
Practical
NATS

From Beginner to Pro
—
Waldemar Quevedo

www.allitebooks.com

http://www.allitebooks.org

Practical NATS
From Beginner to Pro

Waldemar Quevedo

www.allitebooks.com

http://www.allitebooks.org

Waldemar Quevedo
San Francisco, California, USA

Practical NATS

ISBN-13 (pbk): 978-1-4842-3569-0 ISBN-13 (electronic): 978-1-4842-3570-6
https://doi.org/10.1007/978-1-4842-3570-6

Library of Congress Control Number: 2018946546

Copyright © 2018 by Waldemar Quevedo

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484235690.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3570-6
http://www.allitebooks.org

For Mariko & Karina

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Introduction to NATS ���1

Using NATS for Messaging ��2

Messaging Over the REST ���4

Do Not Assume the Audience ��5

NATS As an Always Available Dial Tone ���8

Delivery Guarantees ��10

Is NATS a Message Broker or a Message Queue? ���11

A Brief History of NATS ���12

Roots in Ruby���12

I Wanna Go Fast! ��14

Cloud-Native NATS ��16

Summary���18

Chapter 2: The NATS Protocol ���19

Overview of the Protocol ���19

Why Not a Binary Protocol Instead? ��20

Setting Up the Environment ��21

Table of Contents

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Foreword ��xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Connecting to NATS ��22

PING and PONG ���24

Sending and Receiving Messages ��26

Publishing Messages with PUB ���26

Registering Interest in a Subject with SUB ��28

Subject Names and Wildcards ���31

Creating Queue Subscriptions for Load Balancing ��34

Limiting Interest in a Subject with UNSUB ��36

Publishing Requests ��38

Lowest Latency Response ���40

Summary���41

Chapter 3: The NATS Clients ���43

Features of a NATS Client ���43

Using Connect ���45

Customizing a Connection ��47

Authorization Credentials ��50

Using Publish and Subscribe ��51

Using Publish ��52

Using Subscribe ��54

Using QueueSubscribe ��57

Removing a Subscription ��58

Using Flush ���62

Using Request ���63

The Classic Request/Response ���65

The New Style Request/Response ���67

Table of ConTenTsTable of ConTenTs

vii

A Note on Asynchronous I/O ��67

States of a NATS Connection ��73

Clients Reconnection Logic ���77

Event Callbacks ���80

Using Close ���82

Summary���84

Chapter 4: Setting Up NATS ��85

Server Configuration ���85

Exposed Ports ���88

Server Logging ��94

Logging Outputs ��97

Configuring Authorization��98

Extending the Authorization Deadline ��100

TLS Options ���101

Tuning the Defaults ���102

Increasing the Maximum Payload Size ��102

Extending the Deadline for Slow Consumers Handling �������������������������������103

Tuning the Keepalive Interval ��104

Tuning the Maximum Number of Connections ��104

Server Reloading ���105

Reloading to Activate Tracing On-the-Fly ��105

Reducing the Number of Live Connections ���107

Running NATS in Docker ���108

Summary���109

Table of ConTenTsTable of ConTenTs

viii

Chapter 5: High Availability with NATS Clustering ���������������������������111

The NATS Cluster Network Topology ���111

Configuring a NATS Cluster from the CLI ��114

Setting Up Clustering via the Configuration File ��119

Explicitly Setting a Server Pool in the Client ���121

Disabling Random Reconnection Ordering ��122

Bootstrapping a Cluster Using Autodiscovery ���123

Monitoring a NATS Cluster State ���124

On Autodiscovery and Load Balancers ��126

Setting Up a NATS Cluster Behind a Load Balancer �����������������������������������127

Summary���130

Chapter 6: Developing a Cloud- Native NATS Application �����������������131

The NATS Rider Application ���131

Scaffolding the Application ���133

Defining a Base Component ��137

Customizing the Connection to NATS ��139

Enabling Components Discovery ���141

The NATS Rider API ���145

The Load Balanced Rider Manager ���154

The Driver Agent ���161

Summary���167

Chapter 7: Monitoring NATS ���169

Server Instrumentation ���169

The /varz Endpoint ���170

The /connz Endpoint ��175

About /routez ���187

Table of ConTenTsTable of ConTenTs

ix

About /subsz ��192

Using nats-top for Monitoring ���193

Summary���196

Chapter 8: Securing NATS ���197

Connecting Securely to NATS ��197

Configuring TLS in the Server ��199

Securing the Monitoring Endpoint ���200

Tuning the Authorization Timeout ��201

Setting a Certificate Authority ���201

Require Clients to Provide a Certificate ���202

Setting Up a Secure NATS Environment from Scratch ��������������������������������������202

Installing cfssl for Certs Creation ��203

Defining the Security Roles ���203

Creating a Custom Root CA ���205

Securing the Connections from the Clients ���206

Securing the Monitoring Endpoint ���208

Securing the Routes from the Cluster ���209

Caveats from NATS TLS Support ���211

Not Possible to Use TLS Right Away ��211

Limitations of Configuring TLS from the Command Line �����������������������������212

Auto Discovery and Routes TLS ���213

Summary���216

Chapter 9: Troubleshooting NATS ���217

Types of Slow Consumer Errors ��217

Troubleshooting Slow Consumer Protocol Errors ��219

Subscriptions in Slow Consumer State ���226

Table of ConTenTsTable of ConTenTs

x

Routes as Slow Consumers in a NATS Cluster ��228

Summary���231

Chapter 10: Advanced NATS Techniques ��233

Using Inbox Subscriptions���233

Subscriptions with Heartbeats ��246

Gathering Multiple Responses ��253

Summary���256

 Index ���257

Table of ConTenTsTable of ConTenTs

xi

Waldemar Quevedo is a software engineer

based in San Francisco and has been using

NATS-based architectures for over five years.

He is a core contributor to the NATS project

and also maintainer of its Ruby and Python

client libraries. In 2011, he became one of the

early members of the PaaS team at Rakuten

in Tokyo, which adopted Cloud Foundry and

used NATS for its control plane. In 2015, he

joined Apcera in San Francisco to work on a

secure container orchestration platform, also built with NATS. In 2018, he

joined Synadia to focus on the NATS project and its ecosystem. Waldemar

has presented on NATS at a number of industry events, including

StrangeLoop, GopherCon, and AllThingsOpen. He can be found on Twitter

and Github as @wallyqs.

About the Author

xiii

About the Technical Reviewer

Ivan Kozlovic was introduced to messaging when he joined TIBCO

Software in 2001. He worked mainly on their JMS implementation, which

Derek Collison created. In 2015, he joined Apcera to work on NATS. With

his past experience, he was well suited to help maintain and improve it

and was tasked to lead the NATS Streaming project. Since early 2018, he

joined Synadia to continue his work and help grow the NATS ecosystem.

With almost 17 years of experience in the Messaging space, he knows a

thing or two about the challenges of building distributed systems.

Ivan holds a Bachelor's degree in Computer Science. He can be found

on GitHub @kozlovic and on Twitter @ivankozlovic.

xv

Acknowledgments

I would like to thank the whole NATS team who supported me in writing

this book: Ivan Kozlovic, Colin Sullivan, Alberto Ricart, Ginger Collison,

and of course Derek Collison, not only for creating NATS but also for his

advice and mentorship through the years.

Special thanks to Brian Flannery for his outstanding work in the

NATS community; Tyler Treat whose contents about NATS were a great

reference and for his early advice in writing this book; Jaime Piña, Louis

Woods, Peter Miron, David Karapetyan, and Oleg Shaldybin, who shared

their advice and feedback on the contents; as well as everyone in the NATS

community who has helped make it an exciting project to be a part of.

Also would like to give thanks to everyone in the Apress team who

made this possible; Louise Corrigan whom I was fortunate to meet at

AllThingsOpen and provided me with the opportunity to write the first

book about NATS, as well as Nancy and James, who stepped me through

the process and helped me revise the contents.

Finally, and most of all, I want to thank my wife Mariko for all of her

support and for encouraging me to write this book.

xvii

Foreword

By some estimates there will be more than 75 billion devices by 2022 trying

to be connected. That does not include the digital systems and services

they will be trying to communicate with as well. These systems and devices

will need a global, seamless, and secure technology to communicate. One

that does not exist today—a global dial tone to connect everything. And

once connected, this ecosystem will dwarf the global cellular network we

know today and the Internet itself. I believe NATS will be that technology.

On October 30, 2010, the initial commit for NATS was made. NATS

had been influenced through many years of designing, building, and

using messaging systems throughout the 1990s while I was at TIBCO. In

fact, I was designing a new system called Cloud Foundry that was to use

a message backplane for discovery, events and command and control.

Cloud Foundry was designed by a small team led by me at VMware. I had

also pushed for the purchase of the company responsible for another

popular open source messaging system at the time, RabbitMQ. The initial

implementation for Cloud Foundry was using RabbitMQ, but was not

meeting my overall goals. As most great projects start, so was NATS started,

as something I built for myself and one that I could use to power the Cloud

Foundry platform.

NATS was designed very differently from other messaging systems,

even the ones I had authored in the past. It was very simple and

performant, without any additional features, yet was always available and

the basis for building extremely resilient platforms and systems. It could

do request-reply, publish-subscribe, and load-balance between dynamic

groups of queue subscribers. It also had a handy circuit breaker pattern

to avoid overloading of client libraries making requests from an unknown

xviii

large set of responders. A pattern I used often. It protected itself at all costs

and strived to be always available, not letting any one client adversely

affect the availability and performance for others. It works similar to the

brain, in that all signals are fire and forget, or at most-once delivery.

In April of 2011 Cloud Foundry was launched and has since become

one of the most popular platform technologies in the modern cloud

era. Known for its scale and reliability, some due in my opinion to its

original architecture and its use of NATS. Later in 2011 I travelled to

Japan to speak to Rakuten engineers who had adopted Cloud Foundry.

Among those engineers was an extremely bright and curious engineer,

Waldemar Quevedo, or Wally for short. Wally constantly asked questions

about Cloud Foundry and its design and gave me feedback, both positive

and constructive, on ways it could be improved. As his curiosity grew, so

did his interest in underlying technologies that powered the platform,

technologies like NATS. Since that visit Wally has become an expert in

NATS and its tooling, and is the author of several official clients, including

Ruby and Python. He is a member of the core NATS team and has been

working on NATS full-time for several years. He is a great speaker and

educator and can be frequently seen at conferences. He is also a great

friend.

In this book, Wally will walk us through NATS’ basic concepts, the

protocol and client libraries as well as the server. Along the way you will

begin to understand not only the simplicity of NATS, but the power it can

also provide in powering modern architectures and devices and driving

toward a goal of connecting everything. If you want to become an expert in

NATS, this book is a great place to start.

—Derek Collison, creator of NATS

forewordforeword

1© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6_1

CHAPTER 1

Introduction to NATS
NATS is a high-performance messaging system created by Derek Collison

in 2010. It was originally built to serve as the message bus for Cloud

Foundry, handling internal communication among components of the

system. With the rise of microservices and cloud native paradigms, NATS

has increased in popularity, becoming a mainstream piece of modern

cloud architectures. The nats-io/gnatsd repository in GitHub now has

over 3K stars and there is a growing ecosystem of tools and projects that us

NATS as part of their architecture, as many have found it useful to address

concerns such as:

• Service discovery

• Low latency communication

• Load balancing

• Notifications and events handling

In this chapter, you will learn:

• What NATS is and when to consider using messaging

• NATS’ features and design

• A brief history of the project

2

 Using NATS for Messaging
NATS is at its core a Publish/Subscribe (PubSub) system. The PubSub

messaging model allows clients in a system to communicate without having

to deal with the precise endpoints of where the services are located in the

network, delegating this responsibility instead to the messaging system

(see Figure 1-1). Clients become subscribers (or consumers) by registering

interest into a subject, then whenever a publisher (or producer) client

emits a message on that subject, the messaging system will deliver it to the

available subscribers that were interested in that topic.

Figure 1-1. Publish/subscribe messaging

In NATS, this message delivery is brokered by the NATS Server (gnatsd).

Clients establish a TCP connection to it and follow the NATS protocol,

which was designed for simple and efficient PubSub messaging. Listing 1-1

provides a basic example of using telnet to interact with the NATS Server,

using the demo.nats.io endpoint which publicly available for testing.

Chapter 1 IntroduCtIon to natS

3

Listing 1-1. Hello World, NATS Style

telnet demo.nats.io 4222

INFO {"server_id":"EiRJABZmVpWQDpriVqbbtw",...,

"max_payload":1048576}

SUB greetings 1

+OK

PUB greetings 12

Hello World!

+OK

MSG greetings 1 12

Hello World!

The previous (albeit simple) example already shows quite a bit of

the basic, yet powerful, feature set that NATS provides. We are making

a subscription on the greetings subject (SUB), then publishing (PUB)

and receiving a message (MSG) on that same subject. Here the message

published is an opaque blob of data (in this case just an array of bytes

with the Hello World! Characters, although we could have used any

type of encoding as part of the payload). The NATS protocol is fairly

straightforward with just a few number of commands, and this helps in

making the implementation of the clients less complex.

Simplicity is a recurrent theme in NATS, as the project from its

foundations had as a goal to be a lightweight messaging system and do

less overall. Unlike other messaging systems, the NATS Server will only

be keeping limited state for the client and only as as long as it has an

established connection to the server. As soon as the client disconnects,

the server will clear up any state related to the client, and it will not persist

any messages and deliver them to the client in case it later reconnects,

considering it a fresh new session with the server instead.

Chapter 1 IntroduCtIon to natS

4

Another distinguishing factor of NATS is its great performance. NATS

excels at enabling low-latency communication among services, and

the way that the request response mechanism works in the clients was

designed to address this specific use case in mind. Derek originally came

up with the idea from a lesson learned during his time at Google, where

making a request would involve a large number of machines responding

back, but the client making the request would care only about a single

response, namely the fastest one.

Thorough benchmarks done by Tyler Treat, who has spent significant

time documenting the trade-offs taken by multiple messaging systems on

his blog at bravenewgeek.com, demonstrate that NATS shows “predictable,

tighter tail latencies”1 in request/response round-trip benchmarks,

especially when dealing with smaller messages. By default, the maximum

payload size for a single NATS message is 1MB (although this can be tuned

in the server).

 Messaging Over the REST
Although these days HTTP-based REST APIs are very popular and best

practices are well known, using messaging-based approaches instead for

communicating offer a number of benefits when dealing with complex

distributed systems. As previously mentioned, the PubSub model helps

us decouple the services and instead just focus on communicating and

sending the messages.

Consider for example what is involved in making an HTTP request.

First, it is needed to look up an available endpoint (e.g., via DNS) of the

service to which the client can connect and make the request. At this point

it may still be possible that the endpoint is actually unhealthy, so it would

1 “Benchmarking Message Queue Latency”
https://bravenewgeek.com/benchmarking-message-queue-latency/

Chapter 1 IntroduCtIon to natS

https://bravenewgeek.com/benchmarking-message-queue-latency/

5

be needed to retry and attempt to connect to another endpoint of the

service. After successfully establishing a connection, the client will make

the request and wait for the response back synchronously, then finally

close the connection. In many programming languages, developers need

to carefully manage the resources involved throughout. In Go, for

example, it is a common programming error to leak sockets when using

the net/http package, thus requiring careful code review or help via static

analysis methods.

In comparison, a NATS-based request involves much less overhead,

both in terms of the protocol and what is needed to keep in mind

when making it. There is no need to have an established point-to-point

connection against the service to which we are making the request;

instead, the client ought to be connected to an available NATS Server

already and just publish the message, then wait for the message containing

the reply to be delivered asynchronously.

 Do Not Assume the Audience
When using NATS, we are advised to never assume the audience of who is

going to be consuming the message, as there can be multiple consumers

for the same message for various independent reasons. NATS has support

for wildcard subscriptions on a subject, and with enough permissions, it

is possible to audit or trace every single message being sent through the

wire without affecting how other parts of the systems are communicating.

In Figure 1-2, there can be a number of “worker” clients subscribed to

a subject that can reply to published requests, but all these requests are

being logged by an “audit” client that does not reply.

Chapter 1 IntroduCtIon to natS

6

NATS subscriptions by default have fan-out behavior and all the

clients that have registered interested onto a subject will be receiving the

message, but there is another type of subscriptions that make it possible to

have a group of subscribers form a distributed queue with no server-side

configuration so that messages sent are load balanced randomly to the

multiple consumers (see Figure 1-3).

Figure 1-2. Example NATS request/response flow

Chapter 1 IntroduCtIon to natS

7

It should be noted that the term queue is often misinterpreted by

users new to NATS. That is, there is no queuing per se in the NATS

Server. Instead, queue in NATS simply means that a message is randomly

delivered to only one of the subscribers belonging to the same queue

group (a name is specified when creating the queue subscription), unlike

for regular subscriptions where a message is sent to all subscriptions

subscribing to the same (or matching) subject. But for both pub/sub and

queues, NATS subscriptions must be connected to a server in order to

receive messages.

Figure 1-3. Load balancing using NATS distributed queues

Chapter 1 IntroduCtIon to natS

8

 NATS As an Always Available Dial Tone
It could be said that the main design constraints that define the style of

the NATS project are simplicity, performance, and reliability. Having these

traits as core values of the project have resulted in a system that does much

less in comparison to other messaging systems, notably it does not offer

any persistence or buffering. It is true fire and forget.

A metaphor often used when talking about NATS is that it is intended

to act as an always available dial tone. According to Derek Collison, one

of his goals with NATS is to have a system that chooses to be available

“rather than locking up around one client and one action to the detriment

of everyone else; imagine if one person able to connect to the electric

company could turn off the power for a whole city!”. So NATS is the

opposite in this regard in comparison to other enterprise messaging

systems, and it will try instead to protect itself at all costs to be available for

all users.

When using one of the available NATS client libraries, internally

they will try to have an always established connection to one of the

available NATS Servers, then in case a server fails, NATS will reconnect to

another available server in the pool. NATS supports high-availability via

a clustering mode that is set up as a full-mesh of the servers. As long as a

client is connected to any of the server nodes in the cluster, it will be able

to communicate with other clients (see Figure 1-4).

Chapter 1 IntroduCtIon to natS

9

In case there is a connection that’s accumulating too much data

without draining it from the server, the NATS Server will protect itself and

disconnect the client from the system, reporting a slow consumer error

(see Figure 1-5). By default, if a client fails to drain the pending data that

the server is holding for the client for over two seconds, the server will

disconnect the client (this too can be tuned in the server). You can find

more information on how to handle slow consumer conditions in

Chapter 9, in the troubleshooting slow consumers section.

Figure 1-4. Highly available NATS clustering full-mesh topology

Figure 1-5. Client disconnection with a slow consumer

If a client does not follow the protocol properly, then it will also be

disconnected. There is a PING/PONG interval happening that the client

Chapter 1 IntroduCtIon to natS

10

has to follow, otherwise the server will also reset the connection in case

there are many PONG replies missing, which helps in eagerly detecting

clients that may be broken or disconnected (see Figure 1-6).

 Delivery Guarantees
In TERMS of delivery guarantees, NATS provides at-most-once delivery,

as a client has to be connected in order to receive the message. This may

sound like a limitation, but it isn’t really, as stronger guarantees can always

be built on top. For instance, Request/Response in NATS is often used to

ensure that a message has been delivered and processed by the intended

recipient, offering an end-to-end delivery guarantee.

A recommended read for understanding the importance of delegating

to the endpoints is the “End-to-End Arguments in System Design” paper

from Saltzer, Reed, & Clark,2 where this is discussed thoroughly and it is

pointed out that:

Functions placed at low levels of a system may be redundant
or of little value when compared with the cost of providing
them at that low level.

2 “End-to-End Arguments in System Design” covered in the
Morning Paper blog https://blog.acolyer.org/2014/11/14/
end-to-end-arguments-in-system-design/

Figure 1-6. Stale connection due to missing PONGs

Chapter 1 IntroduCtIon to natS

https://blog.acolyer.org/2014/11/14/end-to-end-arguments-in-system-design/
https://blog.acolyer.org/2014/11/14/end-to-end-arguments-in-system-design/

11

There is a cost in providing stronger type of guarantees, and for NATS

to try to have those level of guarantees at its core would have meant less

performance and reliability, thus actually limiting the type of applications

that can be built with it. To address these concerns in separate, there

is another popular project under the NATS umbrella named NATS

Streaming, which acts as a layer on top of NATS providing at-least-once

delivery type of guarantees. Under the hood, it is implemented using a

Request/Response based protocol with the NATS client APIs and protocol

buffers to add metadata to the message.

 Is NATS a Message Broker or a Message Queue?
The definition of what a message broker is can be a bit fuzzy, as the

terminology tends to be overloaded, thus making things confusing

sometimes. Furthermore, the reputation of message brokers and message

queues is often tainted due to the reliability concerns that arise as a result

of supporting many features that NATS has been shying away from since

the beginning of the project.

If a message broker is defined as a place where data is centrally stored

and clients can connect at any time and consume this data, NATS clearly

does not fit into that definition. Occasionally, newcomers to the NATS

project ask for “queuing semantics” are told that it does not offer such type

of usage.

For many of the classical notions of message broker or message

queues, one can look at the NATS Streaming project instead, since those

definitions would fit much better. Still, there is a middle ground in between

where NATS-based messaging approaches can be more attractive and

reliable, and covering that middle ground is one of goals of this book.

Chapter 1 IntroduCtIon to natS

12

 A Brief History of NATS
In 2017, the NATS project reached a significant milestone in that the v1.0

release of the project was made available by the team, as a way to represent

that the NATS team considers its implementation to be battle-tested and

stable enough already, with several production-level users running it for

various years. NATS Servers are famous for their long uptimes and little

maintenance and operational cost.

The road to get there has been quite interesting as well. In the first

seven years, the NATS project has been through a a number events that

have shaped the DNA of the project, and I’m briefly sharing these events in

the following sections.

 Roots in Ruby
NATS was originally developed for Cloud Foundry in 2010. The first

implementation of the server was written in Ruby using EventMachine,

same as many of the components from Cloud Foundry at that time.

Listing 1-2 shows an example of using the Ruby client API.

Listing 1-2. Original Ruby Client API Example

require 'nats/client'

NATS.start do

 # Simple Subscriber

 NATS.subscribe('foo') { |msg| puts "Msg received : '#{msg}'"

}

 # Simple Publisher

 NATS.publish('foo.bar.baz', 'Hello World!')

Chapter 1 IntroduCtIon to natS

13

 # Unsubscribing

 sid = NATS.subscribe('bar') { |msg| puts "Msg received :

'#{msg}'" }

 NATS.unsubscribe(sid)

 # Requests

 NATS.request('help') { |response| puts "Got a response:

'#{response}'" }

 # Replies

 NATS.subscribe('help') { |msg, reply| NATS.publish(reply,

"I'll help!") }

end

Much of the foundations from NATS are present in this Ruby version of

the server. We can recognize that the project had strong foundations: the

protocol and the clients API are still pretty much the same to this day and

there has always been strict backward compatibility among the versions of

the server. This Ruby implementation was already stable enough and had

decent performance as well. Available benchmarks at the time showed that

one could get around 150K messages per second,3 which was good enough

for Cloud Foundry clusters, allowing it to support pretty big clusters with

thousands of machines out of the gate.

Being originally an EventMachine-based system, asynchronous

programming played a significant part of the NATS project from the start.

The second official client was actually the Node.js client,4 which naturally

used async I/O as well, as it has to be done in Node.js (this client was also

written by Derek since he was the main author of the project for a long time).

3 “Dissecting Message Queues” by Tyler Treat https://bravenewgeek.com/
dissecting-message-queues/

4 Node.js NATS client: https://github.com/nats-io/node-nats

Chapter 1 IntroduCtIon to natS

https://bravenewgeek.com/dissecting-message-queues/
https://bravenewgeek.com/dissecting-message-queues/
https://github.com/nats-io/node-nats

14

Though the Ruby-based server has since been deprecated (I removed it

from being distributed along with the ruby-nats client in 2015), the original

ruby-nats client gem is still being maintained by the team, and as of this

writing it is still in use in some projects from Cloud Foundry maintained

by Pivotal, such as BOSH.5 Also, for many Ruby users, dependency of

the client to EventMachine was often an issue, so now the team offers an

alternative implementation in Ruby that does not depend on it.6

 I Wanna Go Fast!
Derek Collison founded Apcera in 2012 to build a next generation

container orchestration platform. There were many lessons learned from

developing and operating Ruby, so he then rewrote the implementation of

the server and a new client using the Go programming language. Apcera

was one of the earliest adopters of Go (before it even reached 1.0) and

made big bets on the language gaining popularity and eventually getting

more adoption. Many in the Go community remember this. In fact, Rob

Pike mentions Derek and Apcera in his 10-year retrospective7 of the Go

programming language.

Embracing the Go community even at those early stages paid off

tremendously for the NATS project. Already in 2012 the Go-based

5 Cloud Foundry BOSH: https://github.com/cloudfoundry/bosh
6 Pure Ruby NATS client: https://github.com/nats-io/pure-ruby-nats
7 “Go: Ten Years and Climbing”: https://commandcenter.blogspot.com/2017/09/
go-ten-years-and-climbing.html

Chapter 1 IntroduCtIon to natS

https://github.com/cloudfoundry/bosh
https://github.com/nats-io/pure-ruby-nats
https://commandcenter.blogspot.com/2017/09/go-ten-years-and-climbing.html
https://commandcenter.blogspot.com/2017/09/go-ten-years-and-climbing.html

15

implementation of the server was showing a lot of potential. This is from one

of the first sharings from Derek on the new server version using Go 1.0.38:

“We can process ~2M msgs/sec through the system, and the
ingress and egress are fairly well balanced.

The basics of the architecture are intelligent buffering and IO
calls, fast hashing algorithms and subject distributor/routing,
and a zero-allocation hand-written protocol parser.

In addition, I used quite a bit of inlining to avoid function
overhead, no use of defer, and little to no object allocation
within the fast path”.

Then at the first GopherCon in 2014, Derek shared9 how he

managed to improve the performance of the server even further to

reach throughputs of around 6M messages per second at the time. Fast

forward to 2017, after many more optimizations and releases of Go that

keep getting better, that same benchmark now can reach around 18M10

messages per second (see Listing 1-3).

Listing 1-3. NATS Go Client API Example

nc, _ := nats.Connect(nats.DefaultURL)

// Simple Publisher

nc.Publish("foo", []byte("Hello World"))

8 NATS rewrite early benchmarks: https://gist.github.com/
derekcollison/4227635

9 “High Performance Systems in Go” by Derek Collison https://www.youtube.
com/watch?v=ylRKac5kSOk

10 Benchmarks as of this writing: https://github.com/nats-io/gnatsd/commit/
b56ca22d1bfb571fa395a35fe698b0eb7f95e706

Chapter 1 IntroduCtIon to natS

https://gist.github.com/derekcollison/4227635
https://gist.github.com/derekcollison/4227635
https://www.youtube.com/watch?v=ylRKac5kSOk
https://www.youtube.com/watch?v=ylRKac5kSOk
https://github.com/nats-io/gnatsd/commit/b56ca22d1bfb571fa395a35fe698b0eb7f95e706
https://github.com/nats-io/gnatsd/commit/b56ca22d1bfb571fa395a35fe698b0eb7f95e706

16

// Simple Async Subscriber

nc.Subscribe("foo", func(m *nats.Msg) {

 fmt.Printf("Received a message: %s\n", string(m.Data))

})

// Unsubscribe

sub.Unsubscribe()

// Requests

msg, err := nc.Request("help", []byte("help me"), 10*time.

Millisecond)

Since the rewrite, Go plays an important role in the NATS project. The

Go NATS client is now the canonical NATS network client implementation.

There is a larger number of client implementations now, officially the

NATS team supports C, C#, Ruby, Node.js, Elixir, Go, Python 2/3, Java, and

Nginx.

 Cloud-Native NATS
Microservices and cloud-native applications have also played a big part in

the recent popularity of the NATS project. The NATS Docker11 container

now has millions of downloads in DockerHub and it was one of first

official images to use the FROM scratch approach in order to provide a flat

binary only container with few layers and no other dependencies. Also

Prometheus is a popular tool for monitoring so the NATS team officially

supports exporters12 that can feed from the /varz monitoring endpoint

from a NATS Server.

11 Official NATS Docker Image: https://hub.docker.com/_/nats/
12 Prometheus NATS Exporter: https://github.com/nats-io/
prometheus-nats-exporter

Chapter 1 IntroduCtIon to natS

https://hub.docker.com/_/nats/
https://github.com/nats-io/prometheus-nats-exporter
https://github.com/nats-io/prometheus-nats-exporter

17

Gossip-based auto discovery of NATS Servers in a cluster (shown

in Figure 1-7) is an interesting feature that was added as a result of the

feedback from the community. This was done in order to support certain

types of deployments where it might not be known the network locations

of all the nodes that will end up forming the cluster.

Kubernetes is also an important part of the ecosystem so the NATS

team also officially maintains an operator13 for creating NATS clusters

using the CustomResourceDefinition14 feature from the platform.

13 NATS Kubernetes Operator: https://github.com/nats-io/nats-operator
14 Custom Resource Definitions: https://kubernetes.io/docs/concepts/
api-extension/custom-resources/

Figure 1-7. Gossip-based auto discovery in NATS clusters

Chapter 1 IntroduCtIon to natS

https://github.com/nats-io/nats-operator
https://kubernetes.io/docs/concepts/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/api-extension/custom-resources/

18

Given how well it fits with the cloud-native paradigm and strong

synergy with other projects in the ecosystem, in March 2018 NATS was

accepted to be hosted as a project15 by the Cloud Native Computing

Foundation (CNCF).

 Summary
In a nutshell, NATS provides us with a simple and reliable way to

communicate very fast within a system using messaging techniques. In this

chapter, we covered some of the basic concepts about why NATS might be

an interesting alternative to consider when developing your next service.

Many NATS users are happy with how “it just works,” thanks to how simple

it is, in many cases because of how little it does (no messages persistence,

at-most-once delivery) and how well it does it (excellent performance,

high availability).

In the following chapters, we go deeper into how NATS works and

cover more about how the NATS protocol and clients work, as well as its

clustering implementation for high availability.

15 “CNCF to Host NATS”: https://www.cncf.io/blog/2018/03/15/
cncf-to-host-nats/

Chapter 1 IntroduCtIon to natS

https://www.cncf.io/blog/2018/03/15/cncf-to-host-nats/
https://www.cncf.io/blog/2018/03/15/cncf-to-host-nats/

19© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6_2

CHAPTER 2

The NATS Protocol
NATS features a simple, plaintext-based protocol designed for fast and

reliable PubSub messaging. Having such a simple protocol eases the task

of implementing new clients, allowing you instead to focus on the fun

parts, like improving the performance of the implementation.

In this chapter, we provide an overview of the protocol and take a look

at each of the commands and their roles, as well as the different styles of

communication that they enable together.

 Overview of the Protocol
There are 10 commands in total that are used by both the client and the

server. Each protocol line has to be delimited by the CRLF characters

(\r\n). For simplicity purposes, I removed the characters from many of the

examples. Table 2-1 provides the full list and a brief description of what

each does.

20

In the following sections, we take a look at each one of these

commands and give examples of how they are used. One of the benefits

of the protocol being in plaintext is that it also makes it easier to interact

with the server manually, and in this chapter, we will be doing just that.

Throughout this chapter we will be using a basic telnet-based session and

sending raw bytes to the server showing the different PubSub features

from NATS.

 Why Not a Binary Protocol Instead?
Remember that the traits that the NATS project values are simplicity,

performance, and security. The NATS team tries to keep a balance between

them, and although having a binary protocol can possibly open the door

to more performance, there is a trade-off in terms of maintenance and

familiarity for developers, so a text protocol was chosen instead. Binary

protocols in comparison are complex and hard to debug, which would

Table 2-1. The NATS Protocol

Command Sent By Used To

INFO Server Announce metadata to clients

CONNECT Client Send credentials and metadata to server

PUB Client Send a message

SUB Client Register interest in subject

UNSUB Client Limit or remove interest in subject

MSG Server Deliver a message to client

+OK Server Ack client that command was processed

PING, PONG Client & Server Make a server roundtrip and keepalives

-ERR Server Announce errors

ChApteR 2 the NAtS pRotoCoL

21

have hindered the ability for community-led clients. Redis is another

popular project that took a similar decision and has a large number of

clients available for it.

Also consider that NATS is already pretty high performance with

capacity to take throughputs of millions of messages per second and low

latency, so a binary protocol wouldn’t offer a big performance advantage.

 Setting Up the Environment
First, you need to download one of the releases from the server available

at https://github.com/nats-io/gnatsd/releases. There is a public

endpoint at demo.nats.io that is also free to use (although keep in mind

that it is insecure so others might be receiving the messages sent to it!).

Once you grab one of the release tarballs, you’ll find the binary gnatsd,

which is the high-performance version of the server written in Go. As

of this writing, the latest release of the server is v1.1.0. For this chapter’s

purposes, any version is fine to use.

Next, let’s start the NATS Server! Once it has successfully started, the

server will bind to port 4222 (see Listing 2-1).

Listing 2-1. Starting the NATS Server

$ gnatsd

[58676] 2017/12/26 18:23:05.696873 [INF] Starting nats-server

version 1.1.0

[58676] 2017/12/26 18:23:05.697164 [INF] Listening for client

connections on 0.0.0.0:4222

[58676] 2017/12/26 18:23:05.697173 [INF] Server is ready

ChApteR 2 the NAtS pRotoCoL

https://github.com/nats-io/gnatsd/releases

22

 Connecting to NATS
Establishing a session to NATS can be done by simply using telnet and

targeting the server (see Listing 2-2).

Listing 2-2. Using telnet to Connect to NATS

$ telnet 127.0.0.1 4222

INFO {"server_id":"65jPK8JboTBntebAiEHp5V",...,

"max_payload":1048576}

When the client establishes a connection to the server, the first thing

that it will be receiving is an INFO message containing a JSON-encoded

string with information about how to handle the connection to the server.

At this point, it is already possible to start sending messages. Let’s try

sending a small 5-byte world message on the hello subject, to which the

server will reply with +OK (see Listing 2-3).

Listing 2-3. Publishing a Message to NATS

PUB hello 5

world

+OK

By default, the server handles the connections in verbose mode.

This means that after each command, the server will reply with an +OK

to indicate that it has processed the PUB command (see Figure 2-1).

ChApteR 2 the NAtS pRotoCoL

23

In hindsight, this +OK acknowledgement part of the protocol is not very

useful. It does not tell us, for example, whether the message was delivered

to a subscriber or provide any sort of end-to-end guarantee. Its only

purpose is to signal that the server has processed the command. In this

case, there are no other subscribers interested in the message, so no one

will receive this message.

In actuality, all the available client libraries disable it by default. In

order to do this, clients send a CONNECT command to the server with a

payload encoded in JSON where it is signaled to the server that it wants to

deactivate the verbose handling (see Listing 2-4).

Listing 2-4. Disabling Verbose Mode with CONNECT

CONNECT {"verbose": false}

Now if the client tries to publish the message again, the server will not

reply with +OK anymore (see Figure 2-2).

Figure 2-1. Sending messages in verbose mode

ChApteR 2 the NAtS pRotoCoL

24

 PING and PONG
Leaving an open connection to the server for around two minutes (this is

tunable in the server via the ping_interval option), the client would have

received from the server a PING message (see Listing 2-5), to which the

client has to reply with a PONG (see Figure 2-3). If the client does not reply a

couple of times, the server will disconnect the client (see Figure 2-4).

Listing 2-5. PING/PONG Protocol

$ telnet 127.0.0.1 4222

...

PING

PONG

Figure 2-2. Disabling verbose mode via the CONNECT options

Figure 2-3. NATS Server PING/PONG interval for keepalive

ChApteR 2 the NAtS pRotoCoL

25

Similarly, the client can also send PING messages to the server and the

server will reply with a PONG. The client and the server connections must

both rely on this PING/PONG interval in order to autoprune clients and

servers and always try to keep a healthy connection. We cannot rely on

TCP alone to tell whether the connection endpoint is gone.

Figure 2-4. Clients autopruning due to missing PONG replies

The PING command also serves another important purpose. Since

the NATS Server guarantees that all commands sent to the server will

be processed in the order that they were sent by the client, a client can

use a PONG reply as a way to determine whether the server has processed

the commands that it has sent without issues. This provides a stronger

guarantee than what we get from the +OK acknowledgement when using

verbose mode.

This technique fits really well with the asynchronous programming

model from the clients (for example, the awaited PONG reply can be

modeled as a future pending to be resolved), and it becomes the basis

of the implementation of the Flush API from the clients. This technique

is also used during the CONNECTING stage of a NATS connection by the

available clients (see Figure 2-5).

ChApteR 2 the NAtS pRotoCoL

26

 Sending and Receiving Messages
The PUB and SUB commands compose the core of the messaging

functionality from a NATS client. The PUB command is used to send

messages and the SUB command can be used to register interest in a topic.

The server delivers messages to the client with the MSG command, and the

client can also limit how many messages or whether to stop receiving them

altogether via the UNSUB command. In the next sections, we go into detail

about how each command works.

 Publishing Messages with PUB
A client can publish messages by using the PUB command. Let’s go back

to the Hello World example at the beginning of the book in our telnet

session to the server (see Listing 2-6).

Listing 2-6. Hello World Using PUB

$ telnet 127.0.0.1 4222

...

PUB greetings 12

Hello World!

Figure 2-5. Connecting flow from clients

ChApteR 2 the NAtS pRotoCoL

27

In this example, greetings is the subject to which the client is

publishing messages and 12 is the number of bytes representing the

payload size of the message that is going to be sent to the server. Then after

the line break, we can find the message itself, which in this case is Hello

World! (see Figure 2-6).

Figure 2-6. Hello World using PUB

The client should send exactly the same number of bytes as it has

announced in the PUB control line; otherwise, the server will reset the

connection, as it is not properly following the protocol. For example, if

we add another exclamation mark and send instead 13 bytes but still

announce 12 (see Listing 2-7), the server will send a parsing error response

to the client and reset the connection (see Figure 2-7). The server is very

rigorous in handling the protocol and does not hesitate to disconnect

rogue clients.

Listing 2-7. The Wrong Number of Bytes Closes the Connection

PUB greetings 12

Hello World

-ERR 'Unknown Protocol Operation'

-ERR 'Parser Error'

Connection closed by foreign host.

ChApteR 2 the NAtS pRotoCoL

28

The protocol commands are case-insensitive, so using lowercase for

the protocol commands also works (see Listing 2-8).

Listing 2-8. Protocol Is Case-Insensitive

pub greetings 12

Hello World!

 Registering Interest in a Subject with SUB
In order to receive messages, clients have to create subscriptions with the

server by using the SUB command. Listing 2-9 shows an example of how to

receive messages published on the greetings subject to a client.

Listing 2-9. Subscribing to ‘greetings’ subject

$ telnet 127.0.0.1 4222

...

SUB greetings 1

+OK

Figure 2-7. Not following the protocol causes the client to
disconnect

ChApteR 2 the NAtS pRotoCoL

29

Here, greetings is the subject on which the client is registering interest

and the number 1 is a subscription identifier that the client can use on the

order to later match the messages delivered by the server. This subscription

identifier will be particular to this subscription for the connection only and

does not have to necessarily be a number either; a string identifier would

have worked as well. Internally, the NATS clients use a counter, which

increases by one for each SUB command sent to the server (see Figure 2-8).

Figure 2-8. Creating subscriptions with SUB

Let’s look at this in practice and open another telnet session that

subscribes to greetings and another one for publishing (see Listing 2-10).

Listing 2-10. Pair of Subscribers on Greetings Subject

Client #1 (consumer)

$ telnet 127.0.0.1 4222

...

SUB greetings 1

+OK

Client #2 (consumer)

$ telnet 127.0.0.1 4222

...

SUB greetings any

+OK

ChApteR 2 the NAtS pRotoCoL

30

Let’s also add another one for publishing (see Listing 2-11).

Listing 2-11. Producer Client Sending a Hello Message

Client #3 (producer)

$ telnet 127.0.0.1 4222

...

PUB greetings 5

Hello

After publishing the message, we can see that both subscribers have

received a message (MSG) from the server (see Listing 2-12).

Listing 2-12. Subscribers Receiving a Message from the Server

Client #1 (consumer)

$ telnet 127.0.0.1 4222

...

SUB greetings 1

+OK

MSG greetings 1 5

Hello

Client #2 (consumer)

$ telnet 127.0.0.1 4222

...

SUB greetings any

+OK

MSG greetings any 5

Hello

The MSG protocol lines delivered by the server are followed by the

payload that was sent by the publisher (see Figure 2-9). In the MSG protocol

line, we can find the subject on which the message was published

ChApteR 2 the NAtS pRotoCoL

31

(greetings), the subscription identifier that matches the subscription

done by the client (either 1 or any), and the byte size of the payload sent by

the publisher (5 bytes).

Figure 2-9. Example PubSub 1:N communication

 Subject Names and Wildcards
The dot character (.) has special meaning as part of the subject. When

using it as part of the subject, we can create namespaces that can be later

matched via wildcards.

There are two types of wildcards available: the partial or token match

wildcard (*) and the full wildcard (>). Table 2-2 lists a series of examples

and matches using both types of wildcards.

ChApteR 2 the NAtS pRotoCoL

32

Note that it is not possible to publish on a subject using wildcards.

If a client tries to do this, it will receive an error (see Listing 2-13).

Listing 2-13. Publish on Wildcard Results in an Error

PUB hello.*.world 0

-ERR 'Invalid Subject'

Clients can opt out from receiving this type of error by using the

CONNECT command with the pedantic option to disable them (all the NATS

client libraries disable pedantic checks by default). See Listing 2-14.

Listing 2-14. Disabling Pedantic Mode via CONNECT

CONNECT {"verbose":false,"pedantic":false}

The full wildcard in particular is very powerful, as we can use it on

the top level and then inspect every message that is sent through NATS

(see Listing 2-15). By adding a client that’s using the full wildcard in the

previous example, it would also get the message.

Table 2-2. Wildcard Support from NATS

Subject Matches

foo.*.quux foo.hello.bar, foo.hi.bar

foo.* foo.hello

foo.> foo.hello, foo.hello.bar,

foo.hi.quux

ChApteR 2 the NAtS pRotoCoL

33

Listing 2-15. Using Full Wildcard to Receive All Messages

$ telnet 127.0.0.1 4222

...

SUB > 1

+OK

MSG greetings 1 5

hello

This is also very helpful for operations and helps debugging the

messages that are being sent through NATS without impacting other parts

of the system (other than a bit more load on the NATS Server). It is possible

to limit the visibility of the clients by using the authorization features from

the server (see Figure 2-10).

Figure 2-10. Using full wildcard to tap all NATS traffic

ChApteR 2 the NAtS pRotoCoL

34

 Creating Queue Subscriptions for Load
Balancing
The type of subscriptions that we have seen so far make the server deliver

a message to all the clients that registered interest in the subject (or a

matching one). There is another type of subscription, called a queue

subscription, which makes the server deliver the message to a single

subscriber that’s picked randomly from the same queue group, thus

helping to decrease the network traffic and improve scalability.

Queue subscriptions are created by adding a group name after

the subject when sending the SUB command (see Listing 2-16). In this

example, two clients are making a subscription on the requests subject

and joining a queue group named workers, using 5 for the subscription

identifier of messages matching this subscription.

Listing 2-16. Pair of Clients Forming a Distributed Queue

Client #1

$ telnet 127.0.0.1 4222

SUB requests workers 5

Client #2

$ telnet 127.0.0.1 4222

SUB requests workers 5

Then, each time that a message is published on the requests subject,

only one of them will receive the message (see Listing 2-17 and Figure 2- 11).

Listing 2-17. Each Consumer Gets a Single Message

Client #3 (producer)

PUB requests 5

first

PUB requests 6

second

ChApteR 2 the NAtS pRotoCoL

35

Client #1 (consumer)

MSG requests 5 5

first

Client #2 (consumer)

MSG requests 55 6

second

Figure 2-11. Queue subscriptions random load balancing

Note that multiple queue subscriptions and bare subscriptions can

show interest in the same subject without them affecting each other.

The NATS Server will deliver the message to each of them the same

(see Figure 2-12).

ChApteR 2 the NAtS pRotoCoL

36

 Limiting Interest in a Subject with UNSUB
After making a subscription to the server, a client sometimes may want to

stop receiving messages related to the subject at some point. This can be

done via the UNSUB command. The UNSUB command takes the subscription

identifier (sid), which the client sent when making the subscription,

and then optionally a number of max replies to receive before removing

interest on the subject.

In Listing 2-18, the client is making a subscription on the requests

subject, registering it with 5 as the sid, and then telling the server that it

does not want to receive more than a single message.

Figure 2-12. Using full wildcard alongside queue subscriptions

ChApteR 2 the NAtS pRotoCoL

37

Listing 2-18. Removing Interest in Subscription

SUB requests 5

+OK

UNSUB 5 1

+OK

Then, if another client publishes two messages on the requests

subject (see Listing 2-19), only the first message will be delivered and the

server will auto unsubscribe the client so it stops receiving messages on

that subscription (see Figure 2-13).

Listing 2-19. Client Publishing Two Messages

Client 2

PUB requests 4

help

+OK

PUB requests 5

help!

+OK

Client 1

MSG requests 5 4

help

+OK

ChApteR 2 the NAtS pRotoCoL

38

To remove interest in a subject instantly instead of after a number of

replies, only the sid is needed (see Listing 2-20).

Listing 2-20. Removing Interest in a Subscription

SUB requests 5

+OK

UNSUB 5

+OK

Figure 2-13. Setting the max number of messages to receive on a
subscription

 Publishing Requests
This is where all of it comes together in order to support one-to-one

Request/Response functionality. When sending a PUB command to the

server, it is possible to also tag the message published with an optional

reply subject (see Listing 2-21).

Figure 2-14. Client does not receive last message after UNSUB

ChApteR 2 the NAtS pRotoCoL

39

Listing 2-21. Publishing a Request with a Reply Subject

PUB help please 5

help!

Then, if there are other subscribers interested in the help subject, as

shown in Listing 2-22, they will receive the message along with the reply

subject.

Listing 2-22. Request/Response Example with PUB/SUB

Client #1 is available for requests on subject

SUB requests 1

Client #2 sends a request

SUB reply 90

PUB requests reply 5

help!

Client #1 receives the request along with reply subject

MSG requests 1 reply 5

help!

The client that received the help! message is aware now of the

reply subject, which has to be used (reply) in order to communicate

directly with the client that sent the message and reply with a response

(see Listing 2-23 and Figure 2-15).

Listing 2-23. Subscribers Receiving a Message from the Server

Client #1 replies with response

SUB requests 1

MSG requests 1 reply 5

help!

PUB reply 11

I can help!

ChApteR 2 the NAtS pRotoCoL

40

Client #2 receives the response

SUB reply 90

PUB requests reply 5

help!

MSG reply 90 11

I can help!

Note that the inbox subscription itself is just a bare subscription and

there is nothing special about it. The NATS clients then rely on making the

subscription inboxes names unique enough that it would be extremely

unlikely to have collisions in the unique identifier for the inbox. For this,

the NATS Go client uses the NUID library to generate reply subjects of 22

bytes (more about the NATS client internals in the next chapter).

Figure 2-15. PubSub-based Request/Response implementation

 Lowest Latency Response
If the subscription is not part of a queue subscription group, the first

response that we get by definition is the response with the lowest latency,

which is one of the key cases for which NATS is suited.

Clients can also take advantage of this property along with the UNSUB

command to ensure that the server only the delivers the fastest response

to the client (see Figure 2-16). This technique served as the original

implementation of the Request/Response; there is a new style of making

requests as well. Both styles covered in detail in next chapter.

ChApteR 2 the NAtS pRotoCoL

41

Figure 2-16. Request/Response limiting to single fastest reply

 Summary
In this chapter, we got an overview of the protocol’s commands and

learned some of the techniques working under the hood of the NATS client

library implementations. In the next chapter, we take a look at the client

APIs and how they leverage the features from the protocol.

ChApteR 2 the NAtS pRotoCoL

43© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6_3

CHAPTER 3

The NATS Clients
As covered in the previous chapter, NATS uses a fairly simple protocol that

alleviates the task of implementing clients that can interact with the server.

Thanks to the protocol being very simple, many times it is also possible to

further focus on optimizing the clients to provide a highly performant and

efficient implementation.

The NATS clients have an easy-to-use API built on top of the NATS

protocol, and in this chapter, we take a look at their feature set and

expected behavior in detail. We do this in order to have a good foundation

for building NATS-based applications later in the book.

The examples in this chapter mostly use the Go NATS client, which

is now the reference implementation of a client for NATS, so some basic

familiarity with the Go language would be useful.

 Features of a NATS Client
In the previous chapter, a basic telnet session was used to demonstrate

the feature set from the NATS Server by using the raw protocol commands.

Clients for NATS can be extremely simple if needed, as it takes very little to

follow the protocol. However, client language libraries require a bit more

behavior in order to make the implementation more reliable.

The NATS clients work asynchronously under the hood and many

times use efficient buffering and write coalescing techniques that improve

the publishing performance and consumption of messages. They also

44

have built-in reconnection logic support to failover to other available

NATS Servers in case of a disconnection to the server has occurred, cluster

autodiscovery re-configuration via server gossip updates (using the INFO

protocol), and several types of event callbacks that are also triggered

asynchronously during the reconnection process or when the server sends

a protocol error to the client.

When connected, the NATS clients try to always keep a single,

established TCP connection to a server. Just like the server, they also

should implement their own PING/PONG interval in order to detect

unhealthy connections and disconnect in case too many PONGs are missing

from the server.

The API available in the clients has been evolving throughout the years

and some of the earlier ones feature a slightly dissimilar API from the one

available in the Go client. Still, all official NATS clients have at least the

methods described in Table 3-1. These can be considered to be the core

API from NATS.

Table 3-1. The NATS Client API

Command Used To

Connect Establishes a connection to a server

Close Wraps up a connection to a server

Request Sends a message expecting a response

Publish Sends a message

Subscribe Creates a subscription

Unsubscribe Removes a subscription

Flush Sends pending data and makes a server roundtrip

ChaptER 3 thE NatS CliENtS

45

In the rest of this chapter, we look at how each of these methods works

in detail, as well as describe the overall behavior from the client.

 Using Connect
In order to connect to a server, clients have a Connect function where the

location of a NATS Server can be specified, using either nats:// or tls://

as the scheme in the URL. In Listing 3-1, the client is connecting to the

demo.nats.io endpoint using the default port 4222 from the server.

Listing 3-1. Connecting to a NATS Server

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://demo.nats.io:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 nc.Publish("greeting", []byte("hello world"))

 runtime.Goexit()

}

ChaptER 3 thE NatS CliENtS

46

To establish a secure connection, tls:// as a scheme can be used

instead. In Listing 3-2 a secure connection is set by using the configured

secure port from the demo.nats.io.

Listing 3-2. Secure Connection to a NATS Server

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("tls://demo.nats.io:4443")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 nc.Publish("greeting", []byte("hello world"))

 runtime.Goexit()

}

Internally, Connect uses the CONNECT command from the protocol after

establishing a TCP connection to both announce client metadata to the

server and handle the credentials. If there is a secure connection, it is after

the connection has already been upgraded to TLS that the client will be

sending the CONNECT command.

If the client fails to establish a connection on the first attempt, it will stop

attempting to establish a connection in order to fail fast. Only after having

established a connection at least once will the reconnection logic kick in.

ChaptER 3 thE NatS CliENtS

47

Once the client has successfully established the TCP connection, sent

the CONNECT and the first PING protocols, and received the corresponding

PONG, the client will be in the CONNECTED state.

 Customizing a Connection
In the Go client, the Connect function uses the variadic options technique,

which has become popular among the Go community1 to customize the

connection. Listing 3-3 shows how to set a label to identify the client by

using the nats.Name option function on connect.

Listing 3-3. Setting a Name Label to a Client

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222",

 nats.Name("practical-nats-client"),

)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

1 “Functional Options for Friendly APIs” by Dave Cheney https://dave.cheney.
net/2014/10/17/functional-options-for-friendly-apis

ChaptER 3 thE NatS CliENtS

https://dave.cheney.net/2014/10/17/functional-options-for-friendly-apis
https://dave.cheney.net/2014/10/17/functional-options-for-friendly-apis

48

 nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 nc.Publish("greeting", []byte("hello world"))

 runtime.Goexit()

}

Then, the client on a successfully established connection will

announce the name of the connection to the server via the CONNECT

command (see Listing 3-4).

Listing 3-4. Sending Metadata via the CONNECT Protocol

CONNECT {...,"name":"practical-nats-client","lang":"go",

"version":"1.3.1"}

Setting a name for the connection can be useful for monitoring purposes,

as this information will now be displayed in the monitoring endpoint from

the NATS Server. The NATS Server monitoring endpoint can be activated by

using the -m flag (see Listing 3-5), and it is customarily set to use the port 8222.

Listing 3-5. Enabling the Monitoring Endpoint from the Server

gnatsd -m 8222

Then if an HTTP request is made to the 8222 port, it is possible to

inspect the current state of clients connected to the system (see Listing 3-6).

Listing 3-6. Retrieving Client Information via a NATS Monitoring

Port

curl http://127.0.0.1:8222/connz

...

{

 "now": "2018-01-03T21:33:26.977883-08:00",

 "num_connections": 1,

ChaptER 3 thE NatS CliENtS

49

 "total": 1,

 "offset": 0,

 "limit": 1024,

 "connections": [

 {

 "cid": 1,

 "ip": "127.0.0.1",

 "port": 56721,

 "start": "2018-01-03T21:33:24.354268-08:00",

 "last_activity": "2018-01-03T21:33:24.355002-08:00",

 "uptime": "2s",

 "idle": "2s",

 "pending_bytes": 0,

 "in_msgs": 1,

 "out_msgs": 1,

 "in_bytes": 11,

 "out_bytes": 11,

 "subscriptions": 1,

 "name": "practical-nats-client",

 "lang": "go",

 "version": "1.3.1"

 }

]

}

As you can see, the client has announced the lang and version of the

client, which can be helpful to identify the type of client that is currently

connected to the server. Tools like nats-top use this monitoring endpoint

and show this metadata in order to support inspecting the current state

from a server. Monitoring the NATS Server will be covered in more detail in

another chapter.

ChaptER 3 thE NatS CliENtS

50

 Authorization Credentials
The NATS Server has a notion of authorization groups and users, which

can be used to increase security of the server. In order to identify a client,

CONNECT plays an important here, as it shows how a client can set the user

password or an auth token in order to identify the server.

We can use the -user and -pass flags from the server to set a single

pair of credentials to be used by all the clients (see Listing 3-7).

Listing 3-7. Setting User and Pass Authorization in the Server

gnatsd -m 8222 -user foo -pass secret

Then, from the client, we can set these via the connect options

(see Listing 3-8).

Listing 3-8. Setting User Credentials

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222",

 nats.UserInfo("foo", "secret"),

)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

ChaptER 3 thE NatS CliENtS

51

 nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 nc.Publish("greeting", []byte("hello world"))

 runtime.Goexit()

}

Then the client will send one CONNECT (see Listing 3-9).

Listing 3-9. Retrieving Client Information via a NATS Monitoring

Port

CONNECT {...,"user":"foo","pass":"secret",...}

After that, the connection will be successfully established; otherwise, if

the client has the wrong credentials an -ERR 'Authorization Violation'

protocol error will be sent to the client before the server closes the

connection.

If an authorization timeout is set in the server and the client does not

authenticate fast enough, the server will send an -ERR 'Authorization

Timeout' protocol error and close the connection as well.

 Using Publish and Subscribe
The Publish and Subscribe APIs are how the NATS clients publish and

receive messages respectively, internally leveraging the PUB and SUB

commands from the protocol. A simple example of publishing and

receiving messages is shown in Listing 3-10.

ChaptER 3 thE NatS CliENtS

52

Listing 3-10. Publish/Subscribe with the NATS Client

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222",

 nats.UserInfo("foo", "secret"),

)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 nc.Publish("greeting", []byte("hello world"))

 runtime.Goexit()

}

 Using Publish
Publish takes the subject where the message will be sent (greetings) and a

payload in bytes. The payload sent to the server is opaque to the server; there

is no extra encoding/decoding required by the server. Users of the client

libraries are free to use whichever encoder library they see fit. We could use

JSON to add some metadata to the message being sent. Listing 3-11 shows

an example program doing this and Listing 3-12 shows an example result of

running it.

ChaptER 3 thE NatS CliENtS

53

Listing 3-11. Using a Custom JSON Encoder/Decoder

package main

import (

 "encoding/json"

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222",

 nats.UserInfo("foo", "secret"),

)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 payload := struct {

 RequestID string

 Data []byte

 }{

 RequestID: "1234-5678-90",

 Data: []byte("encoded data"),

 }

 msg, err := json.Marshal(payload)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

ChaptER 3 thE NatS CliENtS

54

 nc.Publish("greeting", msg)

 runtime.Goexit()

}

Listing 3-12. Running the Program

$ go run basic-pub-sub-json.go

2018/01/04 23:23:01 [Received] {"RequestID":"1234-5678-

90","Data":"ZW5jb2RlZCBkYXRh"}

The Go NATS client has built-in support for encoders and decoders

too; these are covered in another chapter.

 Using Subscribe
The Subscribe API is how the client registers interest in a subject.

Depending on the client, there may be multiple APIs available for

controlling how the messages will be consumed. The Go NATS client, for

example, has three variations of the API: Subscribe, ChanSubscribe, and

SubscribeSync.

In the NATS clients, the Subscribe method usually takes a callback

that’s invoked by the client library as the NATS Server delivers messages to

the client. Compare for example the same API in the Go (see Listing 3-13),

Ruby (see Listing 3-14), and Node.js (see Listing 3-15) clients.

Listing 3-13. Subscribing in Go

// Go

nc.Subscribe("foo", func(m *nats.Msg) {

 log.Println("[Received]: " + string(m.Data))

})

ChaptER 3 thE NatS CliENtS

55

Listing 3-14. Subscribing in Ruby

Ruby

nats.subscribe("foo") do |msg|

 puts "[Received]: #{msg}"

end

Listing 3-15. Subscribing in Node.js

Node.js

nats.subscribe('foo', function(msg) {

 console.log('[Received]: ' + msg);

});

Something very important to note about the behavior from a

subscription is that, for a single subscription, only a single message will

be handled at a time sequentially, not in parallel. If we have multiple

subscriptions and one of them is processing messages slower than the rest,

this will not affect the other subscriptions. Listing 3-16 shows an example

where there are a couple of subscriptions, one on a bare subject and

another one on a wildcard.

Listing 3-16. Head of Line Blocking Example

package main

import (

 "log"

 "runtime"

 "time"

 "github.com/nats-io/go-nats"

)

ChaptER 3 thE NatS CliENtS

56

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222",

 nats.UserInfo("foo", "secret"),

)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 nc.Subscribe(">", func(m *nats.Msg) {

 log.Printf("[Wildcard] %s", string(m.Data))

 time.Sleep(1 * time.Second)

 })

 for i := 0; i < 10; i++ {

 nc.Publish("greeting", []byte("hello world!"))

 }

 runtime.Goexit()

}

The result from running Listing 3-16 can be found in Listing 3-17. Note

how the messages from the wildcard subscriptions are delayed more than

those from the bare subscription.

Listing 3-17. Head of Line Blocking Occurs Only for the Same

Subscription

2018/01/04 23:43:03 [Wildcard] hello world!

2018/01/04 23:43:03 [Received] hello world!

2018/01/04 23:43:03 [Received] hello world!

2018/01/04 23:43:03 [Received] hello world!

2018/01/04 23:43:03 [Received] hello world!

2018/01/04 23:43:03 [Received] hello world!

ChaptER 3 thE NatS CliENtS

57

2018/01/04 23:43:03 [Received] hello world!

2018/01/04 23:43:03 [Received] hello world!

2018/01/04 23:43:03 [Received] hello world!

2018/01/04 23:43:03 [Received] hello world!

2018/01/04 23:43:03 [Received] hello world!

2018/01/04 23:43:04 [Wildcard] hello world!

2018/01/04 23:43:05 [Wildcard] hello world!

2018/01/04 23:43:06 [Wildcard] hello world!

2018/01/04 23:43:07 [Wildcard] hello world!

2018/01/04 23:43:08 [Wildcard] hello world!

2018/01/04 23:43:09 [Wildcard] hello world!

2018/01/04 23:43:10 [Wildcard] hello world!

2018/01/04 23:43:11 [Wildcard] hello world!

2018/01/04 23:43:12 [Wildcard] hello world!

 Using QueueSubscribe
The QueueSubscribe API works pretty much the same as the Subscribe

API counterpart (and in the case of the Go client, has the same other

variations). The only difference is that it creates a distributed queue group

to which the server will be balancing requests randomly. Listing 3-18

shows an example of creating a workers queue on the greetings subject.

Listing 3-18. Using QueueSubscribe in Go

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

ChaptER 3 thE NatS CliENtS

58

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.QueueSubscribe("greeting", "workers", func(m *nats.

Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 nc.Publish("greeting", []byte("hello world!!!"))

 runtime.Goexit()

}

In Listing 3-19, it shown what the client internally will be sending to

the server. As we covered in the previous chapter, this will result in creating

a load balanced subscription.

Listing 3-19. Protocol Sent from QueueSubscribe

SUB greeting workers 1

 Removing a Subscription
In order to remove interest in a subscription, in the Go NATS client, the

Subscribe call returns a Subscription type that allows the library user

to control how many messages to receive or whether to stop receiving

altogether. In Listing 3-20, the client will only receive five messages, even

though the client is publishing 10 in total.

ChaptER 3 thE NatS CliENtS

59

Listing 3-20. Unsubscribing in Go

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 sub, err := nc.Subscribe("greeting", func(m *nats.Msg)

{

 log.Printf("[Received] %s", string(m.Data))

 })

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 sub.AutoUnsubscribe(5)

 for i := 0; i < 10; i++ {

 nc.Publish("greeting", []byte("hello world!!!"))

 }

 runtime.Goexit()

}

To remove interest instantly on a subject, we call Unsubscribe on the

Subscription type. In Listing 3-21, very few messages will be received.

ChaptER 3 thE NatS CliENtS

60

Listing 3-21. Unsubscribing in Go

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 sub, err := nc.Subscribe("greeting", func(m *nats.Msg)

{

 log.Printf("[Received] %s", string(m.Data))

 })

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 for i := 0; i < 5; i++ {

 nc.Publish("greeting", []byte("hello world!!!"))

 }

 nc.Flush()

 // Remove subscription

 sub.Unsubscribe()

ChaptER 3 thE NatS CliENtS

61

 for i := 0; i < 5; i++ {

 nc.Publish("greeting", []byte("hello world!!!"))

 }

 runtime.Goexit()

}

Note that it is possible also to unsubscribe directly from the message

callback. When doing so, you have the guarantee that the callback will not be

invoked again, even if there were messages internally that would have been

dispatched otherwise. An example of this usage is found in Listing 3-22.

Listing 3-22. Unsubscribing From Within Subscribe Callback

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 var counter int

 var sub *nats.Subscription

 sub, err = nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 // Remove subscription after receiving a couple

 // of messages.

ChaptER 3 thE NatS CliENtS

62

 counter++

 if counter == 2 {

 sub.Unsubscribe()

 }

 })

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 for i := 0; i < 5; i++ {

 nc.Publish("greeting", []byte("hello world!!!"))

 }

 nc.Flush()

 runtime.Goexit()

}

 Using Flush
The Flush API is very convenient in the NATS clients, as it provides the

user with a method to be able to control behavior from the client to act in

a more synchronous way. Listing 3-23 shows an example of a client with

10 messages and then calling Flush(), which would ensure that the server

has received the first 10 messages before then sending another message.

Listing 3-23. Flushing the Buffer in Go

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

ChaptER 3 thE NatS CliENtS

63

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 for i := 0; i < 10; i++ {

 nc.Publish("greeting", []byte("hello world!!!"))

 }

 nc.Flush()

 err = nc.Publish("greeting", []byte("hello world!!!"))

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 runtime.Goexit()

}

Internally what it does is send everything that has accumulated in the

pending buffer from the client. Then, it sends a PING to the server, and then

waits for the PONG. As soon as the client receives the PONG reply, the Flush

call will unblock and let the client assume that the messages that were fired

have been processed by the server.

 Using Request
The Request API enables the client to publish a message and then

wait for someone to reply. A simple example of the Request/Response

functionality from NATS can be found in Listing 3-24, with the result of

running the program shown in Listing 3-25.

ChaptER 3 thE NatS CliENtS

64

Listing 3-24. Request/Response in the Go NATS Client

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("help", func(m *nats.Msg) {

 log.Printf("[Received]: %s", string(m.Data))

 nc.Publish(m.Reply, []byte("I can help!!!"))

 })

 response, err := nc.Request("help", []byte("help!!"),

1*time.Second)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 log.Println("[Response]: " + string(response.Data))

}

Listing 3-25. Running the Program

2018/01/05 00:27:27 [Received]: help!!

2018/01/05 00:27:27 [Response]: I can help!!!

Internally, the Request API uses unique inboxes for each request,

which are then announced to the server.

ChaptER 3 thE NatS CliENtS

65

As of recent releases, there are two versions of the Request/Response

implementation, we’ll call these the classic and new style Request/

Response.

 The Classic Request/Response
For a long time, the NATS clients used the ephemeral subscriptions in

order to achieve 1:1 communications. Listing 3-26 shows how the Request/

Response originally worked.

Listing 3-26. Request/Response Protocol with UNSUB

Unique subscription using sid: 2

SUB _INBOX.1GlZMJXHYj9Wkmdu7ugvpF 2

Limit to receive a single response

UNSUB 2 1

Publish the message on help subject using unique subscription

PUB help _INBOX.1GlZMJXHYj9Wkmdu7ugvpF 6

help!!

Received response

MSG _INBOX.1GlZMJXHYj9Wkmdu7ugvpF 2 13

I can help!!!

One of the limitations from that implementation is that it heavily

used subscriptions, which induces more overhead to the NATS clustering

implementation, as the subscriptions had to be propagated per request.

On the other hand, this implementation has the benefit of guaranteeing

that the client will only receive a single response (since it was expressed via

UNSUB that only a single message is desired).

In the NATS Go client, this mode can still be activated by using the

nats.UseOldRequestStyle option (see Listing 3-27).

ChaptER 3 thE NatS CliENtS

66

Listing 3-27. Old Style Request/Response in the Go NATS Client

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222",

 nats.UseOldRequestStyle(),

)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("help", func(m *nats.Msg) {

 log.Printf("[Received]: %s", string(m.Data))

 nc.Publish(m.Reply, []byte("I can help!!!"))

 })

 response, err := nc.Request("help", []byte("help!!"),

1*time.Second)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 log.Println("[Response]: " + string(response.Data))

}

ChaptER 3 thE NatS CliENtS

67

 The New Style Request/Response
As of recent releases, the NATS team has been moving to a new style of

doing Request/Response, where the client library creates a single wildcard

subscription once per connection solely for this purpose. Listing 3-28

shows how the Request/Response protocol was reworked to be less chatty

over the network.

Listing 3-28. New Style Request/Response Protocol

Create single subscription for requests with wildcard handler

SUB _INBOX.9erElxb6mQiE7VUkfygPEL.* 2

Publish requests inbox plus another unique subject

PUB help _INBOX.9erElxb6mQiE7VUkfygPEL.9erElxb6mQiE7VUkfygPIE 6

help!!

Receives response which was sent to long unique subject

MSG _INBOX.9erElxb6mQiE7VUkfygPEL.9erElxb6mQiE7VUkfygPIE 2 13

I can help!!!

One of the benefits of this approach is that it means less work for the

server as a single subscription is used instead of several. On the other

hand, it means that when N is very large, the client will receive multiple

responses that it needs to drop (since UNSUB is not being used). However, in

combination with QueueSubscribe, it works really well since it means that

a single subscriber will receive the message and send the response back.

 A Note on Asynchronous I/O
Something that’s common to all the implementations of the NATS client is

that they work asynchronously under the hood. In the previous chapter, we

saw that in order to publish a message, you can send bytes (see Listing 3-29).

ChaptER 3 thE NatS CliENtS

68

Listing 3-29. Sending Five Bytes with PUB

PUB hello 5\r\n

world\r\n

In the clients, the same can be done using the Go client (see Listing 3-30).

Listing 3-30. Publishing a Message in the Go Client

package main

import (

 "log"

 "github.com/nats-io/go-nats"

)

func main(){

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Publish("hello", []byte("world"))

}

But if we try running this program, the program may exit so fast that

the message would not actually be sent to the server. This is because the

Publish API is non-blocking and what has actually occurred is that the

world payload has been placed in the pending buffer from the client, and

then eventually is published.

In order to ensure that the message will be sent in this program, the

Flush API from the client can be used to ensure that everything has been

sent and processed by the server (see Listing 3-31).

ChaptER 3 thE NatS CliENtS

69

Listing 3-31. Publish Then Flush in the Go Client

package main

import (

 "log"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Publish("hello", []byte("world"))

 nc.Flush()

}

This issue often comes up with new NATS users, when they’re trying

to benchmark how fast a client receives messages to a subscription under

a publishing tight loop without relinquishing control to process the

messages that are being delivered. This issue is replicated in the example

shown in Listing 3-32.

Listing 3-32. Slow Consumer Example with the Go Client

package main

import (

 "log"

 "github.com/nats-io/go-nats"

)

ChaptER 3 thE NatS CliENtS

70

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 msg := []byte("Hello World!")

 nc.Subscribe("greetings", func(_ *nats.Msg) {})

 for i := 0; i < 100000000; i++ {

 nc.Publish("greetings", msg)

 }

}

The resultant server output after running the previous program is

shown in Listing 3-33. Note that in the server, we would find at least one

Slow Consumer Detected error.

Listing 3-33. Resulting Server Output

[23187] 2018/01/07 19:02:54.408540 [INF] Starting nats-server

version 1.0.4

[23187] 2018/01/07 19:02:54.408810 [INF] Listening for client

connections on 127.0.0.1:4222

[23187] 2018/01/07 19:02:54.408819 [INF] Server is ready

[23187] 2018/01/07 19:02:59.454415 [INF] 127.0.0.1:62079 -

cid:1 - Slow Consumer Detected

With the exception of Request and Flush, which both block until

receiving a response from the server, all other APIs that use the protocol

do not block and work asynchronously.

Another issue to keep in mind is that the error handling has to be done

asynchronously as well. For example, the subject name _SYS is reserved

for future use by the system, so trying to send something to the subject

ChaptER 3 thE NatS CliENtS

71

is going to result in a permissions violation error. Listing 3-34 shows

an example of receiving an error asynchronously that will not close the

connection, and Listing 3-35 shows the result of running it.

Listing 3-34. Permissions Violation async Error

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL,

 nats.ErrorHandler(func(

 _ *nats.Conn,

 _ *nats.Subscription,

 err error,

) {

 log.Printf("Async Error: %s", err)

 }))

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Publish("_SYS.hi", []byte("hi"))

 nc.Flush()

 time.Sleep(1 * time.Second)

}

ChaptER 3 thE NatS CliENtS

72

Listing 3-35. Running a Program with the Permissions Violation

Error

2018/01/07 20:02:35 Async Error: nats: permissions violation

for publish to "_sys.hi"

The clients also offer an API called LastError, which captures the

error protocol responses sent by the server, so in the case of the previous

example, we can do something similar, as shown in Listing 3-36.

Listing 3-36. Using LastError to Retrieve Past Errors

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Publish("_SYS.hi", []byte("hi"))

 nc.Flush()

 time.Sleep(1 * time.Second)

 log.Printf("Last Error: %s", nc.LastError())

}

ChaptER 3 thE NatS CliENtS

73

 States of a NATS Connection
The ideal state from a connection to NATS is to be connected to the system

(remember, NATS is intended to act as a dial tone after all). Table 3-2 lists

and describes the states from a NATS connection and Figure 3-1 shows the

state transitions of a NATS connection.

Table 3-2. The NATS Client API

State Description

CONNECTING First attempt to try to connect to NatS

CONNECTED Connection to NatS is healthy

RECONNECTING Retrying to establish connection

DISCONNECTED Just disconnected from NatS

CLOSED Client connection is now forever closed

In order to be able to send and receive messages, a client has to be in

the CONNECTED state. Whenever there is a disconnection to a server, the

NATS client will attempt to connect to another server in the cluster pool for

a certain number of times (the RECONNECTING and DISCONNECTED states),

after which it will give up trying to connect and reach the CLOSED state.

ChaptER 3 thE NatS CliENtS

74

While a client is reconnecting, if the client tries to publish or subscribe,

the client will not necessarily receive an error telling it that it failed to send

the message because it is not connected. This is because of the internal

asynchronous engine from the client, which will buffer the commands

onto a pending buffer. In the case of the Go NATS client, this buffer is

going to be 8MB (customizable via the ReconnectBufSize option when

connecting).

Listing 3-37 shows an example of a component in a system that

periodically publishes data, which is a very common way of using

NATS. After this pending buffer is exhausted, the calls will error out.

Figure 3-1. State transitions from a NATS connection

ChaptER 3 thE NatS CliENtS

75

Listing 3-37. Limiting the Size of the Reconnect Buffer

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 opts := nats.DefaultOptions

 // Arbitrarily small reconnecting buffer

 opts.ReconnectBufSize = 256

 nc, err := opts.Connect()

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 for range time.NewTicker(500 * time.Millisecond).C {

 // If disconnected for too long and buffer is

full

 // then the client will receive a synchronous

error.

 err := nc.Publish("numbers", []byte("4 8 15 16

23 42"))

 if err != nil {

 // nats: outbound buffer limit exceeded

 log.Fatalf("Error: %s", err)

 }

 }

}

ChaptER 3 thE NatS CliENtS

76

Depending on the case, we might not want the buffered data

accumulated during a reconnection to be flushed to the server (since it

might be stale) and will publish only when the client is connected. For

these use cases, we can check the current state of the connection and skip

it or give up altogether in case the connection to NATS has been closed or

is reconnecting. An example of this usage is found in Listing 3-38.

Listing 3-38. Skipping Sending Messages During Reconnecting

Events

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 for range time.NewTicker(500 * time.Millisecond).C {

 if nc.IsClosed() {

 log.Fatalf("Disconnected forever!

Exiting...")

 }

 if nc.IsReconnecting() {

 log.Println("Disconnected temporarily,

skipping for now...")

 continue

 }

ChaptER 3 thE NatS CliENtS

77

 err := nc.Publish("numbers", []byte("4 8 15 16

23 42"))

 if err != nil {

 // nats: outbound buffer limit exceeded

 log.Fatalf("Error: %s", err)

 }

 }

}

 Clients Reconnection Logic
As previously mentioned, the available NATS clients all have client

reconnection enabled by default. There are a number of customizations

that can be done to the reconnection logic via Connect options. For

example, in order to make the client never stop reconnecting, we can

set the maximum number attempts to -1 so that it never stops retrying.

Listing 3-39 shows how to tell the client to never stop reconnecting.

Listing 3-39. Setting the Client to Always Try to Reconnect

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL, nats.

MaxReconnects(-1))

ChaptER 3 thE NatS CliENtS

78

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 // If disconnected for too long and buffer is full

 // then the client will receive a synchronous error.

 for range time.NewTicker(1 * time.Second).C {

 err := nc.Publish("hello", []byte("world"))

 if err != nil {

 log.Printf("Error: %s", err)

 }

 }

}

Depending on the case, we may to disconnect and disable

reconnecting altogether. Listing 3-40 shows an example of how to do this.

Listing 3-40. Disabling the Reconnect Logic and Bailing on

Disconnect

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222",

nats.NoReconnect())

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

ChaptER 3 thE NatS CliENtS

79

 // Since we disallow reconnection, this should report

 // an error quickly after stopping the NATS Server.

 for range time.NewTicker(1 * time.Second).C {

 err := nc.Publish("hello", []byte("world"))

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 }

}

Once it’s reconnected, we can expect the client to replay any present

subscription that may have been done by the client, as well as flush any

pending command that may have been published during the service

interruption to the NATS Server. If we are running Listing 3-41, which will

always reconnect and then restart a NATS Server, we will see that the client

will continue to receive the published hello messages.

Listing 3-41. Subscriptions Are Restored on Reconnect

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL,

nats.MaxReconnects(-1))

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

ChaptER 3 thE NatS CliENtS

80

 nc.Subscribe("hello", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 nc.Subscribe("*", func(m *nats.Msg) {

 log.Printf("[Wildcard] %s", string(m.Data))

 })

 for range time.NewTicker(1 * time.Second).C {

 err := nc.Publish("hello", []byte("hello

world"))

 if err != nil {

 log.Printf("Error: %s", err)

 }

 }

}

 Event Callbacks
As the clients handle the protocol asynchronously, there are a number of

events callbacks on which we can rely in order to be aware of what is going

on with the NATS connection.

Most clients offer at least asynchronous event callbacks for when a

connection is disconnected, reconnected, and closed, plus callbacks to

handle asynchronous events. Newer clients (and if connected to newer

NATS Servers) also provide a callback to be invoked when a server joins

the NATS cluster. Listing 3-42 shows an example of the latest version of the

Go client setting callbacks for all possible events.

ChaptER 3 thE NatS CliENtS

81

Listing 3-42. Example Event Callbacks from the Client

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL,

 nats.DisconnectHandler(func(nc *nats.Conn) {

 log.Printf("Disconnected!\n")

 }),

 nats.ReconnectHandler(func(nc *nats.Conn) {

 log.Printf("Reconnected to %v!\n",

nc.ConnectedUrl())

 }),

 nats.ClosedHandler(func(nc *nats.Conn) {

 log.Printf("Connection closed. Reason:

%q\n", nc.LastError())

 }),

 nats.DiscoveredServersHandler(func(nc *nats.

Conn) {

 log.Printf("Server discovered\n")

 }),

 nats.ErrorHandler(func(

 _ *nats.Conn,

 _ *nats.Subscription,

 err error,

) {

ChaptER 3 thE NatS CliENtS

82

 log.Printf("Async Error: %s", err)

 }),

)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("hello", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 for range time.NewTicker(1 * time.Second).C {

 err := nc.Publish("hello", []byte("hello

world"))

 if err != nil {

 log.Printf("Error: %s", err)

 }

 }

}

 Using Close
The Close API terminates the connection to NATS forever, never trying

to reconnect again. If the client had been connected to a NATS Server

and Close is called, then it will reach the CLOSED state, after which the

client will not be able to reconnect further. Once Close is called, all API

commands from the client will fail with a nats: connection closed error

(see Listing 3-43).

ChaptER 3 thE NatS CliENtS

83

Listing 3-43. Using Close to Wrap Up Connection to NATS

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 for i := 0; i < 10; i++ {

 nc.Publish("greeting", []byte("hello world!!!"))

 }

 nc.Flush()

 // Terminate connection to NATS

 nc.Close()

 // Error: nats: connection closed

 err = nc.Publish("greeting", []byte("hello world!!!"))

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 runtime.Goexit()

}

ChaptER 3 thE NatS CliENtS

84

When calling Close, the NATS clients, before terminating the

connection, also try to flush anything that was in the internal pending

buffer before terminating the connection. If the NATS client is used in a

batch-like program where some data is published and then stops running,

it is recommended that you use Close to gracefully close the NATS

connection and flush any data that was pending before exiting.

 Summary
In this chapter, we saw some of the important usability aspects to

consider about the NATS clients and how they behave, so we should

have better foundations for the next chapters, where we will be building

a sample application using the Go client. Before tackling that, we take a

closer look at the features from the server and then look at its clustering

implementation in order to achieve high availability.

ChaptER 3 thE NatS CliENtS

85© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6_4

CHAPTER 4

Setting Up NATS
In Chapter 2, we saw that it is fairly straightforward to get a NATS Server

up and running, as there are not many knobs required when we’re just

sticking to the defaults.

In this chapter, we will take a further look at the different configuration

parameters from the server, both from the command line and as part of the

custom configuration file format from the server.

Furthermore, the NATS team provides binaries for most of the popular

OS architectures on each release, as well as curating official images for

Docker. This makes it easier to work with container orchestration systems.

We also cover how Docker works in this chapter.

 Server Configuration
The NATS Server takes little configuration and has good defaults overall,

so not a lot is required to configure it. The server can be configured just

by using the command line, which is useful in cloud-native deployments

and container orchestration systems, where it is common to just set all the

options inline as part of a manifest or by using a configuration file. As it is

with most programs, you can see a list of all the available options via the -h

or --help flag (shown in Listing 4-1).

86

Listing 4-1. Help Message from gnatsd

$ gnatsd --help

Usage: gnatsd [options]

Server Options:

 -a, --addr <host> Bind to host address (default:

0.0.0.0)

 -p, --port <port> Use port for clients (default:

4222)

 -P, --pid <file> File to store PID

 -m, --http_port <port> Use port for http monitoring

 -ms,--https_port <port> Use port for https monitoring

 -c, --config <file> Configuration file

To configure the server by using a configuration file, we can use the -c,

--config flag. Listing 4-2 shows how to modify the port used by the clients

to connect using the configuration file.

Listing 4-2. Using a Config File from gnatsd

cat << EOF > /tmp/nats.conf

listen = 0.0.0.0:4333

Disable showing time in the logs

logtime = false

EOF

$ gnatsd --config /tmp/nats.conf

[41594] [INF] Starting nats-server version 1.1.0

[41594] [INF] Listening for client connections on 0.0.0.0:4333

[41594] [INF] Server is ready

Chapter 4 Setting Up natS

87

Keep in mind that the options set in the command line override

anything that is present in the configuration file. Listing 4-3 shows how

the command-line option value -p 4444 overrides the value from the

configuration file, which is 4333.

Listing 4-3. Using a Config File from gnatsd

cat << EOF > /tmp/nats.conf

listen = 0.0.0.0:4333

Disable showing time in the logs

logtime = false

EOF

$ gnatsd -p 4444 --config /tmp/nats.conf

[41594] [INF] Starting nats-server version 1.1.0

[41594] [INF] Listening for client connections on 0.0.0.0:4444

[41594] [INF] Server is ready

NATS has its own custom configuration format, which is inspired

in part by the configuration format from Nginx and a bit by JSON as

well (it is actually a superset of JSON, although unlike JSON, it does

support comments). You may recognize some of these ideas from other

configuration formats projects, such as the UCL configuration format

(https://github.com/vstakhov/libucl) or HCL from Hashicorp

(https://github.com/hashicorp/hcl), though the style from the

configuration format from NATS Server predates both of those referenced

implementations. It was introduced circa 2012. You can find more about

the syntax of the configuration file in the section at the end of this chapter.

In the next section, we look at each of the knobs exposed by the

server and show how to configure them via the command line and the

configuration file.

Chapter 4 Setting Up natS

https://github.com/vstakhov/libucl
https://github.com/hashicorp/hcl

88

 Exposed Ports
There are three main ports that a production gnatsd server will expose:

the port to which clients will be connecting, the port used for clustering,

and the monitoring port. Figure 4-1 shows a three-node cluster to which

clients are connecting on port 4222, nodes adding each other as peers by

using port 6222, and also an HTTP client fetching metrics by connecting to

port 8222.

Figure 4-1. Ports used by gnatsd

By default, the client will only be listening for clients connecting on

port 4222 (see Listing 4-4). The Docker image differs a bit here and exposes

all these ports; see more on that in the Docker section in this chapter.

Chapter 4 Setting Up natS

89

Listing 4-4. Starting gnatsd with the Default Options

$ gnatsd

[42532] 2018/03/26 20:37:09.142239 [INF] Starting nats-server

version 1.1.0

[42532] 2018/03/26 20:37:09.142545 [INF] Listening for client

connections on 0.0.0.0:4222

[42532] 2018/03/26 20:37:09.142555 [INF] Server is ready

The port can be customized with the -p (or --port) flag. By default,

it will bind to 0.0.0.0, but this can be overridden via -a (or --addr).

Listing 4-5 shows how to bind the server to localhost only on a different port.

Listing 4-5. Customizing Port and Bind from the Server

$ gnatsd -p 4333 -a 127.0.0.1

[42685] 2018/01/21 20:53:00.028903 [INF] Starting nats-server

version 1.0.4

[42685] 2018/01/21 20:53:00.029384 [INF] Listening for client

connections on 127.0.0.1:4333

[42685] 2018/01/21 20:53:00.029398 [INF] Server is ready

The monitoring port exposes an HTTP endpoint from which it is possible

to gather data about the running stats from the server. By default, it is not

exposed (although it is in the NATS Docker image). We can set a port for the

monitoring endpoint to use via the -m (or --http_port) flag (see Listing 4-6).

Listing 4-6. Setting up the monitoring endpoint from the server

$ gnatsd –logtime=false -m 8222 &

[43310] [INF] Starting nats-server version 1.0.4

[43310] [INF] Starting http monitor on 0.0.0.0:8222

[43310] [INF] Listening for client connections on 0.0.0.0:4222

[43310] [INF] Server is ready

Chapter 4 Setting Up natS

90

$ curl http://127.0.0.1:8222/varz

{

"server_id": "rvhJFnzYVL6a3tBk96lf65",

...

 "start": "2018-01-21T21:23:31.343454-08:00",

 "now": "2018-01-21T21:24:46.933616-08:00",

 "uptime": "1m15s",

 "mem": 8962048,

 "cores": 4,

 "cpu": 0,

 "connections": 0,

 "total_connections": 0,

 "routes": 0,

 "remotes": 0,

 "in_msgs": 0,

 "out_msgs": 0,

 "in_bytes": 0,

 "out_bytes": 0,

 "slow_consumers": 0,

 "subscriptions": 0,

 "http_req_stats": {

 "/": 1,

 "/connz": 0,

 "/routez": 0,

 "/subsz": 0,

 "/varz": 1

 }

}

Clustering will be covered in more detail in the next chapter, but for

now just remember that it can be configured with the --cluster flag. In

Listing 4-7, you can see some of the options that can be set for clustering

Chapter 4 Setting Up natS

91

in the command line, although it is more convenient to configure these via

the configuration file.

Listing 4-7. Clustering Options from the Server

Cluster Options:

 --routes <rurl-1, rurl-2> Routes to solicit and

connect

 --cluster <cluster-url> Cluster URL for solicited

routes

 --no_advertise <bool> Advertise known cluster

IPs to clients

 --connect_retries <number> For implicit routes,

number of connect retries

We must pass the full URI with the scheme in order to configure the

listening port from the process (see Listing 4-8).

Listing 4-8. Setting the Clustering Port from the Server

$ gnatsd -m 8222 --cluster nats://127.0.0.1:6222

[43397] 2018/01/21 21:27:38.505490 [INF] Starting nats-server

version 1.0.4

[43397] 2018/01/21 21:27:38.505770 [INF] Starting http monitor

on 0.0.0.0:8222

[43397] 2018/01/21 21:27:38.505828 [INF] Listening for client

connections on 0.0.0.0:4222

[43397] 2018/01/21 21:27:38.505835 [INF] Server is ready

[43397] 2018/01/21 21:27:38.506120 [INF] Listening for route

connections on 127.0.0.1:6222

Note that the clients and clustering ports can be bound to different IP

addresses. Listing 4-9 shows that it is possible to use one network interface

for the traffic from the clients (--addr) and a different one for the internal

traffic for clustering (--cluster).

Chapter 4 Setting Up natS

92

Listing 4-9. Customizing clustering and bind from server

gnatsd --addr 10.0.1.1 --cluster nats://192.168.1.1:6222

We can also set the address the server should be binding to in the

configuration file via the listen configuration option, although the

address bound to the client part dictates which IP address the monitoring

is going to be using if it’s activated. In Listing 4-10, the server will bind to

the 10.0.1.1 IP address so that clients are able to connect, but internally

the cluster will be using a different IP address.

Listing 4-10. Binding Clients and Clustering to Different Interfaces

listen = 10.0.1.1:4222

http_port = 8222

cluster {

 listen = 192.168.1.1:6222

}

We will be taking a further look at how to configure clustering in the

next chapter and learn more about monitoring in another chapter.

There is also another port that the server could potentially be exposed to

by enabling the –profiler options for the server, as shown in Listing 4-11.

Listing 4-11. Setting a Profiling Port from the Server

$ gnatsd --logtime=false --profile 9090 &

[43927] [INF] Starting nats-server version 1.0.4

[43927] [INF] profiling port: 9090

[43927] [INF] Listening for client connections on 0.0.0.0:4222

[43927] [INF] Server is ready

Chapter 4 Setting Up natS

93

$ go tool pprof http://127.0.0.1:9090/debug/pprof/goroutine

Fetching profile over HTTP from http://127.0.0.1:9090/debug/

pprof/goroutine

Saved profile in /Users/wallyqs/pprof/pprof.goroutine.002.pb.gz

Type: goroutine

Time: Jan 21, 2018 at 9:42pm (PST)

Entering interactive mode (type "help" for commands, "o" for

options)

(pprof) top

Showing nodes accounting for 9, 100% of 9 total

...

Note that this intended to be mostly for development and is not

recommended for a production setting (other than to possibly help a root

cause investigation if needed), so it is disabled by default. You can find

more about how to use the profiler port to gather internal runtime statistics

from the server by checking the usage guide from the pprof tool in the Go

documentation at https://golang.org/pkg/runtime/pprof/.

Table 4-1 lists all the ports covered in this section.

Table 4-1. Default Ports Used by NATS and Configuration Opts

Ports NATS Server Docker CLI Option Config File

Clients 4222 4222 -p, –port PORT listen:

0.0.0.0:PORT

Clustering - 6222 –cluster

nats://0.0.0.0:PORT

cluster {

listen:

0.0.0.0:PORT}

Monitoring - 8222 -m, –http_port PORT http_port: PORT

profiling - - –profile prof_port: PORT

Chapter 4 Setting Up natS

https://golang.org/pkg/runtime/pprof/

94

 Server Logging
The server will be silent by default, and most of the errors reported in the

logs will be related to error cases (see Listing 4-12).

Listing 4-12. Logging Options from the Server

Logging Options:

 -l, --log <file> File to redirect log output

 -T, --logtime Timestamp log entries

(default: true)

 -s, --syslog Log to syslog or windows

event log

 -r, --remote_syslog <addr> Syslog server addr (udp://

localhost:514)

 -D, --debug Enable debugging output

 -V, --trace Trace the raw protocol

 -DV

For example, if someone accidentally makes an HTTP request to the

client port instead of the monitoring port, this will be reported in the

server logs as a parsing error. An example of this is found in Listing 4-13.

Listing 4-13. Using the Wrong Client to Connect to NATS

[26934] [INF] Starting nats-server version 1.0.4

[26934] [INF] Listening for client connections on 0.0.0.0:4222

[26934] [INF] Server is ready

[26934] [ERR] 127.0.0.1:63941 - cid:1 - Error reading from

client: Client Parser ERROR, state=0, i=0: proto='"GET /

HTTP/1.1\r\nHost: 127.0.0.1:"...'

The verbosity of the server logs can be changed by using the flags

-D and -V, which are the debug and trace options respectively, in the

configuration file. See Listing 4-14.

Chapter 4 Setting Up natS

95

Listing 4-14. Activating Debugging and Tracing in the

Configuration

listen = 0.0.0.0:4222

debug = true

trace = true

By using the -D and -V flags, we can elevate the logging level of the

server. It should be noted that there is a significant performance hit for

doing this, so it’s only recommended when you’re debugging and should

not be used in production.

These flags can also be combined for convenience (-DV). Using both

flags, we now get a bit more output, with the server logging the version of

Go and an autogenerated server ID to identify the server. See Listing 4-15.

Listing 4-15. Combining Debugging and Tracing Using the –DV

Flag

$ gnatsd -DV

[46498] 2018/01/21 21:59:05.214042 [INF] Starting nats-server

version 1.0.4

[46498] 2018/01/21 21:59:05.214252 [DBG] Go build version

go1.9.2

[46498] 2018/01/21 21:59:05.214591 [INF] Listening for client

connections on 0.0.0.0:4222

[46498] 2018/01/21 21:59:05.214610 [DBG] Server id is

ubUB792DgUNtQ3nQ6JYcg1

[46498] 2018/01/21 21:59:05.214616 [INF] Server is ready

[46498] 2018/01/21 22:09:21.805622 [DBG] 127.0.0.1:49364 -

cid:1 - Client connection created

Now, whenever a client connects to the server, it will appear in the

server logs, as shown in Listing 4-16.

Chapter 4 Setting Up natS

96

Listing 4-16. Combining Debugging and Tracing Using the –DV

Flag

$ gnatsd -DV

...

[46498] 2018/01/21 22:09:21.805622 [DBG] 127.0.0.1:49364 -

cid:1 - Client connection created

When a message is published or forwarded by the server, it will be

logged as well, as shown in Listing 4-17.

Listing 4-17. Tracing Output from the Server

$ gnatsd -DV

[46543] 2018/01/21 22:09:21.805622 [DBG] 127.0.0.1:49364 -

cid:1 - Client connection created

[46543] 2018/01/21 22:11:21.815683 [DBG] 127.0.0.1:49364 -

cid:1 - Client Ping Timer

[46543] 2018/01/21 22:11:21.815817 [TRC] 127.0.0.1:49364 -

cid:1 - <<- [PING]

[46543] 2018/01/21 22:11:33.501252 [TRC] 127.0.0.1:49364 -

cid:1 -->> [SUB hello 90]

[46543] 2018/01/21 22:11:33.501319 [TRC] 127.0.0.1:49364 -

cid:1 - <<- [OK]

[46543] 2018/01/21 22:11:35.193158 [TRC] 127.0.0.1:49364 -

cid:1 -->> [PUB hello 5]

[46543] 2018/01/21 22:11:35.821924 [TRC] 127.0.0.1:49364 -

cid:1 -->> MSG_PAYLOAD: [world]

[46543] 2018/01/21 22:11:35.821954 [TRC] 127.0.0.1:49364 -

cid:1 - <<- [OK]

[46543] 2018/01/21 22:11:35.821985 [TRC] 127.0.0.1:49364 -

cid:1 - <<- [MSG hello 90 5]

Chapter 4 Setting Up natS

97

The logging time can be deactivated in the client by setting logtime to

false, as shown in Listing 4-18.

Listing 4-18. Disabling Log Time from the Server

$ gnatsd --logtime=false -DV

[46452] [INF] Starting nats-server version 1.0.4

[46452] [DBG] Go build version go1.9.2

[46452] [INF] Listening for client connections on 0.0.0.0:4222

[46452] [DBG] Server id is fL74Kpq6HQcVXesLpnTeyb

[46452] [INF] Server is ready

 Logging Outputs
The server logs its output to stderr by default, but it is also possible to

configure a file or syslog as the logging output. To use a file to log the

output, the --log flag can be specified with a path to the logging file

(shown in Listing 4-19).

Listing 4-19. Logging into an Output File

$ gnatsd --log /var/log/nats.log

For syslog support, both local and remote syslog is supported. We can

log locally into syslog, as shown in Listing 4-20.

Listing 4-20. Logging into an Output File via syslog

$ gnatsd --syslog

$ tail -f /var/log/system.log

Jan 21 22:26:34 gnatsd[46864]: Listening for client connections

on 0.0.0.0:4222

Jan 21 22:26:34 gnatsd[46864]: Server is ready

Chapter 4 Setting Up natS

98

Jan 21 22:26:37 gnatsd[46864]: 127.0.0.1:49425 - cid:1 -->>

[PUB hello 5]

Jan 21 22:26:38 gnatsd[46864]: 127.0.0.1:49425 - cid:1 -->>

MSG_PAYLOAD: [world]

...

These features are there for completeness and can be useful, but it is

a more recommended practice to delegate this task to another system.

For example, if daemonized, then something like systemd ought to be

managing persisting the logs onto a file, and if we are running NATS in a

container orchestration system such as Kubernetes or Cloud Foundry, the

best practice is to log to stdout/stderr (see https://12factor.net/logs)

and delegate to the platform how to handle logging.

 Configuring Authorization
Using the command line, it is possible to set a general pair of credentials

for users to connect to the server, or to use an auth token (see Listing 4-21

and Listing 4-22).

Listing 4-21. Auth Options

Authorization Options:

 --user <user> User required for connections

 --pass <password> Password required for connections

 --auth <token> Authorization token required for

connections

Listing 4-22. Auth Options from the Command Line

$ gnatsd -user fuga -pass hoge

Chapter 4 Setting Up natS

https://12factor.net/logs

99

Now when the client tries to publish a message before specifying

the credentials, it will be disconnected by the server with an error

(see Listing 4-23).

Listing 4-23. Resulting Error from the Server Protocol

$ telnet 127.0.0.1 4222

INFO {"server_id":"qEWnRxHCP4ipPzQ01WYCRY",...,

"max_payload":1048576}

pub hello 5

-ERR 'Authorization Violation'

The credentials can also be set in the configuration file by using the

authorization stanza (see Listing 4-24).

Listing 4-24. Setting Authorization Credentials using a

configuration file

listen = 0.0.0.0:4222

authorization {

 username = hoge

 password = fuga

}

Once the credentials are set, a client can use the CONNECT command

with a payload containing the credentials in order to establish a

connection (see Listing 4-25).

Listing 4-25. Establishing a Connection

$ gnatsd --config code/client-auth.conf &

$ telnet 127.0.0.1 4222

INFO {"server_id":"UWlg2Qa36XdhNx9wY7e0tS",...,

"max_payload":1048576}

Chapter 4 Setting Up natS

100

CONNECT {"user":"hoge","pass":"fuga"}

+OK

pub hello 5

world

+OK

You can find out how to set the authentication credentials by reading

the NATS clients section in Chapter 3.

 Extending the Authorization Deadline
If a client fails to send a CONNECT protocol with a payload containing the

correct authentication credentials before the authorization timeout (which

is two seconds by default), it will be disconnected (see Listing 4-26).

Listing 4-26. Setting Authorization Credentials via the command

line

$ gnatsd -user hoge -pass fuga

[50383] 2018/01/22 00:31:50.762676 [INF] Starting nats-server

version 1.0.4

[50383] 2018/01/22 00:31:50.762976 [INF] Listening for client

connections on 0.0.0.0:4222

[50383] 2018/01/22 00:31:50.762986 [INF] Server is ready

$ telnet 127.0.0.1 4222

INFO {"server_id":"m25WKFnqy1LtQvd0sEZJnV",...,"max_

payload":1048576}

-ERR 'Authorization Timeout'

There might be cases when network latency induces a client to time

out when connecting. In those cases, the authorization deadline can be

extended via the configuration file, as shown in Listing 4-27.

Chapter 4 Setting Up natS

101

Listing 4-27. Extending the Authorization Timeout Deadline

listen = 0.0.0.0:4222

authorization {

 username = hoge

 password = fuga

 timeout = 5

}

 TLS Options
We learn in more detail how to secure a NATS installation and how to use

TLS in a later chapter. Like with the clustering settings, TLS can be set via

the command line (see Listing 4-28), but it’s more convenient to configure

it via the config file.

Listing 4-28. TLS Configuration Options

TLS Options:

 --tls Enable TLS, do not verify

clients (default: false)

 --tlscert <file> Server certificate file

 --tlskey <file> Private key for server

certificate

 --tlsverify Enable TLS, verify client

certificates

 --tlscacert <file> Client certificate CA for

verification

Chapter 4 Setting Up natS

102

 Tuning the Defaults
Out of the box, the server has good defaults that work for most

general cases, although sometimes we’ll need to tune them in order

to accommodate our use case. In this section, you find a list of these

advanced settings, which can only be configured via the configuration file.

 Increasing the Maximum Payload Size
Since the start of the NATS project, a single MB has been kept as the

maximum payload size that a client can send at once. Ideally, this setting

should be kept as is with the use of a chunking strategy client-side

(or another type of plumbing for larger blobs of data), but the server

does allow us to extend this payload and it still works pretty well.

Listing 4-29 shows an example of increasing the limit from the server

to 5MB.

Listing 4-29. The Max Payload Configuration Option

listen = 0.0.0.0:4444

max_payload = 5242880

Now in the INFO message on connect, the server will announce the

higher limit. Sending messages less than that limit will not result in -ERR

'Maximum Payload Violation' protocol errors (see Listing 4-30).

Listing 4-30. The Max Payload Configuration Option Can Be

Extended

$ gnatsd -c code/maximum-payload.conf

[48380] 2018/01/21 23:34:19.302493 [INF] Starting nats-server

version 1.0.4

Chapter 4 Setting Up natS

103

[48380] 2018/01/21 23:34:19.303170 [INF] Listening for client

connections on 0.0.0.0:4444

[48380] 2018/01/21 23:34:19.303186 [INF] Server is ready

$ telnet 127.0.0.1 4444

INFO {"server_id":"0BJ5V5mbTrGjOB1Df9HTN7",...,

"max_payload":5242880}

pub hello 1048579

...

 Extending the Deadline for Slow Consumers
Handling
By default, a client is considered to be a slow consumer when the server

has to send messages to it but the client is not draining them from the

socket in the two-second deadline.

This setting can be tuned by modifying write_deadline in the server,

using a time duration string. Listing 4-31 shows how to extend it to detect a

slow consumer that takes more than five seconds.

Listing 4-31. Extending the Slow Consumer Deadline

listen = 0.0.0.0:4444

write_deadline = "5s

This can affect performance in the server overall when there are slow

consumers in the system. The server will not start sending bytes to the next

client until it is done sending to the slow consumer, thus slow customers

can increase the overall tail latencies in the credentials.

Chapter 4 Setting Up natS

104

 Tuning the Keepalive Interval
Sometimes, we may want to change how aggressive the keepalive

PING/PONG interval is when detecting unhealthy clients. There are two

options in the configuration file that can help with this—ping_max for

tuning how many PONG replies can be missed and ping_interval, which

dictates how often the server will be health checking (see Listing 4-32).

Listing 4-32. Customizing the Keepalive Interval

listen = 0.0.0.0:4444

Disconnect after the 3rd PONG reply is missed

ping_max = 3

Ping every 30s

ping_interval = 30

 Tuning the Maximum Number of Connections
The maximum number of connections by default in the server is 65,536,

but it can be decreased to limit the number of connections that we may

want to have in the server at once. For the purposes of an example, let’s

limit this to a single connection (see Listing 4-33).

Listing 4-33. Setting the Max Connections to One

listen = 0.0.0.0:4444

Limit to a single connection,

max_connections = 1

Now, when the second connection is being made, it will fail with a

protocol error, as shown in Listing 4-34.

Chapter 4 Setting Up natS

105

Listing 4-34. Failing with a Protocol Error

$ telnet 127.0.0.1 4222

INFO {"server_id":"opUbltMuhTu18Mdv6ywoW8",...,

"max_payload":1048576}

-ERR 'Maximum Connections Exceeded'

 Server Reloading
Starting from the v1.0.0 release from the server, it now supports for on-

the- fly reconfiguration by sending a HUP signal to the server process when

using a configuration file.

 Reloading to Activate Tracing On-the-Fly
For example, we can start the server without verbose logging enabled

in the configuration file, as shown in Listing 4-35, and then start it

(see Listing 4-36).

Listing 4-35. Customizing Debug and Trace Logging Levels using a

Config File

listen = 0.0.0.0:4222

debug = false

trace = false

Listing 4-36. Starting server using config file that can be reloaded

$ gnatsd -c code/reload-trace.conf &

[50792] [INF] Listening for client connections on 0.0.0.0:4222

[50792] [INF] Server is ready

...

Chapter 4 Setting Up natS

106

Then, the file is modified to activate tracing with a new configuration,

as shown Listing 4-37.

Listing 4-37. Enabling Debug and Trace options in Config File

listen = 0.0.0.0:4222

debug = true # false

trace = true # false

After sending the HUP signal to the process, the new connections in the

cluster will have their messages traced (see Listing 4-38).

Listing 4-38. Reloading the Logging Options via HUP signal

...

[50792] 2018/01/22 00:38:24.098814 [INF] Reloaded: trace = true

[50792] 2018/01/22 00:38:24.098848 [INF] Reloaded: debug = true

[50792] 2018/01/22 00:38:24.098879 [INF] Reloaded server

configuration

$ telnet 127.0.0.1 4222

pub hello 5

world

+OK

...

[50792] [DBG] 127.0.0.1:50279 - cid:1 - Client Ping Timer

[50792] [DBG] 127.0.0.1:50285 - cid:4 - Client connection

created

[50792] [TRC] 127.0.0.1:50285 - cid:4 -->> [PUB hello 5]

[50792] [TRC] 127.0.0.1:50285 - cid:4 -->> MSG_PAYLOAD: [world]

[50792] [TRC] 127.0.0.1:50285 - cid:4 - <<- [OK]

Chapter 4 Setting Up natS

107

 Reducing the Number of Live Connections
The number of maximum connections can be changed on demand as well

by sending a HUP signal to the process. One consequence of this is that if

clients are already connected to the system, a number of them will have

their connection reset.

In another aggressive example, let’s say that we limited the number of

clients to be 10 and then change it to 1 (see Listing 4-39 and Listing 4-40).

Listing 4-39. Configuring Max Number of Connections using a

Config File

listen = 0.0.0.0:4222

max_connections = 10

Listing 4-40. Decreasing Max Connections to a single one before

reloading

listen = 0.0.0.0:4222

max_connections = 1 # 10

Now when sending HUP, it will pick up the changes and randomly

disconnect some of the clients in order to have as many as the

max_connections option dictates (see Listing 4-41).

Listing 4-41. Reloading Max Connections via HUP signal

$ sudo kill -HUP 50994

$ gnatsd -c code/max-conns-1.conf

[50994] [INF] Starting nats-server version 1.0.4

[50994] [INF] Listening for client connections on 0.0.0.0:4222

[50994] [INF] Server is ready

[50994] [ERR] 127.0.0.1:50303 - cid:1 - Maximum Connections

Exceeded

Chapter 4 Setting Up natS

108

[50994] [ERR] 127.0.0.1:50304 - cid:2 - Maximum Connections

Exceeded

[50994] [INF] Closed 2 connections to fall within max_

connections

[50994] [INF] Reloaded: max_connections = 1

[50994] [INF] Reloaded server configuration

 Running NATS in Docker
The NATS team maintains an official Docker image, which makes it easier

to deploy on container orchestration systems as well as different OS

architectures (container images for Windows and ARM are also available).

Unlike bare gnatsd, the official Docker image binds by default all the

common ports from the server, so it is only left to expose them via the

Docker tool (v17.12.0-ce as of this writing) Listing 4-42 shows this process.

Listing 4-42. Running NATS in Docker

$ docker run -p 4222:4222 -p 8222:8222 -p 6222:6222 nats

[1] 2018/01/19 21:43:49.034896 [INF] Starting nats-server

version 1.0.4

[1] 2018/01/19 21:43:49.035076 [INF] Starting http monitor on

0.0.0.0:8222

[1] 2018/01/19 21:43:49.035121 [INF] Listening for client

connections on 0.0.0.0:4222

[1] 2018/01/19 21:43:49.035125 [INF] Server is ready

[1] 2018/01/19 21:43:49.035314 [INF] Listening for route

connections on 0.0.0.0:6222

Chapter 4 Setting Up natS

109

The -P option in Docker exposes all the ports and maps them to

a random port, so that could be done as well for convenience. In the

snippet in Listing 4-43, -d is used to detach the container and run it in the

background.

Listing 4-43. Detaching the Container and Running It in the

Background

$ docker run -P -d nats

e626b0323dc033e5b78994c00e3120e86e659c44b1687da00e0bc46f5648239f

$ docker port e626b0323dc033e5b78994

4222/tcp -> 0.0.0.0:32792

6222/tcp -> 0.0.0.0:32791

8222/tcp -> 0.0.0.0:32790

$ docker logs e626b0323dc033e5b78994

As you can see, the gnatsd binary becomes the PID 1 within the

container. The official NATS Docker image is built using a FROM scratch

container with a multistep build process, which makes it a very lightweight

image and fast to pull. However, it is not possible to use sh/bash based

custom health checks in the container as some container orchestration

systems requite.

 Summary
In this chapter, we went through some of the most relevant parts to

consider when configuring a NATS Server. You need to keep these in mind

when preparing to set up NATS in your production environment.

Keep in mind that the most up-to-date guide on how to configure the

NATS Server can always be found in the README from the gnatsd repository

(https://github.com/nats-io/gnatsd/blob/master/README.md).

Chapter 4 Setting Up natS

https://github.com/nats-io/gnatsd/blob/master/README.md

111© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6_5

CHAPTER 5

High Availability
with NATS Clustering
NATS features a clustering mode that helps improve the reliability of the

service by making it more tolerant to server failures. If the server that a

client is connected to fails for some reason or goes away, a cluster-aware

NATS client can then reconnect to any other available server in the cluster.

In this chapter, we take a look at few examples of how to set up a

cluster in different scenarios and share considerations on how to make the

best use of the clustering mode from NATS.

 The NATS Cluster Network Topology
A group of NATS Servers form a cluster by having them all connected to

each other. It is a full-mesh one-hop network setup, so a client can be

connected to any of the nodes in the cluster. The server to which they are

connected will then be responsible of forwarding the message to the other

nodes in the cluster according to the interest graph. Figure 5-1 shows a

sample topology of a NATS cluster setup consisting of three nodes and a

pair of clients communicating and sending messages on a hello subject

without both clients being connected to the same NATS Server.

112

Upon server failure, the available NATS clients will by default

reconnect to one of the other serves in the pool randomly. In Figure 5-2,

one of the NATS servers has failed, so the client that was connected to it

has failed over to another one of the servers that is available in the pool.

Figure 5-1. A three-node NATS cluster

Figure 5-2. Recovering from a server failure

Chapter 5 high availability with NatS CluSteriNg

113

The clustering mode can greatly help NATS servers sharing the load, as

a message will only hop from one server to another following the interest

graph.

Something to keep in mind though is that it is a full-mesh topology,

which means the more servers there are in the cluster, the larger the

number of connections and amount of traffic that goes through the

network. Because of the full-mesh topology, a 10-node cluster requires 45

extra TCP connections between the nodes for the sole purpose of routing

the messages to the clients and a 14-node cluster needs almost a hundred

(see Figure 5-3). For this reason, it is recommended for cluster sizes to be

on the small side, with around three to five nodes as part of a cluster.

Figure 5-3. Example NATS cluster topologies

Chapter 5 high availability with NatS CluSteriNg

114

 Configuring a NATS Cluster from the CLI
A simple three-node cluster can be set up from the command line, as

shown in Listing 5-1.

Listing 5-1. Cluster Formation via the Command Line

SERVERS=nats://127.0.0.1:6222,nats://127.0.0.1:6223,na

ts://127.0.0.1:6224

gnatsd -T -p 4222 -cluster nats://127.0.0.1:6222 -routes

$SERVERS &

gnatsd -T -p 4223 -cluster nats://127.0.0.1:6223 -routes

$SERVERS &

gnatsd -T -p 4224 -cluster nats://127.0.0.1:6224 -routes

$SERVERS &

In Listing 5-1, each one of the servers will bind into a different port

from the same machine (taking ports 4222, 4223, and 4224) to prepare

to receive client connections and another port for clustering with the

--cluster flag (using ports 6222, 6223, and 6224). Also, the network

location of each server in the cluster is set explicitly using the --routes flag.

Having successfully started these set of servers, the output would have

been something like what’s shown in Listing 5-2.

Listing 5-2. Cluster Formation Logs

Server #1 starts (pid=52263)

[52263] [INF] Starting nats-server version 1.0.4

[52263] [INF] Listening for client connections on 0.0.0.0:4222

[52263] [INF] Server is ready

[52263] [INF] Listening for route connections on 127.0.0.1:6222

Chapter 5 high availability with NatS CluSteriNg

115

[52263] [INF] 127.0.0.1:51019 - rid:1 - Route connection

created

[52263] [INF] 127.0.0.1:6222 - rid:2 - Route connection created

Server #2 joins (pid=52268)

[52268] [INF] Listening for client connections on 0.0.0.0:4223

[52268] [INF] Server is ready

[52268] [INF] Listening for route connections on 127.0.0.1:6223

[52268] [INF] 127.0.0.1:51024 - rid:3 - Route connection

created

[52263] [INF] 127.0.0.1:51023 - rid:3 - Route connection

created

[52268] [INF] 127.0.0.1:6222 - rid:1 - Route connection created

[52268] [INF] 127.0.0.1:6223 - rid:2 - Route connection created

[52268] [INF] 127.0.0.1:51025 - rid:4 - Route connection

created

[52263] [INF] 127.0.0.1:6223 - rid:4 - Route connection created

Server #3 joins too (52273)

[52273] [INF] Listening for client connections on 0.0.0.0:4224

[52273] [INF] Server is ready

[52273] [INF] Listening for route connections on 127.0.0.1:6224

[52273] [INF] 127.0.0.1:51037 - rid:4 - Route connection

created

[52273] [INF] 127.0.0.1:6223 - rid:3 - Route connection created

[52273] [INF] 127.0.0.1:6224 - rid:1 - Route connection created

[52273] [INF] 127.0.0.1:6222 - rid:2 - Route connection created

[52263] [INF] 127.0.0.1:51038 - rid:5 - Route connection

created

[52268] [INF] 127.0.0.1:51039 - rid:5 - Route connection

created

[52263] [INF] 127.0.0.1:6224 - rid:6 - Route connection created

Chapter 5 high availability with NatS CluSteriNg

116

[52273] [INF] 127.0.0.1:51040 - rid:5 - Route connection

created

[52273] [INF] 127.0.0.1:51041 - rid:6 - Route connection

created

Cluster fully assembled now

[52268] [INF] 127.0.0.1:6224 - rid:6 - Route connection created

Listing 5-3 shows that when connecting to the first node in the cluster

via telnet, we can find that there is now an extra connect_urls field in the

initial INFO message.

Listing 5-3. Cluster Formation via the Command Line

$ telnet 127.0.0.1 4222

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

INFO {...,"connect_urls":["192.168.1.9:4223","192.168.1.9:4224"

]}

This field is indicating to the client that there are two other servers in

the cluster that are available to connect in case there would be a failure

with the current server. Let’s leave that telnet client connected and also

make a wildcard subscription to receive all the messages in the cluster

(see Listing 5-4)

Listing 5-4. Subscribing with Full Wildcard to Cluster

$ telnet 127.0.0.1 4222

...

SUB > 1

+OK

Chapter 5 high availability with NatS CluSteriNg

117

Next, let’s connect to server 3 in the cluster using the Go client

(see Listing 5-5).

Listing 5-5. Connecting to a NATS Cluster

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4224")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 log.Println("All Servers:", nc.Servers())

 log.Println("Discovered Servers:",

nc.DiscoveredServers())

 nc.Subscribe("hi", func(m *nats.Msg) {

 log.Println("[Received] ", string(m.Data))

 })

 nc.Publish("hi", []byte("hello world"))

 runtime.Goexit()

}

Even though we only configured a single endpoint, we can see that

the client is aware that there is another extra pair of servers to which it can

connect. This new pair of servers were picked up implicitly from the initial

Chapter 5 high availability with NatS CluSteriNg

118

INFO message when the client connected to the server. Modern NATS

clients have this capability. In Listing 5-6, we can see that the client is now

aware of the other accessible endpoints in the cluster.

Listing 5-6. Client Aware of Other Servers in the Cluster

$ go run code/implicit-servers.go

2018/01/22 04:00:03 Available Servers: [nats://127.0.0.1:4224

nats://192.168.1.9:4223 nats://192.168.1.9:4222]

2018/01/22 04:00:03 Discovered Servers:

[nats://192.168.1.9:4223 nats://192.168.1.9:4222]

Then in the telnet session that was started at Listing 5-4, a single

hello world message would have been received, even though the clients

are not connected to the same NATS server. Listing 5-7 shows how how the

telnet client received a message on the hi subject.

Listing 5-7. Cluster Formation via the Command Line

$ telnet 127.0.0.1 4222

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

INFO {...,"connect_urls":["192.168.1.9:4223","192.168.1.9:4224"

]}

sub > 1

+OK

MSG hi 1 11

hello world

Next, let’s kill the server to which the Go client is connected

(see Listing 5-8).

Chapter 5 high availability with NatS CluSteriNg

119

Listing 5-8. Killing a Server in the Cluster

kill -TERM 52273

This would have triggered the reconnection logic from the Go client,

and then it will failover to another server. If a message is published by

the telnet session, it will still be received since the client has already

reconnected to another node in the cluster (see Listing 5-9).

Listing 5-9. Killing a Server in the Cluster

$ telnet 127.0.0.1 4224

PUB hi 12

hello world!

+OK

Go Client

2018/01/22 04:16:16 [Received] hello world!

By default, the NATS Server uses this autodiscovery feature to locate

new servers in the cluster. For cloud-native scenarios, this is very handy,

since we might not know all the network addresses from the nodes

beforehand, so it would be more convenient to gradually increase the size

of the cluster by having nodes join the cluster.

 Setting Up Clustering via the
Configuration File
One of the things that was left pending in the previous chapter is to cover

more in-depth how to configure clusters using the configuration file. In

Listings 5-10, 5-11, and 5-12 show a sample configuration of a three-node

cluster using the cluster stanza from the configuration file. We split these

into three different files since we need one per server in this case.

Chapter 5 high availability with NatS CluSteriNg

120

Listing 5-10. Configuring to a Three-Node NATS Cluster (Server 1)

server-1.conf

listen = 0.0.0.0:4222

cluster {

 listen = 0.0.0.0:6222

 routes = [

 nats://127.0.0.1:6223

 nats://127.0.0.1:6224

]

}

Listing 5-11. Configuring to a Three-Node NATS Cluster (Server 2)

server-2.conf

listen = 0.0.0.0:4223

cluster {

 listen = 0.0.0.0:6223

 routes = [

 nats://127.0.0.1:6222

 nats://127.0.0.1:6224

]

}

Listing 5-12. Configuring to a Three-Node NATS Cluster (Server 3)

server-3.conf

listen = 0.0.0.0:4224

cluster {

 listen = 0.0.0.0:6224

Chapter 5 high availability with NatS CluSteriNg

121

 routes = [

 nats://127.0.0.1:6222

 nats://127.0.0.1:6223

]

}

In the routes section, we are defining that there are three nodes in the

cluster explicitly.

 Explicitly Setting a Server Pool in the Client
In the Go client, we can do the same and set all the nodes in the cluster

explicitly rather than via autodiscovery, by passing a comma-separated list

of servers (see Listing 5-13).

Listing 5-13. Setting the Explicit List of a Three-Node NATS Cluster

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 servers := "nats://127.0.0.1:4222,nats://127.0.0.1:

4223,nats://127.0.0.1:4224"

 nc, err := nats.Connect(servers)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

Chapter 5 high availability with NatS CluSteriNg

122

 log.Println("All Servers:", nc.Servers())

 log.Println("Discovered Servers:",

nc.DiscoveredServers())

 nc.Subscribe("hi", func(m *nats.Msg) {

 log.Println("[Received] ", string(m.Data))

 })

 nc.Publish("hi", []byte("hello world"))

 runtime.Goexit()

}

 Disabling Random Reconnection Ordering
By default, the Go client will be connecting to one of the nodes randomly,

but this can be disabled so that the reconnect attempts are tried in order.

We do this by passing the DontRandomize option (see Listing 5-14). Most

available NATS clients implement this helper logic.

Listing 5-14. Keep Ordering for Reconnection in Server Pool

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 servers := "nats://127.0.0.1:4222,nats://127.0.0.1:4223

,nats://127.0.0.1:4224"

 nc, err := nats.Connect(servers, nats.DontRandomize())

Chapter 5 high availability with NatS CluSteriNg

123

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 log.Println("All Servers:", nc.Servers())

 log.Println("Discovered Servers:",

nc.DiscoveredServers())

 nc.Subscribe("hi", func(m *nats.Msg) {

 log.Println("[Received] ", string(m.Data))

 })

 nc.Publish("hi", []byte("hello world"))

 runtime.Goexit()

}

 Bootstrapping a Cluster Using
Autodiscovery
In the previous sections, the cluster has been assembled by setting the list

of nodes explicitly, but it’s also possible to do this using autodiscovery to

join the cluster and share the routes to other nodes. Listing 5-15 shows an

example of a three-node cluster, where they all connect to the first server,

which was started to become a cluster.

Listing 5-15. Using Autodiscovery to Bootstrap a Cluster

gnatsd -T -p 4222 -cluster nats://127.0.0.1:6222 -routes

nats://127.0.0.1:6222 &

gnatsd -T -p 4223 -cluster nats://127.0.0.1:6223 -routes

nats://127.0.0.1:6222 &

gnatsd -T -p 4224 -cluster nats://127.0.0.1:6224 -routes

nats://127.0.0.1:6222 &

Chapter 5 high availability with NatS CluSteriNg

124

Establishing a telnet session, we can see the same result as earlier

(see Listing 5-16). We can perceive the different connect_urls from the

nodes in the cluster.

Listing 5-16. Server Autodiscovery via the INFO Protocol

$ telnet 127.0.0.1 4223

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

INFO {...,"connect_urls":["192.168.1.9:4222","192.168.1.9:4224"

]}

In this case, the first server exposing the 6222 port is becoming a seed

node and the other servers in the cluster will discover the servers by relying

on the seed server. If the seed server node fails, the clients will reconnect to

one of the remaining nodes in the cluster. One limitation from this though

is that if there is a new server that wants to join and the seed server is

unavailable, it will fail to join until the seed server is back again.

 Monitoring a NATS Cluster State
When exposing the monitoring port from the server, it is possible to

inspect the state of the cluster from the perspective of one of the nodes by

making a GET request to /routez (see Listing 5-17). This can be useful for

running a quickly check to determine whether the cluster has been fully

assembled and to debug the configuration further.

Listing 5-17. Routez Data from a Three-Node Cluster

curl http://127.0.0.1:8222/routez

{

 "now": "2018-01-21T17:47:24.626807-08:00",

 "num_routes": 2,

Chapter 5 high availability with NatS CluSteriNg

125

 "routes": [

 {

 "rid": 3,

 "remote_id": "whf2vBGtE1Blm7a7eDbgOh",

 "did_solicit": false,

 "is_configured": false,

 "ip": "127.0.0.1",

 "port": 62223,

 "pending_size": 0,

 "in_msgs": 0,

 "out_msgs": 0,

 "in_bytes": 0,

 "out_bytes": 0,

 "subscriptions": 0

 },

 {

 "rid": 4,

 "remote_id": "ntQEo3fvVi7ptiB3EF8jpo",

 "did_solicit": false,

 "is_configured": false,

 "ip": "127.0.0.1",

 "port": 62226,

 "pending_size": 0,

 "in_msgs": 0,

 "out_msgs": 0,

 "in_bytes": 0,

 "out_bytes": 0,

 "subscriptions": 0

 }

]

}

Chapter 5 high availability with NatS CluSteriNg

126

 On Autodiscovery and Load Balancers
The server autodiscovery mode might not be very helpful in certain types

of deployments where there is no network connectivity between the client

and the set of IP addresses that are announced to it.

This may happen, for example, when there is a TCP load balancer in

the middle (see Figure 5-4). The client will attempt to connect to the NATS

service by using the IP from the load balancer, and then in return, the IPs

from the cluster will be announced to it. But if these are unreachable, there

is no point in having them announced. When the server detaches or fails,

the client will futilely attempt to connect to those IPs, thus increasing the

time to recover.

Figure 5-4. NATS Server cluster behind a load balancer

In order to disable this, there is the no_advertise option, which will

make the server avoid announcing the connect_urls field in the INFO

messages to the clients.

Chapter 5 high availability with NatS CluSteriNg

127

Listing 5-18. Disabling Advertising of Endpoints in Cluster

$ gnatsd --no_advertise

 Setting Up a NATS Cluster Behind
a Load Balancer
In Listing 5-19, you can find a minimal HAProxy configuration that sets a

round-robin load balancing policy among a three-node cluster. Clients will

be connecting to the HAProxy process that is binding to 10.0.1.1:4222,

and the HAProxy will be responsible for periodically ensuring that the

servers in the pool are alive by making an HTTP request to the monitoring

port from each of the nodes in the cluster (on port 8222).

Listing 5-19. Sample HAProxy NATS Setup

frontend nats_service

 bind 10.0.1.1:4222

 mode tcp

 default_backend nats_cluster_nodes

backend nats_cluster_nodes

 balance roundrobin

 # Custom health check done to the HTTP port

 option httpchk get /varz

 server node1 172.16.0.1:4222 check port 8222

 server node2 172.16.0.2:4222 check port 8222

 server node3 172.16.0.3:4222 check port 8222

We can assemble the three-node cluster explicitly by using the

configuration shown in Listing 5-20 in all the server nodes. This

configuration can be reused by all the nodes in the pool since NATS will

just skip trying to connect to a route where it resides (by checking the

server ID filed that was retrieved from the INFO connect).

Chapter 5 high availability with NatS CluSteriNg

128

Listing 5-20. Disabling Autodiscovery

listen = 0.0.0.0:4222

http_port = 8222

cluster {

 listen = 0.0.0.0:6222

 # Disables advertising 'connect_urls' to clients

 no_advertise = true

 routes = [

 nats://172.16.0.1:6222

 nats://172.16.0.2:6222

 nats://172.16.0.3:6222

]

}

Now let’s start it with the autodiscovery disabled and try to connect to

it (see Listing 5-21). We should notice that there is no connect_urls field

anymore.

Listing 5-21. Starting gnatsd Without Advertising IPs

$ gnatsd -c code/disable-advertising.conf

[35544] [INF] Starting nats-server version 1.0.4

[35544] [INF] Starting http monitor on 0.0.0.0:8222

[35544] [INF] Listening for client connections on 0.0.0.0:4222

[35544] [INF] Server is ready

$ telnet 127.0.0.1 4222

INFO {"server_id":"3wEBoCq4Al1YttDlB2fIav",...,

"max_payload":1048576}

Then the clients just have to point to the IP from the load balancer and

connect to it (see Listing 5-22).

Chapter 5 high availability with NatS CluSteriNg

129

Listing 5-22. Disabling Autodiscovery

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://10.0.1.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("greeting", func(m *nats.Msg) {

 log.Printf("[Received] %s", string(m.Data))

 })

 for i := 0; i < 10; i++ {

 nc.Publish("greeting", []byte("hello world!!!"))

 }

 nc.Flush()

 runtime.Goexit()

}

As demonstrated, it is possible to set up a NATS cluster behind a load

balancer, but there is still one big limitation. If you’re considering using

TLS, it is currently not possible as documented in the issue 291 from the

gnatsd repository (https://github.com/nats-io/gnatsd/issues/291).

Clients in NATS have to first receive the INFO protocol in plain text before

being signaled to upgrade into a TLS connection, so it is not possible to

establish a TLS connection from the start. This may be resolved in a future

release.

Chapter 5 high availability with NatS CluSteriNg

https://github.com/nats-io/gnatsd/issues/291

130

 Summary
This chapter marks the end of the first half of this book. We are more

than ready and with enough knowledge of the fundamentals and inner

workings about NATS to be able to tackle developing a production-ready

application that uses NATS for its control plane.

Chapter 5 high availability with NatS CluSteriNg

131© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6_6

CHAPTER 6

Developing a
Cloud- Native
NATS Application
In this chapter, we put into practice what was covered in the first half of

the book and develop an application that uses NATS for the discovery and

makes requests of services that are parts of the system.

As an example, we implement a NATS Rider service that helps

users request a driver on-demand in order to reach a destination.

Externally users talk to the service by using HTTP, but internally all the

communication flows through NATS.

 The NATS Rider Application
The NATS Rider application follows a microservices architecture with the

different parts of the system all decoupled from each other, establishing

boundaries in terms of the responsibility that each should have.

132

Figure 6-2 shows a high-level view image of the application’s

architecture, including the NATS cluster that we will be using from the

beginning.

The system is decomposed into three main components:

• The API Server exposes an HTTP endpoint to which

users can make requests to find an available driver.

• A Rides Manager server component is responsible for

finding available drivers.

• A Driver Agent is inside of the cars and is always

connected to a NATS node in the cluster.

Figure 6-1 shows a sample flow of a request from a user to find a driver.

Figure 6-1. Example flow a request

Chapter 6 Developing a ClouD- native natS appliCation

133

Figure 6-2. NATS Rider application architecture overview

Components connected to the NATS cluster can come and go and just

need to be connected to any NATS Server that is part of the NATS cluster.

The NATS clustering implementation will be responsible for routing the

messages properly among the different nodes.

 Scaffolding the Application
We will be using Go and the official Go NATS client for developing the

application. Listing 6-1 shows the goal folder structure for the application

containing the implementation of the three main components of the

system.

Chapter 6 Developing a ClouD- native natS appliCation

134

Listing 6-1. Packages from the NATS Rider Application

.

├── api-server
│ ├── cmd
│ │ └── api-server
│ │ └── main.go
│ └── server.go
├── driver-agent
│ ├── agent.go
│ └── cmd
│ └── agent
│ └── main.go
└── rides-manager
 ├── cmd
 │ └── manager
 │ └── main.go
 └── server.go

With exception of the API Server, components only have to be

connected to NATS in order to be able to help others finding available

drivers. Listing 6-2 shows some of the flags that will be required for the API

Server, such as which port to bind the HTTP server to and the endpoint to

an available NATS Server.

Listing 6-2. Help Options from API Server

$ go run api-server/cmd/api-server/main.go -h

Usage: api-server [options...]

 -help

 Show help

 -listen string

Chapter 6 Developing a ClouD- native natS appliCation

135

 Network host:port to listen on (default "0.0.0.0:9090")

 -nats string

 List of NATS Servers to connect (default "nats://

localhost:4222")

 -version

 Show version

l

Listing 6-3 shows a snippet of how to use the Go flag packages for

parsing the command-line arguments that are needed for the API Server

to run.

Listing 6-3. Flags Definition for the API Server Process

package main

import (

 "flag"

 "fmt"

 "log"

 "os"

 "github.com/nats-io/go-nats"

 "github.com/wallyqs/practical-nats/chapter-06/code/api-

server"

)

func main() {

 var (

 showHelp bool

 showVersion bool

 serverListen string

 natsServers string

)

Chapter 6 Developing a ClouD- native natS appliCation

136

 flag.Usage = func() {

 fmt.Fprintf(os.Stderr, "Usage: api-server

[options...]\n\n")

 flag.PrintDefaults()

 fmt.Fprintf(os.Stderr, "\n")

 }

 // Setup default flags

 flag.BoolVar(&showHelp, "help", false, "Show help")

 flag.BoolVar(&showVersion, "version", false, "Show

version")

 flag.StringVar(&serverListen, "listen", "0.0.0.0:9090",

"Network host:port to listen on")

 flag.StringVar(&natsServers, "nats", nats.DefaultURL,

"List of NATS Servers to connect")

 flag.Parse()

 switch {

 case showHelp:

 flag.Usage()

 os.Exit(0)

 case showVersion:

 fmt.Fprintf(os.Stderr, "NATS Rider API Server

v%s\n", apiserver.Version)

 os.Exit(0)

 }

 log.Printf("Starting NATS Rider API Server version %s",

apiserver.Version)

 // ...

}

Chapter 6 Developing a ClouD- native natS appliCation

137

There is going to be quite a bit of reusable functionality among the

components in the system, so as it is convention in Go projects, we will be

including the shared piece of functionality in a kit package that they can all

import.

 Defining a Base Component
Inside of the kit package (see Listing 6-4), we will add a Component type

that will be holding a collection of functions related to the lifecycle of the

NATS connection, along with some other common subscriptions from all

components in the system, such as those used for monitoring or help for

observability purposes.

Listing 6-4. Defining the Kit Package

├── kit
. └── component
. └── component.go

Listing 6-5 shows how we use the Component to register the API Server

in the system and connect to NATS.

Listing 6-5. Registering the API Server as a Component

package main

import (

 // ...

 "github.com/wallyqs/practical-nats/chapter-06/code/kit"

)

func main() {

 // ...

 // Register new component within the system.

 comp := kit.NewComponent("api-server")

Chapter 6 Developing a ClouD- native natS appliCation

138

 // Connect to NATS and setup discovery subscriptions.

 err := comp.SetupConnectionToNATS(natsServers)

 if err != nil {

 log.Fatal(err)

 }

 // ...

}

Listing 6-6 shows the type definition for the component. Besides

having a connection to NATS, we also want NATS Rider components to

be identified by the kind of component they are and an unique identifier

string.

Listing 6-6. Reusable Component Type

type Component struct {

 // kind is the type of component.

 kind string

 // uuid is a unique identifier sed for this component.

 uuid string

 // nc is the connection to NATS.

 nc *nats.Conn

}

In order to generate the unique identifiers, we use the NATS NUID

project. It is a high-performance unique identifiers generation library

that’s also used when making requests with inboxes in the client.

Listing 6-7 shows the implementation of the NewComponent function

in the kit package to create a component already labeled with an

identifier.

Chapter 6 Developing a ClouD- native natS appliCation

139

Listing 6-7. Labeling Components in the System Using NUID

package kit

import (

 "github.com/nats-io/nuid"

)

type Component struct {

 // ...

}

func NewComponent(kind string) *Component {

 return &Component{

 id: nuid.Next(),

 kind: kind,

 }

}

 Customizing the Connection to NATS
One important responsibility of the component is that it will have shared

functions about handling a NATS connection. Not all the components in

the system use the same settings as in Listing 6-8, so we will extend the

variadic function parameters that the nats.Connect function can take.

Listing 6-8. The SetupConnectionToNATS Implementation

// SetupConnectionToNATS connects to NATS and registers the

event

// callbacks and makes it available for discovery requests as

well.

func (c *Component) SetupConnectionToNATS(servers string,

options ...nats.Option) error {

Chapter 6 Developing a ClouD- native natS appliCation

140

 // Label the connection with the kind and id from

component.

 options = append(options, nats.Name(c.Name()))

 c.cmu.Lock()

 defer c.cmu.Unlock()

 // Connect to NATS with customized options.

 nc, err := nats.Connect(servers, options...)

 if err != nil {

 log.Fatal(err)

 }

 c.nc = nc

Note that we include by default a nats.Name for the connection for all

the clients in the system, which is useful when enabling monitoring, as

shown in the next chapter.

Another thing that all clients should implement are the event handlers

from the NATS connection. Listing 6-9 shows how to define the handlers to

log reconnection events and errors.

Listing 6-9. Implementing the Event Handlers for the Client

func (c *Component) SetupConnectionToNATS(servers string,

options ...nats.Option) error {

 // Handle protocol errors and slow consumer cases

 nc.SetErrorHandler(func(_ *nats.Conn, _ *nats.Subscription,

err error) {

 log.Printf("NATS Error: %s\n", err)

})

 nc.SetReconnectHandler(func(_ *nats.Conn) {

 log.Println("Reconnected!")

 })

Chapter 6 Developing a ClouD- native natS appliCation

141

 nc.SetDisconnectHandler(func(_ *nats.Conn) {

 log.Println("Disconnected!")

 })

 nc.SetClosedHandler(func(_ *nats.Conn) {

 panic("Connection to NATS is closed!")

})

/...

}

 Enabling Components Discovery
All components that are part of the NATS Rider system should be available

for discovery purposes, as shown in Figure 6-3.

Figure 6-3. Discovery and status subscriptions

Chapter 6 Developing a ClouD- native natS appliCation

142

A NATS Rider component, when connecting to NATS, will subscribe to

the _NATS_RIDER.discovery subject which, if sent a request, will make it

reply with the unique ID of the component (see Listing 6-10).

Listing 6-10. The SetupConnectionToNATS Reusable Logic

func (c *Component) SetupConnectionToNATS(servers string,

options ...nats.Option) error {

 // ...

 // Register component so that it is available for

discovery requests.

 _, err = c.nc.Subscribe("_NATS_RIDER.discovery", func(m

*nats.Msg) {

 // Reply directly with own name if requested

 if m.Reply != "" {

 nc.PublishRequest(m.Reply,

c.StatusSubject(), []byte(""))

 } else {

 log.Println("[Discovery] No Reply

inbox, skipping...")

 }

 })

 // ...

}

Additionally, each component will also subscribe to a unique subject

to enable it to retrieve status information about the component, such as

the type of component and runtime information gathered via the expvar

package (see Listing 6-11).

Chapter 6 Developing a ClouD- native natS appliCation

143

Listing 6-11. Status Subscription for Components

package kit

import (

 "encoding/json"

 "expvar"

 "fmt"

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

 // ...

)

func (c *Component) SetupConnectionToNATS(servers string,

options ...nats.Option) error {

 // ...

 // Register component so that it is available for

direct status requests.

 // e.g. _NATS_RIDER.:id.status

 statusSubject := fmt.Sprintf("_NATS_RIDER.%s.status",

c.id)

 _, err = c.nc.Subscribe(statusSubject, func(m *nats.

Msg) {

 if m.Reply != "" {

 log.Println("[Status] Replying with

status...")

 statsz := struct {

 Kind string `json:"kind"`

 ID string `json:"id"`

Chapter 6 Developing a ClouD- native natS appliCation

144

 Cmd []

string `json:"cmdline"`

 Mem runtime.MemStats

`json:"memstats"`

 }{

 Kind: c.kind,

 ID: c.id,

 Cmd: expvar.Get("cmdline").

(expvar.Func)().([]string),

 Mem: expvar.Get("memstats").

(expvar.Func)().(runtime.

MemStats),

 }

 result, err := json.Marshal(statsz)

 if err != nil {

 log.Printf("Error: %s\n", err)

 return

 }

 nc.Publish(m.Reply, result)

 } else {

 log.Println("[Status] No Reply inbox,

skipping...")

 }

 })

 // ...

}

Now, by sending a request to the _NATS_RIDER.discovery subject, it

is possible to collect the IDs from all the components from the system and

send a request directly to them to gather status information.

Listing 6-12 shows a telnet session making a request to gather all

components replies available by using a subscription to an INBOX.example

Chapter 6 Developing a ClouD- native natS appliCation

145

subject that is later published to the _NATS_RIDER.discovery using

_INBOX.example as the reply subject. Then, it picks the ID that was part of

the payload and uses it to send a status request directly to that component

only (PUB _NATS_RIDER.EtWpbOogWMOFM4Ev7hz3Bx.status _INBOX.

example in the example).

Listing 6-12. Components Discovery via telnet

telnet 127.0.0.1 4222

Trying 127.0.0.1...

sub _INBOX.example 1

+OK

pub _NATS_RIDER.discovery _INBOX.example 0

+OK

MSG _INBOX.example 1 22

EtWpbOogWMOFM4Ev7hz3Bx

MSG _INBOX.example 1 22

DxQKFgtFWo0iRmFYaWNvOC

MSG _INBOX.example 1 22

siHky1FQR9Y2Udlacmcejk

PUB _NATS_RIDER.EtWpbOogWMOFM4Ev7hz3Bx.status _INBOX.example 0

+OK

MSG _INBOX.example 1 4684

{"kind":"driver-agent","id":"EtWpbOogWMOFM4Ev7hz3Bx",<rest of

message...>

 The NATS Rider API
Using the shared component library, we can now introduce the API Server

as the first element of the application. Listing 6-13 shows the full example

of using the component kit package for the API Server.

Chapter 6 Developing a ClouD- native natS appliCation

146

Listing 6-13. Component Kit Package usage for the API Server

package main

import (

 "flag"

 "fmt"

 "log"

 "os"

 "runtime"

 "github.com/nats-io/go-nats"

 "github.com/wallyqs/practical-nats/chapter-06/code/api-

server"

 "github.com/wallyqs/practical-nats/chapter-06/code/kit"

)

func main() {

 var (

 showHelp bool

 showVersion bool

 serverListen string

 natsServers string

)

 flag.Usage = func() {

 fmt.Fprintf(os.Stderr, "Usage: api-server

[options...]\n\n")

 flag.PrintDefaults()

 fmt.Fprintf(os.Stderr, "\n")

 }

 // Setup default flags

 flag.BoolVar(&showHelp, "help", false, "Show help")

Chapter 6 Developing a ClouD- native natS appliCation

147

 flag.BoolVar(&showVersion, "version", false, "Show

version")

 flag.StringVar(&serverListen, "listen", "0.0.0.0:9090",

"Network host:port to listen on")

 flag.StringVar(&natsServers, "nats", nats.DefaultURL,

"List of NATS Servers to connect")

 flag.Parse()

 switch {

 case showHelp:

 flag.Usage()

 os.Exit(0)

 case showVersion:

 fmt.Fprintf(os.Stderr, "NATS Rider API Server

v%s\n", apiserver.Version)

 os.Exit(0)

 }

 log.Printf("Starting NATS Rider API Server version %s",

apiserver.Version)

 // Register new component within the system.

 comp := kit.NewComponent("api-server")

 // Connect to NATS and set up discovery subscriptions.

 err := comp.SetupConnectionToNATS(natsServers)

 if err != nil {

 log.Fatal(err)

 }

 s := apiserver.Server{

 Component: comp,

 }

Chapter 6 Developing a ClouD- native natS appliCation

148

 err = s.ListenAndServe(serverListen)

 if err != nil {

 log.Fatal(err)

 }

 log.Printf("Listening for HTTP requests on %v",

serverListen)

 runtime.Goexit()

}

The API Server is the only HTTP Server that is involved in the

implementation from NATS Rider, and it exposes a simple API to which the

users can make POST requests to be matched against a driver at a location.

Listing 6-14 shows the implementation of the ListenAndServe function for

the API Server that takes as a parameter the network address and port to

which the HTTP server should be binding (by default, it’s 0.0.0.0:9090).

Listing 6-14. HTTP Endpoints from the API Server

// ListenAndServe takes the network address and port that

// the HTTP server should bind to and starts it.

func (s *Server) ListenAndServe(addr string) error {

 mux := http.NewServeMux()

 // GET /

 mux.HandleFunc("/", func(w http.ResponseWriter,

r *http.Request) {

 // \See: https://golang.org/pkg/net/

http/#ServeMux.Handle

 if r.URL.Path != "/" {

 http.NotFound(w, r)

 return

 }

Chapter 6 Developing a ClouD- native natS appliCation

149

 fmt.Fprintf(w, fmt.Sprintf("NATS Rider API

Server v%s\n", Version))

 })

 // POST /rides

 mux.HandleFunc("/rides", s.HandleRides)

 l, err := net.Listen("tcp", addr)

 if err != nil {

 return err

 }

 srv := &http.Server{

 Addr: addr,

 Handler: mux,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 10 * time.Second,

 MaxHeaderBytes: 1 << 20,

 }

 go srv.Serve(l)

 return nil

}

Each time a POST request is sent to the API Server to /rides, one of the

Rides Manager is going to responsible for finding a match to the request

(see Figure 6-4).

Chapter 6 Developing a ClouD- native natS appliCation

150

In order to handle the requests and responses, we add another piece

of shared functionality to the kit package. Listing 6-15 shows the types

declarations for the requests and responses that would flow through the

system encoded in JSON.

Listing 6-15. Request/Response Types Used by Application

package kit

// Location represents the latitude and longitude pair.

type Location struct {

 // Latitude is the latitude of the user making the

request.

 Latitude float64 `json:"lat,omitempty"`

 // Longitude is the longitude of the user making the

request.

 Longitude float64 `json:"lng,omitempty"`

}

Figure 6-4. Rides Managers using QueueSubscribe

Chapter 6 Developing a ClouD- native natS appliCation

151

// DriverAgentRequest is the request sent to the driver.

type DriverAgentRequest struct {

 // Type is the type of agent that is requested.

 Type string `json:"type,omitempty"`

 // Location is the location of the user that is being

 // served the request.

 Location *Location `json:"location,omitempty"`

 // RequestID is the ID from the request.

 RequestID string `json:"request_id,omitempty"`

}

// DriverAgentResponse is the response from the driver.

type DriverAgentResponse struct {

 // ID is the identifier of the driver that will accept

 // the request.

 ID string `json:"driver_id,omitempty"`

 // Error is included in case there was an error

 // handling the request.

 Error string `json:"error,omitempty"`

}

Listing 6-16 shows the implementation of the HandleRides function

from the API Server using these types. Once the HTTP request is received,

the API Server will send a NATS request to the drivers.find subject in

order to locate a driver that is available to handle the request. Note that it

uses the NUID package again in order to tag the request with a tracing ID

that will be included in the logs as components handle the request.

Chapter 6 Developing a ClouD- native natS appliCation

152

Listing 6-16. API Server /rides Handler Implementation

// HandleRides processes requests to find available drivers in

an area.

func (s *Server) HandleRides(w http.ResponseWriter, r *http.

Request) {

 if r.Method != "POST" {

 http.Error(w, "Invalid request method", http.

StatusMethodNotAllowed)

 }

 body, err := ioutil.ReadAll(r.Body)

 if err != nil {

 http.Error(w, "Bad Request", http.

StatusBadRequest)

 return

 }

 var request *kit.DriverAgentRequest

 err = json.Unmarshal(body, &request)

 if err != nil {

 http.Error(w, "Bad Request", http.

StatusBadRequest)

 return

 }

 // Tag the request with an ID for tracing in the logs.

 request.RequestID = nuid.Next()

 req, err := json.Marshal(request)

 if err != nil {

 http.Error(w, "Internal Server Error", http.

StatusInternalServerError)

 return

Chapter 6 Developing a ClouD- native natS appliCation

153

 }

 nc := s.NATS()

 // Find a driver available to help with the request.

 log.Printf("requestID:%s - Finding available driver for

request: %s\n", request.RequestID, string(body))

 msg, err := nc.Request("drivers.find", req, 5*time.

Second)

 if err != nil {

 log.Printf("requestID:%s - Gave up finding

available driver for request\n", request.

RequestID)

 http.Error(w, "Request timeout", http.

StatusRequestTimeout)

 return

 }

 log.Printf("requestID:%s - Response: %s\n", request.

RequestID, string(msg.Data))

 var resp *kit.DriverAgentResponse

 err = json.Unmarshal(msg.Data, &resp)

 if err != nil {

 http.Error(w, "Internal Server Error", http.

StatusInternalServerError)

 return

 }

 if resp.Error != "" {

 http.Error(w, resp.Error, http.

StatusServiceUnavailable)

 return

 }

Chapter 6 Developing a ClouD- native natS appliCation

154

 log.Printf("requestID:%s - Driver with ID %s is

available to handle the request", request.RequestID,

resp.ID)

 fmt.Fprintf(w, string(msg.Data))

}

Listing 6-17 shows how to start the API Server in its current

implementation, assuming that there is an available NATS Server at

127.0.0.1:4222.

Listing 6-17. Starting the API Server

$ go run code/api-server/cmd/api-server/main.go -nats

"nats://127.0.0.1:4222"

Starting NATS Rider API Server version 0.1.0

Listening for HTTP requests on 0.0.0.0:9090

Since other parts of the system are not ready, making a request will fail

with a timeout (see Listing 6-18).

Listing 6-18. Starting the API Server

$ curl http://127.0.0.1:9090/

NATS Rider API Server v0.1.0

$ curl http://127.0.0.1:9090/rides -d '{"type":"regular"}'

Request timeout

 The Load Balanced Rider Manager
The Rides Manager is responsible for dealing with anything related

to supporting drivers (see Figure 6-5). Rather than having this logic

embedded in the API Server, we avoid having a monolith, as this way

Chapter 6 Developing a ClouD- native natS appliCation

155

the concern of load balancing the work could be offloaded into another

service, thus making up for a simpler implementation in the API Server

call.

Figure 6-5. Rides Manager finding available drivers

Listing 6-19 shows an implementation of the Rides Manager consisting

of only a single Queue Subscription using the group named manager. Any

other node that registers interest into drivers.find and is part of the

manager queue group will help load balance the work of finding available

drivers that can support the request from the user.

Listing 6-19. Rides Manager Subscriptions

package ridesmanager

import (

 "encoding/json"

 "log"

 "time"

Chapter 6 Developing a ClouD- native natS appliCation

156

 "github.com/nats-io/go-nats"

 "github.com/wallyqs/practical-nats/chapter-06/code/kit"

)

const (

 Version = "0.1.0"

)

type Server struct {

 *kit.Component

}

// SetupSubscriptions registers interest to the subjects that

// the Rides Manager will be handling.

func (s *Server) SetupSubscriptions() error {

 nc := s.NATS()

 // Helps finding an available driver to accept a drive

request.

 nc.QueueSubscribe("drivers.find", "manager", func(msg

*nats.Msg) {

 var req *kit.DriverAgentRequest

 err := json.Unmarshal(msg.Data, &req)

 if err != nil {

 log.Printf("Error: %v\n", err)

 return

 }

 log.Printf("requestID:%s - Driver Find

Request\n", req.RequestID)

 response := &kit.DriverAgentResponse{}

 // Find an available driver that can handle the

user request.

 m, err := nc.Request("drivers.rides", msg.Data,

2*time.Second)

Chapter 6 Developing a ClouD- native natS appliCation

157

 if err != nil {

 response.Error = "No drivers available

found, sorry!"

 resp, err := json.Marshal(response)

 if err != nil {

 log.Printf("requestID:%s -

Error preparing response: %s",

 req.RequestID, err)

 return

 }

 // Reply with error response

 nc.Publish(msg.Reply, resp)

 return

 }

 response.ID = string(m.Data)

 resp, err := json.Marshal(response)

 if err != nil {

 response.Error = "No drivers available

found, sorry!"

 resp, err := json.Marshal(response)

 if err != nil {

 log.Printf("requestID:%s -

Error preparing response: %s",

 req.RequestID, err)

 return

 }

 // Reply with error response

 nc.Publish(msg.Reply, resp)

 return

 }

Chapter 6 Developing a ClouD- native natS appliCation

158

 log.Printf("requestID:%s - Driver Find

Response: %+v\n",

 req.RequestID, string(m.Data))

 nc.Publish(msg.Reply, resp)

 })

 return nil

}

Once it receives the request on drivers.find, it will make another

request, but this time to drivers.rides, which is the subscription being

used by the driver agents that are awaiting for requests from users.

Similar to how we did with the API Server, Listing 6-20 shows using the

reusable Component type that was created to register the Rides Manager.

Listing 6-20. Rides Manager Process

package main

import (

 "flag"

 "fmt"

 "log"

 "os"

 "runtime"

 "github.com/nats-io/go-nats"

 "github.com/wallyqs/practical-nats/chapter-06/code/kit"

 "github.com/wallyqs/practical-nats/chapter-06/code/

rides-manager"

)

func main() {

 var (

 showHelp bool

Chapter 6 Developing a ClouD- native natS appliCation

159

 showVersion bool

 natsServers string

)

 flag.Usage = func() {

 fmt.Fprintf(os.Stderr, "Usage: rides-manager

[options...]\n\n")

 flag.PrintDefaults()

 fmt.Fprintf(os.Stderr, "\n")

 }

 // Set up default flags

 flag.BoolVar(&showHelp, "help", false, "Show help")

 flag.BoolVar(&showVersion, "version", false, "Show

version")

 flag.StringVar(&natsServers, "nats", nats.DefaultURL,

"List of NATS Servers to connect")

 flag.Parse()

 switch {

 case showHelp:

 flag.Usage()

 os.Exit(0)

 case showVersion:

 fmt.Fprintf(os.Stderr, "NATS Rider Rides

Manager Server v%s\n", ridesmanager.Version)

 os.Exit(0)

 }

 log.Printf("Starting NATS Rider Rides Manager version

%s", ridesmanager.Version)

 comp := kit.NewComponent("rides-manager")

 err := comp.SetupConnectionToNATS(natsServers)

 if err != nil {

Chapter 6 Developing a ClouD- native natS appliCation

160

 log.Fatal(err)

 }

 s := ridesmanager.Server{

 Component: comp,

 }

 err = s.SetupSubscriptions()

 if err != nil {

 log.Fatal(err)

 }

 runtime.Goexit()

}

Listing 6-21 shows how to start the Rides Manager to make it available

in the system.

Listing 6-21. Starting the Rides Manager

$ go run code/rides-manager/cmd/manager/main.go

Starting NATS Rider Rides Manager version 0.1.0

The system is not ready yet, so if we send another request, naturally it

will fail with an error (see Listing 6-22).

Listing 6-22. Result From Making a Request

$ curl -v "http://127.0.0.1:9090/rides" -X POST -d

'{"type": "mini"}'

No drivers available found, sorry

Chapter 6 Developing a ClouD- native natS appliCation

161

 The Driver Agent
Finally, this is where it all comes together. Each one of the cars in the

service is installed with a lightweight agent that connects to a node in the

NATS cluster and makes itself available to receive ride requests. The driver

agent will have time to decide whether it is a good, and then the user will

expect a single response from the driver who was the fastest and fittest to

handle the request. Figure 6-6 shows an example of the flow of a request

made to the API Server, which then asks the Rides Manager to find an

available driver.

Figure 6-6. Driver Agent responding to a request

The Driver Agent will look at each request and check how convenient

is it to support the user (for example, it could omit replying if it has

different plans soon or delay the reply if it’s too far away if a lat/lng pair

was passed in the request). When users make a request, they indicate the

type of vehicle that they want, so the Driver Agent will be checking this

piece of information and responding appropriately. Listing 6-23 shows the

implementation of the agent and how it is setting up the drives.rides

subscription that’s used by the Rides Manager to find available drivers.

Chapter 6 Developing a ClouD- native natS appliCation

162

Listing 6-23. Driver Agent Subscriptions

func (s *Agent) SetupSubscriptions() error {

 nc := s.NATS()

 nc.Subscribe("drivers.rides", func(msg *nats.Msg) {

 if err := processDriveRequest(msg.Data);

err != nil {

 log.Printf("Error: %s\n", err)

 return

 }

 })

 return nil

}

Listing 6-24 shows an example implementation of simulating handling

a driver request by using random delay when replying to the request. This

way, the fastest driver to reply is the one who gets the job.

Listing 6-24. Drive Agent Processing a User Request

func processDriveRequest(payload []byte) error {

 var req *kit.DriverAgentRequest

 err := json.Unmarshal(msg.Data, &req)

 if err != nil {

 log.Printf("Error: %v\n", err)

 return err

 }

 log.Printf("requestID:%s - Driver Ride Request:

type:%s\n",

 req.RequestID, req.Type)

Chapter 6 Developing a ClouD- native natS appliCation

163

 if req.Type != s.Type() {

 // Skip request since this agent is of a

different type.

 return nil

 }

 log.Printf("requestID:%s - Available to handle

request", req.RequestID)

 // Random delay agent when receiving drive request

 // to simulate latency in replying.

 duration := time.Duration(rand.Int31n(1000)) * time.

Millisecond

 log.Printf("requestID:%s - Backing off for %s before

replying", req.RequestID, duration)

 time.Sleep(duration)

 // Replying with own ID meaning that can help.

 return s.NATS().Publish(msg.Reply, []byte(s.ID()))

}

Listing 6-25 shows the main package for the Driver Agent, which is

similar to the API Server and Rides Manager. Note that the agent is using

the nats.MaxReconnects(-1) option to set infinite reconnects. This way, it

will not stop trying to reconnect to an available server in the cluster, even

when it’s been disconnected for a long time.

Listing 6-25. Driver Agent Component Setup

package main

import (

 "flag"

 "fmt"

 "log"

Chapter 6 Developing a ClouD- native natS appliCation

164

 "os"

 "runtime"

 "github.com/nats-io/go-nats"

 "github.com/wallyqs/practical-nats/chapter-06/code/

driver-agent"

 "github.com/wallyqs/practical-nats/chapter-06/code/kit"

)

func main() {

 var (

 showHelp bool

 showVersion bool

 natsServers string

 agentType string

)

 flag.Usage = func() {

 fmt.Fprintf(os.Stderr, "Usage: driver-agent

[options...]\n\n")

 flag.PrintDefaults()

 fmt.Fprintf(os.Stderr, "\n")

 }

 // Set up default flags

 flag.BoolVar(&showHelp, "help", false, "Show help")

 flag.BoolVar(&showVersion, "version", false, "Show

version")

 flag.StringVar(&natsServers, "nats", nats.DefaultURL,

"List of NATS Servers to connect")

 flag.StringVar(&agentType, "type", "regular", "Kind of

vehicle")

 flag.Parse()

Chapter 6 Developing a ClouD- native natS appliCation

165

 switch {

 case showHelp:

 flag.Usage()

 os.Exit(0)

 case showVersion:

 fmt.Fprintf(os.Stderr, "NATS Rider Driver Agent

v%s\n", driveragent.Version)

 os.Exit(0)

 }

 log.Printf("Starting NATS Rider Driver Agent version

%s", driveragent.Version)

 comp := kit.NewComponent("driver-agent")

 // Set infinite retries to never stop reconnecting to

 // an available NATS Server in case of an unreliable

connection.

 err := comp.SetupConnectionToNATS(natsServers, nats.

MaxReconnects(-1))

 if err != nil {

 log.Fatal(err)

 }

 ag := driveragent.Agent{

 Component: comp,

 AgentType: agentType,

 }

 err = ag.SetupSubscriptions()

 if err != nil {

 log.Fatal(err)

 }

 runtime.Goexit()

}

Chapter 6 Developing a ClouD- native natS appliCation

166

Now that the Driver Agent is done, the system is ready to be used.

Listing 6-26 shows the process of starting a couple of agents of different

types.

Listing 6-26. Running Agents of Different Types

$ go run code/driver-agent/cmd/agent/main.go -type mini

Starting NATS Rider Driver Agent version 0.1.0

$ go run code/driver-agent/cmd/agent/main.go -type regular

Starting NATS Rider Driver Agent version 0.1.0

If we make a request, we would see in the logs the components

cooperating to handle the request (see Listing 6-27).

Listing 6-27. Running Agents of Different Types

curl "http://127.0.0.1:9090/rides" -X POST -d

'{"type": "mini"}'

{"driver_id":"mKFJOZzmawAzaxEKkjKRAP"}

Component logs

03:30:11 Starting NATS Rider API Server version 0.1.0

03:30:11 Listening for HTTP requests on 0.0.0.0:9090

03:32:25 requestID:RTQDBOPXxGFCES8YCNFZkg - Finding available

driver for request: {"type": "mini"}

03:32:26 requestID:RTQDBOPXxGFCES8YCNFZkg - Response: {"driver_

id":"mKFJOZzmawAzaxEKkjKRAP"}

03:32:26 requestID:RTQDBOPXxGFCES8YCNFZkg - Driver with ID

mKFJOZzmawAzaxEKkjKRAP is available to handle the request

Rides Manager logs

03:30:15 Starting NATS Rider Rides Manager version 0.1.0

03:32:25 requestID:RTQDBOPXxGFCES8YCNFZkg - Driver Find Request

Chapter 6 Developing a ClouD- native natS appliCation

167

03:32:26 requestID:RTQDBOPXxGFCES8YCNFZkg - Driver Find

Response: mKFJOZzmawAzaxEKkjKRAP

Driver Agent

03:30:16 Starting NATS Rider Driver Agent version 0.1.0

03:32:25 requestID:RTQDBOPXxGFCES8YCNFZkg - Driver Ride

Request: type:mini

03:32:25 requestID:RTQDBOPXxGFCES8YCNFZkg - Available to handle

request

03:32:25 requestID:RTQDBOPXxGFCES8YCNFZkg - Backing off for

727ms before replying

 Summary
This chapter covered how to develop a simple application using NATS that

could be extended to cover more use cases. In the next chapters, we will

be using this application a bit to cover important aspects, from operating

NATS applications such as monitoring and security, as well as looking at

troubleshooting scenarios that may arise in the system.

Chapter 6 Developing a ClouD- native natS appliCation

169© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6_7

CHAPTER 7

Monitoring NATS
NATS uses a simple /varz monitoring style after a practice followed at

Google.1 By inspecting the data from the monitoring port from NATS, we

can better understand the performance of the system as a whole and make

data-based decisions on whether to scale up the services, or to investigate

and find bad actors in the system.

In this chapter, we take a look in detail at some of the monitoring

options provided by the server, taking as an example the setup from the

application that we developed in the previous chapter.

 Server Instrumentation
When monitoring is enabled in gnatsd, the server embeds an HTTP server

so the client can poll the data related to the internal statistics maintained

by the server.

The monitoring endpoint from the server can be activated by passing a

port to use to the -m or --http_port flags. Listing 7-1 shows an example of

starting the server binding the monitoring port to port 8222.

1 More about applications instrumentation at Google: http://landing.google.
com/sre/book/chapters/practical-alerting.html

http://landing.google.com/sre/book/chapters/practical-alerting.html
http://landing.google.com/sre/book/chapters/practical-alerting.html

170

Listing 7-1. Enabling a Monitoring Port in the Command Line

$ gnatsd -m 8222 --logtime=false

[1696] [INF] Starting nats-server version 1.0.4

[1696] [INF] Starting http monitor on 0.0.0.0:8222

[1696] [INF] Listening for client connections on 0.0.0.0:4222

[1696] [INF] Server is ready

One of the benefits of this monitoring style is that it takes very

little tooling to monitor it; a simple monitoring client could just be a

combination of the curl and watch commands together to periodically

monitor the state from the server every second, as shown in Listing 7-2.

Listing 7-2. Simple varz-Based Monitoring

watch -n 1 curl http://127.0.0.1:8222/varz --silent

There are four main endpoints exposed by the server from which we

can get instrumentation data—these are the /varz, /connz, /subsz and /

routez endpoints.

In the following sections, we take a closer look at the data exposed by

each endpoint and learn how to take advantage of the exported data by the

server.

 The /varz Endpoint
In /varz, it is possible to find overall information about the server, such as

the server ID and uptime, its configuration, number of connections, as well

as CPU and memory usage.

Listing 7-3 shows a sample of the type of data that can be found

in /varz.

Chapter 7 Monitoring natS

171

Listing 7-3. Sample varz Data

$ curl http://127.0.0.1:8222/varz

{

 "server_id": "Mj9vK5hACbgf7u4t8gmXLo",

 "version": "1.1.0",

 "go": "go1.9.2",

 "host": "0.0.0.0",

 "auth_required": false,

 "ssl_required": false,

 "tls_required": false,

 "tls_verify": false,

 "addr": "0.0.0.0",

 "max_connections": 65536,

 "ping_interval": 120000000000,

 "ping_max": 2,

 "http_host": "0.0.0.0",

 "http_port": 8222,

 "https_port": 0,

 "auth_timeout": 1,

 "max_control_line": 1024,

 "cluster": {

 "addr": "0.0.0.0",

 "cluster_port": 0,

 "auth_timeout": 1

 },

 "tls_timeout": 0.5,

 "port": 4222,

 "max_payload": 1048576,

 "start": "2018-02-03T09:03:27.104765-08:00",

 "now": "2018-02-03T09:08:31.693724-08:00",

Chapter 7 Monitoring natS

172

 "uptime": "5m4s",

 "mem": 13680640,

 "cores": 4,

 "cpu": 0.3,

 "connections": 17,

 "total_connections": 17,

 "routes": 0,

 "remotes": 0,

 "in_msgs": 0,

 "out_msgs": 0,

 "in_bytes": 0,

 "out_bytes": 0,

 "slow_consumers": 0,

 "subscriptions": 54,

 "http_req_stats": {

 "/": 1,

 "/connz": 302,

 "/routez": 0,

 "/subsz": 0,

 "/varz": 303

 },

 "config_load_time": "2018-02-03T09:03:27.104765-08:00"

}

As you can see, many of the fields are related to the current

configuration from the server. If there has been a reload operation done

to the server (via the HUP signal), there is a config_load_time field that

timestamps each time that an operation reload is applied to the running

server process.

You can also determine build information about the server, such as the

version of the server or even the version of Go used to produce the binary.

Chapter 7 Monitoring natS

173

On start, the NATS Server will generate a unique identifier to label itself

(server_id in the varz data), which can be useful when monitoring a full-

mesh cluster in order to identify the server.

The /varz endpoint also includes very important statistics about the

performance from the server in its current environment. A snippet of this

data can be found in Listing 7-4.

Listing 7-4. Connections Information in varz

 // ...

 "uptime": "5m4s",

 "mem": 13680640,

 "cores": 4,

 "cpu": 0.3,

 "connections": 17,

 "total_connections": 17,

 "routes": 0,

 "remotes": 0,

 "in_msgs": 0,

 "out_msgs": 0,

 "in_bytes": 0,

 "out_bytes": 0,

 "slow_consumers": 0,

 "subscriptions": 54,

// ...

The slow_consumers entry shown here is particularly important,

as it gets incremented whenever there is a client that’s connected to

NATS but cannot drain the bytes from the socket fast enough. This can

possibly impact the service and cause issues in the system. A sudden

constant increasing count of slow_consumer can indicate a degradation in

performance at some segment of the system, which points to an issue that

ought to be addressed.

Chapter 7 Monitoring natS

174

The memory and cpu being used by the server are also quite important.

If the server is starting to use a lot of memory, this could be correlated to

the server holding a large number of subscriptions, for example. When

having many clients in the server at the same time, there can be bumps in

the CPU usage from the server, especially when the clients are using TLS.

The in_msgs/out_msgs fields are statistics kept by the server and are

related to how many messages have been sent to the server by a client

(in_msgs) and how many messages the server has delivered to clients that

had registered an interest in the subject (out_msgs).

Similarly, the in_bytes/out_bytes fields hold information about how

many bytes have been published to the server and the total size of the

messages being delivered to the clients so far.

In the nats-io/go-nats repository, there is a nats-bench tool that

can be used to confirm the throughput from a NATS Server in a certain

environment. By using the varz data, we can inspect the status of the

benchmark as it progresses (see Listing 7-5).

Listing 7-5. Messages Throughput in /varz

$ watch -n 1 'curl http://127.0.0.1:8222/varz --silent | grep

"\(msgs\|byte\)"'

...

 "in_msgs": 70000000,

 "out_msgs": 0,

 "in_bytes": 40000000,

 "out_bytes": 0,

$ cd src/github.com/nats-io/go-nats

$ go run examples/nats-bench.go -np 20 -n 10000000 -ms 1 hi

Starting benchmark [msgs=10000000, msgsize=0, pubs=20, subs=0]

Pub stats: 10,037,294 msgs/sec ~ 9.57 MB/sec

...

Chapter 7 Monitoring natS

175

 The /connz Endpoint
The /connz endpoint holds statistics and metadata about the clients

currently connected to the server. Listing 7-6 shows an example of the

sample data that we get via /connz.

Listing 7-6. Sample connz Data

$ curl http://127.0.0.1:8222/connz

{

 "now": "2018-02-04T10:36:53.33824-08:00",

 "num_connections": 17,

 "total": 17,

 "offset": 0,

 "limit": 1024,

 "connections": [

 {

 "cid": 1,

 "ip": "127.0.0.1",

 "port": 49307,

 "start": "2018-02-04T10:23:59.387138-08:00",

 "last_activity": "2018-02-04T10:23:59.387545-08:00",

 "uptime": "12m53s",

 "idle": "12m53s",

 "pending_bytes": 0,

 "in_msgs": 0,

 "out_msgs": 0,

 "in_bytes": 0,

 "out_bytes": 0,

 "subscriptions": 4,

 "name": "rides-manager:GPPt15ETRM5cm3ECaL0zpx",

 "lang": "go",

Chapter 7 Monitoring natS

176

 "version": "1.3.1"

 },

 ...

]

}

Similar to when using varz, you can find the in/out messages and

bytes that have been flowing through the client (see Listing 7-7):

• out_msgs/out_bytes are the number of messages and

bytes that the client has received (that is whenever the

clients gets a MSG from the protocol)

• in_msgs/in_bytes are the number of messages and

bytes that the client has sent (increments every time

that the client sends PUB)

Listing 7-7. In/Out Messages and Bytes from a Client

"in_msgs": 0,

"out_msgs": 0,

"in_bytes": 0,

"out_bytes": 0,

By convention, all clients that connect to a NATS Server should be

announcing the current version of the client and its language when

sending CONNECT to the server. As part of the CONNECT payload, it is also

possible to give the client a name, which if combined with a unique

identifier, can be useful to discern the role or type of component

connected to NATS.

None of these fields is strictly necessary, but if the client has sent them,

the fields will be included by the server as part of the metadata that the

server holds about the client (see Listing 7-8).

Chapter 7 Monitoring natS

177

Listing 7-8. Info from Connected Client

"name": "rides-manager:GPPt15ETRM5cm3ECaL0zpx",

"lang": "go",

"version": "1.3.1"

Whenever a client connects to the server, it will label it with a

connection ID (CID), which combined with tracing or debug logging in the

server, can be useful for investigating the behavior of a client in handling a

message.

Listing 7-9 shows an example of a couple of clients named sub and pub

that are receiving and publishing messages, respectively. In the example,

the pub connection will send 10 messages and then stop.

Listing 7-9. Pair of Named Clients Publishing and Receiving

Messages

package main

import (

 "log"

 "runtime"

 "github.com/nats-io/go-nats"

)

func main() {

 nc1, err := nats.Connect("nats://127.0.0.1:4222",

nats.Name("sub"))

 if err != nil {

 log.Fatal(err)

 }

 nc2, err := nats.Connect("nats://127.0.0.1:4222",

nats.Name("pub"))

Chapter 7 Monitoring natS

178

 if err != nil {

 log.Fatal(err)

 }

 nc2.Subscribe("example", func(m *nats.Msg) {

 log.Printf("[Received] %s\n", string(m.Data))

 })

 for i := 0; i < 10; i++ {

 nc1.Publish("example", []byte("hello"))

 }

 nc1.Flush()

 runtime.Goexit()

}

Running the example and looking at the results after making a request

to /connz (see Listing 7-10), we can notice that the client named sub has

in_msgs set to 10, and the client named pub has out_msgs set to 10.

Listing 7-10. In/Out Msgs Monitoring in /connz

$ go run code/pub-sub-test.go

^Z

$ curl http://127.0.0.1:8222/connz

{

 "server_id": "HewfTLSkp9YaxzjmyXxmSr",

 "now": "2018-03-27T16:18:17.457613123-07:00",

 "num_connections": 2,

 "total": 2,

 "offset": 0,

 "limit": 1024,

 "connections": [

Chapter 7 Monitoring natS

179

 {

 "cid": 3,

 "ip": "127.0.0.1",

 "port": 50032,

 "start": "2018-03-27T16:06:57.663295386-07:00",

 "last_activity": "2018-03-27T16:06:57.664432684-07:00",

 "uptime": "11m19s",

 "idle": "11m19s",

 "pending_bytes": 0,

 "in_msgs": 10,

 "out_msgs": 0,

 "in_bytes": 50,

 "out_bytes": 0,

 "subscriptions": 0,

 "name": "sub",

 "lang": "go",

 "version": "1.3.1"

 },

 {

 "cid": 4,

 "ip": "127.0.0.1",

 "port": 50033,

 "start": "2018-03-27T16:06:57.663971404-07:00",

 "last_activity": "2018-03-27T16:06:57.664432684-07:00",

 "uptime": "11m19s",

 "idle": "11m19s",

 "pending_bytes": 0,

 "in_msgs": 0,

 "out_msgs": 10,

 "in_bytes": 0,

 "out_bytes": 50,

Chapter 7 Monitoring natS

180

 "subscriptions": 1,

 "name": "pub",

 "lang": "go",

 "version": "1.3.1"

 }

]

}

 Showing Client Subscriptions

It is hidden by default, but there is an extra level of verbosity that can be

enabled in the /connz endpoint in order to get the list of subscriptions of

each client.

In order to do this, we use the special query parameter subs. Listing 7- 11

shows a curl client making a request using /connz?subs=1 and running

clients from the application that was developed in the previous chapter.

Listing 7- 11. Toggling Client Subscriptions

$ curl http://127.0.0.1:8222/connz?subs=1

{

 "now": "2018-02-04T11:41:02.54257-08:00",

 "num_connections": 17,

 "total": 17,

 "offset": 0,

 "limit": 1024,

 "connections": [

 {

 "cid": 1,

 ...

 "name": "api-server:4BSSBvCeckW3TyqKiWR9Ic",

 ...

Chapter 7 Monitoring natS

181

 "subscriptions_list": [

 "_NATS_RIDER.discovery",

 "_NATS_RIDER.*.4BSSBvCeckW3TyqKiWR9Ic.status",

 "_INBOX.4BSSBvCeckW3TyqKiWR9Js.*"

]

 },

 {

 "cid": 2,

 ...

 "name": "driver-agent:o874B2pmEzEjZ0TeAfXJsb",

 ...

 "subscriptions_list": [

 "drivers.rides",

 "_NATS_RIDER.discovery",

 "_NATS_RIDER.*.o874B2pmEzEjZ0TeAfXJsb.status"

]

 },

 {

 "cid": 3,

 ...

 "name": "rides-manager:1WnIh1N9QnHkHT6XL1EMZ6",

 ...

 "subscriptions_list": [

 "_NATS_RIDER.discovery",

 "_NATS_RIDER.*.1WnIh1N9QnHkHT6XL1EMZ6.status",

 "drivers.find",

 "_INBOX.1WnIh1N9QnHkHT6XL1EMZr.*"

]

 },

 ...

]

}

Chapter 7 Monitoring natS

182

You will notice that in the response payload, there is now a

subscriptions_list field that includes the collection of subscriptions, to

which each one of the clients has registered interest.

 Sorting and Limiting Query Results

If there are too many clients connected to the server, getting all the

data available related to the client connections might be too noisy for

investigation purposes. In order to help with this, the /connz endpoint

supports the query parameters limit and offset in order to narrow down

the results being returned by the server.

By default, the list of connections provided by the server is ordered in

order of CID. This means that if we query for a single connection, result is

going to be oldest connection established to the server. Listing 7-12 shows

an example of making a request to the monitoring port and limiting a

single result. You can notice that, as part of the response, there are 17 total

connections, but the field num_connections is set to 1 since we are only

getting a single entry due to the limit.

Listing 7-12. Limiting Results from /connz

$ curl 'http://127.0.0.1:8222/connz?limit=1'

{

 "now": "2018-02-04T14:32:06.808218-08:00",

 "num_connections": 1,

 "total": 17,

 "offset": 0,

 "limit": 1,

 "connections": [

 {

 "cid": 1,

 "ip": "127.0.0.1",

 "port": 52119,

Chapter 7 Monitoring natS

183

 "start": "2018-02-04T11:23:52.84029-08:00",

 "last_activity": "2018-02-04T11:24:44.686233-08:00",

 "uptime": "1h49m39s",

 "idle": "1h48m47s",

 "pending_bytes": 0,

 "in_msgs": 3,

 "out_msgs": 3,

 "in_bytes": 24,

 "out_bytes": 66,

 "subscriptions": 3,

 "name": "api-server:4BSSBvCeckW3TyqKiWR9Ic",

 "lang": "go",

 "version": "1.3.1"

 }

]

}

From the previous response, we already know that there are 17

connections established to the server. In Listing 7-13, it is shown that

it is possible to skip the first 16 connections and instead get the oldest

connection established to NATS. We do this by combining it with the

offset and limit it to a single connection to be included in the response.

Listing 7-13. Skipping Entries in /connz

$ curl 'http://127.0.0.1:8222/connz?limit=1&offset=16'

{

 "now": "2018-02-04T14:31:48.354052-08:00",

 "num_connections": 1,

 "total": 17,

 "offset": 16,

 "limit": 1,

 "connections": [

Chapter 7 Monitoring natS

184

 {

 "cid": 17,

 "ip": "127.0.0.1",

 "port": 52134,

 "start": "2018-02-04T11:23:52.864348-08:00",

 "last_activity": "2018-02-04T11:24:46.344434-08:00",

 "uptime": "1h49m20s",

 "idle": "1h48m27s",

 "pending_bytes": 0,

 "in_msgs": 10,

 "out_msgs": 10,

 "in_bytes": 220,

 "out_bytes": 80,

 "subscriptions": 3,

 "name": "driver-agent:OzgeYwhzBbtK9xZLgzDvOU",

 "lang": "go",

 "version": "1.3.1"

 }

]

}

If the offset is set to be more than the number of connections, the

result will be an empty list.

We can decide to sort by a different key as well by using the sort

query parameter. Using subs as the sorting option, we can request the top

connection that has the most subscriptions. An example of this usage is

shown in Listing 7-14, where it is limiting to get a single result using subs

as the key for sorting.

Chapter 7 Monitoring natS

185

Listing 7-14. Combining Sorts and Limit

$ curl 'http://127.0.0.1:8222/connz?subs=1&sort=subs&limit=1'

{

 "now": "2018-02-04T16:19:54.517079-08:00",

 "num_connections": 1,

 "total": 17,

 "offset": 0,

 "limit": 1,

 "connections": [

 {

 "cid": 4,

 "ip": "127.0.0.1",

 "port": 52123,

 "start": "2018-02-04T11:23:52.851202-08:00",

 "last_activity": "2018-02-04T11:24:46.762113-08:00",

 "uptime": "3h37m26s",

 "idle": "3h36m33s",

 "pending_bytes": 0,

 "in_msgs": 6,

 "out_msgs": 36,

 "in_bytes": 90,

 "out_bytes": 750,

 "subscriptions": 4,

 "name": "rides-manager:CTaLprNj7pONtJLBoLJ2Mr",

 "lang": "go",

 "version": "1.3.1",

 "subscriptions_list": [

 "_INBOX.CTaLprNj7pONtJLBoLJ2Ok.*",

 "_NATS_RIDER.discovery",

Chapter 7 Monitoring natS

186

 "_NATS_RIDER.*.CTaLprNj7pONtJLBoLJ2Mr.status",

 "drivers.find"

]

 }

]

}

Other sorting options include cid (the default), subs, msgs_to, msgs_

from, bytes_to, bytes_from, last, idle, pending, and uptime.

In Listing 7-15, we can find an example of getting the top client that

has received the most messages. From the results, we can see that in

this case it is one of the Rider Managers from the previous chapter who

has been receiving the most messages. Remember that we were using a

queue subscription for load balancing here, but the message is delivered

randomly to one of the members in the group. That means there is a

chance for one of them to have received a slightly higher number of

messages than others in the same group.

Listing 7-15. Query for Connection Sending the Most Messages

$ curl 'http://127.0.0.1:8222/connz?subs=1&sort=msgs_

to&limit=1'

{

 "now": "2018-02-04T16:30:48.617634-08:00",

 "num_connections": 1,

 "total": 17,

 "offset": 0,

 "limit": 1,

 "connections": [

 {

 "cid": 14,

 "ip": "127.0.0.1",

 "port": 52132,

Chapter 7 Monitoring natS

187

 "start": "2018-02-04T11:23:52.860447-08:00",

 "last_activity": "2018-02-04T11:24:45.974665-08:00",

 "uptime": "3h48m21s",

 "idle": "3h47m27s",

 "pending_bytes": 0,

 "in_msgs": 10,

 "out_msgs": 60,

 "in_bytes": 150,

 "out_bytes": 1250,

 "subscriptions": 4,

 "name": "rides-manager:GPPt15ETRM5cm3ECaL0zpx",

 "lang": "go",

 "version": "1.3.1",

 "subscriptions_list": [

 "_NATS_RIDER.discovery",

 "_NATS_RIDER.*.GPPt15ETRM5cm3ECaL0zpx.status",

 "drivers.find",

 "_INBOX.GPPt15ETRM5cm3ECaL0zsa.*"

]

 }

]

}

 About /routez
The /routez endpoint was mentioned briefly in the chapter about

clustering. If you have a pool of NATS Servers running as a cluster, this

endpoint can be useful for detecting the current status of the client

connections from the mesh.

Let's say, for example, that we start a cluster, as shown in Listing 7-16.

Chapter 7 Monitoring natS

188

Listing 7-16. Assembling a Three-Node NATS Cluster

SERVERS=nats://127.0.0.1:6222,nats://127.0.0.1:6223,na

ts://127.0.0.1:6224

gnatsd -V -T -p 4222 -m 8222 -cluster nats://127.0.0.1:6222

-routes $SERVERS &

gnatsd -V -T -p 4223 -m 8223 -cluster nats://127.0.0.1:6223

-routes $SERVERS &

gnatsd -V -T -p 4224 -m 8224 -cluster nats://127.0.0.1:6224

-routes $SERVERS &

After having some clients connect to the cluster, we can inspect the

state of the cluster from the perspective of the first node (see Listing 7-17).

Listing 7-17. Inspecting /routez Data

$ curl http://127.0.0.1:8222/routez

{

 "now": "2018-02-04T17:36:32.942303-08:00",

 "num_routes": 2,

 "routes": [

 {

 "rid": 1,

 "remote_id": "akWIfPhuz3TgKJ4rLjVngy",

 "did_solicit": true,

 "is_configured": true,

 "ip": "127.0.0.1",

 "port": 6224,

 "pending_size": 0,

 "in_msgs": 0,

 "out_msgs": 0,

 "in_bytes": 0,

Chapter 7 Monitoring natS

189

 "out_bytes": 0,

 "subscriptions": 9

 },

 {

 "rid": 4,

 "remote_id": "up4vD1A8eyWxwmZinOKtLy",

 "did_solicit": true,

 "is_configured": true,

 "ip": "127.0.0.1",

 "port": 6223,

 "pending_size": 0,

 "in_msgs": 0,

 "out_msgs": 0,

 "in_bytes": 0,

 "out_bytes": 0,

 "subscriptions": 45

 }

]

}

The routes from a NATS cluster themselves act as clients internally.

Similar to the /connz endpoint, in Listing 7-18 it is passed subs as a

query parameter when making the request in order to get the list of the

subscriptions that the routes are holding.

Listing 7-18. Inspecting Subscriptions from /routez

$ curl http://127.0.0.1:8222/routez?subs=1

{

 "now": "2018-02-04T18:08:07.478325-08:00",

 "num_routes": 2,

 "routes": [

Chapter 7 Monitoring natS

190

 {

 "rid": 1,

 "remote_id": "akWIfPhuz3TgKJ4rLjVngy",

 "did_solicit": true,

 "is_configured": true,

 "ip": "127.0.0.1",

 "port": 6224,

 "pending_size": 0,

 "in_msgs": 0,

 "out_msgs": 0,

 "in_bytes": 0,

 "out_bytes": 0,

 "subscriptions": 9,

 "subscriptions_list": [

 "_NATS_RIDER.*.0UoJyU8iSgjJhlIeEwEXnz.status",

 "_NATS_RIDER.discovery",

 "_NATS_RIDER.*.9oRlB5JkjM2SgvXc2BDzyX.status",

 "drivers.rides",

 "_NATS_RIDER.discovery",

 "_NATS_RIDER.discovery",

 "_NATS_RIDER.*.0JtAPcUHxCFTpbvePnzatB.status",

 "drivers.rides",

 "drivers.rides"

]

 },

 {

 "rid": 4,

 "remote_id": "up4vD1A8eyWxwmZinOKtLy",

 "did_solicit": true,

 "is_configured": true,

Chapter 7 Monitoring natS

191

 "ip": "127.0.0.1",

 "port": 6223,

 "pending_size": 0,

 "in_msgs": 0,

 "out_msgs": 0,

 "in_bytes": 0,

 "out_bytes": 0,

 "subscriptions": 45,

 "subscriptions_list": [

 "_NATS_RIDER.*.yrEbwPREXu7UtvA8rtQtve.status",

 "drivers.find",

 "_INBOX.mEAbzfI0Z3n6AOKlMxDnzA.*",

 "_NATS_RIDER.*.4BSSBvCeckW3TyqKiWR9Ic.status",

 "_NATS_RIDER.*.dI85VMkQS23OtJZ4oOQ22l.status",

 ...

 "_NATS_RIDER.discovery",

 "drivers.rides",

 "_NATS_RIDER.discovery"

]

 }

]

}

Again, for the cluster to work properly, all members in the cluster

should eventually have two routes in order for the full-mesh to exist. When

we’re deploying a NATS cluster and we know the static list of IPs and ports

from servers in the cluster, one way to confirm that the NATS service is

available is by checking whether each one of the servers has the proper

number of routes established already (see Listing 7-19).

Chapter 7 Monitoring natS

192

Listing 7-19. Ensuring a Cluster Is Fully Formed

for port in 8222 8223 8224; do

 curl http://127.0.0.1:$port/routez | grep num_routes

done

 "num_routes": 2,

 "num_routes": 2,

 "num_routes": 2,

If that is not the case, there might be an issue with the formation of the

cluster and there might be a partition. The messages will not be routed

properly.

 About /subsz
This endpoint provides cumulative stats about the internal state of

the sublist data structure that the server maintains (see Listing 7-20).

For admin purposes, the data presented might be too advanced, so

using /subsz is handier when making improvements to the server

implementation.

Listing 7-20. Sublist Structure Internal Data

$ curl http://127.0.0.1:8222/subsz

{

 "num_subscriptions": 54,

 "num_cache": 2,

 "num_inserts": 54,

 "num_removes": 0,

 "num_matches": 140,

 "cache_hit_rate": 0.9857142857142858,

 "max_fanout": 0,

 "avg_fanout": 0

}

Chapter 7 Monitoring natS

193

The num_subscriptions is essentially the same information that can

be found in the /varz endpoint, so when we are monitoring the server, it is

not strictly necessary to get the information from here.

 Using nats-top for Monitoring
The NATS team maintains a small utility that can be used to inspect the

current state of the connections to the server. It’s called nats-top

(see https://github.com/nats-io/nats-top).

To install it, you can use go get to get the latest nats-top binary

compiled for your platform, as shown in Listing 7-21.

Listing 7-21. Installing nats-top

Installing nats-top via go get

go get github.com/nats-io/nats-top

The nats-top utility is an example of a simple client that can be built

that feeds from the data of the server. By default, it will try to connect to the

8222 monitoring port from a locally available gnatsd process, but by using

the -s and -m flags, we can modify the address and monitoring port of the

server, as demonstrated in Listing 7-22.

Listing 7-22. Connecting to the Monitoring Port with nats-top

$ nats-top -s 127.0.0.1 -m 8223

Once it’s running, we get in the terminal an overview of the state of each

client that is connected to that particular NATS Server (see Listing 7-23).

Chapter 7 Monitoring natS

https://github.com/nats-io/nats-top

194

Listing 7-23. Example nats-top Output

NATS server version 1.1.0 (uptime: 51m42s)

Server:

 Load: CPU: 0.0% Memory: 14.3M Slow Consumers: 0

 In: Msgs: 12.5K Bytes: 249.6K Msgs/Sec: 0.0

 Out: Msgs: 19.6K Bytes: 306.7K Msgs/Sec: 0.0

Connections Polled: 14

 HOST CID SUBS MSGS_TO MSGS_FROM

 192.168.1.9:60703 7 3 913 913

 192.168.99.1:60685 8 3 913 913

 192.168.1.9:60686 9 3 913 913

 192.168.99.1:60689 10 3 304 304

 192.168.1.9:60692 11 3 305 305

 192.168.99.1:60693 12 3 913 913

 192.168.99.1:60694 13 3 913 913

 192.168.99.1:60695 14 3 913 913

 192.168.1.9:60698 15 4 3.7K 632

 192.168.99.1:60699 16 3 913 913

 192.168.1.9:60701 17 3 913 913

 192.168.1.9:60707 18 4 3.6K 620

 192.168.99.1:60713 19 4 3.4K 574

 192.168.1.9:60710 20 3 304 304

By default, the list of connections will be sorted by CID, but by pressing

the letter O, it is possible to set a different sorting option. Listing 7-24

shows some of the other options available in nats-top. This help message

can be displayed in your terminal by pressing ?.

Chapter 7 Monitoring natS

195

Listing 7-24. A nats-top Help Message

Command Description

o<option> Set primary sort key to <option>.

 Option can be one of: {cid|subs|pending|msgs_

to|msgs_from|

 bytes_to|bytes_from|idle|last}

 This can be set in the command line too with -sort

flag.

n<limit> Set sample size of connections to request from the

server.

 This can be set in the command line as well via -n

flag.

 Note that if used in conjunction with sort, the

server

 would respect both options allowing queries like

'connection

 with largest number of subscriptions': -n 1 -sort

subs

s Toggle displaying connection subscriptions.

d Toggle activating DNS address lookup for clients.

q Quit nats-top.

We can sort by the number of messages that have been received

(msgs_to) and get a different result as well. In Listing 7-25, we can see that

the Rider Manager components are the ones that have received the most

messages.

Chapter 7 Monitoring natS

196

Listing 7-25. Sorting Functions in nats-top

NATS server version 1.0.4 (uptime: 59m11s)

Server:

 Load: CPU: 0.0% Memory: 14.3M Slow Consumers: 0

 In: Msgs: 12.5K Bytes: 249.6K Msgs/Sec: 0.0

 Out: Msgs: 19.6K Bytes: 306.7K Msgs/Sec: 0.0

Connections Polled: 14

 HOST CID SUBS MSGS_TO MSGS_FROM

 192.168.1.9:60698 15 4 3.7K 632

 192.168.1.9:60707 18 4 3.6K 620

 192.168.99.1:60713 19 4 3.4K 574

 192.168.99.1:60693 12 3 913 913

 192.168.1.9:60686 9 3 913 913

 192.168.1.9:60703 7 3 913 913

 192.168.99.1:60694 13 3 913 913

 192.168.99.1:60695 14 3 913 913

 192.168.1.9:60701 17 3 913 913

 192.168.99.1:60699 16 3 913 913

 192.168.99.1:60685 8 3 913 913

 192.168.1.9:60692 11 3 305 305

 192.168.99.1:60689 10 3 304 304

 192.168.1.9:60710 20 3 304 304

 Summary
In this chapter, we covered some of the important aspects of monitoring a

NATS Server. In case you might be using Prometheus as part of your setup,

the NATS team also maintains an exporter which transforms the server

metrics into Prometheus format (available at https://github.com/natsio/

prometheus-nats-exporter). In the next chapters, we take a look at how to

make our deployment more secure by using certificates and enabling TLS in

the cluster.

Chapter 7 Monitoring natS

https://github.com/natsio/prometheus-nats-exporter
https://github.com/natsio/prometheus-nats-exporter

197© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6_8

CHAPTER 8

Securing NATS
In the early chapters of this book, we mentioned that NATS has as its main

core values not only simplicity and performance but also security. The

NATS project values ease of use a lot, and protocol being in plain text helps

a lot for debugging and inspecting raw traffic without many complications,

but these benefits lose value unless we can have our setup secure against

attacks from bad actors.

In this chapter, you will learn:

• How NATS handles secure connections to the server

• How to set up TLS for clients to connect securely

to the server

• How to set up TLS for a NATS clustering setup

• How to secure the monitoring port from the server

 Connecting Securely to NATS
The original Ruby server had some initial support for TLS, but its usage

did not evolve a lot as the core EventMachine implementation had some

limitations in its TLS support. Fortunately, thanks to the Go rewrite of the

server, NATS can take advantage of the mature TLS tooling available in Go

and provide first class support to security features. Thus there is no need

to compile the server against OpenSSL for example as NATS utilizes the

native support built into Go in its crypto/tls package (https://golang.

org/pkg/crypto/tls/).

https://golang.org/pkg/crypto/tls/
https://golang.org/pkg/crypto/tls/

198

Establishing a secure connection starts the same way as an insecure

connection but clients, after reading the first INFO message from the

server, start the TLS handshake to upgrade the connection and continue

communicating securely after that.

When a NATS Server is set up to be secure, it will force for all

communications to be done in a secure way. In Listing 8-1, a telnet client is

trying to establish a connection to the secure port from the demo.nats.io

endpoint. Once connected, the server will announce to the client that

a secure connection is required and give it some time to establish the

connection securely.

Listing 8-1. Attempting to Connect to Secure Server Setup

$ telnet demo.nats.io 4443

INFO {..., "ssl_required":true, "tls_required":true,

"tls_verify":false,...}

You may notice that there are two similar fields in the initial INFO

message—ssl_required and tls_required. The former can be ignored

for newer clients, as is related to backward compatibility with the

previous implementation of the Ruby server. Newer clients like the Go

implementation just check for the presence of tls_required setting to

start the TLS handshake.

By default, the server will give the client two seconds to complete

securing the connection; otherwise, the client will receive a protocol error

message and then the server will close the connection (see Listing 8-2).

Listing 8-2. Timeout When Connecting to NATS

$ telnet demo.nats.io 4443

INFO {..., "ssl_required":true, "tls_required":true,

"tls_verify":false,...}

-ERR 'Secure Connection - TLS Required'

Chapter 8 SeCuring natS

199

Once the TLS handshake has been completed, the client will proceed

to send the CONNECT command and continue communicating with the

server following the NATS protocol in the same way as it was described

in Chapter 2. In Figure 8-1, you can find a picture of the overall flow of

establishing a secure connection to NATS.

Figure 8-1. Establishing a secure NATS connection

 Configuring TLS in the Server
It is recommended to configure TLS for NATS by using the configuration

file. Reasons for this are outlined in the caveats sections at the end of this

chapter, so for the following sections, we only show how to do it via the

config file first.

When configuring TLS in NATS, we need to keep in mind that there are

actually two different TLS configuration blocks required to fully secure the

NATS infrastructure—one TLS block for securing the connections to the

clients and another for securing the routes. Listing 8-3 shows an example

configuration file containing these two blocks.

Chapter 8 SeCuring natS

200

Listing 8-3. Server TLS and Routes TLS Configuration Blocks

tls {

 cert_file = "/etc/nats-tls/certs/server.pem"

 key_file = "/etc/nats-tls/certs/server-key.pem"

}

cluster {

 tls {

 cert_file = "/etc/nats-tls/certs/route.pem"

 key_file = "/etc/nats-tls/certs/route-key.pem"

 }

}

The certificates and TLS options from the server are not shared, thus

if one of them is left unconfigured, the communication between those

endpoints will not be encrypted. Thus there are three things in total that

need to be secured:

• The communication between the NATS clients and the

NATS Server

• The communication between the NATS Servers with

other NATS Servers

• The monitoring port

In the following sections, we take a look at how to set up each one. At

the end, we provide a thorough example of having a secure infrastructure

from scratch by creating our own CA and certificates.

 Securing the Monitoring Endpoint
Enabling monitoring for the server can be done using the -m flag, but there

is also a secure version that can be enabled by using -ms (see Listing 8-4).

Chapter 8 SeCuring natS

201

Listing 8-4. Enabling Secure Monitoring Port

gnatsd -ms 8222 -c nats.conf

 Tuning the Authorization Timeout
Depending on the infrastructure, it might be required to tune the default

timeout for TLS handshake (which is by default two seconds). If required,

the default timeout can be configured by the tls block stanza in the

configuration file. Listing 8-5 shows how to change this timeout to wait five

seconds instead.

Listing 8-5. Extending the TLS Timeout

tls {

 cert_file = "/etc/nats-tls/certs/server.pem"

 key_file = "/etc/nats-tls/certs/server-key.pem"

 ca_file = "/etc/nats-tls/certs/ca.pem"

 verify = false

 timeout = 5 # seconds

}

 Setting a Certificate Authority
In case we are using self-signed certificates (as we will be doing in rest of

this chapter), it is necessary to set up the CA against which to validate the

certificates with the ca_file option (see Listing 8-6).

Listing 8-6. TLS Using a Custom CA

tls {

 cert_file = "/etc/nats-tls/certs/server.pem"

 key_file = "/etc/nats-tls/certs/key.pem"

 ca_file = "/etc/nats-tls/certs/cert.new.pem"

}

Chapter 8 SeCuring natS

202

 Require Clients to Provide a Certificate
It is possible to force the clients to provide a certificate when establishing a

connection to the server by toggling verify to true (see Listing 8-7).

Listing 8-7. TLS Certificate Required Clients

tls {

 cert_file = "/etc/nats-tls/certs/server.pem"

 key_file = "/etc/nats-tls/certs/server-key.pem"

 ca_file = "/etc/nats-tls/certs/ca.pem"

 verify = true

}

 Setting Up a Secure NATS Environment
from Scratch
In the following section, we create a secure configuration for NATS from

scratch, as shown in Figure 8-2. We create our own CA certificates and use

self-signed certificates to demonstrate how a secure setup looks.

Figure 8-2. A secure NATS infrastructure

Chapter 8 SeCuring natS

203

 Installing cfssl for Certs Creation
For the creation of certificates, we will be using the cfssl tool maintained

by Cloudflare (https://github.com/cloudflare/cfssl). Assuming

you already have a working Go environment in order to run previous

examples, so you can run go get, as shown in Listing 8-8, to install cfssl

on your system.

Listing 8-8. Getting cfssl

$ go get -u github.com/cloudflare/cfssl/cmd/cfssl

cfssl version

Version: 1.2.0

Revision: dev

Runtime: go1.9

Otherwise, in OSX it is also possible to get it via Homebrew, as shown

in Listing 8-9.

Listing 8-9. Installing cfssl via Homebrew

$ brew install cfssl

 Defining the Security Roles
We start by creating the profiles (see Listing 8-10) for the different security

roles that are involved:

• Server: The server certificate sent to the client

• Client: The client certificate sent to the server (since we

require clients to send a certificate)

• Route: The server certificate used for the full-mesh if

using a clustering setup

Chapter 8 SeCuring natS

https://github.com/cloudflare/cfssl

204

Listing 8-10. JSON Configuration for Roles (certs/ca-config.json)

{

 "signing": {

 "default": {

 "expiry": "43800h"

 },

 "profiles": {

 "server": {

 "expiry": "43800h",

 "usages": [

 "signing",

 "key encipherment",

 "server auth"

]

 },

 "client": {

 "expiry": "43800h",

 "usages": [

 "signing",

 "key encipherment",

 "client auth"

]

 },

 "route": {

 "expiry": "43800h",

 "usages": [

 "signing",

 "key encipherment",

 "server auth",

 "client auth"

]

Chapter 8 SeCuring natS

205

 }

 }

 }

}

 Creating a Custom Root CA
We will be setting up our own CA for using self-signed certificates

(see Listing 8-11).

Listing 8-11. Custom Root CA Example (certs/ca-csr.json)

{

 "CN": "My Custom CA",

 "key": {

 "algo": "rsa",

 "size": 2048

 },

 "names": [

 {

 "C": "US",

 "L": "CA",

 "O": "My Company",

 "ST": "San Francisco",

 "OU": "Org Unit 1"

 }

]

}

We will be storing all of these artifacts in a certs folder. Running the

cfssl, as shown in Listing 8-12, will generate the ca.pem file that we will

use to determine the root CA.

Chapter 8 SeCuring natS

206

Listing 8-12. Generating the CA Certificate

cd certs

cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

 Securing the Connections from the Clients
The first step for security will be creating a certificate for the server that will be

used for the client’s connections and the monitoring port. In Listing 8-13,

you can find a configuration to generate a wildcard certificate for

*.nats-cluster.my-domain.com.

Listing 8-13. Certs for Securing Client Connections

{

 "CN": "nats server",

 "hosts": [

 "*.nats-cluster.my-domain.com",

 "nats-cluster.my-domain.com"

],

 "key": {

 "algo": "rsa",

 "size": 2048

 },

 "names": [

 {

 "C": "US",

 "L": "CA",

 "ST": "San Francisco"

 }

]

}

Chapter 8 SeCuring natS

207

Then we generate the server private key and certificate with cfssl, as

shown in Listing 8-14.

Listing 8-14. Generating the CA Certificate

cd certs

cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.

json -profile=server server.json | cfssljson -bare server

We also require the clients to provide their own certificate, so we need

certificates for them as well (see Listings 8-15 and 8-16).

Listing 8-15. Certs to Verify Clients

{

 "CN": "nats client",

 "hosts": [""],

 "key": {

 "algo": "rsa",

 "size": 2048

 },

 "names": [

 {

 "C": "US",

 "L": "CA",

 "ST": "San Francisco"

 }

]

}

Listing 8-16. Generating Clients Certs

cd certs

Generating NATS client certs

cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.

json -profile=client client.json | cfssljson -bare client

Chapter 8 SeCuring natS

208

Then there is the configuration for the cluster, as shown in Listing 8-17.

Listing 8-17. Configuration to Secure Client Connections

tls {

 cert_file = './certs/server.pem'

 key_file = './certs/server-key.pem'

 ca_file = './certs/ca.pem'

 verify = true

 timeout = 5

}

 Securing the Monitoring Endpoint
This one is easy since we already have the server certificates. Now we

only need to include the https_port into the configuration, as shown in

Listing 8-18.

Listing 8-18. Enabling Secure Monitoring Port

https_port = 8222

tls {

 cert_file = './certs/server.pem'

 key_file = './certs/server-key.pem'

 ca_file = './certs/ca.pem'

 verify = true

 timeout = 5

}

Chapter 8 SeCuring natS

209

 Securing the Routes from the Cluster
This part is a bit more involved. For the TLS setup of the routes in a cluster,

we create a wildcard certificate using a nats-cluster-route subdomain

under which each one of the nodes will have its own A record. Figure 8-3

shows an image of how it may look.

Figure 8-3. TLS for NATS routes

We start by creating a wildcard certificate for the servers, as shown in

Listing 8-19.

Listing 8-19. Wildcard Certificate for Routes

{

 "CN": "nats route",

 "hosts": [

 "*.nats-cluster-route.my-domain.com",

],

 "key": {

 "algo": "rsa",

 "size": 2048

Chapter 8 SeCuring natS

210

 },

 "names": [

 {

 "C": "US",

 "L": "CA",

 "ST": "San Francisco"

 }

]

}

Then we generate the certificates with cfssl, as shown in Listing 8-20.

Listing 8-20. Creating the Certificates for Routes Connections

Generating the peer certificates

cd certs

cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.

json -profile=route route.json | cfssljson -bare route

Now the completed configuration will look like Listing 8-21. Note that

we are using an explicit list of the servers under the routes section, using

the full A record for each one of the servers (more on that on the TLS

caveats section).

Listing 8-21. Enabling TLS for Routes Connections

tls {

 cert_file = './certs/server.pem'

 key_file = './certs/server-key.pem'

 ca_file = './certs/ca.pem'

 timeout = 5

}

Chapter 8 SeCuring natS

211

https_port = 8222

cluster {

 tls {

 cert_file = './certs/route.pem'

 key_file = './certs/route-key.pem'

 ca_file = './certs/ca.pem'

 timeout = 5

 }

 routes = [

 nats://nats-A.nats-cluster-route.my-domain.com:6222

 nats://nats-B.nats-cluster-route.my-domain.com:6222

 nats://nats-C.nats-cluster-route.my-domain.com:6222

]

}

 Caveats from NATS TLS Support
In this section, we cover a few of the common gotchas to keep in mind when

deploying NATS clustering with TLS enabled. Note that some of these issues

may be resolved in the next few releases, depending on their priority.

 Not Possible to Use TLS Right Away
As of latest release v1.0.4, it is not possible to set the clients to use a TLS

connection from the start, meaning that features like SNI are currently not

supported.1

1 GitHub Issue: https://github.com/nats-io/gnatsd/issues/291

Chapter 8 SeCuring natS

https://github.com/nats-io/gnatsd/issues/291

212

The reason for this is that the initial INFO message has to be consumed

by the client in plain text, then once it detects that the tls_required is

signaling the client to start the secure connection, only then does the TLS

handshake negotiation start. Due to this issue, the following will never

work, as shown in Listing 8-22.

Listing 8-22. Trying to Connect with openssl Client

$ openssl s_client -connect demo.nats.io:4443

If you’re considering using a load balancer for example, this should be

kept in mind since if the load balancer requires a TLS connection from the

beginning, you might need to rearchitect a different solution around this

limitation.

 Limitations of Configuring TLS
from the Command Line
As of release v1.0.4, it is currently not possible to apply TLS configuration

reload via the HUP signal unless a configuration file is specified. Trying to

do so will result in an error appearing in the server logs.

Another issue is that it is only possible to configure the TLS options for

the server connections with the clients (the help message can be seen in

Listing 8-23). If we’re only setting the flags shown in Listing 8-23, the traffic

in between the server routes will continue to be in plaintext.

Listing 8-23. TLS Command-Line Options

Usage: gnatsd [options]

TLS Options:

 --tls Enable TLS, do not verify

clients (default: false)

 --tlscert <file> Server certificate file

Chapter 8 SeCuring natS

213

 --tlskey <file> Private key for server

certificate

 --tlsverify Enable TLS, verify client

certificates

 --tlscacert <file> Client certificate CA for

verification

Cluster Options:

 --routes <rurl-1, rurl-2> Routes to solicit and connect

 --cluster <cluster-url> Cluster URL for solicited routes

 --no_advertise <bool> Advertise known cluster IPs to

clients

 --connect_retries <number> For implicit routes, number of

connect retries

 Auto Discovery and Routes TLS
If the the server binds to 0.0.0.0, the server will resolve the addresses to send

via the INFO protocol. Let’s say for example that we have added a new nats-C

node to an already formed two-node cluster, as shown in Figure 8- 4.

Chapter 8 SeCuring natS

214

Figure 8-4. Secure NATS cluster with A records

Once the nats-C server connects to the nats-A server, it will

announce to nats-B that a new server joined the cluster and that it

should connect to it to form the full-mesh. It then sends nats-C the

resolved IP address (see Figure 8-4).

Then nats-B will try to connect to nats-C, but if we’re using auto-

discovery with TLS enabled, we may find the error shown in Listing 8-24 in

the logs during autodiscovery (see Figure 8-5).

Chapter 8 SeCuring natS

215

Listing 8-24. Autodiscovery Gossips IPs via the INFO Protocol

[ERR] 127.0.0.1:6222 - rid:14 - TLS route handshake error:

x509: cannot validate certificate for 127.0.0.1 because it

doesn't contain any IP SANs

Consequently, the clients would also get a list of the resolved IPs or a

hostname of the servers in the cluster, as shown in Figure 8-6.

Figure 8-5. Autodiscovery-based cluster formation

Chapter 8 SeCuring natS

216

Starting version 1.0.6 of the NATS Server, it is also possible to provide

both the -cluster_advertise and client_advertise options, which

allow you to control what the endpoint is that is announced to clients and

peers in the network.

 Summary
In this chapter, we learned about how to secure our infrastructure so that

we have control over which actors are part of the system as well some of

the few gotchas that may arise while doing so. Some of these may improve

in the next releases, so, as always, feedback is very welcome by the NATS

team to help in prioritizing. In the following chapters, we'll take a look at

finding solutions to some other gotchas or troubleshooting scenarios that

you may run into when using NATS.

Figure 8-6. Gossiping of available endpoints to clients

Chapter 8 SeCuring natS

217© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6_9

CHAPTER 9

Troubleshooting
NATS
Although NATS is very simple to operate and offers very strong invariants

regarding service stability, it is still needed to keep in mind having the right

balance between producers and consumers. Otherwise the service can run

into slow consumer issues (looking at NATS as a nervous system helps put

the correct mindset around this problem).

In this chapter, you will learn about:

• Different types of slow consumer scenarios

• How to tackle slow consumer errors

• Using event callbacks to prevent slow consumers

 Types of Slow Consumer Errors
A slow consumer is a condition reached by a NATS client where the client

is not being able to keep up with the pace at which the NATS Server is

sending the messages on which it registered interest.

There are two types of slow consumer error conditions that can be

reached:

• Condition A: When the client is not draining from the

socket the messages that the server is sending.

218

• Condition B: When a single subscription is

accumulating too many messages and reaching a

buffering limit set in the client.

When condition A occurs (see Figure 9-1), the server will acknowledge

this by sending an ERR protocol message to the client before disconnecting

the client from the server.

Figure 9-1. Slow consumer protocol error

Condition B, on the other hand (see Figure 9-2), is reached when

the client has already read the messages from the socket but is not

processing them fast enough so that internally the client is now buffering

a lot of them.

Chapter 9 troubleshooting nats

219

In the following sections, we describe a bit further both types of

scenarios and what strategies can be taken in order to mitigate them.

 Troubleshooting Slow Consumer Protocol
Errors
Whenever there is a slow consumer protocol error event, the NATS Server

will increase its internal counter in order to keep track of the total amount

of slow consumers that there have been so far in the server. Listing 9-1

shows how to confirm this from the monitoring endpoint by checking the

counter displayed on /varz.

Listing 9-1. Checking Slow Consumers from /varz

$ curl http://127.0.0.1:8222/varz | grep slow_consumers

 "slow_consumers": 0,

A healthy service should have none or a low count of slow consumers,

a large number of them is definitely not good.

We have seen in other chapters examples of reproducing a slow

consumer scenario under a tight loop, but this time let’s reproduce the

issue by splitting the subscribers and publisher into different processes.

Figure 9-2. Subscriptions with a slow consumer state

Chapter 9 troubleshooting nats

220

Let’s say that we have two types of clients—one that is publishing

messages on the foo subject (see Listing 9-2) and another that is sending

messages to bar (see Listing 9-3). They are both sending messages as fast

as possible. Note that in the example after sending all the messages, the

client is calling Flush in order to ensure that all the messages are sent

before the process exits.

Listing 9-2. Fast Producer on foo

package main

import (

 "log"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 msg := make([]byte, 1024)

 for i := 0; i < 1024; i++ {

 msg = append(msg, 'A')

 }

 for i := 0; i < 100000000; i++ {

 nc.Publish("foo", msg)

 }

 nc.Flush()

}

Chapter 9 troubleshooting nats

221

Listing 9-3. Fast Producer on bar

package main

import (

 "log"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 msg := make([]byte, 128)

 for i := 0; i < 1024; i++ {

 msg = append(msg, 'B')

 }

 for i := 0; i < 100000000; i++ {

 nc.Publish("bar", msg)

 }

 nc.Flush()

}

Then we have a subscriber (see Listing 9-4) that has registered interest

in the foo and bar subjects, but that whenever it receives a message on

foo, it has to do a significant amount of processing before handling the

next message.

Chapter 9 troubleshooting nats

222

Listing 9-4. Causing a Slow Consumer with a Tight Loop

package main

import (

 "log"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222")

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("foo", func(_ *nats.Msg) {

 // Heavy processing

 for i := 0; i < 10000000000; i++ {

 }

 })

 nc.Subscribe("bar", func(_ *nats.Msg) {

 // Not heavy processing

 })

 select {}

}

Running a single subscriber and publishers in parallel (see Listing 9-5)

will make the subscriber run into a slow consumer error in the server very

soon.

Chapter 9 troubleshooting nats

223

Listing 9-5. Running Publisher and Slow Consumer Subscriber

Subscribe to foo and bar

go run slow-consumer-protocol-error-sub-1.go

Publish on foo

go run slow-consumer-protocol-error-pub-foo-1.go

[INF] Starting nats-server version 1.1.0

[INF] Starting http monitor on 127.0.0.1:8222

[INF] Listening for client connections on 127.0.0.1:4222

[INF] Server is ready

[INF] 127.0.0.1:55289 - cid:1 - Slow Consumer Detected

In the NATS clients, it is good practice to set the event callbacks, as

they will give much better insight around what is the condition that was

reached by the client. In Listing 9-6, it is shown how to define all the

handlers for the subscription.

Listing 9-6. Setting Up Event Handlers for Debugging

package main

import (

 "log"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222",

 nats.DisconnectHandler(func(nc *nats.Conn) {

 log.Printf("Got disconnected!\n")

 }),

 nats.ReconnectHandler(func(nc *nats.Conn) {

Chapter 9 troubleshooting nats

224

 log.Printf("Got reconnected to %v!\n",

nc.ConnectedUrl())

 }),

 nats.ClosedHandler(func(nc *nats.Conn) {

 log.Printf("Connection closed. Reason:

%v\n", nc.LastError())

 }),

 nats.ErrorHandler(func(nc *nats.Conn,

sub *nats.Subscription, err error) {

 log.Printf("Error: %s\n", err)

 }),

)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 nc.Subscribe("foo", func(_ *nats.Msg) {

 // Heavy processing

 log.Println("Start processing 'foo' message")

 for i := 0; i < 10000000000; i++ {

 }

 log.Println("Done processing 'foo' message")

 })

 nc.Subscribe("bar", func(_ *nats.Msg) {

 // Not heavy processing

 })

 select {}

}

Now with added logging, we can see that the client is becoming

disconnected and reconnected several times (the results are shown in

Listing 9-7).

Chapter 9 troubleshooting nats

225

Listing 9-7. Disconnection Events Logged in Callbacks

2018/02/28 00:48:27 Start processing 'foo' message

2018/02/28 00:48:37 Done processing 'foo' message

2018/02/28 00:48:37 Start processing 'foo' message

2018/02/28 00:48:37 Got disconnected!

2018/02/28 00:48:37 Got reconnected to nats://127.0.0.1:4222!

2018/02/28 00:48:44 Done processing 'foo' message

2018/02/28 00:48:44 Start processing 'foo' message

Although the server may have sent a slow consumer error back to the

client, the error callback was so further behind in the processing that it

may have missed the server who was trying to send the event to the client.

Clearly a single NATS client would not be able to sustain this amount

of traffic. In a real world scenario, when reaching this condition there

would be a number of timeouts appearing if there were being requests

being made during that time. In order to share the load of an attack,

QueueSubscribe could be used instead (see Figure 9-3). Then there would

be more workers available to handle the requests and prevent timeouts.

Figure 9-3. Slow consumer protocol error

Chapter 9 troubleshooting nats

226

Reaching the point where the client is disconnected due to reaching

the slow consumer might be too late to handle and too difficult to control

as well. Instead, we can rely on the engine from the client and the internal

queues to detect this earlier.

 Subscriptions in Slow Consumer State
Since this is an asynchronous subscription that takes a callback, the client

will be reading the messages from the socket and internally creating a

linked list of up to 65536 messages by default.

The size of this queue of messages can be further controlled by calling

SetPendingLimits on the subscription (see Listing 9-8). Reducing the

limit to 8192 messages will make it faster for the client to reach the slow

consumer state so that, in the error handler, it can be controlled for

example to stop receiving messages in the subscription temporarily and let

other workers handle instead.

Listing 9-8. Modifying PendingLimits from a Subscription

package main

import (

 "log"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect("nats://127.0.0.1:4222",

 nats.DisconnectHandler(func(nc *nats.Conn) {

 log.Printf("Got disconnected!\n")

 }),

 nats.ReconnectHandler(func(nc *nats.Conn) {

 log.Printf("Got reconnected to %v!\n",

nc.ConnectedUrl())

Chapter 9 troubleshooting nats

227

 }),

 nats.ClosedHandler(func(nc *nats.Conn) {

 log.Printf("Connection closed. Reason:

%v\n", nc.LastError())

 }),

 nats.ErrorHandler(func(nc *nats.Conn, sub

*nats.Subscription, err error) {

 log.Printf("Error: %s\n", err)

 if err == nats.ErrSlowConsumer {

 log.Printf("Removing subscription

on %q\n", sub.Subject)

 sub.Unsubscribe()

 }

 }),

)

 if err != nil {

 log.Fatalf("Error: %s", err)

 }

 sub, _ := nc.Subscribe("foo", func(_ *nats.Msg) {

 // Heavy processing

 log.Println("Start processing 'foo' message")

 for i := 0; i < 10000000000; i++ {

 }

 log.Println("Done processing 'foo' message")

 })

 sub.SetPendingLimits(8192, 8192*1024)

 nc.Subscribe("bar", func(_ *nats.Msg) {

 // Not heavy processing

 })

 select {}

}

Chapter 9 troubleshooting nats

228

Now as part of the logic of the client, it will be eagerly removing

interest in the subject that is causing the client to become a slow consumer

(see Listing 9-9). This way, the other subscription bar is not going to be

impacted and the worker can still do other tasks other than processing the

messages from foo.

Listing 9-9. Detecting Subscription Becoming a Slow Consumer

2018/02/28 01:55:44 Error: nats: slow consumer, messages dropped

2018/02/28 01:55:44 Removing subscription on "foo"

2018/02/28 01:55:58 Done processing 'foo' message

 Routes as Slow Consumers in a NATS Cluster
It is important to keep in mind that when in a clustered NATS setup, the

connections from the full-mesh topology can also run into slow consumer

scenarios, just like a regular NATS client would.

In case one of the nodes in the cluster cannot drain the messages that

the other nodes are routing to it fast enough, the remote client connection

will also time out. It will be exceeding the reading deadline, will send the

slow consumer protocol error, and then be disconnected (see Figure 9-4).

Chapter 9 troubleshooting nats

229

In Figure 9-4, you can see that the NATS Server A has two clients

connected to it on the foo and bar subjects and that Servers B and C are

routing messages from local clients to those nodes into Server A. In this

example, one of the clients local to the NATS Server C is a fast producer

and is sending messages to the foo subject as fast as possible. In case the

cluster reaches a condition such that the NATS Server C has to route a large

number of messages at a pace at which the NATS Server A cannot sustain,

the NATS Server C will disconnect the NATS Server A from the cluster.

This will indirectly affect another client connected to the NATS Server A,

which was sending messages on the bar subject, even if there was no slow

consumer scenario related to that subscription (see Figure 9-5).

Figure 9-4. Routes in slow consumer state

Chapter 9 troubleshooting nats

230

After being disconnected, Server C will continuously try to reestablish

the route connection but will similarly be logging errors related to the

consumer state.

If this was a temporary spike, the cluster might eventually recover and

proceed as normal, but the condition is still worth monitoring further. One

way to keep track of the situation in the cluster is by periodically checking

the /routez endpoint from the server as well (see Listing 9-10).

Listing 9-10. Routez Setup in the Public demo.nats.io Endpoint

$ curl http://demo.nats.io:8222/routez

{

 "num_routes": 2,

 ...

}

Figure 9-5. Routes in the slow consumer state

Chapter 9 troubleshooting nats

231

For a three-node cluster, each node should always have two

routes established, so in case one of the nodes is continuously getting

disconnected, it is worth taking a look at the host on which the server is

being disconnected. Check where it’s located or possibly replace it with

a new one. Increasing the cluster size is another option as well, although

keep in mind that scaling up the cluster will not necessarily cause a

rebalancing of the client connections. Therefore, in order to do so, you

might need to restart or replace the server.

 Summary
In this chapter, we covered some of the most common error conditions

to which a NATS Server can reach because of an imbalance in the

communication flow. You may recognize some of the problems covered in

this chapter as topics that are usually found in domains such as queuing

theory and congestion control. Having a strategy around rate limiting and

capacity planning are still important problems that have to be thought out

when architecting applications to use NATS. What is great about NATS

here is that, while you are scheming a solution on how to handle these

scenarios, the NATS Server will always try to improve the guarantees and

make sure that the service is reliable and available for clients.

Chapter 9 troubleshooting nats

233© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6_10

CHAPTER 10

Advanced NATS
Techniques
At this point you are already very familiar with the core APIs from NATS

and how they can be used to implement messaging-based approaches

to communicate with a system. The Publish, Subscribe, and Request

APIs may be very simple, but when they’re used in combination, we can

implement very powerful techniques that solve many problems using

NATS.

In this chapter, we take a look at a number of advanced styles of using

the NATS client that can help you further squeeze functionality out of

NATS.

 Using Inbox Subscriptions
We have previously seen that at the core of the Request API lies the

unique subscriptions that ensure that the client that is making the request

will be the only one receiving the response. Depending on whether the

consumer is using QueueSubscribe or bare Subscribe, the message

might be received by one or more subscribers in the system. However,

remember that as a publisher, we cannot assume the audience and tell

exactly whether the message is going to be processed or attempted to be

processed at all.

234

Listing 10-1 shows an example of a request, where we know that the

response may take a long time to process, so we have explicitly bounded

the request to use a long timeout of 30 seconds.

Listing 10-1. A Long Request

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 payload := []byte("hi...")

 log.Println("[Request]", string(payload))

 reply, err := nc.Request("very.long.request", payload,

30*time.Second)

 if err != nil {

 log.Fatal(err)

 }

 log.Println("[Response]", string(reply.Data))

}

In this example, we simulate that the processing of the message will

take a long time per request to the subscriber by having a sleep of 20

seconds per message. Remember that a single handler will process each

Chapter 10 advanCed natS teChniqueS

235

message sequentially, so if we have multiple messages at roughly the same

time, each message will be delayed by 20 seconds (see Listing 10-2) unless

we increase the number of subscribers.

Listing 10-2. Subscriber with Slow Replies

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 nc.Subscribe("very.long.request", func(m *nats.Msg) {

 log.Println("[Processing]", string(m.Data))

 time.Sleep(20 * time.Second)

 nc.Publish(m.Reply, []byte("done!"))

 })

 log.Println("[Started]")

 select {}

}

Chapter 10 advanCed natS teChniqueS

236

Although this may work initially, the situation is not ideal since

there are many error conditions on which the result of making the

request will be reported as a nats: timeout error. For example, some

of these could be:

• If no subscriber was available to process the message.

• If a subscriber was processing it, but took too long in

doing so.

• If a subscriber was available and started processing the

message, but did not finish because its process failed.

In comparison, when making an HTTP request, some of these error

conditions would have resulted in connection reset or timeout errors

against the remote HTTP server, thus making it possible to better discern

the failure condition from those type of errors. However, since in NATS,

the connection is being brokered by the server, we have to take a different

approach.

In the current state, if we try to make the request with no available

subscribers, both requestors would time out after 30 seconds

(see Listing 10-3).

Listing 10-3. Requestor Timing Out

seq 2 | parallel -j 2 -u go run very-long-request-1.go

2018/02/20 14:02:44 [Request] hi...

2018/02/20 14:02:44 [Request] hi...

2018/02/20 14:03:14 nats: timeout

2018/02/20 14:03:14 nats: timeout

exit status 1

One possible way to address this issue is to create an extra subscription

that the subscribers can announce so that a requestor can first check

whether there is a subscriber that could help process the request by

Chapter 10 advanCed natS teChniqueS

237

making a request with a shorter timeout. Then, once there has been a

response, we make the request that is going to take a lot of time to be

processed.

By using the nats.NewInbox API, as shown in Listing 10-4, we can

create this extra unique subscription that is going to be handling the

first step, which is to quickly signal the client that there is at least a single

consumer that is available to process the message. Then the old logic,

whereby the processing of the message was taking a lot of time, will be

moved under that extra subscription.

Listing 10-4. Using an Extra Inbox Subscription

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 myInbox := nats.NewInbox()

 nc.Subscribe("very.long.request", func(m *nats.Msg){

 log.Println("[Processing] Announcing own

inbox...")

 nc.PublishRequest(m.Reply, myInbox, []byte(""))

 })

Chapter 10 advanCed natS teChniqueS

238

 nc.Subscribe(myInbox, func(m *nats.Msg){

 log.Println("[Processing] Message:", string(m.

Data))

 time.Sleep(20 * time.Second)

 nc.Publish(m.Reply, []byte("done!"))

 })

 log.Println("[Started]")

 select {}

}

Then on the requestor side, we make two requests (see Listing 10-5).

The first one is with a shorter timeout to be able to determine whether

there is another subscriber available to process the request. Then there is

another request where the requestor will send directly to the inbox that

was announced by the subscriber as a response from the original request.

Listing 10-5. Leveraging Unique Subscriptions for Requests

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

Chapter 10 advanCed natS teChniqueS

239

 log.Println("[Inbox Request]")

 reply, err := nc.Request("very.long.request", []

byte(""), 5*time.Second)

 if err != nil {

 log.Fatalf("No nodes available to reply: %s",

err)

 }

 inbox := reply.Reply

 log.Println("[Detected node]", inbox)

 payload := []byte("hi...")

 response, err := nc.Request(inbox, payload, 30*time.

Second)

 if err != nil {

 log.Fatal(err)

 }

 log.Println("[Response]", string(response.Data))

}

With these changes, now if there are no available consumers, we would

detect that the service is not available much faster and switch to a different

type of logic (see Listing 10-6).

Listing 10-6. Running a Requestor That Times Out

$ go run very-long-request-2.go

2018/02/20 14:09:49 [Inbox Request]

2018/02/20 14:09:54 No nodes available to reply: nats: timeout

exit status 1

For the next step, let’s start the subscribers that are going to be

following this new request protocol to better detect that the service is

available before processing the message (see Listing 10-7).

Chapter 10 advanCed natS teChniqueS

240

Listing 10-7. Running Multiple Subscribers in Parallel

$ seq 10 | parallel -j 10 -u go run long-request-subscriber-2.

go

2018/02/20 14:17:15 [Started]

2018/02/20 14:17:16 [Started]

...

$ seq 2 | parallel -j 2 -u go run very-long-request-2.go

2018/02/20 14:17:19 [Inbox Request]

2018/02/20 14:17:19 [Detected node] _INBOX.

C2Tzbe1Lg3MvJSymTbrk9d

2018/02/20 14:17:19 [Inbox Request]

2018/02/20 14:17:19 [Detected node] _

INBOX.87wQLqFGsgZ4hgYrwHdV5B

2018/02/20 14:17:39 [Response] done!

2018/02/20 14:17:39 [Response] done!

As it is right now, each request is broadcasted to all the publishers,

so there is still a chance that some of the requests will time out. We can

improve this a bit by considering whether the node is currently working by

the time it handled the request for an inbox (see Listing 10-8).

Listing 10-8. Backing Off When Busy in Subscriber

package main

import (

 "log"

 "time"

 "sync"

 "github.com/nats-io/go-nats"

)

Chapter 10 advanCed natS teChniqueS

241

func main() {

 var busy bool

 var l sync.Mutex

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 myInbox := nats.NewInbox()

 nc.Subscribe("very.long.request", func(m *nats.Msg) {

 l.Lock()

 shouldSkip := busy

 l.Unlock()

 // Only reply when not busy

 if shouldSkip {

 return

 }

 log.Println("[Processing] Announcing own

inbox...")

 nc.PublishRequest(m.Reply, myInbox, []byte(""))

 })

 nc.Subscribe(myInbox, func(m *nats.Msg) {

 log.Println("[Processing] Message:",

string(m.Data))

 l.Lock()

 busy = true

 l.Unlock()

 time.Sleep(20 * time.Second)

 l.Lock()

 busy = false

Chapter 10 advanCed natS teChniqueS

242

 l.Unlock()

 nc.Publish(m.Reply, []byte("done!"))

 })

 log.Println("[Started]")

 select {}

}

Taking into account whether the subscriber is busy handling a request

before accepting further requests decreases the chance that a time out

will occur. A couple more improvements that could be done is to use

QueueSubscribe for the very.long.request topic in order to load balance

the traffic, as shown in Listing 10-9. We could also make it possible to

signal to the requestor quickly that the consumer that got the request is not

able to process it.

Listing 10-9. Using QueueSubscribe for Load Balancing

package main

import (

 "log"

 "time"

 "sync"

 "github.com/nats-io/go-nats"

)

func main() {

 var busy bool

 var l sync.Mutex

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

Chapter 10 advanCed natS teChniqueS

243

 myInbox := nats.NewInbox()

 nc.QueueSubscribe("very.long.request", "workers",

func(m *nats.Msg) {

 l.Lock()

 shouldSkip := busy

 l.Unlock()

 // Only reply when not busy

 if shouldSkip {

 // Reply with empty inbox to signal

that

 // was not available to process

request.

 nc.PublishRequest(m.Reply, "", []

byte(""))

 return

 }

 log.Println("[Processing] Announcing own

inbox...")

 nc.PublishRequest(m.Reply, myInbox, []byte(""))

 })

 nc.Subscribe(myInbox, func(m *nats.Msg) {

 log.Println("[Processing] Message:",

string(m.Data))

 l.Lock()

 busy = true

 l.Unlock()

 time.Sleep(20 * time.Second)

 l.Lock()

 busy = false

Chapter 10 advanCed natS teChniqueS

244

 l.Unlock()

 nc.Publish(m.Reply, []byte("done!"))

 })

 log.Println("[Started]")

 select {}

}

Since NATS will be sending a message to one of the subscribers

randomly, if one of the consumers of the message is busy handling the

message, the client can retry a few times so that its request is processed by

a subscriber that is available.

Listing 10-10 shows an example of adding retry logic to try to get a

subscriber that can help before sending the request.

Listing 10-10. Retries for an Available Subscriber

package main

import (

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 var i int

 var inbox string

 for ; i < 5; i++ {

Chapter 10 advanCed natS teChniqueS

245

 log.Println("[Inbox Request]")

 reply, err := nc.Request("very.long.request",

[]byte(""), 5*time.Second)

 if err != nil {

 log.Println("Retrying...")

 continue

 }

 if reply.Reply == "" {

 log.Println("Node replied with empty

inbox, retry again later...")

 time.Sleep(1 * time.Second)

 continue

 }

 inbox = reply.Reply

 break

 }

 if i == 5 {

 log.Fatalf("No nodes available to reply!")

 }

 log.Println("[Detected node]", inbox)

 payload := []byte("hi...")

 response, err := nc.Request(inbox, payload, 30*time.

Second)

 if err != nil {

 log.Fatal(err)

 }

 log.Println("[Response]", string(response.Data))

}

Chapter 10 advanCed natS teChniqueS

246

Each requestor will make five attempts to find another node to which

it can make a request. It may not seem as if we added a lot in terms of

functionality compared to the example at the beginning, but we have made

it possible to better audit, which is the layer that failed in handling the

request. We also have faster signaling of when to scale out the number of

subscribers—when the subscribers are so busy that they cannot even reply to

their own inbox, rather than when the requests time out (see Listing 10- 11).

Listing 10-11. Running Subscribers and Requestors

seq 10 | parallel -j 10 -u go run long-request-subscriber-4.go

...

seq 10 | parallel -j 10 -u go run very-long-request-3.go

...

2018/02/20 14:48:57 [Detected node] _

INBOX.1OFZUCH1jL3d8wpGMlmHCd

2018/02/20 14:48:57 [Response] done!

2018/02/20 14:48:57 Retrying...

2018/02/20 14:48:57 [Inbox Request]

2018/02/20 14:48:57 [Detected node] _INBOX.

oWatb6T2Sbtxs9ACeLMDkc

2018/02/20 14:49:17 [Response] done!

2018/02/20 14:49:17 [Response] done!

2018/02/20 14:49:17 [Response] done!

 Subscriptions with Heartbeats
In the previous examples, a request is being made and taking up to 30

seconds to wait for a response. Waiting 30 seconds for the result of an

action might be too long sometimes, especially when there has been a

processing error in the interim. Now that we know how to make unique

Chapter 10 advanCed natS teChniqueS

247

subscriptions by using nats.NewInbox, we could leverage the API and

enhance the way requests are handled in order to provide a sort of status

for action that is being processed.

Listing 10-12 shows a Request/Response-based protocol using JSON as

the encoding format. The requestor sends a request but also announces a

subscription where it can receive heartbeats pertaining to events related to

the request.

Listing 10-12. Subscription for Heartbeats

package main

import (

 "context"

 "encoding/json"

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

type RequestWithKeepAlive struct {

 HeartbeatsInbox string `json:"hb_inbox"`

 Data []byte `json:"data"`

}

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 hbInbox := nats.NewInbox()

 req := &RequestWithKeepAlive{

 HeartbeatsInbox: hbInbox,

Chapter 10 advanCed natS teChniqueS

248

 Data: []byte("hello world"),

 }

 payload, err := json.Marshal(req)

 if err != nil {

 log.Fatal(err)

 }

 ctx, cancel := context.WithTimeout(context.

Background(), 30*time.Second)

 defer cancel()

 response, err := nc.RequestWithContext(ctx, "long.

request", payload)

 if err != nil {

 log.Fatal(err)

 }

 log.Println("[Response]", string(response.Data))

}

Note that in order to have more control over the cancellation logic of

the request, we are using the context package in Go.

Now let’s set up the subscriber as Listing 10-13 shows. The subscriber

expects to receive a JSON payload that it can decode, which includes the

heartbeats inbox made by the requestor to receive status messages related

to the request.

Listing 10-13. Scaffolding the Heartbeat Subscription

package main

import (

 "encoding/json"

 "log"

 "time"

Chapter 10 advanCed natS teChniqueS

249

 "github.com/nats-io/go-nats"

)

type RequestWithKeepAlive struct {

 HeartbeatsInbox string `json:"hb_inbox"`

 Data []byte `json:"data"`

}

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 nc.Subscribe("long.request", func(m *nats.Msg) {

 log.Println("[Processing]", string(m.Data))

 var req RequestWithKeepAlive

 err := json.Unmarshal(m.Data, &req)

 if err != nil {

 log.Printf("Error: %s", err)

 nc.Publish(m.Reply, []byte("error!"))

 return

 }

 log.Printf("[Heartbeats] %+v", req)

 // Do the work

 time.Sleep(30 * time.Second)

 nc.Publish(m.Reply, []byte("done!"))

 })

 log.Println("[Started]")

 select {}

}

Chapter 10 advanCed natS teChniqueS

250

With that set up, let’s go back to the requestor and implement the

cancellation logic (see Listing 10-14). The requestor will be expecting to

receive a few health-related events during the processing of the request at

most every 10 seconds. Every time there is a heartbeat message emitted

to the requestor, it will reset the deadline and let the processing continue.

At the same time, the request is capped to take at most 30 seconds, as

governed by the context.WithTimeout call.

Listing 10-14. Context Cancellation of via Timer

package main

import (

 "context"

 "encoding/json"

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

type RequestWithKeepAlive struct {

 HeartbeatsInbox string `json:"hb_inbox"`

 Data []byte `json:"data"`

}

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 hbInbox := nats.NewInbox()

 req := &RequestWithKeepAlive{

 HeartbeatsInbox: hbInbox,

Chapter 10 advanCed natS teChniqueS

251

 Data: []byte("hello world"),

 }

 payload, err := json.Marshal(req)

 if err != nil {

 log.Fatal(err)

 }

 ctx, cancel := context.WithTimeout(context.

Background(), 30*time.Second)

 defer cancel()

 t := time.AfterFunc(10*time.Second, func() {

 cancel()

 })

 nc.Subscribe(hbInbox, func(m *nats.Msg) {

 log.Println("[Heartbeat] extending

deadline...")

 t.Reset(10 * time.Second)

 })

 log.Println("[Request]")

 response, err := nc.RequestWithContext(ctx, "long.

request", payload)

 if err != nil {

 log.Fatal(err)

 }

 log.Println("[Response]", string(response.Data))

}

Then the subscriber needs to implement a go routine that will be

responsible for emitting the health events in order to prevent the requestor

from giving up too soon (se Listing 10-15).

Chapter 10 advanCed natS teChniqueS

252

Listing 10-15. Active Subscription

package main

import (

 "encoding/json"

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

type RequestWithKeepAlive struct {

 HeartbeatsInbox string `json:"hb_inbox"`

 Data []byte `json:"data"`

}

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 nc.Subscribe("long.request", func(m *nats.Msg) {

 log.Println("[Processing]", string(m.Data))

 var req RequestWithKeepAlive

 err := json.Unmarshal(m.Data, &req)

 if err != nil {

 log.Printf("Error: %s", err)

 nc.Publish(m.Reply, []byte("error!"))

 return

 }

 log.Printf("[Heartbeats] %+v", req)

 t := time.NewTicker(5 * time.Second)

Chapter 10 advanCed natS teChniqueS

253

 defer t.Stop()

 go func() {

 for range t.C {

 log.Println("[Heartbeat]")

 nc.Publish(req.HeartbeatsInbox,

[]byte("OK"))

 }

 }()

 // Long processing time...

 time.Sleep(20 * time.Second)

 nc.Publish(m.Reply, []byte("done!"))

 })

 log.Println("[Started]")

 select {}

}

If the subscriber fails during the processing of the message, it will take

the requestor at most 10 seconds to consider the request as failed.

 Gathering Multiple Responses
Sometimes we may want to receive more than one reply from a single

request; for example, if we want to determine how many subscribers are

out there. We may be able to devise a simple solution by using the NextMsg

API from a single subscription along with the context package in Go to

control the cancellation of the request.

In Listing 10-16, we have an N number of subscribers that will reply

with their own inboxes.

Chapter 10 advanCed natS teChniqueS

254

Listing 10-16. Simple Subscriber That Also Replies with an Inbox

package main

import (

 "log"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 log.Println("[Started]")

 inbox := nats.NewInbox()

 nc.Subscribe(inbox, func(m *nats.Msg) {

 log.Printf("Received message on inbox: %+v", m)

 })

 nc.Subscribe("collect", func(m *nats.Msg) {

 nc.Publish(m.Reply, []byte(inbox))

 })

 select {}

}

Similar to the heartbeat example, Listing 10-17 shows how we can use

a timer to fire if it has passed too long since we have received a reply from

a component. We expect all the healthy components in the system to reply

as fast as possible. Note that there are two possible cancellation events that

may occur—one is a five-second deadline set via context.WithTimeout

and the other is the timer that will be extended two seconds each time it

Chapter 10 advanCed natS teChniqueS

255

gets a successful response. This way, if multiple requests continue arriving

and extending the timer constantly, the gathering of responses will still be

limited by the five-second deadline.

Listing 10-17. Gathering Multiple Replies

package main

import (

 "context"

 "log"

 "time"

 "github.com/nats-io/go-nats"

)

func main() {

 nc, err := nats.Connect(nats.DefaultURL)

 if err != nil {

 log.Fatal(err)

 }

 ctx, cancel := context.WithTimeout(context.

Background(), 5*time.Second)

 defer cancel()

 t := time.AfterFunc(2*time.Second, func() {

 cancel()

 })

 inbox := nats.NewInbox()

 replies := make([]interface{}, 0)

 sub, err := nc.SubscribeSync(inbox)

 if err != nil {

 log.Fatal(err)

 }

Chapter 10 advanCed natS teChniqueS

256

 startTime := time.Now()

 nc.PublishRequest("collect", inbox, []byte(""))

 for {

 msg, err := sub.NextMsgWithContext(ctx)

 if err != nil {

 break

 }

 replies = append(replies, msg)

 // Extend deadline on each successful response.

 t.Reset(2 * time.Second)

 }

 log.Printf("Received %d responses in %s", len(replies),

time.Since(startTime))

}

There are some caveats to this approach, as there may be outliers that

are too slow to reply within this time. In that case, we want to discard them

intentionally, and instead leverage the fact that we got the replies of those

that were the most healthy to work reliably in the system.

 Summary
In this chapter, we saw a few of the advanced styles for using NATS to

communicate. As we have seen, even though the APIs are fairly simple,

they do enable for very sophisticated usage. It is possible to build on top

of them certain Request/Response protocols that could fit even more use

cases.

Chapter 10 advanCed natS teChniqueS

257© Waldemar Quevedo 2018
W. Quevedo, Practical NATS, https://doi.org/10.1007/978-1-4842-3570-6

Index

A
Asynchronous I/O, 67–72
Authorization credentials, 50–51

B
Binary protocol, 20

C, D, E, F, G
Cloud Native Computing

Foundation (CNCF), 18
Cluster network topology, NATS

autodiscovery and load
balancers, 126–129

bootstrapping, 123–124
configuration, 114, 116–119
explicitly setting, 121–123
full-mesh topology, 113
monitoring port, 124–125
nodes, 113
server failure, 112
setting up clustering, 119, 121
three nodes, 111

H
Heartbeat subscription

active subscription, 252–253
context cancellation, timer,

250–251
scaffolding, 248–249

I, J, K
Inbox subscriptions

backing off, subscriber
busy, 240, 242

long request, 234–235
nats.NewInbox

API, 237
QueueSubscribe, load

balancing, 242–243
requestor timing

out, 236
requests, 238–239
retries, 244–245
running multiple subscribers in

parallel, 240
slow replies, 235–236

https://doi.org/10.1007/978-1-4842-3570-6

258

subscribers and requestors,
running, 246

unique subscription, 237–238

L
Lowest latency response, 40–41

M
Monitoring NATS

server instrumentation
client subscriptions, 180–182
/connz endpoint, 175–176,

178–180
HTTP server, 169
monitoring port, 169
nats-top usage, 193–196
/routez endpoint, 187–189,

191, 192
sorting and limiting

query, 182–187
/subsz endpoint, 192–193
/varz endpoint, 170, 172–174

Multiple responses,
gathering, 253–256

N, O
NATS

authorization deadline, 100–101
clustering options, 91
clustering port, 91

and Configuration Opts, 93
configuring authorization, 98–100
customizing port and bind, 89–90
delivery guarantees, 10–11
demo.nats.io endpoint, 2
docker, 108–109
factor of, 4
full-mesh topology, 9
GitHub, 1
gnatsd, 88
Go NATS client, 16
Go programming language, 14
HTTP-based REST APIs, 4
HTTP endpoint, 89
interfaces, 92
Keepalive Interval, 104
load balancing, 7
logging outputs, 97–98
maximum number of

connections, 104
maximum payload size, 102–103
message broker/queue, 11
microservices and cloud-native

applications, 16–18
modern cloud architectures, 1
net/http package, 5
profiling port, 92–93
publish/subscribe messaging, 2
request/response flow, 6
roots, 12–14
server configuration, 85, 87
server logging, 94–96
server reloading

Inbox subscriptions (cont.)

Index

259

debug and trace logging
levels, 105–106

max connections, 107–108
slow consumer error, 9
slow consumers handling, 103
Stale connection, 10
three-node cluster, 88
TLS Configuration Options, 101

NATS client
asynchronous I/O, 67–70, 72
authorization credentials, 50–51
client reconnection, 77–80
Close API, 82, 84
connect uses, 45–46
customization, 47
event callbacks, 80, 82
features, 43–44
Flush API, 62–63
Publish API, 51–52, 54
QueueSubscribe API, 57–58
reconnect buffer, 75–77
removing, subscription, 58–59,

61–62
Request API, 63, 65
Request/Response

protocol, 65, 67
state transitions, 73–74
Subscribe API, 51, 54–57

NATS protocol, 20
NATS Rider application

API Server, 134–136, 154
architecture, 133
base component, 137–139

component kit package, API
Server, 145, 147–148

components, 132, 145
discovery and status

subscriptions, 141
Driver Agent, 161–164, 166
event handlers

implementation, 140
flow of request, 132
folder structure, 133–134
HandleRides function, 151, 153
HTTP Endpoints, 148–149
load balanced rider

manager, 154–160
microservices architecture, 131
Request/Response

types, 150–151
Rides Managers,

QueueSubscribe, 150
SetupConnectionToNATS

implementation, 139–140
SetupConnectionToNATS

reusable logic, 142
status subscription, 143–144

P
PING/PONG protocol, 24
Protocol commands

connecting to NATS, 22–23
NATS Server, 21
PING and PONG, 24
PUB and SUB

Index

260

publish messages, 26
queue subscriptions, load

balancing, 34–36
registering interest, 28
request/response, 39–40

UNSUB
lowest latency response, 40–41
removing interest,

subscription, 37–38
subscription identifier

(sid), 36
wildcards, 31–33

Q
Queue subscription, 34

R
Request/Response-based

protocol, 247–248

S
Security, NATS

authorization timeout, 201
certificate authority, 201
cfssl installation, 203
crypto/tls package, 197
custom root CA, 205
EventMachine

implementation, 197
fields, 198
monitoring endpoint, 200, 208
required clients, 202

routes connections, 209–211
secure connection, 199
secure NATS infrastructure, 202
securing client

connections, 206–207
security roles, 203–204
server setup, 198

Slow consumer protocol error
routes, 228–230
subscriptions, 226, 228
troubleshooting

disconnection events, 225
error callback, 225
fast producer on bar, 221
fast producer on foo, 220
running publisher, 222–223
setting up event

handlers, 223–224
tight loop, 222
types of clients, 220

types of, 217, 219

T, U, V
TLS

auto discovery and
routes, 213–216

command-line
options, 212–213

configuration blocks, 200
openssl client, 212

W, X. Y, Z
Wildcards, 31–33

Protocol commands (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Chapter 1: Introduction to NATS
	Using NATS for Messaging
	Messaging Over the REST
	Do Not Assume the Audience
	NATS As an Always Available Dial Tone
	Delivery Guarantees
	Is NATS a Message Broker or a Message Queue?

	A Brief History of NATS
	Roots in Ruby
	I Wanna Go Fast!

	Cloud-Native NATS
	Summary

	Chapter 2: The NATS Protocol
	Overview of the Protocol
	Why Not a Binary Protocol Instead?

	Setting Up the Environment
	Connecting to NATS
	PING and PONG
	Sending and Receiving Messages
	Publishing Messages with PUB
	Registering Interest in a Subject with SUB
	Subject Names and Wildcards
	Creating Queue Subscriptions for Load Balancing
	Limiting Interest in a Subject with UNSUB
	Publishing Requests
	Lowest Latency Response

	Summary

	Chapter 3: The NATS Clients
	Features of a NATS Client
	Using Connect
	Customizing a Connection
	Authorization Credentials
	Using Publish and Subscribe
	Using Publish
	Using Subscribe
	Using QueueSubscribe
	Removing a Subscription
	Using Flush
	Using Request
	The Classic Request/Response
	The New Style Request/Response

	A Note on Asynchronous I/O
	States of a NATS Connection
	Clients Reconnection Logic
	Event Callbacks
	Using Close
	Summary

	Chapter 4: Setting Up NATS
	Server Configuration
	Exposed Ports
	Server Logging
	Logging Outputs

	Configuring Authorization
	Extending the Authorization Deadline

	TLS Options
	Tuning the Defaults
	Increasing the Maximum Payload Size
	Extending the Deadline for Slow Consumers Handling
	Tuning the Keepalive Interval
	Tuning the Maximum Number of Connections

	Server Reloading
	Reloading to Activate Tracing On-the-Fly
	Reducing the Number of Live Connections

	Running NATS in Docker
	Summary

	Chapter 5: High Availability with NATS Clustering
	The NATS Cluster Network Topology
	Configuring a NATS Cluster from the CLI
	Setting Up Clustering via the Configuration File
	Explicitly Setting a Server Pool in the Client
	Disabling Random Reconnection Ordering

	Bootstrapping a Cluster Using Autodiscovery
	Monitoring a NATS Cluster State
	On Autodiscovery and Load Balancers
	Setting Up a NATS Cluster Behind a Load Balancer

	Summary

	Chapter 6: Developing a Cloud-Native NATS Application
	The NATS Rider Application
	Scaffolding the Application
	Defining a Base Component
	Customizing the Connection to NATS
	Enabling Components Discovery

	The NATS Rider API
	The Load Balanced Rider Manager
	The Driver Agent
	Summary

	Chapter 7: Monitoring NATS
	Server Instrumentation
	The /varz Endpoint
	The /connz Endpoint
	Showing Client Subscriptions
	Sorting and Limiting Query Results

	About /routez
	About /subsz
	Using nats-top for Monitoring

	Summary

	Chapter 8: Securing NATS
	Connecting Securely to NATS
	Configuring TLS in the Server
	Securing the Monitoring Endpoint
	Tuning the Authorization Timeout
	Setting a Certificate Authority
	Require Clients to Provide a Certificate

	Setting Up a Secure NATS Environment from Scratch
	Installing cfssl for Certs Creation
	Defining the Security Roles
	Creating a Custom Root CA
	Securing the Connections from the Clients
	Securing the Monitoring Endpoint
	Securing the Routes from the Cluster

	Caveats from NATS TLS Support
	Not Possible to Use TLS Right Away
	Limitations of Configuring TLS from the Command Line
	Auto Discovery and Routes TLS

	Summary

	Chapter 9: Troubleshooting NATS
	Types of Slow Consumer Errors
	Troubleshooting Slow Consumer Protocol Errors
	Subscriptions in Slow Consumer State
	Routes as Slow Consumers in a NATS Cluster
	Summary

	Chapter 10: Advanced NATS Techniques
	Using Inbox Subscriptions
	Subscriptions with Heartbeats
	Gathering Multiple Responses
	Summary

	Index

