read from Resources��� 417

Summary��� 424

Chapter 36: �Handling Constants�� 425

Navigation by Strings��� 425

Importing Constants��� 427

Summary��� 427

�Appendix A: HTML�� 429

�HTML Structure�� 429

�HTML Header��� 430

�HTML Body��� 430

�Page and Text Structure, Linking�� 431

�Forms and Input��� 432

�Tables��� 434

�Tag Completion/Tag Guessing�� 437

Table of Contents

xiii

�Appendix B: Cascading Style Sheets��� 439

�Selectors�� 442

�Type Selector�� 442

�Id Selector�� 442

�Class Selector��� 442

�Attribute Selector��� 442

�Nesting Selector��� 443

�Sibling Selector�� 445

�Box Model�� 446

�Enhanced Styling��� 449

�Appendix C: Tag Libraries�� 451

�Pass-through Elements�� 452

�JSF Core Library�� 452

�JSF HTML Library��� 455

�Common Attributes��� 458

�Facelet Templating Tag Library�� 458

�Composite Component Tag Library�� 460

�Pass-through Attributes��� 461

�JSP Standard Tag Library (JSTL)�� 461

�JSTL Functions��� 462

�Appendix D: Programming Style�� 463

�Appendix E: Bibliography�� 467

Afterword��� 469

Index�� 471

Table of Contents

xv

About the Author

Michael Müller is an IT professional with more than 30 years

of experience, including about 25 years in the healthcare

sector. During this time, he has worked in different areas,

especially project and product management, consulting, and

software development. He gained international knowledge

not only by targeting international markets but also by

leading external teams (from Eastern Europe and India). 

Currently he is the head of software development at

the German DRG institute (http://inek.org). In this role,

he is responsible for web applications and other Java and

.NET projects. Web projects are preferably built with Java

technologies such as JSF with the help of supporting languages like JavaScript.

Michael is a professional JSF user and a member of the JSR 344 and JSR 372 (JSF)

expert groups. Due to his community activities, he was invited to join the NetBeans

Dream Team and became a member in January 2016. You may contact him through his

blog blog.mueller-bruehl.de. Follow him on Twitter at @muellermi.

http://inek.org/
https://blog.mueller-bruehl.de/

xvii

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and

researcher who enjoys learning new technologies for his

own experiments and creating new integrations. 

Manuel won the 2010 Springy Award: Community

Champion and Spring Champion 2013. In his little free

time, he reads the Bible and composes music on his guitar.

Manuel is known as dr_pompeii. He has tech reviewed

numerous books for Apress, including Pro Spring Messaging

(2017), Pro Spring, 4th Edition (2014), Practical Spring LDAP

(2013), Pro JPA 2, Second Edition (2013), and Pro Spring

Security (2013).

You can read his 13 detailed tutorials about many Spring technologies and contact

him through his blog at www.manueljordanelera.blogspot.com. Follow him on Twitter

at @dr_pompeii.

http://www.manueljordanelera.blogspot.com/

xix

Acknowledgments

All content unless otherwise mentioned is written by me. But a couple of people

provided me feedback, helped with wording, or did a technical review on TinyCalculator

and/or Books. Besides the people who are mentioned below, a special thank you to John

Wright, who also provided a couple of comments. And a special thank you to all the

other people who provided a mostly one-time feedback. All of you helped to improve

this book.

Pratap Chatterjee is a software engineer who has worked with enterprise

application software development for over 20 years, mainly in the telecommunication

industry in England with BT and T-Mobile UK as programmer, designer, developer, and

team leader with Java and web technologies. Currently Pratap lives in Sweden with his

wife and two sons. He’s working for Karolinska Institutet, one of the world’s leading

medical universities. Pratap enjoys programming, and in his role as a programmer

developer, he has written applications that help in the publication of doctoral courses

and admission of students by the university. Pratap has also reviewed technical articles

and recently reviewed Grails in Action, 2nd Edition (Manning, 2014), by Glen Smith and

Peter Ledbrook.

Constantin Marian Alin is a passionate Java developer focused on developing

web/desktop applications using the latest Java technologies. Beside daily work and

learning, in the past few years he has written and published articles for the Developer.

com and DZone communities. Currently, he’s focused on developing RIA/SPA

applications for the GIS field by integrating the power of Java frameworks like JavaServer

Faces, PrimeFaces, AngularJS, Bootstrap, RESTful, EJB, JPA, and more with the GIS

specialized software, such as ArcGIS, OpenLayers, GeoServer, Google Maps, and others.

Anghel Leonard is a senior Java developer with more than 13 years of experience

in Java SE, Java EE, and related frameworks. He’s written and published more than 50

articles about Java technologies and more than 500 tips and tricks for many websites

dedicated to programming. In addition, he’s written books including Pro Java 7 NIO.2

(Apress), Pro Hibernate and MongoDB (Apress), Tehnologii XML XML în Java (Albastra),

Jboss Tools 3 Developer’s Guide (Packt Publishing), JSF 2.0 Cookbook (Packt), JSF 2.0

Cookbook: LITE (Packt), Mastering JavaServer Faces 2.2 (Packt).

xx

Currently, Anghel is developing web applications using the latest Java technologies

on the market (EJB 3.0, CDI, Spring, JSF, Struts, Hibernate, and so on). For the past two

years, he’s focused on developing rich Internet applications for geographic information

systems.

Special thanks to the reviewers of this edition, Manual Jordan Elera and Mathew
Moodie, who provided input to refine and enhance this book.

Acknowledgments

xxi

Preface

Developing web applications with Java and JavaServer Faces (JSF) had been a great

pleasure (and success) to me for a couple of years when I realized first wanted to write a

book about JSF in late 2010. I got in touch with some German publishers with the goal of

writing around 200–250 pages about this subject, nothing more. “No thanks, too special”

was one answer. The other: “Great. Add some more pages, another thousand, and write

about the whole Java Enterprise Edition. Keep JSF smaller than 200 pages.” Frustrating

answers.

So, I started to blog about JSF in early 2011. And I became a member of the JSF 2.2

(JSR 344) Expert Group. Unlike most of the other volunteers, I wasn’t a JSF implementer,

but an expert JSF user. I became a member of the JSF 2.3 (JSR 372) Expert Group too. I’m

still an expert JSF user, but I started to code a bit within the JSF sources. If I’m accepted

as an expert group member for JSF’s next version, whatever it may be called after the

transition to the Eclipse Foundation, I want to contribute code.

My tutorial on web development with JSF is still the most popular part of my blog

(blog.mueller-bruehl.de), and I never gave up my intention to write a book about this

subject. Over time, I switched from blogging in German to writing about development

in mostly English. And that German publisher would be happy to learn that I now write

about related Java EE stuff also.

With the articles of my blog as a solid foundation, I started to write my book, Web

Development with Java and JSF, which I first published myself in 2014 using Leanpub

(www.leanpub.com/jsf). It became a kind of living book. The first version only covered

the fundamentals. Every reader who purchased it was able to download later updates.

Thus, the book grew up.

In 2016 Apress first asked me to publish the book as is. I declined, because I wanted

to add more stuff. When they asked me again in 2017, the book had reached such a stage

that I agreed. Of course, there is still more to write about, but for every book you need to

make a final decision on content.

Today, you hold in your hands an enhanced edition of my former book. It follows

the same approach, combining theoretical background with practical development.

The title Practical JSF in Java EE 8 is a clue that it’s not only about JSF — you can’t use

https://blog.mueller-bruehl.de/
http://www.leanpub.com/jsf

xxii

this UI technology in isolation. Rather, it’s embedded in a full stack of technologies we

know as the Java Enterprise Edition (Java EE). Java EE 8 was released on September 21,

2017, and Oracle has begun its donation of Java EE to the Eclipse Foundation. Even if

future versions will be called Jakarta EE, the latest version still is Java EE 8 with JSF 2.3.

Because this book is about practical development, it concentrates on applications, not

on the latest features. Although all applications in this book operate with Java EE 8,

most of the apps might be realized with Java EE 7, which is still state-of-the-art in most

enterprise environments. Only those functions that rely on newer Java EE features need

the appropriate version — the last application described in this book, Alumni, takes

advantage of such new features.

In a sense, this book teaches you to develop Java EE applications with JSF as user

interface. It’s a book for Java enthusiasts. Knowledge about web technologies is helpful,

but not required. For developers who aren’t familiar with HTML, CSS, and other stuff,

I’ve added some introductory chapters in the appendixes.

Enjoy!

—Michael Müller

Preface

TinyCalculator

PART I

3
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_1

CHAPTER 1

TinyCalculator
TinyCalculator is the first and simplest application discussed in this book. It’s nothing

more than a simple calculator for basic arithmetic. But it is useful to show some

fundamental concepts of web applications with Java and JSF.

As a kind of appetizer, and unlike how I’ll handle the other applications, I’ll first show

you the whole application, with a little explanation afterwards. Then, as a kind of restart,

I talk about the foundations of web applications and explain TinyCalculator and different

approaches.

You can access the source code for TinyCalculator by clicking the Download Source

Code button at www.apress.com/9781484230299. You can also find the source code at

http://webdevelopment-java.info.

�Creating the Application
A web application with Java and JSF uses an application server to run. Don’t be afraid—

your IDE usually deals with that. Later on, I’ll discuss that in more detail. We’ll start with

the application.

For this book, I had to decide which IDE to use in the tutorial parts. NetBeans,

either the Java EE or All edition, comes with GlassFish. At the time of writing, the direct

link to the download page is https://netbeans.org/downloads/index.html. Because

NetBeans has been donated to Apache, this location may change. If that link isn’t

available anymore, refer to https://apache.netbeans.org. Just install it, and no further

configuration is needed to start with simple applications. It’s quite easy.

Many of this book’s basic examples are based on NetBeans 8 (English), which is

bundled with GlassFish 4. GlassFish 4 is the reference implementation of Java EE 7,

which is fine for TinyCalculator. To enable the brand new Java EE 8 features, you need

GlassFish 5 or any other Java EE 8–compliant server, once available. GlassFish 5 will be

http://www.apress.com/9781484230299
http://webdevelopment-java.info/
https://netbeans.org/downloads/index.html
https://apache.netbeans.org/

4

bundled with NetBeans 9. Since the first donation (IDE) is still in progress, and Java EE is

part of the second Java EE 8 donation, this may be a lengthy process. I’ll describe how to

update to Java EE 8 just after TinyCalculator’s explanation.

All applications in this book are built with Apache Maven (http://maven.apache.org),

which is bundled with NetBeans. The Maven application structure is almost independent

from the IDE. Thus, you may use any IDE of your choice (see also Chapter 2). Depending

on your IDE, you may open Maven projects directly (for example, with NetBeans) or you

may need to perform a simple import (for example, with Eclipse).

As a novice to JSF or Java EE, you may not have created any Java-based web

application before. So, I’ll start this one from scratch in the form of a step-by-step

tutorial. Unlike in future chapters, I’ll cover the whole application here without detailed

explanation, and then we’ll catch up after the tutorial:

	 1.	 Launch NetBeans.

	 2.	 From the File menu, choose New Project. NetBeans displays the

New Project wizard, as shown in Figure 1-1.

Figure 1-1.  New Project wizard

Chapter 1 TinyCalculator

http://maven.apache.org/

5

	 3.	 Click the category Maven, click Web Application, and then click

Next. NetBeans displays the New Web Application wizard, as

shown in Figure 1-2.

Figure 1-2.  New Web Application wizard

	 4.	 For the Project Name, enter TinyCalculator. You may adapt

the other fields as desired, or just keep them unchanged. It’s

good practice to set the Group Id to the reverse notation of

your domain. Click Next, keep the settings in the next dialog

unchanged, and click Finish.

Chapter 1 TinyCalculator

6

NetBeans creates a skeleton of a new web application for you and

displays it within the projects tree, as shown in Figure 1-3.

Figure 1-3.  Projects tree

Chapter 1 TinyCalculator

7

	 6.	 Choose the Frameworks category. Choose JavaServer Faces and

click the Add button. Click the Configuration tab and change the

contents of the JSF Servlet URL Pattern box to *.xhtml. Click OK.

While adding JSF to your project, NetBeans creates a web page

called index.xhtml within the web pages, keeping the formerly

created index.html file.

	 7.	 On the projects tree open the Web Pages node (if it’s not already

open), as shown in Figure 1-5. Select index.html and delete it.

	 5.	 Right-click (secondary click) TinyCalculator in the projects

tree and choose Properties from the context menu. The Project

Properties screen appears, as shown in Figure 1-4.

Figure 1-4.  Framework configuration

Chapter 1 TinyCalculator

8

From the File menu, choose New File—or press the shortcut key

shown in the menu, which is faster than clicking. The IDE opens

the New File wizard, as shown in Figure 1-6.

Figure 1-5.  Projects tree

Figure 1-6.  New File wizard

Chapter 1 TinyCalculator

9

	 8.	 Choose the category JavaServer Faces and then choose JSF

Managed Bean. Click Next.

The New JSF Managed Bean window appears, as shown in Figure 1-7.

Figure 1-7.  New JSF Managed Bean

	 9.	 Enter TinyCalculator as the Class Name and from Scope select

request. Click Finish.

NetBeans creates and opens a Java class file named

TinyCalculator.

	 10.	 Now, edit this class. Key in or paste the code shown in Listing 1-1.

Listing 1-1.  Editing the TinyCalculator Class File

 1 package de.muellerbruehl.tinycalculator;

 2

 3 import javax.inject.Named;

Chapter 1 TinyCalculator

10

 4 import javax.enterprise.context.RequestScoped;

 5

 6 /**

 7 *

 8 * @author mmueller

 9 */

10 @Named

11 @RequestScoped

12 public class TinyCalculator {

13

14 public TinyCalculator() {

15 }

16

17 private double _param1;

18 private double _param2;

19 private double _result;

20

21 public double getParam1() {

22 return _param1;

23 }

24

25 public void setParam1(double param1) {

26 _param1 = param1;

27 }

28

29 public double getParam2() {

30 return _param2;

31 }

32

33 public void setParam2(double param2) {

34 _param2 = param2;

35 }

36

37 public double getResult() {

38 return _result;

39 }

Chapter 1 TinyCalculator

11

40

41 public void setResult(double result) {

42 _result = result;

43 }

44

45 public String add(){

46 _result = _param1 + _param2;

47 return "";

48 }

49

50 public String subtract(){

51 _result = _param1 - _param2;

52 return "";

53 }

54

55 public String multiply(){

56 _result = _param1 * _param2;

57 return "";

58 }

59

60 public String divide(){

61 _result = _param1 / _param2;

62 return "";

63 }

64 }

You may notice the underscores indicating the fields. This usage

differs slightly from the Java naming conventions. If you’re

interested in why I’m doing it this way, see Appendix D.

	 11.	 Open the index.xhtml page in the editor and change it to the following:

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html">

 5 <h:head>

Chapter 1 TinyCalculator

12

 6 <title>TinyCalculator</title>

 7 </h:head>

 8 <h:body>

 9 <h1>TinyCalculator</h1>

10 <h:form>

11 <div>

12 <h:outputLabel value="Param1: "/>

13 <h:inputText value="#{tinyCalculator.param1}"/>

14 </div>

15 <div>

16 <h:outputLabel value="Param2: "/>

17 <h:inputText value="#{tinyCalculator.param2}"/>

18 </div>

19 <div>

20 <h:commandButton value="Add"

21 action="#{tinyCalculator.add}"/>

22 <h:commandButton value="Subtract"

23 action="#{tinyCalculator.subtract}"/>

24 <h:commandButton value="Multiply"

25 action="#{tinyCalculator.multiply}"/>

26 <h:commandButton value="Divide"

27 action="#{tinyCalculator.divide}"/>

28 </div>

29 <div>

30 <h:outputLabel value="Result: "/>

31 <h:outputText value="#{tinyCalculator.result}"/>

32 </div>

33 </h:form>

34 </h:body>

35 </html>

	 12.	 Run the project by clicking Run ➤ Run Project (TinyCalculator).

If your application server isn’t running yet, NetBeans will start

your GlassFish application server—and your browser, too. It will

display the TinyCalculator, as shown in Figure 1-8.

Chapter 1 TinyCalculator

13

Figure 1-8.  TinyCalculator in action

	 13.	 Take a big breath—soon you’ll get an explanation of what has

happened so far.

NETBEANS CODE COMPLETION

As you might expect, a good Java IDE will assist you in creating code. There’s no need to type

in the whole source code. For example, you can simply type three attributes and let NetBeans

create the getters and setters for you. NetBeans will create the code by the aid of the Insert

Code menu. Open the context menu (right-click within the source and choose the appropriate

menu or press Alt+Insert. Describing all the features of an IDE is far beyond scope of this

book, but you can check NetBeans help, which is available online via the Help menu.

Note  For this step-by-step tutorial, I added the whole source code. In future
listings, I’ll usually omit imports, simple getters and setters, and more for brevity.
If you’re missing an import, press Alt+Shift+I, and NetBeans will add the imports.
Other IDEs offer a similar shortcut. Also, usually I’ll mix code examples along with
detailed information.

Chapter 1 TinyCalculator

14

�Working with TinyCalculator
This section briefly goes over some aspects of the TinyCalculator application.

�Managed Beans
I assume, for you as a Java developer, the code of the managed bean is the most familiar

part of the TinyCalculator application. In JSF, developers often talk about managed

beans, and that’s how NetBeans called them in its New File dialog. However, this term

isn’t really accurate.

A Java bean is a reusable software component. It’s nothing but a pure Java class with

a no-argument constructor and properties following a special convention. A property is

a private attribute (field) that is accessed via a pair of getter and setter methods. These

methods follow the naming convention of setName and getName.

From the abstract perspective of object-oriented programming, the state of an object

is held by attributes. An attribute is a variable that can have any modifier, such as private,

protected, public, static, and so on. The term attribute is widely used and can imply

nearly everything. Although it’s the correct term to describe the state of an object, in Java

other terms are often used (which might also be called differently in other languages). In

this book, I mostly use the following:

•	 A field is a private (or sometimes protected) instance variable.

•	 A property is a field that is exposed by a pair of getter and setter.

JavaServer Faces is designed to run both in Enterprise Java Beans (EJB) containers

as well as in servlet containers. Both are called application servers. Whereas the first

one contains a full or partial stack (besides the full platform, only one profile, the web

profile, is defined) of Java EE technologies, including servlet, the latter only serves

servlets. Thus, other Java EE technologies, like Contexts and Dependency Injection (CDI),

are not available in servlet containers. Some widely known examples of EJB containers are

GlassFish and WildFly. Examples of servlet containers include Tomcat and Jetty.

If JSF runs on a pure servlet container, JSF manages so-called backing beans. Such

a bean will be annotated as @ManagedBean, and that’s where the term managed bean

originates. Starting with Java EE 6/JSF 2.0, developers could use CDI named beans too,

which is today’s recommended technology. In TinyCalculator, we use a CDI named

bean. Such a bean is annotated by @Named. The current version, JSF 2.3, deprecated the

Chapter 1 TinyCalculator

15

old JSF managed beans. If you want to use CDI managed beans, you either need to use

an EJB container like GlassFish or add the CDI framework to the servlet container. A

named or managed bean might be accessed by its name.

The second annotation, @RequestScoped, declares the bean’s lifetime—with every

request from your browser, an instance of this class is created and destroyed by the

termination of the request. A longer lifetime might be declared by @SessionScoped

(providing one instance of the bean per user session), @ApplicationScoped (one instance

during the application’s lifetime), and more. I’ll talk more about this later in the book.

In the example, we used a CDI named bean, as in Listing 1-2.

Listing 1-2.  CDI Annotation for a Request Scoped Bean

1 import javax.inject.Named;

2 import javax.enterprise.context.RequestScoped;

3

4 @Named

5 @RequestScoped

6 public class TinyCalculator {...}

A JSF managed bean, on the other hand, would be declared as in Listing 1-3.

Listing 1-3.  JSF Annotation for a Request Scoped Bean (Do Not Use)

1 import javax.faces.bean.ManagedBean;

2 import javax.faces.bean.RequestScoped;

3

4 @ManagedBean

5 @RequestScoped

6 public class TinyCalculator {...}

Caution A lways use the annotations for named/managed beans in conjunction
with the appropriate scope annotations—for example, both JSF annotations or
both CDI annotations. In particular, a named bean with JSF scope would result in a
runtime error.

Chapter 1 TinyCalculator

16

Although you can’t mix these annotations within a single bean, it is possible to use

both types (named and managed) beans within one application. That might be useful

for migrating older applications that used JSF managed beans. It’s possible to add new

features by implementing them as CDI named beans while keeping the existing beans.

Then, over time, the existing beans might be changed to named beans too.

But why should you prefer CDI named beans over JSF managed beans? As their name

suggests, JSF managed beans are developed especially for and dedicated only to JSF.

CDI (Contexts and Dependency Injection) is relatively new to Java EE and has made

it into EE 6. It allows the container to “inject” appropriate objects into your object. These

objects may not be known at compile time, and the dependencies will be resolved at

runtime. This allows loose coupling of objects. One essential part of this solution is a

general naming concept.

Because CDI named beans may be used in different Java EE technologies, JSF itself

slowly migrates to CDI, which sometimes replaces the proprietary solution. JSF 2.3 at

last simply allows to inject JSF-related objects into places where it had been very tricky

before to access these values. The migration to CDI is mostly complete for this version.

Note A s of JSF 2.3 (Java EE 8), JSF managed beans (@ManagedBean) became
deprecated.

But is CDI available in pure servlet containers like Apache Tomcat? No, but JSF isn’t

available either until you deploy the JSF library to enable it. Similarly, you may add CDI to a

servlet container: just provide a CDI implementation—for example, Weld (http://repo1.

maven.org/maven2/org/jboss/weld/servlet/weld-servlet/). In the case of Tomcat,

there is a simpler solution: Use TomEE (http://tomee.apache.org/index.html), which is

Tomcat bundled with Java EE technologies, implementing the Java EE Web Profile.

BEAN PASSIVATION

If the bean’s lifetime is expanded to more than one request, the server still has to manage

this object, even though the next request may take a while or will never occur. The latter is

mitigated by a session timeout. Until then, the bean is alive. Where there is a lot of traffic, this

memory consumption may cause problems.

Chapter 1 TinyCalculator

http://repo1.maven.org/maven2/org/jboss/weld/servlet/weld-servlet/
http://repo1.maven.org/maven2/org/jboss/weld/servlet/weld-servlet/
http://tomee.apache.org/index.html

17

To avoid memory problems, or for other reasons, depending on the implementation, the

container might passivate a bean: the object is persisted somewhere, such as to disk, and

during the next request, when needed, is restored into memory (activated).

To enable this feature, the bean must implement the Serializable interface.

PREVIEWING SCOPES

I discuss scopes in detail later in this book. But to give you an initial feeling about scopes, you

may perform a little task.

	1.	A dd a logger and log the construction of the TinyCalculator class:

1 private static final Logger LOGGER = Logger.getLogger("TinyCalculator");

2 public TinyCalculator() {

3 LOGGER .log(Level.INFO, "ctor TinyCalculator");

4 }

	2.	L aunch the application and watch the NetBeans console window.

	3.	P erform some calculations and then close and reopen the browser and

application.

	4.	P erform some more calculations.

	5.	N ow exchange the @RequestScoped annotation for @SessionScoped, and

then for @ApplicationScoped, and perform the same operations.

	6.	O bserve the different output.

Did you observe the message "ctor TinyCalculator" printed to the console (ctor is

an abbreviation of constructor)? You’ll also find the message in the log. It appeared once for

every request when using the @RequestScoped annotation. Using @SessionScoped, this

message appears for a new session (such as after closing and relaunching the browser) only.

Using @ApplicationScoped, the message appeared only for the first call to the bean after

the app had been launched.

The calculation methods may look quite strange. These are not functions returning the

calculated value, but methods returning a string and perform the calculation by changing

the status of the result variable. The simple reason is that the calculation is called within the

Chapter 1 TinyCalculator

18

action of the appropriate button. Such an action performs a page navigation. Returning an

empty string or null keeps the browser “staying” on the current page. In fact, this page will

be reloaded (I cover page navigation in detail later in the book). Using JSF 2.2 or later, such a

function might be declared as void, alternatively.

�The Page
I don’t want to anticipate the detailed explanation coming up in the next chapters. I

just want to point out that the page will be rendered as HTML and sent to the browser.

If you’re familiar with HTML, you would recognize only some HTML elements. JSF’s

former intention was to provide the programmer a kind of known interface, hiding away

that HTML stuff. Because of that, JSF offers a set of its own tags, which are included in

the page and are replaced before sending the page to the browser. These tags are regular

XML tags, assigned to appropriate namespaces:

1 <h:outputLabel value="Param1: "/>

2 <h:inputText value="#{tinyCalculator.param1}"/>

This is a label with a value (text) of “Param1:” followed by a text element. The

value of the text element is retrieved from and sent back to our bean. #{…} denotes

the Expression Language (EL), which is used to glue parts of the user interface to the

managed bean. tinyCalculator refers to our bean—by default, the EL uses the bean

name with a lowercase first letter, followed by dot notation and referring methods. In the

case of properties, this establishes a two-way communication with the getter/setter pair.

Name refers to getName and setName (omitting the get and set prefixes). Thus, the text

element reads and writes the property:

1 <h:commandButton value="Add" action="#{tinyCalculator.add}"/>

In the case of the buttons, each action defines one of the calculating methods.

Note  Starting with JSF 2.2, an alternative approach was introduced, reducing
the JSF-specific tags and using more pure HTML. This is known as HTML-friendly
markup or more often HTML5-friendly markup, even though it is not HTML5 specific.

Chapter 1 TinyCalculator

19

�The Relationship Between Code and View
The rough relationship between browser view, page definition, and managed bean

should be understandable from the explanation. But a picture, like Figure 1-9, is worth a

thousand words.

The tag <inputText ...> represents a text field in the browser. Its values are bound

to a getter/setter pair of the bean. When JSF renders the page, it calls the getter to

retrieve the value for the input field. And after clicking an operation button, the content

of the page is sent to the server (using an HTTP POST under the hood). JSF transfers the

data into the model (our bean) by using the setter.

Figure 1-9.  Rough relationship between code and view

Chapter 1 TinyCalculator

20

Note T he simplified presentation shown earlier is useful for an initial understanding
of JSF, but it ignores one important fact: the component tree. When processing a
request, all JSF components are held within a tree data structure. Depending on
enhanced features of your application, it may be useful to access or manipulate this
component tree directly. I discuss the component tree in more detail later in the book.

�Summary
In this chapter we created our first small JSF application. To provide a quick result, this

application was introduced as a step-by-step tutorial, followed by a brief discussion.

There is much more to explain, including the configuration NetBeans built for us

under the hood and which we modified by simply changing the project’s properties. This

chapter is just an appetizer—a quick start. Beginning with the next chapter, I’ll discuss

the foundations of JSF and its related technologies.

Chapter 1 TinyCalculator

21
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_2

CHAPTER 2

Foundations
For web development, a few different technologies are used. This chapter discusses

the basics of some of those and mentions other important technologies, including the

following:

•	 Web applications

•	 Hypertext Transfer Protocol (HTTP)

•	 Hypertext Markup Language (HTML)

•	 Cascading Style Sheets (CSS)

•	 JavaScript

•	 Java

•	 Maven

•	 Selenium and Arquillian

•	 Servlets

•	 Deployment

�Web Applications
When I use the term web application in this book, I’m going by the following definition:

A web application is a client-server application interacting dynamically
with the user via a web browser.

Thus, we are talking about distinct parts: the client, presenting the user interface,

and the server, executing the main part of the application. The client is linked to the

server via the Internet. The application logic may be organized in layers and split

between client and server. To get a more responsive user experience, some bits are

22

executed on the client side. Unlike an application using a specially programmed client,

a common web browser is used to display the presentation layer. That means we can’t

manage every detail. Instead, we have to rely on the browser’s functionality, which

mainly is to retrieve and display such content as HTML pages. An HTML page doesn’t

only include text information, but images, media files, and more. Besides the content,

the browser needs to handle the layout and, optionally, execute script code. We send all

this stuff to the browser, but we can’t control all of its behavior.

A simple web server, only delivering static pages, is not a web application for the

purposes of this book. But by using a standard web browser, a web application might

be used on any platform for which a (modern) browser is available. A web browser is

connected to a web server via HTTP. Because of that, a web application has to deal with

some of the restrictions of this protocol, as described in the next section.

�HTTP
The Hypertext Transfer Protocol is a logical transport layer (application protocol), acting

on a stack of other layers, down to the physical transport layer. Usually HTTP is used

atop TCP/IP. As the name suggests, it was primarily designed to distribute hypertext

information. As such, it is the foundation of the World Wide Web.

HTTP is a stateless request-response protocol. A server is listening for a request and

sends back a response, as illustrated in Figure 2-1. Then the communication terminates.

The simplified illustration in Figure 2-1 shows a typical request-response cycle as

triggered by the user when retrieving a page. In fact, the response is an HTTP response,

composed of a message header and body, that might carry information other than

HTML, such as JSON, XML, or something else.

Figure 2-1.  HTTP request-response cycle

Chapter 2 Foundations

23

Any subsequent request acts independently of the prior ones. This kind of protocol

affects the way a web application works with its clients. To proceed with a user session

of the application, a session management needs to be implemented on top of HTTP. The

goal of this session management is to remember the current state of the application.

Either the server needs to store application’s state somewhere and provides key

information to the client, or the server transfers the complete state information to the

client.

For the latter approach, there’s nothing to remember on the server side. Any status

might be restored by the information the client provides during a subsequent request.

Such an approach keeps memory consumption on the server lean. Sending lots of

information over the web has some important drawbacks. Latency will slow down the

application. Another drawback involves security. If the network transport isn’t secured

by a protocol like Transport Layer Security (TLS), then the information sent might

be read by unauthorized persons. Saving the whole state to the client avoids “sticky”

sessions: the next request might be processed by a different server behind a load

balancer.

The first approach just mentioned is to keep all information on the server and send

only an identifier to the client. Such an identifier is called a session id. Common possible

ways to convey a session id are by using a hidden field or sending an HTTP cookie. If

the server holds the state, the session needs to be continued by the same server unless

you implement a solution to share this state information between different servers.

For example, the app state might be saved within a shared key-value store and can be

restored by any server that receives the session id. In practice, a modern server might

serve a few dozens or a hundred thousand sessions per day. So, in many scenarios, such

“sticky” sessions won’t matter.

SESSION HIJACKING

Due to the nature of the HTTP, the server needs information like the session id to determine

how to proceed. If an unauthorized person (such as a cracker—meaning criminal hacker)
captures this information, they could take over the session. That’s called session hijacking. JSF

offers some additional features to secure your application.

Chapter 2 Foundations

24

Luckily, session management is implemented by the Java environment. Within

servlet/JSF configuration, it’s possible to choose between client or server state.

During a request, HTTP addresses a Uniform Resource Identifier (URI). Additionally,

it tells the server which HTTP method to use. This is often called a verb. The most

interesting methods for use with JSF are GET and POST.

URI, URL, URN

Some people say a Uniform Resource Identifier (URI) is commonly used in the context of

REST (short for REpresentational State Transfer, discussed in Chapter 24), and a web page is

addressed by something called a Uniform Resource Locator (URL). But indeed, a URI might be

either a URL or a Uniform Resource Name (URN). You can read more about URNs at

www.ietf.org/rfc/rfc3986.txt.

Addressing web pages as well as addressing a resource according to the REST programming

style deals with locations, not with names. Thus, in both contexts we use URLs. And because

any URL is a URI, I use URI in this book.

GET queries information from the server by use of a URI. Additional parameters

might be appended to the URI—for example, http://it-rezension.de/Books/books.

xhtml?catId=2. That addresses the server found at it-rezension.de, and within that,

the application and page Books/books.xhtml. A parameter catId=2 is appended.

With a POST request, information is sent to the server within the body of the

request—for example, a web form (HTML) contains some input fields and a submit

button. Hitting this button initiates a POST request.

Within the context of REST, the methods (verbs) PUT and DELETE are important too.

The idea behind REST is to assign defined actions to the verbs. Although this book is

about JSF, and a pure JSF application won’t use REST, the Alumni application I describe

in Chapter 24 is not a monolithic application. Rather, it takes advantage of a service with

an API that follows the REST concept.

�HTML
HTML is used to describe the content of a web page. Like XML, HTML is derived from

the Standard Generalized Markup Language (SGML).

Chapter 2 Foundations

http://www.ietf.org/rfc/rfc3986.txt
http://it-rezension.de/Books/books.xhtml?catId=2
http://it-rezension.de/Books/books.xhtml?catId=2

25

As a Java developer, I assume you’re familiar with XML. Like XML, HTML uses tags

to structure the content of a page. Within XML you may define any tag of your choice

and assign any meaning to it. Unlike XML, HTML tags are predefined and have special

relevance. For example, <head> denotes the header of a HTML file, <p> denotes a

paragraph, and so forth. Thus, HTML is not extensible in the sense that XML is.

TAG GUESSING

In one way, HTML is less restrictive than XML: missing closing tags aren’t flagged as errors

but are automatically closed. Browsers try to handle overlapping tags. Some people praise this

behavior because it means writing less markup, takes less work, less data is transferred, and

pages load faster (but will a few less characters really make a page load faster?).

Different browsers may handle missing or interlaced tags in a different way, and guessing how

to complete the missing parts sometimes results in dangerous code. (Check out The Tangled
Web by Michael Zalewski (No Starch Press, 2011) for more on that.) To avoid this bunch of

problems, I advise you to use XHTML, a variant of HTML redefined on XML. XML requests that

you close every opened tag. Besides avoiding the problem just mentioned, this enforces

well-formed documents that might be processed by XML tools if administrable.

An HTML document starts with a <DOCTYPE>, followed by exactly one <HTML> tag.

Then <HEAD> and <BODY> tags might be included. In the case of XHTML, the <DOCTYPE> is

preceded by the XML version, as shown in Listing 2-1.

Listing 2-1.  Sample HTML Page with Form

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html>

 4 <head>

 5 <title>TinyCalculator</title>

 6 </head>

 7 <body>

 8 <h1>TinyCalculator</h1>

 9 <form>

10 <div>

Chapter 2 Foundations

26

11 <label>Param1: </label>

12 <input type="text" value="0.0" />

13 </div>

14 </form>

15 </body>

16 </html>

You can read more about HTML, including a commented list of important tags, in

Appendix A.

�CSS
HTML provides some little tags for styling the page with emphasis, italics, and more.

Cascading Style Sheets (CSS) were developed as a much more powerful design tool. As

a rule of thumb, you should separate layout from content. Thus, don’t use the HTML

styling tags. Use CSS exclusively for the layout of a page.

By using CSS, it’s possible to address an element and assign layout information

within curly braces, as shown in Listing 2-2.

Listing 2-2.  Sample CSS Statements

1 h1 {

2 font-size: 2em;

3 }

4

5 h2 {

6 font-size: 1.5em;

7 font-style: italic;

8 }

Listing 2-2 demonstrates how to apply layout information to the HTML header tags.

In line 1, we address header 1 (h1). The statement in line 1 affects the font size, which is

set to 2em. This is a relative size, which is double the standard size (whatever is defined as

standard—for example, by the browser’s setting or another CSS statement). Lines

5 to 8 define a smaller header with italic style. As you can see, a couple of layout

directives, each terminated by a semicolon, might be placed within the curly braces.

In this sense, CSS equals Java programming.

Chapter 2 Foundations

27

In the preceding example, HTML tag names are used to address HTML elements.

Often, we need to apply variable styles to different tags of the same name. To address

the correct element we either need to build a kind of path by mentioning different tags

(for example, div div to address a div within a div) or we assign a class or an id to

the HTML element and use that for addressing. These addressing elements might be

combined to define complex paths. Such an addressing element is called a selector.

Certain rules exist to avoid ambiguity.

With CSS, you may influence not only the layout of an element, but its position and

visibility also. The layout information might differ depending on the output device or

screen size. Combining all these features, we might create a responsive web design: the

layout is changed and adjusted by the size of the browser window.

Chapter 10 discusses using CSS in a web application. I’ll show you how to create a

responsive design with CSS. You may observe its behavior by opening Books (available at

https://it-rezension.de) with different devices or simulate this by changing the size

of your browser window.

Today, a couple of libraries exist that offer you aid for designing your web

application. One popular library is Bootstrap (https://getbootstrap.com), which

doesn’t rest upon CCS only but on JavaScript too, and more.

As with HTML, I don’t want to bore readers who are familiar with CSS. I provide an

introduction to CSS in Appendix B.

�JavaScript
JavaScript is the programming language of the client side. Almost every modern browser

has implemented a JavaScript interpreter or a just-in-time (JIT) compiler. Microsoft

introduced VB Script some years ago, but JavaScript has emerged as the language of

choice, and it’s well understood by the Microsoft browser too.

Note  JavaScript was created by Netscape and became standardized by
the European Computer Manufacturer’s Association. Thus, its official name is
ECMAScript. JavaScript is the name of Netscape’s implementation of ECMAScript,
whereas Microsoft’s implementation is officially called JScript. JavaScript is
commonly used as synonym for ECMAScript, and I do that in this book.

Chapter 2 Foundations

https://it-rezension.de/
https://getbootstrap.com/

28

JAVASCRIPT AND JAVA

JavaScript is neither Java nor derived from Java! Previously it was called LiveScript, but was

soon renamed. It is a full-fledged programming language and is used for server programming,

too (http://nodejs.org).

Java 8 comes bundled with a JavaScript interpreter written in Java called Nashorn. It’s

capable of accessing Java classes, and this enables running and testing portions of Java

code without the need to compile. That’s especially useful when discovering new libraries or

testing some new Java constructs. You’ll find an example of interpreting Java code by the aid

of Nashorn at my blog: https://blog.mueller-bruehl.de/netbeans/interactive-

java-using-nashorn-part-i/.

Even better, Java’s current version 9 includes the Java Shell (JShell), which realizes a real

read-eval-print loop (REPL). You can read more about that also on my blog, at https://

blog.mueller-bruehl.de/netbeans/interactive-java-with-jshell/.

JavaScript is used to enhance client behavior or to initiate partial requests (AJAX).

JSF hides JavaScript behind its AJAX tag. Sometimes it’s useful to develop a bit of

JavaScript code. As a Java developer, it should be no problem for you to follow the simple

examples described in this book, such as the one shown in Listing 2-3.

Listing 2-3.  JavaScript Example: Showing a Message

1 alert("The information has been saved");

Unlike Java, JavaScript is not a typed language. Thus you may assign an integer to a

variable and later on replace its value with a string.

�Java
Java is the main technical foundation for programming web applications in this book. I

assume you’re familiar with Java SE.

All web applications discussed in this book are built using Java EE. The Java EE

platform is built as a JSR (Java Specification Request, Java EE 7: JSR 342, Java EE 8: JSR

366). That’s an umbrella specification describing a complete architecture built up from

a mass of technologies, each defined by its own JSR. Throughout this book I’ll introduce

most of those technologies.

Chapter 2 Foundations

http://nodejs.org/
https://blog.mueller-bruehl.de/netbeans/interactive-java-using-nashorn-part-i/
https://blog.mueller-bruehl.de/netbeans/interactive-java-using-nashorn-part-i/
https://blog.mueller-bruehl.de/netbeans/interactive-java-with-jshell/
https://blog.mueller-bruehl.de/netbeans/interactive-java-with-jshell/

29

�Maven
For professional Java development, you need a build tool. Lots of developers never care

about their build tool because it’s configured by their favorite IDE. Others know their

build tool perfectly and like to tune every detail.

For still other developers, there are three popular tools in the Java world: Apache

Ant (http://ant.apache.org), which acts more imperatively, Gradle (https://gradle.

org), and Apache Maven (http://maven.apache.org), which follows a more declarative

approach. Apache’s website calls Maven a “software project management and

comprehension tool.” Popular IDEs, like NetBeans, have built-in support for both tools.

Nevertheless, whichever tool you prefer, Ant-based projects often use a configuration

that’s specific to the IDE you use, whereas Maven projects follow a stricter convention,

thus becoming mostly independent of the IDE. NetBeans, for example, is capable of

opening Maven projects directly. Other IDEs (like Eclipse) offer an input feature for

Maven-based projects.

To ensure the most compatibility with your favorite IDE, all applications discussed in

this book are built with Maven.

�Selenium and Arquillian
Selenium (http://docs.seleniumhq.org) automates browsers. Besides macro

recording and replay, such automation may be fully controlled from within a Java

application—for example, by a test. Doing so enables GUI testing of web applications.

Testing beans or other components that are managed by a container can be a hassle.

Arquillian (http://arquillian.org) allows testing of the interesting parts of a web

application within a container. It fully integrates with test frameworks like JUnit.

Although this book doesn’t focus on unit testing or test-driven development, I will

discuss some simple test scenarios with both tools.

�Servlet
A servlet is a Java class hosted in a servlet container that dynamically processes requests

and constructs responses. This class must conform to the Java Servlet API. Like other

Java EE components, it’s specified by the Java Community Process (JCP). The servlet

Chapter 2 Foundations

http://ant.apache.org/
https://gradle.org/
https://gradle.org/
http://maven.apache.org/
http://docs.seleniumhq.org/
http://arquillian.org/

30

version included in Java EE 7 is JSR 340: Java Servlet 3.1 Specification (https://

jcp.org/en/jsr/detail?id=340), respectively JSR 369 (https://jcp.org/en/

jsr/detail?id=369): Java Servlet 4.0 in the case of Java EE 8. (JSR is short for Java

Specification Request.)

Although a servlet theoretically might respond to any request, the Java EE

implementation responds to HTTP requests only. Thus, I use the term servlet as a

synonym for HTTP servlet. The servlet’s lifecycle is maintained by the container. The web

client (the browser) interacts with the servlet by request/response, as described in the

section “HTTP.” A servlet is a class extending the abstract class javax.servlet.http.

HttpServlet. In most common scenarios, at least two methods, doGet and doPost, will

be overwritten to implement specific behavior and send back the response. These two

methods refer to the appropriate HTTP methods GET and POST.

A servlet is invoked by a client’s request to a specific path (of the URI). By using the

simple annotation @WebServlet("/path"), this might be defined. While discussing JSF

configuration, I’ll talk about configuring servlets by a configuration file (web.xml). JSF

itself is implemented as servlet (FacesServlet).

If you enhance the TinyCalculator by NetBeans 8’s Add Servlet wizard (New file ➤

Web ➤ Servlet) and provide Hello as the name, NetBeans generates the code shown in

Listing 2-4.

Listing 2-4.  Programmatically Generating an HTML Page by a Servlet

 1 [imports omitted]

 2

 3 @WebServlet(name = "Hello", urlPatterns = {"/Hello"})

 4 public class Hello extends HttpServlet {

 5

 6 /**

 7 * Processes requests for both HTTP <code>GET</code>

 8 * and <code>POST</code> methods.

 9 *

10 * @param request servlet request

11 * @param response servlet response

12 * @throws ServletException if a servlet-specific error occurs

13 * @throws IOException if an I/O error occurs

14 */

Chapter 2 Foundations

https://jcp.org/en/jsr/detail?id=340
https://jcp.org/en/jsr/detail?id=340
https://jcp.org/en/jsr/detail?id=369
https://jcp.org/en/jsr/detail?id=369

31

15 protected void processRequest(HttpServletRequest request,

16 HttpServletResponse response)

17 throws ServletException, IOException {

18 response.setContentType("text/html;charset=UTF-8");

19 try (PrintWriter out = response.getWriter()) {

20 /* TODO output your page here.

21 You may use following sample code. */

22 out.println("<!DOCTYPE html>");

23 out.println("<html>");

24 out.println("<head>");

25 out.println("<title>Servlet Hello</title>");

26 out.println("</head>");

27 out.println("<body>");

28 out.println("<h1>Servlet Hello at "

29 + request.getContextPath() + "</h1>");

30 out.println("</body>");

31 out.println("</html>");

32 }

33 }

34

35 /**

36 * Handles the HTTP <code>GET</code> method.

37 *

38 * @param request servlet request

39 * @param response servlet response

40 * @throws ServletException if a servlet-specific error occurs

41 * @throws IOException if an I/O error occurs

42 */

43 @Override

44 protected void doGet(HttpServletRequest request,

45 HttpServletResponse response)

46 throws ServletException, IOException {

47 processRequest(request, response);

48 }

49

Chapter 2 Foundations

32

50 /**

51 * Handles the HTTP <code>POST</code> method.

52 *

53 * @param request servlet request

54 * @param response servlet response

55 * @throws ServletException if a servlet-specific error occurs

56 * @throws IOException if an I/O error occurs

57 */

58 @Override

59 protected void doPost(HttpServletRequest request,

60 HttpServletResponse response)

61 throws ServletException, IOException {

62 processRequest(request, response);

63 }

64

65 [...code omitted ...]

66 }

If you start this application and complete the URI with /Hello, you can verify the

servlet responding to your request, as shown in Figure 2-2.

Figure 2-2.  Hello servlet in action

As mentioned, we need to override the doGet and doPost methods. This is where

we usually put our code to react on the HTTP methods. If there’s no difference

between handling a GET or a POST request, both methods might delegate to a common

handler. That’s how NetBeans generates this skeleton file. This common handler is the

processRequest method (lines 15ff). This skeleton responds with a web page. All HTML

tags are written to the output stream by Java instructions. Beside literal HTML code,

Chapter 2 Foundations

33

NetBeans inserted a method call to this output: request.getContextPath(), which

refers to the context path of the current application. The context path is the first part of

the URI after server and port. It’s the place the application lives. In Figure 2-2, this is the

"/TinyCalculator" output. We’ll use this method again for a service we use in Chapter 24.

Writing HTML code directly inside Java code is not a good approach for anything

beyond a trivial example. One way is to separate the HTML page from the Java code

using Java Server Pages (JSP). The page is stored on its own with embedded JSP tags

and is compiled into a servlet at a later time. Even though still active, pure JSP might

be considered as ancestor of JSF. In fact, the early versions of JSF used JSP for the view

definition.

�Deployment
All servlets, including JSF, run within a servlet container. When we launched

TinyCalculator, NetBeans automatically started GlassFish (if not already running) and

deployed the application to the application server.

If we want to install an application to a production server, we may add this server

to the NetBeans environment (or to your favorite IDE) and let the IDE perform the

deployment to the production system. If, for some reason, it’s not possible to use the IDE

for deployment, you might deploy the application by yourself. This process depends on

the application server you use.

In the case of GlassFish, you can either deploy at the command line using the

asadmin command or use your browser to log in to the administrator console. GlassFish

offers an Application menu intended to deploy, undeploy, start an application, and

more. Last but not least, you may use Maven to deploy the application automatically

subsequent to the build process.

�Summary
This chapter introduced the technical foundations of web applications as developed

during this book: HTTP, HTML, CSS, JavaScript, Java, Maven, Selenium and Arquillian,

servlets, and deployment. Selected technologies were briefly explained, and others were

just mentioned. I skipped over discussing Java EE and JSF, which are not part of the

foundations but are the main subjects of this book.

For readers unfamiliar with the browser parts of this technology stack, this book

offers additional information about HTML in Appendix A and CSS in Appendix B.

Chapter 2 Foundations

35
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_3

CHAPTER 3

JavaServer Faces
Whereas JavaServer Pages (JSP) is used to define pages, which are compiled to servlets,

JavaServer Faces (JSF) is a complete web MVC (Model-View-Controller) framework.

Interestingly, it is implemented as a servlet itself.

Here is a short excerpt of the specification:

•	 Makes it easy to construct a UI from a set of reusable UI components

•	 Simplifies migration of application data to and from the UI

•	 Helps manage UI state across server requests

•	 Provides a simple model for wiring client-generated events to server-

side application code

•	 Allows custom UI components to be easily built and reused

JSF is intended to handle component status across multiple requests. It can be

used to process complex forms, even if they span multiple pages. It provides a strongly

typed event model for events created on the client side and implements powerful page

navigation.

JSF defined by a series of JSRs:

•	 2004 JSR 127 JavaServer Faces

•	 2006 JSR 252 JavaServer Faces 1.2

•	 2009 JSR 314 JavaServer Faces 2.0

•	 2010ff JavaServer Faces 2.1, maintenance release of JSF 2.0

•	 2013 JSR 344 JavaServer Faces 2.2

•	 2016 JSR 372 JavaServer Faces 2.3

36

If you’re interested in JSF’s full history, including which feature was introduced with

which version, you may want to read the appropriate JSRs. But be warned: a specification

is a mostly abstract defining document—it’s neither an introduction nor a practical

guide.

A former JSF intention was to hide away HTML and provide the programmer a

familiar programming concept with event processing. Beginning with JSF 2.2, you may

use mostly JSF tags, or create predominantly HTML documents, flavored with some JSF-

specific attributes.

In this book, we’ll start with the first (traditional) approach, using specific tags. Later

on, we’ll work with HTML-friendly markup, which might be a good choice if you’re

familiar with HTML. As you’ll see, both styles have specific advantages.

�View Definition Language
JSF uses an exchangeable View Definition Language (VDL) to define the user interface.

Currently, JSF supports JSP and Facelets.

JSP was used from the first version on. Since the JSF lifecycle differs a bit from the

JSP lifecycle, Jacob Hookom developed an alternative VDL called Facelets that integrates

perfectly with JSF. Facelets became the standard VDL with JSF 2.0. All major new features

from this version on, such as templating, composite components, and more, are only

available for Facelets. Even though JSP is still supported for compatibility, you may treat

it as deprecated.

All applications in this book are built with Facelets.

�Web vs. Traditional Application
In a traditional application, the application itself is usually responsible for the

presentation. Even if you use a special display server such as the X Window System, it’s

still controlled by the application.

But in a web application, the data is passed to a browser, which takes care of the

presentation. To do this, the server packs the content to be displayed into a format

that the browser understands—for example, into an HTML or XHTML document. In

addition, the server may provide some layout information in the form of Cascading Style

Sheets (CSS). Everything else is up to the browser. Just as there are different browsers,

Chapter 3 JavaServer Faces

37

the representation also can be different. The continuous development of standards

fortunately ensures a gradual convergence. But if the user uses their own browser

configuration, the presentation again might be different.

Not only does a web application delegate the output to a client-side browser, the

application normally doesn’t become active by itself! Only when the user requests a

page via the browser does the application become active on the server, perform some

operations, and deliver the content to the browser. Depending on the user’s input, the

content of a page might be changed without navigating to a new URL. This (apparently)

active change of content may feel to the user as initiated actively by the server side. In

fact, this kind of processing is often done by a small background request with the aid of

Asynchronous JavaScript and XML (AJAX).

Besides (X)HTML and CSS, we’ve touched on another browser-side technology:

JavaScript. The browser requests some data in between using JavaScript and exchanges

parts of the browser content, known as the Document Object Model (DOM). In JSF

terminology, this is done by partial processing and/or partial rendering. This kind of

magic gives the impression that the server updates the screen, even though in reality

it’s the client that makes the request to the server for information (client-side pull). A

real push, meaning that the server actively changes the representation, is a little more

complex. The response to the client is artificially delayed in order to transmit more

information later on, when new information arises on the server side. Or you may use

newer technologies like WebSockets. WebSockets requires more explanation and will be

discussed later in this book.

In a traditional application, the program usually responds immediately to a user

input. In a web application, the program only detects user input when a new page or

(usually in conjunction with AJAX) partial new data is requested. By this time, entries

can already be made in various fields. It’s not hard to imagine that the application has

to handle this in a different way. At this point, JSF supports the programmer and raises

corresponding events on the server for each entry, so that the programming model is not

entirely different from the one developers often use.

Another difference: a web application usually runs in an execution environment that

provides a number of services. Such a runtime environment is denoted as a container. In

the case of JSF, it’s a so-called servlet container. This points to the underlying technology

of the servlets. Even when developing with JSF, the direct use of servlets may sometimes

be appropriate, so it can’t hurt if you familiarize yourself with servlet technology.

Chapter 3 JavaServer Faces

38

The servlet container provides the application with interfaces to other services. It’s

part of an application or web server. Many servers principally comprise a container, and

then the container and application server concepts are often used interchangeably. In

fact, a server can host multiple containers. For example, GlassFish does not only host a

servlet container but an EJB container too. In the following section, we’ll first look at the

application server from the outside.

Now, when a user wants to use the web application, in his browser he calls the

application URI. The client makes a request to the HTTP server. This recognizes,

depending on the URI, that it must not simply deliver a static page to the browser. So

the server forwards the request over the container to the web application, which in this

case is the JSF servlet in conjunction with the user code, and there it’s processed. The

output is generated as an (X)HTML document, which is sent to the browser, where it’s

displayed. The process is illustrated in Figure 3-1.

Figure 3-1.  HTTP request-response cycle

Technically speaking, the response is HTTP, which may contain information other

than HTML. For example, the response might be an image embedded within an HTML

page. Thus, many programmers think of an HTML response. Figure 3-1 shows this

simplified view.

From this perspective, we consider the application server to be a black box. What

happens inside it is interesting. Recall briefly the previous applications—here you’ve

defined a JSF page. We used Facelets as the page language. Besides HTML, every

Facelets page definition contains some JSF-specific tags, such as <h:inputText>. Within

the browser, we provided the URI of such a page. Stepping forward in the application,

this URI won’t be provided by the user (by typing in the URI) but by the application itself.

Chapter 3 JavaServer Faces

39

The server determines the page to be rendered based on the URI, parses its contents,

and resolves the tags. In the simplest case, the tags are replaced by appropriate data,

and the resulting page is sent to the browser. This is only half of the truth. The browser

indeed could have displayed the data of the application before. So JSF first checks

whether there’s already a session. If so, the component tree—the logical representation

of the view model—is restored. Entries are validated, and the data model is updated. In

total, JSF has six different phases for step 2 in Figure 3-1.

Let’s dig a bit deeper and take a brief look inside processing and the JSF lifecycle.

�JSF Lifecycle Overview
The JSF lifecycle consists of six phases, illustrated in Figure 3-2:

	 1.	 Restore view

	 2.	 Apply request values

	 3.	 Process validations

	 4.	 Update model values

	 5.	 Invoke application

	 6.	 Render response

Figure 3-2.  JSF lifecycle

Chapter 3 JavaServer Faces

40

Figure 3-2 shows the six main phases and some smaller boxes in between indicating

event processing. The arrows show the sequential processing, indicating the normal

flow. It may differ for a new page, as indicated by the curved arrow. Between some

phases, events (of the preceding phase) are processed. As an exceptional result of this

processing (not shown in the figure), you may leave the sequential flow.

When a request encounters the server, at first the component tree is restored. If it’s

a request for a new page, there is no existing component tree. Thus, there is nothing to

restore, but to create a new component tree. In this case, phases 2 through 5 are useless

and will be skipped. The server simply renders the response and sends it back to the client.

In phase 2, the incoming values will be applied to the components within the tree.

I’ll explain the component tree soon—for now, just imagine the tree as an in-memory

representation of each JSF tag of the page.

The process validations phase (phase 3) will validate and convert the data. Imagine

there’s an input field for a person’s age. In the browser, the user might enter any text, and

that incoming string must be converted into a number. Then the valid range is checked—

for example, from 0 up to 120 years.

Once the values are converted and validated, the model values will be updated in

phase 4. This is when the incoming values will be assigned to the model’s—for example,

a managed bean’s properties.

In phase 5, JSF will invoke the application by calling the appropriate events, such as

change value events, action events, and more. In a traditional application, these events

are fired by screen components like buttons, icons, menu items, and so on. In a web

application, the browser only sends requests, and all events are generated on the server

side to emulate the behavior of a non-web application. For example, if JSF detects a

different value for an input element, it generates a “changed” event. Thus, you as the

application developer can react on this event.

During the render response phase (phase 6), the HTTP response, mostly HTML is

created and then sent to the client.

Usually, only if a phase is completed successfully is the next phase acted on. For

example, if an error occurs during validation, the phases that follow are skipped, and

JSF continues with the last phase, render response, and sends the response to the client.

Between the main phases in the figure, you can see process events boxes. During such a

process event you may programmatically quit the usual workflow and continue directly

with the render response phase. For a complete picture, we need to add arrows pointing

from each process events box to phase 6. Such a bypassing of the normal workflow

Chapter 3 JavaServer Faces

41

might be initiated by an exception. Depending on the kind of exception, JSF generates

messages that are sent back to the client. Even more, but less often used, you can

terminate the whole lifecycle during process events.

As a consequence, if, for example, a single input field fails during validation, none

of the other fields will be pushed to the model. This “all or none” approach helps to get

mostly consistent data. But sometimes it may be worthwhile to receive partial data, even

if some other parts of the data are erroneous. To achieve that, JSF offers an immediate

attribute, which might be set to true to alter this behavior for the appropriate UI element.

This has been a short overview about the JSF lifecycle. We’ll dig deeper into it while

discussing diverse aspects of the example applications.

�JSF Namespaces and Tags
So far, I’ve discussed JSF tags without much explanation. Tags like <h:inputText ...>

or <h:commandButton> sound more familiar to a Java developer (for example, compare

with Swing: JTextField or JButton) than the HTML equivalents <input type="text">

or <input type="button"> and are mostly self-explanatory. In fact, JSF was designed

to present Java developers with an abstraction similar to known technologies, including

powerful event processing.

But the browser displays HTML pages, and that’s what must be sent from the server

to it. As shown in the section about servlets, HTML tags can be embedded into Java code

by writing out a series of HTML statements. The JSF way is to separate page from code

and at the same time offer an abstraction using tags from the JSF tag library. The tags are

included in the HTML pages in XML style.

The tags shown so far belong to the Standard JSF Component Library. To declare

inputText as belonging to that library and not to any other, it’s prefixed with h:. This

prefix is defined as an alias of the http://xmlns.jcp.org/jsf/html namespace, which

indicates the library. xmlns:h="http://xmlns.jcp.org/jsf/html" is a pure XML

namespace declaration. Although the URI is specific to the library, you can choose your

own prefixes, but I suggest using the recommended aliases.

A namespace is used to avoid naming conflicts. In XML, you may define your own

<h1> tag. In XHTML, you must distinguish between your tag and the standard head 1

tag. You need to define a new namespace and an alias. To use your h1 tag, you need

to prefix the tag with the alias—for example, <my:h1>. Read more on this at https://

en.wikipedia.org/wiki/XML_namespace or www.w3schools.com/xml/xml:namespaces.asp.

Chapter 3 JavaServer Faces

http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/html
https://en.wikipedia.org/wiki/XML_namespace
https://en.wikipedia.org/wiki/XML_namespace
http://www.w3schools.com/xml/xml:namespaces.asp

42

Tip P rior to JSF 2.2, the standard namespace was java.sun.com/jsf instead
of the current one, xmlns.jcp.org/jsf. For compatibility, the old namespace
can still be used. I recommend using the new (xmlns.jcp.org) specification
only. The former one might become deprecated.

The Standard JSF Component Library consists of a few parts, as shown in Table 3-1.

Note P rimeFaces, a popular way to extend JSF, used the p: prefix long before
JSF was extended by pass-through attributes. To avoid conflicts if you use both,
you have to choose a different prefix for one of them. Developers with an existing
codebase often keep the p: prefix and use something like pt: for the pass-
through attributes.

As the namespace suggests, the next libraries aren’t part of the Standard JSF

Component Library, but remain from JSP times. It offers some useful tags that are used

in this book. (The first versions of JSF were built upon JSP, which is a slightly older

technology that you still can use outside the JSF context, too. Thus, these libraries aren’t

related to JSF itself, but might be used within JSF.)

Starting with JSF 2.0, Facelets became the preferred VDL, and most of the

improvements in this and newer versions are available for Facelets only. Only the core and

HTML library are available for pages built with JSP. On the other hand, the JSP Standard

Tag Library offers useful tags, shown in Table 3-2, that are used in this book’s applications.

Table 3-1.  Standard JSF Component Library Parts

URI Prefix Name

http://xmlns.jcp.org/jsf jsf: Pass-through elements

http://xmlns.jcp.org/jsf/core f: Core library, not specific to HTML

http://xmlns.jcp.org/jsf/html h: HTML library

http://xmlns.jcp.org/jsf/facelets/ ui: Facelet Templating tag library

http://xmlns.jcp.org/jsf/composite cc: Composite Component tag library

http://xmlns.jcp.org/jsf/passthrough p: Pass-through attributes

Chapter 3 JavaServer Faces

http://xmlns.jcp.org/jsf
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/facelets/
http://xmlns.jcp.org/jsf/composite
http://xmlns.jcp.org/jsf/passthrough

43

In Appendix C, you’ll find an overview of all the tags with short descriptions. A full

description is available online at https://docs.oracle.com/javaee/7/javaserver-

faces-2-2/vdldocs-facelets/toc.htm. If you prefer a printed reference, check out

JavaServer Faces 2.0, by Ed Burns and Chris Schalk (McGraw-Hill, 2010).

�Component Tree
When processing a request, JSF searches for the requested page and scans its content.

Apart from pure HTML, the page can contain special tags, like <h:inputText value="..."/>.

As I explain in Chapter 5, an element is enhanced by a special XML namespace, which

indicates handling by JSF. All those UI elements will be collected into a tree data

structure. This is the component tree that’s built up or restored in the restore view phase.

Listing 3-1 shows a reduced page.

Listing 3-1.  Reduced Page Example

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html">

 5 <h:head>

 6 <h:outputLabel value="Demo"/>

 7 </h:head>

 8 <h:body>

 9 <h:form>

10 <h:outputLabel value="Param1: "/>

11 <h:inputText value="#{tinyCalculator.param1}"/>

12 </h:form>

13 </h:body>

14 </html>

Table 3-2.  JSP Standard Tag Library Tags

URI Prefix Name

http://xmlns.jcp.org/jsp/jstl/core c: JSP Standard Tag Library (JSTL)

http://xmlns.jcp.org/jsp/jstl/functions fn: JSTL functions

Chapter 3 JavaServer Faces

https://docs.oracle.com/javaee/7/javaserver-faces-2-2/vdldocs-facelets/toc.htm
https://docs.oracle.com/javaee/7/javaserver-faces-2-2/vdldocs-facelets/toc.htm
http://xmlns.jcp.org/jsp/jstl/core
http://xmlns.jcp.org/jsp/jstl/functions

44

In the restore view phase, JSF will build a component tree like the one shown in

Listing 3-2 (which is a simplified presentation).

Listing 3-2.  Simplified Component Tree

1 [UIViewRoot]

2 |

3 [UIOutput (Head)] --|-- [UIOutput (Body)]

4   | |

5 [HtmlOutputLabel] [HtmlForm]

6    |

7 [HtmlOutputLabel] --|-- [HtmlInputText]

As you can see, the root of this tree (always) is UIViewRoot. Below that, you’ll find two

siblings representing the head and body of that page, and below that, the other elements

nested within that page.

In this example, all elements with the special tags of the jsf/html namespace (prefixed

by h:) show up in the component tree (Listing 3-3). If you omit this namespace, these

elements will be treated as pure HTML and won’t be included in the component tree.

Listing 3-3.  Reduced Page Example with Fewer JSF Prefixes

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html">

 5 <head>

 6 Demo

 7 </head>

 8 <body>

 9 <form>

10 <h:outputLabel value="Param1: "/>

11 <h:inputText value="#{tinyCalculator.param1}"/>

12 </form>

13 </body>

14 </html>

And Listing 3-4 is the simplified tree resulting from the page.

Chapter 3 JavaServer Faces

45

Listing 3-4.  Component Tree of HTML Page with Standard (non-JSF) Tags

1 [UIViewRoot]

2 |

3 [HtmlOutputLabel] --|-- [HtmlInputText]

This seems to be a much simpler tree, doesn’t it? So, should you prefer those simple

forms? It depends. Sometimes it’s helpful to traverse the component tree. Traversing

a slim tree may be easier and/or faster, but in the first version, all elements were

represented by tags, which are handled by JSF. If you replace the render engine, these

tags might be rendered in a different way, while the second version mixes tags and pure

HTML. Thus, it can be used only with an HTML renderer. Because JSF is commonly

used for (X)HTML pages, that’s not a really big drawback. A couple of JSF elements, like

commandLink, need to be embedded within a JSF managed form.

Note  JSF is designed to work independently from HTML. Thus, somebody might
create a different render engine—for example, to render a PDF from the tags. But I
don’t know any other render engine than HTML.

Again, if you prefer purer HTML, to keep the component tree small, you should

prefer HTML-friendly markup.

Some elements, like buttons, can only invoke an action if embedded in a form, which

is included in the component tree. So you should always prefer to declare the form with

a JSF tag, as shown in the earlier example, or with HTML-friendly markup.

As mentioned, the trees here are simplified. Performing the following exercise, you’ll

notice some UIInstructions. These contain the other (HTML) elements to hold the

whole page.

TRAVERSING THE COMPONENT TREE

	1.	A dd a button to the TinyCalculator with the following code:

value="Print component tree" action="#{tinyCalculator.printTree}".

	2.	 Launch the application.

Chapter 3 JavaServer Faces

46

	3.	 Click the button and observe the output.

If you like, you can replace the simple output method logElement by an exchangeable

algorithm, such as by using Strategy or Visitor pattern. See Listing 3-5.

Listing 3-5.  Simple print Function for the Component Tree

 1 /**

 2 * printTree might be used within an action of a button

 3 * As required for an action, it returns a String

 4 * @return ""

 5 */

 6 public String printTree() {

 7 UIViewRoot root = FacesContext.getCurrentInstance().getViewRoot();

 8 printTree(root, 0);

 9 return "";

10 }

11

12 private void printTree(UIComponent element, int level) {

13 logElement(level, element);

14 for (UIComponent child : element.getChildren()) {

15 printTree(child, level + 1);

16 }

17 }

18

19 private void logElement(int level, UIComponent element) {

20 String out = "";

21 for (int i = 0; i < level; i++) {

22 out += "----";

23 }

24 out += element.getClass().getSimpleName()

25 + " - " + element.getFamily()

26 + " - " + element.getRendererType();

27 _logger.log(Level.INFO, out);

28 }

Chapter 3 JavaServer Faces

47

Note  JSF offers a tag for debugging (don’t forget the appropriate namespace):
<ui:debug hotkey="1"/>. If a page containing this tag is displayed in your
browser, press Ctrl+Shift+1 to get some useful information such as component
tree, variables, and view state. Replace the 1 with any key of your choice. If the key
attribute is omitted, it defaults to d. Depending on your browser and installed add-
ons, this default key might be used for something else.

�Navigation
Navigation is an essential part of applications. In a desktop application, you might open

a dialog by clicking a menu option or selecting a register tab. In a web application, we

always deal with pages. Although we might provide the user a look and feel, like having a

tab control, everything is still a page.

The standard navigation element of HTML is a link. But within a JSF application,

navigation might also be triggered by a button click. Prior to JSF 2.0, navigation rules had

to be defined within the faces-config.xml file (see Chapter 6 for more).

Navigation might be defined like this:

1 <navigation-rule>

2 <from-view-id>/index.xhtml</from-view-id>

3 <navigation-case>

4 <from-outcome>add</from-outcome>

5 <to-view-id>/index.xhtml</to-view-id>

6 </navigation-case>

7 </navigation-rule>

Let’s assume there’s an Add button on the page. This button is assigned to a method,

which returns the string add. If, starting on page index.xhtml, the button is clicked, then

the page index.xhtml should be opened next. In this case, it’s simply the same page—

and that’s exactly what we’ve done with TinyCalculator.

But our example was simpler. There was no navigation rule defined. Starting with

JSF 2.0, the outcome of an action method might directly be used as the next URL. Thus,

our add method simply returns index.xhtml to navigate to this page. Or even simpler,

Chapter 3 JavaServer Faces

48

it returns an empty string (or null) to stay on the page. This feature is called internal

navigation (or implicit navigation). But external navigation, which is defined by XML, is

still allowed and will overwrite the internal navigation rules.

In the example applications in this book, we’ll mostly use internal navigation.

�Summary
JSF has been developed in the open process of Java Specification Requests (JSRs).

The latest version is JSF 2.3. JSF supports two different view definition languages: JSP

(JavaServer Pages) and Facelets. Because new features are available for Facelets only, this

book mostly omits JSP in favor of Facelets.

One challenge of web development is the stateless behavior of the underlying HTTP

protocol. Although mostly hidden by JSF, a minimum level of knowledge is helpful. JSF

tackles this challenge by its lifecycle phases. JSF offers a couple of namespaces and tags

to describe the pages (views) of an application and builds up a component tree of these

elements when processing a request. Navigation between web pages might been defined

externally (via XML config files) or internally. This book mostly uses internal navigation.

Chapter 3 JavaServer Faces

49
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_4

CHAPTER 4

Expression Language
Building the TinyCalculator, we used some special expressions, beginning within the

delimiters #{ and }. These expressions, always using the form #{expr}, are defined by

the Expression Language (EL). JSR 341: Expression Language 3.0 is part of Java EE 8

(read about it at https://jcp.org/en/jsr/detail?id=341). The same release had been

part of Java EE 7.

�Unified Expression Language
Originally the Expression Language was defined for JSP using the form of ${expr} (with

a leading $). Then JSF introduced a slightly different syntax. The main intention was to

support the higher level JSF lifecycle. This JSF EL used a leading ' for an expression, as

we did in TinyCalculator.

Beginning with Java EE 5, JSP EL and JSF EL became unified. Hence, you may

sometimes read about the Unified Expression Language. Although the expressions are

unified now, both format conventions (the leading $ and leading #) are supported, even if

the leading character still indicates slightly different behavior if using JSP as VDL. ${expr}

(with expr being short for expression) is evaluated at page compile time (immediate

expression), whereas #{expr} is evaluated at runtime (deferred expression). Remember, a

JSP is compiled to a servlet. And JSP is still supported as VDL for JSF. Using the modern

Facelets VDL, the page definition is always interpreted at runtime. There is no compile

time. So, you may replace all expressions within the TinyCalulator example to use the

${expr} form and it won’t make a difference. All the examples in this book use the #{expr}

form.

Also in EL, you may read about value expressions and method expressions. What’s the

difference? Let’s recap some expressions from the TinyCalculator: #{tinyCalculator.

param1} is a value expression, whereas #{tinyCalculator.add} is a method expression.

In these simple examples, we can’t see any syntactic difference. To identify which is which,

https://jcp.org/en/jsr/detail?id=341

50

you need to know the context. Java conventions may help you: param1 is a subject, and

add is a verb. Java methods shall start with a verb and may continue with something else.

In case of properties, the verbs are get and set, followed by a name (the subject). And, as

shortly explained for the TinyCalculator example, #{tinyCalculator.param1} is a kind

of two-way binding, omitting get and set.

Note  A bit more generally, we may say #{myBean.myProperty} is a value
expression, whereas #{myBean.myMethod} is a method expression.

The part before the first dot (or as used in other examples, the first opening square

bracket) is called the base, whereas the part after is called a property—or in case of a

method expression, a method. In this example, the base is a bean. As explained later, the

base also might be a variable or an implicit object.

In the common case of referring to a bean, the name of the bean (if not defined to

be something else, the bean’s classname—you may define a different name within the

@Named annotation, such as @Named("myBaseName")) is used for the base, but with a

lowercase first letter.

If needed, the property is broken into smaller parts by using the common dot syntax.

invoice.customer.street refers to the street of the customer object within an invoice.

Within pure Java, it might look like Listing 4-1.

Listing 4-1.  Java Equivalent to EL invoice.customer.street

 1 Invoice invoice = ...;

 2 ...

 3 String street = invoice.getCustomer().getStreet();

 4 ...

 5 invoice.getCustomer().setStreet(newValue);

For a method expression, parentheses might be used #{tinyCalculator.add()} or

omitted, as shown earlier. If the method called by EL has parameters, you need to add

the parentheses.

Chapter 4 Expression Language

51

�Value Expression
So far, we’ve discussed a very common form of a value expression—to get or set values.

To retrieve values, a value expression is an expression that delivers a value as its

result. It’s possible to calculate this value, and the result might be of any type. In this

section, we’ll dig into this a little.

�Operators
The EL offers a couple of operators that are well known to you as a Java developer. I

won’t explain them, I’ll just list them. As a specific feature, some operators may be noted

as short textual abbreviations, to avoid conflicts that might occur by using characters that

might be escaped within HTML. This alternate notation is listed within square brackets:

•	 +, -, *, / [div], % [mod]

•	 < [lt], <= [le], == [eq], >= [ge], > [gt], != [ne]

•	 && [and], || [or], ! [not]

•	 cond ? expr1 : expr2

•	 instanceof, empty (test for empty string, collection, map, and so

on)

•	 += (string concatenation)

•	 = (assignment), ; (semicolon), () (parentheses)

•	 Lambdas and streams

Lambdas and streams are available in Java SE 8, but in EL 3.0 running on Java 7, you

can use them with the same syntax. As discussed later, this cool feature is useful for a

couple of tasks.

A simple + is just an arithmetic operator, whereas += is a string concatenation. To

demonstrate, let’s misuse the TinyCalculator result variable (remember, a double).

Because EL is independent from JSF components, it is possible to insert EL expressions

anywhere in a page. Insert them, without the line numbers, just before the </h:form>

tag, as shown in Listing 4-2, and run the application.

Chapter 4 Expression Language

52

Listing 4-2.  EL Demonstration

 1

 2 #{tinyCalculator.result = 10}

 3

 4 #{tinyCalculator.result = tinyCalculator.result + 10}

 5

 6 #{tinyCalculator.result}

 7

 8 #{tinyCalculator.result = 10}

 9

10 #{tinyCalculator.result += 10}

11

12 #{tinyCalculator.result}

Here’s a little explanation of Listing 4-2:

•	 Line 1:
 is the (X)HTML tag for a line break. Without this, all

output would have been concatenated.

•	 Line 2: This is an assignment of the value 10 to the bean property

result (more precisely, the result is assigned by the setter

setResult). Simultaneously, the evaluated expression value is

displayed. Because the result is of type double, 10.0 is displayed.

•	 Line 4: Adds 10 to the result, and displays 20.0. The right-hand term

calls the getter, and the left-hand side (of the equal sign) calls the

appropriate setter.

•	 Line 6: Just verifies the assignment. Displays 20.0.

•	 Line 8: In line 8, we reset the result’s value to 10 (as we did in line 2).

•	 Line 10: A Java developer might assume the same result as in line 4,

but this isn’t an arithmetic operator. It’s a string concatenation. It

appends the 10 to the existing value and displays 10.010.

•	 Line 12: Because line 10 is a string concatenation and the result is of

type double, the result of the concatenation could not be assigned.

Instead, JSF threw an exception. We may use the <h:message> tag to

display the exception’s message. Here we concentrate on EL, not JSF

tags. The result is still 10.0.

Chapter 4 Expression Language

53

�Dot and Square Bracket
In a Java object, you may dig down to details by using dot syntax. As seen already,

the same applies to the EL:

1 invoice.customer.street

Alternatively, a square bracket syntax will do the same:

1 invoice.customer["street"]

Square brackets are also used to access members of maps.

�Method Expression
Method expressions invoke public, non-static methods. If the method has no

parameters, the parentheses may be omitted:

action="#{tinyCalculator.add}"

produces the same result as

action="#{tinyCalculator.add()}"

Unlike older versions, you may pass parameters to method expressions.

Depending on the component, JSF expects either a value expression or a method

expression. For example, in an action attribute, JSF expects a method expression, so

<h:commandButton value="Divide" action="#{tinyCalculator.param1}"/> would

cause an error.

�Implicit Objects
The base might be a bean, a variable (discussed later in this book), or an implicit object.

An implicit object is managed by the container. Table 4-1 provides a short overview.

Chapter 4 Expression Language

54

Table 4-1.  Implicit Objects

Implicit Object Description

application Refers to the ApplicationContext of the ServletContext. This is

different from the JSF Application object!

applicationScope A map of data stored in the application scope. For example, application

scoped beans are stored within this map.

cc The top-level JSF Composite Component that is currently processed.

component This implicit object refers to the currently processed UIComponent.

cookie A map of cookies in the HTTP set-cookie header.

facesContext Provides access to the current FacesContext.

flash Provides access to the so called flash object. This is an object which is

stored by JSF for a short time only, till the next request.

flowScope Similar to applicationScope, but for flow scope.

header This refers to a map of HTTP headers for the current request.

headerValues A map of HTTP headers for the current request. Each value is an array

String[] of all values for the key.

initParam A map containing the init parameter of the current application.

param A map of all parameters associated with the current request.

paramValues As before, with each value represented asman array String[] of all

values for the key.

request The current ServletRequest.

requestScope Similar to applicationScope, but for request scope.

resource A map of resources (javax.faces.application.

ResourceHandler).

session The current HttpSession.

sessionScope Similar to applicationScope, but for session scope.

view The current UIViewRoot.

viewScope Similar to applicationScope, but for view scope.

Chapter 4 Expression Language

55

�Summary
The Expression Language (EL) is the glue between the page (presentation) and the code.

It consists of expressions that get or set a value (value expressions) as well as method

calls (method expressions). Both operate on Java beans, variables, or implicit objects.

The EL is placed within the marker #{...} nearly anywhere within a page definition. It

might be used within a JSF tag as well as for the pure HTML part.

Chapter 4 Expression Language

57
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_5

CHAPTER 5

HTML-Friendly Markup
In the early days of JSF, most developers knew Java, but not HTML. The JSF tags are

designed to provide a view description without any need for a deep HTML knowledge.

Times have changed, and today many developers are familiar with HTML. So, why not

define a page by its target language, HTML? That’s what HTML-friendly markup is for.

HTML-friendly markup is one of the features introduced with JSF 2.2. HTML5-

friendly markup, or more precisely, pass-through elements and pass-through attributes,

were introduced to support additional features of HTML5. For example, you can add a

pass-through attribute to add microdata or other new HTML5 features.

Personally, I prefer to omit the 5, because this feature works well with other HTML

versions, too. The problem with calling it HTML5-friendly is that people assume a feature

is HTML5-specific when it’s not.

�HTML-Friendly TinyCalculator
Let’s rework the TinyCalculator application. Just to recap, Listing 5-1 shows the original

page with traditional JSF tags.

Listing 5-1.  TinyCalculator with JSF Tags

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html">

 5 <h:head>

 6 <title>TinyCalculator</title>

 7 </h:head>

 8 <h:body>

 9 <h1>TinyCalculator</h1>

58

10 <h:form>

11 <div>

12 <h:outputLabel value="Param1: "/>

13 <h:inputText value="#{tinyCalculator.param1}"/>

14 </div>

15 <div>

16 <h:outputLabel value="Param2: "/>

17 <h:inputText value="#{tinyCalculator.param2}"/>

18 </div>

19 <div>

20 <h:commandButton value="Add"

21 action="#{tinyCalculator.add}"/>

22 <h:commandButton value="Subtract"

23 action="#{tinyCalculator.subtract}"/>

24 <h:commandButton value="Multiply"

25 action="#{tinyCalculator.multiply}"/>

26 <h:commandButton value="Divide"

27 action="#{tinyCalculator.divide}"/>

28 </div>

29 <div>

30 <h:outputLabel value="Result: "/>

31 <h:outputText value="#{tinyCalculator.result}"/>

32 </div>

33 </h:form>

34 </h:body>

35 </html>

Listing 5-2 shows a version that’s closer to pure HTML.

Listing 5-2.  TinyCalculator in HTML-Friendly Style

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:jsf="http://xmlns.jcp.org/jsf">

 5 <head>

 6 <title>TinyCalculator</title>

Chapter 5 HTML-Friendly Markup

59

 7 </head>

 8 <body>

 9 <h1>TinyCalculator</h1>

10 <form jsf:id="calc">

11 <div>

12 Param1: <input type="text"

13 jsf:value="#{tinyCalculator.param1}"/>

14 </div>

15 <div>

16 Param2: <input type="text"

17 jsf:value="#{tinyCalculator.param2}"/>

18 </div>

19 <div>

20 <input type="submit" value="Add"

21 jsf:action="#{tinyCalculator.add}"/>

22 <input type="submit" value="Subtract"

23 jsf:action="#{tinyCalculator.subtract}"/>

24 <!-- or, using the button element: -->

25 <button jsf:action="#{tinyCalculator.multiply()}">

26 Multiply

27 </button>

28 <button jsf:action="#{tinyCalculator.divide()}">

29 Divide

30 </button>

31 </div>

32 <div>

33 Result: #{tinyCalculator.result}

34 </div>

35 </form>

36 </body>

37 </html>

Let’s take a closer look. At the beginning of this page, you’ll find the XML namespace

definition xmlns:jsf="http://xmlns.jcp.org/jsf". In this definition, the prefix jsf:

refers to that special namespace. Now, if JSF finds an element with any attribute of it

prefixed with that namespace alias, it treats the element as one that JSF will handle. JSF

Chapter 5 HTML-Friendly Markup

60

tries to map such elements to well-known elements, as if they used the traditional JSF

tags. For example, "input type=submit" will be handled the same way as h:inputText.

Any unknown element is treated as a pass-through element and rendered as is. Both

kinds of elements will be collected into the component tree.

HTML-friendly markup has been available since JSF 2.2. We’ll use JSF tags for

the Books application (Part II) and partially switch to a more HTML-friendly style by

developing Alumni (Part IV). You may choose one of these styles, depending on whether

you like to use HTML or prefer to hide most of the HTML stuff. Technically, it’s no

problem to mix the styles as you like, but usually your code will read better if you use it in

a consistent way.

�Summary
HTML-friendly markup is a page style that is far closer to pure HTML than JSF tags. Only

attributes that have to be processed by JSF will be marked by a special prefix, while the

rest of the page will be coded using HTML.

HTML-friendly markup also means passing HTML attributes that can’t be processed

by JSF directly to the browser. The pass-through attributes discussed here might be used

to add HTML attributes to JSF tags, which will be rendered as is. Thus, JSF tags might be

enriched with any attribute, even if it’s unknown to JSF.

Chapter 5 HTML-Friendly Markup

61
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_6

CHAPTER 6

Configuration Files
When we created TinyCalculator, NetBeans generated some config files. Depending on

the application, these files or some others are used by Java EE to configure its behavior.

This chapter provides an overview of these configuration files.

�pom.xml
POM stands for Project Object Model. This file is related to Maven, which is, as

mentioned before, beyond this book’s scope. I can only explain the most important

content to convey information about libraries used in the projects. This will enable you

to include these libraries in the build tool of your choice.

Thus, I’ll only list snippets of the POM—like Listing 6-1, which is part of the

TinyCalculator project. The POM is located in the root folder of each project.

Listing 6-1.  Dependency within Maven POM

1 ...

2 <dependency>

3 <groupId>javax</groupId>

4 <artifactId>javaee-web-api</artifactId>

5 <version>7.0</version>

6 <scope>provided</scope>

7 </dependency>

8 ...

Consider line 5 of listing 6-1: I suggested downloading the NetBeans Java EE bundle.

As the time of this writing, NetBeans 8.2 is still the latest released version. It’s bundled

with GlassFish 4.1, a Java EE 7-compliant server. Thus the version I showed earlier is

still 7.

62

Before moving on with the next application (called Books), I’ll show you how to

update the server. For Java EE 8, you need to provide 8.0 for the version number.

�web.xml
web.xml is the servlet deployment descriptor file. JSF itself is implemented by Java servlet

technology.

This configuration file is located in the ProjectRoot/src/main/webapp/WEB-INF

folder. Within NetBeans’ project tree, you’ll find it in the Web Pages/WEB-INF folder. Web

pages is an alias for the appropriate folder.

Listing 6-2 shows the web.xml file of TinyCalculator.

Listing 6-2.  web.xml

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <web-app version="3.1"

 3 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 5 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 6 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

 7

 8 <context-param>

 9 <param-name>javax.faces.PROJECT_STAGE</param-name>

10 <param-value>Development</param-value>

11 </context-param>

12

13 <servlet>

14 <servlet-name>Faces Servlet</servlet-name>

15 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

16 <load-on-startup>1</load-on-startup>

17 </servlet>

18

Chapter 6 Configuration Files

63

19 <servlet-mapping>

20 <servlet-name>Faces Servlet</servlet-name>

21 <url-pattern>*.xhtml</url-pattern>

22 </servlet-mapping>

23

24 <session-config>

25 <session-timeout>

26 30

27 </session-timeout>

28 </session-config>

29

30 <welcome-file-list>

31 <welcome-file>index.xhtml</welcome-file>

32 </welcome-file-list>

33 </web-app>

The header with its version and namespaces is of the Java EE 7 version,

which defines Servlets 3.1. A lot of Java EE 8 apps still use the same descriptor file.

The Java EE 8 descriptor differs only in the versioning (using 4.0 instead of 3.1 in line 2,

and web-app_4_0.xsd in line 6). This version 4 refers to Servlets 4.0. Sadly, GlassFish 5.0

(and 5.0.1 beta) doesn’t resolve some backing beans properly with the new version. You

may either use the old descriptor format, which is fine for most Java EE 8 features, or you

need to install a different app server, like Payara. I’ll show you how before moving on to

the Books app.

Table 6-1 describes some important elements of the descriptor file.

Chapter 6 Configuration Files

64

The web.xml file is used for a lot more settings. I discuss some of these later when

they’re used for the applications, such as security settings for the Alumni app.

�faces-config.xml
So far, there is no faces-config.xml in TinyCalculator. But this file is needed for a couple

of configurations, so I cover it when discussing the particular applications. Books, for

example, uses localized property files that are configured by the faces-config.xml file. Or,

as mentioned in Chapter 5, this configuration might be used to overwrite navigation rules.

Table 6-1.  Descriptor File

Element Description

context-param Defines a parameter, composed of a name-value pair. The param javax.

faces.PROJECT_STAGE is used to distinguish between Development and

Production. Within the development stage, JSF offers some debugging

aid, like automated messages. This feature will display all JSF messages

that aren’t displayed by an appropriate message element.

servlet Defines a name and the startup order for a servlet class. This order is

needed in case of dependencies if more than one servlet is defined.

servlet-mapping Maps a URL pattern to a servlet, which is defined by this name. In the case

of TinyCalculator, no special context is defined, thus the application runs

within the context //Server:port/TinyCalculator/.... Within this

context, all URLs ending with .xhtml are handled by the application.

session-config Config settings for the session context. Here, one sub-element for the

session timeout (in minutes) is defined. Remember, a client might stop

sending requests at any time, often without terminating the app. So a

timeout is very important!

welcome-file-list Defines one or more welcome files. Within this tag, the developer needs

to place a welcome-file tag for every welcome file. Beginning with the

first entry, the server searches the URI http(s)://server:port/

appContext/welcomeFile until it finds an appropriate file to display.

A welcome file may contain a path within the app. If no welcome file is

defined, GlassFish searches for index.html.

Chapter 6 Configuration Files

65

�beans.xml
Starting with Java EE 6, Contexts and Dependency Injection (CDI) became part of the

Java Enterprise Edition. In those early days, CDI needed to be enabled by the beans.xml

file, shown in Listing 6-3. For this purpose, beans.xml might be completely empty or just

contain the XML namepace declaration.

Listing 6-3.  beans.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

5 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"

6 bean-discovery-mode="annotated">

7 </beans>

Starting with Java EE 7, CDI is enabled by default, so you usually don’t need this file

in Java EE 8. You may use it to control the bean discovery mode, which isn’t covered in

this book.

I just mention this file for completeness, but you may face a situation where you still

need to develop for a Java EE 6 environment.

�persistence.xml
This file, located in the projectRoot/src/main/resources/META-INFfolder, is used to

configure the Java Persistence API. We’ll need it to store information in a database. It’s

first used and discussed in Chapter 12.

�glassfish-resources.xml
As its name suggests, this is a vendor-specific configuration file. The projects in this book

are developed with GlassFish, so you’ll find glassfish-resources.xml in this book. This

file describes resources like JDBC connections.

Depending on the application server you use, your configuration may slightly differ.

Usually it should be no problem to transfer the content for use in your environment.

Chapter 6 Configuration Files

66

I discuss the settings of this file in Chapter 10’s discussion of the Books application,

which uses the Java Persistence API to store data.

�glassfish-web.xml
So far, there’s no glassfish-web.xml file in the TinyCalculator project. In an earlier

section, I discussed the context path. By default, this context is the same as the project

name. But let’s suppose we want to change that:

	 1.	 Using NetBeans, open the TinyCalculator project.

	 2.	 Open the project properties by right-clicking the project in the

project tree and choosing Properties.

	 3.	 Click the Run category and change the context path to

Calculator.

	 4.	 Click OK.

NetBeans creates a glassfish-web.xml file, located in the WEB-INF folder.

Alternatively, this file might be created with a (text) editor, as shown in Listing 6-4.

Listing 6-4.  glassfish-web.xml

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <!DOCTYPE glassfish-web-app PUBLIC

 3 "-//GlassFish.org//DTD GlassFish Application Server 3.1 Servlet 3.0//EN"

 4 "http://glassfish.org/dtds/glassfish-web-app_3_0-1.dtd">

 5 <glassfish-web-app error-url="">

 6

 7 <context-root>/Calculator</context-root>

 8

 9 <!-- omitted other context for brevity-->

10 </glassfish-web-app>

For brevity, I’ve omitted some config information. With context-root, the default

context path is overwritten.

The glassfish-web.xml is needed for a couple of other configurations. I’ll cover

those when discussing the particular applications.

Chapter 6 Configuration Files

67

Note I n existing projects, you may find a sun-web.xml file. This is an alternative
(older) name for the same configuration done with glassfish-web.xml.

�Other Files
Depending on the project, other configuration files may be present—for example,

settings.xml pointing to a nonstandard local Maven repository path or nb-

configuration.xml. These two files are managed by NetBeans, and usually we’ll keep

them untouched.

I’ll describe these other files when they’re first used.

�Summary
This chapter provided an overview about some common configuration files used for Java

EE development. Most of these files are discussed in more detail in the context of the

application discussions throughout this book.

Chapter 6 Configuration Files

69
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_7

CHAPTER 7

Testing with Selenium
This book focuses on web development, not test-driven development (TDD). Of course,

it’s good practice to write tests for each kind of application, whether you follow the TDD

paradigm or write your unit tests just after your production code. But if a test for each

piece of code described in this book were added, the book would probably double in

size. There are good books on unit testing available, and I introduce some of the tools in

this book, but I can’t cover much unit testing in this book.

Developing web applications with Java and JSF, you’ll face some unfamiliar problems

compared to Java SE applications: the user interface (UI) is presented by third-party

software, the browser. And most of the business logic and persistence is managed by a

container. So, we have some additional environment that needs to be considered for a

couple of tests.

The first problem, UI presentation within a browser, is tackled by Selenium.

�Selenium Overview
What is Selenium? A look at the Selenium website (http://docs.selenium.org)

provides this answer: “Selenium automates browsers. That’s it! What you do with that

power is entirely up to you. Primarily, it is for automating web applications for testing

purposes, but is certainly not limited to just that. Boring web-based administration tasks

can (and should!) also be automated as well.”

Selenium is available in two versions:

•	 Selenium IDE

•	 Selenium WebDriver

The Selenium IDE comes with a macro recorder. You can start recording, call a web

page, perform some operations, stop recording, and then replay these actions again

and again. That might be useful to log in to an application and navigate to the page of

http://docs.selenium.org/

70

interest. Then you may perform manual steps for testing a new feature. Or you define a

piece of work that’s repeated in an “endless” loop to perform a stress test.

Selenium WebDriver is a driver you can use in your Java program. Different drivers

for popular web browsers are available. By the power of this driver, it’s possible to

automate the browser with a self-written application. So far, Selenium can be used

within a testing framework like JUnit.

With both versions, it’s possible to define which pages to load and which UI

components to control, and to read values from these components.

�Preparing TinyCalculator
During the test, the Selenium WebDriver has to address the UI components. This might

be done with various addressing schemes—for example, by name, by type, by id, or

by path. Addressing elements is a topic for Cascading Style Sheets (CSS) too, which

we haven’t discussed so far. Because the id of an HTML element has to be unique, the

simplest way (without knowing the other addressing schemes) is to use this id.

JSF assigns an id to every element under its control. Such an auto-generated id will

be something ugly like j_idt18. The number depends on the element’s position and will

change if elements are added or removed. To get a more readable and predictable id,

Listing 7-1 enriches TinyCalculator with ids by adding id="...".

Listing 7-1.  TinyCalculator: More Readable Ids

 1 [everything outside form omitted for brevity]

 2

 3 <h:form id="form">

 4 <div>

 5 <h:outputLabel value="Param1: "/>

 6 <h:inputText id="param1" value="#{tinyCalculator.param1}"/>

 7 </div>

 8 <div>

 9 <h:outputLabel value="Param2: "/>

10 <h:inputText id="param2" value="#{tinyCalculator.param2}"/>

11 </div>

12 <div>

Chapter 7 Testing with Selenium

71

13 <h:commandButton id="add" value="Add"

14 action="#{tinyCalculator.add}"/>

15 <h:commandButton id="sub" value="Subtract"

16 action="#{tinyCalculator.subtract}"/>

17 <h:commandButton id="mul" value="Multiply"

18 action="#{tinyCalculator.multiply}"/>

19 <h:commandButton id="div" value="Divide"

20 action="#{tinyCalculator.divide}"/>

21 </div>

22 <div>

23 <h:outputLabel value="Result: "/>

24 <h:outputText id="result" value="#{tinyCalculator.result}"/>

25 </div>

26 </h:form>

To claim that an id must be unique is only half of the truth. Like a Java variable, its

name has to be unique within its scope, or (a bit simplified) within a nesting level. If we

use the same id within a different scope, we can use a path built up by this id to get a

unique addressing scheme.

To address parameter 1, we may use param1 within the same scope. This will be

fine when we start to AJAXify an application (covered later in this book). Or we use

the complete path form:param1. Here, form is the id we assigned to the containing

element (the form). Suppose we assign an id to a div element (for example, <div

jsf:id="div1">. Now, if we have two divs, each containing an element with the

id="param1", we may address them by form:div1:param1 and form:div2:param1.

Using Selenium to test TinyCalculator, we need the complete path form:param1 to

address this element.

�Creating the Test
Using Maven, a test is usually created within the project under test and placed in

the folder test, which is a sibling to the main folder below src. Without further

configuration, Maven will execute the tests during compile time.

Selenium automates browsers. The application, which is displayed within the

browser, has to run at the same time. Thus we can’t use the standard test invocation

of Maven. We need to run the test at the application’s runtime. One solution would be

to create a separate project to run the tests on TinyCalculator. Another approach is to

Chapter 7 Testing with Selenium

72

exclude the Selenium tests during compile time. We can reach this goal by configuring

the Maven Surefire plugin. If we want to perform the tests, we need to launch the

application first and then advise our IDE to run the tests.

We need to distinguish between tests. To see which tests should be executed by the

Maven plugin during runtime and which tests should be started at runtime, I created a

package called selenium for the Selenium tests, shown in Figure 7-1.

For the tests, I’m using JUnit 5. Unlike JUnit 4, this version is built up by different

modules. So, we need to define a couple of dependencies, which may look a bit

unfamiliar to you if you’ve only used JUnit 4 so far. To follow the project, Listing 7-2

shows the complete POM. I’ll only explain some details that are important with respect

to the Selenium tests. If you need additional info on JUnit 5, please refer to the JUnit 5

user guide at http://junit.org/junit5/docs/current/user-guide/.

Listing 7-2.  pom.xml

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <project xmlns="http://maven.apache.org/POM/4.0.0"

 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Figure 7-1.  TinyCalculator’s directory structure

Chapter 7 Testing with Selenium

http://junit.org/junit5/docs/current/user-guide/

73

 4 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 5 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 6 <modelVersion>4.0.0</modelVersion>

 7

 8 <groupId>de.muellerbruehl</groupId>

 9 <artifactId>TinyCalculator</artifactId>

 10 <version>1.0-SNAPSHOT</version>

 11 <packaging>war</packaging>

 12

 13 <name>TinyCalculator</name>

 14

 15 <properties>

 16 <java.version>1.8</java.version>

 17 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 18 </properties>

 19

 20 <build>

 21 <plugins>

 22 <plugin>

 23 <groupId>org.apache.maven.plugins</groupId>

 24 <artifactId>maven-compiler-plugin</artifactId>

 25 <version>3.7.0</version>

 26 <configuration>

 27 <source>${java.version}</source>

 28 <target>${java.version}</target>

 29 </configuration>

 30 </plugin>

 31

 32 <plugin>

 33 <groupId>org.apache.maven.plugins</groupId>

 34 <artifactId>maven-war-plugin</artifactId>

 35 <version>3.2.0</version>

 36 </plugin>

 37

 38 <plugin>

 39 <groupId>org.apache.maven.plugins</groupId>

Chapter 7 Testing with Selenium

74

 40 <artifactId>maven-surefire-plugin</artifactId>

 41 <version>2.19.1</version> <!-- 2.20.1 fails! -->

 42 <configuration>

 43 <excludes>

 44 <exclude>de.muellerbruehl.selenium.*</exclude>

 45 </excludes>

 46 </configuration>

 47

 48 <dependencies>

 49 <dependency>

 50 <groupId>org.junit.platform</groupId>

 51 <artifactId>junit-platform-surefire-provider</artifactId>

 52 <version>1.0.2</version>

 53 </dependency>

 54

 55 <dependency>

 56 <groupId>org.junit.jupiter</groupId>

 57 <artifactId>junit-jupiter-engine</artifactId>

 58 <version>5.0.2</version>

 59 </dependency>

 60 </dependencies>

 61 </plugin>

 62

 63 </plugins>

 64 </build>

 65

 66 <dependencies>

 67 <dependency>

 68 <groupId>org.glassfish</groupId>

 69 <artifactId>javax.faces</artifactId>

 70 <version>2.3.3</version> <!-- 2.2.19 if using GlassFish 4.1 -->

 71 </dependency>

 72

 73 <dependency>

 74 <groupId>org.seleniumhq.selenium</groupId>

 75 <artifactId>selenium-firefox-driver</artifactId>

Chapter 7 Testing with Selenium

75

 76 <version>3.8.1</version>

 77 <scope>test</scope>

 78 </dependency>

 79

 80 <dependency>

 81 <groupId>javax</groupId>

 82 <artifactId>javaee-web-api</artifactId>

 83 <version>8.0</version> <!-- 7.0 if using GlassFish 4.1 -->

 84 <scope>provided</scope>

 85 </dependency>

 86

 87 <dependency>

 88 <groupId>org.junit.jupiter</groupId>

 89 <artifactId>junit-jupiter-api</artifactId>

 90 <version>5.0.2</version>

 91 <scope>test</scope>

 92 </dependency>

 93

 94 <dependency>

 95 <groupId>org.junit.jupiter</groupId>

 96 <artifactId>junit-jupiter-engine</artifactId>

 97 <version>5.0.2</version>

 98 <scope>test</scope>

 99 </dependency>

101

102 <dependency>

103 <groupId>org.junit.platform</groupId>

104 <artifactId>junit-platform-runner</artifactId>

105 <version>1.0.2</version>

106 <scope>test</scope>

107 </dependency>

108 </dependencies>

109 </project>

Unlike before, this POM is created for a Java EE 8-compliant server. If you’re still

using GlassFish 4.1 (as we assumed before), you need to adopt lines 70 and 83 (as stated

in their comments).

Chapter 7 Testing with Selenium

76

Now take a look at lines 42–46: here we exclude the Selenium tests to prevent them

from being executed during compile time. If you’re not familiar with the Maven Surefire

plugin, have a look at http://maven.apache.org/surefire/maven-surefire-plugin/

index.html.

Lines 73–78 show how to add Selenium to the project. Adding the driver implicitly

adds other dependencies, like the Selenium API itself. Other drivers for Android,

Chrome, IE, IPhone, Safari, and more are also available. The driver is the part on

the Selenium side to control the browser. Usually you have to install one or more

components on the browser side, which enable control of the browser by the driver.

In case of Firefox, we additionally need the gecko driver, which you can obtain from

https://github.com/mozilla/geckodriver/releases.

As explained before, the POM includes dependencies to JUnit 5. Although Selenium

neither depends on JUnit nor needs it to run, we use the JUnit infrastructure to run the tests.

Listing 7-3 adds a test class to the TinyCalculator project.

Listing 7-3.  Sample Unit Test for Browser Automation with Selenium

 1 public class TinyCalculatorTest {

 2 private static WebDriver _driver;

 3

 4 @BeforeClass

 5 public static void setUpClass() {

 6 _driver = new FirefoxDriver();

 7 }

 8

 9 @AfterClass

10 public static void tearDownClass() {

11 _driver.quit();

12 }

13

14 @Before

15 public void setUp() {

16 _driver.get("http://localhost:8080/TinyCalculator/index.xhtml");

17 setValue("form:param1", "6");

18 setValue("form:param2", "4");

19 }

20

Chapter 7 Testing with Selenium

http://maven.apache.org/surefire/maven-surefire-plugin/index.html
http://maven.apache.org/surefire/maven-surefire-plugin/index.html
https://github.com/mozilla/geckodriver/releases

77

21 private void setValue(String id, String value){

22 WebElement element = _driver.findElement(By.id(id));

23 element.clear();

24 element.sendKeys(value);

25 }

26

27 @Test

28 public void testAdd() {

29 _driver.findElement(By.id("form:add")).click();

30 �String text = _driver.findElement(By.id("form:result")).

getText();

31 assertThat(text, equalTo("10.0"));

32 }

33

34 @Test

35 public void testSubstract() {

36 _driver.findElement(By.id("form:sub")).click();

37 �String text = _driver.findElement(By.id("form:result")).

getText();

38 assertThat(text, equalTo("2.0"));

39 }

40

41 @Test

42 public void testMultiply() {

43 _driver.findElement(By.id("form:mul")).click();

44 �String text = _driver.findElement(By.id("form:result")).

getText();

45 assertThat(text, equalTo("24.0"));

46 }

47

48 @Test

49 public void testDivide() {

50 _driver.findElement(By.id("form:div")).click();

51 �String text = _driver.findElement(By.id("form:result")).

getText();

52 assertThat(text, equalTo("1.5"));

Chapter 7 Testing with Selenium

78

53 }

54 }

 1 package de.muellerbruehl.selenium;

 2

 3 import org.junit.jupiter.api.AfterAll;

 4 import static org.junit.jupiter.api.Assertions.assertEquals;

 5 import org.junit.jupiter.api.BeforeAll;

 6 import org.junit.jupiter.api.BeforeEach;

 7 import org.junit.jupiter.api.Test;

 8 import org.openqa.selenium.By;

 9 import org.openqa.selenium.WebDriver;

10 import org.openqa.selenium.WebElement;

11 import org.openqa.selenium.firefox.FirefoxDriver;

12

13 public class TinyCalculatorSeleniumTest {

14

15 private static WebDriver _driver;

16

17 @BeforeAll

18 public static void setUpClass() {

19 �System.setProperty("webdriver.gecko.driver", "/home/mmueller/.

local/geckodriver");

20 _driver = new FirefoxDriver();

21 }

22

23 @AfterAll

24 public static void tearDownClass() {

25 _driver.quit();

26 }

27

28 @BeforeEach

29 public void setUp() {

30 _driver.get("http://localhost:8080/TinyCalculator/index.xhtml");

31 setValue("form:param1", "6");

32 setValue("form:param2", "4");

33 }

Chapter 7 Testing with Selenium

79

34

35 private void setValue(String id, String value) {

36 WebElement element = _driver.findElement(By.id(id));

37 element.clear();

38 element.sendKeys(value);

39 }

40

41 @Test

42 public void testAdd() {

43 _driver.findElement(By.id("form:add")).click();

44 String text = _driver.findElement(By.id("form:result")).getText();

45 assertEquals("10.0", text);

46 }

47

48 @Test

49 public void testSubstract() {

50 _driver.findElement(By.id("form:sub")).click();

51 String text = _driver.findElement(By.id("form:result")).getText();

52 assertEquals("2.0", text);

53 }

54

55 @Test

56 public void testMultiply() {

57 _driver.findElement(By.id("form:mul")).click();

58 String text = _driver.findElement(By.id("form:result")).getText();

59 assertEquals("24.0", text);

60 }

61

62 @Test

63 public void testDivide() {

64 _driver.findElement(By.id("form:div")).click();

65 String text = _driver.findElement(By.id("form:result")).getText();

66 assertEquals("1.5", text);

67 }

68 }

Chapter 7 Testing with Selenium

80

Here are some notes on that long listing:

•	 In setUpClass, a new driver object is instantiated. In line 19 we need

to define the path to the gecko driver you downloaded. As a result of

this method, a browser window will open.

•	 Before every test (the method setUp), the TinyCalculator page is

opened. The parameters are set to the values 6 and 4.

•	 There are four tests for the basic arithmetic supported by TinyCalculator.

Each test clicks the appropriate button and checks the result.

•	 At last, in tearDownClass, the driver is quit. This closes the browser

window.

As you may have noticed, the basic use of Selenium is quite simple. You navigate to

the URL of your choice, locate elements, and perform actions:

WebElement element = _driver.findElement(By.id(id));

The findElement method expects a parameter of type By, which is defined as an

abstract class. By.id invokes a static factory method that creates a concrete type of By:

public static By id(final String id){...}

By contains several factory methods to create an instance of By, which you may use

to select an element. Besides By.id, you might use By.name, By.linkText, By.tagName,

and more. Thus, it provides you with various ways to locate the element of interest.

To set up our tests, we have to locate the input parameters and enter some values.

sendKeys emulates a user’s input. Because we reuse the running browser window,

it’s essential to clear the input fields beforehand. Otherwise, the new text would be

appended. On the other side, it’s possible to read text from a field, with String text =

_driver.findElement(By.id("form:result")).getText();.

�Unit Test without Selenium
With our Selenium-based test, we checked the GUI and by this the underlying model.

Isn’t it a rule of thumb to test the model separately with a unit test? Of course, and in

case of TinyCalculator, that’s no problem. Listing 7-4 shows a simple test (within the

TinyCalculator project).

Chapter 7 Testing with Selenium

81

Listing 7-4.  Unit Test for the Calculator Model

 1 public class TinyCalculatorTest {

 2

 3 TinyCalculator _calculator;

 4

 5 @BeforeEach

 6 public void setUp() {

 7 _calculator = new TinyCalculator();

 8 _calculator.setParam1(6);

 9 _calculator.setParam2(4);

10 }

11

12 @Test

13 public void testAdd() {

14 _calculator.add();

15 assertEquals("10.0", text);

16 }

17

18 @Test

19 public void testSubtract() {

20 _calculator.subtract();

21 assertEquals("2.0", text);

22 }

23

24 @Test

25 public void testMultiply() {

26 _calculator.multiply();

27 assertEquals("24.0", text);

28 }

29

30 @Test

31 public void testDivide() {

32 _calculator.divide();

33 assertEquals("1.5", text);

34 }

35 }

Chapter 7 Testing with Selenium

82

This tests the model without the overhead of the GUI. So, shouldn’t you prefer a unit

test over a test with Selenium? It depends.

Consider a named bean using injection. I’ll discuss Contexts and Dependency

Injection (CDI) later in this book, but let me say just one thing now: instead of creating

an object manually, we want the container to do this job and provide us a reference to an

object by “injecting” it to our class. You can’t write a simple test for such a class. You have

to either mock the object reference or use a tool like Arquillian to provide an injecting

infrastructure for your tests. Instead of including compile-time tests in your application,

you treat your application as a black box and perform tests at runtime from the “outside.”

That’s what Selenium is for.

�Summary
Selenium is a tool for automating browsers. As such, it can be used to perform black

box testing of your application. Luckily, it’s easy to use because this chapter could only

provide a small peek at Selenium, which is much more powerful than these simple

tests could show. Selenium can take automated snapshots, control remote browsers,

and more. Besides black box testing of your application, you can use Selenium to test

the GUI within different types of browsers. Standardization moves on, but there are

still differences between the browser models. Thus, an application running well in one

browser may show unexpected behavior in another browser or system.

The intention of this chapter is simply to act as a kick-start for Selenium. Because this

book is about JSF and Java EE, I don’t have room to discuss it further. But remember it for

your testing scenarios of your web applications.

Chapter 7 Testing with Selenium

83
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_8

CHAPTER 8

TinyCalculator Recap
So far, we’ve discussed TinyCalculator, a small application developed for educational

purposes. Using this application as an example, we’ve taken a short tour of some

technical foundations, including the following:

•	 HTTP

•	 HTML

•	 CSS

•	 JavaScript

•	 Java

•	 Maven

We discussed a sample servlet, the technology that implements JSF. Then we went on

and looked at JSF itself, including these areas:

•	 View definition language

•	 JSF lifecycle

•	 JSF component libraries

•	 Component tree

•	 JSF markup versus HTML-friendly markup

I introduced some essential configuration files used for JSF, Java EE, and GlassFish.

Last but not least, we went over black box or GUI testing with Selenium.

We’ve looked at the JSF environment as a big picture. Next, we’ll move on to

bigger applications and dig deeper into the various aspects of web development with

Java and JSF.

The source code for TinyCalculator is available from www.apress.com/

book/9781484230299.

http://www.apress.com/book/9781484230299
http://www.apress.com/book/9781484230299

Books

PART II

87
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_9

CHAPTER 9

Preparing for Java EE 8
So far, we’ve used NetBeans 8.2 with the bundled Glassfish 4.1 (the latest version

at the time of writing). Java EE 7 was sufficient for TinyCalculator and the technical

foundations, but now it’s time set up an Java EE 8-compliant environment.

�Current Evolution
In the past, new releases of NetBeans have been in sync with new releases of the core

Java language as well as Java EE. But things change. Oracle donated NetBeans to the

Apache foundation (http://netbeans.apache.org), and the next Java EE release,

formerly known as Java EE 9, will be developed under the umbrella of the Eclipse

foundation. (You can read the announcement at https://blogs.oracle.com/

theaquarium/ee4j-eclipse-enterprise-for-java and its update at https://blogs.

oracle.com/theaquarium/opening-up-ee-update.) Its new name is Jakarta EE.

The transition of NetBeans from Oracle to Apache is an ongoing process. Instead

of releasing new versions for Java 9 and for Java EE 8, the process has stuck on clearing

license information. As a result, this great IDE is available as a beta version at the time of

writing, but sadly without the Java EE 8 features. The Java EE stuff will be part of a second

donation from Oracle. That’s why you still get NetBeans 8.2 as the latest release, which

includes Java EE out of the box.

Luckily it’s not a big problem to update the application server and prepare NetBeans

for Java EE 8 development. I hope that by the time this book is in your hands, NetBeans

will be available for Java EE 8 to prevent this upgrade step. I’m going to provide some

updated information on my blog, when available.

However, knowing how to update parts of the environment is always helpful.

http://netbeans.apache.org/
https://blogs.oracle.com/theaquarium/ee4j-eclipse-enterprise-for-java
https://blogs.oracle.com/theaquarium/ee4j-eclipse-enterprise-for-java
https://blogs.oracle.com/theaquarium/opening-up-ee-update
https://blogs.oracle.com/theaquarium/opening-up-ee-update

88

�Upgrade the Application Server
Although Oracle stopped its commercial support for GlassFish, this application server

still is used for the Java EE 8 reference implementation (RI). GlassFish 5 is available for

download at https://javaee.github.io/glassfish/download. Just download the

GlassFish 5 full platform and unzip the file to any folder on your computer.

In NetBeans, click Tools ➤ Servers ➤ Add Server. NetBeans starts a wizard to add a

new server. From the available server types, choose GlassFish Server and enter the name

GlassFish Server 5 (or any other name of your choice), as shown in Figure 9-1.

Click Next.

Figure 9-1.  Add new server

Chapter 9 Preparing for Java EE 8

https://javaee.github.io/glassfish/download

89

Type in your installation location or browse to the newly created folder containing

the downloaded server. If everything is okay, NetBeans displays that it detected the

server. Again, click Next > (All shown in Figure 9-2). In this last screen of this wizard

(not shown here), NetBeans asks for the domain. Leave this dialog untouched and click

Finish. NetBeans adds the newly defined server to its repository. Now right-click onto the

newly created project within the Projects tree view and choose Properties. In the project

properties (Figure 9-3), you can now choose this new server: right-click the project name

in the Projects tree and choose Properties.

Click Run. On the right you can now select the new server, as shown in Figure 9-3.

Because NetBeans doesn’t know about Java EE 8, leave the Java EE Version box set to

Java EE 7 Web. Remember, we’ll define the Java EE version in the project’s POM.

Figure 9-2.  Define the server location

Chapter 9 Preparing for Java EE 8

90

�Payara Server
After Oracle stopped its commercial support for GlassFish, the Payara server came to life.

This server is derived from GlassFish and adds frequent support to this project. A free

version is available as well as a version with commercial support. Because it’s directly

derived from GlassFish, you can use it instead. As a direct replacement, download your

version from www.payara.fish. At the time of writing, Payara 5 is available as beta

version (www.payara.fish/upstream_builds). Once you’ve downloaded it, follow the

same installation steps described for GlassFish in the preceding paragraph.

As I write, both GlassFish 5.0 and 5.0.1 betas have problems accessing CDI backing

beans for JSF if using Servlet 4. If you’d like to use GlassFish 5, you need to provide

Servlet version 3.1 in the web.xml configuration (see Chapter 6). It’s possible that this

problem will be solved by the time you read this book.

Figure 9-3.  Project properties

Chapter 9 Preparing for Java EE 8

http://www.payara.fish/
http://www.payara.fish/upstream_builds

91

There’s no such problem if you use Payara 5, so I use this server for the next

applications.

�Summary
The current version of NetBeans doesn’t support Java EE 8 out of the box. To prepare

for Java EE 8 development, you need to upgrade the application server to a Java EE

8-compliant version. This short chapter showed how to perform this upgrade.

Chapter 9 Preparing for Java EE 8

93
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_10

CHAPTER 10

Introducing the Books
Application
Books is an application to help manage and list book reviews. This part covers the

following:

•	 JSF templating

•	 Using CSS in a web application

•	 Persisting data with the Java Persistence API (JPA)

•	 Injecting beans with Context and Dependency Injection (CDI)

•	 Working with lists and tables

•	 Working with text resources

•	 Internationalization and localization

•	 Language switcher

•	 Validation

�Books Requirements
The intent of the Books application is to present to the user an overview of book reviews

penned by an author. For each book, reviews that are either external or published with

this application may be linked. This might be a link to an external online source (such as

a different website) or simply to some information about a printed medium where the

review is published. The user can list books by category and can search. There are quite a

few requirements, which can be put out as small user stories:

94

•	 As a review author, I would like to enter information about a book

•	 As a review author, I would like to enter a review

•	 As a review author, I want to maintain basic data like categories

•	 As a user, I would like to read book-information and reviews

•	 As a user, I would like to search for books by title, author, and ISBN

•	 As a user, I would like to list books by category

•	 As a user, I would like to retrieve and choose from lists of all books

and all reviews

•	 As a user, I would like to choose my preferred language, if available

All features available to the user use the same look and feel—that is, the navigation

will stay on the same place whether a book or a review is currently displayed. The admin

look and feel differs to visualize the different domain. The admin pages have a different

background color to indicate the admin section. To achieve that, JSF templating is used.

Later on, in the chapters in part IV, “Alumni,” I’ll discuss approaches to change the look

and feel according to the user’s choice.

Every book will be displayed in a table with the following information:

•	 Title

•	 Subtitle

•	 Author(s)

•	 Publisher

•	 Year

•	 Language

•	 ISBN

•	 Short descriptive text

•	 Cover image

•	 Reference to external and or internal review(s)

•	 Reference to category or categories

Chapter 10 Introducing the Books Application

95

Although most information like title, author, publisher, and more will remain the

same for every language, other information, such as the short descriptive text and

categories, may be displayed in different languages. The current live version of Books

supports English and German. This isn’t a technical restriction—it’s only limited by

translation capabilities.

Beside books, the Books application displays reviews. This structure is simple:

•	 The book the review refers to

•	 The language of the review

•	 The review content

The application automatically adapts to different display sizes (thanks to responsive

design).

Although the requirements are pretty simple, this application demonstrates a

lot of techniques. Books is not a demo application only and is live on my website at

http://it-rezension.de.

Because the application’s data is well structured and homogeneous, it fits well with a

SQL database. Books uses the JPA to access the database.

The look and feel and the adoption to various display sizes is realized by using

Cascading Style Sheets (CSS).

You can see the live version of Books on my website. By the way, you might use it as a

bibliography in addition to this book.

�Development Order
Now—where to start? With a prototype of the GUI that can be provided to the customer

for further review? In many projects, that might be the option of choice. Some dialogs

might be sketched first, including some navigation buttons to show the planned

behavior of the software. These prototypes might be built by using presentation software

or directly implemented with the target language (here, Java with JSF). The latter method

conveys a better feeling to the customer.

Or should we model the big picture and the activity by drawing UML or other

diagrams? Or design the data model (for example, with an entity diagram) first?

In practice, you’ll see all these approaches and many more. Which one is the best

way to start a project depends on the project properties and the personal preferences of

those involved.

Chapter 10 Introducing the Books Application

http://it-rezension.de/

96

The following procedure is what we call the waterfall model:

	 1.	 Collect and write down all requirements

	 2.	 Design and document the overall software architecture

	 3.	 Write down all planned functionality in detail

	 4.	 Program everything

	 5.	 Test the whole system

	 6.	 Write the user documentation and deliver it

That seems an elaborate method. And by the time the system is delivered, the

requirements may have changed or some function may behave differently than how the

customer expected (if the customer had a clear view about what to expect). A lesson: the

waterfall method mostly fails. Agile methods are preferable. The Agile Manifesto (read it

at http://agilemanifesto.org) was a milestone in this movement.

Chop the project into pieces that are iterative and implemented in increments. For

each iteration, we need a short planning session. A piece of software is developed or

refined and tested and—very important—delivered to the customer, or at least to an

internal substitute of the customer. Thus, a short feedback loop can be included in the

development process. The customer gets a quick overview of the software. Requirement

changes can be incorporated quickly. Many agile people don’t like the comparison, but

in agile, within each iteration the development in fact follows something similar to the

waterfall model, though a (very) small waterfall with a short feedback loop.

As a result of an iterative process, the development order might be changed due to

influencing factors. And the detailed order becomes a bit less important because after

every iteration, or sometimes within it, a correction might be applied.

For data-driven applications like Books (which mostly presents data stored

somewhere to the user), I prefer to create dialog boxes as soon as possible. Because the

first dialog should present a bit of the future look and feel to the user, we need an overall

layout, a kind of frame where the dialog will be embedded.

What data should be used for this dialog? It depends on the size of the project, the

number of people involved, their experience, and more. In any case, a good starting

point is the data model. Depending on the team structure, the dialog can use this model

and mock away any persistence. Database specialists might connect the data model via a

service layer to the database.

Chapter 10 Introducing the Books Application

http://agilemanifesto.org/

97

Mocking data may be useful for testing or if different persons implement different

parts for one feature (for example, the database part, service part, or presentation part).

To present the work in progress to the user, some real data handling often suits better. As

we’ll see after implementing a first dialog in the next chapter, the service layer to access

the data can be generalized and reused. So, it’s no problem to work with persisted data

for each dialog from the very beginning.

In case of Books, the data structure isn’t difficult to design—we start with the data

model and database access and then create the dialog that uses this data. Working

iteratively, this procedure is similarly repeated for every dialog.

Because for the first dialog no service layer exists, we fill fake persistence one

time. To make things clearer as you learn, activities may sometimes slightly differ from

practical development.

CREATING THE BOOKS PROJECT

To start programming Books, we need to create our project. The project creation steps are

the same ones explained in Chapter 1, so I assume you're able to create the project without

further assistance (or reread that first chapter if necessary).

	1.	U sing NetBeans or your favorite IDE, create a new Maven web project named

Books.

	2.	A dd the JSF framework to your project.

	3.	A s long as NetBeans doesn’t support Java EE 8 out of the box, you need to

slightly update some generated files—notably pom.xml and web.xml

(see Chapter 6 for more).

�Summary
This chapter outlined the main features and requirements of the Books application and

discussed some aspects of iterative development. In the next chapter, we’ll start with

a first dialog box, mocking away persistence. To begin that chapter, you should have

created a fresh web application.

Chapter 10 Introducing the Books Application

99
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_11

CHAPTER 11

Starting the Books App
Let’s recap the steps for the first dialog:

	 1.	 Sketch and implement a preliminary overall layout

	 2.	 Design the data model for the first dialog

	 3.	 Implement the first dialog

	 4.	 Add persistence

�Page Layout
For the first step, we have to answer an essential question: which devices will future

users of the application use? Preferably a desktop or laptop computer? Or mostly a

mobile device? Or any of those?

The screen layout for a small screen usually must differ from the layout for a large

screen. For Books, we’ll assume the user wants to access the application from a personal

computer as well as from a smartphone. That means we need a flexible design that fits all

sizes by dynamically changing the size of some elements and/or reordering the element

positions. In other words, it needs to be responsive. How to create such a responsive

design is the topic of Chapter 19.

To prepare a responsive design, we split the screen layout into logical groups—for

example, main content and navigation. On a desktop screen, both groups might be

arranged side by side, whereas for a mobile device they might be arranged vertically. Or

the navigation might be hidden and displayed only on demand. For mobile devices, the

content of each group might also be reduced.

Although starting out “mobile first” is popular, I assume my readers are Java developers.

In that role, you usually use a desktop or laptop computer with a screen resolution of at

least 1280 pixels horizontally. Thus, we’ll start with a design for that kind of device.

100

Besides the main content and navigation, Books will have a headline and a footer.

The layout is sketched in Figure 11-1.

For development, I use screens with a horizontal size of 1680, 1920, and 2560 pixels.

Have you ever read a document in the browser with text lines extended to those sizes?

It’s a mess. So, we want to restrict the horizontal size of our layout and center it in the

browser window. We’ll replace the white space outside with it a nice picture. Note that

this approach also reduces the gap to small (mobile) devices, which need to be covered

by this responsive design too.

�HTML Structure
First we need to create a page. NetBeans created the page index.xhtml, which can be

used and renamed. This page will contain four sections for the different areas and one

container element (div id="wrapper"), containing the four parts mentioned earlier,

which is used to limit the width of the whole page.

Before HTML5, usually a div was used for this purpose. Every div became its own id.

Because this approach is still widely used, Listing 11-1 demonstrates such a page.

Listing 11-1.  Rough Page Structure by div Elements

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html">

Figure 11-1.  Overall desktop screen layout of Books

Chapter 11 Starting the Books App

101

 5 <h:head>

 6 <title>Books</title>

 7 </h:head>

 8 <h:body>

 9 <div id="wrapper">

10 <div id="header">

11 <h1>Michael's book list</h1>

12 </div>

13 <div id="main">

14 Main content goes here

15 </div>

16 <div id="navigation">

17 This is the navigation

18 </div>

19 <div id="footer">

20 This is the footer

21 </div>

22 </div>

23 </h:body>

24 </html>

HTML5 knows a few more specific tags for structuring a page. We can replace some

of the div elements with new semantic elements. For example, we may use <header> in

favor of a div to indicate the header part of the page, as shown in Listing 11-2—but don’t

mix with the HTML head!

Listing 11-2.  HTML Page Structured by Specific Elements

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html">

 5 <h:head>

 6 <title>Books</title>

 7 </h:head>

 8 <h:body>

 9 <div id="wrapper">

Chapter 11 Starting the Books App

102

10 <header>

11 <h1>Michael's book list</h1>

12 </header>

13 <main>

14 Main content goes here

15 </main>

16 <nav>

17 This is the navigation

18 </nav>

19 <footer>

20 This is the footer

21 </footer>

22 </div>

23 </h:body>

24 </html>

Only the div, which is used as a container element for the page, comes with an id.

divs are broadly used and will be used in this application. A unique id helps to address

the right div. As you’ll see, we don’t need the id right here, but for admin pages we will

use such an id.

The other elements, like header, are unique within our application. By definition,

these elements may occur multiple times. In such a case, an id would help again.

If we run this application, the browser would show a kind of boring page, like

Figure 11-2.

We’ve defined some container elements for the future content. For main, nav, and

footer, the page simply contains some placeholder text.

Figure 11-2.  Structured page without layout definition

Chapter 11 Starting the Books App

103

�Basic Styling with CSS
As mentioned, content and style should be separated. A web page, like a web

application, is more than just content and functionality—a pleasant look and feel are

also important. Cascading Style Sheets (CSS) is the technology we’ll use to create that

look and feel. If you’re not familiar with CSS, you may want to check out Appendix B,

which serves as a basic introduction.

Although it’s possible to include styles in the <style> element of the <html> header

of a page, it’s better to put the styles into one or more separate file(s). That simplifies

reuse and, due to browser caching, reduces page load time. The CSS is loaded just once

instead of being loaded with every page.

Using NetBeans, right-click any folder of the project within the Projects view and

choose New ➤ Other ➤ Web ➤ Cascading Style Sheet. Enter the name books and set the

folder to resources/css, as shown in Figure 11-3.

Figure 11-3.  Creating CSS with NetBeans

Chapter 11 Starting the Books App

104

You’re creating a nesting subfolder structure and a file within the Web Pages folder.

Alternatively, in the Web Pages folder you could create a folder called resources, then a

subfolder css, and within that folder a new file, books.css.

Now we’ll add a reference to that file to the JSF page, as shown in Listing 11-3.

Listing 11-3.  Embedding CSS with a JSF Tag

1 ...

2 <h:head>

3 <title>Books</title>

4 <h:outputStylesheet name="css/books.css"/>

5 </h:head>

6 ...

The tag <h:outputStylesheet> will be rendered by JSF as <link type="text/css"

rel="stylesheet" href="/Books/javax.faces.resource/css/books.css.xhtml"/>,

which is the HTML syntax to include as CSS.

Examine this tag. You may recognize javax.faces.resource, although we placed

the stylesheet below resources. JSF uses a symbolic name, whereas the real resource

might reside at different locations, which have to be inside a folder named resources.

JSF RESOURCE MANAGEMENT

1 <h:outputStylesheet ... />

2 <h:outputScript ... />

3 <h:graphicImage ... />

The preceding three JSF tags refer to resources. A resource might reside in any folder within a

resources folder. The resources folder might be at the top level within the webapp folder

(that’s where you find the pages too). Or it might be located within the META-INF directory of

the jar file. If you compose your application of different jar files, each may contain (its own)

resources. This approach enables you to exchange the resources at deploy time.

If you use lots of resources, you may logically group them together into a library and add

an attribute library="yourLibrary". This attribute is treated as a folder—for example,

<h:outputStylesheet library="muellerbruehl" name="css/books.css"/>

refers to resource/muellerbruehl/css/books.css. You may ask why you can’t use

Chapter 11 Starting the Books App

105

<h:outputStylesheet name="muellerbruehl/css/books.css"/>? That does point

to the same folder and will be functional, but the intent is different. By using the library

attribute, your intent is not only to point to a specific resource file, but to a group of resources

that fit together—for example, CSS, icons, and script that belong to a special theming. I cover

this near the end of this book when we change an application’s look and feel.

Also, using the library attribute, you can place an optional version folder between the

library folder and your resource file path. The version folder is named according to the \

d+(_\d+)* pattern. By default, JSF always loads the latest version (highest number).

Without any version, <h:outputStylesheet library="muellerbruehl"

name=css/"books.css"/> refers to the file resources/muellerbruehl/css/books.css.

Assuming a version 1_0, this file must be in resources/muellerbruehl/1_0/css/

books.css. The full path to your library is composed by resources/<library>/<versio

n>/<name>, where name may contain additional folders.

Let’s assume we have two versions, 1_0 and 1_1, as follows:

resources/muellerbruehl/1_0/css/books.css

resources/muellerbruehl/1_1/css/books.css

Now the tag I mentioned automatically resolves to the second folder because it contains the

latest version. There is no version attribute within the h:outputStyle tag. Thus, you may add

a newer version to your folder structure, which would be resolved automatically, but you can’t

select a specific version.

For further info, check out the article by Bauke Scholtz at http://stackoverflow.com/

questions/11988415/what-is-the-jsf-resource-library-for-and-how-

should-it-be-used.

Listing 11-4 adds some content to the books.css file.

Listing 11-4.  Basic CSS for Books

 1 * {

 2 margin: 0px;

 3 padding: 0px;

 4 border: 0px;

 5 color: #000044;

 6 }

 7

Chapter 11 Starting the Books App

http://stackoverflow.com/questions/11988415/what-is-the-jsf-resource-library-for-and-how-should-it-be-used
http://stackoverflow.com/questions/11988415/what-is-the-jsf-resource-library-for-and-how-should-it-be-used
http://stackoverflow.com/questions/11988415/what-is-the-jsf-resource-library-for-and-how-should-it-be-used

106

 8 body {

 9 font-size: 12px; /* base size */

10 text-align: left;

11 font-family: Verdana, "Verdana CE",

12 Arial, "Arial CE", "Lucida Grande CE",

13 lucida, "Helvetica CE", sans-serif;

14 background-image: url(/Books/resources/images/books1.png);

15 background-repeat: repeat;

16 background-position: top left;

17 background-attachment: fixed;

18 }

19

20 h1, h2, h3, h4, h5, h6 {

21 color: red;

22 padding: 1.0em 0em 1.0em 0em;

23 }

24

25 h1 {

26 font-size: 2em;

27 }

28

29 h2 {

30 font-size: 1.5em;

31 font-style: italic;

32 }

33

34 h3 {

35 font-size: 1.2em;

36 }

With the universal selector *, some reset actions are performed. Because some

default values differ from browser to browser, we set them to defined values to achieve

the same (or at least similar) layout in almost every browser. This is well known as a CSS

reset (you can read more about it at http://cssreset.com/what-is-a-css-reset/).

Here, we overwrite the browser settings for padding, margin, and border. We also set the

default text color to a dark blue.

Chapter 11 Starting the Books App

http://cssreset.com/what-is-a-css-reset/

107

Within body, we’ll set the basic font size. Doing so, the font becomes independent

from the browser’s default font size. And we choose a font from the list of fonts. The

browser tries to apply a font from this list, beginning with the first. The last one, sans-

serif, is usually known by every browser and will be applied if the browser couldn’t

find any other font family of this list. This ensures a font without serifs. The background

statements load an image as background, with a fixed (non-scrolling) positioning, which

is repeated endlessly.

Next, some standard settings for the heading tags (h1 through h6) are applied. The

unit em, a typesetting term meaning “width of the letter M,” is a relative size. As font

size, 2em doubles the size of the font. The base of this size is the size that’s applied in the

container element, not the size we defined in the body! The size of the body is simply the

base for all other relative sizes.

For example, if we have a basic font size of 12px and define a div to which we apply a

size of 2em, the resulting font size within this div would be 24px. Now, if we place a header

1 before that div, h1 would create a font of 24px (12px × 2). But if we place a header 1 within

this div, then h1 would create a font size of 48px (12px × 2[by div] × 2[by h1]), because the

2em of h1 is a relative size to the font within the div, which is scaled by 2em itself.

As you can see in Figure 11-4, all content is still displayed left aligned, whatever

window size you use for your browser.

If you were to insert a long line of text for any part, such as the main content, you

would see this text being extended to the right border of your browser window. Our

goal is to restrict the length of our content and center it. To that end, add the content of

Listing 11-5 to the books.css file.

Figure 11-4.  Reset, background, and header styles applied

Chapter 11 Starting the Books App

108

Listing 11-5.  Fix Width by CSS (Add to books.css)

1 body > div {

2 width: 80em;

3 margin: 0 auto;

4 text-align: left;

5 }

These styles affect the topmost div within our document, which is our wrapping

element. Using the combined element and id selector, div#wrapper would have

addressed the same div. Later on, when designing the admin pages, we’d like to

reuse this style. For admin pages, the first div gets a different id. Thus, by using the

div#wrapper selector, we can’t reuse this style information.

width: 80em; limits the size of our web content by a relative size. Some years

ago, it was common to set the limit to a fixed absolute size, like width: 960px;. This

allowed creation of a fixed layout with nearly full control of the exact sizes. But we don’t

develop for desktop computers only. Starting with relative sizes allows for switching to a

responsive layout later on. 1em is a relative unit, its width about the width of the capital

M in whatever font and size are currently in use. Later on, we’ll add so-called media

queries, to consider smaller screen (or window) sizes.

CHECK THE WRAPPER 

	1.	A dd a long piece of text (200 characters, say) to the main content.

	2.	R un the application.

	3.	R esize the browser window from full screen width to a skinnier width.

Note that the text stays centered. That is, to the left and right of each line of text, there will be

roughly equal space. When you squeeze the window size, this space is reduced. Once there’s

no more space, a horizontal scroll bar appears.

Our header will be as wide as the wrapper area with rounded corners, and the

text displayed will be white on blue background. To get a smooth design, it will be a

bit transparent and let the background shine through somewhat. The footer will look

similar, but instead of a headline it will contain some text and links. Right now, it only

contains pure text, so let’s add some links, as shown in Listing 11-6.

Chapter 11 Starting the Books App

109

Listing 11-6.  Book’s Footer

 1 ...

 2 <footer>

 3 © Michael Müller

 4 |

 5 <h:outputLink value="http://blog.mueller-bruehl.de">

 6 Michael's Blog

 7 </h:outputLink>

 8 |

 9 <h:link value="About" outcome="index.xhtml"/>

10 </footer>

11 ...

© is an HTML entity that refers to the copyright sign. Using HTML 4.x, you could

use it right this way—but we declared our doctype to be HTML5, which doesn’t know

such entities. So, we have to declare this entity first by enhancing the doctype information

at the first line of our XHTML file: <!DOCTYPE html [<!ENTITY copy "©">]>.

The JSF tag <h:outputLink ...> renders an outgoing link. This kind of link leaves

the application. In this page, it simply would be rendered as <a href="http://blog.

mueller-bruehl.de">Michael's Blog, which is a standard HTML link. Why should

somebody use this JSF tag and not the HTML version? Because it’s possible to enrich the

tag with additional information. For example, you could add attributes known by JSF,

such as rendered = "#{someCondition}". Doing so, the link would be rendered if the

condition evals to true only.

<h:link ...> renders to an also. It’s used as an internal link (within

the application) and might be enriched with JSF-specific attributes, too. Because we

don’t have an About page yet, it simply points to the source page. The differences of the

various links are discussed later on in Chapter 18.

Having added some “real” content, we can continue to apply styles, as shown in

Listing 11-7.

Listing 11-7.  Basic CSS for the Page Layout and Menu (Add to books.css)

 1 header, footer {

 2 opacity: 0.75;

 3 border-radius: 1em;

 4 background-color: #000044;

Chapter 11 Starting the Books App

110

 5 padding: 1em;

 6 text-align: center;

 7 box-shadow: 0 0 1em white;

 8 }

 9

10 header {

11 margin: 2em auto 1em auto;

12 }

13

14 footer {

15 margin: 0.5em auto 1em auto;

16 color: white;

17 }

18

19 header > h1{

20 color: white;

21 margin: 0;

22 padding: 0;

23 }

24

25 a {

26 text-decoration: none;

27 color: white;

28 }

29

30 a:hover{

31 color: red;

32 }

Although we used JSF tags, the style is always applied to the rendered HTML elements.

The links are rendered as an anchor tag, (). Setting text-decoration: none;

will omit the underlining. Rather, the link will turn red on a mouse over (by defining hover).

padding 1em; applies 1em padding to each side. Instead of one parameter, you might

apply two (padding top/bottom right/left) or four (padding top right bottom

left) parameters, as done for the margin. Or you may define padding-top 1em; (-right,

-bottom, -left) for a given side only.

Chapter 11 Starting the Books App

111

box-shadow: 0 0 1em white; defines a white “shadow.” In fact, this seems to be a

bright light. No value is added to the horizontal and vertical position. The width from

opacity 100 percent to 0 is 1em.

The other elements should be fairly self-explanatory. The navigation will be placed

left from the main part.

COLUMN LAYOUT

An established way to calculate layout sizes is to divide the whole content area into columns—

for example, six columns with gaps in between. If we take 2 percent of the full width for such

a gap, we can calculate each column width by (100% – 5 × 2%) / 6 = 15% per column. Long

version: in between six cols, there are five gaps. Each gap takes 2% of the width, which is a total

of 10% for the gaps. We need to subtract this from the 100% width. As a result, 90% of the full

width has to be devided by the six columns. In this example, we use four columns for the main

part, including three gaps, and two columns for the navigation, including one gap. Last but not

least, we have one remaining gap between the main part and the navigation.

I mention column layout because it’s very popular and you may have heard or read

about it. For Books, there’s no need to arrange content in columns. The navigation will

be “fixed” during scrolling; this will be realized by position: fixed;. See Listing 11-8.

Listing 11-8.  CSS for Main Part and Navigation (Add to books.css)

 1 main {

 2 min-height: 40em;

 3 width: 53em;

 4 opacity: 0.95;

 5 border-radius: 1em;

 6 background-color: #eeeef3;

 7 padding: 1em;

 8 margin-bottom: 1em;

 9 box-shadow: 0.5em 0.5em 0.5em #004

10 }

11

12 nav{

13 min-height: 40em;

Chapter 11 Starting the Books App

112

14 position: fixed;

15 margin-left: 56em;

16 width: 22em;

17 padding: 1em;

18 top: 7.5em;

19 opacity: 0.85;

20 border-radius: 1em;

21 background-color: #ccccd8;

22 box-shadow: 0.5em 0.5em 0.5em #004

23 }

The height of an element is usually calculated by its content. The main part might

get much longer than the navigation. Right now, both parts contain only a few words. To

balance the height, a minimum height is defined for each of these parts. The main part’s

width is simply set to 53em (remember the wrapper being 80em wide). According to the

box model, a padding of 2 × 1em will be added. If we assume a gap of 1em between main

and nav, nav needs a left margin of 56em. And the width of nav is simply calculated by

80em – 56em – 2 × 1em (padding) = 22em.

Figure 11-5 shows the app running.

Figure 11-5.  All styles applied

Chapter 11 Starting the Books App

113

�Design First Data Model
Now we can implement a first dialog. In practice, you might start implementing a big

feature, like the book editor or review editor. That would make sense, because these

are valuable features for the customer. But we want to assign every book to one or more

categories. Thus, categories need to be available when we enter the data of a new book.

In real development, we may omit this little feature to implement it later, once the

customer is satisfied with the overall editor.

We haven’t discussed persistence yet, and a category is one of the simplest structures

within our application, so it’s a good starting point to introduce data storage and access.

We start to design the data model here. In Chapter 12 we will persist this data.

Ignoring the fact of different display languages, a category simply consists of an id

and text only. So far, our data model seems to be very simple: two properties with getters

and setters. See Listing 11-9.

Listing 11-9.  Category

 1 public class Category {

 2 // <editor-fold defaultstate="collapsed" desc="Property Id">

 3 private int _id = -1;

 4

 5 public int getId() {

 6 return _id;

 7 }

 8

 9 public void setId(int id) {

10 _id = id;

11 }

12 // </editor-fold>

13

14 // <editor-fold defaultstate="collapsed" desc="Property Name">

15 private String _name;

16

17 public String getName() {

18 return _name;

19 }

20

Chapter 11 Starting the Books App

114

21 public void setName(String name) {

22 _name = name;

23 }

24 // </editor-fold>

25 }

The id is initialized with –1 to indicate there is no valid id yet.

By the way, the editor-fold comments are specific to NetBeans. They allow

structuring and collapsing the code. It’s a one-time presentation here.

Is that all? Nope. There’s something more we need to do. As a Java developer, you

might miss the hashCode and equals methods. Both are needed if objects of this class

will be used in any collection. NetBeans can generate both for you. This generated code

might be used as a starting point only. Using persistence, the id will be generated by the

database management system.

Only this id identifies the category. There’s a valid id, hashCode, and equals

depend on this id only, ignoring the text. But if there’s no valid id, we probably need to

distinguish two different object instances. We do that by considering the text.

Usually, in our application we’ll display selected properties of our entities. But if we

simply put an entity onto a page, JSF would display it by its string representation. Thus,

we should override the toString method to gain more informative output, as is done in

Listing 11-10.

Listing 11-10.  HashCode and Equals Need to Be Defined for Any Entity

 1 @Override

 2 public int hashCode() {

 3 if (_id < 0) {

 4 return _name.hashCode();

 5 }

 6 return _id;

 7 }

 8

 9 @Override

10 public boolean equals(Object object) {

11 if (!(object instanceof Category)) {

12 return false;

13 }

Chapter 11 Starting the Books App

115

14 Category other = (Category) object;

15 if (_id < 0 && other._id < 0) {

16 return _name.equals(other._name);

17 }

18 return _id == other._id;

19 }

20

21 @Override

22 public String toString() {

23 return "Category[id=" + _id + "] " + _name;

24 }

Now the data model for the first dialog is ready.

�First Dialog Box (Repeating Structure)
Category is the simplest data structure to be persisted and as such is a good starting

point to discuss the data storage. A category only consists of an id and text. We could

certainly design a small dialog box containing these two fields, plus two buttons, Save

and Delete. Just to edit every category by its own screen. In fact, the id doesn’t matter for

the user; it’s only used as the primary key once we move on to persistence. So, we’ll put

all categories into a list and edit them all at once.

We need to

•	 Add a category

•	 Modify a category’s text

•	 Delete a category

•	 Save the list

To add a category or save the list, we use one button each.

It’s very common to display a read-only list and add an Edit link to each row. If

you click the link, the Edit dialog will be displayed. Using applications following this

approach, though, I feel uncomfortable. So, we’ll allow a direct and random access to

each category.

Chapter 11 Starting the Books App

116

Each category will be displayed as an input field. In front of this, we place a

Delete icon, to delete the category of this line. Figure 11-6 gives you an impression

of the completed category editor. We’ll start with the core functionality on the left

side in the rest of this chapter and continue with other subjects (navigation and

internationalization) in subsequent chapters.

We don’t have a service class to retrieve categories from a database or to save them.

So let’s create a list with some initial categories to simulate database access. And the

Save button will only perform a log, which you can observe on the NetBeans console

(the Output, GlassFish Server window). See Listing 11-11.

Figure 11-6.  Category editor

Chapter 11 Starting the Books App

117

Listing 11-11.  CategoryEditor

 1 @Named

 2 @SessionScoped

 3 public class CategoryEditor implements Serializable{

 4 private static final long serialVersionUID = 1L;

 5 �private static final Logger _logger = Logger.

getLogger("CategoryEditor");

 6

 7 @PostConstruct

 8 private void init(){

 9 _categories = new ArrayList<>();

10 _categories.add(new Category(){{setId(1); setName("Java");}});

11 _categories.add(new Category(){{setId(2); setName("Web");}});

12 }

13

14 private List<Category> _categories;

15

16 public List<Category> getCategories() {

17 return _categories;

18 }

19

20 public void setCategories(List<Category> categories) {

21 _categories = categories;

22 }

23

24 public String addCategory(){

25 _categories.add(new Category());

26 return "";

27 }

28

29 public String deleteCategory(Category category){

30 _categories.remove(category);

31 return "";

32 }

33

Chapter 11 Starting the Books App

118

34 public String save(){

35 String categories = _categories

36 .stream()

37 .filter(cat -> !cat.getName().isEmpty())

38 .map(cat -> cat.toString())

39 .collect(Collectors.joining(", "));

40 _logger.log(Level.INFO, "Save categories: {0}", categories);

41 return "";

42 }

43 }

The code in the preceding listing uses the lambda and stream features introduced in

Java 8 (my book Java Lambdas and Parallel Streams (Apress, 2016) is a good introduction

to those, if I do say so myself). If you’re not familiar with lambdas and streams, you can

use a more traditional approach with a for loop. As mentioned, the save method doesn’t

perform a save yet, but instead does logging. See Listing 11-12.

Listing 11-12.  Java 7 Version of save Method

 1 ...

 2 public String save(){

 3 String categories = "";

 4 for (Category category : _categories){

 5 if (!category.getName().isEmpty()){

 6 if (categories.length() > 0){

 7 categories += ", ";

 8 }

 9 categories += category;

10 }

11 }

12 _logger.log(Level.INFO, "Save categories: {0}", categories);

13 return "";

14 }

15 ...

Chapter 11 Starting the Books App

119

The bean is simply @SessionScoped (remember to import the proper class—this is

a CDI scope, not the old JSF SessionScope!). Usually, this is not the best choice. Once

instantiated, such a bean will live as long as the session lasts. On a server with high

traffic, this approach might result in high memory consumption.

A @SessionScoped lives for a relative long time. The server might passivate the bean

to free resources and reload (activate) it when needed again. Passivating is the process

of temporarily persisting the object somewhere (at the server’s choice, depending

on the server’s implementation) by serializing the object. That’s why the appropriate

marker interface is needed. The serialVersionUID determines different object versions.

Here, we don’t use serialization besides passivation. We don’t expect to load data that’s

activated by an object version other than passivated. So, we simply use a constant value

of 1L. This prevents Java from calculating its own object version. (You can read the Java

documentation for more on serialization: http://docs.oracle.com/javase/8/docs/

api/java/io/Serializable.html.

Although passivating is a strategy to reduce memory consumption, it uses additional

IO or other resources. Thus, a scope with a shorter lifetime is usually a better choice. The

Books application is intended for only one or a few editors and lots of readers. Extending

the bean’s lifetime doesn’t matter here. I discuss other scopes later on.

To simulate a load from a database, the category list will be created at PostConstruct

time. The container will call such an annotated method just after creating an instance of

the class and injecting the dependencies (if any). We could have done this initialization

within the class constructor, but using the Java Persistence API (JPA—the topic of the next

chapter), the appropriate service class will be injected after the class construction. Then

we need to perform the database retrieval later, and that’s why PostConstruct is ideal.

The double curly braces notation is an old Java idiom. Nevertheless, it’s unknown

to many developers. It’s simply a shortcut to call the setters right after construction of

the categories. To set properties for a newly created class, it’s preferable to use a special

constructor that allows attributes to pass as parameters. As you’ll see in the JPA, there’s

no need for such a constructor, and because we’re mocking database access, the data

model doesn’t contain it either.

The code contains three methods to add, delete, and save categories. All of them

return an empty string to reload the same page. For simplicity’s sake, this named bean is

set into the session scope. Later on, when I introduce AJAX, we’ll refine both.

Next, we need to add some content to the main part of our page, as shown in

Listing 11-13.

Chapter 11 Starting the Books App

http://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html

120

Listing 11-13.  Main Section of Category Editor

 1 ...

 2 <main>

 3 <h1>Edit categories</h1>

 4 <h:form>

 5 <h:dataTable value="#{categoryEditor.categories}"

 6 var="cat">

 7 <h:column>

 8 <h:commandLink

 9 action="#{categoryEditor.deleteCategory(cat)}">

10 <h:graphicImage alt="delete"

11 name="Delete.png"

12 library="icon/small"

13 title="delete"/>

14 </h:commandLink>

15 </h:column>

16 <h:column>

17 <h:inputText value="#{cat.name}"/>

18 </h:column>

19 </h:dataTable>

20 <h:commandLink styleClass="button"

21 value="Add category"

22 action="#{categoryEditor.addCategory}"/>

23 <h:commandButton styleClass="button"

24 value="Save"

25 action="#{categoryEditor.save}"/>

26 </h:form>

27 </main>

28 ...

Besides a heading, the main part now contains a form containing three children:

•	 <h:dataTable...>: Renders an HTML table

•	 <h:commandLink...>: Renders an HTML link

•	 <h:commandButton...>: Renders an HTML input, type submit

Chapter 11 Starting the Books App

121

The value of the <h:dataTable...> tag refers to the category list (getCategories()).

Each item is bound to a variable cat. This name was freely chosen. Now, for each row,

we can use this cat variable to access the current category. Within the dataTable, two

columns are defined. The first displays a Delete icon, nested within commandLink. We use

the current category as a parameter for the deleteCategory method. The icon is placed

in the icon/small folder structure, which itself is placed in the resources folder (as we

did for the CSS file). The icon itself is a 16 × 16 pixel PNG image.

The icons used for this application are the Free Application Icons, which can used

in any application for free. They’re distributed using the Creative Commons Attribution-

Share Alike 3.0 License. The download is available from www.small-icons.com/

packs/16x16-free-application-icons.htm.

Figure 11-6 showed two buttons below the table, but are those really two buttons?

Frankly, no. One (h:commandLink) is rendered as a link. By defining the style class

button, both—the link and the real button—will be displayed like buttons. To do that,

we need to add a bit of CSS. There’s one special reason to handle these buttons with

different JSF tags: if one input field has the focus, and the user presses the Enter key,

then the first HTML input, type submit, is invoked. This behavior is reminiscent of

desktop applications, where you press Tab to move forward, but pressing Enter performs

an action like saving or accepting the data. Because we’ve defined only one real button

element, its related action, save, is invoked on Enter.

The button style is shown in Listing 11-14.

Listing 11-14.  CSS to Create a Button Style

 1 .button{

 2 width: 10em;

 3 border-radius: 0.5em;

 4 background-color: #000044;

 5 color: white;

 6 display: inline-block;

 7 text-align: center;

 8 margin-top: 1em;

 9 margin-right: 1em;

10 }

11

Chapter 11 Starting the Books App

http://www.small-icons.com/packs/16x16-free-application-icons.htm
http://www.small-icons.com/packs/16x16-free-application-icons.htm

122

12 .button:hover{

13 font-weight: bold;

14 color: red;

15 }

In this part of the CSS file, we use a class selector, as indicated by the leading dot.

Declaring the button as display: inline-block; lets us apply a defined width.

Now if you run the application, it should look like Figure 11-7.

Figure 11-7.  Version 1 of the category editor

Chapter 11 Starting the Books App

123

OBSERVE THE EDITOR

As an exercise, add some categories: edit and delete.

Click the Save button and observe the GlassFish console (or log). Add three categories named

x, y, and again x. Now, for the last x, click Delete. The first x category will be deleted. Do you

know why?

A new category doesn’t contain a valid id. According to hashCode() and equals(),

categories with the same text are treated as equal. _categories.remove(category);

removes the first occurrence. Because of the same text, removing the “wrong” entry doesn’t

really matter. But if we’d built the hashCode and equals method relying on the id only, then

deleting any entry without a valid id would remove the first entry without a valid id, even

though the text might differ.

�Summary
The development of Books started with the general layout of the application. Because

lots of Java developers are more familiar with desktop applications, this app starts with a

“desktop first” approach rather than the currently popular “mobile first.” We considered

responsive design and noted that CSS is the first choice in technology to apply those

styles. This chapter showed CSS’s elementary usage in the application.

We developed our first dialog. Mocking away the database access, we could concentrate

on the UI and introduced the first repeating structure to create an editable table.

In the next chapter, we’ll persist this data.

Chapter 11 Starting the Books App

125
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_12

CHAPTER 12

Java Persistence API
The data for the Books application is homogeneous, which means the overall structure

is the same for every category, book, review, or piece of linking information. The classic

storage method for such data (and usually the best choice) is a SQL database system.

If you’re a Java SE developer and have accessed SQL DBs so far, you might have used

Java Database Connectivity (JDBC). JDBC is an abstraction for SQL statements. The

database is queried and returns a result set, which is transformed to lists, objects, and

other things by your program. The responsibility for the transformation of persistent

data to objects falls to the developer. And it’s a repetitive, sometimes boring, job just to

overcome the gap between relational data and objects.

If it’s possible to define mapping rules, from relations to objects and vice versa, that

job might be done by a piece of software. And that’s exactly what an object relational

mapper (ORM) is for. Several JPA-compatible ORMs are available. In the world of Java

EE, the ORM is defined by the Java Persistence API (JPA).

Note  The current version of JPA as part of Java EE 8 is 2.2. As a maintenance
release of JPA 2.1, it’s still defined by JSR 338 (read more about it at https://
jcp.org/en/jsr/detail?id=338). In other words, there is no dedicated JSR
for version 2.2.

�Entities
If you’re familiar with SQL, you probably know that a database stores entities. An entity is

a unit of information, or simply, a thing. Mostly, an entity is represented by the columns

of a table. The relations between entities are modeled by an entity–relationship model.

https://jcp.org/en/jsr/detail?id=338
https://jcp.org/en/jsr/detail?id=338

126

JPA also uses the term entity for a unit of information—in this case, a Java object.

You may annotate a class as @Entity, but a Java object might be complex. Besides

simple properties, such an object may contain collections or embedded other objects.

For example, if your Java object models a car, then this entity may contain a list of seat

objects. As you might imagine, such complex objects can’t be stored in a single table.

A single Java object may be stored in a couple of different tables. A SQL entity is usually

stored in a single table, whereas a JPA entity might become more complex.

Technically, a JPA entity is a plain old Java object (POJO) that is mapped to one or

more SQL table(s). To start defining this mapping, we pick one of the simplest structures

of Books: the category. At first approach, ignoring different languages, a category

consists of an id and a text.

We’ve already created the Category class. To map this POJO to the database via JPA,

it simply has to be annotated with @Entity. But here are two more important facts: an

entity should implement Serializable, and declaring an id is essential. Usually this id

refers to the primary key of the database table:

1 @Entity

2 public class Category implements Serializable{

3 @Id

4 private int id;

5 private String name;

6

7 [getters and setters omitted for brevity]

8 }

By default, an entity is mapped to a table with the table name equal to the uppercase

class name and column names equal to the upercase attribute names. Because JPA

uses reflection to convey database values into the objects, it can access private fields

(attributes). If you let JPA create your table, you would recognize these uppercase names.

Note  The term attribute is used for many different things, depending on context.
In the terminology of object-oriented software design, an attribute is an instance
variable. Sometimes it’s called a field, or, if used in conjunction with getters and
setters, a property.

Chapter 12 Java Persistence API

127

If you define the database table on your own, you might prefer so-called camelcase

names over uppercase names, or you may prefer names that differ from the ones you

used in your Java class. For example, many DB admins prefer column names that

contain a prefix, like catId and catName (those are in camelcase, by the way). I usually

prefix Java attributes with an underscore, a convention in C#. Just make sure there’s a

difference between the attribute name and the column name.

If for some reason the aforementioned default mapping doesn’t fit, it’s possible to

add annotations to map table and column names.

Often, the primary key of the table is just a meaningless unique number generated by

the database. JPA supports such a generation strategy. Here we need a special annotation

too. Listing 12-1 shows an excerpt of the class enriched with such annotations.

Listing 12-1.  Entity with Column Mapping

 1 @Entity

 2 @Table(name = "Category")

 3 public class Category implements Serializable{

 4 @Id

 5 @GeneratedValue(strategy = GenerationType.IDENTITY)

 6 @Column(name = "Id")

 7 private int _id;

 8

 9 @Column(name = "Name")

10 private String _name;

11

12 [getters and setters omitted for brevity]

13 }

In the listing, all attributes are annotated with @Column. I recommended annotating

all the columns or none, but this isn’t crucial. You can mix annotated and non-annotated

attributes within one class. In that case, all non-annotated attributes will match their

uppercase names. Every attribute refers to a column within the table. If you need an

attribute that shouldn’t be mapped to a column, the attribute must be annotated with @

Transient.

Chapter 12 Java Persistence API

128

TABLE-SPECIFIC PREFIXES

Some developers and/or DB admins prefer to add a table-specific prefix to every column name

to reduce the need for aliases. Consider the following examples with and without a prefix:

SELECT * FROM book b JOIN category c on b.CategoryId = c.CategoryId

SELECT * FROM book JOIN category on bookCategoryId = catId

Using the @Column annotation, both approaches might be used.

Instead of annotating attributes, you can annotate the getter/setter pairs. You have

to decide to either annotate the attributes or the getter/setter pairs. You can’t mix it.

Consider the example in Listing 12-2.

Listing 12-2.  Mixed Field and Method-Based JPA Annotation

 1 @Entity

 2 @Table(name = "Category")

 3 public class Category implements Serializable{

 4 @Id

 5 @GeneratedValue(strategy = GenerationType.IDENTITY)

 6 @Column(name = "Id")

 7 private int _id;

 8

 9 private String _name;

10

11 @Column(name = "Name")

12 public String getName() {

13 return _name;

14 }

15 ...

Here the id is mapped by a field-based annotation, whereas the name is mapped by

a method-based annotation (line 11). NetBeans indicates the problem, but it compiles

properly! At runtime you may recognize a misbehavior—so why doesn’t it break at compile

time? Because I didn’t tell the whole truth. The compiler accepts this mixed annotation

because it might be possible. If and only if you tell JPA by special annotations that you’ll use

both is it possible to mix it. So, never do it. (That’s why I don’t give these annotations away.)

Chapter 12 Java Persistence API

129

In developing Books, we need more sophisticated mappings. For example, a category

will display in a different language. A book is associated with different categories. These

need to include collections into an entity. As a result, a single Java object might map to

more than one table.

Imagine that one Java object describes a car. This object includes a few (for example,

3, 4, or 6) wheels held in a list. Now we need a table for all unique attributes of the car

and a second one for the wheels. In Java, we annotate both the car class as well as the

wheel class as an entity. We may store the car at once. As a rule of thumb, we need one

SQL table for all non-transient attributes that are primitive types or strings, and another

table for each referenced object. I talk more about this later in the book.

DECLARING A CATEGORY AS AN ENTITY

For Books, I used prefixes for the database columns. It’s up to you to enrich the existing

Category class with the appropriate annotations:

	1.	 For column names, use catId and catName.

	2.	 Don’t forget to make the Category serializable.

	3.	 If you’ve used NetBeans, observe the editor’s output.

Have you noticed the bulb indicator on the @Entity line? You can see it in Figure 12-1.

Hover your mouse pointer over this indicator, and NetBeans will show a popup telling you that

the project has no “persistence unit” so far. In the next section, we’ll talk about that.

Figure 12-1.  NetBeans bulb indicator before @Entity

Chapter 12 Java Persistence API

130

�Persistence Unit
As its name suggests, a persistence unit (PU) groups together artifacts for storage. These

are entities that are managed by so-called entity manager instances. Besides that, a PU

refers to information about the database connection (data source) and is described by an

XML file. Before continuing, try creating a PU in the following exercise.

CREATE AN ENTITY WITH A PERSISTENCE UNIT

Using NetBeans, create a new project and add the JSF framework. If you haven’t added

anything to the freshly created project Books, you can use it here.

	1.	 Add a package with the name entities.

	2.	 In NetBeans’s project tree, right-click the new package and choose New ➤

Other ➤ Persistence ➤ Entity Class.

	3.	N etBeans asks for the name. Choose Category.

	4.	 Change the Primary Key Type to int.

	5.	 Keep the Create Persistence Unit marker ticked (as shown in Figure 12-2) and

follow NetBeans’s steps to create the persistence unit along with the database

connection.

Chapter 12 Java Persistence API

131

The preceding exercise will create a persistence unit in conjunction with an entity

class.

Alternatively, you can add a persistence unit only by choosing New ➤ Other ➤

Persistence ➤ Persistence Unit. NetBeans takes you directly to the New Persistence Unit

wizard, shown in Figure 12-3, which is part of the whole flow initiated by the preceding

exercise.

Figure 12-2.  NetBeans dialog to create an entity class

Chapter 12 Java Persistence API

132

In the wizard, click BooksPU for Persistence Unit Name and EclipseLink for

Persistence Provider. Don’t care about the current NetBeans (8.2) still offering JPA in

version 2.1. You may change this later manually within the generated persistence unit.

For Data Source, choose New Data Source to establish a data source pointing to your

database. Enter the name jdbc/books. When you click Finish, NetBeans will create the

persistence unit in the src/main/resources/META-INF folder.

If you don’t use Netbeans or create the persistence unit manually, make sure to use

this folder for the file persistence.xml. Listing 12-2 shows this file.

Listing 12-2.  persistence.xml

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <persistence version="2.2"

 3 �xmlns="http://xmlns.jcp.org/xml/ns/

persistence"

 4 �xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

Figure 12-3.  NetBeans dialog to create a persistence unit

Chapter 12 Java Persistence API

133

 5 �xsi:schemaLocation="http://xmlns.jcp.org/xml/

ns/persistence

 6 �http://xmlns.jcp.org/xml/ns/persistence/

persistence_2_2.xsd">

 7 <persistence-unit name="BooksPU" transaction-type="JTA">

 8 <jta-data-source>jdbc/books</jta-data-source>

 9 <exclude-unlisted-classes>false</exclude-unlisted-classes>

10 </persistence-unit>

11 </persistence>

The namespace definitions depend on the version used for this definition. In

Listing 12-2 I manually updated the JPA version to 2.2 (lines 2 and 6). The interesting

part starts with the tag <persistence-unit> (line 7). As you can see, in this example,

there are two attributes:

•	 name: In the code, the PU is accessed by this name. By convention,

this name often ends with PU.

•	 transaction-type: In a Java EE environment, this is "JTA". The

container manages the PU, the entity manager (EM, explained

shortly), and the transactions. The alternative value is "RESOURCE_

LOCAL". If you choose this, it’s the developer’s responsibility to

manage the EM and the transactions. This type is intended for use

with Java SE.

Besides those two attributes, persistence-unit contains two elements. <jta-data-

source> declares the data source (explained soon). If the tag <exclude-unlisted-

classes> is set to false, no class is excluded from the PU. In other words, all classes are

included by default. If set to true, a list of classes (entities) managed by this PU must be

provided, as shown in the following lines:

 <class>de.muellerbruehl.books.entities.Category</class>

 <exclude-unlisted-classes>true</exclude-unlisted-classes>

The PU as shown here can be used if your database contains all the tables needed

for the application, so the tables must be created separately. This is the preferred way, if

there’s a database administrator responsible for maintaining the database. And if you as

a Java developer sometimes wear the DB admin cap, it might be your preferred way, too.

Chapter 12 Java Persistence API

134

But if you don’t like to create DB tables, JPA can perform this job for you. To

configure a create table-generation strategy, you must add a property within the

persistence-unit:

1 <properties>

2 <property name="javax.persistence.schema-generation.database.action"

3 value="create"/>

4 </properties>

Instead of "create", you can use "drop-and-create", which re-creates the tables.

If you don’t like to remember such long properties, you can usethe NetBeans

graphical editor for the PU, as shown in Figure 12-4.

I recommend creating DB tables on their own. This separation of concerns usually

increases quality. The drop-and-create strategy can be especially dangerous because

it drops and re-creates your tables during app start (although it can be interesting

for testing). Choosing None won’t alter your table schema during the startup of your

application.

Figure 12-4.  NetBeans’s graphical PU editor

Chapter 12 Java Persistence API

135

�Data Source
The data source defines the connection parameters to access the database. It’s specific to

the application server you use, as well to the database management system. In the case

of GlassFish 4 or 5, this information is located in the file glassfish-resources.xml in

the src/main/setup folder, shown in Listing 12-3. If you’ve chosen to create a new data

source as mentioned, NetBeans would have created this file properly.

Listing 12-3.  glassfish-resources.xml

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <!DOCTYPE resources PUBLIC

 3 �"-//GlassFish.org//DTD GlassFish Application Server 3.1 Resource

Definitions\

 4 //EN"

 5 "http://glassfish.org/dtds/glassfish-resources_1_5.dtd">

 6 <resources>

 7 <jdbc-resource enabled="true"

 8 jndi-name="jdbc/books"

 9 object-type="user"

10 pool-name="mysql_Books_booksPool"/>

11 <jdbc-connection-pool> <!-- attributes omitted for brevity -->

12 <property name="serverName" value="192.168.1.11"/>

13 <property name="portNumber" value="3306"/>

14 <property name="databaseName" value="Books"/>

15 <property name="User" value="books"/>

16 <property name="Password" value="top secret"/>

17 <property name="URL" value="jdbc:mysql://192.168.1.11:3306/Books"/>

18 <property name="driverClass" value="com.mysql.jdbc.Driver"/>

19 </jdbc-connection-pool>

20 </resources>

The database connection is defined in the tag <jdbc-connection-pool>. The content

is almost self-explanatory. Remember to use your connection information. Using

MySQL, you need to provide your server name or IP address in lines 12 and 17. Usually

this file is generated either by creating the data source using the appropriate wizard, or

by entering the information in the JDCB node on the GlassFish admin page.

Chapter 12 Java Persistence API

136

<jdbc-resource> is a mapping between the data source name as used in the PU

and the connection pool. JNDI is used for configuration in the Java EE world. Lines 7–10

define a JDBC resource that is looked up at runtime. This refers to a JDBC connection

pool. Now, if we’d like to change the database connection—for example, to distinguish

between development and production—we simply create a second connection pool.

Switching between connections will be no more than referencing the other pool within

the resource definition.

Note  The applications in this book (Books and Alumni) are designed to use the
MySQL DBMS. The MySQL community server is available at http://dev.mysql.
com/downloads/. JPA is almost independent from a special DBMS, so you might
use the Derby Server that comes along with NetBeans and GlassFish. Some native
queries may have to be adopted.

Usually, the user the application uses should have the minimum required rights.

Thus, it’s not recommended to let JPA create any database or table.

Listing 12-4 shows the SQL script to generate the Category table.

Listing 12-4.  Create Database Table for Category

1 CREATE TABLE Books.Category (

2 catId INT NOT NULL AUTO_INCREMENT,

3 catName VARCHAR(255) NOT NULL,

4 PRIMARY KEY (catId));

If you let MySQL create this create script for you, it will be slightly different—MySQL

surrounds each name by backticks. This is useful when you want to use names which

are the same as reserved words or contain white space. You can open the MySQL

Workbench and use its table editor to define a table. When you click Apply, MySQL

generates and displays the script to be executed for table creation. See Listing 12-5.

Listing 12-5.  Create Database Table for Category with Framed Names

1 CREATE TABLE `Books`.`Category` (

2 `catId` INT NOT NULL AUTO_INCREMENT,

3 `catName` VARCHAR(255) NOT NULL,

4 PRIMARY KEY (`catId`));

Chapter 12 Java Persistence API

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

137

This kind of framing names may be vendor-specific. For example, the MS SQL Server

uses square brackets instead (create table [Category]...). Talking in detail about

SQL is beyond the scope of this book. I assume you have some knowledge of it. If not,

you might read a tutorial like www.w3schools.com/sql.

�Entity Manager
The EM handles actions like create, read, update, and delete (often abbreviated as the

CRUD operations). In the web application (transaction-type="JTA"), an instance of

the EM can be provided via injection by the container, as shown in Listing 12-6.

Listing 12-6.  Inject EntityManager

 1 ...

 2 @PersistenceContext(unitName = "BooksPU")

 3 private EntityManager _em;

 4

 5 protected EntityManager getEntityManager() {

 6 return _em;

 7 }

 8

 9 public void create(Category category) {

10 getEntityManager().persist(category);

11 }

12 ...

Besides the injection, Listing 12-5 shows how to create (persist) an entity. The use of

the EM is explained within the service classes for the Books application.

�Service Class
The entity is nothing but our data model enriched with some JPA-specific annotations.

We need to add some methods to create, read, update, and delete data. Since we don’t

like to pollute the entity with such features, we create a service class containing the

methods. Earlier you just saw an excerpt of this class.

Chapter 12 Java Persistence API

http://www.w3schools.com/sql

138

Before we create this class, take a look at the entity lifecycle, shown in Figure 12-5.

An entity that’s created using the new keyword is in the state New. The same applies

if the fresh entity is created by the Context and Dependency Injection (CDI) framework

(using @Inject). By calling persist(entity) it’s transitioned to the Managed (or

attached) state. The Managed state reflects the persisted state. Thus, any change of an

entity in the Managed state will be automatically stored (updated) in the database.

A database retrieval might create an entity in memory that will be in the managed state.

Invoking remove(entity) will delete the entity from the database.

So far, we’ve seen all four CRUD operations: create (persist), read (DB retrieval),

update (change managed entity), and delete (remove). But Figure 12-5 shows something

else—that an entity might be in detached state. Beside these operations, the figure shows

a special Detached state. An entity becomes detached when it exists in memory but gets

unmanaged. That may be explicitly done by calling the detach(entity) method. But

there are other reasons, omitted in the simplified diagram: an entity will be detached

if the EM is closed or if it’s serialized and de-serialized. The latter will restore the entity

in memory without being managed. For example, if the application server runs out of

memory, it might passivate beans (saving somewhere, usually by serializing the values)

and activate them at another time. A special method, merge(entity), will transition the

entity into managed state again.

Figure 12-5.  Entity lifecycle (simplified)

Chapter 12 Java Persistence API

139

As the figure shows, a remove() will delete that entity. A friend of mine declined to

use JPA because “a framework that needs to load an entity to perform a delete operation

isn’t useful, it’s crazy.” That’s a big misunderstanding that I have seen several times. The

remove() method is useful to delete an entity that still resides in memory. For example,

the app user loads some data that’s displayed on the screen—then she decides to delete

that data. On the other hand, if you want to delete one entity or a batch of them that

don’t reside in memory, you’ll use a delete operation.

The EM provides the method contains(entity) to check whether an entity is in the

managed state or not. This method simply return true or false.

If we inject the service class into our editor bean, the Categories might become

detached! Thus, to perform an update or delete, we need to merge the entity first.

Listing 12-7 shows the preliminary service class.

Listing 12-7.  CategoryService

 1 @Stateless

 2 public class CategoryService {

 3 @PersistenceContext(unitName = "BooksPU")

 4 private EntityManager _em;

 5

 6

 7 protected EntityManager getEntityManager() {

 8 return _em;

 9 }

10

11 public Category create(Category entity) {

12 getEntityManager().persist(entity);

13 return entity;

14 }

15

16 public Category read(Object id) {

17 return getEntityManager().find(Category.class, id);

18 }

19

20 public Category update(Category entity) {

21 return getEntityManager().merge(entity);

22 }

Chapter 12 Java Persistence API

140

23

24 public void delete(Category entity) {

25 getEntityManager().remove(getEntityManager().merge(entity));

26 }

27

28 /**

29 * Convenience method, to create or update automatically

30 * @param entity

31 * @return managed entity

32 */

33 public Category save(Category entity) {

34 if (entity.getId() < 0){

35 return create(entity);

36 }

37 return update(entity);

38 }

39

40 public List<Category> findAll() {

41 �CriteriaQuery cq = getEntityManager().getCriteriaBuilder().

createQuery();

42 cq.select(cq.from(Category.class));

43 return getEntityManager().createQuery(cq).getResultList();

44 }

45

46 }

As shown before, an EntityManager will be injected using the PU as given in the

annotation.

Using the annotation Stateless automatically declares the bean to be an Enterprise

JavaBean (EJB). Using an EJB automatically puts the database access into a transaction

scope. This simple approach assumes a fully fledged Java EE container, like GlassFish.

On a servlet-only container, we have to use a different approach. Nowadays, CDI can

inject an EntityManager. If you add the Weld CDI implementation to a servlet container

(Listing 12-8), you need to change the class annotation (Listing 12-9).

Chapter 12 Java Persistence API

141

Listing 12-8.  Maven Coordinates for Weld (as Defined in Java EE)

1 <dependency>

2 <groupId>javax.enterprise</groupId>

3 <artifactId>cdi-api</artifactId>

4 <version>2.0</version>

5 <scope>provided</scope>

6 </dependency>

Listing 12-9.  CategoryService

1 @RequestScoped

2 @Transactional

3 public class CategoryService {

This changes the service class from being an Enterprise JavaBean into a pure CDI

bean. Because no transaction is automatically added, we need to add it with a special

annotation (or manage transactions with our code). This CDI annotation also performs

on a fully fledged application server.

The EntityManager has some methods for the CRUD (create, read, update, delete)

operations. They are called persist, find, merge (just to reattach to managed state) and

remove. The service class will expose them using the CRUD names. For brevity, the class

doesn’t yet contain any exception handling.

The findAll() method will retrieve all categories from the database. It’s implemented

by using the criteria API. Alternatively, we could have just used a JPA Query Language

(JPQL) query to get the categories. I’ll explain both later.

merge doesn’t just reattach entities into the managed state. If an entity didn’t exist

before, it will be created. In Figure 12-5, persist is used to get into managed state. This is

what persist is intended for. But you may use merge instead.

With this knowledge, we can simplify our service. Just omit the create and update

methods and replace save with Listing 12-10.

Listing 12-10.  save Method

1 public Category save(Category entity) {

2 return getEntityManager().merge(entity);

3 }

Chapter 12 Java Persistence API

142

�Using the CategoryService/Injection
In our category editor, we need to inject the service class we just created and adopt the

init and change methods, as shown in Listing 12-11.

Listing 12-11.  Controller Bean CategoryEditor

 1 @Named

 2 @SessionScoped

 3 public class CategoryEditor implements Serializable{

 4 �private static final Logger _logger = Logger.

getLogger("CategoryEditor");

 5

 6 @Inject CategoryService _categoryService;

 7

 8 @PostConstruct

 9 private void init(){

10 _categories = _categoryService.findAll();

11 _deletedCategories = new ArrayList<>();

12 }

13

14 private List<Category> _deletedCategories;

15 private List<Category> _categories;

16

17 public List<Category> getCategories() {

18 return _categories;

19 }

20

21 public void setCategories(List<Category> categories) {

22 _categories = categories;

23 }

24

25 public String deleteCategory(Category category){

26 if (category.getId() >= 0){

27 _deletedCategories.add(category);

28 }

Chapter 12 Java Persistence API

143

29 _categories.remove(category);

30 return "";

31 }

32

33 public String addCategory(){

34 _categories.add(new Category());

35 return "";

36 }

37

38 public String save(){

39 for (Category category : _categories){

40 _categoryService.save(category);

41 }

42 for (Category category : _deletedCategories){

43 _categoryService.delete(category);

44 }

45 _deletedCategories = new ArrayList<>();

46

47 return "";

48 }

49 }

@Inject is part of the CDI. It’s up to the container to pass an object of the requested

type (class) into the annotated variable. If necessary, the container will create an

appropriate object and maintain its lifecycle. In the old days of JSF, you could only

inject JSF managed beans with a lifetime longer than the current bean (for example, a

session scoped bean into a request scoped bean, but vice versa). Rather than injecting

an instance of the requested class, CDI is going to inject a proxy object. Once that proxy

is injected, you use it to access the appropriate object of the requested class. The real

object may change between requests.

For example, the container can inject a request scoped bean into a session scoped

bean. Now, if you try to access that request scoped bean, the proxy presents a different

real object for you with every request.

Only eligible beans can be injected. Otherwise, NetBeans would alert you that no

bean matches the injection point. But which bean is eligible? Examples are EJBs, named

beans, and more. All are identified by a special annotation or configuration file. And you

Chapter 12 Java Persistence API

144

might create your own annotations to “produce” eligible beans. I discuss CDI in more

detail later. The problem with new technologies might be that the IDE doesn’t know

about them—especially for some new Java EE injectable objects NetBeans doesn’t know

about and alerts with such a message. Don’t worry—and use it.

So far, the first version of the category editor is ready. Later, we’ll refine it by using a

generalized service class, by AJAXifying the JSF page, and more.

CHECK ENTITY STATE

Add a simple method to the service class to return an entity’s state:

1 public String checkState(Category entity){

2 return entity + (_em.contains(entity) ? "attached" : "detached");

3 }

Call this method within findAll (CategoryService) and init (CategoryEditor),

print out, and observe the states of the entities.

�Summary
We covered a lot in this chapter. The Java Persistence API defines a framework for Object

Relational Mapping (ORM). It’s based on the core concept of entities that are managed

by an entity manager (EM). An entity is a plain old Java object (POJO) with some

special annotations. Only the @Entity and @Id annotations are mandatory, whereas the

framework assumes default values for table and column names. Usually mappings for

different table (@Table) or column (@Column) names are needed.

An entity will be in one of four different states that are managed by the EM. It’s

recommended to separate the data object from the data access. Thus, an entity should not

contain (database-specific) logic. The data access is performed by a special service class.

The EM relies on the definition of a persistence unit, which configures the logical

database access. The technical database access (driver, server properties) is configured

by a data source.

This chapter also explained how to use the service class within a backing bean.

Chapter 12 Java Persistence API

145
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_13

CHAPTER 13

JSF Templating
Usually an application provides a consistent look and feel. That way, the overall layout

remains the same, with only content or other minor elements changing from page to

page. JSF supports such an overall layout with its simple but powerful template feature.

�Templating Books
A template is like a picture, with (mostly) rectangular holes cut into it. By placing other

pictures behind these holes, you may change the picture while keeping the basic layout.

Figure 13-1 shows some different screens of the Books application.

146

As you can see, because of JSF templating (see Figure 13-2), only the main content

area changes.

Figure 13-1.  Books in action

Chapter 13 JSF Templating

147

For templating, at least two components are needed: the template file and the

content file. Because the content file is using the template, it’s called a client.

Let’s start with the template. Remember the category editor? The first (prototype)

version is still called index.xhtml. This file contains header, nav, main, and footer.

The “hole” we need is exactly the main part. The simplest way to create the template is

to copy this file (in the web pages branch of the projects tree, the src/webapp folder),

cut the content in main, and replace it with an instruction that means “insert variable

content here.” That’s what the <ui:insert ...> tag is for. Don’t forget to insert the

namespace declaration for ui:. And—voilà—the template is ready, as in Listing 13-1.

Listing 13-1.  Draft of booksTemplate.xhtml

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html [<!ENTITY copy "©">]>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

Figure 13-2.  Books in action

Chapter 13 JSF Templating

148

 4 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 5 xmlns:h="http://xmlns.jcp.org/jsf/html">

 6 <h:head>

 7 <title>Books</title>

 8 <h:outputStylesheet library="css" name="books.css" />

 9 </h:head>

10 <h:body>

11 <div id="wrapper">

12 <header>

13 <h1>Michael's book list</h1>

14 </header>

15 <main>

16 �<ui:insert name="content">Here the content

goes</ui:insert>

17 </main>

18 <nav>

19 This is the navigation

20 </nav>

21 <footer>

22 © Michael Müller

23 |

24 <h:outputLink value="http://blog.mueller-bruehl.de">

25 Michael's Blog

26 </h:outputLink>

27 |

28 <h:link value="About" outcome="index.xhtml"/>

29 </footer>

30 </div>

31 </h:body>

32 </html>

The <ui:insert ...> tag defines a placeholder with the name content, as given

by the name attribute. This is the hole where the content will shine through. In a given

template, more than one insert tag might be defined. The text Here the content goes in

that tag will be replaced with the content provided by the template client.

Chapter 13 JSF Templating

149

BROWSE THE TEMPLATE

	1.	 Start the application.

	2.	 Open the template page. In the address (URL) bar of your browser, type

http://localhost:8080/Books/booksTemplate.xhtml.

You should get the basic layout with Here the content goes as the main part.

Now we need to refactor index.xhtml to transform it into a template client. Instead

of the html tag, we’ll use the <ui:composition ...> tag. Within this tag we place

<ui:define name="content">. The name we provide here is the same one we provided

as the placeholder in our template. Whatever we want to display for the content of our

template, we simply place the appropriate content in this tag.

Last but not least, we need to declare which template we want to use, as in Listing 13-2.

Listing 13-2.  Template Client

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <ui:composition xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 6 template="/booksTemplate.xhtml">

 7 <ui:define name="content">

 8 <h1>Edit categories</h1>

 9 <h:form>

10 <h:dataTable value="#{categoryEditor.categories}"

11 var="cat">

12 <h:column>

13 <h:commandLink

14 �action="#{categoryEditor.

deleteCategory(cat)}">

15 <h:graphicImage alt="delete"

16 name="Delete.png"

17 library="icon/small"

18 title="delete"/>

Chapter 13 JSF Templating

150

19 </h:commandLink>

20 </h:column>

21 <h:column>

22 <h:inputText value="#{cat.name}"/>

23 </h:column>

24 </h:dataTable>

25 <h:commandLink styleClass="button"

26 value="Add category"

27 action="#{categoryEditor.addCategory}"/>

28 <h:commandButton styleClass="button"

29 value="Save"

30 action="#{categoryEditor.save}"/>

31 </h:form>

32 </ui:define>>

33 </ui:composition>

In this example, the namespaces are defined as attributes of the <ui:composition

...> element. Sometimes you’ll find JSF template clients with an html element and the

namespaces declared there. Then the <ui:composition ...> is defined somewhere in

this page, for example within the body. Everything outside the <ui:composition ...>

will be ignored for the client. Listing 13-3 shows this approach. In my opinion, it’s more

concise, without such an overhead.

Listing 13-3.  Template Client with Superfluous html Tag

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">

 6

 7 This will be ignored

 8

 9 <ui:composition template="/booksTemplate.xhtml">

10 <ui:define name="content">

Chapter 13 JSF Templating

151

12 Content goes here

13 </ui:define>>

14 </ui:composition>

15

16 This will be ignored

17

18 </html>

As we’ll see later in this book, a template might be the client of another template. JSF

allows you to define a cascade of nested templates.

Note T he complete source code for Books, as developed from startup to
templating, is available from http://webdevelopment-java.info.

�Summary
Creating an overall look and feel is possible through JSF’s templating mechanism. It’s

built up by a template, which defines the overall layout. A client uses this template by

replacing or adding content at predefined places. A template might be used by a couple

of clients, and a template might be the client of another template, supporting cascading

structures.

Chapter 13 JSF Templating

http://webdevelopment-java.info/

153
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_14

CHAPTER 14

Going International
An application hosted on a web server that is part of the Internet might be accessible

from almost every part of the globe. Even if you don’t write your application for

everybody, you might address people in different countries speaking different languages.

That means you need to prepare your software for an international market.

�Internationalization and Localization
Books will be prepared for different languages and formats (internationalization) and

implemented for the English (countries such as Australia, Canada, the United States,

and the UK) and German (Germany) languages. Making the book available in different

languages and adapting it to other surroundings is easier than it sounds.

Java does a lot of this job for us by simply letting you specify a region. We just need to

provide information about the region, providing texts for all GUI elements and messages

in the languages of our choice. The texts for GUI elements and messages in the chosen

language will be applied, depending on the language settings of the user’s system.

Additionally, we may want to provide a language selector.

So far, we’ve developed a first version of the category editor. This editor comes

with a minimal user interface. There are only a few elements to translate. But besides

translating a page, we need to translate the contents (categories) as well—imagine

the application displayed in a different language. So, let’s first introduce and localize

the welcome screen, which is a very simple page, and then come back to the category

editor.

154

INTERNATIONALIZATION AND LOCALIZATION

Internationalization (often abbreviated i18n) is the process of making software potentially

available for other languages and regions, whereas localization (L10n) is the adaption to a

special language and region.

Both involve more than simply translating GUI elements into a different language. Remember

different date formats, different symbols (a German postbox looks very different from a U.S.

mailbox), different wording within one language depending on the region (such as mailbox/

postbox, localization/localization, cellular phone/mobile phone), and more.

�Welcome Page
The welcome page (or landing page) simply informs the visitor about the intention of the

application and contains some static text. With respect to international users, the text is

available in different languages.

On my website (it-rezension.de), I offer German and English as languages,

because I read books in both languages. My reviews of German books are written in

German. My reviews of English books are written in German and/or English, depending

on the publishing media (such as print magazine or online). Because of this, offering

these two languages only is enough for my site. But the Books application is designed to

be presented in other languages as needed.

On the welcome page, there is text only. We can focus internationalization on

offering that text in different languages. There’s no need to adapt date or number formats

or icons. We’ll look at such aspects later on when we work on the Alumni application.

�Message Bundle
To achieve our goal, we’ll use what’s called a message bundle. This is nothing but a

resource bundle made available for JSF. A resource bundle is a bunch of properties

files that follow a special naming convention. Even if you’ve never developed an

application for an international market, you may have used a properties file to configure

your application. Each file is a kind of key-value storage. For internationalization and

localization, we need such a file for each language. Each file contains the same keys but

with values translated to the target locale. If the user’s locale is unknown, the application

Chapter 14 Going International

155

must provide a default. The convention is to use the default with a simple filename and

to append a language code (ISO-639 Language Code) plus optionally a region code (ISO-

3166 Country Code plus a variant in rare cases). You’ll find these codes on different sites

on the Inernet, for example at Oracle, ISO-3166 Country Codes and ISO-639 Language

Codes is available at http://docs.oracle.com/cd/E13214_01/wli/docs92/xref/

xqisocodes.html.

Table 14-1 shows an example.

Table 14-1.  Language Codes

Filename Usage

messages.properties Default

messages_de.properties German

messages_en.properties English

messages_en_US.properties English, U.S.

messages_en_GB.properties English, Great Britain

In this example, messages is the filename. You may choose any other name you like.

Language and region (country) codes are appended after an underscore.

Now let’s create a resource bundle and talk about how to use it in our web

application.

Using NetBeans, choose New File ➤ Other ➤ Properties File and click Next. The New

Properties File dialog appears, as shown in Figure 14-1. Provide the name messages

and type in the folder name src/main/resources/de/muellerbruehl/books. You can

replace de/muellerbruehl/books with a package name of your choice. Click Browse to

browse to the existing src/main/resources first and then complete the name. Note that

when you browse a Windows system, you’ll get src\main\resources because Windows

uses a backslash as a folder delimiter. You can enter a normal slash or a backslash—both

will be recognized by the dialog. Click Finish to create the properties file.

Chapter 14 Going International

http://docs.oracle.com/cd/E13214_01/wli/docs92/xref/xqisocodes.html
http://docs.oracle.com/cd/E13214_01/wli/docs92/xref/xqisocodes.html

156

NetBeans creates a new file and opens it in its editor. If NetBeans has placed any

content into this files, delete it, save the file, and close it in the editor.

On the Projects tree, right-click the messages.properties file (Figure 14-2) and

choose Add ➤ Locale.

Figure 14-1.  New Properties File dialog

Chapter 14 Going International

157

NetBeans displays the New Locale wizard, shown in Figure 14-3.

Figure 14-3.  New Locale wizard

Figure 14-2.  Projects tree

Chapter 14 Going International

158

As you can see, you can choose a language and a region (country and variant). For

Books, enter en and click OK or press Enter. NetBeans creates the appropriate properties

files for you (messages.properties and messages_en.properties). Add a second file

for de (for German), creating a messages_de.properties file). If you know about the

language codes, you don’t need the New Locale wizard; you can just create the files

with respect to the correct names, which involves nothing more than appending the

correct language code to the properties filename. You can also do this if your favorite IDE

doesn’t offer such a wizard. To offer different versions of a language, you need to append

the correct variant, such as messages_en_US.properties U.S. English) or messages_en_

GB.properties (British English).

We want to offer two languages, but we’ve created three properties files in total.

Of course, we could have used the default for German and the other for English, but I

recommend using a specific file for each language and the default as a fallback.

The text for our page’s headline is in the key headWelcome. You can edit the

properties file, as in Figure 14-4, but you’d have to enter the key into every file to keep the

files synchronized, which might be an annoying job. For easy editing, NetBeans offers a

special properties editor, shown in Figure 14-4. Right-click any of the properties files and

choose Open—don’t choose Edit because that will open a single file in the text editor.

You can create a new key-value pair by choosing New Property, as shown in Figure 14-5.

Figure 14-4.  Properties files editor

Chapter 14 Going International

159

For Key enter headWelcome, and for Value enter Welcome to my IT book-reviews.

Optionally provide a comment. Click OK or press Enter.

NetBeans inserts the new property into every properties file—not into every

properties file of the project, but the resource bundle messages. An entry looks like this:

headWelcome=Welcome to my IT book-reviews. Now only one file, for German, has to

be adapted, which might be done directly in the properties files editor: Willkommen zu

meinen IT-Rezensionen.

Next, create a property with the key textWelcome. Its value will become a multi-line

text with some line breaks. For example:

Discover the books I’ve reviewed. Get references to the printed

publication or links to online reviews.

Please choose from the categories or enter a term for searching.

Or you might choose from the list of reviews published on this site.

To help offset parts of the server fees, I participate the Amazon

partner program. If you follow a link from a cover image to buy

something from Amazon, you will help to finance this site. Of

course, you may buy the books wherever you like.

This site is powered by JavaServer Faces technology. Read about

the implementation in my book <a href=“http://leanpub.com/

jsf”> Web Development with Java and JSF and in my blog

[blog.mueller-

bruehl.de].

Figure 14-5.  New Property dialog

Chapter 14 Going International

http://leanpub.com/jsf
http://leanpub.com/jsf
http://blog.mueller-bruehl.de/en/

160

Click the appropriate field of the de – German column and enter a German version of

the welcome text, something like this:

Durchstöbern Sie die Liste der von mir verfassten Buch-

Rezensionen. Diese ist mit Verweisen auf die entsprechende

Publikation oder einem Online-Link versehen. Diverse

Rezensionen befinden sich gleich auf dieser WebSite.

Wählen Sie eine Kategorie oder geben Sie eine Suchbegriff ein,

um die entsprechenden Bücher aufzurufen. Oder wählen Sie aus

der Liste der letzten Rezensionen.

Um einen Teil der Serverkosten zu decken, nehme ich am

Amazon-Partnerprogramm teil. Wenn Sie eines der Bücher, oder

einen anderen Artikel bei Amazon bestellen möchten, nutzen Sie

einen Link von dieser Seite (Klick auf eine Buch-Abbildung). Sie

unterstützen damit den Betrieb dieser WebSite. Selbstverständlich

steht Ihnen frei, die Bücher auch von anderer Stelle zu beziehen.

Diese WebSite ist mit der JavaServer Faces Technologie realisiert.

Erfahren Sie Details zur Implementierung in meinem Buch

 “Web Development with

Java and JSF” oder stöbern Sie in meinem JSF Turorial auf

meinem Blog

[blog.mueller-bruehl.de].

Once you’ve created the properties files, how do you use it with JSF?

You need to create a faces-config.xml file (see “Configuration files” in Part I) in

the WEB-INF folder, shown in Listing 14-1. If you create this file with NetBeans, it will be

generated with the appropriate namespaces.

Listing 14-1.  faces-config.xml

 1 <?xml version='1.0' encoding='UTF-8'?>

 2 <faces-config version="2.3"

 3 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 5 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

Chapter 14 Going International

http://leanpub.com/jsf
http://blog.mueller-bruehl.de/en/

161

 6 �http://xmlns.jcp.org/xml/ns/javaee/web-faces

config_2_2.xsd">

 7

 8 <application>

 9 <locale-config>

10 <default-locale>en</default-locale>

11 <supported-locale>de</supported-locale>

12 <supported-locale>en</supported-locale>

13 </locale-config>

14 <resource-bundle>

15 <base-name>de.muellerbruehl.books.messages</base-name>

16 <var>msg</var>

17 </resource-bundle>

18 <message-bundle>de.muellerbruehl.books.messages</message-bundle>

19 </application>

20

21 </faces-config>

Within the <application> tag, we define the different locales we want to use (lines

9-14). Within <locale-config>, we can define our default language as well as other

languages. Because Books supports (at least) two languages, we need to declare English

and German here. English (en) is used as the default locale (line 10), and German (de)

is defined as supported locale (line 11). English is defined as supported locale, too (line

12). Although you could use English without re-declaring it as supported locale, this

declaration is useful to query all the supported languages. Any locale that should be

supported by the application needs to be declared here.

Next, we define a resource bundle (<resource-bundle>, lines 14 to 17). This defines

the resources we want to access in our pages. It’s defined by the full package and

filename, without the properties extension. <var> defines the variable name we can use

within a JSF page to address this bundle.

Sometimes it’s very useful to overwrite a couple of JSF’s standard messages. We’ll do

this by providing a localized text stored together with the same key JSF uses. <message-

bundle> (line 18) declares the properties files (without locale and extension). Within

Books we use one file group for all of our texts. Thus, the message bundle points to the

same files. It could have been a different group of properties files.

Chapter 14 Going International

162

In web.xml (located in the same folder), we change the welcome file entry to

<welcome-file>welcome.xhtml</welcome-file>.

�Naive Welcome Page Implementation
The welcome page should simply display the heading and the text. Like the category

editor, it uses the existing template. Thus, we have to define a <ui:composition>. This

is a first naive implementation, as shown in Listing 14-2, with the output shown in

Figure 14-6.

Listing 14-2.  First Draft of welcome.xhtml

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <ui:composition xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 6 template="/booksTemplate.xhtml">

 7

 8 <ui:define name="content">

 9 <h1>#{msg.headWelcome}</h1>

10 <p>

11 #{msg.textWelcome}

12 </p>

13 </ui:define>

14

15 </ui:composition>

If you’re familiar with HTML, you might be able to guess what the problem will be:

HTML ignores line breaks made by CR or CRLF. And the embedded HTML elements

(links) wouldn’t be interpreted. As a result, the welcome text wouldn’t be properly

formatted. Anyway, you can use this page to check the localization. Using a browser with

German as default locale, the page would be displayed in German, otherwise it would be

shown in English.

Chapter 14 Going International

163

CHECK ANOTHER LOCALE

Try changing the language setting of your browser. For example, in Firefox choose Options

➤ Content ➤ Languages. Add the desired language if not present and move it to the top.

Using Chrome, you have to expand the settings to the extended view first. Declare German as

the default (or if your default had been German, set it to English). Reload the application. The

language should change.

Then set the default to any other (non-English, non-German) language and reload the app. It

should display the English version.

Figure 14-6.  Welcome page with innocent implementation (English version)

Chapter 14 Going International

164

�Use Paragraphs and <ui:repeat>
Once the message bundle is set up properly, we can tackle the formatting problem.

First, we chop down the text into single paragraphs by splitting the text into an array on

every line break. On a Windows system, a line break is coded as CRLF, whereas on other

systems it’s LF. So, the breaks have to be normalized first.

Once we have an array, we can use the <ui:repeat> tag to iterate all elements, and to

get the links working we need to switch off HTML escaping.

HTML ESCAPING

Simplified, HTML consists of text and tags. A tag is delimited by angle brackets, so the angle

bracket has a special meaning. If someone wants to display an angle bracket, then, it must

first be escaped from being a tag delimiter. To display <, you write < (lt stands for less-than).

The sequence &xxx; (where xxx is a symbolic name built of two or more characters) is called

an HTML entity and is used to escape special characters. A character might be escaped by its

code too. < is also the less-than sign.

In a web application, often text that’s persisted to a database is displayed. The origin of this

text might be a user input. Now, if that text is treated as HTML, a vicious person could insert

code pointing to a malicious website or containing a malicious script. To prevent such injection

attacks, JSF commonly escapes the output by default.

The text for our welcome page doesn’t depend on any user input. It’s stored in a

resource file. We’ll trust our own content (someone could hack the application server,

but for our purposes here we’ll assume they don’t) and switch off HTML escaping, as

shown in Listing 14-3.

Listing 14-3.  Refined Welcome Page

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <ui:composition xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 6 template="/booksTemplate.xhtml">

 7

Chapter 14 Going International

165

 8 <ui:define name="content">

 9 <h1>#{msg.headWelcome}</h1>

10 �<ui:repeat value="#{msg.textWelcome.replace('\\r', '').

split('\\n')}"

11 var="text">

12 <p>

13 <h:outputText value="#{text}" escape="false"/>

14 </p>

15 </ui:repeat>

16 </ui:define>

17

18 </ui:composition>

The trick is to split the output text into an array that’s traversed by the <ui:repeat...>

element. <ui:repeat...> might be used to traverse arrays, collections, or maps.

Each element will be available in a variable named text. Each paragraph is

surrounded by a paragraph tag (<p>).

So far, we’ve used <h:dataTable...> and <ui:repeat...> as repeating elements.

Later in the book, we’ll look at more repeating structures and discuss the advantages and

pitfalls of each.

All we need now for a pretty format is some CSS code to introduce padding above and

below a paragraph. Because we defined links to be displayed with white color, and the

content background is a bright one, we have to choose a dark color, as is done in Listing 14-4.

Listing 14-4.  Additional Formating Statements of books.css

1 p {

2 margin: 5px 0 5px 0;

3 }

4

5 p > a {

6 color: blue;

7 }

Note  Run the application and check the formatting behavior. You should get a
couple of paragraphs with a short gap in between and real links.

Chapter 14 Going International

166

�Language Switcher
Usually it’s adequate to choose the display language, depending on the user’s

environment. I use a language switcher on my web site, http://it-rezension.de.

Switching the language seems to be straightforward:

1 FacesContext.getCurrentInstance().getViewRoot()

2 .setLocale(new Locale(getLanguageCode()));

Get the view root of the current FacesContext instance and set the locale to a new

locale. Seems easy! But if you switch the language that way, you’ll find that the old

language is soon restored. What happened?

The JSF specification states that the locale has to be set with every request to the

user’s setting. This will overwrite the language switcher. So, #{msg.headWelcome} will

display the language according to the user’s setting, and not according to the result of the

switcher. The trick I originally used for Books was to remember the language selection in

a session scoped bean and retrieve all values with a utility class.

Listing 4-5 shows the excerpt of the page.

Listing 14-5.  Insert Localized String into Web Page

1 ...

2 <h1>#{sessionTools.getMessage('headWelcome')}</h1>

3 ...

And Listing 14-6 shows the relevant Java code.

Listing 14-6.  Refer a Locale Specific String by Its Key

1 public String getMessage(String key) {

2 ResourceBundle messageBundle;

3 Locale locale = new Locale(getLanguageCode());

4 messageBundle = ResourceBundle

5 �.getBundle("de.muellerbruehl.books.messages",

locale);

6 return messageBundle.getString(key);

7 }

For brevity, only the principle is shown here.

Chapter 14 Going International

http://it-rezension.de/

167

Since JSF 2.0, it’s been possible to register listeners to System Events. I’ll discuss these

events in detail further on. Here I’ll just how to use it for a better version of the language

switcher. The trick still is to remember the selected language in a @SessionScoped bean,

because once the user changes the language, we want to remember that setting. But

just before rendering the page, we switch to the selected language. JSF will then use the

strings from the appropriate resource bundle. So, we simply can access the message

bundle within the page definition via #{msg.XXX}.

To do that, we need to register a listener to the preRenderView event, as in

Listing 14-7. This event occurs whenever the page should be rendered. A companion

preRenderComponent event will be fired before rendering a single component.

Listing 14-7.  Embed Listener for the Language Switcher

1 ...

2 <f:metadata>

3 <f:event type="preRenderView"

4 listener="#{sessionTools.preRenderView}"/>

5 </f:metadata>

6 ...

7 <h1>#{msg.headWelcome}</h1>

8 ...

A listener for a system event is a method of type void with a parameter of type

ComponentSystemEvent, as in Listing 14-8.

Listing 14-8.  SystemEvent Listener to Set the Locale Before Rendering

1 public void preRenderView(ComponentSystemEvent event) {

2 Locale locale = new Locale(getLanguageCode());

3 FacesContext.getCurrentInstance().getViewRoot().setLocale(locale);

4 }

Last but not least, you might use the <f:view> tag to define the locale. This defines

the ViewRoot, the root of the component tree. So, all other JSF components must be

included within a <f:view>. Using Facelets as VDL, the view root is defined implicitly.

Usually the explicit definition would only be used in conjunction with JSP as VDL.

Nevertheless you can use a view root definition with Facelets. A page definition

would be similar to Listing 14-9.

Chapter 14 Going International

168

Listing 14-9.  Skeleton of a Page Definition with Explicit Definition of the

View Root

 1 <html xmlns="http://www.w3.org/1999/xhtml"

 2 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 3 xmlns:h="http://xmlns.jcp.org/jsf/html"

 4 xmlns:f="http://xmlns.jcp.org/jsf/core">

 5

 6 <f:view locale="#{sessionTools.language}">

 7 <h:head>

 8 ...

 9 </h:head>

10 <h:body>

11 ...

12 </h:body>

13 </f:view>

14 </html>

<f:view> may take an optional attribute locale to define a special locale for this

view. As before, we’ll get the value stored for the current session.

I assume it would be no problem to fit all those pieces together. Or try the language

switcher, which is included in the source of the complete application.

�Localized Content
Now we’re going to translate our content using an enhanced version of the category

editor. For Books we have to distinguish two kind of users:

•	 The administrator, the editor who edits and maintains the data

•	 Visitors to the website who want to gather some information

The administer area should be indicated by an optical effect.

Chapter 14 Going International

169

�Preparing the Administer Area
There are different solutions for the administer pages. All of them need the same look

and feel, consistent with the overall feel of the application. So, a different background

color is chosen while keeping the rest. But there is one part that differs from the reader’s

point of view: the navigation.

One approach is to exchange the navigation part. We may include a visitor

navigation or a administer navigation, depending on the pages we display. Another

approach is to use a different template, and that’s the approach Books takes.

To preparing the pages, follow these steps:

	 1.	 In your Web Pages (webapp) folder, create a subfolder and give it

the name admin.

	 2.	 Copy booksTemplate.xhtml into the admin folder and rename the

target to adminTemplate.xhtml.

	 3.	 Move the index.xhtml file into the admin folder and rename it to

categoryEditor.xhtml.

	 4.	 In the header of this page, change booksTemplate to

adminTemplate.

	 5.	 In the admin folder create a welcome.xhtml page. As in the existing

welcome page, put some welcome text for the administrator in there.

�Include into Page
By copying the template, we’ve doubled the markup for the footer. In this case, it’s only a

small part, but it’s good practice to reuse code. Just to remind you, the footer is shown in

Listing 14-10.

Listing 14-10.  Footer

 1 ...

 2 <footer>

 3 © Michael Müller

 4 |

 5 <h:outputLink value="http://blog.mueller-bruehl.de">

 6 Michael's Blog

 7 </h:outputLink>

Chapter 14 Going International

170

 8 |

 9 <h:link value="About" outcome="/welcome.xhtml"/>

10 </footer>

11 ...

JSF offers the <ui:include src="..."/> tag to include (what else?) a portion of one

page into another.

We’ll put the common parts into their own directory. Thus, we create a folder in our

Web Pages folder and name it common.

Next, let’s create a new file footer.xhtml in that folder. This file contains a

<ui:composition>, as seen before, and contains our footer, as shown in Listing 14-11.

Listing 14-11.  Footer Refactored as HTML Fragment

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html [<!ENTITY copy "©">]>

 3 <ui:composition xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">

 6

 7 © Michael Müller

 8 |

 9 <h:outputLink value="http://blog.mueller-bruehl.de">

10 Michael's Blog

11 </h:outputLink>

12 |

13 <h:link value="About" outcome="/welcome.xhtml"/>

14 </ui:composition>

The footer part in both templates (booksTemplate as well as adminTemplate) can

now be rewritten to reference the new file, as shown in Listing 14-12.

Listing 14-12.  Include HTML File

1 ...

2 <footer>

3 <ui:include src="/common/footer.xhtml"/>

4 </footer>

5 ...

Chapter 14 Going International

171

That will insert the part within the <ui:composition> tag into the template. Pretty

easy and straightforward, isn’t it?

Besides a static include, it’s possible to get the file to be included from an EL

expression:

1 <ui:include src="#{someBean.someProperty}"/>

Now if you calculate the property, you might dynamically determine which source

to include. For example, you can mimic a tab control and insert the content of a tab

depending on the current selection.

Back to the category editor. Figure 14-7 shows two different tabs, one for Category,

the other for a translation. Clicking one of the tab’s captions will trigger a reload and

include a different part of the view description.

Figure 14-7.  Category editor

Chapter 14 Going International

172

�Common Navigation
Create a file include\commonNavigation.xhtml and insert it into the <nav> areas of both

templates. In the admin template, add two buttons within one div above the common

navigation, to navigate to \admin\categoryEditor.xhtml and \admin\bookEditor.

xhtml. Create a new file \admin\bookEditor.xhtml (which will be used in Chapter 15).

See Listing 14-13.

Listing 14-13.  Simple Navigation

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html [<!ENTITY copy "©">]>

 3 <ui:composition xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">

 6

 7 <div>

 8 <h:link styleClass="button"

 9 value="#{msg.btnWelcome}"

10 outcome="/welcome.xhtml"/>

11 <h:link styleClass="button"

12 value="#{msg.btnAdmin}"

13 outcome="/admin/welcome.xhtml"/>

14 </div>

15

16 </ui:composition>

In the admin template, replace <div id="wrapper"> with <div id="adminWrapper">

and add this snippet to the CSS:

1 body > div#adminWrapper {

2 background-color: rosybrown;

3 border-radius: 1em;

4 }

Chapter 14 Going International

173

�Topics
Although the original version of Books was created to support two languages only,

we want to design the category editor to support any language in principle. For the

translation, we need the category in the original (default) language and one additional

column for each additional language we want to support. Every category will be

displayed on its own row. It might become quite a wide table, so let’s implement another

solution: with a couple of pages we’ll build up a look and feel of a tab control, one

register tab for every language (as shown in Figures 14-7 and 14-8).

The first page is similar to our existing editor. It’s used to add (edit, delete) categories

in default language. All other tabs will display two columns for each category. The first

one is read only and displays the existing categories in default language. The second

column is editable to enter the translation in one of the target languages. Because most

of my reviews are written in German, I defined de as the default language. Figure 14-8

shows the editor for the English translation.

Figure 14-8.  Category editor, translation

Chapter 14 Going International

174

Each register tab has a short headline—for example, Category, en, es, fr, and

so on depending on the language count we want to support. Or, instead of displaying

the language abbreviation, we might prefer to display a flag to indicate the language.

(We’ll ignore for now potential issues like different flags representing the same language.

Should the Union Jack or Stars and Stripes stand for English? Can one flag represent

different languages, such as Switzerland’s standing for German, French, or Italian, or

Canada’s standing for English or French?)

Okay, for each register tab we need some information like heading or flag, URL, and

more. We’ll place that information into a container called Topic. The topics of the editor

will be maintained in a collection structure we’ll call Topics. A topic might be used not

for the category editor only, so it contains some more elements than needed for this

editor. Depending on the editor, a topic needs to contain a heading only or key, heading

and URL, or another combination of elements. There are different solutions for such a

container class—for example, one parameterless constructor and getters/setters for each

field, or different constructors taking different arguments. Or—and this is how it’s built

for Books—we might use a builder class, as shown in Listing 14-14.

Listing 14-14.  Topic.java

 1 public class Topic implements Serializable {

 2

 3 private final String _key;

 4 private final String _title;

 5 private final String _outcome;

 6 private final String _info;

 7 private final String _imageEnabled;

 8 private final String _imageDisabled;

 9 private boolean _isEnabled;

10

11 private Topic(String key, String title, String outcome,

12 String info, String imageEnabled,

13 String imageDisabled, boolean isEnabled) {

14 _key = key;

15 _title = title;

16 _outcome = outcome;

Chapter 14 Going International

175

17 _info = info;

18 _imageEnabled = imageEnabled;

19 _imageDisabled = imageDisabled;

20 _isEnabled = isEnabled;

21 }

22

23

24 public String getKey() {

25 return _key;

26 }

27

28 public String getTitle() {

29 return _title;

30 }

31

32 ... other getters omitted ...

33

34 public String getImageDisabled() {

35 return _imageDisabled;

36 }

37

38 public String getImage() {

39 return _isEnabled ? _imageEnabled : _imageDisabled;

40 }

41

42 public boolean isIsEnabled() {

43 return _isEnabled;

44 }

45

46 public void setIsEnabled(boolean isEnabled) {

47 _isEnabled = isEnabled;

48 }

49

50 ... hashCode and equals omitted ...

51

Chapter 14 Going International

176

52

53 public static class TopicBuilder {

54

55 private final String _key;

56 private String _title = "";

57 private String _outcome = "";

58 private String _info = "";

59 private String _imageEnabled = "";

60 private String _imageDisabled = "";

61 private boolean _isEnabled = true;

62

63 static public TopicBuilder createBuilder(String key) {

64 return new TopicBuilder(key);

65 }

66

67 private TopicBuilder(String key) {

68 _key = key;

69 _title = key; // defaults to key

70 }

71

72 public TopicBuilder setTitle(String title) {

73 _title = title;

74 return this;

75 }

76

77 ... other chain elements omitted ...

78

79 public Topic build() {

80 return new Topic(_key, _title, _outcome, _info,

81 _imageEnabled, _imageDisabled, _isEnabled);

82 }

83 }

84 }

Chapter 14 Going International

177

Listing 14-15 shows the list of Topics:

Listing 14-15.  Topics.java

 1 public class Topics implements Serializable {

 2

 3 private Optional<Topic> _activeTopic = Optional.empty();

 4 private final Set<Topic> _topics = new LinkedHashSet<>();

 5

 6 public Set<Topic> getTopics() {

 7 return _topics;

 8 }

 9

10 public void clear() {

11 _topics.clear();

12 }

13

14 public void addTopic(String title) {

15 addTopic(Topic.TopicBuilder.createBuilder(title).build());

16 }

17

18 public void addTopic(Topic topic) {

19 _topics.add(topic);

20 }

21

22 public void remove(String key) {

23 Optional<Topic> topic = findTopic(key);

24 topic.ifPresent(t -> _topics.remove(t));

25 }

26

27 public void remove(Topic topic) {

28 _topics.remove(topic);

29 }

30

31 public Optional<Topic> findTopic(String key) {

32 return _topics.stream()

Chapter 14 Going International

178

33 .filter(topic -> topic.getKey().equals(key))

34 .findAny();

35 }

36

37 /* pre-Java 8 code example

38 public Topic findTopic(String key) {

39 for (Topic topic : _topics) {

40 if (topic.getKey().equals(key)) {

41 return topic;

42 }

43 }

44 return Topic.TopicBuilder.createBuilder("").build();

45 }

46 */

47 public Optional<Topic> getActiveTopic() {

48 return _activeTopic;

49 }

50

51 public void setActive(String key) {

52 _activeTopic = findTopic(key);

53 }

54

55 }

Each topic is intended to hold the information of a specific tab page. The first will be

our existing category editor page, which has to be only slightly adapted. And for every

supported locale, we’ll add another tab page. To perform this task, we need information

about the supported languages, so we’ll create a small method to collect this info. And

because we might reuse this, we’ll put it into a Utilities class, as in Listing 14-16.

Listing 14-16.  Utilities.java

 1 public class Utilities {

 2 �public static Set<String> getSupportedLocales(HandleDefault

defHandler) {

 3 �Application app = FacesContext.getCurrentInstance().

getApplication();

Chapter 14 Going International

179

 4 Set<String> languageCodes = new HashSet<>();

 5 �for (Iterator<Locale> itr = app.getSupportedLocales(); itr.

hasNext();) {

 6 Locale locale = itr.next();

 7 languageCodes.add(locale.getLanguage());

 8 }

 9

10 String defaultLang = app.getDefaultLocale().getLanguage();

11 if (defHandler == HandleDefault.Exclude) {

12 languageCodes.remove(defaultLang);

13 } else {

14 languageCodes.add(defaultLang);

15 }

16 return languageCodes;

17 }

18

19 public enum HandleDefault {

20

21 Include, Exclude

22 }

23 }

The locales are defined in the faces-config.xml file, which is valid for the whole

application. Hence, it’s the application object we have to query. getSupportedLocales()

is an iterator, not an iterable, so we can’t use a for each loop. Depending on the

configuration file, the default language might be included within the supported locales

or not. We’ll tackle this problem by explicitly excluding or including the default locale,

depending on the parameter defHandler.

Because the application should potentially support many languages, and we need

to save space, the topics will just contain the locale code as is. But the first tab will be

named Category, or in German Kategorie. It needs to be translated, so we have to get the

message bundle and the appropriate translation out of it. To do that, we’ll add another

method to our Utilities class, as in Listing 14-17.

Chapter 14 Going International

180

Listing 14-17.  Retrieve Localized Message with Key

1 public static String getMessage(String key) {

2 ResourceBundle messageBundle = ResourceBundle

3 .getBundle("de.muellerbruehl.books.messages");

4 try {

5 return messageBundle.getString(key);

6 } catch (MissingResourceException e) {

7 return "<unknown resource: " + key + ">";

8 }

9 }

Now we can initialize and use the topics within the CategoryEditor class.

initTopics() will be called from the existing init() method, as shown in Listing 14-18.

Listing 14-18.  Topic Handling in CategoryEditor.java

 1 ...

 2 private static final String CATEGORY = "category";

 3 private Topics _topics;

 4

 5 private void initTopics() {

 6 _topics = new Topics();

 7 Topic topic = Topic.TopicBuilder

 8 .createBuilder(CATEGORY)

 9 .setTitle(Utilities.getMessage("lblCategory"))

10 .setOutcome("categoryEditor.xhtml")

11 .build();

12 _topics.addTopic(topic);

13 �for (String lang : Utilities.getSupportedLocales(HandleDefault.

Exclude))

14 {

15 topic = Topic.TopicBuilder

16 .createBuilder(lang)

17 .setOutcome("categoryTranslator.xhtml")

18 .build();

19 _topics.addTopic(topic);

Chapter 14 Going International

181

20 }

21 _topics.setActive(CATEGORY);

22 }

23

24 public String changeTab(String newTopicKey) {

25 if (_topics.getActiveTopic().get().getKey().equals(newTopicKey)) {

26 return "";

27 }

28 _topics.setActive(newTopicKey);

29 return _topics.getActiveTopic().get().getOutcome();

30 }

31

32 public Set<Topic> getTopics() {

33 return _topics.getTopics();

34 }

35

36 public boolean isActive(Topic topic) {

37 Optional<Topic> activeTopic = _topics.getActiveTopic();

38 if (activeTopic.isPresent()) {

39 return activeTopic.get().equals(topic);

40 }

41 return false;

42 }

If the user clicks a topic, it performs a call to changeTab that returns the page to

navigate to. The topics will be displayed, and to grant access to them we have to expose

them by getTopics. The last method shown is a convenience method to check whether

the parameter is currently the active topic.

Once we prepare the topics, we can use them within our page layout. The existing

CategoryEditor now becomes one of diverse tab pages. To do that, we introduce a new

template categoryTemplate.xhtml and make categoryEditor.xhtml become a client

of this. And we move the heading from the existing editor into the new template. See

Listing 14-19.

Chapter 14 Going International

182

Listing 14-19.  categoryTemplate.xhtml

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 4 <ui:composition xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 5 template="adminTemplate.xhtml"

 6 xmlns:h="http://xmlns.jcp.org/jsf/html"

 7 xmlns:c="http://java.sun.com/jsp/jstl/core"

 8 xmlns:f="http://xmlns.jcp.org/jsf/core">

 9

10 <ui:define name="content">

11

12 <h1>Edit categories</h1>

13

14 <h:form id="form">

15 <div class="tab">

16 <ul class="tab">

17 <c:forEach items="#{categoryEditor.topics}" var="topic">

18 �<li class="#{categoryEditor.isActive(topic)

?'activetab':'tab'}">

19 <h:commandLink value="#{topic.title}"

20 �action="#{categoryEditor.changeTab

(topic.key)}">

21 <f:param name="langCode" value="#{topic.key}"/>

22 </h:commandLink>

23

24 </c:forEach>

25

26 </div>

27 </h:form>

28 <div class="editor">

29 <ui:insert name="editContent">Content</ui:insert>

30 </div>

Chapter 14 Going International

183

31 </ui:define>

32

33 </ui:composition>

Each topic is wrapped into a list item of an unordered list . <c:forEach>

is used to iterate through all topics. Why not <ui:repeat value="#{categoryEditor.

topics}" var="topic"> like we used before? If you try that, you’ll get an error.

Technically, <c:forEach> is a tag handler. As such, it doesn’t become part of the

component tree. It’s evaluated, and the result of the repetition will be used to build up

the component tree. On the other hand, <ui:repeat> is a component that will be part of

the component tree. Its child components will be inserted only once into the component

tree, independent of the repetition. And it will be evaluated at a time when the topics

map doesn’t exist. Scary? Nope. But you have to consider a couple of differences

between repeating structures. I’ll discuss the details and differences in Chapter 23.

For now, let’s talk about the other noteworthy elements here. For each list item, we

choose the style class depending on whether it’s the active topic or not. In conjunction

with CSS, this will mimic the tabs. All translations will be handled by the same page

(categoryTranslator.xhtml). To determine the right language, we pass this as a

parameter into this page using the <f:param> tag, which defines a parameter by its name

and its value, which in fact become a key-value pair, accessible by the called page.

To prepare the next steps and test the application so far, create an empty

categoryTranslator.xhtml page (more precisely, ui:composition). Use your existing

category editor as your boilerplate. If you don’t have the code at your disposal, take a look

at Listing 14-20. To get our tabs up and running, we finally need to add some CSS voodoo.

Listing 14-20.  Tab Lookalike Formatting (book.css)

 1 main div.tab {

 2 display: block;

 3 }

 4

 5 main ul.tab {

 6 list-style-type: none;

 7 display: inline;

 8 }

 9

10 main li.tab,

Chapter 14 Going International

184

11 main li.activetab {

12 list-style-type: none;

13 display: inline;

14 border-style: solid;

15 border-width: 2px 2px 1px 2px;

16 border-top-left-radius: 0.5em;

17 border-top-right-radius: 0.5em;

18 background-color: #ccccd8;

19 }

20

21 main li.tab {

22 border-color: #cccccc #aaaaaa #aaaaaa #cccccc;

23 }

24

25 main li.activetab {

26 border-color: #cccccc #aaaaaa #ccccd8 #cccccc;

27 }

28

29 main li.tab a,

30 main li.activetab a {

31 padding: 0 0.5em 0 0.5em;

32 font-size: 1.2em;

33 text-decoration: none;

34 font-weight: bold;

35 }

36

37 main li.activetab a {

38 color: #000044;

39 }

40

41 .editor {

42 background-color: #ccccd8;

43 border-radius: 0.5em;

44 border-top-left-radius: 0;

45 padding: 1em;

46 }

Chapter 14 Going International

185

Figure 14-9 shows the result of our efforts.

Figure 14-9.  Category editor using a tab control lookalike

�Enhancing the Category Entity
Before we can realize the category translator, we need to prepare an appropriate

translation entity and enhance the category entity. The translation entity refers to the

category id and provides the translated name for one language. See Listing 14-21.

Listing 14-21.  Important Parts of CategoryTranslation.java

 1 @Entity

 2 @Table(name = "CategoryTranslation")

 3 public class CategoryTranslation implements Serializable {

 4

 5 @Id

Chapter 14 Going International

186

 6 @GeneratedValue(strategy = GenerationType.IDENTITY)

 7 @Column(name = "ctId")

 8 private int _id = -1;

 9

10 @Column(name = "ctCategoryId")

11 private int _categoryId = -1;

12

13 @Column(name = "ctLanguage")

14 private String _language;

15

16 @Column(name = "ctName")

17 private String _name;

18

19 ... getters and setters omitted for brevity ...

20

21 @Override

22 public int hashCode() {

23 if (_id < 0) {

24 int hash = 3;

25 hash = 89 * hash + _categoryId;

26 hash = 89 * hash + Objects.hashCode(_language);

27 return hash;

28 }

29 return _id;

30 }

31

32 @Override

33 public boolean equals(Object object) {

34 if (!(object instanceof CategoryTranslation)) {

35 return false;

36 }

37 CategoryTranslation other = (CategoryTranslation) object;

38 if (_id < 0 && other._id < 0) {

39 return _categoryId == other._categoryId

40 && _language.equals(other._language);

Chapter 14 Going International

187

41 }

42 return _id == other._id;

43 }

44 }

Again, we need hashCode and equals to be the same for two objects with the same

valid id. Otherwise, both are determined by _categoryId and _language. See Listing 14-22.

Listing 14-22.  Create Statement for CategoryTranslation (MySQL)

 1 CREATE TABLE `CategoryTranslation` (

 2 `ctId` int(11) NOT NULL AUTO_INCREMENT,

 3 `ctCategoryId` int(11) NOT NULL,

 4 `ctLanguage` varchar(10) NOT NULL,

 5 `ctName` varchar(45) NOT NULL,

 6 PRIMARY KEY (`ctId`),

 7 KEY `FK_CategoryTranslation_Category2` (`ctCategoryId`),

 8 CONSTRAINT `FK_CategoryTranslation_Category2`

 9 FOREIGN KEY (`ctCategoryId`)

10 REFERENCES `Category` (`catId`)

11);

The preceding statement creates the table for a MySQL database—if you use another

DBMS, you may need to adapt it. See Listings 14-23 and 14-24.

Listing 14-23.  Create Statement for CategoryTranslation (MS SQL Server Version)

1 CREATE TABLE CategoryTranslation(

2 ctId int IDENTITY(1,1) NOT NULL,

3 ctCategoryId int NOT NULL

4 CONSTRAINT FK_CategoryTranslation_Category2

5 FOREIGN KEY(ctCategoryId) REFERENCES Category (catId),

6 ctLanguage varchar(10) NOT NULL,

7 ctName varchar(45) NOT NULL,

8 PRIMARY KEY (ctId)

9)

Chapter 14 Going International

188

Listing 14-24.  Create Statement for CategoryTranslation (MySQL Version)

 1 CREATE TABLE Books.CategoryTranslation (

 2 ctId INT NOT NULL AUTO_INCREMENT,

 3 ctCategoryId INT NOT NULL,

 4 ctLanguage VARCHAR(10) NOT NULL,

 5 ctName VARCHAR(45) NOT NULL,

 6 PRIMARY KEY (ctId),

 7 INDEX fk_CategoryTranslation_1_idx (ctCategoryId ASC),

 8 CONSTRAINT fk_CategoryTranslation_1

 9 FOREIGN KEY (ctCategoryId)

10 REFERENCES Books.Category (catId)

11 ON DELETE NO ACTION

12 ON UPDATE NO ACTION);

As you can see, a foreign key is defined to add referential integrity to the existing

Category table. We may translate it into “this translation belongs to a category.” In fact,

to one category no, one, or many translations may belong. Each category contains a

collection of translations, which might be empty.

Listing 14-25 enhances the category entity to model this one-to-many relationship.

Listing 14-25.  One-To-Many Relationship with List

1 ...

2 @OneToMany

3 @JoinColumn(name = "ctCategoryId", referencedColumnName = "catId")

4 private List<CategoryTranslation> _catTranslations;

5 ...

This relationship is defined by the @OneToMany annotation. We use a second table

with a foreign key. This is modeled by the @JoinColumn annotation with the two columns

that are used to join these tables. This should be pretty self-explanatory. All translations

will be held by a list.

With JPA, you might model other kinds of one-to-many relationships, such as using

a dedicated join table. Usually such a dedicated join table is superfluous for a one-to-

many relationship. You’ll need it for a many-to-many relationship.

Thinking about the category translations, it would be useful to access a translation

directly by its language code. Thus a Map<String, CategoryTranslation> would fit

Chapter 14 Going International

189

better than a list. No problem—we only have to define which field of the translation

would become the map’s key.

We also need accessors to this map, and for future use some convenience methods to

access a single translation. See Listing 14-26.

Listing 14-26.  Translation Enhancement of Category.java

 1 ...

 2 @OneToMany(fetch = FetchType.LAZY,

 3 cascade = CascadeType.ALL,

 4 orphanRemoval = true)

 5 @JoinColumn(name = "ctCategoryId", referencedColumnName = "catId")

 6 @MapKey(name = "_language")

 7 private Map<String, CategoryTranslation> _catTranslations =

 8 new HashMap<>();

 9

10 public Map<String, CategoryTranslation> getCategoryTranslations() {

11 return _catTranslations;

12 }

13

14 public void setCategoryTranslations(

15 Map<String, CategoryTranslation> catTranslations) {

16 _catTranslations = catTranslations;

17 }

18

19 public String getTranslatedName(String langCode) {

20 if (_catTranslations.containsKey(langCode)) {

21 return _catTranslations.get(langCode).getName();

22 }

23 return "";

24 }

25

26 public void setTranslatedName(String langCode, String name) {

27 if (_catTranslations.containsKey(langCode)) {

28 _catTranslations.get(langCode).setName(name);

29 } else {

Chapter 14 Going International

190

30 CategoryTranslation translation = new CategoryTranslation();

31 translation.setLanguage(langCode);

32 translation.setCategoryId(_id);

33 translation.setName(name);

34 _catTranslations.put(langCode, translation);

35 }

36 }

37

38 public String getTranslatedNameOrDefault(String langCode) {

39 if (_catTranslations.containsKey(langCode)) {

40 String name = _catTranslations.get(langCode).getName();

41 if (name.isEmpty()) {

42 return _name;

43 }

44 return name;

45 }

46 return _name;

47 }

48 ...

Although the convenience methods should need no further explanation, some

information for the @OneToMany annotation is noteworthy. fetch = FetchType.LAZY

will load the translation only when first accessed. EAGER will load it together with the

category itself. Which one performs best depends on the data structure and usage.

Imagine a big object graph, with many parts of it rarely used. In such a case, lazy loading

would often be the better choice. In case of our categories, the translations are small and

often used, so I prefer an eager loading (and introduced lazy first for didactic reasons).

Depending on cascade, operations might be cascaded or not—for example,

persisting a category will persist its translations or not. Here, we use CascadeType.ALL to

cascade all operations. Other values are DETACH, MERGE, PERSIST, REFRESH, and REMOVE.

In line 6 of Listing 14-26 we use @MapKey(name = "_language"). This line tells JPA

to use the field _language of the CategoryTranslation class. And to use its column

name @Column(name = "ctLanguage"). If we omit the @MapKey annotation, JPA tries

to guess the column name by adding _KEY to the uppercase field name. It would use

_CATTRANSLATIONS_KEY, which slightly differs from the column name we use.

Chapter 14 Going International

191

All our translations are held within a Map<LanguageCode = Translation>. This

map will be automatically saved when we save the category. Suppose we remove

an entry of that map and save the category again. What will happen to the removed

translation entry? Because we cascaded all operations, saving the category will affect

the CategoryTranslation too. Without further definition, JPA will set the category id of

the translation to NULL and update the appropriate database table. And if we delete the

category, all translations will be kept in the database with a category id set to NULL. This

behavior works well for aggregations. Imagine a shelf object containing a list of books. If

the shelf were deleted, you’d still keep the books and put them on another shelf. Unlike

category and its translation, this is a typical composition. Without its category, the

translation becomes a useless orphan. orphanRemoval = true will ensure the deletion of

such orphans.

�The Category Translation Page
Now we’ve prepared all the pieces of the puzzle. It’s time to put them all together and

create the category translator. In fact, most of the job is already done. We need a page

definition and some additional methods for the bean.

The page shown in Listing 14-27 is quite simple. Most of it is already known.

Listing 14-27.  categoryTranslator.xhtml

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <ui:composition xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 6 template="categoryTemplate.xhtml"

 7 xmlns:f="http://xmlns.jcp.org/jsf/core"

 8 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core">

 9

10 <ui:define name="editContent">

11 <h:form>

12 <h:dataTable value="#{categoryEditor.categories}"

13 var="cat"

14 styleClass="wide">

Chapter 14 Going International

192

15 <h:column>

16 <h:outputText styleClass="wide" value="#{cat.name}"/>

17 </h:column>

18 <h:column>

19 <h:inputText styleClass="wide"

20 �value="#{cat.categoryTranslations[param.langCode].

name}"/>

21 </h:column>

22 </h:dataTable>

23

24 <h:commandButton styleClass="button"

25 value="Save"

26 action="#{categoryEditor.save}">

27 <f:param name="langCode" value="#{param.langCode}"/>

28 </h:commandButton>

29 </h:form>

30 </ui:define>

31 </ui:composition>

The #{cat.categoryTranslations[param.langCode].name} grants access to the

translation map of the category. Within the brackets we provide the key, which is the

language code. Remember, we passed this code with a <f:param> tag into this page.

Now we can access it from the parameter map, which holds the request parameters.

The param.langCode refers to the parameter langCode using a common dot notation.

The Save button will trigger a page navigation that reloads the same page. To access the

language after this reload, we need to pass it again by a param tag.

All we have to do in our bean is initialize the translation, which means add those

translations that haven’t been retrieved from the database. See Listing 14-28.

Listing 14-28.  CategoryEditor.java

 1 public String changeTab(String newTopicKey) {

 2 if (_topics.getActiveTopic().get().getKey().equals(newTopicKey)) {

 3 return "";

 4 }

 5 _topics.setActive(newTopicKey);

 6 if (!newTopicKey.equals(CATEGORY)) {

Chapter 14 Going International

193

 7 initTranslation(newTopicKey);

 8 }

 9 return _topics.getActiveTopic().get().getOutcome();

10 }

11

12 private void initTranslation(String langCode) {

13 // ensure there is an element in the map for this language

14 _categories.stream().forEach(c -> {

15 if (c.getTranslatedName(langCode).isEmpty()) {

16 c.setTranslatedName(langCode, "");

17 }

18 });

19 }

Last but not least, Figure 14-10 shows a quick look at the translation editor.

Figure 14-10.  Category translator

Chapter 14 Going International

194

�Summary
The process of internationalization covers the preparation of software to be potentially

usable in other countries and languages. Localization is the adaptation to a specific

language or country (or region). Localization doesn’t just mean translation, but also

adapting date and number formats, character sets, writing direction, images, and more.

Java supports translation of literal text with message bundles. Sometimes content has

to be translated too. The chapter demonstrated a possible solution by adding translation

to objects and the database.

This chapter also discussed a language switcher, HTML escaping, joining tables by

JPA, and passing parameters between pages. It introduced some repeating structures of

JSF (some based on the JSP tag library). Some differences were addressed, but a detailed

discussion of repeating structures comes later in the book.

Note T he complete source code for Books as developed from startup to
internationalization is available from webdevelopment-java.info.

Chapter 14 Going International

195
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_15

CHAPTER 15

Bean Validation
As I’ve pointed out, Books is an application that’s maintained by just one author, who

should know about the expected data. So there’s no user interface that gives an immediate

response after each input or that offers lots of hints. Of course, those features are essential

for an application intended for potentially unknown users. Later on, when developing a

second application called Alumni, I’ll cover those features in detail. Right now, validation

will be useful in preventing a user from entering data that might not fit the database.

Remember the JSF lifecycle: during phase 3, the input values will be converted and

validated. In the HTML page, every input is treated as simple text. With help from the EL,

these inputs are bound by value expressions to the data model. Usually this is done by

using the properties of a Java bean. In Java, all properties are strongly typed. That means

conversions are needed, from text (string) to the target type and vice versa. This job is

done by converters. JSF offers standard converters for a wide range of built-in Java types.

Later on, we’ll discuss custom converters. If a conversion fails, JSF throws an exception.

Accordingly, converters perform raw validation.

JSF also includes a couple of standard validators that you can use to define a

validation at a finer level. For example, you can allow positive numbers only, or force a

string to a maximum length, and so on. I cover this kind of validator later on.

A JSF validator will validate the input on the server side just after the user entered

it and before applying values to the model. Sometimes only validating the input isn’t

enough. Data might be changed at the business layer. When you want to persist that

altered data to a database, the program might crash because the data doesn’t fit the

database schema. In such a case, validating the data again just before storing would be

very helpful. The same applies for validating at any other place within the application.

Luckily, Java EE offers exactly this kind of validation: it’s known as bean validation. JSF takes

advantage of it and uses this validation too, if defined in the model the data is applied to. In our

application, we’ll edit and store information about books. We’re going to add bean validation

by simply applying special annotations to the book entity. Now this validation will be used both

by JSF and JPA. And if needed, you may additionally call the validation programmatically.

196

�Book Entity
Every book is described by its title, subtitle, author, and by certain other information,

including a short description. The description might be presented to the user in different

languages. So, we’ll need a second table containing the translations, like we did for the

categories. For brevity’s sake, I’m only going to talk about essential parts of the entities.

You can download the complete files.

Tables 15-1 and 15-2 show the two tables we’ll use for the book and the translation.

Table 15-1.  Book

Column Name Data Type

bookId int

bookTitle varchar(200)

bookSubtitle varchar(200)

bookAuthor varchar(255)

bookPublisher varchar(45)

bookYear int

bookLanguage varchar(10)

bookISBN varchar(45)

bookShorttext varchar(500)

bookReference varchar(500)

bookAdReference varchar(50)

Table 15-2.  Book Translation

Column Name Data Type

btId int

btBookId int

btLanguage varchar(10)

btShorttext varchar(500)

btReference varchar(50)

Chapter 15 Bean Validation

197

Next we’ll define the book entity and implement a property (field plus getter and setter)

for every column as we did before in Chapter 12. Listing 15-1 shows just one property.

Listing 15-1.  Entity Class Book

 1 [...]

 2

 3 @Entity

 4 @Table(name = "Book")

 5 public class Book implements Serializable {

 6

 7 [...]

 8

 9 // <editor-fold defaultstate="collapsed" desc="Property Title">

10 @Size(max = 200)

11 @Column(name = "bookTitle")

12 public String getTitle() {

13 return _title;

14 }

15

16 public void setTitle(String title) {

17 _title = title;

18 }

19

20 private String _title;

21 // </editor-fold>

22

23 [...]

24 }

The <editor fold> tags are specific to NetBeans and are used to collapse the code.

They’ll be ignored by most other IDEs.

Let’s focus on the @Size(max = 200) annotation (line 10). It checks the size of the

property, which is limited to a maximum of 200 characters. That’s exactly what we

defined in the table. If the property title contains more characters, the validation will

throw an exception. This validation takes place just before storing the data. Without

Chapter 15 Bean Validation

198

bean validation, we would get an exception while inserting/updating the database with a

string that exceeds that size.

At first glance, it may seem not that valuable to replace an IO exception with a

validation exception (we may save the database access). But as mentioned, bean

validation will be invoked by JSF also. And bean validation isn’t restricted to entities. You

can annotate your data access object (DAO) class or any other kind of data model you’ve

chosen. The annotation might be placed to a field or a property (getter method).

During lifecycle phase 3, conversion and validation, JSF will invoke the JSF validators

as well as bean validation. If a value expression like #{book.name} points to a property

or field that’s annotated for bean validation, this check will be invoked. Instead of simply

(re-)throwing an exception, JSF recognizes possible violations. If a message tag is defined

within the page, as shown in the next section, then this exception triggers the output of

an appropriate message. And as a real benefit of bean validation in combination with

JSF, the user gets an immediate response.

There are a couple of annotations defined by bean validation—for example, @Min

and @Max to define integer limitations, or @Future and @Past to define date constraints.

As you can see, these constraints seem simple. Indeed they are, so I won’t explain them

in detail. One of the most sophisticated constraints is @Pattern, which compares the

value of a property or field with pattern matching. For a list of possible constraints (as of

Java EE 8), take a look at the Java EE 8 tutorial at https://javaee.github.io/tutorial/

bean-validation002.html. Another useful source is http://beanvalidation.org.

Bean validation is included with Java EE application server. It’s not part of a pure

servlet container or Java SE. Adding bean validation just means adding an appropriate

library to your classpath. At http://beanvalidation.org you’ll find a list of certified

implementations.

�Book Editor
If a validation failure occurs, it should be reported to the user. To do that, we need a

placeholder for the message in our editor page. Listing 15-2 shows this page.

Listing 15-2.  Extract of bookEditor.xhtml

1 <div class="inputGroup">

2 �<h:outputLabel styleClass="label" for="title" value="#{msg.

lblTitle}"/>

Chapter 15 Bean Validation

https://javaee.github.io/tutorial/bean-validation002.html
https://javaee.github.io/tutorial/bean-validation002.html
http://beanvalidation.org/
http://beanvalidation.org/

199

3 <h:inputText id="title" styleClass="inputFull"

4 value="#{bookEditor.book.title}"/>

5 <h:message id="msgTtitle" for="title" styleClass="warning"/>

6 </div>

In this extract, we have a label, an input field, and a message. This message will

contain the validation message—if, and only if, there is one. There’s no need to place the

message nearby the input field (somebody may group all messages together somewhere

at the page). Both components (inputText and message) are bound together by

for="title". Here "title" is the id of the input field.

The validation will be invoked in phase 3 of the JSF lifecycle. All possible exceptions

will be collected under the hood, including the dedicated messages. If at least one

exception occurs, the lifecycle will branch after phase 3 directly to phase 6, render

response. The previous page will be rerendered, including all messages.

Sometimes the standard messages won’t fit, so you’ll need to customize them. One

approach is to add a ValidationMessages.properties file to the default package in

the src/main/resources folder. Now, with the right properties within that file, you can

customize the messages. The property names follow the structure javax.validation.

constraints.XXX, where xxx represents the constraint name, such as javax.validation.

constraints.Size.message. You’ll find a list for example at http://grepcode.com/file/

repo1.maven.org/maven2/org.hibernate/hibernate-validator/4.0.0.CR1/org/

hibernate/validator/ValidationMessages.properties. If you need to translate the

messages, just add resource files with the proper locale code, as we did before.

Especially in the case of the pattern matcher, a single message like must match

"{regexp}" isn’t very useful to the user. Who outside the IT world would understand such

a message? Depending on the pattern, we need different messages. For example, if we

use a regular expression to define a valid email, then the message should reflect that bean

validation offers a simple solution: the message can be defined within the annotation:

@Pattern(regexp = ".*@.*", message = "Please enter a valid email address.")

This simple regular expression isn’t a very sophisticated email checker, mind you—

it’s just to show the principle. As you can see, it’s possible to define a different message

for each constraint. Here, the message is just a literal. If we need to display the message

Chapter 15 Bean Validation

http://grepcode.com/file/repo1.maven.org/maven2/org.hibernate/hibernate-validator/4.0.0.CR1/org/hibernate/validator/ValidationMessages.properties
http://grepcode.com/file/repo1.maven.org/maven2/org.hibernate/hibernate-validator/4.0.0.CR1/org/hibernate/validator/ValidationMessages.properties
http://grepcode.com/file/repo1.maven.org/maven2/org.hibernate/hibernate-validator/4.0.0.CR1/org/hibernate/validator/ValidationMessages.properties

200

in different languages, then we need to transform the message into a key that refers to

the properties file. If we surround the message with curly braces, then the content within

these curly braces is treated as a key:

@Pattern(regexp = ".*@.*", message = "{validation.constraints.email.

message}")

Now we can add this key to the properties files. In ValidationMessages_

en.properties, we add the following:

validation.constraints.email.message=Please enter a valid email address

And within ValidationMessages_de.properties, we add this line:

validation.constraints.email.message=Bitte geben Sie eine gültige E-Mail-

Adresse an

Don’t forget about the ValidationMessages.properties file to place the text for

your default language. Using NetBeans’s properties editor, you’ll see the default as well

as the different languages at one glance.

In the preceding example, we used the message attribute for just one key. Usually

that’s what you want to do. In fact, you might mix literal text and keys. Every occurrence

of a pair of curly braces is treated as a key. So, we may combine multiple keys and literal

text. The following alerts the localized text about a wrong format, followed by the three

hash signs and our message for the email:

{validation.constraints.wrong.format.message} ### {validation.constraints.

email.message}

�Summary
During its validation phase, JSF doesn’t just perform a JSF-specific validation, it also

invokes standard bean validation if defined within the data model. Thus, validation

constraints might not only ensure that fields will fit the database during storage, but can

also provide qualified feedback to the user.

This chapter explained how to use bean validation on a fundamental level. We’ll dig

into it a bit deeper later in the book.

Chapter 15 Bean Validation

201
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_16

CHAPTER 16

Contexts and Dependency
Injection
Sometimes you need an instance of an object with a type that might be changed or

determined at runtime, and you need a reliable mechanism to perform that task. Luckily,

Java EE 8 comes with Contexts and Dependency Injection (CDI), which can solve the

problem.

�From new() to CDI
If you write a class that needs access to an underlying object-oriented service, you need

to obtain an instance of this service and call its methods. One simple approach is to

create a new object of the service class:

DataService dataService = new DataService();

That approach has a couple of disadvantages. What would happen if you could

choose between different compatible services? Let’s declare DataService as an abstract

class or an interface and implement a concrete service. You could use

DataService dataService = new MySQLDataService();

or

DataService dataService = new PostgreSQLDataService();

Now your application still needs to know one of the concrete services. If you need the

flexibility to choose the service at runtime, one solution would be to use an if-cascade or

switch to select the concrete class depending on a configuration string. Your class still needs

to know the concrete implementations. And if you want to add another implementation,

your class needs to know that too. This is a dependency you usually don’t want to have.

202

The trick is to move the decision into a static factory method of the service. This is

one of the patterns Erich Gamma and coauthors discussed in their book Design Patterns:

Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994).

Now our class becomes independent from the concrete implementations:

DataService dataService = DataService.createService("MySQL")

But besides that interface (or abstract class), our class still has to know the service

and is responsible for creating the object, even though we delegate the creation to the

service. In traditional programming, our code is responsible for the flow of control.

Now, imagine our class is an extension of a framework1 that includes the desired

service. Then the framework might be responsible for the flow of control. So, our class is

an extension point that’s called by the framework. And the framework might create the

service and inject it into our class. The flow of control is inverted compared to traditional

programming. This approach, called inversion of control (IoC), was described by Martin

Fowler back in 2005 (you can read more about it at http://martinfowler.com/bliki/

InversionOfControl.html).

CDI is an IoC provided by Java EE. Injection became quite easy by simply annotating

the wanted object with @Inject. We’ve used it in our projects before.

With CDI the container will create all desired objects and inject it into our classes.

But it doesn’t only inject objects that belong to the framework into our class. CDI also

injects particular objects of our application (or another one) into our class.

But how does CDI know which object to inject? How does it figure out whether an

object is to be created or if an existing instance might be used?

You can annotate your classes with special keywords that will be recognized and

interpreted by CDI. We’ve used such an annotation before: @Named of the javax.inject

package, which declares a bean as a CDI bean. Such a named bean can be injected by

Java EE into the consuming class. Besides CDI beans, CDI can also inject Enterprise Java

Beans (EJBs).

1�Of course, that’s the intention of a framework: although we control the flow of our application
when we use the methods of a library, a framework dictates its flow to us. It offers extension
points, where the developer may add or change behavior.

Chapter 16 Contexts and Dependency Injection

http://martinfowler.com/bliki/InversionOfControl.html
http://martinfowler.com/bliki/InversionOfControl.html

203

Note  Without discussing EJBs, we’ve used them before in our service classes by
using the @Stateless annotation, which declares a class as a stateless EJB. Using
this kind of bean, we benefit from the container’s automatic transaction management.
On the other hand, using a CDI bean for such a service class used to force the
developer to add the transaction handling manually. One general solution is to create
an interceptor to add a transaction to every JPA access. Nowadays this is included in
CDI with the @Transactional annotation.

Besides such a static declaration of named beans, a developer may declare any method

that returns an object as a producer method. This is the CDI equivalent of a factory method.

Once CDI knows what to inject, it needs to know about the object’s lifecycle to

determine whether an existing one can be used or a new object needs to be injected. CDI

offers a couple of annotations for this purpose too. Building Books, we still used some

of them. Remember the xxxScoped ones? Table 16-1 lists a short overview of common

annotations of this group.

Table 16-1.  Predifined CDI Scopes

Annotation Description

@ApplicationScoped A bean is bound to the application lifecycle: it’s created when the

application starts (at least on the first usage of the bean) and destroyed

when the application shuts down.

@SessionScoped A bean annotated with that marker is bound to the lifecycle of the

current session.

@RequestScoped A bean annotated with @RequestScoped is bound to a single HTTP

request.

@ConversationScoped This binds the lifecycle to the period of a so-called conversation. By

default, a conversation is in transient mode, which means it’s bound to

a single request. But by invoking its start method, a conversation is set

into long-running mode and will live until the end method is called. This

allows the developer to control the lifecycle.

@Dependent This is a pseudo scope: the bean’s lifecycle depends on its owner’s

lifecycle. This means its lifecycle depends on the bean it’s injected into.

This is the default if no scope is defined.

Chapter 16 Contexts and Dependency Injection

204

You can also define your own scopes. JSF has defined two other scopes based on the

CDI scopes: @ViewScoped and @FlowScoped. The first is bound to one page, regardless

of how many subsequent requests are made to this. The latter can be used for a series of

pages (called a flow).

Don’t mix this up with the older JSF scopes, which became deprecated with Java EE

8 and which won’t be covered in this book. Using these JSF scopes, there had been one

rule: only beans with a wider lifecycle context could be used in another bean. With CDI,

it’s possible to inject beans with a short lifecycle into one with a longer lifecycle.

At a first glance, it’s hard to imagine how that would work. The bean with the shorter

lifecycle might have been destroyed by the time I want to use it in a bean. CDI uses a

simple trick: except in dependent mode, CDI doesn’t inject a direct reference to an

object. Rather, a proxy object is created and a reference to the proxy gets injected. As a

result, when accessing the object with the shorter lifecycle, it might be replaced under

the hood by a new one.

Remember FacesContext.getCurrentInstance(), which we used for printing the

component tree? Although the FacesContext hadn’t been injectable up to JSF 2.2

(yeah, it’s possible in JSF 2.3), we have similar behavior: every time you access the

getExternalContext() of the FacesContext, you get information about the current

request, even though you may have gotten your reference some requests ago.

Discussing all aspects of CDI is far beyond the scope of this book. But we’ll use (and

discuss) some aspects of CDI in some upcoming chapters. Developing the book editor,

we’re going to use @ConversationScoped.

�Summary
CDI is an implementation of the Inversion of Control pattern. It enables the framework

to create an appropriate instance of a class or interface and provide (inject) it for our

application. Java classes annotated with @Named automatically become eligible for

injection and will be injected at appropriate places by the @Inject annotation.

CDI itself offers much more. For example, you might define your own annotations

by defining interfaces for producers. That’s beyond this book’s scope. In this book, we’ll

commonly use the predefined injections.

Chapter 16 Contexts and Dependency Injection

205
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_17

CHAPTER 17

Conversation Scope
Contexts and Dependency Injection (CDI) offers a couple of different scopes that you

may use to define the lifetime of an object. Most scopes (such as request scope) are

bound to predefined cycles like a single request, a session, or the application lifetime.

The lifetime of one predefined scope, the conversation scope, can be controlled

programmatically, so this scope becomes interesting for a couple of features.

�Multi-page Editor
Our next task is to create a new book entry or edit an existing one. The book editor

will consist of a tab panel offering one page for the book’s metadata, including title,

author, publisher, and one page for each language, where you can edit a review. It must

be possible to switch between these pages without losing data, so it’s not very hard to

imagine that we need a backing bean living longer than just one request.

During one session, the user may edit more than one book. Unlike the categories

(where all of them were edited together), we have to offer a function to edit one book

after the other. That means a session scope won’t fit here. We need a scope longer than

just one request but shorter than a session. According to the table in Chapter 16, using

the built-in CDI scope @ConversationScoped would be the choice.

The book editor will be invoked with a parameter representing the book id.

The bookId is extracted from the request map (line 22), which we can access via the

external context (lines19f). For the sake of simplicity, if the bookId is unknown or

not an integer, we’ll always create a new book (lines 24 and 28). In a mission-critical

application, we would choose a different strategy, but for Books this is sufficient. Once

the book is loaded or created, we turn the conversation into a long-running one, as seen

in Listing 17-1.

206

Listing 17-1.  Excerpt of BookEditor.java

 1 [...]

 2 @Named

 3 @ConversationScoped

 4 public class BookEditor implements Serializable {

 5 [...]

 6 @Inject Conversation _conversation;

 7

 8 @PostConstruct

 9 private void init() {

10 [...]

11 loadOrCreateBook();

12 if (_conversation.isTransient()) {

13 _conversation.begin();

14 }

15

16

17 private void loadOrCreateBook() {

18 FacesContext fc = FacesContext.getCurrentInstance();

19 Map<String, String> paramMap = fc.getExternalContext()

20 .getRequestParameterMap();

21 try {

22 int bookId = Integer.parseInt(paramMap.get("bookId"));

23 _book = _bookService.find(bookId);

24 if (_book == null) {

25 _book = new Book();

26 }

27 } catch (NumberFormatException e) {

28 _book = new Book();

29 }

30 }

31

32 [...]

33 }

Chapter 17 Conversation Scope

207

Helped by CDI, we get an instance of Conversation injected into our BookEditor

(line 6). For simplicity, we assume this is a fresh instance. Such a fresh instance acts in

the so-called transient mode and will terminate with the current request. Until now,

the BookEditor behaves like a request scoped bean. But a Conversation might become

long running, as requested by our application. We’ll prolong the conversation within the

init() method. Due to the @PostConstruct annotation, this method is automatically

called when the construction of the BookEditor finishes.

Anyway, it’s important to first check whether the conversation is transient (not long

running). Only in this state is it allowed to start the long run. In line 12 of Listing 17-1,

we perform the check of whether the conversion isn’t yet long-running as indicated by

isTransient(). If this isn’t the case, we start the long-running part by calling begin().

Starting the long run is quite easy, but ending it can become complicated. Of course,

it’s nothing but calling end() on our conversation object. The only question is: when

do we terminate the long-running mode? If the editor had a Save and Close button, this

would be a wonderful candidate to store the data and quit the long-running mode of the

conversation—after saving a book, the editor would be closed. But using Books, the user

may save and stay in the open dialog. He may continue to edit, and so we can’t end the

conversation. Or the user may hit any navigation button to move to a different location—

to create a new book, say, or edit another one. Having no single point for leaving the

editor requires some more effort.

Let’s examine when JSF will reuse an existing conversation or inject a new

one. A book bean will be created every time it’s used in a new request and either

the conversation is transient, or, in the case of a long-running conversation, a new

conversation is used. In such a case, the init() method is invoked. So we can track new

conversations by tracking calls to this method, as seen in Listing 17-2.

Listing 17-2.  BookEditor.java: log init

 1 [...]

 2 @Named

 3 @ConversationScoped

 4 public class BookEditor implements Serializable {

 5 [...]

 6 private static final Logger LOGGER = Logger.getLogger("BookEditor");

 7

 8 @PostConstruct

 9 private void init() {

Chapter 17 Conversation Scope

208

10 LOGGER.log(Level.INFO, "init in BookEditor");

11 [...]

12 }

13

14 [...]

15 }

Once the bean is prepared as such, it will log every creation (more precisely, it will

log every time it’s created by CDI—if created by a new, init wouldn’t be called). Now we

can invoke our book editor in different ways to observe the behavior.

For testing purposes, in Listing 17-3 we’ll add two links to the book editor to the

navigation section of adminTemplate.xhtml.

Listing 17-3.  Test Links: Navigation to bookEditor.xhtml

1 <h:form>

2 <h:commandLink styleClass="button"

3 value="#{msg.btnNewBook} commandLink"

4 action="/admin/bookEditor.xhtml"/>

5 </h:form>

6 <h:link styleClass="button"

7 value="#{msg.btnNewBook} link"

8 outcome="/admin/bookEditor.xhtml"/>

DIFFERENCES BETWEEN THE LINK TAGS: TRY AND OBSERVE

	1.	S tart Books and navigate to the book editor via the commandLink button.

	2.	 When the book editor opens, click the commandLink button again.

	3.	O bserve the log output live in NetBeans output, the GlassFish window.

	4.	R estart the application and repeat your observations using the link button.

commandLink and link provide different navigation models. commandLink implements a

more traditional JSF navigation using a post back, but link, introduced with JSF 2.0, realizes

a navigation via get. In the next section, we’ll discuss the differences and the impact on

conversation handling.

Chapter 17 Conversation Scope

209

�POST and GET Navigation
In HTML, you can use a form to gather data. As part of the form you can place a button

below the input fields to submit the data to the server. In traditional HTML this data

is transferred via an HTTP POST request to the server. This is a request to the same

URL, which is why it’s called a postback. And as a result, the server often sends back

a confirmation that’s displayed on a different page. This kind of navigation is called

postback navigation. Before JSF 2.0, this was the common navigation model of JSF.

If you read articles about REST, you may know that an HTTP GET is used to retrieve

a resource, whereas a POST is used to create one. And you may have read about JSF not

implementing the original design goals of HTTP because of this postback navigation. As

mentioned, postback navigation was the common navigation type before REST, so it’s

not against the principles of HTTP. If some evangelists want to tell you something else,

don’t believe them.

Although postback navigation feels like a natural navigation, there is one drawback:

data is posted to the original URL while the response might display a fresh page. Thus,

the URL shown in the browser is often one step behind. Because of this, some purists

argue, JSF isn’t bookmarkable. JSF often is used for applications, so what do you think:

should an application be bookmarkable in every state? Or just for well-defined pages

(entry points)?

To update the current URL in the browser’s display, one strategy offered by JSF is a

redirect: just after the postback, a GET to the target page is invoked. Or you can use a GET

navigation with link.

Have you observed the browser’s URL and the server’s log from the previous

exercise? Invoking the commandLink button for the first time doesn’t update the URL to

the book editor. This is a typical postback navigation. When the book editor is displayed

for the first time, a new conversation is started (as indicated by the log). Subsequent

clicks to this button will refresh (reload) the page, but won’t start a conversation.

But if you use the link button, the URL directly points to the book editor. This is

navigation by GET request. A new conversation is started with every click, and thus a new

instance of the book editor is created with every click. Behind the scenes, CDI holds the

former instances because the conversations are still running. We need to handle this.

Note  Using the postback navigation, JSF reuses an existing conversation. Using
the GET navigation, JSF will create a new conversation.

Chapter 17 Conversation Scope

210

As we will discuss later, it’s possible to keep an existing conversation during a GET

navigation.

�Begin and End the Conversation
As shown in this chapter, we started the conversation within the init() method during

the @PostConstruct. If the user saves the book information, she may stay on the editor

page to continue editing, which means we have to keep the conversation. And there’s

no single exit point from the editor—the user may use any navigation offered by the

navigation panel. To solve this issue, every navigation triggered by a navigation button

will end the conversation.

In such a navigation case, we call a method to finish the current conversation, as

shown in Listing 17-4.

Listing 17-4.  Method to Stop a Long-Running Conversation

1 public void endConversation(Conversation conversation) {

2 if (!conversation.isTransient()) {

3 LOGGER.log(Level.INFO,

4 "Conversation stopping: {0}", conversation.getId());

5 conversation.end();

6 }

7 }

�Summary
Most of CDI’s predefined scopes have well-defined lifetimes that depend on the context

of the request, session, or application. There is one scope (@ConversationScoped) that

might be set into a programmatically controlled long-running mode. This allows the

programmer to use a scope with a lifetime longer than a request, but different from a

session or application.

A conversation might be transitioned into the long-running mode by begin() and

put back to its shorter lifetime by end().

Chapter 17 Conversation Scope

211
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_18

CHAPTER 18

Links
Books isn’t just a list of reviewed books. You can also use it to create and display reviews.

Aside from these internal reviews, most reviews are published somewhere else, in

printed media and/or online. The goal of this chapter is to create a list of reviews that

contains links to both internal and external reviews.

�Internal Reviews
Links to internal reviews will be created from the review entities. Such an entity contains

these properties:

•	 Id

•	 BookId

•	 Date

•	 Language

•	 Text

•	 Book

The last property isn’t stored in the appropriate SQL table. The only reference to a

book stored in the database is the BookId. But using the Book as additional property will

enable us to display some information about the book itself without the need to code

an additional database call. In SQL terms, we do a kind of select ...from Review join

Book.... We simply need to define a relation, as shown in Listing 18-1. JPA will perform

the SQL stuff. Listing 18-1 shows an excerpt of the Review class.

212

Listing 18-1.  Entity for Internal Reviews

 1 @Entity

 2 @Table(name = "Review")

 3 public class Review implements Serializable {

 4

 5 private static final long serialVersionUID = 1L;

 6

 7 // <editor-fold defaultstate="collapsed" desc="Property Id">

 8 @Id

 9 @GeneratedValue(strategy = GenerationType.IDENTITY)

10 @Column(name = "rvId")

11 private Integer _id;

12

13 public Integer getId() {

14 return _id;

15 }

16

17 public void setId(Integer id) {

18 _id = id;

19 }

20 // </editor-fold>

21

22 // <editor-fold defaultstate="collapsed" desc="Property BookId">

23 @Column(name = "rvBookId")

24 private Integer _bookId;

25

26 public Integer getBookId() {

27 return _bookId;

28 }

29

30 public void setBookId(Integer bookId) {

31 _bookId = bookId;

32 }

33 // </editor-fold>

34

Chapter 18 Links

213

35 // <editor-fold defaultstate="collapsed" desc="Property Book">

36 @ManyToOne

37 @JoinColumn(name = "rvBookId", insertable = false, updatable = false)

38 private Book _book;

39

40 public Book getBook() {

41 return _book;

42 }

43 // </editor-fold>

44

45 [... other fields, hashCode etc. omitted for brevity...]

46

47 }

The book is referenced in lines 36–42. You can write a couple reviews (for example,

using different languages) for the same book. That’s why we use a many-to-one

relationship here. We assume that the book we write a review for exists in the database.

When we store the review, we need to include a reference to the book. In the database

table, we only need a column for the BookId (lines 23–32). The property book I

mentioned before is retrieved from the database by exactly this id.

So far, we have two properties that depend on that one property. JPA doesn’t

allow two properties writing the same column. We need to declare one of them as not

writeable. Because we only want to save the bookId and not the entire book, we advise

JPA to ignore the bookId of the book property for inserts and updates (line 37).

�External Reviews
The external links are stored in their own table. As for reviews, we create a convenient

property of type Book. Listing 18-2 shows how.

Listing 18-2.  Entity to Manage Links to External Reviews

 1 @Entity

 2 @Table(name = "ReviewLink")

 3 public class ReviewLink implements Serializable {

 4

Chapter 18 Links

214

 5 private static final long serialVersionUID = 1L;

 6

 7 @Id

 8 @GeneratedValue(strategy = GenerationType.IDENTITY)

 9 @Column(name = "Id")

10 private Integer _id;

11

12 @Column(name = "BookId")

13 private Integer _bookId;

14

15 @Column(name = "LanguageCode")

16 private String _language;

17

18 @Column(name = "URI")

19 private String _URI;

20

21 [getter/setter omitted]

22

23 @ManyToOne

24 @JoinColumn(name = "BookId", insertable = false, updatable = false)

25 private Book _book;

26

27 public Book getBook() {

28 return _book;

29 }

30

31 [HashCode and more omitted]

32 }

Listing 18-2 shows an excerpt of the ReviewLink class. Accessing the book (lines 23ff)

is quite similar that described for the Review class.

Chapter 18 Links

215

�JSF Links
JSF offers three different tags to create a link. How do they differ, and which one would

be appropriate to perform this goal? Table 18-1 lists these tags.

�commandLink
commandLink is the classic JSF link. Indeed, it renders an HTML link element but acts

more like a submit element. While rendering the commandLink, JSF assigns a function

call to the element’s onClick event. This function, located in the JSF JavaScript library,

dynamically adds a hidden input element and performs a submit. This approach is

transparent to the developer.

A Submit element would perform a POST request. This is HTML standard for

submitting forms. Thus, the commandLink needs to be nested into an <h:form> element.

A POST request sends data for the current URI. If a commandLink is used to navigate to another

page, the browser still displays the former URI while displaying the new page. With this

kind of navigation, the URI displayed in the browser’s headline is one page behind.

�link
The link tag was introduced in JSF 2.0 to enable JSF navigation using GET requests.

A GET request is the same one you use when you enter a URI directly into your browser.

The server sends the content of the requested page, and using the GET navigation,

the browser displays the URI of the current page. Because of that, the URI becomes

bookmarkable.

Table 18-1.  JSF Tags for Creating a Link

Tag Name Description

commandLink Renders an HTML link that also performs a submit.

link Renders an HTML link that can be used for bookmarkable JSF

navigation.

outputLink Renders an HTML link that’s mostly used to navigate outside the app.

Chapter 18 Links

216

�outputLink
The outputLink tag is the classic tag to create an HTML link element for a GET request.

As its name suggests, it’s used to navigate outside your application. Using this tag,

you simply create links, not JSF navigation, but you can use it to navigate within your

application.

�Choosing the Right Link
The postback navigation is no problem if the user starts our application with a defined

entry point—for example, a login page. Maybe you offer your user some additional

starting points for the application. Once the application is started, it follows its workflow.

The user acts within the application without caring about the URI. In such a case, it

doesn’t matter—the URI is one step behind.

In case of Books, the review list should link to reviews. These reviews will be direct

addressable. They should also be searchable by a search engine, so we need to access

them via GET request. commandLink won’t fit these requirements.

But which of the other two link elements is best? Or do we need both? Before I

discuss them, I invite you to figure out the behavior by yourself in the next exercise.

  Investigating Links 

Create a new web application called testLinks and add the JSF framework. As JSF
servlet URL pattern, use *.xhtml. You may want to revisit TinyCalculator and read
up on how to create such an app using NetBeans.

NetBeans will automatically create the page index.xhtml during application
setup. If you’re using a different IDE, you may need to create such a page by
yourself. Add a second page, page2.xhtml.

To the index.xhtml page, add <h:link...> (outcome="link") as well as
<h:outputLink...> (value="link") with the following targets:

•	 /page2

•	 /page2.xhtml

Chapter 18 Links

217

•	 /testLink/page2

•	 /testLink/page2.xhtml

•	 http://it-rezension.de

Run the project and try and observe the links.

Listing 18-3 shows a simple version of the index.xhtml page. It’s not very

sophisticated—just for demonstration.

Listing 18-3.  Link Demo (testLink) index.xhtml

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html">

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html">

 5 <h:head>

 6 <title>Facelet Title</title>

 7 </h:head>

 8 <h:body>

 9 Hello from Facelets

10

11 <div>

12 <h:link value="/page2" outcome="/page2"/>

13 </div>

14 <div>

15 <h:link value="/page2.xhtml" outcome="/page2.xhtml"/>

16 </div>

17 <div>

18 <h:link value="/testLink/page2" outcome="/testLink/page2"/>

19 </div>

20 <div>

21 �<h:link value="/testLink/page2.xhtml" outcome="/testLink/page2.

xhtml"/>

22 </div>

23 <div>

Chapter 18 Links

http://it-rezension.de/

218

24 �<h:link value="http://it-rezension.de" outcome="http://it-

rezension.de”/>

25

26 </div>

27 <hr/>

28 <div>

29 <h:outputLink value="/page2">

30 /page2

31 </h:outputLink>

32 </div>

33 <div>

34 <h:outputLink value="/page2.xhtml">

35 /page2.xhtml

36 </h:outputLink>

37 </div>

38 <div>

39 <h:outputLink value="/testLinks/page2">

40 /testLinks/page2

41 </h:outputLink>

42 </div>

43 <div>

44 <h:outputLink value="/testLinks/page2.xhtml">

45 /testLinks/page2.xhtml

46 </h:outputLink>

47 </div>

48 <div>

49 <h:outputLink value="http://it-rezension.de">

50 http://it-rezension.de

51 </h:outputLink>

52 </div>

53

54 </h:body>

55 </html>

Figure 18-1 shows the output.

Chapter 18 Links

219

link creates links both for /page2 and /page2.xhtml, but no other. If you omit the

file extension, JSF automatically adds the .xhtml. The slash / determines the root within

our application—not an absolute path.

/testLink is the context path of the application, a kind of “outside the application.”

And the link to my review page points to a different website. link is used for a JSF

navigation and as such, for any other link, it can’t find a navigation.

On the other hand, outputLink simply creates every link we provide, as specified.

If not provided, JSF automatically precedes the current host to complete the link.

Thus /page2 becomes http://localhost:8080/page2. Such a link would point to a

nonexisting page. Only /testLinks/page2.xhtml and http://itrezension.de point to

existing pages.

�Draw the Conclusion
link can only be used for internal navigation. outputLink might be used for external as

well for internal links. For an internal link, the context path needs to be added.

For the review list, (at least) two alternative solutions might be used:

•	 Use both link and outputLink together with a condition that selects

the appropriate element depending on the kind of link. Listing 18-4

shows the principle of this approach.

Figure 18-1.  Output of testLink

Chapter 18 Links

http://itrezension.de/

220

•	 Or always use an outputLink for both internal and external links. For

internal links, you need to add the context path to the page’s address,

making the URI fully qualified.

Books uses the second approach.

Listing 18-4.  Principle of Determining Internal versus External Link

1 <h:link rendered="#{review.intern}" .../>

2 <h:outputLink rendered="#{not review.intern}" .../>

Listing 18-5.  Excerpt of reviewList.xhtml

1 <h:outputLink value="#{review.url}"

2 target="#{review.intern ? '_self' : '_blank'}">

3 #{review.title}

4 </h:outputLink>

External links are stored in the ReviewLink table. They define a complete URI and

are used as stored in the database. Internal links are created dynamically by appending

the bookId and language to the page and prefixing it with the context path. The context

path is available from the external context of the Faces context, as shown in Listing 18-6.

Listing 18-6.  Creation of Internal Links

1 private String buildUrl(int bookId, String language) {

2 String path = FacesContext.getCurrentInstance()

3 .getExternalContext().getRequestContextPath();

4 return path + Page.UserReview.getUrl() +

5 "?bookId=" + bookId + "&language=" + language;

6 }

buildUrl is part of the ReviewInfo.class.

�Summary
JSF offers three different type of links. commandLink renders an HTML link (href

element). While rendering this link, JSF adds an onClick handler redirecting this link to

an input submit element. As a result, such a link initiates a postback navigation.

Chapter 18 Links

221

link renders a real link that’s used for a JSF navigation case (internal navigation),

whereas the intention outputLink creates a link element that’s not used for regular JSF

navigation but for navigating to an external page. Anyway, we can use it for a navigation

within our application.

Chapter 18 Links

223
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_19

CHAPTER 19

Responsive Design
Some years ago, it was common to develop web applications with a fixed-width page

size of 960 pixels. This size was a good choice for the popular 17-inch desktop monitor

displays.

Times have changed. Desktops and modern laptops have high-resolution screens,

and many people are using quite large screens. Full HD for example is 1920 pixels

wide. Even if this allows more information on the screen, you won’t use more than

about 1200 pixels per line to keep the text readable. The rise of mobile devices like

tablets and smartphones dominates the marketplace with applications running on

smaller displays, starting with less than 400 pixels. Although the physical resolution of

a modern smartphone sometimes is better than full HD, they often use logical pixels,

which are built up by a group of physical pixels. The challenge is to create web pages

and applications that automatically adapt to the resolutions of large, medium, and small

screens. This is achieved with responsive design. You may read about adaptive design,

which also adapts to the screen resolution. The two techniques are a little different, but

we’ll ignore these small differences in this book.

This chapter introduces some techniques to make the application responsive to

various screen sizes.

�Making Books Responsive
The application Books uses an easy form of such a responsive design. On a PC, this can be

simulated by resizing the browser window. Figures 19-1 through 19-4 show how the Books

application automatically changes its layout in response to the changing window size.

224

Figure 19-1.  Books on wide display

Figure 19-2.  Books on mid-sized display

Chapter 19 Responsive Design

225

Figure 19-3.  Books on tablet-sized display

Chapter 19 Responsive Design

226

To make the application responsive, there’s no need to change the code or content of

the application. The application is made responsive by modifying its CSS layout.

As the previous figures show, there are different display strategies depending on the

screen size used. As a software developer, I assume you personally use a high-resolution

screen. You can simulate different device sizes by resizing your browser window. Let’s

start with a full screen and the reduce the window size.

Figure 19-4.  Books on smartphone-sized display

Chapter 19 Responsive Design

227

For a wide display, the content and navigation size are limited by a maximum size.

We use this maximum size to keep the content readable. If the browser window width is

more than that, we add a margin to center the content. If you reduce the window size, the

margins left and right will be reduced, keeping the size of content and navigation. Then, at

a certain width, the strategy changes: the width of content and navigation will be reduced

according to the window size. At another particular width, the strategy changes again: the

navigation is displayed below the content. These special widths, where the display strategy

is changed, are called breakpoints.

The trick is to apply different styles depending on the size of the screen. Especially

for mobile devices, some manufacturers apply a kind of logical pixel size to their

viewport (the visible area of the browser window), which may differ from the real pixel

size. So, we need to prepare this scaling with a simple entry in the <h:head> section of

our JSF template, as shown in Listing 19-1.

Listing 19-1.  Scaling of the Viewport in booksTemplate.xhtml

1 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

Next, we define the breakpoints using media queries. Media queries start with

@media, followed by the media’s name, such as @media screen or @media print.

There are also two more options: speech (for speech synthesizers) and all (used for all

devices). Although first recommended in 1994, media queries were widely introduced

with HTML 4 and CSS 2 for tailoring styles to different media. Driving responsive design

became possible when other attributes like width were added. This scheme became a

W3C recommended standard in 2012.

For implementing a responsive design, we’ll use media queries for the screen in

conjunction with the viewport size to decide which styles we want to apply. We’ll define

the breakpoints, the discrete sizes at which the styles will change.

But first, let’s take a look into the relevant excerpt of the CSS file, shown in Listing 19-2.

Listing 19-2.  Excerpt from books.css Before Becoming Responsive

 1 body > div {

 2 width: 80em;

 3 margin: 0 auto;

 4 text-align: left;

 5 }

 6

 7 main {

Chapter 19 Responsive Design

228

 8 min-height: 40em;

 9 width: 53em;

10 opacity: 0.95;

11 border-radius: 1em;

12 background-color: #eeeef3;

13 padding: 1em;

14 margin-bottom: 1em;

15 box-shadow: 0.5em 0.5em 0.5em #004

16 }

17

18 nav{

19 min-height: 40em;

20 position: fixed;

21 margin-left: 56em;

22 width: 22em;

23 padding: 1em;

24 top: 7.5em;

25 opacity: 0.85;

26 border-radius: 1em;

27 background-color: #ccccd8;

28 box-shadow: 0.5em 0.5em 0.5em #004

29 }

Remember, body > div declares some attributes of the application’s space. Using

a relative unit (em) for the width allows for growing or shrinking the space as the user

changes the browser’s font size. But we have to choose our breakpoints according to the

screen size, which is given in pixels.

The content of our application on a wide viewport uses 80em. If the viewport’s width

is more than that, the browser adds some empty space on the right or left. Shrinking the

window will reduce this space. If the viewport’s size becomes smaller than our maximum

content size, we need to shrink the content width. Thus, the first breakpoint seems to be

reached when the viewport width is equal or less than the width of the body div element.

Chapter 19 Responsive Design

229

Caution A lthough it’s possible to use em for the media width, that results in
some funny behavior. Suppose we define a breakpoint at 60em. Below that size,
we’ll reduce the font size in pixels, and that will change the width of 1em. In other
words, we’ll change our scale base. Shrinking the viewport to less than these
60em will suddenly result in a viewport with of more than 60em. Can you imagine
what would happen? It’s really unexpected. A rule of thumb: don’t alter the scale
base of your breakpoints.

It’s best to define exact pixels for the screen width. So, we need to calculate pixels

from our width:

Width in pixels = Width in em × Font size in pixels

Because we defined a default font size of 12 pixels, the width is 80em × 12px = 960px.

If the screen size is smaller than that, the application size must be reduced. If no size

is defined, the size is determined by the browser’s display width. Thus, it’s possible to

omit the width. We only need to define a maximum width for large browser windows. To

do that, we’ll replace line 2’s width: 80em with max-width: 80em. No special breakpoint

is needed.

The main part is 53em plus padding left and right, which is 1em each. Thus, we get

a total width of 55em. This is 55/80 × 100% = 68.75% of our 80em width. If we shrink the

window, we’d first like to shrink the main part too by keeping this relative size. In our

application, 1em equates to 1/80 × 100% = 1.25%. Using this information, we can refine

all widths by replacing the em sizes with percent sizes.

Caution S izes in percent are relative sizes. Beware: these aren’t relative to the
screen but to the surrounding container.

If we shrink the width, fewer characters of text may be displayed in each line. But we

don’t change the line’s height, so in many cases it’s best to keep vertical sizes in em.

For the responsive design, we divide our main and nav classes into two parts. One of

them contains all styles that are independent from the viewport width (see Listing 19-3,

lines 7–20), whereas the other parts contain viewport-dependent styles. These parts

will be different for each breakpoint. Lines 23–37 use the original values as seen in the

previous listing.

Chapter 19 Responsive Design

230

Listing 19-3.  Excerpt from books.css, First Responsive Approach

 1 body > div {

 2 max-width: 80em;

 3 margin: 0 auto;

 4 text-align: left;

 5 }

 6

 7 main {

 8 opacity: 0.95;

 9 border-radius: 1em;

10 background-color: #eeeef3;

11 margin-bottom: 1em;

12 box-shadow: 0.5em 0.5em 0.5em #004;

13 }

14

15 nav{

16 opacity: 0.85;

17 border-radius: 1em;

18 background-color: #ccccd8;

19 box-shadow: 0.5em 0.5em 0.5em #004;

20 }

21

22 @media screen and (min-width: 960px){

23 main {

24 min-height: 40em;

25 width: 53em;

26 padding: 1em;

27 }

28

29 nav{

30 min-height: 40em;

31 position: fixed;

32 margin-left: 56em;

33 width: 22em;

34 top: 7.5em;

Chapter 19 Responsive Design

231

35 padding: 1em;

36 }

37 }

38

39 @media screen and (min-width: 600px) and (max-width: 960px){

40 main {

41 min-height: 45em;

42 width: 66.25%;

43 padding: 1.25%;

44 }

45

46 nav{

47 min-height: 45em;

48 position: fixed;

49 margin-left: 70%;

50 width: 27.5%;

51 padding: 1.25%;

52 top: 7.5em;

53 }

54 }

55

56 @media screen and (max-width: 600px){

57 main {

58 width: 97.5%;

59 padding: 1.25%;

60 }

61

62 nav{

63 width: 97.5%;

64 padding: 1.25%;

65 bottom: 1em;

66 }

67 }

Chapter 19 Responsive Design

232

In line 22 you’ll find the first media query. It applies to a viewport size on the screen

with a minimum width of 960px. Every style declaration between the opening curly

brace on that line and the corresponding closing one on line 37 will be applied to the

HTML page if, and only if, that minimum width condition is true. The next breakpoint

is reached with a size of 960px. Within the condition of the corresponding media query,

we define the width as mentioned before in percent, not in em (lines 39–54). If the size

is less than 600px, we rearrange the navigation now being displayed below the main

content. As you can see, media queries are enhanced by one or more width conditions.

I assume these are mostly self-explanatory.

There’s one important detail to talk about. Look at Listing 19-4.

Listing 19-4.  Cascaded Media Queries

1 @media screen and (min-width: 960px){...}

2 @media screen and (min-width: 600px) and (max-width: 960px){...}

3 @media screen and (max-width: 600px){...}

In this definition, max-width of the smaller screen (or window) equals the min-width

of the bigger screen. Are these overlappings okay? Listing 19-5 seems to show a better way.

Listing 19-5.  Cascaded Media Queries, Nonoverlapping

1 @media screen and (min-width: 960px){...}

2 @media screen and (min-width: 600px) and (max-width: 959px){...}

3 @media screen and (max-width: 599px){...}

Now the sizes don’t overlap, and this is what you’ll find in some books or blogs

talking about responsive design. At a first glance, such a nonoverlapping definition

seems to be correct. But it really isn’t: we now have two gaps, one between 959 and

960px, and the other between 599 and 600px. Eh?

Try an experiment:  replace the media queries with the nonoverlapping
version. Start with a wide browser window and reduce its width. When you
reach a breakpoint, slowly increase and reduce the window size and observe
what happens. Depending on your system or browser settings (you may have
fonts enlarged, or the browser window zoomed), most browsers will display the

Chapter 19 Responsive Design

233

navigation below the main content when you reach the breakpoint. That’s because
there’s a 1-pixel gap and a calculated size just between both definitions. None of
the definitions will be used, so the navigation won’t be displayed as expected.

Take a look at Figure 19-5. Here the browser calculates a width of 959.167px, which

falls into this 1-pixel gap.

Figure 19-5.  Width = 959.167px

Due to this problem, Books uses the overlapping approach. To avoid ambiguity, CSS

uses the last definition found in the CSS file.

Chapter 19 Responsive Design

234

In our first responsive approach, we still use em for the wide viewport size. But

because the container is restricted to 80em, even if the viewport is wider, relative sizes in

percent in the main part can’t grow. So we can use the same sizes as used for the smaller

window in percent.

The navigation floats out of the body > div container. Its container is the display area

of your browser, and it will grow as the window grows. To keep the navigation size, it still

has to be defined using em. This said, we can refactor the style sheet. See Listing 19-6.

Listing 19-6.  Excerpt from books.css, Refined Responsive Definition

 1 body > div {

 2 max-width: 80em;

 3 margin: 0 auto;

 4 text-align: left;

 5 }

 6

 7 main {

 8 opacity: 0.95;

 9 border-radius: 1em;

10 background-color: #eeeef3;

11 margin-bottom: 1em;

12 box-shadow: 0.5em 0.5em 0.5em #004;

13 }

14

15 nav{

16 opacity: 0.85;

17 border-radius: 1em;

18 background-color: #ccccd8;

19 box-shadow: 0.5em 0.5em 0.5em #004;

20 }

21

22 @media screen and (min-width: 600px){

23 main {

24 width: 66.25%;

25 padding: 1.25%;

26 }

27

Chapter 19 Responsive Design

235

28 nav{

29 position: fixed;

30 top: 7.5em;

31 }

32 }

33

34 @media screen and (min-width: 960px){

35 main, nav {

36 min-height: 40em;

37 }

38

39 nav{

40 margin-left: 56em;

41 width: 22em;

42 padding: 1em;

43 }

44 }

45

46 @media screen and (min-width: 600px) and (max-width: 960px){

47 main, nav {

48 min-height: 45em;

49 }

50

51 nav{

52 margin-left: 70%;

53 width: 27.5%;

54 padding: 1.25%;

55 }

56 }

57

58 @media screen and (max-width: 600px){

59 main {

60 width: 97.5%;

61 padding: 1.25%;

62 }

Chapter 19 Responsive Design

236

63

64 nav{

65 width: 97.5%;

66 padding: 1.25%;

67 bottom: 1em;

68 }

69 }

In line 22 you’ll find a common definition for all sizes greater than or equal to 600px.

�Responsive Pixel Layouts
As we’ve seen, making a layout that’s responsive isn’t too hard. Luckily, we created our

first (nonresponsive) version of the layout sizes relative not to the screen, but to the

font size. However, many pages are designed with pixel dimensions. Here the transition

needs a little more effort, as Listing 19-7 shows.

Let’s assume the original layout had been designed to be accurate using pixels.

Listing 19-7.  Excerpt of a Pixel-Dimensioned Layout

 1 main {

 2 min-height: 500px;

 3 width: 640px;

 4 opacity: 0.95;

 5 border-radius: 10px;

 6 background-color: #eeeef3;

 7 padding: 10px;

 8 margin-bottom: 10px;

 9 box-shadow: 5px 5px 5px #004

10 }

11

12 nav{

13 min-height: 500px;

14 position: fixed;

15 margin-left: 670px;

16 width: 270px;

Chapter 19 Responsive Design

237

17 padding: 10px;

18 top: 90px;

19 opacity: 0.85;

20 border-radius: 10px;

21 background-color: #ccccd8;

22 box-shadow: 5px 5px 5px #004

23 }

Beware, it’s not the same! For example, nav’s left margin is 670px, whereas the

original layout used 56em = 672px. Here, the designer preferred sizes that can be divided

by 10, or at least by 5. In my experience, this is typical for a layout that’s been designed

on fixed pixel counts.

Most books on responsive design start with an example of how to make a pixel layout

responsive. The common method suggested is to calculate the relative width of one pixel

and multiply every pixel width by that accurate factor. Let’s do that:

Total width = 960 pixels, thus one pixel is 1/960 × 100% =

0.1041666666666667%.

640px = 640 × 0.1041666666666667% = 66.66666666666667%.

670px = 670 × 0.1041666666666667% = 69.79166666666667%.

And so on.

Now the CSS looks ugly. In most instances, such accuracy isn’t needed. Get up the

nerve to round these values to, at most, two-fraction digits. Trust me when I say users

won’t notice any difference.

�Calculating Sizes
Listing 19-8 calculates some sizes.

Listing 19-8.  Excerpt of Navigation Layout

 1 @media screen and (min-width: 960px){

 2 nav{

 3 margin-left: 56em;

 4 width: 22em;

 5 padding: 1em;

Chapter 19 Responsive Design

238

 6 }

 7 }

 8

 9 @media screen and (min-width: 600px) and (max-width: 960px){

10 nav{

11 margin-left: 70%;

12 width: 27.5%;

13 padding: 1.25%;

14 }

15 }

By shrinking the screen size, we switched from a padding, which is relative to

the current font size, to the percent dimension, which is relative to the surrounding

container. That means the padding itself will be diminished. Sometimes it’s useful to

keep the padding relative to the font size. Using CSS 3, it’s no problem to mix different

dimensions and keep accuracy.

In our example, the element width plus its padding will result into a total width of 1.25%

+ 27.5% + 1.25% = 30%. Let’s assume we have a requirement to keep the padding of 1em.

Then the element width has to be 30 percent minus 2em. And that’s exactly what you can do:

width: calc(30% - 2em);

I assumed the padding will be added to the box width. That’s what most browsers

do. (Old versions of Internet Explorer declare width including the padding and border.)

Using CSS 3, you can change the behavior of box sizing in such a way that the width

includes the padding and the borders (by box-sizing: border-box;).

Tip  You can read about the CSS box model at W3Schools. Check out
www.w3schools.com/css/css_boxmodel.asp and www.w3schools.com/
cssref/css3_pr_box-sizing.asp.

�Mobile-First and Desktop-First
At first Books was developed for desktop computers only. Then with the rise of mobile

devices came a need to adapt it to smaller screen sizes. This procedure is what today is

called a desktop-first approach.

Chapter 19 Responsive Design

http://www.w3schools.com/css/css_boxmodel.asp
http://www.w3schools.com/cssref/css3_pr_box-sizing.asp
http://www.w3schools.com/cssref/css3_pr_box-sizing.asp

239

Books simply places the navigation at the bottom when the screen size shrinks.

Usually, for a small-sized screen, the height is very limited. It may be a good idea to

replace the navigation by a folding menu to save some space. This can be solved by CSS

also. Mobile devices sometimes only have smaller bandwidth (cellular network speed)

available. So, often I advise reducing the user interface. For example, you may omit the

background image. Or you may have to reduce content.

The latter might become a hard job. Which parts are less important and can be

eliminated? With that question in mind, lots of people prefer a mobile-first approach:

develop an application with a minimal interface, and then adapt it to larger screens,

adding some decorative padding.

Don’t worry about people saying one or the other approach is best. Just do it your way.

�Summary
Some years ago an application could be designed for a certain screen resolution, but

today we need to consider different kinds of screens and sizes. Users may not use a

desktop PC only. We have to consider laptop sizes, tablets, and other mobile devices.

Because we can’t expect the user to scroll long content on small screens, we need to

adapt the content of our application pages to different screen sizes.

One key technique to make a web application responsive is to define different

breakpoints within CSS’s media queries. This chapter showed a pure CSS approach. That

might be complemented by the aid of JavaScript, which we’ll use for the Alumni application.

To create a responsive application, you can start with a mobile layout first (mobile-

first) or a desktop layout (desktop-first).

Chapter 19 Responsive Design

241
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_20

CHAPTER 20

Summary and Perspective
Books is an application intended to be managed by mainly one author, publishing for

many readers. We expect the author of the reviews (that’s me) to know how to interact

with the application. That means we can have a reduced set of requirements regarding

the user interface, especial with regard to validating input. Nevertheless, Books is a fully

fledged interactive web application.

After going over basic JSF tags for forms and text (in our discussions of

TinyCalculator), we discussed more JSF features like loops, conditions, tables, and the

different kinds of links, as well as more advanced features like templating. We outlined

how JSF integrates with other Java EE technologies. Books takes advantage of the Java

Persistence API (JPA), Context and Dependency Injection (CDI), and bean validation.

We discussed some aspects of internationalization and how to make the application

responsive to different screen sizes using CSS.

The source code for the Books application is available as a zip file for download

from http://webdevelopment-java.info/webdevelopment/resources/download/

BooksComplete.zip. To open the compressed archive, use the password MdkJ47(kq!.

If you check the code, you’ll find some techniques not discussed so far. For example,

there’s a rare usage of <f:ajax>. These techniques will be described in the next part.

Speaking of the next part, the next application, Alumni, is designed to be a social

platform. All users need to be registered and will enter data. We’ll need to discuss

security and increase our requirements for the user interface. All user input has to

be validated, and the user should obtain immediate responses. Validators, AJAX,

authentication, custom components, and more will all be introduced in the context of

working with Alumni.

http://webdevelopment-java.info/webdevelopment/resources/download/BooksComplete.zip
http://webdevelopment-java.info/webdevelopment/resources/download/BooksComplete.zip

Intermezzo

PART III

245
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_21

CHAPTER 21

Intermezzo
So far, we’ve talked about two web applications, TinyCalculator and Books. In this part,

we will discuss some aspects of web development with JSF detached from developing

concrete applications.

247
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_22

CHAPTER 22

JSF Lifecycle Revisited
Let’s recall JSF’s lifecycle. There are six phases, starting with the restore view phase. Or,

in the case of a new page, the view has to be created. Figure 22-1 should refresh your

memory of the JSF lifecycle.

As a main part of the view, the component tree has to be (re-)created during

phase 1. This tree is a logical representation of the UI components. HTML components

will be derived from the component tree during the render phase (phase 6). But there

may not be a one-to-one relationship between UI components and HTML components.

Among other things, a JSF tag is interpreted as tag handler or as UI component.

A tag handler is processed while creating the component tree, but it wouldn’t be

included itself within the tree. On the other hand, UI components will become part of

the component tree. And during the render phase, one component might be used to

create a couple HTML elements.

Figure 22-1.  JSF lifecycle

248

You may imagine tag handlers as processing instructions to build the tree, and

UI components as processing instructions to create the output. The next chapter will

discuss such matters using the example of repetitive structures.

Chapter 22 JSF Lifecycle Revisited

249
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_23

CHAPTER 23

Repetitive Structures
So far, we’ve used three different tags for repetitive structures:

•	 c:forEach

•	 ui:repeat

•	 h:dataTable

In this chapter we’ll discuss the differences and coverage among these.

The first two elements are used to repeat everything between the opening and

closing tags. As a developer, it’s up to you to choose the right structure within the

HTML. Without a special structure, you may simply concatenate strings to a paragraph.

Or you may nest it within a table tag and repeat the rows to render a table. Or you might

create a list using the HTML or elements with nested items (). Whatever

you choose to do, you have full control.

As its name suggests, the third element, h:dataTable, repeats its content within the

predefined structure of an HTML table. This offers fewer options but a simpler way to

create tables.

�Tag Handler vs. Component
forEach is a tag handler, whereas the other two elements are components. Remember,

a tag handler comes to life during the compilation of the component tree. When the

component tree is built, JSF adds the enclosed components for each cycle of the loop.

Consider the forEach tag handler: it’s simply an instruction for a repetitive

processing of its child elements, as shown in Listing 23-1.

250

Listing 23-1.  c:forEach Example, Facelets Source

1 <c:forEach items="#{controller.friends}" var="friend">

2 <div>

3 <h:outputText value="#{friend.name}"/>

4 </div>

5 </c:forEach>

Let’s assume the friend list contains three friends: three names are displayed. If

you examine the rendered HTML page (in Firefox, for example, you can press Ctrl+U

to display the HTML source), you’ll see three divs with the names, as you might have

expected, as shown in Listing 23-2.

Listing 23-2.  c:forEach Example, Rendered HTML

1 <div>Sally

2 </div>

3 <div>Bob

4 </div>

5 <div>John

6 </div>

In Listing 23-3 you can take a look at similar logic, except using repeat instead of

forEach.

Listing 23-3.  ui:repeat Example

1 <ui:repeat value="#{controller.friends}" var="friend">

2 <div>

3 <h:outputText value="#{friend.name}"/>

4 </div>

5 </ui:repeat>

If you run this example (as part of a complete page), you’ll get the same output,

visually and as HTML code. Where is the difference?

Well, one observable difference is the component tree. Figure 23-1 shows the

component tree for both structures. As a result of the forEach (tag handler), three

Chapter 23 Repetitive Structures

251

outputTexts will be inserted into the component tree. The tag handler itself won’t be

inserted. On the other hand, repeat (a component) itself is inserted into the component

tree and just one nested outputText. That’s two components as defined in the source

page, and no repetition.

Figure 23-1.  Component tree

The repetition takes place as recently as the render output phase is invoked. If we

want to display three friends, the body of forEach will be repeated three times and

will insert three names belonging to three diffs. As a result, the HTML source of both

structures will be the same.

If you use a tag handler for your loop, the loop is iterated while building the

component tree. If you use a component, it will show up only once within the

component tree. Iteration takes place while interpreting the tree (rendering the page).

Chapter 23 Repetitive Structures

252

Other than the component tree, there’s no observable difference in this short

example. But it wouldn’t be hard to imagine that the different timing and different

component tree might result in distinctly different behavior, depending on the

complexity of the application.

Let’s examine a slightly modified example of the forEach loop, as shown in Listing 23-4.

Listing 23-4.  c:forEach Example with Condition

1 <c:forEach items="#{controller.friends}" var="friend">

2 <c:if test="#{friend.name.length() > 0}">

3 <div>

4 <h:outputText value="#{friend.name}"/>

5 </div>

6 </c:if>

7 </c:forEach>

The only difference is an additional test for non-empty names. Because all friends

have names, the output is still the same.

Next, in Listing 23-5, we’ll modify the repeat in the same manner.

Listing 23-5.  ui:repeat Example with Condition

1 <ui:repeat value="#{controller.friends}" var="friend">

2 <c:if test="#{friend.name.length() > 0}">

3 <div>

4 <h:outputText value="#{friend.name}"/>

5 </div>

6 </c:if>

7 </ui:repeat>

If you run the preceding example, no name will be displayed.

TAG HANDLER VS. COMPONENT PUZZLER

Run the preceding examples and think about what happened. Try to figure it out on your own

before you continue reading. How could you modify the display condition to get it right?

Chapter 23 Repetitive Structures

253

Because a tag handler is interpreted during the compile time (of the component

tree), all information must be available at that time too. At compile time, a component is

simply inserted into the tree. It’s processed during the render phase.

Although that’s a simplified view, it’s sufficient to describe what happened: forEach

and if are both tag handlers. While compiling the tree, the loop is performed and the

condition is checked. So far, everything is okay. But repeat is a component, which

means the loop isn’t performed until the render phase. At compile time, no loop is

performed, no variable friend is known, and thus, no test becomes true.

One possible solution is to use the component panelGroup. Using layout="block"

in conjunction with any style class, this will render a div, if and only if the rendered

condition becomes true. Within a component, the condition is evaluated during the same

phase as the loop is performed. If you omit either the layout or styleClass, then JSF

won’t insert a div and your browser will display all names on a single line. See Listing 23-6.

Listing 23-6.  ui:repeat Example Using Rendered

1 <ui:repeat value="#{controller.friends}" var="friend">

2 <h:panelGroup rendered="#{friend.name.length() > 0}"

3 layout="block" styleClass="dummy">

4 <h:outputText value="#{friend.name}"/>

5 </h:panelGroup>

6 </ui:repeat>

Using a predefined JSF tag (panelGroup) requires some useless effort. An HTML-

friendly approach seems much clearer, as you can see in Listing 23-7.

Listing 23-7.  ui:repeat Example Using an HTML-Friendly Approach

1 <ui:repeat value="#{controller.friends}" var="friend">

2 <div jsf:rendered="#{friend.name.length() > 0}">

3 <h:outputText value="#{friend.name}"/>

4 </div>

5 </ui:repeat>

Chapter 23 Repetitive Structures

254

�Performance Issues
Take a look at the source code of loopDemo in Listing 23-8 and recap your knowledge of

the forEach loop. Within the method getNames() we’ll print a short message. What do

you think: how many times will a single call to loopDemo invoke that method? Not even

once, once, or three times?

Listing 23-8.  Loop Puzzler

 1 private static void loopDemo(){

 2 for (String name : getNames()){

 3 System.out.println("Name is " + name);

 4 }

 5 }

 6

 7 private static List<String> getNames() {

 8 System.out.println("withing getNames");

 9 List<String> names = new ArrayList<>();

10 names.add("Bob");

11 names.add("Anne");

12 names.add("Eve");

13 return names;

14 }

That shouldn’t have been really that hard: the list is built exactly once.

You might expect something similar when retrieving the values for the loop variable.

To verify the behavior of these different tags, let’s perform some tests.

We’ll create three simple classes, a (non-persistent) Friend entity, a named bean

“controller” to handle the JSF part, and a data provider that mimics the relatively slow

access to persistent data (for example, a database).

Listing 23-9.  Friend

 1 public class Friend {

 2 private final String _name;

 3 private final List<Book> _books = new ArrayList<>();

 4

Chapter 23 Repetitive Structures

255

 5 public Friend(String name){

 6 _name = name;

 7 }

 8

 9 public String getName() {

10 return _name;

11 }

12

13 public List<Book> getBooks() {

14 return _books;

15 }

16

17 }

A Friend has a name and holds books. To keep everything as simple as possible, we

grant direct access to the book list by returning the complete list. This simple approach lets

us add a book directly to the list. In a real application, you may hide the list and implement

an addBook() method. Although a book contains other info than its title, we’ll use a very

simple Book class for this demonstration. Create a new class Book with just a field plus

getter and setter for Title. Let NetBeans create the hashCode and equals methods.

Next, we create a named bean, which is simply request scoped. All it does is offer the

friend list to our page. To do that, the data has to be obtained from some data provider. In

a real app, this might be a JPA service. See Listing 23-10.

Listing 23-10.  Controller

 1 @Named

 2 @RequestScoped

 3 public class Controller {

 4

 5 private int _counter;

 6

 7 public int getCounter() {

 8 return _counter;

 9 }

10

11 public List<Friend> getFriends() {

Chapter 23 Repetitive Structures

256

12 _counter++;

13 return DataProvider.instance.getFriends();

14 }

15 }

Besides the getter for the friends, this controller contains a field to count the accesses

to the list. And it provides a getter to access this counter.

Next, you see the simple data provider, as shown in Listing 23-11. It creates a fixed

list of five friends and assigns a random number of books to each. When somebody tries

to access the friend list, we call the retrieveDatafromDB() method. Because this should

mimic a longer-running method, the thread sleeps for 100 ms. In a real Java EE app, we

don’t use sleep() because the server will control the threads for us. But for this little test,

it’s quite okay.

Listing 23-11.  DataProvider

 1 public class DataProvider {

 2

 3 private final List<Friend> _friends = new ArrayList<>();

 4

 5 public static DataProvider instance = new DataProvider();

 6

 7 private DataProvider() {

 8 createData();

 9 }

10

11 /**

12 * retrieves a list of friends

13 * @return friends

14 */

15 public List<Friend> getFriends() {

16 retrieveDatafromDB();

17 return _friends;

18 }

19

20 private void retrieveDatafromDB() {

21 // here might be an access to a DB

Chapter 23 Repetitive Structures

257

22 �// simulate it by a sleep (yea, shouldn't use sleep in an EE

environment)

23 try {

24 Thread.sleep(100); // slow db access

25 } catch (InterruptedException ex) {

26 // ignore

27 }

28 }

29 private void createData() {

30 _friends.clear();

31 String[] names = {"Sally", "Bob", "John", "Mary", "Jim"};

32 for (int i = 0; i < 5; i++){

33 addFriend(names[i]);

34 }

35 }

36

37 private void addFriend(String name) {

38 Friend friend = new Friend(name);

39 Random random = new Random();

40 int count = random.nextInt(5);

41 for (int i = 0; i < count; i++) {

42 String title = "Book." + name.substring(0, 1) + i;

43 Book book = new Book(title);

44 friend.getBooks().add(book);

45 }

46 _friends.add(friend);

47 }

48 }

Now we need a page to display the friend list. We’ll create this page in three different

flavors to examine the different repetitive structures. The intention is to display a list of

friends, and for each friend we’ll display a table with its books. See Listing 23-12.

Chapter 23 Repetitive Structures

258

Listing 23-12.  Display Friends by Repeat (repeat.xhtml)

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:f="http://xmlns.jcp.org/jsf/core"

 6 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 7 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core">

 8 <h:head>

 9 <title>LoopCompare</title>

10 </h:head>

11

12 <h:body>

13 <h1>Test loop ui:repeat</h1>

14

15 AccessCount: #{controller.counter}

16

17 <ui:repeat value="#{controller.friends}" var="friend">

18 <div>

19 #{friend.name} (Access no #{controller.counter})

20 <h:dataTable value="#{friend.books}" var="book">

21 <h:column>

22 - #{book.title} (Access no #{controller.counter})

23 </h:column>

24 </h:dataTable>

25 </div>

26 </ui:repeat>

27

28 AccessCount: #{controller.counter}

29

30 <div>

31 <h:button value="forEach" outcome="forEach"/>

32 <h:button value="repeat" outcome="repeat"/>

33 <h:button value="table" outcome="table"/>

Chapter 23 Repetitive Structures

259

34 </div>

35 </h:body>

36 </html>

In line 15 we simply display the counter before invoking the loop, and in line 28

after that. Lines 17–26 show the loop, constructed by the repeat component. This is the

part we’ll adopt in each file. Lines 31–33 create three buttons to switch between the three

test pages.

For the other two pages, only the part that differs is shown in Listings 23-13 and 23-14.

Listing 23-13.  Display Friends by forEach (forEach.xhtml)

 1 [...]

 2 <h1>Test loop c:forEach</h1>

 3

 4 AccessCount: #{controller.counter}

 5

 6 <c:forEach items="#{controller.friends}" var="friend">

 7 <div>

 8 #{friend.name} (Access no #{controller.counter})

 9 <h:dataTable value="#{friend.books}" var="book">

10 <h:column>

11 - #{book.title} (Access no #{controller.counter})

12 </h:column>

13 </h:dataTable>

14 </div>

15 </c:forEach>

16

17 AccessCount: #{controller.counter}

18 [...]

Listing 23-14.  Display Friends by dataTable (table.xhtml)

 1 [...]

 2 <h1>Test loop h:dataTable</h1>

 3

 4 AccessCount: #{controller.counter}

 5

Chapter 23 Repetitive Structures

260

 6 <h:dataTable value="#{controller.friends}" var="friend">

 7 <h:column>

 8 #{friend.name} (Access no #{controller.counter})

 9 <h:dataTable value="#{friend.books}" var="book">

10 <h:column>

11 - #{book.title} (Access no #{controller.counter})

12 </h:column>

13 </h:dataTable>

14 </h:column>

15 </h:dataTable>

16

17 AccessCount: #{controller.counter}

18 [...]

Each of these pages contains a loop that retrieves the friend list from the controller.

Within this list, another loop is used to display the book list of each friend. At various

places, we print out the current counter. Because the controller is request scoped, it will

be re-created for every page, and thus the counter starts at 0.

RUN AND OBSERVE

Start the project, click another page, click the same page, and observe the results. Compare

your observations to your expectations.

Figure 23-2 takes a look at a sample output (using JSF 2.3 with GlassFish 5.0).

Chapter 23 Repetitive Structures

261

Without digging into implementation details, some results are obvious: repeat

accesses the list only once, as you might have expected, according to the access to a loop

variable, whereas forEach performs massive calls to the getFriends method. In fact, the

number of calls depends on the number of friends and on the nested table. If you omit

the book list, forEach calls getFriends 1 + n times. Including the book list, it needs

1 + 4 × n accesses. dataTable calls the method three times, regardless of how many

friends and independently of whether we use it with or without the inner table.

If you’re wondering why forEach’s counter starts with 1, it’s a tag handler. Its loop is

resolved while building the component tree. Thus there’s a first access before the page is

rendered.

The massive access count may cause problems in your application. From this point

of view, repeat might be the best choice. But for specific applications, you might need to

access individual components within the loop. As a component, repeat doesn’t repeat

its children. It simply repeats the generated output. So, sometimes there’s a need for a

tag handler performing the loop.

Figure 23-2.  Loop problem

Chapter 23 Repetitive Structures

262

The massive method calls depend on the implementation of the ForEachHandler.

Ed Burns (JSF spec lead) is going to investigate this problem. I created a slightly bigger

demo to show the problem, which you can download from webdevelopment-java.info.

To mitigate this problem, you might use a local caching, as seen in Listing 23-15.

Listing 23-15.  Local Cache

 1 private List<Friend> _friends;

 2 public List<Friend> getFriends() {

 3 if (_friends == null) {

 4 _friends = DataProvider.instance.getFriends();

 5 }

 6 return _friends;

 5 }

Listing 23-15 shows how we might modify the Controller class. If, and only if, the

friend list is empty, we’ll perform the slow database access. This is a really short-term

cache because the Controller object is destroyed once the request is finished. But if we

use the forEach tag handler, that might boost performance significantly.

�Summary
JSF offers a couple of different repetitive structures, and we need to distinguish between

components and tag handlers. Whereas tag handlers are resolved during compile time,

components are included into the component tree. This difference has a great impact

on how and when the repetition is performed and may lead to performance problems.

Caching might be a good practice to mitigate such problems.

Chapter 23 Repetitive Structures

https://webdevelopment-java.info

Alumni

PART IV

265
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_24

CHAPTER 24

Alumni
Alumni is a social network application. People may register for one or more classes at

their old school, university, or similar institution. They may use bulletin boards, organize

events, share photos, or engage in peer communication.

Every user may enter and edit information. Because we can’t expect them to be

experts, all dialogs need to be fault-tolerant and provide quick response. In addition to

the techniques discussed so far, we’ll be using the following (as well as others):

•	 Converters and validators

•	 AJAX

•	 Authentication and authorization

•	 Container-based security

•	 Composing components

•	 WebSockets

•	 Changing look and feel

There’s not enough room in this book to discuss the entire application in every

detail. Rather, I'll explain a few techniques in depth, sometimes describing them in

broader terms than we’ll need for Alumni. I'll start with basic implementations to guide

you from a simple to a customized solution.

�Preparing the Application
Every time we’ve created a new application so far, we’ve used a NetBeans wizard to

create a skeleton for us. We may do that for Alumni too, but because NetBeans doesn’t

support Java EE 8 out of the box at the time of writing, we’ll need to modify the Project

Object Model (POM) for using Java EE 8 (as described in Chapter 9).

266

Even more, Alumni isn’t built as a single module application but is divided into

smaller parts for GUI, business layer, storage, and other services. Maven supports such

a split by a multi-modules project. We need to tweak the POM and create sub POMs for

each different module. The following excerpts of selected POMs focus on the aspects

of Java EE 8 as well as the modularization, omitting other stuff like testing. Listing 24-1

starts with the main POM.

Listing 24-1.  Main POM of Alumni (Excerpt)

01 <?xml version="1.0" encoding="UTF-8"?>

02 <project xmlns="http://maven.apache.org/POM/4.0.0"

03 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

04 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

05 http://maven.apache.org/xsd/maven-4.0.0.xsd">

06

07 <modelVersion>4.0.0</modelVersion>

08

09 <properties>

10 <java.version>1.8</java.version>

11 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

12 </properties>

13

14 <groupId>de.mueller-bruehl</groupId>

15 <artifactId>Alumni</artifactId>

16 <version>2017.0.0-SNAPSHOT</version>

17 <packaging>pom</packaging>

18

19 <modules>

20 <module>AlumniGui</module>

21 <module>AlumniBusiness</module>

22 <module>AlumniData</module>

23 <module>AlumniAccount</module>

24 </modules>

25

26 <build>

27 <plugins>

Chapter 24 Alumni

267

28 <plugin>

29 <groupId>org.apache.maven.plugins</groupId>

30 <artifactId>maven-compiler-plugin</artifactId>

31 <version>3.7.0</version>

32 <configuration>

33 <source>${java.version}</source>

34 <target>${java.version}</target>

35 </configuration>

36 </plugin>

37 <plugin>

38 <groupId>org.apache.maven.plugins</groupId>

39 <artifactId>maven-war-plugin</artifactId>

40 <version>3.1.0</version>

41 </plugin>

42 </plugins>

43 </build>

44

45 <dependencyManagement>

46 <dependencies>

47 <dependency>

48 <groupId>javax</groupId>

49 <artifactId>javaee-api</artifactId>

50 <version>8.0</version>

51 <scope>provided</scope>

52 </dependency>

53

54 ... other dependencies go here ...

55

56 </dependencies>

57 </dependencyManagement>

58

59 </project>

Chapter 24 Alumni

268

Beginning with line 19, we define the modules of our application. We’ll create three

modules that will compose the Alumni application:

•	 AlumniGui (GUI layer)

•	 AlumniBusiness (business layer)

•	 AlumniData (database access)

A fourth module, AlumniAccount, will be an independent service used by Alumni

(covered in detail in Chapter 33). Within the dependency management, we predefine

dependencies for our modules. Here we refer to the Java EE 8 API (lines 47-52). Besides

that parent POM, we need to define a POM for each module. Listing 24-2 shows the POM

of AlumniGui. (The other POMs are quite similar—it should be no problem to derive

them too. I'll explain some relevant details later on when explaining selected aspects.)

Listing 24-2.  POM of Module AlumniGui (Excerpt)

01 <?xml version="1.0" encoding="UTF-8"?>

02 <project xmlns="http://maven.apache.org/POM/4.0.0"

03 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

04 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

05 http://maven.apache.org/xsd/maven-4.0.0.xsd">

06 <modelVersion>4.0.0</modelVersion>

07

08 <name>AlumniGui</name>

09

10 <parent>

11 <groupId>de.mueller-bruehl</groupId>

12 <artifactId>Alumni</artifactId>

13 <version>2017.0.0-SNAPSHOT</version>

14 <relativePath>../pom.xml</relativePath>

15 </parent>

16

17 <artifactId>AlumniGui</artifactId>

18 <packaging>war</packaging>

19

20 <dependencies>

21 <dependency>

Chapter 24 Alumni

269

22 <groupId>javax</groupId>

23 <artifactId>javaee-api</artifactId>

24 <scope>provided</scope>

25 </dependency>

26

27 <dependency>

28 <groupId>${project.groupId}</groupId>

29 <artifactId>AlumniBusiness</artifactId>

30 <version>${project.version}</version>

31 </dependency>

32

33 <dependency>

34 <groupId>${project.groupId}</groupId>

35 <artifactId>AlumniData</artifactId>

36 <version>${project.version}</version>

37 </dependency>

38

39 <dependency>

40 <groupId>${project.groupId}</groupId>

41 <artifactId>AlumniService</artifactId>

42 <version>${project.version}</version>

43 </dependency>

44

45 ... other dependencies omitted for brevity ...

46

47 <build>

48 <finalName>${project.artifactId}</finalName>

49 <resources>

50 <resource>

51 <directory>src/main/resources</directory>

52 <filtering>true</filtering>

53 </resource>

54 </resources>

55 </build>

56

57 </project>

Chapter 24 Alumni

270

The GUI module depends on Java EE 8 as well as on the other layers of the

application.

For simple access to entities, the business layer won’t add any value. We either use

the business layer to delegate all data access to the data layer or we allow the GUI to

bypass the business layer and directly access the data layer. Because we’re using JPA,

the application only deals with Java objects. So, the GUI never needs to know about the

database, even if we bypass the business layer. For simplicity’s sake, I’ve chosen the later

approach. Because of that, AlumniGui needs to depend on both AlumniBusiness as well

as AlumniData.

The other modules, as I’ve mentioned, are defined by similar POMs. To avoid

circular dependencies, no other module will depend on AlumniGui.

�Registration Form
Alumni can be used by members only. That means a user must register first. Once

registered, the user may log in at any time. We only collect a small amount of mandatory

personal data during this registration.

The welcome page of Alumni offers a login form and a link to the registration

dialog for new users. Although the registration isn’t the first dialog of the application, it

represents the first action every user needs to perform before using Alumni. And it’s a

good starting point to introduce the next JSF and Java EE features.

Like all other dialogs, this form will validate user input and report potential problems

by displaying messages. That prevents the user from entering invalid data. It also

protects the system from unexpected behavior.

In Books, this validation takes place when the user clicks the Submit button. That

might be a good solution for small pages, but it’s an imposition on bigger ones. Have you

ever been miffed by pages that alerted you a problem in the first input filled after you’ve

filled a few hundred more? To be user-friendly, we’ll provide feedback after every input

field. That’s where AJAX enters the game.

JSF offers a set of components that usually will be translated (rendered) into HTML

components. Some people believe this is an unnecessary abstraction layer. Why code

<h:inputText .../> where HTML expects <input type = "text .../>? The answer

is quite simple: a JSF tag might be handled by a different rendering engine. For example,

a PDF renderer might translate the inputText into an interactive text field. JSF tags are a

kind of domain-specific language (DSL) to create different formats.

Chapter 24 Alumni

271

If we only need to render HTML, we might omit a DSL and code our pages directly

using HTML, enriched with JSF information. (Chapter 5 offers a short introduction

into this kind of coding.) We’ll develop two versions of the registration: one using the

traditional JSF tags and the second using mainly HTML tags. And, of course, we have to

consider security. To prevent the user from injecting HTML code, we have to correctly

escape the output. A JSF tag will handle that automatically for us.

Listing 24-3 shows the first raw version of the registration form, and Figure 24-1

shows the extract.

Listing 24-3.  Registration Form

 1 <h:form>

 2

 3 <div class="inputPart">

 4 <h:outputLabel for="firstName"

 5 value="#{msg.lblFirstName}"

 6 styleClass="label"/>

 7 <h:message id="msgFirstName" for="firstName"

 8 styleClass="errorMessage"/>

 9 <h:inputText id="firstName"

10 value="#{register.accountRequest.firstName}"

11 styleClass="inputFull"/>

12 </div>

13

14 <div class="inputPart">

15 <h:outputLabel for="lastName"

16 value="#{msg.lblLastName}"

17 styleClass="label"/>

18 <h:message id="msgLastName"

19 for="lastName"

20 styleClass="errorMessage"/>

21 <h:inputText id="lastName"

22 value="#{register.accountRequest.lastName}"

23 styleClass="inputFull"/>

24 </div>

25

Chapter 24 Alumni

272

26 <div class="inputPart">

27 <h:outputLabel for="loginName"

28 value="#{msg.lblLoginName}"

29 styleClass="label"/>

30 <h:message id="msgLoginName"

31 for="loginName"

32 styleClass="errorMessage"/>

33 <h:inputText id="loginName"

34 value="#{register.account.loginName}"

35 styleClass="inputFull"/>

37 </div>

38

39 <div class="inputPart">

40 <h:outputLabel for="email"

41 value="#{msg.lblEmail}"

42 styleClass="label"/>

43 <h:message id="msgEmail"

44 for="email"

45 styleClass="errorMessage"/>

46 <h:inputText id="email"

47 value="#{register.accountRequest.email}"

48 styleClass="inputFull"/>

49 </div>

50

51 <div class="inputPart">

52 <h:outputLabel for="password"

53 value="#{msg.lblPassword}"

54 styleClass="label"/>

55 <h:message id="msgPassword"

56 for="password"

57 styleClass="errorMessage"/>

58 <h:inputSecret id="password"

59 styleClass="inputFull"/>

60 </div>

61

Chapter 24 Alumni

273

62 <div class="inputPart">

63 <h:outputLabel for="repeatPassword"

64 value="#{msg.lblRepeatPassword}"

65 styleClass="label"/>

66 <h:message id="msgRepeatPassword"

67 for="repeatPassword"

68 styleClass="errorMessage"/>

69 <h:inputSecret id="repeatPassword"

70 value="#{register.password}"

71 styleClass="inputFull"/>

72 </div>37

73 <div class="buttonBar">

74 <h:commandButton value="#{msg.btnRegister}"

75 action="#{register.register()}"

76 styleClass="button"/>

77 </div>

78

79 </h:form>

Figure 24-1.  Extract of registration form

Chapter 24 Alumni

274

In this form we have a couple input fields, each embedded in its own div, together

with a label and a message. For example, take a look at the first name (lines 3–12). We

start with the label (lines 4–6). After that label, a message (lines 7 and 8) will be displayed

in case of error. Finally, we have the appropriate input field where the user can key in the

information (lines 9–11).

For the password fields, we use inputSecret in place of inputText. This renders a

secret input field that displays dots for every character, hiding the real input. Apart from

that, it’s used like the other input fields.

As mentioned, error messages will be displayed in case of validation error. If a form is

created like this, validation only takes place when the user clicks the Register button.

Looking at this code, some questions may arise:

•	 How can we perform the validation?

•	 How can we provide immediate feedback after entering each value?

•	 All input parts look similar—is it possible to predefine and reuse such

a structure?

•	 How do we process the password?

The next few chapters answer these questions.

�Summary
This chapter introduced Alumni, a social media application that depends on user

input. That means we need all the dialogs to be fault-tolerant and to provide immediate

feedback.

Alumni is mainly built up by different software modules for GUI, business logic,

and data. An independent microservice manages the user both for Alumni and for the

authentication. This chapter introduced interesting parts of the required POMs, with

special care given to Java EE 8.

Developing a registration form like we developed forms for Books would seem

tedious and brings up questions of how it could be done better.

Chapter 24 Alumni

275
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_25

CHAPTER 25

Validation
Before JSF transfers data into the model, the raw data has to be converted and validated.

A short overview of bean validation was given in Chapter 15. As stated there, JSF offers

its own validation specification besides bean validation. Although bean validation is the

newer technique, it’s not a replacement for the older JSF validation—sometimes it’s very

handy to use this “old” validation.

This chapter covers different kinds of validation.

�Bean Validation
Bean validation uses special constraints that are applied to the fields or accessors

by annotations. Some of these were mentioned in earlier chapters, when describing

the Book entity in Books. You can get a table of these constraints as part of the Java

EE 8 tutorial (https://javaee.github.io/tutorial/bean-validation.html). A full

description of the bean validation is also available at http://beanvalidation.org.

To further our discussion, Listing 25-1 shows an excerpt of the Account entity used

for the registration process.

Listing 25-1.  Data Model for the Registration

01 @Entity

02 @Table(name = "Account")

03 public class Account implements Serializable {

04

05 // <editor-fold defaultstate="collapsed" desc="Property Id">

06 @Id

07 @Column(name = "id")

08 private byte[] _id = UuidUtil.toBytes(UUID.randomUUID());

09

https://javaee.github.io/tutorial/bean-validation.html
http://beanvalidation.org/

276

10 public String getId() {

11 return HashUtils.byte2hex(_id);

12 }

13 // </editor-fold>

14

15 // <editor-fold defaultstate="collapsed" desc="Property Status">

16 @Column(name = "status")

17 private AccountStatus _status = AccountStatus.New;

18

19 public AccountStatus getStatus() {

20 return _status;

21 }

22

23 public void setStatus(AccountStatus status) {

24 _status = status;

25 }

26 // </editor-fold>

27

28 // <editor-fold defaultstate="collapsed" desc="Property LoginName">

29 @Column(name = "loginName")

30 private String _loginName;

31

32 @Size(min = 1, max = 50)

33 public String getLoginName() {

34 return _loginName;

35 }

36

37 public void setLoginName(String loginName) {

38 _loginName = loginName;

39 }

40 // </editor-fold>

41

Chapter 25 Validation

277

42 // <editor-fold defaultstate="collapsed" desc="Property FirstName">

43 @Column(name = "firstName")

44 private String _firstName = "";

45

46 @Size(min = 1, max = 50)

47 public String getFirstName() {

48 return _firstName;

49 }

50

51 public void setFirstName(String firstName) {

52 _firstName = firstName;

53 }

54 // </editor-fold>

55

56 // <editor-fold defaultstate="collapsed" desc="Property LastName">

57 @Column(name = "lastName")

58 private String _lastName;

59

60 @Size(min = 1, max = 50, message = "{validation.lastname.size}")

61 public String getLastName() {

62 return _lastName;

63 }

64

65 public void setLastName(String lastName) {

66 _lastName = lastName;

67 }

68 // </editor-fold>

69

70 // <editor-fold defaultstate="collapsed" desc="Property Email">

71 @Column(name = "email")

72 private String _email = "";

73

Chapter 25 Validation

278

74 @Size(min = 6, max = 100)

75 public String getEmail() {

76 return _email;

77 }

78

79 public void setEmail(String email) {

80 _email = email;

81 }

82 // </editor-fold>

83 }

Besides the id, this excerpt shows some—but not all—fields that correspond to the

appropriate input fields of the UI. The names must be from 1–50 characters in length.

The email has to follow a special pattern, which is enforced by a regular expression

(covered later in this chapter). The size of the email is restricted to 100 characters.

Note T here are stories of impossible registration because the system validated a
minimum length of 3, but the valid name (as far as I remember, this can occur with
some African names) was only 1 character long.

JSF automatically invokes bean validation. Behind the scenes, there’s a lot to do:

JSF must discover whether bean validation is used and invoke it if needed. The essence

of this invocation is shown in Listing 25-2, a short code snippet that demonstrates the

principle.

Listing 25-2.  Programmatic Invocation of Bean Validation

1 @Inject private Account _account;

2

3 Validator validator = Validation.buildDefaultValidatorFactory()

4 .getValidator();

5 Set<ConstraintViolation<Accountt>> violations =

6 validator.validate(_account);

This snippet only shows how to check the violations and assign them to a set. What

JSF performs behind the scenes is much more than this.

Chapter 25 Validation

279

If JSF discovers one or more constraint violations, it will generate the appropriate

messages and rerender the current page to display them. The data isn’t transferred to the

model, and whatever should happen when the user clicks the Register button won’t be

executed.

Bean validation offers an option to annotate a customized message:

1 @Size(min = 1, max = 50,

2 message = "Length of first name must be between {min} and {max}

characters")

You may want to develop an international application. By the approach shown

here, it’s possible to customize the message, but not to localize it. You do that by

creating a ValidationMessages.properties file and its localized variants (for example,

ValidationMessages_de.properties) in the default package. In this file, you can

override the default values or create your own customized messages, including their

localized variants.

�Creating a Customized Message
	 1.	 (Optional) In the project tree, select the Other Sources/src/

main/resources folder.

	 2.	 To create a properties file using NetBeans, choose New File

(or press Ctrl+N). The New File dialog opens (Figure 25-1).

Figure 25-1.  New File dialog

Chapter 25 Validation

280

	 3.	 In the dialog, choose the category Other and then Properties File.

	 4.	 Click Next.

	 5.	 In the Name field, enter ValidationMessages.

	 6.	 If you did step 1, the folder should be prepopulated with src\

main\resources. Otherwise, enter this value or browse to the

desired folder.

	 7.	 Click Finish. NetBeans creates the properties file for you.

	 8.	 Right-click the properties file and choose Customize. NetBeans

opens the Customizer dialog, shown in Figure 25-2.

	 9.	 Add locale(s) of your choice.

	 10.	 Right-click any of these new files and choose Open (not Edit).

NetBeans opens the properties editor with all locales.

	 11.	 Click New Property.

	 12.	 For Key, enter javax.validation.constraints.Size.message.

	 13.	 For Value, enter your customized message. For example, The
length must be between {min} and {max} characters.

	 14.	 Run the app and enter a name that’s either too short or too long.

JSF displays the customized message.

Figure 25-2.  Customizer dialog

Chapter 25 Validation

281

�Details of Customized Messages
So, how can you determine that magic key? And how do you create other customized

messages for the same constraint (on other fields or getters)? You’ll find the answer in this

book—or by browsing the Java source code. Using NetBeans, place the cursor on the @Size

annotation and invoke press Ctrl+B (Ctrl+Enter if you’re using Eclipse). This is a shortcut

for Go To Declaration. NetBeans opens Size.java in its editor, shown in Listing 25-3.

Listing 25-3.  Size.java (Excerpt)

 1 [...]

 2 public @interface Size {

 3 [...]

 4 public String message()

 5 default "{javax.validation.constraints.Size.message}";

 6

 7 public int min() default 0;

 8

 9 public int max() default 2147483647;

10 [...]

11 }

Here you’ll find the declaration of message with a default value. Look at the

properties min and max. Both are public and may be referenced in the value of the

message if placed in the message within curly braces.

With that knowledge, we can create different keys at different locations.

See Listing 25-4.

Listing 25-4.  Customized Message with Customized Key

1 @Size(min = 3, max = 50, message = "{validation.lastname.size}")

2 public String getLastName() {

3 return _lastName;

4 }

Chapter 25 Validation

282

Watch out for the curly braces, which indicate the key. Without them, the

message would be treated as plain text. The curly braces are not part of the key. In

ValidationMessages.properties, we now can add the key validation.lastname.size

and a value like this:

The length of LastName must be between {min} and {max} characters.

�Null Handling
Bean validation offers two constraints to handle null (@Null) or non-null (@NotNull)

values. Before conversion, all UI input is treated as strings by JSF. Thus, an empty input

field is an empty string, which is something else than null. You may instruct JSF to treat

empty strings as null in the web.xml file. See Listing 25-5.

Listing 25-5.  Context Parameter to Treat Empty Input as null

1 <context-param>

2 <param-name>

3 javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL

4 </param-name>

5 <param-value>true</param-value>

6 </context-param>

Because it’s always good to avoid nulls, I recommend not using this option. If an

empty input isn’t allowed, define a minimum length or set the attribute required to

true. See Listing 25-6.

Listing 25-6.  required Attribute (Including Customized Message)

1 <h:inputText id="lastName"

2 value="#{register.accountRequest.lastName}"

3 required="true"

4 requiredMessage="#{msg.msgValueRequired}"

5 styleClass="inputFull">

Chapter 25 Validation

283

�Validation Method
The validation method is one of JSF’s own validation features. By defining the Facelets

(JSF page), it’s possible to add the attribute validator, which takes the name of a

method to validate the input, as in Listing 25-7.

Listing 25-7.  Add validator to Markup

1 <h:inputText id="email"

2 value="#{register.accountRequest.email}"

3 required="true"

4 requiredMessage="#{msg.msgValueRequired}"

5 validator="#{register.checkEmail}"

6 styleClass="inputFull">

In line 5, the method checkEmail of the Register bean is called. Three parameters

are passed to this method: The FacesContext, the Uicomponent, and the converted value

as object, which you have to cast to the appropriate type. See Listing 25-8.

Listing 25-8.  validator Method to Check the Email

 1 public void checkEmail(FacesContext context,

 2 UIComponent component,

 3 Object value) {

 4 String address = (String) value;

 5 if (!address.matches(

 6 �"(\\w[a-zA-Z_0-9+-.]*\\w|\\w+)@(\\w(\\w|-|\\.)*\\w|\\w+)\\.

[a-zA-Z]+"))\

 7 {

 8 String msg = Helper.getMessage("errEmail");

 9 throw new ValidatorException(new FacesMessage(msg));

10 }

11 }

Chapter 25 Validation

284

In the case of a converting problem, the validator method throws a

ValidatorException, which takes a message of your choice. JSF will collect all messages

(there may be exceptions from other components) and display them while rerendering

the page, if you’ve defined appropriate message tags within the page. If you missed such

a message tag, JSF will display all messages when you define the development stage in

the web.xml file (see Chapter 6).

�Validator
Besides specifying a validation method, you may declare a validator with a special tag.

Such a validator has to be inserted into the desired component, as in Listing 25-9.

Listing 25-9.  validateLength

1 <h:inputText id="lastName"

2 value="#{register.accountRequest.lastName}"

3 styleClass="inputFull">

4 <f:validateLength minimum="3" maximum="50"/>

5 </h:inputText>

Listing 25-9 demonstrates this in line 4. validateLength is a predefined validator

that performs the same validation that we did before using bean validation with the

@Size constraint.

If you want to override or localize the messages, you can put the desired keys into

your messages.properties file. For the length validator, the key is javax.faces.Length.

JSF comes with a couple of predefined validators. For a list, see the JSF core library

section in Appendix C. You can also define your own validators. Your validator needs to

implement Validator and override the validate method. It will be registered by a

@FacesValidator annotation, as shown in Listing 25-10. I assume the remaining part of that

class is really self-explanatory. Listing 25-11 demonstrates the usage of our validator (line 4).

Listing 25-10.  Custom validator

 1 @FacesValidator(value = "EmailValidator")

 2 public class EmailValidator implements Validator {

 3

 4 @Override

Chapter 25 Validation

285

 5 public void validate(FacesContext context, UIComponent component,

 6 Object value) throws ValidatorException {

 7 if (value == null) {

 8 return;

 9 }

10 if (!isValidEmail("" + value)) {

11 String msg = Helper.getMessage("msgNoEmail");

12 throw new ValidatorException(new FacesMessage(msg));

13 }

14 }

15

16 public static boolean isValidEmail(String address) {

17 return address.matches(

18 �"(\\w+|\\w(\\w|[+-.])*\\w)@(\\w+|\\w(\\w|[-.])*\\w)\\.

[a-zA-Z]+");

19 }

20 }

Listing 25-11.  Usage of Custom Validator

1 <h:inputText id="email"

2 value="#{register.accountRequest.email}"

3 styleClass="inputFull">

4 <f:validator validatorId="EmailValidator"/>

5 </h:inputText>

�Multi-Component Validation
On the registration page, a password is queried from the user. To prevent a typo, the

user has to reenter the password a second time. The validator needs to check the second

input against the first one. This is a kind of multi-component validation.

JSF 2.3 introduced a multi-component validation. It’s not a special JSF validation

feature but is built on standard bean validation.

Chapter 25 Validation

286

Usually every field must be validated before it’s transferred to the data model. To

perform the multi-component validation, we may need access to the value of another

field of the model. But this field also will be transferred into the model only if it could be

validated before. In other words, we need a validation to transfer a field into the model and

we need the value inside the model to perform the validation. A kind of deadlock.

JSF uses a simple trick: the data model is temporarily copied, and this copy receives

the new values before the validation takes place. If the copy could be validated, then the

values are pushed to the data model.

Multi-component validation needs to be configured within web.xml, as shown in

Listing 25-12.

Listing 25-12.  Context Parameter within web.xml to Enable Multi-Component

Validation

01 <context-param>

02 �<param-name>javax.faces.validator.ENABLE_VALIDATE_WHOLE_BEAN</param-name>

03 <param-value>true</param-value>

04 </context-param>

We need to define different validation groups within our data model—for example,

entity. JSF allows definition of different validation groups in the validateBean tag.

Suppose we want the user to repeat his email. In the page representation, we define two

fields, belonging both to the default validation group and to a special validation group for

the multi-component validation. Here, this special group is de.muellerbruehl.demo.

RepeatedEntryConstraint. You may declare any interface you like to use as the group name.

Assigning an input field to multiple validation groups isn’t a new feature. But JSF 2.3

introduced the new tag validateWholeBean, which must be placed after all the input

fields. This is where the new action takes place—see lines 23–25 in Listing 25-13).

Listing 25-13.  Example of Repeated Input (Must be Placed in an h:form)

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html xmlns="http://www.w3.org/1999/xhtml"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:f="http://xmlns.jcp.org/jsf/core">

 6 <h:body>

 7 <h:form>

Chapter 25 Validation

287

 8

 9 <div>

10 <h:outputLabel value="Enter email"/>

11 <h:inputText id="email1" value="#{emailBean.email1}"/>

12 <h:message id="msgEmail1" for="email1"/>

13 </div>

14

15 <div>

16 <h:outputLabel value="Repeat email"/>

17 <h:inputText id="email2" value="#{emailBean.email2}"/>

18 <h:message for="emailValidator"/>

19 </div>

20

21 <h:commandButton value="check" actionListener="null"/>

22

23 <f:validateWholeBean value="#{emailBean}"

24 �validationGroups="de.muellerbruehl.demo.

RepeatedEntryConstraint"

25 id="emailValidator"/>

26

27 </h:form>

28 </h:body>

29 </html>

The preceding listing creates a form with two input fields labled “Enter email” and

“Repeat email.” The first one contains an h:message, which is assigned directly to it,

whereas the message tag that’s placed nearby the second input field is assigned for the

validateWholeBean tag. This validator will validate both input fields. If they differ, a

“Both input fields must match” message will be displayed just after the second input.

The validation will be performed when the user clicks the check button (line 21). This

button performs no special action—the only purpose of this form is to show how

multi-field validation works.

In this example, we check whether an email is entered the same twice. We might

also check a password repetition. To create a more generic validator, we don’t create an

EmailValidator but a RepeatedEntryValidator. This validator will receive a copy of our

data model—here, an instance of the class EmailBean (line 23). With the generalization

Chapter 25 Validation

288

in mind, the validator will accept an interface RepeatedValueHolder. The duty of this

interface is to provide the two input fields. See Listing 25-14.

Listing 25-14.  Interface RepeatedValueHolder

 1 public interface RepeatedEntryHolder {

 2

 3 String getValue1();

 4

 5 String getValue2();

 6 }

The validator needs to implement a ConstraintValidator, which takes two

arguments (Listing 25-15, line 2): our constraint definition and our value holder.

Listing 25-15.  Validator

 1 public class RepeatedEntryValidator

 2 �implements ConstraintValidator<RepeatedEntryConstraint,

RepeatedEntryHolder> {

 3

 4 @Override

 5 public void initialize(RepeatedEntryConstraint constraintAnnotation) {

 6 }

 7

 8 @Override

 9 public boolean isValid(RepeatedEntryHolder other,

10 ConstraintValidatorContext context) {

11 return other.getValue1().equals(other.getValue2());

12 }

13

14 }

The ConstraintValidator interface forces us to implement two methods, for

initialization (initialize, lines 4–6) and validation (isValid, lines 8-12). Because we

don’t need to initialize our validator, the first method implementation remains empty.

The validation is really simple: we just return whether both values are equal.

Chapter 25 Validation

289

Next we need to define our constraint. Each constraint needs to host three attributes,

as shown in Listing 25-16. (For more, see https://javaee.github.io/javaee-spec/

javadocs/javax/validation/Constraint.html.)

Listing 25-16.  RepeatedEntryConstraint

 1 @Constraint(validatedBy = RepeatedEntryValidator.class)

 2 @Documented

 3 @Target(TYPE)

 4 @Retention(RUNTIME)

 5 public @interface RepeatedEntryConstraint {

 6

 7 String message() default "Both input fields must match";

 8

 9 Class<?>[] groups() default {};

10

11 Class<? extends Payload>[] payload() default {};

12 }

Line 1 defines which validator this constraint is validated by.

For the three attributes, we only provide a simple value for the message (line 7).

Instead of providing a literal, as in this simple example, it may be better to provide a key

to a localizable string.

The last part of our validation puzzle is the backing bean for our page, as shown in

Listing 25-17.

Listing 25-17.  EmailBean

 1 @Named

 2 @RequestScoped

 3 @RepeatedEntryConstraint(groups = RepeatedEntryConstraint.class)

 4 public class EmailBean implements RepeatedEntryHolder, Cloneable {

 5

 6 //<editor-fold defaultstate="collapsed" desc="Property Email1">

 7 private String _email1 = "";

 8

 9 @NotNull

Chapter 25 Validation

https://javaee.github.io/javaee-spec/javadocs/javax/validation/Constraint.html
https://javaee.github.io/javaee-spec/javadocs/javax/validation/Constraint.html

290

10 �@Pattern(regexp = "(\\w+|\\w(\\w|[+-.])*\\w)@(\\w+|\\w(\\w|

[-.])*\\w)\\.[a-zA-Z]+",

11 message = "This is not a valid email")

12 public String getEmail1() {

13 return _email1;

14 }

15

16 public void setEmail1(String email1) {

17 _email1 = email1;

18 }

19 //</editor-fold>

20

21 //<editor-fold defaultstate="collapsed" desc="Property Email2">

22 private String _email2 = "";

23

24 @NotNull

25 public String getEmail2() {

26 return _email2;

27 }

28

29 public void setEmail2(String email2) {

30 _email2 = email2;

31 }

32 //</editor-fold>

33

34 �//<editor-fold defaultstate="collapsed" desc="Implement

RepeatedEntryHolder">

35 @Override

36 public String getValue1() {

37 return _email1;

38 }

39

40 @Override

41 public String getValue2() {

42 return _email2;

43 }

Chapter 25 Validation

291

44 //</editor-fold>

45

46 //<editor-fold defaultstate="collapsed" desc="Implement Cloneable">

47 @Override

48 protected Object clone() throws CloneNotSupportedException {

49 EmailBean other = (EmailBean) super.clone();

50 other.setEmail1(this.getEmail1());

51 other.setEmail2(this.getEmail2());

52 return other;

53 }

54 //</editor-fold>

55 }

This class is annotated by our constraint (line 3). Because we use this interface for

the group name, too, its class is declared for groups again (line 4). Remember, we might

have used a different interface for the group name.

The bean implements both RepeatedEntryHolder and Clonable. We need the first

for passing into the validator—otherwise, the validator would have needed to accept an

instance of the EmailBean class, which prevents generalization. Remember, validation in

JSF takes place before the data is transferred into the model (backing bean). Multi-field

validation takes place in a copy of the object, which is why we need to clone it. There’s

no need to copy the email fields because JSF will set them within the clone to the current

input fields.

As I hope you can see, this is a lot of effort for just validating a field the user needs to

repeat. In my opinion, such effort is only worthwhile if the validation needs to perform

more than just comparing two fields. Because I didn’t use the password comparison for

this explanation, you can guess that I've chosen a different approach for comparing the

passwords in Alumni. In other words, we won’t use the built-in multi-validation for such

a simple scenario.

�Self-Made
The backing bean for the registration refers to an account that contains the target

password field. This password will be compared to another field that will be placed in the

form before the account’s password. This first password field is held by the backing bean.

Chapter 25 Validation

292

The inputSecret for the password repetition refers to the checkPassword method of

this bean: validator="#{register.checkPassword}". See Listing 25-18.

Listing 25-18.  Excerpt of the Registration Bean

 1 private Account _account = new Account();

 2

 3 public Account getAccount() {

 4 return _account;

 5 }

 6

 7 public void setAccount(Account account) {

 8 this._account = account;

 9 }

10

11 String _password;

12

13 public String getPassword() {

14 return _password;

15 }

16

17 public void setPassword(String password) {

18 _password = password;

19 }

20

21 public void checkPassword(FacesContext context,

22 UIComponent component,

23 Object value) {

24 if (_password != null && !_password.equals("" + value)) {

25 String msg = Helper.getMessage("msgPasswordMismatch");

25 throw new ValidatorException(new FacesMessage(msg));

27 }

28 }

For the password check, our validator needs to compare the value of the second

entry with the first one. Because the data isn’t transferred to the model yet (it will be after

the successful validation), we need to compare the raw values of the input component.

Chapter 25 Validation

293

In the solution given, the raw value is compared to the password field, which needs to be

transferred to the bean before. This is what AJAX, the topic of the next chapter, is used for.

Without using AJAX, we also need to retrieve the raw value of the first password field.

We'll get it out of the component tree, as shown in Listing 25-19.

Listing 25-19.  Example of Multi-Component Validation

 1 �public void checkPassword(FacesContext context, UIComponent

component, Obj\

 2 ect value) {

 3 UIViewRoot root = context.getViewRoot();

 4 �String targetId = component.getNamingContainer().getClientId() +

":passw\

 5 ord";

 6 Object password = ((HtmlInputSecret) root.findComponent(targetId))

 7 .getValue();

 8 if (!password.equals("" + value)) {

 9 String msg = Helper.getMessage("msgPasswordMismatch");

10 throw new ValidatorException(new FacesMessage(msg));

11 }

12 }

This method shown in Listing 25-19 replaces the one in Listing 25-18.

�Summary
Even though JSF has offered its own validation since the early days, it’s now possible to

use Java EE’s bean-validation feature. JSF invokes bean validation automatically if the

data model is annotated with validation constraints. Since JSF 2.3 (Java EE 8), a multi-

component validation based on bean validation groups is available. It needs a lot of

boilerplate code, so it’s best used if you need complex validations. Simply comparing two

fields for identical values might be implemented easier without this new feature.

Chapter 25 Validation

295
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_26

CHAPTER 26

AJAX Components
In a normal request, the browser queries for a whole page. By contrast, AJAX

(Asynchronous JavaScript and XML) is commonly used to query only small portions of

data with a special object called the XMLHttpRequest. That object is used to query data

in the background (asynchronous) while the page is still displayed. Depending on the

response, parts of the page might be rerendered. In JSF, this is called a partial request.

When the term was first used, the response was some XML data. Nowadays, the most

preferred format for the response’s payload is a JSON string, which is more compact than

an XML document. Or, if desired, a developer might send plain text as payload. But the

technique behind the scenes is still called AJAX.

�Using AJAX for Immediate Feedback
AJAXifying a dialog can help improve the user experience. For example, the content

of each single input component may be sent to the server and provide an immediate

feedback to the user. Although AJAX can also be useful for smaller dialogs, such as the

category editor of Books, I’ll introduce AJAX for JSF by way of the registration form.

JSF offers a special tag, <f:ajax>. One way to AJAXify a component is to embed this

tag into the component. In the case of the registration form, we simply put it into the

<h:inputText> elements, as shown in Listing 26-1.

Listing 26-1.  Registration Form, AJAXified (Excerpt)

 1 <h:form>

 2

 3 <div class="inputPart">

 4 <h:outputLabel for="firstName"

 5 value="#{msg.lblFirstName}"

 6 styleClass="label"/>

296

 7 <h:message id="msgFirstName" for="firstName"

 8 styleClass="errorMessage"/>

 9 <h:inputText id="firstName"

10 value="#{register.account.firstName}"

11 styleClass="inputFull">

12 <f:ajax render="@this msgFirstName"/>

13 </h:inputText>

14 </div>

15

16 <div class="inputPart">

17 <h:outputLabel for="lastName"

18 value="#{msg.lblLastName}"

19 styleClass="label"/>

20 <h:message id="msgLastName"

21 for="lastName"

22 styleClass="errorMessage"/>

23 <h:inputText id="lastName"

24 value="#{register.account.lastName}"

25 styleClass="inputFull">

26 <f:ajax render="@this msgLastName"/>

27 </h:inputText>

28 </div>

29

30 <div class="inputPart">

31 <h:outputLabel for="email"

32 value="#{msg.lblEmail}"

33 styleClass="label"/>

34 <h:message id="msgEmail"

35 for="email"

36 styleClass="errorMessage"/>

37 <h:inputText id="email"

38 value="#{register.account.email}"

39 styleClass="inputFull">

40 <f:ajax render="@this msgEmail"/>

41 </h:inputText>

42 </div>

Chapter 26 AJAX Components

297

43

44 <div class="buttonBar">

45 <h:commandButton value="#{msg.btnRegister}"

46 action="#{register.register()}"

47 styleClass="button"/>

48 </div>

49

50 </h:form>

This form contains three AJAXified elements (see lines 12, 26, and 40). The render

attribute tells JSF which components should be rendered when the data is sent back

from the server. @this is a special keyword that refers to the surrounding (parent)

component. msgXXX is the name of the associated message.

When the user leaves an input field, JSF invokes an asynchronous request and

sends the content of this field to the server. This value will be converted, validated, and

if validation succeeded, transferred to the model. Then the server sends back the new

content of the two mentioned components (each @this and the message) to render.

Doing so, we provide immediate feedback to the user, similar to a desktop application.

Using the ajax tag is quite simple and hides away all the JavaScript code. JSF

completely handles the server side, so no special programming is needed.

The form shows a very basic use of the <f:ajax> tag, which almost uses some

default values. For example, we omit the event and the component on which this request

executes. By default, the parent component of <f:ajax> is executed (sent to the server)

during its change event. The default event depends on the component’s type. If the

component holds a value (such as inputText, selectOneMenu, and so on), then the

default is onChange. For components that are clicked, like buttons or links, it defaults to

onClick.

All these defaults might be changed. Let’s assume we want to act on the

repeatPassword field’s onBlur event and execute both password fields:

<f:ajax event="blur" execute="@this password" render="msgRepeatPassword"/>

We’ll go over these and other options and attributes when we discuss more

complex forms.

Chapter 26 AJAX Components

298

Besides nesting this tag into a component’s tag, it’s possible to nest one or more

components inside the <f:ajax> tag, as seen in Listing 26-2.

Listing 26-2.  AJAX as Parent for Other Components

01 <f:ajax>

02 <component1/>

03 <component2/>

04 ...

05 </f:ajax>

Instead of using the ajax tag, you might use the JSF JavaScript API—for example, if

implementing a form using HTML-friendly markup, or when you like to combine the

partial request with other scripts, such as performing some JavaScript validation and

sending the partial request afterwards.

Listing 26-3 shows an example of an HTML-friendly markup, omitting the JSF tags.

Listing 26-3.  AJAX with HTML-Friendly Markup

<input type="input"

 jsf:value="#{register.password}"

 onchange="jsf.ajax.request(this, event);"/>

HTML uses onchange to react on the change event. In JSF’s ajax tag, the on prefix is

omitted.

Depending on the requirements, it’s possible to receive and process the response

directly via JavaScript without using the simplicity of the ajax tag. See Listing 26-4.

Listing 26-4.  Skeleton for a Self-Made AJAX Response Handler

 1 <script>

 2 function handleAjax(data) {

 3 var status = data.status;

 4

 5 switch (status) {

 6 case "begin":

Chapter 26 AJAX Components

299

 7 // start of the Ajax request

 8 break;

 9

10 case "complete":

11 // Ajax response is completed

12 break;

13

14 case "success":

15 // Ajax response is processed and HTML DOM updated

16 alert(data.responseText);

17 break;

18 }

19 }

20

21 jsf.ajax.addOnEvent(handleAjax);

22 </script>

Listing 26-4 shows the principle of such a handler. Line 21 registers the handleAjax

function to the onEvent handler. Now this function will be called several times with its

current status: at the start of the request (line 6), when the response is completed (line 10),

and just after the HTML DOM has been updated after successfully processing the response

(line 14). In this example we simply alert the response’s text.

Using the JavaScript approach might be helpful for special requirements. I mention

it here for completeness. (Within the Java EE 8 tutorial, there’s one page about JavaScript

AJAX, at https://javaee.github.io/tutorial/jsf-ajax010.html.) We’ll use the JSF

ajax tag.

Listing 26-1 showed basic use of the ajax tag only. Besides defining the elements

that will be rendered during the response, we can define the event to react on or the

GUI elements that will be processed by invoking their setters on the server side. We can

also define a listener—a method that will be invoked on the server side. I’ll explain such

features later in this book when they’re used for Alumni.

Chapter 26 AJAX Components

https://javaee.github.io/tutorial/jsf-ajax010.html

300

�Summary
AJAX can be used to send partial requests to the server. Because only small parts of the

page are used in such a request-respond cycle, the communication usually performs

quickly. This technique allows transfer of a single field into the data model and/or

provides immediate feedback to the user.

AJAXifying a JSF application is as simple as adding the <f:ajax> tag to a component.

Due to defaults, this is sufficient in many cases. For more complete control, the

application developer may add attributes to override the defaults.

A partial request might be initiated by a script, too. JSF offers an appropriate library.

Chapter 26 AJAX Components

301
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_27

CHAPTER 27

Building Composite
Components
Remember the questions at the end of Chapter 24? Is it possible to predefine and reuse

such similar input structures? This chapter shows how to build such components.

Before JSF 2.0, you could still create your own components. These custom

components follow a special convention to programmatically implement behavior with

Java code. Sometimes that’s useful to create components with completely new behavior.

Beginning with JSF 2.0, a new feature was introduced: composite components.

With this feature you simply use Facelets to compose reusable components of existing

elements—you can treat them as kind of lightweight custom components.

�Transform into a Composition
In the registration form, we use a label, input field, and message for almost every data

field. The goal is to transform this coherent series of components into a composition—a

composite component.

Listing 27-1 takes a look at the input part for firstName.

Listing 27-1.  Input Part for firstName

 1 <div class="inputPart">

 2 <h:outputLabel for="firstName"

 3 value="#{msg.lblFirstName}"

 4 styleClass="label"/>

 5 <h:inputText id="firstName"

 6 value="#{register.account.firstName}"

 7 styleClass="inputMedium">

302

 8 <f:ajax render="@this msgFirstName"/>

 9 </h:inputText>

10 <h:message id="msgFirstName" for="firstName"

11 styleClass="errorMessage"/>

12 </div>

This is composed of a label, an AJAXified input field, and a message, all nested

within a div. The same structure applies to lastName. Email is similar but contains

an additional validator. We’ll focus on the names first to create a simple version of a

reusable composite component.

Now let’s treat the part shown in Listing 27-1 as a component. It displays a label

and offers an input field for a variable. If we want to use it for the last name, we have

to exchange these two values from outside of this component. Both the ajax and the

message tags are used inside the component only. There’s no need to pass some value

from the outside into these tags.

If we want to convert this snippet into a component, we need to define something to

pass the label text as well as the input variable into. We need to define an interface with

two attributes. For the interface definition of composite components, JSF offers some

special tags from the composite library. Usually the related namespace http://xmlns.

jcp.org/jsf/composite would be assigned to the alias cc.

Besides the interface, Listing 27-1 would become the implementation. We need to

replace the concrete expressions with the two defined within the interface. Because the

ids aren’t related to concrete values anymore, we may choose some generalized names.

Whew! It seems there’s a lot to do. But even though it may sound complicated, it’s only

a little change, as demonstrated by the code of this component, shown in Listing 27-2.

Listing 27-2.  Input Part as Composite Component

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <html xmlns="http://www.w3.org/1999/xhtml"

 3 xmlns:cc="http://xmlns.jcp.org/jsf/composite"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:f="http://xmlns.jcp.org/jsf/core">

 6

 7 <!-- INTERFACE -->

 8 <cc:interface>

 9 <cc:attribute name="label"/>

Chapter 27 Building Composite Components

http://xmlns.jcp.org/jsf/composite
http://xmlns.jcp.org/jsf/composite

303

10 <cc:attribute name="value"/>

11 </cc:interface>

12

13 <!-- IMPLEMENTATION -->

14 <cc:implementation>

15 <div class="inputPart">

16 <h:outputLabel for="input"

17 value="#{cc.attrs.label}"

18 styleClass="label"/>

19 <h:inputText id="input"

20 value="#{cc.attrs.value}"

21 requiredMessage="#{msg.msgValueRequired}"

22 styleClass="inputMedium">

23 <f:ajax render="@this msgInput"/>

24 </h:inputText>

25 <h:message id="msgInput" for="input" styleClass="errorMessage"/>

26 </div>

27 </cc:implementation>

28 </html>

Within the <cc:implementation> tag, you’ll find the transformed code snippet. It

really looks similar. But instead of concrete values referring to the label and input field,

we now use #{cc.attrs.XXX}, where XXX represents each an attribute of the interface.

Although the HTML is ready, we still have to perform some more (simple) tasks to

use this component. First of all, JSF looks for components in certain places. Remember

the resources folder under the webapp folder? We have to place the component into this

or another valid resources location. Let’s create a subfolder called components and save

our file into that location. As a name for our component, we’ll choose LabeledText.

So far, we’ve prepared the component. Now let’s use it. First we have to reference our

component file by a special namespace: http://xmlns.jcp.org/jsf/composite. We

need to append the folder we used to store our components under the resources. We’ve

chosen components, so we have to add that. And, as usual for a namespace declaration,

we have to use an alias. I’ve chosen mm for my components. So, the whole namespace

declaration becomes this:

xmlns:mm="http://xmlns.jcp.org/jsf/composite/components"

Chapter 27 Building Composite Components

http://xmlns.jcp.org/jsf/composite

304

Listing 27-3 shows our page and shows how to use our component.

Listing 27-3.  Refactored Page That Uses Composite Components

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <ui:composition xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 4 template="/common/alumniTemplate.xhtml"

 5 xmlns:h="http://xmlns.jcp.org/jsf/html"

 6 xmlns:c="http://java.sun.com/jsp/jstl/core"

 7 xmlns:f="http://xmlns.jcp.org/jsf/core"

 8 xmlns:mm="http://xmlns.jcp.org/jsf/composite/components">

 9

10 <ui:define name="content">

11 <h1>Register</h1>

12

13 <h:form>

14

15 <mm:LabeledText label="#{msg.lblFirstName}"

16 value="#{register.accountRequest.firstName}" />

17 <mm:LabeledText label="#{msg.lblLastName}"

18 value="#{register.accountRequest.lastName}" />

19

20 [other markup omitted for brevity]

21

22 </h:form>

23 </ui:define>

24 </ui:composition>

The preceding listing shows how to use our component for both the first name

and the last name input parts. All we need to do is to reference the component by the

namespace alias plus the filename we’ve chosen (lines 15–18) and then to each pass

two values by the names we’ve defined in the interface. The code became quite short

and concise. Each component (firstName, lastName) needs just 2 lines instead of the 12

lines we needed before as seen in Listing 27-2. Really nice, isn’t it?

Chapter 27 Building Composite Components

305

�Enable Child Element for the Composition
Next we have to tackle the email input component. In addition to the parts we’ve used

so far, we have to consider the validator. One possible solution would be to define

a validator inside our component. But there are a couple of different validators that

might be used to validate an input. To consider all of them could result in messy code,

with conditions to display none or just one of them. It would be more flexible if we just

could nest a validator or other components into our labeledText as we do with other

components. See Listing 27-4.

Listing 27-4.  Use Component LabeledText

1 <mm:LabeledText label="#{msg.lblEmail}"

2 value="#{register.accountRequest.email}">

3 <f:validator validatorId="EmailValidator" for="input"/>

4 </mm:LabeledText>

In Listing 27-4, I simply nested the validator into labeledText as we nested the

validator into the inputText tag of the original registration form. Yet if we run the

application with this code in the registration, the validator wouldn’t be invoked.

Why not? Imagine a composite component composed of a couple of input

elements—a common scenario. For which of these elements is the validator for?

Yes, we used an id input for the internal inputText. As with a local variable in a Java

method, we can’t reach the internal element from outside. Rather, we have to define

a kind of forwarding of the validator to the desired internal element. And that’s what

editableValueHolder is for. As its name suggests, this tag links to the internal component

that’s used to hold the value. But more than that, it may point to multiple targets:

<cc:editableValueHolder name="input"/>

name is the name we need to use in the for of the validator. Defining targets, we can

redirect from an “outside name” to the internal component(s):

<cc:editableValueHolder name="input" targets="input"/>

If we omit the targets attribute, it defaults to the same as defined for name. So, the

preceding code is semantically the same as before. But we may use a different name:

<cc:editableValueHolder name="email" targets="input"/>

Chapter 27 Building Composite Components

306

This defines a name that can be used outside the component and its internal

target(s). Now we have to declare for="email" within the validator. In most JSF tutorials

or code snippets, you’ll find the editableValueHolder nested into the <cc:interface>

tag. But you can also place it within <cc:implementation>. I recommend doing that

because it enables more variable usage.

Take a look at the Facelets fragment in Listing 27-5.

Listing 27-5.  Use id for Composite Component

1 <mm:LabeledText id="myId" label="#{msg.lblEmail}"

2 value="#{register.accountRequest.email}">

3 <f:validator validatorId="EmailValidator" for="myId"/>

4 </mm:LabeledText>

We’ve defined an id for our element. And as usual we used this id at the for attribute

of the validator. Until now, we can’t use it this way because our editableValueHolder

has the name "email" and that’s what we need to use. Can’t we use the component’s

id as name of the editableValueHolder? The good news is yes, that’s possible if we use

it within the implementation. The EL has two predefined variables pointing to the id:

either #{cc.attrs.id} or simply #{cc.id}. See Figure 27-6.

Listing 27-6.  Component LabeledText Using Variable Id for

editableValueHolder

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <html xmlns="http://www.w3.org/1999/xhtml"

 3 xmlns:cc="http://xmlns.jcp.org/jsf/composite"

 4 xmlns:h="http://xmlns.jcp.org/jsf/html"

 5 xmlns:f="http://xmlns.jcp.org/jsf/core">

 6

 7 <!-- INTERFACE -->

 8 <cc:interface>

 9 <cc:attribute name="label"/>

10 <cc:attribute name="value"/>

11 </cc:interface>

12

Chapter 27 Building Composite Components

https://doi.org/10.1007/978-1-4842-3030-5_27#fig6

307

13 <!-- IMPLEMENTATION -->

14 <cc:implementation>

15 <cc:editableValueHolder name="#{cc.id}" targets="input"/>

16 <div class="inputPart">

17 <h:outputLabel for="input"

18 value="#{cc.attrs.label}"

19 styleClass="label"/>

20 <h:message id="msgInput" for="input" styleClass="errorMessage"/>

21 <h:inputText id="input"

22 value="#{cc.attrs.value}"

23 requiredMessage="#{msg.msgValueRequired}"

24 styleClass="inputMedium">

25 <f:ajax render="@this msgInput"/>

26 </h:inputText>

27 </div>

28 </cc:implementation>

29 </html>

Using the component, the final register form would become quite short.

See Listing 27-7.

Listing 27-7.  Register Form Using the Composite Component (Excerpt)

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <ui:composition xmlns:ui="http://xmlns.jcp.org/jsf/facelets"

 4 template="/common/alumniTemplate.xhtml"

 5 xmlns:h="http://xmlns.jcp.org/jsf/html"

 6 xmlns:c="http://java.sun.com/jsp/jstl/core"

 7 �xmlns:mm="http://xmlns.jcp.org/jsf/composite/

components"

 8 xmlns:f="http://xmlns.jcp.org/jsf/core">

 9

10 <ui:define name="content">

11 <h1>Register</h1>

12

Chapter 27 Building Composite Components

308

13 <h:form>

14

15 <mm:LabeledText label="#{msg.lblFirstName}"

16 value="#{register.accountRequest.firstName}" />

17 <mm:LabeledText label="#{msg.lblLastName}"

18 value="#{register.accountRequest.lastName}"/>

19

20 <mm:LabeledText id="email" label="#{msg.lblEmail}"

21 value="#{register.accountRequest.email}">

22 <f:validator validatorId="EmailValidator" for="email"/>

23 </mm:LabeledText>

24

25 [other fields omitted for brevity]

26

27 <div class="buttonBar">

28 <h:commandButton value="#{msg.btnRegister}"

29 action="#{register.register()}"

30 styleClass="button"/>

31 </div>

32

33 </h:form>

34 </ui:define>

35 </ui:composition>

�Pass In Validation Method
For the multi-component validation of the password fields, Alumni uses a validation

method (see Chapter 25). This simple approach can’t be moved into a general validator

because it needs to know about another password field. Because we can’t use a child

component for validation as we did for the email, we need to pass in a reference to the

validation method to the composite component.

The principle should be like passing the value of the input field. See Listing 27-8.

Chapter 27 Building Composite Components

309

Listing 27-8.  Principle to Pass in a Validation Method (Malfunction)

 1 <cc:interface>

 2 <cc:attribute name="value"/>

 3 <cc:attribute name="validator"/>

 4 </cc:interface>

 5

 6 <cc:implementation>

 7 ...

 8 <h:inputSecret id="input"

 9 value="#{cc.attrs.value}"

10 validator="#{cc.attrs.validator}"

11 ...>

12 ...

13 </h:inputText>

14 ...

15 </cc:implementation>

Don’t try the preceding code—it can demonstrate the goal, but it doesn’t work. In

line 2 we define an attribute (value) to transfer a simple string into the component. Let’s

assume we want to pass in an object of the Account class, which is more complex than a

simple string. We need to inform JSF about the fully qualified type of this object. As a rule

of thumb, use the fully qualified class when you need it in Java code too, or if you need to

import the class to omit the package name:

<cc:attribute name="account" type="de.muellerbruehl.alumni.business.dto.

Account">

To pass in a method, we also need to inform JSF. In this case, we need to add a

method signature with the appropriate attribute:

<cc:attribute name="validator"

 method-signature="void validate(

 javax.faces.context.FacesContext,

 javax.faces.component.UIComponent,

 Object)"/>

Chapter 27 Building Composite Components

310

We also need to declare the return type and the parameter types. This is done the

standard Java way for a file without imports. So, we need to pass the fully qualified class

names for non-simple objects. As method name, we’re free to choose any valid name—it

doesn’t matter.

Normally in the interface section we can reuse the attribute names of the internal

components. But for validator, we need to choose a different name to get it to work. I

called it validationMethod.

�Ubiquitous Input Component
To get a ubiquitous input component, we have to add some more attributes that can

be passed from the outside. Listing 27-9 shows the complete LabeledSecretValidate

composite component of Alumni. It’s a sibling of LabeledTextValidate with an

additional attribute, redisplay, which is specific to inputSecret.

Listing 27-9.  Complete Composite Component InputSecretValidate

01 <?xml version='1.0' encoding='UTF-8' ?>

02 <html xmlns="http://www.w3.org/1999/xhtml"

03 xmlns:cc="http://xmlns.jcp.org/jsf/composite"

04 xmlns:h="http://xmlns.jcp.org/jsf/html"

05 xmlns:f="http://xmlns.jcp.org/jsf/core">

06

07 <!-- INTERFACE -->

08 <cc:interface>

09 <cc:attribute name="label" />

10 <cc:attribute name="value"/>

11 <cc:attribute name="required" default="true"/>

12 <cc:attribute name="componentStyleClass" default="inputPart"/>

13 <cc:attribute name="labelStyleClass" default="label"/>

14 <cc:attribute name="textStyleClass" default="inputMedium"/>

15 <cc:attribute name="messageStyleClass" default="errorMessage"/>

16 <cc:attribute name="readonly" default="false"/>

17 <cc:attribute name="disabled" default="false"/>

Chapter 27 Building Composite Components

311

18 <cc:attribute name="redisplay" default="false"/>

19 <cc:attribute name="renderElement" default="@this"/>

20 <cc:attribute name="validationMethod"

21 method-signature="void validate(

22 javax.faces.context.FacesContext,

23 javax.faces.component.UIComponent,

24 Object)"/>

25 <cc:actionSource name="input"/>

26 </cc:interface>

27

28 <!-- IMPLEMENTATION -->

29 <cc:implementation>

30 <cc:editableValueHolder name="#{cc.id}" targets="input"/>

31

32 <div class="#{cc.attrs.componentStyleClass}">

33

34 <h:outputLabel for="input"

35 value="#{cc.attrs.label}"

36 styleClass="#{cc.attrs.labelStyleClass}"/>

37

38 <h:inputSecret id="input"

39 value="#{cc.attrs.value}"

40 validator="#{cc.attrs.validationMethod}"

41 required="#{cc.attrs.required}"

42 requiredMessage="#{msg.msgValueRequired}"

43 readonly="#{cc.attrs.readonly}"

44 disabled="#{cc.attrs.disabled}"

45 redisplay="#{cc.attrs.redisplay}"

46 styleClass="#{cc.attrs.textStyleClass}">

47 �<f:ajax event="change" render="#{cc.attrs.renderElement}

msgInput"/>

48 </h:inputSecret>

49

Chapter 27 Building Composite Components

312

50 <h:message id="msgInput"

51 for="input"

52 styleClass="#{cc.attrs.messageStyleClass}"/>

53

54 </div>

55

56 </cc:implementation>

57 </html>

Watch out for the interface section: if needed, can define reasonable defaults for

the attributes. If you don’t need a different value than this default, you might omit that

attribute within the HTML file which uses this component.

You may ask why the component names end with Validate. If we don’t pass in a

validation method, no validation takes place, and no value is transferred to the model,

even though we use AJAX here. We either need to pass in a dummy validation method

(with an empty body) or implement a special handling of the absent method. In such

a case, we have to omit the validator property. Such handling would inflate the

component, so Alumni uses two more components, LabeledText and LabeledSecret,

without the ability to pass in a validation method.

�Summary
When a couple of components are used together in a similar manner, they might be

composed into a reusable composite component. A composite component consists

of an (optional) interface and an implementation. This chapter demonstrated how to

transform existing code into such components.

Special attention is needed to allow child components for a composite component.

We need to define which internal component(s) act as editable value holder.

The interface defines the attributes that can be passed into the composite. For

nontrivial types, JSF needs to be informed about the attribute’s type or, in the case of a

method, about the method signature.

Finally, this chapter showed a reusable ubiquitous input component.

Chapter 27 Building Composite Components

313
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_28

CHAPTER 28

Secure Passwords
Access to special areas of Alumni will be restricted to members only. That means we

need to restrict access to authorized persons only. During the registration process, we

ask the user to enter a password that we store together with the account entity.

Because Alumni is exposed to the web, there’s a potential risk that somebody might

tamper with the system. Passwords need special protection—they should never be

stored in plain text format. Although there is no such things as 100% protection against

crackers (malicious hackers—there are nice hackers), it’s possible to store passwords in a

reasonably safe way by following these guidelines:

•	 Strongly encrypt all passwords

•	 Grant no access to any decrypted passwords

•	 Use an algorithm that takes some time to calculate

•	 Calculate different hashes even though two users may have chosen

the same password

•	 Use an algorithm to verify the password that takes almost the same

time regardless of password length

�Hash
Encryption without any possible decryption can be achieved by a hash function.

A hash is the output of a hash function that maps text (or other data) of arbitrary size to

an output string of a fixed size. A cryptographic useful hash function will produce an

output that differs in almost all characters even if the input only has little changes.

A hash function is a one-way function: you may calculate the hash from the text but you

cannot calculate the text from the hash. Different input may produce the same hash.

This situation is called a collision. A good hash function will produce as few collisions

314

as possible. A purist may claim that a hash is something other than an encryption,

but it still calculates an encrypted value. By choosing the right algorithm, we can reduce

the risk of retrieving the same hash for two different passwords. For example, if you use

Secure Hash Algorithm (SHA), say, SHA-512, the risk for such a collision tends to zero.

Implementing such a hash function is quite easy, as you can see in Listing 28-1.

Listing 28-1.  Simple Encryption (Hashing) of a Password

 1 public static byte[] getSHAHash(String secret) {

 2 try {

 3 MessageDigest md = MessageDigest.getInstance("SHA");

 4 byte[] digest = md.digest(secret.getBytes("utf-8"));

 5 return digest;

 6 } catch (UnsupportedEncodingException | NoSuchAlgorithmException ex) {

 7 Logger.getLogger("HashUtils").log(Level.SEVERE, null, ex);

 8 throw new RuntimeException(ex);

 9 }

10 }

The strategy would be to store a hash into the database. That way, even if an

unauthorized person gets access to the database, they can’t read the passwords, only the

hashes. But using a simple algorithm as shown in the preceding listing isn’t advisable.

There are some drawbacks we have to consider. If the hash algorithm tends to have

lots of collisions, then it might become easier to produce the same hash as stored in

the password hash table without knowing the correct password. SHA-1 for example is

treated as being not really secure, even if only a few known huge documents produce the

same hash. Other algorithms like MD5 are much less secure. But this obvious issue isn’t

the only problem.

�Security Issues and Mitigation
A cracker might try to start a brute force attack by sending a massive amount of different

password combinations until they hit the right one. The simple hash is calculated very

fast, and the attacker can try many passwords in a short period of time. One thing we

Chapter 28 Secure Passwords

315

can do is slow down the process of user authentication and authorization. If the whole

turnaround takes approximately 0.5–1.0 second, that wouldn’t hinder the user. But it

dramatically slows down the attacker.

Tip  Authentication: Is this the right user? Authorization: Which rights does this
user have?

Suppose a cracker has stolen the hashes. If he knows which algorithm is used to

calculate them, he can use a brute force attack against the hashes. Again, we need to

slow down the process to prevent the cracker from finding valid passwords. We can delay

the user authentication at any point in the process, but now the only chance is to use a

hashing algorithm that takes a long time. Pure SHA is much too fast for this.

If the cracker finds a valid password, and the hash is used by more than one user,

the cracker gains access to multiple accounts. To prevent that, we need to generate a

different hash for different users, even if they’ve chosen the same password. You can do

this by “salting” the password. Suppose you have a string salt with a random value. You

can calculate the hash by adding that salt to the password, like this:

byte[] hash = getSHAHash(salt + secret)

Because we need the salt to calculate the correct hash, we need to store the salt

somewhere. That might be within the same table where we store the password hash.

For a given password, the hash function always calculates the same hash. Thus, it

would be possible to store phrases and their hashes. Then you can look up the password

by querying the database with a hash. Such tables are known as rainbow tables and

are available online for download from several sources (a search for “rainbow tables

download” will list a lot of URLs). A salted password offers protection against such

rainbow tables, too.

The user enters the password using the browser. But the database with the hashes

resides somewhere else on a server. That means the password needs to be transferred

from a browser to a server. To protect the password during transport, it is essential to

choose a secure transport layer, such as Transport Layer Security (TLS), a cryptographic

protocol for communication security. In conjunction with a certificate, an application

server or upstream HTTP server can use HTTPS. Configuring the server is beyond this

book’s scope.

Chapter 28 Secure Passwords

316

�Password Algorithm
Putting all this together, Alumni uses the Password-Based Key Derivation Function 2

(PBKDF2) algorithm, as illustrated in Listing 28-2.

Listing 28-2.  Revised Encryption (Hashing) of a Password

 1 public static byte[] hashPassword(String password, byte[] salt,

 2 int iterations, int keyLength) {

 3 try {

 4 SecretKeyFactory skf = SecretKeyFactory.

 5 getInstance("PBKDF2WithHmacSHA512");

 6 PBEKeySpec spec = new PBEKeySpec(password.toCharArray(), salt,

 7 iterations, keyLength);

 8 SecretKey key = skf.generateSecret(spec);

 9 return key.getEncoded();

10 } catch (NoSuchAlgorithmException | InvalidKeySpecException ex) {

11 Logger.getLogger("HashUtils").log(Level.SEVERE, null, ex);

12 throw new RuntimeException(ex);

13 }

14 }

By setting the iterations to a high value, the calculation is slowed by additional

rounds of calculation. On my development computer, a value of around 100,000

iterations will take 0.5 seconds. Using a value of 100,047 or a similar unexpected number

of iterations won’t affect the felt time but produces a different hash. Such numbers are

used more rarely than big even numbers, which further helps improve security.

The delay depends on your machine, so don’t copy this exact value. You need to

figure out the best value for your machine.

KeyLength determines the length of the output. Alumni uses a key length of 1024,

which is 1024 bits / 8 = 128 bytes.

This sketched-out approach might not meet the high requirements of a banking

application, but it’s fine for a social application like Alumni. (If you want to read

more about this, check out the interesting article “Secure Password Storage” at

http://goo.gl/Spvzs.)

Chapter 28 Secure Passwords

http://goo.gl/Spvzs

317

Besides securely storing the password, the password also has to be checked during

user authentication. Usually, comparing two values will fail at the first difference. If two

strings are either different at the first or the last character, the comparison for the latter

case would take a bit longer. This fact might help a cracker to guess a password. Later

on, when we perform the user authentication and authorization, we’ll compare the hash

byte by byte to its end without shortcutting this process.

�Summary
Most parts of Alumni are restricted to members only. A common way to perform user

authentication is with a user-password combination. This chapter discussed some

aspects of securing passwords. A password must never be stored in plain text format,

but should be encrypted with a one-way encryption. Calculation of this hash needs

to take some time to protect against brute force attacks. This chapter discussed the

algorithm used for this purpose in Alumni, but without going into detail on the strength

or weakness of passwords themselves, like password length, use of special characters,

and so on.

Chapter 28 Secure Passwords

319
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_29

CHAPTER 29

Data Facade
For Books, we used a simple service to store an entity. Each service derived an abstract

service class and provided the class of the given entity. Although this approach was quite

easy, it needed a concrete service for each entity.

Alumni is a bigger application, and it uses many entities. Some entities are related

and can be grouped together. During the registration process, for example, Alumni

creates an Account object. A message is sent to the user who follows an activation link.

After this activation, the account is activated. We want to access the Account as well as

related entities through one class, called a facade.

�Abstract Data Service
Although Alumni uses one facade to access one or more related entities, we need a

couple of facades to access different kinds of data. For convenience, all these facades are

derived from the same abstract service. See Listing 29-1.

Listing 29-1.  Abstract Service Class to Access Entities

 1 public abstract class AbstractService {

 2

 3 @PersistenceContext(unitName = "AlumniPU")

 4 private EntityManager _em;

 5

 6 protected <T> T read(Object id, Class<T> entityClass) {

 7 return _em.find(entityClass, id);

 8 }

 9

320

10 protected <T> T save(T entity) {

11 T merge = _em.merge(entity);

12 return merge;

13 }

14

15 protected void delete(Object entity) {

16 if (isAttached(entity)) {

17 _em.remove(entity);

18 } else {

19 _em.remove(_em.merge(entity));

20 }

21 }

22

23 protected <T> T find(Class<T> entityClass, Object id) {

24 return _em.find(entityClass, id);

25 }

26

27 protected <T> T findFresh(Class<T> entityClass, Object id) {

28 Map<String, Object> hints = new HashMap<>();

29 hints.put("javax.persistence.cache.retrieveMode", "BYPASS");

30 return _em.find(entityClass, id, hints);

31 }

32

33 protected <T> List<T> findAll(Class<T> entityClass) {

34 CriteriaQuery cq = _em.getCriteriaBuilder().createQuery();

35 cq.select(cq.from(entityClass));

36 return _em.createQuery(cq).getResultList();

37 }

38

39 protected <T> List<T> findRange(Class<T> entityClass, int[] range) {

40 return findRange(entityClass, range[0], range[1]);

41 }

42

Chapter 29 Data Facade

321

43 �protected <T> List<T> findRange(Class<T> entityClass, int from,

int to) {

44 CriteriaQuery cq = _em.getCriteriaBuilder().createQuery();

45 cq.select(cq.from(entityClass));

46 javax.persistence.Query q = _em.createQuery(cq);

47 q.setMaxResults(to - from + 1);

48 q.setFirstResult(from);

49 return q.getResultList();

50 }

51

52 protected <T> int count(Class<T> entityClass) {

53 CriteriaQuery cq = _em.getCriteriaBuilder().createQuery();

54 Root<T> rt = cq.from(entityClass);

55 cq.select(_em.getCriteriaBuilder().count(rt));

56 javax.persistence.Query q = _em.createQuery(cq);

57 return ((Long) q.getSingleResult()).intValue();

58 }

59

60 protected boolean isAttached(Object entity) {

61 return _em.contains(entity);

62 }

63

64 protected void clearCache() {

65 _em.flush();

66 _em.getEntityManagerFactory().getCache().evictAll();

67 }

68

69 }

Compared with the earlier approach with Books, the main difference is that we don’t

pass the entity class into the constructor. Instead, for some accesses we need to provide

the appropriate class of an entity (line 6 type var entityClass) to implement a generic

access to entities of a certain class.

Chapter 29 Data Facade

322

�Concrete Facade
Now we can create some methods to access different entities through the same facade.

The excerpt in Listing 29-2 demonstrates this.

Listing 29-2.  AccountingService as Facade to a Couple of Entities (Excerpt)

01 @ApplicationScoped

02 @Transactional

03 public class AccountService extends AbstractService {

04

05 public Account saveAccount(Account account) {

06 return save(account);

07 }

08

09 public List<Account> findAllAccounts() {

10 return findAll(Account.class);

11 }

12

13 public Account findAccount(byte[] id) {

14 return find(Account.class, id);

15 }

16

17 public Account createAccount(Account account) {

18 if (emailExists(account.getEmail())) {

19 throw new IllegalArgumentException("createAccount, email exists:

"

20 + account.getEmail());

21 }

22 account.setLoginName(deriveUniqueLoginName(account));

23 account.setStatus(AccountStatus.New);

24 return save(account);

25 }

26

27 ...

28

Chapter 29 Data Facade

323

29 public boolean activateAccount(String accessKey) {

30 try{

31 Account account = findAccountByAccessKey(accessKey);

32 account.setStatus(AccountStatus.Active);

33 save(account);

34 return true;

35 }catch(Exception ex){

36 LOGGER.log(Level.WARNING, ex.getMessage());

37 return false;

38 }

39 }

40

41 private Account findAccountByAccessKey(String accessKey) {

42 �String jpql = "select a from Account a where a._accessKey =

:accessKey";

43 �TypedQuery<Account> query = getEntityManager().createQuery(jpql,

Account.class);

44 query.setParameter("accessKey", HashUtils.hex2byte(accessKey));

45 try {

46 return query.getSingleResult();

47 } catch (Exception ex) {

48 �throw new IllegalArgumentException("Unknown accessKey: " +

accessKey);

49 }

50 }

51

52 public void deleteAccount(String id) {

53 String jpql = "DELETE FROM Account a WHERE a._id = :id";

54 Query query = getEntityManager().createQuery(jpql);

55 query.setParameter("id", HashUtils.hex2byte(id));

56 query.executeUpdate();

57 clearCache();

58 }

59

60 }

Chapter 29 Data Facade

324

As you can see, this concrete facade either simply delegates to the abstract facade or

adds more complex functions like findAccountbyAccessKey. Although a new instance

might be saved by the saveAccount method (line 5), there’s a special method to create

an account starting at line 17. This method checks whether the email exists to ensure

that each email can be assigned to one account only. The login name might be updated

during account creation to ensure a unique login name. Last but not least, the account

status is set to new. This indicates a nonactivated account. Login is possible for activated

accounts only.

Starting at line 52, there’s a delete method. It deletes an account that is identified by

its id without any need to load it into memory beforehand.

For brevity’s sake, Listing 29-2 doesn’t show the whole class.

�Account Entity
Account takes all information collected in the registration form and adds a creation date.

If the user doesn’t activate his account during a defined period beginning with that date,

we’ll prune this account. See Listing 29-3.

Listing 29-3.  Entity Accounting

 01 @Entity

 02 @Table(name = "Account")

 03 public class Account implements Serializable {

 04

 05 private static final long serialVersionUID = 1L;

 06 private static final int KEY_LEN = 1024;

 07 private static final int ROUNDS = 100_021;

 08

 09 // <editor-fold defaultstate="collapsed" desc="Property Id">

 10 @Id

 11 @Column(name = "id")

 12 private final byte[] _id = makeUuidAsBytes();

 13

 14 public String getId() {

 15 return HashUtils.byte2hex(_id);

 16 }

Chapter 29 Data Facade

325

 17 // </editor-fold>

 18

 19 // <editor-fold defaultstate="collapsed" desc="Property Key">

 20 @Column(name = "accessKey")

 21 private final byte[] _accessKey = makeUuidAsBytes();

 22

 23 public String getAccessKey() {

 24 return HashUtils.byte2hex(_accessKey);

 25 }

 26 // </editor-fold>

 27

 28 // <editor-fold defaultstate="collapsed" desc="Property Status">

 29 @Column(name = "status")

 30 private AccountStatus _status = AccountStatus.New;

 31

 32 public AccountStatus getStatus() {

 33 return _status;

 34 }

 35

 36 public void setStatus(AccountStatus status) {

 37 _status = status;

 38 }

 39 // </editor-fold>

 40

 41 // <editor-fold defaultstate="collapsed" desc="Property LoginName">

 42 @Column(name = "loginName")

 43 private String _loginName;

 44

 45 @Size(min = 1, max = 50)

 46 public String getLoginName() {

 47 return _loginName;

 48 }

 49

Chapter 29 Data Facade

326

 50 public void setLoginName(String loginName) {

 51 _loginName = loginName;

 52 }

 53 // </editor-fold>

 54

 55 // <editor-fold defaultstate="collapsed" desc="Property FirstName">

 56 @Column(name = "firstName")

 57 private String _firstName = "";

 58

 59 @Size(min = 1, max = 50)

 60 public String getFirstName() {

 61 return _firstName;

 62 }

 63

 64 public void setFirstName(String firstName) {

 65 _firstName = firstName;

 66 }

 67 // </editor-fold>

 68

 69 // <editor-fold defaultstate="collapsed" desc="Property LastName">

 70 @Column(name = "lastName")

 71 private String _lastName;

 72

 73 @Size(min = 1, max = 50, message = "{validation.lastname.size}")

 74 public String getLastName() {

 75 return _lastName;

 76 }

 77

 78 public void setLastName(String lastName) {

 79 _lastName = lastName;

 80 }

 81 // </editor-fold>

 82

Chapter 29 Data Facade

327

 83 // <editor-fold defaultstate="collapsed" desc="Property Email">

 84 @Column(name = "email")

 85 private String _email = "";

 86

 87 @Size(min = 6, max = 100)

 88 public String getEmail() {

 89 return _email;

 90 }

 91

 92 public void setEmail(String email) {

 93 _email = email;

 94 }

 95 // </editor-fold>

 96

 97 �// <editor-fold defaultstate="collapsed" desc="Property

LastChanged">

 98 @Temporal(javax.persistence.TemporalType.TIMESTAMP)

 99 @Column(name = "lastChanged")

100 private Date _lastChanged = new Date();

101

102 public Date getLastChanged() {

103 return _lastChanged;

104 }

105

106 public void setLastChanged(Date lastChanged) {

107 _lastChanged = lastChanged;

108 }

109

110 @PreUpdate

111 private void tagLastChanged() {

112 _lastChanged = new Date();

113 }

114 // </editor-fold>

115

Chapter 29 Data Facade

328

116 // <editor-fold defaultstate="collapsed" desc="Property Created">

117 @Temporal(javax.persistence.TemporalType.TIMESTAMP)

118 @Column(name = "created")

119 private Date _created = new Date();

120

121 public Date getCreated() {

122 return _created;

123 }

124

125 public void setCreated(Date created) {

126 _created = created;

127 }

128 // </editor-fold>

129

130 // <editor-fold defaultstate="collapsed" desc="Property Password">

131 @Column(name = "password")

132 private byte[] _passwordHash;

133

134 public void setPassword(String password){

135 _passwordHash = obtainPasswordHash(password);

136 }

137

138 public boolean checkPassword(String password) {

139 return _status == AccountStatus.Active

140 �&& Arrays.equals(obtainPasswordHash(password),

_passwordHash);

141 }

142

143 private byte[] obtainPasswordHash(String password) {

144 byte[] passwordHash = HashUtils.hashPassword(password, makeSalt(),

145 ROUNDS, KEY_LEN);

146 return passwordHash;

147 }

148

Chapter 29 Data Facade

329

149 private byte[] makeSalt() {

150 byte[] salt = new byte[32];

151 System.arraycopy(_id, 0, salt, 0, 16);

152 System.arraycopy(_accessKey, 0, salt, 16, 16);

153 return salt;

154 }

155 // </editor-fold>

156

157 }

Just a reminder: The comments for editor-fold are specific to NetBeans and allow

for collapsing (folding) the source code.

Alumni doesn’t use a sequential number as primary key (as Books does), but a UUID

converted into a byte array. Because this id will never be changed for a given account,

it’s assigned during its declaration (line 12). A second UUID is used to create an access

key, which is used to activate the account. Both id and access key are used as salt for the

password (see Chapter 28 for more on salting passwords). Each is built with 16 bytes, so

the total length of the salt is 32 bytes, which is fine for the password encryption.

Two timestamps are used to indicate the creation time as well as the last change. The

lastChanged is tagged before any update due to the @PreUpdate annotation.

Lines 131–154 show the password handling. When the password is passed in, its

hash is calculated and stored in the appropriate field. This hash will be stored in the

database. The password has no getter; instead, checkPassword is used to verify whether

the password (as provided during login) matches the hash.

�Summary
Each access to the database is performed through a data façade, which offers an

interface to a couple of methods to access a group of related data. This facade is used to

hide the details of the data access. For different kinds of data, Alumni offers a couple of

facades that are derived from an abstract facade.

This chapter also showed details of the data that’s stored, updated, and deleted using

the facade. The password is encrypted once it’s passed to the entity and will never be

stored with its original value.

Chapter 29 Data Facade

331
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_30

CHAPTER 30

Activation Mail
In Alumni, once the Account is created, we send an activation mail to the user, which

contains a link with a universally unique identifier (UUID). If the user follows this link,

the account will be activated and become ready for use.

�Config Mail Properties by Code
The sending of the email is performed by an application scoped class called the Mailer.

Within this class, some hardcoded properties are collected into a map. In the final

version, a JavaMail session will be our choice to retrieve the config from (see the next

section).

Listing 30-1.  Mailer (with Hardcoded Properties for Demonstration)

01 @Dependent

02 public class Mailer implements Serializable {

03

04 protected static final Logger LOGGER = Logger.getLogger("Mailer");

05

06 public boolean sendMail(String to, String subject, String body) {

07 List<Recipient> recipients = new ArrayList<>();

08 recipients.add(new Recipient(to, RecipientType.TO));

09 return sendMail("mailer@alumni-web.de", recipients, subject, body);

10 }

11

12 public boolean sendMail(String from, List<Recipient> recipients,

13 String subject, String body, String... files) {

14 try {

15 Properties properties = obtainConfig();

332

16 Session session = Session.getDefaultInstance(properties);

17 MimeMessage message = composeMessage(session, from, recipients,

18 subject, body, files);

19 Transport.send(message, from, "secret");

20 return true;

21 } catch (MessagingException ex) {

22 LOGGER.log(Level.SEVERE, "Mailer failed: {0}", ex.getMessage());

23 return false;

24 }

25 }

26

27 private Properties obtainConfig() {

28 Properties properties = System.getProperties();

29 properties.put("mail.transport.protocol.rfc822", "smtps");

30 properties.put("mail.smtps.host", "smtp.strato.de");

31 properties.put("mail.smtps.port", 465);

32 properties.put("mail.smtps.auth", true);

33 return properties;

34 }

35

36 private MimeMessage composeMessage(Session session,

37 String from,

38 List<Recipient> recipients,

39 String subject,

40 String body,

41 String[] files) throws MessagingException {

42 MimeMessage message = new MimeMessage(session);

43 for (Recipient recipient : recipients) {

44 message.addRecipient(recipient.getType(),

45 new InternetAddress(recipient.getEmail()));

46 }

47 message.setSubject(subject);

48 message.setContent(getMultipartBody(body, files));

49 message.setFrom(new InternetAddress(from));

50 return message;

51 }

Chapter 30 Activation Mail

333

52

53 private Multipart getMultipartBody(String body, String[] files)

54 throws MessagingException {

55 MimeBodyPart messageBodyPart = new MimeBodyPart();

56 messageBodyPart.setText(body);

57 Multipart multipart = new MimeMultipart();

58 multipart.addBodyPart(messageBodyPart);

59 for (String file : files) {

60 addAttachment(multipart, file);

61 }

62 return multipart;

63 }

64

65 private static void addAttachment(Multipart multipart, String filename)

66 throws MessagingException {

67 if (filename.isEmpty()) {

68 return;

69 }

70 MimeBodyPart messageBodyPart = new MimeBodyPart();

71 DataSource source = new FileDataSource(filename);

72 messageBodyPart.setDataHandler(new DataHandler(source));

73 File file = new File(filename);

74 messageBodyPart.setFileName(file.getName());

75 multipart.addBodyPart(messageBodyPart);

76 }

77

78 }

JavaMail is part of the Java Enterprise Edition (EE). Thus, there’s no need to refer to

the JavaMail jar directly. All we have to do is to add the right dependency for Java EE to

the POM.

Without this dependency, the IDE can’t add the required imports. NetBeans offers a

Maven search for unsatisfied imports. We need to add the following:

import javax.mail.Message;

Chapter 30 Activation Mail

334

Place the cursor at the end of that line and press Alt+Enter. NetBeans offers a Maven

search dialog, shown in Figure 30-1.

Figure 30-1.  Maven search dialog

Choose javax:javaee-api in the Matching Artifacts field. NetBeans will add the

dependency to the POM. Using a different IDE, you may add the dependency manually.

See Listing 30-2.

Listing 30-2.  Dependency for JavaMail (and Other Parts of the Java EE API)

1 <dependency>

2 <groupId>javax</groupId>

3 <artifactId>javaee-api</artifactId>

4 <version>8.0</version>

5 <type>jar</type>

6 </dependency>

Chapter 30 Activation Mail

335

Once that dependency is included, NetBeans can fix the missing imports (Ctrl+Shift+I).

Let’s examine the code: line 1 shows the @Dependent annotation. This declares a CDI

eligible bean whose lifecycle depends on the bean where it’s injected to.

For sending the activation mail, Alumni uses the method sendMail, which starts

at line 6. It simply sends an email, which is composed of a subject and body, to one

recipient.

We may need to attach files or add other recipients. sendMail delegates to an

overloaded version of this method, which takes some more parameters (line 12 in

Listing 30-1). It might be nice to replace so many parameters with a mail information

object that carries all the information. Because the final version of the Mailer needs one

fewer parameter, it may be okay as is.

To create a message we need a session. Such a session is created by passing mail

server–specific properties to its factory method (line 16). These properties are collected

into a map by the obtainConfig method (line 27). Within this method, some hardcoded

properties are collected into a map. In the final version, a JavaMail Session will be our

choice to retrieve the config from.

Alumni uses a secured protocol version, so we set the protocol to SMTPS. Next, we

set some SMTPS parameters according to the mail server. The properties mail.smpts.XXX

correspond to the chosen protocol. You can read a full description of the API at https://

javaee.github.io/javaee-spec/javadocs/javax/mail/package-summary.html.

Once sendMail obtains a session, it composes the message (lines 17 and 18)

and sends the mail (line 19). Here we’re providing a secret password. If no password

is needed, we may set the sender with a property and pass the message only to the

Transport.send method.

�Mail Session
As mentioned earlier, a hardcoded configuration isn’t a good choice here. Maybe

you need to distinguish between development and production, or need different

configurations on different production systems. Alumni uses a JavaMail session defined

Chapter 30 Activation Mail

https://javaee.github.io/javaee-spec/javadocs/javax/mail/package-summary.html
https://javaee.github.io/javaee-spec/javadocs/javax/mail/package-summary.html

336

at GlassFish/Payara, as shown in Figure 30-2. Assuming you’re running the server

locally, admin pages are available at the address https://localhost:4848. If you use

NetBeans, you alternatively open the admin console via the context menu of your server

in the Services tree view. In the admin console, choose Resources ➤ JavaMail Sessions ➤

New to create a session.

Figure 30-2.  JavaMail session in GlassFish/Payara

Chapter 30 Activation Mail

337

Alternatively, you might create a glassfish-resources.xml file (or let NetBeans

create it in the proper place), which resides in the WEB-INF folder. See Listing 30-3.

Listing 30-3.  glassfish-resources.xml

01 <!DOCTYPE resources PUBLIC

02 �"-//GlassFish.org//DTD GlassFish Application Server 3.1 Resource

Definitions//EN"

03 "http://glassfish.org/dtds/glassfish-resources_1_5.dtd">

04 <resources>

05 <mail-resource debug="true"

06 enabled="true"

07 from="mailer@alumni-web.de"

08 host="smtp.strato.de"

09 jndi-name="alumniMail"

10 object-type="user"

11 store-protocol="imap"

12 store-protocol-class="com.sun.mail.imap.IMAPStore"

13 transport-protocol="smtps"

14 transport-protocol-class="mail.smtp.SMTPTransport"

15 user="mailer@alumni-web.de">

16 <description>alumniMail</description>

17 <property name="mail.smtps.port" value="465"/>

18 <property name="mail.smtps.auth" value="true"/>

19 <property name="mail.smtps.password" value="secret"/>

20 </mail-resource>

21 </resources>

This session can be injected by a traditional @Resource annotation, as shown in

Listing 30-4. Since JSF 2.3, it’s been available via @Inject. There’s no need to collect the

config properties because they’re defined outside the code, as shown in Listing 30-5. So

you can change the config without changing the code just by changing the parameters

using the admin console.

Chapter 30 Activation Mail

338

Take a look at the interesting parts of the final Mailer class, which is reduced in size

as we remove the from parameter of sendMail. See Listing 30-4.

Listing 30-4.  Mailer Using an Injected Session (Excerpt)

01 @Resource(lookup = "alumniMail")

02 private Session _session;

03

04 public boolean sendMail(List<Recipient> recipients,

05 String subject, String body, String... files) {

06 try {

07 MimeMessage message = composeMessage(recipients,

08 subject, body, files);

09 String user = _session.getProperty("mail.user");

10 String password = _session.getProperty("mail.smpt.password");

11 Transport.send(message, user, password);

12 return true;

13 } catch (MessagingException ex) {

14 LOGGER.log(Level.SEVERE, "Mailer failed: {0}", ex.getMessage());

15 return false;

16 }

17 }

18

19 private MimeMessage composeMessage(List<Recipient> recipients,

20 String subject,

21 String body,

22 String[] files) throws MessagingException {

23 MimeMessage message = new MimeMessage(_session);

24 for (Recipient recipient : recipients) {

25 message.addRecipient(recipient.getType(),

26 new InternetAddress(recipient.getEmail()));

27 }

Chapter 30 Activation Mail

339

28 message.setSubject(subject);

29 message.setContent(getMultipartBody(body, files));

30 String from = _session.getProperty("mail.from");

31 message.setFrom(new InternetAddress(from));

32 return message;

33 }

�Send Activation
When the user clicks the Register button, Alumni creates a new account with a status of

new. I'll explain this later in relation to login. Login will be possible once the account is

activated (that is, status = active).

In order to send an activation mail to the user, we need an email template to which

we’ll add information such as username and an activation link. This template will be

created by the admin using a simple JSF-based web form and will be stored in a table

of the database. It consists of an id, a name (as a kind of human readable identifier), a

subject, and a body. Remember to store a template version for every language you want

to support.

When I showed the Mailer, I concentrated on the sendMail functionality. In Alumni,

the Mailer delegates to an instance of the class MailService (not shown here), which

is used to access the mail templates. Within such a template, we use names within curly

braces as placeholders that are replaced before sending. The body of the activation mail

might look like this:

Hello {firstName},

In order to complete your registration, please click the following link

{link}.

Chapter 30 Activation Mail

340

Sending the activation mail becomes straightforward: retrieve a mail template (line

4 of Listing 30-5), build subject and body by replacing the placeholders (lines 5–9), and

send the mail (line 10). The most complicated part is to build the URL that replaces one

of the placeholders (lines 13—30).

Listing 30-5.  Register User (Excerpt)

01 @Inject private Mailer _mailer;

02

03 private void sendMail(String accessKey) {

04 �MailTemplate template = _mailer.findTemplateByName(TemplateName.

ActivationMail);

05 String subject = template.getSubject();

06 String body = template

07 .getBody()

08 .replace("{firstName}", _account.getFirstName())

09 .replace("{link}", getUrl(accessKey));

10 _mailer.sendMail(_account.getEmail(), subject, body);

11 }

12

13 private String getUrl(String key) {

14 HttpServletRequest request = obtainServletRequest();

15 try {

16 URL url = new URL(request.getScheme(),

17 request.getServerName(),

18 request.getServerPort(),

19 �request.getContextPath() + Page.Activate.url() +

"?key=" + key);

20 return url.toString();

21 } catch (MalformedURLException ex) {

22 Logger.getLogger(Register.class.getName()).log(Level.SEVERE, null, ex);

23 return "";

24 }

25 }

Chapter 30 Activation Mail

341

26

27 private HttpServletRequest obtainServletRequest() {

28 FacesContext context = FacesContext.getCurrentInstance();

29 return (HttpServletRequest) context.getExternalContext().getRequest();

30 }

Usually, we navigate to pages in the application. Such a path will be automatically

appended to the context path. But for the activation mail, we need to send the user a

complete URL (URI), including the domain name (or for development, the server's

name) and the context path. This URL is built in lines 16–20. If your server is operating

on a standard HTTP port (port 80, or 430 for HTTPS), you can omit the port number.

Once a user receives this activation mail, they follow the link.

�Summary
With JavaMail, you have an API for handling emails that you can use either in Java SE or

Java EE. It’s included in Java EE, so there’s no need to add an extra reference to the POM

within a Java EE project.

JavaMail requires some properties to configure the transport, including mail server,

protocol, and more. This chapter showed such properties with a hardcoded solution.

Even better, these properties are set outside the application. A Java EE-compliant server

offers the ability to define a mail session via its console or a .properties file. That’s how

Alumni uses the mail functionality to send activation mails or other info to the user.

Chapter 30 Activation Mail

343
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_31

CHAPTER 31

Scheduled Tasks
If a user doesn’t activate their account, we’ll get an orphaned registration (or account).

We have to clean up the database periodically, and what works better for periodically

jobs than a timer? This is where scheduled tasks come into play. Because timers can be

very sensitive to errors within the same thread, we’ll do this scheduling asynchronously.

�Scheduler
Timers are available within Enterprise Java Beans (EJBs). Alumni uses a central class to

invoke timed events: the Scheduler class, annotated as @Singleton. Any method that

should be invoked by a timer will be annotated with @Schedule. See Listing 31-1.

Listing 31-1.  Scheduler Class

 1 @Singleton

 2 public class Scheduler {

 3

 4 @Inject DatabaseCleaner _dbCleaner;

 5

 6 @Schedule(hour = "*/1")

 7 private void cleanDatabase() {

 8 _dbCleaner.cleanAccountRequests();

 9 }

10 }

Line 6 shows a schedule for every hour. The server will create an appropriate timer.

If we write hour = "1", the timer will fire once a day, at 1 o’clock. Using the asterisk

and a number after the slash, */n stands for every n hours (you can also use minutes,

seconds, and so on). An asterisk on its own stands for “doesn’t care.” So, if we want to

344

schedule a task every ten seconds, the hours and minutes “don’t care.” We annotate the

method like this:

@Schedule(hour = "*", minute = "*", second = "*/10")

The DatabaseCleaner class is used to bundle a couple of database-cleaning task

starters. At first glance, this class does nothing but delegate to the register service and log

in case of error. See Listing 31-2.

Listing 31-2.  DatabaseCleaner Class

 1 @Stateless

 2 public class DatabaseCleaner {

 3

 4 @Inject private AccountService _registerService;

 5

 6 public void cleanAccountRequests() {

 7 try {

 8 _registerService.deleteOldAccountRequests();

 9 } catch (Exception ex) {

10 Logger.getLogger(Scheduler.class.getName())

11 .log(Level.SEVERE, null, ex.getMessage());

12 }

13 }

14

15 }

Once a timer is created, the application server ensures that it will be triggered. If the

server goes down, that won’t stop the timer: after a reboot, the server restores all timers.

After any downtime, the server tries to catch up on everything.

�Delete Query
Using the Java Persistence API (JPA), people become acquainted with CRUD (create, read,

update, delete) operations: persist, find, merge, and remove. To delete a single entity, you

usually use the remove(entity) method. With this approach, you first have to load the

entity and then pass it as a parameter to the remove method. It’s only suitable when you

want to delete an entity that was loaded into memory before for some other reason.

Chapter 31 Scheduled Tasks

345

But why should you load an entity if you only want to delete it? I know people

who dislike JPA because of that. However, JPA offers more than the well-known CRUD

operations. For example, there’s executeUpdate(), which you can use for other SQL-

like operations. We use it to delete all requests that are older than one day. We’ll have to

calculate this date. Although the new LocalDate is very handy, we can’t use it here. We

need the old-fashioned Date. Or at least we need to convert a LocalDate into that type

(the good news about JPA 2.2 is that defining an entity, you might use the Java 8 date

API). See Listing 31-3.

Listing 31-3.  AccountService Class (Excerpt)

01 public void deleteOldAccountRequests() {

02 String jpql = "DELETE FROM Account a "

03 + "WHERE a._created < :date and a._status = :status";

04 Query query = getEntityManager().createQuery(jpql);

05 Date deleteBefore = new Date();

06 query.setParameter("date", getDateWithDayOffset(-1));

07 query.setParameter("status", AccountStatus.New);

08 query.executeUpdate();

09 }

10

11 public Date getDateWithDayOffset(int offset) {

12 return new Date(System.currentTimeMillis()+ offset*24*60*60*1000);

13 }

Now if we start the application, the application server will create a timer; every hour,

the cleaning operation will be called. And in case of an error, the error will be logged. So

far, everything seems to work fine.

  Provoke an error 

But let’s enforce an exception. We’re going to provoke an error.

Modify the jpql statement: WHERE a.createdXXX < :date. Note that appending
the three Xs makes the field name invalid. Change the time to be invoked every
5 seconds (you don’t want to have to wait for hours).

Then start the application and observe the server log.

Chapter 31 Scheduled Tasks

346

As you might have expected, the server reports an error:

Info: Error during transaction processing

java.lang.IllegalArgumentException: An exception occurred while creating a

query in EntityManager:

Exception Description: Problem compiling [DELETE FROM Account a WHERE

a._createdXXX < :date and a._status = :status].

[28, 41] The state field path 'a._createdXXX' cannot be resolved to a

valid type.

But after the second attempt to invoke the database cleaner, the timer stops, and the

server logs the following:

Info: EJB5119:Expunging timer [...] after [2] failed deliveries

As reported in the log, the timer stops. This happens even though we catch the error.

This apparent strange behavior is by design with EJB. Usually our code would be correct,

but imagine the database server is down unexpectedly. After some time it comes back up

and is running again. We want our scheduled server to operate on the database again,

but by this time the timer might be expunged.

How can we solve this problem? Catching the exception isn’t an option, as we just

showed. Luckily, there is a simple solution: the timer won’t be expunged if the exception

occurs in a different thread.

�Becoming Asynchronous
If we want to trigger long-running tasks, it might be great to start without waiting for

results.

The recent version of Java EE supports asynchronous method calls: the method is

invoked in a different thread, and control immediately returns to the caller. All you need

to do is to declare the method that’s called by the timer as Asynchronous by using the

appropriate annotation, as shown in Listing 31-4.

Chapter 31 Scheduled Tasks

347

Listing 31-4.  Asynchronous Method

1 @Asynchronous

2 public void cleanAccountRequests() {

3 ...

4 }

Even though the deletion task we defined is very short, it gets its benefit from the

Asynchronous call: the timer won’t stop any more due to the error in the jpql statement.

Besides running asynchronous, we’ll get a stable timer.

�Summary
This chapter provided a lean introduction into scheduled events. Java EE supports timed

events by simply adding the @Schedule annotation to a method. The first use in Alumni

is a periodically database-cleaning process that uses a delete query. Thus, there’s no

need to load any entity before it becomes deleted. Timers are vulnerable to exceptions,

even though this exception might be caught. Using an Asynchronous method call helps

to increase the timer’s stability.

Chapter 31 Scheduled Tasks

349
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_32

CHAPTER 32

Authentication
and Authorization
Sometimes it’s crucial to protect an application or data against unauthorized access.

Although Alumni offers some public pages, most are restricted to members. The system

will grant access to certain features for well-known users only. Luckily, the application

server provides some security features, like authentication and authorization, and

controls access to parts of the program with the concept of user roles.

Container-provided security isn’t specific to JSF. It’s part of the HTTP handling and

can be used by a simple servlet too. Before integrating it into Alumni, let’s go over some

basic information about security.

�Security Basics
To grant a user access to a secured application, you first have to authenticate the user.

The user must tell the system who they are. This might be done by providing a username

(“it’s me”) and a password (“you can verify that it’s really me, by checking some secret

information that only we share”). Alternative authentication techniques include the

use of identity cards, certificates, fingerprints, and so on. In this book, we focus on

usernames and passwords.

Once the system has authenticated the user, it authorizes the user, deciding whether

to let them access the whole application or only parts of it, depending on security status.

This is realized by assigning one or more different roles to the user. Depending on the

role, access to the application is controlled.

350

Let’s recap:

	 1.	 System offers a login (such as a form) to query username and

password.

	 2.	 User provides this information.

	 3.	 System verifies this information. If there is no match, login is aborted.

	 4.	 System determines roles and grants access depending on these roles.

Using container-provided security, step 1 might be realized in (at least) three ways:

•	 The user’s web browser displays a simple input dialog. The

appearance and client-side data handling are determined by the

browser. There’s no further action required by the developer. This

mode is called basic authentication.

•	 The developer provides an HTML form for the two input fields and

buttons to submit or reset. These fields may be integrated in a web

page with the look and feel of the application. The names of the input

fields and the actions have to strictly follow a convention. This mode

is called form-based authentication.

•	 The developer uses a pre-arranged JSF form. On the server side,

the application calls the container’s login method. This is called

programmatic authentication.

The username and password have to be sent from client to server. It doesn’t make

any difference whether the password is sent as plain (clear) text or as hashed digest

(which might be configured in a server property): if someone captures this data, they

might try to use it to gain access. Thus, a common recommendation is to use a secure

transport protocol such as TSL/SSL. Users may identify such a secure protocol by the

https:// protocol part of a URL—the s stands for security.

For step 3 of the authentication/authorization process, the server must check the

input (username/password) against information stored somewhere. This is realized by

so-called security realms. Usually, one or more realms are predefined at your server.

GlassFish, for example, provides a couple of realms. We’ll discuss two of them: fileRealm

(user info stored in a file) and jdbcRealm (user info stored in a database). Last but not

least, we’ll talk about a self-programmed (custom) realm.

Chapter 32 Authentication and Authorization

351

Even though these security realms are sometimes implemented in a similar way,

they’re still vendor specific. Terminology conventions may differ, too. Some call it realm,

others say domain, zone, and so on. The same applies to other terminology in this

context, such as group, role, principal, right, and so on.

To overcome this confusion, a standard has been created: Java Authentication

Service Provider Interface for Containers (JASPIC, JSR 196). Although the definition

of JASPIC started more than a decade ago, proprietary realms are still prevalent.

With Java EE 6, this started to change, and it seemed JASPIC became a kind of first-

class citizen. Anyway Java EE 7 didn’t introduce as much as needed, and there’s an

ongoing standardization process (JSR 375) that builds on top of JSAPIC and JACC

(Java Authorization Service Provider Contract for Containers). This Java Security API

is partially scheduled for Java EE 8 and will be completed with Java EE 9. We’ll use its

reference implementation, Soteria, later on for simpler access than with plain JASPIC.

We’ll start with the HTTP authentication and its realms. The Java Authentication

and Authorization Service (JAAS) was integrated into Java 2 SDK 1.4. (To read more

about this, check out https://docs.oracle.com/javase/8/docs/technotes/guides/

security/jaas/JAASRefGuide.html.) Keep in mind vendor-specific implementations

when I write about realms. I’ll focus on GlassFish and NetBeans, and you may have to

transform some info into your environment.

For example, NetBeans offers some special editors to configure container-based

security. I’ll discuss this as well as the resulting configuration, which usually is pure XML.

�Basic Authentication and fileRealm
To secure Alumni, we need to add a security constraint to web.xml. Open this file in

your editor. Using NetBeans, choose on your project tree Web Pages, WEB-INF, web.xml.

NetBeans opens this file by default in the source view. To get an overview, switch to the

Security tab. Doing so alters the view and allows you to easily read or define security

settings. See Figure 32-1.

Chapter 32 Authentication and Authorization

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html

352

At the top, note the different Login Configurations. As mentioned, I’ll cover Basic and

Form in this tutorial. From the users’ point of view, Digest is almost the same as Basic:

both present a small input dialog in the browser where the user can enter username and

password. Under the hood, a digest (hash value) is derived from the password. Thus,

no clear text is sent to the server. But this isn’t really a security feature. If the digest were

captured by some criminal it would have almost the same effect as if the password were

captured. So, you must encrypt the connection itself using SSL (Secure Socket Layers)

Figure 32-1.  Security tab for web.xml.

Chapter 32 Authentication and Authorization

353

or its modern successor TLS (Transport Layer Security). Using either will result in an

HTTPS connection.

The Form login configuration will display the specified form to query the credentials.

This allows you to customize the process.

The Client Certificate login configuration is based on SSL and a server certificate in

conjunction with a client certificate.

To proceed with the basic authentication, choose Basic and enter file in the Realm

Name field. This info isn’t checked by NetBeans, so be sure to enter an existing realm

name. Refer to your application server to figure out which values are valid. Because I’m

using GlassFish for this tutorial, file is a valid realm name. A file realm (a.k.a. domain,

zone, and so on) is available for most app servers.

Next, go to Security Roles and add two roles. Call them member and admin. You can

define as many roles as you like. This might be useful for applications where you need

to distinguish between different access levels like admin, normal user, manager, service,

and so on. For the full version of Alumni, we need a couple of roles too, but for this first

demonstration, there’s no need to define more roles yet.

The next step to configure web.xml is to add security constraints. Click Add Security

Constraint to add one. The display name is optional and for your convenience. We’ll

use member access here. The display name is very useful, if you have to deal with lots of

different constraints.

Now add a web resource collection (see Figure 32-2). Give it a name and provide a

URL pattern. /member/* applies to all pages of the member folder. Click OK to return to

the Security tab.

Chapter 32 Authentication and Authorization

354

We want to restrict access to members of a given role, so check Enable

Authentication Constraint and edit Role Name. Choose both member and admin, the

roles we defined earlier. This establishes a requirement for authorization, whereas

Enable User Data Constraint forces a requirement for the transport layer.

Now create a second security constraint that grants access to the admin pages for

members of the admin role only.

No NetBeans available? Or maybe you prefer to edit an XML file directly? Let’s take a

look at that. Using NetBeans, choose the Source tab. Your web.xml should look similar to

Listing 32-1.

Listing 32-1.  security-constraint Section in web.xml

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 4 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

Figure 32-2.  Add web resource

Chapter 32 Authentication and Authorization

355

 5 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

 6

 7

 8 [... omitted entries...]

 9

10 <security-constraint>

11 <display-name>member access</display-name>

12 <web-resource-collection>

13 <web-resource-name>member</web-resource-name>

14 <description>member access</description>

15 <url-pattern>/member/*</url-pattern>

16 </web-resource-collection>

17 <auth-constraint>

18 �<description>Member pages are available to all roles

</description\>

19

20 <role-name>member</role-name>

21 <role-name>admin</role-name>

22 </auth-constraint>

23 </security-constraint>

24 <security-constraint>

25 <display-name>admin access</display-name>

26 <web-resource-collection>

27 <web-resource-name>admin</web-resource-name>

28 <description>admin access</description>

29 <url-pattern>/admin/*</url-pattern>

30 </web-resource-collection>

31 <auth-constraint>

32 �<description>Admin pages are restricted to people of the

admin role only</description>

33

34 <role-name>admin</role-name>

35 </auth-constraint>

36 </security-constraint>

37 <login-config>

Chapter 32 Authentication and Authorization

356

38 <auth-method>BASIC</auth-method>

39 <realm-name>file</realm-name>

40 </login-config>

41 <security-role>

42 <description/>

43 <role-name>member</role-name>

44 </security-role>

45 <security-role>

46 <description/>

47 <role-name>admin</role-name>

48 </security-role>

49 </web-app>

Locate the tags security-constraint, login-config, security-role, and their

children. This is the result of the configuration made earlier. Thus, the intent of these

tags should be clear. If you know these tags, it can be faster to edit the XML file directly.

To apply more than these constraints, add a sibling. Within one constraint, you can add

further web resource collections. And you may restrict it to one or more dedicated HTTP

methods, as shown in Listing 32-2.

Listing 32-2.  Dedicated HTTP Method Example

1 <web-resource-collection>

2 <web-resource-name>All web pages</web-resource-name>

3 <description/>

4 <url-pattern>*.xhtml</url-pattern>

5 <http-method>PUT</http-method>

6 <http-method>POST</http-method>

7 </web-resource-collection>

<login-config> is where you need to apply changes if you choose a different

authentication, such as Form, or a different realm. Changing the method usually doesn’t

affect the security constraint(s) or role(s), so I won’t explain this again when we move to

a different realm or authentication method.

To test the security behavior, we create three simple web pages, each within the

folders admin, member, and public. Always give it the name test.xhtml. For this simple

test, we don’t need any JSF-specific tag. Just place some text in the page to identify the

folder. Listing 32-3 shows my test page within the admin folder.

Chapter 32 Authentication and Authorization

357

Listing 32-3.  Simple Test Page

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 4 <html xmlns="http://www.w3.org/1999/xhtml">

 5 <head>

 6 <title>Admin Test Page</title>

 7 </head>

 8 <body>

 9 <h1>Admin Page</h1>

10 </body>

11 </html>

Now what happens if you start the application and navigate to these pages? First

try the public page http://localhost:8080/Alumni/public/test.xhtml or its TLS

counterpart https://localhost:8181/Alumni/public/test.xhtml. If you haven’t

installed your own validated certificate, the latter uses a self-signed certificate of the

GlassFish server, so your browser will moan about an untrusted certificate. Because you

know it’s your server, you can accept it. The connection will be fully encrypted.

Your browser will display the page as expected. But if you try to navigate to the test

page in the member oder admin folder, this behavior changes: your browser will display

a small login dialog to query username and password, as shown in Figure 32-3.

Figure 32-3.  Login dialog for basic authentication

Chapter 32 Authentication and Authorization

358

Enter some credentials, press Enter (or click OK), and this dialog will be re-displayed

until (depending on your browser) you enter a valid username/password combination.

But we have no user defined, so the only choice is to cancel. You’ll get a 401 – Unauthorized

page displayed by the browser. The application is secured now.

Want to let in some user? Okay, let’s define them.

Open the GlassFish admin console. Ensure GlassFish is running (it will be started

with your app). Using NetBeans, open the Services view (Ctrl+5), choose Servers,

and open the context menu of your GlassFish. Choose View Domain Admin Console.

Alternatively, go to http://localhost:4848/ in your browser.

In the Navigation pane, choose Configurations ➤ server-config ➤ Security ➤ Realms

➤ file, as shown in Figure 32-4.

Figure 32-4.  GlassFish Configurations tree

Chapter 32 Authentication and Authorization

359

GlassFish displays the Edit Realm page. Click Manage Users ➤ New. Now enter some

credentials as shown in Figure 32-5. Confirm by clicking OK.

Figure 32-5.  GlassFish User Editor (for file realm)

For the test, you can enter two different users, one for group member and the other for

group admin. As the Realm name suggests, your user information will be stored in a file,

which is located in your domain/config folder and called keyfile. You can open it with

a text editor. The content should be similar to the following:

1 guest;{SSHA256}c6/mlRhM7djv01PY+eA1tF6plcQ/3IROXeCwO06ZTLtkF+dqmg2Erw==;\

2 student

Each line is built up by three columns: Username, password, and group(s). For

technical reasons the group is shown in line 2. For protection, the password is stored as an

encrypted hash value. See Chapter 28 if you need a refresher on secure passwords. With this

in mind, the file realm might be used for applications only where weak security is sufficient.

If you start the application, you still can’t log in. Do you remember web.xml dealing

with roles and GlassFish storing groups? Although we used the same names (member and

admin), these are two slightly different objects. What’s missing is a mapping from group

(or principal) to role. That’s a task specific to GlassFish.

For this mapping, you need a glassfish-web.xml (or sun-web.xml) file. You’ll have

to create one if it doesn’t exist yet. Using NetBeans, choose New ➤ Other ➤ GlassFish ➤

GlassFish Descriptor to create this file. Or create it manually in the WEB-INF folder.

Chapter 32 Authentication and Authorization

360

In the Security tab, enter information as shown in Figure 32-6.

Figure 32-6.  NetBeans security editor

The information you entered in the Security Role Mappings box simply adds the

lines in Listing 32-4 to the file. If you prefer, you can edit them directly in XML mode.

Listing 32-4.  Map One Group to Each Role

1 <security-role-mapping>

2 <role-name>admin</role-name>

3 <group-name>admin</group-name>

4 </security-role-mapping>

5 <security-role-mapping>

6 <role-name>member</role-name>

7 <group-name>member</group-name>

8 </security-role-mapping>

Chapter 32 Authentication and Authorization

361

You can map a couple of groups to one role, as shown in Listing 32-5.

Listing 32-5.  Map Multiple Groups to a Role

1 <security-role-mapping>

2 <role-name>member</role-name>

3 <group-name>admin</group-name>

4 <group-name>member</group-name>

5 </security-role-mapping>

This configuration maps both groups member and admin to the role member.

You can also map a user (principal) directly to a role: {lang="XML", title="map

groups and members to a role"}:

1 <security-role-mapping>

2 <role-name>admin</role-name>

3 <group-name>admin</group-name>

4 <principal-name>muellermi</principal-name>

5 </security-role-mapping>

If there’s no need for this flexible mapping, you can switch it off. In GlassFish, choose

Configurations ➤ server-config ➤ Security check ➤ Default Principal To Role Mapping.

Now a group is directly mapped to a role (group name = role name)—no need for a

dedicated mapping. But beware: this affects only applications deployed after changing

this setting! Usually users and roles will fit the requirements. There’s no need for variant

groups. So, I recommend using this setting.

Now if you start the application, login to Alumni is possible.

�Form Login
Now that we’ve addressed basic login with simple file realm, let’s move on and change

the authentication method. Remember, this book is about web development with

JavaServer Faces. All I’ve showed for container-based security so far is technology

that’s entirely independent from JSF. The same applies to simple form login. But it’s

possible to embed this into some JSF techniques. And, further on, programmatic login

is done using JSF.

Chapter 32 Authentication and Authorization

362

For the form-based login, we have to change our web.xml slightly. Besides changing

the authentication method, we have to declare two pages, one for the login and one

failure page (which might be the same) .

So, replace Listing 32-6 with Listing 32-7.

Listing 32-6.  Config for Basic Authentication

1 <login-config>

2 <auth-method>BASIC</auth-method>

3 <realm-name>file</realm-name>

4 </login-config>

Listing 32-7.  Config for Form Authentication

1 <login-config>

2 <auth-method>FORM</auth-method>

3 <realm-name>file</realm-name>

4 <form-login-config>

5 <form-login-page>/public/login.xhtml</form-login-page>

6 <form-error-page>/public/loginError.xhtml</form-error-page>

7 </form-login-config>

8 </login-config>

Listing 32-8 shows a short login page.

Listing 32-8.  Simple Login Page

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

 3 �Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.d\

 4 td">

 5 <html xmlns="http://www.w3.org/1999/xhtml"

 6 xmlns:h="http://xmlns.jcp.org/jsf/html">

 7 <h:head>

 8 <title>Login</title>

 9 </h:head>

Chapter 32 Authentication and Authorization

363

10 <h:body>

11 <form method="POST" action="j_security_check">

12 Username: <input type="text" name="j_username" />

13 Password: <input type="password" name="j_password" />

14

15 <input type="submit" value="Login" />

16 </form>

17 </h:body>

18 </html>

Because this book is mainly about JSF, I used the NetBeans commands New ➤ JSF

Page to create a stub. But the heart of this page is pure HTML—the form with the method

POST and the action j_security_check. This name is fixed, as are the names for the user

(j_username) and password (j_password) fields. If you like, you can insert this form into

a full-fledged JSF page. Or you can embed this login form into a JSF component to make

it more reusable. Remember to use this standard HTML form to define the action; its JSF

counterpart doesn’t know about defining a special action.

Listing 32-9 shows an example error page, but you can use any page. Here I used

some simple JSF without any backing bean. It simply informs the user about the

authentication failure and offers a navigation button back to the login page.

Listing 32-9.  Example Login Error Page

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 4

 5 <html xmlns="http://www.w3.org/1999/xhtml"

 6 xmlns:h="http://xmlns.jcp.org/jsf/html">

 7 <h:head>

 8 <title>Login Error</title>

 9 </h:head>

10 <h:body>

11 <div>

12 <h:outputText value="Sorry, you could not be authenticated."/>

13 </div>

Chapter 32 Authentication and Authorization

364

14 <div>

15 <h:button outcome="/public/login.xhtml" value="Try again."/>

16 </div>

17 </h:body>

18 </html>

Start your app, and it should use form authentication. If you try to access a page that

needs authentication, the system redirects you to the login page. After you enter valid

credentials, the system will open the requested page. But after login to the member’s

page with user John (who has member access only), try to navigate to the admin folder.

As you might expect, you’ll receive an unauthorized message, because you need admin

access. The system won’t redirect you to the login page because you’re already logged

in. The automated redirect is only available if the user isn’t logged in. Usually this is what

your intention is.

But what do you do to secure your computer? Do you log in as a normal user for your

daily work and use a separate login for administrative tasks? Using Linux, this separate

login might be root, and you perform a su or sudo on this kind of operating system. So,

you might have two accounts with different access levels for an application like Alumni,

too. In that case, you need a chance to login as a different user (without closing and

reopening your browser). To tackle this, we need a logout functionality. Unfortunately,

the HTTP authentication doesn’t provide a logout facility. But luckily, instead of using

the predefined fields and actions as shown before, we can use a programmatic login as

well as a programmatic logout.

�Programmatic Login
I think this programmatic login I just mentioned is much more interesting. It lets us

create our own form. The login is done within its backing bean. Let’s try it (Listing 32-10).

Listing 32-10.  JSF Form for Programmatic Login

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

 3 �Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.d\

Chapter 32 Authentication and Authorization

365

 4 td">

 5 <html xmlns="http://www.w3.org/1999/xhtml"

 6 xmlns:h="http://xmlns.jcp.org/jsf/html">

 7 <h:head>

 8 <title>Login</title>

 9 </h:head>

10 <h:body>

11 <h:form>

12 <div>

13 <h:outputLabel for="userName" value="User"/>

14 <h:inputText id="userName" value="#{login.userName}"

15 required="true"

16 requiredMessage="Please enter username"/>

17 </div>

18 <div>

19 <h:outputLabel for="password" value="Password"/>

20 <h:inputSecret id="password" value="#{login.password}"

21 required="true"

22 requiredMessage="Please enter password"/>

23 </div>

24 <div>

25 <h:commandButton action="#{login.login}" value="Login"/>

26 </div>

27 </h:form>

28 </h:body>

29 </html>

Listing 32-10 shows a fully fledged JSF page, and it’s up to you to design it as you

like. Username and password fields are mandatory now, guaranteed by the use of the

required property, and are stored into two properties of the backing bean. If the user

clicks the Login button, the login action is performed. For this kind of login, no change

to web.xml is necessary. See Listing 32-11.

Chapter 32 Authentication and Authorization

366

Listing 32-11.  Login Method for Programmatic Login

 1 public String login() {

 2 FacesContext context = FacesContext.getCurrentInstance();

 3 HttpServletRequest request = (HttpServletRequest) context

 4 �.getExternalContext().

getRequest();

 5

 6 try {

 7 request.login(_userName, _password);

 8 } catch (ServletException e) {

 9 context.addMessage(null, new FacesMessage("Login failed."));

10 return "/public/loginError";

11 }

12 return "/member/index";

13 }

First, you have to obtain the HttpServletRequest and then delegate the login by

calling its login method. Quite simple, isn’t it? If the login fails, a ServletException

exception is thrown. I simply created a FacesMessage, which will be displayed in the

user’s browser. Instead of returning /public /loginError, it’s possible to return an

empty string. Doing so, the login form will be redisplayed with the failure message (don’t

forget to add a message tag to this page). Although this method doesn’t care about the

<form-error-page> tag of web.xml, you can’t omit this tag. It’s still required, but its

content doesn’t care.

You may have recognized one important difference compared to the so-called

form-based login: as before, the login page is displayed when you try to navigate to a

protected page. Using form login, the page you tried to navigate to is called. Using the

programmatic login, the page that’s returned by the login method is the target of our

navigation. So, we can force the user to a specific entry page. Usually that’s what we want

to do. To keep the behavior of the form-based login, we need to store the target page

before opening the login dialog and call it on successful login.

Chapter 32 Authentication and Authorization

367

�Programmatic Logout
As mentioned earlier, to change the user, we need to log out first. We do that by calling

the logout method of the servlet request, as shown in Listing 32-12.

Listing 32-12.  Logout Method for Programmatic Logout

 1 public void logout() {

 2 FacesContext context = FacesContext.getCurrentInstance();

 3 HttpServletRequest request = (HttpServletRequest) context

 4 �.getExternalContext().

getRequest();

 5 try {

 6 request.logout();

 7 } catch (ServletException e) {

 8 context.addMessage(null, new FacesMessage("Logout failed."));

 9 }

10 }

You only need to place a command link to this method somewhere on the page, as in

Listing 32-13.

Listing 32-13.  Call Logout Method

1 <h:commandLink action="#{login.logout}" value="Logout"/>

Next I’ll show you how to exchange the password store. At first, we’ll move on

to JDBCRealm, which lets you store your username and password information in a

database.

�jdbcRealm
Okay, we’ve secured our JSF web application by using a JSF form. The user information

is still stored in a flat text file. But as I said, your application server provides more. Let’s

move on to GlassFish’s JDBCRealm, which allows you to store the user information in the

database.

Chapter 32 Authentication and Authorization

368

In your application you may provide a registration form where the user enters their

username, some other data, and a password. You may store this data all together in a

table named account. Or you might store the credentials in a separate table called user,

for example. Feel free to persist the data as it’s relevant to your application. You might

store the password as clear text (not recommended—use only for testing purpose) or

hashed by a well-known algorithm like SHA-256. All the container needs is access to a

table (or view) that contains the username and password in one row.

To access this table from your application and from the JDBCRealm, you need to

set up a connection pool and an appropriate JDBC resource. Besides the user table, a

second one is used to access the user’s role. A column for the username is needed, plus

a second one for the group. A user may be member in a couple of groups. If a user is

assigned to exactly one group, you can store this information in the same table as the

password.

Let’s set up the realm. Open the GlassFish console and choose Configurations ➤

server-config ➤ Security ➤ Realms. See Figure 32-7.

Figure 32-7.  GlassFish configuration

Chapter 32 Authentication and Authorization

369

Figure 32-8.  New realm dialog of GlassFish

GlassFish displays an overview of existing realms. Click New to create a new one. The

New Realm dialog opens, as shown in Figure 32-8.

Chapter 32 Authentication and Authorization

370

Here are some pointers on filling out the dialog:

•	 Provide a name of your choice. This name will be referenced in your

web.xml configuration.

•	 Choose JDBCRealm from the Class Name drop-down list.

•	 For JAAS Context, enter jdbcRealm.

•	 For JNDI, enter the name you’ve chosen for your JDBC resource.

•	 For User Table, provide the name of the table where you store the

credentials.

•	 For User Name Column, enter the column name where you store the

username.

•	 For Password Column, enter the column name where you store the

password.

•	 For Group Table, provide the name where you store the group

information. If a user can be in exactly one group and you store the

group information in the same table as the credentials, enter the

same name here.

•	 Group Table User Name Column column provides the same

username as the User Table, even though its name may be different.

•	 For Group Name Column, enter the column name that contains the

group name.

•	 Password Encryption Algorithm: As stated before, you can store your

password as plain text or encrypted. It’s highly recommended that

you use encryption. Choose the algorithm you use. Remember, MD5

or SHA1 are known to be insecure, so choose SHA-256 or SHA-512,

for example.

•	 Digest Algorithm: Provide the same algorithm.

•	 Encoding: You can store the encrypted password as a hex string or

base 64 encoded. This property defines the encoding (Hex or Base64).

•	 Charset: Choose the charset you use to store the password. You may

use UTF-8.

Chapter 32 Authentication and Authorization

371

Store your config by clicking OK. If you prefer to configure GlassFish by editing a

config file, open the file YourGlassFishRoot/glassfish/domains/yourDomain/config/

domain.xml. Locate the tag security-service and add the auth-realm, as shown in

Listing 32-14. (Note that [...] indicates text omitted for brevity.) This tag appears twice,

for default and active config!

Listing 32-14.  domain.xml (Excerpt)

 1 [...]

 2 <security-service activate-default-principal-to-role-mapping="true">

 3 <auth-realm classname="com.sun.enterprise.security.ee.auth.realm.jdbc.JDBC\

 4 Realm"

 5 name="jdbcRealm">

 6 <property name="jaas-context" value="jdbcRealm"></property>

 7 <property name="encoding" value="Hex"></property>

 8 <property name="password-column" value="Hash"></property>

 9 <property name="datasource-jndi" value="jdbc/tutorial"></property>

10 <property name="group-table" value="Group"></property>

11 <property name="charset" value="UTF-8"></property>

12 <property name="user-table" value="User"></property>

13 <property name="group-name-column" value="GroupName"></property>

14 <property name="digestrealm-password-enc-algorithm" value="SHA-256">

15 </property>

16 <property name="group-table-user-name-column" value="UserName">

17 </property>

18 <property name="digest-algorithm" value="SHA-256"></property>

19 <property name="user-name-column" value="UserName"></property>

20 </auth-realm>

21 [...]

22 </security-service>

23 [...]

Make sure you stopped your GlassFish before editing this file and restart it

afterwards.

Chapter 32 Authentication and Authorization

372

Once we’ve defined the realm (and stored some credentials and groups into the

tables), the only thing to do is to edit the security configuration in web.xml. All you have

to do is exchange the realm. Replace the file with JDBCRealm, as shown in Figure 32-9.

Figure 32-9.  NetBeans Security

Or do it within the XML view NetBeans offers to you (other IDEs might offer the XML

view only):

1 <realm-name>JDBCRealm</realm-name>

That’s it.

�Custom Realm
Remember the requirements for secure passwords?

•	 We need an algorithm that takes some time to calculate to protect

from brute force attacks (or at least reduce their chance of success).

JDBCRealm lets you determine the algorithm.

•	 We need to add a salt to every password to protect against rainbow

tables. JDBCRealm fails on this requirement.

Chapter 32 Authentication and Authorization

373

Here’s where a custom realm comes into play. It enables the developer to save

the passwords in any store with any algorithm. Such a custom realm might be vendor

specific. The realm in Listing 32-15 was developed for the GlassFish server. You can

check to see whether it’s applicable to your server. First, we need to derive a custom

realm from AppservRealm.

Listing 32-15.  Custom Realm for Alumni

01 public class AlumniRealm extends AppservRealm {

02

03 @Override

04 public String getAuthType() {

05 return "alumniRealm";

06 }

07

08 @Override

09 public String getJAASContext() {

10 return "alumniRealm";

11 }

12

13 @Override

14 public Enumeration getGroupNames(String username) {

15 List<String> groups = new ArrayList<>();

16 groups.add("member");

17 groups.add("admin");

18 return Collections.enumeration(groups);

19 }

20

21 }

We need to override three methods. For AuthType and JAASContext, this realm

simply returns its name. This is necessary to identify this realm in the server’s configuration.

The intention of GroupNames is to provide all possible groups of the solution.

For demonstration purposes and simplicity’s sake, all the names are coded within

the method. This might be okay for an authentication realm that’s used for a certain

application. Even better, you might define the group names within some properties, or

get it from a database.

Chapter 32 Authentication and Authorization

374

Next, we need a LoginModule, which needs to be derived from

AppservPasswordLoginModule. See Listing 32-16.

Listing 32-16.  Custom Realm for Alumni

01 public class LoginModule extends AppservPasswordLoginModule {

02

03 @Override

04 protected void authenticateUser() throws LoginException {

05 if (!(_currentRealm instanceof AlumniRealm)) {

06 throw new LoginException("Unexpected realm: "

07 + _currentRealm.getClass().getSimpleName());

08 }

09

10 String[] groups = obtainPermittedGroups(_username, _passwd);

11 if (groups.length > 0) {

12 commitUserAuthentication(groups);

13 }

14 }

15

16 String[] obtainPermittedGroups(String userName, char[] passwd) {

17 ...

18 return groups;

19 }

20

21 }

In the login module, we first check whether the current realm is the expected custom

realm. _currentRealm (with the leading underscore, as I do throughout this book) is a

field within the parent method. If it’s not of the expected type, we throw an exception.

In line 10 we call the method, which returns an array of permitted group names. If

the authentication fails, this method doesn’t return any group name. Otherwise, we call

commitUserAuthentication by passing in this array.

Chapter 32 Authentication and Authorization

375

Within obtainPermittedGroups, we need to check the user credentials and deter-

mine the permitted groups. I omitted the concrete implementation in Listing 32-16,

but will show it in the next chapter. Instead, in Listing 32-17, I present a poor implemen-

tation to give you a first impression of what needs to be happen here. You can use such a

fake method to test the realm without needing to implement a real user/password check

at this time.

Listing 32-17.  Poor Implementation of the Authentication (Fake Method)

 01 String[] obtainPermittedGroups(String userName, char[] passwd) {

 02 List<String> groupList = new ArrayList<>();

 03 String password = new String(passwd);

 04 if ("muellermi".equals(userName) && "secret".equals(password)) {

 05 String[] groups = new String[2];

 06 groups[0] = "member";

 07 groups[1] = "admin";

 08 return groups;

 09 }

 10 return new String[0];

 11 }

Create a simple Java project named AlumniRealm that contains the two classes. I'm

using the package de.muellerbruehl.alumnirealm for these classes. The project simply

needs to build a jar file. Now we need to deploy the resulting jar into the lib folder of

your GlassFish domain. Before you copy this file, make sure your server is down.

Next, locate the config folder of your GlassFish domain—for example,

GlassFishRoot/glassfish/domains/domain1/config. Edit the login.conf file. Here we

need to add the new realm, as shown in Listing 32-18.

Listing 32-18.  Line to Be Added to login.conf

01 alumniRealm {

02 de.muellerbruehl.alumnirealm.LoginModule required;

03 };

In the same folder, edit the domain.xml file too. Here you need to add the

authentication realm in the <security-service> tag, as shown in Listing 32-19.

Chapter 32 Authentication and Authorization

376

Listing 32-19.  domain.xml (Excerpt)

 1 ...

 2 <security-service>

 3 <auth-realm classname="de.muellerbruehl.alumnirealm.AlumniRealm"

 4 name="alumniRealm"></auth-realm>

 5 ...

 6 </security-service>

 7 ...

If you don’t want to edit domain.xml directly, you can start your server and open the

admin console. Using the object tree, open Configurations ➤ server-config ➤ Security ➤

Realms and click New. Then provide the following information, as shown in Figure 32-10.

•	 Name: alumniRealm

•	 Class name: "de.muellerbruehl.alumnirealm.AlumniRealm"

name="alumniRealm"

Figure 32-10.  web.xml (Excerpt)

Chapter 32 Authentication and Authorization

377

The custom realm is ready to use.

All we need is to configure the application (within its web.xml file) to use it:

<realm-name>alumniRealm</realm-name>

�Summary
Java EE supports security features like user authentication and authorization out of

the box. The servlet specification defines a couple of different modes to query the user

credentials, like basic or form.

Although basic isn’t useful for most scenarios, the form-based mode might be used

to redirect a non-logged-in user to a login form. The most flexible method for login

is the programmatic login. Here, it’s up to the developer to embed the login into an

appropriate page.

Depending on the application server, the application developer may choose from

several authentication realms (zones, domains, and so on). GlassFish, for example, offers

a fileRealm as well as a JDBCRealm. To enforce a strong password policy, the developer

may need a realm that enables him to use his own identity store. Here, a custom realm

comes into play.

In the next chapter, I'll demonstrate how this custom realm interacts with the

identity store.

Chapter 32 Authentication and Authorization

379
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_33

CHAPTER 33

Account Handling
If you’ll recall from Chapter 32’s custom realm, I left the obtainPermittedGroups

method empty and promised to describe it later. To authenticate the user, the custom

realm needs to check the user’s credentials, which are stored in an account object. Or

in terms of the database, stored in the account table. If we add a data access class to the

realm, we need to access the account within Alumni, too.

Thinking about the DRY principle (don’t repeat yourself) raises the question of

whether it’s possible not to use the same code in two distinct places. We want to write

the code to access an account only once and then reuse it in different places. Should

we write a library that might be used by Alumni as well as the custom realm? Or should

the custom realm call the appropriate data access of Alumni? Both solutions have their

drawbacks, especially the latter, which forces the realm to know about Alumni. Would it

be possible to run that account object independently?

The good news is: yes it is.

�Micro Service
Creating, retrieving, and deleting a user account as well as setting its state and login will

be handled by a small application that runs independently from both Alumni and the

custom realm. Usually such a unit would be called a service. You can develop and deploy

such a service independently from the other units. In the domain of web development,

we usually use two kinds of services:

•	 WS* services that communicate using SOAP

•	 Services based on the REST architectural style

SOAP (www.w3.org/TR/soap/) is a protocol standard for the communication of web

services in the WS* family. Usually SOAP is tunnelled via HTTP. SOAP originally stood

for Simple Object Access Protocol, but today only the acronym is used. There are simpler

protocols available.

http://www.w3.org/TR/soap/

380

We’re talking about the WS* family because these kinds of service use the Web Services

Description Language (WSDL). (You can read more about WSDL at www.w3schools.com/

xml/xml:wsdl.asp.) When web services became popular in conjunction with service

oriented architecture (SOA) in the early 2000s, they often were used in combination with

a kind of registry, which could be used to look up a catalog of services. From the point

of view of the application using a WS* service, it could be treated as a kind of remote

method invocation. Calling such a service is as easy as calling a local method. We can pass

parameters and receive a result object. Personally, I often use WS* services, but within

Alumni, I’ve chosen to follow a REST-like style, which usually is more lightweight.

Today, we’re talking about micro services. Often people misunderstand this term.

A micro service is not a “small” service. It’s an application that offers a complete set

of associated functions with high cohesion. Its functionality is available with a public

interface and can be reached via the network. A micro service stands on its own; it

doesn’t need the overhead of any supporting components like a registry (for example, as

designed for WS* services).

This definition restricts a micro service to neither a special protocol nor to a special

architecture. If we omit the supporting infrastructure, a WS* service might act as a micro

service.

The other popular kind of services includes the ones that follow the REST

architectural style. Of course, there are more kinds of services, but the two I’m talking

about in this chapter are the most important in the domain of web development.

Note  REST, by the way, is short for REpresentational State Transfer and was
described by Roy Thomas Fielding in his dissertation “Architectural Styles and the
Design of Network-based Software Architectures,” which you can read at
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Within REST, a resource is represented by an identifier. Using HTTP as transfer

medium, a resource is identified by a URI. Actions on such a resource are associated with

HTTP methods like POST, GET, PUT, or DELETE. Usually POST is used to create an object,

GET to read it, PUT to update, and DELETE to delete it. Thus, all the well-known CRUD

operations can be supported.

Chapter 33 Account Handling

http://www.w3schools.com/xml/xml:wsdl.asp
http://www.w3schools.com/xml/xml:wsdl.asp
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

381

For more on REST and the HTTP methods, you might read “Using HTTP Methods

for RESTful Services” (www.restapitutorial.com/lessons/httpmethods.html) or

“RESTFUL API tutorial” (https://restfulapi.net/http-methods/). Lots of other

articles and good books are available, too. Discussing all the fundamentals of RESTful

services goes far beyond this book.

Let’s assume we want to handle customers. A list of customers might be accessed

by <baseAddress>/customers using the GET method. The same address using the POST

method and passing the data for a customer will create a new customer and return its id.

A GET to <baseAddress>/customers/<id> (where <id> represents the appropriate id) will

retrieve the customer, whereas the same address in conjunction with the DELETE method

deletes it.

Java EE includes the Java API for RESTful Web Services (JAX-RS). The current version

Java EE 8 includes RAX-RS 2.1, which has been defined as JSR370 (https://jcp.org/en/

jsr/detail?id=370).

For Alumni, the access to the account information is handled by a micro service

based on JAX-RS.

�Account Service
Many older JSF applications (including mine, in the beginning) tended to become

monolithic. Compiling and deploying a growing application takes a growing amount of

time. Such a monolith becomes harder to maintain, so it’s better to compose the whole

application using a set of smaller parts. We might integrate a couple of independent JSF

apps using portlets (see the portlet specification, JSR 362, at https://jcp.org/en/jsr/

detail?id=362). Or we can design a couple of JSF apps to interact seamlessly by sharing

a session. Or we can call services.

Let’s look at how Alumni handles its accounts. The address to reach its API will be

http://<server:port>/AccountService/Accounts. Alumni might call this address with

the POST method and pass some account data to create a new account. In contrast to the

customer example mentioned earlier, I inserted an additional id sub-path to access a

specific account (I hope RESTful purists won’t hurt me). This allowed me to add other

sub-branches for the specific functions of enabling login and disabling an account.

Chapter 33 Account Handling

http://www.restapitutorial.com/lessons/httpmethods.html
https://restfulapi.net/http-methods/
https://jcp.org/en/jsr/detail?id=370
https://jcp.org/en/jsr/detail?id=370
https://jcp.org/en/jsr/detail?id=362
https://jcp.org/en/jsr/detail?id=362

382

ACCOUNTS API DOCUMENTATION

An account may have one of four different states:

•	 New

•	 Active

•	 Inactive

•	 Retired

Creating an account will initially set the status to new. If the user activates their account within

three days from creation, the status will be set to active—otherwise, the account will be

removed (deleted from the database).

If, and only if, the account is in the active state, the user may

•	 Log in to their account

•	 Update account information

•	 Delete their account

DELETE may remove the account from the database or set the account’s status to the status

retired and remove essential information identifying the user (name, email, and so on).

This behavior depends on the data that’s linked to this account. If some data has to be kept

as information within the system, then the account remains anonymized in the retired state.

Otherwise, it’s completely removed from the database.

If, and only if, the account is in an active state, the administrator can make it inactive. This

might be done to temporarily disable an account, for example while investigating a case of

abusing the account. Then the administrator might switch the status back to active.

For this kind of reason, the account service (AlumniAccount) offers this API:

AlumniAccount/api/account

•	 POST: Create an account.

•	 Returns 409 conflict if the database contains an account with the given email.

•	 Returns 201 created if the account could be created. If the given loginName

existed in the database, the system will change the loginName to a unique one.

Chapter 33 Account Handling

383

AlumniAccount/api/account/{id}

•	 GET: Retrieve account.

AlumniAccount/api/account/{id}

•	 PUT: Update account.

AlumniAccount/api/account/{id}

•	 DELETE: Delete account (either anonymize and set to retired or totally remove

from DB).

AlumniAccount/api/account/activate/{id}

•	 PUT: Set account status to active.

AlumniAccount/api/account/login/{loginName}/{password}

•	 GET: Return a list of groups, if the user is allowed to log in.

Although AccountService is a separate web application, it derives its project object

model (POM) from Alumni.

NetBeans supports the creation of RESTful services out of the box. You can choose to

create a new RESTful web service from pattern, database, or entity. If you want to create

it from an entity class, for example, NetBeans creates a class for the data access as well

as the service and its configuration. Usually this is a good starting point for your further

development.

To configure the REST service, we need a class that derives from Application. Add

the @ApplicationPath annotation with the path to your REST API. This path will be

appended to the application’s context path. I simply use api.

Within our class, we need to override the getClasses method, which returns all

classes we want to expose for the service. If you use NetBeans to create your REST

service, the configuration class contains an addRestResourceClasses method to add

the service classes. Don’t alter this method because it’s been generated and will be

administered by NetBeans if you add or remove REST service classes. See Listing 33-1.

Chapter 33 Account Handling

384

Listing 33-1.  REST Service Configuration

01 @javax.ws.rs.ApplicationPath("api")

02 public class ApplicationConfig extends Application {

03

04 @Override

05 public Set<Class<?>> getClasses() {

06 Set<Class<?>> resources = new java.util.HashSet<>();

07 addRestResourceClasses(resources);

08 return resources;

09 }

10

11 private void addRestResourceClasses(Set<Class<?>> resources) {

12 �resources.add(de.muellerbruehl.alumniaccount.rest.AccountService.

class);

13 }

14

15 }

In that listing, we only add one Service class. Let’s take a look at it in Listing 33-2.

Listing 33-2.  AccountService (Excerpt)

01 @Path("/account")

02 public class AccountService {

03

04 @Context private UriInfo context;

05

06 @POST

07 @Consumes(MediaType.APPLICATION_JSON)

08 @Produces(MediaType.APPLICATION_JSON)

09 public Response createAccount(Account account) {

10 try {

11 AccountFacade.getInstance().createAccount(account);

12 URI path = context.getAbsolutePath().resolve(account.getId());

13 return Response.created(path).entity(account.getAccessKey()).build();

14 } catch (IllegalArgumentException ex) {

Chapter 33 Account Handling

385

15 return Response.status(Status.CONFLICT).build();

16 } catch (Exception ex) {

17 return Response.notAcceptable(null).build();

18 }

19 }

20

21 @GET

22 @Path("{id}")

23 @Produces(MediaType.APPLICATION_JSON)

24 public Account getAccount(@PathParam("id") String id) {

25 Account account = AccountFacade.getInstance().findAccount(id);

26 return account;

27 }

28 ...

29 }

In line 1, there is a Path annotation. This declares the relative path within our

API. The full path is a combination of protocol, server, port, context path, API path

as configured, and last but not least the relative path to the account resource.

Thus the full path to access the AccountService on a local machine would be

http://localhost:8082/AlumniAccount/api/account. You may wonder why the

port differs from the usual 8080. I operate this service on its own application server.

(Yes, it’s possible to Docker-ize it, but that’s beyond this book’s scope.)

The excerpt contains two methods: createAccount takes an account via API and

passes it to the AccountFacade, which performs some checks and persists the account. In

line 4, we’ve got a UriInfo object injected. We’ll use it to create a path for our response

in case of successful creation. Within this response, we return the newly created id of the

account.

If the new (not yet existing) account comes with an email that exists in the account

table, an IllegalArgumentException will be thrown. Once we catch it here (line 14), we

return an HTTP error code 409 (conflict). In any other case, we return a not-acceptable state.

When a client calls this method, it doesn’t need to pass an object of the Account

class like the server uses. All data of the client’s account is converted to its JSON

representation. On the server side, the data is converted to an object in the server’s

Account class. This conversion works because both classes use the same getter and setter

Chapter 33 Account Handling

386

names. Although the password of the client’s account comes as clear text (as entered by

the user), the server’s password is hashed within its setter. That’s because we only want

to store encrypted passwords in the data base.

To protect the password during transport, we need to use a secure transport protocol

such as TLS between the browser and our application server. If we assume that both

our application server and the AccountService reside on the same network behind a

firewall, then we don’t need to secure the transport between both servers. That’s why the

service is available at a non-secured (http:) URI.

The second method, getAccount, accepts an id and retrieves the appropriate

account from the database. Look at line 22: here the path is surrounded by curly braces.

That means “expect a variable id as part of the URI.” Within the method signature we

refer this part of the path to assign its value to the parameter. Because we annotated this

method with @GET, it reacts only to the HTTP GET method.

Now if we keep the path but change the HTTP method, we can implement a DELETE

method, as shown in Listing 33-3.

Listing 33-3.  AccountService (Excerpt: DELETE)

01 @DELETE

02 @Path("{id}")

03 public void delete(@PathParam("id") String id) {

04 AccountFacade.getInstance().deleteAccount(id);

05 }

If we need more than one variable, we simply add it to the path. For the login, the

relative path contains the literal login and two variables for login name and password. If

the user can be authenticated, the login method returns all the groups the user belongs

to. That’s what our custom realm needs to proceed. See Listing 33-4.

Listing 33-4.  AccountService (Excerpt: login)

01 @GET

02 @Produces(MediaType.APPLICATION_JSON)

03 @Path("login/{loginName}/{password}")

04 public String login(@PathParam("loginName") String loginName,

05 @PathParam("password") String password) {

06 try {

07 Account account = AccountFacade.getInstance()

Chapter 33 Account Handling

387

08 .findAccountByName(loginName);

09 if (!account.checkPassword(password)) {

10 return "";

11 }

12 return AccountFacade.getInstance().retrieveRoles(account.getId());

13 } catch (IllegalArgumentException ex) {

14 LOGGER.log(Level.INFO, ex.getMessage());

15 }

16 return "";

17 }

�Testing
Testing a web application can be a challenge. Usually developers test their units of

code with the aid of a unit test framework, but lots of a web application’s functionality

relies on other modules or other Java EE technologies. We can mock away parts of the

application to isolate our unit under test.

Sometime we can’t mock away anything. If we need features provided by the

container, it becomes hard to write a test with a simple test framework. Besides Selenium,

which automates the browser, we might use Arquillian (http://arquillian.org). In

conjunction with ShrinkWrap, only those parts of an application needed for the test are

packed together into a web archive. Arquillian launches an embedded app server with

the reduced system to perform the test. This approach might be combined with a unit

test framework.

Luckily, testing an isolated micro service doesn’t require such an effort. Besides unit

testing single classes, we can write a small REST client and use the test framework to call

our service’s methods. Indeed, this isn’t unit testing—it’s integration testing.

Listing 33-5 shows a short excerpt of my tests for the AccountService.

Listing 33-5.  Integration Test of the AccountService (Excerpt)

01 @Test

02 public void createAndDeleteAccount() {

03 AccountClient client = new AccountClient();

04 Account account = createAccount();

Chapter 33 Account Handling

http://arquillian.org/

388

05 Response postJson = client.createAccount(account);

06 assertEquals(201, postJson.getStatus());

07

08 String path = postJson.getLocation().getPath();

09 String id = path.substring(path.lastIndexOf("/") + 1);

10 assertEquals("testclient", client.getAccount(id).getLoginName());

11 client.deleteAccount(id);

12 assertEquals(null, client.getAccount(id));

13 }

�Summary
Both Alumni and the custom realm use account management. To avoid dependencies

from the realm to the application, we sourced out the account management into its own

application. Such an application that focuses on a solitary business case is known as a

micro service.

Java EE supports two different kinds of web services out of the box:

•	 WS* services

•	 RESTful services

We implemented AccountService as an independent RESTful service based on the

JAX-RS functionality. JAX-RS supports easy access to the information the client sends via

an HTTP request. We can extract information out of the URI by defining path patterns, or

we can access data sent via header—for example, POST data.

To test this service, we create an appropriate client and use a unit test framework to

call the service methods.

Chapter 33 Account Handling

389
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_34

CHAPTER 34

Classroom Chat
(WebSockets)
Alumni is built for former pupils or students who join one or more classes. They

may communicate within each class. The application supports two different kinds of

communication: messaging and chat.

Using the messaging feature, the user can select a couple of recipients, write the

message, and send it. By clicking the Send button, the message is stored to a table.

Some metadata, including a link to that message, is stored for every recipient. They

may log in at any time and open their message box to read the messages. This kind of

communication is usually used for asynchronous communication between individuals.

It is realized by techniques described already in earlier chapters, so I won’t dive further

into its implementation.

A chat, on the other hand, is used for synchronous communication. You can compare

chatting with speaking in a room: all people in that room can listen to the words at the

time of speaking, assuming there is no considerable delay and people are able to hear.

We often use the term chat room, a colloquial synonym for a shared communication

channel. When any user writes a message, it’s displayed immediately to all users in the

same chat room. For this to work, either the client needs to pull new information every

few milliseconds or the server needs to push the information. So far, we’ve used HTTP

concept: the client initiates the communication, the server sends the answer, and the

communication terminates until the next request. Pure HTTP can be used to implement

this pull concept, but it’s not hard to imagine the huge amount of traffic that approach can

generate. So we need another technique that allows us to implement the push approach.

When someone enters a chat room, it’s nice for them to be able to easily get a sense

of the ongoing discussion. Alumni stores a few of the latest messages and shows them to

a user entering the chat room as a kind of replay.

390

�HTTP Protocol and Alternatives
HTTP is one of the Internet protocols that all current browsers support. HTTP (short for

HyperText Transfer Protocol) is the standard for Internet browsing. As its name suggests,

it was developed to transfer text from a server to a client. This text can contain hyperlinks

to other texts. HTTP was standardized by the World Wide Web Consoritum (W3C), and

you can read more about this at www.w3.org/Protocols/.

HTTP is a stateless request-response protocol: a client sends a request to the server.

The server sends a response to the client and terminates the connection. For every

requested resource, a new connection is needed. For example, if a web page contains

some text and three images, then a total of four requests is needed.

Because every request is initiated by the client, normally it’s not possible to push

information from server to client at any time. There are some workarounds, such as

deferred answers: the server delays its response until certain information is available and

then sends the answer. After that, the connection is closed, and the server needs a new

request before it can push more information.

Although widespread, HTTP has a few other limitations, so some alternatives and

extensions have been developed to overcome these restrictions.

HTTP/2 (https://tools.ietf.org/html/rfc7540) lets the client request resources

more effectively because this protocol allows multiple concurrent exchanges on the

same connection. It allows the server to preemptively push chunks of data using the

same client-side initiated connection. For a page with three images, the server answers

the client’s request by sending the page content and pushing the three images. This

boosts the performance, but it’s still not what we need to realize a chat. HTTP/2 became

standardized by the Internet Engineering Task Force (IETF) in 2015 and became part of

the Java Enterprise Edition starting with version 8 (Java EE 8).

Server Sent Events (SSE) provide a way to really push information from the server

to the client. The core protocol is still HTTP: as with vanilla HTTP, the connection is

requested by the client. The server keeps the connection and is able to push chunks of

information in so-called events.

SSEs provide a real server push and are part of Java EE 8, too, but it’s one-way

communication only, from server to client. To create a chat with SSE, we can AJAXify an

input field to send the user’s input to the server. Then we push this message to all clients

in the chat room. Because SSE is realized on top of JAX-RS, we need to introduce some

other techniques that differ a bit from the usual JSF way. So SSE isn’t used to realize

Alumni’s chat room either.

Chapter 34 Classroom Chat (WebSockets)

http://www.w3.org/Protocols/
https://tools.ietf.org/html/rfc7540

391

WebSockets (https://html.spec.whatwg.org/multipage/web-sockets.

html#network) represent a different approach to establishing a server push. The

WebSocket protocol enables a real bidirectional communication between two peers.

It was standardized by the IEFT in 2011. Like SSE, its specification is part of the HTML

living standard.

This technique seems to fit best for the chat room, so Alumni uses the WebSocket

protocol. WebSocket became part of Java EE 7 and is supported by JSF 2.3 or newer,

which is part of Java EE 8. Although the WebSocket protocol is directly supported by JSF,

it’s implemented more like a pure server push. To take advantage of the full bidirectional

support, Alumni doesn’t use WebSocket’s support of JSF. I’ll show you an alternative

implementation with JSF’s WebSocket feature later in this book.

�WebSocket
Technically, the WebSocket protocol is initiated as an upgrade of an HTTP request.

This implies that a connection needs to be initiated by a client. Once the WebSocket

connection is established after this upgrade request, both partners act as peers. The

connection becomes a full-duplex communication. Every peer can send data at any time.

The bidirectional communication isn’t the only advantage of this protocol. Because

the connection stays active, it doesn’t need to be initiated again and again for every

chunk of information. That saves a couple of bits and increases performance.

The switchover from HTTP to WebSocket is initiated by the WebSocket Opening-

Handshake-Request, which starts like Listing 34-1.

Listing 34-1.  WebSocket Opening-Handshake-Request (Excerpt)

1 GET /endpoint HTTP/1.1

2 Host: mueller-bruehl.de

3 Connection: Upgrade

4 upgrade: websocket

5 ...

GET /endpoint refers to an endpoint of the WebSocket server. endpoint isn’t a

fixed term but the name of the endpoint you want to connect to. Implementing a chat

application, that might be GET /chat. Implementing such an endpoint is essential.

Chapter 34 Classroom Chat (WebSockets)

https://html.spec.whatwg.org/multipage/web-sockets.html#network
https://html.spec.whatwg.org/multipage/web-sockets.html#network

392

I don’t want to dive really deep into the protocol. If you’re interested in such details,

I recommend you read the spec. Check out the resources I already mentioned or the

detailed overview on Wikipedia.

�Endpoint
First, I’ll demonstrate how to create a WebSocket endpoint with NetBeans. Begin by

creating a fresh web project. Then add a new file (Ctrl+N). In the New File dialog, choose

WebSocket Endpoint, as shown in Figure 34-1.

Click Next to provide a class name, package name, and endpoint name. After

confirming with Finish, NetBeans creates a skeleton class for you, as shown in

Listing 34-2.

Figure 34-1.  New File wizard, WebSocket endpoint

Chapter 34 Classroom Chat (WebSockets)

393

Listing 34-2.  Generated Skeleton Class for WebSocket Communication

 1 package de.muellerbruehl.chat;

 2

 3 import javax.websocket.OnMessage;

 4 import javax.websocket.server.ServerEndpoint;

 5

 6 /**

 7 *

 8 * @author mmueller

 9 */

10 @ServerEndpoint("/chat")

11 public class Chat {

12

13 @OnMessage

14 public String onMessage(String message) {

15 return null;

16 }

17

18 }

The @OnMessage annotated method is invoked when this endpoint receives data

on its connection. Here we need to implement the desired behavior. Before describing

Alumni’s chat room, I’m going to explain the use of WebSockets step by step using a

small example application.

�Simple Chat
First, I’ll describe the smallest possible chat I could write with JSF and WebSockets so far.

JSF is only used to handle some elements within the browser. In such small applications,

that might be also handled with pure HTML/JavaScript, but this book is about Java EE

and JSF, so we’re going to learn about using WebSockets in Java EE.

This paragraph offers a step-by-step tutorial with NetBeans. If the IDE of your choice

is a different one, it should be possible for you to transfer the steps. Or give NetBeans a

try. You’ll need to install the NetBeans Java EE (or the all) bundle.

Chapter 34 Classroom Chat (WebSockets)

394

From the NetBeans menu, choose File ➤ New Project (or press Shift+Ctrl+N) to open

the New Project window. Choose Maven ➤ Web Application and click Next, as shown in

Figure 34-2.

In the next screen, provide a project name (SimpleChat), and in the last screen

choose GlassFish (or Payara if installed) as the application server. Then finish the wizard.

Once NetBeans creates the project for you, right-click the project and open the

Project Properties dialog. Add the JavaServer Faces framework, as shown in Figure 34-3.

Figure 34-2.  New Project wizard

Chapter 34 Classroom Chat (WebSockets)

395

Click the Configuration tab and enter *.xhtml as URL pattern. Close the Properties

dialog.

So far, this is like creating any other Java web project with JSF, but this time we’ll add

a dependency to the Tyrus server. Tyrus is the WebSocket reference implementation,

included in GlassFish, WebLogic, and some other servers.

Open the POM and add the dependency shown in Listing 34-3.

Listing 34-3.  Tyrus Dependency in the POM File

1 <dependency>

2 <groupId>org.glassfish.tyrus</groupId>

3 <artifactId>tyrus-server</artifactId>

4 <version>1.13</version>

5 </dependency>

We’ll create another version without this dependency on the Tyrus server later in this

book. Using Tyrus, the endpoint will be the simplest.

Figure 34-3.  Project Properties

Chapter 34 Classroom Chat (WebSockets)

396

For those who don’t use NetBeans, Listing 34-4 shows the complete POM created

and edited so far.

Listing 34-4.  POM of SimpleChat

 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <project xmlns="http://maven.apache.org/POM/4.0.0"

 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 4 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 5 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 6 <modelVersion>4.0.0</modelVersion>

 7

 8 <groupId>de.muellerbruehl</groupId>

 9 <artifactId>SimpleChat</artifactId>

10 <version>1.0-SNAPSHOT</version>

11 <packaging>war</packaging>

12

13 <name>SimpleChat</name>

14

15 <properties>

16 <endorsed.dir>${project.build.directory}/endorsed</endorsed.dir>

17 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

18 </properties>

19

20 <dependencies>

21 <dependency>

22 <groupId>javax</groupId>

23 <artifactId>javaee-web-api</artifactId>

24 <version>8.0</version>

25 <scope>provided</scope>

26 </dependency>

27 <dependency>

28 <groupId>org.glassfish.tyrus</groupId>

29 <artifactId>tyrus-server</artifactId>

30 <version>1.13</version>

31 </dependency>

32 </dependencies>

Chapter 34 Classroom Chat (WebSockets)

397

33

34 <build>

35 <plugins>

36 <plugin>

37 <groupId>org.apache.maven.plugins</groupId>

38 <artifactId>maven-compiler-plugin</artifactId>

39 <version>3.1</version>

40 <configuration>

41 <source>1.8</source>

42 <target>1.8</target>

43 <compilerArguments>

44 <endorseddirs>${endorsed.dir}</endorseddirs>

45 </compilerArguments>

46 </configuration>

47 </plugin>

48 <plugin>

49 <groupId>org.apache.maven.plugins</groupId>

50 <artifactId>maven-war-plugin</artifactId>

51 <version>2.3</version>

52 <configuration>

53 <failOnMissingWebXml>false</failOnMissingWebXml>

54 </configuration>

55 </plugin>

56 <plugin>

57 <groupId>org.apache.maven.plugins</groupId>

58 <artifactId>maven-dependency-plugin</artifactId>

59 <version>2.6</version>

60 <executions>

61 <execution>

62 <phase>validate</phase>

63 <goals>

64 <goal>copy</goal>

65 </goals>

66 <configuration>

67 <outputDirectory>${endorsed.dir}</outputDirectory>

Chapter 34 Classroom Chat (WebSockets)

398

68 <silent>true</silent>

69 <artifactItems>

70 <artifactItem>

71 <groupId>javax</groupId>

72 <artifactId>javaee-endorsed-api</artifactId>

73 <version>8.0</version>

74 <type>jar</type>

75 </artifactItem>

76 </artifactItems>

77 </configuration>

78 </execution>

79 </executions>

80 </plugin>

81 </plugins>

82 </build>

83

84 </project>

The next step is to create a server endpoint, as mentioned earlier. For the name,

choose SimpleChat and provide the same name for the package. The endpoint URI will

be simplechat.

Next, modify the onMessage method, as shown in Listing 34-5.

Listing 34-5.  onMessage Method to Broadcast a Message

1 @OnMessage

2 public void onMessage(String message, Session session) {

3 ((TyrusSession) session).broadcast(message);

4 }

Now fix the imports (Ctrl+Shift+I).

This method will be invoked every time our endpoint receives a message. All it does

is broadcast this message to all clients who have opened a WebSocket connection to

this endpoint. Although it seems to be a broadcast, under the hood the server handles

individual connections. We’ll handle this by ourselves within the Tyrus-less version.

Chapter 34 Classroom Chat (WebSockets)

399

Next, modify the index.xhtml page as shown in Listing 34-6.

Listing 34-6.  SimpleChat Page (index.xhtml)

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 4 <html xmlns="http://www.w3.org/1999/xhtml"

 5 xmlns:h="http://xmlns.jcp.org/jsf/html">

 6 <h:head>

 7 <title>Chat</title>

 8 <h:outputScript name="simpleChat.js"/>

 9 </h:head>

10 <h:body>

11

12 <h1>Simple chat</h1>

13 <h:form prependId="false">

14

15 <div>

16 Enter message:

17 <h:inputTextarea style="height: 1em;"

18 onkeypress="if (event.keyCode === 13) {

19 acceptValue(this);

20 }"

21 />

22 </div>

23 <h:inputTextarea id="messages"

24 style="width: 100%;

25 min-height: 10em;"/>

26 </h:form>

27 </h:body>

28 </html>

This page defines two text areas. One is just a simple one-line input field. I’ve chosen

a text area rather than a simple text field to stay within this field on hitting the Enter key.

As you can see in line 18, something happens (calling acceptValue) on pressing Enter.

Chapter 34 Classroom Chat (WebSockets)

400

The second text area is used for the common output. Here we’ll display all messages of

the users in that chat. The glue code we need is provided in a JavaScript file, simpleChat.js.

In the project’s Web Pages, folder, create a new folder, resources, and in that folder

the file simpleChat.js. JSF will load this file according to the outputScript tag we have

in our page.

Add this content to the script file, as shown in Listing 34-7.

Listing 34-7.  The JavaScript Part of SimpleChat

 1 var websocket;

 2

 3 window.onload = function () {

 4 invokeConnection();

 5 }

 6

 7 function invokeConnection() {

 8 websocket = new WebSocket(obtainUri());

 9 websocket.onerror = function (evt) {

10 onError(evt)

11 };

12 websocket.onmessage = function (evt) {

13 onMessage(evt)

14 };

15 return true;

16 }

17

18 function obtainUri() {

19 return "ws://" + document.location.host + "/SimpleChat/simplechat";

20 }

21

22 function onError(evt) {

23 writeToScreen('ERROR: ' + evt.data);

24 }

25

26

Chapter 34 Classroom Chat (WebSockets)

401

27 function onMessage(evt) {

28 element = document.getElementById("messages");

29 if (element.value.length === 0) {

30 element.value = evt.data;

31 } else {

32 oldTexts = element.value.split("\n").slice(-19);

33 element.value = oldTexts.join("\n") + evt.data;

34 element.scrollTop = element.scrollHeight;

35 }

36 return;

37 }

38

39 function acceptValue(element) {

40 websocket.send(element.value);

41 element.value = "";

42 return true;

43 }

Our simple chat is ready now. Compile and start the application. Enter some text and

press Enter: the text appears in the output area. Open the app in a second browser and

enter some more text: it will appear in the output field in all browsers.

Let’s talk about how this works. When the page is loaded, invokeConnection is

being called. This method establishes a WebSocket communication channel to the

server and registers two methods. onMessage is called for regular messages, and onError

handles errors. Every time the client receives a message from the server (as sent by the

broadcast), it gets the text area we use for the output and appends the message. If a

certain maximum is reached, it composes the output of the last few messages.

The method acceptValue is called every time the user hits the Enter key in the input

field. The message is sent to the server, and the input field is cleared to accept a fresh value.

So far, we’ve created a very simple chat application using technologies that have

been available since Java EE 7. Java EE 8 added WebSocket for JSF, which I’ll talk about

at the end of this chapter. In the first version of the simple chat, any message had been

broadcasted by a Tyrus session. Next, I’ll show how to handle the broadcast by yourself.

You’ll recognize that in fact this is no broadcast: WebSocket, as I’ve said, is a full-duplex

communication protocol between two peers. To emulate the broadcast, the server needs

to send the message to every peer.

Chapter 34 Classroom Chat (WebSockets)

402

An instance of our server endpoint is created every time the URL is opened in your

browser. If you stay on that page, you can reuse the existing endpoint. If you want to

verify that behavior, simply add a default constructor and report the construction, as

shown in Listing 34-8.

Listing 34-8.  Observe Object Creation by a Short Constructor Message

1 public SimpleChat() {

2 System.out.println("ctor SimpleChat");

3 }

Using Glassfish/Payara, the output is logged. You can call the logger instead. Using

NetBeans, you may observe this log directly in the output window of the IDE.

For every user, an instance of this class is created. Each object is associated with one

client. So if we want to broadcast a message to all clients, then any endpoint needs to

know about the others. To do that, each peer session that wants to participate in the chat

needs to register itself at a common place. The simplest way to perform this task is to use

a static set of peer sessions, as shown in Listing 34-9.

Listing 34-9.  HashSet to Hold All Sessions

1 private static final Set<Session> peers =

2 Collections.synchronizedSet(new HashSet<Session>());

At the beginning and the termination of a session, there’s an event we can observe.

To connect a method to one of these events, we need to annotate a method either with

@OnOpen or @OnClose. These methods need to accept a session argument, which means

these methods are the perfect candidates to register and unregister the peer sessions.

See Listing 34-10.

Listing 34-10.  Methods to Register/Unregister Peers

1 @OnOpen

2 public void onOpen(Session peer) {

3 peers.add(peer);

4 }

5

6 @OnClose

Chapter 34 Classroom Chat (WebSockets)

403

7 public void onClose(Session peer) {

8 peers.remove(peer);

9 }

Once we’ve registered all peers, we just need to iterate them during @OnMessage and

send the message to every peer. To do that, we use getBasicRemote() to get a reference

to the remote endpoint where we want to send data synchronously, as shown in

Listing 34-11. There’s a second method, getAsyncRemote(), that can be used to send

data asynchronously.

Listing 34-11.  Broadcast Message by Sending It to Every Peer

 1 @OnMessage

 2 public void onMessage(String message) {

 3 for (Session peer : peers) {

 4 try {

 5 peer.getBasicRemote().sendObject(message);

 6 } catch (IOException | EncodeException ex) {

 7 // log, handle, or ingnore exceptions here

 8 }

 9 }

10 }

You may have recognized the different signatures of the onMessage() method. We don’t

need the session argument, so we can use the overloaded method signature without it.

For your convenience, Listing 34-12 shows the whole endpoint class (without imports).

Listing 34-12.  Complete SimpleChat (Imports Omitted)

 1 @ServerEndpoint("/simplechat")

 2 public class SimpleChat {

 3

 4 private static final Set<Session> peers =

 5 Collections.synchronizedSet(new HashSet<Session>());

 6

 7 @OnMessage

 8 public void onMessage(String message) {

 9 for (Session peer : peers) {

Chapter 34 Classroom Chat (WebSockets)

404

10 try {

11 peer.getBasicRemote().sendObject(message);

12 } catch (IOException | EncodeException ex) {

13 // log, handle, or ingnore exceptions here

14 }

15 }

16 }

17

18 @OnOpen

19 public void onOpen(Session peer) {

20 peers.add(peer);

21 }

22

23 @OnClose

24 public void onClose(Session peer) {

25 peers.remove(peer);

26 }

27 }

�ClassRoom Chat
Let’s get back to Alumni. We want to prefix any message with the user who sent it, and

we need to handle different chat rooms for different classes.

Pupils grow up and become students. They may change their domicile, school, and

university. All in all, over time somebody may belong to different classes, identified

by the final class. Once the user is logged in, they may choose a class and enter the

dedicated virtual classroom. In each classroom, Alumni offers a blackboard, a calendar

of events, and a chat.

We don’t want to implement a separate endpoint for each class. Rather, we want to

use a single endpoint and distinguish the chat by the final class.

One solution would be to provide information about the classroom with the

endpoint URI. Let’s assume the classroom is identified by a name. The code might look

like the excerpt in Listing 34-13.

Chapter 34 Classroom Chat (WebSockets)

405

Listing 34-13.  Pass Parameter via Endpoint URI

 1 @ServerEndpoint("/classroomchat/{classroom}")

 2 public class ClassroomChat {

 3

 4 @OnOpen

 5 public void onOpen(Session peer) {

 6 �String classroom = peer.getRequestParameterMap().get("classroom").

get(0);

 7 [...]

 8 }

 9

10 [...]

11

12 }

This is quite the style Java EE supports by JAX-RS (Java API for RESTful Web

Services): parts of the URI are variable and will be accessible via the request parameter

map, as shown in the onOpen method. Really easy, isn’t it?

The WebSocket connection is a channel between the client and the server. As an

upgrade from HTTP, the first request is initiated by the client. What happens if the user

fakes the URI and chooses a different classroom? And we want to include the user in

each message. Do you want somebody to spoof the user? Regardless, the approach

shown here is really simple, but it might not fit our requirements with regard to matters

of security. Why should the client provide information the server already knows?

With these thoughts in mind, Alumni uses a different approach. User and classroom

are well known on the server side, so they’ll be injected into the endpoint.

Once the user is logged in to Alumni, we store some information within a session

scoped object, as shown in Listing 34-14. Here, the user account and the currently

selected final class are of note.

Listing 34-14.  Session Scoped Object to Hold User Information

1 @SessionScoped

2 public class UserController implements Serializable {

3

4 private Account _account;

Chapter 34 Classroom Chat (WebSockets)

406

5 private FinalYear _finalYear;

6

7 [Getter/Setter and other fields omitted for brevity]

8 }

We’ll inject an instance of this class into the chat endpoint. The account lets us

access the user’s name.

INJECTION BY CDI

Remember some characteristics of CDI: you can inject a bean independently from its lifespan.

For example, you might inject a request scoped bean into a session scoped bean. Although

the session scoped bean is usually alive for more than a request, the injected bean is alive for

a single request only. Yet you can access an injected bean during the lifetime of the holding

object. Isn’t that paradoxical?

CDI accomplishes this trick by injecting a proxy object. This proxy is available during the whole

lifetime of the containing bean. Under the hood, this proxy refers to a different object for each

request.

Now if we try to prefix every message from the user, like sendObject

(_userController.GetAccount().getDisplayName()+ ": " + message), we’ll run

into an error: albeit injected, _userController resolves to null.

The reason is quite simple: the endpoint will be created within the HTTP request,

When the user enters the classroom. The injected user controller contains all the values

we expect. CDI doesn’t really inject an instance of the class UserController, but a

proxy pointing to the active user controller object of the current request. The WebSocket

channels are opened by an upgrade from HTTP. The initiating request terminates

normally, while the channel remains open. Now if the user enters a message, it’s sent

via the WebSocket channel. Because there’s no HTTP request at that time, the CDI proxy

can’t refer to any bean, even though the user controller is of session scope. So, the proxy

resolves to null.

Even though the user controller is injected as a proxy, it contains the “real” objects.

Alumni simply stores these objects within the endpoint, and voilà, we can use them.

Besides package and imports, Listing 34-15 shows the complete endpoint class:

Chapter 34 Classroom Chat (WebSockets)

407

Listing 34-15.  Classroom Chat of Alumni

 1 @ServerEndpoint("/classroomchat")

 2 public class ClassroomChat {

 3

 4 �private static final Map<Integer, Set<Session>> PEERS = new

ConcurrentHa\

 5 shMap<>();

 6 �private static final Logger LOGGER = Logger.

getLogger(ClassroomChat.clas\

 7 s.getName());

 8

 9 private ChatService _chatService;

10 private Account _account;

11 private int _finalYearId;

12

13 @Inject

14 public ClassroomChat(UserController user, ChatService chatService)

{

15 _account = user.getAccount();

16 _finalYearId = user.getFinalYear().getId();

17 _chatService = chatService;

18 }

19

20 public ClassroomChat() {

21 LOGGER.log(Level.INFO, "ctor ClassroomChat");

22 }

23

24 @OnMessage

25 public void onMessage(String message, Session session) {

26 //String name = session.getUserPrincipal().getName();

27 for (Session peer : PEERS.get(_finalYearId)) {

28 try {

29 �peer.getBasicRemote().sendObject(_account.

getDisplayName() +\

30 ": " + message);

Chapter 34 Classroom Chat (WebSockets)

408

31 } catch (IOException | EncodeException ex) {

32 // in case of error, log problem and continue

33 LOGGER.log(Level.SEVERE, null, ex);

34 }

35 }

36 }

37

38 @OnOpen

39 public void onOpen(Session peer) {

40 LOGGER.log(Level.INFO, "onOpen ClassroomChat, user {0}",

41 _account.getDisplayName());

42 if (!PEERS.containsKey(_finalYearId)){

43 PEERS.put(_finalYearId,

44 �Collections.synchronizedSet(new

HashSet<>()));

45 }

46 PEERS.get(_finalYearId).add(peer);

47 sendLatestMessages(peer);

48 }

49

50 private void sendLatestMessages(Session peer) {

51 �List<String> messages = _chatService.getLatestMessages

(_finalYearId);

52 for (String message : messages) {

53 try {

54 peer.getBasicRemote().sendObject(message);

55 } catch (IOException | EncodeException ex) {

56 // in case of error, log problem and continue

57 LOGGER.log(Level.SEVERE, null, ex);

58 }

59

60 }

61 }

62

63 @OnClose

64 public void onClose(Session peer) {

Chapter 34 Classroom Chat (WebSockets)

409

65 LOGGER.log(Level.INFO, "onClose ClassroomChat, user {0}",

66 _account.getDisplayName());

67 PEERS.get(_finalYearId).remove(peer);

68 }

69

70 }

In lines 13 and 14 we store references to user and final class that have been injected

as part of userController. Besides an instance of the UserController, an instance of

the ChatService is injected too. And unlike the user controller, this proxy is directly

stored within a field (line 15). Will we face the same proxy problem described earlier? A

consultant’s standard answer would be, “It depends. . . .”

If we define the ChatService as a CDI bean with a short (request) scope, as shown in

Listing 34-16, we’ll run into a ContextNotActiveException.

Listing 34-16.  ChatService as Request Scoped CDI Bean

1 @RequestScoped

2 @Transactional

3 public class ChatService extends AbstractService {

4 ...

5 }

Extending the scope to session scope doesn’t solve this problem: such a scope is

stored within the session map of a request, and there may be no request.

There are two possible solutions. You may define the service within the application

scope. Or, if you don’t want to use a global object with such a long lifespan, you might

use a stateless EJB. as shown in Listing 34-17.

Listing 34-17.  ChatService as Stateless EJB

1 @Stateless

2 public class ChatService extends AbstractService {

3 ...

4 }

Comparing this with the simple chat, there are three extensions: Alumni uses a map

to held the peers per classroom. Every message is prefixed by the username. And, last

but not least, all messages are saved to the database, allowing us to reply to the latest

messages on entering the classroom.

Chapter 34 Classroom Chat (WebSockets)

410

Listing 34-18 shows the corresponding part from the service.

Listing 34-18.  ChatService (Excerpt)

 1 @Stateless

 2 public class ChatService extends AbstractService {

 3

 4 public ChatEntry saveChatEntry(ChatEntry chatEntry) {

 5 return save(chatEntry);

 6 }

 7

 8 �public ChatEntry saveChatEntry(int finalClassId, int accountId,

String mes\

 9 sage) {

10 �ChatEntry chatEntry = new ChatEntry(finalClassId, accountId,

message);

11 return save(chatEntry);

12 }

13

14 /**

15 * retrieves latest 10 messages which are not older than 2 hours

16 *

17 * @param finalYearId

18 * @return

19 */

20 public List<String> getLatestMessages(int finalYearId) {

21 �String jpql = "Select concat(a._firstName, ' ', a._lastName, ': ', e._me\

22 ssage) "

23 + "from ChatEntry e "

24 + "join Account a "

25 + "where e._accountId = a._id "

26 + "and e._finalYearId = :finalYearId "

27 + "and e._moment > :refMoment order by e._id desc";

28 �TypedQuery<String> query = getEntityManager().createQuery(jpql,

String.c\

29 lass);

Chapter 34 Classroom Chat (WebSockets)

411

30 query.setParameter("finalYearId", finalYearId);

31 query.setMaxResults(10);

32 Date refMoment = new Date(new Date().getTime() - 2 * 3600 * 1000);

33 query.setParameter("refMoment", refMoment);

34 List<String> messages = query.getResultList();

35 return Lists.reverse(messages);

36 }

37

38 }

�JSF 2.3 websocket
One of the highlights of JSF 2.3, as introduced in Java EE 8, has been its support for the

WebSocket protocol. Formerly, JSF only used one-way communication from client to

server as caused by the HTTP protocol. Sending data from server to client without any

client request was a challenge for many years. The WebSocket protocol is one solution

to this restriction. It was the main intention to push messages from server to client

when the <f:websocket> tag was introduced to JSF 2.3. Currently, this tag doesn’t

enable the full advantages of this bidirectional protocol. Rather, it establishes one-way

communication from server to client. If we need a bidirectional communication with

JSF functionality only, we might send data from client to server the traditional way, by

using an inputText In conjunction with Ajax. We’ll receive data via websocket. Because

this workaround only mimics bidirectional communication using different protocols,

Alumni’s chat doesn’t use the new JSF websocket. To sketch for you the principle of this

new tag, Listing 34-19 starts with the page.

Listing 34-19.  Using websocket in a Page

 1 <f:websocket channel="events" onmessage="eventListener" />

 2

 3 <script type="text/javascript">

 4 function eventListener(message, channel, event) {

 5 �document.getElementById("lastEvent").innerHTML += message +

"
";

 6 }

Chapter 34 Classroom Chat (WebSockets)

412

 7 </script>

 8

 9 <h:outputLabel value="Last event:"/>

10 <h:outputText id="lastEvent" value=""/>

In line 1 the websocket tag subscribes to the channel events. This name has to

correspond to the channel name you use on the server side. It may be any valid name

of your choice. The onmessage attribute refers to a JavaScript function you need to

implement for the data handling. In this simple demo code, we use the message to

replace the content of the outPutText we declared in line 10.

On the server side, we need a PushContext, which simply can be injected (see

line 5 of Listing 34-20). Here we need to provide the channel name. Now we can send

messages via this channel to the client (lines 8–10).

Listing 34-20.  PushContext as Source for websocket

 1 @Named

 2 @ApplicationScoped

 3 public class EventPatcher {

 4

 5 @Inject @Push(channel = "events")

 6 private PushContext _pushContext;

 7

 8 public void sendMessage(String message){

 9 _pushContext.send(message);

10 }

11

12 }

When the first client uses this channel, the WebSocket communication will be

established. Sending a message is like a broadcast. All clients that have subscribed to

this channel will receive the message. The channel automatically closes on application

shutdown, so the PushContext needs to be injected into an application scoped bean.

Last but not least, you need to enable the WebSocket endpoint via web.xml.

Chapter 34 Classroom Chat (WebSockets)

413

Listing 34-21.  context param as Part of web.xml

 1 <context-param>

 2 <param-name>javax.faces.ENABLE_WEBSOCKET_ENDPOINT</param-name>

 3 <param-value>true</param-value>

 4 </context-param>

Pushing some content to all users is the most common operational area. Because

of that, application scope is the default scope for using websocket within JSF. Anyway,

you can restrict the channel to session or view. Or you can restrict it to a specified user,

which forces the session scope too. (For more information, read the API doc at https://

javaserverfaces.github.io/docs/2.3/vdldoc/f/websocket.html).

The JSF websocket tag is great if you want to implement a news ticker or something

similar. There’s no such requirement for Alumni. Take the explanation given here as

starting point for your own experiments.

�Summary
This chapter introduced the main aspects of the WebSocket protocol and its use within

Alumni. This chat implementation of Alumni is fine with Java EE 8, but it only uses

techniques that are available in the former Java EE 7 implementation.

JSF 2.3, which is part of Java EE 8, now directly supports the WebSocket protocol, but

Alumni doesn’t use it. The primary intent of the current JSF WebSocket implementation

is to push messages from the server to the client. This adds unidirectional

communication from server to client. Alumni, on the other hand, uses bidirectional

communication.

Chapter 34 Classroom Chat (WebSockets)

https://javaserverfaces.github.io/docs/2.3/vdldoc/f/websocket.html
https://javaserverfaces.github.io/docs/2.3/vdldoc/f/websocket.html

415
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_35

CHAPTER 35

Changing Look and Feel
Sometimes users love to exchange the look and feel of an application, for example by

choosing a different theme. The question arises, how can we change the look and feel of

an application without changing the program code? If we separated content and layout

with CSS, it seems as easy as choosing a different CSS file.

�Resource Library
In practice, the layout might depend not only on a single CSS file, but on a couple of CSS

files as well as related script files or other resources. Let’s recap Chapter 10: JSF is able

to group a bundle of resources into a library. In fact, such a library is represented by the

content of a folder. If we use the same directory structure for every library, we don’t need

to provide different names for all the resource files, just the library name.

In the Facelet template alumniTemplate.xhtml, we’ll retrieve the appropriate library

from a backing bean, as shown in Listing 35-1.

Listing 35-1.  Get Library from Backing Bean

01 �<h:outputStylesheet library="#{sessionTools.theme}" name="css/

alumni.css"/>

02 �<h:outputScript library="#{sessionTools.theme}" name="script/alumni.

js"/>

This backing bean is used to hold user-specific information as long as the session

lasts. Thus it is session scoped. See Listing 35-2.

Listing 35-2.  SessionTools

01 @Named

02 @SessionScoped

03 public class SessionTools implements Serializable {

416

04

05 private String _theme = "standard";

06

07 public String getTheme() {

08 return _theme;

09 }

10

11 public void setTheme(String theme) {

12 _theme = theme;

13 }

14

15 ...

16

17 }

When the user logs in, we need to read the theme from the appropriate user

configuration and set the theme within the backing bean. That’s it.

�Immediately Change the Look and Feel
Instead of asking a user in a configuration dialog, we may want to enable them to change

the look and feel immediately. As a first approach, we’ll present two buttons on the

screen representing two different themes. If the user clicks a button, we want the look

and feel to change instantly.

The solution is quite easy, too. All we need is to set the theme and then to reload the

page. If an action of a commandLink or commandButton returns an empty string or nothing

(null or void), then JSF reloads the same page. To perform this task, we use setter of the

theme as action of the link. See Listing 35-3.

Listing 35-3.  Buttons to Switch Theme

01 <h:commandLink styleClass="button"

02 immediate="true"

03 value="standard"

04 action="#{sessionTools.setTheme('standard')}"/>

05 <h:commandLink styleClass="button"

06 immediate="true"

Chapter 35 Changing Look and Feel

417

07 value="muellerbruehl"

08 �action="#{sessionTools.

setTheme('muellerbruehl')}"/>

�Read from Resources
Increasing the number of buttons in conformity with the number of themes will create an

ugly page. A more elegant solution can be achieved by a menu, where the user chooses

one of multiple entries. And if we add a theme, then the system should automatically

recognize it. For this task, we need to examine the resources. For simplicity’s sake,

we’ll assume that every folder within the resources directory containing a CSS file is a

resource library. We’ll ignore possible versions below that folder.

The method getThemes returns a list of strings with all the library folders we've

found, as shown in Listing 35-4.

Listing 35-4.  Retrieve Themes from Resources

01 public List<String> getThemes() throws IOException {

02 String resourcePath = obtainResourcePath();

03 List<String> themes = obtainThemes(resourcePath);

04 return themes;

05 }

06

07 private String obtainResourcePath() {

08 ServletContext context = (ServletContext) FacesContext

09 .getCurrentInstance()

10 .getExternalContext()

11 .getContext();

12 return context.getRealPath("/resources");

13 }

14

15 private List<String> obtainThemes(String resourcePath){

16 List<String> themes = new ArrayList<>();

17 for (File file : new File(resourcePath).listFiles()) {

18 addFilenameIfContainsCss(file, themes);

19 }

Chapter 35 Changing Look and Feel

418

20 return themes;

21 }

22

23 �private void addFilenameIfContainsCss(File file, List<String>

themes) {

24 if (!file.isDirectory()) {

25 return;

26 }

27 �try (Stream<Path> paths = Files.walk(Paths.get(file.

getAbsolutePath()))) {

28 boolean conatinsCss = paths

29 .filter(Files::isRegularFile)

30 �.anyMatch(f -> f.toString().toLowerCase().endsWith(".

css"));

31 if (conatinsCss) {

32 themes.add(file.getName());

33 }

34 } catch (IOException ex) {

35 LOGGER.log(Level.SEVERE, null, ex);

36 }

37 }

Figure 35-1 shows an excerpt of the project tree. You’ll find a file alumni.css for each

theme (muellerbruehl and standard are themes too, but the tree is collapsed here).

Chapter 35 Changing Look and Feel

419

Because we don’t know where the application resides when it’s deployed, we need to

figure out the right path. Resources reside in the \resources path. Although it looks like

an absolute path from the application’s view, it’s really a relative path. We need to figure

out its parent.

The interesting part of Listing 35-4 is the obtainResourcePath method (lines 7–13).

Here we’ll retrieve the ServletContext. We can use it to determine a real path. There are

many situations in which it’s needed to search the resources.

In another project, I needed to create reports. Instead of creating report files from

scratch, I added template files that would be completed at runtime. I deployed these files

in a resources folder and used the same logic discussed here to retrieve the files’ location.

The rest of Listing 35-4 is simple Java code, searching this path for CSS files. If you’re

not familiar with streams, allow me to recommend my book Java Lambdas and Parallel

Streams (Apress, 2016) as a good source of information.

Once we figure out the themes, we need to present them to the user in a

selectOneMenu, as shown in Listing 35-5.

Figure 35-1.  Resource files for different themes

Chapter 35 Changing Look and Feel

420

Listing 35-5.  Select Theme (Incomplete)

01 <h:form id="theme">

02 <h:selectOneMenu value="#{sessionTools.theme}">

03 <f:selectItems value="#{sessionTools.themes}"/>

04 <f:ajax/>

05 </h:selectOneMenu>

06 </h:form>

The preceding listing uses the getter/setter pair we created before. If the user

chooses a theme, it will be updated instantly within the backing bean. During the next

navigation, JSF will apply the new theme.

But how can we apply the theme immediately? Okay, we can add information to

render all: <f:ajax render="@all"/>.

Now when the user chooses a different theme, the layout seems to change. But it’s

not the layout as expected. Only by reloading the page is the expected layout shown. It

seems as if @all doesn’t really load everything we need.

What if we apply a listener method and add programmatic navigation, as in

Listing 35-6?

Listing 35-6.  Programmatic Navigation

01 public void themeChangeListener(AjaxBehaviorEvent event) {

02 FacesContext facesContext = FacesContext.getCurrentInstance();

03 NavigationHandler navigationHandler = facesContext

04 .getApplication()

05 .getNavigationHandler();

06 navigationHandler.handleNavigation(facesContext, null, "");

07 }

In line 6, the third parameter denotes the target page. We’ll leave it blank for

reloading the current page.

Don’t try it. You might use such a fragment for navigation on a request, but not during

a partial request. A partial request only queries some info to update the current page.

Chapter 35 Changing Look and Feel

421

The selectOneMenu isn’t intended to trigger any navigation. Some additional libraries—

for example, PrimeFaces (www.primefaces.org)—contain extensions for this use case. But,

there may be a simple solution to this problem: when the user has chosen a new theme, we

need to trigger a page navigation by clicking a commandLink. We use an invisible link and

some JavaScript voodoo to perform this task, as you can see in Listing 35-7.

Listing 35-7.  Select Theme, Tricking Navigation

01 <h:form id="theme">

02 <h:selectOneMenu value="#{sessionTools.theme}"

03 onchange="document.getElementById('theme:refresh').click();">

04 <f:selectItems value="#{sessionTools.themes}"/>

05 <f:ajax/>

06 </h:selectOneMenu>

07

08 <h:commandLink id="refresh" immediate="true"/>

09 </h:form>

In line 3, we define some code that gets processed during the click event. It simply

searches for the invisible link and performs a click on it.

But how does JSF perform a page navigation when the user clicks a link? Surprise—

under the hood it also uses JavaScript! And if we use the same functionality, we really

add navigation capability to the menu. See Listing 35-8 and Figures 35-2 and 35-3.

Listing 35-8.  Select Theme (Final)

01 <h:form id="theme">

02 <h:selectOneMenu value="#{sessionTools.theme}"

03 �onchange="mojarra.jsfcljs(document.

getElementById('theme'),

04 {'theme':'theme'},'');return false;">

05 <f:selectItems value="#{sessionTools.themes}"/>

06 <f:ajax />

07 </h:selectOneMenu>

08 </h:form>

Chapter 35 Changing Look and Feel

http://www.primefaces.org/

422

Figures 35-2 and 35-3 show two different themes. On the top left you see the drop-

down menu box that enables the user to change the menu. Both figures show the

German version (you could see that for yourself, right?).

Figure 35-2.  Example of muellerbruehl theme

Chapter 35 Changing Look and Feel

423

Figure 35-3.  Example with dark theme

Chapter 35 Changing Look and Feel

424

�Summary
Changing the look and feel of an application is as simple as changing the resource

library. To apply such a change at once, we need to trick the system a bit. This chapter

also showed you how to find files in the application server file system during runtime.

Last but not least, it demonstrated how JSF assigns the navigation capabilities to HTML

elements.

Chapter 35 Changing Look and Feel

425
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5_36

CHAPTER 36

Handling Constants
JSF 2.3 introduced the ability to import constants for use within the Expression

Language (EL).

�Navigation by Strings
JSF supports internal as well as external navigation. Internal navigation is defined in the

source code, whereas external navigation is described by an external XML file.

Let’s take a look at a simple internal navigation first in Listing 36-1.

Listing 36-1.  Direct Navigation by String

 1 <h:commandLink styleClass="button"

 2 value="#{msg.btnWelcome}"

 3 action="/user/welcome.xhtml"/>

In line 3 we define the navigation target. This is quite easy but can be error-prone.

If you have a typo in the action, JSF may display the page properly, but clicking the link

doesn’t perform any action. And if you want to move or rename the welcome page,

you have to update all occurrences within your code. It’s easy to forget one of them.

That’s why some developers prefer external navigation. Personally, I don’t like to define

my navigation in an XML file. For the Books application, I used a different strategy to

mitigate this problem.

In the page, we call a navigation method that uses an enum. For the page we use a

logical string that’s automatically converted to an instance of the enum when calling that

method, as shown in Listing 36-2.

426

Listing 36-2.  Self-Made enum Navigation

 1 <h:commandLink styleClass="button"

 2 value="#{msg.btnWelcome}"

 3 �action="/#{sessionTools.

navigate('UserWelcome')}"/>

Listing 36-3 shows a shortened excerpt of the Books navigation, and Listing 36-4

shows an excerpt of the enum.

Listing 36-3.  Navigation Method (as Part of the Backing Bean)

 1 public String navigate(Page page) {

 2 return page.getRedirectUrl();

 3 }

Listing 36-4.  Excerpt of the enum Page

 1 public enum Page {

 2

 3 UserTemplate("/user/booksTemplate"),

 4 <other pages here>

 5 ;

 6

 7 private Page(String url) {

 8 _url = url;

 9 }

10 private final String _url;

11

12 public String getUrl() {

13 return _url + ".xhtml";

14 }

15

16 public String getRedirectUrl() {

17 return _url + ".xhtml?faces-redirect=true";

18 }

19 ...

20 }

Chapter 36 Handling Constants

427

Now if we have a typo in the page declaration we’ll get an error immediately when

the page is displayed. Such an obvious error helps discover problems. And the main

advantage of this approach is the use of a logical name. If we want to relocate or rename

the page, we only need to update the enum, keeping all pages unchanged.

�Importing Constants
With the current version of Java EE 8/JSF 2.3, we can do even better—and this is what we use

for Alumni’s navigation. For example, we pick the forgot password link, as in Listing 36-5.

Listing 36-5.  Navigation Using an enum

 1 <div>

 2 #{msg.lblForgotPassword}

 3 <h:link value="#{msg.lblRequestPassword}"

 4 outcome="#{Page.RequestPassword.url()}"/>

 5 </div>

Take a look at line 4. Here the outcome is directly composed by the enum’s url. We

just use the enum as we do in a Java source file. As a prerequisite, we need to tell the EL

about our enum. That’s where the new importConstants tag comes into play. Within the

metadata, we need to declare this tag in conjunction with the full class name, as shown

in Listing 36-6.

Listing 36-6.  Import Constants for Use in the EL

 1 <f:metadata>

 2 <f:importConstants type="de.muellerbruehl.alumni.gui.enums.Page"/>

 3 </f:metadata>

Although Alumni only imports enums, you can use the importConstants tag for any

kinds of constants.

�Summary
JSF 2.3 introduced a new tag importConstants. As its name suggests, this tag is used to

import constants that can be used in the EL afterwards. In Alumni this feature is used,

among others, for easy, configurable internal page navigation.

Chapter 36 Handling Constants

429
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5

�APPENDIX A

HTML
The HypertText Markup Language is used to describe the contents of a web page. Like

XML, HTML is a member of the Standard Generalized Markup Language (SGML).

I assume at least a basic knowledge of XML. Thus, this book won’t go into detail

about how to build an XML document. An HTML document has to consider similar

rules, but sometimes is less strict. Unlike XML, where you define your own tags, HTML

comes with a set of predefined tags. The most common tags are briefly described in the

following sections.

�HTML Structure
An HTML document starts with a document type, followed by an <html> tag, which is

comparable to the document root of an XML document. Within that, a tag for header

and body might be included. In the case of XHTML, which is HTML built with strict XLM

rules, the doctype is preceded by the XML version.

This basic structure is shown in Listing A-1.

Listing A-1.  Basic HTML File

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html>

 4 <head>

 5 <!-- header content -->

 6 </head>

 7 <body>

 8 <!-- body content -->

 9 </body>

10 </html>

https://doi.org/10.1007/978-1-4842-3030-5

430

As of HTML5, the doctype is nothing more than the simple <!DOCTYPE html>, which

is supported by all of today’s important browsers. In older HTML versions, there were

different doctypes, using strict, transitional, or frameset mode, such as <!DOCTYPE HTML

PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">.

�HTML Header

Tag Name Description

base Base address (URI) of this page. Relative paths will be prefixed by this. This binds all

paths to a special URI. Don’t use this if you want to keep your page portable.

link Describes the relation from the current document to others. Used to point to files that

should be loaded together with the page, like a CSS file.

meta Metainformation for the current document, often including author, keywords (for search

engines), forwarding information, and more.

style Internal Cascading Style Sheet. If used in conjunction with an external style sheet, it will

overwrite styles defined for the same path.

title Title of this page. Displayed by most browsers within the heading or tab control.

�HTML Body
For the body, many more tags are defined. Associated tags are grouped together. These

tables list only commonly used elements.

aPPENDIX a HTML

431

�Page and Text Structure, Linking

Tag Name Description

h1 Semantic decoration of heading 1. Without any style, it would be displayed using a

bigger font size. Thus, HTML doesn’t just assign a semantic meaning. Lower level

headings range from h2–h6.

div Used to divide the text into sections, a container element for other elements. It should be

used only if no other tag with a more specific semantic meaning is available.

p Indicates a paragraph, used to split longer texts into single paragraphs. Developing a

web application, you usually don’t have that much text.

hr Horizontal ruler, used for a thematic break. Unless overwritten by CSS, it draws a

horizontal line.

ol Ordered list, a container for list items. Unless overwritten by CSS, the contained items

are numbered.

ul Unordered list, a container for list items. Unless overwritten by CSS, the contained items

are displayed with a bullet point.

li List item.

a Anchor, defines a hyperlink.

Other semantic structure tags include nav (navigation), aside, main, section,

article, footer, address, and more.

aPPENDIX a HTML

432

�Forms and Input

Tag Name Description

form Defines an HTML form, which acts as a container for input elements, buttons, and so

on. Form values might be submitted by an appropriate element.

input A generic input element. The attribute type="..." specifies the characteristic of this

element, such as text (text field), radio (radio button), checkbox, submit (button).

textarea A multi-line text field.

button A clickable button. This element can be defined more flexibly than input

type="submit". The drawback is that it doesn’t submit any value. Thus, a script

handler is needed to perform an action.

select A selectable list. It can be parameterized for a single or multi select.

label Defines a label that might be assigned to an input element.

The HTML page in Listing A-2 shows a simple form.

Listing A-2.  HTML Page with a Form

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html>

 4 <head>

 5 <title>form demo</title>

 6 </head>

 7 <body>

 8 <form>

 9 <label for="txtName">Name:</label>

10 <input type="text" id="txtName"/>

aPPENDIX a HTML

433

11

12 Nationality

13 <select>

14 <option>English</option>

15 <option>French</option>

16 <option>German</option>

17 </select>

18

19 <input type="submit" value="send"/>

20 </form>

21 </body>

22 </html>

Literal text within the tags, such as Name: or Nationality, shown in Figure A-1, is

displayed as is.

Other tags in this category include fieldset, legend, datalist, optgroup, option,

textarea, keygen, output, progress, and meter.

Figure A-1.  Output of form demo

aPPENDIX a HTML

434

�Tables

Tag Name Description

table An HTML table element.

caption Table caption.

thead Table header. Optional semantic decoration.

tbody Table body. Optional semantic decoration. A table might contain more than one body

section.

tfoot Table footer. Optional semantic decoration.

tr Table row. Nested directly into table or in one of the three sub-parts. Optional, if there’s

only one row.

th Column header. Content of a header cell. Displayed in bold, if any style is omitted.

td Table data. Value of a table cell.

colgroup Optional column group. Container for column definitions, for example to define styles

for the columns.

col One column.

Listing A-3 shows an HTML table in action.

Listing A-3.  HTML Page with a Table

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html>

 4 <head>

 5 <title>Table demo</title>

 6 </head>

 7 <body>

 8 <table>

 9 <caption>Invoice</caption>

10 <colgroup>

11 <!-- if used, you'll find attributes for each col -->

12 <col/>

13 <col/>

aPPENDIX a HTML

435

14 <col/>

15 </colgroup>

16 <thead>

17 <tr>

18 <th>Amount</th>

19 <th>Description</th>

20 <th>Price</th>

21 </tr>

22 </thead>

23 <tbody>

24 <tr>

25 <td>1</td>

26 <td>Personal Computer</td>

27 <td>500</td>

28 </tr>

29 <tr>

30 <td>1</td>

31 <td>Laser printer</td>

32 <td>300</td>

33 </tr>

34 </tbody>

35 <tfoot>

36 <tr>

37 <td></td>

38 <td>Total</td>

39 <td>800</td>

40 </tr>

41 </tfoot>

42 </table>

43 </body>

44 </html>

Using the full decoration, as Listing A-3 does, is unusual. Omitting optional elements,

you’ll get a more commonly used table definition, as shown in Listing A-4.

aPPENDIX a HTML

436

Listing A-4.  HTML Page with a Table, Simplified

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html>

 4 <head>

 5 <title>Table demo</title>

 6 </head>

 7 <body>

 8 <table>

 9 <caption>Invoice</caption>

10 <th>Amount</th>

11 <th>Description</th>

12 <th>Price</th>

13 <tr>

14 <td>1</td>

15 <td>Personal Computer</td>

16 <td>500</td>

17 </tr>

18 <tr>

19 <td>1</td>

20 <td>Laser printer</td>

21 <td>300</td>

22 </tr>

23 <tr>

24 <td></td>

25 <td>Total</td>

26 <td>800</td>

27 </tr>

28 </table>

29 </body>

30 </html>

aPPENDIX a HTML

437

Both versions produce a page like Figure A-2.

Using appropriate attributes—or even better, using CSS—you can style a table with

borders and other decoration.

�Tag Completion/Tag Guessing
Consider the simple input tag <input type="text" id="txtName"/>. The tag is

correctly closed by a slash /. Using HTML5, it can omit this slash: <input type="text"

id="txtName">. Although in older versions,
, could be used instead of the correct

.

Here are some formatting elements:

This text is bold, <i> bold and italics, italics only.

Most browsers will render “This text is bold, bold and italics, italics only.” In XML,

that code wouldn’t be valid. You can’t overlap tags, and for every opening tag, a closing

counterpart is required.

This would be correct within XML:

This text is bold, <i> bold and italics, </i> <i>italics only.</i>

Tip  Remember that HTML should be used for content only—formatting should
be performed by CSS. So, don’t use these elements in a real HTML page. In the
sloppy version, if some text follows the missing italics end tag, it will be displayed
in italics.

Invoice

Amount Description Price

1
Personal Computer 500

1
Laser printer 300

Total 800

Figure A-2.  Output of HTML table

aPPENDIX a HTML

438

As these examples show, browsers try to interpret sloppy HTML pages. Some

people revel in this feature of browsers. Some love to omit everything a browser tries

to complete by itself to reduce load time. But really, if you omit such a small fraction of

characters, less than 1 percent, you might be able to measure a shortened load time, but

the user would never notice it.

In his book Tangled Web (No Starch Press, 2011), Michal Zelewski shows which

flaws might occur by this attempted tag completion, which often amounts to simply tag

guessing. For security reasons, all tags should be valid in the sense of XML. This can be

enforced by using XHTML, which is HTML refined as valid XML code.

For those programmers new to web development, who have never used HTML

before, this appendix is only a very basic introduction. For learning HTML, lots of

good books are available on the market, and you can find lots of online tutorials on the

Internet.

Tip  W3schools offers some nice tutorials into different web technologies,
including HTML. You can check it out at www.w3schools.com/html.

aPPENDIX a HTML

http://www.w3schools.com/html

439
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5

�APPENDIX B

Cascading Style Sheets
CSS is a language to add styling information to HTML, XML, or other kinds of

documents. It’s designed to support the separation of content (HTML) and style (CSS).

For example, there’s no need to use old styling elements of HTML like <i> and

because all styling can be applied better with CSS.

In short, CSS addresses an HTML (or XML) element with a selector (a kind of path)

and applies a group of one or more styles to it. Different selectors may refer to the same

element. CSS resolves the so-called cascade and applies all styles to the element. If the

same style element will be applied, CSS determines the most specific selector, or if still

ambiguous, the last definition.

CSS can be included within the style tag of the HTML page. We’ll use this here for

demonstration purpose only. In real applications (like Books and Alumni, described in

this book), all CSS statements are placed into a separate file as described by these apps.

This allows the reuse of the same definition for different pages and applies a consistent

look and feel.

Listing B-1 shows a small example, and Figure B-1 shows the output.

Listing B-1.  HTML Page with Embedded CSS

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html>

 4 <head>

 5 <title>CSS demo</title>

 6 </head>

 7

 8 <style type="text/css">

 9 label {

https://doi.org/10.1007/978-1-4842-3030-5

440

label is an element selector. It simply selects an HTML element. Other kinds of selectors

include id selectors and class selectors (discussed shortly). Following this selector, the

styles are specified within curly braces. The styles in this example are self-explanatory. The

unit of the font size is a relative unit: 2em doubles the size within the current context.

form label is a composite element selector, addressing labels nested within a form

element. As you can see, the color style is added to the bold style, while the font-size is

overwritten, because the selector is more specific than the standalone label selector. If

you exchange the order, the result will be the same.

But if you use a selector which is as specific as a selector specified earlier in this file,

it will overwrite the style, as shown in Listing B-2. Figure B-2 shows the output. Because

the font-size in line 13 refers to label with the same specifity as in line 5, the font-size

will be set to this size, overwriting (or simply ignoring) the format made in line 5.

10 font-weight: bold;

11 font-size: 2em;

12 }

13 form label {

14 color: red;

15 font-size: 1em;

16 }

17 </style>

18

19 <body>

20 <label>Enter your name</label>

21

22 <form>

23 <label for="txtName">Name:</label>

24 <input type="text" id="txtName"/>

25 <input type="submit" value="send"/>

26 </form>

27 </body>

28 </html>

Figure B-1.  CSS applied

Appendix B Cascading Style Sheets

441

Line breaks and spacing as used in the examples are optional. This

1 form label {

2 color: red;

3 font-size: 1em;

4 }

is equivalent to this:

1 form label {color: red; font-size: 1em;}

Multiple elements might be declared at the same time, using a comma as separator.

The following

1 label {font-size: 1em;}

2 input {font-size: 1em;}

Listing B-2.  Example of CSS Overwriting Former Instruction

 1 ...

 2 <style type="text/css">

 3 label {

 4 font-weight: bold;

 5 font-size: 2em;

 6 }

 7 form label {

 8 color: red;

 9 font-size: 1em;

10 }

11 label {

12 font-weight: normal;

13 font-size: 1em;

14 }

15 </style>

16 ...

Figure B-2.  CSS applied

Appendix B Cascading Style Sheets

442

is equivalent to this:

1 label, input {font-size: 1em;}

�Selectors
Any CSS instruction is applied to the element(s) addressed by a selector. In the former

examples the element names had been used as such a selector. CSS knows various kinds

of selectors.

�Type Selector
All selectors discussed so far have been type selectors, sometimes known as element

selectors. The elements are addressed by their tag names.

�Id Selector
Here an element is addressed by its id. Id selectors start with a hash sign (#). Here’s an

example:

1 #txtName {color: red;}

�Class Selector
Here an element is addressed by its class name. Class selectors start with a dot (.), as

shown in Listing B-3.

Listing B-3.  CSS class

1 ...

2 <style type="text/css">

3 .requiredInput {background-color: yellow;}

4 </style>

5 ...

6 <input type="text" id="txtName" class="requiredInput"/>

7 ...

Appendix B Cascading Style Sheets

443

�Attribute Selector
The attribute of an element and its value are indicated by square brackets. Listing B-4

illustrates.

Listing B-4.  CSS Instruction for an Element Type

1 ...

2 <style type="text/css">

3 [type="text"] {background-color: yellow;}

4 </style>

5 ...

6 <input type="text" id="txtName"/>

7 ...

�Nesting Selector
One selector to address nested structures was used in the introductory example:

tagname1 tagname2 refers to an element of type tagname2, which is nested into an

element of type tagname1. tagname2 might be nested anywhere within tagname1.

Note that the > addresses elements that are immediately nested, as shown in line 17

of Listing B-5 (Figure B-3 shows the output).

Listing B-5.  CSS Nesting Selector (Line 17)

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html>

 4 <head>

 5 <title>CSS demo</title>

 6 </head>

 7

 8 <style type="text/css">

 9 label {

10 font-weight: bold;

11 font-size: 2em;

12 }

Appendix B Cascading Style Sheets

444

13 form label {

14 color: red;

15 font-size: 1em;

16 }

17 form > label {

18 color: blue;

19 }

20 </style>

21

22 <body>

23 <label>Personal information</label>

24

25 <form>

26 <label>Enter your name</label>

27

28 <div>

29 <label for="txtFirstName">Last name:</label>

30 <input type="text" id="txtFirstName"/>

31 </div>

32 <div>

33 <label for="txtLasrName">First name:</label>

34 <input type="text" id="txtLastName"/>

35 </div>

36 <input type="submit" value="send"/>

37 </form>

38 </body>

39 </html>

Figure B-3.  CSS nesting example

Appendix B Cascading Style Sheets

445

Only Enter your name is displayed in blue. Using the > operator, the labels for

entering last or first name could have been addressed by form > div > label, because

this includes the missing div in the path.

�Sibling Selector
The tilde (~) selects all the following siblings of an element. A sibling is an element on

the same nesting level. The plus sign (+) selects the neighbor sibling element. Listing B-6

illustrates, and Figure B-4 displays the output.

Listing B-6.  Sibling Selector Example

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html>

 4 <head>

 5 <title>CSS demo</title>

 6 </head>

 7

 8 <style type="text/css">

 9 label {

10 font-weight: bold;

11 }

12 label ~ label {

13 color: green;

14 }

15 label + label {

16 font-size: 2em;

17 }

18 </style>

19

20 <body>

21 <label>first label</label>

22 <label>second label</label>

23

24 <label>third label</label>

25 <body>

26 </html>

Appendix B Cascading Style Sheets

446

label ~ label is used to select the second and third labels, which both are siblings of

the first label. label + label selects only the second label, which immediately follows

the first label, whereas the third is separated by a
 tag.

�Box Model
Each element uses a space, which is determined by its display style and its content.

Text elements like label or input are of display type inline. The width of an

element is determined by its content. Each element is arranged right of the previous one.

Depending on browser window size, line breaks may be inserted.

Elements like div are block elements. These elements can have a width attribute

to define their width. Otherwise, the full width of the browser window is used. block

elements are arranged vertically.

With CSS, it’s possible to define a display type inline-block. (Valid values for

the property display are none, inline, block, and inline-block.) Such elements are

arranged horizontally like inline, but it’s possible to define a width independently from

its content. For example, consider a label, which usually ends where the text finishes,

regardless of a width declaration. If you use display: inline-block; you may assign a

width of your choice to that label.

The height of an element is usually determined by its content.

In a box model, each element has a width determined by its content, or in the case

of a block (including inline-block) element, by a width attribute. The height is usually

determined automatically. Surrounding the element is a padding of a defined size, which

might be 0. Outside this padding, a border may be defined. And beyond the border there

is a margin.

Listing B-7 demonstrates this model, and its output is shown in Figure B-5. To make

the padding visible, each div element has its own background color that surrounds the

inner label. The margin’s background is transparent. It simply defines the gap between

browser the elements as well as the distance to the browser’s border. To make it visible in

this book, the background color of the whole HTML document is set to gray.

Figure B-4.  CSS sibling example

Appendix B Cascading Style Sheets

447

Listing B-7.  CSS Box Model

 1 <?xml version='1.0' encoding='UTF-8' ?>

 2 <!DOCTYPE html>

 3 <html>

 4 <style type="text/css">

 5 html {

 6 background-color: lightgray;

 7 }

 8 div {

 9 display: inline-block;

10 width: 60px;

11 padding: 10px;

12 border-style: solid;

13 border-color: blue;

14 border-width: 10px;

15 margin: 20px;

16 background-color: red;

17 }

18 div + div {

19 background-color: orange;

20 }

21 br + div {

22 width: 200px;

23 background-color: green;

24 }

25 label{

26 background-color: white;

27 }

28 div + div > label{

29 display: inline-block;

30 width: 60px;

31 }

32 </style>

33

34 <body>

Appendix B Cascading Style Sheets

448

35 <div><label>content<label></div>

36 <div><label>content<label></div>

37

38 <div><label>content<label></div>

39 <body>

40 </html>

The boxes in the first line both have a width of 60 pixels. This is more than the width

of the label contained in this div. For the second div, the label display is re-defined as

inline-block. This allows defining a width for this label. As you can see, the label (white

background) gets wider, but the width of the div (which is of the same width) doesn’t

change.

The two elements of the first line seems to have the same width as the third box. But

2*60 is not equal to 200!

Characteristic of the box model is that it defines the content size, not the whole

display size. So we have to add padding, border, and margin, both on the left and right

side. 2*(60+2*padding+2*border+2*margin) = 2*(60+20+20+40) = 280, and this

equals the second line, 200+20+20+40 = 280.

The understanding of this box model is essential for calculating a layout. With

CSS3, it’s possible to change this default model by box-sizing: border-box;. Applying

border-box, the width determines the width including padding and border.

Figure B-5.  CSS box model example

Appendix B Cascading Style Sheets

449

Note T o enable a simple calculation, the example for the box model uses a
fixed size, given in pixels. For real applications, relative sizes like em (as used in
the other examples) or percent should be preferred. Relative sizes simply allow
changing the size globally and are essential for a responsive design.

�Enhanced Styling
With CSS, it’s possible to reorder the content. Or to add text or images. Or to change the

design depending on the display size. This appendix merely introduced the basics of CSS.

The applications in this book sometimes use such enhanced styling features, such

as pseudo elements, divers positioning, background, media queries, and more. They’re

described in the appropriate chapters.

Note I f you want to learn CSS, lots of good books are available on the market,
and plenty of good online tutorials are on the Internet. W3schools’s CSS tutorial is
worth a look: www.w3schools.com/css.

Appendix B Cascading Style Sheets

http://www.w3schools.com/css

451
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5

�APPENDIX C

�Tag Libraries
When developing a web application, you always have to create some HTML pages to be

displayed in the browser. One approach is to hide the HTML handling and fully generate

the pages. The other extreme is to mix the application code into a HTML page.

But the most common solution is to separate page from code. To do that, some

instructions are placed into the page that invoke your code. Technically, these

instructions are HTML/XML tags or attributes, although some may call them something

else. For example, AngularJS instructions are HTML attributes, but they call them

directives. “Traditional” JSF apps are usually built with tags, but since JSF 2.2, you can

waive some tags and use pass-through elements instead.

All those tags are grouped together and are available using different namespaces.

Table C-1 provides an overview about these namespaces.

Table C-1.  Namespaces

URI Prefix Description

http://xmlns.jcp.org/jsf jsf: Pass-through elements

http://xmlns.jcp.org/jsf/core f: JSF core library

http://xmlns.jcp.org/jsf/html h: JSF HTML library

http://xmlns.jcp.org/jsf/facelets/ ui: Facelet Templating tag library

http://xmlns.jcp.org/jsf/composite cc: Composite Component tag library

http://xmlns.jcp.org/jsf/passthrough p: Pass-through attributes

http://xmlns.jcp.org/jsp/jstl/core c: JSP Standard Tag Library (JSTL)

http://xmlns.jcp.org/jsp/jstl/

functions

fn: JSTL functions

https://doi.org/10.1007/978-1-4842-3030-5
http://xmlns.jcp.org/jsf
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/facelets/
http://xmlns.jcp.org/jsf/composite
http://xmlns.jcp.org/jsf/passthrough
http://xmlns.jcp.org/jsp/jstl/core
http://xmlns.jcp.org/jsp/jstl/functions
http://xmlns.jcp.org/jsp/jstl/functions

452

This appendix gives a brief overview of and quick reference to tags from the Standard

JSF Component Library and JSP Standard Tag Library. Full references are available

online (https://javaserverfaces.github.io/docs/2.3/index.html), or check out

JavaServer Faces 2.0 by Ed Burns and Chris Schalk (McGraw-Hill, 2010). Note that

although that book was written for JSF 2.0, it’s still useful for JSF 2.3.

The tags are grouped by library and listed alphabetically. Additionally, some

common attributes are described.

�Pass-through Elements
This is only a marker namespace. JSF tries to detect components, which are marked

by jsf: (or whatever alias you’ve chosen with the namespace declaration). Known

components are added to the component tree as if defined in one of the other libraries.

Unknown components are added as pass-through elements.

�JSF Core Library
Elements of the JSF core library are usually prefixed with f:, but you can change that

during the declaration of the namespace. The tags (as well as those of the other libraries)

are listed in Table C-2 without any prefix.

Table C-2.  Namespaces

Tag Name Description

actionListener Declarative registers an ActionListener to the closest

parent UIComponent.

ajax Declarative adds an AjaxBehavior to the parent

UIComponent or to its child UIComponents.

attribute Adds an attribute to the surrounding UI component.

attributes Adds attributes to a map for the surrounding UI component.

convertDateTime Registers a DateTimeConverter for a UIcomponent.

converter Registers a named (self-written) converter for a

UIcomponent.

(continued)

aPPENDIX c Tag Libraries

https://javaserverfaces.github.io/docs/2.3/index.html

453

Table C-2.  (continued)

Tag Name Description

convertNumber Registers a NumberConverter for a UIcomponent.

event Registers a ComponentSystemEventListener for a

UIComponent.

facet Registers a named facet for a UIComponent.

importConstants Imports constants so they can be used within the EL.

loadBundle Loads a localized resource bundle if available, otherwise the

default resource bundle.

metadata Declares metadata for a Facelets view. Using Facelets, a view

corresponds to a (HTML) page, if not specified by the optional

f:view.

param Adds a parameter to the closest parent UIComponent.

passThroughAttribute Defines a pass-through attribute. Such an attribute would be

passed to a browser without interpretation by JSF.

passThroughAttributes Pass through a group of parameters delivered by EL as a

Map<String, Object>.

phaseListener Adds a listener to phase events.

resetValues Resets the values of the components declared in the render

attribute, for example to clear input fields of a form.

selectItem Adds an item to a select box, or combo box.

selectItems Adds multiple items provided by an EL expression to a select

box.

setPropertyActionListener Registers an action listener to the closest parent

UIComponent.

subview Defines a subview component for pages with JSP. Has no

purpose on modern Facelets pages.

validateBean Causes the closest parent UIComponent or all nested

UIComponents to be validated by bean validation.

(continued)

aPPENDIX c Tag Libraries

454

Tag Name Description

validateDoubleRange Validates a range (minimum to maximum, both optional) of

values of an inputText component with a backing field of

type double.

validateLength Validates the length of the closest parent UIComponent.

validateLongRange Same as validateDoubleRange, but for a Long.

validateRegex Validates the input against a regular expression.

validateRequired Declares the closest parent UIComponent being required.

Same effect as the required="true" attribute.

validator Registers a validator for the closest parent

EditableValueHolder, for example input text.

valueChangeListener Registers a listener to the valueChange event of the closest

parent UIComponent.

verbatim Registers a child UIOutput element for JSP. No purpose for

modern Facelets pages.

view The container for all JSF components. Using Facelets, the view

is implicitly declared, so there is no need for an explicit view

tag. But you might use it to pass additional information like

language and so on.

viewAction Register an action (method) to be invoked in a given phase. To

be used within the metadata tag.

viewParam Retrieve a parameter (id and value) from a get request. To be

used within the metadata tag.

websocket Registers a websocket connection that receives push

messages sent by the server.

Table C-2.  (continued)

aPPENDIX c Tag Libraries

455

�JSF HTML Library
The HTML library contains tags that are rendered to HTML elements. HTML elements

are not only rendered, JSF-specific features are added too. The common namespace is h

(prefix h:). Table C-3 lists these tags.

Table C-3.  JSF HTML Library

Tag name Description

body Counterpart to HTML body tag. It also offers resource relocation, for

example for JavaScript or CSS files.

button Renders an HTML input element of type submit. This is used to

perform a navigation by an HTTP GET to the URL specified by the

outcome attribute.

column Represents the column of a dataTable. The content of the column

as well as its header are defined within suitable sub-elements.

commandButton Renders an HTML input element of type submit, reset, or image.

It may perform an action and/or a navigation.

commandLink Renders an HTML link (and may perform an action

on click.

dataTable Renders an HTML table with as many rows as provided by the

collection or other suitable data structure.

doctype Renders a doctype declaration.

form Renders an HTML form and adds it to the JSF component tree. When

the form is submitted, all the JSF components within that tag will be

processed. A couple of JSF elements, including commandLink, need

to be nested in a JSF form for proper function.

graphicImage Renders an image that’s provided in a resource folder.

head Not only renders a HTML head element, but is used as parent

element when using resource relocation, for example to load a script

or CSS file from one of the resource folders.

(continued)

aPPENDIX c Tag Libraries

456

Table C-3.  (continued)

Tag name Description

inputFile Used to browse for and upload a file.

inputHidden Renders an HTML input field of type hidden. Like the other input

elements, a value from a backing bean may be assigned too.

inputSecret Renders an HTML input field of type password. All input

characters will be displayed as asterisks.

inputText Renders an HTML input field of type text. This tag is the

workhorse for most forms.

inputTextarea Renders an HTML textarea. Like the inputText, this might be

used to display and query some text. It might contain multi-line text,

which covers a bigger area on the screen. Most modern browsers

allow the user to resize this element.

link Renders an HTML link (that can be used for

bookmarkable navigation.

message Used to display the first Faces message that is queued for an

(input) element to which the message element refers.

messages Able to display all messages that are not displayed by a certain

message tag or that will be displayed globally.

outputFormat Renders an HTML spam element to display the text bound to this

component by the binding attribute or value. This element might be

parameterized by param subcomponents and will be formatted by a

MessageFormat.format() method.

outputLabel Renders an HTML label. It might be assigned to an input element

through its for attribute.

outputLink Renders an HTML link (, which is mostly used to

navigate outside the app.

outputScript Used to include a script file via resource relocation.

outputStylesheet As before, but for a CSS file.

(continued)

aPPENDIX c Tag Libraries

457

Table C-3.  (continued)

Tag name Description

outputText Renders its value as text within the page. By default, the < will be

escaped as < to prevent HTML injection.

panelGrid This component renders an HTML table. Its child components

become cell content of that table.

panelGroup This tag is rendered as an HTML span element containing all

its child elements. It can be used to place a couple of elements

somewhere only one element is expected, for example into one cell

of a table.

selectBooleanCheckbox Renders an HTML input element of type checkbox.

selectManyCheckbox Renders an HTML table with a set of checkboxes, either in one row

or one column, depending on the direction of the layout.

selectManyListbox Renders a listbox (HTML select element) where the user may

choose from multiple entries.

selectManyMenu Renders an HTML select element with a height of 1. The user may

open it like a drop-down list and choose multiple elements.

selectOneListbox Renders a listbox (HTML select element) where the user may

choose from one entry.

selectOneMenu Renders an HTML select element with a height of 1, which acts as

a drop-down list to select one element.

selectOneRadio Renders a set of radio buttons. Like the buttons on old car radios,

the user may choose exactly one of them.

aPPENDIX c Tag Libraries

458

�Common Attributes
This section describes some attributes which are widely used in many tags described

before. Table C-4 lists these tags.

Table C-4.  Attributes

Tag Name Description

disabled If true (default is false), the element will be rendered “grayed,” indicating no

input or other action is possible.

id Provides an id to the element. An element may be accessed by its id, which needs

to be unique within its scope.

for Takes the id of another element the element containing this attribute refers to.

Used for labels or messages.

readonly The component will be rendered as usual, but input is impossible.

rendered Defines a condition to render the component. The default is true. An element

without this attribute will be rendered.

styleClass Defines the CSS class used for this element. Renders to the HTML class attribute.

�Facelet Templating Tag Library
The Standard Facelets Templating Library is available for the Facelets UI language, but

not JSP. I recommended preferring Facelets over JSP because lots of new features are

only available for this view declaration language. This library is declared by the

"http://xmlns.jcp.org/jsf/facelets" namespace and is prefixed with a default

prefix of ui. Table C-5 lists these tags.

aPPENDIX c Tag Libraries

http://xmlns.jcp.org/jsf/facelets

459

Table C-5.  Facelets Tags

Tag Name Description

component Former version of composition as used for Facelets prior to JSF 2.0. Unlike

composition, this can’t specify a template.

composition This defines a composition of elements (part of a page) that can be included

by include into other pages or compositions. A composition may define a

template where it’s used from. In such a case, navigating to the composition

will render the whole template. All markup outside composition will be ignored.

debug Provides some internal information for debugging purposes, like the component

tree. Will be invoked by pressing Ctrl+Shift+D by default, or another hotkey if

defined.

decorate A reusable fragment of a page, similar to composition. Unlike composition,

any markup outside this element will be used too.

define Defines the part of a composition that will be inserted in the Facelets template

at the place of an insert tag that defines the same name you provide the

define tag.

fragment Defines a reusable part of a page, like component. Unlike component, any

markup outside fragment is recognized too.

include Includes the file that’s defined by the src attribute into the current Facelets view.

insert Inserts content into a template. (See composition.)

param Used within the include tag, param is able to pass a parameter (key + value)

into the included composition or other appropriate tag.

remove Removes the included markup at compile time. Might be used for comments,

which won’t be rendered to the client.

repeat Iterates over a collection. For each iteration, a copy of all of its child elements will

be included into the component tree. Used to repeat elements without the need

for rendering a table. If a table is needed, prefer dataTable.

aPPENDIX c Tag Libraries

460

Table C-6.  Composite Component Tags

Tag Name Description

ActionSource Defines a part of the composite component that can have an

actionListener attached.

attribute Within the interface it defines an attribute (parameter) that can be

passed from the using component into the composite component.

clientBehavior Defines a client behavior. Usually an event of a subcomponent that can

be subscribed by the calling (using) component.

editableValueHolder Defines one or more subcomponents that can have a converter tag

or valueChangeListener attached.

extension Can be used to pass design time metadata to the composite

component according to JSR 276. JSR 276 is in “dormant” status.

facet This can be used within the interface to declare a named facet, which

can be passed from the using component to a facet declaration within

the implementation.

implementation This tag encapsulates the implementation of the component. Within the

tag, arbitrary components can be arranged that define the component.

insertChildren Defines an insertion point to insert one or more components that have

been nested into the using component.

insertFacet Defines the place where a named facet (as defined within the

interface section) will be inserted.

interface Defines the interface of the component.

renderFacet Inserts a named facet into the implementation part of the composite

component.

valueHolder Defines one or more subcomponents that can have a converter tag

attached.

�Composite Component Tag Library
JSF 2.0 and later supports composite components built up by using the VDL.

A component consists of two main parts: the interface and the implementation. The

Composite Component tag library offers tags for both, as well as tags for other properties

to modify the behavior of a component. Table C-6 lists these tags.

aPPENDIX c Tag Libraries

461

�Pass-through Attributes
This is a marker namespace only. As mentioned in the JSF spec, it might be declared as

xmlns:p="http://xmlns.jcp.org/jsf/passthrough".

If JSF detects an attribute marked by p: (or whatever alias you’ve chosen by the

namespace declaration) it will render this attribute without modification.

Before pass-through attributes became live with JSF 2.2, the p: alias commonly had

been used for the PrimeFaces library, so you might choose pt: instead.

�JSP Standard Tag Library (JSTL)
Before JSF 2.0, JSP was the only view definition language (VDL). Now Facelets is

the preferred VDL, and the major enhancements are available for Facelets only. For

backward compatibility, JSP is still supported and thus the JSTL. Most of these tags might

be replaced by Facelet tags. But in some special situations, it might be appropriate to

use a tag handler instead of a UI component, for example forEach in place of repeat.

The following table shows only that excerpt of the JST which is offered by NetBeans

autocompletion. Table C-7 lists these tags.

Table C-7.  JSTL Attributes

Tag Name Description

catch Can be used as a parent tag to catch all exceptions thrown by the handling of its

subtags.

choose Parent tag for a cascade of when(s) and otherwise. Similar to the Java switch

statement.

forEach Iterates over a collection or range of values.

if Test for a condition. Handles all its nested elements only if the test results to

true.

otherwise Child of choose. Similar to default of a Java switch.

set Sets the value of a variable. Usually the result of an EL expression (or JSTL

function).

when Child of choose. Similar to case of a Java switch.

aPPENDIX c Tag Libraries

http://xmlns.jcp.org/jsf/passthrough

462

�JSTL Functions
These functions likewise exist for backward compatibility. Usually they can be fully

replaced by the EL. They’re listed here for the sake of completeness, but I don’t discuss

them in this book. Table C-8 lists these tags.

Table C-8.  JSTL Functions

Tag Name Description

contains(dataString, search) Produces true if search is contained in dataString.

containsIgnoreCase(dataString,

searchString)

Same as before, but case insensitive.

endsWith(string, subString) Tests whether string ends with subString.

escapeXml(string) Replaces character which that be interpreted as XML

markup by XML entities, for example < becomes <.

indexOf(string, subString) Returns the index of subString within string.

join(stringArray, delimiter) Concatenates all elements of the array with delimiter

in between.

length(string) Returns the length of string.

replace(string, find, replace) Replaces all occurrences of find by replace within

string.

split(string, delimiter) Splits string by delimiter into an array of strings.

startsWith(string, subString) Tests whether string starts with subString.

substring(string, start, end) Returns a part (substring) of string as defined by the

index start and end (excluded).

substringAfter(string,

subString)

Returns the part of string after subString.

substringBefore(string,

subString)

Returns the part of string before subString.

toLowerCase(string) Returns string converted to lowercase.

toUpperCase(string) Returns string converted to uppercase.

trim(string) Returns string without leading or trailing white space.

aPPENDIX c Tag Libraries

463
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5

APPENDIX D

�Programming Style
As you may have noticed, I always use an underscore to prefix fields. Oracle

recommends against starting a variable with an underscore or a dollar sign (you can

read this recommendation for yourself at http://docs.oracle.com/javase/tutorial/

java/nutsandbolts/variables.html), although it says that the practice is technically

legal. One of my technical reviewers requested that I strictly follow the Java naming

conventions, arguing that this is a book for novices and should follow convention.

But this is not a book for programming novices. It’s for experienced Java developers

who are new to JSF and, perhaps, to web development. A naming convention is not a

law, and anyway, the convention in question is just a recommendation in a tutorial. If

you take a look at the Java naming convention site (www.oracle.com/technetwork/java/

codeconventions-135099.html), you’ll can see that it’s not maintained anymore: “This

page is not being actively maintained. . . . The last revision to this document was made

on April 20, 1999.” So, it’s quite old.

I have some reasons to prefix fields, which I’m going to explain. I don’t want to

start a discussion about the pros and cons. I just to explain why I do it this way. As an

experienced Java developer, you should be able to transform my source code into a

different style. Using a modern IDE, that would involve nothing more than a small

rename.

Let’s go back a few years in history, to when the so-called Hungarian notation was

useful and popular. Using this notation, every variable is prefixed by its type, for example

intNumber, which should indicate that the underlying type is an integer. This had been

very helpful for languages that aren’t strongly typed. intNumber = 3.142 might be a

valid assignment. In such a case, the prefix should remind the programmer to use integer

values only.

For Java, with its strong type system, there’s no need to use this Hungarian notation.

if you declare int number, the compiler would reject number = 3.142.

https://doi.org/10.1007/978-1-4842-3030-5
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
http://www.oracle.com/technetwork/java/codeconventions-135099.html
http://www.oracle.com/technetwork/java/codeconventions-135099.html

464

Similarly, a second prefix was used to indicate a broader scope of a variable. For

example, a prefix mb_ indicated a member variable, which we call a field. No question,

mb_intNumber is a really ugly variable name. So let’s throw away these old-fashioned

prefixes. For a modern programming language, there is no need for them.

But what happens to properties? If we have a field number and we want to assign a

new value with a getter? Because of variable hiding, you can’t do it this way:

1 private int number;

2 public void setNumber(int number){

3 number = number;

4 }

To distinguish field and local variables, you need different names. This is the C# way,

translated into Java:

1 private int number;

2 public void setNumber(int value){

3 number = value;

4 }

Now, the method signature always contains value, which might be meaningless.

Next approach:

1 private int fNumber;

2 public void setNumber(int number){

3 fNumber = number;

4 }

Now we have different names for field and local variables, but it’s harder to read. And

according to the “rules” of camelCase, the variable name becomes uppercase. Let’s try

the underscore:

1 private int _number;

2 public void setNumber(int number){

3 _number = number;

4 }

The underscore is less disturbing than any other prefix. The field name will be

written in lowercase as usual. The only drawback is that it doesn’t follow the full

naming convention.

appendix d Programming Style

465

There’s another common solution to this problem: using this:

1 private int number;

2 public void setNumber(int number){

3 this.number = number;

4 }

In my opinion, that fits the naming convention but is a misuse of this. this refers to

the object itself (other languages use self). It’s very useful if an object needs to pass itself

to some method or create a fluent interface (such as a builder) to return itself. But here

it’s simply (mis)used to distinguish a field from a variable, which could be better done by

choosing a different name.

Let’s take a look at copying a file within a folder:

copy file1 file2

If you need to copy the folder, you might use a dot:

copy .\otherFolder

Although it’s technically possible to use the dot for a file in the current directory, you

usually won’t use

copy .\file1 .\file2

or cp ./file1 ./file2 the UNIX way.

That looks strange and ugly—like this.field looks strange and ugly to me.

And if you’re a polyglot programmer, using C# too, you may know that this prefix is

very common in this Java sibling (both are C-like languages). In rare cases, there might

be a need to edit the source outside an IDE using a simple editor without syntax coloring.

As a side effect, the underscore is very helpful in identifying a field in such situations.

Now you know why I’m using the underscore prefix for fields in all my projects,

including this book. But you are welcome to change it in your version of the

downloaded sources.

appendix d Programming Style

467
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5

��APPENDIX E

Bibliography
Title Author(s) Publisher and Year

Java EE 7 Arun Gupta O’Reilly, 2013

Mastering JSF 2.2 Anghel Leonard Packt Publishing, 2014

Continuous Enterprise
Development in Java

Andrew Lee Rubinger, Aslak Knutsen O’Reilly, 2014

JavaServer Faces 2.0 Ed Burns, Chris Schalk McGraw-Hill, 2010

Design Patterns: Elements
of Reusable Object-Oriented
Software

Erich Gamma, Richard Helm,

Ralph Johnson, John Vlissides

Addison-Wesley, 1994

The Tangled Web: A Guide
to Securing Modern Web
Applications

Michal Zalewski No Starch Press, 2011

Selenium WebDriver Practical
Guide

Satya Avasarala Packt Publishing, 2014

You’ll find more, including lots of German titles, at http://it-rezension.de/Books.

https://doi.org/10.1007/978-1-4842-3030-5
http://it-rezension.de/Books

469
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5

�Afterword

Although we just started with Alumni, the goal is not to describe the whole application

but interesting aspects with respect to JSF. Creating a final class for example is similar to

entering data as we did for Books. The principle is the same, just the content is different.

Of course, there might be more JSF stuff to instruct. For example, JSF 2.2 introduced

the flow scope.1 This kind of scope has defined entry and exit points. It is really good

if you like to define a series of logically coupled pages like a wizard. Neither of my

application uses such a feature. They are designed in a way that the user might navigate

to any page at any time, improperly for the flow scope.

Instead of focusing on every JSF feature, this book focused on practical development

by real applications. You did not suffer every JSF detail, but you learned (I hope you did)

a lot of related Java EE technologies. These are the foundations for you to create your

own applications. I predict, enhancing your knowledge will be relatively easily once you

start developing with JSF. If you need more than we covered within this book, please

refer to the JSF and Java EE reference.

I’m going to finish this book before it gets oversized and boring. I hope you enjoyed

reading and found value in it.

Follow my blog at https://blog.mueller-bruehl.de. And maybe you can leave a

comment there about this book.

Stay tuned!

—Michael

1�https://javaserverfaces.github.io/docs/2.3/javadocs/javax/faces/flow/
FlowScoped.html

https://doi.org/10.1007/978-1-4842-3030-5
https://blog.mueller-bruehl.de/
https://javaserverfaces.github.io/docs/2.3/javadocs/javax/faces/flow/FlowScoped.html
https://javaserverfaces.github.io/docs/2.3/javadocs/javax/faces/flow/FlowScoped.html

471
© Michael Müller 2018
M. Müller, Practical JSF in Java EE 8, https://doi.org/10.1007/978-1-4842-3030-5

Index

A
Abstract data service, 319–321
Account entity, 324–329
Account handling

account service, 381–387
Alumni, 379
micro service, 379–381
obtainPermittedGroups method, 379
testing, 387

Activation mail
dependency, Java Mail, 334
hardcoded properties, 331–333
Java EE, 333
mail session, 335–338
Maven search dialog, 334
sending, 339–341
SMTPS parameters, 335

Agile Manifesto, 96
Alumni, 195, 241, 265, 299

application, preparing, 265–269
registration form, 270–274
techniques, 265

Apache Maven, 29
Application servers, 14, 38
Arquillian, 29
Asynchronous communication, 389
Asynchronous JavaScript and XML

(AJAX), 37, 295
HTML-friendly markup, 298
immediate feedback, 295–299
XMLHttpRequest, 295

Attribute selector, 14, 443
Authentication and authorization

custom realm
Alumni, 373
AppservPasswordLoginModule, 374
AuthType and JAASContext, 373
commitUserAuthentication, 374
domain.xml file, 375–376
GlassFish server, 373
login.conf file, 375
LoginModule, 374
poor implementation, 375
secure passwords, 372
web.xml file, 376

fileRealm (see fileRealm)
form login, 361–364
jdbcRealm, 367–372
programmatic login, 364–366
programmatic logout, 367
security basics, 349–351

B
Basic authentication, 350
beans.xml, 65
Bean validation, 275

Alumni, 195
book editor, 198–200
book entity, 196–198
customized message, 279–282
JSF lifecycle, 195

https://doi.org/10.1007/978-1-4842-3030-5

472

null handling, 282
programmatic invocation, 278–279
registration process, 275–278
user interface, 195

Books application, 245
development order

Agile Manifesto, 96
database specialists, 96
data structure, 97
dialog boxes, 96
GUI prototype, 95
iteration, 96
mocking data, 97
requirement changes, 96
waterfall model, 96

displays reviews, 95
features, 94
project creation, 97
requirements, 93, 95
reviews, 93
source code, 241
table, information, 94

Breakpoints, 227

C
Cascading Style Sheets (CSS), 26, 95

app running, 112
books, 105
box model, 446–449
buttons to switch theme, 416
column layout, 111
dark theme, 423
definition, 439
enhanced styling, 449
fix width, 108
font size, 107

footer, 108–109
form label, 440
heading tags, 107
Java Lambdas and Parallel Streams, 419
JSF tags, 104, 109, 110
label, 440
library attribute, 105
line breaks and spacing, 441
main part and navigation, 111
muellerbruehl theme, 422
NetBeans, 103
obtainResourcePath method, 419
overwriting former instruction, 441
page layout and menu, 109–110
programmatic navigation, 420
reset actions, 106
reset, background, and header styles, 107
resource library, 415–416
resources, 104, 419
retrieve themes, 417–418
selectOneMenu, 419, 420
selectors (see Selectors)
style tag, HTML page, 439
web page, 103
wrapper, 108

CDI, see Contexts and Dependency
Injection (CDI)

Class selector, 442
commandLink, 215
Component tree

HTML-friendly markup, 45
navigation, 47
print function, 46–47
reduced page, 43
simplified tree, 44

Composite components, 301
child element, 305–308
pass in validation method, 308–310

Bean validation (cont.)

Index

473

transform into composition, 301
<cc:implementation> tag, 303
firstName, 301–302
uses, 304

ubiquitous input component, 310–312
Concrete facade, 322, 324
Configuration files

beans.xml, 65
faces-config.xml, 64
glassfish-resources.xml, 65
glassfish-web.xml, 66
nb-configuration.xml, 67
persistence.xml, 65
pom.xml, 61
web.xml, 62–64

Contexts and Dependency Injection (CDI),
14–16, 82, 138, 140–141, 143, 241

annotations, 203
conversation scope (see Conversation

scope)
DataService, 201
EJBs, 202–203
FacesContext.getCurrentInstance(), 204
interface, 202
IoC, 202
scopes, 203–204
static declaration, named beans, 203

Conversation scope
begin and end, 210
GET navigation, 209
multi-page editor

adminTemplate.xhtml, 208
bookId, 205
book’s metadata, 205
categories, 205
excerpt of BookEditor.java, 206
init() method, 207
long-running mode, 207

testing, 208
transient mode, 207

HTTP POST request, 209
postback navigation, 209

D
Data access object (DAO), 198
Data facade

abstract service class, 319–321
account entity, 324–329
concrete facade, 322, 324

Data model
category, 113
hashCode, and equals, 114
NetBeans, 114
persistence, 113
toString method, 114

Deployment, 33
Descriptor file, 63–64

E
EL, see Expression Language (EL)
Encryption, 313
Enhanced styling, CSS, 449
Enterprise Java Beans (EJBs), 14, 140, 143,

202–203
Entity manager (EM), 130, 133, 137,

140, 144
Expression Language (EL), 18

implicit objects, 53–54
method expressions, 53
unified, 49–50
value expression

dot and square bracket, 53
operators, 51–52

External reviews, 213–214

Index

474

F
faces-config.xml, 64
fileRealm

add web resource, 353–354
Client Certificate login

configuration, 353
dedicated HTTP methods, 356
digest, 352
Form login configuration, 353
GlassFish admin console, 358
GlassFish Configurations tree, 358
GlassFish User Editor, 359
Login Configurations, 352
login dialog, username

and password, 357
NetBeans security editor, 360
security behavior, 356
security-constraint, 354–356
Security Role Mappings box, 360–361
Security Roles, 353
security settings, 351
security tab for web.xml, 352
test page, 357

First Dialog Box
button style, CSS, 121
categories, 115
category editor, 116–117

main part, 120
version 1, 122

hashcode and equals, 123
JPA, 119
lambdas and streams, 118
PostConstruct, 119
save method, 118
@SessionScoped, 119

Form-based authentication, 350
Form login, 361–364

G
GET navigation, 209
GlassFish, 3–4

configuration, 368
glassfish-resources.xml, 65
glassfish-web.xml, 66
New Realm dialog, 369

H
Handling constants

importing, 427
navigation by strings, 425–426

Hash, 313–314
HTML-friendly markup, 57–60
Hungarian notation, 463
Hypertext Transfer Protocol (HTTP), 22,

24, 38
HypertText Markup

Language (HTML), 24, 26
body

forms and input, 432–433
page and text structure, linking, 431
tables, 434–437

description, 429
header, 430
structure, 429–430
tag completion/tag guessing, 437–438

I
Id selector, 442
Implicit objects, 53–54
Internal reviews, 211–213
Internationalization

content (see Localized content)
language switcher, 166–168

Index

475

and localization, 153–154
welcome page (see Welcome page)

Internet Engineering Task
Force (IETF), 390

Inversion of Control (IoC), 202, 204
Invoke application, 40

J, K
Java, 28
Java API for RESTful Web Services

(JAX-RS), 381
Java Authentication and Authorization

Service (JAAS), 351
Java Authentication Service Provider

Interface for Containers
(JASPIC), 351

Java bean, 14
Java Community Process (JCP), 29
Java Database Connectivity (JDBC), 125
Java EE 8

application server
GlassFish Server 5, 88
installation location, 89
project properties, 89–90

evolution, 87
Payara server, 90–91

JavaMail session in GlassFish/Payara, 336
Java Persistence API (JPA), 241

entities
attributes, 126–127
Category class, 129
column mapping, 127
database table, 127
mixed field and method-based

annotation, 128
NetBeans bulb indicator, 129
POJO, 126

properties, 126
Serializable and id, 126
table-specific prefixes, 128

ORMs, 125
PU (see Persistence unit (PU))
service class

CategoryService, 139–141
controller bean

CategoryEditor, 142–143
CRUD operations, 138, 141
EJBs, 140, 143
entity lifecycle, 138
EntityManager, 141
entity state, 144
remove() method, 139
save method, 141

SQL DBs, 125
JavaScript, 27
JavaServer Faces (JSF)

all/none approach, 41
apply request values, 40
component tree

HTML-friendly markup, 45
print function, 46–47
reduced page, 43
simplified tree, 44

invoke application, 40
lifecycle, 39

tag handler, 247
UI components, 248

namespace, 41–42
navigation, 47
process validations, 40
render response, 40
restore view, 40
series of JSRs, 35
standard component library, 42
standard tag library, 43

Index

476

tags, 41
update model values, 40

Java Server Pages (JSP), 33
jdbcRealm, 367–372
JSF links

application, 216
commandLink, 215
creation, internal links, 220
internal vs. external link, 220
link tag, 215
link demo (testLink)

index.xhtml, 217–218
outputLink tag, 216
output of testLink, 219
postback navigation, 216
tags, 215
testLinks, 216

JSF templating
category editor, 147
components, 147
draft of booksTemplate.xhtml, 147–148
main content area, 146
screens of Books app, 145–147
template client, 149–150
template client, Superfluous html tag, 150

JSP Standard Tag Library (JSTL)
attributes, 461
functions, 462

Just-in-time (JIT), 27

L
Language switcher, 166–168
Links

external reviews, 213–214
internal reviews, 211–213
JSF (see JSF links)

link tag, 215
Localized content

administrator area, 169
category editor, 171
category translation

convenience methods, 189–190
enhancement of, 189
important parts, 185–186
MySQL, 187
MySQL Server Version, 187
MySQL Version, 188
one-to-many relationship, 188
page, 191–193

common navigation, 172
footer, 169–170
topics

builder class, 174–175
category editor, tab control

lookalike, 185
category editor,

translation, 173
categoryTemplate.xhtml, 181–182
<c:forEach>, 183
container class, 174
faces-config.xml file, 179
heading and URL, 174
initTopics(), 180–181
languages, 173
list of, 177–178
register tab, 174
tab lookalike formatting, 183–184
<ui:repeat>, 183
Utilities class, 178–179

M
Mail session, 335–338
Managed beans, 14–17

JavaServer Faces (JSF) (cont.)

Index

477

N
Named beans, 14
Namespaces

Composite Component tag
library, 460

Facelet Templating tag
library, 458–459

JSF core library, 452
JSF HTML Library

attribute tags, 458
tag lists, 455

JSTL, 461, 462
pass-through attributes, 461
pass-through elements, 452

Nashorn, 28
Nesting selector, 443–445
NetBeans, 3, 265
NetBeans Security, 372

O
Object Relational Mapping (ORM), 125, 144
Operators, 51–52
outputLink tag, 216

P, Q
Page layout

content and navigation, 100
CSS (see Cascading Style Sheets (CSS))
development, 100
headline and footer, 100
HTML structure, 100–102
personal computer, 99
responsive design, 99

Partial request, 295
Passivate bean, 17

Passwords
algorithm, 316–317
crackers, 313
encryption (hashing), 313–314
guidelines, 313
protection, 313
registration process, 313
security issues and

mitigation, 314–315
Payara server, 90–91
Persistence unit (PU)

attributes, 133
create entities, 130
data source, 132–133, 135–137
EM, 137
name, 133
NetBeans dialog, 131–132
NetBeans graphical editor, 134
persistence.xml, 132
transaction-type, 133

persistence.xml, 65, 132
Plain old Java object (POJO), 126
pom.xml, 61
Portlets, 381
Postback navigation, 209
Process validations, 40
Programmatic authentication, 350
Programmatic login, 364–366
Programmatic logout, 367
Programming style

C#, 465
field and local variables, 464
Hungarian notation, 463
member variable, 464
naming convention, 463–465
prefix fields, 463

Project Object Model (POM), 265–269, 383

Index

478

R
Render response, 40
Repetitive structures

performance issues, 254
controller, 255
DataProvider, 256–257
display friends by

dataTable, 259
display friends by forEach, 259
display friends by

repeat, 257–258
Friend entity, 254–255
local caching, 262
loop problem, 261
loop puzzler, 254

tag handler vs. component
component tree, 252
forEach, 249–250, 252
panelGroup, 253
predefined JSF tag, 253
puzzler, 252
repeat, 250–252

Responsive design
Books, 223

cascaded media queries, 232
excerpt, 227, 230–231, 234–235
mid-sized display, 224
relative unit (em), 228–229
smartphone-sized

display, 226–227
tablet-sized display, 225
wide display, 224

calculating sizes, 237–238
mobile-first and desktop-first

approach, 239
pixel layouts, 236–237

S
Scheduled tasks

asynchronous method calls, 346
delete query, 344, 346
scheduler, 343–344

Secure Hash Algorithm (SHA), 314
Secure passwords, see Passwords
Selectors, 27

attribute, 443
class, 442
id, 442
nesting, 443–445
sibling, 445–446
type, 442

Selenium, 29
black box testing, 82
description, 69
preparing TinyCalculator, 70–71
tests

application’s runtime, 71
browser automation, 76–79
By.id, 80
compile time, 72
drivers, 76
findElement method, 80
pom.xml, 72–75
sendKeys, 80
TinyCalculator’s directory

structure, 72
unit test, 80, 82
user interface (UI), 69
versions, 69
web site, 69

Selenium IDE, 69
Selenium WebDriver, 70
Server Sent Events (SSE), 390

Index

479

Service oriented architecture (SOA), 380
Servlet, 29, 32
Session hijacking, 23
Session id, 23
Sibling selector, 445–446
Synchronous communication, 389

T
Tag libraries

Composite Component, 460
Facelet Templating, 458–459
HTML/XML tags, 451
JSF core library, 452
JSF HTML Library

attribute tags, 458
tag lists, 455

JSTL, 461, 462
namespaces, overview, 451
pass-through attributes, 461
pass-through elements, 452
traditional JSF apps, 451

TinyCalculator, 245
action, 13
add logger and log, 17
configuration files, 83
edit, 9
EL, 18
framework configuration, 7
GlassFish (see GlassFish)
HTML-friendly markup, 57
index.xhtml page, 11–12
managed beans, 14–17
Maven application, 4
NetBeans, 3
new file wizard, 8
new JSF managed bean, 9
new project wizard, 4

new web application wizard, 5
projects tree, 6–8
relationship between

code and view, 19–20
sample servlet, 83
source code, 83
technical foundations, 83
web development, 83

Transport Layer Security (TLS), 315
Type selector, 442

U
Unified Expression Language, 49–50
Uniform Resource Identifier (URI), 24
Uniform Resource Locator (URL), 24
Uniform Resource Name (URN), 24
Universally unique identifier (UUID), 331

V
Validation

bean
customized message, 279–282
null handling, 282
programmatic invocation, 278–279
registration process, 275–278

method, 283–284
multi-component, 285–291
self-made, 291–293
validator, 284–285

View Definition Language (VDL), 36

W, X, Y, Z
Web applications

container, 37
definition, 21

Index

480

HTML page, 22
vs. traditional application, 36–39

Web Services Description Language
(WSDL), 380

WebSockets, classroom chat, 37
acceptValue method, 401
Alumni, 407–408
asynchronous communication, 389
bidirectional communication, 391
broadcast message, 403
CDI bean, 409
ChatService (Excerpt), 410
Endpoint, 392–393
full-duplex communication, 391
Glassfish/Payara, 402
HTTP protocol and alternatives, 390
HTTP request, 389
index.xhtml page, 399
injection by CDI, 406
JavaScript Part, 400–401
JSF 2.3, 411–413
messaging and chat, 389
NetBeans menu, 394
onMessage() method, 398, 403, 404
Opening-Handshake-Request, 391
pass parameter, 405
Project Properties, 394–395

Project wizard, 394
register/unregister peers, 402
RESTful Web Services, 405
Session Scoped Object, 405
Stateless EJB, 409
synchronous communication, 389
tyrus dependency, POM File, 395–398
UserController class, 406

web.xml, 62–64
Welcome page

formating statements of books.css, 165
German and English, 154
HTML escaping, 164
innocent implementation, 162–163
international users, 154
message bundle

faces-config.xml file, 160–161
German version of welcome text, 160
JSF’s standard messages, 161
language codes, 155
New Locale wizard, 157
New Properties File dialog, 155–156
New Property dialog, 159
Projects tree, 156–157
properties files editor, 158
resource bundle, 154, 161

<ui:repeat> tag, 164–165
World Wide Web Consoritum (W3C), 390

Web applications (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Part I: TinyCalculator
	Chapter 1: TinyCalculator
	Creating the Application
	Working with TinyCalculator
	Managed Beans
	The Page
	The Relationship Between Code and View

	Summary

	Chapter 2: Foundations
	Web Applications
	HTTP
	HTML
	CSS
	JavaScript
	Java
	Maven
	Selenium and Arquillian
	Servlet
	Deployment
	Summary

	Chapter 3: JavaServer Faces
	View Definition Language
	Web vs. Traditional Application
	JSF Lifecycle Overview
	JSF Namespaces and Tags
	Component Tree
	Navigation
	Summary

	Chapter 4: Expression Language
	Unified Expression Language
	Value Expression
	Operators
	Dot and Square Bracket

	Method Expression
	Implicit Objects
	Summary

	Chapter 5: HTML-Friendly Markup
	HTML-Friendly TinyCalculator
	Summary

	Chapter 6: Configuration Files
	pom.xml
	web.xml
	faces-config.xml
	beans.xml
	persistence.xml
	glassfish-resources.xml
	glassfish-web.xml
	Other Files
	Summary

	Chapter 7: Testing with Selenium
	Selenium Overview
	Preparing TinyCalculator
	Creating the Test
	Unit Test without Selenium
	Summary

	Chapter 8: TinyCalculator Recap

	Part II: Books
	Chapter 9: Preparing for Java EE 8
	Current Evolution
	Upgrade the Application Server
	Payara Server
	Summary

	Chapter 10: Introducing the Books Application
	Books Requirements
	Development Order
	Summary

	Chapter 11: Starting the Books App
	Page Layout
	HTML Structure
	Basic Styling with CSS

	Design First Data Model
	First Dialog Box (Repeating Structure)
	Summary

	Chapter 12: Java Persistence API
	Entities
	Persistence Unit
	Data Source
	Entity Manager

	Service Class
	Using the CategoryService/Injection
	Summary

	Chapter 13: JSF Templating
	Templating Books
	Summary

	Chapter 14: Going International
	Internationalization and Localization
	Welcome Page
	Message Bundle
	Naive Welcome Page Implementation
	Use Paragraphs and <ui:repeat>

	Language Switcher
	Localized Content
	Preparing the Administer Area
	Include into Page
	Common Navigation
	Topics
	Enhancing the Category Entity
	The Category Translation Page

	Summary

	Chapter 15: Bean Validation
	Book Entity
	Book Editor
	Summary

	Chapter 16: Contexts and Dependency Injection
	From new() to CDI
	Summary

	Chapter 17: Conversation Scope
	Multi-page Editor
	POST and GET Navigation
	Begin and End the Conversation
	Summary

	Chapter 18: Links
	Internal Reviews
	External Reviews
	JSF Links
	commandLink
	link
	outputLink
	Choosing the Right Link
	Draw the Conclusion

	Summary

	Chapter 19: Responsive Design
	Making Books Responsive
	Responsive Pixel Layouts
	Calculating Sizes
	Mobile-First and Desktop-First
	Summary

	Chapter 20: Summary and Perspective

	Part III: Intermezzo
	Chapter 21: Intermezzo
	Chapter 22: JSF Lifecycle Revisited
	Chapter 23: Repetitive Structures
	Tag Handler vs. Component
	Performance Issues
	Summary

	Part IV: Alumni
	Chapter 24: Alumni
	Preparing the Application
	Registration Form
	Summary

	Chapter 25: Validation
	Bean Validation
	Creating a Customized Message
	Details of Customized Messages
	Null Handling

	Validation Method
	Validator
	Multi-Component Validation
	Self-Made
	Summary

	Chapter 26: AJAX Components
	Using AJAX for Immediate Feedback
	Summary

	Chapter 27: Building Composite Components
	Transform into a Composition
	Enable Child Element for the Composition
	Pass In Validation Method
	Ubiquitous Input Component
	Summary

	Chapter 28: Secure Passwords
	Hash
	Security Issues and Mitigation
	Password Algorithm
	Summary

	Chapter 29: Data Facade
	Abstract Data Service
	Concrete Facade
	Account Entity
	Summary

	Chapter 30: Activation Mail
	Config Mail Properties by Code
	Mail Session
	Send Activation
	Summary

	Chapter 31: Scheduled Tasks
	Scheduler
	Delete Query
	Becoming Asynchronous
	Summary

	Chapter 32: Authentication and Authorization
	Security Basics
	Basic Authentication and fileRealm
	Form Login
	Programmatic Login
	Programmatic Logout

	jdbcRealm
	Custom Realm
	Summary

	Chapter 33: Account Handling
	Micro Service
	Account Service
	Testing
	Summary

	Chapter 34: Classroom Chat (WebSockets)
	HTTP Protocol and Alternatives
	WebSocket
	Endpoint
	Simple Chat

	ClassRoom Chat
	JSF 2.3 websocket
	Summary

	Chapter 35: Changing Look and Feel
	Resource Library
	Immediately Change the Look and Feel
	Read from Resources
	Summary

	Chapter 36: Handling Constants
	Navigation by Strings
	Importing Constants
	Summary

	Appendix A: HTML
	HTML Structure
	HTML Header
	HTML Body
	Page and Text Structure, Linking
	Forms and Input
	Tables

	Tag Completion/Tag Guessing

	Appendix B: Cascading Style Sheets
	Selectors
	Type Selector
	Id Selector
	Class Selector
	Attribute Selector
	Nesting Selector
	Sibling Selector

	Box Model
	Enhanced Styling

	Appendix C: Tag Libraries
	Pass-through Elements
	JSF Core Library
	JSF HTML Library
	Common Attributes

	Facelet Templating Tag Library
	Composite Component Tag Library
	Pass-through Attributes
	JSP Standard Tag Library (JSTL)
	JSTL Functions

	Appendix d: Programming Style
	Appendix E: Bibliography
	Afterword
	Index

