
Practical 
TLA+

Planning Driven Development
—
Hillel Wayne

www.allitebooks.com

http://www.allitebooks.org


Practical TLA+
Planning Driven Development

Hillel Wayne

www.allitebooks.com

http://www.allitebooks.org


Practical TLA+: Planning Driven Development

ISBN-13 (pbk): 978-1-4842-3828-8    ISBN-13 (electronic): 978-1-4842-3829-5
https://doi.org/10.1007/978-1-4842-3829-5

Library of Congress Control Number: 2018958706

Copyright © 2018 by Hillel Wayne 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not 
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member 
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a 
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights, 
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book's product page, located at www.apress.com/9781484238288. For more 
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Hillel Wayne
Chicago, Illinois, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3829-5
http://www.allitebooks.org


For my teachers, Todd Fadoir and Larry McEnerney.

www.allitebooks.com

http://www.allitebooks.org


v

About the Author ����������������������������������������������������������������������������������������������������� xi

About the Technical Reviewer ������������������������������������������������������������������������������� xiii

Acknowledgments ���������������������������������������������������������������������������������������������������xv

Introduction �����������������������������������������������������������������������������������������������������������xvii

Table of Contents

Part I:  The Semantics of TLA+ and PlusCal ���������������������������������������������������� 1

Chapter 1:  An Example ��������������������������������������������������������������������������������������������� 3

The Problem ���������������������������������������������������������������������������������������������������������������������������������� 3

Boilerplate ������������������������������������������������������������������������������������������������������������������������������� 4

Specifying �������������������������������������������������������������������������������������������������������������������������������� 5

Implementing �������������������������������������������������������������������������������������������������������������������������� 7

Verifying ���������������������������������������������������������������������������������������������������������������������������������� 9

Initial Conditions �������������������������������������������������������������������������������������������������������������������� 12

Multiple Processes ���������������������������������������������������������������������������������������������������������������������� 15

Temporal Properties �������������������������������������������������������������������������������������������������������������������� 19

Summary������������������������������������������������������������������������������������������������������������������������������������� 22

Chapter 2:  PlusCal �������������������������������������������������������������������������������������������������� 23

Introduction ��������������������������������������������������������������������������������������������������������������������������������� 23

Specifications ����������������������������������������������������������������������������������������������������������������������������� 23

Layout of a Spec �������������������������������������������������������������������������������������������������������������������� 23

Expressions ��������������������������������������������������������������������������������������������������������������������������� 24

Values ������������������������������������������������������������������������������������������������������������������������������������ 26

PlusCal Algorithm Body ��������������������������������������������������������������������������������������������������������� 29

Example ��������������������������������������������������������������������������������������������������������������������������������� 32

www.allitebooks.com

http://www.allitebooks.org


vi

Complex Behaviors ��������������������������������������������������������������������������������������������������������������������� 34

Multiple Starting States ��������������������������������������������������������������������������������������������������������� 34

Nondeterministic Behavior ���������������������������������������������������������������������������������������������������� 38

Summary������������������������������������������������������������������������������������������������������������������������������������� 42

Chapter 3:  Operators and Functions ����������������������������������������������������������������������� 43

Operators ������������������������������������������������������������������������������������������������������������������������������������ 43

Invariants ������������������������������������������������������������������������������������������������������������������������������������ 46

Logical Operators ������������������������������������������������������������������������������������������������������������������ 47

Expressions ��������������������������������������������������������������������������������������������������������������������������� 50

Functions ������������������������������������������������������������������������������������������������������������������������������������ 52

Functions and Operators ������������������������������������������������������������������������������������������������������� 53

Sets of Functions ������������������������������������������������������������������������������������������������������������������� 56

Example �������������������������������������������������������������������������������������������������������������������������������������� 57

Summary������������������������������������������������������������������������������������������������������������������������������������� 64

Chapter 4:  Constants, Models, and Imports ������������������������������������������������������������ 65

Constants ������������������������������������������������������������������������������������������������������������������������������������ 65

Ordinary Assignment ������������������������������������������������������������������������������������������������������������� 66

Model Values ������������������������������������������������������������������������������������������������������������������������� 67

Sets of Model Values ������������������������������������������������������������������������������������������������������������� 67

ASSUME ��������������������������������������������������������������������������������������������������������������������������������� 68

TLC Runtime �������������������������������������������������������������������������������������������������������������������������������� 69

Configuration ������������������������������������������������������������������������������������������������������������������������� 69

Error Traces ��������������������������������������������������������������������������������������������������������������������������� 72

The TLC Module ��������������������������������������������������������������������������������������������������������������������� 72

Imports ���������������������������������������������������������������������������������������������������������������������������������������� 74

EXTENDS �������������������������������������������������������������������������������������������������������������������������������� 75

INSTANCE ������������������������������������������������������������������������������������������������������������������������������� 75

Summary������������������������������������������������������������������������������������������������������������������������������������� 77

Table of ConTenTs



vii

Chapter 5:  Concurrency ������������������������������������������������������������������������������������������ 79

Labels������������������������������������������������������������������������������������������������������������������������������������������ 79

Processes ������������������������������������������������������������������������������������������������������������������������������������ 81

Await �������������������������������������������������������������������������������������������������������������������������������������� 83

Deadlocks ������������������������������������������������������������������������������������������������������������������������������ 84

Procedures ���������������������������������������������������������������������������������������������������������������������������������� 86

Example �������������������������������������������������������������������������������������������������������������������������������������� 88

Summary������������������������������������������������������������������������������������������������������������������������������������� 96

Chapter 6:  Temporal Logic �������������������������������������������������������������������������������������� 97

Termination ��������������������������������������������������������������������������������������������������������������������������������� 97

Stuttering ������������������������������������������������������������������������������������������������������������������������������� 99

Fairness, Weak and Strong �������������������������������������������������������������������������������������������������� 100

The Temporal Operators ������������������������������������������������������������������������������������������������������������ 101

[] ������������������������������������������������������������������������������������������������������������������������������������������ 101

<> ��������������������������������������������������������������������������������������������������������������������������������������� 102

~> ��������������������������������������������������������������������������������������������������������������������������������������� 102

[ ]<> and <>[ ] ��������������������������������������������������������������������������������������������������������������������� 103

Limitations of Liveness ������������������������������������������������������������������������������������������������������������� 104

Example ������������������������������������������������������������������������������������������������������������������������������������ 104

Summary����������������������������������������������������������������������������������������������������������������������������������� 110

Part II:  Applying TLA+ ��������������������������������������������������������������������������������� 111

Chapter 7:  Algorithms ������������������������������������������������������������������������������������������ 113

Single-Process Algorithms �������������������������������������������������������������������������������������������������������� 113

Max ������������������������������������������������������������������������������������������������������������������������������������������� 115

Leftpad �������������������������������������������������������������������������������������������������������������������������������������� 117

Properties of Algorithms ����������������������������������������������������������������������������������������������������������� 120

Multiprocess Algorithm ������������������������������������������������������������������������������������������������������������� 125

Summary����������������������������������������������������������������������������������������������������������������������������������� 126

Table of ConTenTs



viii

Chapter 8:  Data Structures ����������������������������������������������������������������������������������� 127

Validation ���������������������������������������������������������������������������������������������������������������������������������� 133

Example ������������������������������������������������������������������������������������������������������������������������������������ 135

Summary����������������������������������������������������������������������������������������������������������������������������������� 136

Chapter 9:  State Machines ����������������������������������������������������������������������������������� 137

State Machines ������������������������������������������������������������������������������������������������������������������������� 137

Scaffolding Implementations ���������������������������������������������������������������������������������������������������� 140

Ghost Variables ������������������������������������������������������������������������������������������������������������������������� 146

Summary����������������������������������������������������������������������������������������������������������������������������������� 148

Chapter 10:  Business Logic ���������������������������������������������������������������������������������� 149

The Requirements ��������������������������������������������������������������������������������������������������������������������� 149

Adding Invariants ����������������������������������������������������������������������������������������������������������������� 152

Adding Liveness ������������������������������������������������������������������������������������������������������������������ 154

Adding Reservations ����������������������������������������������������������������������������������������������������������������� 154

Updating Assumptions ��������������������������������������������������������������������������������������������������������� 158

Expiring Reservations ���������������������������������������������������������������������������������������������������������� 160

Summary����������������������������������������������������������������������������������������������������������������������������������� 166

Chapter 11:  MapReduce ��������������������������������������������������������������������������������������� 167

Problem Overview ��������������������������������������������������������������������������������������������������������������������� 167

Part One: Basics ������������������������������������������������������������������������������������������������������������������������ 168

Part Two: Liveness �������������������������������������������������������������������������������������������������������������������� 176

Part Three: Statuses ������������������������������������������������������������������������������������������������������������������ 189

Exercise ������������������������������������������������������������������������������������������������������������������������������������ 196

Summary����������������������������������������������������������������������������������������������������������������������������������� 197

 Appendix A: Math ������������������������������������������������������������������������������������������������� 199

 Propositional Logic �������������������������������������������������������������������������������������������������������������������� 199

 Evaluating Propositions in TLA+ ������������������������������������������������������������������������������������������ 201

 Sets ������������������������������������������������������������������������������������������������������������������������������������������� 202

Table of ConTenTs



ix

 Predicate Logic ������������������������������������������������������������������������������������������������������������������������� 203

 Evaluating Predicates in TLA+ ��������������������������������������������������������������������������������������������� 206

 Appendix B: The PT Module ���������������������������������������������������������������������������������� 207

 Appendix C: PlusCal to TLA+ �������������������������������������������������������������������������������� 211

 Temporal Logic �������������������������������������������������������������������������������������������������������������������������� 211

 Actions �������������������������������������������������������������������������������������������������������������������������������������� 212

 TLA �������������������������������������������������������������������������������������������������������������������������������������������� 214

 Limitations of PlusCal ��������������������������������������������������������������������������������������������������������������� 215

 Index ��������������������������������������������������������������������������������������������������������������������� 217

Table of ConTenTs



xi

About the Author

Hillel Wayne is a software consultant who specializes in formal methods and 

specification. He also writes on empirical engineering, software history, and systems 

thinking. In his free time, he juggles and makes chocolate. He lives in Chicago. You can 

find his other work at hillelwayne.com or on Twitter at @hillelogram.



xiii

About the Technical Reviewer

Jud White is a back-end and distributed systems engineer 

with 18 years of professional experience. He uses TLA+ to 

simplify designs and ensure the behavior and trade-offs 

of systems are well understood and codified. He currently 

works at Dell in Austin, Texas, and occasionally does Go 

training. He lives with his girlfriend and two lovable pit bulls. 

Follow him on GitHub: @judwhite; Instagram: @jud.white; 

and Twitter:  @judson_white.  



xv

Acknowledgments

Richard Whaling, Andrew Helwer, Murat Demirbas, Lorin Hochstein, and Sidharth 

Masaldaan were all kind enough to provide feedback on early drafts of the chapters. 

Discussions with Leslie Lamport, Ron Pressler, and Markus Kuppe helped clarify and 

refine sections of this book.

Jud White went above and beyond with his technical review. He, more than anyone 

else, made this actually worth reading.

Finally, Mark Powers, Matt Moodie, Steve Anglin, and Sherly Nandha all did a 

fantastic job editing this book.



xvii

Introduction

This is a book about specification.

Most software flaws come from one of two places. When the code doesn’t match our 

expectations, it could be that the code is wrong. Most software correctness techniques – 

types, tests, etc. – are used to check the code. But it could instead be that the code is 

correct and our expectations are wrong: there’s a fundamental error in our design.

These errors, called specification errors, are some of the most subtle and dangerous 

bugs. They can span multiple independent programs, occur in convoluted race 

conditions, or depend on physical phenomena. Our regular tools simply can’t find them.

Instead, we can find them with a specification language such as TLA+. TLA+ is 

the invention of Leslie Lamport, winner of the 2013 Turing Award and the inventor of 

Paxos and LaTeX. Instead of writing your design in code or plain English, you write it 

in TLA+’s special notation. Once you specify your core assumptions and requirements, 

it can explore how that system would evolve over time, and whether it actually has the 

properties you want.

What makes TLA+ more suitable for this than, say, Python? Python is designed to 

be run, and it is limited to what a computer can do. TLA+, though, is designed to be 

explored. By leveraging simple math, it can express concepts much more elegantly and 

accurately than a programming language can. For example, given a set of numbers, 

here is how we would return the numbers in that set that are the sum of two other 

numbers in it:

EXTENDS Integers

FilterSums(set) ==

  { x \in set: \E y, z \in set \ {x}: y /= z /\ x = y + z } 

Instead of being compiled or interpreted, TLA+ is checked. We use a model checker, 

called TLC, to execute every possible behavior of our specification. For example, if it sees 

the lines



xviii

either

  with change \in 1..10 do

    counter := counter + change;

  end with;

or

  counter := 0;

end either;

TLC will split the model into 11 separate timelines and check them all for any 

issues. If the spec has multiple simultaneous processes, TLC will explore every possible 

ordering of their steps. If the spec has 100 possible initial states, TLC will explore every 

behavior from every single one of them. With TLA+ we can check that global properties 

are preserved, that distributed systems are fault-tolerant, or even that every behavior of 

an algorithm eventually terminates with a correct answer. We can cut out bugs before 

we’ve written a single line of code.

 What This Book Will Teach You
There are two benefits to learning TLA+. The first is model checking. Once you 

have written a specification in TLA+, you can use the model checker to find any 

inconsistencies in your spec. TLA+ can find bugs that span multiple systems and several 

nested race conditions.

The second benefit of TLA+ is subtler. Specifying a system forces you to be precise 

in what you actually want. “Select the first element” is different from “select an arbitrary 

element” or “select any element” in ways that could lead to a spec being correct or 

not. By unambiguously writing your specification, you understand it better. Problems 

become obvious even without the model checker. The more you work with TLA+, the 

more you intuitively see the failure modes in systems.

For most people, the biggest challenge to learning TLA+ is the change of perspective 

you need. While programming is a necessary prerequisite to specification, it’s a very 

different approach and the adjustment takes some getting used to. How do you specify 

an algorithm? A distributed system? How do you make the jump from knowing TLA+ in 

theory to using it in practice, finding actual bugs in actual production systems?

This book is aimed at addressing that. I’ve written over a dozen examples spread 

across a wide range of problem domains, from low-level threading to large-scale 

distributed systems. Shorter examples are part of larger chapters, while the longer ones 

InTroduCTIon



xix

are chapters of their own. By showing you how a specification is defined and written, I 

hope to help you build an intuition for how to use TLA+ in practice. The examples also 

provide hands-on experimentation, and, if you decide to continue with TLA+, templates 

you can use to write your own specs.

 What This Book Won’t Teach You
This book will not teach you programming. It will not teach you how to test code nor how 

to write mathematical proofs that your code is correct. Formally proving code correct is 

much more difficult and high effort than proving designs are correct. This book will not 

teach you how to directly convert TLA+ into production code. Much of TLA+’s flexibility 

and power comes from it not having to match a programming language. A few dozen 

lines of TLA+ can match hundreds or thousands of lines of code. No tool can replace 

your insight as an engineer.

Finally, this book is not a comprehensive resource on how to use TLA+. In particular, 

we focus on using PlusCal, the main algorithm language that compiles to TLA+. PlusCal 

adds additional constructs that make TLA+ easier to learn and use. While powerful and 

widely used in the TLA+ community, PlusCal nonetheless has a few limitations that raw 

TLA+ does not.

 Prerequisites
You should already be an experienced programmer. While TLA+ can be used with any 

programming language, it is not a programming language. Without having something to 

program with, there’s really no reason to use TLA+. With this assumption, we can also 

move faster: we don’t need to learn what a conditional is, just what it looks like in TLA+.

Knowing some logic and math is going to help. You don’t have to be particularly 

experienced with it, but TLA+ borrows its syntax heavily from mathematics. If you know 

what (P  =>  Q)  \/  R means, you’re fine. If you don’t know, this should still be accessible, 

but Appendix A will also teach you everything else you need.

InTroduCTIon



xx

 How This Book Is Structured
This book consists of two parts. In Chapters 1–6, we cover the semantics of TLA+ and 

PlusCal. In Part 2, we cover the application of TLA+, showing you how to write effective 

operators and specifications. While the chapters in Part 1 are intended to be read in 

sequence, the chapters in Part 2 can be read in any order.

 1. Chapter 1 is a whirlwind tour of the language. We specify a bank 

transfer algorithm and show how it can overdraft or lose money if 

you start multiple simultaneous wires.

 2. Chapter 2 teaches the basics of the algorithm language so you 

can specify simple, nonconcurrent systems. We also introduce 

the data structures and nondeterministic language constructs, 

allowing us to model basic concurrency and state machines.

 3. Chapter 3 teaches operators and expressions, invariants, and 

functions. Combined with the PlusCal constructs, this allows us to 

specify complex systems and test algorithms, such as constraint 

optimization problems.

 4. Chapter 4 covers how to organize your modules into larger-scale 

specifications and test your specs on different state spaces and 

requirements.

 5. Chapter 5 shows how to model concurrent systems, race 

conditions, and deadlocks.

 6. Chapter 6 covers the last bits of TLA+ we need for this book: how 

to model the temporal properties of a system, such as resource 

guarantees, crashes, and requirements about what states the 

system will eventually reach.

 7. Chapter 7 teaches how to use TLA+ to verify abstract algorithms 

are correct, as well as prove simple runtime properties, like worst-

case algorithmic complexity and avoiding integer overflow.

 8. Chapter 8 shows how to create reusable data structure libraries, 

such as linked lists, and how to use them as part of larger specs.

InTroduCTIon



xxi

 9. Chapter 9 is about the state machine pattern, a common 

technique we use to turn high-level specifications into lower-level 

ones that more closely match our production code.

 10. Chapter 10 takes an informal business request and, in trying to 

specify it, shows how an ambiguous requirement can lead to very 

different specifications and runtime properties.

 11. Finally, in Chapter 11 we will specify the MapReduce algorithm 

and make it both correct and fault tolerant.

 12. Appendix A is a crash course of mathematics, including simple 

set theory and logic that you will find useful when writing TLA+ 

specs.

 13. Appendix B is a copy of the PT module in case the Internet burned 

down between you downloading the toolbox and downloading 

PT. See below for a description of PT.

 14. Appendix C is the math underpinning TLA+, such as modal logic 

and actions. It is unnecessary to understand anything in the book 

but will be helpful if you want to understand the ideas behind 

TLA+.

 Initial Setup
 The Toolbox
To use TLA+, we need the PlusCal compiler, the syntactic checker, and the TLC model 

checker. Everybody uses the official IDE, called the TLA+ Toolbox. You can download 

the toolbox at https://github.com/tlaplus/tlaplus/releases/. As of the time of this 

writing the toolbox version is 1.5.7. You will also need to install Java. Once set up, create 

a new module under File ➤ Open Spec ➤ Add New Spec. You should see what is shown 

in Figure 1.

InTroduCTIon

https://github.com/tlaplus/tlaplus/releases/


xxii

If you do, you’ve set up TLA+ correctly. If you plan to start with the example in the 

next chapter, name your first file wire.tla and the specification name to “wire” (or 

whatever you’d like to call the specification).

 PT
The PT library is a collection of useful operators and definitions that will make learning 

and using the language easier. Instead of having to spend time writing all of the utility 

operators, we can focus on the core idea of specification and delay the operator gymkata 

until later. You will have to manually download and set up PT:

 1. Download the module from https://github.com/Apress/

practical-tla-plus. Move it to wherever you plan on storing 

your TLA+ specs. You can also copy it from Appendix B.

 2. Go to File ➤ Preferences ➤ TLA+ Preferences. You should 

see a control labeled “TLA+ library path locations.”

Figure 1. Add New Spec

InTroduCTIon

https://github.com/Apress/practical-tla-plus
https://github.com/Apress/practical-tla-plus


xxiii

 3. Add the directory with PT. You should see something like what is 

shown in Figure 2.

When you add PT to a specification, you will see it appear in the toolbox. I annotated 

all of the contents with descriptions of how it all works. Don’t worry about understanding 

them just yet, but when you feel more confident, I’d recommend reading how they work. 

And don’t be afraid to tweak them to make your own operators.

With that, we’re ready to begin. Welcome to TLA+.

Figure 2. Library Path Location

InTroduCTIon



The Semantics of  
TLA+ and PlusCal

PART I



3
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_1

CHAPTER 1

An Example
Let’s write our first specification! In this chapter we will take a simple problem and 

translate it into a specification. Then, we’ll model check the specification and see if it 

has a flaw. Spoiler alert, it will have a flaw. This will be a whirlwind tour: we will be using 

concepts we will gradually learn over the course of the book.

 The Problem
Alice and Bob have accounts at Bankgroup. Each account has 0 or more dollars in it. 

Bankgroup wants to add a new “wire” feature, where any user can transfer money to any 

other user. This feature has the following requirements:

• Each wire must be between two different people in the bank and wire 

at least one dollar.

• If a wire is successful, the value of the wire is deducted from the 

sender account and added to the receiver account.

• If the wire fails, the two accounts are unchanged.

• A wire may not cause an account to have a negative balance.

• For scaling reasons, multiple wires may happen simultaneously.

Your implementation must guarantee all properties, even if wires can take an 

arbitrary amount of time. In other words, even if wire A starts before B, A may still finish 

after wire B. Your algorithm must guarantee that, even in those cases, we satisfy all of 

the requirements. Given that money is on the line, you should probably design this in 

advance.



4

 Boilerplate
We’re going to start with some boilerplate. Create a new project under File > Open 

Spec > Add New Spec, set the root-module file to /your/path/wire.tla and set the 

specification name to “wire”. You should see something like Figure 1-1.

Figure 1-1. An empty specification

---------- MODULE wire --------

===============================

Chapter 1  an example



5

The left panel is the list of TLA+ projects you have, while the right panel is where 

you will write your spec. Everything above the dashes and below the equals are ignored. 

We will not write them in the code snippets, and you can assume that everything is 

happening inside those.

Warning the name of the module must match the name of the file, or tla+ will 
consider the spec invalid.

Next comes the imports we need to use. The TLA+ keyword for an import is EXTENDS. 

Since we want to do arithmetic, we need to add EXTENDS Integers to the top. Finally, 

we’ll set up the frame for the algorithm.

---------- MODULE wire --------

EXTENDS Integers

(*--algorithm wire

begin

    skip;

end algorithm;*)

===============================

Single line comments are \*, comment blocks are (**). The algorithm is inside 

a comment: we’ll cover why later. That’s all the boilerplate we need. Now we can get 

around to specifying what we want.

 Specifying
From a design perspective, there are two things we’re tracking in the system state: the set 

of people with accounts, and how much money each of them has. For simplicity, we’ll 

represent each person by their name and assume they all have 5 dollars in their account.

Chapter 1  an example



6

EXTENDS Integers

(*--algorithm wire

    variables

        people = {"alice", "bob"},

        acc = [p \in people |-> 5];

begin

    skip;

end algorithm;*)

Note Whitespace is not significant here. there is exactly one place in tla+ 
where it is significant, which we will cover in Chapter 3.

Let’s start with people. people is a set. It’s an unordered collection of things, same 

as most programming languages. In this case, it has two strings as elements: “alice” and 

“bob”. Nothing too surprising.

Okay, what about acc? acc is a function. These aren’t like normal programming 

functions: they’re closer to dictionaries or mappings. For each value in a given set, it 

maps to some output value. Here the set is people and the element is p. This means 

acc["alice"] = acc["bob"] = 5. This would be equivalent, in a language like Python, 

to writing {"alice": 5, "bob": 5}. We could also make the function depend on each 

element. For example, we could write double = [x \in 1..10 |-> 2*x].

While we eventually want to allow for multiple wires, we’ll start by just modeling a 

single wire. And we’ll say that it must be for 3 dollars, and from alice to bob.

    variables

        people = {"alice", "bob"},

        acc = [p \in people |-> 5],

        sender = "alice",

        receiver = "bob",

        amount = 3;

Note that we moved the semicolon, as acc is no longer the last variable we declare.

The final thing we will add is an Invariant. That’s something we want to be true 

at every state of the system, no matter how it starts or where it ends. If it’s false, our 

specification has an error.

Chapter 1  an example



7

EXTENDS Integers

(*--algorithm wire

variables

    people = {"alice", "bob"},

    acc = [p \in people |-> 5],

    sender = "alice",

    receiver = "bob",

    amount = 3;

define

    NoOverdrafts == \A p \in people: acc[p] >= 0

end define;

begin

    skip;

end algorithm;*)

The == here does not mean comparison. Rather, it’s the definition of an operator, 

which is closer to what we normally think of programming functions. We’ll discuss 

them more in Chapter 4. For now, we’re using it as an invariant that we’ll want to check. 

NoOverdrafts, in English, is “for all p in the set of people, their account must be greater 

than or equal to 0”. This accurately represents our property, whether we have two people 

in the set or two hundred.

 Implementing
It’s time to add the implementation. We will add it between the begin and the end 

algorithm. It represents the implementation for our transfer algorithm, which we will 

check to see if it matches our spec.

EXTENDS Integers

(*--algorithm wire

variables

    people = {"alice", "bob"},

    acc = [p \in people |-> 5],

    sender = "alice",

Chapter 1  an example



8

    receiver = "bob",

    amount = 3;

define

    NoOverdrafts == \A p \in people: acc[p] >= 0

end define;

begin

    Withdraw:

        acc[sender] := acc[sender] - amount;

    Deposit:

        acc[receiver] := acc[receiver] + amount;

end algorithm;*)

If you’re assigning a value to a variable for the very first time, you use =. However, 

if the variable already exists and you assign a new value to it, you use :=. Withdraw 

and Deposit are labels. They signify that everything inside them happens in the same 

moment of time. If we put the two assignments in the same label, they’d happen 

simultaneously. As it is, we let some time pass between the withdrawal and the deposit. 

We only allowed for one wire to happen, so this really doesn’t change much. But if we 

wrote the specification to allow multiple wires (which we’ll do later), this becomes more 

important.

Writing implementations in TLA+ can be a barrier starting out, so we wrote 

part of our spec in PlusCal, a special language that compiles to pure TLA+. PlusCal 

adds additional syntax, such as the := assignment syntax and the labels, giving us a 

pseudocode-like structure on top of TLA+. This is why we have to put it in a comment, 

as it needs to be translated first. To compile the PlusCal, we can go to File > Translate 

PlusCal Algorithm.

Tip the shortcut is Ctrl-t, or Cmd-t on macOS. If you right-click in the editor, 
there’s an option in the context menu for “translate plusCal automatically,” which 
does just that on every save.

You should see the translated TLA+ appear below, in Figure 1-2, what you wrote, 

bounded by \* BEGIN TRANSLATION.

Chapter 1  an example



9

You don’t need to do anything else with it. You’re now ready to check your 

specification.

 Verifying
To check that this spec works, we need to create a model to check it. The model is like 

the “simulation” we want to run. Different models may set up different initial conditions 

and check for different things. Since we aren’t doing anything too fancy here, all we need 

to do with our model is check that our one invariant holds.

Figure 1-2. The translated text

Chapter 1  an example



10

To create the model, go to TLC Model Checker > New Model. Once you’ve created 

the model, you should see something like what is shown in Figure 1-3.

Figure 1-3. The Model Overview

Find the drop-down labeled Invariants and click the Add button. Type in the name 

of the invariant we want to check (NoOverdrafts), save it, and run the model (the green 

button just under “Model Overview”).

Note the shortcut for running the model is F11. You can bind your own shortcut 
in preferences.

Chapter 1  an example



11

You should see 4 states found, 3 distinct states, and no error (Figure 1-4). From now 

on, if the spec completes without an error, we will list the number of states it should 

complete with. In this case, it would be successful (4 states).

Figure 1-4. (4 states)

Warning If you don’t see any states found, go back to Model Overview and 
make sure temporal Formula is selected as the behavior with the temporal formula 
Spec. this is what tells tlC to specifically check the behavior of your spec.

Chapter 1  an example



12

TLC did an exhaustive search across our entire state space. Since we weren’t doing 

anything tricky, there was exactly one behavior to check:

 1. Choose a possible initial state (there is only one possible initial 

state).

 2. Check that the starting state follows the NoOverdrafts invariant.  

It does, so begin evaluation. Execute the Withdraw step.

 3. Check the NoOverdrafts invariant. It’s true, so continue.

 4. Execute the Deposit step.

 5. Check the NoOverdrafts invariant. It’s true, so finish.

If our spec had any errors, it would have popped up an error bar. Since that didn’t 

happen, our spec is probably correct.

Or maybe it’s too simple. Let’s break it.

 Initial Conditions
Our spec worked when Alice was sending exactly 3 dollars to Bob, but that’s only one 

possible input. Maybe she sends 2 dollars. Maybe she sends 20. We can expand the 

coverage of the spec by letting it choose how much she sends. We’ll do this by telling it 

to pick amount from a set of possible numbers, say 1 through 6. TLA+ provides the a..b 

shorthand for all integers between a and b (inclusive). Make this change in the same file 

as the translated TLA+.

EXTENDS Integers

(*--algorithm wire

variables

    people = {"alice", "bob"},

    acc = [p \in people |-> 5],

    sender = "alice",

    receiver = "bob",

    amount \in 1..6;

Chapter 1  an example



13

define

    NoOverdrafts == \A p \in people: acc[p] >= 0

end define;

begin

    Withdraw:

        acc[sender] := acc[sender] - amount;

    Deposit:

        acc[receiver] := acc[receiver] + amount;

end algorithm;*)

We’ve expanded the set of possible initial states for our spec. Our model checker will 

check every single one of them to make sure they all pass. Recompile the PlusCal and 

rerun the model.

Note If you see deleteOutOfSyncFiles, don’t worry about it. It’s a cleanup 
thing.

This time, you should see something new (Figure 1-5).

Chapter 1  an example



14

TLC shows the specific invariant that was violated, which is NoOverdrafts. Below 

that you see the “Error-Trace.” This shows the initial condition and exact sequence of 

steps that lead to the violation. In this case, the error is this:

 1. Choose amount = 6 as part of the initial state.

 2. Check that the starting state follows the NoOverdrafts invariant.  

It does, so begin evaluation.

 3. Execute the Withdraw step.

 4. Check the NoOverdrafts invariant. It’s false, so raise the error.

Figure 1-5. NoOverdrafts violated

Chapter 1  an example



15

How can we fix it? We could restrict the spec to only consider amount \in 

1..acc[sender], which would make it pass. However, this might not reflect the bank’s 

expected use. People in the real world might attempt to transfer more than they have, 

and we should be ready for that case. To continue with the example, though, we’ll 

assume that this is an acceptable assumption. Make the change and confirm the model 

passes again (20 states).

 Multiple Processes
There’s one more requirement to implement: simultaneous wires. People should 

be allowed to start a second wire before the first finishes. In PlusCal, each algorithm 

happening simultaneously belongs to its own process. Each process can have its own 

code and its own local variables. We’ll start with two wires, so there are two processes 

running the exact same code.

EXTENDS Integers

(*--algorithm wire

variables

    people = {"alice", "bob"},

    acc = [p \in people |-> 5];

define

    NoOverdrafts == \A p \in people: acc[p] >= 0

end define;

process Wire \in 1..2

    variables

        sender = "alice",

        receiver = "bob",

        amount \in 1..acc[sender];

begin

    Withdraw:

        acc[sender] := acc[sender] - amount;

    Deposit:

        acc[receiver] := acc[receiver] + amount;

end process;

end algorithm;*)

Chapter 1  an example



16

If we retranslate this and rerun, we get an error again. Even if some other system 

is stopping Alice from attempting to wire 6 dollars, that system doesn’t work across 

multiple wires. Then both withdraws happen, and our spec fails. We need to add a 

condition to our spec, so that we check we have sufficient funds before withdrawing.

EXTENDS Integers

(*--algorithm wire

variables

    people = {"alice", "bob"},

    acc = [p \in people |-> 5],

define

    NoOverdrafts == \A p \in people: acc[p] >= 0

end define;

process Wire \in 1..2

    variables

        sender = "alice",

        receiver = "bob",

        amount \in 1..acc[sender];

begin

    CheckFunds:

        if amount <= acc[sender] then

            Withdraw:

                acc[sender] := acc[sender] - amount;

            Deposit:

                acc[receiver] := acc[receiver] + amount;

        end if;

end process;

end algorithm;*)

This also fails! TLC will report NoOverdrafts failed. The error is significantly more 

complex than what we’ve seen before. In order to understand what the error is, we need 

to look at the error trace (Figure 1-6).

Chapter 1  an example



17

Figure 1-6. An Error Trace. Yours may look slightly different.

Chapter 1  an example



18

<Initial Predicate> is the starting state we picked. All of the variables have 

an assignment here. pc is the current label each process is on, and amount is the 

corresponding wire amount for each process. Since we let the wire amount vary, for this 

state TLC picked <<1, 5>>.

Every following state highlights with variables that have changed from the previous 

state. In state 2, the only change is that our first process finished the CheckFunds step and 

is ready to perform the Withdraw step. Step 3 is similar. In step 4, pc changes but so does 

acc: process 1 has performed Withdraw, so acc["alice"] has changed from 5 to 4. By 

reading the error trace, we can put together a sense of how this particular error occurs.

 1. Choose amount[1] = 1 and amount[2] = 5.

 2. Execute CheckFunds[1]. Since 1 <= acc["alice"], proceed to 

Withdraw[1].

 3. Execute CheckFunds[2]. Since 5 <= acc["alice"], proceed to 

Withdraw[2].

 4. Execute Withdraw[1]. Now acc["alice"] = 4.

 5. Execute Withdraw[2]. Now acc["alice"] = -1.

You may see a slightly different error trace, but the overall pattern should be the 

same. Even if we check that Alice has enough money, both processes can pass the check 

before either withdraws. We’ve caught a race condition in our code. What if we placed 

the check and withdraw in the same label? Then there would be no way to sneak a 

concurrency bug in between the two actions because they’d happen in the same instant 

of time. In practice, we could potentially do this by withdrawing as the check and rolling 

back if that overdrafts.

(*--algorithm wire

variables

    people = {"alice", "bob"},

    acc = [p \in people |-> 5],

define

    NoOverdrafts == \A p \in people: acc[p] >= 0

end define;

Chapter 1  an example



19

process Wire \in 1..2

    variables

        sender = "alice",

        receiver = "bob",

        amount \in 1..acc[sender];

begin

    CheckAndWithdraw:

        if amount <= acc[sender] then

                acc[sender] := acc[sender] - amount;

            Deposit:

                acc[receiver] := acc[receiver] + amount;

        end if;

end process;

end algorithm;*)

That seems to work (332 states). We have fewer states because we took out the label, 

which removed some of the concurrency. Let’s move on to the last requirement and 

make sure it still works if the wire fails.

 Temporal Properties
“If the wire fails, the account is unchanged.” For the simple case of two people, let’s check 

a slightly weaker but more tractable requirement: “the total final value of the accounts is 

the same as the total starting value.” Unlike NoOverdrafts, this is a Temporal Property. 

Simple invariants check that every state of the spec is valid. Temporal properties check 

that every possible “lifetime” of the algorithm, from start to finish, obeys something 

that relates different states in the sequence to each other. Think of it like the difference 

between checking that a database is “always consistent” versus “eventually consistent” 

(although that’s just one of many things you could check). Here’s what our new spec 

would look like with the defined temporal property.

EXTENDS Integers

(*--algorithm wire

variables

    people = {"alice", "bob"},

    acc = [p \in people |-> 5],

Chapter 1  an example



20

define

    NoOverdrafts == \A p \in people: acc[p] >= 0

    EventuallyConsistent == <>[](acc["alice"] + acc["bob"] = 10)

end define;

process Wire \in 1..2

    variables

        sender = "alice",

        receiver = "bob",

        amount \in 1..acc[sender];

begin

    CheckAndWithdraw:

        if amount <= acc[sender] then

                acc[sender] := acc[sender] - amount;

            Deposit:

                acc[receiver] := acc[receiver] + amount;

        end if;

end process;

end algorithm;*)

EventuallyConsistent looks like NoOverdrafts, but the equation starts with <>[]. 

<>[] is the “eventually-always” operator, and means that no matter what the algorithm 

does, in the end the given equation must eventually be true. It may be false for a while, 

and it may switch between true and false several times, but it will end true.

We need to add the temporal property under Properties in the Model Overview 

page. You will find it just below Invariants. After doing that, rerun the model.

Chapter 1  an example



21

The error we see (Figure 1-7) is unusual. The first four steps in the trace look normal: 

we withdraw in the first wire, we deposit in the first wire, and we withdraw in the second 

wire. Then we see that the fifth state is labeled <Stuttering>. Stuttering is when a 

process simply stops. There’s nothing preventing the wire from making the deposit, it 

just doesn’t try. If this seems far-fetched, consider the case where the server crashes in 

between steps. Or the power goes out. Or the deposit eventually happens, but it takes so 

long Alice complains to the SEC. Those are all real and quite worrisome concerns, and 

they are all represented by the stuttering state.

Figure 1-7. An error with stuttering

Chapter 1  an example



22

How do we fix this? Unfortunately, there are no good options. At least, there’s no easy 

options that probably won’t blow up in practice.

• We could make the check, withdraw, and deposit all happen in the same 

step. Then there’s no way for the server to crash between the withdraw 

and the deposit, because there is no timespan between the withdraw 

and the deposit. In practice, though, this means our process only has one 

label, which means it effectively takes zero time to run. This violates the 

core requirement that wires take an arbitrary amount of time.

• We could specifically tell TLA+ that our process cannot stutter 

between the withdrawal and the deposit. Our spec would pass, but 

there’s no way we could implement it. Server faults are as certain as 

death and taxes.

• We could convince the Project Manager to relax the 

EventuallyConsistent requirement.

• We could try a different implementation entirely.

• We could relax the NoOverdrafts requirement. In the end, this is 

how most banks do it: instead of guaranteeing that overdrafts never 

happen, they work to make overdrafts less likely and have procedures 

in place when they do happen.

Specifying safe transfers is surprisingly hard! What’s important, though, is that we 

can test our specification without having to write code first. This lets us explore solutions 

and confirm they are safe before building our system.

 Summary
We wrote a specification of a bank transfer and saw how the model checker, TLC, was 

able to find race conditions and logic bugs in our design. In the process, we sampled 

all of the various features of both TLA+ and PlusCal. Over the next five chapters, we 

will cover all of these features in more detail. Invariants, operators, and functions are 

all covered in Chapter 3, using TLC better is part of Chapter 4, Chapter 5 is all about 

concurrency, and Chapter 6 is stuttering and temporal properties.

As for the basics of PlusCal, that will be the next chapter.

Chapter 1  an example



23
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_2

CHAPTER 2

PlusCal
 Introduction
In this chapter we’ll be introducing PlusCal. PlusCal is a language that compiles down 

to TLA+. Lamport developed it in 2009 to make TLA+ more accessible to programmers. 

Most of the things we’ll want to do will be significantly easier in PlusCal than in TLA+. 

This chapter will cover all of PlusCal with the exception of multiprocess algorithms, 

which is Chapter 5; and fair processes, which is Chapter 6.

 Specifications
 Layout of a Spec
To start, let’s take one of the examples of the bank transfer from the last chapter.

---- (1) MODULE wire (2) ----

EXTENDS Integers \* (3)

(*--algorithm wire \* (4)

    variables (5)

        people = {"alice", "bob"},

        acc = [alice |-> 5, bob |-> 5];

begin \* (6)

    skip;

end algorithm;*) (4)

==== \* (1)



24

All the specs we write will have this form.

 (1) All TLA+ specs must start with at least four – on each side of the 

MODULE and four = at the end. This is for backwards compatibility 

reasons. Everything outside these two boundaries is ignored, and 

people often put metadata there.

 (2) The module name must be the same as the filename.

 (3) EXTENDS is the import keyword. We’re importing the Integers 

module.

 (4) \* starts a line comment in TLA+, (* ... *) is a block comment. 

PlusCal specs are placed in comments (so the parser ignores 

it), are started with --algorithm <name>, and closed with end 

algorithm. The name of the algorithm does not have to match the 

filename.

 (5) Inside the algorithm, we initialize variables with variables. 

Variables are separated by commas or semicolons.

 (6) This is where we write the algorithm itself.

Note In the tutorial we had Labels too. They’re only necessary for concurrent 
algorithms, so for now we leave them out and will cover all of the uses for them in 
Chapter 5.

 Expressions
Everything in an expression is either a value, like {TRUE}, or an operator, like +. In the 

next chapter we will be writing our own operators, but for this one we will only use the 

ones provided by the standard library.

Since we’re going to be working with a lot of expressions, we will need some way of 

evaluating them without running an entire spec. To do that, we can use the expression 
evaluator. Go to a model (such as Model_1 in your spec) and go to the Model Checking 

Results. If you put an expression into “Evaluate Constant Expression” and run the model, 

it will output the result in the Value box as shown in Figure 2-1.

ChapTer 2  plusCal



25

Tip Checking an expression will also evaluate your spec. If you don’t want to run 
it, you can switch it to “No Behavior spec” under Model Overview > What is 
the behavior Spec?

From now on we will use the following format to mean “Evaluate Constant 

Expression” and the result:

>> Expression

Result

For example, we would write the above screenshot as:

>> 1 + 2

3

Figure 2-1. Evaluate Constant Expression

ChapTer 2  plusCal



26

 Values
There are four kinds of basic values in TLA+: strings, integers, Booleans, and model 
values. Floats are not supported, Boolean values are written TRUE and FALSE, and model 

values will be introduced in Chapter 4. Strings must be written in double quotes, and 

cannot be written with single quotes. The standard operations are:

Operator Meaning Example

x = y equals >> 1 = 2

FALSE

x /= y

x # y

Not equals >> 1 /= 2

TRUE

x /\ y and >> TRUE /\ FALSE

FALSE

x \/ y Or >> TRUE \/ FALSE

FALSE

x := y assignment N/a [plusCal only]

~x Not >> ~TRUE

FALSE

= VS :=

If = is equality and := is assignment, how come we write variables x = 1 and not 

variables x := 1? In raw Tla+, there is no assignment, only equality. If you want to 

initialize x to 1, you write x = 1. If x is initialized and you want to compare x to 1, you write  

x = 1. If x is initialized and you want to assign it to 1, you write x' = 1. In Tla+, these are 

all actually equality checks! While this might seem unintuitive, it’s all part of the underlying 

way Tla+ treats time.

here’s a rule of thumb: if it’s the first time you’re using the variable, = is initialization. every 

other time, = is equality and := is assignment. If you write variables x = 2, y = x, 

z = (x = y) you will get x = 2, y = 2, z = TRUE. By the time we reach z we’ve 

already initialized x and y, so (x = y) is an equality check. If this is a little confusing, that’s 

understandable, and you’ll build an intuition with some experience.

ChapTer 2  plusCal



27

If we EXTENDS Integers, we also get arithmetic. +, -, %, and * all behave as you expect 

them to. Integer division is \div, while decimal division is unsupported. You also have 

the range operator .., where a..b is the set {a, a+1, a+2, ..., b}.

>> 1..3

{1, 2, 3}

There are four kinds of constructed types in TLA+: sets, tuples/sequences, structures, 

and functions. Functions are covered in the next chapter. We can cover the basics of the 

rest here.

Sets are unordered collections of elements. They are specified with curly braces. 

For example, we can say set = {"a", "b", "c"}. All elements in the set must have the 

same type, but there are no restrictions beyond that. You can have sets of sets of sets of 

functions if you’d like. Sets have the following operators:

Operator Meaning Example

x \in set Is element of set >> 1 \in 1..2

TRUE

x \notin set

~(x \in set)

Is not element of set >> 1 \notin 1..2

FALSE

set1 \subseteq set2 Is subset of set >> {1, 2} \subseteq  

{1, 2, 3}

TRUE

set1 \union set2 set union >> (1..2) \union (2..3)

{1, 2, 3}

set1 \intersect set2 set Intersection >> (1..2) \intersect 

(2..3)

{2}

set1 \ set2 set Difference >> (1..2) \ (2..3)

{1}

Cardinality(set) Number of elements in set  

(requires EXTENDS FiniteSets)

>> Cardinality 

({"a", "b"})

2

ChapTer 2  plusCal



28

Note When reading specs, you might come across \union written as \cup and 
\intersect as \cap. This is a visual match of the mathematical symbols, ∪ and 
∩. We’re using union/intersect because it’s more explicit.

Sets also have two special set transformations. We filter sets with {x \in set: 

conditional} and map sets with {expression: x \in set}.

>> {x \in 1..2: x < 2}

{1}

>> {x * 2: x \in 1..2}

{2, 4}

Note It’s very rare to need to write something like {x \in set1 : y \in 
set2}, but it (again, rarely) does happen. In this edge case, it’s treated as a filter 
on set1.

Tuples or Sequences (both words are common) are ordered collections of elements, 

with the index starting at 1. They are specified with << and >>, and they do not need to 

be the same element type. If you write tup = <<"a", {1, 2}>>, then tup[1] = "a" 

and tup[2] = {1, 2}. Again, this is 1-indexed. If we EXTENDS Sequences, we get some 

additional sequence operators:

Operator Meaning Example

Head(sequence) Head >> Head(<<1, 2>>)

1

Tail(seq) Tail >> Tail(<<1, 2, 3>>)

<<2, 3>>

Append(seq, x) Append >> Append(<<1, 2>>, 3)

<<1, 2, 3>>

seq1 \o seq2 Combine >> <<1>> \o <<2, 3>>

<<1, 2, 3>>

Len(seq) Length of sequence >> <<1, 1, 1, 1>>

4

ChapTer 2  plusCal



29

While the terms are interchangeable, by convention we use tuple when we don’t 

expect to use sequence operators on it or change its length, and we use sequence if we do.

Structures (or structs) map strings to values. You write them as [ key1 |-> val1, 

key2 |-> val2, etc ]. The values do not have to be the same type. You get the value 

with struct.key.

>> [a |-> 1, b |-> <<1, {}>>].b

<<1, {}>>

Note While the syntax for the two is different, structures and sequences are the 
same data type! We’ll learn more about this when we cover functions in the next 
chapter.

Sets, sequences, and structures can be assigned to variables. The following is a valid 

PlusCal algorithm:

(*--algorithm example

variables x = <<1, [a |-> {}]>>;

begin

  x[2].a := x[2].a \union {2};

end algorithm; *)

Here we modified a set inside a struct inside a tuple/sequence.

That covers the basics of data types. Now let’s quickly run through some basic 

syntax of the PlusCal algorithm body. Most of this should be familiar from programming 

languages, so we won’t go into too much detail.

 PlusCal Algorithm Body

 Assignment

Assign an existing variable to a different value. Done with :=.

ChapTer 2  plusCal



30

 assert

An assertion. assert TRUE does nothing. assert FALSE raises an error. Adding 

assertions is one common way we test invariants: the assertion checks that in that 

step a given expression holds, so if it fails our spec broke the invariant. In order to use 

assertions, you need to add EXTENDS TLC.

 skip

A no-op. We can use this to fill represent parts of the spec that we haven’t filled out yet or 

conditionals that don’t update anything.

 if

if condition1 then

  body

elsif condition2 then

  body

else

  body

end if;

While if is the only conditional in PlusCal, it is not the only branching statement. 

Two others, either and with, will be introduced later in this chapter.

 while

While loops are the only form of loops in PlusCal:

while condition do

  body

end while;

Note that we use do here, while for the if statement we use then.

ChapTer 2  plusCal



31

 Macros

To clean up specs a little, we can add macros before the begin.

macro name(arg1, arg2) begin

  \* assignments

end macro;

begin

  name(x, y);

end algorithm;

You can place assignments, assertions, and if statements in macros, but not while 

loops. You also cannot assign to any variable more than once. You can refer to outside 

values in the macro, and you can assign to outside variables. For example, the following 

is a spec error:

EXTENDS TLC

(*--algorithm example

variables x = TRUE;

macro set_false() begin

  x := FALSE;

end macro;

begin

  set_false();

  assert x;

end algorithm; *)

While set_false doesn’t take x as a parameter, it’s still able to change the variable.

ChapTer 2  plusCal



32

 Example
Let’s design a sorting machine! An abstract one so that we can ignore the hardware 

details. Imagine we have a machine that sorts material into “recyclable” and “trash.” It 

has finite space for both recycling and trash. Items with a specified size and type come 

in, one at a time, and it sorts them according to the following rules:

• If the item is labeled as “recycling” and it is under the remaining 

capacity for the recycling bin, the item goes into recycling.

• If the item is labeled as “trash” OR the item is labeled as “recycling” 

and there is not enough recycling capacity AND there is sufficient 

capacity in the trash bin, the item goes into trash.

• Otherwise, it’s dropped on the floor and somebody else gets to sweep 

it up.

Let’s start by thinking about our representations. The capacities of the two bins can 

be represented by numbers. The items can be represented by a structure with a key for 

size and a key for type: an item might look like [type |-> "trash", size |-> 2]. We 

can represent the numbers in each bin with sets. Finally, we can represent the order that 

items come in as a sequence, such as <<item1, item2, item3>>.

Next, we should figure out what our invariants are. We don’t have the tools yet to 

inspect properties on sets, so we can start by just checking that we don’t go over the 

capacity limit for either bin, and that each bin has the appropriate amount of items in it.

Here’s one way of writing the spec:

EXTENDS Sequences, Integers, TLC, FiniteSets

(*--algorithm recycler

variables

    capacity = [trash |-> 10, recycle |-> 10],

    bins = [trash |-> {}, recycle |-> {}],

    count = [trash |-> 0, recycle |-> 0],

    items = <<

        [type |-> "recycle", size |-> 5],

        [type |-> "trash", size |-> 5],

        [type |-> "recycle", size |-> 4],

        [type |-> "recycle", size |-> 3]

    >>,

    curr = ""; \* helper: current item

ChapTer 2  plusCal



33

begin

    while items /= <<>> do

        curr := Head(items);

        items := Tail(items);

        if curr.type = "recycle" /\ curr.size < capacity.recycle then

            bins.recycle := bins.recycle \union {curr};

            capacity.recycle := capacity.recycle - curr.size;

            count.recycle := count.recycle + 1;

        elsif curr.size < capacity.trash then

            bins.trash := bins.trash \union {curr};

            capacity.trash := capacity.trash - curr.size;

            count.trash := count.trash + 1;

        end if;

     end while;

     assert capacity.trash >= 0 /\ capacity.recycle >= 0;

     assert Cardinality(bins.trash) = count.trash;

     assert Cardinality(bins.recycle) = count.recycle;

end algorithm; *)

Confirm this works (remember to compile the PlusCal to TLA+), has 7 states,  

and has no errors. I don’t like the duplication in those two if statements, so let’s  

add a macro.

macro add_item(type) begin

  bins[type] := bins[type] \union {curr};

  capacity[type] := capacity[type] - curr.size;

  count[type] := count[type] + 1;

end macro;

begin

    while items /= <<>> do

        curr := Head(items);

        items := Tail(items);

        if curr.type = "recycle" /\ curr.size < capacity.recycle then

            add_item("recycle");

ChapTer 2  plusCal



34

        elsif curr.size < capacity.trash then

            add_item("trash");

        end if;

        \* rest is same

We replaced the bodies of the two conditions branches with calls to add_item. 

Confirm again that this works.

 Complex Behaviors
We now know how to write a very simple spec, but what we have is barely more 

interesting than a deterministic unit test. If we want to make this useful, we need a way to 

check not just one setup, but an entire space of setups and runtime occurrences. There 

are three basic ways to do this.

 Multiple Starting States
We initialize variables with =. But we can also initialize them with \in. If we write x \in 

set, all that means is that x is any possible element in the set. For example, if we had

(*--algorithm in

variables x \in 1..3;

begin

    assert x <= 2;

end algorithm; *)

TLC would first try running the whole algorithm with x = 1, then x = 2, then finally 

x = 3, which fails. If we added a second variable y that also used \in, TLC would check 

every single possible combination of x and y.

Tip  Tla+ defines a shorthand BOOLEAN for the set {TRUE, FALSE}. This 
can be useful if you have a flag variable, such as variable is_ready \in 
BOOLEAN.

We can use this to choose some arbitrary number. What about arbitrary sets, 

structures, and tuples? We have some special operators to generalize them.

ChapTer 2  plusCal



35

First of all, for a given set, SUBSET set is the power set, or the set of all subsets. We 

reverse this with UNION set, which combines a set-of-sets back into one. UNION {set1, 

set2, ... setn} is equivalent to writing set1 \union set2 \union ... \union setn.

>> SUBSET {"a", "b"}

{{}, {"a"}, {"b"}, {"a", "b"}}

>> UNION {{"a"}, {"b"}, {"b", "c"}

{"a", "b", "c"} 

Given two sets, set1 \X set2 is the set of all tuples where the first element is in set1 

and the second element is in set2.

>> {"a", "b", "c"} \X (1..2)

{<<"a", 1>>, <<"a", 2>>, <<"b", 1>>, <<"b", 2>>, <<"c", 1>>, <<"c", 2>>}

Note that \X is not associative. A \X B \X C is a set of triplets, while (A \X B) \X 

C is a pair where the first element is also a pair, and A \X (B \X C) is a pair where the 

second element is also a pair.

>> <<1, 2, 3>> \in (1..3) \X (1..3) \X (1..3)

TRUE

>> <<1, 2, 3>> \in (1..3) \X ((1..3) \X (1..3))

FALSE

Finally, to generate a set of structures, we use a different syntax. Instead of writing 

[key |-> val], we write [key: set]. Then if x \in [key: set], x is a structure where 

the value of key is some element of set.

>> [a: {"a", "b"}]

{[a |-> "a"], [a |-> "b"]}

>> [a: {"a", "b"}, b: (1..2)]

{ [a |-> "a", b |-> 1], [a |-> "a", b |-> 2], [a |-> "b", b |-> 1], [a |-> 

"b", b |-> 2] }

Tip sometimes you want a structure where one key is always a specific value, 
but another key is some value in a set. In that case you can wrap the value in a 
one-element set, as in [key1: set, key2: {value}].

ChapTer 2  plusCal



36

As with everything else, all of these can be freely mixed and matched. We can write 

variable x \in [key: (set1 \X set2)] to mean “x is a structure where the value of 

key is some pair of elements, the first being in set1, the second being in set2.” We can use 

this to detail complex data structures in our specifications. In particular, we can use this 

to detail complex starting states that break our spec.

 Example

We’ll rewrite our recycler example to have arbitrary capacities and arbitrary items.

variables

    capacity \in [trash: 1..10, recycle: 1..10],

    bins = [trash |-> {}, recycle |-> {}],

    count = [trash |-> 0, recycle |-> 0],

    item = [type: {"trash", "recycle"}, size: 1..6],

    items \in item \X item \X item \X item,

    curr = ""; \* helper: current item

    \* rest is same

To make it cleaner, we added a helper item. items can be defined in terms of item 

and will be a four-element sequence of them. When you rerun this, you should notice 

two things:

 1. Checking the model takes longer. Before, we had one possible 

starting state. Now we have 10 × 10 × (2 × 6)4 = 2,073,600 starting 

states. TLC will be clever about checking them, but optimizing 

your models is an important skill you’ll develop.

 2. Our spec failed. The TLC error will look something like this:

TLC threw an unexpected exception.

      This was probably caused by an error in the spec or model.

      See the User Output or TLC Console for clues to what happened.

      The exception was a tlc2.tool.EvalException

      ...

       The first argument of Assert evaluated to FALSE; the second argument 

was:

ChapTer 2  plusCal



37

This means that the spec failed because one of our asserts failed. The exact values 

of the failure you get will probably be different run to run, but it will be the same core 

problem. Sets are unique, and {x} \union {x} = {x}, not {x, x}. If we handle two 

items with the exact same type and size, we end up storing it once but increasing count 

twice. Then the size of the set and the value of count don’t match up.

Ultimately, the problem is in the set: our count is correct and the set is wrong. We 

want duplicates, so we should preferably store the items in sequences instead of sets. set 

\union {curr} looks ugly, anyway. Plus, we can get rid of the FiniteSets dependency, 

since we’d be using Append instead of Cardinality.

Our final spec looks like this:

EXTENDS Sequences, Integers, TLC

(*--algorithm recycler

variables

    capacity \in [trash: 1..10, recycle: 1..10],

    bins = [trash |-> <<>>, recycle |-> <<>>],

    count = [trash |-> 0, recycle |-> 0],

    item = [type: {"trash", "recycle"}, size: 1..6],

    items \in item \X item \X item \X item,

    curr = ""; \* helper: current item

macro add_item(type) begin

  bins[type] := Append(bins[type], curr);

  capacity[type] := capacity[type] - curr.size;

  count[type] := count[type] + 1;

end macro;

begin

    while items /= <<>> do

        curr := Head(items);

        items := Tail(items);

        if curr.type = "recycle" /\ curr.size < capacity.recycle then

            add_item("recycle");

        elsif curr.size < capacity.trash then

            add_item("trash");

        end if;

     end while;

ChapTer 2  plusCal



38

     assert capacity.trash >= 0 /\ capacity.recycle >= 0;

     assert Len(bins.trash) = count.trash;

     assert Len(bins.recycle) = count.recycle;

end algorithm; *)

It should pass with 9,323,626 states.

 Nondeterministic Behavior
Not all behavior is deterministic. A request may succeed or fail, a query might return 

a random result, there might be one of several choices to make. For single process 

algorithms, we have two PlusCal constructs to simulate nondeterminisim.

 Either

We write an either expression like this:

either

  \* branch 1

or

  \* branch 2

  \* ...

or

  \* branch n

end either;

When you model-check your spec, TLC will check all branches simultaneously. We 

can use this to represent one of several possibilities happening. There is no way to make 

one possibility more likely than the other. We generally assume that if some possible 

choice invalidates our spec, no matter how unlikely, it’s something we’ll want to fix.

We can place any assignment or PlusCal expression inside of an either branch. If all 

of the branches are “macro-valid,” we may place an either inside of a macro.

 With

There are two ways we can write a with expression:

with var = value do

  \* body

end with;

ChapTer 2  plusCal



39

\* or

with var \in set do

  \* body

end with;

In the former case, this just creates a temporary variable. This follows the “if it’s the 

first time we see a variable, use =” rule. We could have used this to replace curr in our 

last example, such as

with curr = Head(items) do

  if curr.type = "recycle" \* ...

The second case, however, is nondeterministic. TLC will check what happens for all 

possible assignments of var to elements of set. If the set is empty, the spec halts until the 

set is not empty. For single-process apps, this is considered a spec failure.

with statements follow macro rules: no double-assignments and no while loops. You 

can place with statements inside macros.

Warning with gives you values, not references. If x and y are variables, you 
could not reassign to them by writing with t \in {x, y} do t := 1. You 
could, though, write with t \in {x, y} do x := t.

 Example

For this example, we’ll have an idealized model of sending messages when the receiver 

doesn’t automatically accept them. Maybe the receiver is a friend who’s going in and out 

of cell coverage. We can approximate this with a two-turn cycle:

 1. On the sender’s turn, they put a message in transit.

 2. On the receiver’s turn, they either receive a message in transit or 

do nothing (they’re outside cell coverage).

While we have a definite order on how the messages are sent and an order in which 

they are received, they aren’t ordered while in transit. The receiver can get the messages 

in transit in any order. This means we have two sequences for to_send and received, but 

a set for in_transit.

ChapTer 2  plusCal



40

EXTENDS Sequences, TLC

(*--algorithm telephone

variables

  to_send = <<1, 2, 3>>,

  received = <<>>,

  in_transit = {};

begin

  while Len(received) /= 3 do

    \* send

    if to_send /= <<>> then

      in_transit := in_transit \union {Head(to_send)};

      to_send := Tail(to_send);

    end if;

    \* receive

    either

      with msg \in in_transit do

        received := Append(received, msg);

        in_transit := in_transit \ {msg}

      end with;

    or

      skip;

    end either;

  end while;

end algorithm; *)

This runs normally with no errors. If you add an assert received = <<1, 2, 3>>; 

after the while loop, you should get an error. There’s several failing behaviors now, and 

TLC reports the first one it finds, which might not always be the same one. But all of 

them should look something like this:

 1. The sender places message 1 in transit.

 2. The receiver skips.

 3. The sender places message 2 in transit.

 4. The receiver pulls message 1.

ChapTer 2  plusCal



41

 5. The sender places message 3 in transit.

 6. The receiver pulls message 3.

 7. The receiver pulls message 2.

This is called a concurrency bug. TLA+ is especially well-suited to identifying and 

debugging concurrency bugs, which is good, because a lot of the nastiest and most 

subtle bugs are concurrency bugs.

One (admittedly heavy-handed) fix would be to only let you send if the last message 

was confirmed received. While the implementation details may be complex, we can 

represent that at a high level by just adding a flag for can_send:

variables

  to_send = <<1, 2, 3>>,

  received = <<>>,

  in_transit = {},

  can_send = TRUE;

begin

  while Len(received) /= 3 do

    \* send

    if can_send /\ to_send /= <<>> then

      in_transit := in_transit \union {Head(to_send)};

      can_send := FALSE;

      to_send := Tail(to_send);

    end if;

    \* receive

    either

      with msg \in in_transit do

        received := Append(received, msg);

        in_transit := in_transit \ {msg};

        can_send := TRUE;

      end with;

    or

      skip;

    end either;

ChapTer 2  plusCal



42

With this fix, the spec is valid (18 states). But there’s a subtle and very dangerous 

problem here: if you can only send if the other person receives, what if the message is 

never received? Our only invariant is that, at the very end, the messages have arrived in 

order. One way to satisfy this is if the messages never arrive at all! This is called a liveness 

bug and we will study them further in Chapter 6.

We should also consider the case where the message is successfully received but 

the mechanism that reports it was received fails. We can represent this by using another 

either, this time to check whether we reset can_send.

      with msg \in in_transit do

        received := Append(received, msg);

        in_transit := in_transit \ {msg};

        either

          can_send := TRUE;

        or

          skip;

        end either;

      end with;

If you run this, you should see it fail, with the error “Deadlock reached.” This means 

TLC reached a state where it can’t make any more progress. In this case, the sender 

places message 1 in transit, and the receiver receives message 1 but does not reset  

can_send. The sender can’t do anything else because can_send is false, and the receiver 

can’t do anything because in_transit is empty. Deadlock.

Deadlocks are a particularly common problem in concurrent code, and we will 

discuss them more in Chapter 5.

 Summary
In this chapter we covered the basics of using PlusCal to write specs. We learned the 

syntax for sets, tuples/sequences, and structures, as well as how to check multiple 

starting states and simulate nondeterministic behavior.

In the next chapter, we will learn how to use TLA+ proper to create complex data and 

invariants. We will also introduce the last data type: functions.

ChapTer 2  plusCal



43
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_3

CHAPTER 3

Operators and Functions
In this chapter, we will introduce TLA+ proper and use it to write more powerful specs 

with complex invariants. We’ve already been using some TLA+. All of our variables were 

defined in terms of TLA+ expressions. All of our values, sets, sequences, and structures 

were TLA+ expressions. All of our conditionals were TLA+ expressions. PlusCal was just 

a framing structure, a simplified assignment rule, and a few extra keywords.

Now that we know this, we can express it more formally and leverage what it  

actually means.

 Operators
An operator is the TLA+ equivalent of a procedure in programming. You write it like this:

Op(arg1, arg2) == Expr

Yes, that’s a double equals. If the expression doesn’t depend on the arguments, 

you can write Op == Expr. This is commonly used to represent constants. We can use 

operators to simplify the setup of our recycler:

BinTypes == {"trash", "recycle"}

SetsOfFour(set) == set \X set \X set \X set

Items == [type: BinTypes, size: 1..6]

(* --algorithm recycler

variables

capacity \* ...

items \in SetsOfFour(Items);



44

Since the set of possible items we’re feeding in is constant, we define it as an 

operator instead of a variable. This prevents us from accidentally modifying the set in 

the algorithm itself. The TLA+ does not use semicolons; only the PlusCal computations 

need semicolons. TLA+’s syntax is (with the exception of nested conditionals below) 

not whitespace sensitive, and you could place all three operators on the same line if you 

really wanted to.

If you want to define an operator using the variables of a PlusCal algorithm, you can 

place it in a define block:

define

  NoBinOverflow ==

    capacity.trash >= 0 /\ capacity.recycle >= 0

  CountsMatchUp ==

    Len(bins.trash) = count.trash /\ Len(bins.recycle) = count.recycle

end define;

\* ...

assert NoBinOverflow /\ CountsMatchUp;

Warning The PlusCal translator is very simple and everything needs to be in 
the right order. Definitions must go above macro definitions and below variable 
definitions.

We can place the definition of the operator on a new line. We could also place both 

clauses on separate lines, too. Another way we could define our assertion is to combine 

both NoBinOverflow and CountsMatchUp into a single operator:

define

  Invariant ==

    /\ capacity.trash >= 0

    /\ capacity.recycle >= 0

    /\ Len(bins.trash) = count.trash

    /\ Len(bins.recycle) = count.recycle

end define;

ChaPTer 3  OPeraTOrs anD FunCTiOns



45

For convenience in formatting, we can place an optional /\ before the first clause. 

This is the idiomatic way to write multiple clauses in a single operator. We can also nest 

clauses: this is the only place in TLA+ where whitespace matters. If the line following a 

clause is indented, it belongs to the same subclause. In other words, if we write

/\ A

/\ B

  \/ C

/\ D

We get A /\ (B \/ C) /\ D.

There’s also a few special forms of operators with their own syntax. First, we can have 

higher-order operators, or ones that take other operators as parameters. You need to 

specify in advance how many parameters the operator takes, which you do with _:

Add(a, b) == a + b

Apply(op(_, _), x, y) == op(x, y)

>> Apply(Add, 1, 2)

3

You can define anonymous operators with LAMBDA. Anonymous operators can only 

be used as arguments to other operators, not as stand-alone operators. They’re written 

as LAMBDA param1, param2, paramN: body.

Apply(LAMBDA x, y: x + y, 1, 2)

>> 3

Finally, things like >= and \o are operators, too. There’s a set of “User Definable 

Operator Symbols” that can be defined as operators. You can see them by going to Help 

> The TLA+ Cheat Sheet in the Toolbox.

set ++ elem == set \union {elem}

set -- elem == set \ {elem}

>> {1, 2} ++ 3

{1, 2, 3}

>> {1, 2} – 2

{1}

ChaPTer 3  OPeraTOrs anD FunCTiOns



46

 Invariants
We can use operators as invariants. An invariant is a Boolean expression that’s checked 

at the end of every “step” of the model. If it’s ever false, the model fails. One example of 

an invariant is the NoOverdrafts operator we saw in Chapter 2. Similarly, we can use 

NoBinOverflow and CountsMatchUp as our invariants in the recycler, which makes the 

assert at the end superfluous.

Not all models you write will check all invariants. You have to specify what you 

actually care about. You can do this by adding the invariants to the “Invariants” section 

of the model and then checking them (Figure 3-1).

Figure 3-1. An added invariant that checks everything

If we add them and rerun the model, you’ll note two differences with the failure. 

First of all, the error is much nicer. Second, instead of our spec failing at the very end of 

the run, it fails as soon as the error appears. This makes it easier to identify what went 

terribly wrong.

ChaPTer 3  OPeraTOrs anD FunCTiOns



47

We don’t need to define an operator to add an invariant. We can place any 

expression we want in the “Invariants” box. However, creating dedicated operators is 

cleaner and better signals your intent to anybody else who reads your spec.

From now on, we will note the invariants you are checking with INVARIANT 

NameOfInvariant. In the above case (Figure 3-2), we are running the model with 

INVARIANT Invariant.

Figure 3-2. An inlined expression

 Logical Operators
With invariants, we can express simple properties like “there is some capacity left,” or 

“the number of items in the bin matches the count.” Often we want to express more 

complex properties, either for setups, conditionals, or invariants. We can significantly 

increase our expression power with two sets of two operators, one for Booleans and one 

for sets.

ChaPTer 3  OPeraTOrs anD FunCTiOns



48

 \A and \E

\A means “all elements in a set.” It’s used in the form \A x \in set: P(x), which means 

“for all elements in the set, P(x) is true.” Here’s how we can use this to check that all 

numbers in a set are less than a given number:

AllLessThan(set, max) == \A num \in set: num < max

>> AllLessThan({1, 3}, 4)

TRUE

>> AllLessThan({1, 3}, 2)

FALSE

>> AllLessThan({1, 3}, "FOO")

[Error]

\E means “there exists some element in the set.” It’s used in the form \E x \in set: 

P(x), which means “there is at least one element in the set where P(x) is true.” As an 

example, here’s how to check that a given sequence has at least one element in a  

given set:

SeqOverlapsSet(seq, set) == \E x \in 1..Len(seq): seq[x] \in set

>> SeqOverlapsSet(<<1, 3>>, {2, 3, 4})

TRUE

Note if the set is empty, \E will be false and \A will be true, regardless of your 
expression.

We can write both ~\E for “there is no element in the set” and ~\A for “not all 

elements in the set.” \A and \E are called quantifiers.

There’s some additional syntactic sugar for defining quantifiers over multiple values. 

As an example, a “commutative” operator is one where the order of the arguments 

doesn’t matter. If we want to check if an operator is commutative over a set, we need 

to test that for every pair of values in the set, calling that operator gives the same value 

ChaPTer 3  OPeraTOrs anD FunCTiOns



49

if you switch the order of the inputs. This means quantifying over two values, not one. 

There are several different ways we express that:

\* We can pull multiple elements from the set

IsCommutativeOver(Op(_, _), S) ==

  \A x, y \in S: Op(x, y) = Op(y, x)

\* We can have sequential clauses to the quantifier

IsCommutativeOver(Op(_, _), S) ==

  \A x \in S, y \in S: Op(x, y) = Op(y, x)

\* We can "unpack" a tuple

IsCommutativeOver(Op(_, _), S) ==

  \A <<x, y>> \in S \X S: Op(x, y) = Op(y, x)

>> IsCommutativeOver(LAMBDA x, y: x + y, 1..10)

TRUE

>> IsCommutativeOver(LAMBDA x, y: x - y, 1..10)

FALSE

 => and <=>

P => Q means that if P is true, then Q is true. This does not go both ways. In other words, 

it’s equivalent to writing ~P \/ Q. Usually you use it when you only want to check for 

something being true when the preconditions are satisfied.

P <=> Q means that either P and Q are both true or P and Q are both false. It can be 

used to check if two Boolean expressions are equivalent.

Xor(A, B) == (~A /\ B) \/ (A /\ ~B)

OtherXor(A, B) == ~A <=> B

>> \A A \in BOOLEAN, B \in BOOLEAN: Xor(A, B) = OtherXor(A, B)

TRUE

Recall here that BOOLEAN = {TRUE, FALSE}.

There’s a bit of a land mine here: both of these operators follow the conjunction rules 

for significant whitespace. If I write

/\ P

/\ Q

=> R

ChaPTer 3  OPeraTOrs anD FunCTiOns



50

TLC will interpret it as (P /\ Q) => R, while if I write

/\ P

/\ Q

 => R

TLC will interpret it as P /\ (Q => R).

 Expressions
We’ve been implicitly using a lot of expressions. Let’s make them more powerful. All of 

these keywords can be used as part of any expression. This means that when assigning 

a variable in a PlusCal algorithm, you’re free to use a LET statement that’s inside an IF 

that’s inside another LET.

 LET-IN

Any expression can use LET-IN to add local operators and definitions to just that 

expression alone.

RotateRight(seq) ==

  LET

    last == seq[Len(seq)]

    first == SubSeq(seq, 1, Len(seq) - 1)

  IN <<last>> \o first

>> RotateRight(<<1, 2, 3>>)

<<3, 1, 2>>

 IF-THEN-ELSE

IF Condition THEN Exp1 ELSE Exp2. Unlike most programming languages, all  

if- statements must include an ELSE.

Max(x, y) == IF x > y THEN x ELSE y

>> <<Max(2, 3), Max(3, 2)>>

<<3, 3>>

ChaPTer 3  OPeraTOrs anD FunCTiOns



51

IF THEN OR if then?

What’s the difference between the TLa+ conditional and the PlusCal conditional? IF THEN is 

an expression, so we could do x := IF P THEN x + 1 ELSE x - 1. But we couldn’t do 

IF P THEN x := x + 1 ELSE x := x - 1. The PlusCal version is exclusively for control 

flow, so it can do the latter (but not the former).

 CASE

A case statement. Subsequent cases are marked by a [].

CASE x = 1 -> TRUE

  [] x = 2 -> TRUE

  [] x = 3 -> 7

  [] OTHER -> FALSE

OTHER is the default. If none of the cases match and there is no default, TLC considers 

that an error. If more than one case statement matches, the behavior is undefined. Under 

the current implementation of TLC, it will select the first matching statement, but don’t 

count on it and make sure your statements are mutually exclusive.

 CHOOSE

CHOOSE x \in S : P(x) is “select an x such that P(x) is true.” If more than one x 

matches, TLC will select an arbitrary one (implementation-wise, the first such x it 

found). If no x matches, TLC will raise an error.

IndexOf(seq, elem) ==

  CHOOSE i \in 1..Len(seq): seq[i] = elem

>> IndexOf(<<8, 3, 1>>, 3)

2

ChaPTer 3  OPeraTOrs anD FunCTiOns



52

>> IndexOf(<<8, 3, 1>>, 4)

Attempted to compute the value of an expression of form

CHOOSE x \in S: P, but no element of S satisfied P.

CHOOSE becomes exceptionally powerful when combined with our logical operators. 

The canonical way to express Max is this:

Max(set) == CHOOSE x \in set: \A y \in set: x >= y

>> Max(1..10)

10

In most languages we’d have to either use a loop or a recursive function to compute 

the max (or use a language primitive). In TLA+, we simply say “CHOOSE an element of the 

set that’s bigger than the rest of them.” That’s it.

A more complicated example: what values for x and y satisfy the two equations 

2x + y =  − 2 and 3x − 2y = 11? We don’t need to come up with an algorithm to solve 

algebraic equations, as we can use CHOOSE:

>> CHOOSE <<x, y>> \in (-10..10) \X (-10..10):

>>   /\ 2*x + y = -2

>>   /\ 3*x - 2*y = 11

<<1, -4>>

 Functions
The last complex data type in TLA+ is the function. A function maps a set of inputs 

(its domain) to a set of outputs. The mapping can either be set manually or via an 

expression. All functions have the form [x \in set |-> P(x)]. A function that maps 

every element in a set of numbers to its double might be written as [x \in numbers |-> 

x * 2]. You can also use multiple elements in a function: [x, y \in set |-> P(x, y)] 

and [x \in set1, y \in set2 |-> Q(x,y)] are both valid syntax.

ChaPTer 3  OPeraTOrs anD FunCTiOns



53

To call a function, you write f[bar], just as you would with tuples or structs. In fact, 

tuples and structures are actually just special cases of functions. Tuples are functions 

where the domain is 1..n, and structs are functions where the domain is a set of strings.

>> [x \in 1..2 |-> x*2]

<<2, 4>>

>> Head([x \in 1..2 |-> x*2])

2

Tip if f has two values, you can call it with both f[a, b] and f[<<a, b>>].

This goes the other way too: just as we can assign sequences and structures to 

PlusCal variables, we can also assign functions. This means we can use them to 

represent data structures like counters, flags, etc.

Flags == {"f1", "f2"}

(*--algorithm flags

variables

  flags = [f \in Flags |-> FALSE];

begin

  with f \in Flags do

    flags[f] := TRUE;

  end with;

end algorithm; *)

This has five states, three of which are distinct. On execution, TLC will set one of the 

flags to true while leaving the other false.

 Functions and Operators
You can make a function as an operator. If the operator doesn’t take any arguments, the 

following two are valid syntax:

Op == [x \in S |-> P(x)]

Op[x \in S] == P(x)

ChaPTer 3  OPeraTOrs anD FunCTiOns



54

If an operator defines a function based on arguments to the operator, though, you 

need to use the first syntax.

MapToSomeNumber(set, num) == [x \in set |-> num]

Operators and functions have some key differences. Operators can work on arbitrary 

inputs, while functions must have a specified domain. Functions can be created by 

operators and passed around, and they have no restrictions on recursion or higher-order 

operators.

SumUpTo(n) ==

  LET F[m \in 0..n] ==

    IF m = 0 THEN 0

    ELSE m + F[m-1]

  IN F[n]

>> SumUpTo(10)

55

In PT helper library, we also have ReduceSet, which you can use to make an 

operator recursive over a set. This “hides” the internal use of a function. Look at how 

it’s implemented, but don’t worry too hard about completely understanding it; after all, 

that’s why we made a wrapper.

PT == INSTANCE PT

SumUpTo(n) ==

  PT!ReduceSet(LAMBDA x, y: x + y, 0..n, 0)

>> SumUpTo(10)

55

Note if you haven’t imported PT yet, do so now. We’ll be using it regularly from 
here on out. You can find the instructions at the end of the introduction.

There’s a few special operators we get for manipulating functions.

ChaPTer 3  OPeraTOrs anD FunCTiOns



55

 DOMAIN

DOMAIN is a special prefix operator that gives us the possible inputs to a function. If 

func == [x \in set |-> ...], then DOMAIN func = set. Since sequences and structs 

are forms of functions, we can use DOMAIN on them, too. DOMAIN seq = 1..Len(seq). 

DOMAIN struct is the set of keys in the struct.

F[x \in BOOLEAN] == x

G == <<6, 0, 9>>

H == [F |-> DOMAIN F, G |-> DOMAIN G]

>> H

[F |-> {FALSE, TRUE}, G |-> 1..3]

>> DOMAIN H

{"F", "G"}

 @@

f @@ g merges two function. If some element x is in both domains, then we use f[x]. It’s 

identical to the following definition:

Merge(f, g) == [

  x \in (DOMAIN f) \union (DOMAIN g) |->

    IF x \in DOMAIN f THEN f[x] ELSE g[x]

  ]

To use @@ we need EXTENDS TLC.

EXTENDS TLC

f[x \in 1..2] == "a"

g[x \in 2..3] == "b"

>> f @@ g

<<"a", "a", "b">>

>> g @@ f

<<"a", "b", "b">>

ChaPTer 3  OPeraTOrs anD FunCTiOns



56

 :>

To use :>, we need EXTENDS TLC. a :> b is the function [x \in {a} |-> b].

>> (2 :> 3)[2]

3

>> ("a" :> "b").a

"b"

 Sets of Functions
[set1 -> set2] is the set of all functions that map elements of set1 to elements of set2. 

We write -> for this, not |->. |-> is for functions, not sets of functions. You will probably 

mess this up at least twice.

>> [s \in {"a", "b"} |-> {1, 2}]

[a |-> {1, 2}, b |-> {1, 2}]

>> [{"a", "b"} -> {1, 2}]

{ [a |-> 1, b |-> 1],

     [a |-> 1, b |-> 2],

     [a |-> 2, b |-> 1],

     [a |-> 2, b |-> 2] }

Sets of functions will be increasingly useful as we write more complex specs. As an 

immediate use, we can use it to make sets of sequences. In the recycler, we defined the 

list of items as item \X item \X item \X item. What if we wanted to try with six items, 

or all possible lists up to some number? If we’re hand-coding it, it’s clumsy and difficult 

to change. And the “variable sequence” case is outright impossible. What we really want 

is some operator of form SeqOf(set, count) that can generate all of these for us.

Here’s where we can use the fact that sequences are just functions with a special 

domain. In fact, TLC will display functions with a domain 1..N as a sequence! [x \in 

1..3 |-> P(x)] is just the sequence <<P(1), P(2), P(3)>>. The set of functions [1..3 

-> S], then, are all the sequences where the first value is some element in S, the second 

value is some element of S, and so on with the third. In other words, it’s S \X S \X S.

ChaPTer 3  OPeraTOrs anD FunCTiOns



57

SeqOf(set, count) == [1..count -> set]

>> SeqOf({"a", "b", "c"}, 2)

{ <<"a", "a">>, <<"a", "b">>, <<"a", "c">>, <<"b", "a">>, ... }

We can also use this to expand a spec’s initial state space. In the PlusCal example 

above, we started with all of the flags as false. What if we also wanted to spec the cases 

where some flags start out true? Using function sets, it’s a tiny change:

Flags == {"f1", "f2"}

(*--algorithm flags

variables

  flags \in [Flags -> BOOLEAN]

begin

  \* . . .

This now has 15 states. As with any set, we can map and filter on function sets. This is 

how we could restrict the spec to only initial states where at least one flag is true:

  flags \in {config \in [Flags -> BOOLEAN]: \E f \in Flags: config[f]}

This passes with 12 states.

Let’s move on to a more involved example of functions.

 Example
The Knapsack Problem is an optimization problem that’s known to be NP-complete. We 

can define it as: We have a knapsack of volume N and a set of items. Each item has a value 

and a size. You can fit any number of each item in the knapsack as long as the sum of them 

all is less than the capacity of the sack. What’s the most valuable knapsack you can make?

Actually solving this problem is uninteresting to us: that’s an algorithms question, 

not a specification one. Instead, we will show how we can formally define the most 

valuable knapsack with TLA+ operators. Instead of having an algorithm find it, we create 

an operator that simply is the answer.

ChaPTer 3  OPeraTOrs anD FunCTiOns



58

First, let’s figure out what our inputs will be, first by hard-coding, then by 

generalizing. We define the possible items as a set of strings and the maximum capacity 

as a number.

EXTENDS TLC, Integers, Sequences

PT == INSTANCE PT

Capacity == 7

Items == {"a", "b", "c"}

If every item has a size and a value, we could represent that as a struct, say [size: 

2..4, value: 0..5]. There are then two ways to represent the inputs to the problem. 

First, we can have a set of structures, each of which has an item, a value, and a size.

HardcodedItemSet == {

  [item |-> "a", size |-> 1, value |-> 1],

  [item |-> "b", size |-> 2, value |-> 3],

  [item |-> "c", size |-> 3, value |-> 1]

}

This works but has a couple of problems. First of all, it’s hard to find the value for a 

given item. We’d have to write something like

ValueOf(item) == (CHOOSE struct \in HardcodedItemSet: struct.item = item).value

>> ValueOf("a")

1

Worse, there’s nothing stopping us from having invalid data. What if I had two structs 

with the same item but different values? We’d have an invalid input to our problem, 

leading to nonsense results. A better idea is to define our input as a mapping of item 

names to their size and value:

HardcodedItemSet == [

  a |-> [size |-> 1, value |-> 1],

  b |-> [size |-> 2, value |-> 3],

  c |-> [size |-> 3, value |-> 1]

]

ChaPTer 3  OPeraTOrs anD FunCTiOns



59

Now ValueOf(item) is just HardcodedItemSet[item].value, and we guarantee 

that all items have distinct names. Much simpler. We can generalize the inputs first by 

creating a set of structures representing all values an item can have:

ItemParams == [size: 2..4, value: 0..5]

ItemSets == [a: ItemParams, b: ItemParams, c: ItemParams]

The keys are just the elements of the set Items, and the values are just elements 

of the set ItemParams. This represents all possible configurations of values for the 

items. But we’re hard-coding a, b, and c, so if we change Items then ItemSets won’t be 

accurate. We can fix this by using a function set:

ItemSets == [Items -> ItemParams]

Remember, that’s a ->, not a |->. Try evaluating ItemSets as a constant expression 

to see what it consists of. For any given problem, we’d be working on a single element of 

that set; call it ItemSet.

That gives us the possible inputs we care about. Next, we need a measure of what 

counts as a valid knapsack. We can represent a knapsack as a function in [Items -> 

Count], representing how many of each item the knapsack contains. For example, the 

knapsack [a |-> 1, b |-> 2, c |-> 0] contains a single a, two b’s, and no c’s.

We’ll arbitrarily cap the maximum number of each item at 4 for the sake of 

explanation and for model-checking purposes. Then the set of all knapsacks would be 

[Items -> 0..4].

But not all of these will be valid. Remember, the sum of the sizes of all of the items 

must be less than the capacity. For a given knapsack, the total size for a given item is 

ItemSet[item].size * knapsack[item]. We need to sum the sizes for all items in the 

knapsack, which we can do with PT!ReduceSet.

KnapsackSize(sack, itemset) ==

  LET size_for(item) == itemset[item].size * sack[item]

  IN PT!ReduceSet(LAMBDA item, acc: size_for(item) + acc, Items, 0)

ValidKnapsacks(itemset) ==

  {sack \in [Items -> 0..4]: KnapsackSize(sack, itemset) <= Capacity}

ChaPTer 3  OPeraTOrs anD FunCTiOns



60

With this, we can define the “best” valid knapsack: it’s the one with the highest 

possible value. We calculate value in the exact same way we calculate size.

\* A minor amount of duplicate code

KnapsackValue(sack, itemset) ==

  LET value_for(item) == itemset[item].value * sack[item]

  IN PT!ReduceSet(LAMBDA item, acc: value_for(item) + acc, Items, 0)

BestKnapsack(itemset) ==

  LET all == ValidKnapsacks(itemset)

  IN CHOOSE best \in all:

    \A worse \in all \ {best}:

    KnapsackValue(best, itemset) > KnapsackValue(worse, itemset)

Let’s try this for our hard-coded example.

>> BestKnapsack(HardcodedItemSet)

[a |-> 1, b |-> 3, c |-> 0]

>> KnapsackValue([a |-> 1, b |-> 3, c |-> 0], HardcodedItemSet)

10

Looks good. But we should test that this works for all possible item sets.

>> {BestKnapsack(itemset) : itemset \in ItemSets}

Attempted to compute the value of an expression of form

CHOOSE x \in S: P, but no element of S satisfied P.

Why does nothing satisfy it? In this case, we don’t have any information on which 

ItemSet caused the problem. For debugging purposes, let’s make this a PlusCal 

algorithm, so we get a trace.

(*--algorithm debug

variables itemset \in ItemSets

begin

  assert BestKnapsack(itemset) \in ValidKnapsacks(itemset);

end algorithm; *)

ChaPTer 3  OPeraTOrs anD FunCTiOns



61

Since we’re adding a PlusCal spec, remember to remove “evaluate constant 

expression” and set “What is the behavior spec?” to “Temporal formula.” When you run 

this, you should get something like what is shown in Figure 3-3.

If none of the items have any value, then all knapsacks have the same value and there 

is no knapsack with a value greater than all the others.

We could change our operator to use >=, but that’s not actually what we want! 

Remember, if multiple elements satisfy a CHOOSE, it picks an arbitrary one. Then we’re 

saying that two knapsacks have the exact same value, and one is arbitrarily “better” than 

the other. So that’s wrong. Alternatively, we could add a “tie breaker,” such as the fewest 

items. But that doesn’t work here (all of the items have the same size and value) and 

regardless we’re now modifying the core definition to fit our operator. The definition 

doesn’t have a tie breaker, so we should not add one.

Figure 3-3. The error

ChaPTer 3  OPeraTOrs anD FunCTiOns



62

The best path, then, is to just return all the different best knapsacks as opposed to 

just an arbitrary one. We can do this in two ways:

 1. Choose the subset of valid knapsacks that are higher than 

everything outside of that set. This most closely matches the 

defintion of “best knapsacks.”

BestKnapsacksOne(itemset) ==

  LET all == ValidKnapsacks(itemset)

  IN

    CHOOSE all_the_best \in SUBSET all:

      \A good \in all_the_best:

         /\ \A other \in all_the_best:

            KnapsackValue(good, itemset) = KnapsackValue(other, itemset)

         /\ \A worse \in all \ all_the_best:

            KnapsackValue(good, itemset) > KnapsackValue(worse, itemset)

 2. Pick a best knapsack arbitrarily, calculate its value, and filter for 

all the other knapsacks that match it. This is more understandable 

and faster, too.

BestKnapsacksTwo(itemset) ==

  LET

    all == ValidKnapsacks(itemset)

    best == CHOOSE best \in all:

      \A worse \in all \ {best}:

        KnapsackValue(best, itemset) >= KnapsackValue(worse, itemset)

    value_of_best == KnapsackValue(best, itemset)

  IN

    {k \in all: value_of_best = KnapsackValue(k, itemset)}

I’d prefer we use the simpler one, but as a sanity check, let’s make sure it matches the 

former for all possible itemsets.

Capacity == 4 \* To reduce the state space for faster testing

>> \A is \in ItemSets: BestKnapsacksTwo(is) = BestKnapsacksOne(is)

FALSE

ChaPTer 3  OPeraTOrs anD FunCTiOns



63

Hm, that’s surprising. Try writing the following to see the difference.

LET is == CHOOSE is \in ItemSets:

  BestKnapsacksTwo(is) /= BestKnapsacksOne(is)

IN <<is, BestKnapsacksOne(is), BestKnapsacksTwo(is)>>

If you evaluate it, you’ll see that BestKnapsacksOne will set the empty set as all_the_

best, and \A x \in S is trivially true. We need to also qualify that there is at least some 

element in all_the_best. We do this by changing \A good to \E good:

BestKnapsacksOne(itemset) ==

  LET all == ValidKnapsacks(itemset)

  IN CHOOSE all_the_best \in SUBSET all:

    /\ \E good \in all_the_best:

         /\ \A other \in all_the_best:

              KnapsackValue(good, itemset) = KnapsackValue(other, itemset)

         /\ \A worse \in all \ all_the_best:

              KnapsackValue(good, itemset) > KnapsackValue(worse, itemset)

Now the two are equivalent. Just to be thorough, I ran both of them individually and 

confirmed that BestKnapsacksTwo was indeed faster for a capacity of 7. Finally, just as 

a means of cleaning things up, let’s remove all of the KnapsackValue calls with an inline 

operator.

BestKnapsacks(itemset) ==

  LET

    value(sack) == KnapsackValue(sack, itemset)

    all == ValidKnapsacks(itemset)

    best == CHOOSE best \in all:

      \A worse \in all \ {best}:

        value(best) >= value(worse)

  IN

    {k \in all: value(best) = value(k)}

ChaPTer 3  OPeraTOrs anD FunCTiOns



64

 Summary
We learned how to use operators, expressions, and functions to write complex operators. 

We then used it to take a complex definition – a collection of values maximizing a 

constraint problem, and solve it solely through the definition.

One problem with our knapsack specification, though, is that we’ve hard-coded all of 

the integer values. It would be better if, instead of forcing Capacity == 7 and the range 

of item sizes as 2..4, we could specify them as configurable numbers and ranges and 

only define them when it’s time for the model checking. We’ve also been using PT == 

INSTANCE PT often enough that we should finally learn what that actually means. Finally, 

our specs are beginning to get a little slow, and it would be nice to more easily run and 

debug them.

In the next chapter, we will cover all of these in model constants and module 

organization.

ChaPTer 3  OPeraTOrs anD FunCTiOns



65
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_4

CHAPTER 4

Constants, Models, 
and Imports
In the past few chapters we covered how to write complex specifications. However, our 

models are fairly rigid. Our knapsack spec from the last chapter had a set of hard-coded 

values: total capacity of the knapsack, range of values for the items, etc. In this chapter 

we will use the TLC configuration to simplify and generalize our model, as well as add 

modularity and better debugging.

 Constants
What if we want to change the parameters of a specification on the fly? For example, we 

might want to first test our spec over a small state space to weed out the obvious errors, 

and then test it over a large state space to find the subtle ones. We do this by adding 

Constants, which are values that are defined in the model instead of the specification. 

We add a constant as follows:

EXTENDS Integers, TLC

CONSTANTS Capacity, Items, SizeRange, ValueRange

\* We could also do CONSTANTS Op(_, _...)

Constants can be used anywhere you’d use any other value. As you’d expect from the 

name, they cannot be modified.

For any given model, we assign values to the constants in the “Model Overview" 

Page, in the “What Is the Model?” section. You must have specified it in the spec with 

CONSTANTS ConstantName before it will show up. For constant operators, our only option 

is to define the operator. For constant values, we have three options (Figure 4-1).



66

In this text we will specify assignment to constants with C <- val.

 Ordinary Assignment
We can set the constant to any other TLA+ value: numbers, sets, sequences, functions, etc.

Capacity <- 7

ValueRange <- 0..3

SizeRange <- 1..4

Items <- {"a", "b", "c"}

Try running the model with these values and then exploring different possible 

values. Do any cause problems for our definition of BestKnapsacks?

Figure 4-1. Declared constants. Names will only show up if you’ve defined them 
as CONSTANT.

Chapter 4  Constants, Models, and IMports



67

 Model Values
If you assign a model value to a constant, that constant becomes a new type that’s only 

equal to itself. If M and N are both model values, M /= N.

We’ll be using them a lot to add “convenience” values, like NULL. That’s because 

comparing values of different types is considered a spec failure. You cannot have the 

set {TRUE, FALSE, "null"}, but you can have the set {TRUE, FALSE, NULL} if NULL is a 

model value.

 Sets of Model Values
You can also define a whole set of model values. This has to be added as a “Set of model 

values,” not an “ordinary assignment.” When using constants, sets of model values are 

often preferable to sets of strings.

Items <- [ model value ] {i1, i2, i3}

The main advantage is this opens up symmetry sets for us. Let’s add back our 

debugging algorithm from the last chapter. We need to update it to use BestKnapsacks, 

as we discovered BestKnapsack is inappropriate to the problem. Since BestKnapsacks is 

a set, we use \subseteq instead of \in.

(*--algorithm debug

variables itemset \in ItemSets

begin

  assert BestKnapsacks(itemset) \subseteq ValidKnapsacks(itemset);

end algorithm; *)

If you translate this and run the model, you should see that TLC checked about 

12,000 total states, of which 8,000 were distinct. However, most of those states are just 

extra work for us. In a given run, we’ll get the same results if we replace all instances of 

i1 with i2, i2 with i3, and i3 with i1. That means the set is symmetric. We can tell TLC 

this by checking the “symmetry set” option on the constants popup. TLC can use this 

information to skip checking redundant states, which leads to a shorter run.

Items <- [ model value ] <symmetrical> {i1, i2, i3}

Chapter 4  Constants, Models, and IMports



68

Rerun the model. You should see that TLC checked only about 6,000 states, with just 

1,600 or so distinct. With symmetry sets we only needed to find half of the states and only 

evaluate a quarter of them. Symmetry sets won’t always be more efficient, and we have 

to be sure that it’s a safe optimization to make. In general, it is safe. I will be very explicit 

in the situations here where it’s unsafe.

 ASSUME
If we’re assigning constants at the model level, we should have a way of making sure 

that you’ve got the right type of values. If you’re using Values in your spec as a set of 

numbers, you don’t want someone assigning it a sequence of strings. ASSUME is an 

expression about your constants that, if false, prevents the spec from running.

CONSTANTS Capacity, Items, SizeRange, ValueRange

ASSUME SizeRange \subseteq 1..Capacity

ASSUME Capacity > 0

ASSUME \A v \in ValueRange: v >= 0

ItemParams == [size: SizeRange, value: ValueRange]

ItemSets == [Items -> ItemParams]

Try passing in a size that should be impossible, SizeRange <- 0..4. You should see 

that the spec will immediately error with “Assumption is false.”

ASSUME may use constants and constant operators as part of the expression but may 

not use operators not defined as CONSTANT.

 Infinite Sets

Everything we’ve done so far has been in terms of finite sets. In 99% of the cases you 

work with, you want finite sets. However, TLA+ also has the capacity to specify certain 

kinds of infinite sets. It cannot select elements from the set nor assign them as part of 

variables, but it can test membership. If we EXTEND Integers, we get the infinite set Int. 

We could also EXTEND Naturals to get the set Nat == {0, 1, 2, ...}. This means we 

could write our assumptions as:

ASSUME SizeRange \subseteq 1..Capacity

ASSUME Capacity \in Nat \ {0}

ASSUME ValueRange \subseteq Nat

Chapter 4  Constants, Models, and IMports



69

This makes the types explicit, as opposed to implicit. Which one you do is personal 

preference.

 TLC Runtime
 Configuration
We won’t cover everything on each page, because some of it is for niche purposes and 

some of it is out of scope. You can see what everything does under the “Help > Table of 

Contents.” Here are the important things (Figure 4-2).

• What Is the Behavior Spec: We almost always want “Temporal 

Formula” selected. Sometimes, if PlusCal fails to compile, it 

automatically changes to “No Behavior Spec.” We use “No Behavior 

Spec” to test expressions without running anything.

• What to Check: Deadlock will be relevant in the next chapter, when 

we learn about concurrency. Invariants are where we place safety 

invariants – pretty much everything we’ve tested so far. Properties is 

where we place liveness properties – we’ll cover that in Chapter 6.

Figure 4-2. Model Overview

Chapter 4  Constants, Models, and IMports



70

• How to Run: Here’s where we do runtime optimizations to make TLC 

faster. We will not be using it in this book, but you can learn more 

about them in the Toolbox help. See Figure 4-3.

Figure 4-3. Advanced Options

• Additional Definitions: We can add extra operators here to use with 

state constraints and defining constants. For example, we could 

define the operator F(x) == x*2 and then, for some constant C, 

make the ordinary assignment C <- F(1). It can come in handy if we 

need to do complex setups for our constants.

• State Constraint: An expression that will hold true for all states in 

our model. Unlike invariants, state constraint violations do not fail 

the model. Rather TLC will drop that state from the search. It will 

not check any invariants on that state, and it will not determine any 

future states from it. We can use this to prune the exploration space 

and finish model checking faster, at the cost of potentially missing 

invariance violations. We can also use this to turn an unbounded 

model into a bounded one.

Chapter 4  Constants, Models, and IMports



71

Action Constraint does something similar but is out of scope for us.

• Definition Override: This lets you replace any definition with a 

custom one. For example, you could override +(x, y) <- 3 if you 

wanted to mess with your friends.

WHY OVERRIDE?

the main use of overrides is for people who want their spec to represent an infinite range of 

possibilities. If I write

with x \in ValueRange do

  skip;

end with;

and then define the constant ValueRange <- 1..10, a reader might not be sure whether 

my spec is “supposed to” work with arbitrary numbers or a bounded Valuerange. so some 

people prefer to write

with x \in Int do

  skip;

end with;

and then add the override Int <- 1..10. We are not going to follow this practice in this 

book, though.

• TLC Options: The interesting ones are the modes. By default we are 

in Model-checking mode using a breadth-first search. We can change 

it to depth-first. This can be useful if your specification isn’t finite, 

such as if it has a constantly incrementing counter. However, even 

many infinite specs can be model checked by TLC, and often your 

best choice is to use a state constraint instead. Simulation Mode will 

replace the methodical search with random traces. This is generally 

less effective but can sometimes be useful if you’ve validated the 

specification over a small state space and now want to stress test it 

with a very large state space.

Chapter 4  Constants, Models, and IMports



72

 Error Traces
You’ve seen and learned how to interpret error traces already. Now we’ll cover a new 

use: the Error-Trace Exploration. You’ll find it collapsed between the error output and 

the error trace. Here’s where you can inject arbitrary expressions into your trace and 

evaluate it for debugging. If you add an expression, you should see that evaluated for 

every step of the error trace. Click “Restore” to remove the expression.

There’s one additional and extremely powerful thing you can do with the error trace. 

Every expression uses the values it has at the beginning of the step. By adding a ' (single 

quote), we can instead ask it to evaluate what it is at the end of the step. This is called a 

primed value. If I write Op(x', y), it will evaluate what Op is after x changes in that step. 

This also works on operators, too: If I write Op(x, y)', it will evaluate what Op’s output 

changed to. We cover more on the theory of primed values in Appendix C.

Warning You can’t nest two primed operators. SumItemsOver(knapsack', 
"value")' is an error.

 The TLC Module
In addition to @@ and :>, TLC provides us with several utility operators. What makes 

them special is that they have overridden implementations distinct from their formal 

definitions. They are used for debugging.

 Print and PrintT

Print(val, out) prints val and out to User Output and then evaluates to out (Figure 4-4).

Chapter 4  Constants, Models, and IMports



73

PrintT(val) is equivalent to writing Print(val, TRUE). To help with logging, TLC 

also provides JavaTime, which evaluates to the current epoch time.

 Assert

Assert(val, out) is TRUE if val is TRUE. If val is false, the spec fails with output out. The 

PlusCal keyword assert is defined in terms of Assert.

>> Assert(3 < 5, "3 is more than 5")

TRUE

>> Assert(3 > 5, "3 is more than 5")

The first argument of Assert evaluated to FALSE; the second argument was:

"3 is more than 5"

If you want to add detailed information in assertion, a fast way to do that is with a 

tuple or a struct:

>> LET x == 3 y == 5 IN Assert(x > y, <<x, " is more than ", y>>)

The first argument of Assert evaluated to FALSE; the second argument was:

<<3, " is more than ", 5>>

If you want something more polished, you can use the TLC helper ToString(_):

>> LET x == 3 y == 5 IN Assert(x > y, ToString(x) \o " is more than " \o 

ToString(y))

The first argument of Assert evaluated to FALSE; the second argument was:

"3 is more than 5"

Figure 4-4. Print

Chapter 4  Constants, Models, and IMports



74

 Permutations and SortSeq

Permutations(set) is the set of all possible ways to order the set set. SortSeq(seq, 

Op(_, _)), unsurprisingly, sorts a sequence based on Op.

>> Permutations({1, 2, 3})

{ <<1, 2, 3>>, <<1, 3, 2>>, <<2, 1, 3>>, <<2, 3, 1>>, <<3, 1, 2>>, <<3, 2, 

1>> }

>> SortSeq(<<1, 2, 3>>, LAMBDA x, y: x > y)

<<3, 2, 1>

Among other things, we can use this to force an arbitrary ordering on a set.

>> CHOOSE seq \in Permutations({1, 2, 3}): TRUE

<<1, 2, 3>>

 Imports
A specification can have multiple modules. The first module you create is the main 

module and the only one that is run. Other modules can provide new operators, values, 

and data structures to the specification.

You can create a new module in your spec by going to File > Open Module > Add 

TLA+ Module. You can also include any modules in your spec that are in your library path 

by default.

The new module should not contain any PlusCal; it is for operators only. It may, 

however, have constants, which we then define on import.

There are two ways to import modules: EXTENDS and INSTANCE. The former can list 

multiple modules at once, while the latter only imports one at a time. Neither will import 

operators or instances prepended with LOCAL.

The Toolbox needs to know about the module before you can import it. It discovers 

modules in one of three ways:

 1. The Toolbox automatically knows about all modules in the same 

folder as the rest of your spec, and you can import them by 

default.

 2. We can add a universal library path under Preferences > TLA+ 

Preferences, as we did in the introduction to the book.

Chapter 4  Constants, Models, and IMports



75

 3. We can add an additional library path local to your project by 

right-clicking on the project in the left-hand Spec Explorer and 

selecting Preferences.

 EXTENDS
EXTENDS dumps the module into the same namespace. The module may not have any 

constants. That’s what we’ve been doing for the standard TLA+ libraries, like TLC and 

Sequences. You may not have more than one EXTENDS statement in your spec. So  

this is okay:

EXTENDS TLC, Integers

While this is not:

EXTENDS TLC

EXTENDS Integers

 INSTANCE
INSTANCE works like EXTENDS, with four differences:

 1. You cannot import multiple modules in the same statement.

 2. Like operators, you can prefix an instance with LOCAL to make it 

private to the module.

 3. You can namespace modules. We do this by assigning to an 

operator, as we do with PT == INSTANCE PT. Then an operator in 

PT would be called with PT!Op.

 4. You can import parameterized modules, or modules with 

constants defined at import time.

It’s best to illustrate parameterization with an example.

---- module Point ----

LOCAL INSTANCE Integers

CONSTANTS X, Y

ASSUME X \in Int

ASSUME Y \in Int

Chapter 4  Constants, Models, and IMports



76

Point == <<X, Y>>

Add(x, y) == <<X + x, Y + y>>

====

Since Point has constants, we have to define them on import. The syntax for this is 

INSTANCE Module WITH Constant1 <- Val1, Constant2 <- Val2, etc.

INSTANCE Point WITH X <- 1, Y <- 2

This puts Add and Point in our module namespace, but using the values for X and Y.

>> Point

<<1, 2>>

>> Add(3, 4)

<<4, 6>>

Alternatively, we can assign the instance to an operator, which acts as a namespace. This 

behaves the same way, but places all of the instantiated operators under said namespace.

P1 == INSTANCE Point WITH X <- 1, Y <- 2

P2 == INSTANCE Point WITH X <- 2, Y <- 1

>> P1!Point

<<1, 2>>

>> P2!Point

<<2, 1>>

Finally, we can do a partial assignment to a namespace. If we do this, we define the 

remaining constant(s) at the exact point we call the operator.

P1(Y) == INSTANCE Point WITH X <- 1

P2(X) == INSTANCE Point WITH Y <- 1

P3(X, Y) == INSTANCE Point

>> P1(3)!Point

<<1, 3>>

>> P2(3)!Add(1, 1)

<<4, 2>>

>> P3(1, 2)!Add(2, 3)

<<3, 5>>

Chapter 4  Constants, Models, and IMports



77

If you define a constant in an module you later instantiate, and you don’t assign a 

specific value to the constant, it will default to any other operator or constant with the same 

name in the instantiating module. In other words, we could also import Point like this:

X == 1

Y == 2

P == INSTANCE Point

We did not define P using WITH, so it defaults in this case to Point WITH X <- X, Y <- Y.

 Summary
In this chapter we learned how to use constants to create distinct models for the same 

spec. We also covered making reusable libraries for our specs and simplifying them with 

module parameterization. With this we are able to clean up our Knapsack operator and 

check it over different state spaces.

We can only go so far, though, with just single-process algorithms. For many 

problems, we’re dealing with multiple processes all acting simultaneously, where 

the order they run is nondeterministic. In the next chapter, we will learn how to write 

concurrent specifications and learn just why formal methods are so vital to safe 

concurrency.

Chapter 4  Constants, Models, and IMports



79
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_5

CHAPTER 5

Concurrency
Almost everything we do is time dependent. Every mutation splits the temporal state of 

the program in two: one before the change, and one after. For a simple system, we can 

precisely define any state based on the initial state and the lines of code. It evolves in a 

deterministic, predictable way.

But many programs aren’t that simple. In a concurrent system, there is no single 

timeline. We have multiple actions that can happen in any order, producing a fractured 

spread of new time lines. Concurrent systems describe everything from threads sharing 

memory to independent actors to changes in our real world. And concurrent systems are 

notoriously hard to design correctly. There are simply too many possible behaviors to 

reason through.

So we’ll reason with TLA+ instead. We’ve already done some basic nondeterminism 

with either and with. In this chapter, we introduce the idea of processes and labels, 

which give us the structure we need to spec out and test generalized concurrent code.

 Labels
Before we talk about concurrency, we need to cover labels. The last time we used labels 

was back in Chapter 2 with the wire example. That’s because we don’t need labels 

for single-process applications, which we’ve been writing so far. We need labels to 

accurately describe concurrent systems.

Labels determine the grain of atomicity of your spec. TLC executes everything in a 

label in a single step, or action. Then it checks all invariants and looks for the next label 

to execute (action to take). Just as TLC checks all possible behaviors on every either 

and with, it also checks all possible behaviors on the set of next possible labels. In other 

words, if you have a concurrent system, TLC will test all available next actions for a 

possible error.



80

When translating PlusCal into TLA+, we get an extra pc (“program counter”) variable 

that tracks which label we're currently on. If pc = "A" then the next state will consist 

of everything under the A label. We can jump to a label in the same process with goto 

NameOfLabel. Since specifications are smaller than programs, goto is a lot easier to 

reason about in PlusCal than in a programming language, and it's often quite useful.

Tip PlusCal automatically defines a “Done” label at the end of every process. You 
cannot use “Done” as part of your own label, but you can jump to it with goto.

You can have as many labels as you’d like with the main cost being performance. 

However, there’s also a minimum number of labels you need. You have to place labels 

with the following rules:

• You must have a label at the beginning of each process and before 

every while.

• You may not place a label inside a macro or a with statement.

• You must place a label after every goto.

• If you use an either or an if and any possible branch has a label 

inside it, you must place a label after the end of the control structure.

• You may not assign to the same variable twice in a label.

The last rule deserves a little more explanation. Given the following:

Valid:

  either x := 1;

  or     x := 2;

  end either;

Invalid:

  x := 1;

  x := 2;

ChaPter 5  ConCurrenCY



81

Valid is a valid use of a label: even though x appears twice, only one of those 

assignments can happen in any given execution of the label. Invalid assigns to x twice, 

so it’s an invalid use of a label. This can become a problem when dealing with functions. 

We cannot write

Invalid:

  struct.key1 = 1;

  struct.key2 = 2;

because that assigns to struct twice. For this particular case, PlusCal has the || 

operator. You can combine two assignments with || and they will be evaluated 

simultaneously.

Valid:

  struct.key1 = 1 ||

  struct.key2 = 2;

With that, we’re ready to talk concurrency.

 Processes
A common situation in programming is the reader-writer pattern. This is where you 

have two or more asynchronous processes communicating over a shared channel, one 

of which is primarily writing messages and one of which is primarily consuming them. 

This occurs in a lot of places: pub-sub in Internet services, threads with a shared buffer, 

environmental sensors, etc. We’ll model the case where the shared channel is bounded, 

where “the message buffer length does not exceed the maximum size” is an invariant.

EXTENDS TLC, Integers, Sequences

CONSTANTS MaxQueueSize

(*--algorithm message_queue

variable queue = <<>>;

define

  BoundedQueue == Len(queue) <= MaxQueueSize

end define;

ChaPter 5  ConCurrenCY



82

process writer = "writer"

begin Write:

  while TRUE do

    queue := Append(queue, "msg");

  end while;

end process;

process reader = "reader"

variables current_message = "none";

begin Read:

  while TRUE do

    current_message := Head(queue);

    queue := Tail(queue);

  end while;

end process;

end algorithm;*)

The most important thing about this system is that it is concurrent. This means 

there’s no enforced order to when either process runs: the writer could write a dozen 

messages before the reader reads six, and then the writer could only add one more 

before the reader reads the rest. We do this by using the process keyword. Each process 

must be assigned to a value; in this case strings. Unlike with single-process algorithms, 

all processes must explicitly use (and begin with) labels.

TLC is able to choose any process to run. It executes one label in that process, 

calculates invariants, and then chooses the next label in the next process to run. Note 

that pc is no longer a single value. Now it’s a function that represents the current label 

each process can execute.

The reader also has a local variable. current_message is inaccessible to the writer 

process or anything in a define block. However, a macro can use it if called in the 

process. Like global variables, local variables can also be defined with \in, in which case 

TLC will check all of the possible starting states.

Run this with MaxQueueSize <- 2 and INVARIANT BoundedQueue. You should see it 

immediately fail. TLC starts by immediately running the reader process, which tries to 

Head an empty queue. Since Head is undefined for empty sequences, the spec fails. The 

problem is that we have no way of forcing the reader to wait until there’s something in 

the queue. Let’s fix that.

ChaPter 5  ConCurrenCY



83

 Await
await Expression prevents a step from running until Expression is true. You can also 

use the keyword when.

process reader = "reader"

variable current_message = "none";

begin Read:

  while TRUE do

    await queue /= <<>>;

    current_message := Head(queue);

    queue := Tail(queue);

  end while;

end process;

Both of the assignments in the Read label can’t happen until the queue is not empty. 

This means that the Read action is not enabled when the queue is empty: it cannot 

happen. Then the only enabled action is Write, meaning TLC must execute Write next. 

In effect this forces the reader to wait until the writer adds something to the queue. 

Adding this prevents the empty read case, so TLC reveals a different error: the writer can 

write until the length of the queue exceeds BoundedQueueSize. We fix this by adding an 

await to the writer, too.

process writer = "writer"

begin Write:

  while TRUE do

    queue := Append(queue, "msg");

    await Len(queue) <= MaxQueueSize;

  end while;

end process;

Here, I put the await after the append to queue. This has slightly different behavior: 

the step can’t happen until the await is true with the updated queue. If taking the action 

would end with queue being above the maximum size, the await disables the action 

entirely. This can be a little confusing when you first encounter it, so I recommend 

always placing your awaits at the beginning of the step unless you have a good reason 

not to.

If you run this, it should pass (9 states).

ChaPter 5  ConCurrenCY



84

 Deadlocks
await prevents a process from continuing until its conditions are met. What happens 

when all of our processes are prevented from continuing?

Let’s add the case where the reader might fail to properly handle the message. This 

can happen several states after we pop the message from the queue. In this case, we 

usually want to log some error to be processed, which means the reader should add an 

error to the queue. Here’s what this all looks like:

macro add_to_queue(val) begin

  await Len(queue) < MaxQueueSize;

  queue := Append(queue, val);

end macro;

process writer = "writer"

begin Write:

  while TRUE do

    add_to_queue("msg");

  end while;

end process;

process reader = "reader"

variable current_message = "none";

begin Read:

  while TRUE do

    await queue /= <<>>;

    current_message := Head(queue);

    queue := Tail(queue);

    either

      skip;

    or

      NotifyFailure:

        current_message := "none";

        add_to_queue("fail");

    end either;

  end while;

end process;

ChaPter 5  ConCurrenCY



85

First, since both of the processes write to the queue, we pull the add logic into a 

macro named add_to_queue. To simulate the reader process failing, we use a common 

PlusCal pattern I call possibly: an either with two branches, one of which does nothing 

(skip). In the other, we need to use a new label. This is because we’ve already modified 

both current_message and queue in the Read action. Since you cannot assign to the 

same variable twice in the same step, we add the NotifyFailure label. Since one of the 

branches of the either has a label in it, we’d need to put a new label after end either if 

we wanted to write more in the process. However, the end of the either is the end of the 

while block and the end of the while block is the end of the process, so we don't need 

another label.

Try running this. You should see a new error: Deadlock Reached. A deadlock is when 

none of the processes in your spec can take any actions. Usually this is because of an 

await statement, but it can also happen with with x \in S if S is the empty set. Usually 

deadlocks are bad. If you’re writing a spec where a deadlock isn’t bad, you can disable 

the check in the model, under Model Overview > What to Check? > Deadlock.

 Process Sets

One common fix you see a lot in the wild is to add more readers: if both the writer and 

the reader are stuck in a deadlock, the second reader can pop from the queue. Practically, 

this sometimes works. But does it always work, or can it, in some circumstances, still lead 

to a deadlock? To test this, let’s change the reader from a single process to a set of them.

process reader \in {"r1", "r2"}

variable current_message = "none";

begin Read:

  while TRUE do

    await queue /= <<>>;

    current_message := Head(queue);

    queue := Tail(queue);

    either

      skip;

    or

      NotifyFailure:

        current_message := "none";

        add_to_queue(self);

ChaPter 5  ConCurrenCY



86

    end either;

  end while;

end process;

We made two changes here. The first is that instead of assigning reader to a value, 

we’re saying it’s \in the set {"r1", "r2"}. TLC will create two copies of reader: one for 

each element, and assign each of them its own set of local variables. During the model 

checking, at every step TLC can advance “writer” or “r1” or “r2”. Second, to distinguish 

the two readers in the message queue, we call add_to_queue with self instead of “fail”. 

If a process has multiple copies, such as “r1” and “r2”, self is whatever value that given 

copy is assigned to.

Note all process names across all processes must be comparable. Since the 
value for writer is a string, the value for reader can be either a set of strings or 
a set of model values.

If we run this, we should still see a deadlock. While multiple readers may reduce the 

chances of deadlocks, it does not eliminate them entirely, and TLC will still catch that error.

 Procedures
What if we want to share multiple-step behavior between processes? Macros cannot 

contain labels, so we cannot use them for this purpose. Our final piece of PlusCal syntax, 

procedures, addresses this use case. To demonstrate them, here’s what our spec looks 

like when we replace the macro with a single label procedure:

procedure add_to_queue(val="") begin

  Add:

    await Len(queue) < MaxQueueSize;

    queue := Append(queue, val);

    return;

end procedure;

process writer = "writer"

begin Write:

  while TRUE do

ChaPter 5  ConCurrenCY



87

    call add_to_queue("msg");

  end while;

end process;

process reader \in {"r1", "r2"}

variable current_message = "none";

begin Read:

  while TRUE do

    await queue /= <<>>;

    current_message := Head(queue);

    queue := Tail(queue);

    either

      skip;

    or

      NotifyFailure:

        current_message := "none";

        call add_to_queue(self);

    end either;

  end while;

end process;

If you run this, you should see the same expected deadlock. A procedure has the 

same syntax as a macro, except that it has labels in it. In addition, you can define local 

variables for a procedure in the same manner you would processes. You can only define 

the local variables as equaling an expression (=), though, but not being some element of 

a set (\in). We exit the procedure with return. Return does not return any value to the 
calling process. It simply ends the procedure.

In order to call a procedure in a process, we have to prefix it with call. A called 

procedure must be immediately followed by a label, the end of an enclosing block, a 

goto, or a return.

Procedures must be defined after macros and before processes. A good rule of thumb 

to remember this is that procedures can use macros but macros cannot use procedures, 

so procedures must follow macros. Similarly, processes can call procedures and macros, 

but procedures cannot use processes.

ChaPter 5  ConCurrenCY



88

Tip When using process sets that use procedures or macros, you can still use 
self inside of the procedure or macro. It will refer to the value of the calling 
process.

 Example
We can use processes to model anything concurrent, not just algorithms. One common 

use case is to use processes to model time periods: where some external activity happens 

every so often. For this example, we’ll have several clients consume some shared 

resource that periodically renews. This is a generic implementation and can represent 

clients calling a rate-limited API, loggers cutting a tree farm, scheduling CPU time, etc.

First, let’s implement what this might look like without any renewal process.

EXTENDS Integers

CONSTANT ResourceCap, MaxConsumerReq

ASSUME ResourceCap > 0

ASSUME MaxConsumerReq \in 1..ResourceCap

(*--algorithm cache

variables resources_left = ResourceCap;

define

  ResourceInvariant == resources_left >= 0

end define;

process actor = "actor"

variables

  resources_needed \in 1..MaxConsumerReq

begin

  UseResources:

    while TRUE do

      resources_left := resources_left - resources_needed;

    end while;

end process;

end algorithm; *)

ChaPter 5  ConCurrenCY



89

We have two constants: one that represents the total possible resources in the 

system, and one that represents the maximum a given actor can consume per tick. The 

actor will continuously consume from the global pool of resources, eventually depleting 

them all. We want to make it so that it never consumes more resources than are possible 

(depleting to zero is fine).

Run this with ResourceCap <- 6, MaxConsumerReq <- 2 and INVARIANT 

ResourceInvariant. This should fail by violating ResourceInvariant. Since we don’t 

have anything stopping us from overconsuming, this makes sense. Let’s add an await to 

make sure this doesn’t happen.

  UseResources:

    while TRUE do

      await resources_left >= resources_needed;

      resources_left := resources_left - resources_needed;

    end while;

The good news is this no longer violates ResourceInvariant. The bad news is it 

deadlocks. Once we run out of resources, the actor can’t do anything. Since the resource 

is supposed to be renewable, we should add a “time” process that occasionally refreshes 

resources_left.

process time = "time"

begin

  Tick:

    resources_left := ResourceCap;

    goto Tick;

end process;

Whenever time runs it resets resources_left back to the cap. Now the actor cannot 

ever deadlock, and our spec passes (22 states).

Let’s make this more complex. Often we have a number of consumers using the same 

resource, not just one. If they don’t coordinate, they can often cause global problems even 

if each one is locally safe. We start by generalizing the number of actors in the system.

EXTENDS Integers

CONSTANT ResourceCap, MaxConsumerReq, Actors

ChaPter 5  ConCurrenCY



90

ASSUME ResourceCap > 0

ASSUME Actors /= {}

ASSUME MaxConsumerReq \in 1..ResourceCap

(*--algorithm cache

variables resources_left = ResourceCap;

define

  ResourceInvariant == resources_left >= 0

end define;

process actor \in Actors

variables

  resources_needed \in 1..MaxConsumerReq;

begin

  WaitForResources:

    while TRUE do

      await resources_left >= resources_needed;

      resources_left := resources_left - resources_needed;

    end while;

end process; 

time remains the same. The constant Actors will have to be a set of strings or a set of 

model values. In these kinds of cases, usually using a set of model values is preferable to 

using a set of strings. Since resources_needed is local to each actor, they don’t need to 

all have the same value. Try Actors <- [model value] {a1, a2} and rerun. You should 

see that it still passes (69 states).

What if the actors don’t drain the resources atomically? Once they start, they remove 

them over some period of time, during which the other actors can also be draining 

resources. Let’s also add that they only check that there’s enough resources when they first 

start consuming and are not doing any consistency checks in the middle of the process.

process actor \in Actors

variables

  resources_needed \in 1..MaxConsumerReq;

begin

  WaitForResources:

    while TRUE do

ChaPter 5  ConCurrenCY



91

      await resources_left >= resources_needed;

      UseResources:

        while resources_needed > 0 do

          resources_left := resources_left - 1;

          resources_needed := resources_needed - 1;

        end while;

        with x \in 1..MaxConsumerReq do

          resources_needed := x;

        end with;

    end while;

end process;

Since UseResources is under the same label as the await, we can only step into it 

if there are enough resources available. However, once we do, the while loop will keep 

running until we’ve consumed our fill. Since we’re destructively updating resources_

needed, we need to reset it at the end of the loop. However, this way we can update it to a 

different value than at the beginning of the process. The actor may first need one unit of 

resource, then two, then one again, etc.

If we run this, we now violate ResourceInvariant again. One actor can start 

consuming, but halfway through another actor can deplete the rest of the pool, at which 

point the first actor breaks the invariant.

We’ll try two fixes for this: one that won’t succeed and one that will. Our first fix will 

be to only let each actor complete once before refreshing. The cap is currently 6, there 

are currently two actors, and the most each can consume per complete iteration is 2. 6 

>= 2 * 2, so limiting them should work, right?

We need to add some additional supplementary values. These are not necessarily 

“real” qualities of the system, just bookkeeping we add to guarantee that each actor 

only runs once per tick. We can do this by adding a variable called ran to each actor, and 

then having time set it to false on every tick. Since two separate processes are using it, we 

need to make it a global value.

(*--algorithm cache

variables

  resources_left = ResourceCap,

  ran = [a \in Actors |-> FALSE];

\* ...

ChaPter 5  ConCurrenCY



92

process actor \in Actors

variables

  resources_needed \in 1..MaxConsumerReq

begin

  WaitForResources:

    while TRUE do

      await ~ran[self];

      when resources_left >= resources_needed;

      UseResources:

        while resources_needed > 0 do

          resources_left := resources_left - 1;

          resources_needed := resources_needed - 1;

        end while;

        with x \in 1..MaxConsumerReq do

          resources_needed := x;

        end with;

        ran[self] := TRUE;

   end while;

end process;

process time = "time"

begin

  Tick:

    resources_left := ResourceCap;

    ran := [a \in Actors |-> FALSE];

    goto Tick;

end process;

This passes (389 states). But that’s only because we’re exploring a very small state 

space, and maybe some other configuration of values would break this. We can test this 

by letting the model span over a whole range of possible maximum capacities, not just 

the single value we picked.

(*--algorithm cache

variables

  resource_cap \in 1..ResourceCap,

ChaPter 5  ConCurrenCY



93

  resources_left = resource_cap,

  ran = [a \in Actors |-> FALSE];

define

  ResourceInvariant == resources_left >= 0

end define;

\* . . .

process time = "time"

begin

  Tick:

    resources_left := resource_cap;

    ran := [a \in Actors |-> FALSE];

    goto Tick;

end process;

When we run this, we once again violate ResourceInvariant. TLC picks  

resource_cap = 1, and as 1 < 2 * 2 our “fix” no longer works. This is why it’s 

important to look at larger state spaces.

SYMMETRY SETS

the downside of larger state spaces is how “larger” gets intractable much too quickly. try 

rerunning the model without ResourceInvariant as a checked invariant. that change 

balloons our search space from 389 to 2085 states. If you add a third actor, you now have 

24,485 states!

this is where symmetry sets can make a big difference. If you convert Actors to a symmetry 

set, the model should pass with only 6040 states – less than a quarter the size of the original 

state space. using symmetry sets is often a good first-pass optimization for your slower specs.

Restricting how many times each actor could run didn’t work. Let’s try using a 

semaphore instead. A semaphore is a shared value all of the actors can access that we 

use for coordination. What we can do is have the actors “reserve” how many resources 

they intend to consume. Instead of checking whether there are enough resources in 

the world, they instead check how many are left in the semaphore value. Since we 

ChaPter 5  ConCurrenCY



94

can subtract the amount instantaneously we don’t have to worry about the same race 

conditions. We’ll remove all of the “ran” junk, since that wasn’t helpful.

variables

  resource_cap \in 1..ResourceCap,

  resources_left = resource_cap,

  reserved = 0; \* our semaphore

define

  ResourceInvariant == resources_left >= 0

end define;

process actor \in Actors

variables

  resources_needed \in 1..MaxConsumerReq

begin

  WaitForResources:

    while TRUE do

      await reserved + resources_needed <= resources_left;

      reserved := reserved + resources_needed;

      UseResources:

        while resources_needed > 0 do

          resources_left := resources_left - 1;

          resources_needed := resources_needed - 1;

        end while;

        with x \in 1..MaxConsumerReq do

          resources_needed := x;

        end with;

    end while;

end process;

\* 2

process time = "time"

begin

  Tick:

    resources_left := resource_cap;

    reserved := 0;

ChaPter 5  ConCurrenCY



95

    goto Tick;

end process;

This still fails for ResourceCap <- 6, MaxConsumerReq <- 2. TLA+ will find an error 

similar to the following:

1. TLC sets resource_cap to 1.

2. a1 reserves 1 resource and enters UseResources.

3. Before a1 does anything, Tick happens, resetting reserved to 0.

4. a2 reserves 1 resource and enters UseResources.

5.  Both a1 and a2 resolve UseResources, bringing resources_left 

to -1.

Instead of trying reserved to reset every tick, let's try instead having the actors 

gradually mark when they've consumed resources and no longer need capacity reserved.

  UseResources:

        while resources_needed > 0 do

          resources_left := resources_left - 1;

          resources_needed := resources_needed - 1;

          reserved := reserved - 1;

        end while;

\* ...

\* 2

process time = "time"

begin

  Tick:

    resources_left := resource_cap;

    \* line deleted here

    goto Tick;

end process;

This passes (1588 states).

ChaPter 5  ConCurrenCY



96

 Summary
In this chapter, we introduced concurrent specifications and how we can model them 

in PlusCal. We also observed that there’s a wide range of exciting new problems that 

concurrent specifications run into, such as race conditions and deadlocks. We also saw 

how to model effects with processes.

Modeling concurrency is one of the best-known use cases for TLA+. We 

programmers are very good at reasoning about deterministic code and very bad at 

reasoning about concurrent systems, but the risks and dangers of the latter are so 

much higher. As we saw in our example, specification can be a powerful tool for safely 

managing concurrency. 

In the next chapter, we will learn how to write temporal properties: invariants that 

apply to entire behaviors at once.

ChaPter 5  ConCurrenCY



97
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_6

CHAPTER 6

Temporal Logic
So far everything we’ve done has been testing invariants: statements that must be true 

for all states in a behavior. In this chapter, we introduce temporal properties: statements 

about the behavior itself. Temporal properties considerably expand the kinds of things 

we can check, providing a range of techniques that few other tools can match. Some 

examples of temporal properties:

• Does the algorithm always terminate?

• Will all messages in the queue get processed?

• If disrupted, will the system return to a stable state over time?

• Is the database eventually consistent?

Temporal properties are very powerful but also much harder to guarantee. Systems 

have a whole new set of failure modes that apply to temporal properties. As always, as a 

system gets harder to analyze, specifying and model checking it becomes more important.

 Termination
The simplest temporal property is Termination. This is the requirement that the 

algorithm eventually ends. If the algorithm crashes or enters an infinite loop, then it 

violates termination.

To understand this better, imagine we have a car at a traffic light. We have two 

processes in the system. The traffic light alternates between red and green (yellow is an 

implementation detail). The car waits until the light is green before moving. Here’s a 

specification for this:

NextColor(c) == CASE c = "red" -> "green"

                  [] c = "green" -> "red"



98

(*--algorithm traffic

variables

  at_light = TRUE,

  light = "red";

process light = "light"

begin

  Cycle:

    while at_light do

      light := NextColor(light);

    end while;

end process;

process car = "car"

begin

  Drive:

    when light = "green";

    at_light := FALSE;

end process;

end algorithm;*)

Create a model and, under Model Overview > What to Check? > Properties, 

check Termination. Before you run it, try to predict what will happen.

Once you have a guess, run TLC. You should see that it fails. The first steps can be 

system dependent, but they all end the same way: the light is green, but the trace is 

“stuttering.” See Figure 6-1.

Chapter 6  temporal logiC



99

What does that mean?

 Stuttering
TLA+ is the “Temporal Logic of Actions.” Every step of the model represents a single 

action in time. TLC works by looking at all of the enabled labels at each step and 

picking one. However, it also has another option: it can take no action at all. We call this 

stuttering. In most cases, stuttering doesn’t change the spec: if no action happens, then 

everything’s the same as before and it didn’t matter. The one special case is if the spec 

keeps stuttering, over and over again, and never takes any other action. It’s as if the spec 

is frozen in time, never able to change.

Up until now, stuttering hasn’t mattered. All of our invariants are safety checks, 

which checks the model can’t reach an invalid state. Since stuttering on a valid state 

leaves you in a valid state, TLC had no reason to try stuttering. Most temporal properties, 

though, are what’s called liveness checks. A liveness check is one that verifies the system 

eventually does what you expect it to do. Here, TLC never finishes evaluating Cycle so 

the spec never terminates.

Figure 6-1. Stuttering

Chapter 6  temporal logiC



100

Stuttering can be useful to us. It can represent a server crashing, or a process timing 

out, or an awaited signal never coming. It’s better that TLA+ defaults to “everything can 

crash” than the converse: otherwise our models may only work because of an implicit 

assumption. If you want to explicitly rule out stuttering, you need to add fairness.

 Fairness, Weak and Strong
There are two kinds of fairness: weak and strong. A weakly fair action will, if it stays 

enabled, eventually happen. We can declare every label in a process weakly fair by 

calling it a fair process. Here’s what the spec looks like when we add fairness:

fair process light = "light"

begin

  Cycle:

    while at_light do

      light := NextColor(light);

    end while;

end process;

fair process car = "car"

begin

  Drive:

    when light = "green";

    at_light := FALSE;

end process;

First, see what happens when only one process is fair. If only the car is fair, then the 

light might never cycle. If only the light is fair, it will eventually cycle to green, but the car 

might never move. Try this, and then see what happens when both processes are fair.

You should still see the spec fail! There’s one case we didn’t cover: What if the light 

keeps cycling between green and red? The Drive action is enabled, then disabled, then 

enabled again, ad infinitum. But weak fairness only guarantees the action will happen 

if it stays enabled. If the light is always green, the car will eventually drive through. But 

since it can keep cycling, the car is stuck.

Chapter 6  temporal logiC



101

This is where strong fairness comes in. A strongly fair action, if it’s repeatedly 

enabled, will eventually happen. There can be gaps in between, but as long as there’s 

some cycle where it keeps getting enabled again, it will happen. We can make a process 

strongly fair by calling it a fair+ process.

fair+ process car = "car"

begin

  Drive:

    when light = "green";

    at_light := FALSE;

end process;

This, finally, will always terminate. Even if the light keeps cycling, the Drive action is 

repeatedly enabled and so is guaranteed to happen. Note that this still requires the light 

to be weakly fair: if it’s unfair, it can simply cycle to red and stay there. In practice, people 

don’t often use strong fairness; it’s a much safer to assume the system is only weakly fair. 

However, it’s worth knowing about for the cases where it is useful.

Tip You can also make individual actions in a process fair. For label A: in an 
unfair process, writing A:+ will make it weakly fair. in a weakly fair process, A:+ 
will make it strongly fair.

You can also make the spec globally fair by writing --fair algorithm instead 
of --algorithm.

 The Temporal Operators
For all of these assume P and Q are Boolean statements.

 []
[] is always. []P means that for P is true for all states in all behaviors. This is useful enough 

that TLC is designed around it: saying P is an invariant is an optimized way of saying that []

P is a temporal property, and in fact TLC uses a much faster algorithm to evaluate invariants. 

As such we rarely use it explicitly, except for specifying especially advanced properties.

Chapter 6  temporal logiC



102

You can also write ~[]P, which means that P will be false for at least one state.

 <>
<> is eventually. <>P means that for every behavior, there is at least one state where P 

is true. It may be false before, and it may be false after, but what matters is that it was at 

some point true. In the traffic example, <>(light = "green") is a satisfied temporal 

property. But if we instead wrote

variables

  at_light = TRUE,

  light = "green";

then <>(light = "red") would be an unsatisfied temporal property: TLC can find a 

possible execution where the light is never red.

You can also write ~<>P, which means that P is never true. Note that this is the same 

as saying []~P, and in fact <>P is formally defined as ~[]~P.

Note termination is defined as “eventually all processes are done”: 
Termination == <>(\A self \in ProcSet: pc[self] = "Done").

The current version of TLC cannot check set membership of a variable set as part of 

a property with <>. So you can write <>(set = {}), but if you write <>(x \in set), set 

must either be a constant or a parameterless operator.

 ~>
~> is leads-to. P ~> Q means that if there is some state where P is true, then either Q is 

true either now or in some future state. Once this is set, it’s irreversible: even if P is later 

false, Q still must happen. If we write

L == (light = "green") ~> ~at_light

then L is true if the light never becomes green or if the light turns green and at some 

point after the car is no longer at the light. Unlike <>, ~> is “triggered” every time P is 

true. In the base spec, (light = "red") ~> (light = "green") holds. But if we write

Chapter 6  temporal logiC



103

  Cycle:

    while at_light do

      light := NextColor(light);

    end while;

    light := "red";

then it would not hold. The first time the light turns red, it later turns green, which is fine. 

But the second time it turns red it doesn’t eventually turn green again, so the property  

is false.

~P ~> Q and P ~> ~Q have their expected meanings. ~(P ~> Q) makes TLC explode.

You can also do P ~> []Q. If P is true, then there is some state where Q becomes true 

and forever stays true.

 [ ]<> and <>[ ]
[]<>P means that P is always eventually true, <>[]P  means that P is eventually always 

true. For a finite spec, these mean the same thing: P is true at termination. For an infinite 

spec, <>[]P means that there is some point where P becomes true and forever stays true, 

while  []<>P  means that if P ever becomes false, it will eventually become true again. 

Another way to think about it is that []<>P <=> (~P ~> P): P being false leads to P being 

true later.

In our current version of the spec, both []<>(light = "green") and <>[](light = 

"green") are true, while []<>(light = "red") and <>[](light = "red") are false. If 

we change the light to

    while TRUE do

      light := NextColor(light);

    end while;

then <>[](light = "green") becomes false and []<>(light = "red") becomes true.

As with <>, TLC cannot check set membership of a variable set as part of a property 

with <>[] or []<>.

Chapter 6  temporal logiC



104

 Limitations of Liveness
Hopefully by now you’re thinking two things:

 1. Temporal properties can be incredibly powerful.

 2. Temporal properties can be incredibly confusing.

Fact is, you don’t often need them. Most often what you want can be expressed as an 

invariant. The rest of the time you’re usually fine with [], <>, and simple uses of ~>. As 

long as you’re not writing something like <>~(P ~> []Q) you’re probably fine.

From a practical perspective, the main limitation of temporal properties is that 

checking liveness is slow. Very slow. Invariants are checked on individual states at a 

time, while temporal properties have to be checked over sequences of states. TLC uses a 

different algorithm for this, which is slower and is not parallelizable.

When checking temporal properties, place them in a separate model from your 

invariants. This way you can test the invariants much more quickly before checking the 

slower temporal properties. Also consider testing liveness over a smaller domain. If you can 

check invariants with MaxFoo <- 5, it might take the same time to check liveness for MaxFoo 

<- 3. You can, of course, simply leave TLC running for a longer time. Having a model take a 

day to check is unpleasant, but it’s better than having a mistake in your design.

There’s one other, extremely important limitation of temporal properties: do not 
combine temporal properties and symmetry sets. Regular sets of model constants are 

fine, but not symmetry sets. TLC optimizes symmetry sets by skipping redundant states, 

which may lead to it missing a liveness error. Almost all of the mistakes you can make 

using TLC are false positives: the checker will report spec errors that aren’t actually in 

the design. This is one of the extremely few false negatives: it could potentially tell you 

that a spec is valid when it really has errors. TLC will warn you if you accidentally do this.

 Example
Now that you know how to use temporal properties, let’s apply it to a more interesting 

example than a traffic light. Dekker’s Algorithm was, historically, the first successful 

algorithm to allow two threads to share a single resource without having a race 

condition. It guarantees that both threads will eventually perform their update, but not 

at the same time, and without using any CPU-specific features. The only thing you need 

is some shared memory. We will specify it in TLA+ and show it works as expected.

Chapter 6  temporal logiC



105

Unlike all of the other specs we’ve written, the grain of atomicity here is a single CPU 

instruction. We can simulate this by using a new label for every single line, whether a 

conditional or an assignment. We represent the set of instructions where the thread is 

updating the resource as the critical section, or CS.

EXTENDS TLC, Integers

CONSTANT Threads

(*--algorithm dekker

variables flag = [t \in Threads |-> FALSE];

fair process thread \in Threads

begin

  P1: flag[self] := TRUE;

  \* all threads except self are false

  P2: await \A t \in Threads \ {self}: ~flag[t];

  CS: skip;

  P3: flag[self] := FALSE;

  P4: goto P1;

end process;

end algorithm; *)

We can represent the invariant as “at most one thread is in the critical section at 

a time.” Since this is best represented by a check on pc, we need to place this after the 

PlusCal translation. There are a couple of ways we can write this, depending on your 

comfort level with the logic here.

AtMostOneCritical ==

  \/ \A t \in Threads: pc[t] /= "CS"

  \/ \E t \in Threads:

    /\ pc[t] = "CS"

    /\ \A t2 \in Threads \ {t}: pc[t2] /= "CS"

Chapter 6  temporal logiC



106

This is the naïve way. It says that none of the threads are in CS, or that one thread and 

no other is in CS. This is a little clunky: why split “there are at most one thread” into “there 

is no thread OR there is exactly one thread?” We can rewrite it more cleanly as this:

AtMostOneCritical ==

  \A t1, t2 \in Threads:

    t1 /= t2 => ~(pc[t1] = "CS" /\ pc[t2] = "CS")

For any two threads, they both can’t be in CS at the same time. We need the t1 /= t2 

clause in there to make sure they’re different threads. Otherwise, TLC can pick the same 

thread as both t1 and t2.

In any case, let’s run the spec with Threads <- 1..2, INVARIANT 

AtMostOneCritical, Deadlock. The spec should fail with a deadlock after three steps. 

Both threads can turn on the flag at once. An early attempted solution was to have the 

flags enter a loop, constantly turning their own flag on and off until one of them gets into 

the critical section.

fair process thread \in Threads

begin

  P1: flag[self] := TRUE;

  P2:

    while \E t \in Threads \ {self}: flag[t] do

      P2_1: flag[self] := FALSE;

      P2_2: flag[self] := TRUE;

    end while;

  CS: skip;

  P3: flag[self] := FALSE;

  P4: goto P1;

end process;

Confirm this fix works (91 states). We’re done, right? Well, not exactly. We’ve only 

shown that it doesn’t deadlock and it doesn’t have two threads in the critical section: 

safety properties. We also need to show that all of the threads successfully reach the 

critical section. We can represent the temporal property as:

Liveness ==

  \A t \in Threads:

    <>(pc[t] = "CS")

Chapter 6  temporal logiC



107

TLC can handle this property because the set, Threads, is a constant. This means 

that all threads eventually reach the cs step. If we add Liveness as a temporal property, 

the spec fails: both threads get endlessly stuck cycling in P2. This is called a livelock.

Warning a common mistake is putting the temporal operator in the wrong place. 
if you write <>\A t \in Threads: pc[t] = "CS", you’re instead saying 
“there is a state where all the threads are simultaneously in CS”, which directly 
contradicts our AtMostOneCritical invariant.

Dekker’s algorithm fixes this:

(*--algorithm dekker

variables

  flag = [t \in Threads |-> FALSE],

  next_thread \in Threads;

fair process thread \in Threads

begin

  P1: flag[self] := TRUE;

  P2:

    while \E t \in Threads \ {self}: flag[t] do

      P2_1:

        if next_thread /= self then

          P2_1_1: flag[self] := FALSE;

          P2_1_2: await next_thread = self;

          P2_1_3: flag[self] := TRUE;

        end if;

    end while;

  CS: skip;

  P3: with t \in Threads \ {self} do

    next_thread := t;

  end with;

  P4: flag[self] := FALSE;

  P5: goto P1;

end process;

end algorithm; *)

Chapter 6  temporal logiC



108

This will pass (256 states). We’ve guaranteed our liveness properties for two threads.

While Dekker’s Algorithm is simple and satisfies all properties, it has a couple of 

problems. The first is that it only applies for two threads: if you extend it to Threads  

<- 1..3 it will fail. While two of the three threads will always reach CS, one thread won’t. 

This is called resource starvation. Try making some simple changes and seeing if you 

can generalize it. Remember to place every operation in a separate label, and don’t be 

surprised if you can’t manage it. The successful generalizations get very convoluted.

The other problem with Dekker’s Algorithm is that it’s not resilient. If either thread 

crashes, it will prevent the other from finishing. To show this, we can create two separate 

processes: one that’s fair and one that’s regular. Since TLC doesn’t have to evaluate 

the regular process, it can “simulate” a crashed process by never advancing it. For this 

version, since we know it has to have exactly two threads, I went ahead and hard-coded 

it.

EXTENDS TLC, Integers, Sequences

\* CONSTANT Threads

Threads == 1..2

(*--algorithm dekker

variables

  flag = [t \in Threads |-> FALSE],

  next_thread \in Threads;

procedure thread()

begin

  P1: flag[self] := TRUE;

  P2:

    while \E t \in Threads \ {self}: flag[t] do

      P2_1:

        if next_thread /= self then

          P2_1_1: flag[self] := FALSE;

          P2_1_2: await next_thread = self;

          P2_1_3: flag[self] := TRUE;

        end if;

    end while;

  CS: skip;

  P3: next_thread := 3 - next_thread;

Chapter 6  temporal logiC



109

  P4: flag[self] := FALSE;

  P5: goto P1;

end procedure;

\* self is only defined for sets

fair process fair_thread \in {1}

begin

  Fair:

    call thread();

end process;

process crashable_thread \in {2}

begin

  Crashable:

    call thread();

end process;

end algorithm; *) 

I also pulled the thread logic into a procedure: the two threads have the exact same 

behaviour, and the only difference is whether they are fair or not. I also wrote \in {1} 

because self is only defined for sets of processes, even if the set has only one element. 

Since we’re testing resilience, we want the spec to be valid even if the unfair process 

stops. So we adjust our liveness clause to only check the fair process:

Liveness ==

  \A t \in {1}:

    <>(pc[t] = "CS")

This fails. The crashing thread can reach P2_1_1 and never execute it, causing the fair 

thread to cycle in P2 forever. As with generalizing to three threads, fixing the resiliency 

bug requires major changes to the algorithm that are outside the scope of this book.

Chapter 6  temporal logiC



110

 Summary
In this chapter we learned about fairness, liveness, termination, and stuttering. We also 

learned about temporal operators, how they are powerful, and how they can be tricky. 

We did an example of Dekker’s Algorithm.

With this, we have now covered all of the core material of the book. In the next 

chapters, we will not introduce any new syntax or rules. The rest of the book will teach 

you how to use TLA+ better and how to apply it to a wide variety of real-world problems.

Chapter 6  temporal logiC



Applying TLA+

PART II



113
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_7

CHAPTER 7

Algorithms
One of the benefits of TLA+ being a specification language is that operators can be far 

more expressive and powerful than program functions can be. This is also a drawback: if 

your spec uses a “too powerful” operator, you cannot directly translate it to code. Usually 

this is fine: if you’re specifying a large system, you probably aren’t worrying that your 

sort function is correct.

If you’re directly writing a new sorting algorithm, though, you want to specify it. This 

chapter is about how we can write and verify algorithms with TLA+. While we will be 

implementing them, our focus is on the verification, not the implementation.

By “algorithm,” we’re assuming that algorithms are code intended to terminate 

and produce an output, rather than run forever or continuously interact with its 

environment.

 Single-Process Algorithms
Most single-process algorithm specifications follow a template:

---- MODULE name ----

EXTENDS \* whatever

Expected(input) == \* ...

Helpers == \* ...

(*--algorithm name

variables

  input \in \* ...

  output; \* ...

  \* helper variables



114

begin

  \* algorithm implementation

  assert output = Expected(input);

end algorithm; *)

====

Expected is what we’re actually trying to implement: it takes some input and 

returns the value our algorithm should, if correct, output. Helpers are anything that 

the algorithm will use that is outside of our verification scope. For example, if we were 

specifying some code for Python, we might make a Sort operator, as Python would give 

us sorted() by default.

For the PlusCal algorithm, we want to specify it works for a given range of inputs, and 

we will store the return value in output. Here we aren’t defining an initial value for output, 

since that’s something the algorithm would have to assign. TLC will create the constant 

DefaultInitValue <- [model constant] and initialize output to that. We also place 

any helper variables here, as we can’t define new variables in the middle of an algorithm 

(barring use of with). In the body, we write our implementation of the algorithm. Finally, 

we make sure that whatever output value we get matches our expectation.

Of course, this is just a starting guideline, not a strict rule. If our algorithm is 

complex, we might add procedures and macros to break it into parts. We might add 

assert statements as guards or sanity checks. Or we might want to add a global invariant 

to hold at every step of the spec, like we do with our larger systems.

Here’s what this might look like, all filled out:

EXTENDS Integers, TLC

add(a, b) == a + b

(*--algorithm add

variables

  in_a \in -5..5,

  in_b \in -5..5,

  output;

Chapter 7  algorithms



115

begin

  output := in_a + in_b;

  assert output = add(in_a, in_b);

end algorithm; *)

Let’s do some examples.

 Max
Given a sequence of numbers, return the largest element of that sequence. For example, 

max(<<1, 1, 2, -1>>) = 2.

First of all, we need our expected operator. We know that for a set, we can get the 

maximum with CHOOSE x \in set: \A y \in set: y <= x. The maximum of a 

sequence would just be the maximum of its range. Putting those together:

EXTENDS Sequences

Max(seq) ==

  LET set == {seq[i]: i \in 1..Len(seq)}

  IN CHOOSE x \in set: \A y \in set: y <= x

We could also find the index that gives us the largest number, and then return the 

number at that index. It’s some duplicated effort, but some people might find it clearer.

Max(seq) ==

  LET index ==

    CHOOSE x \in 1..Len(seq):

      \A y \in 1..Len(seq): seq[y] <= seq[x]

  IN seq[index]

Either way, here’s a full version of the algorithm:

EXTENDS Integers, Sequences, TLC

CONSTANTS IntSet, MaxSeqLen

ASSUME IntSet \subseteq Int

ASSUME MaxSeqLen > 0

PT == INSTANCE PT

Chapter 7  algorithms



116

Max(seq) ==

  LET set == {seq[i]: i \in 1..Len(seq)}

  IN CHOOSE x \in set: \A y \in set: y <= x

AllInputs == PT!SeqOf(IntSet, MaxSeqLen)

(*--algorithm max

variables seq \in AllInputs, i = 1, max;

begin

  max := seq[1];

  while i <= Len(seq) do

    if max < seq[i] then

      max := seq[i];

    end if;

    i := i + 1;

  end while;

  assert max = Max(seq);

end algorithm; *)

While AllInputs is “too powerful” to use in our algorithm, we only use it to generate 

inputs and not implement the algorithm itself. Set

defaultInitValue <- [ model value ]

IntSet <- -5..5

MaxSeqLen <- 5

This fails. Looking at the error, it tried to calculate <<>>[1], which is undefined. This 

is, incidentally, a reason why we don’t assign output in the variable. Try replacing the 

definition of max with max = seq[1] and comparing the two error outputs.

We can make this precondition explicit by adding assert Len(seq) > 0 to the 

beginning of the algorithm. That tells the reader that this implementation is only valid 

if you pass in a nonempty list. After that, it is fine for us to remove the empty sequence 

from our possible initial states, as we made it explicit that <<>> is a bad value. This means 

we will also remove {<<>>} from AllInputs.

AllInputs == PT!SeqOf(IntSet, MaxSeqLen) \ {<<>>}

(*--algorithm max

variables seq \in AllInputs, i = 1, max;

Chapter 7  algorithms



117

begin

  assert Len(seq) > 0;

  max := seq[1];

DEFINITION OVERRIDES

some people don’t like the AllInputs. You could argue that we’re saying the algorithm is 

only specified for sequences of at most five elements! it’d be better to say the input can be 

any sequence of integers: \in Seq(Int).

But Int is an infinite set of numbers and Seq(Int) is an infinite set of sequences. tlC can’t 

enumerate that. if we want to write the spec this way, we need to tell tlC to use a different 

value when checking the model. We might, say, have it replace Int with 1..5. this is called a 

definition override. see Chapter 4 for more information on using definition overrides.

This should pass (1,576,685 states), meaning our implementation of “find max value” 

is correct, at least for the parameters we tested.

 Leftpad
Given a character, a length, and a string, return a string padded on the left with that 

character to length n. If n is less than the length of the string, output the original string. 

For example, Leftpad(" ", 5, "foo") = " foo", while Leftpad(" ", 1, "foo") = 

"foo".

Leftpad is a popular milestone in learning a theorem prover. It’s a simple algorithm 

with a surprisingly complex complete specification. For the TLA+ version, we will use 

a sequence of characters instead of a string, since that works somewhat better with the 

TLA+ operators.

Call the operator Leftpad(c, n, str). The complete specification is the following:

 1. Len(Leftpad(c, n, str)) = Max(n, Len(str)).

 2. The suffix of the output matches str.

 3. All of the characters before str are c.

Chapter 7  algorithms



118

In other words, some number of characters c prepended to str, such that the final 

length is n.

Leftpad(c, n, str) ==

  LET

    outlength == PT!Max(Len(str), n)

    padlength ==

      CHOOSE padlength \in 0..n:

        padlength + Len(str) = outlength

  IN

    [x \in 1..padlength |-> c] \o str

>> Leftpad(" ", 1, <<"f", "o", "o">>)

<<"f", "o", "o">>

>> Leftpad(" ", 5, <<"f", "o", "o">>)

<<" ", " ", "f", "o", "o">>

Since we can pad with any character, the state space explodes very quickly. For 

optimization reasons we should not test this with all possible alphanumeric characters. 

Rather, we should choose some restricted subset for both c and str.

Characters == {"a", "b", "c"}

(*--algorithm leftpad

variables

  in_c \in Characters \union {" "},

  in_n \in 0..6,

  in_str \in PT!SeqOf(Characters, 6),

  output;

begin

  output := in_str;

  while Len(output) < in_n do

    output := <<in_c>> \o output;

  end while;

  assert output = Leftpad(in_c, in_n, in_str);

end algorithm; *)

Chapter 7  algorithms



119

This passes with 125,632 states. Try adding errors to see that TLC catches them. What 

happens when we replace Len(output) < in_n with Len(output) <= in_n?

One odd case is if we replace in_n \in -1..6. The error is that there is no padding 

that satisfies leftpad. This is because 0..-1 is the empty set, so padlength is undefined 

in Leftpad. This means either our definition is wrong, because it doesn’t define what it 

means to pad with a negative number; or the spec is wrong, because we’re not supposed 

to be able to pad with a negative number. In other words, does Leftpad take any integer, 

or only nonnegative integers?

The integer case is simple enough. We just have to expand the definition of Leftpad 

to be str for n < 0.

Leftpad(c, n, str) ==

  IF n < 0 THEN str ELSE

  LET

    outlength == PT!Max(Len(str), n)

    padlength ==

      CHOOSE padlength \in 0..n:

        padlength + Len(str) = outlength

  IN

    [x \in 1..padlength |-> c] \o str

If Leftpad is supposed to take nonnegative integers, then it’s correct and our spec is 

wrong. As with max, we need to add a precondition.

(*--algorithm leftpad

variables

  in_c \in Characters \union {" "},

  in_n \in 0..6,

  in_str \in PT!SeqOf(Characters, 6),

  output;

begin

  assert in_n >= 0;

  output := in_str;

  while Len(output) < in_n do

    output := <<in_c>> \o output;

Chapter 7  algorithms



120

  end while;

  assert output = Leftpad(in_c, in_n, in_str);

end algorithm; *)

 Properties of Algorithms
Verifying correctness is easy enough: just run the spec and confirm you have the right 

result at the end. Verifying other properties like performance characteristics or bounds 

are more difficult. We can sometimes handle this by adding auxiliary variables and 

asserting their values at the end.

Let’s take binary search. A correct implementation of binary search will take 

approximately log2(n) comparisons. Can we verify an algorithm does that?

First, let’s write a “binary search.” The only additional operator we need for a binary 

search is the set of all ordered sequences. We can get these by taking PT!SeqOf and 

filtering out all of the unordered ones.

OrderedSeqOf(set, n) ==

  { seq \in PT!SeqOf(set, n):

    \A x \in 2..Len(seq):

      seq[x] >= seq[x-1] }

Putting it all together:

MaxInt == 4

Range(f) == {f[x]: x \in DOMAIN f}

(*--algorithm definitely_binary_search

variables i = 1,

          seq \in OrderedSeqOf(1..MaxInt, MaxInt),

          target \in 1..MaxInt,

          found_index = 0;

begin

  Search:

    while i <= Len(seq) do

      if seq[i] = target then

        found_index := i;

        goto Result;

Chapter 7  algorithms



121

      else

        i := i + 1;

      end if;

    end while;

  Result:

    if target \in Range(seq) then

      assert seq[found_index] = target;

    else

      \* 0 is out of DOMAIN seq, so can represent "not found"

      assert found_index = 0;

    end if;

end algorithm; *)

Definitely a binary search! It works (1,666 states), it always gets the correct result, so 

it’s binary search, no questions asked.

Okay, maybe one question: binary search has a worst-case of O(log(n)), while this 

looks like a worst-case of O(n). While we can’t compute the exact runtime, we can count 

the number of times we iterate in the while loop and use that as a rough measure of 

runtime complexity. Instead of defining Log, let’s go the other way: if we take the number 

of loop iterations and exponent it, it should be under the length of the sequence. We can 

define Pow2 in a similar way to how we defined factorial back in Chapter 3, by defining 

a recursive function over the set 0..n.

Pow2(n) ==

  LET f[x \in 0..n] ==

    IF x = 0

    THEN 1

    ELSE 2*f[x-1]

  IN f[n]

>> {Pow2(x): x \in 0..5}

{1, 2, 4, 8, 16, 32}

Note as mentioned back in Chapter 3, we could also make a generalized 
exponent function as a binary operator, defined as a ** n and writing a*f[x- 1]. 
For simplicity, we’re not doing it here.

Chapter 7  algorithms



122

Our complexity assertion then becomes that for some iteration counter counter, 

Pow2(counter) <= Len(seq). In practice, though, we need to subtract one from counter 

before exponentiating it. To see why, a list of one element should require at most one 

iteration (if the single element matches target, we’re done), or 20. For two and three 

elements, we need two checks (21), while for four elements, we need at most three. 

However, 23 = 8, so Pow2(3) = 8 > 4 = Len(seq). If we subtract one, the invariant holds 

(23 − 1 = 4). Similarly, for 10 elements, we should need four iterations, and 24 − 1 < 10 < 24. 

This doesn’t change the complexity, though, as 2
1

2
21n n- = , and we can ignore constants 

when determining algorithmic complexity.

variables i = 1,

          seq \in OrderedSeqOf(1..MaxInt, MaxInt),

          target \in 1..MaxInt,

          found_index = 0,

          counter = 0;

Search:

  while i <= Len(seq) do

    counter := counter + 1;

    if seq[i] = target then

      found_index := m;

      goto Result;

    end if;

    i := i + 1

  end while;

Result:

  if Len(seq) > 0 then

    assert Pow2(counter-1) <= Len(seq);

  end if;

  if target \in PT!Range(seq) then

    assert seq[found_index] = target;

  else

    assert found_index = 0;

  end if;

Chapter 7  algorithms



123

Now this fails, as our “binary search” is too inefficient. By contrast, this is a real 

binary search:

(*--algorithm binary_search

variables low = 1,

          seq \in OrderedSeqOf(1..MaxInt, MaxInt),

          high = Len(seq),

          target \in 1..MaxInt,

          found_index = 0,

          counter = 0;

begin

Search:

  while low <= high do

    counter := counter + 1;

    with

      m = (high + low) \div 2

    do

        if seq[m] = target then

            found_index := m;

            goto Result;

        elsif seq[m] < target then

            low := m + 1;

        else

            high := m - 1;

        end if;

    end with;

end while;

  Result:

    if Len(seq) > 0 then

      assert Pow2(counter-1) <= Len(seq);

    end if;

    if target \in Range(seq) then

      assert seq[found_index] = target;

Chapter 7  algorithms



124

    else

      assert found_index = 0;

    end if;

end algorithm; *)

This passes (1483 states). Try again with MaxInt == 7, which also passes (141,675 

states). Testing on higher values of MaxInt require us to modify Advanced Options > 

Cardinality of Largest Enumerable Set in our model, so let’s avoid that. We’ve 

demoed how to test asymptotic complexity for a worst-case scenario. Testing average 

and best-case complexity is outside the scope of what we can easily do with TLA+, 

unfortunately, and you should start reaching for another tool.

Sharp readers might have noticed a subtle bug in our impementation of binary 

search. While it works as an abstract algorithm, low + high might overflow the integer 

value on a machine. To see this, let’s save that computation and assert it’s under MaxInt:

while low <= high do

    counter := counter + 1;

    with

      lh = low + high,

      m = lh \div 2

    do

      assert lh <= MaxInt;

      if seq[m] = target then

         found_index := m;

         goto Result;

This fails, as if the sequence has MaxInt elements low + high = MaxInt + 1. This 

bug was first discovered in 2006,1 years after we “proved” Binary Search correct.2 The 

proposed fix is to instead write

    with

      lh = high - low,

      m = high - (lh \div 2)

    do

1 https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
2 https://dl.acm.org/citation.cfm?id=600875

Chapter 7  algorithms

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://dl.acm.org/citation.cfm?id=600875


125

which no longer overflows and still has the same performance and correctness 

characteristics. If you’re writing specs in a context where this might be the case, then 

you’d ideally want to make an invariant that all operations don’t make a variable 

overflow. We could do that here by making m and lh global variables and then adding an 

invariant on all variables:

NoOverflows ==

  \A x \in {m, lh, low, high}:

    x <= MaxInt

 Multiprocess Algorithm
Multiprocess algorithms are similar to single-process algorithms, except that we want 

to check our assertion when all of the processes terminate. Instead of hard-coding 

an assertion in, we should encode it as a liveness requirement. This means using the 

“eventually always” (<>[]) operator, which checks that the algorithm ends with a certain 

thing being true.

Remember to use fair processes if you don’t want to simulate your algorithm 

crashing midway through.

EXTENDS Integers, Sequences, TLC

(*--algorithm counter_incrementer

variables

  counter = 0,

  goal = 3;

define

  Success == <>[](counter = goal)

end define;

fair process incrementer \in 1..3

variable local = 0

begin

  Get:

    local := counter;

Chapter 7  algorithms



126

  Increment:

    counter := local + 1;

end process;

end algorithm; *)

This, unsurprisingly, fails, as our processes can increment based off stale memory. 

If we merge the two labels into one label, this succeeds with 22 states.

 Summary
We verified single-process algorithms were correct and some additional nonfunctional 

properties about them, such as their worst-case performance and that they didn’t 

overflow our computer’s maximum value. We also briefly summarized how to extend 

these ideas to multiprocess algorithms, using temporal properties instead of bare 

assertions.

Many algorithms are defined for specific data structures. And many specs for 

systems are designed assuming you have your data organized in a specific way. In the 

next chapter, we will show how to write reusable data structures for algorithms and 

specifications.

Chapter 7  algorithms



127
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_8

CHAPTER 8

Data Structures
When we want to write a specification involving some data structure, we need some 

sort of definition of the data structure. Further, we need one that’s independent of the 

algorithm. That means we should write data structures as separate modules that are 

extended or instantiated in our spec. We’ll use the example of linked lists (LL), in a file 

we’ll call LinkedLists.tla.

Warning If you’re making a new specification for this, do not make 
LinkedLists.tla the root file. Instead, make the root file something else, such 
as main.tla, and add LinkedLists.tla as a secondary module. This will make 
it easier to test later. You can do this under File > Open Module > Add TLA+ 
Module.

A linked list is a low-level data structure where each element (node) of the LL is a 

data structure containing the data and a pointer to the next node. The last node in the 

list points to a null element, which is how we know it’s the last one. Critically, though, 

the LL might not have a last element that points to null. Instead, what would be the “last” 

element could instead point to an earlier memory address. This is called having a cycle.

In most cases, LLs with cycles are unwanted and indicate there is a bug in the 

system. This gives us several uses for speccing them: we may want to ensure some 

algorithm never produces LLs with cycles, or we may want to write an algorithm that 

detects cycles, or we may want to ensure a system still works properly even if fed a cyclic 

LL. To support all of these use cases, we want LinkedLists.tla to generate all possible 

LLs and let us select the subset that has the properties we need for our spec.

In TLA+, we generally represent data structures as functions or structures (which are 

also functions). By convention the module should have a LinkedLists(Nodes) operator 

that generates all matching functions where Nodes is the set of memory addresses.



128

While LL’s have data in them, that data is not central to the core topology of a  

linked list. All that matters for the base case is that, for a given node, we know what  

the next node will be. Then our linked list will be some element of the function set 

[Nodes -> Nodes]. We’ll start by defining all possible mappings between nodes.

PointerMaps(Nodes) == [Nodes -> Nodes]

LinkedLists(Nodes) == \* ...

Next, we need a concept of a final node. It’s simply a node that points to a null value, 

which means we need a null value. We can add a NULL constant and then assert that 

none of the nodes are in NULL. This means using TLC to get Assert. We will use LOCAL 

INSTANCE instead of EXTENDS, so that any spec extending LinkedLists.tla does not also 

import the TLC operators.

Here’s what we have so far:

CONSTANT NULL

LOCAL INSTANCE TLC \* For Assert

PointerMaps(Nodes) == [Nodes -> Nodes \union {NULL}]

LinkedLists(Nodes) ==

  IF NULL \in Nodes THEN Assert(FALSE, "NULL cannot be in Nodes") ELSE

  \* ...

Almost there. PointerMaps is the set of possible memory mappings. But not all 

possible mappings are LLs. Consider the mapping [n \in Nodes |-> NULL] (Figure 8-1). 

That’s not a single LL, that’s multiple disjoint LLs, each one element long. We need some 

way of restricting our function space to “actual” LLs. That’s one where, if you start from 

the appropriate initial element and keep going to the next node, you eventually reach all 

of the other nodes and eventually either cycle or hit NULL.

Figure 8-1. [n \in {"a", "b", "c"} |-> NULL]

ChapTer 8  DaTa STruCTureS



129

How do we collect the subset of nodes reachable from a given starting point? One 

way is to use a recursive operator, such as PT!ReduceSet. We’d begin to add some first 

node, then whatever add first connects to, then whatever that connects to, and so on. 

But recursive operators are messy and hard to get right, plus we would need some way of 

finding first before we even start.

A better approach would be to notice that if we “follow” the nodes in the LL, we have 

a sequence. So if a given PointerMap is a single LL, we can find a sequence of nodes 

where every subsequent element is the next node of the element before it. For example, if 

our LL was [a |-> b, b |-> NULL, c |-> a], that would be the sequence <<c, a, b>>.

Furthermore, all of the nodes must appear in the sequence. Otherwise, for the 

mapping [a |-> NULL, b |-> NULL], we could select the sequence <<a>> and claim the 

mapping is a valid LL.

\* PointerMap is an element of PointerMaps

isLinkedList(PointerMap) ==

  LET

    nodes == DOMAIN PointerMap

    all_seqs == [1..Cardinality(nodes) -> nodes]

  IN \E ordering \in all_seqs:

      \* each node points to the next node in the ordering

      /\ \A i \in 1..Len(ordering)-1:

        PointerMap[ordering[i]] = ordering[i+1]

      \* all nodes in the mapping appear in the ordering

      /\ \A n \in nodes:

        \E i \in 1..Len(ordering):

          ordering[i] = n

The last clause reduces to nodes \subseteq Range(ordering), which we can use 

instead for simplicity. Now we can use isLinkedList to select the pointer maps that 

correspond to linked lists.

\* While Range is defined in PT, we don't want

\* a generic module reliant on PT!

Range(f) == {f[x]: x \in DOMAIN f}

isLinkedList(PointerMap)      ==

ChapTer 8  DaTa STruCTureS



130

  LET

    nodes == DOMAIN PointerMap

    all_seqs == [1..Cardinality(nodes) -> nodes]

  IN \E ordering \in all_seqs:

      /\ \A i \in 1..Len(ordering)-1:

        PointerMap[ordering[i]] = ordering[i+1]

      /\ nodes \subseteq Range(ordering)

LinkedLists(Nodes)  ==

  IF NULL \in Nodes THEN Assert(FALSE, "NULL cannot be in Nodes") ELSE

  {pm \in PointerMaps(Nodes) : isLinkedList(pm)}

If we call LinkedLists(Nodes), though, we’ll only pass in the pointermaps 

that have all of the nodes in their domain, so we will only get linked lists of length 

Cardinality(Nodes). To get smaller LLs, all we need to do is extend LinkedLists to 

generate all possible subsets of nodes, define all of the pointermaps for each subset, and 

call isLinkedList on all of the pointermaps we generated.

LinkedLists(Nodes)  ==

  IF NULL \in Nodes THEN Assert(FALSE, "NULL cannot be in Nodes") ELSE

  LET

    node_subsets == (SUBSET Nodes \ {{}})

    pointer_maps_sets == {PointerMaps(subn): subn \in node_subsets}

    \* pointer_maps_sets is a set of set of functions,

    \* so we need to union them all together

    all_pointer_maps == UNION pointer_maps_sets

  IN {pm \in all_pointer_maps : isLinkedList(pm)}

Every linked list should have a starting point. Can we define it as a node with no 

other element in the LL pointing to it? Not exactly. For any linked list, there is at most 

one node that isn’t pointed to by any other nodes. If there is one such orphan node, 

it has to be the first node. But there are some cases, called “rings,” where there are no 

orphan nodes: the last element of the LL points back to the first one (Figure 8-2).

>> CHOOSE ll \in LinkedLists({"a", "b"}): {"a", "b"} \subseteq Range(ll) [a 

|-> "b", b  |-> "a"]

ChapTer 8  DaTa STruCTureS



131

In that specific case, it doesn’t matter which node we start from, so we might as well 

pick one arbitrarily. For the rest, we should pick the orphan node as our starting point.

Ring(LL)  ==  (DOMAIN  LL  =  Range(LL))

First(LL) ==

  IF Ring(LL)

  THEN CHOOSE node \in DOMAIN LL:

        TRUE

  ELSE CHOOSE node \in DOMAIN LL:

        node \notin Range(LL)

Tip We could also write First as

First(LL) ==  CHOOSE node \in DOMAIN LL:    ~Ring(LL) => node 
\notin Range(LL)

If the linked list is a ring, then we have FALSE => node \notin Range(LL), 
which is always TRUE.

We defined Ring(LL) as a Boolean operator so we could use it in conjunction with 

other operators, as you see with First. If, for your spec, you want data structures that 

match specific criteria, it’s common practice to get them by first defining a operator 

that tests if a given instance matches those criteria and then using that operator in 

conjunction with set filters and CHOOSE. That way you can easily compose criteria in your 

spec. For example, here is how we can choose a cyclic LL that is not a ring:

Cyclic(LL) == NULL \notin Range(LL)

>> CHOOSE ll \in LinkedLists({"a", "b"}): Cyclic(ll) /\ ~Ring(ll)

[a |-> "b", b |-> "b"]

Figure 8-2. [a |-> "b", b |-> "a"]

ChapTer 8  DaTa STruCTureS



132

While we’ve written a lot of operators, most of them are internal to the module and 

we should make them LOCAL. Putting everything together:

---- MODULE LinkedLists ----

CONSTANT NULL

LOCAL INSTANCE FiniteSets \* For Cardinality

LOCAL INSTANCE Sequences \* For len

LOCAL INSTANCE TLC \* For Assert

LOCAL INSTANCE Integers \* For a..b

LOCAL PointerMaps(Nodes) == [Nodes -> Nodes \union {NULL}]

LOCAL Range(f) == {f[x]: x \in DOMAIN f}

LOCAL isLinkedList(PointerMap) ==

  LET

    nodes == DOMAIN PointerMap

    all_seqs == [1..Cardinality(nodes) -> nodes]

  IN \E ordering \in all_seqs:

    /\ \A i \in 1..Len(ordering)-1:

      PointerMap[ordering[i]] = ordering[i+1]

    /\ nodes \subseteq Range(ordering)

LinkedLists(Nodes) ==

  IF NULL \in Nodes THEN Assert(FALSE, "NULL cannot be in Nodes") ELSE

  LET

    node_subsets == (SUBSET Nodes \ {{}})

    pointer_maps_sets == {PointerMaps(subn): subn \in node_subsets}

    all_pointer_maps == UNION pointer_maps_sets

Figure 8-3. [a |-> "b", b |-> "b"]

ChapTer 8  DaTa STruCTureS



133

  IN {pm \in all_pointer_maps : isLinkedList(pm)}

Cyclic(LL) == NULL \notin Range(LL)

Ring(LL) == (DOMAIN LL = Range(LL))

First(LL) ==

  IF Ring(LL)

  THEN CHOOSE node \in DOMAIN LL:

        TRUE

  ELSE CHOOSE node \in DOMAIN LL:

        node \notin Range(LL)

====

 Validation
Our definition of a linked list is complex enough that we should probably sanity check 

it. The way we can do this is to make a spec that imports LinkedLists and has some 

evaluation operator, like Valid. This is why I had you make a seperate root file for this 

project: so we could do all of the sanity checking in that root file. Here are some things 

we might want to check:

• There should be some LL with a cycle.

• There should be some LL without a cycle.

• For every set of nodes, there is some ring that covers all of  

those nodes.

• All LLs have at most one node without a parent, at most one node 

with two parents (in the case of a cycle), and no nodes with more 

than two parents.

You should try writing all of these as practice. Let’s go through one of them: we 

defined Cyclic as “there is no node that points to NULL.” We could also define it as “there 

exists a node in the LL with two parents.” Let’s show that the two are equivalent.

---- MODULE main ----

EXTENDS TLC, Integers, FiniteSets, Sequences

CONSTANTS Nodes, NULL

ChapTer 8  DaTa STruCTureS



134

INSTANCE LinkedLists WITH NULL <- NULL

AllLinkedLists == LinkedLists(Nodes)

CycleImpliesTwoParents(ll) ==

  Cyclic(ll) <=>

    \E n \in DOMAIN ll:

      Cardinality({p \in DOMAIN ll: ll[p] = n}) = 2

Valid ==

  /\ \A ll \in AllLinkedLists:

      /\ Assert(CycleImpliesTwoParents(ll), <<"Counterexample:", ll>>)

====

We want No Behavior Spec, since we’re not verifying any algorithms, only that the 

data structures are correct. We can then run Valid in Evaluate Constant Expression.

NULL <- [ model value ]

Nodes <- [ model value ] {a, b, c}

>> Valid

<<"Counterexample:", (a :> a)>>

We forgot that rings are cycles where every node has one parent. Our definition of 

LinkedLists may be correct, but CycleImpliesTwoParents is incorrect. Let’s adjust it to 

account for rings.

CycleImpliesRingOrTwoParents(ll) ==

  Cyclic(ll) <=>

    \/ Ring(ll)

    \/ \E n \in DOMAIN ll:

        Cardinality({p \in DOMAIN ll: ll[p] = n}) = 2

Valid ==

  /\ \A ll \in AllLinkedLists:

      /\ Assert(CycleImpliesRingOrTwoParents(ll), <<"Counterexample:", ll>>)

>> Valid

TRUE

ChapTer 8  DaTa STruCTureS



135

Try adding a few more tests as conjunctions to Valid. Do you find anything 

surprising? Are there any useful operators you’d want to add to LinkedLists?

 Example
We went through all that trouble to make a linked list module, so we might as well use it 

in an algorithm. The Tortoise and the Hare algorithm is a famous way of detecting cycles 

in linked lists. You start two iterators, a slow “tortoise” and a fast “hare” at the beginning 

of the LL. At every step, you move the tortoise one node and the hare two nodes. If the 

two pointers ever land on the same node, the LL has a cycle. This is a single-process 

algorithm, so we should be able to use the standard template we learned about in the 

last chapter.

EXTENDS TLC

CONSTANTS Nodes, NULL

INSTANCE LinkedLists

(*--fair algorithm tortoise_and_hare

variables

  ll \in LinkedLists(Nodes),

  tortoise = First(ll),

  hare = tortoise;

macro advance(pointer) begin

  pointer := ll[pointer];

  if pointer = NULL then

    assert ~Cyclic(ll);

    goto Done;

  end if;

end macro;

begin

  while TRUE do

    advance(tortoise);

    advance(hare);

    advance(hare);

    if tortoise = hare then

ChapTer 8  DaTa STruCTureS



136

      assert Cyclic(ll);

      goto Done;

    end if;

  end while;

end algorithm; *)

Try checking Termination with Nodes <- [ model value ] {a, b, c, d}. It 

should pass with 2,248 states. Try removing one of the advances to see how the broken 

spec fails. Why do we need to write fair algorithm instead of just algorithm? Try 

removing it to see what happens.

 Summary
We showed how to write a data structure that we can reuse in other specs. Our example 

was making a linked list module, which we wrote and validated. We also used this 

module as part of another algorithm.

In the next chapter, we will learn how to use state machines to help design and add 

detail to abstract specs.

ChapTer 8  DaTa STruCTureS



137
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_9

CHAPTER 9

State Machines
Specifications are more expressive than code. This comes at a cost: it’s not always clear 

how to go from a specification to reality. A technique for handling this is to write a very 

abstract spec and expand it into a more detailed, lower-level “implementation” that is 

closer to the program you’ll be writing. One very common pattern for doing this is to use 

a state machine. In this chapter, we will learn how to represent them and use them in 

writing our specifications.

 State Machines
A state machine is a system with a finite set of internal “states” along with a set of 

transitions between the states. Outside events can trigger these transitions. For example, 

a door may be locked or unlocked, and it may be open or closed. The actions we can take 

are to lock and unlock the door, and to open and close a door. We can further stipulate 

that we can only open an unlocked door. We can write the state machine as a giant 

either-or chain:

(*--algorithm door

variables

  open = FALSE,

  locked = FALSE;

begin

  Event:

    either \* unlock

      await locked;

      locked := FALSE;

    or \* lock

      await ~locked;



138

      locked := TRUE;

    or \* open

      await ~locked;

      await ~open;

      open := TRUE;

    or \* close

      await open;

      open := FALSE;

    end either;

  goto Event;

end algorithm; *)

This passes with eight states. Only four of those states are distinct, though, which 

matches our expectations. Note the behavior is nondeterministic: when the door is 

unlocked and closed, for example, we can either lock it or open it. That’s two separate 

transitions that are possible. Most state machines (at least most interesting state 

machines) are concurrent.

What would be a failure mode? Let’s consider the case where, if the door is closed, 

we need a key to lock or unlock it. If the door is open, though, we can lock and unlock it 

without the key, such as by turning the lock on the other side. We can represent the new 

state machine this way:

(*--algorithm door

variables

  open = FALSE,

  locked = FALSE,

  key \in BOOLEAN;

begin

  Event:

    either \* unlock

      await locked /\ (open \/ key);

      locked := FALSE;

    or \* lock

      await ~locked /\ (open \/ key);

      locked := TRUE;

    or \* open

Chapter 9  State MaChineS



139

      await ~locked /\ ~open;

      open := TRUE;

    or \* close

      await open;

      open := FALSE;

    end either;

  goto Event;

end algorithm; *)

Now the spec can deadlock: if we don’t have the key, then we can open the door, lock 

it, and then close the door again. One way around this is to make the door only closable 

if it’s unlocked, like how most deadbolts work. If you change the “close” guard to await 

open /\ ~locked, the spec passes again (14 states). Only 7 are distinct: we have twice 

as many initial states due to having a key, but if we don’t have a key then reaching the 

closed locked door state is impossible.

As state machines get more complex, we can simplify them by breaking them into 

separate processes. We put some of the events in each process. Here’s what it would look 

like if we had separate processes for opened and closed doors:

(*--algorithm door

variables

  open = FALSE,

  locked = FALSE,

  key \in BOOLEAN;

process open_door = "Open Door"

begin

  OpenDoor:

    await open;

    either \* lock/unlock

      locked := ~locked;

    or \* close

      await ~locked;

      open := FALSE;

    end either;

    goto OpenDoor;

end process;

Chapter 9  State MaChineS



140

process closed_door = "Closed Door"

begin

  ClosedDoor:

    await ~open;

    either \* lock/unlock

      await key;

      locked := ~locked;

    or

      await ~locked;

      open := TRUE;

    end either;

    goto ClosedDoor;

end process;

end algorithm; *)

This passes with 12 states. This actually ends up being about 1.5x more lines, but 

this style is often more concise and clearer for larger state machines. It also makes the 

concurrency of the state machine more evident, showing us the framework we’d be using 

for complex examples. Finally, it lets us include non-atomic transitions via labels, which 

becomes important when we try to write distributed state machines.

We used await to shape the event flow in both the single-process and the 

multiprocess state machine. We can roughly describe all PlusCal “state machines” as 

looking like this: branches and processes controlled by await and either statements.

 Scaffolding Implementations
Most real-life problems aren’t explicitly state machines. But many look like state 

machines and can be abstractly specified as state machines. Then we can implement 

our spec off that state machine, filling in the details on how the transitions are actually 

implemented in code and making sure it preserves the same invariants. As an example 

of this, we will spec a simple data pattern. Some clients can read from and write to a 

database. We first specify this as a state machine without a database, and then progress 

to a more-detailed one that more accurately models how, exactly, the clients “read”  

and “write.”

Chapter 9  State MaChineS



141

REFINEMENT

tLa+ formalizes the concept of “scaffolding” with refinement. You refine a spec by writing a 

second, more detailed spec and showing that every valid behavior of the detailed spec is also 

a valid behavior of the general spec. But this requires some tooling we don’t have access to in 

plusCal, and so it is outside the scope of this book. For now, we’ll have to use a more informal 

version.

In our first implementation, we don’t even have a database, and clients are directly 

reading and writing the data. We will represent the set of possible values we can write 

to the database with the constant Data and assume that the database stores at most one 

such value.

EXTENDS Integers, Sequences, TLC

CONSTANTS Data, NULL, Clients

(*--algorithm database

variables

  db_value \in Data;

process clients \in Clients

variables result = NULL;

begin

  Client:

    either \* read

      result := db_value;

      assert result = db_value;

    or \* write

      with d \in Data do

        db_value := d;

      end with;

    end either;

    goto Client;

end process;

end algorithm; *)

Chapter 9  State MaChineS



142

All of this should be fairly simple. The only used internal state so far is db_value, 

and the only transitions we have are reading db_value (trivially correct) and modifying 

db_value. The only thing we check (aside from deadlock) is assert result = db_value, 

which is our primary invariant.

Set

Clients <- [ model value ] {c1}

NULL <- [ model value ]

Data <- [ model value ] {d1, d2}

This passes with 20 states. You may also want to check that it passes with two 

clients (110 states). We will return to the two-client case once we’ve added some 

implementation details to the spec.

This is the most abstract version of our spec. In reality, we can’t just have the client 

directly writing to the database; we’d have to have them communicate with whatever 

controls the database. The key here, though, is that any details we add to the state 

machine won’t change this overall spec structure. The more complex state machines we 

make will be more elaborate versions of this simple state machine and will still preserve 

the same high-level invariants.

We’ll implement how the client actually communicates with the database. Instead of 

directly reading and writing, it will send a request query. Then it will wait for a response 

before continuing. The database will take the query, perform a read/write based on 

it, and then give a response. We start by adding this only for the write to see what 

machinery we’ll need to add to support it.

variables

  query = [c \in Clients |-> NULL];

  db_value \in Data;

macro request(data) begin

  query[self] := [type |-> "request", data |-> data]

end macro;

macro wait_for_response() begin

  await query[self].type = "response";

end macro;

process clients \in Clients

Chapter 9  State MaChineS



143

variables result = NULL;

begin

  Request:

    while TRUE do

      either \* read

        result := db_value;

        assert result = db_value;

      or \* write

        with d \in Data do

          request(d);

        end with;

        Wait:

          wait_for_response();

      end either;

    end while;

end process;

The above is a more detailed state machine that’s closer to an actual implementation. 

We also added a new property, query, to our state machine. Our new write is now 

two steps: one to make the query and one to await the response. This is, though, an 

incomplete step. First, I can tell our request macro does not let us send reads. Second, 

without anything to actually respond to the client, our spec will deadlock. We need to 

add something that takes request queries and updates the database based on it.

define

  Exists(val) == val /= NULL

   RequestingClients == {c \in Clients: Exists(query[c]) /\ query[c].type = 

"request"}

end define;

\* our macros

\* ...

Chapter 9  State MaChineS



144

process database = "Database"

begin

  DB:

    with client \in RequestingClients, q = query[client] do

      db_value := q.data;

      query[client] := [type |-> "response"];

    end with;

  goto DB;

end process;

Our clients can now write to the database, and our state machine passes again (50 

states). Let’s complete the transition with our read operation. To do this, we’ll need a way 

to differentiate between read requests and write requests in our query.

macro request(data) begin

  query[self] := [type |-> "request"] @@ data;

end macro;

Instead of a single value, clients now pass in a structure containing the data to 

request. For reads, the data is just a tag saying we want a read. For writes, the data is a tag 

saying we want to write, as well as the exact data we want to write to the database.

process clients \in Clients

variables result = NULL;

begin

  Request:

    while TRUE do

      either \* read

        request([request |-> "read"]);

        Confirm:

          wait_for_response();

          result := query[self].result;

          assert result = db_value;

      or \* write

        with d \in Data do

          request([request |-> "write", data |-> d]);

        end with;

Chapter 9  State MaChineS



145

        Wait:

          wait_for_response();

      end either;

    end while;

end process;

We also need to change the database:

process database = "Database"

begin

  DB:

    with client \in RequestingClients, q = query[client] do

      if q.request = "write" then

        db_value := q.data;

      elsif q.request = "read" then

        skip;

      else

        assert FALSE; \* What did we even pass in

      end if;

      query[client] := [type |-> "response", result |-> db_value];

    end with;

  goto DB;

end process;

This passes with 56 states.

In adding detail to our high-level state machine, we also added new behaviors. 

Making a request and getting a response is no longer an atomic operation. We want 

to make sure the implemented version preserves the same invariants: in this case, the 

assert result = db_value. The abstract state machine and the detailed state machine 

match for a single client. But what about two clients? Try rerunning both versions with 

Client <- [ model value ] {c1, c2}.

You should see they don’t agree: the abstract version passes (110 states) while the 

detailed version fails. Adding that communication layer means that c1 can request a read 

and get a response, but c2 can write to the database before c1 reads its response.

As always, there are two things we can do: we can change the implementation, 

or we can rethink what our requirements really are. Here it is worth asking what the 

invariant of the abstract machine actually means. Is it that the client always knows what’s 

Chapter 9  State MaChineS



146

in the database, or that the database is always honest with the client? Both of these 

interpretations are compatible with the original invariant.

The former case is more difficult, and we’d have to backtrack and start again. In the 

latter case, we can achieve it by further elaborating on our invariant.

 Ghost Variables
One way to formalize “the database is honest with the client” is to say that whatever 

the client receives was correct data at the time of the request. Our implementation only 

tracks what the data is currently. We can alter it to also store history. This, though, would 

be irrelevant to our actual, physical system: the history only matters for checking the 

invariant, not for the actual implementation of the interactions we want.

The trick here is that our specification is doing two things. First, it shows how our 

state machine is intended to work. Second, it represents the wider context our state 

machine exists in. Even if the implementation doesn’t track prior values, that’s still part 

of our wider context. What we can do is add more detail to that context and see if that 

gets us to a correct system.

Contextual data that we track to verify invariants is called auxiliary, or ghost, data. 

We can also have ghost operators, ghost processes, etc. What’s important is that the ghost 

data is only used for checking invariants. While our spec can affect our ghost data, our 

ghosts cannot change the behavior of the spec. It may define which states are considered 

invariant breaking, but it cannot prevent the model checker from reaching those states.

As always, this makes more sense when you see it. Let’s add a ghost variable to our 

spec that tracks what the value of the database was at the time it responded to a request:

variables

  query = [c \in Clients |-> NULL],

  ghost_db_history = [c \in Clients |-> NULL];

  \* db_value is no longer global

\* ...

process database = "Database"

  variable db_value \in Data;

begin

  DB:

Chapter 9  State MaChineS



147

    with client \in RequestingClients, q = query[client] do

      if q.request = "write" then

        db_value := q.data;

      elsif q.request = "read" then

        skip;

      else

        assert FALSE;

      end if;

      ghost_db_history[client] := db_value;

      query[client] := [type |-> "response", result |-> db_value];

    end with;

We capture the additional data in ghost_db_history. The database process is 

allowed to write to the variable, but it does not (and cannot) read it. The client will assert 

on ghost_db_history, not db_value, which means we no longer need db_value to be 

global. While this doesn’t change the behavior, it tightens up the spec a little.

  Request:

    either \* read

      request([request |-> "read"]);

      Confirm:

        wait_for_response();

        result := query[self].result;

        assert result = ghost_db_history[self];

The client isn’t reading ghost_db_history either. It only appears in an assertion and 

so is only used to check an invariant. With this, our two-client model passes (6,098 states). 

If we implemented this, the database would not be tracking history, since ghost_db_

history isn’t part of the implementation. But it would still conform to the spec we have.

We now have a relationship between our initial, abstract state machine and our final 

spec. If we read the invariant as “the response is the value of the database at the time the 

request is processed,” then our final spec implements the initial state machine. If we read 

the invariant as “the client always reads the current value of the database,” then our final 

spec does not implement the initial state machine.

Chapter 9  State MaChineS



148

 Summary
We learned how to write a state machine pattern, how to use it as a means of designing 

the implementations of specs, and the value of ghost values for checking properties of a 

spec. We designed a client-database system and showed that it behaves correctly.

TLA+ helped us create an implementation that matched a higher-level specification. 

In the next chapter, we will go one step higher and use TLA+ to turn a set of informal 

business requirements into a specification, formalizing the requirements in the process.

Chapter 9  State MaChineS



149
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_10

CHAPTER 10

Business Logic
We use TLA+ to find flaws in our designs. But there’s another, subtler benefit: we also 

find places where the spec is ambiguous. Formally specifying your problem forces you to 

decide what you actually want out of your system. This is especially important when we 

model “business logic,” features, and requirements. To work through this, we’ll use TLA+ 

to spec a simple library system and show how the act of specifying can itself find faults in 

the spec.

In our system, people should be able to check out books, renew books, and return 

them. They will also be able to reserve books: a reserved book cannot be checked out by 

anybody else. The system should be internally consistent (all books are accounted for), 

and anybody who wants a book should eventually be able to check it out. Most of these 

seem like simple features, but how they interact can lead to surprising behavior.

In addition to the final specs, I’ll be showing the development process and the dead 

ends we can run into. This is an example of how we write specifications and would be 

incomplete without it.

 The Requirements
We begin with the standard setup, extensions and constants. There seem to  

be two constants here: one that represents the set of books and one that represents the 

set of people.

---- MODULE main ----

EXTENDS Integers, TLC, Sequences

CONSTANTS Books, People

PT == INSTANCE PT

====



150

On second thought, though, “books” is ambiguous. Are we going to assume we’re 

only looking at one type of book or multiple types? If we do one type the spec will be 

simpler and probably check faster, and if we do multiple types the spec will more closely 

mirror our problem domain. I decide to go with the latter. Since the library’s holdings 

will change over time, we might assign that to a variable.

(*--algorithm library

variables

  library = \* ???

end algorithm; *)

Question two: Do we have a single copy of each book, or can we have multiple 

copies? In the former case, we can make library a set. In the latter case, we actually 

want it to be a map of books to numbers, something like [Books -> Nat]. Again, the 

second case is closer to what an actual library has. That means we have to introduce 

another constant for the range of possible copies. We can still test the model with one 

copy of each book by setting that range to {1}.

CONSTANTS Books, People, NumCopies

ASSUME NumCopies \subseteq Nat

(*--algorithm library

variables

  library \in [Books -> NumCopies];

  end algorithm; *)

For each person, we’ll give them the ability to take a book from the library or  

return a book to the library. They have a private books variable that tracks what they 

have, a Checkout action, and a Return action.

process person \in People

variables

  books = \* ???

begin

  Person:

    either

      \* Checkout

      skip;

Chapter 10  Business LogiC



151

    or

      \* Return

      skip;

    end either;

  goto Person;

end process;

And again, we have a question: What should books be? Should it be a set or an 

accumulator like library? These lead to different behaviors. If we specify that books is a 

set, we’re assuming that people can only check out one copy of the book at a time. This is 

a question we’d have to ask the client: Should people be able to take out multiple copies? 

Let’s assume they said “no.” This gives us another requirement:

“People can only check out one copy of a book at a time.”

Since we’ll be adding and removing from sets, I want to add a couple of convenience 

binary operators. These would go above the algorithm, as they don’t depend on any of 

the variables to work.

set ++ x == set \union {x}

set -- x == set \ {x}

For the implementation of the person process, I decide that for now, we’ll assume 

they always eventually act, so we can make them fair processes. This assumption might 

not hold over time; after all, the person might forget to return their book. I also decide 

not to introduce separate labels for Checkout or Return, as there are no concurrency 

issues here (yet).

define

  AvailableBooks == {b \in Books: library[b] > 0}

end define;

fair process person \in People

variables

  books = {};

begin

  Person:

    either

        \* Checkout:

Chapter 10  Business LogiC



152

        with b \in AvailableBooks \ books do

          library[b] := library[b] - 1;

          books := books ++ b;

        end with;

    or

        \* Return:

        with b \in books do

          library[b] := library[b] + 1;

          books := books -- b;

        end with;

    end either;

  goto Person;

end process;

end algorithm; *)

In our system, a person can grab any library book that is available and that they don’t 

already have. This defines our minimal system without any invariants.

 Adding Invariants
Before deciding the invariants, let’s create our first model. As mentioned before, 

our multi-copy system can “simulate” a single-copy system. Let’s call the model 

OneCopyPerBook and use the following constant assignments:

NumCopies <- 1..1

People <- [model value] {p1, p2}

Books <- [model value] {b1}

Run this to confirm we don’t have any crashes. Looks good. Time to add some 

invariants. First we’ll focus on simple safety properties to make sure nothing’s going 

wrong.

The first we’ll add is a common TLA+ pattern called TypeInvariant. TypeInvariant 

is the conventional term for an operator that captures the ‘sensibility’ of the system. The 

system may still not satisfy the spec, but at least it’s physically possible. One example 

of this is that the library cannot have a negative number of books in it: it’s simply not 

meaningful to have that. Nor can the library have more than the possible NumCopies of 

books in it.

Chapter 10  Business LogiC



153

TYPE SYSTEMS

TypeInvariant defines the types of our variables: if the spec is correct, all variables will 

be of the correct type. this is just like how some programming languages have static type 

systems. But the more expressive static types get, the harder it is to check them, which is 

why most languages have an “integer” type but not an “all prime integers below 100” type. 

in tLa+, though, we can use these types just fine. if it doesn’t type check, our spec will fail to 

hold TypeInvariant and we’ll see exactly why.

Similarly, it’s not meaningful that people, raw numbers, or anything except books 

are in each person’s books repository. The PlusCal abstraction leaks a little bit here: 

there are multiple processes, one for each element of the set People, so TLA+ translates 

the private variable to a function from People to sets of Books. Since TypeInvariant 

checking a constraint on a private variable, we need to put it after the translation.

\* END TRANSLATION

TypeInvariant ==

  /\ library \in [Books -> NumCopies ++ 0]

  /\ books \in [People -> SUBSET Books]

====

Note TypeInvariant needs to go above the ====, as that’s the bottom of  
the module.

Have OneCopyPerBook check this invariant and confirm the system still works  

(16 states). As a sanity check, replace library \in [Books -> NumCopies ++ 0] with 

library \in [Books -> NumCopies] and confirm that TLC finds an error.

Chapter 10  Business LogiC



154

 Adding Liveness
Now let’s add a temporal property. Some people want certain books. We want to confirm 

that they eventually get these books. We add this with a couple of small changes.

fair process person \in People

variables

  books = {},

  wants \in SUBSET Books;

begin

  Person:

    either

        \* Checkout:

        with b \in AvailableBooks \ books do

          library[b] := library[b] - 1;

          books := books ++ b;

          wants := wants -- b;

\* Rest is same

TypeInvariant ==

  /\ library \in [Books -> NumCopies ++ 0]

  /\ books \in [People -> SUBSET Books]

  /\ wants \in [People -> SUBSET Books]

Liveness ==

  /\ <>(\A p \in People: wants[p] = {})

Add Liveness to OneCopyPerBook and rerun. You should see this fail. p2 want to read 

the book, but p1 could keep checking it out, returning it, and then checking it out again. 

p2 never gets a chance to read the book, so our liveness constraint is violated.

 Adding Reservations
If a person reserves a book, it cannot be checked out by anybody else. There are a few 

possible types for a reserve variable. [Books -> People] means that every book is 

reserved by exactly one person. This immediately seems wrong for several reasons. First, 

we’d need to add a model value NULL to represent a book that isn’t reserved, which adds 

Chapter 10  Business LogiC



155

unnecessary complexity to our model. Second, only one person can reserve a given book 

at a time, so what happens if somebody else tries? Do we simply prevent them, or does it 

override the existing hold? Neither of these seem like desired behavior for the library.

Our second choice is [Books -> SUBSET People]. On the one hand, this means that 

any book can be held by several people, and the order they placed the holds doesn’t 

matter. This naturally includes nobody reserving, as {} \in SUBSET People. On the 

other hand, maybe the library wants there to be some sort of priority for holds, such as 

“people who placed them first get the book first.”

A third choice is [Books -> Seq(People)], where Books maps to an ordered 

sequence of people. So we have a question for the customer: Ordered reservations 

or unordered reservations? We’ll start with unordered because it makes the fewest 

assumptions. Note there’s peculiar behavior to how reservations work: if the set is empty, 

then anybody can check out that book. If the set is nonempty, only people in that set can 

check it out.

variables

  library \in [Books -> NumCopies],

  reserves = [b \in Books |-> {}];

define

  AvailableBooks == {b \in Books: library[b] > 0}

   BorrowableBooks(p) == {b \in AvailableBooks: reserves[b] = {} \/ p \in 

reserves[b]}

end define;

Another way we could write the filter in BorrowableBooks is with the => operator: 

reserves[b] /= {} => p \in reserves[b]. We’ll keep using the version above, 

though. Then we update the Person action:

Person:

    either

        \* Checkout:

        with b \in BorrowableBooks(self) \ books do

          library[b] := library[b] - 1;

          books := books ++ b;

          wants := wants -- b;

        end with;

Chapter 10  Business LogiC



156

    or

        \* Return:

        with b \in books do

          library[b] := library[b] + 1;

          books := books -- b;

        end with;

    or

      \* Reserve:

      with b \in Books do

        reserves[b] := reserves[b] ++ self;

      end with;

    end either;

  goto Person;

This fails, as a borrower can simply keep reserving the book and reborrowing it. 

Someone else is left out and never gets a chance to read it! If the library agrees with the 

change, we’d move to an ordered sequence of holds. But sequences can have duplicate 

entries. Should those be allowed? If so, then is the reservation queue bounded? And if 

duplicates are not allowed, then we have to design our system to prevent them. For this 

exercise, we’ll say that you can only hold one position in the list at a time.

NoDuplicateReservations ==

  \A b \in Books:

    \A i, j \in 1..Len(reserves[b]):

        i /= j => reserves[b][i] /= reserves[b][j]

TypeInvariant ==

  /\ library \in [Books -> NumCopies ++ 0]

  /\ books \in [People -> SUBSET Books]

  /\ wants \in [People -> SUBSET Books]

  /\ reserves \in [Books -> Seq(People)]

  /\ NoDuplicateReservations

Chapter 10  Business LogiC



157

And let’s change the rest of the code:

variables

  library \in [Books -> NumCopies],

  reserves = [b \in Books |-> <<>>];

\* ...

  BorrowableBooks(p) ==

    {b \in AvailableBooks:

      \/ reserves[b] = <<>>

      \/ p = Head(reserves[b])}

\* Reserve:

with b \in Books do

  reserves[b] := Append(reserves[b], self);

end with;

\* ...

This fails TypeInvariant because it allows for a duplicate. Let’s fix that by preventing 

duplicate reservations:

\* Reserve:

with b \in {b \in Books: self \notin PT!Range(reserves[b])} do

  reserves[b] := Append(reserves[b], self);

end with;

This fails again, because while writing this spec I forgot to remove reservations that 

have been fulfilled. Let’s fix that.

        \* Checkout:

        with b \in BorrowableBooks(self) \ books do

          library[b] := library[b] - 1;

          books := books ++ b;

          wants := wants -- b;

          if reserves[b] /= <<>> /\ self = Head(reserves[b]) then

            reserves[b] := Tail(reserves[b]);

          end if;

        end with;

Chapter 10  Business LogiC



158

We need reserves[b] /= <<>> to avoid checking Head on an empty sequence. 

Confirm this passes with 80 states found.

 Updating Assumptions
Next, I cloned OneCopy and created a new model One Copy, Two Books, One Person:

NumCopies <- 1..1

People <- [model value] {p1}

Books <- [model value] {b1, b2}

Warning if you have a shortcut for “run model,” it may trigger a run of the  
old model.

This fails. The first error is that somebody can be interested in a book but never get 

around to checking it out. This does not seem so much an issue with our system as much 

as a missing caveat to our requirement: “people eventually get to check out the books 

they want if they try to check them out.” We can add this assumption to our spec by only 

having people check out books they want to read:

  Person:

    while TRUE do

      either

        with b \in (BorrowableBooks(self) \intersect wants) \ books do

Now the system deadlocks: if the person isn’t interested in any more books, the 

system can’t do anything. We could fix this by disabling deadlocks, but that may let an 

actual deadlock slip through. Instead, let’s add the assumption that people’s preferences 

aren’t fixed over time. Just because I don’t want b1 now doesn’t mean I won’t eventually 

want to read it. I could also add an “Unwant” action, but adding it would weaken the 

spec: we don’t want the library system succeeding only if people give up on using it.

        \* Reserve

        with b \in {b \in Books: self \notin PT!Range(reserves[b])} do

          reserves[b] := Append(reserves[b], self);

        end with;

Chapter 10  Business LogiC



159

      or

        \* Want

        with b \in Books \ wants do

          wants := wants ++ b;

        end with;

      end either;

On the plus side, this no longer deadlocks. On the minus side, it once again violates 

Liveness:

 1. p1 wants b1 and b2.

 2. p1 checks out b1. p1 now wants b2.

 3. p1 adds b1 to wants. p1 now wants b1 and b2.

 4. p1 checks out b2. p1 now wants b1.

 5. p1 adds b2 to wants. GOTO 1.

At no point is wants empty, so the spec is violated. Adding the extra actions revealed 

more ambiguity in our spec: currently liveness does not say “everybody gets to read every 

book they want.” It says, “there is some point where nobody wants to read any more 

books.” If I steadily add new books to read, the system fails, even if I still read every book 

I want to.

Additionally, it means that everybody must be satisfied at that time. If you go back 

and rerun OneCopyPerBook, you’ll see that TLC can find a trace where at least one person 

has a book in their wants. A more accurate property would be “if a person wants to read a 

book, eventually they don’t want to read it”:

Liveness ==

  \A p \in People:

    \A b \in Books:

      b \in wants[p] ~> b \notin wants[p]

Recall that ~> is “leads-to”: every time a person wants to read b, there is a future state 

where they don’t want to read b. OneCopyPerBook now passes (284 states), but Two Books 

still fails: instead of cycling both books, p1 now just keeps rereading b1. This seems to  

me to be a user error: the person isn’t actually trying to read b2. What happens if we 

assume that people only add new books when they run out, but also can add any 

number at one time?

Chapter 10  Business LogiC



160

      or

        \* Want

        await wants = {};

        with b \in SUBSET books do

          wants := b;

        end with;

Two Books now passes with 328 states.

 Expiring Reservations
We know the system works, under our assumptions, if there is one person and two books 

or two people and one book. The next thing to try would be two people and two books, 

in a model I call 2P 2B:

NumCopies <- 1..1

People <- [model value] {p1, p2}

Books <- [model value] {b1, b2}

Surprisingly, this deadlocks. Someone can reserve a book they don’t care about and 

block everybody else from reading it. We could restrict which books you can reserve, 

but that’s not realistic: this is a scenario the library actually has to be able to handle. The 

model shows us that we cannot always rely on people to always check out the books they 

hold, and that this can prevent people from reading the books they want. So there must 

be some way to invalidate the hold.

But then doesn’t that put us back where we started? If reservations can expire, we 

can’t guarantee that everybody eventually reads all the books they want. It could keep 

expiring before they have a chance to check it out, and then somebody else grabs it first. 

It turns out we cannot guarantee Liveness, no matter what we do! Without a significantly 

more complicated system, or placing unrealistic restrictions on how the people behave, 

we cannot ensure that everybody eventually reads all of the books they want to read. By 

trying to resolve the ambiguity in the business requirements, we found that they were 

self-contradictory. That’s something worth knowing before we start coding this!

What if we relax the requirements? Instead of saying that everybody eventually reads 

every book they want, we could say that everybody eventually gets a chance to read the 

book(s) they want. In other words, there exists at least one state where they could take 

out the book. In practice, this would correspond to the library only letting you reserve 

Chapter 10  Business LogiC



161

for, say, five days. If you don’t decide to check out the book in that time, you had your 

chance and the library did everything it could.

The obvious way to relax it would be to say that for every book a person wants, either 

the person reads the book, or the person is at some point the next in line to reserve it.

Liveness ==

  \A p \in People:

    \A b \in Books:

        b \in wants[p] ~>

          \/ b \notin wants[p]

          \/ p = Head(reserves[b])

If you run this, though, you will get an error. If TLC evaluates Liveness in a state 

where reserves[b] is empty, then it tries to find Head(<<>>), which is undefined. For 

most specs an empty sequence is a special case that has to be treated in the context 

of the wider system. Since we’re trying to see if someone has reservation rights, if the 

sequence is empty then they obviously don’t have it. We should put the two reservation 

clauses in a separate operator for clarity:

NextInLineFor(p, b) ==

  /\ reserves[b] /= <<>>

  /\ p = Head(reserves[b])

Liveness ==

  \A p \in People:

    \A b \in Books:

        b \in wants[p] ~>

          \/ b \notin wants[p]

          \/ NextInLineFor(p, b)

Finally, we create an expiration process for each book, which I’ll put at the bottom of 

the PlusCal spec.

fair process book_reservations \in Books

beg/in

  Expire:

    await reserves[self] /= <<>>;

    reserves[self] := Tail(reserves[self]);

Chapter 10  Business LogiC



162

    goto Expire;

end process;

end algorithm; *)

This still fails: p1 can want b1 but keep reserving b2 and never get around to taking 

out b1. As an experiment, I decided to make people only reserve the books they wanted, 

not any book at random:

        \* Reserve

        with b \in {b \in wants: self \notin PT!Range(reserves[b])} do

          reserves[b] := Append(reserves[b], self);

        end with;

But this didn’t work either, and in a way I completely didn’t expect. We had the 

following failure mode:

 1. p1 wants b1 and b2.

 2. p1 reserves b1. p = Head(reserves[b1]). All that’s left to satisfy 

liveness is that she reserves or checks out b2.

 3. Her reservation for b1 expires.

 4. According to our system, she’s done with b1. But we only remove 

b1 from wants[p1] if the person actually checks out the book. We 

still have b1 \in wants[p1]. She doesn’t care that our system 

works, she still wants to check out the book!

 5. p1 reserves b1.

 6. Her reservation expires…

We can try fixing this by restricting people’s behavior, but that is, again, unrealistic. 

Ultimately, we’re unable to make headway on liveness because liveness is a hard 

problem that requires us to have control over the entire system. But humans aren’t under 

our control: we can’t force them to do things for us. Any liveness conditions that depend 

on the users behaving properly are going to be intractable. If the library requires that 

“everybody who wants a book eventually gets to read it,” we can’t absolutely guarantee 

them that, not without unrealistic assumptions about how humans behave.

Chapter 10  Business LogiC



163

That said, we can still verify that the system works for various special cases. Before 

we had a problem with people using reservations to block other people from reading a 

book. Does our expiration system fix that? We can check by adding a state constraint to 

2P 2B. As we discussed back in Chapter 4, TLC will only check states that satisfy the state 

constraint. Let’s add one saying that a person only wants at most one book. The easiest 

way to do this is by extending FiniteSets so we can use Cardinality.

EXTENDS Integers, TLC, Sequences, FiniteSets

\* This goes in Advanced Options > State Constraint

\A p \in People: Cardinality(wants[p]) <= 1

Now 2P 2B passes with 414 states. With this, I’m reasonably confident that if a person 

wants to read a book and takes steps to read it, the library reservation system guarantees 

they eventually have a chance to read it. Our final spec:

EXTENDS Integers, TLC, Sequences, FiniteSets

CONSTANTS Books, People, NumCopies

ASSUME NumCopies \subseteq Nat

PT == INSTANCE PT

set ++ x == set \union {x}

set -- x == set \ {x}

(*--algorithm library

variables

  library \in [Books -> NumCopies],

  reserves = [b \in Books |-> <<>>];

define

  AvailableBooks == {b \in Books: library[b] > 0}

    BorrowableBooks(p) ==

    {b \in AvailableBooks:

      \/ reserves[b] = <<>>

      \/ p = Head(reserves[b])}

end define;

Chapter 10  Business LogiC



164

fair process person \in People

variables

  books = {},

  wants \in SUBSET Books;

begin

  Person:

    while TRUE do

      either

        \* Checkout:

        with b \in (BorrowableBooks(self) \intersect wants) \ books do

          library[b] := library[b] - 1;

          books := books ++ b;

          wants := wants -- b;

          if reserves[b] /= <<>> /\ self = Head(reserves[b]) then

            reserves[b] := Tail(reserves[b]);

          end if;

        end with;

      or

        \* Return:

        with b \in books do

          library[b] := library[b] + 1;

          books := books -- b;

        end with;

      or

        \* Reserve

        with b \in {b \in wants: self \notin PT!Range(reserves[b])} do

          reserves[b] := Append(reserves[b], self);

        end with;

      or

        \* Want

        await wants = {};

        with b \in SUBSET books do

          wants := b;

        end with;

      end either;

Chapter 10  Business LogiC



165

    end while;

end process;

fair process book_reservations \in Books

begin

  Expire:

    await reserves[self] /= <<>>;

    reserves[self] := Tail(reserves[self]);

    goto Expire;

end process;

end algorithm; *)

\* BEGIN TRANSLATION

\* ...

\* END TRANSLATION

NoDuplicateReservations ==

  \A b \in Books:

    \A i, j \in 1..Len(reserves[b]):

        i /= j => reserves[b][i] /= reserves[b][j]

TypeInvariant ==

  /\ library \in [Books -> NumCopies ++ 0]

  /\ books \in [People -> SUBSET Books]

  /\ wants \in [People -> SUBSET Books]

  /\ reserves \in [Books -> Seq(People)]

  /\ NoDuplicateReservations

NextInLineFor(p, b) ==

  /\ reserves[b] /= <<>>

  /\ p = Head(reserves[b])

Liveness ==

  \A p \in People:

    \A b \in Books:

        b \in wants[p] ~>

          \/ b \notin wants[p]

          \/ NextInLineFor(p, b)

Chapter 10  Business LogiC



166

 Summary
We took a couple of requirements for a library checkout system and, in trying to formally 

specify it, found several ambiguities. By trying to resolve these ambiguities we pinned 

down the semantics of what “reservation” actually means, and then showed that 

reasonable models could not fulfill one of the client requirements. We could, however, 

guarantee the properties for special cases, such as “people actually making an effort to 

check out the books they want to read.”

Often times we can’t match requirements perfectly. The real world adds its own 

complex problems and sometimes we have to settle for “good enough.” It’s better to 

know what these problems are – and what “good enough” means – right now rather than 

four months into the project.

In the next chapter, we work through another large example and verify the design of 

a MapReduce system.

Chapter 10  Business LogiC



167
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5_11

CHAPTER 11

MapReduce
In this chapter, we will develop a large specification to fully show what the process looks 

like, ideation, missteps and all.

 Problem Overview
MapReduce was one of the first Big Data algorithms. It helped Google scale quickly and 

handle huge amounts of data, providing the foundation of Hadoop and the big data 

revolution. Instead of doing a calculation on a single computer, you distribute it among 

several computers (the map) and use one to combine the data after. The typical example 

is counting the number of words in 1,000,000 books. It might not fit in memory, so here’s 

how you can MapReduce the calculation among four computers:

 1. The first computer is labeled the reducer. The other three are 

labeled workers.

 2. The reducer assigns books 1, 4, 7 … to the first worker, 2, 5, 8 … to 

the second worker, and the remaining books to the third worker.

 3. Each worker calculates the number of words in its assigned books 

and reports that back to the reducer.

 4. The reducer sums the numbers together to get the final 

wordcount.



168

This is an informal description and glazes over a lot of details. How does the 

assignment work? How do workers report back their final counts? How does the reducer 

know when a worker is done? What happens if a node goes down? There’s an ambiguity 

to the spec that can lead to buggy implementations or worse, a fundamentally broken 

design. We will specify MapReduce in three stages:

 1. A first spec that assumes all workers always succeed.

 2. A second, fault tolerant spec that allows workers to fail.

 3. A final spec that works even if the recovery mechanism partially 

fails, too.

As with the previous chapter, I will be showing the development process and 

the dead ends we can run into. That way, if you encounter these issues in your own 

specifications, you’ll have some resources to address them.

 Part One: Basics
I called the specification MapReduce and the root file main.

---- MODULE main ----

EXTENDS TLC, Sequences, Integers

PT == INSTANCE PT

CONSTANTS Workers, Reducer, NULL

I automatically extend TLC, Sequences, and Integers because they’re almost always 

useful. My assumption is that we’ll have a single reducer process and multiple worker 

processes, so I make them constants. Workers will be a model set, Reducer a model 

constant. That way we can tweak the number of workers in the spec. I also add NULL 

because it comes in handy all of the time. I’ll take it out if the spec doesn’t need it, but my 

base prior is that it will.

What input are we putting in? I think we can assume that each “book” can be 

represented as a single number (its wordcount), the list of all “books” represented by a 

sequence of numbers. I want a sequence instead of a set because multiple books might 

have the same wordcount.

Chapter 11  MapreduCe



169

What, then, is the set of possible inputs? There can be an arbitrary number of books, 

and each book can have an arbitrary number of words. In practice, this can’t be model 

checked, so I’ll limit it. I could add two more constants so we can test the spec with 

different ranges in different models. That’s some extra overhead that’s easy to add later, 

so for now, we’ll hard-code it. I choose four books to evenly split among two workers and 

allow each to have a wordcount in 0..2. This seems like it would cover enough cases to 

give us reasonable confidence.

PossibleInputs == PT!TupleOf(0..2, 4)

As I write this, though, I immediately see a question: We’re assuming there are four 

books. What if there is one, or zero? Will the algorithm still work? I decide to leave that 

out until later. Checking a wider range may be safer, but it will also take longer to model 

check, and we want to get quick feedback at the start. That way we can remove the 

obvious bugs before looking for the subtler ones. Later, as we decide to explore a wider 

state space, we’ll replace the hard-coded numbers with CONSTANTS.

Next question: What does it mean for our algorithm to be correct? That the final 

value it gets is equal to the total wordcount, aka the sum of the inputs. Whatever we 

implement, then, at some point our goal is to ensure that assert final = actual_sum_

of_inputs. We need an operator that accurately calculates that for us. This is doable with 

PT!ReduceSeq.

SumSeq(seq) == PT!ReduceSeq(LAMBDA x, y: x + y, seq, 0)

These are enough support operators for now. Let’s start on the system itself. I'd 

prefer to keep the spec general, thinking of items instead of books and values instead of 

wordcounts, so we will use those terms going forward.

(*--algorithm mapreduce

variables input \in PossibleInputs;

process reducer = Reducer

variables final = 0;

begin

  Schedule:

    skip;

  ReduceResult:

    skip;

Chapter 11  MapreduCe



170

  Finish:

    assert final = SumSeq(input);

end process;

process worker \in Workers

begin

  Worker:

    skip;

end process;

end algorithm; *)

====

We know what the overall structure looks like and we know what we want at the end, 

so this is a start. I then created a model with the following constants:

Workers <- [model value] {w1, w2}

Reducer <- [model value]

NULL <- [model value]

Uncheck Deadlock, we don’t need it for now. Run the model. If everything is set up 

properly, you should see a model failure. This is to be expected, as we haven’t actually 

implemented anything.

Ideally, we want to break this down in a way so that we can check that every 

subcomponent looks okay without having to write the whole spec first. Let’s start by 

assuming that each worker has figured out some final value: How do we get the reducer 

to get the value? My mind immediately goes to the reducer pinging a worker to see if it 

has a return value yet. If it doesn’t have something ready, it returns NULL. Each worker 

has its own result value, which suggests a function. Since both the reducer and the 

workers will interact with the result value, the function would have to be global.

variables

  input \in PossibleInputs,

  result = [w \in Workers |-> NULL];

\* ...

process worker \in Workers

begin

Chapter 11  MapreduCe



171

  Worker:

    result[self] := 5;

end process;

The reducer should wait until a worker has changed its result to something other 

than NULL and then add the new value to its own total. While writing what this looks like, 

it occurs to me that we don’t want the reducer reading a non-null result from the same 

worker twice. We could prevent this by setting its result back to NULL. But that doesn’t 

seem right to me: if we set a result back to NULL, there’s no way of knowing whether that 

worker had finished and been consumed, or if it’s still working. A better idea would be 

for the reducer to privately track which worker results it has consumed.

This is a common loop when writing TLA+ specs: planning your next step, realizing it 

will lead to a problem later, and fixing it in advance. While TLC is very useful, most of the 

model checking happens in your head.

process reducer = Reducer

variables final = 0, consumed = [w \in Workers |-> FALSE];

begin

  Schedule:

    skip;

  ReduceResult:

    while \E w \in Workers: ~consumed[w] do

      with w \in {w \in Workers:  ~consumed[w] /\ result[w] /= NULL} do

        final := final + result[w];

        consumed[w] := TRUE;

      end with;

    end while;

  Finish:

    assert final = SumSeq(input);

end process;

Try this again and confirm it fails. But it should fail with final = 10. Inspecting 

the error trace, you should see that final only increments after a worker has run. That 

suggests to us ReduceResult is successfully summing and retrieving the worker values.

Next we’ll implement the logic for actually processing the inputs. The worker has 

a private variable we’ll call total, starting at 0. The reducer would send each worker a 

sequence of items. The worker would iterate through the items, adding each value to the 

Chapter 11  MapreduCe



172

total. When the worker has processed all of the items assigned to it, it sets result[self] 

to total so that the reducer can read it.

variables

  input \in PossibleInputs,

  result = [w \in Workers |-> NULL],

  queue = [w \in Workers |-> <<1, 2>>]; \* for testing

\* ...

process worker \in Workers

variables total = 0;

begin

  Process:

    while queue[self] /= <<>> do

      total := total + Head(queue[self]);

      queue[self] := Tail(queue[self]);

    end while;

  Result:

    result[self] := total;

end process

Since we hard-coded the queues for each worker, they each set result[self] = 3 

and the model fails with final = 6. But I see another problem here: we know we’re 

done when the queue is empty. But the queue will start out empty until the reducer 

sends something to the worker! There’s nothing stopping the worker from seeing the 

initial queue and saying “I’m done.” We’ll have to add one more step to the worker:

process worker \in Workers

variables total = 0;

begin

  WaitForQueue:

    await queue[self] /= <<>>;

  Process:

    while queue[self] /= <<>> do

      total := total + Head(queue[self]);

      queue[self] := Tail(queue[self]);

    end while;

Chapter 11  MapreduCe



173

  Result:

    result[self] := total;

end process

Better. We have to put the await in a separate step from the while, because while 

loops must come directly after a label. One thing I notice is that result[self] will never 

be updated if we never send any items to this worker. That’s not a problem just yet but 

will be a problem if we have fewer items than nodes. It’s something to keep an eye on.

We now have everything except the Schedule step. This requires us to divvy up the 

inputs among all of the workers. Up above I decided that we’d assign each one based on 

their order. However, there’s no predefined order to the workers. By using PT!OrderSet 

on them, we can arbitrarily pick one as the first worker, one as the second, etc. What’s 

important, however, is that TLC will not try to break the spec by reordering the workers. 

This means that our spec works only if we assume that ordering of workers does not 
matter. Whenever we write specs, we should carefully keep track of our assumptions 

and recheck them regularly to confirm they’re still safe.

So, once we have an ordering on the workers, we can use PT!SelectSeqByIndex to 

assign them. Here’s how I did it:

variables

  input \in PossibleInputs,

  result = [w \in Workers |-> NULL],

  queue = [w \in Workers |-> <<>>]; \* remove hardcoding

process reducer = Reducer

variables result = 0, consumed = [w \in Workers |-> FALSE];

begin

  Schedule:

    with worker_order = PT!OrderSet(Workers) do

      queue := [ w \in Workers |->

        LET offset == PT!Index(worker_order, w) - 1 \* sequences start at 1

         IN PT!SelectSeqByIndex(input, LAMBDA i: i % Len(worker_order) = 

offset)

      ];

    end with;

Chapter 11  MapreduCe



174

The code is a little complex, but all we are doing is assigning a number to each 

worker and cyclically assigning the items to each worker. We run into some friction 

because sequences have domain 1..n, while x % n has range 0..(n-1). We have to 

subtract 1 from our offsets to keep them in sync.

Tip PT!SeqMod has the proper modulo semantics for sequences. You can define 
a %% b == PT!SeqMod(a, b) if you’d like.

Now we have everything in order. If you run the spec now, it should pass with 7,209 

states. We’ve completed the first part of this example. Our final spec should look like this:

EXTENDS TLC, Sequences, Integers

PT == INSTANCE PT

CONSTANTS Workers, Reducer, NULL

PossibleInputs == PT!TupleOf(0..2, 4)

SumSeq(seq) == PT!ReduceSeq(LAMBDA x, y: x + y, seq, 0)

(*--algorithm mapreduce

variables

  input \in PossibleInputs,

  result = [w \in Workers |-> NULL],

  queue = [w \in Workers |-> <<>>];

process reducer = Reducer

variables final = 0, consumed = [w \in Workers |-> FALSE];

begin

  Schedule:

    with worker_order = PT!OrderSet(Workers) do

      queue := [ w \in Workers |->

        LET offset == PT!Index(worker_order, w) - 1 \* sequences start at 1

         IN PT!SelectSeqByIndex(input, LAMBDA i: i % Len(worker_order) = 

offset)

      ];

    end with;

  ReduceResult:

Chapter 11  MapreduCe



175

    while \E w \in Workers: ~consumed[w] do

      with w \in {w \in Workers:  ~consumed[w] /\ result[w] /= NULL} do

        final := final + result[w];

        consumed[w] := TRUE;

      end with;

    end while;

  Finish:

    assert final = SumSeq(input);

end process;

process worker \in Workers

variables total = 0;

begin

  WaitForQueue:

    await queue[self] /= <<>>;

  Process:

    while queue[self] /= <<>> do

      total := total + Head(queue[self]);

      queue[self] := Tail(queue[self]);

    end while;

  Result:

    result[self] := total;

end process;

end algorithm; *)

\* BEGIN TRANSLATION

\* ...

\* END TRANSLATION

Chapter 11  MapreduCe



176

 Part Two: Liveness
assert final = SumSeq(input); doesn’t actually check that our spec gets the right 

answer. It checks that if gets a final answer, then the answer is the right one. In other 

words, we’ve demonstrated safety but still have to do liveness. Let’s add a temporal 

property after the translation:

\* BEGIN TRANSLATION

\* ...

\* END TRANSLATION

Liveness == <>[](final = SumSeq(input))

Add this as a temporal property and rerun the model. You should see it fail, 

eventually reaching a stuttering step. If the workers never complete, then we will never 

finish reducing.

We could solve this by making the workers fair processes. But they aren’t. Workers 

crash all the time in the field, and MapReduce should assume they can fail. We want our 

algorithm to work not only in the happy path, but also be fault tolerant. This makes up 

part two of this example: ensuring that MapReduce continues to work if some (but not 

all) of the workers stutter.

To simplify this step, we will make the following assumptions:

 1. The reducer is fair. If it’s not, we can’t guarantee anything 

happens.

 2. There is at least one fair worker. If there’s none, then we can easily 

see the algorithm couldn’t possible succeed: just have every 

worker keep crashing and you’ll never meet Liveness.

 3. It doesn’t matter which worker is the fair one. This assumption 

significantly reduces our state space, since we can arbitrarily pick 

one with CHOOSE.

 4. The reducer may or may not detect an unfair worker failing, but it 

will never falsely decide a fair worker has failed. This is the biggest 

assumption here, but it’s an assumption that makes our system a 

lot easier to design.

Chapter 11  MapreduCe



177

The fair and unfair workers have the same implementation; they only differ in 

whether or not they may crash. We can do a similar thing here that we did in Chapter 6: 

extracting the body of worker into a procedure and then making each type of worker call 

that procedure.

EXTENDS TLC, Sequences, Integers, FiniteSets

PT == INSTANCE PT

CONSTANTS Workers, Reducer, NULL

SumSeq(seq) == PT!ReduceSeq(LAMBDA x, y: x + y, seq, 0)

FairWorkers == CHOOSE set_w \in SUBSET Workers: Cardinality(set_w) = 1

UnfairWorkers == Workers \ FairWorkers

(*--algorithm mapreduce

\*

procedure work()

  variables total = 0;

begin

  WaitForQueue:

    await queue[self] /= <<>>;

  Process:

    while queue[self] /= <<>> do

      total := total + Head(queue[self]);

      queue[self] := Tail(queue[self]);

    end while;

  Result:

    result[self] := total;

    return;

end procedure;

fair process reducer = Reducer

\* same body

fair process fair_workers \in FairWorkers

begin FairWorker:

  call work();

end process;

Chapter 11  MapreduCe



178

process worker \in UnfairWorkers

begin RegularWorker:

  call work();

end process;

FAIRNESS AND SAFETY

Why did we hard-code a single fair worker? Why not make it some subset, and let tLC 

check all possible subsets? the behavior of a fair process is a strict subset of the behavior 

of an unfair process. If a fair process would violate safety, then so would an unfair process. 

Conversely, if an unfair process is safe, then so is a fair one. there’s no need to check that 

safety is preserved with two fair workers: tLC will happily check that on its own.

Now we are guaranteed that at least one worker will finish its assigned queue. Rerun 

the model and it should still fail, but it may fail after more steps complete. While one 

worker completes, the rest may not, and the reducer still waits forever.

Now for the change in Reducer. While it’s waiting to get all of the data in, it can do 

one of two things. First, it can do the standard “take worker, declare consumed, add to 

total.” We won’t touch that, so I pulled it into its own macro called reduce() to make the 

spec cleaner. Reminder: macros must go above procedures in a spec.

(*--algorithm mapreduce

variables

  input \in PossibleInputs,

  result = [w \in Workers |-> NULL],

  queue = [w \in Workers |-> <<>>];

macro reduce() begin

  with w \in {w \in Workers:  ~consumed[w] /\ result[w] /= NULL} do

    final := final + result[w];

    consumed[w] := TRUE;

  end with;

end macro;

procedure work()

\* ...

Chapter 11  MapreduCe



179

fair process reducer = Reducer

variables final = 0, consumed = [w \in Workers |-> FALSE];

begin

  Schedule:

    \* Same as before

  ReduceResult:

    while \E w \in Workers: ~consumed[w] do

      reduce();

    end while;

      \* ...

The other thing it can move a failing worker’s queue to a valid worker. How does it 

know if a worker is failing? Again, this is abstraction specific, but for now we can think of 

it like this: if a worker result is consumed, then it definitely didn’t fail. So any worker we 

haven’t consumed might have failed. We’ll pick one of those.

In this phase, we’re not distinguishing between a node that has crashed and a 

node that hasn’t finished. Without implementing something like a heartbeat protocol, 

both types of nodes look the same to the reducer. We’re demonstrating that the system 

is correct, not necessarily that it’s efficient. Also, we’re allowing ourselves, again for 

simplification, to always pick a fair worker to move data to. This is not a safe assumption 

for a production system, and we will address it in more detail in Part 3.

fair process reducer = Reducer

variables final = 0, consumed = [w \in Workers |-> FALSE];

begin

  Schedule:

    \* Same as before

  ReduceResult:

    while \E w \in Workers: ~consumed[w] do

      either

        \* Reduce

        reduce();

      or

        \* Reassign

         with from_worker \in {w \in UnfairWorkers:  ~consumed[w] /\ 

result[w] = NULL},

Chapter 11  MapreduCe



180

             to_worker \in FairWorkers do

          \* REASSIGN LOGIC

          \* how does it know what to move?

          \* And how does it move it?

          skip;

        end with;

     end either;

    end while;

\* Reduce and \* Reassign are ‘real’ comments in the spec, not just teaching 

annotations. I could have made them labels. This would make the concurrency more 

fine-grained at the cost of a slower model. I don’t think they’re necessary yet. I may 

choose to add them later, once I have the coarser concurrency model working properly. 

So, what goes in the \* REASSIGN LOGIC block? Here’s how I thought through it.

First of all, this is handling a failed worker, right? But the while loop keeps us going 

until we’ve consumed all of the workers. If a worker truly crashed, we’d be waiting on it 

forever. If the worker didn’t crash and later gets a result, it will mess up our calculations. 

Either way, we can prevent the problem by declaring the failed worker consumed. We 

might also want to record that we thought it failed, but that’s not (yet) useful to us. I’ll 

burn that bridge when we get to it.

Similarly, on one hand, we might reassign to a consumed worker. If that happens, 

our calculations are off: the reassigned items will never be totaled. On the other hand, if 

we only reassign to unconsumed workers, what happens if the last worker we’re waiting 

on fails? There wouldn’t be any unconsumed workers to reassign to. That tells me we 

want a compromise: we can reassign to any fair worker, but if it was consumed, we have 

to unconsume it.

with from_worker \in {w \in UnfairWorkers:  ~consumed[w] /\ result[w] = 

NULL},

     to_worker \in FairWorkers do

  \* REASSIGN LOGIC

  consumed[from_worker] := TRUE ||

  consumed[to_worker] := FALSE;

end with;

Chapter 11  MapreduCe



181

Add this and rerun the model. It will still fail, of course, but it should fail because of 

the assert statement, not the Liveness property. While we still can’t guarantee it gets the 

correct answer, at least we can guarantee it gets some answer.

Now for part two: What does it actually mean to “reassign”? Ideally, that we dump 

anything that was in from_worker‘s queue into to_worker’s queue. But we can’t get 

that ’anything’ from queue! It represents the data we sent directly between the reducer 

and the fair worker, so using it would violate our abstraction. Also, we’re destructively 

updating it, so we can’t guarantee it’s correct data.

Rather, the reducer has to “know” what it sent to from_worker so it can send the 

same items to to_worker. We can most easily do this by having it locally track the 

assignments. Then, we can append from_worker’s assignment to to_worker’s queue.

fair process reducer = Reducer

variables final = 0,

consumed = [w \in Workers |-> FALSE],

assignments = [w \in Workers |-> <<>>];

begin

  Schedule:

    with worker_order = PT!OrderSet(Workers) do

      queue := [ w \in Workers |->

        LET offset == PT!Index(worker_order, w) - 1 \* sequences start at 1

        IN PT!SelectSeqByIndex(input, LAMBDA i: i % Len(worker_order) = offset)

      ];

      assignments := queue;

    end with;

  ReduceResult:

    while \E w \in Workers: ~consumed[w] do

      either

        \* Reduce

        reduce();

      or

        \* Reassign

        with

          from_worker \in {w \in UnfairWorkers: ~consumed[w] /\ result[w] = NULL},

          to_worker \in FairWorkers

        do

Chapter 11  MapreduCe



182

          assignments[to_worker] :=

            assignments[to_worker] \o

            assignments[from_worker];

          queue[to_worker] :=

            queue[to_worker] \o

            assignments[from_worker];

          consumed[from_worker] := TRUE ||

          consumed[to_worker] := FALSE;

        end with;

     end either;

    end while;

  Finish:

    assert final = SumSeq(input);

end process;

I’m tempted to merge consumed and assignments into a single structure. But since 

I’m reassigning to the entire queue at once in Schedule, nesting it in a structure would 

make that mutation considerably more complicated. I also update assignments in the 

Reassign block. It doesn’t yet change the current behavior of the spec, but it is more 

comprehensive.

Update the spec and rerun the model checker. This time, the error is a little more 

complex. The exact details it finds on your computer may be slightly different, but the 

overall error is this:

 1. The reducer assigns values to each worker.

 2. The fair worker finishes.

 3. We reassign new items for the fair worker.

 4. The fair worker is already done, so it doesn’t update.

 5. We reuse the same result, getting the wrong final answer.

Change return to goto WaitForQueue, recompile, and rerun. This still fails, because 

we didn’t null out the relative value. Add result[to_worker] := NULL; to the with 

statement and try again. This fails because the reducer can reassign after the worker 

finishes its queue but before it can run Result. Every small tweak we make leads to a 

different concurrency error.

Chapter 11  MapreduCe



183

Let’s take a step back. While blind guessing can work for tests or typecheckers, it 

won’t help with specification. We need to think about what we’re doing. Our problem 

here is this: the reducer has no way of knowing whether a given result includes every 

item assigned to the worker. We originally knew that because the worker would only 

write a result once it had completed the entire queue. But we can no longer rely on that. 

What can we do instead?

What if we included more information in the result? The reducer knows how 

many items it assigned to the worker. The worker knows how many items it completed. 

What if, when it was done, the worker sent back both the final result and the number of 

processed items? Then the reducer knows to consume it only when it matches the size of 

the assignment. This change touches on many parts of the spec, so they are listed below 

in isolation:

  result = [w \in Workers |-> [total |-> NULL, count |-> NULL]],

macro reduce() begin

  with

    w \in {w \in Workers:

       ~consumed[w] /\ result[w].count = Len(assignments[w])}

  do

    final := final + result[w].total;

    consumed[w] := TRUE;

  end with;

end macro;

procedure work()

  variables total = 0, count = 0;

begin

  WaitForQueue:

    await queue[self] /= <<>>;

  Process:

    while queue[self] /= <<>> do

      total := total + Head(queue[self]);

      queue[self] := Tail(queue[self]);

      count := count + 1;

    end while;

Chapter 11  MapreduCe



184

  Result:

    result[self] := [total |-> total, count |-> count];

    goto WaitForQueue;

end procedure;

\* in reducer

  ReduceResult:

    while \E w \in Workers: ~consumed[w] do

      either

        \* Reduce

        reduce();

      or

        \* Reassign

        with

          from_worker \in {w \in UnfairWorkers:

            ~consumed[w] /\  result[w].count /= Len(assignments[w])

          },

\* ...

Make the updates, recompile, rerun. The good news is that it’s no longer getting an 

11-step error. The bad news is it’s now getting a 17-step error. Inspect the error trace and 

see if you can see what the problem is. You should get something similar to this:

 1. We assign <<0, 1>> to the fair worker and <<0, 1>> to the unfair 

worker.

 2. The fair worker completes as normal. It sets result.total to 1. 

The reducer reads it and sets final to final := 0 + 1.

 3. The reducer reassigns the unfair worker’s assignments to worker.

 4. The fair worker completes the new assignment. It sets result.

total to 2.

 5. The reducer sets final := 1 + 2.

 6. The reducer completes with final = 3, SumSeq(input) = 2. 

Error.

Chapter 11  MapreduCe



185

The problem is we’re double-counting the first assignment in final. One way to fix 

this would be to subtract the worker’s old result from final whenever we reassign. That 

seems error prone, so I’d rather track the final result from each worker and invalidate 

that on reassignment. Then, in Finish, we sum up the final results.

macro reduce() begin

  with

    w \in {w \in Workers:

       ~consumed[w] /\ result[w].count = Len(assignments[w])}

  do

    final[w] := result[w].total;

    consumed[w] := TRUE;

  end with;

end macro;

\* ...

fair process reducer = Reducer

variables final = [w \in Workers |-> 0],

consumed = [w \in Workers |-> FALSE],

\* In Reassign

          assignments[to_worker] :=

            assignments[to_worker] \o

            assignments[from_worker];

          queue[to_worker] :=

            queue[to_worker] \o

            assignments[from_worker];

          consumed[from_worker] := TRUE ||

          consumed[to_worker] := FALSE;

          final[to_worker] := 0;

        end with;

     end either;

    end while;

  Finish:

    assert SumSeq(final) = SumSeq(input)

\* ...

Liveness == <>[](SumSeq(final) = SumSeq(input))

Chapter 11  MapreduCe



186

This, finally, is successful (32,238 states)! Try adding a third or even fourth worker 

and confirm that the spec is still successful. We now have a working, fault-tolerant 

version of MapReduce.

Then again, we assumed that the reducer would only reassign from unfair workers 

and to fair ones. How could it know, though? It’s not like it can tell which workers are 

stuttering from the outside. In the next section, we will account for exactly that.

Here’s our current version of the spec:

EXTENDS TLC, Sequences, Integers, FiniteSets

PT == INSTANCE PT

CONSTANTS Workers, Reducer, NULL

PossibleInputs == PT!TupleOf(0..2, 4)

SumSeq(seq) == PT!ReduceSeq(LAMBDA x, y: x + y, seq, 0)

FairWorkers == CHOOSE set_w \in SUBSET Workers: Cardinality(set_w) = 1

UnfairWorkers == Workers \ FairWorkers

(*--algorithm mapreduce

variables

  input \in PossibleInputs,

  result = [w \in Workers |-> [total |-> NULL, count |-> NULL]],

  queue = [w \in Workers |-> <<>>];

macro reduce() begin

  with

    w \in {w \in Workers:

      result[w].count = Len(assignments[w]) /\ ~consumed[w]}

  do

    final[w] := result[w].total;

    consumed[w] := TRUE;

  end with;

end macro;

procedure work()

  variables total = 0, count = 0;

Chapter 11  MapreduCe



187

begin

  WaitForQueue:

    await queue[self] /= <<>>;

  Process:

    while queue[self] /= <<>> do

      total := total + Head(queue[self]);

      queue[self] := Tail(queue[self]);

      count := count + 1;

    end while;

  Result:

    result[self] := [total |-> total, count |-> count];

    goto WaitForQueue;

end procedure;

fair process reducer = Reducer

variables final = [w \in Workers |-> 0],

consumed = [w \in Workers |-> FALSE],

assignments = [w \in Workers |-> <<>>];

begin

  Schedule:

    with worker_order = PT!OrderSet(Workers) do

      queue := [ w \in Workers |->

        LET offset == PT!Index(worker_order, w) - 1 \* sequences start at 1

        IN PT!SelectSeqByIndex(input, LAMBDA i: i % Len(worker_order) = offset)

      ];

      assignments := queue;

    end with;

  ReduceResult:

    while \E w \in Workers: ~consumed[w] do

      either

        \* Reduce

        reduce();

      or

        \* Reassign

        with

Chapter 11  MapreduCe



188

          from_worker \in {w \in UnfairWorkers:

              result[w].count /= Len(assignments[w]) /\ ~consumed[w]

          },

          to_worker \in FairWorkers

        do

          assignments[to_worker] :=

            assignments[to_worker] \o

            assignments[from_worker];

          queue[to_worker] :=

            queue[to_worker] \o

            assignments[from_worker];

          consumed[from_worker] := TRUE ||

          consumed[to_worker] := FALSE;

          final[to_worker] := 0;

        end with;

     end either;

    end while;

  Finish:

    assert SumSeq(final) = SumSeq(input);

end process;

fair process fair_workers \in FairWorkers

begin FairWorker:

  call work();

end process;

process worker \in UnfairWorkers

begin RegularWorker:

  call work();

end process

end algorithm; *)

\* TRANSLATION

Liveness == <>[](SumSeq(final) = SumSeq(input))

Chapter 11  MapreduCe



189

 Part Three: Statuses
In theory, we don’t have a way of distinguishing failing nodes from passing ones. In 

practice, we can do things that give us a reasonable amount of confidence. For example, 

we can ping all the servers every N seconds and assume that the ones that don’t answer 

in time are failing. Of course, the node might not be failing, and it could be that our 

reducer is acting up.

There are a few different ways of exploring this space. We could manually specify 

a heartbeat protocol, for one. In the interests of keeping this book under 600 pages, I’d 

like to simulate this by just loosening an assumption. Before, the server could move the 

queue of an unfair worker to a fair one. Now, the server can still move the assignments 

of an unfair worker but does not know which ones are fair. Instead, it must decide which 

worker to pick. We will continue to assume the system never reassigns away from a fair 

worker, as that worker always responds to the heartbeat.

  ReduceResult:

    while \E w \in Workers: ~consumed[w] do

      either

        \* Reduce

        reduce();

      or

        \* Reassign

        with

          from_worker \in {w \in UnfairWorkers:

               ~consumed[w] /\ result[w].count /= Len(assignments[w])

          },

          to_worker \in Workers \ {from_worker}

          \* . . .

We need to have two unfair workers to have different behavior here. Since one 

worker must always be fair by assumption, this means we’ll need at least three total.

Workers <- {w1, w2, w3}

If you now run this, you will see … the model never stops, ever. It turns out we 

accidentally created an unbounded model. TLC was able to find an infinite number of 

unique states. This suggests something is growing without limit, such as always being 

able to increment a number. That, obviously, is an error, too.

Chapter 11  MapreduCe



190

In the last chapter we mentioned that it’s good practice to define a TypeInvariant to 

constrain the values of our variables. We didn’t do that here and it came back to bite us. One 

of the type invariants of our system is that there’s only a fixed number of items, so no worker 

should have more than that number of items enqueued. If we had written a type invariant, 

TLC would have failed that state with an error instead of running forever. Let’s define it now.

But first we need to update PossibleInputs. We hard-coded the inputs to 

PossibleInput, including the number of items. If we want our invariant to refer to that 

count, we need to make it a distinct operator or constant. And if we’re doing that, we 

might as well make it a constant so we can use ASSUME and multiple models.

CONSTANTS ItemRange, ItemCount

ASSUME ItemRange \subseteq Nat

ASSUME ItemCount \in Nat

PossibleInputs == PT!TupleOf(ItemRange, ItemCount)

To get the original (infinite) model behavior back, set ItemRange <- 0..2, 

ItemCount <- 4. Since TypeInvariant is an invariant that uses our PlusCal variables, we 

need to put it in a define block above the macro:

variables

  input \in PossibleInputs,

  result = [w \in Workers |-> [total |-> NULL, count |-> NULL]],

  queue = [w \in Workers |-> <<>>];

define

  TypeInvariant ==

    /\ \A w \in Workers:

      /\ Len(queue[w]) <= ItemCount

      /\ \A item \in 1..Len(queue[w]):

        queue[w][item] \in ItemRange

      /\ \/ result[w].total = NULL

         \/ result[w].total <= SumSeq(input)

      /\ \/ result[w].count = NULL

         \/ result[w].count <= ItemCount

end define;

macro reduce() begin

Chapter 11  MapreduCe



191

We could be more elaborate, but the important thing here is that we check all of the 

queues have fewer than ItemCount items in them. We could also check the types of the 

private variables, in which case TypeInvariant would have to go after the translation.

If you set INVARIANT TypeInvariant and rerun the model, you should get a definite 

failure. What happens is we can reassign away from a worker, mark it consumed, and 

then reassign back to the worker and unconsume it. This effectively duplicates its queue, 

leading to an incorrect count.

For the actual fix, I considered “wiping” the old assignments from the internal queue. 

This might work, but we track when workers are done by the number of assignments 

they complete. Wiping the assignments might conflict with that logic. A simpler solution 

is to recognize that “consumed” is tracking two separate responsibilities: a node that’s 

finished working, and a node that we consider bad. There’s actually three states, though: 

“active,” “inactive,” and “broken.” We’re done when there are no “active” nodes. When 

reassigning, we only reassign to “active” or “inactive” nodes. Let’s make those changes.

First, I define a new variable status, which tracks the state of each worker. This 

is internal to the reducer, but for convenience purposes we put it in the global scope. 

That way we can add a helper operator that gets all active workers, and add the possible 

statuses to our type invariant.

(*--algorithm mapreduce

variables

  input \in PossibleInputs,

  result = [w \in Workers |-> [total |-> NULL, count |-> NULL]],

  queue = [w \in Workers |-> <<>>],

  status = [w \in Workers |-> "active"]; \* Only reducer should touch this

define

  ActiveWorkers == {w \in Workers: status[w] = "active"}

  HealthyWorkers == {w \in Workers: status[w] /= "broken"}

  TypeInvariant ==

    /\ status \in [Workers -> {"active", "inactive", "broken"}]

    /\ \A w \in Workers:

      /\ Len(queue[w]) <= ItemCount

      /\ \A item \in 1..Len(queue[w]):

        queue[w][item] \in ItemRange

Chapter 11  MapreduCe



192

      /\ \/ result[w].total = NULL

         \/ result[w].total <= SumSeq(input)

      /\ \/ result[w].count = NULL

         \/ result[w].count <= ItemCount

end define;

Instead of reducing overconsumed workers, we reduce over the workers that are 

active. Instead of setting them to consumed, we set their status to inactive.

macro reduce() begin

  with

    w \in {w \in ActiveWorkers:

      result[w].count = Len(assignments[w])

      }

  do

    final[w] := result[w].total;

    status[w] := "inactive";

  end with;

end macro;

The rest of the changes are in ReduceResult. We can get rid of the consumed variable, 

because we’re now tracking statuses instead. Our while loop loops as long as there are 

active workers. Now that we have a helper operator for the set of active workers, we can 

replace the conditional with an empty-set check.

  ReduceResult:

    while ActiveWorkers /= {} do

In our with statement, we restrict our from_worker to only the workers that are 

active, not inactive or broken. Our to_worker can be active or inactive, but it may not be 

broken.

        with

          from_worker \in ActiveWorkers \ FairWorkers,

          to_worker \in HealthyWorkers \ {from_worker}

        do

Chapter 11  MapreduCe



193

Finally, instead of setting the from_worker to inactive, we set it to “broken.” That 

ensures we don’t ever try to reassign anything to that worker.

          status[from_worker] := "broken" ||

          status[to_worker] := "active";

          final[to_worker] := 0;

A quick back-of-the-envelope suggests that the fixed model is going to have a very 

high number of states. To sanity-check my fixes, I decide to run them on a smaller model 

first. I clone the first one and set Workers <- {w1, w2}, ItemCount <- 2, ItemRange 

<- 0..2. One fewer worker and half the items assigned. I use the same invariants and 

properties and run the new model, getting a pass with 2,664 states.

With that, I run the main model. It passes with 2,147,724 states, so I’m confident that 

my fix works. Final spec:

EXTENDS TLC, Sequences, Integers, FiniteSets

PT == INSTANCE PT

CONSTANTS Workers, Reducer, NULL

CONSTANTS ItemRange, ItemCount

ASSUME ItemRange \subseteq Nat

ASSUME ItemCount \in Nat

PossibleInputs == PT!TupleOf(ItemRange, ItemCount)

SumSeq(seq) == PT!ReduceSeq(LAMBDA x, y: x + y, seq, 0)

FairWorkers == CHOOSE set_w \in SUBSET Workers: Cardinality(set_w) = 1

UnfairWorkers == Workers \ FairWorkers

(*--algorithm mapreduce

variables

  input \in PossibleInputs,

  result = [w \in Workers |-> [total |-> NULL, count |-> NULL]],

  queue = [w \in Workers |-> <<>>],

  status = [w \in Workers |-> "active"];

define

  ActiveWorkers == {w \in Workers: status[w] = "active"}

  HealthyWorkers == {w \in Workers: status[w] /= "broken"}

Chapter 11  MapreduCe



194

  TypeInvariant ==

    /\ status \in [Workers -> {"active", "inactive", "broken"}]

    /\ \A w \in Workers:

      /\ Len(queue[w]) <= ItemCount

      /\ \A item \in 1..Len(queue[w]):

        queue[w][item] \in ItemRange

      /\ \/ result[w].total = NULL

         \/ result[w].total <= SumSeq(input)

      /\ \/ result[w].count = NULL

         \/ result[w].count <= ItemCount

end define;

macro reduce() begin

  with

    w \in {w \in ActiveWorkers:

      result[w].count = Len(assignments[w])

      }

  do

    final[w] := result[w].total;

    status[w] := "inactive";

  end with;

end macro;

procedure work()

  variables total = 0, count = 0;

begin

  WaitForQueue:

    await queue[self] /= <<>>;

  Process:

    while queue[self] /= <<>> do

      total := total + Head(queue[self]);

      queue[self] := Tail(queue[self]);

      count := count + 1;

    end while;

Chapter 11  MapreduCe



195

  Result:

    result[self] := [total |-> total, count |-> count];

    goto WaitForQueue;

end procedure;

fair process reducer = Reducer

variables final = [w \in Workers |-> 0],

assignments = [w \in Workers |-> <<>>];

begin

  Schedule:

    with worker_order = PT!OrderSet(Workers) do

      queue := [ w \in Workers |->

        LET offset == PT!Index(worker_order, w) - 1 \* sequences start at 1

        IN PT!SelectSeqByIndex(input, LAMBDA i: i % Len(worker_order) = offset)

      ];

      assignments := queue;

    end with;

  ReduceResult:

    while ActiveWorkers /= {} do

      either

        \* Reduce

        reduce();

      or

        \* Reassign

        with

          from_worker \in ActiveWorkers \ FairWorkers,

          to_worker \in HealthyWorkers \ {from_worker}

        do

          assignments[to_worker] :=

            assignments[to_worker] \o

            assignments[from_worker];

          queue[to_worker] :=

            queue[to_worker] \o

            assignments[from_worker];

          status[from_worker] := "broken" ||

Chapter 11  MapreduCe



196

          status[to_worker] := "active";

          final[to_worker] := 0;

        end with;

     end either;

    end while;

  Finish:

    assert SumSeq(final) = SumSeq(input);

end process;

fair process fair_workers \in FairWorkers

begin FairWorker:

  call work();

end process;

process worker \in UnfairWorkers

begin RegularWorker:

  call work();

end process

end algorithm; *)

\* BEGIN TRANSLATION

\* ...

\* END TRANSLATION

Liveness == <>[](SumSeq(final) = SumSeq(input))

 Exercise
The last thing we’ll do is cover one edge case. Earlier I said that our definition won’t 

work if the number of items is less than the number of workers, since some worker won’t 

leave WaitForQueue. Some might argue this will probably not happen, as we mainly use 

MapReduce when we want to process vast numbers of items; the odds that we’ll only 

try to process one or two is vanishingly small. We could represent this by adding an 

assumption about ItemCount.

ASSUME ItemCount >= Cardinality(Workers)

Chapter 11  MapreduCe



197

But I don't want to leave such a large failure mode in the spec, so we should try 

to fix it. Try running the model with Workers <- {w1, w2, w3}, ItemCount <- 2, 

PROPERTY Liveness. Surprisingly, it passes! This is because Liveness only checks we 

reach the correct answer, not that the reducer terminates with the correct answer. It can 

still correctly sum up all of the values but stay trapped in the ReduceResult loop, never 

reaching Finish.

Normally we’d check Termination to test this but Termination asserts that all of the 

processes terminate. Our workers never terminate, so Termination is not quite what we 

want. Instead, we need to restrict it to just the reducer.

ReducerTerminates == <>(pc[Reducer] = "Finish")

Add PROPERTY ReducerTerminates and rerun. You should see it fail.

I’ll leave this last change to you as an exercise: How can you modify our MapReduce 

algorithm to satisfy ReducerTerminates? Make sure you also ensure that Liveness 

and TypeInvariant remain satisfied, and that your fix works for both ItemCount <- 2 

and ItemCount <- 4. You might want to make two separate models so that switching 

between the two is easier. Good luck!

 Summary
We fully specified an example of MapReduce. Obviously not every single aspect is 

covered, but we’ve provided enough to understand how we deal with partial failures. 

While our model was barely over 100 lines of PlusCal, it was able to find complex errors 

and liveness issues.

Chapter 11  MapreduCe



199
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5

APPENDIX A

 Math
Most of the math that TLA+ uses is relatively simple, but not everybody has the 

background, so this appendix is here to help you learn what you need to know to use 

TLA+. This is not intended to be a rigorous or complete introduction, just enough to give 

you some intuition for writing TLA+ operators. You can read a more in-depth treatment 

of this that’s still oriented toward TLA+ in the original Specifying Systems book, which is 

provided in the toolbox under Help > Specifying Systems.

Most math uses a different notation than most programs. In C, you have ! for “not”, && 

for “and”, and || for “or”. The corresponding math notations are ¬, ∨, and ∧, none of which 

are part of default keyboards. That’s why in TLA+ we use ~, /\, and \/. For other math 

symbols, we generally use their LaTeX equivalents, that is, \in for ∈ and \notin for ∉.

 Propositional Logic
Propositional Logic is how we determine statements are true or false. A proposition 
formula is a statement about Boolean variables we can make true or false. We usually 

use “T” to mean “True” and “F” to mean “False.” You might also see ⊤ (“top”) and ⊥ 

(“bottom”) in other places, but we won’t be using those.

As we mentioned earlier, ∧ means “and” and ∨ means “or”. So a formula like  

A ∧ (B ∨ ¬C) means “A is true AND (B is true OR C is false)”.

https://doi.org/10.1007/978-1-4842-3829-5


200

Two formulas are equivalent if we get the same value for all possible assignments of 

Boolean variables. We can visualize this with a truth table, which is a visual table of all 

possible assignments and results. This is a truth table for A ∧ B and A ∨ B:

A B A ∧ B A ∨ B

T T T T

T F F T

F T F T

F F F F

Since their columns are different, A ∧ B ≠ A ∨ B In contrast, here’s the truth table for 

¬¬A:

A ¬A ¬(¬A)

T F T

F T F

Since their columns are the same, A = ¬¬A. When two things are equal, we can 

substitute one for the other in any formula. It’s pretty easy to show that A ∧ ¬A is always 

false, so we can simplify (A ∧ ¬A) ∨ B to just B.

In addition to the usual programming logical statements, propositional logic has ⇒ 

(“implies”). P ⇒ Q means “if P is true, then Q is true.” The formula P ⇒ Q, though, is only 

false if P is true and Q is false. If P is false, P ⇒ Q is true. Here’s a truth table:

P Q P ⇒ Q ¬P ∨ Q

T T T T

T F F F

F T T T

F F T T

APPENDIX A  MATh



201

By looking at this table, we can see that P ⇒ Q = ¬P ∨ Q. So “P implies Q” is 

equivalent to saying “either P is false or Q is true.” I find it easier to mentally translate P 

⇒ Q this way every time I use it. One nice thing about this form is we can combine it with 

¬¬A = A to learn how to “flip” an implication:

 

P Q P Q

P Q

P Q

Q P

P Q Q P

Þ = Ø Ú
=Ø ÚØØ
= Ø( )ÚØ Ø( )
= Ø Ø( )Ú Ø( )

Þ =Ø ÞØ  

Another way of saying A = B is to write A ⇔ B, which means that B is true if and only 
if A is true. In other words, they have the same truth value.

Finally, De Morgan’s Law is two substitutions we can make:

• ¬P ∧ ¬Q ⇔ ¬(P ∨ Q)

• ¬P ∨ ¬Q ⇔ ¬(P ∧ Q)

Try writing the truth tables for both of them to confirm that they work. De Morgan’s 

law is useful for simplifying conditionals.

 Evaluating Propositions in TLA+
If you’ve read Chapter 2, you know about the TLA+ expression evaluator. We can use 

these to check the values of propositions:

>> TRUE /\ FALSE

FALSE

Combined with set comprehensions, we can create a complete truth table for an 

expression:

>>  {<<A, B,  A  =>  B>>  : A,  B  \in BOOLEAN}

{ <<FALSE, FALSE, TRUE>>,

     <<FALSE, TRUE, TRUE>>,

     <<TRUE, FALSE, FALSE>>,

     <<TRUE, TRUE, TRUE>> }

APPENDIX A  MATh



202

 Sets
The main collection in math is the set. A set is a collection of unique elements without 

order. {1, 2} is a set. {1, 1} is just the set {1}, as we do not have any duplicates in the set. 

<<1, 2>> is not a set, because it has an ordering. {} is a set with no elements, aka the 

“empty set.” {{}} is the set containing the empty set. The cardinality of a set is the number 

of elements in it. We write the cardinality of S as |S|. |{{}}| = 1. This corresponds to the 

Cardinality operator in the TLA+ FiniteSets module.

Often, we want to know if something is in a set. We write x ∈ set to say that set 

contains the element x, and x∉ set to say that the set does not contain the element x.  

A set can contain other sets, so x ∉ {{x}} but {x} ∈ {{x}}.

If we have two sets, S1 and S2, we can relate them in several ways:

• Two sets are equal if they have the same elements. {1} ≠ {2}, 

{1, 2} = {1, 2}

• S1 is a subset of S2 if every element of S1 is also an element of S2.  

The math symbol is ⊆ (\subseteq). {1} ⊆ {1, 2} but {1, 3} ⊈ {1, 2}.

• The union of two sets is the set of elements present in either one of 

them. The math symbol is ∪ (\union, or \cup). {1, 2} ∪ {1, 3} = {1, 2, 3}.

• The intersection of two sets is the set of elements present in both of 

them.The math symbol is ∩ (\intersect, or \cap). {1, 2} ∩ {1, 3} = {1}.

• The set difference of two sets, written S1 \ S2, is all of the elements of 

S1 that are not in S2. {1, 2} \ {1, 3} = {2}.

There are some tautologies we can build with these. For example, (S1 \ S2) ∩ S2 = {}, 

and S1 ⊆ S2 ∧ S2 ⊆ S1 means that S1 = S2.

We can generalize union from two sets to a set of sets, called 

⋃. ∪ {S1, S2, …} = S1 ∪ S2 ∪ …. We write ∪ as UNION in TLA+. We could do the same with 

intersection to get ⋂, but that’s not a core primitive of TLA+.

APPENDIX A  MATh



203

Finally, for every set S we have a corresponding power set 2S . 2S is the set of all 

subsets of S. We write it that way because |2S| = 2|S|. To see why this is the case, consider 

the case where S = {x, y}. We can then correlate every subset of S with a two-digit binary 

string:

subset string

{ } 00

{x} 01

{y} 10

{x, y} 11

In TLA+ we write 2S as SUBSET S.

So far we’ve only talked about finite sets. We can extend all of these operations to 

infinite sets, too. TLC can test membership of infinite sets but cannot quantify over them.

 Predicate Logic
By combining propositional logic and set theory, we get predicate logic. Predicate logic 

lets us write formulas about the elements of sets and is the basis of almost everything 

we do in TLA+. Predicates extend propositons with two logical statements, called 

quantifiers:

• ∃ (\E) means there exists. ∃x ∈ S : P (x) means that there is at least 

one element of S where P(x) is true.

• ∀ (\A) is for all. ∀x ∈ S : P (x) means that for every single element of S 

P(x) is true.

To get a sense of how this works, let’s go through some formulas. In all these cases, 

Bool is the set {T, F }, Int is the set of all integers, and N at is the set {0, 1, 2, 3, . . . } (the 

“natural” numbers).

APPENDIX A  MATh



204

NATURAL NUMBERS

historically the natural numbers started from 1, but there’s no modern consensus among 

mathematicians on whether or not 0 is or should be a natural number. Some math is simpler 

with it, and some math is simpler without it. TLA+ considers 0 a natural number, so that is 

what we’ll use.

• ∃b ∈ Bool : b ∨ b is true, since T ∨ T is true.

 – ∀b ∈ Bool : b ∨ b is false, since F ∨ F is false.

• ∃b ∈ Bool : b ∨ ¬b is true, since T ∨ ¬T is true.

 – ∀b ∈ Bool : b ∨ ¬b is true, since it’s true for all (two) elements of Bool.

• ∃b ∈ Bool : b ∧ ¬b is false, since it’s false for both T and F.

 – ∀b ∈ Bool : b ∧ ¬b is false, because it’s not true for at least one element.

You might think that ¬∃x ∈ S : P (x) ⇒ ¬∀x ∈ S : P (x): If there doesn’t exist any 

element where P is true, then P isn’t true for all elements. After all, how could something 

hold for all elements of S if it doesn’t hold for any elements of S?

What if S is empty? Then ¬∃x ∈ S is vacuously true: there are no elements in S, so 

there aren’t any element S where P is true. But ∀x ∈ S is also vacuously true: P(x) holds 

for all (zero) elements of S.

• ∃x ∈ N at : x = x + x is true, because there is at least one integer that’s 

equal to twice itself: 0.

 – ∃x ∈ N at : x ≠ x + 0 ⇒ x = x + x looks like it’s false, but it’s actually true! This 

is a common pitfall with ⇒ . Remember, we can rewrite the implication as 

¬(0 ≠ 0) ∨ (x = x + x). If we plug in x = 0, we get ¬(0 ≠ 0) ∨ (0 = 0 + 0), and 

both of those clauses are true!

 – ∃x ∈ N at : (x ≠ 0) ∧ (x = x + x) is definitely, for-real false.

APPENDIX A  MATh



205

• ∀x, y ∈  N at : x ≥ y ∨ y ≥ x is true.

 – ∀x, y ∈ N at : x > y ∨ y > x is false, as it isn’t true if we pick x = y.

 – ∀x, y ∈ N at : x ≠ y ⇒ x > y ∨ y > x is true.

We can also nest predicates:

• ∃x ∈ N at : ∀y ∈ N at : x ≤ y is the statement “there is some smallest 

element of  N at” and is true (it’s 0).

• ∃x ∈ N at : ∀y ∈ N at : x < y is the statement “there is some element of  

N at smaller than all the elements of  N at” and is false, as 0 0< .

• ∃x ∈ N at : ∀y ∈ N at \ {x} : x < y is the statement “there is some 

element of  N at smaller than all the others” and is true.

• ∃x ∈ Int : ∀y ∈ Int : x ≤ y is the statement “there is some smallest 

element of Int” and is false, as we can always find another smaller 

number.

• ∀y ∈ Int : ∃x ∈ Int : x < y is the statement “for every element of 

Int, there is at least one element smaller than it” and is true. The 

difference between this and the last example is that instead of picking 

one x that must hold true for every single y, we’re saying that for every 

single y we can pick an appropriate x. This doesn’t have to be the 

same x each time, though. If you give me y = −527, and I can pick  

x = −528; if you give me y = −528, I can pick x = −529, and so on and 

so forth.

• ∀y ∈ N at : ∃x ∈ N at : x < y is false, though. If you give me y = 0, I can’t 

pick a smaller number, because 0 is already the smallest number of   

N at.

APPENDIX A  MATh



206

 Evaluating Predicates in TLA+
TLA+ cannot quantify over infinite sets. We can quantify over finite sets, though, such as 

BOOLEAN.

>>  \A A, B \in BOOLEAN: (A => B) <=> (~A \/ B)

TRUE

>>  \A A, B \in BOOLEAN: A <=> ~B

FALSE

>>  \A A \in BOOLEAN: \E B \in BOOLEAN: A <=> ~B

TRUE

>>  \E B \in BOOLEAN: ~(\A A \in BOOLEAN: A <=> ~B)

TRUE

We can use this to compare equations and check if two equations are substitutable.

>> \A A, B \in BOOLEAN: ~(A /\ B) = ~A \/ ~B

TRUE

APPENDIX A  MATh



207
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5

APPENDIX B

 The PT Module
This is the PT module, which contains useful support operators to help 

people reading Practical TLA+. Normally we would break the operators up 

by domain, but we lump them all here to make it easier on beginners. All 

operators have a description of how they work.

---- MODULE PT ----

\* LOCAL means it doesn't get included when you instantiate the module itself.

LOCAL INSTANCE FiniteSets

LOCAL INSTANCE Sequences

LOCAL INSTANCE Integers

Max(x, y) == IF x > y THEN x ELSE y

Min(x, y) == IF x < y THEN x ELSE y

(* SET STUFF *)

(* Fairly simple one, uses a set comprehension to filter subsets by their 

cardinality (number of elements) *)

SubsetsOfSize(set, n) == { set1 \in SUBSET set : Cardinality(set1) = n}

(*

TLA+ forbids recursive higher-order operators, but it is fine with 

recursive functions. Reduceset generates a recursive function over the 

subsets of a set, which can be used to recursively run a defined operator. 

This can then be used to define other recursive operators.

*)

https://doi.org/10.1007/978-1-4842-3829-5


208

ReduceSet(op(_, _), set, acc) ==

  LET f[s \in SUBSET set] == \* here's where the magic is

    IF s = {} THEN acc

    ELSE LET x == CHOOSE x \in s: TRUE

         IN op(x, f[s \ {x}])

  IN f[set]

(* FUNCTION STUFF *)

(*

Gets the set of all possible values that f maps to.

essential the "opposite" of DOMAIN. Uses a set comprehension-map.

*)

Range(f) == { f[x] : x \in DOMAIN f }

(*

Places an ARBITRARY ordering on the set. Which ordering you get is 

implementation-dependent but you are guaranteed to always receive the  

same ordering.

*)

OrderSet(set) == CHOOSE seq \in [1..Cardinality(set) -> set]: Range(seq) = set

\* Get all inputs to a function that map to a given output

Matching(f, val) == {x \in DOMAIN f: f[x] = val}

(* SEQUENCE STUFF *)

\* TupleOf(s, 3) = s \X s \X s

TupleOf(set, n) == [1..n -> set]

\* All sequences up to length n with all elements in set.

\* Equivalent to TupleOf(set, 0) \union TupleOf(set, 1) \union ...

\* Includes empty sequence

SeqOf(set, n) == UNION {TupleOf(set, m) : m \in 0..n}

APPENDIX B  ThE PT MoDulE



209

ReduceSeq(op(_, _), seq, acc) ==

  ReduceSet(LAMBDA i, a: op(seq[i], a), DOMAIN seq, acc)

(*

   SelectSeq lets you filter a sequence based on a test operator. It acts on 

the values. SelectSeqByIndex does the exact same, except the operator tests 

the indices. This is useful if you need to round-robin a thing.

*)

SelectSeqByIndex(seq, T(_)) ==

  ReduceSet(LAMBDA i, selected:

              IF T(i) THEN Append(selected, seq[i])

              ELSE selected,

            DOMAIN seq, <<>>)

\* Pulls an indice of the sequence for elem.

Index(seq, elem) == CHOOSE i \in 1..Len(seq): seq[i] = elem

(*

   % is 0-based, but sequences are 1-based. This means S[x % Len(S)] might 

be an error, as it could evaluate to S[0], which is not an element of 

the sequence. This is a binary operator. See [cheat sheet] to see the 

defineable boolean operators.

*)

LOCAL a %% b == IF a % b = 0 THEN b ELSE a % b

SeqMod(a, b) == a %% b

=====

APPENDIX B  ThE PT MoDulE



211
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5

 APPENDIX C

PlusCal to TLA+
In this book we used TLA+ through the intermediary of PlusCal, an algorithm syntax 

built on top of TLA+. While PlusCal is simple to learn and useful for a wide range of 

problems, not everything can be expressed in it. Rather than teach you how to write 

specs in TLA+, we’re going to provide an overview and intuition for how TLA+ “works.” 

If you want a more rigorous treatment, please refer to the book Specifying Systems, which 

can be accessed for free in the Toolbox under Help > Specifying Systems.

This appendix assumes you’ve read the first six chapters of the book and Appendix 

A. We’ll start by covering some extensions to logic, follow up with how we express 

properties in TLA+, and conclude with a brief discussion of when you’d want to use pure 

TLA+ over PlusCal.

 Temporal Logic
With predicate logic, we could quantify statements: say whether something is true for all 

possible values, or only true for at least one value. Modal logic lets us qualify statements. 

□P means that P is necessarily true. ⋄P means that P is possibly true. What “necessarily” 

and “possibly” mean depends on the modal logic system you’re using. Most of them are 

only interesting to philosophers, but one type of modal logic, temporal logic, matters a 

great deal in software engineering. In a temporal logic, □P means that P is always true, 

while ⋄P means that P is sometimes true.

“Always” is unambiguous here, but there’s two common and exclusive ways people 

interpret “sometimes”:

 1. For every initial state, it is possible to reach a state where P is true.

 2. For every initial state, no matter what you do, you will at some 

point reach a state where P is true.

https://doi.org/10.1007/978-1-4842-3829-5


212

To see the difference between the two, consider rolling a 6-sided dice. If you roll 

once, is it true that ⋄(roll = 6)? Under the first interpretation, yes: it is possible that you 

rolled a six. Under the second interpretation, no: you could roll a 5 instead. But under 

both interpretations, we have ⋄(roll > 0) and ¬⋄(roll = 7).

TLA+ follows the second interpretation. To make it clearer we say eventually instead 

of sometimes. In order for these qualifiers to be useful, we need a way to talk about how 

our statements change. This is what makes it a temporal logic: instead of having fixed, 

static statements, we allow them to evolve over time.

We do this by adding a concept of a variable. You’re already familiar with this: a 

variable is some value that may be different at different points in time. In the context of 

a temporal logic, we represent “different points in time” by having a sequence of states, 

where the values of variables may change between states. For example, if x starts at zero, 

increases by one until it reaches 2, and then goes back to zero, we could represent “what 

happens” as the sequence (x = 0, x = 1, x = 2, x = 0). Here the statement ⋄(x = 2) is true, 

while the statement □(x = 0) is false. We call any such sequence of states a behavior.

Now that we have a means of describing behaviors and properties we want, we need 

a way of describing which behaviors in our system are valid, or actually can happen 

in our system. For example, one possible behavior is (x = 0, x = −9, x = ” :)”, x = 0). We 

probably don’t want that to be valid!

In order to mark the valid behaviors, we use next-state relations, which are built on 

the “actions” of TLA+.

 Actions
An action is a predicate between two consecutive states of a behavior. It looks and 

behaves exactly like any other predicate, except it also contains a prime operator  

(a single quote, or '). In an action, x is the value of x in the first state, while x' is the value 

of x in the next state.

This may seem confusing, so let’s give an example. Take the action Increases == x' 

> x. Increases is true for a state if, in the next state, x is greater than it was before. If the 

behavior is (x = 0, x = 1, x = 2, x = 0), Increases is true for the first and second states, but 

not the third state. In the first state, x = 0 and x' = 1, so x' > x. In the third, x = 2 and x' = 0, 

so ¬(x' > x).

Appendix C  plusCAl to tlA+



213

Another example action is

DecreaseFromAtLeastThree   ==

  /\ x > 2

  /\ x' < x

This is only true if x is greater than 2 and then decreases. In our above behavior, it is 

never true: while at one point x decreased, it didn’t start out greater than 2.

Why are actions important? Combined with our modal operators, actions give us a 

way to describe the total evolution of a system. Let’s assume our counter is supposed to 

be modulo-3: x starts at 0, increments by 1 each tick until it reaches 2, and then returns 

to 0. Every transition can be described as one of two actions:

Increment  ==

  /\ x < 2

  /\ x' = x + 1

Reset  ==

  /\ x = 2

  /\ x' = 0

Every transition is one of these actions. This means that one of these actions is 

always true. This means we can describe all possible behaviors as follows:

Init == (x = 0)

Next == Increment \/ Reset

Spec == Init /\ []Next

Init by itself means the starting state: x must start at zero. □Next means that Next 

must be true for the entire behavior, aka either Increment is true or Reset is true. Since 

both of them constrain how x can change between two states, this is enough to give us a 

specification of our system.

Now, write the following PlusCal algorithm and translate it to TLA+:

EXTENDS Integers

(*--algorithm   counter variables x = 0

begin

  while TRUE do

    either

Appendix C  plusCAl to tlA+



214

      await x < 2;

      x := x + 1;

    or

      await x = 2;

      x  :=  0;

    end either; end while;

  end algorithm; *)

Look familiar?

 TLA
There are two last things we need to take care of. First of all, we require that the next-state 

relation must specify the new values of all variables. Between any two states, the actions 

that are true must cover every variable in the spec. If we forget to account for some value, 

say, account_total, we’re saying it doesn’t matter what account_total' is. This means 

it’s a valid behavior for account_total = 1 and account_total' = "abcdefg"! This 

quickly leads to nonsense, so we require that all variables are specified.

Finally, we need all of our specs to be stutter-invariant. At any point we should 

be able to drop in an extra state where nothing happens. Without this property, we 

eventually run into bizarre problems, and it becomes nearly impossible to cleanly 

combine two specs together. Permitting stuttering just makes the specs a whole lot 

cleaner. So instead of writing []Next, we write [][Next]_x. That’s equivalent to writing 

[](Next \/ UNCHANGED x), or “either Next is true or x is unchanged.” This lets stuttering 

happen, giving us all the nice properties of stutter-invariance. Obviously, if our spec uses 

more than one variable, we’d have to add them too.

With that, we now have a Temporal Logic of Actions, or TLA. TLA+ is just TLA with 

some extra structure on top, such as the module system. There’s still a few small details, 

such as fairness, but you now have a broad overview.

You might sometimes see specs written as

THEOREM Spec => []TypeInvariant

That’s a note to the reader that if the system obeys Spec, then it will have 

TypeInvariant as an invariant. In practice, this doesn’t change what the model checker 

does; you still have to make Spec the temporal formula and add TypeInvariant as a 

specific invariant.

Appendix C  plusCAl to tlA+



215

 Limitations of PlusCal
PlusCal abstracts a lot of this away. For many problems, it’s perfectly adequate. However, 

there are some limitiations. First of all, it’s not as flexible as writing everything in TLA+. 

You couldn’t, for example, have an action of form (A /\ B) \/ (A /\ C) in PlusCal, or 

allow two processes to run “simultaneously.” You also can’t compose specifications with 

variables together in PlusCal, while it’s pretty straightforward in TLA+.

One major limitation of PlusCal is something we touched on in Chapter 9: you can’t 

prove one spec is a refinement of another. In TLA+, we could instantiate the high-level 

spec with INSTANCE HighLevel and then check the temporal property HighLevel!Spec. 

That would say that every behavior of the implementation is also a valid behavior of the 

high level spec.

PlusCal will serve you well for a very long time. But you should know when you’re 

pushing against the limits.

Appendix C  plusCAl to tlA+



217
© Hillel Wayne 2018 
H. Wayne, Practical TLA+, https://doi.org/10.1007/978-1-4842-3829-5

Index

Symbol
! (namespace), see INSTANCE
' (prime), 72
.. (interval), 27–28
/= (not equals), 26, 33, 37
/\ (and), 26, 33, 37–38
:=

= VS :=, 26
:= (assignment), 26, 29, 33, 37
:> (map value), 56

See also TLC Module
<-(substitute), 66–68

for constants, 68, 70–71, 76 (see also 
Constants)

for instances, 76–77 (see also 
INSTANCE)

<< >>, see Sequences
<=> (iff), 49–50
<> (eventually), 102
== (define operator), see Operators
=> (implies), 49–50
@@ (function merge), 55–56

See also TLC Module
[] (always), 101–102
[] (in CASE), 51
[A-> B] (function set), see Functions
[a |-> b], see Structures
[key: set] (structure set), 35

See also Structures
[x \in S |-> P], see Functions

\/ (or), 26
\A (for all), 45, 48–49
\E (there exists), 48–49
\in, 27, 34–35, 39

in functions, 52–54
in quantifiers, 49
initial state, 57
set membership, 27, 28, 34

\notin, 27
\o (concatenate), 28

See also Sequences
\X (sequence set), 35–37

See also Sequences
{} (set), see Sets
|| (join assignments), 81

See also Labels
~ (not), 26
~> (leads-to), 102–103

A
Action, 79

THEOREM, 214
Algorithms, 123–126

Leftpad, 117–120
precondition, 116
verifying overflow, 124
verifying time-complexity, 121

assert (PlusCal), 30
Assert (TLA+), 73

https://doi.org/10.1007/978-1-4842-3829-5


218

ASSUME, 68
See also Constants

Auxiliary data, see Ghost data
await, 83

after assignments, 83

B
Behavior, 34–42, 69, 138, 182, 212–215
BOOLEAN, 26, 34
Business logic, 149–166

C
call, see Procedure
CASE, 51
CHOOSE, 51–52

empty CHOOSE, 63
See also Logic

Comments, 5, 8, 24
Concurrency, 79–96

concurrent algorithms, 125–126
critical section, 105–106
grain of atomicity, see Labels
semaphore, 93–94

CONSTANT, 65–66, 68
See also Constants

Constants, 65–66
constant operators, 65–68
model values (see Model values)
notation for, 65–66
ordinary assignment, 66
restricting constants, 68

D
Data structures, 127–136

verifying properties, 127
Deadlock, 42, 84–85

define, 44, 57
Definition override, 71, 117
DOMAIN, 55–56

See also Functions

E
either, 30, 38, 42

possibly, 79–80
Enabled, 83

See also Action
Error trace, 14, 17, 72

trace exploration, 72
Examples, 23, 32–34, 36–42

binary search, 120–124
Dekker’s algorithm, 104–108
knapsack problem, 57, 59
Leftpad, 117
library (for books and  

stuff), 150–152
linked lists, 127, 135–136
MapReduce, 167, 176, 189
rate limiting, 88
reader-writer pattern, 81
sending messages, 39–42
server-client, 140–145
sorting machine, 32–34
Tortoise and Hare, 135–136
wire, 3–8, 12, 15, 18–22

Expression evaluator, 25
notation for, 25

Expressions, 50
EXTENDS, 5–7, 12, 15, 16, 19, 23, 24, 27, 

28, 30–32, 37, 40, 65, 68, 74, 75
FiniteSets, 27, 32, 37
integers, 23, 24, 27, 32, 37, 65, 68, 75
sequences, 28, 32, 37, 40
TLC, 65, 75

Index



219

F
Fairness, 100–101

fairness and safety, 178
strong fairness, 101
weak fairness, 100

Functions, 6, 7, 43–64
compared to  

operators, 53–54
domain, 55–56
recursive functions, 52
sets of functions, 56–57

G, H
ghost data, 146
goto, 80, 87

considered helpful, 80

I, J, K
if (PlusCal), 30

See also IF-THEN- 
ELSE (TLA+)

IF-THEN-ELSE (TLA+), 50–51
comparison with PlusCal, 51

Imports, 5, 65–77
lookup rules, 74–75

INSTANCE, 74–77
namespaced  

instances, 75, 76
parameterized  

instances, 75
default assignment, 77
partial assignment, 76

Invariants, 10, 20, 46–52
adding to models, 46
after translations, 105, 153
notation for, 50–52

L
Labels, 8, 79–81

Done, 80
label rules, 80
See also Action

LAMBDA, 45
LET-IN, 50
Liveness, 42, 99, 104

See also Temporal properties
LOCAL, 74, 75, 128, 132

See also INSTANCE
Logic, 47–50

De Morgan’s law, 201
evaluating with TLA+ 201
modal logic, 211
predicate logic, 203–205, 211
propositional logic, 199–201, 203
quantifiers, 48, 203
temporal logic, 97–110,  

211–212, 214

M
macro, 31
Model, 9
Model checker, see TLC
Model values, 67

comparison, 67
sets of model values, 67–68

MODULE, 24
name restrictions, 5

N
Natural numbers, 203, 204
Next-state relation, 212, 214

See also Action
Nondeterminism, 38–42

Index



220

O
Operators, 43–45

anonymous operators  
(see LAMBDA)

binary operators, 45–47, 121
compared to functions, 53–54
higher-order operators, 54

P, Q
pc (program counter), 80

See also Labels
PlusCal, 8, 15, 23–42

--algorithm, 29
--fair algorithm, 101  

(see also Fairness)
limitations, 215
translating PlusCal, 8

PrintT, 72–73
Procedure, 86–88

combining with fairness, 100–101 (see 
also Fairness)

See also macro
Process, 15, 81–82

equivalent values, 90
fair process, 100
fair+ process, 101
local variables, 82  

(see also variables)
process sets, 85–86

PT, 207–209
ReduceSet, 54, 59
setup, xxii–xxiii

R
Refinement, 141
return, see Procedure

S
Safety, see Invariants
self, 85–88, 92

See also Process, process sets
Sequences, 27–29, 32, 36, 37, 39

sequence operators, 28–29
sets of sequences, 27, 29
See also Functions

Sets, 6, 7, 9, 12–13, 27–29, 32, 34, 37, 39
Cardinality, 27, 37
infinite sets, 68
power set, 35
set of sets, 27, 35 (see also SUBSET)
set transformations, 28
UNION, 27, 35, 37

skip, 23, 30, 40–42
State constraint, 70–71

See also TLC
State machine, 137–148

use in refinement, 141
Structures, 27, 29, 32, 34–36

set of structures, 27, 29, 34, 35
See also Functions

Stuttering, 21, 98–100
stutter-invariance, 214
See also Fairness

SUBSET, 27, 35
set operators, 27

Symmetry set, 67–68, 93
See also Model values

T
Temporal Logic of Actions, 214
Temporal operators, 101–103

<> (eventually), 102
limitations, 104

[ ]<> and <>[ ], 103

Index



221

[] (always), 101–102
~> (leads-to), 102–103

Temporal properties, 97, 99, 101–102,  
104, 106–107

considered confusing, 104
optimization, 101, 104
warning against symmetry  

sets, 104
Termination, 97–98

formal definition, 102 (see also pc 
(program counter))

See also Temporal property
TLA+ Toolbox, xxi–xxii
TLC, xvii–xviii, 12, 14, 16, 18, 32, 34, 36–38, 

40, 42, 50–51, 53, 55–56, 65, 67–68, 
82–83, 93, 95, 101–104, 107, 128, 
153, 163, 171, 189, 190

configuration, 69–71
TLC Module, 72–74

Truth table, 200–201

Tuples, see Sequences
TypeInvariant, 152–154, 157, 190,  

191, 194, 197

U
Unbounded model, 189

V
Values, 26–29
variables, 24, 26, 29, 31, 34, 36, 39

multiple starting states, 34–36

W, X, Y, Z
when, see await
while, 30, 39, 40
Whitespace, 44, 45, 49
with, 38–39
WITH, see INSTANCE

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: The Semantics of TLA+ and PlusCal
	Chapter 1: An Example
	The Problem
	Boilerplate
	Specifying
	Implementing
	Verifying
	Initial Conditions

	Multiple Processes
	Temporal Properties
	Summary

	Chapter 2: PlusCal
	Introduction
	Specifications
	Layout of a Spec
	Expressions
	Values
	PlusCal Algorithm Body
	Assignment
	assert
	skip
	if
	while
	Macros

	Example

	Complex Behaviors
	Multiple Starting States
	Example

	Nondeterministic Behavior
	Either
	With
	Example


	Summary

	Chapter 3: Operators and Functions
	Operators
	Invariants
	Logical Operators
	\A and \E
	=> and <=>

	Expressions
	LET-IN
	IF-THEN-ELSE
	CASE
	CHOOSE


	Functions
	Functions and Operators
	DOMAIN
	Outline Placeholder
	Outline Placeholder

	Sets of Functions

	Example
	Summary

	Chapter 4: Constants, Models, and Imports
	Constants
	Ordinary Assignment
	Model Values
	Sets of Model Values
	ASSUME
	Infinite Sets


	TLC Runtime
	Configuration
	Error Traces
	The TLC Module
	Print and PrintT
	Assert
	Permutations and SortSeq


	Imports
	EXTENDS
	INSTANCE

	Summary

	Chapter 5: Concurrency
	Labels
	Processes
	Await
	Deadlocks
	Process Sets


	Procedures
	Example
	Summary

	Chapter 6: Temporal Logic
	Termination
	Stuttering
	Fairness, Weak and Strong

	The Temporal Operators
	Outline Placeholder
	Outline Placeholder
	Outline Placeholder
	[ ]<> and <>[ ]

	Limitations of Liveness
	Example
	Summary


	Part II: Applying TLA+
	Chapter 7: Algorithms
	Single-Process Algorithms
	Max
	Leftpad
	Properties of Algorithms
	Multiprocess Algorithm
	Summary

	Chapter 8: Data Structures
	Validation
	Example
	Summary

	Chapter 9: State Machines
	State Machines
	Scaffolding Implementations
	Ghost Variables
	Summary

	Chapter 10: Business Logic
	The Requirements
	Adding Invariants
	Adding Liveness

	Adding Reservations
	Updating Assumptions
	Expiring Reservations

	Summary

	Chapter 11: MapReduce
	Problem Overview
	Part One: Basics
	Part Two: Liveness
	Part Three: Statuses
	Exercise
	Summary


	Appendix A: Math
	Propositional Logic
	Evaluating Propositions in TLA+

	Sets
	Predicate Logic
	Evaluating Predicates in TLA+


	Appendix B: The PT Module
	Appendix C: PlusCal to TLA+
	Temporal Logic
	Actions
	TLA
	Limitations of PlusCal

	Index



