
Practical
Video Game
Bots

Automating Game Processes
using C++, Python, and AutoIt
—
Ilya Shpigor

www.allitebooks.com

http://www.allitebooks.org

Practical Video Game
Bots

Automating Game Processes
using C++, Python, and AutoIt

Ilya Shpigor

www.allitebooks.com

http://www.allitebooks.org

Practical Video Game Bots: Automating Game Processes using C++, Python,
and AutoIt

ISBN-13 (pbk): 978-1-4842-3735-9 ISBN-13 (electronic): 978-1-4842-3736-6
https://doi.org/10.1007/978-1-4842-3736-6

Library of Congress Control Number: 2018954729

Copyright © 2018 by Ilya Shpigor

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484237359. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ilya Shpigor
St. Petersburg, c.St-Peterburg, Russia

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3736-6
http://www.allitebooks.org

iii

About the Author �� vii

About the Technical Reviewer ��� ix

Acknowledgments ��� xi

Preface �� xiii

Introduction ���xv

Table of Contents

Chapter 1: Overview of Bots ��� 1

Purpose of Bots ��� 1

Game Application �� 3

Types of Bots ��� 7

Community Classification �� 7

Developer Classification �� 9

Bot Comparison ��� 12

Summary��� 15

Chapter 2: Clicker Bots ��� 17

Developer Tools ��� 17

Programming Language �� 18

Image Processing Libraries ��� 18

Image Analysis Tool ��� 19

Source Code Editors �� 19

API Hooking ��� 19

OS-Level Data Embedding �� 20

Keystroke Simulation��� 23

Mouse Simulation �� 31

OS-Level Data Embedding Summary �� 36

www.allitebooks.com

http://www.allitebooks.org

iv

Output Device Capture �� 36

Windows Graphics Device Interface �� 36

AutoIt Analysis Functions �� 38

Advanced Image Analysis Libraries ��� 46

Capturing Output Device Summary ��� 56

Example with Lineage 2 �� 56

Lineage 2 Overview ��� 56

Bot Implementation ��� 58

Lineage 2 Summary �� 69

Protection Approaches �� 70

Test Application ��� 71

Analysis of Actions �� 72

Process Scanner �� 81

Keyboard State Check ��� 89

Protection Summary �� 94

Chapter 3: In-game Bots ��� 95

Tools �� 95

Programming Language �� 95

Debugger ��� 96

Memory Analyzing Tools �� 97

Process Memory Analysis ��� 97

Process Memory Overview �� 97

Variable Searching �� 105

Process Memory Analysis Summary ��� 117

Process Memory Access ��� 117

Open Process��� 117

Read and Write Operations �� 121

TEB and PEB Access �� 124

Heap Access �� 139

Process Memory Access Summary ��� 142

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Example with Diablo 2 �� 142

Bot Overview ��� 145

Diablo 2 Memory Analysis ��� 146

Bot Implementation ��� 160

Further Improvements ��� 167

Example Summary �� 170

Protection Approaches �� 171

Test Application ��� 171

Approaches Against Analysis ��� 178

Approaches Against Bots ��� 197

Protection Approaches Summary �� 207

Chapter 4: Out-game Bots �� 209

Tools �� 209

Programming Language �� 209

Network Analyzer �� 211

Windows Configuration ��� 211

Internet Protocols �� 213

Communication Tasks �� 213

TCP/IP Stack �� 217

Packet Analysis�� 221

Test Application ��� 221

Packet Capture �� 226

UDP Connection ��� 233

Example with NetChess ��� 235

Bot Overview ��� 239

NetChess Traffic Analysis �� 239

Bot Implementation ��� 247

Assessing the Bot �� 251

Protection Approaches �� 252

Cryptographic System ��� 252

Test Application ��� 253

Table of ConTenTs

vi

XOR Cipher �� 254

Triple DES Cipher ��� 259

AES Cipher ��� 264

RSA Cipher ��� 267

Detecting Out-game Bots �� 273

Chapter 5: Extra Techniques ��� 275

Input Device Emulation ��� 275

Input Device Emulation Tools ��� 275

Keyboard Emulation �� 276

Keyboard Modifiers ��� 282

Mouse Emulation ��� 285

Keyboard and Mouse Emulation �� 290

Input Device Emulation Summary ��� 296

OS-Level Interception Data ��� 297

OS-Level Interception Data Tools ��� 297

Test Application ��� 298

DLL Import ��� 299

API Hooking Techniques �� 302

Proxy DLL ��� 302

Example of Proxy DLL �� 305

API Patching �� 309

Example of API Patching �� 311

OS-Level Interception Data Summary ��� 317

 Index ��� 319

Table of ConTenTs

vii

About the Author

Ilya Shpigor is a software developer and open source enthusiast. He has significant

experience in such domains as Embedded Systems, Information Security, and

Real-Time Computing.

Ilya currently works in the automotive industry. He develops security systems for

Ethernet networks in cars. Before that, he developed intrusion detection systems, flight

simulators, and control systems for sea ships. Also, he has participated in the Wine open

source project and ALT Linux distribution.

Ilya is interested in automating routine tasks and researching the capacities of

different programming languages to solve specific problems. In his free time, he explores

software vulnerabilities and AI approaches.

ix

About the Technical Reviewer

Massimo Nardone has more than 24 years of experience

in Security, Web/Mobile Development, Cloud, and IT

Architecture. His true IT passions are Security and Android.

He has been programming and teaching how to program

with Android, Perl, PHP, Java, VB, Python, C/C++, and

MySQL for more than 20 years.

He holds a Master of Science degree in Computing

Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer,

Research Engineer, Chief Security Architect, Information

Security Manager, PCI/SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA

Architect for many years.

His technical skills include Security, Android, Cloud, Java, MySQL, Drupal, Cobol,

Perl, Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,

Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He has worked as a visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four

international patents (PKI, SIP, SAML, and Proxy areas).

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj and

is a member of the ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different publishing companies

and is the coauthor of Pro Android Games (Apress, 2015), Pro JPA 2 in Java EE 8 (Apress,

2018), and Beginning EJB in Java EE 8 (Apress, 2018).

xi

Acknowledgments

A special thank you to Svetlana Zalogina, who reviewed the first chapters of this book

and provided many style recommendations. Also, I would like to thank Danila Bogdanov

and Emil Shaykhilislamov, who pointed out my mistakes and gave me advice on how to

cover the game bot topic better. Thanks to Ruslan Piasetskyi, who explained to me some

subtleties of the cryptography domain.

xiii

Preface

This is not a guide on how to cheat and violate rules in video games. This is a book about

approaches to automating a game process and protecting it against automation.

We will consider applications that play video games in your place; they are named

bots. You will find here a classification of such applications by their internal mechanics.

The book covers most methods and technologies that are used by bot developers. Also,

the various approaches of anticheating systems are considered here.

This book provides solutions and useful advices for such topics as process

automation, reverse engineering, encryption, and network applications. Modern bots

use technologies in all these domains.

xv

Introduction

Sometimes when you play your favorite video game, you can find yourself repeating

simple actions. Perhaps this process reminds you of working with old manual machines.

You would mount a piece of metal, press the button to launch the drill, pull the lever

down, and so forth. But wait a minute. We live in the 21st century, and long before us

people have learned ways to automate simple, monotonous actions. These thoughts

occurred to me while I was playing my favorite video game.

After that, I decided to start looking for ways to automate my game process. I have

visited plenty of forums and websites. Most of the applications for game automation that I

found contained malicious software. Some of them were virus-free, but they did not work

at all. During my searches, people with strange nicknames suggested that I buy these black

magic applications that should solve all my problems. But it seems pretty weird to buy

something from an anonymous person over the Internet without any guarantees. Further,

I realized why bot developers prefer to hide their names. Thus, my searches failed.

My next step was an attempt to implement a bot myself. But I faced a shortage of

systematic documentation about the topic, despite the fact that bot applications often

solve difficult algorithmic tasks and are based on several information technology

domains. The situation looked very strange, because this kind of software can be

very complex, and moreover, bot development has a long history. Enthusiasts and

professional software developers found a lot of solutions and approaches to effectively

solving this task. Why didn’t anybody care about sharing this kind of information?

This book is an attempt to overcome this information vacuum around the topic

of bot development. You will find a bot classification here that I developed from

my experience and research. We will consider the internal mechanisms of different

kinds of bots and will try to write simple prototypes. You will learn about tools for bot

development as well as anticheating systems for preventing usage of the bots.

The book will be interesting to all players who want to discover a new sense and

approach to the game process. It will also be useful for players who do not care about

bot application internals but just want to buy one and use it. You will learn about the

available kinds of bots and which exploitation issues you may face. I hope everybody will

find something interesting and new in this book.

1
© Ilya Shpigor 2018
I. Shpigor, Practical Video Game Bots, https://doi.org/10.1007/978-1-4842-3736-6_1

CHAPTER 1

Overview of Bots
This chapter provides necessary information about video game applications and bots for

them. The working scheme of a typical game application is described here in detail. We

will consider bot classification according to the ways of interacting with a game. It will be

convenient to use this classification throughout the book for simplifying the discussion

of the topic. This chapter begins with a brief overview of game bots’ purposes and the

tasks that bots can solve.

 Purpose of Bots
“What kind of tasks do video game bots solve?” This is the question you will ask when

you hear about video game bots for the first time. We can make a step backward and look

at the history and reasons for inventing bots.

The first mention of bots appears in first-person shooter (FPS) games. The problem

arises when people start to compete in the “player-versus-player” mode, which is

also known as the “deathmatch.” Sometimes players wanted to practice alone without

human opponents, or they just did not have any chance to connect with other players.

A deathmatch game differs significantly from the single-player mode. When you play

single-player mode, you pass through the game world level by level and fight against

enemies. These enemies just stay somewhere and attack you when you come too close.

The primitive artificial intelligence (AI) algorithms can easily solve this task. The AI in

a deathmatch should behave in a much more complicated way. It should move around

the game level, pick up weapons and ammo, decide when it will be favorable to attack

a player or to retreat for recovery, and do many other things. In other words, it should

behave or at least look like a human player. This kind of AI was named a “bot.”

Video game evolution brings new kinds of tasks. Massively multiplayer online

role- playing games (MMORPGs) were becoming more and more popular in conjunction

with increasing Internet penetration. This new genre has a lot in common with the

2

classic role-playing game (RPG), but now a game process became more stretched in time

because of the large number of players participating and interacting. Also, the MMORPG

developers intend to keep players’ interest in a game as long as possible. These traits of

the new genre lead to increasing the time for a player’s character development. Now you

should spend weeks or months performing quests and extracting resources. All these

things are required to achieve a character level that is high enough to compete with

other players. The main attraction of most MMORPG games is this kind of competition

with human opponents.

Most of the players consider the process of character development as very

monotonous, having a vast number of repetitious actions. At some point, they start

looking for ways to automate this tedious task. Some MMORPG developers provide

tools to create plug-ins with trivial automation. But usually, you do not have it, and even

you have it, you need much more. Workarounds, which are unintended by developers,

are required to extend MMORPG functionality appropriately. The game developers do

not get any benefit from this kind of feature. Even worse, players spend less time in the

game and make fewer in-game purchases. Thus, developers would frequently prohibit

any workarounds. These custom applications and plug-ins for game automation were

named MMORPG bots. Perhaps this name is because of the imitation of player behavior,

which looks very similar to the FPS game bots.

The automation of the game process is not the only task that has appeared with the

new genre of online games. Some players compete with others so enthusiastically that

they start looking for ways to avoid game rules, which allows them to get significant

advantages over opponents. These advantages can be showing extra information about

game state, changing characteristics of the game characters, immediately receiving

the necessary resources, and so forth. Applications for achieving these goals are called

“cheats,” “hacks,” and sometimes “bots.” This naming can create confusion. Cheating in

the games is not the same as automating the game process. I would prefer to distinguish

the “cheat” name from the “bot” name. In this book, “bot” will mean automating actions.

You have seen that game bots can solve various tasks. Players can use them for

training their skills before competitions with other players in FPS and other electronic

sports disciplines. Also, bots can boost the development of the player character in

multiplayer online games. Finally, bots can give an advantage over other players by

affecting a game process.

Chapter 1 Overview Of BOts

3

 Game Application
Before we start our investigation of bot internals, we should consider how a typical video

game application works. There are many genres of video games. All of them differ, but

the same architecture and principles are used to develop them.

Let us consider a typical online game application. You can find its logical elements

on Figure 1-1.

Figure 1-1. Elements of a typical online game application

When you launch the game on your computer, you start a new computing
processes. Each of them has a separate memory sandbox that has been allocated

by operating system (OS). The memory is only one type of the resources which are

provided to launched processes by OS. Another resource consists of devices like the

monitor, keyboard, mouse, network adapter, and so forth. The CPU is just a special

device that does the actual execution of the launched process.

You may ask, “Why do we need OS instead of launching the game directly on the

hardware?” The OS system provides a platform to develop applications. Without OS,

each software company would need to invent its own way to work with all the required

devices, which is a lot of work. It is much easier to take already available device drivers,

which are provided by OS.

Chapter 1 Overview Of BOts

4

Now we come back to our game application scheme. You can see several arrows

there. They match to the data transfers that are performed by OS to serve the launched

process.

OS handles commands from the process to display some pictures on the screen or

to send a packet to a server through the network adapter. Also, OS responds to notify

the process about device events. For example, when you do a keypress or when the

game server sends a packet, the OS immediately reports the game process about it. OS

performs all these tasks using drivers and system libraries. They are combined in the

block with the “Operating System” name in the scheme for simplification purposes.

Now we will consider an algorithm for processing one player’s action. We will use the

scheme to follow the elements that participate in this processing. For example, you want

to move a player character. You press an arrow key on the keyboard to do it. Then these

steps will be done as a reaction to your press:

 1. Input Device → Operating System
A keyboard driver notifies OS through the interrupt mechanism

that the arrow key has been pressed.

 2. Operating System → Game Client Application
OS handles the keyboard driver event. Then, OS notifies the game

process about the keyboard event. Usually, this notification will be

received by the process whose window has an active state at the

moment. Let us assume that this is the game application.

 3. Game Client Application
The game process receives the keyboard event notification from

OS. The process updates the state of game objects in its own

memory according to the new character position.

 4. Game Client Application → Operating System
The game process should notify the game server about a new

state. The process commands OS to send a packet via its network

library. The packet contains information about the new character

position. The library asks a network adapter driver to send the

packet.

Chapter 1 Overview Of BOts

5

 5. Operating System → Game Server
The game server receives the network packet from the client host.

Then, it validates the new character position according to the

game rules. If this validation succeeds, the server sends a network

packet to the client host with confirmation for updated data.

 6. Operating System → Game Client Application
OS notifies the game process about the confirmation packet from

the game server. The process reads packet data via the network

library of the OS. The library again uses the driver to read data.

 7. Game Client Application
The game process extracts the server’s confirmation from the

received network packet. If the confirmation fails, the character

position is kept unchanged. Otherwise, the new position will be

assigned to the character object.

 8. Game Client Application → Operating System
The game process requires OS to update a picture on the screen

according to the new character position.

 9. Operating System → Output Device
OS requires a graphics library like OpenGL or DirectX to draw a

new picture on the screen. The library performs calculations for

the new picture and draws it using a video driver.

We considered everything that is needed to move a player character.

The algorithm is kept unchanged for almost all other player actions. It does not

matter if you play with a keyboard, mouse, joystick, or steer. The algorithm can slightly

vary when a server confirmation is not required (for example, when a player opens

a menu). Also, it differs when server-side events happen. In this case, the algorithm

contains the steps from number 6 to 9. The game server notifies a client that something

was changed. The game process updates the state of game objects and commands OS to

refresh a screen picture.

The considered scheme is valid for most modern popular online games. The specific

game genre (like RPG, real-time strategy, shooter, sports, etc.) is not important in this

case. All of them use similar mechanisms and client-server architecture.

Chapter 1 Overview Of BOts

6

If we talk about a single mode game without connection with other players, our

scheme differs. Figure 1-2 shows this case. There is no game server element. All player

actions and game events affect the memory of the game process only. The state of all

game objects is stored on a local PC.

the game state (like player’s position, ammo, hit points, etc.) is stored on both
the server side and the client side in the case of online games. But server-side
information has a higher priority than the client-side one. therefore, if the states
of game objects differ, the server-side variant is chosen as the original. thus,
the game server controls the correctness of the game state. in the case of a
single- player game, neither side controls this correctness.

Single-player and online games have the same interaction algorithm with the OS

resources via drivers and system libraries.

Figure 1-2. Elements of a typical single mode game application

Chapter 1 Overview Of BOts

7

 Types of Bots
To become familiar with game bots, we should consider their types. There are two

general approaches to classify bots: community and developer classifications. Let us

examine them.

 Community Classification
If you try to find information about video game bots on the Internet, you definitely will

come face-to-face with the words “in-game” and “out-game.” These are two types of bots

that are commonly used and well known in the gamer community. Let us consider these

types and understand them better.

In-game bots receive their name because they integrate into a game process as

Figure 1-3 shows. Some techniques allow one process to access the memory sandbox of

another one. Therefore, you can manipulate the game data (for example, read and write

them). In-game bots use these exact techniques.

Figure 1-3. The in-game bot

Chapter 1 Overview Of BOts

8

Out-game bots use another approach and work separately from the game process, as

seen in Figure 1-4. They do not touch the memory sandbox of the game process. Instead,

they rely on the capabilities of the OS for interaction between processes or network hosts

(like a game client and server). There are two groups of out-game bots.

Figure 1-4. The stand-alone out-game bot

The first group substitutes for the whole game process. You do not need a game

application at all. The bot will interact with the game server instead. The most

challenging task with this approach is to mislead the game server and force it to believe

that it is communicating with the real game process.

The second group of out-game bots works with a game process in a parallel manner.

These bots can gather information about the state of the game objects and notify the

game process about the simulated player actions via the OS libraries. Figure 1-5 shows

how they work.

Chapter 1 Overview Of BOts

9

Also, you will certainly see discussion of the “clicker” type of bots. This type is a

particular case of the second out-game bots group. Clicker bots send the keyboard and

mouse event notifications to the game process through the OS libraries or drivers.

 Developer Classification
The community classification is quite convenient for users of the bots. When you learn

which type you have (in-game or out-game), you can easily understand its application

capabilities and use cases. The problem is that the classification does not reflect which

techniques a bot uses internally. So, developers need extra information.

We can avoid this lack of information if we choose another basis for classifying the

bot. Instead of considering how they are used, we can focus on how they work. For

example, does the bot capture the game data directly from memory or does it intercept

network packets? This kind of information can be a basis for the classification.

Now we will consider points in our game process scheme where a bot can capture a

game state. The red crosses mark these points on Figure 1-6.

Figure 1-5. The parallel launched out-game bot

Chapter 1 Overview Of BOts

10

Here is a list of the data capture points:

• Output Devices
It is possible to capture data from output devices like a monitor or

an audio card. We can do this via OS libraries. For example, when

game objects are drawn on the screen, they have specific colors.

Similar game events are often accompanied by particular sounds,

which are produced by an audio card and speakers. You can

compare these captured colors and sounds with the predefined

values. Then you can conclude the current game state.

• Operating System
You can replace or modify some OS libraries or drivers. Then you

can trace interactions between the game process and OS. Another

way is to launch the game application in a virtual machine

(VM) or OS emulator (like Wine or other). Emulators often have

advanced logging features, which give you detailed information

about each action of the game process.

Figure 1-6. Data capture points in a game

Chapter 1 Overview Of BOts

11

• Game Server
You can capture the network packets that the server sends to the

game process. They contain pieces of information about the game

state. When you gather all the pieces together, you get the whole

picture.

• Game Client Application
You can get access to the memory sandbox of the game process

and read the game state there. OS libraries provide the functions

to do this.

The primary purpose of any bot is to make game actions. So, the bot should do it in a

way that the game server confirms as legal. The Figure 1-7 illustrates points where a bot

can embed this data.

Figure 1-7. Points of a game allowing data embedding

Chapter 1 Overview Of BOts

12

Here is a list of the data embedding points:

• Input Device
Any input device is a legal source of user actions from the OS

point of view. Therefore, you can use your own device, which can

substitute for or emulate standard input devices like a mouse or

a keyboard. For example, you can use an Arduino board, which

emulates a keyboard input and can be controlled by a bot.

• Operating System
Again, you can modify some components of the OS. For example,

you can change a keyboard driver and notify the OS about

keypresses when a bot needs it. In this case, the OS cannot

distinguish whether the keyboard event happened or the bot

embedded it. Also, the interprocess communication OS features

allow you to simulate keyboard events for the specific process.

• Game Server
The bot can send network packets with required actions directly

to the game server via OS library and a network adapter. It can be

performed in the same way as the game process does. The game

server can distinguish legal and simulated packets only if it uses

special security techniques (for example encryption).

• Game Client Application
You can embed the simulated player actions and a new game state

directly into the memory of a game process. Thus, the process will

consider that the player performed these actions and report to the

server about them.

 Bot Comparison
Table 1-1 summarizes the community and developer bot classifications. Columns

and rows match to techniques of capturing and embedding game data. The developer

classification dictates them. You can see that the community classification (names in the

cells) distinguish only a few variants of all possible bot variants.

Chapter 1 Overview Of BOts

13

Why does the community classification not cover all variants of bots? These three

combinations of capturing and embedding data techniques provide the most beneficial

results. It does not mean that these three types are the most reliable and efficient. Each of

them has its own advantages and disadvantages. Let us consider them.

There are several parameters which we can use to estimate bots:

• How much effort does it cost to implement and support the bot?

• How reliable is the bot (i.e., mistake free) when it plays instead of a

human?

• How difficult is it for the game developers to detect a bot?

It is evident that each type of bot has own strengths and weaknesses.

Clicker bots are the easiest to implement and support. However, they provide the

less-reliable results and are error-prone. In most cases, it is challenging for anticheat

protection systems to detect these bots.

Out-game bots are the most difficult to implement and support. They can be

detected easily. Their strength is that they produce the most reliable results when used.

In-game bots are the middle variant between out-game and clicker types. They are

much more complicated for implementation than clickers but a little bit easier than the

out-game type. They can be detected, but it can be more difficult than for out-game bots,

and their results are almost as reliable.

Table 1-1. Matching of the Community and Developer Classifications

Network capture Memory capture Output device capture OS capture

Network embedding Out-game - - -

Memory embedding - in-game - -

input device

embedding

- - - -

Os embedding - - Clicker -

Chapter 1 Overview Of BOts

14

Let us take a step forward and consider why we get these results. We should

estimate each technique of capturing and embedding data from our three-question

(implementation, reliability, and protection) point of view.

• Network
Network packet analysis is one of the most difficult methods

to capture data. You should implement the communication

protocol between the game client and the server. Obviously,

official documentation for this protocol is not available for anyone

except the game developers. Usually, when you develop a bot,

you have examples of the captured network packets only. In most

cases, these packets are encrypted, and sometimes there is no

way to decrypt it unambiguously. On the other hand, this method

provides the most precise and complete information about the

game state because you get it directly from a server. The game

client does not modify or filter it yet.

• Memory
Memory analysis is the second hardest method to capture game

data. Game developers distribute their applications in binary

code. This is a result of compiler execution over the source code

(which is human-readable text). There is no way to turn the

compiler’s work back unambiguously and get the source code

from the binary. Moreover, protection systems can make it harder

to understand the algorithms and data structures of the game

application. However, this method provides almost the same

comprehensive information about the game state as capturing

the network packets. Patching the process memory is a very

dangerous method of embedding data because of the possibility

of crashing the process.

• Output Device
Capturing the output device data is one of the simplest techniques

to get the game state. However, the method provides less-reliable

results. For example, algorithms of the image analysis make

mistakes very often. The effectiveness of this method depends on

the game features.

Chapter 1 Overview Of BOts

15

• Input Device
Embedding data with an emulator of a real input device is an

effective way to avoid some types of anticheat protections. But you

need to buy a device itself and to write a firmware for it. It makes

sense to use this method only when you want to avoid specific

protection system. This method works as effectively as embedding

data on the OS level.

• OS
Capturing data with the features of OS libraries is a universal

and very reliable method. There are a few open source projects

(graphics.stanford.edu/~mdfisher/D3D9Interceptor.html) which

allow wrapping the system libraries by the third-party libraries.

The game process will interact with these wrappers instead of the

real library. When tracing this interaction, you will get information

about the game process actions. Embedding data with the OS

system libraries is a simple method for implementation. However,

bot applications that use this method can be easily detected by the

protection systems.

In sum, we can conclude that the community classification covers the most

effective and simplest-to-implement combinations of techniques to capture and embed

game data. However, this classification does not consider ineffective and rarely used

combinations. This will be the classification used most throughout this book. The

developer classification will be used in rare cases when it is essential to emphasize the

implementation details.

 Summary
From this chapter, we got basic knowledge about bots and their types. We have

considered the solutions that they use. Now you can quickly distinguish in-game,

out- game, and clicker bots. Moreover, you can guess how they behave and which

advantages and disadvantages they have.

Chapter 1 Overview Of BOts

17
© Ilya Shpigor 2018
I. Shpigor, Practical Video Game Bots, https://doi.org/10.1007/978-1-4842-3736-6_2

CHAPTER 2

Clicker Bots
First, we will consider clicker bots, which require minimum effort for development.

This chapter covers commonly used developer tools and techniques to embed game

data on the OS level and capture game data on output devices. An appropriate example

will demonstrate each considered approach. We will write a small clicker bot for the

MMORPG game Lineage 2. It will help us to gain a good understanding of the pros

and cons of this type of bot. Finally, we will consider techniques which allow anticheat

protection systems to catch clicker bots.

 Developer Tools
When you start to develop software, it is very probable that you face tasks which

somebody has already solved. It can happen that others have already made tools that

fit your purposes perfectly. Therefore, the best thing that you can do before starting

development is to consider existing programming languages, frameworks, and libraries.

In the best case, you will just take existing solutions and integrate them together to get

required functionality. It is critical to not get stuck on using only your familiar tools. You

will solve a task with them, but it can require much more effort than you will spend using

a more appropriate tool.

This section gives you an overview of a few tools that work well for clicker bot

development. But of course, you can always find (buy) something better or create the

required software on your own. Choosing the right tool is always important.

18

 Programming Language
AutoIt (www.autoitscript.com) is one of the most popular scripting programming

languages for writing clicker bots. It has a lot of features that assist development of

automation scripts:

• Easy-to-learn syntax.

• Detailed online documentation and community-based support

forums.

• Smooth integration with WinAPI (OS) functions and third-party

libraries.

• Built-in source code editor.

AutoIt is an excellent tool to start studying programming from scratch. We will use

it for this chapter’s examples. But if you already have experience with another language

(like C++, C#, Python, etc.) and want to use it, you can easily rewrite the examples. We

will consider WinAPI functions that you can call to achieve the required functionality.

AutoHotKey (ahkscript.org) is a second most popular scripting language for

writing clicker bots. It has most of the AutoIt features but its syntax is a little bit strange

compared to other commonly used languages. You can implement some things faster

and more efficiently with AutoHotKey than with AutoIt. But AutoHotKey may be slightly

more challenging to learn.

There are a lot of examples and guides about the development of game bots with both

AutoIt and AutoHotKey on the Internet. Thus, you are free to choose a tool that you prefer.

 Image Processing Libraries
AutoIt itself has several image processing functions. But the following two third- party

libraries significantly extend them.

The ImageSearch (www.autoitscript.com/forum/topic/148005-imagesearch-

usage-explanation) library allows you to search a specified image in the game window.

Thus, your bot can easily find a required game object to interact with it.

The FastFind (www.autoitscript.com/forum/topic/126430-advanced-pixel-

search-library) library provides advanced methods for searching a specific pixel

combinations in the game window. For example, you can ask the library to find the

nearest pixel of a given color to the point. It helps to detect game objects when we cannot

apply ImageSearch library (for example in the case of 3D objects).

Chapter 2 CliCker Bots

http://www.autoitscript.com
http://ahkscript.org
http://www.autoitscript.com/forum/topic/148005-imagesearch-usage-explanation
http://www.autoitscript.com/forum/topic/148005-imagesearch-usage-explanation
http://www.autoitscript.com/forum/topic/126430-advanced-pixel-search-library
http://www.autoitscript.com/forum/topic/126430-advanced-pixel-search-library

19

 Image Analysis Tool
The possibility to check image parameters (like pixel color or pixel coordinates)

is beneficial for debugging clicker bots. It helps you to check if image processing

algorithms work correctly.

There are plenty of tools that allow you to take the color of pixels from the screen and to

get the current coordinates of a mouse cursor. You can easily find these tools with Google.

I use the ColorPix (colorpix.en.softonic.com) application, which solves my tasks well.

 Source Code Editors
The AutoIt language is distributed with the customized version of SciTE editor.

It is an excellent editor for programming and debugging AutoIt scripts. But more

universal editors like Notepad++ (notepad-plus-plus.org) can be more suitable if you

prefer another programming language (like Python or AutoHotKey). Visual Studio
Community (www.visualstudio.com/vs/visual-studio-express) is the best choice if

your language is C++ or C#.

 API Hooking
We will develop example applications using high-level AutoIt language. The language

encapsulates calls of WinAPI functions in the simplified interface, but it is necessary

to know which of the internals of AutoIt has used WinAPI functions. This allows you

to understand algorithms better and to fix bugs. Moreover, when you know the exact

WinAPI function which is called, you can interact with it directly using your favorite

programming language.

There are a lot of tools that provide WinAPI call hooking. I use the freeware API
Monitor v2 (www.rohitab.com/apimonitor) application. It has the following features:

• Filter all hooked calls.

• Gather information about the process.

• Decode input and output parameters called functions.

• View process memory.

A full list of features is available on the developer’s website.

Chapter 2 CliCker Bots

http://colorpix.en.softonic.com
http://notepad-plus-plus.org
http://www.visualstudio.com/vs/visual-studio-express
http://www.rohitab.com/apimonitor

20

 OS-Level Data Embedding
The primary goal of any OS is to manage software and hardware resources and to

provide access to them for working processes. Memory, CPU, and peripheral devices

are examples of the hardware resources. Examples of the software resources are

synchronization primitives and algorithms, which are implemented in system libraries.

You can launch all examples of this book in Windows, so we will imply Windows

each time we mention “OS” throughout the book.

Figure 2-1 illustrates how OS provides access to its resources. Every working process

can ask Windows to do an action (like the creation of a new window, drawing a line on

the screen, sending a packet via a network, allocating memory, etc.). All actions are

implemented in subroutines. Subroutines, which solve tasks from one domain, are

gathered into separate system libraries. You can see kernel32.dll, gdi32.dll, and other

system libraries in the scheme.

Chapter 2 CliCker Bots

21

The way a process can call an OS subroutine is strictly defined, well documented,

and kept unchanged. We can compare this interaction with the agreement. If the process

fits the preconditions of a subroutine call, OS promises to provide the expected result.

The agreement is named Windows Application Programming Interface (API) or

Windows API (WinAPI).

The software is a thing that is very flexible and easy to change. For example, each

Windows update changes OS internals (for example, in some library). Also, consider that

these internals are interconnected (libraries use each other’s subroutines). So, even a

tiny change can have a significant impact on the overall system. The same story happens

to the game application. In this sea of changes, only one thing can keep everything

Figure 2-1. Access to the Windows resources via system API

Chapter 2 CliCker Bots

22

working, and this is a reliable interface. Thus, WinAPI allows you to keep the system in a

consistent state and provides compatibility between new applications and OS versions.

You can see two types of the applications in Figure 2-1. The Win32 application is

a process that interacts with a subset of Windows libraries through WinAPI. Win32 is a

historical name which appears in the first 32-bit version of Windows (Windows NT). The

libraries, which are available through WinAPI (also known as WinAPI libraries), provide

high-level subroutines. The “high-level” terminology indicates that these subroutines

operate with complex abstractions like a window, control, file, and so forth.

The second kind of process consists of native applications. They interact with

underlying internal Windows libraries and kernel through Native API. These libraries

become available during the system boot when other components of OS are unavailable.

Also, the libraries provide low-level subroutines, which operate with simple abstractions

like memory page, process, thread, and so on.

WinAPI libraries use subroutines of internal libraries. This approach allows them

to get complex abstractions as a combination of simple ones. The internal libraries use

kernel functions, which are available through the system calls.

Drivers provide a simplified representation of devices for the overlying libraries. This

representation includes a set of subroutines which perform typical actions with a device.

These subroutines are available for both WinAPI libraries and internal libraries through

functions of a kernel.

Hardware Abstraction Layer (HAL) is a library that provides an abstract

representation of physical hardware. The primary goal of this level is to simplify

launching Windows on new hardware platforms. HAL contains subroutines with

hardware-specific implementation for both device drivers and kernel. These subroutines

allow developers to work with different hardware in the same way. The interface of these

subroutines is kept unchanged. Also, the interface does not depend on the underlying

hardware. Therefore, developers can minimize the changes in their source code to port

Windows on new platforms.

Now, you have a general overview of how you can access the OS resources.

Chapter 2 CliCker Bots

23

 Keystroke Simulation
Now we will consider ways to simulate keypresses. It is the most straightforward

approach to allowing a bot to control a game application.

 Keystroke in Active Window

Let us consider the AutoIt features for performing a keystroke. The list of available

functions includes the Send function (www.autoitscript.com/autoit3/docs/

functions.htm).

We will apply this function and write a test script, which presses the “a” key in

running Notepad window.

The script performs the following algorithm:

 1. Find a Notepad window.

 2. Switch to the Notepad window.

 3. Simulate the “a” keypress.

The script can find the Notepad window with the WinGetHandle function. Its first

parameter can be either a title or a class of the target window. The return value is the

handle of the window. The handle is an abstract reference to some OS resource or

object. Most AutoIt and WinAPI functions can find the real object by this reference.

The most reliable way is to specify the class of Notepad window. We can know it in

the following way:

 1. Open the C:\Program Files (X86)\AutoIt3\Au3Info.exe

application. The installation path of AutoIt can be different in your

case.

 2. Drag and drop the “Finder Tool” icon to the Notepad window.

 3. You get the result illustrated in Figure 2-2.

Chapter 2 CliCker Bots

http://www.autoitscript.com/autoit3/docs/functions.htm
http://www.autoitscript.com/autoit3/docs/functions.htm

24

The “Basic Window Info” panel contains a window class name. It is “Notepad".

The Send.au3 script in Listing 2-1 implements the described keypressing algorithm

through the Send function call.

Listing 2-1. The Send.au3 Script

$hWnd = WinGetHandle("[CLASS:Notepad]")

WinActivate($hWnd)

Send("a")

In the first line, we get the Notepad window handle via the WinGetHandle function.

The second line activates and switches the input focus to the required window with the

WinActivate function. The last line simulates the “a” keypress. You can just put this code

snippet into the file named Send.au3 and launch it by double-clicking.

Figure 2-2. Finder tool

Chapter 2 CliCker Bots

25

 AutoIt Send Function Internals

The Send AutoIt function is just a wrapper around the WinAPI subroutine. Let us find

this WinAPI function. We can use API Monitor to hook all calls, which are done by the

Send.au3 script.

These are steps to attach API Monitor to the launched process and hook its system

function calls:

 1. Launch the API Monitor 32-bit application.

 2. Select the “API Filter” panel by mouse click. Press the Ctrl+F

hotkey and find the “Keyboard and Mouse Input” check box.

Activate this check box.

 3. Press the Ctrl+M hotkey to open the “Monitor New Process”

dialog.

 4. Choose the C:\Program Files (x86)\AutoIt3\AutoIt3.exe

application in the “Process” field and click “OK".

 5. Choose the Send.au3 script in the opened “Run Script” dialog. The

script starts working on this action.

 6. Find the ‘a’ text (with single quotes) in the “Summary” panel of the

API Monitor application.

You will get a result like that shown in Figure 2-3. VkKeyScanW is a function that

explicitly receives the “a” character as a parameter. However, if we check the WinAPI

documentation, we know that this subroutine does not perform a keypress simulation.

VkKeyScanW and also the MapVirtualKeyW function are used to prepare input parameters

for the SendInput call, which finally performs keypress simulation.

Chapter 2 CliCker Bots

26

Now we will implement the AutoIt script, which presses the “a” key in the Notepad

window and interacts with WinAPI functions directly. We will rewrite the third line

only, which is a response to the keypress simulation. High-level WinGetHandle and

WinActivate AutoIt functions will be kept.

The SendInput.au3 script in Listing 2-2 simulates keypress via WinAPI directly.

Listing 2-2. The SendInput.au3 Script

$hWnd = WinGetHandle("[CLASS:Notepad]")

WinActivate($hWnd)

Const $KEYEVENTF_UNICODE = 4

Const $INPUT_KEYBOARD = 1

Const $iInputSize = 28

Const $tagKEYBDINPUT = _

 'word wVk;' & _

 'word wScan;' & _

 'dword dwFlags;' & _

 'dword time;' & _

 'ulong_ptr dwExtraInfo'

Figure 2-3. Hooking WinAPI calls with API Monitor

Chapter 2 CliCker Bots

27

Const $tagINPUT = _

 'dword type;' & _

 $tagKEYBDINPUT & _

 ';dword pad;'

$tINPUTs = DllStructCreate($tagINPUT)

$pINPUTs = DllStructGetPtr($tINPUTs)

$iINPUTs = 1

$Key = AscW('a')

DllStructSetData($tINPUTs, 1, $INPUT_KEYBOARD)

DllStructSetData($tINPUTs, 3, $Key)

DllStructSetData($tINPUTs, 4, $KEYEVENTF_UNICODE)

DllCall('user32.dll', 'uint', 'SendInput', 'uint', $iINPUTs, _

 'ptr', $pINPUTs, 'int', $iInputSize)

We do the SendInput call through the DllCall AutoIt function here. This function

has the following parameters:

• user32.dll – this is a name of the library whose subroutine should

be called.

• uint – this is a return type of the called function.

• SendInput – this is its name.

• uint, $iINPUTs, ptr, $pINPUTs, int, $iInputSize – these are type-

parameter pairs for the function.

The first iINPUTs parameter of the SendInput is a number of structures, which are

passed to the function. Each structure has the same INPUT type. Our script passes only

one structure. Therefore, the iINPUTs variable equals to one.

The second pINPUTs parameter is a pointer to the array of INPUT structures. The

array contains one element in our case. We use the tagINPUT variable to represent fields

of the structure according to the WinAPI documentation. Only two fields of the structure

are essential in our case. The first one has the type name, and the second one has the

KEYBDINPUT type. You probably noticed that we have a situation of nested structures. The

INPUT structure contains the KEYBDINPUT one. The tagKEYBDINPUT variable is used for

representing fields of the KEYBDINPUT structure. We use the tagINPUT variable to create

a structure in the script memory by DllStructCreate call. The next step is receiving the

Chapter 2 CliCker Bots

28

pointer of the created INPUT structure with the DllStructGetPtr function. The last step

is writing actual data to the INPUT structure with the DllStructSetData function.

The third parameter of the SendInput function is the size of the single INPUT

structure. It has a constant value, which equals to 28 bytes in our case:

dword + (word + word + dword + dword + ulong_ptr) + dword =

4 + (2 + 2 + 4 + 4 + 8) + 4 = 28

The question is why we need the last padding dword field in the INPUT structure.

This is a definition of the INPUT structure:

typedef struct tagINPUT {

 DWORD type;

 union {

 MOUSEINPUT mi;

 KEYBDINPUT ki;

 HARDWAREINPUT hi;

 };

} INPUT, *PINPUT;

You can see the union C++ keyword here. This keyword means that only one of

the specified structures is stored in the same memory area. Therefore, the amount

of the reserved memory should be enough to store the biggest structure among the

possible variants: MOUSEINPUT, KEYBDINPUT, or HARDWAREINPUT. The biggest structure is

MOUSEINPUT. It has an additional dword field compared to KEYBDINPUT structure that is

used in our case.

The SendInput.au3 script demonstrates the benefits you get when using a high-level

language such as AutoIt. It hides from you a lot of irrelevant implementation details. This

approach allows you to operate with simple abstractions and functions. Moreover, your

applications become shorter and clearer.

 Keystroke in Inactive Window

The Send AutoIt function simulates a keystroke in the active window. It means that you

cannot minimize or switch this window to a background. It is not suitable in some cases.

AutoIt has a function called ControlSend that can help in this situation.

We can rewrite our Send.au3 script to use the ControlSend function. You can find a

result in Listing 2-3.

Chapter 2 CliCker Bots

29

Listing 2-3. The ControlSend.au3 Script

$hWnd = WinGetHandle("[CLASS:Notepad]")

ControlSend($hWnd, "", "Edit1", "a")

In the ControlSend.au3 script, we should specify the control which receives the

keystroke event. The control has an "Edit1" class in our case according to information

from the Au3Info tool. Instead of the control’s class, you can specify its name or ID.

We can use the API Monitor application to clarify the underlying WinAPI

function, which is called by the ControlSend function. This WinAPI function is

the SetKeyboardState. You can rewrite our ControlSend.au3 script using the

SetKeyboardState function directly for an exercise.

The ControlSend.au3 script works well until we try to send keystrokes to the

maximized DirectX window. The problem is that this kind of window does not have

internal controls. Simulation of keystrokes works correctly if you just keep empty the

controlID parameter of the ControlSend function.

The ControlSendDirectx.au3 script in Listing 2-4 simulates the a keystroke in the

inactive Warcraft III window:

Listing 2-4. The ControlSendDirectx.au3 Script

$hWnd = WinGetHandle("Warcraft III")

ControlSend($hWnd, "", "", "a")

We use the “Warcraft III” title of the window here to get its handle. Discovering this

title is tricky because sometimes it is impossible to change a fullscreen mode of the

DirectX window. Tools like Au3Info do not give you any possibility to gather information

from fullscreen windows. You can use an API Monitor application for this goal. Just move

a mouse cursor on the desired process in the “Running Process” panel. You will see the

window title as Figure 2-4 shows.

Chapter 2 CliCker Bots

30

If you cannot find the required process in the “Running Process” panel, you can

enable the administrator mode of the API Monitor application or launch another version

of API Monitor (32 or 64 bit).

Figure 2-4. Read a window title with API Monitor

Chapter 2 CliCker Bots

31

Some fullscreen windows have empty titles. You cannot select a window by a title

text in this case. Another way to do it is to select a window by its class. Unfortunately, API

Monitor does not provide information about a class of the window.

We can write a simple AutoIt script which solves this task, as demonstrated in

Listing 2-5. The script shows you a message with a title text and class of the currently

active window:

Listing 2-5. The GetWindowTitle.au3 Script

#include <WinAPI.au3>

Sleep(5 * 1000)

$handle = WinGetHandle('[Active]')

MsgBox(0, "", "Title : " & WinGetTitle($handle) & @CRLF _

 & "Class : " & _WinAPI_GetClassName($handle))

The first line of the script contains the include keyword. It allows you to append

a specified file to the current script. The WinAPI.au3 file contains a definition of the

_WinAPI_GetClassName function. The function provides a class of the specified window.

There is a five-second delay after starting the script, which is done by the Sleep call. You

should switch to the target fullscreen window during this delay. Then, a handle of the

currently active window is saved into the handle variable. The last MsgBox call shows you

a message with the results.

 Mouse Simulation
Simulation of keystrokes is enough for controlling a player character in some games.

However, most modern video games have complex controls: both keyboard and mouse

actions are required. The AutoIt language has several functions that allow you to

simulate typical mouse actions (like clicking, moving, and holding a pressed button).

Now we will consider these functions.

Chapter 2 CliCker Bots

32

 Mouse Actions in Active Window

We will use the standard Microsoft Paint application to test our mouse simulation

scripts. The MouseClick.au3 script in Listing 2-6 simulates mouse click in the active

Paint window:

Listing 2-6. The MouseClick.au3 Script

$hWnd = WinGetHandle("[CLASS:MSPaintApp]")

WinActivate($hWnd)

MouseClick("left", 250, 300)

You should launch the Paint application, switch to the “Brushes” tool, and launch

the script. It draws a black dot at the point with coordinates x=250 and y=300. The

ColorPix application will help you to check the correctness of the coordinates. The

MouseClick AutoIt function is used here. It has the following parameters:

• Mouse button (left, right, middle, etc.).

• Click coordinates.

• A number of clicks.

• Move speed.

The MouseClick function uses the mouse_event WinAPI call internally.

You can specify coordinates of mouse actions in one of three possible modes. They

are listed in Table 2-1.

Table 2-1. Coordinate Modes of the mouse_event WinAPI Function

Mode Description

0 relative coordinates to the active window.

1 absolute screen coordinates. this mode is used by default.

2 relative coordinates to the client area of the active window.

Chapter 2 CliCker Bots

33

Figure 2-5 illustrates coordinate modes in the Notepad window example.

Figure 2-5. Coordinate modes of the mouse_event WinAPI function

Each titled number corresponds to the mouse coordinate mode. For example, the

dot number “0” has coordinates relative to the active window. The “x” and “y” letters,

which are indexed by “0”, are the corresponding coordinates of this dot.

You can select a coordinate mode with the MouseCoordMode parameter of the Opt

AutoIt function. Listing 2-7 shows the modified version of the MouseClick.au3 script.

It uses relative client area coordinates of the active window:

Listing 2-7. The Modified MouseClick.au3 Script

Opt("MouseCoordMode", 2)

$hWnd = WinGetHandle("[CLASS:MSPaintApp]")

WinActivate($hWnd)

MouseClick("left", 250, 300)

This script draws a black dot in the Paint window. Coordinates of this dot differ from

the coordinates of the dot, which we have before the modification.

The mode with relative coordinates to the client area provides more precise

positioning when simulating mouse actions. It is recommended to use this mode for

clicker bots. This mode works well for both normal and fullscreen windows. However, it

is difficult to check the correctness of your script with tools like ColorPix, since it works

with absolute coordinates only.

Chapter 2 CliCker Bots

34

Drag-and-drop is a common action in video games. AutoIt provides a MouseClickDrag

function, which simulates this action. Listing 2-8 demonstrates how the MouseClickDrag

function works:

Listing 2-8. The MouseClickDrag.au3 Script

$hWnd = WinGetHandle("[CLASS:MSPaintApp]")

WinActivate($hWnd)

MouseClickDrag("left", 250, 300, 400, 500)

When you launch the MouseClickDrag.au3 script, you see a drawn line in the Paint

window. The line starts at the point with absolute coordinates equal to x=250 and y=300.

The line ends at the point with coordinates x=400 and y=500. The MouseClickDrag AutoIt

function uses the same mouse_event WinAPI function internally. Both MouseClick and

MouseClickDrag AutoIt functions perform mouse actions in the currently active window.

 Mouse Actions in Inactive Window

AutoIt provides the ControlClick function, which allows you to simulate a mouse click in

an inactive window. Listing 2-9 demonstrates usage of this function.

Listing 2-9. The ControlClick.au3 Script

$hWnd = WinGetHandle("[CLASS:MSPaintApp]")

ControlClick($hWnd, "", "Afx:00000000FFC20000:81", "left", 1, 250, 300)

The ControlClick.au3 script performs a mouse click in the inactive or minimized

Paint window. The ControlClick function is very similar to ControlSend one. You

should specify the control where the mouse click is simulated. The control of the Paint

window, which is used for drawing, has the “Afx:00000000FFC20000:81” class according

to information from the Au3Info tool.

If you pass the same coordinates as input parameters for both MouseClick and

ControlClick functions, simulated mouse click actions have different coordinates. The

coordinates, which are passed to the ControlClick function, are relative coordinates

to the target control where the mouse click is performed. It means that simulation of

a mouse click in our example occurs at the point with x=250 and y=300 coordinates,

which are relative to the upper left corner of the control for drawing. However, the

mode of the coordinates, which is passed to the MouseClick function, is defined by the

MouseCoordMode AutoIt option.

Chapter 2 CliCker Bots

35

The ControlClick AutoIt function performs two calls of the PostMessageW WinAPI

function internally, as Figure 2-6 shows.

Figure 2-6. Internal calls of the ControlClick AutoIt function

The first call of the PostMessageW function has the WM_LBUTTONDOWN input parameter.

This call allows us to simulate the mouse button down action. The second call has the

WM_LBUTTONUP parameter to simulate the mouse button up action.

The ControlClick function works unreliably with minimized DirectX windows.

Some applications I tested just ignore this mouse action simulation. Other applications

process these actions only after activation of their windows. This means that minimized

DirectX application hangs until it is restored to the normal mode again.

Chapter 2 CliCker Bots

36

 OS-Level Data Embedding Summary
We have considered AutoIt functions that allow us to simulate typical keyboard and

mouse actions in a game window. There are two types of these functions. The first type

allows us to simulate actions in an active window only. The second type of function

works with both active and inactive (or minimized) windows. The primary drawback of

the second type of function is low reliability. Therefore, it is recommended to use the

first type of function for clicker bot development.

 Output Device Capture
Now we will consider approaches to capture game data from the output devices. We

will start with an investigation of features which Windows provides for applications to

print their information on the screen. Then we will consider how we can intercept this

application output.

 Windows Graphics Device Interface
Graphics Device Interface (GDI) is a basic component of Windows OS. This component

is responsible for representing graphical objects and transmitting them to output

devices. All visual elements of typical application window are constructed using

graphical objects. Examples of these objects are device contexts (DC), bitmaps, brushes,

colors, and fonts.

The core concept of the GDI is DC. DC is an abstraction that allows developers to

operate with graphical objects in a universal way: one which does not depend on the

type of output device. Examples of output devices are display, printer, plotter, and so

forth. Any operation which you do in DC is performed into memory. Then the result of

these operations is sent to the output device.

You can see two DCs on Figure 2-7. They store the content of two windows. Also,

there is a DC of the entire screen with a content of overall desktop. OS can gather this DC

by combining DCs of all visible windows and desktop visual elements (like a taskbar).

When the screen DC is ready, OS sends it to the display.

Chapter 2 CliCker Bots

37

Another case is when you want to print a document. OS needs a DC of the text editor

window to send it to the printer. All other DCs are ignored in this case.

DC is a structure in memory. Developers can manipulate it only via WinAPI

functions. Each DC contains a Device Depended Bitmap (DDB). The bitmap is an

in- memory representation of a drawing surface. All manipulations with graphical objects

in the DC affect its bitmap. Therefore, the bitmap contains a result of all performed

operations.

Figure 2-7. Matching of graphical objects and devices

Chapter 2 CliCker Bots

38

The bitmap contains a set of pixels and metainformation. Each pixel has two

parameters: coordinates and color. A two-dimensional array defines accordance of these

parameters. Indexes of array elements match to pixel coordinates. A numeric value of the

element defines the color code in a color palette, which is associated with the bitmap.

The array should be processed pixel by pixel sequentially for analyzing the bitmap.

When DC is ready for the output, it is passed to the device-specific library. An

example of the library for a screen device is vga.dll. The library transforms DC data to

the representation of a device driver. It allows the driver to show screen DC content on

the display device.

 AutoIt Analysis Functions
AutoIt provides several functions which simplify analysis of a current screen picture. All

of them operate with the GDI library objects. Now we will consider these functions.

 Analysis of Specific Pixel

We will start with the task of getting a color of a specific pixel on the screen. To do this,

we need to know its coordinates. There is a set of coordinate modes that AutoIt functions

use for pixel analysis. This set is the same as the AutoIt mouse functions have, as shown

in Table 2-2.

Table 2-2. Coordinate Modes of the Pixel Analysis Functions

Mode Description

0 relative coordinates to the specified window.

1 absolute screen coordinates. this mode is used by default.

2 relative coordinates to the client area of the specified window.

You can use the same Opt AutoIt function with the PixelCoordMode parameter to

switch between the coordinate modes for pixel analysis. This is an example of enabling

the mode of relative to the client area coordinates:

Opt("PixelCoordMode", 2)

Chapter 2 CliCker Bots

39

The elementary AutoIt function to get pixel color is PixelGetColor. You should pass

pixel coordinates to the function and get back the decimal code of its color. Listing 2-10

demonstrates the usage of this function.

Listing 2-10. The PixelGetColor.au3 Script

$color = PixelGetColor(200, 200)

MsgBox(0, "", "The hex color is" & Hex($color, 6))

The PixelGetColor.au3 script reads a color of the pixel with absolute screen

coordinates x=200 and y=200. Then, the MsgBox function shows the code of the color.

After launching the script, I see the message “The text color is 0355BB”.

The code 0355BB is a hexadecimal representation of the number. We use the Hex

AutoIt function to transform a result of PixelGetColor from decimal to hexadecimal

code. Color representation in hexadecimal is widespread; most graphical editors and

tools use it.

If you switch to another window (it should cover coordinates x=200 and y=200)

and relaunch the script again, you get another result. It means that the PixelGetColor

function analyzes not just one specific window but the entire desktop picture instead.

Figure 2-8 shows WinAPI calls of the PixelGetColor.au3 script.

Chapter 2 CliCker Bots

40

You can see that the PixelGetColor function calls the GetPixel WinAPI function.

Also, there is the GetDC call before the GetPixel one. The input parameter of the

GetDC function equals to “NULL”. This means that we select a desktop DC for further

operations. We can change this behavior and specify the window, which should

be analyzed. Thus, our script will be able to analyze inactive windows, which are

overlapped by other ones.

We pass the window handle as the third parameter to the PixelGetColor function.

Listing 2-11 shows how to do so.

Listing 2-11. The PixelGetColorWindow.au3 Script

$hWnd = WinGetHandle("[CLASS:MSPaintApp]")

$color = PixelGetColor(200, 200, $hWnd)

MsgBox(0, "", "The hex color is: " & Hex($color, 6))

Figure 2-8. WinAPI calls of the PixelGetColor.au3 script

Chapter 2 CliCker Bots

41

The PixelGetColorWindow.au3 script should analyze a pixel color in the Paint

window even it is overlapped. The resulting value should be “FFFFFF” (white). This is

a color of the empty canvas. Now you can try to overlap the Paint editor with another

window which does not have a white color. The script returns another result in this case.

That is not expected behavior because it should still return the white color.

Let us compare the behavior of the PixelGetColorWindow.au3 and PixelGetColor.au3

scripts with API Monitor. Their sequences of WinAPI calls look entirely the same. The

“NULL” parameter is still passed to the GetDC WinAPI function. It looks like a bug of the

PixelGetColor function implementation in the AutoIt v3.3.14.1 version. Probably, this

will be fixed in the next AutoIt versions. However, we need a solution to analyze the pixel

color of an overlapped window.

The issue with the PixelGetColor function happens because of the wrong GetDC call.

We can repeat all WinAPI calls of the PixelGetColor function from the AutoIt script

(see Listing 2-12). This allows us to pass the correct parameter to the GetDC call.

Listing 2-12. The GetPixel.au3 Script

#include <WinAPIGdi.au3>

$hWnd = WinGetHandle("[CLASS:MSPaintApp]")

$hDC = _WinAPI_GetDC($hWnd)

$color = _WinAPI_GetPixel($hDC, 200, 200)

MsgBox(0, "", "The hex color is:" & Hex($color, 6))

The GetPixel.au3 script starts with the include keyword. It appends the

WinAPIGdi.au3 file into our script. This file provides _WinAPI_GetDC and _WinAPI_

GetPixel wrappers to the corresponding WinAPI functions. If you launch the script, you

always get the message with the white pixel color of the Paint canvas. This means that

the result of the GetPixel.au3 script does not depend on windows overlapping.

There is still one issue with the GetPixel.au3 script. If you minimize the Paint

window, the script returns a white color. This result looks correct. Now we change the

Paint canvas color to red (for example), minimize the window again, and launch the

scripts. It still returns the white color. If you restore the window in the normal mode, you

get the red color.

Chapter 2 CliCker Bots

42

Each window has a client area. All elements (like buttons or labels) of a window

are placed there. Our issue happens because a client area of the minimized window

has a size of zero. Therefore, a DC of the minimized window has an empty bitmap. The

GetPixel WinAPI function returns white color in this case. Listing 2-13 shows how we can

measure the window client area.

Listing 2-13. The GetClientRect.au3 Script

#include <WinAPI.au3>

$hWnd = WinGetHandle("[CLASS:MSPaintApp]")

$tRECT = _WinAPI_GetClientRect($hWnd)

MsgBox(0, "Rect", _

 "Left: " & DllStructGetData($tRECT, "Left") & @CRLF & _

 "Right: " & DllStructGetData($tRECT, "Right") & @CRLF & _

 "Top: " & DllStructGetData($tRECT, "Top") & @CRLF & _

 "Bottom: " & DllStructGetData($tRECT, "Bottom"))

Each of Left, Right, Top, and Bottom variables equals zero for a window in

minimized mode. If you restore the window, you get a nonzero result.

This limitation can be critical if you want to execute a bot in one window and be able to

work in another. There is a sophisticated solution to the issue. We can restore a minimized

window in the transparent mode. Then we can copy a window client area to the memory

DC and minimize the window again. The PrintWindow WinAPI call can do this copy

operation. Now we have a full copy of the window client area and can analyze it with the

_WinAPI_GetPixel function. This approach is described in details in the article

(www.codeproject.com/Articles/20651/Capturing-Minimized-Window-A-Kid-s-Trick).

 Analysis of Pixels Changing

We have considered a way to get the color of the specific pixel on the screen. However,

when you analyze a real game window, you do not know the exact coordinates of the

pixels in most cases. Because instead of a static picture we have a scene with many

moving objects. Thus, we should find a way to process changes on the screen. AutoIt

provides functions that can help us in this case.

Chapter 2 CliCker Bots

http://www.codeproject.com/Articles/20651/Capturing-Minimized-Window-A-Kid-s-Trick

43

Let us assume that we want to find a specific game object on the screen. We know

the color of the object and want to get its coordinates. There is an inversion of the task,

which can be solved by the PixelGetColor function.

The PixelSearch AutoIt function helps us to find a game object by its color.

Listing 2-14 demonstrates the usage of this function.

Listing 2-14. The PixelSearch.au3 Script

$coord = PixelSearch(0, 207, 1000, 600, 0x000000)

If @error = 0 then

 MsgBox(0, "", "The black point coord: x = " & $coord[0] & " y = " &

$coord[1])

else

 MsgBox(0, "", "The black point not found")

endif

The PixelSearch.au3 script searches a pixel with the 0x000000 (black) color

inside a rectangular area between two points with coordinates x=0, y=207 and x=1000,

y=600. Then it checks if any error happens during the PixelSearch execution. We use

the special @error macro for this check. If there is no error, a message with the result

appears.

You can use the Paint application again to test the script. You should just draw a

black point on the white canvas. If you launch the script, you get coordinates of the black

point. Please make sure that the Paint window is active and it is not overlapped when

doing this test.

Now we will check WinAPI functions, which are called internally by the PixelSearch

function. You should launch the PixelSearch.au3 script from the API Monitor

application. Then wait until script finishes and search the “0, 207” text in the “Summary”

window. You will find the StretchBlt WinAPI call as shown in Figure 2-9.

Chapter 2 CliCker Bots

44

The StretchBlt function copies a bitmap from the screen DC to the memory DC

(which is also known as compatible DC). You can verify this fact easily. Compare

the input parameters and returned values of the GetDC, CreateCompatibleDC, and

StretchBlt calls in the API Monitor log. The result of the GetDC function (which has

“NULL” input parameter) is used to create a compatible DC via the CreateCompatibleDC

call. Then the StretchBlt function copies bitmaps.

The next step of the PixelSearch function is a GetDIBits call. It performs a

conversion of pixels from the DDB format to the Device Independent Bitmap (DIB).

The DIB is the most convenient format for a picture analysis because it allows

processing bitmap in the same way as a regular array. The next step of the PixelSearch

function is to check the colors of the pixels in the DIB. WinAPI functions are not required

to do this checking. It is a reason why we do not see any other WinAPI calls.

You can find the sample C++ implementation of the image capturing algorithm

on MSDN (msdn.microsoft.com/en-us/library/dd183402%28v=VS.85%29.aspx). This

implementation demonstrates two actions which we have considered:

• Copying a screen DC to the memory DC.

• DDB-to-DIB conversion.

The PixelSearch function receives a window handle input parameter. We can leave

this value empty. The entire desktop is used for searching a pixel in this case. Otherwise,

the function analyzes pixels of a specified window.

Figure 2-9. WinAPI calls of the PixelSearch function

Chapter 2 CliCker Bots

http://msdn.microsoft.com/en-us/library/dd183402(v=VS.85).aspx

45

The PixelSearchWindow.au3 script in Listing 2-15 demonstrates how to use the

window handle parameter:

Listing 2-15. The PixelSearchWindow.au3 Script

$hWnd = WinGetHandle("[CLASS:MSPaintApp]")

$coord = PixelSearch(0, 207, 1000, 600, 0x000000, 0, 1, $hWnd)

If @error = 0 then

 MsgBox(0, "", "The black point coord: x = " & $coord[0] & " y = " & $coord[1])

else

 MsgBox(0, "", "The black point not found")

endif

According to the AutoIt documentation, our script should analyze the overlapped

Paint window, but it does not work as expected. Again, we face the same bug as we have

in the PixelGetColor function. The API Monitor log confirms that the GetDC function

receives the “NULL” input parameter. Therefore, the PixelSearch function always

processes a desktop DC. You can avoid the bug by using WinAPI functions directly.

As an example of the solution, you can use the GetPixel.au3 script. You should just

call WinAPI functions in the same manner and repeat whole work of the PixelSearch

function.

PixelChecksum is another AutoIt function which we can use to analyze dynamically

changing pictures. Both PixelGetColor and PixelSearch functions gather information

about one specific pixel. The PixelChecksum works differently. This function detects if

something was changed inside the specified region of a screen. This kind of analysis can

be useful when you implement bot reaction to game events.

Listing 2-16 shows a typical use case of the function:

Listing 2-16. The PixelChecksum.au3 Script

$checkSum = PixelChecksum(0, 0, 50, 50)

while $checkSum = PixelChecksum(0, 0, 50, 50)

 Sleep(100)

wend

MsgBox(0, "", "Something in the region has changed!")

Chapter 2 CliCker Bots

46

The PixelChecksum.au3 script reacts if something changes on a screen inside the

region between two points with coordinates x=0, y=0 and x=50, y=50. You see that we

call the PixelChecksum function two times. The first time, we calculate an initial value

of the checksum. The second time, the function is called in a while loop every 100

milliseconds. The Sleep function stops the script execution for a specified amount of

time. Our loop continues until the checksum value does not change. When that happens,

the message notification appears.

Now we consider the internals of the PixelChecksum function. API Monitor shows

us the same sequence of WinAPI calls as it is for the PixelSearch function. This means

that AutoIt uses the same algorithm for both PixelChecksum and PixelSearch functions

to get a DIB. However, the PixelChecksum has more steps. After receiving DIB, its

checksum is calculated using the selected algorithm. You can choose either the ADLER

or the CRC32 algorithm for this calculation. They differ in speed and reliability. The

CRC32 algorithm works slower, but it provides more reliable detection of pixel changes.

All considered, AutoIt functions can process pictures in fullscreen DirectX windows.

So, you can use them for your bots.

 Advanced Image Analysis Libraries
We have considered AutoIt functions for screen analysis. Now we will consider extra

functions that are provided by third-party libraries.

 FastFind Library

The FastFind library provides advanced functions for searching game objects on the

screen. You can call the library functions from both AutoIt scripts and C++ applications.

These are the steps to do it from an AutoIt script:

 1. Create a project directory for your script (for example, with the

name FFDemo).

 2. Copy the FastFind.au3 file from the FastFind archive to the

FFDemo directory.

 3. Copy either the FastFind.dll or the FastFind64.dll file from the

archive to the FFDemo directory. You should use the FastFind64.dll

file for the x64 Windows systems and FastFind.dll for the x32 case.

Chapter 2 CliCker Bots

47

 4. Include the FastFind.au3 file in your script using the include

keyword:

#include "FastFind.au3"

Now you can call FastFind functions in the same manner as the regular AutoIt

functions.

These are the steps to use the FastFind library from a C++ application:

 1. Download a preferable C++ compiler. It can be Visual Studio
Community from the Microsoft website or the MinGW

environment (nuwen.net/mingw.html).

 2. Install the C++ compiler.

 3. Create a source file named test.cpp if you use the MinGW

compiler. Create the “Win32 Console Application” project if you

use Visual Studio IDE.

 4. Listing 2-17 shows a content of the test.cpp source file.

Listing 2-17. The test.cpp Source File

#include <iostream>

#define WIN32_LEAN_AND_MEAN

#include <windows.h>

using namespace std;

typedef LPCTSTR(CALLBACK* LPFNDLLFUNC1)(void);

HINSTANCE hDLL; // Handle to DLL

LPFNDLLFUNC1 lpfnDllFunc1; // Function pointer

LPCTSTR uReturnVal;

int main()

{

 hDLL = LoadLibraryA("FastFind");

 if (hDLL != NULL)

 {

 lpfnDllFunc1 = (LPFNDLLFUNC1)GetProcAddress(hDLL,

Chapter 2 CliCker Bots

http://nuwen.net/mingw.html

48

 "FFVersion");

 if (!lpfnDllFunc1)

 {

 // handle the error

 FreeLibrary(hDLL);

 cout << "error" << endl;

 return 1;

 }

 else

 {

 // call the function

 uReturnVal = lpfnDllFunc1();

 cout << "version = " << uReturnVal << endl;

 }

 }

 return 0;

}

 5. Copy the FastFind.dll file into the project directory. You should

use the FastFind64.dll file only if you use a compiler version

which produces the 64-bit binaries.

 6. If you use MinGW, create the file named Makefile, which contains

these two lines:

all:

 g++ test.cpp -o test.exe

 7. Build the application with the make command for MinGW and the

F7 hotkey for Visual Studio.

Now you get the executable file. If you launch it, you see the version of the FastFind

library in the console output. This is an example of the output:

version = 2.2

We have used the explicit library linking (msdn.microsoft.com/en-us/

library/784bt7z7.aspx) approach to communicate with the FastFind library. There is an

alternative approach with the implicit library linking (msdn.microsoft.com/en-us/

library/d14wsce5.aspx) name. You can also use the second approach to call FastFind

Chapter 2 CliCker Bots

http://msdn.microsoft.com/en-us/library/784bt7z7.aspx
http://msdn.microsoft.com/en-us/library/784bt7z7.aspx
http://msdn.microsoft.com/en-us/library/d14wsce5.aspx
http://msdn.microsoft.com/en-us/library/d14wsce5.aspx

49

functions. However, there is one limitation in this case. You should use the same C++

compiler version that is used by the developer of the FastFind library.

Now we will consider possible tasks which we can solve with the FastFind library.

The first task is to search an area that contains the best number of pixels of a given color.

The FFBestSpot function solves this task. Let us consider an example.

You can see two models in the Figure 2-10 screenshot. The first one is the player

character, named “Zagstruk". The second model is a monster named “Wretched Archer".

We can use the FFBestSpot function to figure out the monster’s screen coordinates.

To do so, we should choose an appropriate color for the pixels. The color of text labels

(you can see them under the models) is the best target for searching. These labels

remain unchanged even if the game scene changes. They do not depend on light effects

or camera scale. Therefore, searching their coordinates provides us the most reliable

results. The monster has an extra green text label, but a player does not. So, we can use

the green color for searching.

Figure 2-10. Screenshot of famous MMORPG game Lineage 2

Chapter 2 CliCker Bots

50

In some cases, we do not have unchanged elements of the game interface (as the text

labels in the Lineage 2 case). Then we can use the models as the search targets. In this

case, an algorithm of the FFBestSpot function can make wrong decisions very often. It

happens because the models are affected by shadows and light effects, and they can also

rotate. This leads to a wide variation of model colors.

The FFBestSpot.au3 script in Listing 2-18 searches the green text on the screen and

displays a message with its coordinates:

Listing 2-18. The FFBestSpot.au3 Script

#include "FastFind.au3"

Sleep(5 * 1000)

const $sizeSearch = 80

const $minNbPixel = 50

const $optNbPixel = 200

const $posX = 700

const $posY = 380

$coords = FFBestSpot($sizeSearch, $minNbPixel, $optNbPixel, $posX, $posY,

0xA9E89C, 10)

if not @error then

 MsgBox(0, "Coords", $coords[0] & ", " & $coords[1])

else

 MsgBox(0, "Coords", "Match not found.")

endif

You can launch this script, switch to the window with the Lineage 2 screenshot, and

get coordinates of the text. The script waits five seconds after launching, which gives you

enough time to switch to the right window. The FFBestSpot function is called after the

delay. Table 2-3 shows a list of parameters which are passed to the function.

Chapter 2 CliCker Bots

51

The FFBestSpot function returns an array of three elements when it succeeds and

a zero value when it fails. The first two elements of the array are x and y coordinates of

a found area. A third element is a number of matched pixels in the area. You can find

detailed information about this function in the documentation for the FastFind library.

The FFBestSpot function is an effective option to search the interface elements like

progress bars, icons, windows, and text. Even more, you can use it to search 2D models.

The second task that we can solve with the FastFind library is a localization of

changes on the screen. The FFLocalizeChanges function provides an appropriate

algorithm for this case. We can use the Notepad application to demonstrate how this

function works.

The FFLocalizeChanges.au3 script (see Listing 2-19) detects the coordinates of the

new text, which you type in the Notepad window:

Listing 2-19. The FFLocalizeChanges.au3 Script

#include "FastFind.au3"

Sleep(5 * 1000)

FFSnapShot(0, 0, 0, 0, 0)

MsgBox(0, "Info", "Change a picture now")

Sleep(5 * 1000)

FFSnapShot(0, 0, 0, 0, 1)

Table 2-3. List of the FFBestSpot Function Parameters

Parameter Description

sizesearch Width and height of the area to search

minNbpixel Minimum number of pixels of a given color in the area

optNbpixel an optimal number of pixels of a given color in the area

posX x coordinate of a proximity position of the area

posY y coordinate of a proximity position of the area

0xa9e89C pixel color in hexadecimal representation

10 shade variation parameter from 0 to 255, which defines allowed deviation from

the specified color for red, blue, and green color components

Chapter 2 CliCker Bots

52

$coords = FFLocalizeChanges(0, 1, 10)

if not @error then

 MsgBox(0, "Coords", "x1 = " & $coords[0] & ", y1 = " & $coords[1] & _

 " x2 = " & $coords[2] & ", y2 = " & $coords[3])

else

 MsgBox(0, "Coords", "Changes not found.")

endif

Here are the steps to launch the script:

 1. Launch Notepad application and maximize its window.

 2. Launch the FFLocalizeChanges.au3 script.

 3. Switch to Notepad window.

 4. Wait until the “Change a picture now” message appears.

 5. Type several symbols in the Notepad window. You have five

seconds to do it.

 6. Wait until a message with the coordinates of the added text

appears.

Functions of the FastFind library operate with the SnapShots abstraction. The

SnapShot is a copy of the screen in memory (it is very similar to DIB). When we use

the FFBestSpot function, the SnapShot is made implicitly. However, we should make

SnapShots explicitly when using the FFLocalizeChanges function. This function

compares two SnapShots to find their differences.

Let us look at the FFLocalizeChanges.au3 script. The FFSnapShot call makes the

first SnapShot right after the sleep. This five-second delay is needed for switching the

active window. We do the second SnapShot in the same way after showing the “Change a

picture now” message.

Chapter 2 CliCker Bots

53

Table 2-4 shows the input parameters of the FFSnapShot function.

Table 2-4. List of the FFSnapShot Function Parameters

Parameter Description

0 x coordinate of the top-left snapshot area corner.

0 y coordinate of the top-left snapshot area corner.

0 x coordinate of the bottom-right snapshot area corner.

0 y coordinate of the bottom-right snapshot area corner. the whole screen is copied

in case all coordinates are zeroed.

0 or 1 a number of the snapshot slot. the maximum slot number is 1023.

The function does not have a return value.

When we have prepared two SnapShots, we can compare them with the

FFLocalizeChanges function. Table 2-5 shows its input parameters.

Table 2-5. List of the FFLocalizeChanges Function Parameters

Parameter Description

0 slot number of the first snapshot to compare

1 slot number of the second snapshot to compare

10 shade variation parameter that works in the same way as for FFBestspot function

A return value of the function is a five-element array. The first four elements of the

array are the left, top, right, and bottom coordinates of the changed region. The last

element is a number of the changed pixels.

The FFLocalizeChanges function is a useful alternative for the PixelChecksum. It is

more reliable and provides more information about a detected change.

The functions of the FastFind library can work with overlapped windows. However,

they do not work with minimized windows. Most of the functions have a window handle

parameter, so you can specify the target window for analysis. Also, all functions work

correctly with DirectX windows in the fullscreen mode.

Chapter 2 CliCker Bots

54

 ImageSearch Library

The ImageSearch library solves one specific task. It allows you to find a picture in the

specified region of the screen. These are the steps to call library functions from the

AutoIt script:

 1. Create a project directory named ImageSearchDemo for example.

 2. Copy the ImageSearch.au3 file to the directory.

 3. Copy the ImageSearchDLL.dll library to the directory.

 4. Include the ImageSearch.au3 file in your script:

#include "ImageSearch.au3"

Now you can call library functions.

If you want to use C++, you can use explicit library linking to access ImageSearch

functions. This approach was described in the details for the FastFind library.

To demonstrate the capabilities of the ImageSearch library, we find a Notepad icon

in its window title. First of all, you should prepare an image file with the icon. Our script

will use it for searching. You should place the image file named notepad-logo.bmp to the

project directory. You can use the Paint application to make a window screenshot and

cut the icon. Figure 2-11 is an example of the result:

Figure 2-11. The Notepad icon

The Search.au3 script in Listing 2-20 searches the icon:

Listing 2-20. The Search.au3 Script

#include <ImageSearch.au3>

Sleep(5 * 1000)

global $x = 0, $y = 0

$search = _ImageSearch('notepad-logo.bmp', 0, $x, $y, 20)

Chapter 2 CliCker Bots

55

if $search = 1 then

 MsgBox(0, "Coords", $x & ", " & $y)

else

 MsgBox(0, "Coords", "Picture not found.")

endif

These are the steps to launch the script:

 1. Launch the Notepad.

 2. Launch the Search.au3 script.

 3. Switch to the Notepad window.

 4. Wait for a message with the coordinates of the Notepad icon. This

message should appear five seconds after starting the script.

If you face issues with usage of a current version of ImageSearch library, you can

download a previous stable version (github.com/ellysh/ImageSearch). Table 2-6 shows

input parameters of the _ImageSearch function.

Table 2-6. List of the _ImageSearch Function Parameters

Parameter Description

notepad- logo.bmp a path to the file with a picture for searching.

0 the flag to define which coordinates of the resulting picture should be

returned. the 0 value matches the top-left coordinates of the picture.

the 1 value matches the coordinates of the picture center.

x Variable to write the resulting x coordinate.

y Variable to write the resulting y coordinate.

20 shade variation parameter. this parameter defines a possible color

deviation from the specified picture.

The function returns the error code. If any error happens, it returns the zero value

(otherwise nonzero).

The _ImageSearch function searches the specified picture in whole screen area. The

ImageSearch library provides another function named _ImageSearchArea. It allows you

to search a picture in the specified region of the screen.

Chapter 2 CliCker Bots

http://github.com/ellysh/ImageSearch

56

The code snippet demonstrates the _ImageSearchArea call:

$search = _ImageSearchArea('notepad-logo.bmp', 0, 100, 150, 400, 450, $x,

$y, 20)

The function receives four extra parameters compared to the _ImageSearch.

These are coordinates of the top-left and bottom-right points of the screen region. The

coordinates of these points equal to x1=100, y1=150 and x2=400, y2=450 in our example.

The result of the function has the same meaning as the_ImageSearch function case.

Both functions of the ImageSearch library can search only a picture which is

present on the screen at the moment. It means that the Notepad window should not be

overlapped or minimized. Also, both functions work correctly with fullscreen DirectX

windows.

The ImageSearch library is a reliable tool for searching static pictures in the game

window. Examples of these pictures are elements of interface or 2D models.

 Capturing Output Device Summary
We have considered AutoIt functions for analyzing specific pixels on the screen. Also,

functions which detect a position of changes that have happened on the screen have

been considered.

Basic features of the FastFind and ImageSearch libraries have been explored. The

first provides an advanced function for pixel search. The second allows you to find a

specific picture on the screen.

 Example with Lineage 2
Now we will make a simple clicker bot for the famous MMORPG game Lineage 2. Thus,

we will apply our new knowledge in practice.

 Lineage 2 Overview
The gameplay of Lineage 2 is very typical for the RPG genre. A player should select one

of the available characters before starting to play. Then he should do quests and hunt

monsters to achieve new skills, extract resources, and buy new items. This process is

known as farming. The player can communicate and cooperate with other players

Chapter 2 CliCker Bots

57

during the game. Other players can assist or hamper his farming. When several players

want to get the same valuable resource (for example, an artifact or a castle), they should

fight with each other. This competition aspect is the main attraction of the game, so

players want to develop their character as fast as possible to reach the required level and

start a competition.

The most straightforward way to improve a player character is hunting monsters.

A player will get experience points to improve skills, gold to buy new items, and random

resources after killing a monster. We focus on the automation of this process because

it allows comprehensively developing a player character. Also, there are other ways to

develop a character like trading, fishing, crafting new items, and completing quests.

Let us consider the game interface in Figure 2-12:

 1. Status Window with the parameters of the player character.

The most important of them are health points (HP) and

mana points (MP).

 2. Target Window with information of the selected monster. Here

we can see the HP of the monster which is being attacked at the

moment.

 3. Shortcut Panel with icons of available actions and skills, which

are attached to the hotkeys.

 4. Chat Window for input game commands and chatting with other

players.

Chapter 2 CliCker Bots

58

Considering the interface in detail helps us to develop an algorithm of a clicker bot

for interaction with the game. The game interface details are available on the wiki page

(l2wiki.com/Game_Interface).

You can find a lot of Lineage 2 servers on the Internet. They differ by game version,

additional gameplay features, and protection systems which are used to prevent usage

of bots. The most reliable and efficient protection systems are used on official servers

(www.lineage2.eu). Also, there are many private servers which use simpler protection

algorithms. We will use the Rpg-Club (www.rpg-club.com) server in our example

because the clicker bots work there well.

 Bot Implementation
You can try to hunt several monsters to understand the game mechanics. You will notice

that most of the time, you press almost the same buttons. Our next step is to write this

algorithm as a sequence of actions which we should automate. This is my version of such

algorithm:

 1. Select a monster by left-clicking him. Another way to select a

monster is typing a command in the chat window or using the

macro with this command:

/target MonsterName

Figure 2-12. The interface of the Lineage 2 game

Chapter 2 CliCker Bots

http://l2wiki.com/Game_Interface
http://www.lineage2.eu
http://www.rpg-club.com

59

 2. The full list of the game commands and the manual for using

macros are available on the official website (www.lineage2.com/en/

game/getting- started/how-to-play/macros-and-commands.php).

 3. Click the “attack” button on the Shortcut Panel. Another way to

start attacking is pressing the F1 (by default) keyboard key.

 4. Wait until a player character kills the monster.

 5. Click the “pickup” button on the Shortcut Panel for picking up the

monster’s dropped items. You can also use a hotkey for this action.

This algorithm looks straightforward without any complex conditions. Let us write a

script to automate it.

 The Blind Bot

As a first try, we will just follow the steps of our monster-hunting algorithm. The bot will

simulate a keystroke for each action in the list. We name it a blind bot because it just

presses a button and does not “look” on the screen.

It will be helpful to consider a configuration of our Shortcut Panel before we start to

write code. You should configure the panel as Figure 2-13 shows.

Figure 2-13. Screenshot of the Shortcut Panel

Chapter 2 CliCker Bots

http://www.lineage2.com/en/game/getting-started/how-to-play/macros-and-commands.php
http://www.lineage2.com/en/game/getting-started/how-to-play/macros-and-commands.php

60

Table 2-7 describes each hotkey in detail.

Table 2-7. List of Actions and Corresponding Hotkeys on the Shortcut Panel

Hotkey Command

F1 attack the currently selected monster

F2 Use an offensive skill on the selected monster

F5 Use a health potion for restoring player’s hp

F8 pick up items near the player

F9 Macro with /target MonsterName command to select a monster

F10 select the nearest monster

Now it looks simple to associate hotkeys with algorithm steps and write code. The

BlindBot.au3 script (see Listing 2-21) implements all steps of our algorithm.

Listing 2-21. The BlindBot.au3 Script

#RequireAdmin

Sleep(2000)

while True

 Send("{F9}")

 Sleep(200)

 Send("{F1}")

 Sleep(5000)

 Send("{F8}")

 Sleep(1000)

wend

The first line of the script contains the #RequireAdmin keyword. This keyword

permits interaction between the script and other applications which are launched with

administrator privileges. You should be an administrator of your computer to launch some

of the Lineage 2 clients. So, I recommend using #RequireAdmin in all your bot scripts.

Chapter 2 CliCker Bots

61

The second action in the script is a two-second delay, which allows you to switch

to the Lineage 2 window. The current version of the bot can work in the active game

window only.

Then we have the infinite while loop where we gather all bot actions:

 1. Send("{F9}") - select a monster by the macro, which is assigned

to the F9 hotkey.

 2. Sleep(200) – make a 200-millisecond delay. This is required for

the game application to choose a monster and to draw a Target

Window.

You should remember that all actions in the game window take nonzero time.
often this time is much less than a time of human reaction, and therefore it looks
instantaneous.

 3. Send("{F1}") - attack the selected monster.

 4. Sleep(5000) – wait five seconds while the character reaches the

monster and kills it.

 5. Send("{F8}") – pick up one item.

 6. Sleep(1000) – wait one second while the character picks

up the item.

In this example, the sequence of bot actions is strictly defined. It means that every

action succeeds only if the previous action was successful too. First of all, the bot should

find the monster. Otherwise, all further actions have no effect. Then, the character

should reach and kill the selected monster in five seconds. This time can vary. It depends

on the distance to the monster. Finally, the monster can drop more than one item when

defeated. Thus, our script works correctly only if all considered conditions are fulfilled.

Otherwise, it makes mistakes.

You can launch the script and check how it works. You will see that the bot

frequently works incorrectly because very often the conditions are violated. However,

it is not a serious issue for our bot, because in general, it continues working anyway.

The features of in-game /target command and the attacking mechanism make the

script sustainable. If the macro with the /target command is pressed twice, the same

Chapter 2 CliCker Bots

62

monster is selected. Thus, the bot continues to attack the same monster until it is alive.

If the monster is alive after the first iteration of the loop, this process repeats on the next

iteration. Moreover, the pickup command does not interrupt the attack. It means that the

character does not stop attacking the monster after exceeding the five-second timeout

for killing the monster.

There is still a problem with picking up only one dropped item. We can solve this

issue by repeating a pickup action to the number of usually dropped items.

We can improve the script by moving each step of the algorithm to a separate

function with a descriptive name. It makes the code more comprehensible. The

BlindBotFunc.au3 script in Listing 2-22 contains actions which are separated into

functions:

Listing 2-22. The BlindBotFunc.au3 Script

#RequireAdmin

Sleep(2000)

func SelectTarget()

 Send("{F9}")

 Sleep(200)

endfunc

func Attack()

 Send("{F1}")

 Sleep(5000)

endfunc

func Pickup()

 Send("{F8}")

 Sleep(1000)

endfunc

while True

 SelectTarget()

 Attack()

 Pickup()

wend

Chapter 2 CliCker Bots

63

You can notice that this code is quite easy to read and understand. I recommend

you always take a step back and check how easy it is to read your code. These efforts are

always justified.

 The Bot with Conditions

Let’s improve our bot and make it more accurate. If the bot gets a possibility to check

results of own actions, it will make much fewer mistakes. We will use a pixel analysis

approach to check the state of the surrounding game objects.

Before we start to implement this feature, it is helpful to add a mechanism for

printing log messages. This mechanism is known as tracing. It help us to trace bot

decisions and detect possible bugs.

The code snippet in Listing 2-23 prints a log message into the file.

Listing 2-23. The LogWrite Function

global const $LogFile = "debug.log"

func LogWrite($data)

 FileWrite($LogFile, $data & chr(10))

endfunc

LogWrite("Hello world!")

After the execution of this script, you get a file named debug.log. It contains the

“Hello world!” string. The LogWrite function is a wrapper for the FileWrite AutoIt

function. You can change a name and a path of the output file by changing a value of the

LogFile constant.

You should always consider a mechanism to debug your applications. the simplest
solution is tracing the most important decisions of your algorithms.

The first condition which the bot should check is a result of choosing the monster for

attacking. Please try to select several monsters on your own with a mouse. Do you notice

the interface element which can signal about a successfully selected monster? The

answer is the Target Window. It appears each time when you select the right unit. We can

use the FastFind library to search this window. The FFBestSpot function provides the

suitable algorithm for our case.

Chapter 2 CliCker Bots

64

Now we should choose a color which is specific to the Target Window only. Our bot

should distinguish this window and any other one. So, the color should be unique.

We can pick a color of a monster HP bar for example. The code snippet in

Listing 2-24 checks a presence of the Target Window on the screen:

Listing 2-24. The IsTargetExist Function

func IsTargetExist()

 const $SizeSearch = 80

 const $MinNbPixel = 3

 const $OptNbPixel = 10

 const $PosX = 688

 const $PosY = 67

 $coords = FFBestSpot($SizeSearch, $MinNbPixel, $OptNbPixel, $PosX, $PosY, _

 0x871D18, 10)

 const $MaxX = 800

 const $MinX = 575

 const $MaxY = 100

 if not @error then

 if $MinX < $coords[0] and $coords[0] < $MaxX and $coords[1] < $MaxY

then

 LogWrite("IsTargetExist() - Success, coords = " & $coords[0] & _

 ", " & $coords[1] & " pixels = " & $coords[2])

 return True

 else

 LogWrite("IsTargetExist() - Fail #1")

 return False

 endif

 else

 LogWrite("IsTargetExist() - Fail #2")

 return False

 endif

endfunc

Chapter 2 CliCker Bots

65

Let us consider the IsTargetExist function in detail. We have PosX and PosY

coordinates here. They define the approximate position of a monster HP bar. We pass the

coordinates and the color of the full HP bar, which equals 0x871D18, to the FFBestSpot

function.

It searches pixels of the specified color in any position on the screen. Therefore,

the function can detect a player HP bar instead. This happens whether the Target

Window is present or not. To avoid this mistake, we should check the coordinates of the

detected area.

We compare the resulting x coordinate (coords[0]) with the maximum (MaxX) and

minimum (MinX) allowed values. Also, there is the same comparison of the y coordinate

(coords[0]) with the maximum (MaxY) value. The values of all coordinates depend

on the screen resolution and position of the game window. You should adapt these

coordinates to your screen configuration.

We do the LogWrite calls in the IsTargetExist function to trace each conclusion. It

helps us to check the correctness of the allowed coordinates and the color value.

We can use the new IsTargetExist function in both the SelectTarget and Attack

functions of the blind bot. It can check if the SelectTarget function is done successfully.

So we ensure that a monster exists and the bot can perform the Attack function. Also,

the IsTargetExist function can check if the monster is alive or not.

The AnalysisBot.au3 script in Listing 2-25 concludes about the target monster

presence and chooses an appropriate action.

Listing 2-25. The AnalysisBot.au3 Script

#include "FastFind.au3"

#RequireAdmin

Sleep(2000)

global const $LogFile = "debug.log"

func LogWrite($data)

 FileWrite($LogFile, $data & chr(10))

endfunc

func IsTargetExist()

 ; SEE ABOVE

endfunc

Chapter 2 CliCker Bots

66

func SelectTarget()

 LogWrite("SelectTarget()")

 while not IsTargetExist()

 Send("{F9}")

 Sleep(200)

 wend

endfunc

func Attack()

 LogWrite("Attack()")

 while IsTargetExist()

 Send("{F1}")

 Sleep(1000)

 wend

endfunc

func Pickup()

 Send("{F8}")

 Sleep(1000)

endfunc

while True

 SelectTarget()

 Attack()

 Pickup()

wend

Pay attention to a new implementation of the SelectTarget and Attack functions.

We try to select a target monster until the IsTargetExist function does not return the

“true” value. Then we come to the loop of Attack function. Now the bot hits a monster

(by pressing the F1 hotkey) while it is alive.

You can notice that we print log messages at the beginning of both the SelectTarget

and Attack functions. This helps us to distinguish who calls the IsTargetExist function.

Chapter 2 CliCker Bots

67

 Further Improvements

Now our bot chooses its action according to the current game situation. However, there

are several game situations when the bot makes a critical mistake and dies.

The first problem is aggressive monsters. Most of the monsters just stay in a game

location and do not react to the player if it comes close to them. At the same time, some

monsters attack the player in this case.

Our bot chooses the monster for attacking, but it ignores all other units. They are

not visible for the bot because our algorithm does not consider them. Thus, aggressive

monsters can attack our bot while it moves to its target. The bot supposes that it attacks

one monster, but there are three or five instead. They can quickly kill the bot.

We can solve this issue if our bot prefers to choose the nearest units. The Lineage 2

interface has a command to select the nearest target. It is available via the F10 hotkey

in our Shortcut Panel. Listing 2-26 demonstrates the new version of the SelectTarget

function.

Listing 2-26. The SelectTarget Function

func SelectTarget()

 LogWrite("SelectTarget()")

 while not IsTargetExist()

 Send("{F10}")

 Sleep(200)

 if IsTargetExist() then

 exitloop

 endif

 Send("{F9}")

 Sleep(200)

 wend

endfunc

Now the bot tries to select the target via the F10 hotkey first. If it fails, the /target

command is used. This approach can solve the issue with the “invisible” aggressive

monsters.

Chapter 2 CliCker Bots

68

The second issue is obstacles in a hunting area. The bot can get stuck while moving

to the target. The simplest solution is to make a timeout for the attack action. If the

timeout expires and the target is still alive, we can conclude that the bot hits an obstacle.

It can move randomly to avoid the obstacle.

The new versions of the Attack and Move functions (see Listing 2-27) provide the

feature to avoid obstacles.

Listing 2-27. The Attack and Move Functions

func Move()

 SRandom(@MSEC)

 MouseClick("left", Random(300, 800), Random(170, 550), 1)

endfunc

func Attack()

 LogWrite("Attack()")

 const $TimeoutMax = 10

 $timeout = 0

 while IsTargetExist() and $timeout < $TimeoutMax

 Send("{F1}")

 Sleep(2000)

 Send("{F2}")

 Sleep(2000)

 $timeout += 1

 wend

 if $timeout == $TimeoutMax then

 Move()

 endif

endfunc

The Attack function contains the timeout counter. Each iteration of the while loop

is incremented and compared with a threshold value of the TimeoutMax constant. When

the timeout reaches the threshold, the bot concludes that it has gotten stuck. We call the

Move function in this case.

Chapter 2 CliCker Bots

69

The function performs a mouse click action via the MouseClick call at a random

point. We use the SRandom and Random AutoIt functions to get the random point

coordinates. The first function initializes a random number generator. When the

generator is ready, it can produce the pseudorandom numbers; the Random function

does it. We should pass the bounds of the interval via input parameters. A result is a

random number in this interval.

Also, you should notice one new action in the new Attack function. This is the F2

hotkey press simulation. We can assign any attack skill to the hotkey, and the bot will use

it in the fights. It allows killing monsters much faster.

Now our sample bot can work autonomously for an extended period. It can deal with

obstacles and attack aggressive monsters. However, there is still one thing which can

make the bot more durable. It is using health potions, which are bound to the F5 hotkey.

To do so, we should analyze the level of the character’s HP bar in the Status Window. You

can do it as an exercise on your own. Just use the same pixel analysis approach that we

have used in the IsTargetExist function.

 Lineage 2 Summary
We have implemented a clicker bot for the Lineage 2 game. It uses the most common

techniques to simulate game actions and analyze the game window events. Therefore,

we can evaluate the effectiveness of our bot and approximately extrapolate the result for

all clickers.

There is a list of our bot advantages:

 1. Easy to develop, extend functionality, and debug.

 2. Easy to integrate with any version of the game, even if there are

significant differences in user interface between these versions.

 3. Protecting a game against this type of bot is difficult.

Here is a list of our bot’s disadvantages:

 1. Each user needs to tune the pixel coordinates and colors for

his case.

 2. The bot hangs in some unexpected cases (death, disconnect, NPC

[nonplayer character] dialog, etc.).

Chapter 2 CliCker Bots

70

 3. Delays and timeouts lead to waste of time.

 4. Pixel analysis can lead to unreliable results. Thus, the bot makes

wrong actions in some cases.

A clicker bot is effective for solving strictly defined tasks which can be easily

separated into steps and algorithmize. Also, a clicker bot works more reliably when the

algorithm has a minimal count of conditions, and the cost of a mistake is cheap, so it can

return to the regular work after making several wrong actions.

 Protection Approaches
We already know how the clicker bots work. Let us now change sides and start to think

like developers of the protection system. How we detect this kind of bot? This section

answers the question.

We have considered the typical game application. As you remember, it has client-

side and server-side parts. The protection system follows this architecture often and has

the same two parts.

The client-side part controls points of interception and embedding data, which

are related to devices, OS, and a game application itself. The server-side part of the

protection system controls communication between a game application and a game

server. Most techniques for clicker bot detection work on a client side.

The primary purpose of any protection system is to detect a game data violation. The

bots manipulate this data, so reliable protection system should detect them.

When the detection step is done, there are several ways to react:

• Notify the system administrator of the game server about the

suspicious player’s actions. This can be done by writing a message to

a server-side log file, for example.

• Break the connection between the suspicious player and the

game server.

• Ban the account of the suspicious player or his IP address. It prevents

his further connections to the game server.

We will focus on bot detection algorithms only. Also, ways to overcome these

algorithms will be discussed.

Chapter 2 CliCker Bots

71

 Test Application
We will test our protection techniques with the Notepad application. Let us consider that

the Notepad window is a game window. Also, we have a simple clicker bot that types a

text there. Our goal is to detect the bot.

We will use AutoIt to make prototypes of protection scripts. It helps us to make

source code shorter and clearer to understand. However, C++ language is preferred to

develop real protection systems in most cases.

The SimpleBot.au3 script (see Listing 2-28) types “a", “b", and “c” letters consistently

in the Notepad window.

Listing 2-28. The SimpleBot.au3 Script

$hWnd = WinGetHandle("[CLASS:Notepad]")

WinActivate($hWnd)

Sleep(200)

while true

 Send("a")

 Sleep(1000)

 Send("b")

 Sleep(2000)

 Send("c")

 Sleep(1500)

wend

You can launch Notepad first and then the SimpleBot.au3 script. It switches to the

Notepad window and types letters there in an infinite loop.

It is a starting point for our experiments. The purpose of each protection script is a

detection of the launched SimpleBot.au3 script: it should distinguish between user and

bot actions.

Chapter 2 CliCker Bots

72

 Analysis of Actions
The SimpleBot.au3 script performs regular actions. The regularity is the first thing that

we can analyze. You can look at the bot script again and see the delays between each

action. Humans cannot repeat their actions with such precise delays. Moreover, this

precision does not have any sense for playing video games because a player should

react to the game events. If somebody does things in this way, he is actually a computer

program.

A protection algorithm can measure delays between the actions of one specific

type. There is a very high probability that the actions are simulated by a bot when the

delays between them are more precise than 100 milliseconds. Now we will implement a

protection algorithm based on this time measurement.

an average computer user has an approximate reaction time of 300 milliseconds.
this number is less for professional gamers (near 150 milliseconds).

Our protection script should solve two tasks: capture user actions and measure a

delay between them. The code snippet in Listing 2-29 captures the pressed keys:

Listing 2-29. Capturing the Pressed Keys

global const $gKeyHandler = "_KeyHandler"

func _KeyHandler()

 $keyPressed = @HotKeyPressed

 LogWrite("_KeyHandler() - asc = " & asc($keyPressed) & " key = " &

$keyPressed)

 AnalyzeKey($keyPressed)

 HotKeySet($keyPressed)

 Send($keyPressed)

 HotKeySet($keyPressed, $gKeyHandler)

endfunc

func InitKeyHooks($handler)

 for $i = 0 to 256

Chapter 2 CliCker Bots

73

 HotKeySet(Chr($i), $handler)

 next

endfunc

InitKeyHooks($gKeyHandler)

while true

 Sleep(10)

wend

We use the HotKeySet AutoIt function here to assign a handler or hook for pressed

keys. The InitKeyHooks function does this assignment. We call the _KeyHandler handler

each time a user presses any key with ASCII codes from 0 to 255. The handler performs

the following steps:

 1. Pass the captured key to the AnalyzeKey function.

The @HotKeyPressed macro provides the code of this key.

 2. Disable the _KeyHandler by the HotKeySet($keyPressed) call.

We need this step to allow the captured key reach the Notepad

window.

 3. Call the Send function to send the captured key to the Notepad

window.

 4. Enable the _KeyHandler again by the HotKeySet($keyPressed,

$gKeyHandler) call.

Listing 2-30 shows a code of the AnalyzeKey function.

Listing 2-30. The AnalyzeKey Function

global $gTimeSpanA = -1

global $gPrevTimestampA = -1

func AnalyzeKey($key)

 local $timestamp = (@SEC * 1000 + @MSEC)

 LogWrite("AnalyzeKey() - key = " & $key & " msec = " & $timestamp)

 if $key <> 'a' then

 return

 endif

Chapter 2 CliCker Bots

74

 if $gPrevTimestampA = -1 then

 $gPrevTimestampA = $timestamp

 return

 endif

 local $newTimeSpan = $timestamp - $gPrevTimestampA

 $gPrevTimestampA = $timestamp

 if $gTimeSpanA = -1 then

 $gTimeSpanA = $newTimeSpan

 return

 endif

 if Abs($gTimeSpanA - $newTimeSpan) < 100 then

 MsgBox(0, "Alert", "Clicker bot detected!")

 endif

endfunc

We measure the time spans between the “a” keys pressing here. Let us use a trigger
action term to name this pressing. There are two global variables for storing a current

state of the protection algorithm:

 1. gPrevTimestampA – this is a timestamp of the last trigger action.

 2. gTimeSpanA – this is a time span between the last two trigger

actions.

Both these variables have a value of "-1" at the startup. It matches to the

uninitialized state. Our algorithm requires a minimum of three trigger actions

with the same delays to conclude that there is a bot. The first action initializes the

gPrevTimestampA variable:

 if $gPrevTimestampA = -1 then

 $gPrevTimestampA = $timestamp

 return

 endif

Chapter 2 CliCker Bots

75

Then we use the second action timestamp to calculate the gTimeSpanA variable. This

variable equals to a subtraction between timestamps of the current and previous actions:

 local $newTimeSpan = $timestamp - $gPrevTimestampA

 $gPrevTimestampA = $timestamp

 if $gTimeSpanA = -1 then

 $gTimeSpanA = $newTimeSpan

 return

 endif

With the third action, we calculate the new time span and compare it with the

previous one, which is stored in the gTimeSpanA variable:

 if Abs($gTimeSpanA - $newTimeSpan) < 100 then

 MsgBox(0, "Alert", "Clicker bot detected!")

 endif

As a result, we have measured two time spans here:

 1. The time span between the first and the second trigger actions.

 2. The time span between the second and the third trigger actions.

The subtraction of these two time spans matches the time precision of the user

actions. Precision of less than 100 milliseconds is impossible for humans but it is typical

for bots. Therefore, the protection script concludes that some program is simulating

these actions. The script shows the “Clicker bot detected!” message in this case.

Listing 2-31 shows the code of the TimeSpanProtection.au3 script with the skipped

content of the _KeyHandler and AnalyzeKey functions because we considered them in

the preceding.

Listing 2-31. The TimeSpanProtection.au3 Script

global const $gKeyHandler = "_KeyHandler"

global const $kLogFile = "debug.log"

global $gTimeSpanA = -1

global $gPrevTimestampA = -1

Chapter 2 CliCker Bots

76

func LogWrite($data)

 FileWrite($kLogFile, $data & chr(10))

endfunc

func _KeyHandler()

 ; SEE ABOVE

endfunc

func InitKeyHooks($handler)

 for $i = 0 to 256

 HotKeySet(Chr($i), $handler)

 next

endfunc

func AnalyzeKey($key)

 ; SEE ABOVE

endfunc

InitKeyHooks($gKeyHandler)

while true

 Sleep(10)

wend

We can slightly improve our SimpleBot.au3 script to avoid protection algorithms

which analyze the time spans. The simplest way to do so is by adding random delays

between simulated actions. The RandomDelayBot.au3 script in Listing 2-32 is a fixed

version of the bot.

Listing 2-32. The RandomDelayBot.au3 Script

SRandom(@MSEC)

$hWnd = WinGetHandle("[CLASS:Notepad]")

WinActivate($hWnd)

Sleep(200)

while true

 Send("a")

 Sleep(Random(800, 1200))

Chapter 2 CliCker Bots

77

 Send("b")

 Sleep(Random(1700, 2300))

 Send("c")

 Sleep(Random(1300, 1700))

wend

We use the Random function each time we need a delay value. You can launch the

TimeSpanProtection.au3 script first and then RandomDelayBot.au3. The protection

algorithm is not able to detect the bot in this case.

However, the bot has another regularity, which allows us to detect the

RandomDelayBot.au3 script. This regularity comes from repeated keypress sequences.

It is evident that humans cannot repeat the same sequence hundreds of times. Even

if a player wants to repeat his actions, he makes mistakes and presses wrong keys

sometimes. The bot repeats pressing “a", “b”, and “c” keys in a very regular manner which

is impossible for humans.

The ActionSequenceProtection.au3 script (see Listing 2-33) has a new version of

the AnalyzeKey function. It checks the repeating sequence of the captured actions.

Listing 2-33. The ActionSequenceProtection.au3 Script

global const $gActionTemplate[3] = ['a', 'b', 'c']

global $gActionIndex = 0

global $gCounter = 0

func Reset()

 $gActionIndex = 0

 $gCounter = 0

endfunc

func AnalyzeKey($key)

 LogWrite("AnalyzeKey() - key = " & $key);

 $indexMax = UBound($gActionTemplate) - 1

 if $gActionIndex <= $indexMax and $key <>

$gActionTemplate[$gActionIndex] then

 Reset()

 return

 endif

Chapter 2 CliCker Bots

78

 if $gActionIndex < $indexMax and $key = $gActionTemplate[$gActionIndex]

then

 $gActionIndex += 1

 return

 endif

 if $gActionIndex = $indexMax and $key = $gActionTemplate[$gActionIndex]

then

 $gCounter += 1

 $gActionIndex = 0

 if $gCounter = 3 then

 MsgBox(0, "Alert", "Clicker bot detected!")

 Reset()

 endif

 endif

endfunc

This is a list of global variables and constants which our algorithm uses:

 1. gActionTemplate – this is a list of actions in the sequence which is

specific for a particular bot script.

 2. gActionIndex – this is an index of the last captured action which is

present in the gActionTemplate list.

 3. gCounter – this is a number of captured action repetitions.

The AnalyzeKey function processes the three cases of matching current captured

action and elements of the gActionTemplate list. The first case happens when the

captured action does not match any element of the gActionTemplate list:

 $indexMax = UBound($gActionTemplate) - 1

 if $gActionIndex <= $indexMax and $key <>

$gActionTemplate[$gActionIndex] then

 Reset()

 return

 endif

Chapter 2 CliCker Bots

79

We call the Reset function in this case. It resets both gActionIndex and gCounter

variables to zero.

The second case of the AnalyzeKey function happens when the captured action

matches the element of the gActionTemplate list. Also, this element is not the last one in

the list, and its index equals to the gActionIndex variable:

 if $gActionIndex < $indexMax and $key = $gActionTemplate[$gActionIndex]

then

 $gActionIndex += 1

 return

 endif

We increment the gActionIndex variable in this case.

The last case checks if the captured action equals to the last element of the

gActionTemplate list:

 if $gActionIndex = $indexMax and $key = $gActionTemplate[$gActionIndex]

then

 $gCounter += 1

 $gActionIndex = 0

 if $gCounter = 3 then

 MsgBox(0, "Alert", "Clicker bot detected!")

 Reset()

 endif

 endif

We increment the gCounter and reset the gActionIndex variable to zero in this case.

After these two steps, our algorithm can analyze the next sequence of the player actions.

When the key sequence, which is defined by the gActionTemplate list, repeats three

times, the protection algorithm concludes that there is a bot. The gCounter variable

calculates the number of repeating sequence. If it becomes equal to three, the protection

script shows the “Clicker bot detected!” message. Then we call the Reset function and

can detect the bot again.

You can launch the ActionSequenceProtection.au3 and RandomDelayBot.au3

scripts for testing. The new protection algorithm can detect the bot with random delays

between simulated actions.

Chapter 2 CliCker Bots

80

It is obvious that the considered approach is error-prone. It can make the wrong

conclusion and detect a bot when a human player just repeats his actions several times.

We can reduce a possibility of these false decisions by increasing a threshold value for

gCounter:

if $gCounter = 3 then

 MsgBox(0, "Alert", "Clicker bot detected!")

 Reset()

endif

There is another serious issue of our ActionSequenceProtection.au3 script. It

detects only bots that press “a”, “b”, “c” sequence. If you make the bot which presses “a”,

“c”, “b”, the script cannot detect it. So, you should adapt your protection algorithm for

each expected sequence of actions.

We can avoid this limitation if our algorithm accumulates all user actions in one

huge array and searches for frequently repeated regularities there. These regularities

warn us about possible usage of a bot.

Let us improve our bot script again to avoid protection algorithms that analyze

actions’ regularity. Listing 2-34 demonstrates a possible solution.

Listing 2-34. The RandomActionBot.au3 Script

SRandom(@MSEC)

$hWnd = WinGetHandle("[CLASS:Notepad]")

WinActivate($hWnd)

Sleep(200)

while true

 Send("a")

 Sleep(1000)

 if Random(0, 9, 1) < 5 then

 Send("b")

 Sleep(2000)

 endif

 Send("c")

 Sleep(1500)

wend

Chapter 2 CliCker Bots

81

Now the bot simulates the actions irregularly. We do the action “b” with 50%

probability. This breaks the conditions of the AnalyzeKey function of the protection

algorithm. Each time then the bot skips “b”, the algorithm resets the gCounter and starts

to accumulate actions from the beginning. Thus, the ActionSequenceProtection.au3

script is not able to detect our new bot.

 Process Scanner
There is another approach for detecting clicker bots. It does not analyze the user actions

but searches a bot process in the OS. If we know a name of the bot, we can get the list of

all launched processes at the moment and search the bot there.

The ProcessScanProtection.au3 script in Listing 2-35 checks the list of launched

processes.

Listing 2-35. The ProcessScanProtection.au3 Script

global const $kLogFile = "debug.log"

func LogWrite($data)

 FileWrite($kLogFile, $data & chr(10))

endfunc

func ScanProcess($name)

 local $processList = ProcessList($name)

 if $processList[0][0] > 0 then

 LogWrite("Name: " & $processList[1][0] & " PID: " & $processList[1][1])

 MsgBox(0, "Alert", "Clicker bot detected!")

 endif

endfunc

while true

 ScanProcess("AutoHotKey.exe")

 Sleep(5000)

wend

Chapter 2 CliCker Bots

82

We can get the process list from the ProcessList AutoIt function. It has an optional

input parameter, which is a process name to search. We pass the AutoHotKey.exe name

in our case. The ProcessList function returns a two-dimensional array. Table 2-8

describes elements of this array.

Table 2-8. Resulting Array of the ProcessList Function

Element Description

processList[0][0] the number of processes in the array

processList[1][0] the name of the first process

processList[1][1] the iD (piD) of the first process

If the processList[0][0] element is greater than zero, the AutoHotKey.exe process

works now.

Why are we looking for the AutoHotKey.exe process instead of the AutoIt.exe one?

There is a problem with testing the ProcessScanProtection.au3 script. We write it on

the AutoIt language. So, when we launch the script, the OS starts the AutoIt.exe process

of the language interpreter. The interpreter executes our script but not the OS. It is

the feature of all scripting languages. They typically work in the environment which is

provided by the interpreter application. It means that the protection script can detect

itself instead of the SimpleBot.au3 script.

We can implement the bot with the AutoHotKey language. Listing 2-36 demonstrates

the result.

Listing 2-36. The SimpleBot.ahk Script

WinActivate, Untitled - Notepad

Sleep, 200

while true

{

 Send, a

 Sleep, 1000

 Send, b

 Sleep, 2000

Chapter 2 CliCker Bots

83

 Send, c

 Sleep, 1500

}

You can compare this script with the SimpleBot.au3 one. They look very similar.

There are some minor differences in the syntax of function calls. You should specify

input parameters after a comma in AutoHotKey. The names of the used functions are the

same as those in the AutoIt version.

Now we can test our protection algorithm. These are the steps to do it:

 1. Launch the Notepad application.

 2. Launch the ProcessScanProtection.au3 script.

 3. Launch the SimpleBot.ahk script. Do not forget to install the

AutoHotKey interpreter first.

 4. Wait until the protection script detects the SimpleBot.ahk script.

When the script detects the bot, you see the “Clicker bot detected!” message.

There are several simple ways to avoid this kind of protection algorithm. The most

straightforward one is using the AutoHotKey compiler. The compiler allows converting

the AutoHotKey script into the binary file, which can be executed by the OS directly

without the interpreter. Thus, the bot gets its own name in the process list, and this name

differs from the AutoHotKey.exe one.

These are the steps to create the SimpleBot.exe executable file from the SimpleBot.

ahk script:

 1. Launch the AutoHotKey compiler application. Its default path is

C:\Program Files (x86)\AutoHotkey\Compiler\Ahk2Exe.exe.

You will see the window as Figure 2-14 shows.

 2. Select the SimpleBot.ahk script as a “Source (script file)”

parameter in the “Required Parameters” panel.

 3. Leave the “Destination (.exe file)” parameter empty in the

“Required Parameters” panel. This means that we create the

resulting file in the directory of the source script.

 4. Press the “> Convert <” button.

Chapter 2 CliCker Bots

84

You see the “Conversion complete” message when compilation finishes.

Now you can launch the generated SimpleBot.exe file instead of the SimpleBot.ahk

script. It behaves the same as the script. The ProcessScanProtection.au3 script cannot

detect the bot this time. This is so because the compiled bot version has the SimpleBot.

exe process name instead of the AutoHotKey.exe, which the protection script expects.

Can we somehow improve the ProcessScanProtection.au3 script to detect the

compiled versions of the bot? Changing a name of the binary file is easy. It is more

difficult to change its content. There are many ways to distinguish files by their content.

These are just several ideas to do it:

 1. Calculate a hash sum for the content of the file and compare it

with the predefined value.

 2. Check a sequence of bytes in the specific place of the file.

 3. Search a specific byte sequence or string in a whole file.

Figure 2-14. The AutoHotKey compiler window

Chapter 2 CliCker Bots

85

The Md5ScanProtection.au3 script (see Listing 2-37) calculates an MD5 hash sum

for executable files of all launched processes and detects the bot if the hash sum matches

to the predefined value.

Listing 2-37. The Md5ScanProtection.au3 Script

#include <Crypt.au3>

global const $kLogFile = "debug.log"

global const $kCheckMd5[2] = ["0x3E4539E7A04472610D68B32D31BF714B", _

 "0xD960F13A44D3BD8F262DF625F5705A63"]

func LogWrite($data)

 FileWrite($kLogFile, $data & chr(10))

endfunc

func _ProcessGetLocation($pid)

 local $proc = DllCall('kernel32.dll', 'hwnd', 'OpenProcess', 'int', _

 BitOR(0x0400, 0x0010), 'int', 0, 'int', $pid)

 if $proc[0] = 0 then

 return ""

 endif

 local $struct = DllStructCreate('int[1024]')

 DllCall('psapi.dll', 'int', 'EnumProcessModules', 'hwnd', $proc[0], 'ptr', _

 DllStructGetPtr($struct), 'int', DllStructGetSize($struct),

'int_ptr', 0)

 local $return = DllCall('psapi.dll', 'int', 'GetModuleFileNameEx', 'hwnd', _

 $proc[0], 'int', DllStructGetData($struct, 1),

'str', _

 “, 'int', 2048)

 if StringLen($return[3]) = 0 then

 return ""

 endif

 return $return[3]

endfunc

Chapter 2 CliCker Bots

86

func ScanProcess()

 local $processList = ProcessList()

 for $i = 1 to $processList[0][0]

 local $path = _ProcessGetLocation($processList[$i][1])

 local $md5 = _Crypt_HashFile($path, $CALG_MD5)

 LogWrite("Name: " & $processList[$i][0] & " PID: " _

 & $processList[$i][1] & " Path: " & $path & " md5: "

& $md5)

 for $j = 0 to Ubound($kCheckMd5) - 1

 if $md5 == $kCheckMd5[$j] then

 MsgBox(0, "Alert", "Clicker bot detected!")

 endif

 next

 next

endfunc

while true

 ScanProcess()

 Sleep(5000)

wend

The ScanProcess function contains the bot detection algorithm. We call the

ProcessList function without a parameter this time. Therefore, the resulting

processList array contains a list of all running processes at the moment. When we

receive this list, we can retrieve a path of the executable files which start each process.

A process is a set of modules. Each module matches to one executable or DLL file,

which is loaded into the process memory. A module contains full information about its

file. The _ProcessGetLocation function retrieves the path of file modules.

When we have the executable file path, we can calculate its hash sum with the

_Crypt_HashFile AutoIt function. Then we compare the hash sum with predefined

values from the kCheckMd5 array. The array contains hash sums of the SimpleBot.exe

and AutoHotKey.exe files. If the sums match, the protection script detects the bot.

Chapter 2 CliCker Bots

87

This is the _ProcessGetLocation function algorithm:

 1. Call the OpenProcess WinAPI function to get a handle of the

specified process.

 2. Call the EnumProcessModules WinAPI function to get a list of

process modules.

 3. Call the GetModuleFileNameEx WinApi function to get a full path

of the module file. The first module in the list, which is returned

by the EnumProcessModules function, always matches to the

executable file, and all others modules match to DLLs.

You can launch the Md5ScanProtection.au3 script and see how it detects both the

SimpleBot.ahk and SimpleBot.exe variants of the bot.

It can happen that the SimpleBot.ahk script is not detected for your case. This

means that you are using a version of AutoHotKey application that differs from mine. So,

it has a hash sum, which is not specified in the kCheckMd5 array. To fix this, you should

get the correct MD5 sum of the AutoHotKey.exe executable in the debug.log file and

insert it into the kCheckMd5 array.

There are several ways to improve our bot and avoid the Md5ScanProtection.au3

script. All of them focus on changing a content of the executable file. We have two simple

variants:

 1. Perform a minor change of the SimpleBot.ahk script (for example

in any delay value). Then compile a new version of the script.

 2. Patch a header of the AutoHotKey.exe executable file with a binary

files editor. You can use the HT editor (hte.sourceforge.net),

for example.

When you change the executable file, you have a chance to damage it. The launched

application crashes in this case. However, there is a place where the general information

(like a creation time) about the file is stored. This place is the COFF header. It contains

standard fields, that do not affect the behavior of the application.

Let us modify the file creation time. It is enough to change its MD5 checksum. So, the

Md5ScanProtection.au3 script will not detect the bot anymore.

Chapter 2 CliCker Bots

http://hte.sourceforge.net

88

This is an algorithm to change the file creation time with HT editor:

 1. Launch the HT editor with the administrator privileges.

It is convenient to copy the editor into the directory with the

AutoHotKey.exe file.

 2. Press the F3 key to pop up the “open file” dialog.

 3. Press Tab to switch to the “files” list. Then select the AutoHotKey.exe

file. Press Enter to open this file.

 4. Press the F6 key to open the “select mode” dialog with the list of

available modes. Choose the “- pe/header” mode. Now you see a

list of executable file headers.

 5. Choose the “COFF header” and press Enter. Select the

“time-data stamp” field of the header.

 6. Press the F4 key to edit the timestamp value. Change the value.

Figure 2-15 shows this step.

 7. Press F4 and choose the “Yes” option in the “confirmation” dialog

to save changes.

Chapter 2 CliCker Bots

89

You get a new AutoHotKey.exe executable file, which differs from the original one.

You can launch the new interpreter first and then open the SimpleBot.ahk script. Test

it together with the Md5ScanProtection.au3 script. You see that now our protection

mechanism does not detect the bot.

One way to improve the protection script is to skip the COFF header when

calculating the MD5 sum. Another solution is calculating it only for a sequence of bytes

in the specific place of the file.

 Keyboard State Check
Windows OS provides a kernel-level mechanism to distinguish simulated keystrokes. Let

us consider how we can use it.

First of all, we should capture all low-level keyboard input events. The

SetWindowsHookEx WinAPI function allows setting a hook procedure, which is called

each time when the specified event happens. The first function parameter defines a

type of a hook procedure. Each type matches to the specific captured events. The WH_

KEYBOARD_LL type matches to the keyboard input events.

Figure 2-15. Changing a timestamp in the HT editor

Chapter 2 CliCker Bots

90

We should implement the hook procedure. It receives the KBDLLHOOKSTRUCT

structure. It contains detailed information about the captured event. All keyboard events,

which are produced by the SendInput and keybd_event WinAPI functions, have the

LLKHF_INJECTED flag in the KBDLLHOOKSTRUCT structure. On the other hand, keyboard

events, which are produced by a keyboard driver, do not have this flag. This flag is set on

the Windows kernel level, and it is impossible to disable the flag on the WinAPI level.

The KeyboardCheckProtection.au3 script in Listing 2-38 checks the LLKHF_INJECTED

flag and detects clicker bots.

Listing 2-38. The KeyboardCheckProtection.au3 Script

#include <WinAPI.au3>

global const $kLogFile = "debug.log"

global $gHook

func LogWrite($data)

 FileWrite($kLogFile, $data & chr(10))

endfunc

func _KeyHandler($nCode, $wParam, $lParam)

 if $nCode < 0 then

 return _WinAPI_CallNextHookEx($gHook, $nCode, $wParam, $lParam)

 endIf

 local $keyHooks = DllStructCreate($tagKBDLLHOOKSTRUCT, $lParam)

 LogWrite("_KeyHandler() - keyccode = " & DllStructGetData($keyHooks,

"vkCode"));

 local $flags = DllStructGetData($keyHooks, "flags")

 if $flags = $LLKHF_INJECTED then

 MsgBox(0, "Alert", "Clicker bot detected!")

 endif

 return _WinAPI_CallNextHookEx($gHook, $nCode, $wParam, $lParam)

endfunc

Chapter 2 CliCker Bots

91

func InitKeyHooks($handler)

 local $keyHandler = DllCallbackRegister($handler, "long", _

 "int;wparam;lparam")

 local $hMod = _WinAPI_GetModuleHandle(0)

 $gHook = _WinAPI_SetWindowsHookEx($WH_KEYBOARD_LL, _

 DllCallbackGetPtr($keyHandler), $hMod)

endfunc

InitKeyHooks("_KeyHandler")

while true

 Sleep(10)

wend

We use the same technique to assign key press hooks as the TimeSpanProtection.

au3 and ActionSequenceProtection.au3 scripts have. Now we use the WinAPI functions

directly for this purpose. The InitKeyHooks function assigns the _KeyHandler hook

procedure. The hook captures all low-level keyboard input events.

The InitKeyHooks function has the following algorithm:

 1. Call the DllCallbackRegister AutoIt function to register a

_KeyHandler procedure as a callback. This step allows passing this

callback to other WinAPI functions.

 2. Get a handle of the current module by the GetModuleHandle

WinAPI function. Do not forget that we work in the interpreter

process now.

 3. Call the SetWindowsHookEx WinAPI function for adding the

_KeyHandler procedure into a hook chain. We should pass to

the function the handle of the module where the _KeyHandler is

defined (we got it in step 2).

Chapter 2 CliCker Bots

92

There is an algorithm to check the LLKHF_INJECTED flag in the _KeyHandler

procedure:

 1. Check the value of the nCode parameter. If the value is less than

zero, we pass the captured keyboard event to the next hook

in the chain without any processing. Both wParam and lParam

parameters do not contain actual information about the keyboard

event in this case.

 2. If the nCode parameter is valid, we call the DllStructCreate

function to create the KBDLLHOOKSTRUCT structure from the

lParam.

 3. Call the DllStructGetData function to extract the flags field from

the KBDLLHOOKSTRUCT structure.

 4. Check if the LLKHF_INJECTED flag is present. A clicker bot

simulates keyboard events with this flag.

You can launch the KeyboardCheckProtection.au3 script, the Notepad application,

and the SimpleBot.au3 script for testing our algorithm. When the bot simulates the first

key, you see the “Clicker bot detected!” message immediately.

There are several ways to avoid this kind of protection algorithm. All of them focus

on simulation keyboard events at the level below WinAPI. There are these ways:

 1. VM usage.

 2. Use a keyboard driver instead of WinAPI functions to simulate

keyboard events. The InpOut32 (www.highrez.co.uk/downloads/

inpout32) is an example of this kind of driver.

 3. Emulate keyboard and mouse devices. We will consider this

approach in Chapter 5.

The simplest way is to use VM. VM has virtual device drivers. These drivers solve

two tasks: emulating hardware devices and providing access to real hardware. All events

from emulated or real hardware are passed via virtual device drivers. It means that

Windows OS inside the VM cannot distinguish the source of hardware events. If you do a

keypress in the VM window, this action is legal from the point of view of the OS, which is

Chapter 2 CliCker Bots

http://www.highrez.co.uk/downloads/inpout32
http://www.highrez.co.uk/downloads/inpout32

93

launched inside the VM. If a bot simulates this keypress, its action is still legal too.

It happens because the virtual device drivers process both these events in the same way.

There is an algorithm to use VM for avoiding our protection algorithm:

 1. Install one of following VMs:

• Virtual Box (www.virtualbox.org/wiki/Downloads)

• VMWare (www.vmware.com/products/workstation-player/

workstation-player-evaluation.html)

• Windows Virtual PC (www.microsoft.com/en-us/download/

details.aspx?id=3702)

 2. Install Windows OS inside the VM.

 3. Launch the Notepad application and the

KeyboardCheckProtection.au3 script inside the VM.

 4. Launch the VirtualMachineBot.au3 script outside the VM (i.e.,

on the host system).

The VirtualMachineBot.au3 script (see Listing 2-39) is a modified version of our bot.

Listing 2-39. The VirtualMachineBot.au3 Script

Sleep(2000)

while true

 Send("a")

 Sleep(1000)

 Send("b")

 Sleep(2000)

 Send("c")

 Sleep(1500)

wend

There is only one difference between it and the SimpleBot.au3 script. We do not

activate the Notepad window at startup. We have a two-second delay instead. You should

activate the window of the VM application and the Notepad window inside it during

the delay. Then the script starts to work, and the KeyboardCheckProtection.au3 script

cannot detect it.

Chapter 2 CliCker Bots

http://www.virtualbox.org/wiki/Downloads
http://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
http://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
http://www.microsoft.com/en-us/download/details.aspx?id=3702
http://www.microsoft.com/en-us/download/details.aspx?id=3702

94

 Protection Summary
We have considered approaches to protect the game application against clicker bots.

Each approach has its own drawbacks, and there are ways to overcome it. You can find

an appropriate workaround if you know the protection algorithm well. There are few

ideas how you can investigate the algorithm:

 1. Hook WinAPI calls, which the protection system does. You can do

it with the API Monitor or a similar application.

 2. Apply reverse engineering methods to understand the executable

and DLL files of the protection system.

 3. Try several ways to avoid the protection system. If one of them

works, you can assume how the protection algorithm works.

Most of the modern client-side protection systems combine several protection

algorithms. Therefore, a reliable clicker bot should combine several methods to

avoid them.

Chapter 2 CliCker Bots

95
© Ilya Shpigor 2018
I. Shpigor, Practical Video Game Bots, https://doi.org/10.1007/978-1-4842-3736-6_3

CHAPTER 3

In-game Bots
We will consider in-game bots in this chapter. First, we will get an overview of the tools

that are often used for analyzing the process memory. Then we will consider a memory

structure of a typical Windows process. We will learn how to search, read, and write

specific variables in this memory. We will develop a sample bot for the game Diablo 2.

Finally, we will consider the protection algorithms against in-game bots.

 Tools
In-game bot development requires more advanced techniques than clicker bots. We

should dive deeper into OS internals and consider them. Thus, our tools will became

more complicated to use.

 Programming Language
We will use C++ language only in this chapter. I recommend that you use freeware

Microsoft Visual Studio IDE (www.visualstudio.com/vs/express) instead of the open

source MinGW environment. MinGW has issues with importing some Windows libraries

(for example, dbghelp.dll). You can try to compile examples of this chapter with MinGW,

but you should be ready to switch to Visual Studio IDE in case there are issues.

Do not forget to update your Internet Explorer (windows.microsoft.com/en-us/

internet-explorer/download-ie) for using the latest version of Visual Studio IDE.

Also, you should install Windows SDK (msdn.microsoft.com/en-us/library/

ms717358%28v=vs.110%29.aspx), which allows accessing Windows Native API and

linking with the ntdll.dll system library.

http://www.visualstudio.com/vs/express
http://windows.microsoft.com/en-us/internet-explorer/download-ie
http://windows.microsoft.com/en-us/internet-explorer/download-ie
http://msdn.microsoft.com/en-us/library/ms717358(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms717358(v=vs.110).aspx

96

 Debugger
OllyDbg (www.ollydbg.de) is a freeware debugger. We will use it intensively in this

chapter. The debugger has a user-friendly graphical interface, which simplifies work with

it. OllyDbg provides extended functionality to analyze Windows applications without

having the source code. However, it allows us to debug and disassemble 32-bit Windows

applications only.

x64dbg (x64dbg.com) is an open source debugger for Windows. It has almost the

same user-friendly interface as OllyDbg. The x64dbg supports both 32-bit and 64-bit

applications. It has fewer features than OllyDbg debugger. Therefore, you should be

prepared to do some memory addresses calculation manually if you decide to use it.

I recommend using x64dbg for debugging 64-bit applications only and OllyDbg in

other cases.

WinDbg (docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk)

is a freeware debugger with powerful features that allow you to debug user mode

applications, device drivers, Windows libraries, and kernel. WinDbg supports both

32-bit and 64-bit applications. It has only one serious drawback—a poor user interface.

However, we can easily solve this issue with the custom theme (github.com/Deniskore/

windbg-workspace). It improves the interface and makes it look like OllyDbg. Most of

the WinDbg features are available through text commands (www.windbg.info/doc/1-

common-cmds.html).

Here are the steps to install a custom WinDbg theme:

 1. Unpack all files from the windbg-workspace-master.zip archive

to the debugger directory with themes. It has a default path:

C:\Program Files (x86)\Windows Kits\8.1\Debuggers\x64\

themes.

 2. Launch the windbg.reg file and press the “Yes” button in both

pop-up dialogs.

Now the main window of WinDbg should look like what is shown in Figure 3-1.

Chapter 3 In-game Bots

http://www.ollydbg.de
http://x64dbg.com
http://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
http://github.com/Deniskore/windbg-workspace
http://github.com/Deniskore/windbg-workspace
http://www.windbg.info/doc/1-common-cmds.html
http://www.windbg.info/doc/1-common-cmds.html

97

 Memory Analyzing Tools
Cheat Engine (www.cheatengine.org) is an open source tool that combines features

of memory scanner, debugger, and hex editor. It allows you to find an address of the

specific variable in process memory and modify it.

HeapMemView (www.nirsoft.net/utils/heap_memory_view.html) is a freeware

utility for analysis of the heap segments allocated by the process. It has special versions

for 32-bit and 64-bit target applications.

 Process Memory Analysis
Many books and articles describe process memory structure. We will consider only those

aspects of this topic that are essential for process memory analysis.

 Process Memory Overview
First of all, we should understand well the difference between an executable binary file

and a launched process. The file is some record on the storage device. The executable

file contains instructions (machine code) that the CPU can understand and perform.

Figure 3-1. The main window of WinDbg with the applied theme

Chapter 3 In-game Bots

http://www.cheatengine.org
http://www.nirsoft.net/utils/heap_memory_view.html

98

When you ask OS to launch an executable file, OS copies its content from the storage

device to the random-access memory (RAM). This operation allows the CPU to access

file instructions much faster because the RAM-to-CPU interface has a bandwidth of

several orders of magnitude more than the storage device.

Also, OS loads to the RAM all libraries that are required for the loaded file. Then OS

provides some CPU time to perform the executable file instructions. At this point, we get

the process. So, a process is the executed application.

What does the process do? To answer this question, let us look into the executable

file. In general, it contains algorithms to process some data and description of ways to

interpret them. Rules of the type system encode this description. So, we can conclude

that typical process work is manipulation with data.

The next question is where process data is stored. We know that OS keeps CPU

instructions into the RAM. However, this is a process responsibility to choose a place to

store its data. It can be a storage device, RAM, or remote host (such as a game server).

Most of the data that is used for current execution is copied into the RAM because of a

quick access benefit. Therefore, we can read a game state from the RAM when the game

process works. This period of the process execution is also known as runtime.

Figure 3-2 shows components of a typical process. It consists of several modules.

The EXE module, which matches the executable file, presents always. All other modules

(DLL_1 and DLL_2) are the libraries that are used by the EXE module.

Figure 3-2. Components of a typical Windows process

Chapter 3 In-game Bots

99

All Windows applications use at least one library that provides access to WinAPI

functions. The compiler links some system libraries implicitly even if your application

does not call any WinAPI functions. However, the compiler inserts some WinAPI

functions (for example, ExitProcess or VirtualQuery) automatically during the

compilation process. They are responsible for process termination and memory

management.

There are two types of the libraries: dynamic-link libraries (DLL) and static

libraries. The primary difference between them is the time to resolve dependencies.

If an executable file depends on a static library, the library must be available at

compile time. A linker produces one resulting file, which contains machine code of both

the static library and the executable file. So, the EXE module in Figure 3-2 contains a

code of the static library and the executable file.

If an executable file depends on a DLL, the DLL should be available at the compile

time too. However, the resulting file does not contain machine code of the library. OS

searches and loads this code into the process memory at runtime. The launched process

crashes if OS does not find the required DLL. You can see two DLL modules in Figure 3- 2.

Now let us look how the CPU executes the process. The process can have many

algorithms, and sometimes they can be executed in parallel. The thread is the smallest

portion of machine code that can be executed separately from others in a parallel

manner. Threads interact with each other via shared resources (for example RAM). OS

chooses which thread is executed at the moment. The number of CPU cores defines the

number of simultaneously executed threads.

You can see in Figure 3-2 that each module contains one or more threads. Some

modules do not contain threads at all. The EXE module always contains the main thread,

which is launched by OS on application start.

Figure 3-2 focuses on the details of process execution. Now we consider the memory

layout of a typical process.

Figure 3-3 shows an address space of some process with two modules: EXE and

one DLL. The address space is divided into memory blocks or segments. Each segment

has a base address, length, and a set of permissions (for example write, read, execute).

Segments simplify memory management for OS. This happens because OS can operate

by memory blocks instead of the memory cells.

Chapter 3 In-game Bots

100

The process on Figure 3-3 has three threads (including the main). Each thread has

own stack segment. Also, there are several heap segments, which are shared between

all threads.

Each of process modules has mandatory segments like .text, .data, and .bss. Also,

there are some segments (like .rsrc) that are not mentioned in our scheme.

Table 3-1 describes each segment briefly.

Figure 3-3. Memory layout of a typical process

Chapter 3 In-game Bots

101

Table 3-1. Description of the Segments

Segment Description

stack of main thread It contains call stack, parameters of the called functions, and

automatic variables. the segment is used only by the main thread.

Dynamic heap ID 1 the heap, which is created by default on the process start. Dynamic

heaps are created and destroyed on the fly during the process execution.

Default heap ID 0 os creates this heap on the process start. global and local memory

management functions use it by default. however, you can specify

another heap for them.

stack of thread 2 thread 2 stores here call stack, function parameters, and automatic

variables.

eXe module .text It contains machine code of the eXe module.

eXe module .data It contains non-constant globals and static variables of the eXe

module, which have predefined values.

eXe module .bss It contains non-constant globals and static variables without predefined

values.

stack of thread 3 thread 3 stores here call stack, function parameters, and automatic

variables.

Dynamic heap ID 2 Heap manager creates this heap automatically when the default heap

reaches the maximum available size. this heap extends the default heap.

DLL module .text It contains machine code of the DLL module.

DLL module .data It contains DLL module-specific non-constant globals and static

variables with predefined values.

DLL module .bss It contains non-constant globals and static variables without predefined

values.

Dynamic heap ID 3 automatically created heap, which extends the dynamic heap with ID 2

when it reaches the maximum available size.

teB of thread 3 It contains Thread Environment Block (teB) or Thread Information
Block (tIB) data structure. this structure stores information about

thread 3.

(continued)

Chapter 3 In-game Bots

102

Let us assume that Figure 3-3 shows a memory layout of the game process. Some

segments contain data related to the game objects. They have been marked with a

red color.

OS assigns base addresses of these segments when the game process starts. It means

that these addresses can differ each time when you launch the application. Moreover,

an order of the red segments in the process memory can vary. However, some segments

have permanent base addresses that stay unchanged on each process launch. Examples

of these segments are PEB, user shared data, and kernel memory.

OllyDbg debugger allows you to get a memory map of a launched process.

Figure 3-4 shows the beginning of the process address space.

Table 3-1. (continued)

Segment Description

teB of thread 2 It contains teB with information about thread 2.

teB of main thread It contains teB with information about the main thread.

peB It contains Process Environment Block (peB) data structure with

information about a whole process.

User shared data It contains memory that is shared by the current process with other

processes.

Kernel memory It contains memory that is reserved for os purposes like device drivers

and system cache.

Chapter 3 In-game Bots

103

Figure 3-4. The memory map of a launched process (beginning)

Chapter 3 In-game Bots

104

You can find the remaining address space in Figure 3-5.

Let us make a match between the Figure 3-3 memory layout and segments of the real

process. Table 3-2 summarizes this.

Figure 3-5. The memory map of a launched process (ending)

Chapter 3 In-game Bots

105

Table 3-2. Segments of the Real Process

Address Segment

001eD000 stack of main thread.

004F0000 Dynamic heap with ID 1.

00530000 Default heap with ID 0.

00aCF000

00D3e000

0227F000

stacks of additional threads.

00D50000-00D6e000 segments of the eXe module named “Consoleapplication1”.

02280000-0BB40000

0F230000-2BC70000

extra dynamic heaps.

0F0B0000-0F217000 segments of the DLL module named “ucrtbased”.

7eFaF000

7eFD7000

7eFDa000

teB of additional threads.

7eFDD000 teB of main thread.

7eFDe000 peB of main thread.

7FFe0000 User shared data.

80000000 Kernel memory.

You have probably noticed that OllyDbg does not detect all dynamic heaps

automatically. You can use WinDbg debugger or HeapMemView utility to find all heap

segments and get their base addresses.

 Variable Searching
In-game bots read states of game objects from the game process memory. Variables from

several segments can keep this state. The base addresses of these segments and offsets

of the variables inside them can change each time we restart a game. This means that

the absolute address of each variable is not a constant. Therefore, the bot should have

an algorithm to search variables in process memory. The algorithm should calculate an

absolute address of the specified variable.

Chapter 3 In-game Bots

106

We use the term “absolute address” here, but it is not a precise name in terms of the

x86 memory segmentation model. If we follow the naming of this model, the absolute

address is named linear address. This is a formula to calculate a linear address:

linear address = base address + offset

We will continue to use the term “absolute address” for simplicity’s sake, as it is more

intuitively understandable. The term “linear address” will appear when it becomes

important to emphasize aspects of the memory segmentation model.

We can divide the search of a specific variable in process memory into three steps to

make a variable searching algorithm:

 1. Find a segment that contains the variable.

 2. Define a base address of the segment.

 3. Define an offset of the variable inside the segment.

It is very likely that the variable will fit in the same segment after application restart.

However, the heap segments break this rule. This happens because of a mechanism that

creates dynamic heaps. If the target variable is not in the heap segment, we can perform

the first step of our algorithm manually and hard-code the result in our bot. Otherwise,

we should apply more sophisticated techniques.

The in-game bot should solve the second algorithm step by his own because

segment address changes after application restart.

It is not guaranteed that a variable offset inside the segment stays unchanged on each

process launch. However, it may remain the same in some cases. It depends on the segment

type. Table 3-3 shows the dependency between segment types and offsets of its variables.

Table 3-3. Variable Offsets in Different Types of Segments

Segment Type Offset Constancy

.bss always constant.

.data always constant.

stack the offset is constant in most cases. It can vary when control flow of

application execution differs between new application launches.

heap the offset varies in most cases.

Chapter 3 In-game Bots

107

Thus, we can solve the third step of the algorithm manually in some cases and

hard-ode the result.

 32-Bit Application Analysis

We will analyze the memory of the ColorPix 32-bit application. This allows us to apply

our variable searching algorithm in practice. After we have completed this exercise, we

will understand each step of the algorithm better.

We have already used the ColorPix application in Chapter 2. Figure 3-6 shows the

application window.

Let us find a variable that matches the x coordinate of the selected pixel on a screen.

A red line underlines this value in Figure 3-6.

Figure 3-6. The ColorPix window

You should not close the Colorpix application during our analysis. If you do, you
should repeat the search steps from the beginning.

Chapter 3 In-game Bots

108

The first step of the variable searching algorithm is to find a memory segment that

contains the x coordinate. We can split this task into two stages:

 1. Find the absolute address of the variable with the Cheat Engine

scanner.

 2. Compare the discovered absolute address with the base addresses

and lengths of all memory segments. This allows us to deduce a

segment that contains the variable.

This is an algorithm to find the absolute address of the variable with the Cheat

Engine scanner:

 1. Launch the 32-bit version of the Cheat Engine scanner with

administrator privileges.

 2. Select the “File”➤“Open Process” menu item. You will see the dialog

with a list of launched applications at the moment (Figure 3-7).

Figure 3-7. The process list dialog

Chapter 3 In-game Bots

109

 3. Select a process with the “ColorPix.exe” name in the list and press

the “Open” button. Now the process name is displayed above the

progress bar at the top of the Cheat Engine window.

 4. Type the current value of the x coordinate into the “Value” control

of the Cheat Engine window. You can read this value in the

ColorPix window.

 5. Press the “First Scan” button to find the typed x value in a memory

of the ColorPix process.

the number in the “Value” control should match the x coordinate, which is
displayed in the Colorpix window at the moment when you are pressing the
“First scan” button. You can use the tab and shift+tab keys to switch between
the “Value” control and the “First scan” button. this allows you to keep the pixel
coordinate unchanged during switching.

The list control in the Cheat Engine window shows the search results (Figure 3-8).

Figure 3-8. The search results in the Cheat Engine window

Chapter 3 In-game Bots

110

If there are more than two absolute addresses in the list, you should filter

inappropriate results. To do so, just move the mouse to change the x coordinate of the

current pixel. Then type a new value of the x coordinate in the “Value” control and press

the “Next Scan” button. Be sure that the new value differs from the previous one.

After filtering inappropriate results, you will get two variables as Figure 3-8 shows.

Their absolute addresses equal to “0018FF38” and “0025246C” in my case. You can get

other addresses. It is not an issue for our exercise.

Now we know absolute addresses of two variables that match to the x coordinate of

the selected pixel. The next step is to find segments that contain these variables. We can

use OllyDbg debugger to get it.

This is an algorithm to search the segment:

 1. Launch OllyDbg debugger with administrator privileges. The

default path of the executable file is C:\Program Files (x86)\

odbg201\ollydbg.exe.

 2. Select the “File”➤“Attach” menu item. You will see the dialog with

a list of launched 32-bit applications at the moment (Figure 3-9).

Figure 3-9. The “Select process to attach” dialog of the OllyDbg debugger

Chapter 3 In-game Bots

111

 3. Select the “ColorPix.exe” process in the list and press the “Attach”

button. When the debugger attaches, you see the “Paused” text in

the bottom right corner of the OllyDbg window.

 4. Press Alt+M to open a memory map of the ColorPix process. Now

the OllyDbg window looks like what Figure 3-10 shows.

Figure 3-10. The memory map of the ColorPix process

You can see that the variable with the absolute address 0018FF38 matches the

“Stack of main thread” segment. This segment starts at the “0017F000” address.

It ends at the “00190000” address because the next segment starts at the “00190000”.

The second variable with absolute address 0025246C matches an unknown segment

with a “00250000” base address. It will be more reliable to choose the “Stack of main

thread” segment to read a value of the x coordinate. It is much easier to find a stack

segment than some unknown segment.

Chapter 3 In-game Bots

112

The last step of our variable searching algorithm is to calculate a variable offset

inside the owning segment. The stack segment grows down for x86 architecture. This

means that the stack grows from higher addresses to lower addresses. Therefore, the

base address of the stack segment equals its upper bound (i.e., 00190000 in our case).

The lower segment bound will change when the stack grows.

An offset of the variable equals the subtraction of its absolute address from a base

address of the segment. This is a calculation example for our case:

00190000 - 0018FF38 = C8

The variable offset inside the owning segment equals C8. This formula differs for

heap, .bss, and .data segments. Heap grows up, and its base address equals the lower

segment bound. The .bss and .data segments do not grow at all. Their base addresses

equal to lower segment bounds too. You can follow the rule to subtract a smaller address

from a larger one to calculate the variable offset correctly.

Now we have enough information to find and read a value of the x coordinate for any

launched ColorPix process. This is the algorithm to do it:

 1. Get the base address of the main thread stack segment. You can

get this address from the TEB segment.

 2. Calculate the absolute address of the x coordinate variable by

subtraction the offset C8 from the base address of the stack

segment.

 3. Read four bytes from the ColorPix application memory at the

calculated absolute address.

As you see, it is quite simple to write a bot that follows this algorithm.

You can read the TEB segment with OllyDbg. You should do a left-button double-click

on the “Data block of main thread” segment in the “Memory Map” window. Then you

will see the window shown in Figure 3-11.

Chapter 3 In-game Bots

113

Figure 3-11. The TEB dump of the ColorPix application

The base address of the stack segment equals “00190000” according to Figure 3-11.

This address can vary, and you should reread it again each time when you restart the

ColorPix application.

 64-Bit Application Analysis

Let us apply our variable searching algorithm to a 64-bit application.

We cannot use the ollyDbg debugger for this exercise because it does not support
64-bit applications. We will use the WinDbg debugger instead.

We will analyze the Resource Monitor Windows 7 utility. The bitness of this

application matches the bitness of the Windows OS. If you have the 64-bit Windows

version, you have the 64-bit Resource Monitor. To launch it, you should open the “Start”

Windows menu and type the following command in a search box:

perfmon.exe /res

Chapter 3 In-game Bots

114

Figure 3-12 shows the application window.

Figure 3-12. The Resource Monitor window

A red line underlines the “Free” memory amount. We will find this variable in the

process memory.

The first step of our algorithm is finding the segment that contains the target

variable. We can use the 64-bit version of the Cheat Engine scanner to get an absolute

address of the variable. The 64-bit version of the Cheat Engine has the same user

interface as the 32-bit version.

I get two addresses for the “Free” memory amount variable: “00432FEC” and

“00433010”.

The second step is comparing the process memory map and variable addresses. This

step differs from the 32-bit application analysis because we will use another debugger.

This is an algorithm to get a process memory map with WinDbg:

Chapter 3 In-game Bots

115

 1. Launch the 64-bit version of the WinDbg debugger with

administrator privileges. The default path of the executable file is

C:\Program Files (x86)\Windows Kits\8.1\Debuggers\x64\

windbg.exe.

 2. Select the “File"➤“Attach to a Process...” menu item. You will see

a dialog with a list of launched 64-bit applications at the moment

(see Figure 3-13).

Figure 3-13. The “Attach to Process” dialog

Chapter 3 In-game Bots

116

 3. Select the “perfmon.exe” process in the list and press the “OK”

button.

 4. Type the !address command in a control at the bottom of the

“Command” window, and press Enter. You will see a memory map

of the Resource Monitor application in the “Command” window

as Figure 3-14 shows.

Figure 3-14. Memory map in the WinDbg debugger

You can see that both variables with absolute addresses 00432FEC and 00433010

match the first heap segment with ID 2. This segment occupies addresses from

“003E0000” to “00447000". We can use the first variable with the 00432FEC absolute

address to read the “Free” memory amount.

This is a calculation of the variable offset:

00432FEC - 003E0000 = 52FEC

Chapter 3 In-game Bots

117

This is an algorithm to find and read a “Free” memory amount from the Resource

Monitor process:

 1. Get a base address of the heap segment with ID 2. You can use this

set of WinAPI functions to traverse heap segments of the process:

• CreateToolhelp32Snapshot

• Heap32ListFirst

• Heap32ListNext

 2. Calculate an absolute address of the variable by adding the offset

52FEC to the base address of the heap segment.

 3. Read four bytes from the Resource Monitor process memory at the

calculated absolute address.

 Process Memory Analysis Summary
We have considered the memory layout of a typical Windows application. We made

the variable searching algorithm and applied it to analysis of both 32-bit and 64-bit

applications. We got the practical skills to use both OllyDbg and WinDbg debuggers.

 Process Memory Access
We already know how to find a variable in the process memory manually. Let us implement

a code that automates this algorithm. In-game bots cannot use a debugger (like OllyDbg).

Instead, they should have some debugger mechanism to repeat their features.

 Open Process
As you remember, the first step of accessing a process memory is attaching to this

process. Now we consider the WinAPI functions to do it.

Almost all Windows objects and resources can be accessed via handles. The

OpenProcess WinAPI function provides a handle of the specified process. Each process

in the system has a unique number, which is named the process identifier (PID). We

should pass the PID to the OpenProcess function and get the handle back. Once we get a

process handle, we can access its memory via WinAPI functions.

Chapter 3 In-game Bots

118

Windows has high-level abstractions for its resources. Windows objects (for example,

processes) use these abstractions. Some objects wrap system resources and provide a

unified interface for other objects. So, Windows objects interact with other objects in

most cases. This approach simplifies interfaces and application development very much.

How can our application interact with the Windows object? Each object has a unified

structure, which consists of a header and body. The header contains metainformation

about the object, and Object Manager uses this information. This manager responds by

providing access to system resources. The body contains the object-specific data.

The Windows security model restricts processes that can access the system objects

and perform various system administration tasks. The security model requires a process

to have special privileges to access another process with the OpenProcess function. An

access token is a system object that allows manipulating the security attributes of the

process. We can use the access token features to grant privileges for our application. So,

it can use the OpenProcess function without limitations.

This is the opening the target process algorithm from the current process with the

OpenProcess function:

 1. Get a handle of a current process.

 2. Get an access token of the current process.

 3. Grant SE_DEBUG_NAME privilege for the access token of the current

process. This privilege allows the process to debug others.

 4. Get a handle of the target process with the OpenProcess call.

We should launch our application with administrator privileges to perform

this algorithm. Otherwise, we cannot grant the SE_DEBUG_NAME privilege with the

AdjustTokenPrivileges function.

You might ask why it is not enough to launch the application with administrator

privileges and let it access other processes. It is a good question. If you are a system

administrator, you should have access to the system configuration features. However,

this does not mean that all applications that you run can easily violate the common

system rules (for example accessing the resources of other processes). If the system

behaves in the same way, it becomes very unstable and fragile.

Listing 3-1 demonstrates an application that opens the target process with the

specified PID.

Chapter 3 In-game Bots

119

Listing 3-1. The OpenProcess.cpp Application

#include <windows.h>

#include <stdio.h>

BOOL SetPrivilege(HANDLE hToken, LPCTSTR lpszPrivilege, BOOL bEnablePrivilege)

{

 TOKEN_PRIVILEGES tp;

 LUID luid;

 if (!LookupPrivilegeValue(NULL, lpszPrivilege, &luid))

 {

 printf("LookupPrivilegeValue error: %u\n", GetLastError());

 return FALSE;

 }

 tp.PrivilegeCount = 1;

 tp.Privileges[0].Luid = luid;

 if (bEnablePrivilege)

 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

 else

 tp.Privileges[0].Attributes = 0;

 if (!AdjustTokenPrivileges(hToken, FALSE, &tp, sizeof(TOKEN_PRIVILEGES),

 (PTOKEN_PRIVILEGES)NULL, (PDWORD)NULL))

 {

 printf("AdjustTokenPrivileges error: %u\n", GetLastError());

 return FALSE;

 }

 if (GetLastError() == ERROR_NOT_ALL_ASSIGNED)

 {

 printf("The token does not have the specified privilege. \n");

 return FALSE;

 }

 return TRUE;

}

Chapter 3 In-game Bots

120

int main()

{

 HANDLE hProc = GetCurrentProcess();

 HANDLE hToken = NULL;

 if (!OpenProcessToken(hProc, TOKEN_ADJUST_PRIVILEGES, &hToken))

 printf("Failed to open access token\n");

 if (!SetPrivilege(hToken, SE_DEBUG_NAME, TRUE))

 printf("Failed to set debug privilege\n");

 DWORD pid = 1804;

 HANDLE hTargetProc = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);

 if (hTargetProc)

 printf("Target process handle = %p\n", hTargetProc);

 else

 printf("Failed to open process: %u\n", GetLastError());

 CloseHandle(hTargetProc);

 return 0;

}

The application opens a process with a PID that equals 1804. To test it, you should

specify the PID of any existing process in your system. Windows Task Manager allows

you to get PIDs of all launched processes.

You should specify the PID in this code line:

DWORD pid = 1804;

We implement each step of the opening a process algorithm in the separate functions.

Then, we call all these functions from the main function of the OpenProcess.cpp

application. Let us consider these steps.

The first step is getting a handle of the current process with the GetCurrentProcess

call. We save it in the hProc variable.

The second step is getting an access token of the current process with the

OpenProcessToken call. We pass the hProc variable and TOKEN_ADJUST_PRIVILEGES

access mask to this function. The function returns a handle to the access token. We save

it in the hToken variable.

Chapter 3 In-game Bots

121

The third step is to grant the SE_DEBUG_NAME privilege for the current process. We

encapsulate this action in the SetPrivilege function. There are two steps to grant the

privilege:

 1. Get the locally unique identifier (LUID) of the SE_DEBUG_NAME

privilege constant with the LookupPrivilegeValue WinAPI

function.

 2. Grant the privilege with the specified LUID with the

AdjustTokenPrivileges WinAPI function. This function

operates with LUID values instead of privilege constants.

An example of the SetPrivilege function with a detailed explanation is available in

the MSDN article (msdn.microsoft.com/en-us/library/aa446619%28VS.85%29.aspx).

The last step is the OpenProcess WinAPI function call. We pass the PROCESS_ALL_

ACCESS access rights and a PID of the target process to this function. It returns a handle,

which we can use to access memory of this process.

 Read and Write Operations
We have a handle of the target process. Let us consider ways to access its memory.

WinAPI provides appropriate functions for this task.

The ReadProcessMemory function reads data from a memory area of the target

process to the memory of the current process. The WriteProcessMemory function writes

specified data to a memory area of the target process.

We will consider the usage of these functions with a sample application (see

Listing 3-2). Our application writes the hexadecimal value 0xDEADBEEF at the

specified absolute address of the target process memory. Then it reads a value at the

same absolute address. If the write operation succeeds, the read operation returns the

0xDEADBEEF value.

Listing 3-2. The ReadWriteProcessMemory.cpp Application

#include <stdio.h>

#include <windows.h>

Chapter 3 In-game Bots

http://msdn.microsoft.com/en-us/library/aa446619(VS.85).aspx

122

BOOL SetPrivilege(HANDLE hToken, LPCTSTR lpszPrivilege, BOOL

bEnablePrivilege)

{

 // See function's implementation in the OpenProcess.cpp application

}

DWORD ReadDword(HANDLE hProc, DWORD_PTR address)

{

 DWORD result = 0;

 if (ReadProcessMemory(hProc, (void*)address, &result, sizeof(result),

NULL) == 0)

 {

 printf("Failed to read memory: %u\n", GetLastError());

 }

 return result;

}

void WriteDword(HANDLE hProc, DWORD_PTR address, DWORD value)

{

 if (WriteProcessMemory(hProc, (void*)address, &value, sizeof(value),

NULL) == 0)

 {

 printf("Failed to write memory: %u\n", GetLastError());

 }

}

int main()

{

 HANDLE hProc = GetCurrentProcess();

 HANDLE hToken = NULL;

 if (!OpenProcessToken(hProc, TOKEN_ADJUST_PRIVILEGES, &hToken))

 printf("Failed to open access token\n");

 if (!SetPrivilege(hToken, SE_DEBUG_NAME, TRUE))

 printf("Failed to set debug privilege\n");

 DWORD pid = 5356;

Chapter 3 In-game Bots

123

 HANDLE hTargetProc = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);

 if (!hTargetProc)

 printf("Failed to open process: %u\n", GetLastError());

 DWORD_PTR address = 0x001E0000;

 WriteDword(hTargetProc, address, 0xDEADBEEF);

 printf("Result of reading dword at 0x%llx address = 0x%x\n", address,

 ReadDword(hTargetProc, address));

 CloseHandle(hTargetProc);

 return 0;

}

The write operation to the 0x001E0000 absolute address can crash the target process.

Therefore, I recommend to not use any Windows system services as a target process to

test the ReadWriteProcessMemory.cpp application. It is better to launch Notepad and

use it as the target process.

This is an algorithm to launch our application:

 1. Launch a Notepad.

 2. Get a PID of the Notepad process with the Windows Task Manager.

 3. Assign the Notepad PID to the pid variable in this line of the main

function:

DWORD pid = 5356;

 4. Get a base address of any heap segment of the Notepad process

with WinDbg debugger. You can use the !address command to

get a full memory map of the Notepad process.

 5. Detach the WinDbg debugger from the Notepad process with the

.detach command.

 6. Assign the base address of the heap segment to the address

variable in this line of the main function:

DWORD_PTR address = 0x001E0000;

Chapter 3 In-game Bots

124

 7. Rebuild the ReadWriteProcessMemory.cpp application. The

application binary should have the same target architecture

(x86 or x64) as Notepad.

 8. Launch the sample application with administrator privileges.

This is a console output after successful execution of the application:

Result of reading dword at 0x1e0000 address = 0xdeadbeef

The output contains a memory address where our application reads and writes data.

We use WriteDword and ReadDword wrapper functions for WinAPI. These wrappers

encapsulate type casts and error processing. However, you should know input

parameters of both WriteProcessMemory and ReadProcessMemory WinAPI functions.

Table 3-4 explains these parameters.

Table 3-4. Parameters of the WriteProcessMemory and ReadProcessMemory

WinAPI Functions

Parameter Description

hProc a handle of the target process. We access the memory of this process.

address an absolute address of a memory area to access.

&result or &value a pointer to store the result of the read operation in case of

ReadProcessMemory function. the buffer contains data for writing in

case of the WriteProcessMemory function.

sizeof(...) a number of bytes to read from memory or to write there.

NULL a pointer to a variable that stores an actual number of transferred bytes.

 TEB and PEB Access
We know how to access data of the target process memory. However, we should know an

absolute address to read or write the specific variable. There is only one reliable way for

calculating the variable address. We should consider the segment where our variable is

stored.

Chapter 3 In-game Bots

125

You probably remember that each process has places where we can find information

about its segments. These places are special TEB and PEB segments. Now we consider

ways to find and access them.

If a process has several threads, each of them has its own TEB segment. It contains a

base address of the stack segment that belongs to the thread. We can get the first half of

the thread variables from its stack.

The default heap segment contains the remaining half (with some exceptions) of the

variables. How can we find this segment? This task is quite easy because the PEB segment

contains a base address of the default heap. Also, if we find a TEB segment, we automatically

find a PEB segment too because all TEB segments contain a base address of the PEB.

A process has only one PEB segment (unlike few TEB segments).

 Current Process

Let us consider methods to access a TEB segment. We start with the most simple variant

of this task. This variant answers the question of how we can access the TEB of the main

thread of our sample application.

There are several ways to access a TEB segment. The first is to use segment

registers in the same way as Windows does. There is an FS segment register for the x86

architecture and a GS segment register for the x64 architecture. Both of these registers

point to the TEB segment of the thread that is executed at the moment.

The GetTeb function retrieves a pointer to the TEB structure for x86 architecture

application:

#include <winternl.h>

PTEB GetTeb()

{

 PTEB pTeb;

 __asm {

 mov EAX, FS:[0x18]

 mov pTeb, EAX

 }

 return pTeb;

}

Chapter 3 In-game Bots

126

You can see that we read a 32-bit value with the 0x18 offset from the TEB segment.

This value matches to the base address of the TEB segment.

You might ask why we cannot just use the value of the FS register. Does it make sense

for the TEB segment to store its own base address?

This question requires us to take one step back and consider the way that OS

accesses the process segments.

Most of the modern OS (like Windows) use the protected processor mode

(en.wikipedia.org/wiki/Protected_mode). This means that segment addressing

(en.wikipedia.org/wiki/X86_memory_segmentation#Protected_mode) works via a

descriptor table (en.wikipedia.org/wiki/Global_Descriptor_Table) mechanism. The FS

and GS registers contain a selector that defines the index of entry inside the descriptor

table. The descriptor table contains an actual base address of the TEB segment that

matches to the specified index. A segmentation unit of the CPU performs this kind of

request to the descriptor table. The resulting address of a calculation that is performed

by the segmentation unit is kept inside the CPU and is accessible neither by the user

application nor by the OS. There is a way to access entries in the descriptor tables via

the GetThreadSelectorEntry and Wow64GetThreadSelectorEntry WinAPI functions.

However, Windows cannot use these functions because of the overhead. The probable

reason that the TEB segment contains its own base address is to overcome the overhead

of the direct access the descriptor tables.

An example of the use of the GetThreadSelectorEntry function may be found at

reverseengineering.stackexchange.com/questions/3139/how-can-i-find-the-thread-

local-storage-tls-of-a-windows-process-thread.

The TEB structure varies between different Windows versions. The winternal.h

header file defines the structure. Windows SDK provides this file. You should clarify

the structure fields for your environment before starting to work with it. In over words,

versions of the Windows SDK and your Windows system should match.

This is an example of the TEB structure for Windows 8.1 version:

typedef struct _TEB {

 PVOID Reserved1[12];

 PPEB ProcessEnvironmentBlock;

 PVOID Reserved2[399];

 BYTE Reserved3[1952];

 PVOID TlsSlots[64];

 BYTE Reserved4[8];

Chapter 3 In-game Bots

http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/X86_memory_segmentation#Protected_mode
http://en.wikipedia.org/wiki/Global_Descriptor_Table
http://reverseengineering.stackexchange.com/questions/3139/how-can-i-find-the-thread-local-storage-tls-of-a-windows-process-thread
http://reverseengineering.stackexchange.com/questions/3139/how-can-i-find-the-thread-local-storage-tls-of-a-windows-process-thread

127

 PVOID Reserved5[26];

 PVOID ReservedForOle; // Windows 2000 only

 PVOID Reserved6[4];

 PVOID TlsExpansionSlots;

} TEB, *PTEB;

You can see that the structure has the ProcessEnvironmentBlock field, which points

to the PEB structure. We can use this pointer to access the PEB segment.

This approach to accessing a TEB segment register via inline assembler code does

not work for x64 architecture. Visual Studio C++ compiler does not support the inline

assembler for the x64 target architecture. The compiler intrinsics should be used

instead of the inline assembler in this case.

Listing 3-3 shows a source code of the GetTeb function, which uses compiler

intrinsics.

Listing 3-3. The GetTeb Function

#include <windows.h>

#include <winternl.h>

PTEB GetTeb()

{

#if defined(_M_X64) // x64

 PTEB pTeb = reinterpret_cast<PTEB>(__readgsqword(0x30));

#else // x86

 PTEB pTeb = reinterpret_cast<PTEB>(__readfsdword(0x18));

#endif

 return pTeb;

}

This version of the GetTeb function works for both x86 and x64 target architectures.

We use the _M_X64 macro to define an architecture of the application.

The __readgsqword compiler intrinsic reads a qword of 64-bit size with the 0x30

offset from the GS segment register in the case of x64 architecture.

The __readfsdword intrinsic reads a double word of 32-bit size with the 0x18 offset

from the FS segment register in the case of x86 architecture.

Chapter 3 In-game Bots

128

There is another question about the TEB segment. Why does the structure field with

a TEB segment base address have these different offsets inside the TEB segment for the

x86 and x64 architectures? Let us look at the definition of the NT_TIB structure, which is

used for interpreting the NT subsystem–independent part of the TEB segment:

typedef struct _NT_TIB {

 struct _EXCEPTION_REGISTRATION_RECORD *ExceptionList;

 PVOID StackBase;

 PVOID StackLimit;

 PVOID SubSystemTib;

 union

 {

 PVOID FiberData;

 ULONG Version;

 };

 PVOID ArbitraryUserPointer;

 struct _NT_TIB *Self;

} NT_TIB;

There are six pointers before the Self field of the NT_TIB structure. The pointer size

equals 32 bits (or four bytes) for the x86 architecture. It equals 64 bits (or eight bytes) for

the x64 architecture. This is a calculation of the Self field offset for the x86 architecture:

6 * 4 = 24

The 24 in the decimal numeral system equals 0x18 in hexadecimal. The same offset

calculation for x64 architecture gives the 0x30 result in the hexadecimal numeral system.

Listing 3-4 demonstrates a portable version of the GetTeb function with an explicit

usage of the NT_TIB structure.

Listing 3-4. The Portable Version of the GetTeb Function

#include <windows.h>

#include <winternl.h>

Chapter 3 In-game Bots

129

PTEB GetTeb()

{

#if defined(_M_X64) // x64

 PTEB pTeb = reinterpret_cast<PTEB>(__readgsqword(reinterpret_cast<QWORD>(

 &static_cast<PNT_TIB>(nullptr)->Self)));

#else // x86

 PTEB pTeb = reinterpret_cast<PTEB>(__readfsdword(reinterpret_cast<DWORD>(

 &static_cast<PNT_TIB>(nullptr)->Self)));

#endif

 return pTeb;

}

This implementation of the GetTeb function is taken from the article www.

autoitscript.com/forum/topic/164693-implementation-of-a-standalone-teb-and-

peb- read-method-for-the-simulation-of-getmodulehandle-and-getprocaddress-

functions-for-loaded-pe-module. You can see that the same __readgsqword and

__readfsdword compiler intrinsics are used there.

Now we use the NT_TIB structure to calculate the offset of the base TEB address. It

allows us to avoid magical numbers and to adapt our application to future Windows

versions where the NT_TIB structure may change.

The second way to access the TEB segment is to use WinAPI functions. The

NtCurrentTeb function implements the same algorithm as the preceding GetTeb. It

allows us to get the TEB structure of the current thread. This code snippet shows how to

use the NtCurrentTeb function:

#include <windows.h>

#include <winternl.h>

PTEB pTeb = NtCurrentTeb();

Now we delegate the responsibility to choose an appropriate register calculation to

WinAPI. Therefore, the function provides a correct result for all architectures that are

supported by Windows (x86, x64, and ARM).

The NtQueryInformationThread WinAPI function provides information

about any thread. Listing 3-5 shows a version of the GetTeb function that calls the

NtQueryInformationThread internally.

Chapter 3 In-game Bots

http://www.autoitscript.com/forum/topic/164693-implementation-of-a-standalone-teb-and-peb-read-method-for-the-simulation-of-getmodulehandle-and-getprocaddress-functions-for-loaded-pe-module
http://www.autoitscript.com/forum/topic/164693-implementation-of-a-standalone-teb-and-peb-read-method-for-the-simulation-of-getmodulehandle-and-getprocaddress-functions-for-loaded-pe-module
http://www.autoitscript.com/forum/topic/164693-implementation-of-a-standalone-teb-and-peb-read-method-for-the-simulation-of-getmodulehandle-and-getprocaddress-functions-for-loaded-pe-module
http://www.autoitscript.com/forum/topic/164693-implementation-of-a-standalone-teb-and-peb-read-method-for-the-simulation-of-getmodulehandle-and-getprocaddress-functions-for-loaded-pe-module

130

Listing 3-5. The GetTeb Function, Which Calls NtQueryInformationThread

#include <windows.h>

#include <winternl.h>

#pragma comment(lib,"ntdll.lib")

typedef struct _CLIENT_ID {

 DWORD UniqueProcess;

 DWORD UniqueThread;

} CLIENT_ID, *PCLIENT_ID;

typedef struct _THREAD_BASIC_INFORMATION {

 typedef PVOID KPRIORITY;

 NTSTATUS ExitStatus;

 PVOID TebBaseAddress;

 CLIENT_ID ClientId;

 KAFFINITY AffinityMask;

 KPRIORITY Priority;

 KPRIORITY BasePriority;

} THREAD_BASIC_INFORMATION, *PTHREAD_BASIC_INFORMATION;

typedef enum _THREADINFOCLASS2 {

 ThreadBasicInformation,

 ThreadTimes,

 ThreadPriority,

 ThreadBasePriority,

 ThreadAffinityMask,

 ThreadImpersonationToken,

 ThreadDescriptorTableEntry,

 ThreadEnableAlignmentFaultFixup,

 ThreadEventPair_Reusable,

 ThreadQuerySetWin32StartAddress,

 ThreadZeroTlsCell,

 ThreadPerformanceCount,

 ThreadAmILastThread,

 ThreadIdealProcessor,

 ThreadPriorityBoost,

Chapter 3 In-game Bots

131

 ThreadSetTlsArrayAddress,

 _ThreadIsIoPending,

 ThreadHideFromDebugger,

 ThreadBreakOnTermination,

 MaxThreadInfoClass

} THREADINFOCLASS2;

PTEB GetTeb()

{

 THREAD_BASIC_INFORMATION threadInfo;

 if (NtQueryInformationThread(GetCurrentThread(),

 (THREADINFOCLASS)ThreadBasicInformation,

 &threadInfo, sizeof(threadInfo), NULL))

 {

 printf("NtQueryInformationThread return error\n");

 return NULL;

 }

 return reinterpret_cast<PTEB>(threadInfo.TebBaseAddress);

}

Table 3-5 describes the input parameters of the NtQueryInformationThread function.

Table 3-5. Parameters of the NtQueryInformationThread WinAPI Function

Parameter Description

GetCurrentThread() a handle of the target thread. there is a handle of the current

thread in our case.

ThreadBasicInformation a constant of the THREADINFOCLASS enumeration type. the

constant defines a type of the resulting structure.

&threadInfo a pointer to the structure where the function writes its result value.

sizeof(...) size of the structure with the function result.

NULL a pointer to a variable with an actual number of bytes that were

written to the resulting structure.

Chapter 3 In-game Bots

132

The NtQueryInformationThread function receives a constant of the THREADINFOCLASS

enumeration type. We should use the ThreadBasicInformation constant in our case.

However, this constant is not documented. Moreover, it is absent from the winternl.h

header file. The header defines only one constant with the ThreadIsIoPending name.

If you want to use the undocumented constants of the THREADINFOCLASS

enumeration, you should define a custom enumeration. It should contain the

undocumented constants you want to use. You can get a list of these constants in the

unofficial documentation (undocumented.ntinternals.net/index.html?page=UserM

ode%2FUndocumented%20Functions%2FNT%20Objects%2FThread%2FTHREAD_

INFORMATION_CLASS.html).

We add a custom enumeration named THREADINFOCLASS2 in our sample. Also, we

rename the ThreadIsIoPending constant to _ThreadIsIoPending. Otherwise, we get a

compilation error because of conflicts with the constant from the winternl.h header.

The NtQueryInformationThread function returns a structure. When we pass the

undocumented ThreadBasicInformation constant to the function, it returns a structure

of the undocumented type. Thus, we should define a type of the structure. It has the

THREAD_BASIC_INFORMATION type. You can get it in the unofficial documentation that we

mentioned previously.

Please have a look at the THREAD_BASIC_INFORMATION structure. You will find the

TebBaseAddress field there. It contains a base address of the TEB segment.

Windows Native API provides the NtQueryInformationThread function. The ntdll.

dll dynamic library contains an implementation of this API. The library is a part of

the Windows distribution. However, you need the ntdll.lib import library and the

winternl.h header to access Native API. Windows SDK provides both of these files.

You can use the import library via the pragma directive:

#pragma comment(lib, "ntdll.lib")

This is a line that adds the ntdll.lib file to the linker list of import libraries.

You can find the TebPebSelf.cpp application in the source code examples that

are provided with this book. It demonstrates all of the ways that we have considered to

access the TEB and PEB of the current process.

Chapter 3 In-game Bots

http://undocumented.ntinternals.net/index.html?page=UserMode/Undocumented Functions/NT Objects/Thread/THREAD_INFORMATION_CLASS.html
http://undocumented.ntinternals.net/index.html?page=UserMode/Undocumented Functions/NT Objects/Thread/THREAD_INFORMATION_CLASS.html
http://undocumented.ntinternals.net/index.html?page=UserMode/Undocumented Functions/NT Objects/Thread/THREAD_INFORMATION_CLASS.html

133

 Target Process

You already know how to access the TEB segment of your application process. This task

does not make sense in most cases because you can get all variables of your application

directly by their names. However, our investigation helps you to understand the TEB

segment better.

Now we will consider methods to access the TEB and PEB segments of the target

process. You can test the code examples given in this section with any Windows

application. This application is our target process.

This is an algorithm to launch the target process and an example application:

 1. Launch a 32-bit or 64-bit Windows application.

 2. Get a PID of the target process with the Windows Task Manager.

 3. Assign a PID of the target process to the pid variable in this line of

the main function:

DWORD pid = 5356;

 4. Launch an example application with the administrator privileges.

The first approach to access the TEB segment relies on the assumption that base

addresses of TEB segments are the same for all processes in a system. We should get base

addresses of the TEB segments for the current process, and then read memory at the

same addresses from another process. Listing 3-6 shows the code that does it.

Listing 3-6. The TebPebMirror.cpp Application

#include <windows.h>

#include <winternl.h>

BOOL SetPrivilege(HANDLE hToken, LPCTSTR lpszPrivilege, BOOL

bEnablePrivilege)

{

 // See function's implementation in the OpenProcess.cpp application

}

BOOL GetMainThreadTeb(DWORD dwPid, PTEB pTeb)

{

 LPVOID tebAddress = NtCurrentTeb();

Chapter 3 In-game Bots

134

 printf("TEB = %p\n", tebAddress);

 HANDLE hProcess = OpenProcess(PROCESS_VM_READ, FALSE, dwPid);

 if (hProcess == NULL)

 return false;

 if (ReadProcessMemory(hProcess, tebAddress, pTeb, sizeof(TEB), NULL) ==

FALSE)

 {

 CloseHandle(hProcess);

 return false;

 }

 CloseHandle(hProcess);

 return true;

}

int main()

{

 HANDLE hProc = GetCurrentProcess();

 HANDLE hToken = NULL;

 if (!OpenProcessToken(hProc, TOKEN_ADJUST_PRIVILEGES, &hToken))

 printf("Failed to open access token\n");

 if (!SetPrivilege(hToken, SE_DEBUG_NAME, TRUE))

 printf("Failed to set debug privilege\n");

 DWORD pid = 7368;

 TEB teb;

 if (!GetMainThreadTeb(pid, &teb))

 printf("Failed to get TEB\n");

 printf("PEB = %p StackBase = %p\n", teb.ProcessEnvironmentBlock,

 teb.Reserved1[1]);

 return 0;

}

Chapter 3 In-game Bots

135

When you launch the TebPebMirror.cpp application, you get three base addresses of

the target process memory in the console output:

• TEB segment.

• PEB segment.

• Stack segment of the main thread.

Here we use an already considered approach to grant the SE_DEBUG_NAME privilege to

the current process with the OpenProcessToken and SetPrivilege functions. Then we

call the GetMainThreadTeb function. This receives a PID of the target process and returns

a pointer to the TEB structure.

This is an algorithm that the function does:

 1. Call the NtCurrentTeb WinAPI function to get the TEB segment

base address of the current thread.

 2. Call the OpenProcess WinAPI function to get a handler of the

target process with the PROCESS_VM_READ access.

 3. Call the ReadProcessMemory WinAPI function to read a TEB

structure from the target process.

In general, when a new process starts, Windows assigns an address for the TEB

segment without any pattern. However, I have experimentally discovered that Windows

assigns the same address for 32-bit applications in most cases. We can assume that the

address of the TEB segment in one 32-bit process matches to this address in another

process.

This approach provides stable results for 32-bit target processes. It does not work for

64-bit processes. A base address of the TEB segment varies each time when you restart

64-bit applications. Nevertheless, this approach has a significant advantage. It is easy to

implement.

It is important to emphasize that the bitness of the TebPebMirror.cpp application

should be the same as the bitness of a target process. This rule works for all examples in

this chapter. To build the proper version of the example application, you should select

the target architecture in the “Solution Platforms” control of the Visual Studio window.

The second approach to access a TEB segment is to use WinAPI functions to traverse

all threads that are launched in the system at the moment. When you get a thread

handle, you can get its TEB segment via the NtQueryInformationThread function.

Chapter 3 In-game Bots

136

This is a list of necessary functions:

• CreateToolhelp32Snapshot provides a system snapshot with

processes and their threads, modules and heaps. You can pass the

PID parameter to get modules and heaps of the specific process. The

snapshot always contains all threads that are launched in the system

at the moment.

• Thread32First starts to traverse threads of the specified

snapshot. The output parameter of the function is a pointer to the

THREADENTRY32 structure. The structure contains information about

the first thread in the snapshot.

• Thread32Next continues to traverse threads of the snapshot. It has

the same output parameter as the Thread32First function.

The TebPebTraverse.cpp application (see Listing 3-7) implements the traversing

algorithm.

Listing 3-7. The TebPebTraverse.cpp Application

#include <windows.h>

#include <tlhelp32.h>

#include <winternl.h>

#pragma comment(lib,"ntdll.lib")

typedef struct _CLIENT_ID {

 // See struct definition in the TebPebSelf.cpp application

} CLIENT_ID, *PCLIENT_ID;

typedef struct _THREAD_BASIC_INFORMATION {

 // See struct definition in the TebPebSelf.cpp application

} THREAD_BASIC_INFORMATION, *PTHREAD_BASIC_INFORMATION;

typedef enum _THREADINFOCLASS2

{

 // See enumeration definition in the TebPebSelf.cpp application

} THREADINFOCLASS2;

Chapter 3 In-game Bots

137

PTEB GetTeb(HANDLE hThread)

{

 THREAD_BASIC_INFORMATION threadInfo;

 NTSTATUS result = NtQueryInformationThread(hThread,

 (THREADINFOCLASS)ThreadBasicInformation,

 &threadInfo, sizeof(threadInfo), NULL);

 if (result)

 {

 printf("NtQueryInformationThread return error: %d\n", result);

 return NULL;

 }

 return reinterpret_cast<PTEB>(threadInfo.TebBaseAddress);

}

void ListProcessThreads(DWORD dwOwnerPID)

{

 HANDLE hThreadSnap = INVALID_HANDLE_VALUE;

 THREADENTRY32 te32;

 hThreadSnap = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0);

 if (hThreadSnap == INVALID_HANDLE_VALUE)

 return;

 te32.dwSize = sizeof(THREADENTRY32);

 if (!Thread32First(hThreadSnap, &te32))

 {

 CloseHandle(hThreadSnap);

 return;

 }

 DWORD result = 0;

 do

 {

 if (te32.th32OwnerProcessID == dwOwnerPID)

 {

Chapter 3 In-game Bots

138

 printf("\n THREAD ID = 0x%08X", te32.th32ThreadID);

 HANDLE hThread = OpenThread(THREAD_ALL_ACCESS, FALSE,

 te32.th32ThreadID);

 PTEB pTeb = GetTeb(hThread);

 printf("\n TEB = %p\n", pTeb);

 CloseHandle(hThread);

 }

 } while (Thread32Next(hThreadSnap, &te32));

 printf("\n");

 CloseHandle(hThreadSnap);

}

int main()

{

 DWORD pid = 4792;

 ListProcessThreads(pid);

 return 0;

}

The application prints a list of threads that belong to the target process. Also, a

thread ID in terms of OS and a TEB segment base address is printed for each thread in

this list.

The main function does the ListProcessThreads call with the PID of the target

process. The SE_DEBUG_NAME privilege is not needed to traverse threads. It happens

because the TebPebTraverse.cpp application does not debug any process. Instead, it

makes a system snapshot. This action requires administrator privileges only.

These are the steps that the ListProcessThreads function does:

 1. Call the CreateToolhelp32Snapshot function to make a system

snapshot.

 2. Call Thread32First to start the traversing of the threads in the

snapshot.

Chapter 3 In-game Bots

139

 3. Compare a PID of the owner process with the PID of target

process for each thread.

 4. If the PIDs match, call the GetTeb function to get the TEB structure.

 5. Print a thread handle and a resulting base address of its TEB

segment.

 6. Call Thread32Next to continue thread traversing. Repeat steps 3, 4,

and 5 for each thread.

This approach of TEB segment access is more reliable than the previous one.

It provides access to TEB segments of all threads of the target process. However,

you can access the TEBs of all threads with the TebPebMirror.cpp application too. To

do this, you should create the same number of threads in the current process as the

target process has. Then you can get base addresses of all TEB segments of the current

process and use them to access the TEBs of the target process. As we mentioned in the

preceding, this approach is error-prone.

You might ask how to distinguish threads that we traverse with the Thread32Next

WinAPI function. For example, you are looking for a base address of the stack for the

main thread. The THREADENTRY32 structure does not contain information about thread

ID in terms of the process. Instead, there are thread IDs in terms of Windows Object

Manager.

The answer is that you can rely on the assumption that TEB segments are sorted in

the reverse order. This means that the TEB segment with the maximum base address

matches to the main thread. The TEB segment with the next lower base address matches

to the thread with the first ID in terms of the target process. Then the TEB segment with

the second ID has the next lower base address, and so on.

You can check this assumption with the memory map feature of the WinDbg

debugger.

 Heap Access
We have considered how you can get a base address of the default heap from the PEB

segment. However, the process can have several heap segments. Thus, we should have a

mechanism to access them.

Chapter 3 In-game Bots

140

WinAPI provides the necessary functions. They allow traversing all heap segments

(and their blocks) of the target process. The algorithm of traversing heaps is reminiscent

of that for traversing all threads in the system, which we considered previously.

This is a list of WinAPI functions to access heap:

• CreateToolhelp32Snapshot makes a system snapshot.

• Heap32ListFirst starts to traverse heap segments of the specified

snapshot. The function result is a pointer to the HEAPLIST32 structure.

This structure contains information about the first heap segment in

the snapshot.

• Heap32ListNext continues to traverse heap segments in the

snapshot. It provides the same result value as the Heap32ListFirst

function.

Also, there are two extra WinAPI functions: Heap32First and Heap32Next. These

functions allow us to traverse memory blocks inside each heap segment. We will not use

these functions in our example.

traversing of memory blocks takes considerable time if the target process is a
complex application.

Listing 3-8 demonstrates traversing of the heap segments.

Listing 3-8. The HeapTraverse.cpp Application

#include <windows.h>

#include <tlhelp32.h>

void ListProcessHeaps(DWORD pid)

{

 HEAPLIST32 hl;

 HANDLE hHeapSnap = CreateToolhelp32Snapshot(TH32CS_SNAPHEAPLIST, pid);

 hl.dwSize = sizeof(HEAPLIST32);

 if (hHeapSnap == INVALID_HANDLE_VALUE)

Chapter 3 In-game Bots

141

 {

 printf("CreateToolhelp32Snapshot failed (%d)\n", GetLastError());

 return;

 }

 if (Heap32ListFirst(hHeapSnap, &hl))

 {

 do

 {

 printf("\nHeap ID: 0x%lx\n", hl.th32HeapID);

 printf("\Flags: 0x%lx\n", hl.dwFlags);

 } while (Heap32ListNext(hHeapSnap, &hl));

 }

 else

 printf("Cannot list first heap (%d)\n", GetLastError());

 CloseHandle(hHeapSnap);

}

int main()

{

 DWORD pid = 6712;

 ListProcessHeaps(pid);

 return 0;

}

The HeapTraverse.cpp application prints base addresses and flags of the heap

segments of the target process. An ID of a heap segment matches to its base address.

The segment flags are important because they allow us to distinguish the default heap

segment. The non-zeroed flags match to the default heap.

The ListProcessHeaps function works similarly to the ListProcessThreads one

from the TebPebTraverse.cpp application.

These are the steps that the ListProcessHeaps function does:

 1. Call CreateToolhelp32Snapshot to make a system snapshot.

 2. Call Heap32ListFirst to start traversing of the heap segments in

the snapshot.

Chapter 3 In-game Bots

142

 3. Print ID and flags for each heap segment.

 4. Repeat step 3 until all heap segments in the system snapshot are

not enumerated by the Heap32ListNext function.

Heap segments are traversed in order of their IDs. This means that the segment with

a smaller ID will be traversed before the segment with a greater ID. This ordering can

help us to distinguish them.

 Process Memory Access Summary
We have considered ways to get base addresses of the stack and heap segments, which

can contain information about game objects. Any in-game bot application should use

these approaches to capture (or embed) data from the game process memory.

 Example with Diablo 2
Now we know enough to write a simple in-game bot. The bot will partially control a

player character in the famous game Diablo 2. Its gameplay is quite typical for the RPG

genre. A player should do quests, kill monsters, and improve his character.

Our bot will analyze the state of the player character. When one of the character

parameters reaches the threshold value, the bot does some action. First of all, we should

consider the game interface to understand its control elements. Then we will examine

character parameters and find one that the bot can control.

Figure 3-15 shows a screenshot of the game window. You can see the player

character in the center of the screen. The monsters stand to his left and right. The

mouse cursor selects one of the monsters. There is a control panel on the bottom side

of the screen. The most important element of this panel for our case is the four hotkey

slots where you can see red potions. Our bot can use items from these slots to affect the

character parameters.

Chapter 3 In-game Bots

143

Figure 3-16 shows two windows with all character parameters. The left window

contains common information about the character. For example: his name is Kain,

the class is “Paladin,” he has a level of 70, and 285,160,782 experience points. This

information is available at the top of the window. In the following you can see the

attributes that define a behavior of the character during a game. For example, the

“Strength” attribute defines damage to the monsters.

Figure 3-15. Screenshot of the game window

Chapter 3 In-game Bots

144

The right window contains a tree of character skills. There are special abilities and

combos that allow him to do more damage or to improve his attributes significantly.

Each skill has a level that defines its effectiveness.

You can get detailed information about character parameters on the wiki page

(diablo.gamepedia.com/Classes_(Diablo_II)).

Diablo 2 has single-player and multiplayer game modes. We will consider the single-

player mode only. It allows us to stop the execution of the game process at any moment

and to explore its memory without any time limitations. If we try to do the same in the

multiplayer mode, we get an issue. The game client that does not respond to requests

of a game server is disconnected by a timeout. This limitation does not allow us to use a

debugger and to break the game process in this mode.

Figure 3-16. Screenshot of the player parameter window

Chapter 3 In-game Bots

http://diablo.gamepedia.com/Classes_(Diablo_II)

145

You can buy Diablo 2 at the Blizzard Entertainment website (eu.shop.battle.net/

en-b/product/diablo-ii) and try our in-game bot.

If you do not want to buy Diablo 2, you can use an open source game that has very

similar mechanics and interface. This game is Flare, and it is free to download on the

official website (flarerpg.org). You can apply all methods from this section to the Flare

game too.

The main difference between these two games is complexity. Diablo 2 has many

more libraries and game objects in the memory than Flare does. Thus, analysis of

Diablo 2 is a more difficult task.

 Bot Overview
First of all, we should strictly define what we are going to do. We do not want to hack a

game. In other words, we will not change the normal behavior of Diablo 2 and break its

rules. You can find examples of such hacks in two Jan Miller articles: extreme-gamerz.

org/diablo2/viewdiablo2/hackingdiablo2 and www.battleforums.com/threads/

howtohackd2-edition-2.111214. Our bot should work differently.

It reacts when a game object’s state changes. A possible reaction is to simulate player

action or legally change a game state. Meanwhile, the game process is still working

within its original algorithms, and the state of all objects is valid according to the game

rules.

We have considered character parameters. The parameter that we can control in the

simplest way is health level. When the character receives damage from monsters, the

level decreases. When a player uses a healing potion, the level increases.

I suggest implementing the in-game bot with the following algorithm:

 1. Read a current health level of the player character.

 2. Compare the level with the threshold value.

 3. If the level is below the threshold, use a healing potion.

This algorithm allows us to keep the player character alive while the healing potions

are available. Nevertheless, the implementation of such a simple algorithm requires

in-depth research into Diablo 2’s process memory.

Chapter 3 In-game Bots

http://eu.shop.battle.net/en-gb/product/diablo-ii
http://eu.shop.battle.net/en-gb/product/diablo-ii
http://flarerpg.org
http://extreme-gamerz.org/diablo2/viewdiablo2/hackingdiablo2
http://extreme-gamerz.org/diablo2/viewdiablo2/hackingdiablo2
http://www.battleforums.com/threads/howtohackd2-edition-2.111214
http://www.battleforums.com/threads/howtohackd2-edition-2.111214

146

 Diablo 2 Memory Analysis
Now we are ready to start our analysis of Diablo 2’s process memory. Our goal is to find a

variable that keeps the character health level. Let us consider the steps to configure the

game before we start.

First of all, you should launch the game. It starts in the fullscreen mode by default.

However, it is more convenient for us to use the windowed mode. It allows quick

switching to the memory scanner window and back.

Here are the instructions for launching the game in the windowed mode:

 1. Right-click the “Diablo II” icon to open the popup menu and click

the “Properties” menu item.

 2. Click the “Shortcut” tab in the “Properties” dialog.

 3. Add the “-w” key at the end of the “Target” field. This is an

example:

"C:\DiabloII\Diablo II.exe" -w

Now launch the game via the changed icon. When it starts, you should select the

“Single player” option in the main menu, create a new character, and start the game.

 Search the Parameters

We are looking for a character health level in Diablo 2’s process memory. The first idea

to solve this task is to use Cheat Engine memory scanner. This is a special tool that is

designed exactly for this purpose.

You can follow the Cheat Engine tutorial (cheatengine.org/tutorials.php) and try to

search a current value of the character health without any configuration of the search

options. This approach does not work for me. Most probably, you will get a long list of

resulting addresses. If you continue searching by pressing the “Next Scan” button after

updating the health value, the resulting list becomes empty.

The straightforward approach does not work. The primary reason for our issue is the

complexity of the Diablo 2 game model. There are a lot of game objects in the memory.

Some of them have parameters with similar values at one moment. Now, we do not

know how the object parameters are stored into the memory. Therefore, it will be better

to find an approach to detect a specific object in the memory first; then we can analyze

its parameters.

Chapter 3 In-game Bots

http://cheatengine.org/tutorials.php

147

Let us look at the game window with the player character attributes again. There

are several parameters that should be unique for the character object. We can name

this kind of parameter as artifacts for the sake of brevity. What are the artifacts for the

character object? I suggest the following list:

 1. Character name.

It is unlikely that another game object has the same name as the

player character. If it happens, you can create a new character with

another unique name.

 2. Experience points.

This is a long positive integer number. The same number of such

a length can appear in other objects rarely. However, if you get

several results, you can change experience points easily by killing

several monsters. Then update its value and press the “Next Scan”

button. You will find an address of the right variable.

 3. Stamina value.

This is a long positive number. It changes if the player character

runs outside the city.

I suggest choosing the experience points for searching. In case its value equals zero,

you should kill several monsters to increase it. Figure 3-17 shows a possible memory

scan result. The scanner found several addresses that have equal experience point

values. However, some of them are parameters of other game objects.

Chapter 3 In-game Bots

148

The next step is to distinguish the value that matches the character object. First of all,

we should clarify a type of the owning segment for each of these variables.

You can launch the WinDbg debugger and perform the !address command. This is

the shortened output the command for my case:

+ 0`003c0000 0`003e0000 0`00020000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE

<unknown>

+ 0`03840000 0`03850000 0`00010000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE

<unknown>

+ 0`03850000 0`03860000 0`00010000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE

<unknown>

+ 0`04f50000 0`04fd0000 0`00080000 MEM_PRIVATE MEM_COMMIT PAGE_READWRITE

<unknown>

Figure 3-17. Memory scan results for the experience points of a character

Chapter 3 In-game Bots

149

The output told us that all found variables are stored in the segments of the

“unknown” type. What is the “unknown” type? We already know the stack and heap

segments. WinDbg debugger can distinguish them well. Therefore, we conclude that

these “unknown” segments are neither stack nor heap type.

The VirtualAllocEx WinAPI function can allocate these segments. We can verify this

assumption by writing a simple test application (it has the VirtualAllocEx.cpp name and

is provided with this book) that uses the function. In case you launch it with the WinDbg

debugger, you see a segment of “unknown” type in the process memory map. The

VirtualAllocEx function returns a base address of this segment.

We get types of owning segments, but this does not help us to distinguish the

experience point variable that belongs to the character object. All of these “unknown”

segments have the same type and flags.

We can try another approach to find the character object. It is evident that object

parameters change when a player does some game actions. For example, when the

character moves, its coordinates change. Also, a health value decreases when monsters

hit the character.

We can analyze how memory data that is located near the experience point variable

changes. The Cheat Engine can display changes of a memory region in real time. You

should open the Memory Viewer window for accessing this feature. These are the actions

to open the window:

 1. Select one address in the resulting list.

 2. Left-click the address.

 3. Select the “Browse this memory region” item in the pop-up menu.

You will see the Memory Viewer window as Figure 3-18 shows. The window has two

parts. The upper part contains the disassembled code of the memory region near the

selected address. The bottom part shows a dump in the hexadecimal format. It is the

same memory region, but we see it in two different formats.

We will focus on the memory dump (a bottom part) in our case. A red line marks

the experience point variable. You may ask why the “9E 36 FF 10” hexadecimal number

equals the “285161118” experience points in decimal.

We launch the Diablo 2 application in the x86 architecture. This architecture has the

little-endian byte order. It means that you should reverse order the four-byte integer

to get its value. The hexadecimal value becomes equal to “10 FF 36 9E” in our case. You

can use the standard Windows Calculator and check that this hexadecimal value equals

“285161118” in decimal.

Chapter 3 In-game Bots

150

You can automate a reverse byte operation if you change the format of integers in

the memory dump. To do so, do a left mouse click on the dump part of the window and

choose the “Display Type” item of the pop-up menu. However, I recommend that you

keep the “Byte hex” format. The custom display type can confuse you in some cases,

because you may not know an actual size of a variable that you are looking for.

Figure 3-18. Memory Viewer window of Cheat Engine

Chapter 3 In-game Bots

151

Now we are ready to analyze memory data changes. You should place both

windows — Memory Viewer and the Diablo 2 application — near each other. This allows

you to do actions in the game window and to inspect the memory region in the Memory

Viewer simultaneously. Figure 3-19 shows both windows and results of the memory

inspection.

Figure 3-19. Results of the memory inspection process

You can see the memory region near the “04FC04A4” address in the Memory Viewer

window. It is the address of the experience point variable, which we got by a process

memory scanning. Let us do this analysis for each variable address in the scanning

resulting list.

How do we understand that the variable belongs to the character object? I suggest a

simple rule. If the region around the variable contains more character parameters then

others, this region contains the character object. Therefore, the variable belongs to this

character object.

In our case, the last address in the scanning resulting list belongs to the character

object. We come to this conclusion through trial and error by changing the values via

in-game actions. My resulting address, “04FC04A4”, may differ in your case.

Table 3-6 shows parameters that we detected in the character object.

Chapter 3 In-game Bots

152

The red lines mark these parameters in Figure 3-19. I performed the following

actions to deduce the parameters:

 1. Stay in one place and get the damage from any monster. Only the

health parameter changes in this case. When a character gets a

hit, the variable with the “04FC0490” address changes. So, it is the

health variable.

 2. Stay in one place and cast any spell. Then the mana parameter

changes. It has the “04FC0492” address.

 3. Run outside the city. Movement of the character leads to a change

of three parameters at the same time: stamina, x coordinate, and

y coordinate. However, if you move the character a long time, the

stamina parameter becomes equal to 0. It allows us to distinguish

this parameter from coordinates. When I move the character in

horizontal and vertical directions, I find that the x variable has

“04FC0498” address and the y one has “04FC04A0” address.

 4. Kill any random monster. When the player kills the monster, the

experience increases. You can easily distinguish this parameter from

the health and mana because they decrease during the fight. This way

I found that the experience variable has the “04FC04A4” address.

Table 3-6. Found Parameters in the Memory Region

Parameter Address Offset Size Hex Value Dec Value

Life (health) 04FC0490 490 2 40 01 320

mana 04FC0492 492 2 9D 01 413

stamina 04FC0494 494 2 Fe 1F 8190

Coordinate X 04FC0498 498 2 37 14 5175

Coordinate Y 04FC04a0 4a0 2 47 12 4679

experience 04FC04a4 4a4 4 9e 36 FF 10 285161118

Chapter 3 In-game Bots

153

Did we learn something new about the character parameters? First of all, the size of

the health parameter equals two bytes. It means that you should specify the “2 Byte” item

of the “Value Type” option in the Cheat Engine window if you want to search the health

parameter.

Also, you can see that some parameters have alignment that is not equal to four

bytes. For example, let us consider the mana parameter at the 04FC0492 address.

You can check with a calculator that the 04FC0492 value is not divided by 4 without a

remainder. This means that you should deselect the “Fast Scan” check box in the Cheat

Engine window to find unaligned parameters.

Figure 3-20 shows the Cheat Engine window with the correct configuration.

Figure 3-20. Correct configuration of the Cheat Engine to find a health parameter

The red color marks the changed search options. Now we can find any parameter of

the character when scanning the game process.

Probably you have noticed the “Offset” column in Table 3-6. It defines the offset of

each parameter from the beginning of the character object in memory.

Chapter 3 In-game Bots

154

 Search the Object

Let us consider a question: how will a bot find the health parameter in the process

memory? The most straightforward way is to find the character object first. Then, the bot

should add the constant offset to the object address and get the required variable.

We know how to find the character object with the memory dump analysis in real

time. However, a bot cannot use the Cheat Engine or a similar scanner. It should rely on

its own algorithms. Therefore, we should find a reliable way to detect the object when

only one memory snapshot is available.

Please scroll up the Memory Viewer window, which contains a memory region near

the experience point variable (the 04FC04A4 address). You will find the character name

as it appeared in my case. Figure 3-21 shows the result that you should get.

The four underscored bytes equal the “Kain” string. String values do not have the

reversed byte order on the little-endian architecture, unlike the integers. It happens

because a string has the same internal structure as the simple byte array. In Figure 3-21,

you can see that the memory block above the character name is zeroed.

Now we start making assumptions and check them. Let us assume that the character

name is stored close to the upper bound of the character object. How can we check this

assumption? We can use OllyDbg to make the breakpoint on the memory address of

the character name. When the game process reads or writes this memory, it is stopped

by the breakpoint. Then we can analyze the application code that tries to access this

memory. So, we can find some footprints of the object bounds.

Chapter 3 In-game Bots

155

This is an algorithm to search the object bounds with OllyDbg:

 1. Launch the debugger with administrator privileges. Attach to the

launched Diablo 2 process.

 2. Select by the left mouse click the bottom left subwindow of the

debugger with a memory dump in the hex format.

 3. Press Ctrl+G to open the “Enter expression to follow” dialog.

Figure 3-21. The character name in the memory dump

Chapter 3 In-game Bots

156

 4. Type an address of the string with the character name in the

“Enter address expression” field. The address equals the 04FC00D

value in my case. Then press the “Follow expression” button. Now

the cursor in the memory dump subwindow points to the first byte

of the string.

 5. Scroll up in the memory dump subwindow to find the first

nonzero byte at the assumed object beginning. Select this byte

with the left mouse click.

 6. Press Shift+F3 to open the “Set memory breakpoint” dialog.

Select the “Read access” and the “Write access” check boxes in

the dialog. Then press the “OK” button. Now we set the memory

breakpoint at the object beginning.

 7. Continue execution of the Diablo 2 process by F9 keypress. The

process stops on several events. One of them is our memory

breakpoint. Another event that happens often is a break when

accessing the guarded memory page. You can check which kind of

event happens in the status bar at the bottom side of the OllyDbg

window. Now you should continue process execution until the

“Running” status does not appear in the status bar.

 8. Switch to the Diablo 2 window. The game application should be

stopped immediately after this switching.

 9. Switch back to the OllyDbg window. Figure 3-22 shows how the

window should look.

You can see the highlighted gray line of the disassembled code in the upper left side

of the debugger window. This code line at the “03668D9F” address tries to access the

memory, which has our breakpoint:

CMP DWORD PTR DS:[ESI+4], 4

This code line compares an integer of the DWORD type, which has the “ESI + 4”

address, and the “4” constants.

Chapter 3 In-game Bots

157

ESI is the source index CPU register. ESI and DS registers are always used in pairs.

The DS register holds a base address of the data segment. The ESI register equals the

“04FC0000” address in our case. You can find it on the upper right side of the debugger

window, which contains current values of all CPU registers. It is a common practice to

hold an object address in the ESI register.

Let us inspect the disassembled code below the breakpoint line. You can see these

lines, which are started at the “03668DE0” address:

MOV EDI,DWORD PTR DS:[ESI+1B8]

CMP DWORD PTR DS:[ESI+1BC],EDI

JNE SHORT 03668DFA

MOV DWORD PTR DS:[ESI+1BC],EBX

These operations look like processing of the object fields. The “1B8” and “1BC”

values define offsets of the fields from the object beginning. If you scroll down this

disassembling listing, you will find similar operations with object fields. Thus, we can

conclude that the beginning address of the character object equals the “04FC0000” value

of the ESI register.

Figure 3-22. A breakpoint on the object beginning

Chapter 3 In-game Bots

158

Now we can calculate the offset of the health parameter. This is a formula for the

calculation:

04FC0490 - 04FC0000 = 0x490

The offset equals 490 in hexadecimal.

The next question is how the bot finds the beginning address of the object. We know

that the segment that contains the object has the “unknown” type. Also, the segment

has a size of 80000 bytes (in hexadecimal). It has the MEM_PRIVATE, MEM_COMMIT, and

PAGE_READWRITE flags. There are a minimum of ten other segments that have the same

size and flags. It means that we cannot find the required segment by traversing them and

checking their sizes and flags.

Let us look at the first bytes of the character object:

00 00 00 00 04 00 00 00 03 00 28 0F 00 4B 61 69 6E 00 00 00

If you restart the Diablo 2 process and find the character object again, you see the

same byte sequence at the object beginning. We can assume that this byte sequence

matches to the unchanged character parameters. These parameters are defined when a

player creates his character. Once they are set, they have never changed again.

This is the list of unchanged parameters:

• The character name.

• The expansion character flag (diablo.wikia.com/wiki/Expansion_

Character).

• The hardcore mode flag (diablo.wikia.com/wiki/Hardcore).

• The encoded class of the character.

This unchanged byte sequence can be used as the magic numbers to search the

object in memory. Be aware that these “magic numbers” differ in your case. The lack of

flexibility is the main disadvantage of this approach.

You can check the correctness of the magic numbers with the Cheat Engine. Select

the “Array of byte” item of the “Value Type” option. Then select the “Hex” check box and

copy the magic numbers into the “Array of byte” field.

Figure 3-23 shows the possible search results.

Chapter 3 In-game Bots

http://diablo.wikia.com/wiki/Expansion_Character
http://diablo.wikia.com/wiki/Expansion_Character
http://diablo.wikia.com/wiki/Hardcore

159

You will notice that the address of the character object changes each time when you

restart the Diablo 2 process. Now it equals “04F70000". However, offsets of all character

parameters inside the object are still the same. It means that the new address of the

health parameter equals “04F70490".

You can apply an alternative way to find health level of a player character. The

Cheat Engine scanner provides the pointer scanning feature. It allows you to find a base

address and offset of the specified variable after several memory scans. This feature

does not work in some cases. You can learn more about it in the article sethioz.com/

mediawiki/index.php/Pointer_Scanning_/_Finding_Pointer.

Figure 3-23. Search a character object in memory via magic numbers

Chapter 3 In-game Bots

http://sethioz.com/mediawiki/index.php/Pointer_Scanning_/_Finding_Pointer
http://sethioz.com/mediawiki/index.php/Pointer_Scanning_/_Finding_Pointer

160

 Bot Implementation
Now we are ready to implement the in-game bot. Let us consider its algorithm in detail:

 1. Enable the SE_DEBUG_NAME privilege for the current process. This is

required to read the memory of another process.

 2. Open the Diablo 2 process.

 3. Search a character object in the process memory.

 4. Calculate an offset of the health parameter.

 5. Read a value of the parameter in a loop. Use a healing potion

when the value falls below 100 points.

We already know how to implement the first algorithm step. It was described in the

“Process Memory Access” section of this chapter.

We can implement the second step in two ways. We can either hard-code a PID value

(as we did before) or get a PID of the process that owns a currently active window. We

assume that the Diablo 2 window is active when we launch the bot. Thus, getting a PID

allows us to make the bot more flexible. We avoid changing the PID in the source code

and the recompilation each time before launching.

The code snippet in Listing 3-9 gets a PID and opens the game process.

Listing 3-9. The Code to Open a Game Process

int main()

{

 Sleep(4000);

 HWND wnd = GetForegroundWindow();

 DWORD pid = 0;

 if (!GetWindowThreadProcessId(wnd, &pid))

 {

 printf("Error of the pid detection\n");

 return 1;

 }

 HANDLE hTargetProc = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);

 if (!hTargetProc)

Chapter 3 In-game Bots

161

 printf("Failed to open process: %u\n", GetLastError());

 return 0;

}

We use two WinAPI functions here. The GetForegroundWindow call gets a

handle of the window that has the foreground (or active) mode at the moment. The

GetWindowThreadProcessId function retrieves a PID of the process that owns the

specified window. We store the PID value in the pid variable when the code snippet

finishes.

Also, we do a four-second delay at the first line of the main function. It provides us

enough time to switch the Diablo 2 window after launching the bot.

The third step of the bot algorithm is to find the player object. I suggest using an

approach that is described in the series of video tutorials you can view at www.youtube.

com/watch?v=YRPMdb1YMS8. The tutorials explain the implementation of the simple

memory scanner. Its algorithm is very similar to what Cheat Engine has. The idea is

to traverse all memory segments of a target process by the VirtualQueryEx WinAPI

function. We will use this function to access the memory segments of the Diablo 2

process.

Listing 3-10 demonstrates a code that searches the character object in the Diablo 2

process memory.

Listing 3-10. The Code to Find a Character Object in the Game Memory

SIZE_T IsArrayMatch(HANDLE proc, SIZE_T address, SIZE_T segmentSize, BYTE

array[], SIZE_T arraySize)

{

 BYTE* procArray = new BYTE[segmentSize];

 if (ReadProcessMemory(proc, (void*)address, procArray, segmentSize,

NULL) != 0)

 {

 printf("Failed to read memory: %u\n", GetLastError());

 delete[] procArray;

 return 0;

 }

 for (SIZE_T i = 0; i < segmentSize; ++i)

Chapter 3 In-game Bots

http://www.youtube.com/watch?v=YRPMdb1YMS8
http://www.youtube.com/watch?v=YRPMdb1YMS8

162

 {

 if ((array[0] == procArray[i]) && ((i + arraySize)

< segmentSize))

 {

 if (!memcmp(array, procArray + i, arraySize))

 {

 delete[] procArray;

 return address + i;

 }

 }

 }

 delete[] procArray;

 return 0;

}

SIZE_T ScanSegments(HANDLE proc, BYTE array[], SIZE_T size)

{

 MEMORY_BASIC_INFORMATION meminfo;

 LPCVOID addr = 0;

 SIZE_T result = 0;

 if (!proc)

 return 0;

 while (1)

 {

 if (VirtualQueryEx(proc, addr, &meminfo, sizeof(meminfo))

== 0)

 break;

 if ((meminfo.State & MEM_COMMIT) && (meminfo.Type &

MEM_PRIVATE) && (meminfo.Protect & PAGE_READWRITE) &&

!(meminfo.Protect & PAGE_GUARD))

 {

 result = IsArrayMatch(proc, (SIZE_T)meminfo.

BaseAddress,

 meminfo.RegionSize, array, size);

Chapter 3 In-game Bots

163

 if (result != 0)

 return result;

 }

 addr = (unsigned char*)meminfo.BaseAddress + meminfo.

RegionSize;

 }

 return 0;

}

int main()

{

 // Enable `SE_DEBUG_NAME` privilege for current process here.

 // Open the Diablo 2 process here.

 BYTE array[] = { 0, 0, 0, 0, 0x04, 0, 0, 0, 0x03, 0, 0x28, 0x0F, 0,

0x4B, 0x61, 0x69, 0x6E, 0, 0, 0 };

 SIZE_T objectAddress = ScanSegments(hTargetProc, array,

sizeof(array));

 return 0;

}

The ScanSegments function implements an algorithm for traversing the memory

segments. There are four steps in the loop of this function:

 1. Make a VirtualQueryEx call to read the memory segment with a

base address that equals the addr variable.

 2. Compare flags of the current segment with the flags of a typical

“unknown” segment. Skip the segment if the comparison

does not pass.

 3. Search the “magic numbers” of the character object in the

current segment.

 4. Return a resulting address of the object.

Chapter 3 In-game Bots

164

The IsArrayMatch function implements an algorithm that finds the “magic numbers”

in the current segment. The ScanSegments function calls the IsArrayMatch one.

We do two steps in the IsArrayMatch function:

 1. Read all data of the specified segment by the ReadProcessMemory

WinAPI function.

 2. Search the “magic numbers” in this data.

Also, the code snippet contains the main function. It demonstrates how you can call

the ScanSegments function from your code. You see that the function has three input

parameters:

 1. A handle of the Diablo 2 process.

 2. A pointer to the “magic numbers” array.

 3. The size of this array.

Do not forget that the “magic numbers” differ in your case.

The fourth step of the bot algorithm is a calculation of the health parameter address.

We use the objectAddress variable, which stores a result of the ScanSegments function,

for this calculation:

SIZE_T hpAddress = objectAddress + 0x490;

The hpAddress variable stores the address of the health parameter when this code

line finishes.

The last step of the bot algorithm is checking the health parameter in the loop. The

bot should use a healing potion in case the value becomes less than the threshold.

Listing 3-11 shows a corresponding code.

Listing 3-11. The Code to Check the Health Parameter

WORD ReadWord(HANDLE hProc, DWORD_PTR address)

{

 WORD result = 0;

 if (ReadProcessMemory(hProc, (void*)address, &result,

sizeof(result), NULL) == 0)

Chapter 3 In-game Bots

165

 printf("Failed to read memory: %u\n", GetLastError());

 return result;

}

int main()

{

 // Enable `SE_DEBUG_NAME` privilege for current process here.

 // Open the Diablo 2 process here.

 // Search a player character object here.

 // Calculate an offset of character's life parameter here.

 ULONG hp = 0;

 while (1)

 {

 hp = ReadWord(hTargetProc, hpAddress);

 printf("HP = %lu\n", hp);

 if (hp < 100)

 PostMessage(wnd, WM_KEYDOWN, 0x31, 0x1);

 Sleep(2000);

 }

 return 0;

}

We read the parameter in the infinite loop with the ReadWord function. It is just a

wrapper around the ReadProcessMemory WinAPI function. When the ReadWord call is

done, we print the parameter to a console. You can compare it with the actual health

points that are displayed in the Diablo 2 window.

If the value falls below the 100 points, the bot presses the “1” hotkey. This is the

command for a character to consume a healing potion. We use the PostMessage WinAPI

function for simulating a keypress.

Chapter 3 In-game Bots

166

I agree that the PostMessage call is not a “pure” way to embed data in the process

memory. We do not modify the memory explicitly. Instead, we inject the WM_KEYDOWN

message that matches the keypress action into the event queue of the Diablo 2 process.

It is the simplest way to simulate the player action. We will consider more complex

approaches further.

The PostMessage function has four input parameters:

 1. A handle of the target window that receives the message.

 2. The message code. It equals the WM_KEYDOWN code in our case.

 3. The virtual code of the pressed key (msdn.microsoft.com/en-us/

library/windows/desktop/dd375731(v=vs.85).aspx).

 4. The mask with several parameters. The most important parameter

in the mask is a number to repeat a sent message. The bits from 0

to 15 store it. The number equals “1” in our case.

the keypress simulation does not work if you specify zero as the fourth parameter
of the PostMessage function.

The complete implementation of our in-game bot is available in the AutohpBot.cpp

source file that is provided with this book.

This is an algorithm to launch the bot:

 1. Change the “magic numbers” according to your character. This is

the code line to change:

BYTE array[] = { 0, 0, 0, 0, 0x04, 0, 0, 0, 0x03, 0, 0x28,

0x0F, 0, 0x4B, 0x61, 0x69, 0x6E, 0, 0, 0 };

 2. Compile the bot with the changed “magic numbers".

 3. Launch Diablo 2 in the windowed mode.

 4. Launch the bot with the administrator privileges.

 5. Switch the Diablo 2 window during the four-second delay. After the

delay, the bot captures an active window and starts to analyze its process.

 6. Get damage from any monsters in the game to decrease the health

parameter of your character. It should fall below 100 points.

Chapter 3 In-game Bots

http://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx

167

The bot presses the “1” hotkey when the health points become low. Do not forget to

assign a healing potion to the “1” hotkey.

You can press the H key to view quick tips about the user interface. The “Belt” hotkey

panel is in the bottom right corner of the game window. You can drag and drop the

healing potions to the panel by left-clicking them.

 Further Improvements
Our in-game bot has several issues. Let us consider ways to improve it.

The first issue is that the bot uses only a first slot of the hotkey panel. It can be more

efficient when using all slots.

The code snippet in Listing 3-12 shows a new version of the loop that checks the

health parameter.

Listing 3-12. Using All Slots of the Hotkey Panel

ULONG hp = 0;

BYTE keys[] = { 0x31, 0x32, 0x33, 0x34 };

BYTE keyIndex = 0;

while (1)

{

 hp = ReadWord(hTargetProc, hpAddress);

 printf("HP = %lu\n", hp);

 if (hp < 100)

 {

 PostMessage(wnd, WM_KEYDOWN, keys[keyIndex], 0x1);

 ++keyIndex;

 if (keyIndex == sizeof(keys))

 keyIndex = 0;

 }

 Sleep(2000);

}

Chapter 3 In-game Bots

168

Now we store a list of the virtual key codes in the keys array. We use the keyIndex

variable for indexing elements of the array. We increment the index each time the bot

uses a healing potion. If the keyIndex value reaches the end of the key code array, we

reset it back to zero. This approach allows us to use all slots of the hotkey panel one after

each other. When the first row of the slots becomes empty, the bot uses the second one,

and so on.

The second possible improvement of our bot is a feature to check a mana parameter

of the character. The algorithm to control the mana level is the same as we have for

health. If the parameter becomes low, the bot consumes a mana potion.

It is simple to calculate an offset of the mana parameter and read its value in the

same checking loop where we process the health parameter. The bot can choose either

the healing or the mana potion to use when the corresponding parameter becomes low.

Simulating the keypress action with the PostMessage function is one of several

possible ways to embed data in the process memory. Another way is to write the new

value of the parameter directly to the process memory.

Listing 3-13 demonstrates this approach.

Listing 3-13. Writing a New Value into the Process Memory

void WriteWord(HANDLE hProc, DWORD_PTR address, WORD value)

{

 if (WriteProcessMemory(hProc, (void*)address, &value,

sizeof(value), NULL) == 0)

 printf("Failed to write memory: %u\n", GetLastError());

}

int main()

{

 // Enable `SE_DEBUG_NAME` privilege for current process here.

 // Open a game process here.

 // Search a player character object here.

 // Calculate an offset of character's life parameter here.

 ULONG hp = 0;

 while (1)

Chapter 3 In-game Bots

169

 {

 hp = ReadWord(hTargetProc, hpAddress);

 printf("HP = %lu\n", hp);

 if (hp < 100)

 WriteWord(hTargetProc, hpAddress, 100);

 Sleep(2000);

 }

 return 0;

}

You can see that we added a new WriteWord function. It is a wrapper around the

WriteProcessMemory WinAPI function. Now the bot writes the health value directly to

the process memory when the parameter becomes low. This approach has one issue.

It breaks the game rules because our write operation is a workaround. We change the

parameter bypassing game algorithms. Therefore, the state of the game objects can

become inconsistent with it.

You can test a new version of the bot. The health parameter is still unchanged after

the write operation. It happens because the game stores this parameter in several places

(not only in the character object that we found). I assume that some control algorithm

compares these parameter values regularly. It can fix the wrong values according

to other ones. The game server does the same fixing of the inconsistent values in

online games. So, we can use this approach just for games that do not protect data by

controlling algorithms.

There is a third way to embed data in the process memory. There are the code

injection techniques. The following two articles describe them:

• www.codeproject.com/Articles/4610/Three-Ways-to-Inject-

Your- Code-into-Another-Proces.

• www.codeproject.com/Articles/9229/RemoteLib-DLL-Injection-

for-Win-x-NT-Platforms.

The idea of these techniques to force a game process to execute your code. When you

reach it, you can call any function (or algorithm) of the game process. You do not need to

simulate any keypress actions anymore. Instead, you can call the “UsePotion” function

directly. However, this powerful approach requires in-depth analysis and reverse

engineering of the game application.

Chapter 3 In-game Bots

http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://www.codeproject.com/Articles/9229/RemoteLib-DLL-Injection-for-Win-x-NT-Platforms
http://www.codeproject.com/Articles/9229/RemoteLib-DLL-Injection-for-Win-x-NT-Platforms

170

Our in-game bot implements a very simple algorithm. It automates the consumption

of health potions, so a player can pay attention to other aspects of the game.

You may ask whether it is possible to implement a more complex bot that hunts the

monsters. Yes, we can do it. The primary task of this bot is searching for the monster

objects in the game memory. Now, we know both x and y coordinates of the character

(they are available in its object). Table 3-6 mentions both coordinates. They are two bytes

in size. Also, the y coordinate follows the x one without any gap.

Now we assume that monsters that stand near the player have almost the same

coordinates. The bot can scan the game memory to a four-byte number that matches a

couple of two-byte coordinates. Then we add each appropriate search result to the list of

“possible” monsters. The next action is to filter the wrong results. The hint for a filtering

algorithm is an assumption that monster coordinates belong the same memory segment

(or their addresses are close).

The bot can remember the memory segment that stores the monster coordinates.

We can use this segment for all further memory scan operations. Finally, the bot can do a

PostMessage call to simulate attacking actions.

 Example Summary
We implemented a typical in-game bot for the Diablo 2 game. Let us consider its advantages

and disadvantages. We can generalize our evaluation for a whole class of the bots.

These are the advantages:

• The bot receives precise information about the game objects. There is

a very low probability that the bot makes mistakes during his work.

• The bot has a lot of ways to modify a state of the game objects.

Possible options are as follows: to simulate the player actions, to

write new the values directly to the game process memory, and to call

the internal game functions.

This is a list of the in-game bot’s disadvantages:

• The analysis and reverse engineering of the game require a lot of

effort and time.

• The bot is compatible with one specific version of the game (in most

cases). We should adapt the bot for each new game version.

Chapter 3 In-game Bots

171

• There are a lot of effective approaches to protect applications against

the reverse engineering and debugging techniques.

You can see that in-game bots require much more effort to develop and to support

them than clicker bots. At the same time, they are quite reliable because they can gather

detailed information about a state of the game objects.

 Protection Approaches
We have considered an implementation of the in-game bot for Diablo 2. We know the

algorithms and techniques that it uses. Let us consider the ways to protect a game

application from this kind of bot.

There are two groups of protection methods that can prevent the usage of in-game bots:

• Methods to protect an application against reverse engineering.

• Methods for blocking bot algorithms.

The first group has a long history. Many applications that process sensitive user data

and software license managers use these methods. They are well known, and you can

find many articles about this topic on the Internet. The primary goal of these methods

is to force the bot developer to spend more time on investigating the game application

internals. At some point, he can decide that a game analysis costs too much time, and

there is no sense in doing it.

The second group of methods focuses on breaking the normal work of a bot by

protecting data from being read and written, so that the bot cannot reliably receive the

game state.

Some of the protection methods refer to both groups.

 Test Application
Let us remember a typical online game architecture. It has a client-side application and

a game server. Most of the protection techniques against in-game bots should be applied

on the client side.

How will we consider the protection methods? We can take a game application and

develop a protection system for it. However, this way requires a lot of effort and time.

Chapter 3 In-game Bots

172

Another possibility is to make a simple application that implements some game

model. Also, we can develop a primitive in-game bot that controls our test application.

Then we will try several protection techniques and estimate their effectiveness against

the bot.

The test game application has the following algorithm:

 1. Set a maximum value of the health parameter.

 2. Check a state of the “1” key every second in a loop.

 3. Decrement the health if the key is not pressed. Otherwise,

increment the value.

 4. Finish the loop and stop the application when the health value

becomes equal to zero.

Listing 3-14 demonstrates a source code of the TestApplication.cpp.

Listing 3-14. The TestApplication.cpp Code

#include <stdio.h>

#include <stdint.h>

#include <windows.h>

static const uint16_t MAX_LIFE = 20;

static uint16_t gLife = MAX_LIFE;

int main()

{

 SHORT result = 0;

 while (gLife > 0)

 {

 result = GetAsyncKeyState(0x31);

 if (result != 0xFFFF8001)

 --gLife;

 else

 ++gLife;

 printf("life = %u\n", gLife);

 Sleep(1000);

Chapter 3 In-game Bots

173

 }

 printf("stop\n");

 return 0;

}

We store the health value in the gLife global variable. When the application starts,

we assign the MAX_LIFE constant to this variable.

The main function has a while loop where we check the state of a keyboard key with

the GetAsyncKeyState WinAPI function. The function has only one input parameter,

which specifies a key for checking. The parameter equals the 0x31 virtual-key code in

our case. It is the code of the “1” key. If it is not pressed, we decrement the health value.

Otherwise, we increment it. Then we do a one-second delay with the Sleep WinAPI

function. This provides the player enough time to press or release the keyboard key.

You can compile TestApplication.cpp with the “Debug” configuration of Visual Studio

compiler, and launch it for testing.

 Analysis of Test Application

Now we will develop a bot for our test application. We will apply the same bot algorithm

as we have implemented in the “Example with Diablo 2” section. The algorithm is simply

that if the health value falls below 10, the bot presses the “1” key.

The bot should control the health value. So, let us find it in the application process

memory. The application is quite simple and small. Therefore, we can use OllyDbg only

to consider its internals.

These are the steps to find a segment that contains the health variable:

 1. Launch the OllyDbg debugger. Open the “TestApplication.exe”

binary in the “Select 32-bit executable” dialog (you can open the

dialog with the F3 key). Now, launch the application from the

debugger instead of attaching it; the debugger stops the target

process at its start point.

 2. Press Ctrl+G to open the “Enter expression to follow” dialog.

 3. Type the full name of the main function into the “Enter address

expression” field. The full name is “TestApplication.main”. Then

press the “Follow expression” button. Now a cursor in the disassembler

subwindow points to the first instruction of the main function.

Chapter 3 In-game Bots

174

 4. Set a breakpoint on the instruction by pressing the F2 key.

 5. Start the execution of the target process by pressing the F9 key.

Our breakpoint will stop it.

 6. Click the left button on the following line of disassembled code

(the cursor position should look like Figure 3-24):

MOV AX,WORD PTR DS:[gLife]

Figure 3-24. A breakpoint on the main function

 7. Select the “Follow in Dump”➤“Memory address” item in the

pop-up menu. Now the cursor of the memory dump subwindow

should be on the gLife variable. It equals “14” in hexadecimal and

has the “329000” address in my case.

 8. Open the “Memory map” window with an Alt+M keypress.

 9. Find a memory segment that contains the address of the gLife

variable. It should be a “.data” segment of the “TestApplication”

module (see Figure 3-25).

Chapter 3 In-game Bots

175

We learned that the gLife variable occupies the beginning of the “.data” segment.

So, its address equals the segment base address. It will be enough for our bot to find the

“.data” segment. Then, the bot just reads a health variable.

 The Bot for Test Application

We have considered the general algorithm of our bot. Now let us view the bot actions

step by step:

 1. Enable the SE_DEBUG_NAME privilege for the current process.

 2. Open the test application process.

 3. Search the memory segment that contains the gLife variable.

 4. Read the variable in a loop. Write the 20 value to the gLife

variable when it falls below 10.

Listing 3-15 shows a source code of the SimpleBot.cpp application.

Listing 3-15. The SimpleBot.cpp Application

#include <windows.h>

BOOL SetPrivilege(HANDLE hToken, LPCTSTR lpszPrivilege, BOOL bEnablePrivilege)

{

 // Implementation of the function is still the same

 // and it is available in the SimpleBot.cpp source file

}

SIZE_T ScanSegments(HANDLE proc)

Figure 3-25. A memory map of the TestApplication

Chapter 3 In-game Bots

176

{

 MEMORY_BASIC_INFORMATION meminfo;

 LPCVOID addr = 0;

 if (!proc)

 return 0;

 while (1)

 {

 if (VirtualQueryEx(proc, addr, &meminfo,

sizeof(meminfo)) == 0)

 break;

 if ((meminfo.State == MEM_COMMIT) && (meminfo.Type &

MEM_IMAGE) && (meminfo.Protect == PAGE_READWRITE) &&

(meminfo.RegionSize == 0x1000))

 {

 return (SIZE_T)meminfo.BaseAddress;

 }

 addr = (unsigned char*)meminfo.BaseAddress + meminfo.

RegionSize;

 }

 return 0;

}

WORD ReadWord(HANDLE hProc, DWORD_PTR address)

{

 // Implementation of the function is still the same

 // and it is available in the SimpleBot.cpp source file

}

void WriteWord(HANDLE hProc, DWORD_PTR address, WORD value)

{

 if (WriteProcessMemory(hProc, (void*)address, &value,

sizeof(value), NULL) == 0)

 printf("Failed to write memory: %u\n", GetLastError());

}

Chapter 3 In-game Bots

177

int main()

{

 // Enable `SE_DEBUG_NAME` privilege for current process here.

 // Open the test application process here.

 SIZE_T lifeAddress = ScanSegments(hTargetProc);

 ULONG hp = 0;

 while (1)

 {

 hp = ReadWord(hTargetProc, lifeAddress);

 printf("life = %lu\n", hp);

 if (hp < 10)

 WriteWord(hTargetProc, lifeAddress, 20);

 Sleep(1000);

 }

 return 0;

}

The primary difference of this bot from our Diablo 2 in-game bot is the ScanSegments

function. Now we can distinguish the segment that contains the gLife variable. It has the

unique set of flags and the specific size. We can get these data from the “Memory map”

window of OllyDbg. Table 3-7 explains the meaning of the segment flags.

Table 3-7. Meaning of the Segment Flags

Meminfo field OllyDbg value WinAPI value Description

type Img mem_Image Indicates that the memory pages within

the region are mapped into the view of an

executable image.

access rW page_

reaDWrIte

enables read-only or read/write access to the

committed region of pages.

Chapter 3 In-game Bots

178

All segments that are related to an executable image have the MEM_COMMIT state

flag. It means that address space of the segment was allocated on some physical storage

(RAM or the paging file on disk).

These are the steps to launch our bot:

 1. Launch the TestAplication.

 2. Launch the bot with administrator privileges.

 3. Switch to a window of the TestAplication (it should be a console).

 4. Wait until the health value falls below 10.

You will see that the bot overwrites the health value when it becomes low.

 Approaches Against Analysis
Now we will consider ways to make an investigation of game internals more difficult. Our

example with Diablo 2 shows that it is necessary to know these internals to develop a

bot. If we apply protection techniques, bot developers will need to spend more time for

their work, and they will probably give up.

 WinAPI for Debugger Detection

Here we will consider WinAPI functions that check if some process is debugged. Some of

them prevent debugging of the protected process.

IsDebuggerPresent

The most straightforward way to protect an application against debugging is the

IsDebuggerPresent WinAPI function. When we detect the debugger, we can abort the

game process.

The following code snippet shows naive usage of the IsDebuggerPresent function:

int main()

{

 if (IsDebuggerPresent())

 {

 printf("debugger detected!\n");

 exit(EXIT_FAILURE);

 }

Chapter 3 In-game Bots

179

 // Rest function is the same as in TestApplication.cpp

}

We check the debugger presence at the beginning of the main function.

If the check succeeds, we abort the process by the exit function. This usage of the

IsDebuggerPresent function is ineffective. Yes, it detects the debugger when the

application starts. It means that you cannot launch TestApplication from the OllyDbg as

we did it before. However, you can attach the debugger to the working TestApplication

process. The IsDebuggerPresent check has already happened and it does not detect the

debugger in this case.

The IsDebuggerPresent.cpp application in Listing 3-16 demonstrates the proper

usage of the WinAPI function.

Listing 3-16. The IsDebuggerPresent.cpp Application

int main()

{

 SHORT result = 0;

 while (gLife > 0)

 {

 if (IsDebuggerPresent())

 {

 printf("debugger detected!\n");

 exit(EXIT_FAILURE);

 }

 result = GetAsyncKeyState(0x31);

 if (result != 0xFFFF8001)

 --gLife;

 else

 ++gLife;

 printf("life = %u\n", gLife);

 Sleep(1000);

 }

 printf("stop\n");

 return 0;

}

Chapter 3 In-game Bots

180

Now, the IsDebuggerPresent check happens regularly in the while loop, so it detects

the debugger even when it attaches to the working process.

How can we bypass this protection? The first way is to modify the CPU register at the

moment when the check happens. Thus, we change the check result and avoid execution

of the positive case branch of the if condition.

The following algorithm explains the steps to modify a CPU register:

 1. Launch OllyDbg and open the “TestApplication.exe” binary.

 2. Press Ctrl+N to open the “Names in TestApplication” window.

Here you can see the symbol table of TestApplication.

 3. Type the “IsDebuggerPresent” text in the “Names in

TestApplication” window.

 4. Select the “&KERNEL32.IsDebuggerPresent” symbol name by left-

clicking.

 5. Press Ctrl+R to search references to the IsDebuggerPresent

function. You will see the “Search - References to...” dialog. It

shows a list of places in the code that do the IsDebuggerPresent

call.

 6. By left-clicking, select the first item in the “Search - References

to...” dialog. You should see the IsDebuggerPresent call from the

main function in the disassembler subwindow.

 7. By left-clicking, select the TEST EAX,EAX instruction, which

follows the IsDebuggerPresent call. Press the F2 key to set a

breakpoint on this instruction.

 8. Continue the execution of the TestApplication by the F9 key. Our

breakpoint should trigger.

 9. Set the value of the EAX register to zero. To do so, double-click

the value of EAX register in the “Registers (FPU)” subwindow. It

opens the “Modify EAX” dialog, as Figure 3-26 shows. Then type

value “0” in the “Signed” row of the “EAX” column. Press the “OK”

button.

 10. Continue the execution of the TestApplication by the F9 key.

Chapter 3 In-game Bots

181

The application does not detect the debugger after our modification of the CPU

register. However, the IsDebuggerPresent check happens on the next iteration of the

while loop. It means that you should modify the register on each iteration.

Another way to avoid the debugger detection is to make a permanent patch for the

TestApplication code. The code is already loaded into the process memory, and OllyDbg

has a feature to change it.

These are the steps to make a code patch:

 1. Launch the OllyDbg debugger and open the “TestApplication.exe”

binary.

 2. Find a place of the IsDebuggerPresent call.

 3. By left-clicking, select the JE SHORT 01371810 instruction, which

follows the IsDebuggerPresent call and the TEST EAX,EAX line.

Press the Space key to edit the selected instruction.

Figure 3-26. Modify EAX dialog

Chapter 3 In-game Bots

182

 4. Change the JE SHORT 01371810 instruction to the JNE SHORT

01371810 one in the “Assemble” dialog, as Figure 3-27 shows. Then

press the “Assemble” button.

Figure 3-27. The assemble dialog

 5. Continue the execution of the TestApplication by the F9 key.

The application cannot detect OllyDbg after this patch.

What is the meaning of changing the instruction from JE to JNE? Let us consider the

C++ code that matches to each instruction.

This is a variant for the original JE instruction:

if (IsDebuggerPresent())

{

 printf("debugger detected!\n");

 exit(EXIT_FAILURE);

}

Chapter 3 In-game Bots

183

This is a variant for the new JNE instruction:

if (! IsDebuggerPresent())

{

 printf("debugger detected!\n");

 exit(EXIT_FAILURE);

}

As you see, we inverse the if condition. So, if there is no debugger, the process

terminates with the “debugger detected!” message. Otherwise, it continues. We hacked

this check, and it becomes broken in a suitable way for us.

If you restart the TestApplication, you should do the same code patch again. You can

solve this issue by using the OllyDumpEx plug-in (low-priority.appspot.com/ollydumpex)

for OllyDbg. It provides a feature to save a modified code back to the binary file.

These are the steps to install OllyDbg plug-ins:

 1. Download an archive with a plug-in from the developer website.

 2. Unpack the archive to the OllyDbg directory. The default path to

the directory is “C:\Program Files (x86)\odbg200”.

 3. Check that OllyDbg uses the right directory with plug-ins. To do

so, select the “Options”➤“Options...” item of the main menu. It

opens the “Options” dialog. Then, choose the “Directories” item of

a tree control on the left side of the dialog. The “Plug-in directory”

field should match your installation path of OllyDbg (for example

“C:\Program Files (x86)\odbg200”).

 4. Restart the debugger.

You will see a new main menu item, which has the “Plug-ins” label.

Now, we consider the steps to save patched code to the binary file:

 1. Select the “Plug-ins“➤”OllyDumpEx“➤”Dump process” item. You

will see the “OllyDumpEx” dialog.

 2. Press the “Dump” button. You will see the “Save Dump to File”

dialog.

 3. Select the path to the saved binary in this dialog.

Chapter 3 In-game Bots

http://low-priority.appspot.com/ollydumpex

184

After these actions, you will find the modified binary file on the hard drive. You can

launch this file. It should work correctly for simple applications like our TestApplication.

However, if the patched binary is a complex application, it can crash when you launch it.

WinAPI has another function named CheckRemoteDebuggerPresent, which detects a

debugger. We have considered the IsDebuggerPresent function. It returns the TRUE value

if the process that calls the function is debugged. The CheckRemoteDebuggerPresent

function does the same check but for another process. This feature is useful when you

implement an external protection system that works separately from a game process.

The CheckRemoteDebuggerPresent function does the NtQueryInformationProcess

call. It provides detailed information about the specified process. The information

contains the debugging state.

CloseHandle

The considered IsDebuggerPresent function does a straightforward check for debugger

presence. It has one significant disadvantage. We can easily find this check in the

application code and disable it.

The CloseHandle WinAPI function has a side effect feature, which we can use for

indirect checking for debugger presence. If you use this approach, it will be much more

difficult to find and disable the protection. Let us consider how it works.

We should use the CloseHandle function to notify OS that we finish our work with

some object. It means that somebody else can use the object or OS can remove it. The

function receives one input parameter, which is an object handle. So, it is evident that

complex applications use the CloseHandle function intensively.

The function generates the EXCEPTION_INVALID_HANDLE exception if we call

it with an invalid handle or we call it twice for the same handle. Now there comes

an important point. The exception is generated only when the process that does the

CloseHandle call is debugged at the moment. If it is not debugged, the function behaves

differently. It returns the error value instead of raising an exception. So, we can check

how the function behaves and conclude the debugger presence.

When somebody analyzes the protected application, he should consider all

CloseHandle calls and check if they are used for object release or for debugger detection.

Chapter 3 In-game Bots

185

The following code snippet demonstrates this check:

BOOL IsDebug()

{

 __try

 {

 CloseHandle((HANDLE)0x12345);

 }

 __except (GetExceptionCode() == EXCEPTION_INVALID_HANDLE ?

 EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH)

 {

 return TRUE;

 }

 return FALSE;

}

We use the try-except statement here. It is not a C++ standard try-catch statement.

It is a Microsoft extension for both C and C++ languages, which is part of Structured
Exception Handling (SEH) mechanism. You can read more about the SEH in MSDN

(msdn.microsoft.com/en-us/library/windows/desktop/ms680657(v=vs.85).aspx).

Let us modify our TestApplication and substitute replace the IsDebuggerPresent call

with the new IsDebug function. The CloseHandle.cpp file demonstrates the modified

version. You can launch it and test with the OllyDbg and WinDbg debuggers. You will see

that the application cannot detect the OllyDbg, but it detects WinDbg well. This happens

because OllyDbg uses a special technique to bypass this kind of protection.

We can do the same debugger check with the DebugBreak WinAPI function. The

following code snippet shows its usage:

BOOL IsDebug()

{

 __try

 {

 DebugBreak();

 }

 __except (GetExceptionCode() == EXCEPTION_BREAKPOINT ?

 EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH)

 {

Chapter 3 In-game Bots

186

 return FALSE;

 }

 return TRUE;

}

The full code of this example is available in the DebugBreak.cpp file.

Unlike the CloseHandle call, the DebugBreak function always generates an exception.

It is the EXCEPTION_BREAKPOINT. If the application is debugged, the debugger

handles the exception. It means that we do not reach the code inside the __except block.

If there is no debugger, our application catches the exception and concludes that there is

no debugger.

This approach detects both OllyDbg and WinDbg debuggers.

The DebugBreak function has an alternative variant named DebugBreakProcess,

which allows you to check another process.

CreateProcess

There is a technique that prevents debugging of the process at all. Windows has a

limitation that only one debugger can attach to a process at any one time. Thus, if

the application debugs itself, nobody else can do it. This technique is known as self-

debugging.

The principal idea of the technique is creating a child process by the CreateProcess

WinAPI function. Then there are two possibilities:

 1. A child process debugs the parent one. The parent process does

all TestApplication algorithms in this case. This approach is

described in this article: www.codeproject.com/Articles/30815/

An-Anti-Reverse-Engineering-Guide#SelfDebugging.

 2. A parent process debugs the child one. The child process does a

work of TestApplication in this case.

We will consider an implementation of the second case.

Listing 3-17 demonstrates the self-debugging technique.

Chapter 3 In-game Bots

http://www.codeproject.com/Articles/30815/An-Anti-Reverse-Engineering-Guide#SelfDebugging
http://www.codeproject.com/Articles/30815/An-Anti-Reverse-Engineering-Guide#SelfDebugging

187

Listing 3-17. The SelfDebugging.cpp Application

#include <stdint.h>

#include <windows.h>

#include <string>

using namespace std;

static const uint16_t MAX_LIFE = 20;

static uint16_t gLife = MAX_LIFE;

void DebugSelf()

{

 wstring cmdChild(GetCommandLine());

 cmdChild.append(L" x");

 PROCESS_INFORMATION pi;

 STARTUPINFO si;

 ZeroMemory(&pi, sizeof(PROCESS_INFORMATION));

 ZeroMemory(&si, sizeof(STARTUPINFO));

 GetStartupInfo(&si);

 CreateProcess(NULL, (LPWSTR)cmdChild.c_str(), NULL, NULL, FALSE,

 DEBUG_PROCESS | CREATE_NEW_CONSOLE, NULL, NULL, &si, &pi);

 DEBUG_EVENT de;

 ZeroMemory(&de, sizeof(DEBUG_EVENT));

 for (;;)

 {

 if (!WaitForDebugEvent(&de, INFINITE))

 return;

 ContinueDebugEvent(de.dwProcessId,

 de.dwThreadId,

 DBG_CONTINUE);

 }

}

Chapter 3 In-game Bots

188

int main(int argc, char* argv[])

{

 if (argc == 1)

 {

 DebugSelf();

 }

 SHORT result = 0;

 while (gLife > 0)

 {

 result = GetAsyncKeyState(0x31);

 if (result != 0xFFFF8001)

 --gLife;

 else

 ++gLife;

 printf("life = %u\n", gLife);

 Sleep(1000);

 }

 printf("stop\n");

 return 0;

}

Figure 3-28 demonstrates the relationship between the parent and child processes.

Figure 3-28. The relationship between the parent and child processes

Chapter 3 In-game Bots

189

TestAplication starts in two steps. The first step happens when you launch the

application without any command-line parameters. You can do this by clicking

the application icon. In this case, we come in the positive branch of the following if

condition:

 if (argc == 1)

 {

 DebugSelf();

 }

When you launch an application without command-line arguments, it has one

argument that matches the executable file name. Thus, we do the DebugSelf call. This

function has the following algorithm:

 1. Get the command-line arguments of the current process and

append the “x” parameter to them. This parameter informs the

child process that it was launched from the parent one:

wstring cmdChild(GetCommandLine());

cmdChild.append(L" x");

 2. Create a child process with the CreateProcess call. We pass the

DEBUG_PROCESS flag to the function. This means that we debug

the created process. Also, we pass the CREATE_NEW_CONSOLE flag

to create a separate console for the child process, so you can get

output messages from it.

 3. Start an infinite loop, which receives all debug events from the

child process.

You can launch the SelfDebugging application and try to debug it. Neither the

OllyDbg nor the WinDbg debugger can attach to it. Our example is just a demonstration

of the self-debugging approach. You can easily bypass the protection that we have

implemented. To do so, launch the “TestApplication.exe” executable from the command

line with the second parameter:

TestApplication.exe x

The application starts normally, and you can debug it.

Chapter 3 In-game Bots

190

You should not rely on the number of command-line arguments as we did in the

example. Instead, you should use an algorithm to generate the random key. Then the

child process receives this key via the command line and checks its correctness.

More secure approaches against an unauthorized application launch rely on

interprocess communication mechanisms (msdn.microsoft.com/en-us/library/

windows/desktop/aa365574%28v=vs.85%29.aspx).

 Register Manipulations for Debugger Detection

The antidebugging approaches that use WinAPI calls have one significant disadvantage.

Finding these calls in the application code is easy. Even if we use the CloseHandle

function and the application has 100 calls of it, we can bypass the protection in the

predicted amount of time.

There are several antidebugging approaches that use CPU register manipulation.

We can access these registers from our applications via the inline assembler. When we

check debugger presence without WinAPI calls, we cannot use a symbol table to find

these checks. So, it is more difficult to find them.

Let us consider the internals of the IsDebuggerPresent WinAPI function. Probably,

we can repeat its code in our application.

These are the steps to investigate the function:

 1. Launch the OllyDbg.

 2. Open the “TestApplication.exe” binary, which is protected by the

IsDebuggerPresent function.

 3. Find the place where the IsDebuggerPresent call happens. Make

a breakpoint on it and continue a process execution.

 4. When the process stops by the breakpoint, press the F7 key to

make a step into the IsDebuggerPresent function.

You will see the assembler code of the function in the disassembler subwindow of

OllyDbg as Figure 3-29 shows.

Chapter 3 In-game Bots

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365574(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365574(v=vs.85).aspx

191

Let us consider each line this code:

 1. Read a linear address of the TEB segment that matches the

currently active thread into the EAX register. The FS register always

points to the TEB segment. The 0x18 hexadecimal offset in the

TEB segment matches to its linear address.

 2. Read a linear address of the PEB segment to the EAX register. The

0x30 hexadecimal offset in the TEB segment matches the PEB

linear address.

 3. Read a value with the 0x2 offset from the PEB segment to the

EAX register. This value matches the BeingDebugged flag, which

detects the debugger presence.

 4. Return from the function.

Now we will try to repeat this algorithm in TestApplication. Listing 3-18 shows the

result.

Listing 3-18. Detecting a Debugger via Checking Registers

int main()

{

 SHORT result = 0;

 while (gLife > 0)

 {

 int res = 0;

 __asm

 {

 mov eax, dword ptr fs:[18h]

 mov eax, dword ptr ds:[eax+30h]

Figure 3-29. Assembler code of the IsDebuggerPresent function

Chapter 3 In-game Bots

192

 movzx eax, byte ptr ds:[eax+2h]

 mov res, eax

 };

 if (res)

 {

 printf("debugger detected!\n");

 exit(EXIT_FAILURE);

 }

 result = GetAsyncKeyState(0x31);

 if (result != 0xFFFF8001)

 --gLife;

 else

 ++gLife;

 printf("life = %u\n", gLife);

 Sleep(1000);

 }

 printf("stop\n");

 return 0;

}

You can compare our code and Figure 3-29. They look almost the same. The

difference is the last line. We store the value of the BeingDebugged in the res variable.

Then we use it to detect a debugger.

If you copy this assembler code in several places of your application, it will be

difficult to find them.

What should we do if we want to keep this code in one place? That is the right

question. If something changes in the next Windows versions and our code become

invalid, we should fix or remove it. It will cost a lot of effort to fix it in several places.

There are several approaches to avoid duplication of assembler code. We cannot

move it to the regular C++ function. It is quite easy to find calls of any function via the

symbol table. So, we should do something more sophisticated.

The first approach is to make the C++ function that has the __forceinline keyword.

The keyword forces the compiler to insert the function body into each place where it is

called. However, it works correctly when we choose the “Release” configuration of the

application build.

Chapter 3 In-game Bots

193

The keyword is ignored in several cases:

• If we use the “Debug” build configuration.

• If the inline function has recursive calls.

• If the inline function calls the alloca WinAPI function.

The second approach is the usage of the preprocessor macro. The compiler inserts

the body of the preprocessor macro in each place of source code where the name of

macro is specified. This compiler behavior does not depend on the build configuration.

The BeingDebugged.cpp application in Listing 3-19 shows checking the

BeingDebugged flag with the preprocessor macro.

Listing 3-19. The BeingDebugged.cpp Application

#define CheckDebug() \

int isDebugger = 0; \

{ \

__asm mov eax, dword ptr fs : [18h] \

__asm mov eax, dword ptr ds : [eax + 30h] \

__asm movzx eax, byte ptr ds : [eax + 2h] \

__asm mov isDebugger, eax \

} \

if (isDebugger) \

{ \

printf("debugger detected!\n"); \

exit(EXIT_FAILURE); \

}

int main()

{

 SHORT result = 0;

 while (gLife > 0)

 {

 CheckDebug()

 ...

 }

Chapter 3 In-game Bots

194

 printf("stop\n");

 return 0;

}

This protection looks reliable enough. Can we somehow bypass it?

The answer is yes. Instead of changing the if condition in each place where an

application checks for a debugger, we can change the BeingDebugged flag.

This is an algorithm to do it with OllyDbg:

 1. Launch the debugger.

 2. Open the “TestApplication.exe” binary, which is protected by the

BeingDebugged flag checking.

 3. Press Alt+M to open a memory map of the process. Find the

“Process Environment Block” segment.

 4. Double-left-click this segment. You will see “Dump - Process

Environment Block” window. Find the “BeingDebugged” flag

value there.

 5. Left-click the “BeingDebugged” flag to select it. Press Ctrl+E to

open the “Edit data at address...” dialog.

 6. Change a value in the “HEX+01” field from “01” to “00” and press

the “OK” button. Figure 3-30 shows this step.

Chapter 3 In-game Bots

195

Now continue with the execution of the process. The application cannot detect the

debugger anymore.

This workaround looks quite simple. So, we can easily bypass protection approaches

that rely on the BeingDebugged flag. Can we apply something more reliable?

As you remember, we have considered the DebugBreak WinAPI function. This allows

us to raise an exception. Then we should check who will process it and conclude the

debugger presence.

Let us investigate the internals of this function and replace it with the assembler

code. For this investigation, you can follow the same approach as we applied for the

IsDebuggerPresent function. If you do everything correctly, you will find that the

DebugBreak function uses the INT 3 assembler instruction only. The instruction raises

the EXCEPTION_BREAKPOINT.

Figure 3-30. The “Edit data at address” dialog

Chapter 3 In-game Bots

196

This is a version of the IsDebug function that uses the INT 3 instruction:

BOOL IsDebug()

{

 __try

 {

 __asm int 3;

 }

 __except (GetExceptionCode() == EXCEPTION_BREAKPOINT ?

 EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH)

 {

 return FALSE;

 }

 return TRUE;

}

We can use the __forceinline keyword to hide calls of the IsDebug function.

However, this keyword does not have any effect in this case. It happens because the __

try __except handler operates in its own memory frame and it uses the alloca WinAPI

function implicitly. It prevents the compiler from inserting the function body to the

caller code. An alternative solution is to move this check to the macro:

#define CheckDebug() \

bool isDebugger = true; \

__try \

{ \

 __asm int 3 \

} \

__except (GetExceptionCode() == EXCEPTION_BREAKPOINT ? \

 EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) \

{ \

 isDebugger = false; \

} \

if (isDebugger) \

{ \

 printf("debugger detected!\n"); \

 exit(EXIT_FAILURE); \

}

Chapter 3 In-game Bots

197

The Int3.cpp file demonstrates the TestApplication code with this protection.

You should patch the code and invert the if condition if you want to bypass this

protection. It sounds simple, but you should find all these checks in the code.

OllyDbg provides the feature to search specific assembler instruction. You can press

Ctrl+F in the disassembler subwindow and type the INT3 value in the opened dialog. The

press the “Search” button. You will get an instruction that contains the 0xCC number in

its opcode. Now you should find the 0xCC byte in the whole application code. It takes a

lot of time for complex applications. Also, you will get many 0xCC bytes that are not the

INT 3 instruction but something else.

 Approaches Against Bots
Windows has a mechanism to restrict access to system objects (for example, processes).

This mechanism is Security Descriptors (SD). There is an article (helgeklein.com/

blog/2009/03/permissions-a-primer-or-dacl-sacl-owner-sid-and-ace-explained/?PageS

peed=noscript) that describes it in detail.

Also, you can learn more about SD from the following code examples:

• www.cplusplus.com/forum/windows/96406

• stackoverflow.com/questions/6185975/prevent-user-process-from-

being-killed-with-end-process-from-process-explorer/

10575889#10575889

They demonstrate how you can protect your application with the Discretionary
Access Control List (DACL).

However, the SD mechanism does not protect your application if the process with

administrator privileges tries to access it. Therefore, you should implement protection

algorithms on your own.

The reliable protection algorithm should solve two primary tasks:

• Hiding game data from memory scanners (like Cheat Engine).

• Checking the correctness of game data to prevent their unauthorized

modification.

 Hiding Game Data

First, we will consider approaches to hide game data from memory scanners.

Chapter 3 In-game Bots

http://helgeklein.com/blog/2009/03/permissions-a-primer-or-dacl-sacl-owner-sid-and-ace-explained/?PageSpeed=noscript
http://helgeklein.com/blog/2009/03/permissions-a-primer-or-dacl-sacl-owner-sid-and-ace-explained/?PageSpeed=noscript
http://helgeklein.com/blog/2009/03/permissions-a-primer-or-dacl-sacl-owner-sid-and-ace-explained/?PageSpeed=noscript
http://www.cplusplus.com/forum/windows/96406
http://stackoverflow.com/questions/6185975/prevent-user-process-from-being-killed-with-end-process-from-process-explorer/10575889#10575889
http://stackoverflow.com/questions/6185975/prevent-user-process-from-being-killed-with-end-process-from-process-explorer/10575889#10575889
http://stackoverflow.com/questions/6185975/prevent-user-process-from-being-killed-with-end-process-from-process-explorer/10575889#10575889

198

 XOR Cipher

The simplest way to hide some data in the process memory is encryption. If we encrypt

states of the game objects, a bot still can read them, but it cannot retrieve their actual

values.

We start our consideration of encryption algorithms with the simplest one: the XOR
cipher. Listing 3-20 demonstrates its usage.

Listing 3-20. The XORCipher.cpp Application

#include <stdint.h>

#include <windows.h>

using namespace std;

inline uint16_t maskValue(uint16_t value)

{

 static const uint16_t MASK = 0xAAAA;

 return (value ^ MASK);

}

static const uint16_t MAX_LIFE = 20;

static uint16_t gLife = maskValue(MAX_LIFE);

int main(int argc, char* argv[])

{

 SHORT result = 0;

 while (maskValue(gLife) > 0)

 {

 result = GetAsyncKeyState(0x31);

 if (result != 0xFFFF8001)

 gLife = maskValue(maskValue(gLife) - 1);

 else

 gLife = maskValue(maskValue(gLife) + 1);

 printf("life = %u\n", maskValue(gLife));

 Sleep(1000);

 }

Chapter 3 In-game Bots

199

 printf("stop\n");

 return 0;

}

The maskValue function implements both encryption and decryption procedures.

We use the XOR operation with the predefined MASK constant to get an encrypted value.

The constant is a key of the cipher in our case. When we want to decrypt the gLife

variable, we do the maskValue call again.

You can launch this application and try to find the gLife variable with the Cheat

Engine. The scanner cannot do it anymore. However, if you know the MASK value, you

can easily find the variable. You should calculate the encrypted value of the variable

manually and search it. Then, the Cheat Engine finds the right address.

Our XOR cipher implementation is just a demonstration of this approach. You

should significantly improve it before using it in real applications.

The first improvement is creating a template C++ class that encapsulates the

encryption algorithm. Then you should overload the assignment and arithmetic

operators for this class. This allows you to use encryption implicitly like this:

XORCipher<int> gLife(20);

gLife = gLife – 1;

The second improvement is generating a random cipher key (MASK value) in the

constructor of the template class. This solution makes it difficult to decrypt protected

values.

 AES Cipher

We have considered the XOR cipher, which is quite simple to crack. You can use more

sophisticated cipher algorithms to protect game data better. WinAPI provides a set

of cryptographic functions (msdn.microsoft.com/en-us/library/windows/desktop/

aa380252(v=vs.85).aspx). Let us consider a modern symmetric AES cipher and apply it to

our test application.

Listing 3-21 demonstrates usage of the cipher:

Chapter 3 In-game Bots

http://msdn.microsoft.com/en-us/library/windows/desktop/aa380252(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380252(v=vs.85).aspx

200

Listing 3-21. The AESCipher.cpp Application

#include <stdint.h>

#include <stdio.h>

#include <windows.h>

#include <string>

#pragma comment (lib, "advapi32")

#pragma comment (lib, "user32")

using namespace std;

static const uint16_t MAX_LIFE = 20;

static uint16_t gLife = 0;

HCRYPTPROV hProv;

HCRYPTKEY hKey;

HCRYPTKEY hSessionKey;

#define kAesBytes128 16

typedef struct {

 BLOBHEADER header;

 DWORD key_length;

 BYTE key_bytes[kAesBytes128];

} AesBlob128;

static const BYTE gCipherBlockSize = kAesBytes128 * 2;

static BYTE gCipherBlock[gCipherBlockSize] = {0};

void CreateContex()

{

 if (!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_AES,

CRYPT_VERIFYCONTEXT))

 {

 printf("CryptAcquireContext() failed - error = 0x%x\n",

GetLastError());

 }

}

Chapter 3 In-game Bots

201

void CreateKey(string& key)

{

 AesBlob128 aes_blob;

 aes_blob.header.bType = PLAINTEXTKEYBLOB;

 aes_blob.header.bVersion = CUR_BLOB_VERSION;

 aes_blob.header.reserved = 0;

 aes_blob.header.aiKeyAlg = CALG_AES_128;

 aes_blob.key_length = kAesBytes128;

 memcpy(aes_blob.key_bytes, key.c_str(), kAesBytes128);

 if (!CryptImportKey(hProv,

 reinterpret_cast<BYTE*>(&aes_blob),

 sizeof(AesBlob128),

 NULL,

 0,

 &hKey))

 {

 printf("CryptImportKey() failed - error = 0x%x\n", GetLastError());

 }

}

void Encrypt()

{

 unsigned long length = kAesBytes128;

 memset(gCipherBlock, 0, gCipherBlockSize);

 memcpy(gCipherBlock, &gLife, sizeof(gLife));

 if (!CryptEncrypt(hKey, 0, TRUE, 0, gCipherBlock, &length, gCipherBlockSize))

 {

 printf("CryptEncrypt() failed - error = 0x%x\n", GetLastError());

 return;

 }

 gLife = 0;

}

Chapter 3 In-game Bots

202

void Decrypt()

{

 unsigned long length = gCipherBlockSize;

 if (!CryptDecrypt(hKey, 0, TRUE, 0, gCipherBlock, &length))

 {

 printf("Error CryptDecrypt() failed - error = 0x%x\n",

GetLastError());

 return;

 }

 memcpy(&gLife, gCipherBlock, sizeof(gLife));

 memset(gCipherBlock, 0, gCipherBlockSize);

}

int main(int argc, char* argv[])

{

 CreateContex();

 string key("The secret key");

 CreateKey(key);

 gLife = MAX_LIFE;

 Encrypt();

 SHORT result = 0;

 while (true)

 {

 result = GetAsyncKeyState(0x31);

 Decrypt();

 if (result != 0xFFFF8001)

 gLife = gLife - 1;

 else

 gLife = gLife + 1;

 printf("life = %u\n", gLife);

Chapter 3 In-game Bots

203

 if (gLife == 0)

 break;

 Encrypt();

 Sleep(1000);

 }

 printf("stop\n");

 return 0;

}

Let us consider the algorithm of the AES cipher application. These are its steps:

 1. Create a context for a cryptographic algorithm by the

CreateContex function. It does the CryptAcquireContext WinAPI

call. Context is a combination of two components: key container

and cryptographic service provider (CSP). The key container

contains all keys that belong to a specific user. CSP is a software

module that provides a cryptographic algorithm.

 2. Append a cryptographic key to the CSP by the CreateKey function.

This function takes a string with the key value as the input

parameter. Then it creates a key BLOB structure according to the

received string. After this, the function does the CryptImportKey

WinAPI call, which transfers the BLOB to the CSP.

 3. Initialize the gLife variable and encrypt it by the Encrypt

function. It calls the CryptEncrypt WinAPI internally. We store

the encrypted value in the gCipherBlock global array. After

encrypting, we set gLife to zero, so memory scanners cannot

find it.

 4. Decrypt the gCipherBlock array and restore the gLife variable

by the Decrypt function on each step of the while loop. This

function calls the CryptDecrypt WinAPI internally. After

decryption, we update the variable and encrypt it again. We

interrupt the loop when the gLife becomes equal to zero.

Chapter 3 In-game Bots

204

What is the advantage of applying AES cipher comparing to XOR one? The steps to

find an encrypted variable in the process memory are still the same for both cases:

 1. Recover an encryption key.

 2. Apply it to encrypt the value you want to find.

 3. Search the encrypted value with a memory scanner.

XOR cipher works faster, but it is easy to crack. So, there are two options to recover

the key. We can crack the cipher or search the key in the process memory. Sometimes

the first option is simpler to do, other times the second one. When we apply the AES

cipher, there is only one option with process memory searching. This cipher is strong;

thus, it requires considerable time to crack it. To make the protection more reliable, we

can generate an encryption key after each application launch and apply antidebugging

techniques.

Using AES has another advantage. When we recover the key, we should repeat the

cipher’s algorithm. This allows us to get the encrypted value, which we can find in the

process memory with a scanner. The XOR cipher is so simple that you can apply it even

in your mind. However, the AES cipher has many rounds of applying XOR operation

and bitwise rotation. Thus, we should write an application that does encryption for us. It

requires time, and a bot developer should know how to do it.

Both of these ciphers solve the first task of data protection. They hide data from

memory scanners. However, the bot still can write data to the process memory. It

becomes a vulnerability in some cases.

 Check Correctness of Game Data

Now, we will consider how we can protect game data from modification. The principal

idea of this kind of protection is to duplicate data and compare them periodically.

When we want to change the data, we modify their copy too. If data and the copy

differ, we conclude that somebody changed it in an unauthorized way. However, it is

quite simple to find the copy with a memory scanner because it has the same value as

original data. So, we should hide the copy. We can encrypt it, but there is a faster way. It

is the hashing.

The hashing is something that looks similar to encryption. We take data and convert

them to something. The difference is that when we encrypt data, we want to decrypt it

in the future. When we hash data, we do not plan to get them back. So, hashing is a one-

direction operation. This feature allows to speed up hashing algorithms.

Chapter 3 In-game Bots

205

The HashCheck.cpp application in Listing 3-22 demonstrates the protection of data

from modification.

Listing 3-22. The HashCheck.cpp Application

#include <stdint.h>

#include <windows.h>

#include <functional>

using namespace std;

static const uint16_t MAX_LIFE = 20;

static uint16_t gLife = MAX_LIFE;

std::hash<uint16_t> hashFunc;

static size_t gLifeHash = hashFunc(gLife);

void UpdateHash()

{

 gLifeHash = hashFunc(gLife);

}

__forceinline void CheckHash()

{

 if (gLifeHash != hashFunc(gLife))

 {

 printf("unauthorized modification detected!\n");

 exit(EXIT_FAILURE);

 }

}

int main(int argc, char* argv[])

{

 SHORT result = 0;

 while (gLife > 0)

 {

 result = GetAsyncKeyState(0x31);

 CheckHash();

Chapter 3 In-game Bots

206

 if (result != 0xFFFF8001)

 --gLife;

 else

 ++gLife;

 UpdateHash();

 printf("life = %u\n", gLife);

 Sleep(1000);

 }

 printf("stop\n");

 return 0;

}

Here we add the extra gLifeHash variable. It stores the hashed gLife value. We use

the hash function that is provided by the STL of the C++11 standard to calculate the

gLifeHash.

We compare the hashed and original gLife values in the CheckHash function on each

while loop iteration. The function calculates a hash of the current gLife variable. If the

result and the gLifeHash value differ, we conclude that there has been unauthorized

data change.

After checking the hash, we change the gLife variable according to the normal

algorithm. Then we update the gLifeHash value by the UpdateHash call.

You can compile and launch this application. If you modify the gLife variable via the

Cheat Engine, the process terminates.

Bypassing such kinds of protection is possible. A bot should modify both gLife and

gLifeHash values simultaneously. However, there are two obstacles here.

The first issue is choosing a proper moment when these values should be modified.

If the bot changes them, the check fails when they are compared in the CheckHash

function. So, the modification will be detected.

The second issue is a task to find the hashed value. If you know the hash algorithm,

you can calculate a hash for the current gLife value and search for it with the Cheat

Engine. In most cases, you will not know the algorithm. So, you should analyze the

disassembled application code to understand it. There is another way: you can

manipulate with the if condition of the CheckHash function and disable the check.

However, it becomes difficult to find all if conditions in case the CheckHash function is

inline or is implemented as a preprocessor macro.

Chapter 3 In-game Bots

207

The most effective way to prevent an unauthorized data modification is to store all

game data on the server side. The client side receives these data for visualization of the

current game state. Modification of the client-side data affects a screen picture and keeps

the server-side data unchanged. Therefore, the server always knows an actual state of

game objects and can force clients to accept these data as authentic.

 Protection Approaches Summary
We have considered approaches to protect a game process from memory analysis. This

task can be done with the WinAPI function or with CPU register manipulations.

Then we considered methods to protect from memory scanners and unauthorized

memory modifications.

Chapter 3 In-game Bots

209
© Ilya Shpigor 2018
I. Shpigor, Practical Video Game Bots, https://doi.org/10.1007/978-1-4842-3736-6_4

CHAPTER 4

Out-game Bots
We will consider out-game bots in this chapter. First, we will get a short overview of the

required tools. Then, we will study the basic principles of Internet communications.

We will write a sample network applications. When we become familiar with the

technologies and tools, we will write a bot for the real game. At the end of the chapter, we

will investigate ways to protect games from this type of bot.

 Tools
Tools for out-game bot development have different requirements from those for the

in- game case. Our task is not to go deep inside the internals of the launched processes.

In most cases, we should repeat some major features of a game client. Thus, we do

not need a language that is well integrated with WinAPI. Instead, our current focus is

network communications.

 Programming Language
We will use the Python language in this chapter. It is a scripting language with excellent

features for network programming. Python has libraries (which are also known as

modules) to support all modern network protocols and cryptographic algorithms. These

two topics are the most important for our out-game bot development.

You can use any IDE to write Python scripts. I recommend that you choose

Notepad++ (notepad-plus-plus.org), which we already know from Chapter 2.

There are two options for choosing the Python version and cryptographic library.

You can install the Python of the newest version, 3.6.5, and the PyCryptodome library.

PyCryptodome is a fork of the PyCrypto library. It has better support for Windows.

However, this fork does not have some features of PyCrypto. These features are not

important for developing a final product, but we will consider them for a better

understanding of the encryption topic.

http://notepad-plus-plus.org

210

Another option is installing the older Python version 3.3.0 and the PyCrypto library.

In this chapter, we will use Python features that are the same for 3.6.5 and 3.3.0 Python

versions. If you choose the installation variant with PyCryptodome, you cannot launch a

couple of sample scripts that we will consider here. The rest of the scripts should work well.

These are the steps to install Python 3.3.0 and the PyCrypto library:

 1. Download the Python 3.3.0 release from the official website

(https://www.python.org/ftp/python/3.3.0/python-

3.3.0.msi).

 2. Install it in the default installation path C:\Python33.

 3. Download the unofficial build of the PyCrypto library (http://

www.voidspace.org.uk/python/pycrypto-2.6.1/pycrypto-

2.6.1.win32-py3.3.msi).

 4. Install the library. During the installation, the Python should be

found automatically.

These are the instructions to install Python 3.6.5 and the PyCryptodome library:

 1. Download the latest Python release from the official website

(https://www.python.org/downloads/release/python-365).

 2. Install it in the default installation path C:\Program Files\

Python36.

 3. Download the get-pip.py script from the website (bootstrap.pypa.

io/get-pip.py). This script installs the pip tool. This tool manages

Python modules on your computer.

 4. Launch the get-pip.py script from the command line:

get-pip.py --user

When the script finishes, it shows a message with a pip installation

path. For my case, the path is C:\Users\ilya.shpigor\AppData\

Roaming\Python\Python36\Scripts.

 5. Go to the installation path and launch the pip tool:

pip install --user pycryptodome

Chapter 4 Out-game BOts

https://www.python.org/ftp/python/3.3.0/python-3.3.0.msi
https://www.python.org/ftp/python/3.3.0/python-3.3.0.msi
http://www.voidspace.org.uk/python/pycrypto-2.6.1/pycrypto-2.6.1.win32-py3.3.msi
http://www.voidspace.org.uk/python/pycrypto-2.6.1/pycrypto-2.6.1.win32-py3.3.msi
http://www.voidspace.org.uk/python/pycrypto-2.6.1/pycrypto-2.6.1.win32-py3.3.msi
https://www.python.org/downloads/release/python-365

211

The last steps are similar for both installation variants. You should check that the

Python path was added to the PATH environment variable. These are the steps to do it:

 1. Open “Control Panel” ➤ “System” ➤ “Advanced system setting”

and press the “Environment Variables” button. You will see the

“Environment Variables” dialog, which has two lists.

 2. Find the “PATH” variable in the “System variables” list. Choose the

variable by left- clicking.

 3. Press the “Edit” button. You will see the full list of the system

variables.

 4. Add the Python installation path to this list if it is absent.

Now you are ready to launch Python scripts that use cryptographic algorithms.

The Python language is cross-platform. It means that all samples of this chapter

should work correctly on Windows, Linux, and macOS systems.

 Network Analyzer
Wireshark (www.wireshark.org) is one of the most famous network packet analyzers.

It allows you to capture traffic on the specified network adapter, inspect it with a user-

friendly interface, filter some packets, and store your results on a disk drive. Also,

Wireshark supports decryption of many widespread protocols. This tool is open source,

and you can get it for free on the official website.

 Windows Configuration
In this chapter, we will write several network applications. When you launch one of

them, it should communicate with another app that works on another computer. Thus,

you should have a minimum of two computers for testing. Another option is to use a

VM. In this case, one application should work on your host OS and another inside the

VM (i.e., on guest OS).

However, most modern OSs have a feature for testing network applications locally.

There is a special network interface that is known as loopback. Applications that work on

the same computer can communicate via loopback, and they behave almost in the same

way as in a real network.

Chapter 4 Out-game BOts

http://www.wireshark.org

212

The loopback interface is disabled in the Windows by default. You should enable it if

you want to run our sample scripts. These are the steps to do it:

 1. Launch the Device Manager. You can open it via the Control Panel

or by typing “Device Manager” in the Start menu.

 2. Choose the root item of the devices tree in the Device Manager

window.

 3. Choose the “Action” ➤ “Add legacy hardware” item of the window

menu. You will see the “Add Hardware” dialog.

 4. Press the “Next” button on the first page of the dialog.

 5. Choose the “Install the hardware that I manually select from a list

(Advanced)” option in the dialog. Press the “Next” button.

 6. Choose the “Network adapters” item in the “Common hardware

types” list. Press the “Next” button.

 7. Choose the “Microsoft” manufacturer and the “Microsoft

Loopback Adapter” option. Press the “Next” button two times.

 8. When installation process finishes, you should press the “Finish”

button.

After installation of the loopback interface, it is essential to activate it. These are the

steps to do it:

 1. Open the “Network and Sharing Center” window. You can do it via

the Start menu.

 2. Click the “Change adapter settings” option on the left side of the

window. The “Network Connections” window will open.

 3. Right-click the “Microsoft Loopback Adapter” icon. Choose the

“Enable” option.

Now the loopback interface is ready to use.

Chapter 4 Out-game BOts

213

 Internet Protocols
We have considered an architecture of a typical online game application in Chapter 1. It

has two sides: a game client communicates with a server via a network (the Internet in

most cases). We already know that the application calls WinAPI functions and asks the

OS to send data. Then, the OS transfers data to the network adapter via a device driver.

Now the question is, exactly what happens when the device driver transfers game data?

Let us investigate this question.

 Communication Tasks
If you want to understand the solutions offered by a certain technology, the reasonable

approach is to consider the tasks that these solutions solve. Let us imagine that we are

developers and we get a requirement to transfer game data from the client to the server

via some network.

We have two connected network hosts like Figure 4-1 shows.

Figure 4-1. Game client and server connected via the network

The first straightforward idea is to implement the whole algorithm of data

transferring in the game client application. First, we prepare a data array that contains

states of game objects (for example, coordinates, health points, etc.). This array is known

as the network packet. When it is ready, we pass the packet to the network adapter.

Then the adapter sends the packet.

Wait a moment. What happens if we have three hosts that are connected to one local

network? Figure 4-2 shows this case.

Chapter 4 Out-game BOts

214

In this case, we use a network switch to connect the game client and server. Then we

plug in the Smart TV to this switch. It will be enough, for now, to consider a switch as a

device to connect several network cables.

Now we get a new task. We should somehow distinguish hosts and send game data

to the server but not to the TV. You can say that it does not matter if the TV receives some

unnecessary packets. It can just drop them. This is the right idea as long as we have such

a small network. But what happens if we have hundreds of hosts? If everybody sends

traffic to everybody, the network hangs because of too-high loading. Cables and network

adapters have limited bandwidth, so we should use these resources reasonably.

We can solve our issue if we assign unique identifiers (or addresses) to each of our

hosts. We reach the first solution that was created by real network engineers. A MAC
address is a unique identifier of the network adapter (or another transmitting device).

The manufacturer assigns this address at the device production step. It should be

unique and unchangeable. Now, our application always appends a MAC address of the

destination host to the transmitted packet. This feature allows the switch device to route

traffic on the right port only because it knows which devices are connected to which ports.

When the server receives the packet, it wants to confirm that the data are correct. So,

when we send the data, we should also specify a MAC address of the sender host. Thus,

the receiver knows who has sent the packet and can answer to it.

Let us imagine that our network became bigger. For example, we have two buildings.

Each building has its own local network of three hosts. Then we connect these networks

via one host as Figure 4-3 shows.

Figure 4-2. The network of three hosts

Chapter 4 Out-game BOts

215

Potentially, we can have dozens of hosts total in both networks. If we still follow the

MAC addressing approach, we face an issue. Each host should know about all the other

hosts from the other networks if it wants to communicate with them.

The straightforward solution is to store a list of all available hosts. We should copy

this list to any computer that is connected to our network. When a new host appears, we

should update the list everywhere. This solution is inconvenient to maintain.

Another approach is implementing a mechanism to discover available hosts. For

example, our computer sends a request to all the other network nodes. Everybody who

receives it should send their own MAC address back. This mechanism exists, and it is

known as Address Resolution Protocol (ARP). ARP works a way that’s a little bit more

complicated. It allows specifying the host that we want to find. Then, only this host sends

own MAC address back.

What is a protocol in terms of networks? It is some kind of agreement about data

format. For example, our application sends game data. Should we keep the source and

destination MAC addresses at the beginning of the packet or at the end? If we choose

the beginning, the receiver should follow this decision too. Also, a protocol can define

what network hosts should do in case of errors. For example, a server receives only half

of the packet that a client sends. It can ask the client to repeat his transmission. Thus, the

client should know the format of the special message that reports about the error that

happened. The protocol specification covers all similar questions.

Let us return to our network. It is evident that we have a lot of data duplication

because all hosts know each other. It will be much simpler if they know hosts of the

same network only. If somebody wants to communicate with nodes of another network,

it should ask a host that is between two networks to route a packet. This special host is

named router or gateway. You can find it in Figure 4-3.

Figure 4-3. Two local networks are connected via a gateway

Chapter 4 Out-game BOts

216

We reached the point where we need something more flexible than MAC addresses.

If we want to route traffic between networks, it will be convenient to have a mechanism

to assign specific addresses to the hosts. This mechanism should allow assigning ranges

of the addresses for all hosts that belong to one network. Thus, when a gateway receives

a packet, it can quickly calculate the destination address range and route a packet to the

corresponding local network. These addresses, which we can assign to hosts, are known

as IP addresses.

Now our game application and server communicate well even they are members

of a big network. But what happens if we want to launch a chat application on the

same computer where the game client works? Both chat and game applications should

send and receive network packets. If the OS receives a network packet, its IP and MAC

addresses match to the current host. However, we do not have information to route

the packet to the correct application inside the computer. We should add some kind of

unique identifiers to solve this issue. These identifiers are named ports.

The network packet should contain ports of both sender and receiver applications.

Then, the OS transfers this packet correctly. The sender port is required because the

receiver should be able to respond on the received packet.

You will notice that the implementation of our game application becomes very

complicated. It should prepare a network packet that contains states of game objects,

MAC addresses, IP addresses, and ports. Also, it will be good to append a checksum,

which helps the server to verify the correctness of the received data. Do not forget about

the server side. It should have the same algorithms to encode and decode both kinds of

addresses, ports, game data, and checksum.

These algorithms look universal. Any application (for example, chat clients or web

browsers) can use them to transfer its own data. Each network host should have these

algorithms somewhere. The best solution is moving these algorithms to OS libraries.

Now we come to the term “protocol stack.” This is an implementation of a set of network

protocols. The word “stack” appears because one protocol depends on another.

Therefore, we have a hierarchical structure of them.

Some protocols have a lower layer than others. This means that they provide basic

features that high-layer protocols use. For example, we have the IEEE 802.3 protocol,

which defines how to transmit data via a twisted pair, and the IEEE 802.11 protocol for

wireless connections (WiFi). Protocols of higher layers should have a possibility to use

both connection types in the same way. So, there are several possible implementations

available in each protocol layer. We can choose an appropriate implementation

Chapter 4 Out-game BOts

217

depending on our environment and requirements. When we have such a wide variety of

implementations, it is quite important to define the responsibility of each protocol layer

strictly. The Open Systems Interconnection (OSI) model is the standard that defines

this responsibility.

We have considered the most important solutions that were made in the

development of modern network communications. Now we have enough knowledge to

investigate a real protocol stack, which is used everywhere on the Internet nowadays.

 TCP/IP Stack
You can be surprised now. Why are we going to consider some TCP/IP stack? The

Internet should use the “OSI stack.” Two international committees (ISO and CCITT) have

developed the OSI model over several years, and they made a well-designed standard

that covers all possible network user requirements.

Some network developers and companies have tried to apply the OSI model in

practice and implemented protocols for each its layers. However, all these projects

failed. The main reason for this result is a significant redundancy of the OSI model.

The functionalities of several layers overlap. Thus, network packets should contain

duplicated data. Moreover, different layers of the protocol stack should share the same

algorithms and execute them at runtime. Software developers should spend more effort

and time to implement solutions according to the OSI model. Therefore, these solutions

become more expensive.

Meanwhile, two researchers, Robert Kahn and Vinton Cerf, had developed

the TCP/IP stack. They had finished their work before the OSI model was done.

Robert and Vinton focused on solving the practical task of transferring data in the

ARPANET. Probably, this is a reason why their solution is more effective and easier for

implementation. Afterward, the IEEE committee published it as an open standard in

1974, while the OSI model was released only in 1984.

Then, big companies and small groups of developers started to implement their

own versions of the TCP/IP stack for the OSs that were used at that time. This stack is

relatively simple, and even one developer can implement it in a reasonable time. The

solution became a de facto standard for the Internet in the short term because almost

every host that was connected to the network had some version of it.

Chapter 4 Out-game BOts

218

What is a difference between the OSI model and the TCP/IP stack? The TCP/IP stack

follows the OSI model principle of splitting protocol responsibilities by layers, but it

reduces the number of them. If the OSI model defines seven layers, the TCP/IP stack has

only four. Table 4-1 shows how these layers correlate.

It is important to note that the tCp/Ip stack does not consider network
technologies at the hardware level. the OsI model covers them at its physical layer.
this difference appears because the tCp/Ip stack was designed as a
hardware-independent solution. You can get comprehensive information about tCp/
Ip stack in the “the tCp/Ip guide” (www.tcpipguide.com/free/index.htm).

Table 4-1. The Layers of the TCP/IP Stack and OSI Model

TCP/IP Stack OSI Model

application application

presentation

session

transport transport

Internet Network

Link Data link

physical

We will consider all layers of the TCP/IP stack in a real packet. Let us investigate

it with the Wireshark analyzer. You should download and install the analyzer. Then

download a sample of captured traffic from the Wiki page (wiki.wireshark.org/Sample

Captures?action=AttachFile&do=get&target=http.cap). You can get the http.cap file with

example traffic. Now, launch Wireshark and open the file. You can do this by pressing

Ctrl+O. When you do this, the analyzer window should look like Figure 4-4 shows.

Chapter 4 Out-game BOts

http://www.tcpipguide.com/free/index.htm
http://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=http.cap
http://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=http.cap

219

The window has three parts. The upper one contains a list of captured packets.

You can navigate through it and choose the packet that you want to analyze. When you do

this, in the middle part of the window Wireshark shows you headers of all the protocols

that this packet contains. Now if you choose one of these headers, in the bottom part

of the window the analyzer highlights the corresponding bytes of the packet. You can

get more details about the Wireshark interface in the official documentation

(www.wireshark.org/docs/wsug_html_chunked/ChUseMainWindowSection.html).

We will consider packet number 4 in the captured list. It is a typical web browser

request to load some page from the Internet. According to Table 4-1, protocols of the

link layer is a bottom level of the TCP/IP stack. These protocols respond for packet

transmission in the local networks. As you remember, if two hosts communicate in the

local network, they should know each other’s MAC addresses. It will be enough for a

switch device to route a packet to the right receiver.

Figure 4-4. IP packets in the Wireshark window

Chapter 4 Out-game BOts

http://www.wireshark.org/docs/wsug_html_chunked/ChUseMainWindowSection.html

220

The packet sender uses the Ethernet II link layer protocol. You can find the

corresponding header in the Wireshark window. If you expand this header (click

the triangle near it), you see that it contains destination and source MAC addresses.

Also, there is a type field of two bytes. It defines a protocol of the next layer, which is

transferred as the payload of the Ethernet frame. The type equals Internet Protocol
Version 4 or IPv4 (0x0800) in our case.

The IPv4 protocol matches the Internet layer. It responds for routing packets

between networks. We have considered that the most important information for this

layer is the source and destination IP addresses. They allow the gateway to route

packets to the right network. If you expand the “Internet Protocol Version 4” header

in the Wireshark window, you find these addresses. Also, there are several fields that

assist the task of routing packets. For example, there is a “Time to live” value. It defines

the maximum time in which a packet can be transferred in the network. If this time is

exceeded, the gateway drops this packet. The “Identification” and “Fragment offset”

fields store information for the fragmentation mechanism. It allows splitting large

packets into pieces (also known as fragments) and transferring them through the

network. This mechanism is required because most of the networks have a limit for the

maximum allowed packet size. The “Protocol” field defines a protocol of the next layer.

For our case, it is Transmission Control Protocol (TCP).

The transport layer establishes a connection between processes that work on

communicating hosts. The most important information for this connection is the

port numbers, which identify the sender and receiver processes. You can expand

the “Transmission Control Protocol” header in the Wireshark window and see the

values of “Source Port” (equals 3372) and “Destination Port” (equals 80). Also, there

are “Sequence number” and “Acknowledgment number” fields. These fields contain

counters that are used to establish and terminate a connection between the processes.

Also, the receiver uses these counters to detect if some packet was lost.

Nowadays, we have two protocols of the transport layer that are most widely used

on the Internet. These are TCP and the User Datagram Protocol (UDP). The primary

difference between them is the reliability of data transfer. The TCP protocol has a

mechanism to check if all sent packets reach the receiver. If the receiver loses some

packets, it asks the sender to retransmit them. The UDP protocol does not have this

mechanism. The receiver does not check the sequence of the incoming packets, so it

ignores the lost ones.

Chapter 4 Out-game BOts

221

Why do we want to use such an unreliable protocol as UDP? The TCP protocol has one

significant drawback. The mechanism of detecting lost packets leads to a considerable

overhead. Let us assume that we transfer a video stream. If we lose one video frame, it

does not matter. We can continue showing the video from the frame that comes after the

lost one. However, if we use the TCP protocol for this transfer, our application asks the

sender to resend the lost video frame. So, the sender does it instead of sending the next

frame. In this case, we will see how our video hangs for a very short moment because the

player application does not have the next video frame. If we use the UDP protocol, we

avoid hanging. It is very probable that a user does not even notice the lost frame.

The topmost layer of the TCP/IP stack is the application layer. The stack does not

restrict its data format. So, communicating applications can choose their order to store

data in the packet.

Our example packet has Hypertext Transfer Protocol (HTTP) on the application

layer. You can see in the Wireshark window that this protocol keeps data in the plaintext

format. You can read it without any decryption and assume its meaning. In our case,

the host asks the web server with the “www.ethereal.com” Uniform Resource Locator

(URL) or web address to send back the “download.html” page. The URL is some kind of

alias for the IP address. It was invented to simplify usage of the World Wide Web (WWW)

because now users can remember website names instead of thier IP addresses.

 Packet Analysis
Now, we have a basic understanding of Internet protocols. Let us consider a way

to capture the traffic between two applications and analyze it. It is the first step of

developing any out-game bot.

 Test Application
We start considering approaches to traffic analysis by writing a simple client-server

application that transfers raw bytes. The application consists of two parts: a receiver and

a sender. They both work on the same host. Thanks to the loopback interface, they can

communicate with each other. Wireshark allows us to capture their traffic.

Chapter 4 Out-game BOts

http://www.ethereal.com

222

Before we implement the application, we should consider one important resource of

OS, which is named network socket or socket. As you remember, TCP and UDP headers

have source and destination ports. They allow distinguishing sender and receiver

applications of the communicating hosts.

Let us assume that we launch a game and chat client on our host. What happens

if both applications want to use the same port for communication with their servers?

Potentially, each application can choose any port. You can suggest reserving port numbers

for specific applications for resolving such port conflicts. This solution was already

applied. The port numbers from 0 to 1023 are officially reserved for particular cases

(for example, port 80 is reserved for HTTP traffic), and you should not use them in your

applications. However, we have the port range from 1024 to 65535, which is not reserved.

It is evident that somebody should manage the port assignment among applications.

OS responds to this task. When an application wants to use some port, it asks OS to

provide a socket. The socket is an abstraction for communication endpoint. This

abstraction contains the IP address, port number, and connection state. Usually,

applications do not share sockets, so an application owns the socket and releases it when

it is not required anymore.

There are several types of sockets that depend on the protocol features. We will

consider these types further when we will apply sockets in our test applications.

Our first test application transfers a single data packet via the TCP protocol. It

consists of two Python scripts: TestTcpReceiver.py (see Listing 4-1) and TestTcpSender.py

(see Listing 4-2). They work according to the following algorithm:

 1. The TestTcpReceiver.py script starts first. It opens the TCP socket,

which is bound to the 24000 port and localhost address (127.0.0.1

by default). Sockets of such configuration are known as server
TCP sockets.

 2. The TestTcpReceiver.py script expects the packet, which should

come to its socket. We would say that it listens to port number

24000 for connections.

 3. The TestTcpSender.py starts second. It opens the TCP socket but

does not bind it to a specific IP address and port. This kind of

socket is known as client TCP socket.

Chapter 4 Out-game BOts

223

 4. The TestTcpSender.py connects to the receiver socket, which has

the 127.0.0.1 address and the 24000 port number. Then it sends

the data packet. In this case, OS decides which IP address and port

should be assigned to the sender. It means that TestTcpSender.py

cannot choose it. After sending the packet, the script releases the

socket.

 5. TestTcpReceiver.py detects a new connection from the sender. It

accepts the connection, receives the packet, prints its data, and

releases the socket.

We have considered the algorithm of application work. It looks very straightforward,

but OS hides several steps of establishing and terminating a TCP connection. We will see

these steps in the captured traffic.

Listing 4-1. The TestTcpReceiver.py Script

import socket

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)

 s.bind(("127.0.0.1", 24000))

 s.listen(1)

 conn, addr = s.accept()

 data = conn.recv(1024, socket.MSG_WAITALL)

 print(data)

 s.close()

if __name__ == '__main__':

 main()

The TestTcpReceiver.py script uses the socket module, which provides access to the

corresponding OS resources. Let us consider the main function step by step.

Chapter 4 Out-game BOts

224

The first action is a call of the socket function, which is provided by the socket

module. It creates a new socket object. The function has three parameters:

• The address family, which can be equal to AF_INET (IPv4), AF_INET6

(IPv6), or AF_UNIX (local communication).

• The socket type: SOCK_STREAM (TCP), SOCK_DGRAM (UDP), or

SOCK_RAW (no protocol specified).

• The protocol number. This is used when several protocols match the

combination of the address family and socket type parameters. This

parameter equals 0 in most cases.

We create the socket, which uses the IPv4 and TCP protocols.

The next step of our script is to bind a socket to the specific address and port.

When this is done, we call the listen method to start listening to the socket for a new

connection. The function has only one parameter, which defines the maximum number

of the allowed connections. The TestTcpReceiver.py script stops execution at this point

because the listen call does not return control until somebody connects to the socket.

When the TestTcpSender.py script tries to reach us, we accept this connection with the

accept call. This call returns two values: a connection object (which is conn in our case)

and the sender address (addr). The address value is a pair of the IP address and port.

We use a recv method of the conn object to read data of the received packet from the

socket. Then we print them to the console with the print function.

The last step is releasing the socket via the close call. This call returns the resource to

the OS. Now, another application can listen to the 24000 port.

Listing 4-2 demonstrates the implementation of the TestTcpSender.py script.

Listing 4-2. The TestTcpSender.py Script

import socket

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)

 s.settimeout(2)

 s.connect(("127.0.0.1", 24000))

Chapter 4 Out-game BOts

225

 s.send(bytes([44, 55, 66]))

 s.close()

if __name__ == '__main__':

 main()

Here we create a similar socket object, which uses IPv4 and TCP protocols. Then

we set the timeout for establishing a TCP connection via the settimeout method. If the

receiver does not accept a connection during the timeout, the sender cancels it.

The next step is establishing a connection via the connect method call. It has one

parameter, which is a pair of IP address and port. In Python, we use round brackets

to make a pair of values. The connect method returns control when the connection is

established successfully. At this moment, we are ready to transfer the packet. We do this

with the send method. In our case, we send three bytes. Then, we release the socket with

the close method.

Before starting the application, you should clarify an IP address of your loopback

interface. These are the steps to do it:

 1. Open the “Network Connections” window.

 2. Right-click the “Microsoft Loopback Adapter” icon. Choose the

“Status” option.

 3. Press the “Details...” button. You will see the “Network Connection

Details” window, which shows the IPv4 address.

Change the addresses in both scripts. In the TestTcpReceiver.py script, you should fix

the bind method call. In the TestTcpSender.py script, the connect call should be changed.

I recommend that you launch our scripts from the Command Prompt application. It

allows you to see the console output. If you start the receiver script first and the sender

after, the receiver prints the transferred three bytes.

Chapter 4 Out-game BOts

226

 Packet Capture
Now we apply the Wireshark analyzer to capture the traffic of our test application. These

are the steps to do it:

 1. Launch the Wireshark. You will see a list of active network

interfaces in its window as Figure 4-5 shows.

Figure 4-5. A list of active network adapters in the Wireshark window

 2. Double-click a name of the loopback interface in the list. You

can clarify this name in the “Network Connections” window (it

is available from the “Network and Sharing Center”). After this

action, Wireshark starts to capture all traffic that is passed via the

selected interface.

 3. Launch the TestTcpReceiver.py script.

 4. Launch the TestTcpSender.py script.

 5. You will see the captured packets in the Wireshark window as

Figure 4-6 shows.

Chapter 4 Out-game BOts

227

OS or some other applications can use the interface that you are monitoring. In this

case, you will see their packets in the list. The Wireshark provides a feature for filtering

them.

There is the line below the top panel with icons. It has the “Apply a display filter ...”

text when it is empty. Here you can type the filter rules. When you do it, you should press

the arrow icon near the “Expression...” button to apply the filter. Then in the list, you will

see only packets that fit the inserted rules.

We apply the following filter to get only packets of our test application:

tcp and ip.addr==127.0.0.1 and tcp.port==24000

This filter contains three conditions. The first condition, which equals “tcp”, excludes

all non-TCP packets from the list. The next one, the “ip.addr==127.0.0.1” condition,

selects the packets that have the specified IP address as the source or destination. The

last, the “tcp.port==24000” condition, specifies the source or destination TCP port.

There are two options to specify the filter rules. The first option is to type a text

(for example, the one we considered previously). Another option is using the “Display

Filter Expression” dialog (Figure 4-7 shows it). You can open this dialog by pressing the

“Expression...” button.

Figure 4-6. Captured packets of the test application

Chapter 4 Out-game BOts

228

The dialog has a list (with a “Field Name” caption) of all supported protocols and

fields of their headers. The “Relation” list has comparison operators, which you can

apply to the selected field. Below this list, there is a “Value” line, where you can type a

value to compare. At the bottom of the dialog, you can see the green line with a text of

the resulting filter. If you make a mistake in the filter rule, this line becomes red.

The filter mechanism is a powerful tool to simplify packet analysis. You should apply

it any time when you use Wireshark. It will speed up your work significantly.

Let us come back to the captured packets of our test application (Figure 4-6). You

might ask why we have eight packets here despite the fact that we send only one packet.

Figure 4-7. The Display Filter Expression dialog

Chapter 4 Out-game BOts

229

The data transfer happens in the packet number 13 on the screenshot. Packets 10, 11,

and 12, which come before, respond by establishing the TCP connection. This process is

known as the three-way handshake. Here are its steps:

 1. The client (TestTcpSender.py script) sends the first packet (number 10)

to the server. This packet has the SYN flag set in its TCP header.

This means that the client wants to establish a TCP connection and

sends own sequence number (seq), which equals 0, to the server.

You can apply the following Wireshark filter to find SYN packets:

tcp.flags.syn==1 and tcp.seq==0 and tcp.ack==0

 2. The server (TestTcpReceiver.py script) answers with packet

number 11, which has the SYN and ACK flags set. It has the

acknowledgment number (ack), which equals the received client’s

seq plus one. This ack confirms client’s seq. Also, the packet

contains the seq number of the server (equals 0).

The filter to find this server response in the log is

tcp.flags.syn==1 and tcp.flags.ack==1 and tcp.seq==0

and tcp.ack==1

 3. The client answers with packet number 12, which has the ACK

flag. The ack number of the packet (equals 1) confirms the server’s

seq. After this step, both client and server confirmed their seq

numbers and can communicate with each other.

The filter for the client answer looks like this:

tcp.flags.syn==0 and tcp.flags.ack==1 and tcp.flags.push==0

and tcp.seq==1 and tcp.ack==1

You can consider client and server states during the connection

establishment in the article www.tcpipguide.com/free/t_

TCPConnectionEstablishmentProcessTheThreeWayHandsh- 3.htm.

You can notice that we check the PUSH flag in our last filter. This flag signals that the

corresponding packet contains an actual user data. You can apply the following filter to

see only this kind of packet:

tcp.flags.push==1

Chapter 4 Out-game BOts

http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentProcessTheThreeWayHandsh-3.htm
http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentProcessTheThreeWayHandsh-3.htm

230

To see data that our application transfers, you should choose the packet with the

PUSH flag set (number 13). Then click the “Data” item in the header list. After this

action, the corresponding bytes of the packet become highlighted in the bottom part of

the Wireshark window as Figure 4-8 shows.

Figure 4-8. The captured data packet

We can see that the client transfers three bytes in hexadecimal: 2C, 37, and 42.

They match to the decimal numbers 44, 55, and 66, respectively. You can clarify in the

TestTcpSender.py script that it sends exactly these three numbers.

You can notice in Figure 4-6 that the following packet (number 14) has the ack

number equal to four. What does it mean? When the connection is established, the seq

and ack numbers are used to confirm a byte number, which the server receives from

the client. Thus, when the server gets data, it answers with the packet, which has the

following ack:

ack = client seq + data length

Chapter 4 Out-game BOts

231

In our case, this formula looks as follows:

ack = 1 + 3 = 4

You can always check the client’s seq number for this formula in packets with the

PUSH flag (number 13 in our case).

Figure 4-9 demonstrates a series of the transferred PUSH packets from the client.

You can see increasing seq and ack numbers during this communication. Each server

confirmation has an ack, which is calculated according to our formula.

Figure 4-9. The series of TCP packets

You can notice that packets that our client sends have destination port number

24000. Their source port equals 35936 in Figure 4-9, and it equals 32978 in Figure 4-6. As

you remember, an OS reassigns the port for the TCP client each time it establishes a new

connection. The port number is chosen randomly, and we cannot predict its value. Thus,

if you analyze TCP packets in a Wireshark log, it is better to filter them by the destination

port instead of the source one.

Chapter 4 Out-game BOts

232

Let us come back to Figure 4-6, where we transferred one packet with data. After the

server’s confirmation (packet number 14), we have three packets (numbers 15, 16, 17) to

terminate the TCP connection. This termination has the following steps:

 1. The client sends packet number 15, which has the FIN flag set.

This means that the host wants to close the connection. In our

case, this packet has the ACK flag too. It is the acknowledgment

for the previously received server’s packet (number 14), which has

the seq equal to 1.

The filter to find this packet in the log is

tcp.flags.fin==1 and tcp.dstport==24000

 2. The server responds with packet number 16, which has the ACK

and FIN flags set. The ACK flag means that the server confirms the

client’s FIN request to close the connection. The ack number of

the packet equals the client’s seq plus one (it is five in our case).

The FIN flag means that the server asks the client to close the

connection on his side.

You can find this packet in the log with the following filter:

tcp.flags.fin==1 and tcp.dstport==32978

 3. The client responds with packet number 17 with the ACK flag set.

This means that the client confirms the closing communication.

This packet has a seq number that equals the last received

server’s ack.

The filter for this case looks as follows:

tcp.flags.ack==1 and tcp.seq==5 and tcp.dstport==24000

You may notice that we should consider the seq number in our filter to find the last

client’s ACK packet.

More information about TCP connection termination is available in the article

www.tcpipguide.com/free/t_TCPConnectionTermination-2.htm.

Chapter 4 Out-game BOts

http://www.tcpipguide.com/free/t_TCPConnectionTermination-2.htm

233

 UDP Connection
We have considered the test application that transfers data via the TCP protocol. We

know how to capture this traffic and analyze it. However, some games can use the UDP

protocol for communication.

Let us apply the UDP protocol instead of TCP in our second test application and

consider this case. Now, the app has the following algorithm:

 1. The TestUdpReceiver.py script (see Listing 4-3) starts first. It opens

the UDP socket, which is bound to the 24000 port and localhost

address. Despite the TCP socket, it can behave as a server and

client (i.e., both sides can initiate a connection).

 2. The TestUdpReceiver.py script expects the packet from the sender.

 3. The TestUdpSender.py (see Listing 4-4) starts second. It opens the

UDP socket and binds it to the 24001 port and localhost address.

This step is not mandatory. OS can assign a random port to the

UDP packet sender. However, it can be useful if we decide to

transfer data in both directions with the same pair of sockets.

 4. The TestUdpSender.py sends the data packet. Then it releases the

socket.

 5. The TestUdpReceiver.py receives the packet, prints its contents,

and releases the socket.

You can see that the algorithm of the modified test application becomes simpler than

it was for the TCP protocol case. We should not establish and terminate the connection.

All that we do is just send one packet with data.

Listing 4-3. The TestUdpReceiver.py Script

import socket

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24000))

 data, addr = s.recvfrom(1024, socket.MSG_WAITALL)

Chapter 4 Out-game BOts

234

 print(data)

 s.close()

if __name__ == '__main__':

 main()

The TestUdpReceiver.py script has the same steps as the TestTcpReceiver.py one

except for listening to the socket and accepting an incoming connection. Now we specify

the SOCK_DGRAM socket type to apply the UDP protocol. We use the recvfrom method

of the socket object to receive the data. Despite the recv method, which we have used

for the TCP connection, it returns a pair of values: received data and sender IP address.

The address can be useful if we want to respond. You may notice that we do not call the

accept method now. This means that the recvfrom method is only one way to get the

sender address. If you do not plan to answer for the received packet, you can still use the

recv method.

Listing 4-4. The TestUdpSender.py Script

import socket

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24001))

 s.sendto(bytes([44, 55, 66]), ("127.0.0.1", 24000))

 s.close()

if __name__ == '__main__':

 main()

In the TestUdpSender.py script, we apply the UDP protocol too with the SOCK_

DGRAM socket type. Now we do not need any timeout, which is set by the settimeout

method. This happens because we do not expect any confirmation from the receiver that

the connection was established or that our packet passes well. Instead, we send data and

close the socket.

You can launch Wireshark, start capturing a traffic on the loopback interface, and

then launch the TestUdpReceiver.py and TestUdpSender.py scripts. Figure 4-10 shows

what you should get.

Chapter 4 Out-game BOts

235

You can apply the following filter to see the traffic of our test application only:

udp.port==24000

Now we have only one packet, which contains three bytes of data: 2C, 37, and 42.

Figure 4-10. The captured UDP packet

 Example with NetChess
We now have enough knowledge to write a simple out-game bot. It will make turns in

the NetChess application. This application is a small chess game client and server that

allows two people to play together via a local network. You can download it for free on

the Sourceforge website (sourceforge.net/projects/avmnetchess). When you download

the archive with the game, you should unpack it to any directory.

Let us consider the game interface in detail. Figure 4-11 shows the main window of

NetChess. You can see the chessboard and pieces there. There is a menu on the top side

of the window. A row of icons below the menu duplicates some of its items.

Chapter 4 Out-game BOts

http://sourceforge.net/projects/avmnetchess

236

To start playing, you should configure your application as a server. Then another

player connects to you as a client, and a game begins.

The NetChess server and client can work on the same host. You can launch and

connect them via the loopback interface. Please check that you configured and enabled

this interface correctly.

These are the steps to launch the NetChess game:

 1. Launch the NetChess2.1.exe binary from the Debug subdirectory

two times. You get two NetChess processes. Choose one of them

for yourself, which becomes a server. Then another is a client.

 2. Switch to the NetChess server window and choose the “Network”

➤ “Server” menu item. You will see the server configuration

dialog as Figure 4-12 shows.

Figure 4-11. The NetChess window

Chapter 4 Out-game BOts

237

 3. Type a user name, who plays on the server side, in the dialog and

press the “OK” button.

 4. Switch to the NetChess client window and choose the “Network”

➤ “Client” menu item. You will see the client configuration dialog

as Figure 4-13 shows.

Figure 4-13. The client configuration dialog

Figure 4-12. The server configuration dialog

 5. Type a name of the client-side user and the server’s IP address

(which is 169.254.144.77, for example) in the dialog. Then press

the “OK” button.

 6. Switch to the server window. When the client tries to connect, the

“Accept” dialog appears (see Figure 4-14). You should pick your

side (white or black) in this dialog. Also, there is a “Toss” option,

which picks your side randomly. When you are done, press the

“Accept” button.

Chapter 4 Out-game BOts

238

 7. Switch to the client window. You will see a confirmation of a

successful connection to the server. This message contains a name

and side of your opponent (see Figure 4-15).

Figure 4-15. The dialog with connection confirmation

Figure 4-14. The “Accept” dialog on the server side

 8. Switch to the server window and choose the “Edit” ➤ “Manual

Edit” ➤ “Start Editing” menu item. You will see the confirmation

dialog where you should press “Yes” button. It activates the mode

that allows starting a game clock.

 9. Switch to the client window and confirm activation of the “Manual

Edit” mode in the dialog. You should press the “Yes” button there.

 10. Switch to the server window. You will see the notification that the

client has confirmed the “Manual Edit” mode. Close it with an

“OK” button click. Then choose the “Edit” ➤ “Manual Edit” ➤

“Pause clock” menu item.

Now, the game clock starts, and the white side can take the first turn. To do this, you

should drag and drop a piece to a new square on the chessboard.

Chapter 4 Out-game BOts

239

 Bot Overview
Our out-game bot should connect to the game server. Thus, it replaces the game client

completely.

There are several options for how the bot can choose its turns. I suggest the most

straightforward solution because now we are considering communication with the

game server but not advanced chess algorithms. The bot will copy the player’s turns like

a mirror until it cannot do so. This task sounds easy, but it requires investigation of the

traffic between the server and client.

You can find the source files of the NetChess game on the Internet. If you read them,

you can quickly understand the application protocol. We will not follow this way. Let us

assume that NetChess is a proprietary game, and its source code is not available to us. All

that we have is captured traffic between the server and client.

 NetChess Traffic Analysis
We have considered how to start a game with the NetChess client and server. So, we

are ready to gather their traffic for analysis. Before we do it, let us consider a couple of

questions.

How can we distinguish the traffic of the NetChess application in our Wireshark log?

If we use a real network interface instead of the loopback one, we get packets that were

sent and received by all launched applications at the moment. For the NetChess case, we

can distinguish its traffic by the port number. When we start the server side, we should

specify the port number to bind. It is 55555 by default. Thus, we can apply the following

Wireshark filter to get game packets only:

tcp.port==55555

The next question is how we should gather the NetChess traffic. The most

straightforward way is to launch Wireshark, capture the loopback interface, and play

several games with NetChess client and server. In this case, we lose valuable information

that can help a lot with understanding the traffic. When we get packets of several games,

we cannot match these packets to the player’s actions. For example, which packet

contains information about the first turn of the white side? We get dozens of them in the

log and cannot find a moment when the game has started. Therefore, we should check

our Wireshark log after each action and monitor the transferred packets that match this

action.

Chapter 4 Out-game BOts

240

Now let us launch Wireshark, along with the NetChess server and client. The

analyzer should capture the loopback interface. Then, we do the following actions:

 1. Start the NetChess server (“Network” ➤ “Server”). After this

action, we do not get any packets in the Wireshark log. This

happens because the server opens a socket without sending

something.

 2. Connect a client to the server (“Network” ➤ “Client”). You will

get three-step handshake packets that establish a typical TCP

connection, as Figure 4-16 shows.

Figure 4-16. The NetChess server and client establish a connection

 3. The server accepts client’s connection. After this action, you will

get two packets from the server. The client sends responses with

acknowledgments (see Figure 4-17). Then it sends two packets

with data.

Chapter 4 Out-game BOts

241

Let us stop at this point and consider two packets from the server. The first one

(number 22 in Figure 4-17) has the following data:

0f 00 00 00

If you restart the NetChess application and establish the connection again, you get

the same data. Probably, it means that the server accepts the client’s connection. To

check our assumption, we should try to reject the connection on the server side. If you

do so, you see the following server response:

01 00 00 00

We can conclude that our assumption is correct. The first 0f byte matches the case

when the connection is accepted. Otherwise, this byte equals 01.

Figure 4-17. The NetChess server accepts the connection

Chapter 4 Out-game BOts

242

The second packet from the server (number 24) contains the following bytes:

0b 02 46 6d e7 5a 73 72 76 5f 75 73 65 72 00

These bytes match the case when the server user chooses the white side and the

“srv_user” name. Wireshark can decode this data partially. You can see in Figure 4-18

that the bytes from the 7th to the 15th match the username.

Figure 4-18. Wireshark decodes data of the second packet from the server

Table 4-2. Encoding a Color of the

Side That the Server Player Chose

Byte Side

01 Black

02 White

What do the first six bytes mean? You can repeat our trick and force the server to send

these data again several times. You should restart the NetChess application, establish the

connection, and pick the same username and the white side for the server player.

After restarting the application, I get the following data in this packet:

0b 02 99 b3 ee 5a 73 72 76 5f 75 73 65 72 00

You can see that the first two bytes (0b and 02) remain the same. This means that

they contain a color of a side that the server player chooses. Let us restart the application

and pick the black side on the server. The data of this packet changes:

0b 01 ba 45 e8 5a 73 72 76 5f 75 73 65 72 00

You can repeat this test but with picking the black side. Every time, you will get the

second byte equaling to 01. We can conclude that it stores a side of the server player as

Table 4-2 shows. Thanks to this information, our bot can determine the color for its side.

Chapter 4 Out-game BOts

243

The next two packets, which contain application data, come from the client. The first

of these packets (number 26) has the following payload:

09 00 00 00

If we try to change a server player name or side, these bytes remain the same. We can

assume that this is a constant response from the client.

The next packet (number 28) has the following bytes:

0c 63 6c 5f 75 73 65 72 00

Wireshark decodes these bytes as a name of the client player, as Figure 4-19 shows.

There is the first byte “0c” only, which does not have a clear meaning. We can check that

it always keeps the same value after restarting the application. Thus, our bot can treat it

as the constant.

Figure 4-19. Wireshark decodes data of the second packet from the client

Let us continue preparing the NetChess application for starting the game. The next

step is enabling the “Manual Edit” mode on the server (“Edit” ➤ “Manual Edit” ➤ “Start

Editing”). After this action, the server sends two packets to the client.

The first packet (number 41 in Figure 4-20) has the following data:

0a 00 00 00

It is probable that the 0a byte matches the code of the server’s request.

This is data of the next packet (number 43):

13 73 72 76 5f 75 73 65 72 00

We already know that the bytes from the 2nd to the 9th match the “srv_user” string.

The first byte (13) is a constant and our bot can ignore it.

Chapter 4 Out-game BOts

244

When the client accepts the “Manual Edit” mode, it sends two packets (number

45 and 47) with the following data:

01 00 00 00

17

Our bot should repeat them without any changes when it receives the corresponding

request from the server.

Figure 4-20. The server enables the Manual Edit mode

The last step to start a game is launching the clock. When the server does this action,

it sends two packets (number 54 and 56 in Figure 4-21) with the following data:

02 00 00 00

22 00

The client does not respond to these packets, so our bot can ignore them.

Chapter 4 Out-game BOts

245

All further packets (from number 58) contain the players’ turns. The white side

(the server in our case) moves first. After each turn, we capture two packets with

corresponding data.

The first “e2-e4” turn of the white side matches two packets with the following data:

07 00 00 00

00 00 06 04 04 04 00

If you continue doing turns, you see that the data of the first packet remains the

same. We can conclude that it is constant. So, if our bot receives data with the first byte

equal to 07, the next packet contains details of the opponent’s turn.

Figure 4-21. The server starts the game clock

Now comes the most crucial question: how can we decode the turn data? Let us

think about the chessboard. Each square is labeled by a letter (a to h) and number

(1 to 8). It is evident that each turn contains the current and the target squares of the

moving piece.

Chapter 4 Out-game BOts

246

The data of our packet with the turn information contains four nonzeroed bytes. You

can do several more turns and see that the zeroed bytes do not change. This means that

the current and target squares of a piece are encoded in these four bytes. Probably, two

bytes define one square.

Let us assume that the current position of a piece comes first. It means that the “e2”

square matches the 06 04 bytes. Then the “e4” square matches the 04 04 bytes. The letters

of these two squares are the same. Thus, we assume that the second 04 byte in these

pairs matches the “e” letter.

Now you should do the turn on a chessboard column with another letter to check

our assumption. If you do the “d2-d4” turn, you will get the following packet:

00 00 06 03 04 03 00

It means that the 03 byte matches the “d” letter. It is logical to assume that the letter

codes come successively. We can gather them in one table (see Table 4-3).

Table 4-3. The Codes of Squares’ Letters

Byte Letter

00 a

01 b

02 c

03 d

04 e

05 f

06 g

07 h

We start to fill the left column of Table 4-3 from the 04 and 03 values, which we

already know. Then, we continue to fill the cells above 03 with the values 02, 01, 00. In

the same way, we fill the values below 04.

We can do a similar table for the square numbers. We already know that the code

06 matches number 2 and the number 4 is 04. You can put these values in the table and

continue filling the rest of the cells. You will get the same values as in Table 4-4.

Chapter 4 Out-game BOts

247

You can test our assumptions by moving pieces around the chessboard. These

assumptions should be correct.

Now, we know everything about the game protocol that is required to implement

our bot.

Table 4-4. The Codes of Squares’ Numbers

Byte Number

07 1

06 2

05 3

04 4

03 5

02 6

01 7

00 8

 Bot Implementation
The first task that our bot should solve is starting the game as a client. We know all

packets that the server sends to the client and vice versa. Let us implement the script that

answers to the server’s packets correctly and starts the game. Listing 4-5 demonstrates

this script.

Listing 4-5. The StartGameBot.py Script

import socket

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)

 s.settimeout(60)

 s.connect(("127.0.0.1", 55555))

 # recv - server confirmation

 s.recv(1024, socket.MSG_WAITALL)

 s.recv(1024, socket.MSG_WAITALL)

Chapter 4 Out-game BOts

248

 # send - client username

 s.send(bytes([0x09, 0, 0, 0]))

 s.send(bytes([0x0C, 0x63, 0x6C, 0x5F, 0x75, 0x73, 0x65, 0x72, 0x00]))

 # recv - manual edit mode

 s.recv(1024, socket.MSG_WAITALL)

 s.recv(1024, socket.MSG_WAITALL)

 # send - client confirmation for manual edit mode

 s.send(bytes([0x01, 0, 0, 0]))

 s.send(bytes([0x17]))

 # recv - launch the game clock

 s.recv(1024, socket.MSG_WAITALL)

 s.recv(1024, socket.MSG_WAITALL)

 s.close()

if __name__ == '__main__':

 main()

the StartGameBot.py script has lines that contain comments instead of code.
they start with the number sign (#).

The first three lines of the main function in Listing 4-5 establish a TCP connection.

You can see that we set a timeout for 60 seconds. This is a time during which the recv

calls wait for the server packet. In other words, it is a time for a human player to make his

turn.

Then we do two recv calls, which receive the server confirmation about a successful

connection establishing. We are not interested in a username and the side of the server

player. Thus, we do not assign the received data to any variables.

You might ask why the human player side is not important for our bot. To answer this

question, let us ask another one. Can our bot play on either side? No, it cannot. We are

implementing the “mirror” bot, which repeats player’s turns. Thus, it can make its turn

only after a human player. Therefore, our bot can play the black side only.

After receiving the server confirmation, the bot sends its name. It is “cl_user”, which

equals the “63 6C 5F 75 73 65 72” byte array. Before the name, there is a constant 0C byte.

Chapter 4 Out-game BOts

249

The next step is receiving the server’s request to enable the “Manual Edit” mode.

When the packet comes, the bot sends the confirmation back.

The last step is activating the game clocks by the server. The corresponding packets

do not require an answer.

You may ask whether it is possible to skip uninteresting packets from the server and

not call the recv method for them. In theory, our bot needs packets with information

about player’s turns only. So, it can ignore all other stuff. However, the bot should know

the moments when it should take its own turns. Let us assume that we stop the bot until

one of these moments.

Now the question becomes, what is the moment when the bot should wake up and

do his turn? This time depends on the human player: how quickly does he configure

the server side? One time it can take 15 seconds and another time up to one minute.

It means that we cannot predict when our bot should wake up. Therefore, the primary

purpose of receiving all of the server’s packets is to get the right timings when a game

starts. The critical point here is to receive the first player’s turn. If the bot loses it, it

cannot react appropriately.

We have done the part of our bot that starts the game. The next step is implementing

an algorithm to repeat the player’s turns in a mirrored manner. How can we calculate the

right piece to move and its new position? Let us consider several examples of “mirrored”

turns (see Table 4-5).

Table 4-5. The Mirrored Turns

Turn Bytes Mirrored Turn Bytes

e2 - e4 00 00 06 04 04 04 00 e7 - e5 00 00 01 04 03 04 00

d2 - d4 00 00 06 03 04 03 00 d7 - d5 00 00 01 03 03 03 00

b1 - c3 00 00 07 01 05 02 00 b8 - c6 00 00 00 01 02 02 00

The first turn in this table is the “e2-e4” move of the white pawn. The mirrored turn

of the black pawn is “e7-e5”. Different white and black pawns make the following pair of

turns. The third turn is a white knight move, “b1-c3”. When you reach the mirrored turn

of the black knight, you should already notice several repeating patterns.

The first pattern relates to letters of the squares. The squares of the mirrored turns

have the same letters as the original turns. This rule works for start and end positions of

any piece.

Chapter 4 Out-game BOts

250

The second pattern defines the square numbers. Just have a look at the following

pairs of numbers:

• 6 and 1

• 4 and 3

• 7 and 0

• 5 and 2

How can you get a number from the right side if you know the left one? You should

subtract it from the 7; then, you get the number from the right side.

Now, we can implement the algorithm that calculates the mirrored turns. Listing 4-6

demonstrates it.

Listing 4-6. The Algorithm to Do Mirrored Turns

process turns

while(1):

 # recv - server turn

 s.recv(1024, socket.MSG_WAITALL)

 data = s.recv(1024, socket.MSG_WAITALL)

 print(data)

 start_num = 7 - data[2]

 end_num = 7 - data[4]

 # send - client turn

 s.send(bytes([0x07, 0, 0, 0]))

 s.send(bytes([0, 0, start_num, data[3], end_num, data[5], 0x00]))

Here we have the infinite while loop. In this loop, we receive a packet with the turn

of the server player and store it in the data variable. Then we print it to the console with

the print function. We calculate the number of the start square for our piece and store it

in the start_num variable. The third byte (it has the index 2) of the received data matches

the start position of player’s piece. Similarly, we calculate a number for the destination

square and store it in the end_num variable. Then we put the calculated numbers and

the original letters (bytes with indexes 3 and 5 of the received data) into the packet and

send it back to the server.

Chapter 4 Out-game BOts

251

You can find the final implementation of the bot in the MirrorBot.py script, which

is provided with this book. It contains steps to start a game with the server and the

considered algorithm for making mirrored turns.

These are the steps to test the bot:

 1. Launch the NetChess application.

 2. Configure it in the server mode.

 3. Launch the MirrorBot.py script.

 4. Enable the “Manual Edit” mode on the server.

 5. Launch the game clock.

 6. Make your turn.

The bot will repeat your turns until it cannot. When you do a turn that the bot cannot

repeat, it does nothing.

 Assessing the Bot
We can estimate the effectiveness of our out-game bot if we consider its advantages and

disadvantages.

The bot has the following benefits:

• It receives full and precise information about the game state.

• It can do all actions that the original client can do without any

limitations.

The bot has the following disadvantages:

• It costs a lot of effort to analyze the game protocol.

• It is easy to protect a game against this bot by encrypting the traffic

between the server and client.

• Minor changes in the protocol lead to bot detection. Also, these

changes can break the bot because the server rejects packets of the

deprecated format.

Chapter 4 Out-game BOts

252

We can generalize these points to most out-game bots. The conclusion is that these

bots work reliably and can automate a game process well as long as the server does not

change its protocol. When this happens, your game account will be banned in most

cases. Also, you should spend significant effort and time in developing these bots.

 Protection Approaches
In the previous section, we have considered the NetChess game, which is a simple

application for two users who play in a local network. Modern online games have

thousands of players. All of them connect to the servers via the Internet. However, if you

want to make a bot for a game of this kind, you should investigate its protocol first as we

did it for NetChess.

NetChess does not have any protection against out-game bots. This is a reason

why we have been able to understand its protocol so quickly. If you try to investigate

the traffic of a modern online game, you face obstacles. It is probable that you cannot

find matching between player actions and bytes of captured packets. The same actions

change bytes with different offsets and without any apparent regularity. If you get this

situation, you should know that the game has protection. The most reliable and widely

used approach to protect traffic against analysis is encryption.

We have considered a couple of encryption approaches in Chapter 3. They relate to a

process memory protection. Now we will consider cryptographic algorithms and ways to

apply them to the network traffic.

 Cryptographic System
Before we start considering practical examples, let us answer the question of what a

cryptosystem is: it is a suite of algorithms to achieve confidentiality of information.

Generally, a cryptosystem has three algorithms for the following purposes:

 1. Key generating.

 2. Encryption.

 3. Decryption.

The cipher term is used to refer to encryption and decryption algorithms only. The

first algorithm in the list creates a secret key that fits the requirements of the cipher.

Chapter 4 Out-game BOts

253

How do ciphers work? Let us assume that we have some information (for example,

a message) that we want to protect from unauthorized reading. This information is

known as plaintext. We pass the plaintext to the encryption algorithm together with

the secret key. This key defines an output of the encryption algorithm. This output is

known as ciphertext. Now if somebody wants to get the plaintext back, he should pass

the ciphertext and key to the decryption algorithm. This means that our encrypted

information is available only for receivers who know the secret key.

We have considered only general ideas about a typical cryptosystem. Real ones can

have additional encryption and decryption steps and key management features.

 Test Application
We will demonstrate encryption algorithms with simple sender and receiver scripts that

communicate via UDP protocol. We have considered this application in the “Packet

Analysis” section. Now we change the packet data from three bytes to the “Hello world!”

string.

Listing 4-7 shows a modified sender script.

Listing 4-7. The TestStringUdpSender.py Script

import socket

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24001))

 data = bytes("Hello world!", "utf-8")

 s.sendto(data, ("127.0.0.1", 24000))

 s.close()

if __name__ == '__main__':

 main()

Now we send a data variable, which contains a byte array with letter codes in

the UTF-8 encoding. You can launch the TestUdpReceiver.py script from the “Packet

Analysis” section and the TestStringUdpSender.py. When the receiver gets the packet, it

prints the following line to the console:

b'Hello world!'

Chapter 4 Out-game BOts

254

The symbol “b” before the string means that this is a sequence of bytes. Each of them

has a value from 0 to 255.

Figure 4-22 shows the sent packet in the Wireshark.

Figure 4-22. The captured packet of the test application

You can see that Wireshark decodes the “Hello world!” string correctly and we can

read it. Now we will apply encryption algorithms to hide this string.

 XOR Cipher
The simplest cryptosystem is the XOR cipher. We have considered it in Chapter 3 for

hiding application variables from the memory scanners. We can apply it to encrypting

the data of network packets.

The PyCrypto library implements the XOR cipher, so we can use the existing

algorithm instead of implementing it on our own.

Chapter 4 Out-game BOts

255

the pyCryptodome library does not have the XOr cipher. If you have installed this
library instead of pyCrypto, you cannot launch the scripts of this subsection.

Listing 4-8 demonstrates the encryption and decryption of the string.

Listing 4-8. The XorTest.py Script

from Crypto.Cipher import XOR

def main():

 key = b"The secret key"

 # Encryption

 encryption_suite = XOR.new(key)

 cipher_text = encryption_suite.encrypt(b"Hello world!")

 print(cipher_text)

 # Decryption

 decryption_suite = XOR.new(key)

 plain_text = decryption_suite.decrypt(cipher_text)

 print(plain_text)

if __name__ == '__main__':

 main()

The first line of the XorTest.py script imports the XOR module, which implements

the cipher. To use it, we should prepare the secret key. It is “The secret key” string in our

case. Then we create an object of the XORCipher class with the new function (which

takes an encryption key as the input parameter). We store this object in the encryption_

suite variable. It has the encrypt method, which applies the cipher to the passed byte

array. We save the ciphertext in the cipher_text variable and print it to the console.

The console output should look like this:

b'\x1c\r\tL\x1cE\x14\x1d\x17\x18DJ'

The next part of the main function decrypts the ciphertext back. We create a

dencryption_suite object in the same way as the encryption_suite one. This object

decrypts the cipher_text string back. When this is done, we print the result to the console.

It should match the “Hello world!” plaintext.

Chapter 4 Out-game BOts

256

If you look at the XorTest.py script, you may ask whether it is possible to reuse the

same cipher object for encryption and decryption. The answer is no. Classes of PyCrypto

library have an internal state that depends on the last performed operation. It means that

each action affects the following ones. If you encrypt two strings one after another with

the same object, you should decrypt them in the same order. Otherwise, you get a wrong

result. The most reliable way to use these objects is applying them to a single encryption

or decryption only.

Now let us apply the XOR cipher to our UDP sender and receiver. Listing 4-9

demonstrates the modified sender script.

Listing 4-9. The XorUdpSender.py Script

import socket

from Crypto.Cipher import XOR

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24001))

 key = b"The secret key"

 encryption_suite = XOR.new(key)

 cipher_text = encryption_suite.encrypt(b"Hello world!")

 s.sendto(cipher_text, ("127.0.0.1", 24000))

 s.close()

if __name__ == '__main__':

 main()

In the XorUdpSender.py script, we encrypt the “Hello world!” string and send it via the

UDP protocol. The XorUdpReceiver.py script in Listing 4-10 receives and decrypts the string.

Listing 4-10. The XorUdpReceiver.py Script

import socket

from Crypto.Cipher import XOR

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24000))

 data, addr = s.recvfrom(1024, socket.MSG_WAITALL)

Chapter 4 Out-game BOts

257

 key = b"The secret key"

 decryption_suite = XOR.new(key)

 plain_text = decryption_suite.decrypt(data)

 print(plain_text)

 s.close()

if __name__ == '__main__':

 main()

If you launch the receiver and sender scripts, the result of their execution looks the

same as it was before. XorUdpReceiver.py prints the received string to the console:

b'Hello world!'

However, if you capture the transferred packet with Wireshark, you notice the

difference. Figure 4-23 shows how this packet looks.

Figure 4-23. The captured packet, which is encrypted by the XOR cipher

Chapter 4 Out-game BOts

258

You can see that now Wireshark cannot decode the string. If somebody captures it,

he should manually do the XOR decryption. This operation requires the encryption key.

You can decide that the XOR cipher is a good option for your application. It is simple

to use, and it works quickly. Actually, this is a bad option because we can break this

cipher easily.

The cipher is based on the “exclusive or” logical operator. Let us assume that we

encrypt the plaintext A with the secret key K. Then we get the ciphertext B:

A ⊕ K = B

If we perform “exclusive or” with the A and B, we will get the K:

A ⊕ B = K

This means that we can restore the secret key if we know both plaintext and ciphertext.

The XorCrack.py script in Listing 4-11 recovers the secret key.

Listing 4-11. The XorCrack.py Script

from Crypto.Cipher import XOR

def main():

 key = b"The secret key"

 # Encryption

 encryption_suite = XOR.new(key)

 cipher_text = encryption_suite.encrypt(b"Hello world!")

 print(cipher_text)

 # Decryption

 decryption_suite = XOR.new(key)

 plain_text = decryption_suite.decrypt(cipher_text)

 print(plain_text)

 # Crack

 crack_suite = XOR.new(plain_text)

 key = crack_suite.encrypt(cipher_text)

 print(key)

if __name__ == '__main__':

 main()

Chapter 4 Out-game BOts

259

When you launch this script, you get the following console output:

b'\x1c\r\tL\x1cE\x14\x1d\x17\x18DJ'

b'Hello world!'

b'The secret k'

The first line is the ciphertext. Then comes the plaintext. The last line is the

recovered key.

Why do we get a part of the key but not the whole one? When we apply the

cipher, the “exclusive or” operator is applied to each letter of the plaintext and the

corresponding byte of the key. If the string is shorter, the unused bytes of the key are

skipped. Otherwise, the key’s bytes are applied cyclically.

There is another question. How does the considered feature of the “exclusive or”

operator help us to decrypt a real packet? We have a ciphertext only and do not know the

key. Getting the plaintext is our primary goal. To get the key, we should apply the same

encryption suite to the string that we already know. Then we will have both original and

encrypted strings and can get the key.

Let us assume that we register in an online game. It asks player details (name, e-mail,

password). All these data we know. When we fill the registration form and press the “OK”

button, we should capture all packets that the application is sending to the server at that

moment. Our data is present in these packets. Now, we should perform the “exclusive

or” operator to the player details, which we know, and the data from the captured

packets. It requires time to check all combinations, but finally, we will find the key.

We can conclude that the XOR cipher has some advantages, but it does not provide

reliable protection for real applications.

 Triple DES Cipher
The next cipher that we will consider is Triple DES (3DES). It applies the Data
Encryption Standard (DES) algorithm three times to encrypt the plaintext. IBM

developed DES in 1975. Today, DES cipher has become insecure because it uses short

secret keys of 56 bits in length. Modern computers allow enumerating all possible keys

of this length (256 total) in several days. The 3DES algorithm solves the issue of DES by

triple-extending the key up to 168 bits.

Chapter 4 Out-game BOts

260

You might ask why we need to apply DES three times. Why can’t we perform it

two times and get the 112-bit key, which should be enough for modern requirements?

We expect that a 112-bit key, which “double” DES encryption provides, requires

enumerating 2112 possible combinations by an attacker (a person who cracks the cipher).

This assumption is wrong because of the meet-in-the-middle attack. When we apply

this attack, we reduce the number of possible keys for enumerating to 257. This number

is still very low for providing reliable encryption. However, the 3DES algorithm forces

an attacker to enumerate 2112 possible combinations, even if he applies the meet-in-the-

middle approach.

The DES cipher was designed to be suitable for hardware implementation.

Nowadays, there are many devices that support DES at the hardware level. It is quite

easy to apply the 3DES cipher on these devices. Back-compatibility with legacy solutions

is the main reason that 3DES is still used. However, there are newer and more secure

ciphers that work faster than DES and 3DES.

The PyCrypto and PyCryptodome libraries provide both DES and 3DES ciphers.

Here we will consider 3DES only.

The 3DesTest.py script in Listing 4-12 applies 3DES to encrypt and decrypt the string:

Listing 4-12. The 3DesTest.py Script

from Crypto.Cipher import DES3

from Crypto import Random

def main():

 key = b"The secret key a"

 iv = Random.new().read(DES3.block_size)

 # Encryption

 encryption_suite = DES3.new(key, DES3.MODE_CBC, iv)

 cipher_text = encryption_suite.encrypt(b"Hello world!")

 print(cipher_text)

 # Decryption

 decryption_suite = DES3.new(key, DES3.MODE_CBC, iv)

 plain_text = decryption_suite.decrypt(cipher_text)

 print(plain_text)

if __name__ == '__main__':

 main()

Chapter 4 Out-game BOts

261

In this script, we import DES3 and Random modules of the PyCrypto library. The

first module provides the DES3Cipher class, which implements the cipher. The Random

module provides a generator of random bytes. We should use it instead of the standard

random module here. The random is unsafe for cryptography purposes.

Why do we need an array of random bytes to apply 3DES? 3DES is a block cipher.

It splits a plaintext into blocks and encrypts them one by one using the secret key.

However, if we apply this step only, the cipher stays unsafe. This happens because an

attacker can get matching between blocks of plaintext and ciphertext. Thus, he can

determine the content of encrypted blocks easily. We can prevent this vulnerability if

we mix each plaintext block with the previous encrypted one. This approach is known

as Cipher Block Chaining (CBC). Now comes the issue of the first block. Which data

should we apply to mix it? This data should be generated randomly, and they are known

as the Initialization Vector (IV).

In our script, we create a file-like object with the new function of the Random

module. Then we call the read method of this object. It returns an array of randomly

generated bytes that has the specified length. This length equals the block size (DES3.

block_size) in our case. We store this array in the iv variable. We can mix it with the first

block of the plaintext.

You will notice that we extend the secret key by two extra symbols to get the 16-byte

size. When you use the 3DES cipher, you should choose a key of 16 or 24 bytes in length.

When the IV and key are prepared, we create the encryption_suite object of the

DES3Cipher class by the new function of DES3 module. This function has three input

parameters:

• Encryption key.

• Mode of mixing blocks.

• IV (if the selected mode requires it).

In our case, we use the DES3.MODE_CBC mode. However, there are several

alternative modes that mix the blocks. You can choose any of them.

the mode and IV should be the same for both cipher objects: those that encrypt
and those that decrypt data.

Chapter 4 Out-game BOts

262

The DES3Cipher class provides the same encrypt and decrypt methods as the

XORCipher one.

If you launch the 3DesTest.py script, you see a similar console output:

b'\xdc\xce\xf1^_\x95[\x16K\x93\x9a\xb8\x01\xf3\x1b\xcb'

b'Hello world! '

You will notice that we have appended four extra spaces to the “Hello world!”

plaintext. This is required because a length of input data should be a multiple of eight

bytes when we apply the CBC mode.

Now, we will rewrite the UDP sender and receiver scripts to use the 3DES cipher.

Listing 4-13 demonstrates the implementation of the sender.

Listing 4-13. The 3DesUdpSender.py Script

import socket

from Crypto.Cipher import DES3

from Crypto import Random

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24001))

 key = b"The secret key a"

 iv = Random.new().read(DES3.block_size)

 encryption_suite = DES3.new(key, DES3.MODE_CBC, iv)

 cipher_text = iv + encryption_suite.encrypt(b"Hello world! ")

 s.sendto(cipher_text, ("127.0.0.1", 24000))

 s.close()

if __name__ == '__main__':

 main()

You can see that the 3DesUdpSender.py script encrypts the source string in the same

way as 3DesTest.py does. There is only one difference. Now we insert the IV together with

the ciphertext in the packet data.

Chapter 4 Out-game BOts

263

Why do we do this? As you will remember, both IV and key are required for

decryption. We can store the predefined key on both the sender side and the receiver

side, but we cannot do the same for IV. It should be unique and randomly generated for

each encryption operation. Reusing the same IV several times compromises the cipher,

and makes it easier for an attacker to crack it. So, the receiver should have a way to get

IV. The simplest way is to transfer it together with the ciphertext.

You may ask whether it is safe to transfer IV. The answer is yes. The primary goal of

IV is to add some extra randomness to the encrypted data. It allows us to get different

results each time when we encrypt the same plaintext. Often, IV is considered as a

mandatory part of the encrypted data. Thus, we can transfer it.

Listing 4-14 shows the implementation of the receiver.

Listing 4-14. The 3DesUdpReceiver.py Script

import socket

from Crypto.Cipher import DES3

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24000))

 data, addr = s.recvfrom(1024, socket.MSG_WAITALL)

 key = b"The secret key a"

 decryption_suite = (key, DES3.MODE_CBC, data[0:DES3.block_size])

 plain_text = decryption_suite.decrypt(data[DES3.block_size:])

 print(plain_text)

 s.close()

if __name__ == '__main__':

 main()

You can see that we pass the first block of the received data (bytes from 0 to DES3.

block_size) to the new function as the IV value. This function constructs the object that

we use to decrypt the rest bytes of the data.

If you launch the 3DesUdpReceiver.py script first and then 3DesUdpSender.py, the

receiver decrypts the transferred string correctly.

Chapter 4 Out-game BOts

264

The 3DES cipher is safe for use in your applications. However, you should consider

its features before deciding to apply it. You should have a strong reason to prefer 3DES

instead of modern ciphers, which work faster.

 AES Cipher
The AES cipher was created in 1998 by two Belgian cryptographers, Vincent Rijmen and

Joan Daemen. It has replaced the DES cipher as the US government standard.

AES solves several issues of the DES cipher. First of all, it allows the use of longer keys

(128, 192, and 256 bits). This feature comes because sizes of blocks and a key can differ

in this cipher. We can choose any allowed key length, and it does not lead to encryption

or decryption overhead as happens for the 3DES cipher. This is one of the reasons AES

works faster.

Both PyCrypto and PyCryptodome libraries provide the AES cipher. The interface of

using it looks the same as the one for 3DES.

Listing 4-15 demonstrates the usage of the AES cipher.

Listing 4-15. The AesTest.py Script

from Crypto.Cipher import AES

from Crypto import Random

def main():

 key = b"The secret key a"

 iv = Random.new().read(AES.block_size)

 # Encryption

 encryption_suite = AES.new(key, AES.MODE_CBC, iv)

 cipher_text = encryption_suite.encrypt(b"Hello world!")

 print(cipher_text)

 # Decryption

 decryption_suite = AES.new(key, AES.MODE_CBC, iv)

 plain_text = decryption_suite.decrypt(cipher_text)

 print(plain_text)

if __name__ == '__main__':

 main()

Chapter 4 Out-game BOts

265

You can compare this script with the 3DesTest.py one. They look very similar. The

new function of the AES module constructs the encryption_suite object of the AESCipher

class. This function has three input parameters: a key, mode of mixing blocks, and

IV. The AES cipher supports the same modes as 3DES.

If you launch the AesTest.py script, you will see a similar console output:

b'\xed\xd5\x19]\x04\xba\xc5\x05^s\x18t\xa3\xb59x'

b'Hello world! '

The AesUdpSender.py script in Listing 4-16 encrypts data with the AES cipher and

sends it.

Listing 4-16. The AesUdpSender.py Script

import socket

from Crypto.Cipher import AES

from Crypto import Random

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24001))

 key = b"The secret key a"

 iv = Random.new().read(AES.block_size)

 encryption_suite = AES.new(key, AES.MODE_CBC, iv)

 cipher_text = iv + encryption_suite.encrypt(b"Hello world!")

 s.sendto(cipher_text, ("127.0.0.1", 24000))

 s.close()

if __name__ == '__main__':

 main()

Here we transfer the IV value at the beginning of a packet’s data as we did with the

3DesUdpSender.py script. All steps of encrypting and sending the packet are the same as

for the 3DES cipher case.

The AesUdpReceiver.py script (see Listing 4-17) decrypts the received packet.

Chapter 4 Out-game BOts

266

Listing 4-17. The AesUdpReceiver.py Script

import socket

from Crypto.Cipher import AES

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24000))

 data, addr = s.recvfrom(1024, socket.MSG_WAITALL)

 key = b"The secret key a"

 decryption_suite = AES.new(key, AES.MODE_CBC, data[0:AES.block_size])

 plain_text = decryption_suite.decrypt(data[AES.block_size:])

 print(plain_text)

 s.close()

if __name__ == '__main__':

 main()

This script has the same algorithm as the 3DesUdpReceiver.py one.

You can test the considered receiver and sender scripts to check how they work.

When you choose a symmetric cipher for your application, you should prefer AES

over 3DES. The only case when it does make sense to apply 3DES is when providing back

compatibility with legacy solutions.

You may ask how we can crack the symmetric cipher when we analyze game traffic.

If the game uses strong ciphers like 3DES or AES, we should enumerate possible keys

and try them one after another. In the worst case, we should check all possible keys. This

is known as brute-force attack. However, there are approaches that allow reducing the

number of possible keys. They are specific for each cipher and depend on encryption

mode, implementation details, and quality of the chosen secret key.

There is another question. If we apply the brute-force attack, how do we distinguish

the right key? We do not know the plaintext in most cases.

The first possibility to solve this issue is an analysis of a game process memory.

You can read the parameters of the game objects (for example, health points of the

player character). Then you can assume that server sends this parameter to the client.

Thus, you expect to get a right value from the packet data if the checked encryption key is

correct.

Chapter 4 Out-game BOts

267

Another approach is to apply a statistical test for the decrypted data. If the checked

key is correct, the data should be more ordered. Otherwise, you get set of random bytes

without any regularity.

 RSA Cipher
All considered ciphers (XOR, 3DES, and AES) are symmetric. It means that we should

keep a secret key on both sender and receiver sides. This feature can lead you to one

idea. Why should we crack the cipher? Instead, we can investigate memory of the client

process and find the key there. Then we can import this key to our bot and communicate

with the server. The idea is right. The task of searching the secret key in a process

memory should be much simpler than decrypting the captured traffic.

Then comes another question. Is it possible to protect a secret key of a game

client? The best solution here is to avoid permanently storing the key on the client side.

However, the server cannot just send the key at the beginning of communicating. If an

attacker captures it, he decrypts all further traffic easily. The asymmetric encryption

helps in this case. It provides a mechanism to distribute the key safely.

We will consider the RSA cipher here. Its core idea is applying a one-way

mathematical function to encrypt plaintext. The secret key is an input parameter of this

function. To crack the cipher, you should solve a mathematical equation and find the

key from the known function and ciphertext. However, the primary feature of one-way

functions is high complexity to invert them. It means that you cannot calculate the secret

key in a reasonable amount of time.

You might ask how it is possible to decrypt the ciphertext, which was encrypted by a

one-way function. Let us assume that we encrypt a plaintext with the secret key. We have

applied some one-way function. We send our ciphertext to the receiver. He does not

know the secret key and cannot decrypt the message. However, we can give him a hint,

how to solve the mathematical equation and calculate the key. Thus, we come to concept

of two keys: the secret key and the hint. In this case, the secret key is named public key.

The hint is a private key.

How does an asymmetric cipher work? When we want to receive an encrypted

message, we calculate a pair of public and private keys. Then we send a public key to the

receiver. He encrypts his message and sends us ciphertext. We have a public key (which

is the hint for mathematical equation calculation) and decrypt the message. As you see

from this scheme, it does not matter if the attacker captures the public key and encrypted

message. He does not have the private key to decrypt it.

Chapter 4 Out-game BOts

268

Both PyCrypto and PyCryptodome libraries provide the AES cipher. However, some

of unsecure cipher’s features are not available in PyCryptodome.

Listing 4-18 demonstrates usage of the RSA cipher for encrypting the string.

Listing 4-18. The RsaTest.py Script

from Crypto.PublicKey import RSA

from Crypto import Random

def main():

 key = RSA.generate(1024, Random.new().read)

 # Encryption

 cipher_text = key.encrypt(b"Hello world!", 32)

 print(cipher_text)

 # Decryption

 plain_text = key.decrypt(cipher_text)

 print(plain_text)

if __name__ == '__main__':

 main()

the RsaTest.py script does not work if you use the pyCryptodome library.

Here we import two modules: RSA and Random. The RSA module provides

functions to manage and apply public and private keys.

We call the generate function of the RSA module to create an object of the _RSAobj

class. It has the key name. This object contains a pair of public and private keys. The

function has one mandatory input parameter, which is a length of keys (1024 in our case).

The second optional parameter is a function to generate random numbers.

Key size for rsa cipher means the length of modulus, which is a parameter of the
one-way mathematical function. this parameter is used to calculate public and
private keys. thus, the size of actual keys matches the magnitude of modulus
length.

Chapter 4 Out-game BOts

269

When we get the key object, we call its encrypt and decrypt methods to perform

corresponding operations.

You may ask where the public and private keys are in our example. Both encryption

and decryption operations happen in the same process, so we do not need to share the

public key with somebody else. However, the key object provides functions to export

both keys.

We have considered the usage of RSA cipher only. Nobody uses the cipher in this way

because it is vulnerable to the chosen-plaintext attack. Combination of the RSA cipher

together with the Optimal Asymmetric Encryption Padding (OAEP) algorithm allows

avoiding this vulnerability. This combination is known as the RSAES-OAEP scheme.

Also, there are several other algorithms that can enhance the RSA cipher.

Listing 4-19 demonstrates how to apply the OAEP algorithm for encrypting the

string.

Listing 4-19. The RsaOaepTest.py Script

from Crypto.PublicKey import RSA

from Crypto.Cipher import PKCS1_OAEP

from Crypto import Random

def main():

 key = RSA.generate(1024, Random.new().read)

 # Encryption

 encryption_suite = PKCS1_OAEP.new(key)

 cipher_text = encryption_suite.encrypt(b"Hello world!")

 print(cipher_text)

 # Decryption

 decryption_suite = PKCS1_OAEP.new(key)

 plain_text = decryption_suite.decrypt(cipher_text)

 print(plain_text)

if __name__ == '__main__':

 main()

Chapter 4 Out-game BOts

270

You can see that now we have two extra steps. We create two objects of the

PKCS1OAEP_Cipher class with the new function of the PKCS1_OAEP module. This

function receives an object of the _RSAobj class as a mandatory input parameter. The

first created object has the name encryption_suite and performs encryption. The second

object is decryption_suite, and it decrypts our string.

Now we will apply the RSA cipher for our test application, which sends the UDP

packet. First of all, we should modify the application algorithm. This algorithm was

trivial for symmetric cipher cases. We encrypt plaintext on the sender side, transfer the

packet, and decrypt it on the receiver side.

When we apply RSA cipher, an extra step appears. We should transfer a packet with

the public key of the receiver side. The sender requires this key to encrypt plaintext. Let

us consider the modified application algorithm step by step:

 1. The “sender” script starts first. It binds to a UDP socket and waits

for a packet with the public key.

 2. The “receiver” script starts. It binds to UDP socket for sending

packets. Then it generates a pair of public and private keys.

 3. The “receiver” sends its own public key.

 4. The “sender” receives the public key and applies it to encrypt the

plaintext with the RSA-OAEP scheme.

 5. The “sender” sends the packet with the ciphertext.

 6. The “receiver” script receives the ciphertext and decrypts it with

the RSA-OAEP scheme.

Listing 4-20 demonstrates the “sender” side of the considered algorithm.

Listing 4-20. The RsaUdpSender.py Script

import socket

from Crypto.PublicKey import RSA

from Crypto.Cipher import PKCS1_OAEP

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24001))

Chapter 4 Out-game BOts

271

 public_key, addr = s.recvfrom(1024, socket.MSG_WAITALL)

 key = RSA.importKey(public_key)

 cipher = PKCS1_OAEP.new(key)

 cipher_text = cipher.encrypt(b"Hello world!")

 s.sendto(cipher_text, ("127.0.0.1", 24000))

 s.close()

if __name__ == '__main__':

 main()

Here we use the importKey function of the RSA module to create the key object of

the _RSAobj class. The input parameter of this function is a public key in the byte array

format. We get it in the UDP packet from the “receiver” side. Then we use the key object

to construct an object of the PKCS1OAEP_Cipher class. It encrypts our string, and we

send it to the receiver.

Listing 4-21 demonstrates the implementation of the “receiver” side.

Listing 4-21. The RsaUdpReceiver.py Script

import socket

from Crypto.PublicKey import RSA

from Crypto.Cipher import PKCS1_OAEP

from Crypto import Random

def main():

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)

 s.bind(("127.0.0.1", 24000))

 key = RSA.generate(1024, Random.new().read)

 public_key = key.publickey().exportKey()

 s.sendto(public_key, ("127.0.0.1", 24001))

 data, addr = s.recvfrom(1024, socket.MSG_WAITALL)

 cipher = PKCS1_OAEP.new(key)

 plain_text = cipher.decrypt(data)

 print(plain_text)

Chapter 4 Out-game BOts

272

 s.close()

if __name__ == '__main__':

 main()

The new step in this script, which we have not considered yet, is exporting a public

key. We do it in two phases after generating a pair of public and private keys. The first

step is a call of the publickey method of the key object. This call creates a public_key

object of the same RSAobj class, which contains the public key only. This object has

the exportKey method, which returns a public key in the byte array format. The key

object has this method too. If you call it, you get the private key.

When we extract the public key, we send it in a UDP packet without any encryption.

If the attacker captures it, he cannot use it to decrypt our ciphertext. Then we wait for

a packet from the RsaUdpSender.py script with the ciphertext. We decrypt it with the

constructed cipher object of the PKCS1OAEP_Cipher class, which applies the

RSAES- OAEP scheme.

You can launch the RsaUdpSender.py script first and the RsaUdpReceiver.py

afterward to see how they work.

The RSA algorithm has one serious drawback compared to symmetric ciphers. It

works much slower. Why does this happen? The symmetric ciphers use logical XOR or

bit-shift operations. CPU performs them very quickly because it has logical blocks to

do one operation of this kind in one clock tick. The RSA algorithm uses mathematical

functions: modular exponentiation for encryption and Euler’s totient function

calculation for decryption. They are heavy for CPU because they require many clock

ticks to perform.

The session key solves this issue of massive calculations. The idea is to generate a

key for the symmetric encryption during one communication (i.e., session) between

a client and server. The RSA algorithm allows us to transfer this key safely. Then, both

client and server switch to the symmetric cipher and apply it to all further traffic until

their connection is terminated.

You can easily modify our RsaUdpSender.py and RsaUdpReceiver.py scripts to

transfer a session key (AES, for example) instead of the “Hello world!” string.

Now we reach our goal to avoid storing the encryption key on the game client side

permanently.

Chapter 4 Out-game BOts

273

 Detecting Out-game Bots
We have considered cryptographic algorithms to protect game traffic. A bot developer

should spend a lot of time capturing network packets and analyzing them. Let us assume

that he succeeded and wrote a bot for our game. What can we do in this case?

Actually, the task of detecting out-game bots is much simpler than detecting clickers

and in-game bots. All that we should do is to react when we receive incorrect traffic on

the server side.

Let us consider the simplest case. We use a symmetric cipher and store the key in

the game client permanently. The bot imports this key and communicates with the

server. However, we should have a mechanism to update all game clients regularly. A

typical update fixes software bugs and adds new game features. One of these updates can

change the encryption key without any notifications for the user. At the same time, we

change the server key accordingly. Now if the bot tries to communicate with the server

using the old key, we can easily detect it.

The bot developer can react to this issue and import the new key to his bot. However,

we can detect and ban all players who use an old version of the bot that sends wrong

packets on the server. In most cases, players buy a bot and use it without a deep

understanding of its internals. Thus, this approach works well, and only a few users of

the bot will avoid detection.

If our game uses an asymmetric cipher, we still can apply the same detection

approach. There are several options for managing encryption keys. Let us assume that

a server stores the client’s public key permanently. At the beginning of communication,

the client sends its own public key to the server. Then, the server compares this key

with the predefined one. If the keys differ, the server concludes that there is a bot. If the

keys match, the server sends its own public key to the client, and their communication

continues. When we update the game client, we change its key pair and the predefined

client’s public key on the server side. Thus, any bot that uses the deprecated pair of keys

will be blocked because the server rejects its public key.

There is an alternative approach if you do not want to change the encryption key.

You can make minor changes in the game protocol periodically. It can be changing the

order of game parameters in the packet or increasing some special version counters.

Then, you can check the received packets on the server and detect if they have the

deprecated format.

Chapter 4 Out-game BOts

275
© Ilya Shpigor 2018
I. Shpigor, Practical Video Game Bots, https://doi.org/10.1007/978-1-4842-3736-6_5

CHAPTER 5

Extra Techniques
This chapter considers advanced approaches for game bot development. These

approaches focus on bypassing protections that block clicker and in-game types of

bots. The first approach is emulation of the standard keyboard and mouse devices. The

second approach is the interception of calls of a game process to the WinAPI libraries.

 Input Device Emulation
Now we will consider how to emulate input devices like keyboard and mouse. The

purpose of this feature is avoiding a game’s protection algorithms. When we emulate a

device, it looks like a real keyboard or mouse to the OS. In this case, the game application

has no chance to distinguish bot and player actions.

 Input Device Emulation Tools
First of all, we should choose hardware that will emulate input devices. To make the right

choice, let us consider hardware features that are important for our purpose:

• The device should be low in cost.

• The IDE and compiler should be available for free.

• The IDE should provide libraries for emulation input devices.

• There should be an active user community and good documentation.

The Arduino board has all of these features. This hardware is the best option to start

learning embedded development.

276

The next question is which version of the Arduino board we should buy. Arduino

IDE provides libraries to emulate keyboard and mouse devices (www.arduino.cc/

reference/en/language/functions/usb/keyboard). According to documentation,

some boards do not support these libraries. So, appropriate board versions for us are

Leonardo, Micro, and Due. When you get a board, you should connect it to a computer

via a USB cable. Now the hardware is ready to work.

The second topic (once we have found the hardware) is choosing tools for

development. Arduino provides an IDE with an integrated C++ compiler and libraries for

all of its products. You can download the IDE on the official website (www.arduino.org/

downloads). Install it after downloading.

The next step is to install drivers for an Arduino board. You should launch the

installer application from the Arduino IDE subdirectory. The default path for the

installer is C:\Program Files (x86)\Arduino\drivers. The drivers directory contains

two installer versions: dpinst-amd64.exe and dpinst-x86.exe. You should choose the

first file for the 64-bit Windows version and the second one for the 32-bit version. You

should connect a board to the computer during the installation process.

Here are the steps to configure Arduino IDE after installation:

 1. Choose a model of your board as a target device for the compiler.

This option is available in the “Tools”➤”Board:...” item of the

main menu. You can get the correct name of your model from the

“Tools”➤”Port:...” menu item.

 2. Choose a connection port to the board via the “Tools”➤“Port:...”

item of the main menu.

Now Arduino IDE is prepared, and you can start to program.

We will use the AutoIt language to communicate with Arduino board from a

Windows side. You need CommAPI scripts (www.autoitscript.com/wiki/CommAPI),

which provide access to the WinAPI communications functions.

 Keyboard Emulation
There are two possible architectures of bots that emulate input devices.

The first solution implements all algorithms in an application for the Arduino board.

When you upload it to the device, a bot is ready to work. It starts automatically each time

you connect the board to a computer.

Chapter 5 extra teChniques

http://www.arduino.cc/reference/en/language/functions/usb/keyboard
http://www.arduino.cc/reference/en/language/functions/usb/keyboard
http://www.arduino.org/downloads
http://www.arduino.org/downloads
http://www.autoitscript.com/wiki/CommAPI

277

This architecture is the best choice if you develop a “blind” clicker bot. It can

simulate user actions with fixed time delays in the infinite loop. However, the bot cannot

get any information about a game state in this case. This is because the Arduino board

does not have access to the WinAPI interface. So, a monitor device and memory of the

game process are not available. Thus, if you develop a bot that reacts to events during the

game, you should choose another approach.

The second solution consists of two parts. The first part is an application that works

on the Arduino board. The only task of this application is simulating user actions. The

second part is a script that works on the computer. This script contains all algorithms

of the bot and makes decisions about what to do. When the bot should simulate a user

action, the script sends a command to the board. Then, the Arduino application receives

the command and simulates a user action.

We will consider the second variant with the Arduino application and script because

it is universal and flexible.

There are several options to implement a protocol for sending commands from the

script. The simplest way is to use the serial interface (www.arduino.cc/reference/en/

language/functions/communication/serial).

A bot with an input device emulation feature behaves like a typical clicker bot. It

analyzes a picture of the game window and simulates keypresses. There is only one

difference from a regular clicker bot. It does not call WinAPI to simulate the action; it

asks the Arduino board instead.

The keyboard.ino Arduino application (see Listing 5-1) simulates keyboard actions

according to the bytes it receives via the serial interface.

Listing 5-1. The keyboard.ino Application

#include <Keyboard.h>

void setup()

{

 Serial.begin(9600);

 Keyboard.begin();

}

Chapter 5 extra teChniques

http://www.arduino.cc/reference/en/language/functions/communication/serial
http://www.arduino.cc/reference/en/language/functions/communication/serial

278

void loop()

{

 if (Serial.available() > 0)

 {

 int incomingByte = Serial.read();

 Keyboard.write(incomingByte);

 }

}

Here we use a Keyboard library, which Arduino IDE provides. It allows us to send

keystrokes to the connected computer via a Human Interface Device (HID)-compatible

protocol. It is a standard protocol for all keyboards and mouses that have USB interface.

We include the Keyboard.h header at the first line of the application. The header

defines a Keyboard_ class and creates a Keyboard global object. This object provides

access to all features of the library.

Our application has setup and loop functions. When you compile any Arduino

application, the IDE adds the default main function implicitly. It calls the setup function

once at startup and the loop function repeatedly. Signatures of both setup and loop

functions are predefined, and you cannot change them.

We initialize both Serial and Keyboard objects in the setup function. We pass

the baud rate, which equals to 9600 bit/s, to the begin method of the Serial object.

This parameter defines the data transfer rate between the Arduino board and the

computer. Then, we call the begin method of the Keyboard object. It starts emulating

a keyboard device.

Now, the Arduino application is ready to receive commands and simulate user

keypresses. The loop function responds for this task. It has the following algorithm:

 1. Call the available method of the Serial object to check if we are

receiving data via the serial port. This method returns a number of

the received bytes.

 2. Read the first received byte by the read method of the Serial

object. The byte defines an ASCII code of the key that should be

simulated.

 3. Send a keystroke action to the computer with the write method of

the Keyboard object.

Chapter 5 extra teChniques

279

You should press Ctrl+U in Arduino IDE to compile and upload the keyboard.ino

application to the board.

Now we have an Arduino board that emulates the keyboard. The next step is to

implement an AutoIt script. The script should control the board via the serial port.

We can use CommAPI wrappers, which simplify access to serial interface via WinAPI

functions. To use these wrappers, you should download and copy them to the directory

of your script.

This is a list of necessary CommAPI files:

• CommAPI.au3

• CommAPIConstants.au3

• CommAPIHelper.au3

• CommInterface.au3

• CommUtilities.au3

Make sure that you get all these files before starting the next step.

Let us make a script that commands the Arduino board to print the “Hello world!”

string. Listing 5-2 demonstrates this.

Listing 5-2. The ControlKeyboard.au3 Script

#include "CommInterface.au3"

func ShowError()

 MsgBox(16, "Error", "Error " & @error)

endfunc

func OpenPort()

 local const $iPort = 7

 local const $iBaud = 9600

 local const $iParity = 0

 local const $iByteSize = 8

 local const $iStopBits = 1

Chapter 5 extra teChniques

280

 $hPort = _CommAPI_OpenCOMPort($iPort, $iBaud, $iParity, $iByteSize,

$iStopBits)

 if @error then

 ShowError()

 return NULL

 endif

 _CommAPI_ClearCommError($hPort)

 if @error then

 ShowError()

 return NULL

 endif

 _CommAPI_PurgeComm($hPort)

 if @error then

 ShowError()

 return NULL

 endif

 return $hPort

endfunc

func SendArduino($hPort, $command)

 _CommAPI_TransmitString($hPort, $command)

 if @error then ShowError()

endfunc

func ClosePort($hPort)

 _CommAPI_ClosePort($hPort)

endfunc

$hWnd = WinGetHandle("[CLASS:Notepad]")

WinActivate($hWnd)

Sleep(200)

$hPort = OpenPort()

SendArduino($hPort, "Hello world!")

ClosePort($hPort)

Chapter 5 extra teChniques

281

Let us consider an algorithm of the script:

 1. Switch to the Notepad window with the WinActivate AutoIt

function.

 2. Open the serial port with the OpenPort function.

 3. Send command to the Arduino board to type the “Hello world!”

string with the SendArduino function.

 4. Close the serial port with the ClosePort function.

Now we will consider internals of the OpenPort, SendArduino, and ClosePort

functions.

The OpenPort function opens the serial port and prepares the connected device for

communication. It returns a handle to the opened port. We do three CommAPI calls here:

 1. The _CommAPI_OpenCOMPort function opens a COM port with the

specified settings. We pass settings via the input parameters of

the function. The iParity, iByteSize, and iStopBits parameters

are constant for all Arduino boards. You should pay attention

to two other parameters. The iBaud one should match the

value you pass to the begin method of the Serial object in the

keyboard.ino application. It equals to 9600 in our case. The iPort

parameter equals to the COM port number used to connect the

Arduino board to your computer. You can check the port in the

“Tools”➤“Port:...” item of the Arduino IDE menu. For example,

value 7 of the iPort parameter matches to the COM7 port.

 2. The _CommAPI_ClearCommError function retrieves information

about communication errors and the current status of the

connected board. The second parameter of the function returns

this information. We do not use it in our case. However, it is

quite important to call this function. It clears the error flag on the

device. This flag (when it is active) blocks the communication.

 3. The _CommAPI_PurgeComm function clears the input and output

buffers of the board and terminates all pending read and write

operations. The device becomes ready to receive commands after

this call.

Chapter 5 extra teChniques

282

The SendArduino function is a wrapper around the _CommAPI_TransmitString call.

It writes a string to the specified serial port handle.

The ClosePort function closes the serial port by the specified handle.

Also, there is the ShowError function. We use it if any error happens during the

opening of a serial port. It shows a message with the error code.

You can connect the Arduino board with the keyboard.ino application, launch

Notepad, and start the ControlKeyboard.au3 script. The script types the “Hello world!”

text in the Notepad window.

 Keyboard Modifiers
We have implemented the keyboard.ino Arduino application, which simulates presses

of single keys. However, it does not allow us to simulate a combination of keys (for

example Ctrl+Z). Let us improve the application and get this feature.

Listing 5-3 demonstrates this.

Listing 5-3. The keyboard-combo.ino Application

#include <Keyboard.h>

void setup()

{

 Serial.begin(9600);

 Keyboard.begin();

}

void pressKey(char modifier, char key)

{

 Keyboard.press(modifier);

 Keyboard.write(key);

 Keyboard.release(modifier);

}

void loop()

{

 static const char PREAMBLE = 0xDC;

 static const uint8_t BUFFER_SIZE = 3;

Chapter 5 extra teChniques

283

 if (Serial.available() > 0)

 {

 char buffer[BUFFER_SIZE] = {0};

 uint8_t readBytes = Serial.readBytes(buffer, BUFFER_SIZE);

 if (readBytes != BUFFER_SIZE)

 return;

 if (buffer[0] != PREAMBLE)

 return;

 pressKey(buffer[1], buffer[2]);

 }

}

Here we use the readBytes method of the Serial object instead of the read one. It

reads a sequence of bytes that the serial port receives. The method returns a number of

the received bytes.

The feature of transferring several bytes instead of one allows us to extend the format

of our commands. We can use a sequence of bytes instead of one.

I recommend applying the following format when each command contains three bytes:

 1. The preamble: a predefined byte that signals about the beginning

of the command. So, we can distinguish two commands and avoid

mixing their bytes.

 2. The code of the key modifier. It should be pressed together with

the key when you want to get a key combination.

 3. The key code.

For example, if you want to simulate the Alt+Tab key combination, here is the

command for Arduino board:

0xDC 0x82 0xB3

The “0xDC” byte is a preamble. The “0x82” is a code of modifier that matches to the

left Alt key. The “0xB3” is a code of the Tab key.

Chapter 5 extra teChniques

284

You can see that now the loop function has two if conditions. They interrupt the

processing of the received command. The first condition validates a number of received

bytes. The second one checks that the preamble has been distinguished. If both checks

pass, we call the pressKey function. It has two parameters: the modifier and key codes.

We use the press method of the Keyboard object to hold a modifier until the key is

pressing. Then we do the release call to release the modifier.

We should adopt the control script according to the new protocol. Listing 5-4

demonstrates this.

Listing 5-4. The ControlKeyboardCombo.au3 Script

#include "CommInterface.au3"

func ShowError()

 MsgBox(16, "Error", "Error " & @error)

endfunc

func OpenPort()

 ; This function is the same as one in the ControlKeyboard.au3 script

endfunc

func SendArduino($hPort, $modifier, $key)

 local $command[3] = [0xDC, $modifier, $key]

 _CommAPI_TransmitString($hPort, StringFromASCIIArray($command, 0,

UBound($command), 1))

 if @error then ShowError()

endfunc

func ClosePort($hPort)

 _CommAPI_ClosePort($hPort)

 if @error then ShowError()

endfunc

$hPort = OpenPort()

SendArduino($hPort, 0x82, 0xB3)

ClosePort($hPort)

Chapter 5 extra teChniques

285

As you can see, we change the SendArduino function only. Now we transfer

the command array to the Arduino board. It contains three bytes: the preamble, the

modifier, and the key. We use the same _CommAPI_TransmitString function to

transmit data via the serial port. However, this function accepts the string as the input

parameter. So, we should convert the array with a command into the string format; the

StringFromASCIIArray AutoIt function does it.

You can upload the new Arduino application to the board and launch the

ControlKeyboardCombo.au3 script. Then you get the Alt+Tab keystroke simulation. If you

open several windows, you will see how the script switches them.

 Mouse Emulation
We can emulate a mouse device with the Arduino board as we did for a keyboard. The

Mouse library of Arduino IDE provides API for this task.

However, the primary goal of this library is providing features for developers of

mouse-like devices. Thus, the library uses relative coordinates for cursor positioning. It

is a serious drawback for us. We want to specify a screen point where the board should

simulate a mouse click (for example). When we have relative coordinates, we should

notify the board about the current cursor position. We have two options here:

 1. Implement a complicated algorithm that operates with relative

cursor coordinates.

 2. Fix the Mouse library of the Arduino IDE.

The Arduino community already solved this issue with relative coordinates in the

library. The article forum.arduino.cc/index.php?topic=94140.0 describes the patch.

After the patch, you can operate with absolute cursor coordinates. However, this solution

works for the old 1.0 version of Arduino IDE. In this version, both Keyboard and Mouse

libraries come together as one HID module.

There is an algorithm to patch the Mouse library of the newer Arduino IDE version:

 1. Get the patched Mouse.cpp source file, which is provided with

this book.

 2. Replace the original Mouse.cpp file in the Arduino IDE directory

with the patched one. The default path of this file is C:\Program

Files (x86)\Arduino\libraries\Mouse\src.

Chapter 5 extra teChniques

286

You can patch the Mouse.cpp file on your own. To do so, you should change the

_hidReportDescriptor array as the following code snippet shows:

#define ABSOLUTE_MOUSE_MODE

static const uint8_t _hidReportDescriptor[] PROGMEM = {

...

#ifdef ABSOLUTE_MOUSE_MODE

 0x15, 0x01, // LOGICAL_MINIMUM (1)

 0x25, 0x7F, // LOGICAL_MAXIMUM (127)

 0x75, 0x08, // REPORT_SIZE (8)

 0x95, 0x03, // REPORT_COUNT (3)

 0x81, 0x02, // INPUT (Data,Var,Abs)

#else

 0x15, 0x81, // LOGICAL_MINIMUM (-127)

 0x25, 0x7f, // LOGICAL_MAXIMUM (127)

 0x75, 0x08, // REPORT_SIZE (8)

 0x95, 0x03, // REPORT_COUNT (3)

 0x81, 0x06, // INPUT (Data,Var,Rel)

#endif

The _hidReportDescriptor array is a report descriptor. It declares data that the

board sends to the computer and receives from it. In other words, a report descriptor

defines the communication protocol between a computer and a device. This protocol

allows a computer to communicate with all HID devices in one universal way.

We made two changes in the mouse device report descriptor:

 1. Change the LOGICAL_MINIMUM byte (with 0x15 ID) from -127 to 1.

This matches the minimum value of the cursor coordinate. An

absolute coordinate can be positive only.

 2. Change the INPUT byte (with 0x81 ID) from 0x06 to 0x02. It means

that we use absolute coordinates instead of the relative ones.

Also, we have added the ABSOLUTE_MOUSE_MODE macro. It allows switching between

relative and absolute coordinates. When you define the macro, the IDE builds an

application with absolute cursor coordinates.

Listing 5-5 shows the mouse.ino application, which simulates mouse clicks.

Chapter 5 extra teChniques

287

Listing 5-5. The mouse.ino Application

#include <Mouse.h>

void setup()

{

 Serial.begin(9600);

 Mouse.begin();

}

void click(signed char x, signed char y, char button)

{

 Mouse.move(x, y);

 Mouse.click(button);

}

void loop()

{

 static const char PREAMBLE = 0xDC;

 static const uint8_t BUFFER_SIZE = 4;

 if (Serial.available() > 0)

 {

 char buffer[BUFFER_SIZE] = {0};

 uint8_t readBytes = Serial.readBytes(buffer, BUFFER_SIZE);

 if (readBytes != BUFFER_SIZE)

 return;

 if (buffer[0] != PREAMBLE)

 return;

 click(buffer[1], buffer[2], buffer[3]);

 }

}

The application has a similar algorithm as the keyboard-combo.ino one. Here we

include the Mouse.h header. It provides the Mouse_ class and the Mouse global object.

Then we do the begin call of this object to initialize it.

Chapter 5 extra teChniques

288

We simulate a mouse click in the click function. It happens in two steps. The first

step is moving a cursor to the specified position by the move method of Mouse object.

The second step is the Mouse.click call, which simulates a click in the current cursor

position.

We receive commands from a computer in the loop function. The meaning of the

received bytes differs from that for the keyboard-combo.ino application. Now, the

command consists of four bytes:

 1. The preamble.

 2. The x coordinate of the click action.

 3. The y coordinate of the click action.

 4. A mouse button to click.

You may have noticed that the maximum value of both x and y coordinates equals

127 (or 0x7F in hexadecimal). This value is a maximum signed number that we can be

stored in one byte. It means that maximum absolute number of cursor coordinates that

you can specify is 127×127. However, a screen resolution is higher than 127×127 pixels.

Thus, we should do an extra step to translate the values of the actual screen coordinates

to the Arduino board scale.

The following formulas translate the coordinates:

Xa = 127 * X / Xres

Ya = 127 * Y / Yres

Table 5-1 explains the formula symbols.

Table 5-1. Explanation of the Formula

Symbol Description

xa the x coordinate in the arduino scale.

Ya the y coordinate in the arduino scale.

x the x coordinate in the screen scale.

Y the y coordinate in the screen scale.

xres the horizontal screen resolution in pixels.

Yres the vertical screen resolution in pixels.

Chapter 5 extra teChniques

289

Let us apply this formula in an example case. Our screen resolution is 1366×768. For

example, we want to simulate a mouse click on the screen point with coordinates x=250

and y=300. Then, we should pass the following coordinates to the Arduino board:

Xa = 127 * 250 / 1366 = 23

Ya = 127 * 300 / 768 = 49

This means that the command to the board looks like this:

0xDC 0x17 0x31 0x1

The 0x17 in hexadecimal equals 23 in decimal and 0x31 equals 49 similarly.

Now we can implement a script for sending serial commands to our mouse.ino

application. Listing 5-6 demonstrates this script.

Listing 5-6. The ControlMouse.au3 Script

#include "CommInterface.au3"

func ShowError()

 MsgBox(16, "Error", "Error " & @error)

endfunc

func OpenPort()

 ; This function is the same as one in the ControlKeyboard.au3

script

endfunc

func GetX($x)

 return (127 * $x / 1366)

endfunc

func GetY($y)

 return (127 * $y / 768)

endfunc

func SendArduino($hPort, $x, $y, $button)

 local $command[4] = [0xDC, GetX($x), GetY($y), $button]

 _CommAPI_TransmitString($hPort, StringFromASCIIArray($command, 0,

UBound($command), 1))

Chapter 5 extra teChniques

290

 if @error then ShowError()

endfunc

func ClosePort($hPort)

 _CommAPI_ClosePort($hPort)

 if @error then ShowError()

endfunc

$hWnd = WinGetHandle("[CLASS:MSPaintApp]")

WinActivate($hWnd)

Sleep(200)

$hPort = OpenPort()

SendArduino($hPort, 250, 300, 1)

ClosePort($hPort)

The ControlMouse.au3 script is very similar to the ControlKeyboardCombo.au3 one.

Now, the SendArduino function has four input parameters: the port number, the cursor

coordinates, and the mouse button to click. Also, you can see two new functions: GetX

and GetY. They translate the cursor coordinates to the Arduino scale.

You should fix the GetX and GetY functions according to your screen
resolution.

You can upload the mouse.ino application to the Arduino board, and then launch

the Paint application and the ControlMouse.au3 script. The script simulates the left-click

at the point with x=250, y=300 absolute coordinates in the Paint window.

 Keyboard and Mouse Emulation
We know how to emulate keyboard and mouse devices with Arduino boards. You may

ask now whether it is possible to emulate both devices by the single board.

The answer is yes. It is not a complicated task. The HID protocol allows the device to

behave as the keyboard and mouse at the same time. The only issue that we should solve

is a command format. Now each command should contain enough bytes to keep all

required information for keypress or mouse click. Also, the board should distinguish the

action that the script asks to simulate.

Chapter 5 extra teChniques

291

We can extend our command format and add the byte that defines a code of the

simulated actions. Table 5-2 shows all actions and their codes.

Table 5-2. Action Codes

Code Simulated Action

0x1 Keypress without a modifier.

0x2 Keypress with a modifier.

0x3 Mouse click.

The action code byte should come on the second position after the preamble. This

byte allows the Arduino application to choose the way to interpret the following three

bytes of the received command. If there is a keypress action, we apply the algorithm of

the considered keyboard-combo.ino application. Otherwise, we repeat the behavior of

the mouse.ino.

Listing 5-7 demonstrates the final solution:

Listing 5-7. The keyboard-mouse.ino Application

#include <Mouse.h>

#include <Keyboard.h>

void setup()

{

 Serial.begin(9600);

 Keyboard.begin();

 Mouse.begin();

}

void pressKey(char key)

{

 Keyboard.write(key);

}

void pressKey(char modifier, char key)

{

 Keyboard.press(modifier);

Chapter 5 extra teChniques

292

 Keyboard.write(key);

 Keyboard.release(modifier);

}

void click(signed char x, signed char y, char button)

{

 Mouse.move(x, y);

 Mouse.click(button);

}

void loop()

{

 static const char PREAMBLE = 0xDC;

 static const uint8_t BUFFER_SIZE = 5;

 enum

 {

 KEYBOARD_COMMAND = 0x1,

 KEYBOARD_MODIFIER_COMMAND = 0x2,

 MOUSE_COMMAND = 0x3

 };

 if (Serial.available() > 0)

 {

 char buffer[BUFFER_SIZE] = {0};

 uint8_t readBytes = Serial.readBytes(buffer, BUFFER_SIZE);

 if (readBytes != BUFFER_SIZE)

 return;

 if (buffer[0] != PREAMBLE)

 return;

 switch(buffer[1])

 {

 case KEYBOARD_COMMAND:

 pressKey(buffer[3]);

 break;

Chapter 5 extra teChniques

293

 case KEYBOARD_MODIFIER_COMMAND:

 pressKey(buffer[2], buffer[3]);

 break;

 case MOUSE_COMMAND:

 click(buffer[2], buffer[3], buffer[4]);

 break;

 }

 }

}

We added the switch statement to the loop function. It chooses the right way to

simulate an action depending on the second byte of the received command.

Do not forget that all arrays in C and C++ start from the 0 index instead of 1.

You have probably noticed that we transmit extra bytes when simulating the keypress

actions. In cases of keypress without a modifier, there are two unnecessary bytes. Can we

optimize this behavior and pass only bytes that are required?

Yes, we can make this optimization. However, before we start to change the code, let

us consider exactly what we can do. We receive the bytes via the readBytes method of

the Serial object. So, we should specify the number of bytes in the expected command.

However, we will not know this number until we do not receive the second byte with the

action code. This means that we should use another function of Arduino API.

The Serial object has the readBytesUntil method. It returns the received bytes

until it does not meet a terminator character. The terminator is a special byte with a

predefined value that signals about the command ends. This way sounds promising.

The question is which value of the terminator we should choose. If you think about this

question, you will understand how it is difficult to make the right choice. The terminator

is only one byte. It should be unique. So, we should guarantee that any command that we

send does not contain the same value in the payload. The coordinates can be from 0x00

to 0x7F. This sounds good, but a key code can have any value from 0x00 to 0xFF. So, we

cannot choose the reliable terminator character.

Chapter 5 extra teChniques

294

Another way is to use the read method. It reads the sequence of bytes. This approach

can work if the control script makes a delay after sending each command. So, the

Arduino application can distinguish them. Otherwise, we receive a stream of commands

and cannot get their bounds. Thus, this approach is not reliable enough because clicker

bots can simulate actions very quickly.

We can conclude that our overhead because of sending extra bytes is a payment for

the reliable solution. In our case, this payment is acceptable.

The ControlKeyboardMouse.au3 script in Listing 5-8 simulates keyboard and mouse

actions via the keyboard-mouse.ino Arduino application.

Listing 5-8. The ControlKeyboardMouse.au3 Script

#include "CommInterface.au3"

func ShowError()

 MsgBox(16, "Error", "Error " & @error)

endfunc

func OpenPort()

 ; This function is the same as one in the ControlKeyboard.au3 script

endfunc

func SendArduinoKeyboard($hPort, $modifier, $key)

 if $modifier == NULL then

 local $command[5] = [0xDC, 0x1, 0xFF, $key, 0xFF]

 else

 local $command[5] = [0xDC, 0x2, $modifier, $key, 0xFF]

 endif

 _CommAPI_TransmitString($hPort, StringFromASCIIArray($command, 0,

UBound($command), 1))

 if @error then ShowError()

endfunc

func GetX($x)

 return (127 * $x / 1366)

endfunc

Chapter 5 extra teChniques

295

func GetY($y)

 return (127 * $y / 768)

endfunc

func SendArduinoMouse($hPort, $x, $y, $button)

 local $command[5] = [0xDC, 0x3, GetX($x), GetY($y), $button]

 _CommAPI_TransmitString($hPort, StringFromASCIIArray($command, 0,

UBound($command), 1))

 if @error then ShowError()

endfunc

func ClosePort($hPort)

 _CommAPI_ClosePort($hPort)

 if @error then ShowError()

endfunc

$hPort = OpenPort()

$hWnd = WinGetHandle("[CLASS:MSPaintApp]")

WinActivate($hWnd)

Sleep(200)

SendArduinoMouse($hPort, 250, 300, 1)

Sleep(1000)

$hWnd = WinGetHandle("[CLASS:Notepad]")

WinActivate($hWnd)

Sleep(200)

SendArduinoKeyboard($hPort, Null, 0x54) ; T

SendArduinoKeyboard($hPort, Null, 0x65) ; e

SendArduinoKeyboard($hPort, Null, 0x73) ; s

SendArduinoKeyboard($hPort, Null, 0x74) ; t

Sleep(1000)

SendArduinoKeyboard($hPort, 0x82, 0xB3) ; Alt+Tab

ClosePort($hPort)

Chapter 5 extra teChniques

296

Here, we implement two separate functions for sending commands to the

Arduino board. The SendArduinoKeyboard function sends the command to simulate

keystroke actions. It has the same algorithm as the SendArduino function of the

ControlKeyboardCombo.au3 script. However, the command format differs now. We have

the second byte with an action code and the fifth byte for padding a command length to the

required size. Also, if we do not need a key modifier, we transfer the third byte with the

0xFF value.

The SendArduinoMouse function sends the command to simulate a mouse click. We

added the second byte with action code to it.

You should do the following steps to test the ControlKeyboardMouse.au3 script:

 1. Upload the keyboard-mouse.ino application to the Arduino board.

 2. Launch the Paint application.

 3. Launch the Notepad application.

 4. Launch the control script.

The script simulates three actions one after each other:

 1. Mouse click in the Paint window.

 2. Typing the “Test” string in the Notepad window.

 3. Switching windows with the Alt+Tab keystroke.

There is the question of why we use the 0xFF byte instead of the 0x0 for padding in

the keypress command. The limitation comes from the StringFromASCIIArray AutoIt

function. It treats the 0x0 byte in the input ASCII array as the end of the resulting string.

So, our commands should not contain zeroed bytes.

 Input Device Emulation Summary
We have considered techniques to emulate keyboard and mouse devices with the

Arduino board. The AutoIt script can control the board and command it to simulate

user actions.

You can combine the pixel analysis feature of AutoIt with the device emulation. It

allows you to develop advanced game bots. They can bypass some anticlicker protection

approaches that are based on checking the keyboard state.

Chapter 5 extra teChniques

297

 OS-Level Interception Data
We have considered a way to read game process memory and extract game data from

it. However, if the game has strong protection, it can be difficult to follow this approach.

In this case, you can apply a technique to modify OS libraries. It allows you to shift an

observation point from the game process memory to the WinAPI side, which is not

controlled by game developers and cannot be protected by them.

 OS-Level Interception Data Tools
We will work with WinAPI functions in this chapter. The C++ language is the best choice

for this task. We will use the Visual Studio Community IDE to compile our examples. You

can find more details about this IDE in Chapter 3.

There are several open source solutions that can help us with hooking WinAPI calls.

The first solution is the DLL Wrapper Generator (m4v3n.wordpress.com/

2012/08/08/dll-wrapper-generator). We will use it to create proxy DLLs.

These are the steps to install the generator:

 1. Download the scripts from the GitHub project page:

github.com/mavenlin/Dll_Wrapper_Gen/archive/master.zip

 2. Download and install Python 2.7 (www.python.org/downloads).

The second solution is Deviare open source hooking framework (www.nektra.com/

products/deviare-api-hook-windows).

These are the steps to install it:

 1. Download the last version of the release binaries (github.com/

nektra/Deviare2/releases/download/v2.8.0/Deviare.2.8.0.zip).

 2. Download the latest version of the source code (github.com/

nektra/Deviare2/archive/v2.8.0.zip).

 3. Unpack both archives in two different directories.

You can find a list of all available Deviare releases in the GitHub project (github.com/

nektra/Deviare2/releases). Please make sure that your versions of binaries and sources

match.

Chapter 5 extra teChniques

http://m4v3n.wordpress.com/2012/08/08/dll-wrapper-generator
http://m4v3n.wordpress.com/2012/08/08/dll-wrapper-generator
http://github.com/mavenlin/Dll_Wrapper_Gen/archive/master.zip
http://www.python.org/downloads
http://www.nektra.com/products/deviare-api-hook-windows
http://www.nektra.com/products/deviare-api-hook-windows
http://github.com/nektra/Deviare2/releases/download/v2.8.0/Deviare.2.8.0.zip
http://github.com/nektra/Deviare2/releases/download/v2.8.0/Deviare.2.8.0.zip
http://github.com/nektra/Deviare2/archive/v2.8.0.zip
http://github.com/nektra/Deviare2/archive/v2.8.0.zip
http://github.com/nektra/Deviare2/releases
http://github.com/nektra/Deviare2/releases

298

 Test Application
We need a test application to consider WinAPI call hooking techniques. I suggest reusing

the application that we implemented in the “Protection Approaches” section of Chapter 3.

However, it should be slightly changed. Listing 5-9 demonstrates this.

Listing 5-9. The TestApplication.cpp Application

#include <stdio.h>

#include <stdint.h>

#include <windows.h>

#include <string>

static const uint16_t MAX_LIFE = 20;

volatile uint16_t gLife = MAX_LIFE;

int main()

{

 SHORT result = 0;

 while (gLife > 0)

 {

 result = GetAsyncKeyState(0x31);

 if (result != 0xFFFF8001)

 --gLife;

 else

 ++gLife;

 std::string str(gLife, '#');

 TextOutA(GetDC(NULL), 0, 0, str.c_str(), str.size());

 printf("life = %u\n", gLife);

 Sleep(1000);

 }

 printf("stop\n");

 return 0;

}

You can build the 32-bit version of the TestApplication.cpp and launch it.

Chapter 5 extra teChniques

299

The general algorithm stays the same. We decrement the gLife variable each second

if the “1” key is not pressed. Otherwise, we increment the variable. The new feature is the

TextOutA WinAPI call. It prints the hash symbols in the upper left corner of the screen.

The number of symbols matches the current gLife value.

Why do we change the output function? Our current goal is hooking WinAPI calls.

Before, we have used the printf function, which is provided not by WinAPI but by the C

runtime library, so it is a bad example for demonstrating the hooking techniques. Now

we can capture the gLive value by hooking the TextOutA call. The last parameter of this

function matches it.

If you check the WinAPI documentation, you find that the gdi32.dll library provides

the TextOutA function. Please remember this fact; it is essential for our investigation.

 DLL Import
Before we consider WinAPI hooking techniques, we should learn how an application

interacts with DLL libraries.

When we start an application, the Windows loader reads an executable file into the

process memory. A typical Windows executable file has the PE format. It is the standard

for the file header that contains the necessary information to launch executable code.

The list of required DLLs is a part of this information.

The next step of the Windows loader is searching files of all required DLLs on a disk

drive. It reads these files in the process memory too. Now we face an issue. When the

loader reads DLL modules, it places them on random addresses. This happens because

of the Address Space Load Randomization (ASLR) mechanism (blogs.technet.microsoft.

com/askperf/2008/02/06/ws2008-dynamic-link-library-loader-and-address-space- load-

randomization), which makes Windows resistant to some malware types. Thus, a compiler

cannot hard-code addresses of the called DLL functions in the executable module.

The Import Table solves this issue (sandsprite.com/CodeStuff/Understanding_

imports.html). There is some confusion between Import Table and Thunk Table. Let us

consider them in detail.

Each element of Import Table matches to one required DLL module. The element

contains a name of the module, the OriginalFirstThunk and FirstThunk pointers. The

OriginalFirstThunk points to the first element of the array with ordinal numbers and

names of the imported functions. The FirstThunk points to the first element of the array

(also known as Import Address Table or IAT). The Windows loader overwrites this array

with the actual addresses of the imported functions when loading a DLL. The confusion

Chapter 5 extra teChniques

http://blogs.technet.microsoft.com/askperf/2008/02/06/ws2008-dynamic-link-library-loader-and-address-space-load-randomization
http://blogs.technet.microsoft.com/askperf/2008/02/06/ws2008-dynamic-link-library-loader-and-address-space-load-randomization
http://blogs.technet.microsoft.com/askperf/2008/02/06/ws2008-dynamic-link-library-loader-and-address-space-load-randomization
http://sandsprite.com/CodeStuff/Understanding_imports.html
http://sandsprite.com/CodeStuff/Understanding_imports.html

300

happens because both considered arrays do not contain things that we name thunk. The

thunk is a subroutine that injects an additional calculation to another subroutine. You

can find more details about OriginalFirstThunk and FirstThunk pointers in the article

ntcore.com/files/inject2it.htm.

The Import Table is a part of a PE header. It contains constant metainformation

about imported DLLs. This table together with PE header occupies the read-only

segment of the process memory. The Thunk Table (also known as a Jump Table) is

a part of the executable code. It contains JMP instructions to transfer control to the

imported functions. This table occupies the .text segment (it is read and executable)

together with application code. The Import Address Table occupies the .idata segment

with reading and writing permissions. The .idata segment also contains an array that

is accessible via the OriginalFirstThunk pointer. As you see, all three tables occupy

different segments.

Some compilers generate a code that does not use the Thunk Table. It allows

excluding one extra jump. So, we get a code that is slightly more optimized at runtime.

The MinGW compiler generates code that uses the Thunk Table. Figure 5-1 shows how

an application does the TextOutA call in this case.

Figure 5-1. The TextOutA call from the MinGW compiled application

Chapter 5 extra teChniques

http://ntcore.com/files/inject2it.htm

301

The call happens in the following steps:

 1. A CPU executes the CALL instruction. It puts the return location

to a stack and passes control to the Thunk Table element with the

40839C address.

 2. The Thunk Table element contains the JMP instruction only. The

instruction transfers control to the TextOutA function of the gdi32

module. It uses a record of the Import Address Table to get an

actual address of the function. We can access the table via the

DS segment that points to the .idata segment. This is a sample

calculation of the Import Address Table record address:

DS + 0x278 = 0x422000 + 0x278 = 0x422278

 3. A CPU executes the TextOutA function. The function ends with the

RETN instruction. It passes control to the instruction that comes

next after the CALL in the EXE module. A CPU knows an address of

this instruction because it puts the return location on the stack.

The Visual C++ compiler generates code without the Thunk Table. Figure 5-2

shows the TextOutA call in this case.

The call happens in the following steps:

 1. A CPU executes the CALL instruction. We get an address of the

TextOutA function directly from the Import Address Table record.

 2. A CPU executes the TextOutA function. Then the RETN instruction

passes control back to the EXE module.

Chapter 5 extra teChniques

302

 API Hooking Techniques
A game application interacts with Windows via system DLLs. For example, the DLL can

print text in the game window. So, if we hook the function call that does it, we know this

text. This approach reminds us of an output device capture. However, now we get data

before they come to the device. Some of this data (for example, pictures, text, sounds)

keeps a state of game objects.

If you launch the API Monitor tool (we considered it in Chapter 2), you get a feeling

how API hooking works. The tool prints the hooked calls of a monitored application in

the “Summary” subwindow. We can implement a bot that behaves similarly. Instead of

printing the hooked calls, the bot should simulate player actions.

Now we will consider the most common API hooking techniques with examples.

 Proxy DLL
The first approach to hook WinAPI calls is a substitution of a Windows library. We can

prepare a DLL that looks like the original one for the Windows loader point of view.

Thus, it loads this library into the process memory during application launching. Then,

a game process interacts with the fake DLL in the same way as with the original one.

This approach allows us to execute our code each time when the game process calls any

function of the substituted WinAPI library. These fake libraries are known as proxy DLLs.

Figure 5-2. The TextOutA call from the Visual C++ compiled application

Chapter 5 extra teChniques

303

In most cases, we want to hook several specific WinAPI calls only. All other functions

of the substituted library are not interesting for us. Also, you should remember about one

important requirement: a game process should behave with a proxy DLL in the same

manner as it does with the original library. These two reasons lead us to the idea that the

proxy DLL should route function calls to the original library.

When the process makes a call to the proxy DLL, we can execute our code. It can

simulate player actions or gather the state of the game objects. When this code is done,

we should always call the original WinAPI function that the process asked to execute.

Otherwise, it crashes (in the best case) or gets an inconsistent state (in the worst case).

So, if we do not want to hook some WinAPI function, we should make a

straightforward wrapper for it. The wrapper routes a call to the original Windows library.

It means that we should load this library into the process memory too. Otherwise, our

wrappers cannot call the real WinAPI function.

Figure 5-3 shows how a process calls the TextOutA WinAPI function when we apply

the proxy DLL technique.

Figure 5-3. The TextOutA call via the proxy DLL

The call happens in the following steps:

 1. The Windows loader loads the proxy DLL instead of the original

gdi32.dll library. The loader writes the addresses of the

functions that the proxy DLL exports to the Import Address Table

of the EXE module.

 2. The execution of the EXE module code reaches the CALL

instruction. A CPU uses a record of the Import Address Table

to get the actual function address. Now, this record contains an

address of the function from a proxy DLL. So, the CALL instruction

transfers control to the proxy DLL module.

Chapter 5 extra teChniques

304

 3. The Thunk Table of the proxy DLL module receives control from

the CALL instruction. The addresses of the exported by proxy DLL

functions match the thunks in this table.

 4. The JMP instruction of the thunk passes control to the wrapper of

the TextOutA WinAPI function. The wrapper is in the proxy DLL

module. It contains a code of our bot.

 5. The CALL instruction of the wrapper function passes control to the

original TextOutA function of the gdi32 module when the wrapper

code is finished.

 6. When the wrapper is done, it calls the original TextOutA function.

When it is done, the RETN instruction transfers control back to the

wrapper function.

 7. The RETN instruction at the end of the wrapper passes control back

to the EXE module.

There is one question. How does the proxy DLL know the actual addresses of

the functions that the gdi32 module exports? We cannot ask the Windows loader

to gather these addresses because it supposes that the proxy DLL is the real gdi32

module. Moreover, we should confuse the loader in this way. Let us consider this

question in detail.

All system Windows libraries have specific predefined paths on a disk drive. The

loader knows these paths and searches for the required DLLs there. The first place where

the loader searches is a directory of the launched application. If the required DLL does

not present there, the predefined system paths are used.

What can we do to confuse the searching DLL mechanism of the Windows loader?

We cannot just substitute the system library in the Windows directory. All OS services use

it. This solution can crash the whole system. However, we can force the loader to search

the required library in the application directory first. Thus, we load the proxy DLL.

Now we come to the second question about loading an original library. We can

solve this task in our proxy DLL manually. It can be done via the LoadLibrary WinAPI

function. When we load the library, we should know the actual addresses of its exported

functions. The GetProcAddress WinAPI function solves this task. So, WinAPI provides all

that we need.

Chapter 5 extra teChniques

305

When we use the proxy DLL for hooking WinAPI calls, we get the following

advantages:

• Generating a proxy DLL with existing open source tools is a

simple task.

• We substitute a Windows library for the specific application only.

All other launched applications still use the original libraries.

• Protecting an application against this approach is difficult.

These are disadvantages of the proxy DLL usage:

• You cannot substitute some of core Windows libraries (like

kernel32.dll). This limitation appears because both LoadLibrary

and GetProcAddress functions are provided by the kernel32.dll.

They should be available at the moment when the proxy DLL loads

the original library.

• It is difficult to make wrappers for some WinAPI functions because

they are not documented.

 Example of Proxy DLL
Now we will implement a simple bot that uses the proxy DLL technique. It keeps the

gLife variable value greater than 10. If the value falls below 10, the bot simulates the “1”

keypress. We will embed an algorithm of our bot inside the proxy DLL. So, we will now

consider the steps to make this DLL.

The first step is to generate the source code of the library that contains wrappers for

WinAPI functions. The DLL Wrapper Generator script solves this task.

You should do the following steps to apply the generator:

 1. Copy the 32-bit version of the gdi32.dll library to the directory

with the generator script. You can find the library in the

C:\Windows\system32 path if you have the 32-bit Windows

version. Otherwise, it is located in the C:\Windows\SysWOW64.

 2. Launch the cmd.exe Command Prompt application.

 3. Launch the generator script via the command line:

python Generate_Wrapper.py gdi32.dll

Chapter 5 extra teChniques

306

When the script is done, you get the Visual Studio project with generated wrapper

functions. The generator puts the project in the gdi32 subdirectory.

We work with the 32-bit proxy DLL and 32-bit testapplication to avoid confusion
with versions.

The second step is implementing the bot algorithm in the generated proxy DLL.

To do this, we should apply the following changes to the library:

 1. Open the gdi32 Visual Studio project and answer “OK” in the

“Upgrade VC++ Compiler and Libraries” dialog. Then the Visual

Studio updates the project format according to the new version.

 2. Fix a path to the original gdi32.dll library in the gdi32.cpp

source file. You find this path on line number 10:

mHinstDLL = LoadLibrary("ori_gdi32.dll");

You should specify a path where you took the gdi32.dll library

for the DLL Wrapper Generator script. For 64-bit Windows, it

looks like this:

mHinstDLL = LoadLibrary("C:\\Windows\\SysWOW64\\gdi32.dll");

 3. Substitute the wrapper of the TextOutA function to the

implementation from Listing 5-10.

Listing 5-10. The Wrapper of the TextOutA Function

extern "C" BOOL __stdcall TextOutA_wrapper(

 In HDC hdc,

 In int nXStart,

 In int nYStart,

 In LPCSTR lpString,

 In int cchString

)

{

Chapter 5 extra teChniques

307

 if (cchString < 10)

 {

 INPUT Input = { 0 };

 Input.type = INPUT_KEYBOARD;

 Input.ki.wVk = '1';

 SendInput(1, &Input, sizeof(INPUT));

 }

 typedef BOOL(__stdcall *pS)(HDC, int, int, LPCTSTR, int);

 pS pps = (pS)mProcs[696];

 return pps(hdc, nXStart, nYStart, lpString, cchString);

}

The full version of the gdi32.cpp source file is provided with this book.

Let us remember the code of the TestApplication.cpp file, which calls the TextOutA

function. It helps us to understand better our TextOutA_wrapper implementation.

This is the TextOutA call from the test application:

std::string str(gLife, '#');

TextOutA(GetDC(NULL), 0, 0, str.c_str(), str.size());

A length of the printed string equals the gLife variable. We receive this length in

the last parameter of the TextOutA_wrapper (see Listing 5-10). It is named cchString.

We compare its value with 10. If the comparison fails, we simulate a keypress by the

SendInput WinAPI function. Now the bot algorithm is done. Next, we call the original

TextOutA function. To do so, we use the mProcs array, which contains pointers to all

functions of the original gdi32.dll library. We fill this array in the DllMain function

when the proxy DLL is loaded.

How do we get index 696 of the mProcs array to call the TextOutA function? Let us

look to the TextOutA_wrapper, which the DLL Wrapper Generator made for us:

extern "C" __declspec(naked) void TextOutA_wrapper(){__asm{jmp

mProcs[696*4]}}

You see that we have the number 696 here. However, the original wrapper uses the

696*4 index of the mProcs array.

Chapter 5 extra teChniques

308

Why did we decide to discard the “4” multiplier? This happened because any array

in the assembler is represented as a byte array. Meanwhile, each element of the mProcs

array is a pointer to the function. The pointers have a size of four bytes (or 32 bits) for the

32-bit architecture. So, if we want to access the pointer to the function with the index 696,

we should multiply this index by four. The C++ language knows a type of the mProcs array

elements. When we access this array from the C++, we can use the actual index, 696.

Our proxy DLL library is almost done. The last step is preparing an environment for

using it.

You should perform the following actions:

 1. Build the 32-bit version of the proxy DLL.

 2. Copy the proxy DLL named gdi32.dll to a directory of the

TestApplication.exe executable file.

 3. Add the original gdi32.dll system library to the

ExcludeFromKnownDLL key register. You can do this with the

standard regedit application. The key has the following path:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\

Session Manager\ExcludeFromKnownDlls

 4. Reboot your computer. Then the register change takes effect.

Windows has a protection mechanism (support.microsoft.com/en-us/help/164501/

info-windows-nt-2000-xp-uses-knowndlls-registry-entry-to-find-dlls) that prevents

malware from replacing system libraries. This mechanism stores a list of the most

important libraries in the register. So, the Windows loader will load these libraries from

the predefined system paths only. However, there is a special ExcludeFromKnownDLL

register key, which allows disabling the protection. We add the gdi32.dll library to

this exclude list. Thus, the loader uses a standard search order for this library. It starts

searching from the current directory. Therefore, the proxy DLL will be loaded instead of

the original library.

Now you can launch the TestApplication.exe file. You will see in the console that

the gLife variable does not fall below 10.

Chapter 5 extra teChniques

http://support.microsoft.com/en-us/help/164501/info-windows-nt-2000-xp-uses-knowndlls-registry-entry-to-find-dlls
http://support.microsoft.com/en-us/help/164501/info-windows-nt-2000-xp-uses-knowndlls-registry-entry-to-find-dlls

309

 API Patching
The second approach to hook WinAPI calls is a modification of system functions. The

Windows loader loads a gdi32.dll library (for example) to the process memory. We can

access this memory and patch functions of the gdi32.dll module that we want to hook.

The idea of patching is inserting an assembler instruction that passes control to our

code. The most appropriate place for the function to patch is at its beginning.

There are several ways to overwrite the beginning of the WinAPI function to hook

it. The most common approach is inserting the control transfer assembler instructions

like JMP or CALL. So, when the game process calls a WinAPI function, the added JMP

immediately passes control to our code. When this is done, we should call the original

WinAPI function to do its regular work. However, we have patched the beginning of

this function, and it becomes broken. Thus, we should restore it first and then call it.

Otherwise, we get recursive calls of our code, which lead to stack overflow and game

process crash. When the original function finishes, we should patch its beginning again.

Then we are ready to hook the next function call.

How can we patch the WinAPI function in the process memory? We have considered

ways to change the process memory in the “Example with Diablo 2” section of Chapter 3.

However, when we modify the Diablo 2 process memory, it is the data segment

with reading and writing permissions. Now we want to change a code segment that

has a read-only permission. Fortunately, WinAPI provides the VirtualQuery and

VirtualProtect functions, which can switch permissions of the segments. You can find

examples of their usage on the Internet (forums.codeguru.com/showthread.php?88166-

HOW- TO-WRITE-CODE-SEGMENT-IN-WIN32).

There is another question. If we want to pass control to our code from the patched

WinAPI function, this code should be loaded into the process memory. The game

application does not load it at startup. So, we should do it at runtime. How? We can apply

DLL injection techniques. You can find links to examples of these techniques in the

“Example with Diablo 2” section.

Figure 5-4 shows how we hook the TextOutA WinAPI function with the API patching

technique.

Chapter 5 extra teChniques

http://forums.codeguru.com/showthread.php?88166-HOW-TO-WRITE-CODE-SEGMENT-IN-WIN32
http://forums.codeguru.com/showthread.php?88166-HOW-TO-WRITE-CODE-SEGMENT-IN-WIN32

310

The call happens in the following steps:

 1. We inject our handler.dll module into the target process. When

our code is loaded, it patches the beginning of the TextOutA

WinAPI function in the gdi32.dll module.

 2. Execution of the EXE module reaches the CALL instruction. A CPU

uses Import Address Table to retrieve an address of the TextOutA

function. Then, the CALL instruction passes control to the gdi32.dll

module.

 3. Because of our patch, the first JMP instruction of the TextOutA

function passes control to the handler.dll module.

 4. The handler.dll module performs our code and then calls the

original TextOutA function.

 5. The RETN instruction at the end of our handler function passes

control back to the EXE module.

You will probably notice that the TextOutA function returns control to our handler

function. This happens because we call it with the CALL instruction. That is a reason

why our code returns directly to the EXE module.

When you apply the API patching technique, you get the following advantages:

• You can hook calls from the Windows core libraries (like kernel32.dll).

• There are several frameworks that automate the low-level tasks

(injecting a handler module and patching WinAPI functions).

Figure 5-4. The TextOutA call after applying the API patching

Chapter 5 extra teChniques

311

API patching approach has several disadvantages:

• The size of any hooked function should be greater than five bytes.

Otherwise, we cannot patch the beginning of the function with the

JMP instruction.

• Implementing this technique on your own is difficult. You should pay

attention to avoid infinite recursive calls.

• This technique is not reliable for multithread applications. We cannot

hook the target WinAPI function until the handler module processes

its previous call. This happens because the beginning of the function

is restored at this moment.

 Example of API Patching
Now we will develop a bot that uses the API patching technique. The algorithm of the bot

is the same as we have applied for considering the proxy DLL approach. We will use the

Deviare hooking framework for this task.

First of all, let us review features of Deviare. The framework distribution contains

several sample applications. They demonstrate typical use cases of Deviare. There is one

sample application named CTest. It hooks WinAPI calls and logs them in the text file. We

will take it as a basis for our bot. The application implements mechanisms for patching

WinAPI functions and loading the handler module to the target process memory. All that

we should do is to add the algorithm of our bot to this application.

Let us launch the CTest with the TestApplication and check how they work together.

You should do the following steps:

 1. Download the release binaries (github.com/nektra/Deviare2/

releases/download/v2.8.0/Deviare.2.8.0.zip) of the Deviare

framework. Unpack this archive to the deviare-bin directory.

 2. Copy the TestApplication.exe file to the deviare-bin directory.

Chapter 5 extra teChniques

http://github.com/nektra/Deviare2/releases/download/v2.8.0/Deviare.2.8.0.zip
http://github.com/nektra/Deviare2/releases/download/v2.8.0/Deviare.2.8.0.zip

312

 3. Open the ctest.hooks.xml file in the deviare-bin directory. The file

contains configuration for the CTest application. Here we should add

the WinAPI functions that we want to hook. Append the TextOutA

function into this list between the <hooks> and </hooks> tags:

<hook name="TextOutA">gdi32.dll!TextOutA</hook>

 4. Launch the CTest application with the following command-line

parameters:

CTest.exe exec TestApplication.exe -log=out.txt

The exec parameter means that CTest launches the specified executable file and

attaches to it. The -log parameter allows us to specify the log file. You can use the

standard cmd.exe Windows utility to launch an application with parameters.

After launching, you see two windows: CTest and TestApplication. The gLife

variable is decreasing until 0 in the TestApplication window. When it happens, you can

stop the CTest application by the Ctrl+C keypress.

The out.txt log file stores all hooked calls that the TestApplication did. If you open

the file, you find the following lines:

CNktDvEngine::CreateHook (gdi32.dll!TextOutA) => 00000000

...

21442072: Hook state change [2500]: gdi32.dll!TextOutA -> Activating

...

21442306: LoadLibrary [2500]: C:\Windows\System32\gdi32.dll / Mod=00000003

...

21442852: Hook state change [2500]: gdi32.dll!TextOutA -> Active

This means that the CTest patches TextOutA WinAPI function and installs a hook for

it successfully. You can scroll down the file and find details about each hooked TextOutA

call. This is an example:

21442852: Hook called [2500/2816 - 1]: gdi32.dll!TextOutA (PreCall)

 [KT:15.600100ms / UT:0.000000ms / CC:42258224]

21442852: Parameters:

 HDC hdc [0x002DFA60] "1795229328" (unsigned dword)

 long x [0x002DFA64] "0" (signed dword)

 long y [0x002DFA68] "0" (signed dword)

Chapter 5 extra teChniques

313

 LPCSTR lpString [0x002DFA6C] "#" (ansi-string)

 long c [0x002DFA70] "19" (signed dword)

21442852: Custom parameters:

21442852: Stack trace:

21442852: 1) TestApplication.exe + 0x00014A91

21442852: 2) TestApplication.exe + 0x0001537E

21442852: 3) TestApplication.exe + 0x000151E0

21442852: 4) TestApplication.exe + 0x0001507D

You see that Deviare retrieves information about the types and values of the function

parameters. This is enough for our bot. Also, Deviare detects the exact time of the

hooked call and the full stack trace. Sometimes we want to process only calls that were

done from the specific places of the target process. In this case, the stack state can help

us to distinguish the right call.

Now we are ready to adopt the CTest for our purposes. We want to implement the

following algorithm: when we hook the TextOutA call, we simulate the “1” keypress in

case the gLife variable is below 10.

You should open the Visual Studio project of the CTest application in the Deviare

sources (github.com/nektra/Deviare2/archive/v2.8.0.zip). It has the Samples\C\Test\

CTest.sln path.

The MySpyMgr.cpp file contains the algorithm for processing hooked functions. You

should find the CMySpyMgr::OnFunctionCalled method in this file. Deviare calls this

method before passing control to the hooked WinAPI function. It contains calls to the

LogPrint function, which prints gathered information to the log file.

We implement an algorithm of our bot in the CMySpyMgr::OnFunctionCalled

method. I suggest making a separate function for this algorithm and then calling it from

the CmySpyMgr::OnFunctionCalled.

Our function should process the last parameter of the TextOutA WinAPI function. As

you remember, this parameter contains a string length that matches the gLife value.

Listing 5-11 demonstrates the ProcessParam function, which implements the bot

algorithm:

Listing 5-11. The ProcessParam Function

VOID ProcessParam(__in Deviare2::INktParam *lpParam)

{

 CComBSTR cBstrTypeName, cBstrName;

Chapter 5 extra teChniques

http://github.com/nektra/Deviare2/archive/v2.8.0.zip

314

 lpParam->get_Name(&cBstrName);

 unsigned long val = 0;

 HRESULT hRes = lpParam->get_ULongVal(&val);

 if (FAILED(hRes))

 return;

 wprintf(L"ProcessParam() - name = %s value = %u\n", (BSTR)cBstrName,

(unsigned int)(val));

 if (val < 10)

 {

 INPUT Input = { 0 };

 Input.type = INPUT_KEYBOARD;

 Input.ki.wVk = '1';

 SendInput(1, &Input, sizeof(INPUT));

 }

}

These are the steps of our algorithm:

 1. Read a parameter value with the get_ULongVal method. If this

read fails, we return from the ProcessParam function.

 2. Print a name of the parameter and its value. We need this step for

debugging.

 3. Check the parameter value. Simulate the “1” keypress if the value

is less than 10.

Now we should add a call of the ProcessParam function from the

CMySpyMgr::OnFunctionCalled method. You can find these lines in the method:

 if (sCmdLineParams.bAsyncCallbacks == FALSE &&

 SUCCEEDED(callInfo->Params(&cParameters)))

 {

 LogPrint(L" Parameters:\n");

Chapter 5 extra teChniques

315

You can find this “ Parameters:” output in the log file. This means that the CTest

application analyzes the parameters of the hooked function in this place of the code. So,

we should call our ProcessParam function here:

if (sCmdLineParams.bAsyncCallbacks == FALSE &&

 SUCCEEDED(callInfo->Params(&cParameters)))

{

 if (SUCCEEDED(cParameters->GetAt(4, &cParam)))

 ProcessParam(cParam);

 LogPrint(L" Parameters:\n");

We check the presence of the required parameter with the if condition and GetAt

method. If the check succeeds, we call the ProcessParam function.

The first argument of the GetAt method is a parameter number of the hooked function.

Do not forget that the count of function parameters starts from 0.

The second argument of the GetAt is an object to store the retrieved parameter. You

can find the resulting MySpyMgr.cpp file in the code bundle of this book.

Now we build the patched version of the CTest application. You can find the resulting

executable file in the bin directory of the Deviare source tree.

These are the steps to launch CTest and TestApplication together:

 1. Copy the resulting CTest.exe file to the deviare-bin directory.

As you remember, we store the Deviare binaries there.

 2. Copy the TestApplication.exe file to the deviare-bin directory.

 3. Launch the CTest application:

CTest.exe exec TestApplication.exe -log=out.txt

Chapter 5 extra teChniques

316

You will see windows of CTest and TestApplication, as Figure 5-5 shows.

Figure 5-5. API hooking with the Deviare framework

We can monitor a current gLife value in the TestApplication window. The CTest

console prints the same value that was read from the hooked TextOutA function

parameter. If the gLife variable falls below 10, our bot presses the “1” key and increases it.

Chapter 5 extra teChniques

317

 OS-Level Interception Data Summary
We have considered two powerful approaches to capture game data on the OS-level.

They allow you to get the same precise information about a state of the game objects

as analysis of game process memory. However, the OS-level data capture has several

advantages:

 1. Most of the well known antidebugging techniques do not help in

this case.

 2. It is much simpler to write several hooks for WinAPI calls of game

application than to analyze its memory.

 3. It is difficult to detect the OS-level data capture for game

protection systems.

Also, WinAPI hooking can help with debugging and game process memory analysis

a lot. It provides some extra information that can confirm or refute your assumptions

about game internals.

You can learn about other hooking approaches in this article: www.woodmann.com/

yates/SystemHooking/apispy.htm.

Chapter 5 extra teChniques

http://www.woodmann.com/yates/SystemHooking/apispy.htm
http://www.woodmann.com/yates/SystemHooking/apispy.htm

319
© Ilya Shpigor 2018
I. Shpigor, Practical Video Game Bots, https://doi.org/10.1007/978-1-4842-3736-6

Index

A
Address Resolution Protocol (ARP), 215
AES Cipher, 199

AesTest.py script, 264–265
AesUdpReceiver.py script, 266
AesUdpSender.py script, 265
approach, 267
brute-force attack, 266
PyCrypto and PyCryptodome

libraries, 264
Application Programming Interface (API)

hooking techniques
API patching

advantages, 310
algorithm, 314
CTest and TestApplication, 311, 315
Deviare framework, 316
disadvantages, 311
GetAt method, 315
MySpyMgr.cpp file, 313
out.txt log file, 312
ProcessParam function, 313, 315
steps, 310
TextOutA WinAPI

function, 309, 312
VirtualQuery and VirtualProtect

functions, 309
WinAPI, 309

monitor tool, 302

Monitor v2, 19
proxy DLL, 302

AutoHotKey language, 18
AutoIt analysis functions

co-ordinate modes, 38
hexadecimal representation, 39
pixels changing, 42
programming languages, 18
specific pixel, 38
StretchBlt function, 44

B
Bots

community classification, 7
comparison

community and developer, 13
compiler execution, 14
in-game, 13
input device, 15
memory, 14
network, 14
OS libraries, 15
out-game, 13
output device, 14
parameters, 13

data embedding, 12
developer classification, 9
game application, 3
in-game bot, 7

https://doi.org/10.1007/978-1-4842-3736-6

320

out-game bots, 8
purpose of

cheats and hacks, 2
deathmatch, 1
FPS games, 1
MMORPG games, 2
video game evolution, 1

types of, 7

C
Cheat Engine, 97
Cipher Block Chaining (CBC), 261
Clicker bots

developer tools
analysis tool, 19
API hooking, 19
image processing

methods, 17–18
programming languages, 18
source code editors, 19

embedded system (see Embedded
system/operating system)

Lineage 2 (see Lineage 2 game)
output device capture

AutoIt, 38
FastFind library, 46
GDI windows, 36
ImageSearch library, 54
output, 56

protection system
actions, 72
algorithm, 94
client-side part, 70
keyboard state check, 89
process scanner, 81
server-side part, 70

steps, 70
test application, 71

CloseHandle function
DebugBreak, 185
debugger detection, 184
demonstrates, 185
try-except statement, 185–186

ColorPix, 19
CreateProcess function

algorithm, 189
inter-process communication, 190
parent and child processes, 188
possibilities, 186
SelfDebugging.cpp application, 187

Cryptographic system, 252

D
Data Encryption Standard (DES), 259
Debugger, 96
Device Depended Bitmap (DDB), 37
Device Independent Bitmap (DIB), 44
Diablo 2 game

bot implementation, 160
AutohpBot.cpp source file, 166
character object, 161
details, 160
game process, 160
GetForegroundWindow, 161
GetWindowThreadProcessId

function, 161
health parameter, 164
IsArrayMatch function, 164
PostMessage function, 166
ScanSegments function, 163–164

bot overview, 145
advantages and disadvantages, 170
approach, 168

Bots (cont.)

Index

321

articles, 169
hotkey panel, 167
keyIndex variable, 168
process memory, 168
UsePotion function, 169
WriteWord function, 169

game window, 142–143
memory analysis, 146

artifacts, 147
experience points, 147
object, 154
parameters, 146
stamina value, 147
windowed mode, 146

player parameter window, 144
PostMessage function, 168

Discretionary access control list
(DACL), 197

Dynamic-link libraries (DLL), 99

E
Embedded system/operating system

HAL, 22
high-level subroutines, 22
kernel, 22
keyboard stroke simulation, 23

active window, 23
AutoIt function, 25
inactive window, 28

mouse simulation
active window, 32
inactive window, 34

Native API, 22
simulate actions, 36
Win32 application, 22
Windows resources via

system API, 21

F
FastFind library, 18

AutoIt script, 46
C++ application, 47
explicit library linking, 48
FFBestSpot.au3 script, 50
FFLocalizeChanges.au3 script, 51–52
FFLocalizeChanges function, 53
FFSnapShot function, 53
implicit library linking, 48
MMORPG game Lineage 2, 49
parameters of (FFBestSpot

function), 50
screenshot, 49
script, 52
SnapShots abstraction, 52
test.cpp source file, 47

First-person shooter (FPS) games, 1

G
Game application

algorithm, 5
client application, 4
client-server architecture, 5
computing processes, 3
elements of, 3
input device, 4
memory sandbox, 3
operating system, 3
output device, 5
single mode, 6

Graphics Device Interface (GDI)
bitmap, 37
concepts, 36
device contexts, 36
graphical objects and

devices, 37

Index

322

H
Hardware abstraction layer (HAL), 22
Heap access, 139

CreateToolhelp32Snapshot, 140
Heap32ListFirst, 140
Heap32ListNext, 140
HeapTraverse.cpp application, 140
ListProcessHeaps function, 141

HeapMemView freeware, 97
Human Interface Device (HID), 278
Hypertext Transfer Protocol

(HTTP), 221

I, J
ImageSearch library, 18

AutoIt script, 54
ImageSearch function, 55
Notepad icon, 54
Search.au3 script, 54
steps, 55

In-game bots
access

current process, 125
heap access, 139
open process, 117
read and write operations, 121
target process, 133
TEB and PEB access, 124

approaches against bots
AES cipher, 199
check correctness, 204
CheckHash function, 206
hashing, 204
hide game data, 197
protection algorithm, 197
security descriptors, 197
XOR cipher, 198

debugger, 96
Diablo 2 (see Diablo 2 game)
memory analyzing tools, 97
process memory analysis

base address, 99
32-bit application, 107
64-bit application, 113
blocks/segments, 99
components, 98
control flow, 106
heap segments, 100
launched process (ending), 104
layout, 100
linear address, 106
machine code, 97
memory map, 103
memory segmentation model, 106
OllyDbg and WinDbg

debuggers, 117
overview, 97
process address space, 102
random-access memory, 98
real process, 105
runtime, 98
segment and description, 101
stack segment, 100
static libraries, 99
thread, 99
type system encode, 98
variable offsets, 106
variable searching algorithm, 106

programming language, 95
protection methods

approaches against bots, 197
CloseHandle, 184
CreateProcess, 186
IsDebuggerPresent, 178
register manipulations, 190

Index

323

test application, 171
use of, 171

register manipulations
BeingDebugged.cpp application, 193
debugger via checking registers, 191
__forceinline keyword, 192
inline assembler, 190
Int3.cpp file, 197
IsDebug function, 196
IsDebuggerPresent

function, 190–191, 195
OllyDbg, 194
preprocessor macro, 193

test application
algorithm, 172
analysis of, 173
bot actions, 175
main function, 174
memory map, 175
physical storage, 178
segment flags, 177
SimpleBot.cpp application, 175
steps, 173
TestApplication.cpp code, 172

tools, 95
Initialization vector (IV), 261
Input device emulation

drivers directory, 275–276
emulate keyboard and mouse

action codes, 291
ControlKeyboardMouse.au3

script, 294, 296
keyboard-mouse.ino application, 291
readBytes method, 293
readBytesUntil method, 293
read method, 294
SendArduinoMouse function, 296

hardware features, 275

IDE, 276
installation process, 276
keyboard

application and script, 277
architecture, 276–277
Arduino board, 277
CommAPI files, 279
ControlKeyboard.au3 script, 279
HID compatible protocol, 278
keyboard.ino application, 277
loop function, 278
OpenPort function, 281
script, 281
SendArduino function, 282

modifier keys
bytes, 283
ControlKeyboardCombo.au3

script, 284
keyboard-combo.ino application, 282
loop function, 284

mouse device
Arduino IDE version, 285
ControlMouse.au3 script, 289
current cursor position, 285
descriptor, 286
formula symbols, 288
_hidReportDescriptor array, 286
loop function, 288
Mouse.cpp file, 286
mouse.ino application, 286

tools, 275
Internet protocols

communication tasks
ARP tools, 215
local networks, 215
MAC address, 214
network hosts, 213
network packet, 213, 216

Index

324

network switch, 214
OSI model, 217
ports, 216
protocol meaning, 215
router/gateway, 215
stack of protocol, 216
wireless connections (WiFi), 216

NetChess (see NetChess application)
packet analysis, 221
packet capture

active network adapters, 226
capture data packet, 230
display filter expression dialog, 228
steps, 226, 232
TCP packets, 231
test application, 227
TestTcpSender.py script, 230
three-way handshake, 229

TCP/IP stack
Cerf, Vinton, 217
Ethernet, 220
fragmentation, 220
Internet layer, 220
IPv4 protocol, 220
Kahn, Robert, 217
layers, 218
OSI model, 218
topmost layer, 221
transport layer, 220
user datagram protocol, 220
Wireshark window, 219

test application
algorithm, 221–222
IPv4 and TCP protocols, 224
listen method, 224
loopback interface, 225
network socket/socket, 222

parameters, 224
Python scripts, 222
settimeout method, 225
TestTcpReceiver.py script, 223
TestTcpSender.py script, 222,

224–225
UDP connection, 233

algorithm, 233
bytes, 235
recv method, 234
settimeout method, 234
TestUdpReceiver.py script, 234–235

IsDebuggerPresent function
algorithm, 180
assemble dialog, 182
binary file, 183
CheckRemoteDebuggerPresent

function, 184
EAX dialog modification, 181
JE instruction, 182
JNE instruction, 183
OllyDbg plug-ins, 183
OllyDumpEx, 183
source code, 178
steps, 181
WinAPI function, 179

K
Kernel memory, 102

L
Lineage 2 game

advantages, 69
blind bot

BlindBot.au3 script, 60
BlindBotFunc.au3 script, 62
hotkeys, 60

Internet protocols (cont.)

Index

325

shortcut panel, 59
/target command, 61
while loop, 61

bot implementation, 58
algorithm, 58
blind bot, 59
bot with conditions, 63
improvements, 67

bot with conditions
AnalysisBot.au3 script, 65
Attack functions, 66
FFBestSpot function, 63
IsTargetExist function, 64
LogWrite Function, 63
SelectTarget functions, 66
tracing, 63

disadvantages, 69
farming, 56
improvements

aggressive monsters, 67
Attack and Move functions, 68
IsTargetExist function, 69
pseudorandom numbers, 69
SelectTarget function, 67

interface, 57
overview, 56
Rpg-Club server, 58

M
Massively multiplayer online role-playing

games (MMORPGs), 1

N
NetChess application

accept dialog, 238
advantages and disadvantages, 251

benefits, 251
bot implementation, 247
bot overview, 239
client configuration dialog, 237
connection confirmation, 238
server and client, 236
server configuration dialog, 237
StartGameBot.py script, 247
steps, 236
traffic analysis, 239
window, 235–236

O
OllyDbg debugger, 96
Open Systems Interconnection (OSI)

model, 217
Operating system (OS), see Embedded

system/operating system
Optimal Asymmetric Encryption Padding

(OAEP), 269
OS-level interception data, 297

advantages, 317
Deviare, 297
DLL import, 299
DLL Wrapper Generator, 297
test application, 298
tools, 297

Out-game bots
internet protocols (see Internet

protocols)
cryptographic library, 209
installation variants, 211
modules, 209
PyCryptodome library, 210
PyCrypto library, 210

network analyzer, 211
protection approaches, 252

Index

326

AES cipher, 264
cryptographic system, 252
decryption, 255
detection, 273
encryption, 252, 255
RSA cipher, 267
test application, 253
TestStringUdpSender.py script, 253
Triple DES cipher, 259
XOR cipher, 254
XorCrack.py script, 258
XorTest.py script, 255
XorUdpReceiver.py script, 256
XorUdpSender.py script, 256

Python language, 209
tools, 209
windows configuration, 211–212

P, Q
Process Environment Block (PEB), 102
Process identifier (PID), 117
Process memory

access
current process, 125
heap access, 139
open process, 117–121
read and write operations, 121
target process algorithm, 118, 133
TEB and PEB access, 124

base address, 99
32-bit application

algorithm, 112
Cheat Engine scanner, 108
Cheat Engine window, 109
ColorPix window, 107
memory map, 111

OllyDbg debugger, 110
process list dialog, 108
segment, 110
stages, 108
subtraction, 112
TEB dump, 113

64-bit application
attach to process dialog, 115
memory map, 116
resource monitor process, 117
WinDbg, 114
window (resource monitor), 114

components, 98
current process

compiler intrinsics, 127
descriptor table, 126
GetTeb function, 125, 127
NtCurrentTeb function, 129
ntdll.lib file, 132
NtQueryInformationThread, 130
NT_TIB structure, 128
portable version, 128
pragma directive, 132
protected processor mode, 126
segment addressing, 126
TEB structure, 126
WinAPI Function, 131
winternal.h header file, 126

heap segments, 100
launched process (ending), 104
machine code, 97
memory blocks/segments, 99
OllyDbg and WinDbg debuggers, 117
overview, 97
process address space, 102
random-access memory, 98
real process, 105
runtime, 98

Out-game bots (cont.)

Index

327

segment and description, 101
stack segment, 100
static libraries, 99
target process

application, 133
console output, 135
CreateToolhelp32Snapshot, 136
ListProcessThreads function, 138
OpenProcessToken functions, 135
SetPrivilege functions, 135
TebPebMirror.cpp application, 133,

135, 139
TebPebTraverse.cpp

application, 136
Thread32First, 136
Thread32Next, 136, 139

type system encode, 98
thread, 99

Protection system
algorithm, 94
keystrokes, 89

InitKeyHooks function, 91
KeyboardCheckProtection.au3

script, 90
_KeyHandler procedure, 92
LLKHF_INJECTED flag, 92
virtual device drivers, 92
VirtualMachineBot.au3 script, 93
WinAPI, 92

process scanner
AutoHotKey compiler window, 84
HT editor, 88–89
interpreter, 82
Md5ScanProtection.au3 script, 85
modules, 86
ProcessList function, 82, 86
ProcessScanProtection.au3

Script, 81

ScanProcess function, 86
SimpleBot.ahk script, 83
SimpleBot.au3 script, 82
SimpleBot.exe and AutoHotKey.exe

files, 86
steps, 83

Proxy DLL
actions, 308
advantages, 305
bot algorithm, 306
disadvantages, 305
gdi32 subdirectory, 306
steps of, 303
TextOutA function, 303, 306
WinAPI, 302

Python language
cryptographic library, 209
installation variants, 211
modules, 209
PyCryptodome library, 210
PyCrypto library, 210

R
Random-access memory (RAM), 98
Read and write operations, 121
Role-playing game (RPG), 2
RSA cipher

chosen-plaintext attack, 269
game client, 267
importKey function, 271
PyCrypto and PyCryptodome

libraries, 268
RsaOaepTest.py script, 269
RsaTest.py script, 268
RsaUdpReceiver.py script, 271
RsaUdpSender.py script, 270
session key, 272

Index

328

S
SciTE editor, 19
Static libraries, 99
Structured Exception

Handling (SEH), 185

T
Thread Environment Block

(TEB), 101
Thread Information Block

(TIB), 101
Transmission Control

Protocol (TCP), 220
Triple DES (3DES)

algorithm, 259
attacker, 260
3DesTest.py script, 260
3DesUdpReceiver.py script, 263
3DesUdpSender.py script, 262
input parameters, 261
meet-in-the-middle attack, 260
random module, 261

U
Uniform Resource Locator (URL), 221
User Datagram Protocol (UDP), 220

V
Virtual device drivers, 93
Virtual machine (VM), 10

W
WinAPI functions, 19
Win32 application, 22
WinDbg freeware, 96
Windows Application Programming

Interface (API), 21
Wireless connections (WiFi), 216
World Wide Web (WWW), 221

X, Y, Z
x64dbg debugger, 96
XOR cipher, 198, 254

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Introduction
	Chapter 1: Overview of Bots
	Purpose of Bots
	Game Application
	Types of Bots
	Community Classification
	Developer Classification
	Bot Comparison

	Summary

	Chapter 2: Clicker Bots
	Developer Tools
	Programming Language
	Image Processing Libraries
	Image Analysis Tool
	Source Code Editors
	API Hooking

	OS-Level Data Embedding
	Keystroke Simulation
	Keystroke in Active Window
	AutoIt Send Function Internals
	Keystroke in Inactive Window

	Mouse Simulation
	Mouse Actions in Active Window
	Mouse Actions in Inactive Window

	OS-Level Data Embedding Summary

	Output Device Capture
	Windows Graphics Device Interface
	AutoIt Analysis Functions
	Analysis of Specific Pixel
	Analysis of Pixels Changing

	Advanced Image Analysis Libraries
	FastFind Library
	ImageSearch Library

	Capturing Output Device Summary

	Example with Lineage 2
	Lineage 2 Overview
	Bot Implementation
	The Blind Bot
	The Bot with Conditions
	Further Improvements

	Lineage 2 Summary

	Protection Approaches
	Test Application
	Analysis of Actions
	Process Scanner
	Keyboard State Check
	Protection Summary

	Chapter 3: In-game Bots
	Tools
	Programming Language
	Debugger
	Memory Analyzing Tools

	Process Memory Analysis
	Process Memory Overview
	Variable Searching
	32-Bit Application Analysis
	64-Bit Application Analysis

	Process Memory Analysis Summary

	Process Memory Access
	Open Process
	Read and Write Operations
	TEB and PEB Access
	Current Process
	Target Process

	Heap Access
	Process Memory Access Summary

	Example with Diablo 2
	Bot Overview
	Diablo 2 Memory Analysis
	Search the Parameters
	Search the Object

	Bot Implementation
	Further Improvements
	Example Summary

	Protection Approaches
	Test Application
	Analysis of Test Application
	The Bot for Test Application

	Approaches Against Analysis
	WinAPI for Debugger Detection
	IsDebuggerPresent
	CloseHandle
	CreateProcess

	Register Manipulations for Debugger Detection

	Approaches Against Bots
	Hiding Game Data
	XOR Cipher
	AES Cipher
	Check Correctness of Game Data

	Protection Approaches Summary

	Chapter 4: Out-game Bots
	Tools
	Programming Language
	Network Analyzer
	Windows Configuration

	Internet Protocols
	Communication Tasks
	TCP/IP Stack
	Packet Analysis
	Test Application
	Packet Capture
	UDP Connection
	Example with NetChess
	Bot Overview
	NetChess Traffic Analysis
	Bot Implementation
	Assessing the Bot

	Protection Approaches
	Cryptographic System
	Test Application
	XOR Cipher
	Triple DES Cipher
	AES Cipher
	RSA Cipher
	Detecting Out-game Bots

	Chapter 5: Extra Techniques
	Input Device Emulation
	Input Device Emulation Tools
	Keyboard Emulation
	Keyboard Modifiers
	Mouse Emulation
	Keyboard and Mouse Emulation
	Input Device Emulation Summary

	OS-Level Interception Data
	OS-Level Interception Data Tools
	Test Application
	DLL Import

	API Hooking Techniques
	Proxy DLL
	Example of Proxy DLL
	API Patching
	Example of API Patching

	OS-Level Interception Data Summary

	Index

