
this print for content only—size & color not accurate spine = 0.983" 520 page count

EMPOWERING PRODUCTIVITY FOR THE JAVA™ DEVELOPER

Pro NetBeans™ IDE 6
Rich Client Platform Edition
Dear Reader,

Today, numerous open source and commercial Java™ Integrated Development
Environments (IDEs) are available. It seems that almost every month one of
them comes out in a new version, claiming to be the best IDE. Making the decision to
migrate to a new IDE can be a big deal for some developers. This is especially true
in professional software organizations that have an investment in IDE plugins,
code-quality and build tools, and established development processes that can all
be affected by changing IDEs. If you or your organization have not yet switched
to use NetBeans™ IDE platform, then the recent release of NetBeans IDE 6.0
will make you want to do so.

NetBeans 6 provides an amazing development environment. The NetBeans 6
Source Editor is arguably one of the most important features of an IDE, since that
is where developers spend a great deal of time. Through the newly rewritten core
architecture, the NetBeans 6 Source Editor provides extremely intelligent and
powerful features such as code completion, syntax highlighting, and refactoring.

NetBeans 6 has not only an updated code editor, but also many new features,
such as Ruby/Rails support, Maven support, JUnit 4 support, and Local History,
among others. Updated tools and features include the bundled Profiler, better
debugging, tight integration between VCS tools and the Local History, and too
many others to mention. I wrote this book to provide an overview of all these
features.

After reading this volume, you will understand how to use the NetBeans IDE
effectively for software development. It will help you save time, make you more
productive, and introduce some fun into developing software applications with
NetBeans. Enjoy reading Pro NetBeans IDE 6 Rich Client Platform Edition, and
look forward to using the amazing NetBeans IDE to develop rapidly your own
Java applications.

Warmest regards,

Adam Myatt

Author of

Pro NetBeans™ IDE 5.5
Enterprise Edition

US $ 49.99

Shelve in
Java Programming

User level:
Intermediate–Advanced

M
yatt

NetBeans
™ IDE 6

THE EXPERT’s VOICE® IN JAVA™ TECHNOLOGY

Pro
NetBeans™ IDE 6
Rich Client Platform Edition

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

Adam Myatt
with Brian Leonard and Geertjan Wielenga
of NetBeans.org

Companion
eBook Available

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-895-5
ISBN-10: 1-59059-895-4

9 781590 598955

54999

Leverage the open source NetBeans™
IDE platform to build powerful rich
client/internet applications.

RElAtED tItlE

Includes new
NetBeans™

(J)Ruby/Rails IDE

Includes new
NetBeans™

(J)Ruby/Rails IDEPro

Rich Client
Platform

 Edition

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Adam Myatt
with Brian Leonard and Geertjan Wielenga

Pro NetBeans™ IDE 6
Rich Client Platform
Edition

8954FM.qxp 1/28/08 11:44 AM Page i

www.allitebooks.com

http://www.allitebooks.org

Pro NetBeans™ IDE 6 Rich Client Platform Edition

Copyright © 2008 by Adam Myatt

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-895-5

ISBN-10 (pbk): 1-59059-895-4

ISBN-13 (electronic): 978-1-4302-0439-8

ISBN-10 (electronic): 1-4302-0439-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Technical Reviewer: Sumit Pal
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan

Gennick, Kevin Goff, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann, Ben Renow-
Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Elliot Simon
Associate Production Director: Kari Brooks-Copony
Production Editor: Jill Ellis
Compositor: Lynn L’Heureux
Proofreader: April Eddy
Indexer: Carol Burbo
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

8954FM.qxp 1/28/08 11:44 AM Page ii

www.allitebooks.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.allitebooks.org

To my wonderful wife, Morgan, for her love and support

8954FM.qxp 1/28/08 11:44 AM Page iii

www.allitebooks.com

http://www.allitebooks.org

8954FM.qxp 1/28/08 11:44 AM Page iv

Contents at a Glance

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Preface . xxiii

■CHAPTER 1 Downloading, Installing, and Customizing NetBeans 1

■CHAPTER 2 The Source Editor . 25

■CHAPTER 3 Code Completion and Templates . 53

■CHAPTER 4 Debugging . 73

■CHAPTER 5 Profiling . 103

■CHAPTER 6 Managing Version Control . 143

■CHAPTER 7 Generating and Accessing Javadoc . 169

■CHAPTER 8 Managing Builds with Ant and Maven 183

■CHAPTER 9 JUnit Testing . 203

■CHAPTER 10 Refactoring . 217

■CHAPTER 11 Code-Quality Tools . 241

■CHAPTER 12 Developing JRuby/Ruby on Rails Applications 269

■CHAPTER 13 Developing Web Applications . 299

■CHAPTER 14 Developing Web Services: JAX-WS, SOA, BPEL,
and RESTful . 359

■CHAPTER 15 Developing GUI Applications . 403

■CHAPTER 16 Developing Rich Client Applications . 445

■INDEX . 475

v

8954FM.qxp 1/28/08 11:44 AM Page v

8954FM.qxp 1/28/08 11:44 AM Page vi

2ca983ba3745582e6151dc1b079b2db0

Contents

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Preface . xxiii

■CHAPTER 1 Downloading, Installing, and Customizing NetBeans 1

Downloading Files . 1

Installing the NetBeans IDE . 2

Customizing the NetBeans JVM Startup Options . 5

Managing Plugins and Updates . 5

Using the Plugin Manager . 6

Setting a Proxy . 10

Customizing the IDE . 11

Setting the Internal Web Browser . 11

Setting Code Editor Indentation . 11

Choosing Fonts and Colors . 15

Configuring Keymaps . 17

Setting Advanced Options . 18

Navigating and Understanding the IDE Layout . 21

Initial Layout . 21

Windows . 22

Summary . 24

■CHAPTER 2 The Source Editor . 25

Working in the Projects Window . 25

Source Packages . 25

Test Packages . 26

Libraries . 27

Test Libraries . 27

Working in the Files Window . 27

Arranging and Navigating . 27

Arranging Files in the Source Editor . 28

Navigating Files in the Source Editor . 29
vii

8954FM.qxp 1/28/08 11:44 AM Page vii

Working in the Source Editor . 30

Opening Files . 30

Line Numbers . 30

Code Folding . 30

Current-Line Highlighting . 31

Syntax and Error Highlighting . 31

Annotation Glyphs and the Error Stripe . 32

Code Indentation . 36

Identifying Starting and Ending Braces . 38

Identifying Unused Imports . 39

Source Editor Menus . 39

Context Menus . 39

Editor Menu (Toolbar) . 44

Source Editor Shortcuts . 46

Supporting Features and Tools . 47

Macros . 47

Component Palette . 49

Summary . 52

■CHAPTER 3 Code Completion and Templates . 53

Code Completion . 53

Configuring Code Completion . 53

Using Code Completion . 57

Packages (Imports) . 57

Methods . 58

Class Members . 58

Constructors . 59

super and this . 60

The new Operator . 60

Code Templates . 62

Using Code Templates . 62

Customizing Templates . 63

File Templates . 67

Using File Templates . 67

Working with File Templates . 68

Adding and Creating Templates . 70

Summary . 71

■CONTENTSviii

8954FM.qxp 1/28/08 11:44 AM Page viii

■CHAPTER 4 Debugging . 73

What Is IDE Debugging? . 74

Project-Level Debugging Settings . 74

Breakpoints . 76

Adding a Breakpoint . 76

Disabling Breakpoints . 83

Deleting Breakpoints . 83

Customizing Breakpoints . 83

Breakpoints Window . 84

Grouping Breakpoints . 85

Debugging Java Code . 86

Starting a Project Debug Session . 86

Starting a File Debug Session . 87

Stopping a Debug Session . 87

Stepping Through Code . 88

Step Into . 89

Step Out . 90

Step Over . 91

Step Over Expression . 92

Run to Cursor . 93

Run Into Method . 94

Evaluate Expression . 95

Debugging with Watches . 97

Local Variables Window . 99

Summary . 101

■CHAPTER 5 Profiling . 103

Configuring Profiler Properties . 103

Profiler Calibration . 105

Profiling Java Applications . 106

Attaching the Profiler to a Project . 106

Understanding the Profiler Control Panel Window 107

CPU Profiling . 108

Analyzing CPU Performance Example . 114

Analyzing CPU Performance with Profiling Points 118

Memory Profiling . 124

■CONTENTS ix

8954FM.qxp 1/28/08 11:44 AM Page ix

Understanding the Profiler Telemetry . 134

Viewing the Telemetry Overview . 134

Viewing the Main VM Telemetry Window . 136

Profiling External and Remote Applications . 137

Profiling a Remote Java Application Server Running
in NetBeans . 137

Profiling a Remote Java Application Server Using
the Profiler Remote Pack . 138

Profiling an External Java Application . 139

Summary . 141

■CHAPTER 6 Managing Version Control . 143

Using CVS . 143

Configuring a Project to Use CVS . 145

Performing Common CVS Operations . 148

Using Subversion . 159

Installing Subversion . 159

Performing Common Subversion Operations 159

Using Local History . 162

Configuring Local History Properties . 163

Working with the Local History . 164

Labeling Versions . 166

Deleting Versions . 166

Reverting to Versions . 166

Summary . 167

■CHAPTER 7 Generating and Accessing Javadoc . 169

Elements of Javadoc . 169

Class Description . 169

Class Tags . 170

Class Member Variables . 171

Constructors . 171

Methods . 172

Creating Javadoc in NetBeans . 173

Configuring Javadoc Hint Settings . 173

Configuring Project Javadoc Settings . 175

Generating Project Javadoc . 177

■CONTENTSx

8954FM.qxp 1/28/08 11:44 AM Page x

Accessing Javadoc . 178

Attaching to Libraries and Platforms . 178

Viewing Context-Sensitive Javadoc . 179

Searching Javadoc . 181

Summary . 182

■CHAPTER 8 Managing Builds with Ant and Maven 183

Ant Tasks and Targets . 183

Configuring Ant Properties in NetBeans . 187

NetBeans Project Build Files . 188

The build.xml File . 188

The build-impl.xml File . 190

The build-before-profiler.xml File . 191

The profiler-build-impl.xml File . 192

The project.properties File . 193

Working with Targets . 193

Running Targets . 193

Debugging Targets . 194

Stopping and Rerunning Targets . 195

Creating Shortcuts to Ant Targets . 196

Introduction to Maven . 197

Working with Maven Projects . 197

Configuring Maven Properties . 198

Creating Maven Projects . 199

Configuring Maven Project Properties . 200

Adding Library Dependencies . 201

Summary . 202

■CHAPTER 9 JUnit Testing . 203

Creating a JUnit Test Case . 203

Creating a New Test Class . 203

Creating a Test for an Existing Class . 206

Viewing the Test . 209

Modifying the Test . 210

Running JUnit Tests . 211

Viewing Test Results . 212

Generating Test Case Reports . 213

Configuring JUnit Properties in NetBeans . 215

Summary . 216

■CONTENTS xi

8954FM.qxp 1/28/08 11:44 AM Page xi

■CHAPTER 10 Refactoring . 217

NetBeans Refactoring Options . 217

Move Class Refactoring . 219

Rename Refactoring . 220

Safe Delete Refactoring . 220

Use Supertype Where Possible Refactoring . 222

Move Inner to Outer Level Refactoring . 222

Encapsulate Fields Refactoring . 224

Pull Up Refactoring . 228

Push Down Refactoring . 229

Convert Anonymous to Inner Refactoring . 231

Introduce Method Refactoring . 234

Extract Interface Refactoring . 235

Extract Superclass Refactoring . 236

Change Method Parameters Refactoring . 238

Refactoring Keyboard Shortcuts . 239

Summary . 240

■CHAPTER 11 Code-Quality Tools . 241

Working with Checkstyle . 241

Overview of Checkstyle Checks . 242

Sample Checkstyle Configuration File . 247

Working with Checkstyle in NetBeans . 248

Working with PMD . 254

Overview of PMD Checks . 254

Sample PMD Configuration File . 257

Working with PMD in NetBeans . 258

Working with SQE . 263

Installing the SQE Plugin . 263

Configuring the SQE Plugin . 264

Running the SQE Plugin . 265

Summary . 267

■CHAPTER 12 Developing JRuby/Ruby on Rails Applications 269

Installing Ruby Support . 269

Configuring Your Environment . 270

Creating a Ruby Application Project . 272

Ruby Application . 272

Ruby Application with Existing Sources . 273

■CONTENTSxii

8954FM.qxp 1/28/08 11:44 AM Page xii

Creating a Ruby on Rails Project . 273

Ruby on Rails Application . 273

Ruby on Rails with Existing Sources . 276

Adding Files to the Project . 276

Working with Generators . 278

The Ruby Editor . 280

Code Completion . 280

Code Templates . 283

Running Rake Tasks . 284

Customizing the Ruby Project . 285

Ruby Project Properties . 285

Ruby on Rails Project Properties . 286

The Ruby Gem Manager . 286

Managing Rails Plugins . 288

Testing Your Ruby Project . 289

Creating Tests . 289

Running Tests . 290

Debugging Your Project . 291

IRB and the Rails Console . 292

JRuby . 292

Calling Java from Ruby . 292

Running Rails on Your Favorite Servlet Container 293

Putting It All Together . 295

Creating the Database . 295

Creating the Project . 296

Running the Project . 296

Summary . 297

■CHAPTER 13 Developing Web Applications . 299

Create a Web Application Project . 299

Navigating the Web Application Project . 302

Web Pages . 302

Configuration Files . 302

Server Resources . 303

JavaScript and CSS File Support . 303

Working with CSS Files . 303

Working with JavaScript Files . 305

■CONTENTS xiii

8954FM.qxp 1/28/08 11:44 AM Page xiii

Building a Web Application . 308

Cleaning and Building a Project . 308

Compiling JSP Files . 309

Repeating and Stopping Builds . 309

Running a Web Application . 310

Defining Java Application Servers . 311

Using Tomcat . 312

Using GlassFish . 315

Setting the Application Server for a Project 317

HTTP Monitoring . 317

Enabling the HTTP Monitor . 318

Using the HTTP Monitor . 318

Working with Web Application Frameworks . 321

Leveraging Struts . 321

Leveraging Struts 2 . 327

Leveraging Visual JavaServer Faces . 328

Leveraging the jMaki Framework . 352

Summary . 357

■CHAPTER 14 Developing Web Services: JAX-WS, SOA, BPEL,
and RESTful . 359

Installing the Web Services Modules . 359

Creating Web Services . 360

Creating a Web Service . 361

Creating a Web Service Client . 367

Creating a Web Service from a WSDL File . 373

Creating a Message Handler . 374

Creating a Logical Handler . 376

Working with SOA and BPEL . 377

Creating a BPEL Module Project . 377

Creating the BPEL Process File . 378

Navigating the BPEL Design Window . 379

Creating the WSDL File . 381

Navigating the WSDL Editor . 384

Working with the BPEL Designer and the BPEL Mapper 387

Creating a Composite Application . 394

Creating a Composite Application Project . 394

Setting Composite Application Project Properties 394

Adding a JBI Module . 395

Testing the Composite Application and BPEL Process 395

■CONTENTSxiv

8954FM.qxp 1/28/08 11:44 AM Page xiv

Creating RESTful Web Services . 397

Installing the RESTful Module . 397

Creating RESTful Web Services from Patterns 398

Creating a Client to Read the Service . 401

Summary . 402

■CHAPTER 15 Developing GUI Applications . 403

Creating a Simple GUI Application . 403

Working with the Palette Window . 403

Creating the Project . 406

Creating the Initial JFrame Class . 407

Working with the Form Editor . 408

Using FreeTTS . 418

Using the Swing Application Framework . 420

Creating a Java Desktop Application Project 420

Using Actions . 422

Working with the Application Actions Window 428

Using Beans Binding . 430

Creating the Database . 430

Creating the Project . 432

Exploring the Generated Application . 435

Understanding the “Update Source When” Field 439

Writing a Custom Validator . 441

Summary . 443

■CHAPTER 16 Developing Rich Client Applications . 445

Features Provided by the NetBeans Platform . 446

Getting Started . 447

Terminology . 447

NetBeans Platform SDK . 448

Project Templates . 449

File Templates . 450

NetBeans Platform Manager . 451

Project Properties Dialogs . 453

Context Menu Items . 455

Meeting the APIs Outside of the Platform . 456

Getting Started . 458

Using the Explorer & Property Sheet API . 458

Using the Nodes API . 461

Running the Application . 462

■CONTENTS xv

8954FM.qxp 1/28/08 11:44 AM Page xv

Assembling a NetBeans Platform Application . 463

Getting Started . 463

Using the Window System API . 464

Branding the Application . 466

Running the Application . 469

Distributing the Application . 469

Updating the Application . 470

Further Reading . 471

Summary of the Main NetBeans APIs . 471

Summary . 473

■INDEX . 475

■CONTENTSxvi

8954FM.qxp 1/28/08 11:44 AM Page xvi

About the Author

■ADAM MYATT currently works as the Principal Technologist of Software Development for GE
Global Research, the worldwide R&D headquarters of General Electric, located in Niskayuna,
New York. Adam is an experienced Java developer and a Sun Microsystems Certified Java
Programmer. His work entails leading globally developed Java software and web applications
through a rigorous software development life-cycle process, researching new technologies,
and setting long-term strategies.

He is an active participant in a local Java users’ group and is an avid enthusiast of open
source software. Adam has previously published the book Pro NetBeans IDE 5.5 Enterprise
Edition (Apress, 2007), which focuses on Java EE 5 technology and its use in NetBeans. He
recently served on the Tools & Languages Track Committee for selecting presenters for
JavaOne 2008.

Adam has also worked for several area software firms prior to joining General Electric. He
is a graduate of the Computer Science Department at the State University of New York College
at Potsdam.

In what little free time he has, Adam enjoys traveling to new and interesting places, fishing,
and playing poker. Recently, Adam and his wife drove back and forth across the United States,
covering 6,500 miles and 20 states, all with zero speeding tickets and zero traffic accidents.

xvii

8954FM.qxp 1/28/08 11:44 AM Page xvii

8954FM.qxp 1/28/08 11:44 AM Page xviii

About the Technical Reviewer

■SUMIT PAL has about 14 years of experience with software archi-
tecture, design, and development on a variety of platforms, includ-
ing Java, J2EE. Sumit has worked in the SQLServer Replication
group while with Microsoft for two years and with Oracle’s OLAP
Server group while with Oracle for seven years.

Apart from certifications such as IEEE-CSDP and J2EE Archi-
tect, Sumit also has an MS in computer science.

Sumit has a keen interest in database internals, algorithms,
and search engine technology.

He currently works as an OLAP Architect for LeapFrogRX.
Sumit has invented some basic generalized algorithms to find

divisibility between numbers and has also invented divisibility rules for prime numbers less
than 100.

Sumit has a fierce desire to work for Google some day.

xix

8954FM.qxp 1/28/08 11:44 AM Page xix

8954FM.qxp 1/28/08 11:44 AM Page xx

Acknowledgments

Iwould like to thank the many people without whom this book would not have been possible.
First, thanks to my editor, Steve Anglin, for his advice and guidance on this project. I also

want to thank my project manager, Richard Dal Porto, for working hard to try to keep me on
schedule and accountable. Thanks to my technical reviewer, Sumit Pal, who helped make this
a stronger, more accurate book. You have my continued appreciation for your insightful sug-
gestions and comments. A big thanks to my editors Elliot Simon and Jill Ellis for the fantastic
job they did on making what I wrote actually read well and look good. I greatly appreciate the
entire Apress team and all their efforts.

Many thanks to my contributing authors, Brian Leonard and Geertjan Wielenga, for pro-
viding Chapters 12 and 16, respectively. It’s thrilling to work with well-known members of the
NetBeans team and to be able to include their excellent contributions in this book.

I would also like to express my thanks to the entire GEGR ITMS organization for their sup-
port at work. Balancing work and personal projects can be difficult at times, but having a great
team to work with certainly made it easier. This was especially true on the days when I would
walk around like a zombie from having stayed up late writing on the previous night. Having
patient co-workers, visiting the cafeteria to get Rich’s pancakes, and guzzling gallons of Dr
Pepper™ were often the only things that kept me going some days.

Finally I would like to express my heartfelt thanks to my wife, Morgan, who put up with
my working on this new book nights and weekends, yet again, for far too long. Her love and
support during this project made it all possible.

xxi

8954FM.qxp 1/28/08 11:44 AM Page xxi

8954FM.qxp 1/28/08 11:44 AM Page xxii

Preface

In the beginning, code was written using simple text-based tools like Notepad. For the pur-
poses of this discussion, I’ll define “beginning” as the early to mid-1990s, when Java first
started to become popular. Using the combination of a text editor and command prompt,
users could write and compile code.

It was quickly determined that this approach did not provide the most efficient develop-
ment environment. For example, if you made a code syntax mistake in the text editor, there was
no way to identify the problem until you saved and compiled the file. You would then review the
compilation error, locate the offending line in the code, and attempt to determine the cause.
Compilation errors are not always entirely helpful in diagnosing a problem with your code.

Many novice programmers start out using the Notepad and command-prompt environ-
ment. There is nothing inherently wrong with this approach, since some professionals still
do the same thing. For an absolute beginner learning Java, using a plaintext editor can some-
times be the easiest and fastest approach. However, text editors do not provide assistance with
language syntax, compiler integration, intelligent refactoring support, or other code-writing
capabilities.

One of the useful features most text editors possess is called Find and Replace. With this
simple capability, programmers could replace occurrences of a word or phrase with another.
This worked for certain situations, but could cause problems. Suppose you created the follow-
ing class:

public class SomeCode {

public void myMethod1(String var) {

String FirstName = var.toUpperCase();

// do something with FirstName
}

public void myMethod2(String var) {

String FirstName = var.toLowerCase();

// do something else with FirstName
}

}

The SomeCode class includes two methods: myMethod1 and myMethod2. If you later needed to
rename the FirstName variable in myMethod1, you could manually edit each line of code to alter
the name. Obviously, this is a simple example, but if myMethod1 happened to be a hundred xxiii

8954FM.qxp 1/28/08 11:44 AM Page xxiii

lines long and FirstName appeared in many places, then manual editing of the code could take
quite a long time. You could also use the text editor’s Find and Replace functionality to quickly
replace all occurrences of FirstName with the new variable name. However, the original
change request specified only the FirstName variable in the myMethod1 method and not in the
myMethod2 method. Using Find and Replace could incorrectly replace the wrong occurrences
of FirstName in myMethod1 and myMethod2. Of course, it’s possible to replace occurrences one by
one, but that can take time and be prone to human error.

Some text editors provide more advanced support for programming languages. The popu-
lar Unix-based tool Emacs offers many interesting features, including advanced text matching
and replacement capabilities. Through plugins, it can also provide Java syntax highlighting,
code indentation, basic debugging, and compilation support. These are great pieces of func-
tionality, but they still do not offer the most flexible and productive environment.

The first question anyone who uses Emacs or text editors might ask is, “Why use an IDE?”
Some programmers tend to grow attached to a specific tool set or programming language and
are resistant to change. An important quality in today’s ever-changing world is the ability to
adapt to new technology.

New tool sets can help professional programmers in many ways. As a programmer, your
time should be spent writing code, rewriting code, and testing code. You shouldn’t need to
waste time trying to figure out how to rename methods across your code, generate project
documentation, or correctly compile all the classes in a package. Once you have identified the
action you need to perform, your tool should do it for you easily.

Integrated development environments (IDEs) literally provide an entire environment for
your work. They bring together many different tools in a coherent way so that the services and
actions you need are seamlessly integrated together.

Some technical benefits of IDEs include the following:

• Graphical user interface (GUI) for performing actions

• Grouping of source code and configuration files into the concept of a project

• Tight integration with the compiler

• Coupling with a source code repository

• Ability to performance tune, analyze, and load test code

• Integration with reusable test frameworks

• Capability to utilize third-party plugins and tools

• Ability to debug code by executing one line at a time

• Quick access to and ease of generating project documentation

Some of the more tangible business benefits of using an IDE include the following:

• Reduces the cycle time of development

• Increases the quality and reliability of your code

• Standardizes your software development processes

• Provides a common platform for programming staff to reduce training time

■PREFACExxiv

8954FM.qxp 1/28/08 11:44 AM Page xxiv

Some of these benefits are definitely arguable and can sometimes be realized only after
careful analysis, implementation, and execution. Many other factors come into play, but a
really good Java IDE tool can be the foundation for accomplishing important milestones such
as the examples I provided.

NetBeans is my Java IDE of choice. This might be obvious, since I wrote this book, but I
have many valid reasons for loving and using NetBeans. My experience with development
tools covers a wide range of products, such as Notepad, TextPad, Emacs, vi, Macromedia
UltraDeveloper, Macromedia Dreamweaver, Oracle JDeveloper, IntelliJ IDEA, Borland
JBuilder, Microsoft Visual Studio, and Eclipse.

Each of these tools has its pros and cons. They all have devoted users and entire commu-
nities centered around them. After a while, distinguishing between the tools can be difficult,
since they offer many similar features. I was on the fence deciding between IntelliJ IDEA and
Eclipse. After only a few hours of working with NetBeans and viewing various tutorials, I was
convinced. I downloaded, installed, and started working with it. I quickly discovered that the
features were located in places I expected them to be, they functioned as I thought they
would, and there were few or no configuration issues. In my opinion, that is how a tool should
function out of the box.

In no particular order, the top ten reasons I think programmers should use NetBeans over
another Java IDE are summarized as follows:

Intuitive and easy-to-use Matisse GUI designer for Swing development: With little or no
Swing knowledge, users can be up and running, dragging-and-dropping elements into a
WYSIWYG design window. The Matisse GUI designer actually generates real Swing code
and not the usual boilerplate fluff code many tools tend to create. At the last JavaOne
conference I attended, I sat next to a gentleman who used the GUI design capabilities of
JBuilder. After only two minutes of watching me use Matisse, he was completely blown
away and ran off to download it for himself.

Strong refactoring support: This is particularly true for the Jackpot engine, allowing for
Java type-aware refactoring using a regular expression-like query language. Designed by
James Gosling, the query language is quite simple to use and allows for pattern matching
and replacement. The interesting aspect to the queries is that they can be tested to match
specific Java types or instances of objects.

One of the best code profilers: Given that I haven’t used every code profiler out there, but
with an amazing array of options, I consider the NetBeans Profiler to be among the best.
Users can profile for memory, CPU, and performance problems as well as monitor
threads. The NetBeans 6 Profiler introduces the concept of profiling points. The Profiler
can also be attached and detached from a currently running process or application. It
provides 32-bit and 64-bit support as well as allows you to profile Enterprise JavaBeans
(EJB) modules and enterprise applications. For those Mac fans in the crowd, it also sup-
ports profiling on Mac OS X Intel systems.

UML project support: Programmers can create a Unified Modeling Language (UML) proj-
ect for modeling code, process steps, or design patterns. UML projects can be linked
directly to Java projects. As a user creates and modifies the UML objects and diagrams, the
corresponding Java code is generated automatically. If the source code in the linked Java
project is changed, the diagram is also updated automatically. With the ability to export
diagrams, generate code, and create web-based project reports, the UML project feature is
one of the coolest additions to NetBeans that I have enjoyed using.

■PREFACE xxv

8954FM.qxp 1/28/08 11:44 AM Page xxv

Ant integration: Java projects in NetBeans are structured using Ant build files. When a
project is first created, the IDE generates the build script and associated targets. Users can
then trigger specific targets or completely customize the structure of their build file to suit
the needs of their project. For users unfamiliar with Ant, there is almost no impact, since
execution of Ant targets is linked directly to the menus and buttons in NetBeans. Many
users will also find it easy to import existing build files from external projects and quickly
get up to speed. For beginners, it is ridiculously easy to use. For experts, it is ridiculously
easy to customize.

J2ME mobile application support: Even if you don’t do much mobile application develop-
ment, after viewing the samples and reading an introductory tutorial, you should quickly
see the power of NetBeans mobile tools. The sample applications provided are impressive
enough as it is. With support for Java 2 Micro Edition (J2ME) Mobile Information Device
Profile (MIDP) 2.0, a visual mobile designer, a wireless connection wizard, and over-the-air
download testing, mobile application developers have some impressive and powerful tools.

Developer collaboration tools: Developers can log in to a public or private environment
and share code. You can join public conversations or start your own restricted private
ones. One of the greatest features I’ve seen in a while is the ability to drag-and-drop code
or entire projects in the chat window and share code with one or more programmers.
NetBeans supports multiuser team coding. As one user starts to change a block of code,
it is highlighted and locked for the other users sharing it. In the current global economy,
where development teams are spread across numerous locations, this tool can prove very
beneficial.

Easy-to-use Update Center: The NetBeans Update Center allows you to quickly select
which update distribution sites you wish to check for changes, updates, and new mod-
ules. You can also choose to install modules that you previously downloaded but chose
not to install. The Update Center is more intuitive than many other Java IDE update tools
and makes updating NetBeans a snap.

Out-of-the-box JSP and Tomcat support: NetBeans comes bundled with Apache Tomcat.
Once you have used the New Project wizard to create a web application project, you can
create your JavaServer Pages (JSP) files. Then you can right-click any JSP file and select
Run File. The bundled Tomcat server starts immediately, your default Internet browser
opens, and the JSP file executing in Tomcat is displayed. NetBeans is even smart enough
to activate the HTTP Monitor.

NetBeans HTTP Monitor: I do a lot of web-related Java development. To me, this is one of
the coolest and most unique features of any Java IDE on the market. The HTTP Monitor
can be activated during the debugging or execution of a web application. It allows you to
monitor the request, HTTP headers, cookies, session, servlet context, and client/server
parameters. You no longer need to write server-side code to read these variables, output
them to a log, and view the log file. Inside NetBeans, you can debug your code, step line
by line through it, and watch the attributes you need.

These features are only a sampling of what NetBeans has to offer. Other Java IDEs may
provide some of the capabilities described here, but none can match the NetBeans IDE’s intu-
itive interface and integrated tool set. To learn about everything NetBeans has to offer, I invite
you to continue reading the rest of the chapters in this book.

■PREFACExxvi

8954FM.qxp 1/28/08 11:44 AM Page xxvi

This book focuses on many new features of the NetBeans IDE 6. One can focus on many
types of technologies and areas when learning NetBeans. With this latest release, developers
have access to an impressive array of new and updated features, including, but not limited to,

• A new and improved Source Editor

• Improved refactoring capabilities

• Improved code completion

• Greatly improved Profiler with profiling points and HeapWalker

• Maven support

• JUnit 4 support

• Ruby and JRuby support

I wanted to write a book that really showcased the fantastic tools for working with these
technologies.

Pro NetBeans IDE 6 Rich Client Platform Edition is meant for all levels of developers.
Whether you are new to NetBeans, a student programmer, or an experienced professional,
you will find this book provides direct explanations of features and straightforward examples.
It also focuses on many of the core features of NetBeans that assist professional software
developers, such as Ant, JUnit, CVS, Subversion, and static analysis tools, among others.

My personal web site, www.ProNetBeans.com, contains a variety of content, such as Java
and NetBeans news, articles, and tutorials, among others. It will also contain updates, correc-
tions, and errata to the book. If you have any questions or would like to provide feedback,
please feel free to contact me at adam@pronetbeans.com.

■PREFACE xxvii

8954FM.qxp 1/28/08 11:44 AM Page xxvii

http://www.ProNetBeans.com
mailto:adam@pronetbeans.com

8954FM.qxp 1/28/08 11:44 AM Page xxviii

Downloading, Installing, and
Customizing NetBeans

Since the NetBeans 5.5 release, many changes have been made in the core of the tool. One of
these is the installation process. The NetBeans team has experimented with many different
kinds of installation options over the years, such as bundled downloads, separate add-on
packs, and individual downloadable modules.

To start using NetBeans, you merely need to download and install it. This chapter describes
how to do that as well as how to check for updates and customize some NetBeans settings to
suit your own preferences. Finally, we take a quick look at the NetBeans windows you’ll use
most often.

Downloading Files
Starting with the NetBeans 6 release, you have several types of bundled downloads you can
use to install the IDE: basic, standard, and full.

Basic: The basic bundle comprises the stripped-down IDE and basic Java Standard Edition
functionality, including the Profiler tool and GUI building capabilities.

Standard: The standard bundle expands on the basic by adding mobility, web, and Java EE
features. It also includes several Java application servers, such as Apache Tomcat 6 and
the latest build of GlassFish.

Full: The full bundle includes all the preceding features as well as the UML, SOA, and
Ruby modules. This is the largest download. But unless you really want a stripped-down
version of the IDE, I suggest downloading this bundle. During the installation process,
you can pick and choose which features you actually want. If you download a smaller
bundle, you have no such choice.

To download the NetBeans bundles, go to netbeans.org. This web site provides several
different links for downloading the NetBeans software and related tools. The main download
is typically linked off the homepage.

Depending on which path you follow to get to the download section, you may be pre-
sented with several choices. The specific operating system version you need will most likely
be preselected for you. But if it is not, you can choose from Windows, Linux, Solaris, and
MacOS X. At the time of this writing there are 64-bit options for Linux and Solaris, but this is

1

C H A P T E R 1

8954Ch01.qxp 1/28/08 11:32 AM Page 1

subject to change. You should select the bundle you need and click the Download button. You
will then be immediately prompted to download the file.

Installing the NetBeans IDE
Since NetBeans can be installed across numerous platforms, I will mention only the important
installation concepts. NetBeans 6 can be installed on almost any operating system for which
there is a Java Virtual Machine (JVM) that runs a minimum of Java 1.5.0.11 or later. I am run-
ning NetBeans using Java 6, unless otherwise specified.

On the download page at netbeans.org, a list of release documents is provided. In this list is
a link to the installation instructions as recommended by NetBeans. These instructions cover
the basic installation process for Windows, Solaris, Linux, and Macintosh OS X.

As of version 6.0 of the Profiler, it is recommended that you run it with JDK 1.5.11 or later
as previously mentioned with NetBeans 6. However, for optimal performance I suggest using
the most recent Java 6 release. In NetBeans 5.5 and 5.5.1 it is possible to profile against JDK
1.4, but an experimental add-on is needed to allow this functionality. Sun does not support
the add-on, so you would be using it at your own risk. If your application is written for Java 1.4
and you want to use NetBeans 6 and its profiler, I recommend that you install the latest release
of Java 6.0 and set the source compatibility in NetBeans to 1.4. This should resolve any issues
with running the Profiler as well as maintain your Java 1.4–based code.

To set the source compatibility for a project, right-click the project name and select Prop-
erties from the context menu. With the Sources category selected, you should see a field called
“Source Level.” Using the drop-down list, you can set the version of Java with which your
source code should be compatible.

The first time I downloaded and installed NetBeans, I used Sun’s Java 5 on Windows XP,
but I have since upgraded to Java 6. After executing the Windows installer, I clicked the Next
button, accepted the license agreement, and selected a directory in which to install NetBeans.
Personally, I like to group all my Java-related products in one location. I typically start with a
c:\java directory. Within that directory, I install several JDKs, Java tools such as NetBeans, as
well as a directory for all my Java-related projects and applications. I usually end up with the
following:

• c:\java\1.6.0.02

• c:\java\1.5.0.12

• c:\java\netbeans\6.0

• c:\java\projects

When you execute the installation you will see the NetBeans 6 welcome page. Click the
Customize button to select which features you want to install. The list may vary depending on
the bundle you downloaded from netbeans.org. You can select or unselect the check box next
to each item. By default, the Tomcat application is not checked, so to install the feature you
must select it, as shown in Figure 1-1.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS2

8954Ch01.qxp 1/28/08 11:32 AM Page 2

Figure 1-1. List of features to include in the installation

Once you have finished customizing the installation items, click the OK button to con-
tinue. The list of items you selected will be displayed. If any of the items under the Runtimes
section were previously installed, then the text “Already Installed” will appear next to each
name. If you click the OK button, the installation will initialize and display the license page
and acknowledge.

Select the check box next to the text “I Accept the terms in the license agreement” and
click the Next button. The installation wizard will search your local machine for JDKs and
prompt you for several pieces of information. For the “Install NetBeans 6 IDE to” field, click
the Browse button and select a directory. As mentioned earlier, I recommend a common
directory structure such as c:\java\netbeans\6.0. For the “JDK for running NetBeans IDE”
field, a JDK is already selected. You can click the Browse button to select a directory for the
JDK as well. Click the Next button to proceed to the server runtimes installation configuration.

If you selected to have GlassFish installed, the installation wizard displays a configuration
form with suggested values already filled out. The “Install GlassFish to” field specifies the
directory where the application server will be installed. The form also allows you to specify
which JDK you wish to use when running GlassFish in case it differs from the JDK you are
using to run NetBeans. This is a convenient setting to have because you may very well be run-
ning GlassFish without having NetBeans open. The configuration form also allows you to set
the admin username, password, and ports, as shown in Figure 1-2.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 3

8954Ch01.qxp 1/28/08 11:32 AM Page 3

Figure 1-2. The GlassFish application server installation configuration form

When you have finished setting the GlassFish server fields, click the Next button to con-
tinue. Read the section on Java Application Servers in Chapter 13 if you want to know how to
change these configuration settings. If you selected Tomcat to be installed, the installation
wizard will display a Tomcat application server configuration form. The screen allows you to
specify where to install Tomcat 6 by clicking the Browse button next to the “Installation Loca-
tion” field. After you have set the location, click the Next button to proceed to the summary
screen. The summary screen lists the various installation directories, the features you selected
to install, and the estimated installation size of the entire package.

Click the Install button to execute the full installation. The installation process runs and
installs the features. When installation is complete, click the Finish button to close the instal-
lation wizard.

When you load NetBeans for the first time, it creates a new .netbeans directory in the user
directory. On Windows this is typically c:\documents and settings\<username>\.netbeans,
and on Unix it’s /home/<username>/.netbeans. You can safely remove this directory without
hurting the core NetBeans installation. However, removing it will essentially undo all the con-
figurations you have set in the IDE and uninstall all the modules you may have downloaded.

Starting with NetBeans 6, you no longer need to download and install the NetBeans Pro-
filer separately. It is included in the core IDE. For usage instructions and best practices, see
Chapter 5.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS4

8954Ch01.qxp 1/28/08 11:32 AM Page 4

Customizing the NetBeans JVM Startup Options
One thing most people will probably never think to use is the ability to customize the NetBeans
JVM startup options. By including several arguments in a NetBeans configuration file, you can
tweak the memory usage settings for the JVM in which NetBeans starts up. You can also change
the type of garbage-collection algorithm that is used.

If you are working on a semistandard computer (32-bit single processor), you probably
won’t benefit from changing the garbage-collection routine the JVM uses. However, if you use
a JVM other than the Sun JVM or have a machine that is either multiprocessor, multicore, or
64-bit, you might want to consider these options. Your JVM vendor should provide some sort
of documentation regarding the garbage-collection routines that run and how to configure
them via command-line arguments. These can be passed along to NetBeans during startup.

In NetBeans, you can configure JVM startup arguments by editing the file /etc/
netbeans.conf in your NetBeans home directory. In this file, you should see a property
named netbeans_default_options. This property allows you to pass JVM customization
arguments to NetBeans.

• The -J-Xms32m argument specifies that the initial heap size allocated to the JVM should
be 32MB.

• The -J-XX:+UseConcMarkSweepGC argument specifies that the JVM should use a more
efficient garbage-collection algorithm. It can be especially useful on multiprocessor
and multicore machines.

• The -J-XX:+CMSClassUnloadingEnabled argument is used to enable class unloading.

• The -J-XX:+CMSPermGenSweepingEnabled argument must be used in conjunction with
the CMSClassUnloadingEnabled argument.

• The -J-Xmx256m argument may not be present, by default; but if it is added, it specifies
that the maximum heap size that can be allocated to the JVM should be 256MB.

Increasing the value of the Xms argument can improve performance in some applications,
since the JVM would not have to keep reallocating heap space each time it needed to increase
the available space. There is a lot of discussion in the Java industry about the correct way to set
these parameters. The safest bet is to set the Xms argument to 64MB or 128MB and to set the
Xmx argument to about 50 to 60 percent of the total memory on your system. This value may
need to increase if you work with massive code bases.

You should also note that the Xms and Xmx arguments specify only the heap size of the JVM
and not the total amount of memory the JVM will use, since there are items in the JVM that do
not live inside the heap.

Managing Plugins and Updates
One of the most important aspects of a Java IDE tool is the ability to receive updates and fixes.
Anyone who has ever written code knows that no program is ever perfect. Mistakes and bugs
happen; when they do, the most important thing that can occur (other than fixing the bug) is
to deliver the updated code to the users.

NetBeans allows you to check for, download, and install updates to the tools and plugins
that are installed within your distribution through the Update Center. It is an integrated tool

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 5

8954Ch01.qxp 1/28/08 11:32 AM Page 5

that checks one or more remote sites for any software updates that may be available. You can
also check a remote site for new plugins as well as manually install an update module that was
previously downloaded.

Using the Plugin Manager
In NetBeans 6 the Update Center and Module Manager are merged into one new tool named
the Plugin Manager. This new tool enables you to

Download NetBeans plugins to install into the IDE

Manually install previously downloaded NetBeans modules

Check for updates to existing NetBeans plugins

Manage already installed plugins (and be able to deactivate them)

Configure Update Centers to check for plugins

To access the Plugin Manager, select Tools ➤ Plugins. In the window that opens, you
should see five tabs along the top: Updates, New Plugins, Downloaded, Installed, and Settings.
I next cover them individually, although slightly out of the order in which they appear in the
Plugin Manager.

Settings Tab
If you click the Settings tab you will see the list of Update Centers currently configured in
NetBeans, as shown in Figure 1-3. As you download and install new plugins, various Update
Centers are automatically added to the list.

Figure 1-3. The list of default Update Centers in the Plugin Manager

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS6

8954Ch01.qxp 1/28/08 11:32 AM Page 6

The left pane of the Settings tab displays the list of Update Centers. If you unselect the
check box next to an Update Center, it will not be searched for updates or new plugins. If you
select an Update Center in the list, its information is displayed in the right pane. You can view
the Update Center URL, and choose to edit or remove it from the list using the buttons dis-
played in the right pane, as shown in Figure 1-3.

If you wish to add a new Update Center manually, you can easily do so using the Add but-
ton at the center right of the Settings tab pane. If you click the Add button, the Update Center
Customizer window is displayed, as shown in Figure 1-4. The window allows you to type in
an arbitrary name to identify the Update Center as well as enter the Update Center’s URL. If
the check box next to the “Check for update automatically” field is selected, then the Update
Center is automatically polled during the time frequency specified in the Check Period drop-
down on the Settings tab. Once you have configured the desired settings for the Update
Center, click the OK button and it will be added to the list.

Figure 1-4. The Update Center Customizer window

Under the Advanced section at the bottom of the Settings tab are the View options. You
can set this field to “Plugin” or “NetBeans Modules.” If it is set to “NetBeans Modules,” you will
be able to view individual features and libraries. This setting can be useful if you are trying to
understand a plugin’s dependencies. If the View field is set to “Plugin,” then you will not see
the underlying libraries. Only the top-level plugins will be listed. This setting can make it
much easier to see what is installed in your IDE without having to scroll through long lists of
plugins.

The “Install into shared directories” field appears at the bottom of the Settings tab. If
selected, this will install plugins into a shared folder so that they are available to all users and
not to just the one who installed the plugin.

The last item to note on the Settings tab is the Proxy Settings button. If you click it, the
Basic Options window will appear and display the General section. This is covered later in this
chapter in the section “Setting a Proxy.”

Updates Tab
The Updates tab displays any updated plugins or libraries that may have been posted to the
Update Centers. You can check for updates by clicking the Reload Plugins button near the top
of the pane. This will search the Update Centers and display any updated plugins by name and
release date.

To install any updates that appear, simply click the check box next to each item and click
the Updates button at the bottom of the pane. The features will be downloaded and installed.
Depending on the module, you may be prompted to restart the IDE.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 7

8954Ch01.qxp 1/28/08 11:32 AM Page 7

New Plugins Tab
The New Plugins tab will display a list of new plugins and libraries that have been released on
the Update Centers. If you add new Update Centers, you can refresh the list of new plugins by
clicking the Reload Plugins button.

You can click each plugin name and view the release date, source, and description in the
right pane, as shown in Figure 1-5.

Figure 1-5. The New Plugins tab displaying a list of plugins and libraries

You can install each plugin by selecting the check box next to the name in the Install column.
As you select each check box, a summary appears along the bottom of the window, displaying the
number of plugins to be installed and the total installation size.

If the list of plugins is quite long (which it can be if you are viewing the list as NetBeans
Modules versus Plugins), you can search the description text. A text box labeled Search
appears in the upper right of the window. If you enter text into the Search field and press the
Enter key, the list will be filtered to include only plugins that match the search criteria. This is
especially useful if you are searching for plugin dependencies or libraries.

Once you have finished determining which plugins you want to install, click the Install
button. A summary screen will pop open and display the plugins you selected. Review the
items for correctness and click the Next button. The plugin installer will display a screen of
license agreements.

In older versions of NetBeans you had to view and approve multiple licenses. In NetBeans 6
you can toggle back and forth between different license agreements and approve them all at
once. You can view the different licenses by selecting them from the “Display license for”
drop-down. You can then approve them all by clicking the radio button next to “I accept the
terms in all license agreements” and clicking the Install button.

Each of the plugins will then download and be verified. When they are done downloading,
click the Finish button. Depending on which plugins you chose to install, you may be prompted

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS8

8954Ch01.qxp 1/28/08 11:32 AM Page 8

to restart the IDE. If the IDE does not need to be restarted, then you will see the list of plugins on
the New Plugins tab refresh.

Installed Tab
The Installed tab lists the plugins and modules that you have previously installed. This section
of the Plugin Manager allows you to uninstall and deactivate plugins and modules.

If you select a plugin from the list, you can view the date, source, description, and required
modules in the right pane. You will also see a Deactivate button in the upper right. If you click
the Deactivate button, it will disable the plugin without having to restart NetBeans.

■Tip Disabling modules or features that you rarely use can improve the startup time and memory usage
of NetBeans. When NetBeans opens, its splash screen displays several status messages, such as “Reading
module storage,” “Turning on modules,” “Loading modules,” and “Starting modules.” Much of the process-
ing and work that goes on behind the scenes during startup involves activating modules. The fewer modules
NetBeans must activate, the better.

If a plugin is deactivated, it will appear in the plugin list with a red X icon in the Active
column. If you select a deactivated plugin from the list, the right-hand information pane will
display an Activate button. If you click the Activate button, the plugin will be enabled again.

You can also uninstall plugins by clicking the check box next to each plugin in the Unin-
stall column, as shown in Figure 1-6. After you have selected one or more plugins, click the
Uninstall button. A popup window will appear listing each plugin you selected to uninstall.
To finalize the process, click the Uninstall button, and the plugins will be uninstalled.

Figure 1-6. Selecting plugins to uninstall in the Plugin Manager

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 9

8954Ch01.qxp 1/28/08 11:32 AM Page 9

Downloaded Tab
The Downloaded tab allows you to install plugins you previously downloaded but never
installed. It also allows you to install plugins you manually downloaded as .nbm files from
a web site.

On the Downloaded tab, click the Add Plugins button to get a file dialog to appear. Navigate
your file system, select one or more .nbm files, and click the Open button. The list of plugins to
install will appear in a list. Once you have added the correct plugins to the list, click the Install
button. A summary screen will pop up and allow you to review the plugins prior to installation.
Click the Next button to finish installing the plugins.

Setting a Proxy
Many programmers, whether in corporations or on college campuses, need to work behind a
proxy. The NetBeans IDE uses an Internet connection for numerous operations, such as
downloading updates, linking to certain types of help documentation, and connecting to
external database and web servers.

To configure the proxy settings for NetBeans, select Tools ➤ Options. The Basic Options
window is displayed by default, and it contains a Proxy section. If it is not visible, click the
General tab to see the proxy settings.

You can choose to select No Proxy, Use System Proxy Settings, or Manual Proxy Settings. If
you select the radio button next to the Manual Proxy Settings label, then several fields will be
enabled, allowing you to specify additional settings. The HTTP Proxy and Port text box allows
you to enter specific proxy information. If you click the More button, you can view the
Advanced Proxy Options window, as shown in Figure 1-7.

Figure 1-7. The Advanced Proxy Options window

The Advanced Proxy Options window allows you to enter the proxy host and port. You can
also choose to select the “Use the same proxy settings for all protocols” check box. If this is
selected, then the proxy you entered is used for HTTP, HTTPS, and SOCKS. If not selected, you
can enter different proxies for each protocol.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS10

8954Ch01.qxp 1/28/08 11:32 AM Page 10

An additional field, named No Proxy Hosts, will also appear in the Advanced Proxy
Options window. This field allows you to specify a list of hosts to ignore that can be accessed
by NetBeans without going through the proxy. If selected, the “Proxy Requires Authentication”
check box allows you to specify a username and password that is used to authenticate to your
proxy server. By default this field is not selected. Once you have configured the proxy settings
to your needs, click the OK button to return to the Basic Options window. Click the OK button
again to save the changes and exit the Basic Options window.

Customizing the IDE
Many Java IDE tools allow a wide array of customizations. NetBeans is no exception. Users can
customize a variety of settings, such as fonts, colors, text messages, coding preferences, menus,
toolbars, shortcuts, and much more. You could spend an exhaustive amount of time examining
each and every possible customization, so I have highlighted several key items that I believe are
the most relevant and useful.

Setting the Internal Web Browser
I personally do a lot of development with web-based content, so I need to be able to view that
content in a convenient manner in the web browser of my choice. Sometimes I need to test
web content in different browsers, especially if I am writing cross-browser JavaScript code.
One of the nice features of NetBeans is the ability to set which Internet browser is used to view
web content.

If you have a JSP file named index.jsp open and want to run it, select Run ➤ Run File ➤
Run and choose index.jsp. In the Output window, you will first see the application compiled,
packaged, and deployed. Then the bundled Java application server will start, and finally a web
browser will open.

NetBeans is initially configured to use the default browser for your system. You can change
this by selecting Tools ➤ Options and selecting General in the top pane of the Options window.
The Web Browser drop-down list offers Default System Browser and any browsers you have
installed on your system. If you always prefer to test your web applications with Firefox, you
could select it from the list.

Setting Code Editor Indentation
NetBeans allows some flexibility when configuring code indentation and formatting. When
NetBeans formats source code (select Source ➤ Reformat Code) or autogenerates code, it
applies several code styles. You can modify these by choosing Tools ➤ Options ➤ Editor and
clicking the Indentation tab. As shown in Figure 1-8, this tab contains the code formatting
options and a preview that displays how your code would be formatted if you toggled each of
the available options. The following sections cover some of the more important settings.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 11

8954Ch01.qxp 1/28/08 11:32 AM Page 11

Figure 1-8. Code indentation features

Statement Continuation Indent
When writing code such as a method declaration with parameters, the line of characters can
become quite long, as in this example:

public void setEmployeeData(String FirstName, String LastName)

Some coders believe it a best practice to leave the entire method declaration and defined
parameters on one line. Popular practice is to separate long lines:

public void setEmployeeData(String FirstName,
String LastName)

or:

public void setEmployeeData(
String FirstName,
String LastName
)

This type of syntax formatting is especially useful if you are defining a method with many
parameters. It is far easier to read the parameter name and data type on a separate line than
to have to scroll far to the right in a very long line.

In NetBeans, you can control the amount of space by which the continued code is indented.
The Statement Continuation Indent option on the Indentation tab allows you to set the number

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS12

8954Ch01.qxp 1/28/08 11:32 AM Page 12

of spaces the continued line is indented. The minimum indent is 1 space, and the maximum is
50 spaces. Try changing the number of spaces and watching the preview at the bottom of the
tab.

Number of Spaces per Indent
Part of writing easy-to-maintain and legible code is indenting a statement such as if-else,
switch-case, or any nested statement. Most modern IDE tools have some level of default
indentation. When you finish typing a statement and press the Enter key, the cursor is posi-
tioned on the next line and indented one or more spaces.

In NetBeans, you can customize this formatting. The default number of spaces for indenta-
tion is four. The Number of Spaces per Indent option on the Indentation tab allows you to adjust
this setting from 1 to 50. To see this in action, type a line of code like if(myBooleanValue) and the
opening curly brace, and press Enter. You should see the following:

if(myBooleanValue) {
//start here

}

The beginning of the comment marks where the cursor should be positioned. It should be
indented four spaces from the position of the enclosing parent element. If you continued to
press the Enter key and enter comments, you would see code like this:

if(myBooleanValue) {
//start here
//comment2
//comment3
//comment4
//comment5

}

Notice that the line spacing for each of the lines inside the if block is the same. The IDE
monitors the fact that all the statements you are typing have the same scope (I use this term
loosely) and attempts to maintain similar spacing. After the fifth comment line, add another
if block and see how the spacing is maintained. After typing if(myNextBooleanValue) and an
opening curly brace, and pressing Enter, add several lines of comments. The following code
should appear:

if(myBooleanValue) {
//start here
//comment2
//comment3
//comment4
//comment5
if(myNextBooleanValue) {

// comment 6
// comment 7

}
}

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 13

8954Ch01.qxp 1/28/08 11:32 AM Page 13

If you want to see a better example of this, try setting the Number of Spaces per Indent
option to 20 and typing several nested if-else blocks of code.

Expand Tabs to Spaces
When indenting code, some developers like to add tabs and some like spaces. For many people
this is not a huge issue; but if you open code in different tools, it can cause formatting problems.
If your development team works on a variety of operating systems or uses a variety of tools such
as Emacs, vi, NetBeans, and Notepad, you may have run into this issue.

The Expand Tabs to Spaces option in NetBeans automatically converts any tab characters
into an equivalent number of spaces. One tab character is the number of spaces set for the
Number of Spaces per Indent option. This can help reduce formatting issues and spacing
problems.

Add New Line Before Brace
A lot of development shops enforce a set of standard coding practices. One element of good
coding is to use a consistent method of placing curly braces after method declarations, if
blocks, else blocks, switch statements, for loops, and so on.

If you’ve ever worked on code that another developer created, you’ve probably seen bad
coding styles. A typical piece of code for a method might look like this:

public int calculate(int x, int y, int z)
{

int total = 0;
if(x<y) {

total = x + y;
}
else if(x > y)
{

total = x + z;
}
else {

total = x+ y + z;
}
return total;

}

Notice that the opening curly brace for each block is either on the same line immediately fol-
lowing the statement or on the following line. Depending on how intricate your code is, this
can lead to hard-to-read files, especially if numerous code blocks are embedded within code
blocks embedded within code blocks.

I remember a project where I inherited code from another developer. I needed to trace
what happened throughout a very long method. In the method were numerous loops and
if-else blocks. Lining up curly braces to see where one block ended and another started soon
grew frustrating. Using the NetBeans Add New Line Before Brace option and applying the for-
matting to the source code would have saved me a lot of headaches.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS14

8954Ch01.qxp 1/28/08 11:32 AM Page 14

Choosing Fonts and Colors
NetBeans provides the ability to customize the overall appearance of fonts and colors. With
the variety of development tools on the market, many developers are familiar with a different
look and feel. For example, if you’ve been coding in Emacs and now are making the move to
NetBeans, perhaps you want the code syntax to reflect the color scheme you used in Emacs.
NetBeans provides several levels of customization.

Fonts and Color Profiles
The font and color customizations are grouped into a color profile. The profile contains the set-
tings for customizing colors for language-specific syntax, highlighting, and annotations. Color
profiles allow you to change numerous settings and toggle back and forth between them.

To customize color profiles, select Tools ➤ Options ➤ Fonts & Colors and select the Syntax
tab. This tab displays the relevant settings, as shown in Figure 1-9.

Figure 1-9. Fonts & Colors settings in the Basic Options window

NetBeans provides several color profiles: NetBeans, Earth, NetBeans 5.5, Norway Today,
and City Lights. These can be modified as frequently as you wish and later restored to their ini-
tial settings by clicking the Restore button next to the Profile drop-down list. I recommend
creating a copy of each of the NetBeans color profiles and modifying them as you see fit. You
can do so by selecting the profile and clicking the Duplicate button to the right of the Profile
drop-down list. This is useful because a profile that is a copy of another profile cannot be

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 15

8954Ch01.qxp 1/28/08 11:32 AM Page 15

restored; it can only be deleted. The Duplicate button is also the mechanism for creating new
color profiles. After clicking the Duplicate button, you are prompted for a new color profile
name.

I use color profiles most often when giving presentations. For writing code, I typically use
a color profile similar to the system default profile. When giving presentations, where I need to
project my screen, I switch to an alternate profile that uses a larger font size and darker font
color scheme.

The standard code syntax highlighting and coloring changed in NetBeans 6. Many devel-
opers used to the older NetBeans syntax coloring can switch to the NetBeans 5.5 profile by
selecting it from the Profile drop-down.

Language-Specific Color Settings
For each color profile in the Fonts & Colors section, a list of language-specific settings is avail-
able. The list includes settings such as Java, JSP, HTML, SQL, XML, and more. By selecting one
item from the list, you can customize the language-specific syntax elements. For example, if
you select JSP, you will see a category list of items such as EL, HTML, JSP, and XML elements.
Once you have selected an item from the category list, you can change the font size and color
and other attributes using the options on the right (see Figure 1-9).

Highlighting
Through the Highlighting tab of the Fonts & Colors window, you can customize the fore-
ground and background colors for elements that appear highlighted in various places in
NetBean’s Source Editor window. One possible use of this includes changing the color of the
line numbers in the line number bar so that they are easier to see at a glance. I like to set the
Code Folding Bar foreground to red so that the lines that appear next to each method stand
out and are easier to trace when I am scrolling quickly through a class.

Diff Coloring
The Diff tab of the Fonts & Colors section allows you to specify the coloring for the new
NetBeans 6 Diff tool. The Diff tool is used by the various version control modules and local
history in NetBeans (see Chapter 6).

You can modify the color scheme for the Added, Changed, and Removed Text. If you select
each field, you can specify the color using the Background drop-down at the right of the window.
Then when you use the Diff tool, the color changes will display.

Annotation Coloring
The Annotations tab of the Fonts & Colors window allows you to customize several items
related to glyphs that appear in the glyph margin. The glyph margin is the gray vertical strip
that appears in the Source Editor to the immediate left of any source code. If you select View ➤
Show Line Numbers, the line numbers are also displayed in the glyph margin. You can change
the foreground color and the background color of annotations as well as set the color of the
Wave Underlined property for the Parser Annotation (Error) category. The Wave Underlined
property pertains to the wavy line that appears under parser errors in your code, such as state-
ments that will not compile.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS16

8954Ch01.qxp 1/28/08 11:32 AM Page 16

■Tip If you really want a parser error to stand out, you can set the background color to black, the foreground
color to green, and the Wave Underlined property to red. Once you have done this, it should not be too diffi-
cult to spot compilation errors.

Configuring Keymaps
Every good software tool should provide shortcut keys (also known as hotkeys). NetBeans is
no exception. Since the majority of the work carried out in NetBeans involves typing code, it is
obviously convenient not to have to take your hands off the keyboard very often. Many menu
commands, actions, and tools can be activated via keyboard shortcuts. NetBeans categorizes a
group of shortcuts as a keymap.

Keymaps can be configured in the Basic Options window. Select Tools ➤ Options and
choose Keymap from the top pane in the Options window. The default set of keyboard short-
cuts (the keymap) is named NetBeans. You can copy any of the existing keymaps by selecting
one from the Profile drop-down list and clicking the Duplicate button. The new keymap pro-
file can then be customized any way you wish.

■Tip The Profile drop-down contains an entry named Eclipse. If you select this option, then the NetBeans
keymap will attempt to use the standard keyboard shortcuts prevalent in the Eclipse IDE. This is useful for
developers who switch between the two IDEs.

To modify a specific keyboard shortcut, select the profile and locate which action you
want to change. For example, you may want to change the shortcut used to compile a single
file. To modify the shortcut, do the following:

1. Select the profile in the Keymap section of the Options window.

2. Click the plus sign next to the Build node.

3. Select the Compile File node under the Build node.

4. In the Shortcuts section at the bottom of the window, click the Remove button.

5. Click the Add button.

6. In the window that opens, press the key or keys that you want as the shortcut. The text
representing those keys should be added to the Shortcut field.

7. Click the OK button.

NetBeans will prevent you from adding a duplicate keyboard shortcut. If the key or keys
you pressed in the Shortcut pop-up window match another shortcut, then after clicking the
OK button you will receive an error message. If the shortcut was successfully assigned to the
action, it will be displayed in the Shortcuts list, as shown in Figure 1-10.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 17

8954Ch01.qxp 1/28/08 11:32 AM Page 17

Figure 1-10. Customizing keymaps in the Basic Options window

Setting Advanced Options
In the Basic Options window (select Tools ➤ Options), you’ll find a button to access the Advanced
Options window. From the Advanced Options section, you can customize a wider variety of fea-
tures than is possible through the Basic Options section. The settings for toolbars and menu bars
are covered here. Other Advanced Options settings, such as those for system and external tools,
are covered in later chapters.

Menu Bars
NetBeans allows you to customize the system menu bars. In the Advanced Options section,
select IDE Configuration ➤ Look and Feel ➤ Menu Bar. Here, you can rename the menu
options such as File, Edit, View, and so on. If you really wanted to, you could rename the
View menu to Look At Stuff.

By right-clicking menu names, you can delete menus, change menu-item ordering, and
add menu separators. By right-clicking menu items, you can cut or copy a menu item and
paste it into another menu.

A useful application of this feature is to reorder menu items to be grouped in a manner
that makes more sense to you. For example, on the Refactoring menu, I have rearranged the
items I use most often to appear on the top, followed by a separator and the rest of the items.
I have also found this functionality useful on the Run and Window menus.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS18

8954Ch01.qxp 1/28/08 11:32 AM Page 18

Toolbars
NetBeans also allows you to customize toolbars in much the same way you customize menu
bars. You can create new toolbars, reorder the elements of a toolbar, and copy and paste ele-
ments from one toolbar to another.

Being able to create custom toolbars is an important feature if you have installed a lot of
plugins that are similar and want to group quick-access icons in one toolbar location.

Server and External Tool Settings
As previously mentioned, you can set a default web browser in the NetBeans Basic Options
section. However, you were not previously able to determine where the browsers were located
on your system or to add new ones. The Advanced Options window allows you to do so.

Navigate to IDE Configuration ➤ Server and External Tool Settings ➤ Web Browsers.
Expand the Web Browsers node to view the list of Web Browsers that have automatically been
configured. On a Windows machine you would typically only see a listing for Internet Explorer.
If you installed Firefox, it would also be listed.

If the browser you want to use is not in the list but is installed on your machine, you can
easily add it. Right-click the Web Browsers node and select New ➤ External Browser. In the
New External Browser window that appears, type in the name of the browser and click the Fin-
ish button.

The new browser will appear under the Web Browsers node, allowing you to select it. Once
you have selected it, the right pane of the Advanced Options window will display the Browser
Executable property. This field specifies where on your machine NetBeans must look to find the
browser. You can change this location anytime by clicking inside the field and typing or by
clicking the ellipsis button next to it. If you click the ellipsis button, the Browser Executable
Properties window will appear, as shown in Figure 1-11.

Figure 1-11. The Browser Executable Properties window

This window allows you to specify the path to the browser executable. You can also click
the ellipsis button next to the field to display a File Open dialog to search for the executable.
You can also specify command-line arguments using the Arguments text box. NetBeans passes
the -nohome argument to Internet Explorer so that your default browser homepage will not load,

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 19

8954Ch01.qxp 1/28/08 11:32 AM Page 19

saving time. The {URL} argument specifies a placeholder that NetBeans will replace with the
actual URL you choose to load when you run a web application, single JSP or HTML file, etc.

There are a number of web browser–specific command-line arguments you can specify to
assist you in web application development; see Tables 1-1 and 1-2. Once you have entered any
command-line argument, click the OK button to close the window.

Table 1-1. Firefox Command-Line Arguments

Argument Description

ProfileManager Starts Firefox with a Profile Manager dialog. Allows you to specify which
profile you wish to use to load Firefox.

Jsconsole Loads a JavaScript console. This can be a big time saver when doing web
development.

height Specifies the height the browser window will be when it opens. Example:
height 500.

width Specifies the width the browser window will be when it opens. Example:
width 500.

inspector Displays the DOM inspector. Loads the DOM inspector into the top half of
Firefox and the web page to be displayed in the bottom half.

{URL} Loads the specified URL in Firefox when it opens.

Table 1-2. Internet Explorer Command-Line Arguments

Argument Description

nohome Specifies that the default browser homepage will not load

k Specifies that the browser will open in full-screen mode

new Specifies that the browser window will open a new browser, and thus a
new process, instead of reloading in the same window

System
There are also several system settings you can customize in the Advanced Options window. Select
IDE Configuration ➤ System ➤ System Settings. Several properties will appear in the right-hand
pane, as shown in Figure 1-12. If you select the “Show Tool Tips in IDE” check box, then tool tips
will be displayed throughout NetBeans as you mouse over various icons and features.

The “Confirm Delete” check box is a nice safety feature. If this is selected, you will be
prompted to confirm a deletion before a file, folder, or other item can be deleted. I recom-
mend leaving this checked, which it is by default, since even the most experienced users
can mistakenly delete something.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS20

8954Ch01.qxp 1/28/08 11:32 AM Page 20

Figure 1-12. The Confirm Delete setting in the Advanced Options window

Navigating and Understanding the IDE Layout
Once you have installed NetBeans and customized it to your liking, it is time to start working
on projects. But first you need to become familiar with the general layout of the NetBeans IDE.
It provides numerous windows that enable you to view specific items or pieces of data.

Initial Layout
When the IDE first opens, the Projects, Files, and Services window is displayed on the left. The
primary menu and toolbar are displayed along the top, allowing quick access to commonly
used features. Other than those features, it is up to you to decide what to display and which
windows you will use. See the following section (“Windows”) for an explanation of some of the
different windows.

The primary toolbar displayed along the top contains only a bare minimum of icons that
allow you to perform frequently used operations, icons such as Open Project, New Project,
New File, Cut, Copy, Paste, Build Main Project, and Run Main Project. You can customize the
toolbars that are displayed and items that appear in them by right-clicking on an empty spot
of the toolbar.

The context menu that appears allows you to select or unselect different toolbars from
being displayed, such as Build, Debug, Edit, File, and Memory. You can also completely cus-
tomize the toolbars by selecting Customize on the context menu. This will open the Customize
Toolbars window, as shown in Figure 1-13. This window offers the same functionality as the
toolbar configuration section in the Advanced Options window, but it has one additional bene-
fit: you can click and drag icons from the Customize Toolbars window directly onto the primary
toolbar in the IDE.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 21

8954Ch01.qxp 1/28/08 11:32 AM Page 21

Figure 1-13. The Customize Toolbars window

One of the nice features on the toolbar context menu I like to use is the Small Toolbar Icons
option. If this option is selected, then the primary toolbar in the IDE will shrink the icons to a
smaller size. This saves space on the screen. (I like to have as much visual space as possible
when working with code in the Source Editor.)

If you’re programming an application and you have concerns about memory, I highly rec-
ommend selecting to display the Memory toolbar from the context menu that is displayed by
right-clicking the primary toolbar. You can also activate it by going to View ➤ Toolbars ➤
Memory. This will display a JVM memory meter in the toolbar that lists the amount of memory
currently used versus allocated. The memory toolbar can be useful when you launch web
applications, since you can watch the memory allocated as a web application server starts up.
This can be a quick and dirty way of monitoring memory usage without having to profile an
application or use a tool such as JConsole.

■Tip If you haven’t already figured it out, you can click the Memory toolbar to force garbage collection. If
you have a long-running process or a running application server started from inside NetBeans that is hog-
ging resources, you can try to reclaim it.

Windows
There are multiple windows you can open and use throughout the IDE windowing system.
Each window has a specific purpose and can be opened, minimized, or closed. Each window
can also be dragged around and docked in virtually any place in NetBeans. I cover some of the
more commonly used windows next.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS22

8954Ch01.qxp 1/28/08 11:32 AM Page 22

Projects Window
The Projects window displays all the currently opened projects. It is the main entry point for
NetBeans to categorize and group files for use in an application. A project can be a Java Appli-
cation, an EJB Module, a Web Application, a Mobile Class Library, a NetBeans Module Project,
or another type. If you need to jump quickly to the Projects window, you can toggle to it by
pressing Ctrl+1.

The layout and usage of elements in the Projects window when working with files, folders,
and projects is covered in more detail in various chapters throughout this book.

Files Window
The Files window provides a more normal file-based view of open projects. It contains the
same information that is displayed in the Projects window but is organized in a manner that
may be more familiar to you. The files in a project are organized in a folder-and-file structure
that represents how your project would look if you used a file explorer outside NetBeans to
view it. If the Files window is not active, you can toggle to it by pressing Ctrl+2.

Services Window
The Runtime window is where you can find important resources such as HTTP servers, data-
base servers, web services, DTD and XML schema catalogs, and processes. You can access the
Services window by selecting Window ➤ Runtime or pressing Ctrl+5.

Navigator Window
The Navigator window provides a quick-and-easy view of a node that has been selected in the
Projects window or Source Editor. It can display the methods, constructors, and fields in a class
in a traditional list view or as an inheritance tree. For classes with numerous methods, this can
be a convenient way to jump back and forth between methods or fields. You can display the
Navigator window by selecting Navigator from the Window menu or by pressing Ctrl+7.

Source Editor
The Source Editor window is where you edit code and other files. This is where the “magic”
happens. When you open files, they appear in the Source Editor window as a tabbed view. The
files displayed in this window can be arranged in several different ways (more on this in the
next chapter, where you’ll create your first Java application). If you have a file already open in
the Source Editor, you can quickly toggle to it by pressing Ctrl+0.

■Tip Pressing and holding Ctrl+Tab allows you to select and switch back and forth between open tabs
in the Source Editor window, similar to how you can toggle between open applications in Windows using
Alt+Tab.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS 23

8954Ch01.qxp 1/28/08 11:32 AM Page 23

Output Window
The Output window can display a variety of information. If you choose to build your project,
compile a single file, or run a file that outputs text to the standard output or standard error
stream, the information and results are displayed in the Output window. If the Output window
is not displayed, you can select Window ➤ Output ➤ Output or press Ctrl+4 to open it.

Properties Window
The Properties window displays the attributes and properties of either the element currently
selected in the Projects window or the item that is highlighted in the Source Editor. To see this
in action, open the Properties window by selecting Window ➤ Properties or pressing
Ctrl+Shift+7.

Once the Properties window opens, navigate through the Projects window and select a Java
source file in an open project. The Properties window will display several attributes for the Java
file, such as the filename, file size, last modified date, and classpath.

Double-click the source file. Once it opens in the Source Editor, select any method by click-
ing the method name. Notice that the Properties window changes to display the attributes of the
method, such as the method name, access modifier, parameters, return type, any exceptions,
and Javadoc comments.

The Properties window can be very convenient when used in conjunction with the Projects
window for quickly navigating file structures and viewing attributes.

Palette Window
The Palette window displays a context-sensitive list of elements that are useful for the current
file you are editing in the Source Editor. You can open the Palette window by selecting Window
➤ Palette or pressing Ctrl+Shift+8. If you selected a JSP file, the Palette window would display
HTML, JSP, JSTL, and database elements. If you open a Java Swing source file in the Source
Editor, the Palette window is filled with visual elements to be used in Swing projects.

Summary
In this chapter we discussed installing NetBeans, updating features, and customizing internal
properties.

We covered installing NetBeans into standard directory structures and associating the
correct JDK. We also covered how to customize the application server properties during the
installation procedure. Performance considerations for the tool’s startup time were also dis-
cussed. We reviewed several suggested settings that you may want to tweak to obtain optimal
performance, such as altering the garbage collector that is used and specifying heap and
memory arguments.

You can configure a variety of NetBeans settings based on your preferences. In this chapter
we also discussed how to configure the Basic and Advanced Options (accessible from the Tools
main menu) to set these properties. You can configure everything from code formatting to fonts
and colors and menus and toolbars.

Lastly, we reviewed some of the windows that programmers will see and use most often.
These windows provide various pieces of information and quick access to certain features.
Understanding where and how to use them is critical to becoming an expert user of NetBeans.

CHAPTER 1 ■ DOWNLOADING, INSTALLING, AND CUSTOMIZING NETBEANS24

8954Ch01.qxp 1/28/08 11:32 AM Page 24

The Source Editor

The Source Editor is arguably one of the most important focal areas of NetBeans. It is where
developers write new code, rework existing code, refine their documentation, and perform
many important tasks.

The NetBeans Source Editor is not only a mechanism for writing text, but also a full-featured
environment designed to assist you. Whether it’s providing abbreviations for faster coding, auto-
matic code completion, or navigation and documentation aids, the Source Editor aims to provide
every possible convenience.

In this chapter I attempt to introduce the core features provided in the Source Editor. The
NetBeans 6 Source Editor has a similar look and feel to that of previous versions of NetBeans,
but it has an entirely new underlying architecture that affects syntax coloring, refactoring,
code formatting, and more. Some of the Source Editor features are explained in more detail
in other chapters, such as code completion (Chapter 3), debugging (Chapter 4), and Javadoc
(Chapter 7). This chapter is intended to serve as a quick introduction and overview.

Working in the Projects Window
Before you can open and work with files in the Source Editor, you have to be able to navigate
the Projects and Files windows. The Projects and Files windows are the places to go to open
Java files in the Source Editor.

The Projects window is the primary location where you can view the files associated with
your application. It is structured as a parent-child tree, where the parent node is the project
and the child nodes are the categories into which NetBeans organizes the files.

For most Java project types, the files are sorted into four groups:

• Source Packages • Libraries

• Test Packages • Test Libraries

Source Packages
The Source Packages location is where you define the Java source code to be used in your
application. Here, you can add and maintain the package statements you would normally use,
such as com.mycompany.projectname. Adding packages is extremely easy. Right-click Source
Packages and select New ➤ Java Package. In the New Java Package window, you can specify the
name of the new package, such as com.yourcompany.product. Once you have decided on the

25

C H A P T E R 2

8954Ch02.qxp 1/28/08 11:33 AM Page 25

name for your package, click the Finish button, and the new package name is added under
Source Packages in the Projects window.

■Tip Notice the icon next to the package name. If the icon is gray (which it is after you add a new pack-
age), then it is empty of classes. Once you have added at least one class into a package, the icon becomes
orange. This small feature is useful once you have multiple hierarchies of package names.

You can right-click almost any node that appears in the Projects window, such as project
names, packages, and Java source files. Each type of element displays different menu items on
the context menu that appears.

Test Packages
The Test Packages node in the Projects window is nearly identical to the Source Packages
node. However, the Test Packages node specifies the package structure for your application’s
test classes and JUnit tests. If you were to execute the project tests by going to the Run menu
and selecting Test MyProjectName, the classes in the Test Packages node would be executed.

The source code for Test Packages is separate from the regular source code for Source
Packages. You can see the difference by right-clicking the project name and selecting Proper-
ties. Make sure the Sources option is selected. In the Sources section in the Project Properties
window, you will see a section for defining Source Package Folders and a different section for
defining Test Package Folders, as shown in Figure 2-1. This allows you to reference one or
more locations for Source Packages and Text Packages.

Figure 2-1. Project Properties window specifying Source Package Folders and Test Package Folders

CHAPTER 2 ■ THE SOURCE EDITOR26

8954Ch02.qxp 1/28/08 11:33 AM Page 26

Libraries
The Libraries node in the Projects window is for defining class libraries that your application
will use. If you need to use nonstandard libraries or classes from an external project, you can
define them under the Libraries node. To add a JAR file to the libraries for your project, right-
click the Libraries node and select Add JAR/Folder.

Test Libraries
Similar to the Libraries node, the Test Libraries node contains class files or JAR files that your
project test classes need to reference. You can add files to your test libraries by right-clicking
the Test Libraries node and selecting Add JAR/Folder. The JAR file for JUnit exists by default
in the Test Libraries section.

Working in the Files Window
As briefly introduced in Chapter 1, the Files window displays the same data as the Projects
window, but in a more traditional file-and-folder view. In Figure 2-2, you can see a set of
project files displayed in the Files window. The Files window shows an src folder for the Source
Packages, a test folder for the Test Packages, and an nbproject folder, which contains the inter-
nal project-related settings NetBeans uses.

If you build the project, then a build directory will appear in the folder listing. If you have
set the project to generate a JAR or WAR file, then a dist directory will also appear.

Figure 2-2. Files window layout

Arranging and Navigating
Now that you have learned where to go to find project files, you can open them in the Source
Editor and begin working. One of the easiest concepts that is frequently overlooked when
working in the Source Editor is the ability to arrange files.

CHAPTER 2 ■ THE SOURCE EDITOR 27

8954Ch02.qxp 1/28/08 11:33 AM Page 27

Arranging Files in the Source Editor
The Source Editor allows you to arrange files in many different ways, giving you the maximum
flexibility in working with files. The default viewing option for files is a tabbed approach,
where all the files open in the same window with the names of each file appearing in a tab.

A different option is dual-file editing, where one file is displayed in the left portion of the
Source Editor and another file is displayed in the right portion, as shown in Figure 2-3. Having
two different files displayed at the same time can be convenient if you are writing code in one
file that is based off another or uses a similar algorithm.

I use this occasionally when I am writing code that is subclassing another class. I display
the superclass on the right and the subclass on the left. That way, I can line up method imple-
mentations and compare code without having to toggle repeatedly between two tabs.

Figure 2-3. Dual-window file display using left and right panels

An additional method for displaying files in the Source Editor is top–bottom. Sometimes I
need to edit one file and find myself constantly scrolling back and forth between two meth-
ods. Code folding comes in handy here, but it may not be convenient enough. If I could only
view the same file in two places at once, my life would be much easier.

You can do this in the NetBeans Source Editor by right-clicking the Filename tab and
selecting Clone Document. A second instance of the file will open in the Source Editor. Click
and hold the Filename tab for the second file, and move your mouse to the lower half of the
Source Editor. A highlighted outline of the file should be visible. Once you have it positioned
correctly, release the mouse button. The result will be a split screen, as shown in Figure 2-4.

CHAPTER 2 ■ THE SOURCE EDITOR28

8954Ch02.qxp 1/28/08 11:33 AM Page 28

Figure 2-4. Dual window top–bottom

There are additional ways you can arrange files open in the Source Editor. To arrange the
files click and drag the tab of one file around the inside of the Source Editor window. As you
move the mouse around the edges of the window, you will notice an orange outline. If you
release the mouse, the window you are moving will embed itself in that area of the Source
Editor window that was defined by the outline. This sounds more difficult than it really is.
Open several files in NetBeans and start experimenting with file layouts. You can even arrange
a single source file to be displayed in four quadrants at the same time. Exactly why you would
do so is beyond me, but it is in fact possible.

Navigating Files in the Source Editor
If multiple source files are open in the Source Editor, you can easily navigate between them.
Depending on your screen width and the amount of visible space available to the Source Edi-
tor, the file tabs will not all display along the top of the Source Editor.

You can move back and forth between the open files in several ways. First you can do so
without using a mouse. To switch between the tabs, press and hold the Ctrl key. Then press the
Tab key. You will see a small pop-up window displaying the list of currently opened files. Each
time you press Tab, you can toggle between the files. Once you have selected the file you wish
to view, release the Ctrl key. The selected file should be displayed in the Source Editor.

You can also use the left, right, and down arrows that appear in the upper right of the
Source Editor. If you click the down arrow a small pop-up window displaying the list of cur-
rently opened files will appear. It allows you to select a file and have it displayed in the Source
Editor. If you use the left and right arrows, you can move through the list of open files one at a
time in either direction (backward or forward).

CHAPTER 2 ■ THE SOURCE EDITOR 29

8954Ch02.qxp 1/28/08 11:33 AM Page 29

Working in the Source Editor
The Source Editor window is where programmers will spend most of their time. This is where
file contents are displayed when opened through the other windows or locations in NetBeans.
The Source Editor displays all files, such as Java source files, XML files, and text files. The
Source Editor provides a different set of tools and functionality based on the file type that is
currently displayed or active.

Opening Files
As discussed in earlier sections of this chapter, you can display a file in the Source Editor by
double-clicking the file in the Projects or Files window. It should open in the Source Editor
portion of the IDE.

A toolbar at the top of the window allows for some convenient links to IDE functionality. It
contains icons for searching for words, indenting code, and commenting lines of text. The
icons displayed in this toolbar vary, depending on the type of file that is displayed. The same
features can also be activated by viewing the corresponding menu items on the Edit, Navigate,
and Source menus. Most of the features have keyboard shortcuts, which are noted on those
main menus.

Line Numbers
In the Source Editor, line numbers are displayed along the left column. The line numbers
provide a great way to track where certain pieces of code are as well as provide a quick way to
trace the location of exceptions that are thrown. If the line numbers are not displayed, you
can enable them by selecting View ➤ Show Line Numbers.

Code Folding
The next feature to notice in the Source Editor is code folding. For each section of Javadoc
comments and each method name, notice the minus icon and the line extending below it.
This denotes a piece of text that can be folded, or hidden. The obvious question from any user
new to a modern Java IDE is “Why do I need this?”

If you have ever worked with a very long Java source file, you can start to see where I’m
going with this. All too often, to edit code, I have needed to scroll up and down through a file
between two methods. Every time you edit source code, you don’t want to be rearranging
where methods are in a file just to make it easier to work with them. With code folding, you
can hide large blocks of code that you do not need to see.

Code folding can be enabled or disabled, depending on your personal preference. To dis-
able code folding in NetBeans, select Tools ➤ Options ➤ Editor. On the top of the General tab
is a check box labeled Use Code Folding. Uncheck this box and click OK. The code-folding
lines and minus icons will disappear from the Source Editor.

In the same section in the Basic Options, you can also configure the default folding prop-
erties of Java source files. Below the Use Code Folding check box is a section called “Collapse
by Default.” Here you can enable folding for methods, inner classes, imports, Javadoc com-
ments, and initial class comments. I typically enable code folding by default for methods and
Javadoc comments but leave the rest of the options disabled. This is useful when you open a
lot of Java source files and know exactly which method you need to find and edit.

CHAPTER 2 ■ THE SOURCE EDITOR30

8954Ch02.qxp 1/28/08 11:33 AM Page 30

If you have enabled code folding, several menu items in the IDE can be useful. Once you
have opened a Java source file with all the methods and Javadoc folded, select View ➤ Code
Folds. In this submenu are options for expanding all sections that are folded (Expand All),
collapsing all sections that can be folded (Collapse All), expanding or collapsing just Javadoc
comments, and expanding or collapsing all Java code blocks. This allows a great deal of flexi-
bility when working with code folding in a file and saves you from manually scrolling through
the file and collapsing each method.

Depending on the file type, code folding may or may not be supported when the file is
displayed in the Source Editor. For example, if you open a web application’s web.xml file in the
Source Editor, then code folding is enabled. You can expand or collapse different tags in the
XML file. Other file types may have code-folding support.

■Tip The best shortcuts to remember when working with code folding are Ctrl+Shift+– (minus) to collapse
all folds and Ctrl+Shift++ (plus) to expand all folds. If the cursor is inside a method, section of Javadoc, or
other element where cold folding applies, you can also press the Ctrl+key combination to collapse or expand
just that code block.

Current-Line Highlighting
A trivial but useful feature of the NetBeans Source Editor is current-line highlighting. The line
that contains the cursor is lightly highlighted, so you always know exactly which line is being
edited. You can see this by clicking anywhere in a Java source file and then using the up and
down arrow keys to navigate through the file.

Syntax and Error Highlighting
In my humble opinion, code syntax-error highlighting might just be the greatest feature of
modern Java IDE tools. I can still remember my early days of Java programming where I would
type a lot of code and finally get around to compiling. There would always be several dozen
errors that were mostly syntax related since I never remembered the exact case syntax of cer-
tain methods or forgot the semicolon at the end of each line.

When many programmers get inspired and literally fly through code, they don’t want to
stop and compile every few lines. This leads to long error lists when they finally do compile.
Having a visual means of identifying errors immediately can be quite an asset.

NetBeans provides a great feature set for identifying errors in code. The first is the high-
lighting feature. If a programmer types a line of code and progresses line by line, the IDE scans
the text of your source code in the background to determine if it will compile and, if not,
shows the possible errors and warnings.

For example, if you were to open a Java source file, type System.out.printlnnn("Hi");,
and press the Enter key, you would see a red wavy line appear under that piece of code. If you
position the mouse over the error glyph in the left margin, a window will pop up with the mes-
sage “cannot find symbol, symbol : method printlnnn(java.lang.String).”

CHAPTER 2 ■ THE SOURCE EDITOR 31

8954Ch02.qxp 1/28/08 11:33 AM Page 31

Why is this one of the greatest features? Because it allows you to spot code syntax errors
immediately, see exactly where in the code they occur, and get a helpful message telling you
why the error exists. You do not have to wait until you compile the file and read the compiler
output to discover that there is a problem.

In older versions of NetBeans, the entire line would be highlighted. In NetBeans 6, only
the specific portion of the line causing the error is highlighted. Notice that the System.out por-
tion of the line is displayed without problems, because it is syntactically correct, but only the
printlnnn method is underlined as an error, as shown in Figure 2-5.

Figure 2-5. The code highlighting for a syntax error in the Source Editor

Annotation Glyphs and the Error Stripe
The annotation glyph margin (also called the glyph gutter) and the error stripe are two incredi-
ble features in NetBeans that allow a developer to perform fast error identification and
resolution.

On the left side of the Source Editor, small icons, or glyphs, can appear in a vertical gray bar
(or in place of line numbers if the line number feature is enabled). For example, in Figure 2-5, a
glyph is displayed instead of the line numbers for line 22. The annotation glyph margin typi-
cally displays icons denoting the following:

• Errors

• Breakpoints for debugging

• Bookmarks

• Compiler warnings

• Suggestions

• Tasks

• Other code syntax notifications

CHAPTER 2 ■ THE SOURCE EDITOR32

8954Ch02.qxp 1/28/08 11:33 AM Page 32

The icons that appear in the glyph margin allow you to mouse over and read a brief descrip-
tion of the identified issue.

On the far-right side of the Source Editor window is a slim, vertical gray bar, which is the
error stripe. The error stripe goes hand in hand with the glyph margin and code-syntax high-
lighting. The error stripe displays small, color-coded rectangles for specific issues that
correspond to the glyphs in the glyph margin. The main difference is that as you scroll through
a long file, the glyph margin and line numbers on the left scroll with you, while the error stripe
bar on the right stays fixed. The error stripe represents the entire file, regardless of length. As
the file grows longer, the error stripe stays the same length. Displayed on the error stripe are
all syntax errors and warnings, highlighted items, breakpoints, and bookmarks.

As errors appear in the code and the glyph margin, they also appear in the error stripe bar.
If you mouse over the small, red rectangle that appears in the error stripe signifying an error, it
will display the exact error message, just like mousing over the error glyph icon in the left mar-
gin. If you click the red rectangle in the error stripe, it will take you directly to the line of code
that is causing the problem. This is an important feature, since many times you have hun-
dreds of lines of code but don’t want to have to scroll through all of them just to find the one
error that is being highlighted.

If you made an error that NetBeans thinks it can help you fix, then a Suggestion glyph
icon will appear in the glyph margin. The following sample code demonstrates this.

package com.pronetbeans.examples;

/**
* @author Adam Myatt
*/
public class Main {

public static void main(String[] args)
{

Main MyObj = new Main();

MyObj.doSomething();
}

}

In the instance pictured in Figure 2-6, a method of an object was called that does not exist.
The Suggestion glyph that appears suggests creating the method Main.doSomething() in the
class to make the code valid (or at least compile).

CHAPTER 2 ■ THE SOURCE EDITOR 33

8954Ch02.qxp 1/28/08 11:33 AM Page 33

Figure 2-6. Suggestion glyph icon in the glyph margin

If you click on the Suggestion glyph icon, the blue highlighted text “Create method
doSomething in com.pronetbeans.examples.Main” appears. You can also force it to appear by
pressing the shortcut keys Alt+Enter. If you click the highlighted text or press the Enter key,
NetBeans will implement the suggestion and the Suggestion glyph icon will disappear. The
following code will have been added to the class:

private void doSomething() {
throw new UnsupportedOperationException("Not yet implemented");

}

As you can see, it added a private method doSomething that throws an
UnsupportedOperationException if executed. This allows your code to compile but throws the
Exception if you execute the method without fully implementing it. The access modifier of
private is the NetBeans way of making sure additional classes don’t call the method until you
explicitly make the decision to change it to public, protected, or default.

Some additional situations in which you might see Suggestion glyph icons are

When you need to surround a block with try and catch statements

When you use a class without first importing it or its package

When you type a local variable in a method’s return statement without first having created
the variable

When you define and reference a variable without first initializing it with a value

For the complete list of situations where NetBeans displays the Suggestion glyph icon, see the
NetBeans help by navigating to Help ➤ Help Contents and searching the index for the word
suggestions.

CHAPTER 2 ■ THE SOURCE EDITOR34

8954Ch02.qxp 1/28/08 11:33 AM Page 34

The last error-related feature I want to focus on here is the Output window. When code is
built or executed, the output from the standard out and error streams is displayed in the Out-
put window. If there is a compilation error, the standard error stream that is displayed in the
Output window will be linked directly to the source code. For the following example, note that
the semicolon is missing from the end of one of the lines.

public class Main {

public static void main(String[] args) {

Main MyObj = new Main()
MyObj.doSomething();

}
}

When the code is compiled, the Output window will display that a semicolon is expected
and at which line the issue occurred. The line is also linked to the matching line in the source.
As shown in Figure 2-7, the error line in the Output window is hyperlinked.

Figure 2-7. The standard error output hyperlinked to the source code

CHAPTER 2 ■ THE SOURCE EDITOR 35

8954Ch02.qxp 1/28/08 11:33 AM Page 35

If you click the hyperlinked error message, then the matching code opens in the Source
Editor and is scrolled to the line where the error occurred. This can be a very useful feature if
you are compiling an entire package or project and numerous errors occur in the Output win-
dow. Not only do you see the errors, but NetBeans also intelligently links them directly to the
source code, to save you time.

Code Indentation
Few programmers would argue that indenting code doesn’t matter. Formatting your code
and indenting each line properly makes the code more readable and easier to maintain.
When code contains numerous nested blocks, it can sometimes be difficult to know where
one if or else statement begins and another ends. Many programmers have played the
“count the curly brackets” game to understand how some legacy code works. Look at the
following code:

public class BadClass {

public BadClass() {

int x = 0;
int y = 1;
int z = 2;
int outputNum = 0;

if(x < y) {
System.out.println("X is less than Y");
if(x==0) {
outputNum = 9;
}
else if(x==1) {
x+=463;
}
else if(x==2) {
x+=x;
}
}
else if(x<z) {
z+=y;
}
}
}

At first glance (and maybe even second glance) it is not easily discernable which else-if
blocks are nested inside which if blocks. It is the habit of a good programmer to indent the
code using spaces and tabs so that it is easier to read and thus to maintain. Following some
sort of standard indentation scheme is also important so that indentation is consistent across
multiple files. NetBeans helps enforce this best practice.

CHAPTER 2 ■ THE SOURCE EDITOR36

8954Ch02.qxp 1/28/08 11:33 AM Page 36

NetBeans uses a standard indentation scheme. Combined with the Reformat Code option
on the Sources main menu, you can create code and have NetBeans enforce good indentation.
If you are dealing with a file created outside NetBeans, you can reformat it to use the correct
indentation following the NetBeans standard.

To apply the formatting, go to the Source main menu and select Reformat Code. You can
also press the shortcut Ctrl+Shift+F. After reformatting with indentation, our BadClass exam-
ple should look like Figure 2-8.

Figure 2-8. The reformatted BadClass example with indentation applied

In the reformatted code in Figure 2-8, notice that each nested block is properly indented.
Each if, else-if, and else is easier to read, so you can quickly identify the start and end of the
blocks. The important thing to note is that each block is indented a set number of spaces. This
is a property that can be configured.

To set this and other indentation properties, go the Tools main menu and click Options.
In the Basic Options window that appears, select Editor from the top pane and click the
Indentation tab. The Indentation properties should be displayed as seen in Figure 2-9. You can
set the Number of Spaces per Indent, which affects how far each line or block is indented. By
default it is set to four. You can set this to whatever you want, but it should generally follow the
default, especially if multiple developers work on the same code.

CHAPTER 2 ■ THE SOURCE EDITOR 37

8954Ch02.qxp 1/28/08 11:33 AM Page 37

Figure 2-9. Setting indentation properties

Identifying Starting and Ending Braces
One of the improved features in NetBeans 6 is the ability to identify quickly and easily how
curly braces line up. In the previous section I mentioned the importance of code indentation
to make files easier to read and understand. Even then, it is sometimes still difficult to trace
quickly where an if or else-if block ends.

Look back at the BadClass file in Figure 2-8. If you open the file in the Source Editor
and click next to the curly brace at the end of line 21 that reads if (x < y) {, then that curly
brace should be highlighted green, by default, and the matching curly brace that ends the
if statement should be highlighted as well. The closing brace starts line 30 and reads
} else if (x < z) {. The color may not show up, but review Figure 2-10 to see the curly
brace highlighting.

Figure 2-10. The curly braces highlighted in the BadClass file

CHAPTER 2 ■ THE SOURCE EDITOR38

8954Ch02.qxp 1/28/08 11:33 AM Page 38

This same type of highlighting can also be used with parentheses for method declarations,
method calls, if statements, and more. Simply click next to any parenthesis or curly brace to
see the matching element. This feature existed in previous versions of NetBeans, but it wasn’t
great. You always had to click inside and to the right of the brace or parenthesis, and it wasn’t
always perfect. In NetBeans 6 the feature works flawlessly.

Identifying Unused Imports
Another nice new feature of NetBeans 6 is the ability to see all unused imports highlighted as
warnings. Using the BadClass file from the previous section, I have added several useful
imports to various classes in the java.util package. In prior versions of NetBeans, you could
use a keyboard shortcut or context menu selection to tell the IDE to remove unused imports.
The same still applies, but now the unused imports are neatly highlighted in the source code,
as shown in Figure 2-11.

Figure 2-11. Unused imports highlighted in source code

Figure 2-11 shows four unused imports. The glyph margin displays a warning icon that
you can click on to display several options. The first, Removed Unused Import, simply strips
out the single line for the import you selected using the glyph in the margin. The second
option, Remove All Unused Imports, will strip out all the invalid imports from the BadClass
class.

Source Editor Menus
Several menus are specifically related to the Source Editor. These provide links to the most
commonly used pieces of functionality that you will need as you are coding.

Context Menus
To activate the context menu in the Source Editor, simply right-click anywhere in the window.
In the menu that appears are numerous options. Many of them are also available in the main
menu structure in NetBeans, but if invoked here can be context sensitive to the file, section,
line, or even word highlighted.

CHAPTER 2 ■ THE SOURCE EDITOR 39

8954Ch02.qxp 1/28/08 11:33 AM Page 39

The first item to cover on the Source Editor context menu is the Go To option. This option
has its own submenu and lists item selections such as Source, Declaration, Super Implementa-
tion, Test, Line, and Type. Depending on which option you select, you will get a slightly different
result based on what is selected and/or highlighted. Each of the submenu options described
next is also available from the main menu titled Navigate that is available in NetBeans.

Go To Source
The Go To Source menu option allows you to open the source code for an element. You can do
this by either highlighting the name or placing the cursor inside the name of the element for
which you wish to view the source code.

Assume you were not familiar with the java.lang.System class and wanted to discover
how the internal code worked. For the code

System.out.println("How does this thing work?");

you can right-click anywhere inside the System class name and select Go To ➤ Source. You can
also use the keyboard shortcut of Ctrl+Shift+B. The source file for the System class will open as
a separate tab in the Source Editor.

■Tip If the status bar along the bottom of the NetBeans IDE states that the source for the class cannot be
found, then you need to locate the source for the platform or library you are using. Many open source proj-
ects, such as projects from the Sourceforge.net or the Apache Software Foundation, provide downloadable
bundles of source code. Use the Library Manager or Java Platform Manager to link the source code bundle
to the appropriate set of APIs. The manager features are located in the Tools main menu.

If the right-click occurred on the name of a method, then the source file will open and
scroll to the specified method. This is extremely useful because you don’t have to spend time
scrolling through the file.

Overall I like to think of the Go To Source option as a convenience for a programmer who
is curious about how code works. Using this submenu option you can quickly drill down
through classes and methods, continuously opening the source code for each element you
want to investigate. This functionality can allow you to learn quickly how a third-party API
works.

Go To Declaration
The Go To Declaration submenu option allows you to jump directly to where a method or field is
defined in the code. By right-clicking the element and selecting Go To ➤ Declaration or pressing
Ctrl+B you can jump to the line where the element is defined. This can be a convenient feature if
you need to jump to an element and see the details about the data type, access modifier, etc.

The EmailClient class defined as follows has a class member variable named smtp:

CHAPTER 2 ■ THE SOURCE EDITOR40

8954Ch02.qxp 1/28/08 11:33 AM Page 40

public class EmailClient {
public static String smtp = "mail.mydomain.com";

public static void main(String[] args) {
System.out.println("Hello World!");
System.out.println("SMTP = " + smtp);

}
}

This variable is then logged to the standard output stream inside the main method. If the
EmailClient class was hundreds of lines of code long, you would not want to have to scroll
through the entire class to find the definition of the smtp member. By right-clicking on the
smtp variable in the System.out.println("SMTP = " + smtp); line and activating the Go To
Declaration feature, you cause the Source Editor window to jump immediately to the second
line, where the smtp variable is declared.

Go To Super Implementation
The Go To Super Implementation submenu option allows you to jump directly to the declaration
of the super interface for a class. By right-clicking the class, method, or field, selecting Go To ➤
Super Implementation, or pressing Ctrl+Shift+P, you can jump to the line where the element is
defined in the super interface.

What exactly does this mean? In the following example we define a class interface named
MyInterface and a class that implements the interface named MyImpl:

public interface MyInterface {

public void doSomething();
}

public class MyImpl implements MyInterface {

public void doSomething() {
System.out.println("MyImpl.doSomething");

}
}

The MyImpl class implements the MyInterface interface and provides a simple implementation
of the doSomething method. If you were to activate the Go To Super Implementation feature after
selecting the MyImpl.doSomething method, then the Source Editor would open the MyInterface
file. The cursor in the file would start at the MyInterface.doSomething definition since MyInterface
is the super implementation in this case.

Next examine the following, similar code:

public interface MySuperInterface {
public void doSomething();

}

CHAPTER 2 ■ THE SOURCE EDITOR 41

8954Ch02.qxp 1/28/08 11:33 AM Page 41

public interface MyInterface extends MySuperInterface {

public void doSomething();
}

public class MyImpl implements MyInterface{

public void doSomething() {
System.out.println("MyImpl.doSomething");

}
}

In this code, MyImpl implements MyInterface, which in turn extends MySuperInterface.
MySuperInterface.doSomething thus becomes the super implementation for MyImpl.
doSomething.

Go To Test
The Go To Test submenu option allows you to jump directly to the corresponding JUnit test for
a class. By right-clicking inside the Source Editor window for a class and selecting Go To ➤ Test,
as shown in Figure 2-12, you cause the corresponding test class to open. You can also use the
shortcut keys of Ctrl+Shift+T to open the test class.

Figure 2-12. The Go To Test context menu

One thing to note is the context in which you activate the Go To Test feature. If you have
the cursor anywhere inside a method for which a corresponding test method exists, then the
test method is selected when the test class opens. Otherwise the test class opens without a par-
ticular area initially selected.

CHAPTER 2 ■ THE SOURCE EDITOR42

8954Ch02.qxp 1/28/08 11:33 AM Page 42

Go To Line
The Go To Line feature is a great navigation tool. As the name suggests it allows you to jump
quickly and directly to a specific line in the code. You can use this feature by right-clicking in
an open file in the Source Editor and selecting Go To ➤ Line from the context menu. The Go To
Line window that appears is shown in Figure 2-13. You can also activate the feature for a file in
the Source Editor by using the shortcut keys Ctrl+G.

Figure 2-13. The Go To Line dialog window

This feature may seem unnecessary if you are dealing with small classes. However, when
working with large classes it can save you a lot of scrolling in case you often need to jump back
and forth between several sections. If you need to debug a class after reviewing an error stack
trace, then you already know the line number and the Go To Line feature will help you jump
directly to it.

Go to File
The Go to File tool allows you to search for and jump to any file in an open project or library. It
does not appear on the context menu as did the others just described, but it is worth mention-
ing nonetheless. You can access the Go to File feature on the main menu item Navigate.

When the Go to File window opens, you will be prompted to enter a filename or search cri-
terion. As you type, any files that match the text will appear in the list, as shown in Figure 2-14.
You can modify this file matching by using the options in the window, such as Case Sensitive,
Show Hidden Files, and Prefer Current Project.

Figure 2-14. The Go to File search fields and results

CHAPTER 2 ■ THE SOURCE EDITOR 43

8954Ch02.qxp 1/28/08 11:33 AM Page 43

Other Items
Additional menu items will appear on the context menu when you right-click inside a file in
the Source Editor. These features are covered in later chapters on Javadoc (Chapter 7), refac-
toring (Chapter 10), and debugging (Chapter 4).

The only other feature I want to highlight on the context menu is the Select In option. This
feature will trigger the file to be displayed and highlighted in the Projects, Files, or Favorites
windows, depending on your selections. This can be useful if you have multiple projects
and/or source files open and have lost track of where you opened the file. It can also be a
convenient way to access other classes in the same package structure without having to click
the nodes and drill down through the files.

Editor Menu (Toolbar)
The Editor menu is a toolbar with several links to useful tools. The functionality represented
there is spread across several of the main menus, but the code editing and navigating features
that benefit a developer are available via the icons. The Editor menu bar is displayed in
Figure 2-15. Be aware that the exact arrangement of the icons on the menu bar is subject
to change, based on ongoing development work and improvements in each edition of Net-
Beans. However, the core features should stay the same across versions.

Figure 2-15. Icon menu in Source Editor

Jump List
The first three icons represent the ability to navigate the jump list. The jump list is sort of like
an Internet browser’s history. You can click the second and third arrows to navigate back and
forward between pages. The first arrow takes you back to the last code edit that was made,
even if it wasn’t in the currently opened file.

In NetBeans you can click Back and Forward to navigate between locations in code where
you have opened source or made changes. If you are in a page of source and use the Go To
Source feature to open the code of another class, the Back icon should become active. You can
then click it and be returned to where you originated.

■Tip Combined with the Go To Line feature, this is a very convenient tool if you are trying to debug code
after reading an error stack trace. You can locate the line in the first class, drill down to the offending line in
the next class using Go To Source, and be able to navigate your way back to where you started.

CHAPTER 2 ■ THE SOURCE EDITOR44

8954Ch02.qxp 1/28/08 11:33 AM Page 44

Find Text Selection
The next section of icons in Figure 2-15 deal with finding text. The sections on the toolbar
should be easily distinguishable because of the vertical gray separator. From left to right in the
section the icons are Find Selection, Find Previous Occurrence, Find Next Occurrence, and
Toggle Highlight Search.

The text selection icons allow you to highlight one or more characters and locate all
occurrences in the open file where that text appears. You can also place the cursor anywhere
in or next to a class name, method, or variable and use the Find Selection icon to highlight the
occurrences. The Previous Occurrence and Next Occurrence icons allow you to navigate back
and forth between the different occurrences. The fourth and final icon, Toggle Highlight
Search, allows you to turn off the highlighted search term so that each occurrence is not
marked in the source code.

Bookmarks
The third section in Figure 2-15 contains three icons: Previous Bookmark, Next Bookmark, and
Toggle Bookmark. By now you should be able to take an educated guess as to what these icons
allow you to do. By using the Toggle Bookmark icon you can enable or disable bookmarks in
your code.

Bookmarks are useful if you want to flag a line of code and come back to it later. Using the
Next Bookmark and Previous Bookmark icons you can scroll through all the bookmarks you
have set to navigate quickly and view what you wanted to remember.

Shifting Lines
The fifth section on the Editor menu deals with shifting lines. These two icons allow you to
shift one or more lines of code to indent or unindent them. The number of spaces the lines are
shifted can be set in the Options ➤ Editor section on the Indentation tab.

This feature comes in handy when you copy and paste in blocks of code and want to
adjust the indentation. You can make the indentation line up with the rest of the file without
necessarily having to format the entire source file. To shift lines left, you can use the shortcut
of Alt+Shift+Left. To shift lines right, you can use the shortcut of Alt+Shift+Right.

Macros
The sixth section on the Editor menu is for working with macros. These two icons enable you
to start and stop recording macros. This subject is covered in greater detail in this chapter’s
later section “Macros.” Once you are comfortable working with macros, these icons can pro-
vide convenient access to starting and stopping the recording of them.

Commenting Code
The seventh and final section of the Editor menu deals with commenting code. No Java IDE
can be called a Java IDE unless it provides this basic functionality. NetBeans holds true in this
case, as do many other IDE tools. As a developer you will often write code where you want to
comment out a line or block of code without having to add the comment characters manually.

CHAPTER 2 ■ THE SOURCE EDITOR 45

8954Ch02.qxp 1/28/08 11:33 AM Page 45

The Comment icon allows you automatically to comment out the line that is currently
active in the Source Editor window. If multiple lines are highlighted, then they are all com-
mented out. You can also access the feature directly on the keyboard via the shortcut
Ctrl+Slash.

Obviously the Uncomment icon performs the opposite action. Lines that were com-
mented out can be quickly and easily uncommented using the Uncomment icon or by
pressing Ctrl+Shift+Slash.

■Tip If the different keyboard shortcuts for NetBeans 6 are starting to frazzle your nerves after having
spent time learning them in NetBeans 5.5, you can easily switch them back. See the Chapter 1 section
“Configuring Keymaps.”

Source Editor Shortcuts
Table 2-1 presents a brief list of some of the most commonly used shortcut sets you might
need while working with source code or in the Source Editor.

Table 2-1. Partial List of Shortcuts Specific to the Source Editor

Shortcut Description

Ctrl+Minus Collapse Fold

Ctrl+Plus Expand Fold

Ctrl+Shift+Minus Collapse All Folds

Ctrl+Shift+Plus Expand All Folds

Alt+O Go To Source

Alt+G Go To Declaration

Ctrl+B Go To Super Implementation

Alt+Shift+E Go To Test

Ctrl+G Go To Line

Alt+Shift+O Go To Class

Ctrl+Shift+F Reformat Code

F9 Compile File

F11 Build Main Project

Shift+F6 Run File

F6 Run Main Project

Ctrl+D Shift Left

Ctrl+T Shift Right

Ctrl+Shift+T Comment Code

Ctrl+Shift+D Uncomment Code

CHAPTER 2 ■ THE SOURCE EDITOR46

8954Ch02.qxp 1/28/08 11:33 AM Page 46

Supporting Features and Tools
Several features in NetBeans augment the Source Editor. They make working with files in the
Source Editor significantly easier, so you should familiarize yourself with them in case they are
useful in your daily work.

Macros
A macro is a set of automated keystrokes or repetitive behavior that can be reenacted over and
over as needed. If you find yourself performing similar and repetitive actions, you might want
to consider macros.

Macros differ from code templates in that templates are just template code with special
markers that need to be inserted; they are not sets of steps. Macros provide the ability to auto-
mate numerous steps that can be triggered with a simple keyboard shortcut. You can record
them or create them manually.

When you record a macro, you tell NetBeans to “watch” the set of steps you are about to
perform. Once started, you perform the steps and NetBeans writes downs, or records, the
names of the actions you take. When finished, you tell NetBeans to stop. You can then name
the macro you just recorded and assign a keyboard shortcut to it. That set of steps, the macro,
can then be replayed via your assigned shortcut.

You can use the Macro Editor to see a list of macros created in NetBeans. On the Tools
main menu, select Options. Then select the Editor icon from the left pane and pick the Macros
tab. The Macros Editor can be seen in Figure 2-16. There should be a list of macros displayed
(name and shortcut); as you click each macro name, the corresponding macro code is dis-
played in the window at the bottom of the tab.

Figure 2-16. The list of macros in NetBeans

CHAPTER 2 ■ THE SOURCE EDITOR 47

8954Ch02.qxp 1/28/08 11:33 AM Page 47

NetBeans is initially packaged with only one macro, named debug-var. This macro can be
used to add an output statement for an identifier quickly. Here is the full code for the macro
debug-var:

select-identifier
copy-to-clipboard
caret-end-line
insert-break
"System.err.println(\""paste-from-clipboard " = \" + " paste-from-clipboard ");

The names that appear in the code are individual macro actions that are performed during
execution of the macro. In my humble opinion it is ridiculously easy to understand most of
the action names. Only a few need explanation (see Table 2-2 for a list of some of the more
common actions and a brief description of what they do).

In our example, the macro will select the current identifier, copy it, move the caret (a.k.a. the
cursor) to the end of the line, add a line break, type the characters System.err.print(", paste the
text from the clipboard, type the characters = " +, paste the text from the clipboard, and type
the characters);.

Suppose you had the code String FirstName = "Adam";. If you placed the cursor inside the
FirstName variable and activated the debug-var macro using its shortcut Ctrl+J, D, the code that
would be created would look as follows:

String FirstName = "Adam";
System.err.println("FirstName = " + FirstName);

This is obviously a simple example, but with a wide variety of macro actions available there
are many possibilities.

You can create your own macros manually by clicking the New button in the Macros Edi-
tor shown in Figure 2-16. This prompts you to name the macro. Using the editor you can then
set the keyboard shortcut and type in the macro code. If this manual process does not appeal
to you, you can also record your own macros.

The Source Editor toolbar shown in Figure 2-15 has two macro buttons. You can press the
Start Recording button to begin. By default, no shortcut key is assigned to this feature. Once
recording has started, simply perform the actions you want to automate. To finish, click the
End Recording button. Once recording has stopped, you will be prompted to name the macro
and set its keyboard shortcut.

Once you have created a macro, you can edit the code for the macro at any time by going
back to the Macro Editor shown in Figure 2-16. This is a great feature when working with macros
since you can record a long series of steps and manually edit and tweak them if necessary.

Table 2-2 presents a list of several different kinds of macro actions you might use. You can
experiment and discover which actions are available by recording a macro and clicking every
button and menu item possible to see what the macro records.

CHAPTER 2 ■ THE SOURCE EDITOR48

8954Ch02.qxp 1/28/08 11:33 AM Page 48

Table 2-2. Partial List of Macro Actions in NetBeans

Macro Action Description

select-identifier Select the identifier the cursor is currently on.

select-word Select the word the cursor is currently on.

caret-forward Move the caret (cursor) forward one space.

caret-backward Move the caret (cursor) backward one space.

caret-end-line Move the caret (cursor) to the end of the current line.

insert-break Insert a line break after the current line.

bookmark-toggle Toggle a bookmark on or off for the current line.

bookmark-next Jump to the next bookmark.

bookmark-previous Jump to the previous bookmark.

comment Comment the current line or selection of code.

uncomment Uncomment the current line or selection of code.

format Cause the current source code file to be reformatted.

shift-line-right Shift the current line or selection right by the default number of spaces.

shift-line-left Shift the current line or selection left by the default number of spaces.

word-match-prev Insert the previous matching word.

word-match-next Insert the next matching word.

paste-from-clipboard Paste the text from the clipboard.

copy-to-clipboard Copy the currently selected text into the clipboard.

cut-to-clipboard Cut and copy the currently selected text into the clipboard.

fix-imports Run the Fix Imports refactoring.

try-catch Surround the current selection or line with a try-catch statement.

collapse-fold Collapse the code fold for the current block.

expand-fold Expand the code fold for the current block.

collapse-all-folds Collapse all the code folds in the file.

expand-all-folds Expand all the code folds in the file.

Component Palette
The component Palette, or Palette window, is essentially a fancy toolbar that allows you quick
access to language elements. To force the Palette window to open, go to Window ➤ Palette or
press Ctrl+Shift+8. Based on the type of file you have open in the Source Editor, the palette will
display custom elements and tags.

If you opened a JSP or an HTML file in the Source Editor, the Palette would display ele-
ments related to that content. See Figure 2-17. The HTML and JSP elements on the Palette can
be dragged from the Palette into the currently open file. NetBeans does not have a WYSIWYG
HTML/JSP editor like Dreamweaver or Frontpage. However, it still provides some nice features
that help you save time when writing HTML code.

CHAPTER 2 ■ THE SOURCE EDITOR 49

8954Ch02.qxp 1/28/08 11:33 AM Page 49

Figure 2-17. The component Palette for HTML files

Let’s review the components available on the Palette. Say you needed to add an HTML
table element. Click and drag the table element from the Palette into the open source file. As
you move the mouse, the cursor follows inside the file. When the cursor is in the correct line
and column where you want the <table> tag to appear, release the mouse button. The Insert
Table wizard that appears is shown in Figure 2-18.

Figure 2-18. The HTML Insert Table wizard

Using this short wizard screen you can set several parameters about the table without
having to write the code for them. The most convenient is the ability to set the numbers of
rows and columns, as seen in Figure 2-18. If you are creating a large table with numerous
columns, this can save you a lot of time from having to copy and paste repeatedly. If you try to
add several additional elements from the Palette, you will see that NetBeans prompts you with
an element-specific wizard in an attempt to save you coding and configuration. These
prompts are nice, in that they simplify having to remember the exact syntax of each tag’s
attributes.

Another area where the Palette window comes in extremely handy is when working with
Java Swing. If you are designing a Swing class that will contain Swing elements, it is almost
mandatory for any tool to provide a palette or toolbar with the available elements. If you
added a new class of type JFrame Form, then the Palette would contain the Swing elements
seen in Figure 2-19.

CHAPTER 2 ■ THE SOURCE EDITOR50

8954Ch02.qxp 1/28/08 11:33 AM Page 50

Figure 2-19. The component Palette window for Swing

You can perform some basic configuration tasks in the Palette window using the Palette
Manager. From the main menu, go to Tools ➤ Palette and select the type of palette you want to
configure. Let’s assume you chose the HTML/JSP palette. The corresponding Palette Manager
that is displayed will be as shown in Figure 2-20.

Figure 2-20. The Palette Manager window

CHAPTER 2 ■ THE SOURCE EDITOR 51

8954Ch02.qxp 1/28/08 11:33 AM Page 51

With the Palette Manager, you can show and hide the different sections and elements that
appear on the Palette. You can also sort and order the elements to be arranged and displayed as
you see fit. To hide an element from displaying on the Palette, simply uncheck the check box
next to the name of the element. To show the element again, check the check box. Only a limited
set of features is available in the Palette Manager. The only other features that might not be obvi-
ous are the features available if you right-click on a palette category or element name. On the
context menu that appears, you can sort the element in each category or sort the categories.

The last feature worthy of mention is the ability to create a new category by clicking the
New Category button. You can name the category and then copy and paste existing elements
from the Palette into that category. You cannot manually add new elements to the Palette.

Once you use the Palette window regularly it becomes an integral part of your development
process. It offers quick access to commonly used pieces of functionality in a drag-and-drop man-
ner. As NetBeans evolves, expect more and more features to be available in the Palette window for
each file type.

Summary
This chapter presented a lot about working in the NetBeans Source Editor. Many topics were
covered, but with a strong focus on how specific features relate to coding, code navigation,
and automating development.

You saw that

Source file windows can be arranged in a variety of ways allowing for several viewing
options (left-and-right, top-and-bottom, etc.).

Several context menu options are available for navigating through source code.

Many features and tools are available via a keyboard shortcut or a right-click menu.

The Editor menu bar along the top of the Source Editor provides quick access to code-
related features.

This chapter also covered syntax and error highlighting. NetBeans provides several meth-
ods for identifying problems in code, navigating around files to locate errors, and providing
suggestions for fixing the errors.

Developers should use the code indentation tools in NetBeans to format code in a readable
manner so that the code is easy to maintain and understand. NetBeans attempts to enforce this
best practice by automatically attempting to indent various blocks as you type lines of code.
You also saw that you can reformat code at any time to conform to the indentation standards.

Macros are a feature that can be used in conjunction with code completion and code
templates to save you time and keystrokes. You can record sequences of actions and have
them played back using keyboard shortcuts.

Finally, the Palette window was briefly discussed. This feature lets you drag and drop
context-specific elements into your source code. It also provides various wizards to assist you
in adding the code without having to remember all the attribute names or syntax. In the end
this translates to time saved.

Many of the features in this chapter, and in NetBeans as a whole, relate to saving you time
as a developer. Learning all the ins and outs of these features can take time, but in the end the
effort pays off dramatically in making you more productive.

CHAPTER 2 ■ THE SOURCE EDITOR52

8954Ch02.qxp 1/28/08 11:33 AM Page 52

Code Completion
and Templates

This chapter covers several important time-saving features NetBeans provides programmers:
code completion, code templates, and file templates. Code completion allows you to enter the
name of a class, interface, package, field, or method without having to type the entire name. A
code template is a block of text or code that can be automatically inserted into your file by
typing only a few characters. A file template is a placeholder for an entire file of content that
can facilitate reuse and standardization.

All these features are related, in that they involve increasing your productivity and saving
you time. The more you use features like code completion and templates, the more you will
appreciate the benefits of using NetBeans. In the following sections we review each feature
and how best to use them.

Code Completion
As you type in the NetBeans Source Editor, a pop-up window—also known as the code com-
pletion box—appears, showing a context-sensitive list of possibilities. As you type additional
characters, the list is filtered further to display only those items that match what you have
typed. This saves time and makes coding easier, since you don’t have to remember the exact
case-sensitive name of every construct in Java.

Configuring Code Completion
In NetBeans the code completion window can be enabled and disabled. You can also configure
several additional parameters related to code completion for the IDE.

Basic Options
To see the code completion configuration options, select Tools ➤ Options ➤ Editor. The Code
Completion section is in the lower half of the General tab, as shown in Figure 3-1.

53

C H A P T E R 3

8954Ch03.qxp 1/28/08 11:33 AM Page 53

Figure 3-1. Configuring code completion settings in the Basic Options window

The Code Completion section has five check boxes:

Auto Popup Completion Window: If you turn off this option, the code completion window
will not pop up while you are typing. You can still open it by pressing Ctrl+Spacebar.

Insert Single Proposals Automatically: With this option selected, the code completion box
will not appear when there is only one possible completion for the current expression.
Instead, the completion will be inserted automatically. One example of this option would
be typing the text System.current and pressing the Enter key (you need to pause for half a
second or so after typing the period). The text System.currentTimeMillis(); will appear
in the Source Editor window.

Case Sensitive Code Completion: As the name suggests, this option filters items from the
code completion box based on the case of the character typed. Thus, typing String.C
results in the suggestion of String.CASE_INSENSITIVE_ORDER. Items such as String.
copyValueOf are filtered out of the list. This feature is most useful when working with cus-
tom-created classes. If your custom class has similarly named members and methods,
you will find the case-sensitive filter helpful.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES54

8954Ch03.qxp 1/28/08 11:33 AM Page 54

Show Deprecated Members In Code Completion: If you turn off this option, deprecated
class elements are filtered out of the items displayed in the code completion box. If it’s
checked, deprecated items are displayed, but they have a line drawn through the name. In
Figure 3-2, the code completion options for the java.lang.System class are displayed.
Notice that the runFinalizersOnExit(boolean b) method has a line drawn through it. This
method is deprecated in the version of the JDK I use with NetBeans. But if you have an
older version, it may not be deprecated.

Figure 3-2. Code completion window for the java.lang.System
class showing a deprecated element

Insert Closing Brackets Automatically: With this feature enabled, the Source Editor gener-
ates the closing parenthesis, bracket, brace, or quotation mark after you type the first one.
Many Java IDE tools have similar functionality, but too often the autocompletion feature
gets in the way. However, NetBeans handles the generating of closing elements very
nicely, allowing you to type right over them and not inserting duplicate closing characters.

Advanced Options
To change additional code completion properties, click the Advanced Options button in the
Options window. This changes the display and lists a variety of options in the left pane. Navi-
gate the tree structure by drilling down to Editing ➤ Editor Settings ➤ Java Editor. In the right
pane, a list of properties and expert options are displayed, as shown in Figure 3-3. The Auto
Popup Completion Window check box allows you to disable/enable the code completion win-
dow. This has the same effect as the Auto Popup Completion Window check box in the Basic
Options window.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES 55

8954Ch03.qxp 1/28/08 11:33 AM Page 55

Figure 3-3. The Java Editor properties in the Advanced Options window

The Delay of Completion Window Auto Popup property is set to 250 by default. This value
represents the time in milliseconds it takes for the code completion window to appear. A lot of
developers change this value to 1000 (for 1 second).

The Code Completion Natural Sort check box, if enabled, sorts the results in the code
completion box in natural order. If it’s unchecked, the uppercase items are listed before the
lowercase ones.

Code Completion Keystrokes
You can use various keyboard shortcuts to work with the code completion box, as listed in
Table 3-1.

Table 3-1. Keystrokes Affecting Code Completion

Keystroke Action

Ctrl+Space Force the code completion pop-up to appear.

Enter Insert the selected item into your code.

Escape Close the code completion box and cancel any text insertions.

Up arrow Scroll through list of items.

Down arrow Scroll through list of items.

Page-Up Scroll to top of visible list of items.

Page-Down Scroll to bottom of visible list of items.

Home Scroll to absolute top of the entire list of items.

End Scroll to absolute bottom of the entire list of items.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES56

8954Ch03.qxp 1/28/08 11:33 AM Page 56

Using Code Completion
Code completion is useful in many scenarios in Java coding. I’ve been coding Java for more
than a few years, and I still cannot remember the name of every class, method, member, and
exception that exists in the language. If you can, then congratulations! Code completion saves
you the time of having to look up the Java API Javadocs every time you need a reminder of the
methods of a class or the package structure of a set of APIs.

In the following sections, we look at several specific areas where you can use code completion.

Packages (Imports)
When working with packages, you sometimes have long combinations of text that define your
class hierarchy. Many companies use package statements such as these:

com.mycompany.mydivision.myorganization.thisproduct.database;
com.mycompany.mydivision.myorganization.thisproduct.model;
com.mycompany.mydivision.myorganization.thisproduct.view;

or:

com.mycompany.product.client;
com.mycompany.product.server;
com.mycompany.product.server.threads;
com.mycompany.product.server.db;

Package names are not difficult to paste into your source code editor, but they can be
annoying to try to remember. That’s where code completion becomes useful.

Open any Java source file in the NetBeans Source Editor and try typing an import state-
ment. After the first package element, press the Period key. The code completion box should
appear, listing the next available package names. Depending on the package, the code com-
pletion box may contain classes and package names. Figure 3-4 shows an example of
importing the java.util package.

Figure 3-4. The code completion listing for the java.util package

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES 57

8954Ch03.qxp 1/28/08 11:33 AM Page 57

Methods
The most frequent use of code completion is with methods. Whether you are trying to reference
static or non-static methods, the code completion box will try to assist you. One intelligent fea-
ture NetBeans provides is static method code completion.

In the Source Editor, type String and press the Period key. The code completion box will
appear with a list of suggestions. An interesting thing to note is that since you typed the name
of a class, the items in the code completion box are only the static members and methods of
the String class. See Figure 3-5.

Figure 3-5. Static elements from the String class displayed in the code completion box

Let’s look at an example of including both static and non-static items. Enter the following
code in the Source Editor.

String MyString = "some string";

Then on the second line of your code, type the MyString variable name and press the Period
key. The list that appears in the code completion box will contain both static and non-static
items.

Class Members
The code completion box can also display class members. If you take a look at the java.sql.
ResultSet interface, you will see that it contains a number of static integers, such as
TYPE_SCROLL_SENSITIVE, CONCUR_READ_ONLY, and FETCH_FORWARD. These fields are mostly used
when creating a java.sql.Statement object and specifying various parameters for the data-
base operation you are about to perform.

For example, suppose you type this code:

Statement stmt = con.createStatement(
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES58

8954Ch03.qxp 1/28/08 11:33 AM Page 58

Once you type the ResultSet class name and press the Period key, you should see the static
members of the class. See Figure 3-6.

Figure 3-6. Static elements of the java.sql.ResultSet class in the code completion box

Constructors
Code completion can also be used when creating an instance of an object and selecting which
constructor you need to use. For example, Figure 3-7 shows the code completion box for
java.lang.String, which has numerous constructors.

Figure 3-7. Constructors for java.lang.String displayed on the code completion box

The code completion box will not automatically appear for constructors. In the example,
after typing the opening parenthesis for the String constructor, you need to press Ctrl+Space-
bar to force the code completion box to appear.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES 59

8954Ch03.qxp 1/28/08 11:33 AM Page 59

super and this
You can use code completion immediately after super and this. Code completion referencing
the this object is most useful if you are creating getter and setter methods and need to have
quick access to class member variables. This is especially true if you have dozens of class
member variables and you have scrolled down through the file.

For example, consider the following code:

public class MyMain {

private String firstName;

public void setFirstName(String firstName) {

}
}

Inside the setFirstName method, if you were to type this and press the Period key, the code
completion box would appear, as shown in Figure 3-8. From this list, you could quickly select
the firstName member variable without having to remember the exact syntax or retype the
entire name.

Figure 3-8. Locating the class member variable firstName in the code completion box

The new Operator
You can also use code completion when constructing a new instance of an object in conjunc-
tion with the new operator. Type the code Map myMap = new, and then press Ctrl+Spacebar to
open the code completion box. You can start to type the name of the class for which you
would like to create a new instance, and the list will filter accordingly, as shown in Figure 3-9.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES60

8954Ch03.qxp 1/28/08 11:33 AM Page 60

Figure 3-9. Filtered list of classes in the code completion box

In NetBeans 6, code completion has gotten a little smarter. When working with the new
operator, NetBeans code completion can also factor in use of Java generics.

For example, consider the following code:

public class MyDataObject {

Map<String, Object> MyMap = new
}

After typing the new operator, activate the code completion box by pressing Ctrl+Spacebar. The
code completion box will display an intelligent list of matches (those classes in the classpath
that implement the Map interface) as well as the correct object types originally stated by your
use of generics, as shown in Figure 3-10.

Figure 3-10. Filtered list of classes that implement the Map interface

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES 61

8954Ch03.qxp 1/28/08 11:33 AM Page 61

Code Templates
Code templates are interesting features of several Java IDE tools. They allow you to insert a
block of code or text automatically by typing a few characters. This is similar to code comple-
tion, but the inserted code can be multiple lines of code or multiple method calls instead of a
single class, package, or method name.

At first, it can be annoying to attempt to remember the correct abbreviation for the code
template you want. Over time, as you develop code in NetBeans, you will learn the abbrevia-
tions (at least the important ones). Locating and customizing the list of available abbreviations
is discussed later in this chapter (“Code Templates” section).

In addition to using the predefined code templates that come with NetBeans, you can
create your own custom code templates.

Using Code Templates
Consider the following block of code in a Java source file:

System.out.println("print something to command line");

I can’t even begin to count the number of times I have typed that statement or copied and
pasted it repeatedly. Using the NetBeans code template and abbreviation functionality, you
can simply type sout and press the Spacebar. The sout text is expanded into this:

System.out.println("");

Notice that the cursor rests inside the quotation marks. Once the sout statement has been
expanded, you can begin typing the text you want to appear on the standard output stream.

A similar abbreviation is available for the standard error stream. Typing serr and pressing
the Spacebar produces the following code:

System.err.println("");

The code template feature is nice to have for commonly used code phrases such as these.
However, less useful abbreviations are available, such as pu, which expands into public, and
re, which expands into return. Personally, if I need to type public in a block of code, it is usu-
ally faster for me to type the entire word than to try to remember the exact abbreviation. Some
people would argue that since the abbreviation is only the first two characters of the word, it
should be easy to remember. I prefer to save space in my brain for abbreviations that repre-
sent longer blocks of code. The following are some examples of truly useful code abbreviations
that are predefined in NetBeans.

trycatch
Typing the abbreviation trycatch expands the text into the following:

try {

} catch (Exception exception) {

}

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES62

8954Ch03.qxp 1/28/08 11:33 AM Page 62

The object type, Exception, is highlighted, so as soon as you start typing, you overwrite the text
with the name of the intended exception (NumberFormatException, NullPointerException, and
so on). Once you are finished typing the name of the desired exception, press the Enter key.
The cursor will jump to the first line of the try block. This allows you to start typing the
expression that should be protected in a try-catch block.

ifelse
Typing the abbreviation ifelse expands the text into the following:

if (Boolean.TRUE)
{

}
else
{

}

The condition text that appears inside the if block is highlighted and overwritten as soon as
you start typing. You can add any Boolean expression into this area and press the Enter key.
The cursor should immediately jump to the first line of the if block.

fori
Typing the abbreviation fori expands the text into the following:

for (int i = 0; i < arr.length; i++)
{

String string = args[i];
}

The integer variable name is highlighted by default once this piece of code is expanded from
its abbreviation. You can type any variable name you like, and it will be changed in all three
places in the code where it appears. Before pressing the Enter key to jump to the first line of
the for block, you can press the Tab key to jump to and highlight the arr variable so that you
can change the name if desired.

Customizing Templates
The code template abbreviations described in the previous sections represent only a small
portion of what is available in NetBeans. The system provides a language-specific listing of
code templates that can be completely customized. Additionally, you can add your own code
templates.

Modifying Code Templates
To view the list of language-specific templates, select Tools ➤ Options ➤ Editor and click the
Code Templates tab. From the Language drop-down list, select the programming or scripting
language for the templates you wish to view. The Java language is selected by default. Scroll

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES 63

8954Ch03.qxp 1/28/08 11:33 AM Page 63

through the long list of templates, and you can see the abbreviations I mentioned in the previ-
ous sections, as shown in Figure 3-11. Click any of the Java code template abbreviations in the
list to see the expanded text in the text box at the bottom of the tab. The expanded text is what
the abbreviation itself is actually expanded into once you press the Spacebar after typing the
abbreviation.

Figure 3-11. List of code templates for Java

For example, the following is the expanded text for the trycatch abbreviation:

try {
${selection line}${cursor}

} catch (${EX_TYPE uncaughtExceptionType default="Exception"} ➥

${EX newVarName default="e"}) {
}

Notice the text dollar sign–delimited markers that appear in the expanded text. These markers
specify different bits of functionality for the template. The ${cursor} text serves as a marker
for where the actual cursor will jump to once you press the Enter key, thereby “exiting” the
abbreviation sequence. When you use the code template abbreviation in the Source Editor,
you will not actually see the text ${cursor} in the code once the abbreviation has been
expanded. It is only a behind-the-scenes marker.

The trycatch abbreviation is often used when coding, but a lot of Java error handling also
uses the try-catch-finally form:

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES64

8954Ch03.qxp 1/28/08 11:33 AM Page 64

try {

}
catch(Exception e) {

} finally {

}

You can create an alternate template for this quite easily. Copy the expanded text for the
trycatch abbreviation into the clipboard. In the Code Templates tab, click the New button.
NetBeans displays a pop-up window that allows you to enter the new template’s abbreviation.
Type trycatchfinally and press the Enter key. The new abbreviation is added to the list. Paste
the expanded text from the clipboard into the field at the bottom of the tab. Then modify it as
follows:

try {
${cursor}

} catch (${Exception} e) {

} finally {

}

Creating a Code Template
The common code templates can prove to be very useful. However, I use many of my own cus-
tom code templates, which save me a lot of time. Much of the code I find myself rewriting is
database related. Frequently, I write a method in a class that connects to a database, performs
an SQL query, and iterates through the result to do something.

As an example, suppose you need to write a method that takes a java.sql.Connection
object and an int as input variables, queries the database to retrieve some values, and returns
some formatted text. You might code the following:

public String dbLookup(Connection conn, int Pkey) {

}

If we were coding this by hand, you would need to define other java.sql class objects, define
the SQL statement, write the java.sql.ResultSet iteration code, and add the error handling. In
NetBeans, I solve this problem by defining a code template with the abbreviation dblookupret.
Notice the prefix of db, to signify a database operation. I use a naming convention for my code
templates. I add the prefix db to all my code templates that perform database operations, such
as select, insert, update, delete, stored procedure execution, and so on.

The expanded text for dblookupret is shown in Listing 3-1. This code is obviously not per-
fect, but you can tailor it to your needs. For brevity, I have left out issues like proper error
handling and resource cleanup.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES 65

8954Ch03.qxp 1/28/08 11:33 AM Page 65

Listing 3-1. Expanded Code for the dblookupret Code Abbreviation

PreparedStatement pstmt = null;
ResultSet rs = null;
StringBuffer sb = new StringBuffer();

try {
pstmt = conn.prepareStatement("SELECT COL1, COL2, COL3 FROM"

+ " SOMETABLE WHERE INDEXCOL=?");

pstmt.setInt(1, iPkey);
rs = pstmt.executeQuery();
sb = new StringBuffer();

while(rs.hasNext()) {

String sCol1 = rs.getString("COL1");
String sCol2 = rs.getString("COL2");
String sCol3 = rs.getString("COL3");

sb.append(sCol1).append(",");
sb.append(sCol2).append(",");
sb.append(sCol3).append(",");

}
} catch(Exception e) {

// Good error handling goes here
e.printStackTrace();

} finally {
try {

if(rs!=null) {
rs.close();

}
if(pstmt!=null) {

pstmt.close();
}

} catch(Exception e) { }
}

return sb.toString();

Setting up commonly used functions as code templates can save you a lot of time as well
as help to enforce consistent coding methodologies. They should never be used in place of a
good library or set of reusable classes, but they can provide a convenient place to store your
commonly used code or expressions.

Code templates can be used for more than Java. They can also be defined for JSP, CSS,
DTD, XML, SQL, HTML, plain text, and properties. For example, it is sometimes useful to
group together commonly used pieces of SQL, such as date formatting or certain kinds of
string parsing and formatting functions.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES66

8954Ch03.qxp 1/28/08 11:33 AM Page 66

In one of my recent projects, I needed to make frequent use of the Oracle date functions.
Rather than always having to look up the functions and their specific usage scenarios, I defined
one slightly long SQL SELECT statement as a code template and assigned it the abbreviation
sqldates. The SQL statement used most of the Oracle date functions in different ways. This
way, the majority of the functions I might need would be readily available as an abbreviation.
This trick can obviously be applied to HTML, XML, and CSS as well.

File Templates
A file template is similar to a code template in that it represents a block of precreated code.
Whereas a code template is used to represent one or more lines of code, a file template repre-
sents an entire file of code. The file template contains elements that are populated with
various pieces of metadata when you request that a file of that type be created.

These types of templates are useful, for many reasons. The first and most obvious reason
is that they save you from having to type the same text over and over every time you create a
file. Saving time often translates into increased productivity (or at least freeing up some time
to make another run to the soda machine). The second and most valuable reason is standardi-
zation.

Using File Templates
NetBeans comes with file templates for the standard file types. For example, suppose you
want to add an HTML file to your project. Right-click the project name and select New ➤
Other. In the New File window, choose the Web category and select the file type HTML. Click
the Next button, name the file, and click Finish. The created file should look like the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title></title>

</head>
<body>

</body>
</html>

This is a generic interpretation of the basic elements in an HTML file that you would need.
However, there is nothing custom or specific in the file template based on the filename, the
project, the current date and time, and so on.

Next, use the New File wizard to create a Java Class file type. Name the file
MyClassFromTemplate and place it in the com.pronetbeans.examples package, as shown in
Figure 3-12. After you click the Finish button, the class is created and added to your project.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES 67

8954Ch03.qxp 1/28/08 11:33 AM Page 67

Figure 3-12. The New File wizard for a creating a Java class

When I open the class, I see the following code:

package com.pronetbeans.examples;

/**
*
* @author Adam Myatt
*/
public class MyClassFromTemplate {

/** Creates a new instance of MyClassFromTemplate */
public MyClassFromTemplate() {
}

}

The NetBeans Java Class template has special markers for the name of the author, the name
of the class, and the name of the constructor, to be inserted when the new file is generated.

NetBeans templates can be opened, manipulated directly in NetBeans, and customized to
suit your needs.

Working with File Templates
To work with file templates, select Tools ➤ Templates. Using the Template Manager, you can
add, view, and delete file templates. As shown in Figure 3-13, templates are arranged in fold-
ers, which represent the categories that appear in the New File wizard.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES68

8954Ch03.qxp 1/28/08 11:33 AM Page 68

Figure 3-13. The Template Manager

To view a template, select an item and click the Open In Editor button. For example, select
HTML under the Web folder. The template that opens should look exactly like the empty HTML
file you created previously. There’s little or no magic here.

Next, in the Java folder select the Java Class template and click the Open In Editor button.
Notice that the template file that opens does not look exactly like the MyClassFromTemplate
class you previously created. The template looks like the following:

<#assign licenseFirst = "/*">
<#assign licensePrefix = " * ">
<#assign licenseLast = " */">
<#include "../Licenses/license-${project.license}.txt">

<#if package?? && package != "">
package ${package};

</#if>
/**
*
* @author ${user}
*/
public class ${name} {

public ${name}() {
}

}

Notice the special ${user} and ${name} tags. These are replaced by the New File wizard when
the actual file is created, based on the system values in the IDE and the values entered into the
wizard. The package ${package}; text is replaced with the package name of the class you cre-
ate, and the name ${name} is replaced with the actual name you specified.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES 69

8954Ch03.qxp 1/28/08 11:33 AM Page 69

If you make any changes to a template file and then save the file, they will be present in
the generated file of that type the next time one is created.

Adding and Creating Templates
Many web developers maintain a large web site where pages have different content but follow
a standard layout. Why create a file and copy and paste the different elements you need into
it? Why save a copy of an existing file and try to remove all the information you don’t need
from it? Create a custom template that is specific to your needs, and avoid such hassles.

To add a new file template into NetBeans, click the Add button in the Template Manager.
In the file system browser that opens, navigate to the template you previously created. If you
had a category selected when you chose to add the template, it will be created inside that cate-
gory. Otherwise, it will be added to the bottom of the list of category folders. You can then
drag-and-drop it into the appropriate category folder.

If you want to create a file template inside NetBeans, you need to start with a file. The file
can be of any type, such as HTML, Java, XML, and so on. In the Projects or Files window, you can
right-click the file and select Save As Template from the context menu. The Save As Template
dialog box will appear, as shown in Figure 3-14. Select the appropriate template category folder,
and then click the OK button. The new template will then be available in the New File wizard.

Figure 3-14. The Save As Template window

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES70

8954Ch03.qxp 1/28/08 11:33 AM Page 70

■Tip When you make changes to the default templates or create your own, they are stored on the file
system at <user-directory> .netbeans\###\config\Templates, where ### is the version number of
your installation. If you have created a large number of templates, I recommend periodically backing up this
templates folder, in case your user directory is ever corrupted (which happens occasionally in Windows).

Summary
In this chapter we reviewed code completion, code templates, and file templates. NetBeans
provides a rather intuitive method for discovering class, method, and field names or syntax. It
also attempts to give hints as to the access level of the items referenced in the code comple-
tion box.

As a NetBeans user, you can customize and create code templates for several languages.
This saves you time because you don’t need to retype frequently used code snippets. It can
also save you the hassle of repeatedly having to look up the Javadoc or the exact code syntax of
a method or function. On the other hand, file templates allow you to reuse an entire file. You
can create standard Java classes, HTML structures, and so on. These templates can be used
when creating new files in the New File wizard, making code reuse quick and easy.

I never used to use templates, but after a while I got tired of telling myself it really didn’t
take that long to look up the exact syntax of some SQL function or to retype some piece of Java
code.

CHAPTER 3 ■ CODE COMPLETION AND TEMPLATES 71

8954Ch03.qxp 1/28/08 11:33 AM Page 71

8954Ch03.qxp 1/28/08 11:33 AM Page 72

Debugging

Debugging code is one of the most frequently performed activities developers do while writ-
ing code. Developers use a variety of debugging methods, ranging from writing out program
execution logic on paper to working it out step by step in their heads to littering their code
with logging statements.

At one time or another virtually every Java programmer has written code such as the
following:

public class BadDebugExample {

public static void main(String[] args)
{

System.out.println("1");
Calculator calc = new Calculator();

System.out.println("2");
String results = calc.doCalculation(4);

System.out.println("3");
String results2 = calc.doCalculation(5);

System.out.println("4");
String results3 = calc.doCalculation(6);

}
}

This sample code was littered with System.out.println statements in an attempt to add visual
markers to the standard output stream. Sometimes when programs fail, you don’t always get a
meaningful stack trace or line number where the error occurred. Adding System.out.println
statements, as in the foregoing code, is an effective yet clumsy way of tracing program execution.

After writing debugging code like the preceding BadDebugExample class, you may start to
get the feeling that you’re doing something wrong or that there should be an easier way. Java
IDEs like NetBeans offer that easier way by means of debugging tools.

73

C H A P T E R 4

8954Ch04.qxp 1/28/08 11:34 AM Page 73

What Is IDE Debugging?
Debugging Java code in an IDE involves stepping line by line through application code. You
can pause program execution on specific lines (breakpoints) and even monitor the values of
variables and objects.

Some common actions in IDE debugging include

• Pausing program execution on a specific line

• Executing code one line at a time

• Skipping over a line of code you don’t want to execute

• Executing the application code until it reaches the current location of the cursor

• Viewing the call stack up to a specific line of code

• Monitoring the value of a local variable

• Monitoring the value of a class member variable

• Evaluating the return value of a method without stepping inside it

• Tracing program execution across multiple threads

• Conditionally halting program execution on specific lines

• Changing the runtime value of variables to see how it affects program behavior

• Changing code on the fly and proceeding with debugging without having to start over

The debugging tools in NetBeans add a lot of power and many capabilities to a developer’s
tool chest. Knowing how to use the debugging tools properly can save you a lot of time and
many headaches.

Project-Level Debugging Settings
The only real debugging-related setting you can turn on and off is in the Project Properties. It
can be enabled or disabled for each individual project and affects the Java source code in that
project only.

To view the settings, right-click on any project name currently open in the Projects or Files
window and select Properties. In the Project Properties window, click the Compiling node
under the Build node, and you will see several properties in the right pane of the window, as
shown in Figure 4-1.

The “Generate Debugging Info” property relates to debugging. If selected, it will instruct
the compiler to add the necessary bytecode to all compiled Java classes for this project to
allow the debugger to be used.

CHAPTER 4 ■ DEBUGGING74

8954Ch04.qxp 1/28/08 11:34 AM Page 74

Figure 4-1. Compilation properties in the Project Properties window

■Tip Leaving the “Generate Debugging Info” property selected results in slightly larger class files. If you intend
on deploying your generated class files directly to a server, you may want to consider unchecking this option and
recompiling them. While the number of bytes isn’t significant, many people believe every little bit is important.

To see the effect of trying to debug your code without the property enabled, uncheck the
check box next to the “Generate Debugging Info” field. Then click the OK button and open a
Java class in the Source Editor, as shown in Listing 4-1.

Listing 4-1. Sample Class for Testing Disabled Breakpoint

public class DebugNotEnabled {

public static void main(String[] args) {

int x = 0;

for (int i = 0; i < args.length; i++) {
if (i > 0) {

System.out.println("TEST");
}

}
}

}

CHAPTER 4 ■ DEBUGGING 75

8954Ch04.qxp 1/28/08 11:34 AM Page 75

Add a breakpoint to the Java source file at the line if (i > 0) { and try activating the
debugger. You will see the following error message in the Debugger Console tab that appears
in the Output window:

User program running
Not able to submit breakpoint LineBreakpoint DebugNotEnabled.java : 23, reason: ➥

Line number information is missing in the class file.
Invalid LineBreakpoint DebugNotEnabled.java : 23
User program finished

Since the debugging info was not generated in the class file, the NetBeans Debugger had noth-
ing to work. When working with code in the IDE it is highly recommended that you leave the
“Generate Debugging Info” property enabled so that the NetBeans debugger does have some-
thing with which to work.

Breakpoints
Breakpoints are one of the most important concepts in debugging. They represent markers in
the code where you want program execution to stop. Breakpoints can be set in several ways,
including while a debugging session is active. This section reviews how to create, view, and
work with breakpoints in application source code.

Adding a Breakpoint
There are several ways to add a breakpoint. The first is by clicking in the glyph margin on the
left side of the Source Editor. This automatically creates a breakpoint for the line of code next
to where you clicked, as shown in Figure 4-2.

Figure 4-2. Breakpoints added to several lines of code

CHAPTER 4 ■ DEBUGGING76

8954Ch04.qxp 1/28/08 11:34 AM Page 76

Each pink square that appears in the gutter denotes a breakpoint. When the program is
debugged, program execution will halt on each of the lines where a breakpoint appears.

There are additional ways to add a breakpoint. Click in the line of code where you want
the breakpoint, and select Run ➤ Toggle Line Breakpoint from the main menu. This will acti-
vate a breakpoint for that line of code. Other ways of adding different types of breakpoints are
covered in the following sections.

Adding a Class Breakpoint
One type of breakpoint you can add is a class breakpoint. This allows you to halt program
execution when a class is loaded or unloaded from the Java Virtual Machine. When you add
a class breakpoint, it applies to any running code during the debug session.

In the Source Editor, open the class for which you need the breakpoint. Then select Run ➤
New Breakpoint from the main menu. This will open the New Breakpoint window. From the
“Breakpoint Type” drop-down field, select Class. This will change the fields displayed in the
New Breakpoint window, as shown in Figure 4-3.

Figure 4-3. Adding a class breakpoint using the New Breakpoint window

Once the “Breakpoint Type” field is set to Class, you will see the Class Breakpoint–specific
fields. In the Settings section, the “Class Name” field lists the fully qualified class name for which
the breakpoint will be created. The “Stop On” drop-down contains several important values:

Class Load: The breakpoint will halt program execution when the specified class is loaded
into the JVM.

Class Unload: The breakpoint will halt program execution when the specified class is
unloaded from the JVM.

Class Load or Unload: The breakpoint will halt program execution when the specified
class is loaded into or unloaded from the JVM.

CHAPTER 4 ■ DEBUGGING 77

8954Ch04.qxp 1/28/08 11:34 AM Page 77

The Conditions section allows you to specify an exclusion filter and a break hit count. This
adds specified conditions to the breakpoint and is useful if you want the breakpoint to trigger
if and only if a certain condition is true.

The “Exclude Classes” field lets you specify one or more classes to exclude from the class
breakpoint. This can be used if you specified a package name in the “Class Name” field, such
as com.pronetbeans.example.*.

The “Break when hit count” field allows you to specify a numerical condition such as
equals to, greater than, or a multiple of a specified number. For example, if you specify equals
to and a value of 5, then the breakpoint will halt program execution when the class is loaded
or unloaded five times.

The Actions section is the area where you can specify what should happen when any of
the breakpoint conditions is triggered. The “Suspend” drop-down field contains the following
values:

No thread (continue)

Breakpoint thread

All threads

When the condition triggers, the text in the “Print Text” field will display in the Debugger
tab of the Output window. If you specify the Suspend value “No thread (continue),” then pro-
gram execution will not halt, but the Print text value will still print to the console.

If the “Suspend” field is set to “Breakpoint thread,” then when the breakpoint condition is
triggered, the thread where the breakpoint occurred will halt and other threads will continue.
This can be useful in debugging multithread server applications where only a specific thread
that meets the breakpoint condition will halt.

If the “Suspend” field is set to “All threads,” then when the breakpoint condition is triggered,
all threads executing in the JVM will be halted.

Adding an Exception Breakpoint
One type of breakpoint you can add is an exception breakpoint. This allows you to halt program
execution when an exception is caught, uncaught, or merely encountered in the running code
in the Java Virtual Machine.

Select Run ➤ New Breakpoint from the main menu. This will open the New Breakpoint
window. From the “Breakpoint Type” drop-down field, select Exception. This will change the
fields displayed in the New Breakpoint window, as shown in Figure 4-4.

In the Settings section, the “Exception Class Name” field is where you can specify the fully
qualified class name for the exception you want to check for. The “Stop On” field allows you to
specify Caught, Uncaught, or Caught or Uncaught. This lets you halt program execution if an
exception is handled in the code, is not handled, or is thrown anywhere in the code regardless
of whether it is caught or not.

CHAPTER 4 ■ DEBUGGING78

8954Ch04.qxp 1/28/08 11:34 AM Page 78

Figure 4-4. Adding a breakpoint using the New Breakpoint window

The Conditions section allows you to specify the specific conditions and filters to use to
match the breakpoint type. If the “Filter on Classes Throwing the Exception” check box is
selected, then you can enter values for the “Match Classes” and “Exclude Classes” fields. The
“Match Classes” field lets you specify specific class names. If the class names specified throw
the exception, then the breakpoint will be triggered. If a class not specified in the “Match
Classes” field ends up throwing the exception, then the breakpoint will not be triggered.

The remaining fields in the New Breakpoint window function are as described in the pre-
vious section.

Adding a Method Breakpoint
Another type of breakpoint you can add is a method breakpoint. This type of breakpoint allows
you to halt program execution when program execution enters or exits one or more methods
of a specific class.

Open a Java source file in the Source Editor and place the cursor inside a method. Select
Run ➤ New Breakpoint from the main menu. This will open the New Breakpoint window. The
“Breakpoint Type” drop-down field should be preselected to the value Method. This will dis-
play the fields in the New Breakpoint window, as shown in Figure 4-5.

CHAPTER 4 ■ DEBUGGING 79

8954Ch04.qxp 1/28/08 11:34 AM Page 79

Figure 4-5. Adding a method breakpoint using the New Breakpoint window

The four important fields to mention here are the “Class Name,” “All Methods for Given
Class,” “Method Name,” and “Stop On” fields. The remaining fields function as described in
the previous sections on adding breakpoints.

The “Class Name” field allows you to specify the fully qualified class name for the class to
which the breakpoint is being added. It should initially be set to the name of the class that you
opened in the Source Editor prior to activating the New Breakpoint window.

The “All Methods for Given Class” field lets you specify that the breakpoint condition
should apply to every method in the class specified in the “Class Name” field. If selected, the
“Method Name” will become grayed out and disabled.

The “Method Name” field allows you to specify the method name for which you want to
add the breakpoint. If you had placed the cursor inside a method prior to activating the New
Breakpoint window, the “Method Name” field should already be set. In Figure 4-5, the field is
set to doCalculation (int). You can manually change this field to point to any method in the
class you want.

The “Stop On” drop-down field contains the following values:

Method Entry: The breakpoint condition is triggered if any thread enters the method.

Method Exit: The breakpoint condition is triggered when program execution exits the
specified method or methods.

Method Entry or Exit: The breakpoint condition is triggered when program execution
enters or exits the method or methods.

You can then set the remaining fields in the Conditions and Actions sections to finish
adding the breakpoint.

CHAPTER 4 ■ DEBUGGING80

8954Ch04.qxp 1/28/08 11:34 AM Page 80

Adding a Thread Breakpoint
A thread breakpoint is another type of breakpoint you can add via the New Breakpoint window.
This type of breakpoint can be configured to halt program execution if a thread starts or finishes.
This can be extremely useful in programming client-server applications or multithread server
code.

To add a thread breakpoint, select Run ➤ New Breakpoint from the main menu. This will
open the New Breakpoint window, as shown in Figure 4-6.

Figure 4-6. Adding a thread breakpoint using the New Breakpoint window

In the Settings section, the “Stop On” field allows you to specify the values Thread Start,
Thread Death, and Thread Start or Death. These settings let you specify when the thread
breakpoint is triggered.

The Conditions section lets you specify a condition to apply to the breakpoint such as
having it trigger when the second thread starts or when all threads after the first thread start.

The Actions section performs identically as for the other breakpoint types. It lets you
specify what should actually happen if the breakpoint condition and settings are triggered.

Adding a Field Breakpoint
The final type of breakpoint you can add is a field breakpoint. You can configure this type of
breakpoint to halt program execution when a field is accessed, modified, or both.

To add a field breakpoint, you can click and highlight a class field in the Source Editor.
Then select Run ➤ New Breakpoint from the main menu. The New Breakpoint window will
open with the “Breakpoint Type” drop-down field set to Field, as shown in Figure 4-7. The
“Class Name” field lets you specify a fully qualified class name. This should be the class that
contains the field for the breakpoint.

The “Field Name” field lets you enter the name of the class variable used in the breakpoint.
The “Stop On” drop-down field allows you to specify Field Access, Field Modification, and

Field Access or Modification. This lets you trigger the breakpoint when a class field is accessed
or modified. This can be useful when trying to track down an elusive problem such as a hard-
to-find field modification that is causing unexpected results.

CHAPTER 4 ■ DEBUGGING 81

8954Ch04.qxp 1/28/08 11:34 AM Page 81

Figure 4-7. Adding a field breakpoint using the New Breakpoint window

The following class in Listing 4-2 contains a member field named globalInt. It is modified
in the doCalculation method.

Listing 4-2. Calculator Class

public class Calculator {

private int globalInt;

public static void main(String[] args) {

List<String> results = new ArrayList<String>();
Calculator calc = new Calculator();

for (int i = 0; i < 10; i++) {
results.add(calc.doCalculation(i));

}
// do something with ArrayList

}

public String doCalculation(int x) {
globalInt = 99;
// do calculation with x
return x+"";

}
}

CHAPTER 4 ■ DEBUGGING82

8954Ch04.qxp 1/28/08 11:34 AM Page 82

Add a field breakpoint, as described earlier, and set the “Stop On” drop-down to Field
Modification. Make sure the “Field Name” field is set to globalInt.

When the class is debugged, program execution should halt on the line globalInt = 99;
before the field is modified. This allows you to check the value before it is modified to ensure
your code is working properly.

Disabling Breakpoints
You can also disable a breakpoint. This can be a nice option when you have added numerous
breakpoints and want to disable them temporarily without deleting them. To disable a break-
point, you can right-click the breakpoint glyph in the margin of the Source Editor and select
Breakpoint ➤ Enabled, as shown in Figure 4-8.

Figure 4-8. The enable/disable breakpoint menu

When a breakpoint is disabled, the breakpoint glyph and the corresponding line of code
turn gray. The breakpoint has been disabled, but it has not been removed.

Deleting Breakpoints
Instead of disabling a breakpoint, you may want to delete it completely. To delete a breakpoint,
click the breakpoint glyph in the Source Editor margin. Deleting a breakpoint removes the
breakpoint glyph from the margin and any other trace of it from the Source Editor.

After debugging a section of code, you should delete all the breakpoints you used. Leaving
breakpoints littered throughout your code isn’t the end of the world, but it is generally consid-
ered bad practice. It can also cause problems when you later come back to debug code and it
stops in places where you don’t expect it to.

Customizing Breakpoints
Once you have added a breakpoint, you can customize or edit it at any time. To customize a
breakpoint, locate one in the Source Editor and right-click it. On the context menu that
appears, select Breakpoint ➤ Customize. The Customize Breakpoint window will open, as
shown in Figure 4-9.

CHAPTER 4 ■ DEBUGGING 83

8954Ch04.qxp 1/28/08 11:34 AM Page 83

Figure 4-9. The Customize Breakpoint window

The Customize Breakpoint window contains many of the same fields as described in the
sections on adding breakpoints. It also contains a “Line Number” field that lists the number of
the precise line on which the breakpoint appears. You can alter any of the Conditions or Actions
fields that you originally configured for the breakpoint. This is typically better than having to
delete the breakpoint and add it over again simply to change one of the fields or the values.

Breakpoints Window
The Breakpoints window lists the currently set breakpoints in all open projects. It will list all
disabled breakpoints in your code as well. The Breakpoints window can be accessed by going
to the main menu and selecting Window ➤ Debugging ➤ Breakpoints. When the Breakpoints
window opens, you should see two columns: Name and Enabled, as shown in Figure 4-10. The
Name column contains a block of text that describes the breakpoint, its type, and its basic
location. The Enabled column displays a check box for each breakpoint. If it is selected, then
the breakpoint is enabled; otherwise it is disabled.

Figure 4-10. The Breakpoints window

The Breakpoints window serves as a single location where you can locate your break-
points throughout your code. It also allows you to perform many of the common actions on

CHAPTER 4 ■ DEBUGGING84

8954Ch04.qxp 1/28/08 11:34 AM Page 84

breakpoints you would expect, such as disable, delete, and customize. Right-click a breakpoint
and review the items that appear in the context menu, as listed in Table 4-1.

Table 4-1. Context Menu Actions in the Breakpoints Window

Action Description

Go To Source Jump directly to the class, method, or line in the Source Editor where the
breakpoint is set. This same action is also triggered if you double-click the
breakpoint name in the Breakpoints window.

Disable Disable the specific breakpoint that you right-clicked in the Breakpoints
window.

Delete Delete the specific breakpoint that you right-clicked in the Breakpoints
window.

Set Group Name Assign a name to one or more breakpoints so that they can be handled
collectively as a group. Discussed in the next section.

Enable All Enable all the disabled breakpoints listed in the Breakpoints window.

Disable All Disable all the enabled breakpoints listed in the Breakpoints window.

Delete All Delete all the breakpoints listed in the Breakpoints window.

Customize Customize the specific breakpoint you right-clicked in the Breakpoints
window. This opens the Customize Breakpoint window.

List Options Change the column ordering and display status of the fields displayed in
the Breakpoints window.

Grouping Breakpoints
The idea of grouping breakpoints is quite simple and can often be amazingly effective. Review
the list of breakpoints displayed in the Breakpoints window in Figure 4-10. If you wanted to
disable or enable a set you could do so for each one. The list displayed in Figure 4-10 is not
very long, but imagine it contained a hundred breakpoints. Disabling a specific set of 30-40
of them would probably take a few minutes.

The Breakpoints window allows you to select one or more breakpoints and assign a top-
level group name to them. You can do so by holding your operating system’s multiple-file-select
key (the Ctrl key in Windows) and clicking each breakpoint listed in the Breakpoints window.
Once you have selected your group of breakpoints, right-click any of them and select Set Group
Name from the context menu.

A small pop-up window will appear and prompt you to specify a value in the “Name of
Group” field. Enter a meaningful name or description, such as “Production Bug 56799” or
“hanging DB connection issue” and click the OK button.

The breakpoints that you selected in the Breakpoints window will still appear, but they will
be listed under a parent node, with the group name you specified, as shown in Figure 4-11. You
can then hide or show the entire group of breakpoints by expanding or collapsing the group
name’s node. You can also disable all the breakpoints in the group by unselecting the check box
in the Enabled column on the line for the group name. This will unselect all the check boxes for
each breakpoint in that group. You can also delete the group by right-clicking it and selecting
Delete All from the context menu. This will delete only the breakpoints in the selected group.

CHAPTER 4 ■ DEBUGGING 85

8954Ch04.qxp 1/28/08 11:34 AM Page 85

Figure 4-11. A set of grouped breakpoints

Debugging Java Code
To begin debugging Java code, you need a good understanding and working knowledge of
breakpoints and how to add, customize, disable, and delete them. I highly suggest reviewing
the previous sections in this chapter that cover breakpoints until you have a firm grasp on
working with them. Once you do, you can initiate your first debugging session and begin to
learn the remaining debugging tools available in the NetBeans IDE.

Starting a Project Debug Session
There are multiple ways to initiate a debugging session in NetBeans. The primary method is to
go to the main menu and select Run ➤ Debug Main Project. You can also use the keyboard
shortcut Ctrl+F5. If the Main Project is not set, NetBeans will prompt you to select one from a
provided list of open projects.

The IDE will then typically compile the code you are about to debug and open some of the
debugging windows used (each is discussed in the following sections). If you open the Output
window by selecting Window ➤ Output ➤ Output from the main menu (or pressing Ctrl+4), you
will see two tabs: Debugging and Debugging Console, as shown in Figure 4-12. The Debugging
tab provides basic control of the debugging session while it is running. You will see basic output
that indicates the file or files that were compiled. You will also see two icons on the left side of
the window that control the debugging session.

Figure 4-12. The Debugging tab in the Output window during a debug session

CHAPTER 4 ■ DEBUGGING86

8954Ch04.qxp 1/28/08 11:34 AM Page 86

After a debugging session has completed, the right-pointing double arrow turns green
and is able to be clicked. This icon allows you to rerun the previous debugging session. This
is convenient because you don’t have to remember the class with which you wanted to start
debugging.

The red square with the X in the middle is the Stop icon. Clicking it will halt the debugging
session and kill any debugging processes. If you click this icon accidentally, you can immedi-
ately rerun the debugging session using the rerun icon above it. This will start the session over
and not from where you left off.

The Debugging Console tab in the Output window contains the standard output of the
debug session. In Listing 4-2, I added a breakpoint on the following line of Java code:

results.add(calc.doCalculation(i));

When I started a debugging session, program execution paused, as expected, at the line. The
NetBeans debugger output the following text to the Debugging Console tab:

User program running
LineBreakpoint Calculator.java : 29 successfully submitted.
Breakpoint hit at line 29 in class com.pronetbeans.examples.Calculator ➥

by thread main.
Thread main stopped at Calculator.java : 29.

This console text indicates that the debugging session started, that the breakpoint was valid,
and that it triggered the breakpoint at the correct line and then halted program execution.

You can also start a debugging session for a project by right-clicking the project name in
the Projects window and selecting Debug from the context menu. This is how you can quickly
debug an open project if it is not set to be the main project.

Starting a File Debug Session
In addition to projects, you can debug individual files in NetBeans. This comes in handy since
you will frequently want to debug a specific Java source file without having to step through
dozens of classes to get to the one you want to test.

To debug a file, you can right-click it in the Projects or Files windows and select Debug
File from the context menu. You can also use the keyboard shortcut Ctrl+Shift+F5, but the file
must be selected.

You can also open a file in the Source Editor and use the main menu to start debugging.
Select Run ➤ Run File ➤ Debug “Calculator.java,” where “Calculator” is the name of the spe-
cific class or file you have selected in the Source Editor.

Stopping a Debug Session
Stopping a debugging session is quite simple and can be done from several places. You can
locate a red square icon on the debug toolbar that is labeled “Finish Debugger Session” when
you mouse over it. You can also use the keyboard shortcut Shift+F5 or navigate to the main
menu and select Run ➤ Finish Debugger Session.

CHAPTER 4 ■ DEBUGGING 87

8954Ch04.qxp 1/28/08 11:34 AM Page 87

Finally, you can use the Sessions window to view and stop any active debugging sessions.
You can access this window by navigating the main menu and selecting Window ➤ Debugging
➤ Sessions. You can also use the keyboard shortcut Alt+Shift+6. The Sessions window will
open and display a list of current debugging sessions, as shown in Figure 4-13.

Figure 4-13. The Sessions window during debugging

The Sessions window displays the name of each session, the current state it is in, and the
coding language. If you right-click a session name in the list, there are several options you can
select from the context menu that appears, as detailed in Table 4-2.

Table 4-2. Context Menu Actions in the Sessions Window

Action Description

Scope Specifies the thread scope of execution for the current debugging sessions.
You can set this field to Debug Current Thread or Debug All Threads,
depending on your debug session needs.

Language Specifies the programming language to which the current session applies.

Make Current Sets a session as the current session. You can have multiple sessions active
at once but only one can be set as the current session.

Finish Finishes the selected debugging session.

Finish All Finishes all active debugging sessions.

List Options Allows you to change the sort order and column display status of the fields
displayed in the Sessions window.

Stepping Through Code
Once you have learned how to set breakpoints and how to start and stop sessions, you are
ready to do some serious debugging. One of the most powerful features of the NetBeans
debugger is the ability to execute one line of code at a time.

While breakpoints will allow you to halt program execution at specific lines, you do not
want to have to set a breakpoint at every single line. This is where the concept of “stepping”
through code comes into play.

CHAPTER 4 ■ DEBUGGING88

8954Ch04.qxp 1/28/08 11:34 AM Page 88

Step Into
Suppose you have a Java class in a Java Application project, such as the DebugStepping class
displayed in Listing 4-3:

Listing 4-3. The DebugStepping Class

package com.pronetbeans.examples;

/**
* Sample class to demonstrate debug stepping
* @author Adam Myatt
*/
public class DebugStepping {

public static void main(String[] args) {
System.out.println("Step A");
DebugStepping stepping = new DebugStepping();

}

public DebugStepping() {
System.out.println("Step B");

}
}

The class’s main method is where the NetBeans debugger will first enter the class. You can easily
debug and step through each line of the class without setting a breakpoint. Open the class in
the Source Editor and go to the main menu. Select Run ➤ Step Into. A debugging session will
start, and odds are that the Output tab will print the following text and then end:

Step A
Step B

This reflects the run configuration of the project. When I first created the Java Application
project, I specified some other class as the Main class. When I activate the Step Into feature,
I assume it will step into the main method of the class selected in the Source Editor. Unfortu-
nately this is not so. The project has been configured to execute a main class by default. I can
easily switch this to make the DebugStepping class the project’s Main class.

You might be asking, “Why go through this hassle when you could just add a breakpoint
to the first line of the DebugStepping.main method and then simply debug the file?” It makes
no difference and is essentially the same action. On occasion I have found it useful to ensure
that a debugging session starts precisely with the first line every time (without having to set a
breakpoint).

You can also use the Step Into feature in other, more important ways. It allows you to exe-
cute each line of code and proceed to the next. The matching keyboard shortcut you can use is
F7. This lets you quickly step through lines using F7 to get to the precise line you want to review.

For example, set a breakpoint at the line

CHAPTER 4 ■ DEBUGGING 89

8954Ch04.qxp 1/28/08 11:34 AM Page 89

System.out.println("Step A");

Then start a debug session and wait for program execution to halt at the breakpoint. Use the
Step Into feature by pressing F7. The program execution proceeds to the line but does not
execute it:

DebugStepping stepping = new DebugStepping();

Next, press F7 again, and you will see that program execution moves to the first line of the
DebugStepping constructor:

public DebugStepping() {

Pressing F7 again will place program execution at the next line:

System.out.println("Step B");

Finally, press F7 two more times to return to the main method. Program execution will halt
at the following line:

DebugStepping stepping = new DebugStepping();

The reason that program execution is back at this line for the second time is that the class
constructor has executed, but the new instance of the class has not been assigned to the vari-
able stepping. If you place the mouse over the stepping variable, you should see a pop-up
tooltip that says

"stepping" is not a known variable in current context.

If you activate the Step Into feature again by pressing F7, the class instance will be assigned to
the stepping variable. Program execution will proceed to the next line. If you mouse over the
stepping variable again, the tooltip will read as follows:

stepping = (com.pronetbeans.examples.DebugStepping) ➥

com.pronetbeans.examples.DebugStepping.

Step Out
The Step Out debugging feature will execute the code in the current method or constructor
and move program execution back to the calling code of the method or constructor. This can
best be illustrated with an example (see Listing 4-4).

Listing 4-4. The DebugSteppingOut Class

public class DebugSteppingOut {

public static void main(String[] args) {
System.out.println("Step A");
DebugSteppingOut stepping = new DebugSteppingOut();

CHAPTER 4 ■ DEBUGGING90

8954Ch04.qxp 1/28/08 11:34 AM Page 90

stepping.doSomething();

System.out.println("Step B");
}

public DebugSteppingOut() {
System.out.println("Constructor Running");

}

public void doSomething() {
int x = 0;
int y = 0;
int z = 0;
int total = 0;

total = x + y + z;

System.out.println("Total = " + total);
}

}

The DebugSteppingOut class shown in Listing 4-4 contains a doSomething method that simulates
a calculation. It defines three ints, adds them together, and prints the total to the standard out-
put stream. Realistically this method could be complex, time intensive, or 50 lines long.

Set a breakpoint at the following line of the main method:

System.out.println("Step A");

Start a debugging session. When program execution halts at the breakpoint, use the Step Into
feature (F7) to step line by line until you are at the following line:

stepping.doSomething();

Press F7, and program execution will proceed into the doSomething.
If this method is exceptionally long and you do not want to step through every line, you

can step out of the method. On the main menu select Run ➤ Step Out, or press Ctrl+F7. The
doSomething method will execute and program execution will halt on the line after the call to
the doSomething method:

System.out.println("Step B");

The Step Out feature can be very useful as you step through code. You might easily step
into methods you want to skip. The Step Out feature allows you to skip a method. But it is not
the only way to skip method and constructor calls. The Step Over feature, covered in the next
section, provides a similar ability.

Step Over
The Step Over debugging feature will execute the current line of code and halt program execu-
tion on the next line of code. This may sound similar to the Step Into feature, but it has one

CHAPTER 4 ■ DEBUGGING 91

8954Ch04.qxp 1/28/08 11:34 AM Page 91

important difference. If the line of code you executed contained a call to a method or construc-
tor, the method or constructor is entered and executed.

This feature lets you execute methods or constructors without having to step through
them. For an example of this review, see the code in Listing 4-4. Set a breakpoint at the follow-
ing line in the main method:

System.out.println("Step A");

Activate a debugging session, and, when program execution halts at the breakpoint, step
through each line by pressing F7 until program execution reaches the following line:

stepping.doSomething();

Now activate the Step Over debug feature. Go to the main menu and select Run ➤ Step Over,
or use the keyboard shortcut F8. Program execution will proceed to the following line in the
main method:

System.out.println("Step B");

It may look like the doSomething method was not executed. But if you review the Output
window, you should see the Total = X expression in the standard output stream. This should
indicate that the doSomething method did indeed execute.

The Step Over feature is very useful in that it allows you to execute methods and construc-
tors without having to step through every line of code inside them. This can be a time-saving
feature for developers.

Step Over Expression
The Step Over debugging feature has one flaw: multiple Java statements can be combined into
one line. It’s not unusual to see Java statements such as this:

someObject.setCustomerId(customer.getId());

or

myArrayList.ensureCapacity(myHashMap.keySet().size());

In either of these scenarios, performing a Step Over of either line would execute the entire line.
You would not be able to identify the values for customer.getId() and myHashMap.keySet().
size() without actually stepping into each method call. The Step Over Expression debug fea-
ture lets you solve this problem by allowing you to see method return values without stepping
into it.

Let’s walk through an example so that you can understand how this important feature
works. Review the code for the DebugSteppingOverExp class in Listing 4-5.

Listing 4-5. The DebugSteppingOverExp Class

public class DebugSteppingOutExp {

public static void main(String[] args) {

DebugSteppingOutExp stepping = new DebugSteppingOutExp();

CHAPTER 4 ■ DEBUGGING92

8954Ch04.qxp 1/28/08 11:34 AM Page 92

File myFile = new File("d:\\java\\test.txt");

stepping.checkSize(myFile.length());

System.out.println("Step Over Expression");
}

public void checkSize(long length) {

if (length > 0) {
System.out.println("length = " + length);

} else {
System.err.println("uh oh");

}
}

}

First, set a breakpoint at the following line:

stepping.checkSize(myFile.length());

Next, start a debugging session for the file and wait for program execution to halt at the break-
point. Try mousing over the myFile variable. It should correctly list the reference to the file
specified in the previous line (d:\java\test.txt). If you mouse over the length() method, the
pop-up tooltip will state only that it is not recognized in the current context.

Go to the main menu and select Run ➤ Step Over Expression. Program execution will still
be paused at the same line, but the length() method will be highlighted. This indicates that
program execution will execute the method next. Activate the Step Over Expression feature
one more time. Now the length() method will appear faintly underlined. If you mouse over it,
you should see a pop-up tooltip that reads MyFile.length(): (long) 10348920.

The value 10348920 happens to be the number of bytes in the file on my machine. If you
create your own test file, it should list the number of bytes in your file. This is the correct return
value that the length() method should return. Program execution is still paused on the line
stepping.checkSize(myFile.length()); since the checkSize(long length) method has not yet
been entered.

I have found the Step Over Expression feature very useful when debugging. It’s not terribly
time consuming to perform a Step Into operation to enter the method and then step out, but it
changes what is visually displayed in the Source Editor. It interrupts your chain of thought
much less when using the Step Over Expression feature.

Run to Cursor
The Run to Cursor debugging feature is simple and powerful. It is one of those things whose
value you don’t realize until you start using it. Activating the Run to Cursor feature while
debugging will run all the lines of code in the source file between the current line (where
program execution is currently halted) and the line where the cursor has been placed. It’s a
great way to jump quickly through long sections of code to specific locations without having
to set breakpoints.

CHAPTER 4 ■ DEBUGGING 93

8954Ch04.qxp 1/28/08 11:34 AM Page 93

Run Into Method
The Run Into Method debug feature will run program execution from the current line of code
to the first line of the method or constructor where the cursor was placed. This is a combina-
tion of the Run to Cursor and Step Into debug features. It allows you to execute the program
quickly and to jump immediately into a method.

Review the DebugRunIntoMethod class displayed in Listing 4-6. It contains two methods of
interest: printStatement and getLogMessage. The call to the getLogMessage method is embed-
ded inside the call to the printStatement method. The Run Into Method debug feature will let
you jump directly into the getLogMessage method.

Listing 4-6. The DebugRunIntoMethod Class

public class DebugRunIntoMethod {

public static void main(String[] args) {

DebugRunIntoMethod stepping = new DebugRunIntoMethod();

stepping.printStatement(stepping.getLogMessage());

System.out.println("Run Into Method finishing.");
}

public void printStatement(String logMessage) {
// save logMessage to database

// print to standard output for brevity
System.out.println("logMessage = " + logMessage);

}

public String getLogMessage() {
return "Adam Myatt was here";

}
}

Set a breakpoint at the following line:

DebugRunIntoMethod stepping = new DebugRunIntoMethod();

Then activate a debugging session for the file. After program execution stops at the breakpoint,
click and place the cursor inside the call to the getLogMessage method. Go to the main menu
and select Run ➤ Run Into Method. The debugger will execute each line of the main method
and pause at the first line inside the getLogMessage method.

If you activate the Run Into Method debug feature and there is no method selected by the
cursor, you will see an error message pop up that reads “Put cursor on method call.”

CHAPTER 4 ■ DEBUGGING94

8954Ch04.qxp 1/28/08 11:34 AM Page 94

Evaluate Expression
One of the most interesting new features of the NetBeans debugger is the Evaluate Expression
window. It allows you to enter Java expressions or methods calls and view the results. You can
do so during a debugging session for any variable or object currently in scope of the program
execution.

In Listing 4-7, the DebugEvaluateExpression class contains a main method that instantiates
an instance of itself, declares two int variables, and adds them together. This code will demon-
strate a very simple usage of the Evaluate Expression window during a debugging session.

Listing 4-7. The DebugEvaluateExpression Class

public class DebugEvaluateExpression {

public static void main(String[] args) {

int x = 0;
int y = 0;

int total = x + y;

}

}

First set a breakpoint inside the first line of the main method at the line int x = 0;. Then
start a debugging session for the class by selecting Run ➤ Run File ➤ Run DebugEvaluateEx-
pression.java from the main menu. A debugging session will start, and program execution
should pause at the breakpoint.

Open the Evaluate Expression window by going to the main menu and selecting Run ➤
Evaluate Expression. The window will open with no values displayed. You can now write a
valid Java expression in the Expression field at the top of the window, such as the following:

((x + y) + 2) * 56 == 112

After you have entered the expression, click the Evaluate button along the bottom of the
window. The expression will evaluate and display in the result table grid in the center of the
window, as shown in Figure 4-14.

The first column in the data grid lists the name of the expression, the second column lists
the data type of the result, and the third column lists the value of the result of the expression.
The sample expression in Figure 4-14 is a Boolean result with a value of true, since 2 times 56
is equivalent to 112. This type of functionality can prove useful if you are trying to evaluate
long or complex formulas, nested Boolean conditionals, or the like.

CHAPTER 4 ■ DEBUGGING 95

8954Ch04.qxp 1/28/08 11:34 AM Page 95

Figure 4-14. The Evaluate Expression window with results

You can also use the Evaluate Expression window for determining return values from
method calls. Review the Java code in Listing 4-8.

Listing 4-8. The DebugEvaluateExpression2 Class

public class DebugEvaluateExpression2 {

public static void main(String[] args) {

DebugEvaluateExpression2 stepping = new DebugEvaluateExpression2();

int id = 9;

String personName = stepping.getNameById(id);
}

public String getNameById(int i) {

String results = "";

if(i > 5) {
results = "Jones";

} else {
results = "Smith";

}

return results;
}

}

CHAPTER 4 ■ DEBUGGING96

8954Ch04.qxp 1/28/08 11:34 AM Page 96

The DebugEvaluateExpression2 class contains a main method that instantiates an instance of
itself, defines an int with a value of 9, passes the int to the getNameById method, and retrieves
the String result. The getNameById method simply takes in an int, performs some bogus logic
on it, and returns one of two possible String values representing a name.

Set a breakpoint on any line in the main method and activate a debugging session. When
program execution pauses, open the Evaluate Expression window by selecting Run ➤ Evaluate
Expression from the main menu.

The Evaluate Expression window will open. Enter a value for the “Expression” field, such
as stepping.getNameById(8);, and click the Evaluate button. This will actually execute the
getNameById method, pass in the value 8, and return the result, as shown in Figure 4-15. All this
occurs without advancing the actual program execution or the debugger. It stays paused at the
breakpoint you set. This allows you to experiment with different input values for methods and
see possible results without having to waste time running numerous debugging sessions.

Figure 4-15. The Evaluate Expression window with results

One of the last things I want to mention about the Evaluate Expression window is the
Watch button that appears next to the Evaluate button. Once you have evaluated an expres-
sion, you can easily create a new watch using that expression. To create the watch, simply click
the Watch button. The expression will be added to the list of watches and be viewable in the
Watches window, as discussed in the following section.

Debugging with Watches
A watch is a debugging feature that allows you to specify a Java statement and track its value
during a debugging session. You can track fields, objects, or expressions in a window called the
Watches window. The watches persist across debugging sessions, so you do not have to reset
them each time you need them. This can help in debugging persistent problems in your code
by enabling you to track and monitor the same fields and expressions.

You can open the Watches windows by navigating the main menu and selecting Window
➤ Debugging ➤ Watches. The Watches window will open with any existing watches listed, as
shown in Figure 4-16.

CHAPTER 4 ■ DEBUGGING 97

8954Ch04.qxp 1/28/08 11:34 AM Page 97

Figure 4-16. The Watches window

The Watches window contains three columns: Name, Type, and Value. The Name column
displays the actual variable or expression that makes up the watch. The Type column displays
the data type of the result, and the Value column displays the current value of the expression
as it exists in the current scope.

This last point about scope is important to make clear. The first watch in Figure 4-16 is for
the total variable. Let’s assume the code for the current scope was for the following class:

public class DebugWatch {

public static void main(String[] args) {
int x = 1;
int y = 2;
int total = x + y;

}
}

If program execution was paused at the line int total = x + y; but the line had not yet been
executed, the Watches window would read as shown in Figure 4-16. The watch for the total
variable will indicate that total is not a known variable in the current context. That is because
it has not been defined and processed by the debugger. The other watch should evaluate to
false:

((x + y) + 2) * 56 == 112

Since x is 1 and y is 2, then adding 2 and multiplying by 56 should be equivalent to 280. If
the watch was entered incorrectly, you can customize it by double-clicking the watch name. You
can also right-click and select Customize from the context menu. This will open the Customize
window that contains a “Watch Expression” field allowing you to edit the expression. You can
change the watch expression to ensure it evaluates to true, as shown in Figure 4-17. Once you
set the watch expression correctly, click the OK button to save the change.

Figure 4-17. The Customize window for watch expressions

CHAPTER 4 ■ DEBUGGING98

8954Ch04.qxp 1/28/08 11:34 AM Page 98

The updated watch expression will be appear in the Watches window and should also
display a value of true. You can now step through your code at any time and, by watching the
expression in the Watches window, know if it ever evaluates to true.

There are several ways to add watch expressions in the NetBeans debugger. As discussed
in the previous section, you can add a watch from the Evaluate Expression window. You can
also highlight a variable or Java expression in code in the Source Editor and select Run ➤ New
Watch.

The New Watch window will appear. The “Watch Expression” text field will be prepopulated
with the text you selected in the Source Editor prior to invoking the New Watch command. You
can leave the text as is or customize the expression. Click the OK button and the watch will be
added to the list in the Watches window. You can also right-click any variable or expression in the
Source Editor and select New Watch from the context menu. The matching keyboard shortcut is
Ctrl+Shift+F7.

The Watches window contains several additional capabilities. You can right-click each
watch in the list and select from the context menu that is displayed. Table 4-3 describes the
actions available.

Table 4-3. Context Menu Actions in the Watches Window

Action Description

Create Fixed Watch Converts an existing watch to a fixed watch (explained further shortly).

New Watch Displays the New Watch window, allowing you to enter a new watch.

Customize Allows you to edit the watch expression using the Customize window.

Delete Deletes the selected watch.

Delete All Deletes all watches.

List Options Allows you to change the sort order and column display status of the
fields displayed in the Watches window.

One thing to note regards the concept of fixed watches. You can convert a watch to a fixed
watch by selecting Create Fixed Watch from the right-click context menu in the Watches window.
A fixed watch monitors the object reference assigned to a variable, as opposed to the value of the
variable.

Local Variables Window
The Local Variables window is another important tool in the NetBeans debugging arsenal. It
allows you to track the value of all variables and objects in the known scope of program execu-
tion during a debugging session. You are able to track primitive values, instances of objects,
and even drill down to see the values of a HashMap stored inside an ArrayList that is stored
inside a Vector.

Being able to track the value of all variables and objects can prove invaluable during
debugging. Watches are useful, but only if you know the expression you want to monitor. The
Local Variables window lets you monitor the values as they are created and modified through-
out all classes and methods.

CHAPTER 4 ■ DEBUGGING 99

8954Ch04.qxp 1/28/08 11:34 AM Page 99

To open the Local Variables window, go to the main menu and select Run ➤ Window ➤
Debugging ➤ Local Variables. The Local Variables window will open and display no values.

Open the following class in the Source Editor as shown in Listing 4-9.

Listing 4-9. The DebugLocalVariables Class

public class DebugLocalVariables {

private String country;

public static void main(String[] args) {

String s = "Adam was here!";
int x = 123456789;

DebugLocalVariables dlv = new DebugLocalVariables();
dlv.country = "Brazil";

System.out.println("Ending method");
}

}

Set a breakpoint at the line dlv.country = "Brazil";. If you initiate a debugging session,
program execution will pause at the breakpoint, and any of the classes’ member variables as
well as any locally scoped variables and objects should appear in the Local Variables window,
as shown in Figure 4-18.

Figure 4-18. The Local Variables window

The Local Variables window will display the list of variables recognized by the debugger
in the current scope of program execution. Based on where the breakpoint is paused, the vari-
ables args, s, x, and dlv should be listed in the Local Variables window. The variable dlv has
an instance of the DebugLocalVariables class instantiated and assigned to it, but the class
member inside it, country, will not be initialized until the line dlv.country = "Brazil"; runs.

As you step through the code, the data in the Value column changes as each variable or
class changes. This can be a useful method for tracking data values through an application.

Another useful and powerful feature is the ability to edit the values of variables that
appear in the Local Variables window. For most variables, you can click inside the text that
appears in the Value column for a variable and type over it with a value of the same data type.

CHAPTER 4 ■ DEBUGGING100

8954Ch04.qxp 1/28/08 11:34 AM Page 100

After typing the new value, press the Enter key. That variable has now been reassigned that
value in the current scoped context.

If you click back inside the code in the Source Editor and mouse over the variable, the
pop-up tooltip should display the new value. Going forward in the debugging session, your
program now thinks the variable has the new value. This can be a great way to patch mistakes
that crop up during long debugging sessions.

Summary
This chapter reviewed the concept of debugging code in NetBeans and why it can help save
you time and trouble. Debugging tools can help you quickly identify errors, bugs, and mis-
taken assumptions in your code by allowing you to track specific variables and instances of
classes and by monitoring Java expressions.

It reviewed the different types of breakpoints, including how to add, disable, delete, and
customize them using the tools available in the Source Editor and the Breakpoints window. It
discussed several scenarios in an attempt to clarify the impact that proper use of breakpoints
can have on debugging errors.

The chapter went on to discuss the basics of how to start and stop different types of
debugging sessions in NetBeans. You learned how to activate debugging for an entire project
and a specific file. You also learned how to run multiple debugging sessions and how to switch
between them.

The chapter reviewed in depth the concept of stepping through code. Stepping allows you
to proceed through classes and methods line by line. This gives you fine-grained control over
how to navigate your code during debugging.

The chapter went on to discuss watches and local variables. These are similar features
and should be used together. Watches allow you to monitor simple variables or complex Java
expressions during your debugging sessions. The Local Variables window allows you to track
all variables, classes, and fields that exist in the JVM for your code that are in scope.

All these tools have been combined into a suite of debugging features available in Net-
Beans. When you use them correctly, they can assist you in identifying both simple and
complex errors in your code.

CHAPTER 4 ■ DEBUGGING 101

8954Ch04.qxp 1/28/08 11:34 AM Page 101

8954Ch04.qxp 1/28/08 11:34 AM Page 102

Profiling

One of the biggest problems with software applications is designing them efficiently so that
they run under an optimal load. All too often applications work fine under an average number
of users. When a higher-than-expected load of users accesses the application, problems typi-
cally occur, usually because of poorly designed algorithms or code that assumed only a
specific load.

Performance problems can typically be fixed, but you just need to know where and why
they are occurring. Enter the NetBeans Profiler. It allows a developer to examine the CPU per-
formance and monitor the memory usage of a Java application. With the Profiler you can
record and save performance data, examine results in detail, and get a true understanding of
the bottlenecks in an application.

Prior to NetBeans 6, the Profiler was a separate add-on pack that had to be downloaded
and installed. It therefore was an optional feature that some users never benefited from. Start-
ing with NetBeans 6, the Profiler comes installed and is active by default. I think this was an
excellent move. It raises the visibility of the tool and stresses the importance of profiling your
code regularly.

Configuring Profiler Properties
The NetBeans Profiler has a number of configuration settings you can change to customize its
behavior. To see the properties, open the Basic Options window by going to the main menu and
selecting Tools ➤ Options. When the Basic Options window opens, click the Miscellaneous icon
in the Windows toolbar and select the Profiler tab. The Profiler options will now be displayed, as
shown in Figure 5-1.

There are three main sections on the Profiler tab on the Basic Options window: General,
When Profiling Session Starts, and Miscellaneous. I next describe the fields available for each
section.

103

C H A P T E R 5

8954Ch05.qxp 1/28/08 11:35 AM Page 103

Figure 5-1. Configuring Profiler properties in the Basic Options window

The fields in the General section of the Profiler tab include:

Profiler Java Platform: The target JVM in which the Profiler runs. You can select any JDK
that has been configured in the Java Platform Manager or set the field to “Use Java Plat-
form defined in Project.”

Communication Port: The TCP/IP port on which the Profiler listens. It is initially set to 5140.

The fields in the When Profiling Session Starts section of the Profiler tab include:

Open Telemetry Overview: Specifies when the Telemetry window will appear during a pro-
filing session. If the field is set to “For Monitoring Only,” it will appear automatically when
you select to monitor an application during a profiling session. If the field is set to
“Never,” the Telemetry window will not appear automatically for any profiling session.
You will have to open it manually. If the field is set to “Always,” then the Telemetry window
will appear for each profiling session. I typically set this to “Always.”

Open Threads View: Specifies when the Threads View window will appear during a profiling
session. If the field is set to “For Monitoring Only,” it will appear automatically when you
select to monitor an application during a profiling session. If the field is set to “Never,” the
Threads View window will not appear automatically for any profiling session. You will have
to open it manually. If the field is set to “Always,” then the Threads View window will
appear for each profiling session. I typically change the default value and set this field to
“For Monitoring Only.”

CHAPTER 5 ■ PROFIL ING104

8954Ch05.qxp 1/28/08 11:35 AM Page 104

Open Live Results For: Lets you select which type of profiling session should cause the Live
Results window to open automatically. The two check boxes allow you to set this for both
CPU and Memory profiling.

The fields in the Miscellaneous section of the Profiler tab include:

When taking snapshot: Specifies what action to take when you prompt the Profiler to take a
snapshot of results. The field is set to “Open New Snapshot” by default. If this is set, then a
snapshot will open in NetBeans when it is created. If the field is set to “Save New Snapshot,”
then the snapshot is in the list of snapshots but is not opened. If the field is set to “Open and
Save New Snapshot,” then the snapshot is saved in the list of snapshots and is opened in
NetBeans for viewing. I typically set this field to “Save New Snapshot.” When I’m viewing
Live Results I may want to save multiple snapshots at different points and not have to deal
with multiple snapshots that are open in the IDE.

On OutOfMemoryError: Specifies what action to take on an OutOfMemoryError. By default
this field is set to “Save heap dump to profiled project.” If an OutOfMemoryError occurs,
then a special heap dump snapshot is saved into the list of snapshots for the project. The
field can also be set to “Save heap dump to temporary directory” or to “Do nothing.” There
is also an additional radio button next to the “On OutOfMemoryError” field named “Save
heap dump to.” If this is selected, a text field next to it is enabled that allows you to specify
a directory to which to save the heap dump.

HeapWalker: Provides a check box to enable automatic analysis of heap data.

Once you have configured the Profiler settings, click the OK button to save any changes
and close the Basic Options window.

Profiler Calibration
The NetBeans Profiler needs to be calibrated before it can be used for the first time. Calibrating
the Profiler allows it to provide realistic and accurate results based on different computers,
operating systems, and hardware.

To activate Profiler calibration, go to the main menu and select Profile ➤ Advanced
Commands ➤ Run Profiler Calibration. The Select Java Platform to Calibrate window will
open, prompting you to select a JDK to calibrate. Select the target JDK and click the OK but-
ton. A pop-up window appears stating “Performing Calibration, please wait.” When it finishes,
an Information window will be displayed. Click the Show Details button and the window will
display the calibration statistics, as shown in Figure 5-2.

CHAPTER 5 ■ PROFIL ING 105

8954Ch05.qxp 1/28/08 11:35 AM Page 105

Figure 5-2. Detailed statistics after running the Profiler calibration

You don’t have to trigger the calibration manually. If you attempt to profile a project and
the target JDK has not yet been calibrated, you will be prompted to do so. You only have to do
so once for each target JDK.

Profiling Java Applications
The NetBeans Profiler lets you profile almost every type of Java-related project. Once the Profiler
has been configured and calibrated, you can begin using it in your projects.

Attaching the Profiler to a Project
When you profile a Java project in NetBeans for the first time, the Profiler modifies the project
structure. You will see an information message pop up, as shown in Figure 5-3. It asks if it is
OK to modify your project’s build scripts. It also warns that any custom edits you may have
made will be undone if you continue. Click the OK button in the pop-up window to continue
profiling the project.

Figure 5-3. Warning message when profiling a project for the first time

When you OK the Profiler to modify your build scripts, the following events occur. First a
backup of your project’s build.xml file is copied and renamed to build-before-profiler.xml.
Then an import statement is added to the build.xml as follows:

<import file="nbproject/profiler-build-impl.xml"/>

CHAPTER 5 ■ PROFIL ING106

8954Ch05.qxp 1/28/08 11:35 AM Page 106

The import statement includes the contents of a new file, profiler-build-impl.xml, in the
project build script. It adds Ant targets for profiling a single file, an entire project, an applet, or
a test. The Ant targets are invoked directly by the NetBeans Profiler for the project when menu
items and actions are selected.

Understanding the Profiler Control Panel Window
Before you can start profiling code, you need to understand the Profiler Control Panel window.
The Profiler Control Panel window lets you access the various graphing and results monitoring
tools you need in order to understand the results of the profiling session. You can open it by
going to the main menu and selecting Window ➤ Profiling ➤ Profiler Control Panel.

The Profiler Control Panel window also lets you take snapshots of results, view basic teleme-
try, and control the profiling session. The window has multiple sections and is quite long, so I
review it here in two pieces. The first half of the window contains the following sections, as
shown in Figure 5-4:

Figure 5-4. The top half of the Profiler Control Panel window

Controls: The Controls section lists the icons you can use to restart the profiling session,
stop the profiling session, reset the collected results buffer, run garbage collection, modify
the profiling session, and view the telemetry overview.

Status: The Status section lists the type of performance analysis, the configuration (Ana-
lyze Performance or Custom), and the status of the profiling session (stopped, starting,
running, inactive, etc.).

Profiling Results: The Profiling Results section lets you perform several results-related
actions. The first icon, labeled Take Snapshot, lets you take a snapshot of the current data
that has been collected and display it in a results window. The second icon, labeled Live
Results, lets you open the Live Results window to watch data accumulate as the code is
profiled. The bottom of the Profiling Results section also contains a link to Reset Collected
Results. Clicking it blanks the Live Results window, since the buffer of accumulated data is
reset. Snapshots and live results are explained in more detail in the following sections of
this chapter.

CHAPTER 5 ■ PROFIL ING 107

8954Ch05.qxp 1/28/08 11:35 AM Page 107

The second half of the Profiler Control Panel window contains the following sections, as
shown in Figure 5-5:

Figure 5-5. The bottom half of the Profiler Control Panel window

Saved Snapshots: The list of result snapshots available for all open projects. You can click
any snapshot that appears in the list and use the buttons to the right to open, delete, save
as, or load a snapshot from disk. The saved snapshots in the list can present moments in
time that occurred during a profiling session or the entire results from a profiling session.

View: The View section contains two icons: VM Telemetry and Threads. Clicking the VM
Telemetry icon will open the VM Telemetry window. Clicking the Threads icon will open
the Threads profiling window.

Basic Telemetry: The Basic Telemetry section contains information such as the number of
instrumented methods, any filters applied to the session, the number of running threads,
the total memory, the used memory, and the time spent in garbage collection.

The Profiler Control Panel window typically opens automatically when you start a profil-
ing session. It is an integral part of profiling your code, so you should become familiar with the
capabilities it provides and the icons located in it.

CPU Profiling
The first type of profiling I want to cover is CPU profiling. It involves measuring the runtime of
each class, method, and constructor for the purpose of identifying performance bottlenecks.

CHAPTER 5 ■ PROFIL ING108

8954Ch05.qxp 1/28/08 11:35 AM Page 108

For example, suppose you have a class that calls three methods and runs for 6 seconds.
If you were able to identify that the total runtime for the first two methods was only 1 second,
then you could examine the third method further to see why it is taking the majority of the
runtime (5 seconds). The NetBeans Profiler lets you do just that.

Initializing CPU Profiling
In this section we discuss several ways to profile code. First, initialize a profiling session by
selecting Profile ➤ Profile Main Project on the main menu. The Profile Project window will
appear, as shown in Figure 5-6. When this window opens you can select from the three sec-
tions on the left: Monitor, CPU, and Memory. If CPU is not already selected, then click the
CPU section to display the necessary options, as shown in Figure 5-6.

Figure 5-6. The Profile Project window

You will then be presented with the choice to profile the entire application or only part of
the application. If you select “Entire application,” then the project will be profiled starting at
the main class’s main method (assuming a Java application–type project with a main class
set). If you select “Part of application,” then you will be prompted to specify further which
code will be profiled. A field will appear immediately to the right labeled “No root methods,
define.” Click the hyperlinked Define text to open the Specify Root Methods window.

This window requires you to pick, from one of several sources, which code the Profiler
should use to begin profiling the project. It should be blank by default. If you click the Add
From Project button, then the Select Root Methods window will open. This window displays
all the projects open in NetBeans and lets you drill down through the source packages to
select a method in a class, as shown in Figure 5-7.

CHAPTER 5 ■ PROFIL ING 109

8954Ch05.qxp 1/28/08 11:35 AM Page 109

Figure 5-7. The Select Root Methods window

Once you have selected the method or methods that will serve as the root method for
the profiler, click the OK button. The selected method(s) will then appear in the Specify Root
Methods window. If one of the root methods was added in error, you can select it and click
the Remove button. The Specify Root Methods window also lets you add a root method
manually using the Add Manual button. When you click the Add Manual button, the Define
New Root Method window opens. In this window you simply have to specify the package, the
class name, the constructor or method name, and the constructor or method signature. When
you are finished selecting root methods, click the OK button to return to the Profile Project
window.

■Tip Even if a class does not have a constructor specified (such as the default constructor), you
can manually specify it in the “Method Name” field of the Define New Root Method window. For the
ProfileStringAppending class, you could specify the constructor using the VM Signature of
()LprofileStringAppending().

The Profile Project window also contains a powerful filtering capability. With the filter fields
that are available you can instruct the Profiler to profile only the project classes or all the classes,
to exclude the Java core classes, or to include a custom quick filter.

By default the “Filter” field is set to Profile Only Project Classes. This instructs the Profiler
to profile only the classes that appear in the Source Packages section of your project. You can
see exactly what the Profiler will profile by clicking the Show Filter Value link that appears
below the “Filter” drop-down field. A small pop-up window should appear that states precisely
which packages and classes will be profiled for this profiling session.

CHAPTER 5 ■ PROFIL ING110

8954Ch05.qxp 1/28/08 11:35 AM Page 110

The “Filter” drop-down also contains an item called Quick Filter. If you select it from the
list, the Set Quick Filter window will appear, as shown in Figure 5-8. This window contains two
fields: “Filter Type” and “Filter Value.” The “Filter Type” field can be set to Exclusive or Inclu-
sive. If set to Exclusive, then the filter uses the class or classes specified in the “Filter Value”
field and excludes them from the profiling session. If “Field Type” is set to Inclusive, then the
filter uses the class or classes specified in the “Filter Value” field as the only classes to include
in the profiling session.

Figure 5-8. The Set Quick Filter window

Another filter option in the Profile Project window is the ability to manage filter sets. A fil-
ter set is what appears in the “Filter” drop-down list, such as Exclude Java Core Classes. Filter
sets typically appear in the drop-down below the Quick Filter item and can be edited using the
Edit Filter Sets link. Note that the filter sets above the Quick Filter item cannot be edited.

If you click the Edit Filter Sets link, the Customize Filter Sets window will open, as shown
in Figure 5-9. The top portion of the window displays the list of defined filter sets. It also con-
tains buttons that allow you to add and remove filter sets as well as manipulate the order in
which they appear in the “Filter” drop-down field of the Profile Project window.

The middle of the window contains the basic filter properties, such as the name of the fil-
ter set and the filter set type: Exclusive or Inclusive.

The bottom of the window lists the global filters to apply to the filter set. Global filters are
patterns of classes typically related to a special tool, framework, or application. For example,
the global filter “Sun Java System Application Server (GlassFish) Classes” is made up of the
pattern com.iplanet., com.sun.appserv., com.sun.enterprise.. These groups of patterns
can be used to include or exclude lots of classes quickly from your profiling session.

CHAPTER 5 ■ PROFIL ING 111

8954Ch05.qxp 1/28/08 11:35 AM Page 111

Figure 5-9. The Customize Filter Sets window

In Figure 5-9, I have selected a filter type of Exclusive and the global filters Java Core Classes,
NetBeans Classes, and the Sun Java System Application Server Classes. Once you have selected
the list of global filters the filter set should contain, click the OK button to return to the Profile
Project window. When I run the Profiler using the defined global filters, any class that matches
the patterns defined will be excluded from any performance data results.

Running the Profiler
Once you have configured what you’re going to analyze and which filters to apply, you can
execute the Profiler. In the Profile Project window in Figure 5-6, click the Run button. This will
launch the Profiler tab in the Output window, which will list multiple lines of data. It should
state that it is compiling the classes, starting the Profiler Agent, and initializing the Profiler
Agent.

■Tip After the first Profiler run, you should be prompted to choose whether you always want a snapshot of
data taken and saved after the profiling session has finished. I typically set this to Yes. I accumulate many
snapshots but can delete them later. Better to delete useless snapshots than to miss some important data
when profiling.

CHAPTER 5 ■ PROFIL ING112

8954Ch05.qxp 1/28/08 11:35 AM Page 112

If the profiled class runs through quickly, you may not get a chance to click the Live Results
icon in the Profiler window. If the Live Results window is not open during the profiling session,
you can open it at any time, even after the session is complete. The last accumulated results
should still appear in the Live Results window. The data that appears is specific to the type of
profiling you conducted.

You can easily run the same profiling session again. In the Controls section of the Profiler
window you can click the Rerun Last Profiling Session icon (the green double arrows). This will
immediately relaunch the Profiler with the same settings you last used. This can save you sev-
eral clicks by not having to go through the Profile Project all over again.

Viewing the Results
Once you have initialized and executed a profiling session, you will need to view and interpret
the results. The accumulated CPU Analyze Performance data should be listed in the Live Results
window, as shown in Figure 5-10. The Live Results window contains a small toolbar along the top
of the window and a data grid of columns at the bottom.

Figure 5-10. The Live Results window after profiling

For CPU profiling, the data grid contains four columns:

Hot Spots - Method: The name of a method or constructor with a measurable amount of
execution time.

Self time [%]: The overall percentage of time that the hot spot spent executing as com-
pared to the entire profiling session.

Self time: The specific amount of time, in milliseconds, that the hot spot spent executing.
The percentage of overall execution time compared to the entire profiling session is listed
next to it as well.

Invocations: The number of times the hot spot method or constructor was executed. This
column is very important since it can help clarify performance data. Just because a method
took a long accumulated time to execute doesn’t mean it is necessarily a bottleneck if the
number of invocations is very high.

CHAPTER 5 ■ PROFIL ING 113

8954Ch05.qxp 1/28/08 11:35 AM Page 113

The toolbar along the top of the Live Results window contains six icons:

Update Results Automatically: If you select this icon, the Live Results window will poll the
NetBeans Profiler continually for updates to the data and will display them in the data
grid. If you don’t select it, you must update the results manually.

Updates Results Now: This icon allows you manually to trigger an update to the accumu-
lated results displayed in the Live Results window.

Run Garbage Collection: Instructs the JVM to run garbage collection and update the
results displayed in the Live Results window.

Reset Collected Results Buffer: This icon will trigger deletion of the data accumulated in
the buffer. All results displayed in the Live Results window will disappear and no data will
be displayed until the next automatic or manual results update.

Take Snapshot of Collected Results: If you click this icon during an active profiling session,
the Profiler will open a new tab in the Source Editor area that contains a snapshot of the
data from the Live Results window. This data is thus “frozen,” in that it won’t be updated
or change. It allows you to capture moments in time during the profiling session and to
examine them later.

Saves Current View to Image: If you click this icon, a file chooser window will appear
prompting you to select a directory. This will take a screenshot of the results displayed in
the Live Results window and save them as a PNG image.

■Tip Save Current View to Image is a great feature for professional developers who must document code
performance data. If your company or organization requires you to document test results, units test results,
and performance test results, you can save multiple screenshots of the results in PNG format to include in
your documentation.

An additional feature of the Live Results window is the ability to right-click any method
and select Go To Source from the context menu. This will open the related Java source file in
the Source Editor. This lets you investigate code in your projects or associated libraries to see
why it might be performing the way the data reports.

Analyzing CPU Performance Example
As discussed in the previous section, the ability to profile CPU performance can prove crucial
when developing software applications. I have run into performance bottlenecks numerous
times when testing and deploying applications. One of the most common areas is that of gen-
erating content for web applications.

I’ve lost track of the number of times I have had to examine a JSP page and attempt to fig-
ure out why it took a long time to load. Sometimes the cause was a slow database or inefficient
SQL calls or too much recursion, sometimes even just poorly written code. One problem I
continue to run into is generating HTML code inside a loop in a Java class. I have created a
mockup of this issue, as shown in Listing 5-1.

CHAPTER 5 ■ PROFIL ING114

8954Ch05.qxp 1/28/08 11:35 AM Page 114

Listing 5-1. The ProfileStringAppending Class

public class ProfileStringAppending {

public static void main(String[] args) {

ProfileStringAppending psa = new ProfileStringAppending();

String dataResults = psa.getCustomersByCountry(1234);

String dataResults2 = psa.getCustomersByCountry2(1234);

System.out.println("ProfileStringAppending done");
}

public String getCustomersByCountry(int countryId) {

String results = "";

// assume this is simply a list of customer names
ArrayList<String> customers = getCustomers(countryId);

for (int i = 0; i < customers.size(); i++) {
results += "<tr><td width=300>";
results += customers.get(i);
results += "</td></tr>";

}

return results;
}

public String getCustomersByCountry2(int countryId) {

StringBuffer results = new StringBuffer();

// assume this is simply a list of customer names
ArrayList<String> customers = getCustomers(countryId);

for (int i = 0; i < customers.size(); i++) {
results.append("<tr><td width=300>");
results.append(customers.get(i));
results.append("</td></tr>");

}

return results.toString();
}

private ArrayList<String> getCustomers(int countryId) {

CHAPTER 5 ■ PROFIL ING 115

8954Ch05.qxp 1/28/08 11:35 AM Page 115

//connect to database, generate customer list
ArrayList<String> mylist = new ArrayList<String>();
// let's fake a list
for(int i=0; i<2000; i++) {

mylist.add("John Smith " + i);
}

return mylist;
}

}

In this class, the main method instantiates an instance of the ProfileStringAppending class and
calls two similar methods using the same input value. The results are returned and captured in
two String variables but are otherwise ignored.

The two methods, getCustomersByCountry and getCustomersByCountry2, demonstrate the
point of this example. What I have seen occur too often in generating content for JSPs is ineffi-
cient String appending.

Seasoned programmers may know the performance difference between appending Strings
and using a StringBuffer. It has been discussed and well documented in Java articles and web
sites for some time. However, I still see this problem crop up all too often. Even when you know
it can be a problem, you may not adhere to the best practice until you see the performance data
for yourself.

You can use the NetBeans Profiler to analyze the methods in the ProfileStringAppending
class to determine the specific performance data. For starters, take a look at the
getCustomersByCountry method:

public String getCustomersByCountry(int countryId) {

String results = "";

// assume this is simply a list of customer names
ArrayList<String> customers = getCustomers(countryId);

for (int i = 0; i < customers.size(); i++) {
results += "<tr><td width=300>";
results += customers.get(i);
results += "</td></tr>";

}

return results;
}

It takes an input parameter called countryId, which is in turn passed to the getCustomers
method. The getCustomers method returns an ArrayList of customer names. In real life, this
would probably be an ArrayList of customer objects, where each customer object contained
numerous fields to identify the customer.

The getCustomersByCountry method then loops through the ArrayList, extracts each cus-
tomer name, and appends it to a String of HTML that is being dynamically built using String

CHAPTER 5 ■ PROFIL ING116

8954Ch05.qxp 1/28/08 11:35 AM Page 116

concatenation. The generated HTML would then typically get returned to a calling JSP page
and embedded inside <table> and </table> tags for display on a page. In this example it sim-
ply returns the results back to the calling main method.

The number of times the loop iterates is controlled by the size of the ArrayList of cus-
tomers that is returned by the getCustomers method:

private ArrayList<String> getCustomers(int countryId) {

//connect to database, generate customer list
ArrayList<String> mylist = new ArrayList<String>();
// let's fake a list
for(int i=0; i<2000; i++) {

mylist.add("John Smith " + i);
}

return mylist;
}

The getCustomers method takes in the countryId variable and does nothing with it. In a
real lookup method, a java.sql.Statement or java.sql.PreparedStatement might use the
countryId variable to retrieve the matching customers from a database. In this sample method
I create a new ArrayList list and specify that it will contain Strings. I then loop 2000 times
and add the name John Smith + i to the list. This is done simply to generate a unique list of
names to return to the calling code.

The getCustomersByCountry2 method does the same thing as the getCustomersByCountry
method, except for one important difference. Instead of using String concatenation, it uses a
StringBuffer to append the Strings together. As you might guess, this is more efficient than
the String concatenation:

public String getCustomersByCountry2(int countryId) {

StringBuffer results = new StringBuffer();

// assume this is simply a list of customer names
ArrayList<String> customers = getCustomers(countryId);

for (int i = 0; i < customers.size(); i++) {
results.append("<tr><td width=300>");
results.append(customers.get(i));
results.append("</td></tr>");

}

return results.toString();
}

Just seeing the two versions of a nearly identical method won’t convince anyone. We actu-
ally need to profile the code to see any performance difference that may exist. Perform the
following steps to profile the ProfileStringAppending class:

CHAPTER 5 ■ PROFIL ING 117

8954Ch05.qxp 1/28/08 11:35 AM Page 117

1. With the ProfileStringAppending class open in the Source Editor, select Profile ➤
Profile Other ➤ Profile “ProfileStringAppending .java” from the main menu.

2. In the Profile Project window click the CPU section at the left of the window.

3. Select the “Entire Application” radio button at the right of the window.

4. Select “Profile Only Project Classes” from the “Filter” drop-down field.

5. Click the Run button.

When the Profiler finishes running, the Live Results window should open, as shown
in Figure 5-11. The first column will list the method names, which you can use to find the
getCustomersByCountry and getCustomersByCountry2 methods.

Figure 5-11. The results of the profiled class

The next column to look at is the third column. The Self time column lists the number
of milliseconds each method took to execute. Notice that the getCustomersByCountry
method took 12,090 milliseconds (or about 12 seconds) to execute. Also notice that the
getCustomersByCountry2 method took only 5.70 milliseconds (or about 1/20 of a second).
This should demonstrate the difference between String concatenation and StringBuffer
appending as well as how to use the NetBeans Profiler to analyze CPU performance.

Analyzing CPU Performance with Profiling Points
Profiling points are markers in the code, similar to debug breakpoints, that trigger some sort of
profiling-related action to occur. You can use profiling points to do many things, such as cap-
ture a snapshot of the accumulated profiler data, start a timer, reset the buffer of accumulated
results, and run a load generator.

Profiling points are saved with the project data for each project. Similar to breakpoints,
they persist when you close NetBeans and exit the JVM. When you open a project in NetBeans,
the profiling points related to that project are available to run, view, edit, or remove, as dis-
cussed in the following sections.

Adding a Profiling Point
The easiest way to create a profiling point is directly in the code. Open a Java source file in the
Source Editor, such as the ProfileStringAppending class from one of the previous sections, as
shown in Listing 5-1. In the source file, right-click on the line where you want to locate the
profiling point and select Profiling ➤ Insert Profiling Point from the context menu.

CHAPTER 5 ■ PROFIL ING118

8954Ch05.qxp 1/28/08 11:35 AM Page 118

The New Profiling Point window will open, as shown in Figure 5-12. The Choose Type &
Project screen is initially displayed. In the “Profiling Point Type” field, select one of the avail-
able options, such as Stopwatch. A stopwatch profiling point is a timer that lets you measure
the start and end times of an event.

Figure 5-12. The New Profiling Point window

Once you have selected the stopwatch profiling point type, click the Next button. The Cus-
tomize Properties screen will display, allowing you to customize the stopwatch profiling point.

The “Name” field will typically display the type of profiling point followed by the class
name and line number in the code where the profiling point will appear. This name is a
default and can be set to whatever you want it to be. I usually leave the name as is, unless I
plan on having multiple profiling points initiated at the same line of code.

The Settings section lists the type of measure the stopwatch profiling point will use. You
can set it to Timestamp or Timestamp and Duration. If you set it to Timestamp, then the profil-
ing point merely takes a snapshot of the system time. It also means that the Stopwatch profiling
point has only a starting location, specified by the Location (begin) section. If you set it to
Timestamp and Duration, then the profiling point measures the duration of time between a
starting point and an ending point. The ending point is specified by the Location (end) section
on the screen. Set the “Measure” field to Timestamp and Duration.

You can then set the “Location (begin)” and the “Location (end)” fields. Set the two “File”
fields to the name of the Java source file you initially used to create the profiling point. Set the
“Line” field to the line number in the ProfileStringAppending class where you right-clicked in
the Source Editor. Also select the Begin radio button, to designate the line as the starting point.

The “Line” field for the Location (end) section can be set to the same line or any other line
you want to use to stop the stopwatch. Also select the End radio button. For the code snippet
I am profiling from the ProfileStringAppending class, I have set the end point at line 40, or
immediately after the end of the for loop in the getCustomersByCountry method. The Cus-
tomize Properties screen should now look like Figure 5-13. Click the Finish button to add the
profiling point.

CHAPTER 5 ■ PROFIL ING 119

8954Ch05.qxp 1/28/08 11:35 AM Page 119

Figure 5-13. The Customize Properties screen for a stopwatch profiling point

The code snippet the stopwatch profiling point was used for is listed as follows:

for (int i = 0; i < customers.size(); i++) {
results += "<tr><td width=300>";
results += customers.get(i);
results += "</td></tr>";

}

The first line of the for loop is number 36. The last line, where the closing curly brace appears,
is number 40. These are the beginning and ending locations for the Stopwatch profiling point.
Once the profiling point has been added, you should be able to see a set of visual glyphs in the
Source Editor for the beginning and ending profiling points, as shown in Figure 5-14.

Figure 5-14. Profiling point glyphs in the Source Editor margin

CHAPTER 5 ■ PROFIL ING120

8954Ch05.qxp 1/28/08 11:35 AM Page 120

Modifying Profiling Points
Once a profiling point has been created, you can edit, delete, or disable it at any time. Right-click
the profiling point glyph in the margin and look at the options on the Profiling Point submenu
that appears in the context menu.

If the profiling point is enabled and active, the Enabled menu item will have a check mark
next to it. If you want to disable a profiling point, simply select the Enabled menu item; the
check mark will disappear, and the Profiling Point icon is grayed out. To re-enable it, right-
click the profiling point glyph in the margin and select Profiling Point ➤ Enabled.

The Profiling Point submenu also contains a Delete option. If you select it, the profiling
point will be completely deleted. Note that there is no way to undo the delete action. You will
have to add the profiling point again.

You also can edit a profiling point if you need to change line numbers or other options.
Right-click the profiling point glyph in the margin and select Profiling Point ➤ Customize
from the context menu. The Customize Profiling Point window will appear, as shown in
Figure 5-15. The Customize Profiling Point window lets you edit all the properties of the
profiling point. You can rename the profiling point, change the beginning and ending lines,
or even the type of measure.

Figure 5-15. The Customize Profiling Point window

Two of the most important items to note in the Customize Profiling Point window are the
Current Line buttons. These conveniently let you quickly change the line numbers for the
beginning and ending of the stopwatch profiling point. Move the Customize Profiling Point
window off to the side. Click a line in the ProfileStringAppending class that is open in the
Source Editor. Once you have selected a line in the class, go back to the Customize Profiling
Point window and click one of the Current Line buttons. Notice how the line number field has
changed. These buttons allow you quickly and easily to update the line numbers by looking
right in the source code. Once the line number and other properties are correct, click the OK
button to save your changes to the profiling point.

The final option on the Profiling Point submenu is labeled Go To End Point. This menu item
is specific to the profiling point you right-clicked in the margin. If you selected a stopwatch’s

CHAPTER 5 ■ PROFIL ING 121

8954Ch05.qxp 1/28/08 11:35 AM Page 121

start point, the context menu will have the Go To End Point option. If you selected a stopwatch’s
end point, the context menu will have the Go To Start Point option. These menu items let you
jump to a stopwatch’s matching point, whether it is the start point or the end point. This menu
option will differ between the profiling points, depending on the type of profiling point.

Locating Profiling Points
For each type of profiling point you add to a Java source file, a different glyph will appear in
the margin denoting its placement and existence. This lets you quickly identify where the pro-
filing points are in your code. The difficulty arises when you want to locate profiling points
across multiple classes or projects. If you want to track all the profiling points in your source
code, you can use the Profiling Points window.

To open the Profiling Points window, go the main menu and select Window ➤ Profiling ➤
Profiling Points. The Profiling Points window will list every profiling point that has been
defined in all currently opened projects, as shown in Figure 5-16. The Profiling Points window
also allows you to control each profiling point, view its results, and open the Profiling Point
report. The toolbar that appears along the top of the Profiling Points window contains several
icons and filter fields, as shown in Figure 5-16.

Figure 5-16. The Profiling Points window

The first field is a drop-down that is set to All Projects by default. You can use this drop-
down to filter the list of displayed profiling points based on all projects or on a specific project.
You can also enable or disable the check box next to the “include subprojects” field. If you
have filtered the list by a specific project, the “include subprojects” field will also display the
profiling points for the selected project’s referenced subprojects.

There are also four icons next to the “include subprojects” field. These icons, in order,
allow you to add a profiling point, remove a profiling point, edit a profiling point, or enable or
disable a profiling point. Clicking the first icon will open the same Add Profiling Point window
you see when you add a profiling point by right-clicking in a source file. Clicking the third
icon, Edit Profiling Point, opens the Customize Profiling Point window discussed earlier in this
chapter.

For the items displayed in the Profiling Points window, you can access additional options
by right-clicking each line. The context menu for each profiling point will contain an option to
edit, remove, and disable the profiling point. It should also contain an option to view the
report for that profiling point (discussed further in the next section).

CHAPTER 5 ■ PROFIL ING122

8954Ch05.qxp 1/28/08 11:35 AM Page 122

The context menu may also contain menu items specific to each type of profiling point.
For instance, right-clicking a stopwatch profiling point will display a context menu with
options such as Show Start in Source and Show End in Source. Right-clicking a “Reset Results
Profiling Point” will display an option to Show in Source.

Similar to the Breakpoints window, the Profiling Points window allows you to gain a quick
view of all the profiling points with which you need to work. It also allows you a single point of
access to edit, remove, or disable them. If you are profiling an application that has multiple
profiling points, this window will prove to be very useful.

Viewing a Profiling Point Report
After a profiling session has finished executing against one or more profiling points, a report is
generated for each profiling point, as shown in Figure 5-17. The report can list data about the
profiling point, such as its:

Figure 5-17. The Profiling Points Report

• Name

• Type

• Project in which it is located

• Status (enabled/disabled)

• Start location

• End location (if applicable)

• Measure

• Number of hits

• Result data

The number of hits tells you how many times the profiling point was hit by the running
program. The Data section, as shown in Figure 5-17, will list each unique hit registered for the

CHAPTER 5 ■ PROFIL ING 123

8954Ch05.qxp 1/28/08 11:35 AM Page 123

profiling point as well as the specific measurement that was taken at the time it was hit. If mul-
tiple hits occurred for this profiling point, then the Data section would contain one line per hit.

Memory Profiling
Memory analysis is the second type of code profiling you can perform using the NetBeans
Profiler. It allows you to record the creation and garbage collection of objects, track object
allocations, view the stack traces of object allocations, and compare results. This type of profil-
ing can be useful when trying to track down OutOfMemoryErrors, code that consumes a lot of
memory in the JVM, or basic inefficient code.

Running a Memory Analysis
For this section, I use two Java classes as examples: ProfileMemory and ProfilePerson. The
ProfilePerson class is shown in Listing 5-2. The ProfileMemory class is shown in Listing 5-3.

Listing 5-2. The ProfilePerson Class

public class ProfilePerson {

private String lastName;
private String firstName;
private String email;

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}
}

CHAPTER 5 ■ PROFIL ING124

8954Ch05.qxp 1/28/08 11:35 AM Page 124

The ProfilePerson class serves as a simple data bean. The class has three class variables:
firstName, lastName, and email. There are also standard getter and setter methods for each
class variable. This class will have a number of instances of itself created and stored to track
object creation and allocation.

Listing 5-3. The ProfileMemory Class

import java.util.ArrayList;
import java.util.List;

public class ProfileMemory {

public static void main(String[] args) {

List<ProfilePerson> allPeople = new ArrayList<ProfilePerson>();

for(int i=0;i<100000;i++) {
ProfilePerson person = new ProfilePerson();
person.setFirstName("Adam");
person.setLastName("Myatt");
person.setEmail("adam AT pronetbeans DOT com");

allPeople.add(person);
}

System.out.println("Number of people = " + allPeople.size());
}

}

The ProfileMemory class contains a main method that does the work. It defines an instance
of ArrayList that will hold ProfilePerson objects. It then loops through 100,000 times, creates
a new ProfilePerson object, sets the various properties to identical values, and stores each
ProfilePerson object inside the ArrayList.

To profile the memory of the two classes, you can perform the following steps:

1. Locate the ProfileMemory class in the Projects window and open it in the Source Editor.

2. On the main menu select Profile ➤ Profile Other ➤ Profile “ProfileMemory.java.”

3. In the Project Profiling window select the Memory block on the left side of the window.

4. Select the radio button labeled “Record Object Creation Only.”

5. Set the number of object allocations to track to 10.

6. Select the “Record stack trace for allocations” check box.

7. Click the Run button.

CHAPTER 5 ■ PROFIL ING 125

8954Ch05.qxp 1/28/08 11:35 AM Page 125

Viewing the Memory Analysis Results
Once the Profiler has finished executing, you may be able to view the results in the Live
Results window. I have found that the Live Results window tends to display the last set of
accumulated results when running a CPU analysis but not for the memory analysis.

I have set up the Profiler so that it records a snapshot after every run. In my list of snap-
shots in the Profiler Control Panel window I can select the most recent snapshot generated
and open it in the Source Editor area. The snapshot that was generated shows the allocated
objects for the code that executed from Listings 5-2 and 5-3, as shown in Figure 5-18.

Figure 5-18. The memory analysis snapshot for Listings 5-2 and 5-3

The snapshot in Figure 5-18 shows several columns. The first column displays the fully
qualified class name of each object allocated. The second column displays a visual percentage
bar of the total number of bytes allocated for each object compared to the total for all objects
during the profiling session. The third column displays the actual number of bytes allocated
for each object, with the percentage in parentheses next to it. Finally, the fourth column dis-
plays the number of objects allocated.

Based on the ProfileMemory code in Listing 5-3, you might expect the number of com.
pronetbeans.examples.ProfilePerson objects allocated to be 100,000. The first line in the
memory snapshot in Figure 5-18 does indeed list the ProfilePerson class as having had
100,000 objects allocated, with approximately 253,000 bytes allocated. This isn’t bad and is
pretty much expected.

The second line is a little more interesting. It shows that there were almost 32,000 bytes
and 25 objects allocated for the Object arrays. This may or may not be expected, depending on
the JVM code that was running in the target JDK. The memory analysis in the NetBeans Profiler
picks up all objects allocated in the JVM and not just the objects allocated from your projects’
files. The point here is that the 32,000 bytes allocated for the Object arrays may or may not be
necessary. You can attempt to determine this by tracking where the objects were allocated.

CHAPTER 5 ■ PROFIL ING126

8954Ch05.qxp 1/28/08 11:35 AM Page 126

Right-click the java.lang.Object[] item in the Memory snapshot. Select Show Allocation
Stack Traces from the context menu. The Allocation Stack Traces tab of the snapshot will open
and display the stack traces. You cannot actually click the Allocation Stack Traces tab directly
and expect to see any results. It must be initiated by right-clicking an item in the snapshot
data grid.

The Allocation Stack Traces tab will list each top-level location where the Object arrays
were created. Clicking the plus icon next to each item will expand the entire stack trace and
allow you to see where the objects were allocated from, as shown in Figure 5-19.

Figure 5-19. The Allocation Stack Traces tab for the Object[]

The first stack trace shows that the ProfileMemory.main method called ArrayList.add.
Inside the ArrayList.add method, the ArrayList,ensureCapacity method was called. If you
have ever looked inside the internals of List, ArrayList, and similar classes you may be start-
ing to understand where I am going with this. The ArrayList is a data structure that maintains
an internal array of Objects to hold each Object that is added into it.

When the internal Object array is nearly filled or filled, the ArrayList creates a new inter-
nal array and copies the contents of the old one into the new one. This allows code that calls
the ArrayList.add method not to have to worry about resizing the data structure. However,
when this call is made, you lose CPU cycles and memory, since the internal data structure is
modified and copied.

You can attempt to address this issue by specifying a default size the ArrayList should use
to set the size of the internal Object array. The ArrayList class has a single-argument construc-
tor that takes an int. This lets you specify the size of the internal array. If the internal array is
larger than the number of items you add into it, then it does not need to resize dynamically
when you add multiple items. This can save CPU cycles and memory.

To correct the code, change the ArrayList instantiation in the ProfileMemory class to

List<ProfilePerson> allPeople = new ArrayList<ProfilePerson>(100000);

In the modified code, the ArrayList’s constructor had the value of 100,000 passed in. This will
set the internal array size. Now rerun the profiling session to generate fresh results. When the
Profiler is done, open the snapshot that was generated and compare the results.

CHAPTER 5 ■ PROFIL ING 127

8954Ch05.qxp 1/28/08 11:35 AM Page 127

Comparing Memory Analysis Results
Once you have more than one memory analysis snapshot, you can compare them directly in
the IDE. The Profiler’s snapshot comparison tool is basically a Diff tool. Instead of seeing only
generic differences between the two snapshot files, you can actually see an intelligent, well-
formatted view of the difference between the memory analyses.

To perform a memory analysis comparison, open a memory snapshot from the Profiler
Control Panel window. In the snapshot toolbar, click the last icon on the right. If you mouse
over the icon before clicking, the pop-up tooltip displays the message “computes the differ-
ence between two comparable memory snapshots.” Once you click the icon, the Select
Snapshot to Compare window will appear, as shown in Figure 5-20.

Figure 5-20. The Select Snapshot to Compare window

The Select Snapshot to Compare window lets you choose, in two ways, the second memory
snapshot to use in the comparison. First you can choose from the list of memory snapshots
that are stored with the project and available in the list of saved snapshots in the Profiler Con-
trol Panel window. Otherwise, you can click the “From file” radio button, which activates a
Browse button. You can then use the Browse button to locate a snapshot file on the disk drive to
use in the comparison. Once you have determined the file you want to use, click the OK button.

The Allocations Comparison window will appear as a tab in the Source Editor window
area. It will display in a format similar to a memory analysis snapshot, but with a few differ-
ences. The columns Bytes Allocated and Objects Allocated do not display totals: they display
the differences, as shown in Figure 5-21. In the figure, you can see the top line that lists
java.lang.Object. This shows that the second memory analysis that ran against the modified
ProfileMemory class allocated 31,816 fewer bytes and 23 fewer Objects.

Initially, this might seem like too small a gain to care about. However, if you examine this
with scalability in mind, you can start to understand why examining a memory analysis like
this might be useful. Imagine if you ran a very popular web site that received millions of hits
per day. If the original ProfileMemory class were executed on a web server by 5000 users simul-
taneously, the 31,816 allocated bytes used in the original ProfileMemory class would balloon
into approximately 159,000,000 bytes (or about 155 megabytes) of allocated memory. On a
web server with only have a few gigabytes of memory allocated to the JVM, those 155
megabytes could be crucial to performance.

CHAPTER 5 ■ PROFIL ING128

8954Ch05.qxp 1/28/08 11:35 AM Page 128

Figure 5-21. The Allocations Comparison window

Working with the HeapWalker
The HeapWalker is a new tool in the NetBeans 6 Profiler that allows you to evaluate the Java
heap and search for memory leaks. You can examine the heap at any time by taking snapshots,
as previously described in this chapter. Once you have taken a snapshot, you can examine the
classes and instances that exist in the heap.

In Figure 5-1 the Profiler tab of the Basic Options window displays a field named “On
OutOfMemoryError.” As described in that section of this chapter, you can set the field to Save
heap dump to profiled project. If an OutOfMemoryError occurs, then a heap dump snapshot
is saved into the list of snapshots for the project. This setting will be necessary for testing the
HeapWalker, because we review it in this section.

Review the CauseOutOfMemoryError class in Listing 5-4.

Listing 5-4. The CauseOutOfMemoryError Class

public class CauseOutOfMemoryError {

private int count;

public void setCount(int count) {
this.count = count;

}

public static void main(String[] args) {

List myList = new ArrayList();
int total = 20000000;

for(int i=0;i<total;i++) {
CauseOutOfMemoryError calc = new CauseOutOfMemoryError();
calc.setCount(i);
myList.add(calc);

}
}

}

CHAPTER 5 ■ PROFIL ING 129

8954Ch05.qxp 1/28/08 11:35 AM Page 129

The CauseOutOfMemoryError class initializes an ArrayList, loops 20 million times, and fills the
ArrayList with instances of itself. It also sets a counter variable in each instance so that they
can be distinguished. Add the CauseOutOfMemoryError class to a Java application project and
profile it by doing the following:

1. Right-click the class under the Source Packages node in the Projects window and select
Profile File.

2. Select the Memory panel on the left of the Profile Project window.

3. Select the radio button next to the “Record object creation only” field.

4. Change the number in the “Track every X object allocations” field from 10 to 1000.

5. Click the Run button.

The Profiler will initialize, instrument the class file, and perform the profiling while the
class runs. The Output window should log a message similar to “java.lang.OutOfMemoryError:
Java heap space.” You will also see a message that the heap dump is saved into the location
nbproject\private\profiler\java_pid3012.hprof inside your project. The specific filename
will differ, but the directory structure will be the same.

An Application Finished pop-up window will appear, asking if you want to take a snap-
shot of the collected results. If you click Yes, a standard memory snapshot will be taken of the
profiled results collected up to when the OutOfMemoryError occurred.

You will then see a Question pop-up window appear that states that the application
crashed and generated a heap dump. It will prompt you to open it in the HeapWalker. If you
click the Yes button, NetBeans will load the heap dump in a tab in the Source Editor, as shown
in Figure 5-22. It contains several tabs that allow you to view the information in the heap
dump, such as Summary, Classes, and Instances.

Figure 5-22. The heap dump displayed in the Source Editor

CHAPTER 5 ■ PROFIL ING130

8954Ch05.qxp 1/28/08 11:35 AM Page 130

The Summary tab of the heap dump displays several sections of summary information. It
lists the date the heap dump was taken, the file size of the heap dump, and the total instances
of classes on the heap at the time when the OutOfMemoryError occurred. It also displays the
basic environment information of the machine running the JVM.

The Classes tab of the heap dump, as shown in Figure 5-23, is similar to the standard mem-
ory analysis results in Figure 5-18. It lists the class name, the number of instances, and the size
in bytes of all the instances. You can sort the data displayed by clicking the column headers.

Figure 5-23. The Classes tab of a heap dump in the HeapWalker

The Instances tab of the heap dump displays instances of a specific class. It must be acti-
vated from the Classes tab by right-clicking a class in the list and selecting “Show in Instances
View.” The HeapWalker will display the instances of the selected class in the Instances tab, as
shown in Figure 5-24.

Figure 5-24. The Instances tab of a heap dump in the HeapWalker Monitor Application
(Thread Profiling)

CHAPTER 5 ■ PROFIL ING 131

8954Ch05.qxp 1/28/08 11:35 AM Page 131

The Instances tab displays the individual instances in the left pane. It groups the instances
together by the number you specified in the “Track every X object allocations” field in the Pro-
file Project window. You can click the plus sign next to the group of instances to display each
individual instance number.

When you select a unique instance, the top-right panel of the Instances tab will display
the related fields. Each item listed in the Fields section of the Instances tab is displayed as well
as the type and value of the instance field. This allows you to identify specific instances that
existed in the JVM at the time the OutOfMemoryError occurred. This can be a powerful tool
when trying to diagnose what caused the OutOfMemoryError.

The third and final type of profiling you can do with the NetBeans Profiler is monitoring
threads. With the Profiler tools, you can track the runtime and state of all threads inside the
JVM. This can obviously come in handy if you are developing multithreaded code, such as a
server-based listener, a client-server program, or some type of computational engine.

You can enable thread monitoring when a profiling session starts or after it is already
under way. For instance, I have created a new Web Application project in NetBeans and
assigned it to run on Tomcat 6. If I want to monitor the threads for the application and the
application server, I can start a profiling session.

To enable thread monitoring when a profiling session starts, go to the main menu and
select Profile ➤ Profile Main Project. When the Profile Project window appears, make sure to
select the Monitor section on the left side of the window. Once you have done this, the right
side of the window will contain a single field: “Enable Threads Monitoring.” This check box
allows you to specify that thread monitoring should be enabled immediately when the profil-
ing session starts. If it is not selected, then you can choose to enable it after the profiling
session has started. I usually select the check box to activate thread monitoring right away.

Once the profiling session has initialized and started, the Threads window will appear. If
you enabled thread monitoring to start right away, the Threads window should start display-
ing results, as shown in Figure 5-25.

Figure 5-25. The Threads (Timeline) tab during a profile-monitoring session

CHAPTER 5 ■ PROFIL ING132

8954Ch05.qxp 1/28/08 11:35 AM Page 132

The Threads window lists each thread name along with a running color-coded timeline
for each thread. As the profiling session proceeds, the timeline continues to expand, tracking
the state of the threads. Each thread state has a different color assigned for quick visual identi-
fication. Running threads are green, Sleeping threads are purple, Waiting threads are yellow,
and threads waiting on a Java Monitor are red.

The Threads window also contains several fields in the toolbar along the top. If you mouse
over each icon from left to right, you will be able to see the tooltip that appears to identify the
icon.

The first icon is labeled “Saves Current View to Image.” It allows you to create a screenshot
of the results currently displayed in the Threads window and to save it to disk as a PNG file.

The next two icons are the Zoom In and Zoom Out actions. You can use these icons to
zoom into the thread timeline to a very precise point. The smallest unit of measure I believe I
found I could zoom in to was 10 milliseconds. However, the timeline was scrolling by so
quickly it was difficult to tell precisely. You can also zoom out to be able to view a longer
period of time on the timeline.

The fourth and final icon is labeled “Scale To Fit.” If you select it, the timeline will display
from start to finish on one screen. You can click the icon again to toggle back to the Fixed Scale
mode, which allows you to zoom in and out.

The last field on the toolbar of the Threads window is the “Show” drop-down box. This
serves as a filter for the threads that are displayed. By default it is set to All Threads. You can
also select to view Live Threads Only or Finished Threads Only. This filter can help with dis-
playing large numbers of threads you are trying to monitor during a profiling session.

The Threads window lets you filter by one or more specific threads. You can select a
thread (or multiple threads using your OS-specific multiselect key) and right-click to view the
context menu. One option that appears is Show Only Selected Threads. If you select this, then
the Threads window will display only the thread or threads you selected. The “Show” drop-
down box in the toolbar is set to Selected Threads, allowing you to turn off the filter by
selecting any of the other values.

The context menu displayed when you right-click a thread also has a menu item named
“Thread Details.” If you select it, then the Threads (Details) tab will be displayed, with the spe-
cific information about the selected thread. You can also double-click a thread listed in the
Threads window to load the thread details.

The Threads (Details) tab will display the individual timeline for the thread along with a
chart of the thread states, as shown in Figure 5-26. In the figure, the percentage of time the
thread spent in each state is listed, in minutes and seconds, as well as the overall percentage.
You can also click the Details tab to see a text-based listing of the timestamp for each thread
state.

CHAPTER 5 ■ PROFIL ING 133

8954Ch05.qxp 1/28/08 11:35 AM Page 133

Figure 5-26. The Threads (Details) tab for a selected thread

The chart and timeline on the General tab can be saved to a PNG file for display in a Word
document or PowerPoint using the toolbar icon labeled “Saves Current View to Image.”

Understanding the Profiler Telemetry
When a NetBeans Profiler session is under way, you can monitor various telemetry graphs.
These graphs let you watch a near-real-time display of several important pieces of informa-
tion, such as the memory allocated to the JVM heap, the amount of memory used by the JVM
heap, the number of threads, and the number of classes loaded in the JVM.

Viewing the Telemetry Overview
You can activate the Profiler Telemetry from the Profiler Control Panel window, as shown in
Figures 5-4 and 5-5. The last icon along the top of the Profiler Control Panel window is the
Telemetry Overview icon. If you click it, the Telemetry Overview window will appear, as shown
in Figure 5-27. The three graphs that are displayed give you a quick glance at the internals of
the JVM during the profiling session.

CHAPTER 5 ■ PROFIL ING134

8954Ch05.qxp 1/28/08 11:35 AM Page 134

Figure 5-27. The VM Telemtry Overview window with graphs

The first graph in the Telemetry Overview window displays the heap size and the used
heap. This lets you see the amount of memory that has been allocated to the JVM heap as well
as the actual amount of memory used by the JVM heap.

The second graph displays the number of surviving generations and the relative time
spent in garbage collection. If you are not exactly clear what a “surviving generation” is or
what it can tell you, review the following explanation from the online NetBeans.org Profiler
documentation:

A Generation is a set of instances created within the same GC interval (between two

garbage collections). A Surviving Generation is a Generation that survives at least one

garbage collection. The number of survived garbage collections—the generation’s age—

is its unique identifier. Surviving Generations (metrics) value is the number of different

Surviving Generations that are currently alive on the heap (number of Generations with

different generation ages).

This lets you identify how many objects are living in the heap past garbage collection. If you
have a higher-than-expected number of objects staying “alive” on the heap, then you may
have a memory leak.

The third graph displays the number of threads being profiled vs. the number of classes
loaded in the JVM.

CHAPTER 5 ■ PROFIL ING 135

8954Ch05.qxp 1/28/08 11:35 AM Page 135

Viewing the Main VM Telemetry Window
The Telemetry Overview window is convenient because all three types of graphs are displayed
at once. However, it does not allow you much control over the display or let you perform any
actions with the graphs. The VM Telemetry Window does.

You can use the VM Telemetry window in several ways. The Profiler Control Panel window
contains an icon in the View section labeled “VM Telemetry.” You can also access it from the
main menu by selecting Window ➤ Profiling ➤ VM Telemetry. If you open the VM Telemetry
window during a profiling session, the Memory (Heap) tab will be shown by default and
actively display results, as shown in Figure 5-28.

Figure 5-28. The main VM Telemtry window

The VM Telemetry in Figure 5-28 has three tabs: Memory (Heap), Memory (GC), and
Threads / Loaded Classes. These tabs are for the same graphs that were displayed in the
Telemetry Overview window. The main difference is that you have some additional capabili-
ties available to you in the VM Telemetry window.

The toolbar along the top contains several icons. You can use the icons to save the cur-
rently displayed graph to a PNG file, to zoom into a more precise length of time in the graph,
to zoom out to a more general length of time on the graph, or to scale the graph timeline to fit
on the screen.

CHAPTER 5 ■ PROFIL ING136

8954Ch05.qxp 1/28/08 11:35 AM Page 136

Profiling External and Remote Applications
One of the truly interesting features of the NetBeans Profiler is that it lets you profile code run-
ning external to NetBeans or on a remote machine. This allows you to monitor the threads,
CPU performance, and memory usage of any type of Java application running on your
machine or in a remote server.

Profiling a Remote Java Application Server Running in NetBeans
The Profiler lets you profile a wide variety of Java web application servers. The server can be
running locally on your machine or remotely. Select Profile ➤ Attach Profiler from the main
menu to configure the Profiler to be able to connect to the remote application server.

The Attach Profiler window appears. The “Attach To” drop-down is set to External Applica-
tion. The text along the very bottom of the window states that the Attach Mode has no attach
settings defined. It also provides a link to define the attach settings. The first time you run the
Attach Profiler window, you can also click the Attach button to define the attach settings. On
subsequent runs, the Attach Profiler window will list the last-used configuration under the
Attach Mode area of the window. You must click the Define link to edit the attach settings if
you want to change them.

Once you click the Attach button in the Attach Profiler window, the Attach Wizard window
will appear. The “Target Type” field is initially set to <Select Target Type>. Select the value J2EE
Web/App Server. For this example, I am profiling a Tomcat 6 Java application server that is run-
ning remotely inside an instance of NetBeans 6. I have done so because I can run the Tomcat
server in Profile mode, thereby bypassing the need for configuring the remote profiling pack.

In the Attach Wizard, select the application server version from the “J2EE Web/App Server
Type” field. Choose Tomcat 5.5 from the drop-down.

■Note At the time of this writing, the latest Tomcat version listed was Tomcat 5.5, even though NetBeans 6
is bundled with Tomcat 6. I have selected Tomcat 5.5 for profiling and found little difference in the direct
attach capabilities, even though the remote server is Tomcat 6.

Once you select the application server, choose the Remote radio button in the Attach
Method section. The Direct radio button will be selected automatically in the Attach Invoca-
tion section. The Dynamic (JDK 1.6) radio button will be disabled. The Attach Wizard screen’s
fields should be set as depicted in Figure 5-29.

CHAPTER 5 ■ PROFIL ING 137

8954Ch05.qxp 1/28/08 11:35 AM Page 137

Figure 5-29. Remote application server setting in the Attach Wizard window

Click the Next button to proceed to the Remote System screen. In the Remote System
screen, set the Hostname or IP Address of the remote application server you wish to profile.
Also set the Host OS to the operating system of the target server. Then click the Next button.

The Review Attach Settings screen displays each Attach Profiler property you selected for
verification and review. Make sure you have entered the correct data, and then click the Next
button.

The Manual Integration screen will appear to describe how to install and run the Profiler
remote pack for the target server. Since I will be connecting to a Tomcat server running in
Profile Mode directly in NetBeans, I do not need to configure the remote pack. NetBeans and
the NetBeans Profiler will handle this for me.

Finally, from the drop-down at the top of the screen select the target platform that will
run your application server. Follow the instructions displayed to integrate the Profiler pack
with your application server, if applicable, and click the Finish button to initiate the profiling
session.

After the Profiler has connected to the remote server, you should be able to view results in
the Live Results window, open the VM Telemetry window, take snapshots of results, and even
take a heap dump from the remote server’s JVM.

Profiling a Remote Java Application Server Using the Profiler
Remote Pack
In the previous section, I took the easy way out when attempting to connect to a remote Java
application server. Since the Tomcat server was invoked from NetBeans in Profiling mode, I
did not need to configure it to be profiled remotely. However, if you want to profile a remote
Java application server, you can use the Profiler Remote Pack. This allows you to connect and
profile a remote server directly from NetBeans.

CHAPTER 5 ■ PROFIL ING138

8954Ch05.qxp 1/28/08 11:35 AM Page 138

Almost any standard Java application server can use the Profiler Remote Pack. You can
download an operating system–specific version from the http://profiler.netbeans.org
project site. Versions are available in both 32 and 64 bits.

Once you have downloaded the remote pack, unzip, untar, or unpack the files into a direc-
tory where you want the pack to be located. Since I typically install NetBeans and the JDKs into
a d:\java directory, I installed the remote pack to the location d:\java\netbeans-6-rp.

Next, locate the root directory for the application server. In this case I will be installing the
remote pack for Tomcat 5.5 configured to run on JDK 1.6.0_02 in Windows. In the server’s bin
directory, locate the catalina.bat file (or catalina.sh file for Unix/Linux users). Near the begin-
ning of the file, and after the comments, add a JAVA_HOME variable that points to an installation of
the JDK 1.6. If you already have a JAVA_HOME environment variable, ignore this step.

On the next line of the catalina.bat file, add the following command all on one line, with
no line breaks:

SET CATALINA_OPTS=-agentpath:D:\java\netbeans-6-➥

rp\lib\deployed\jdk16\windows\profilerinterface.dll=D:\java\netbeans-6-rp\lib,5140

When the Tomcat server loads, this will pass it the location of the remote pack’s DLL and com-
munication port to use when waiting for a connection from the Profiler. For Linux/Unix users,
the profilerinterface.dll reference in the CATALINA_OPTS line in the preceding code can usu-
ally be changed to libprofilerinterface.so. You can find the precise path and filenames on
the last screen of the Attach Wizard as described in the previous section.

Once the changes have been made, save them, exit the file, and run the catalina.bat file.
Tomcat will initiate, but wait for a connection from the Profiler, as shown in Figure 5-30. Once
the Tomcat server is initiated, you can follow the instructions in the previous section to have
the NetBeans Profiler configured to connect remotely to the server.

Figure 5-30. Tomcat waiting for a remote Profiler connection

Profiling an External Java Application
You can also attach the NetBeans Profiler to a Java application that is external to NetBeans
(other than a web server). If the application is running in JDK 1.6, you can use the dynamic
attach capability.

CHAPTER 5 ■ PROFIL ING 139

8954Ch05.qxp 1/28/08 11:35 AM Page 139

http://profiler.netbeans.org

For this example, I run a Java application that some people may know: the Eclipse Java
IDE. I have configured Eclipse to use the same JDK 1.6 instances as NetBeans. Once Eclipse is
open, you can configure the NetBeans Profiler to attach to it. On the main menu, select Profile
➤ Attach Profiler. In the Attach Profiler window that opens, click the Change link in the Attach
Mode section at the bottom. The Attach Wizard window will open and the Select Target Type
screen will be displayed.

In the Select Target Type screen, choose the Target Type “Application.” Set the “Attach
method” field to Local and the “Attach invocation” field to Dynamic, as shown in Figure 5-31.
Then click the Next button to display the Review Attach Settings screen.

Figure 5-31. The Select Target Type screen for attaching to an external application

The Review Attach Settings screen displays a short summary of the settings you have con-
figured. Click the Next button to proceed to the Manual Integration screen. This screen will
allow you to select the target Java platform that will run your application. Once you select a
target platform, a set of specific instructions will be displayed. For Java 6 applications, no
additional manual integration is needed. Click the Finish button to exit the Attach Wizard.

In the Attach Profiler window, configure the type of profiling you wish to conduct (moni-
toring, CPU, memory) and click the Attach button. The Profiler will display the Select Process
window. This contains a drop-down list of Java-based process IDs that are running in your
operating system.

Select the PID of the application to which you wish to connect and the summary informa-
tion about the PID will be displayed on the screen, as shown in Figure 5-32. Click the OK button
in the Select Process window. It will close and the NetBeans Profiler will initialize. There may be
a short or long delay while the Profiler instruments the Java application and before it is able to
begin retrieving results. However, once it connects, you can open the Live Results and VM
Telemetry windows to watch the application’s performance.

CHAPTER 5 ■ PROFIL ING140

8954Ch05.qxp 1/28/08 11:35 AM Page 140

Figure 5-32. The Select Process window

Summary
This chapter discussed how to configure, execute, and work with the NetBeans Profiler. It
showed how to configure the Profiler’s settings in the Basic Options window and discussed
how these settings affect the Profiler’s operation. The chapter then went on to explain how to
navigate the Profile Control Panel, use the controls, and initiate a profiling session.

The chapter reviewed in depth the three main types of profiling, starting with CPU analy-
sis. You learned how to initiate a profiling session, execute a CPU analysis on a Java application,
and review the accumulated results. Sample code was also presented that demonstrated the
benefits of using profiling points to conduct CPU analysis in identifying bottlenecks in your
code.

The chapter then discussed memory analysis as the second main type of profiling and
examined and profiled several sample methods. You learned how to review the results, track
the allocated stack traces for objects, and determine areas for reducing the memory usage of
the Java application.

The third type of profiling the chapter reviewed was thread monitoring. The different win-
dows and timelines were explained as well as the benefits of being able to watch the various
thread states that exist in the JVM.

Finally, the chapter reviewed different ways the Profiler can connect to external applica-
tions and remote Java servers.

CHAPTER 5 ■ PROFIL ING 141

8954Ch05.qxp 1/28/08 11:35 AM Page 141

8954Ch05.qxp 1/28/08 11:35 AM Page 142

Managing Version Control

An important aspect of software development is controlling your source code. In single-
developer and multideveloper projects, it is essential to ensure the longevity of your code by
storing the files somewhere other than on the developers’ computers. It is also important to
be able to track versions of individual source files and to be able to control changes.

Two popular version control systems are the Concurrent Versioning System (CVS) and
Subversion. Out of the box, NetBeans provides full support for CVS and Subversion. However,
to use Subversion with NetBeans you must download and install the Subversion executable.
This chapter covers working with CVS, Subversion, and the new Local History feature.

Using CVS
CVS allows you to back up your project into a system that is external to your development
machine. You can store files in CVS, have it manage individual unique versions of code, and
retrieve those versions as you need them. A good CVS tool also allows you to perform compar-
isons between different versions of a file to see the changes. The NetBeans CVS module
provides all of these capabilities.

■Note Obviously, you could be running a CVS server on your local machine. But it is a best practice, even
for small programming shops, to have a separate computer running a source code repository. This increases
the likelihood that your project code will survive a hardware crash or other problem. Like any database, web,
or file server, your source code repository server should be backed up regularly.

When NetBeans is initially installed, support for CVS is activated by default. You should
see the Versioning menu on the NetBeans menu bar, as shown in Figure 6-1.

If there are other version control system modules installed, such as Subversion, they will
also be listed on the Versioning menu. Many of the standard CVS commands are available by
navigating to Versioning ➤ CVS.

143

C H A P T E R 6

8954Ch06.qxp 1/28/08 11:36 AM Page 143

Figure 6-1. The CVS main menu

If a project has already been configured to use CVS, the Versioning menu will change
dynamically. Open a project that was checked out of CVS and select the Versioning menu. You
will see that the menu differs from Figure 6-1, in that it lists the CVS commands directly and
not in a submenu, as shown in Figure 6-2.

Figure 6-2. The CVS-specific commands listed in the Versioning menu

CHAPTER 6 ■ MANAGING VERSION CONTROL144

8954Ch06.qxp 1/28/08 11:36 AM Page 144

Configuring a Project to Use CVS
You can start using CVS in a NetBeans project in two main ways:

• Create a new project and import the project’s code into your CVS repository. This
assumes there is no prior code stored for your module or project in the repository.

• Download the most recent copy of the source code from the repository (also referred to
as “grabbing the latest version” or “checking out the latest version”).

Importing a Project into the Repository
If you have a new or existing NetBeans project, you can easily import it into the repository. To
begin, right-click the project in the Projects window and select Versioning ➤ Import into CVS
Repository. You will see the first step of the Import Project Options window, CVS Root, as
shown in Figure 6-3.

Figure 6-3. The CVS Root window

The first field requests the CVS root string. If you are unfamiliar with setting the CVS root,
you can click the Edit button next to the field to use the Edit CVS Root dialog box to enter the
string, as shown in Figure 6-4. If you are relatively new to CVS, using the Edit CVS Root dialog
box can help you avoid making syntax errors in the CVS root string.

CHAPTER 6 ■ MANAGING VERSION CONTROL 145

8954Ch06.qxp 1/28/08 11:36 AM Page 145

Figure 6-4. The Edit CVS Root dialog box

In the Edit CVS Root dialog box, select a method from the “Access Method” drop-down
list. You have four choices:

• pserver allows you to connect to a remote server with a username and password.

• ext is similar to pserver, except it uses Secure Shell (SSH).

• local, as the name implies, allows you to connect to a source code repository running
locally on your machine.

• fork is just an alternate version of local.

In most environments, you would use pserver, unless you are concerned about the source
code’s traveling across the network as plaintext.

In the Edit CVS Root dialog box, you also need to fill in the “User,” “Host,” “Port,” and
“Repository Path” fields. In the “User” field, enter the username you were assigned in your code
repository. The Repository Path value is normally in the format of /cvsroot/myproject. After
entering the values, click OK to return to the Import Project Options window, where your string
will appear in the “CVS Root” field.

■Tip If your CVS repository is configured to use the standard port of 2401, you can leave the “Port” field
blank.

Once you have configured the correct CVS root string, click Next in the CVS Root window.
NetBeans will attempt to validate the connection and then display the next step, Folder to
Import, as shown in Figure 6-5. In this window, specify the project folder on your local
machine to import. It should already be set to the project root folder of your NetBeans project.
You can also specify the repository folder. This is the name under which the module will be
placed in the CVS repository. When you are finished, click the Finish button.

CHAPTER 6 ■ MANAGING VERSION CONTROL146

8954Ch06.qxp 1/28/08 11:36 AM Page 146

Figure 6-5. The Folder to Import window

Checking Out Code from the Repository
For an existing project, you may need to check out the code from the repository. This assumes
that the code you have in your repository is structured in a NetBeans project hierarchy.

To check out an existing project, select Versioning ➤ CVS ➤ Checkout. In the first window
that appears, specify the CVS root string, as discussed in the previous section, and then click
the Next button.

In the Module to Checkout window, you need to specify several properties. The module is
the actual code from the repository you want to download. If you know the name of the module,
you can type it directly in the “Module” field. Alternatively, click the Browse button next to the
“Module” field to browse the repository and select the module from a list, as shown in Figure 6-6.
In the Browse CVS Module dialog box, you can drill down through the nodes to find the module
under the root (/cvsroot/email-framework in the example shown in Figure 6-6). You can have
multiple modules defined under the root. Select the one you want and click the OK button.

You can also choose to check out code using a CVS branch or tag, if such is used in your
repository. In the Module to Checkout window, click the Browse button next to the “Branch”
field to open the Browse Tags dialog box, as shown in Figure 6-7. If there is no specific branch
or tag to use, click the HEAD node, and then click the OK button.

CHAPTER 6 ■ MANAGING VERSION CONTROL 147

8954Ch06.qxp 1/28/08 11:36 AM Page 147

Figure 6-6. The Browse CVS Module Figure 6-7. The Browse Tags dialog box
dialog box

In the Module to Checkout window, you also need to specify the local folder to which the
code will be copied. I usually use a standard location, such as a folder named projects, to
store all my code. Your team or organization may have a standard directory structure, so be
sure to pick the correct location. Click the Finish button after you have set the properties. The
checkout operation will proceed.

When the checkout operation is finished, you will see a dialog box stating that the check-
out is complete and asking if you want to open the project or close the window. If you click the
Open Project button, the dialog box will close, and the project will now be listed in the Projects
window.

Performing Common CVS Operations
You can perform many types of operations when working with a source code repository—
adding code, updating, checking differences between two versions, tagging, branching, and
searching. Sometimes the terms can be a little confusing. Learning the version control system
features can take a little patience and experimentation.

Showing Changes
When working with CVS, you need to know when files have changed, when files have been
added to the project, and when they have been deleted.

When a source file is checked out of CVS and edited, the filename appears in blue in the
interface. This flags the file as having been changed. You will also see a blue cylinder icon next
to the name of the source package and project name in the Projects window, as shown earlier
in Figure 6-1. This visually flags a package as having one or more files that were altered.

The NetBeans CVS tool also provides a Versioning window that allows you to see what has
changed, as shown in Figure 6-8. To open this window, right-click the name of the project and
select CVS ➤ Show Changes.

CHAPTER 6 ■ MANAGING VERSION CONTROL148

8954Ch06.qxp 1/28/08 11:36 AM Page 148

■Note The dynamic naming of the versioning menus can be confusing at first, but quickly makes sense
after using it. As previously mentioned, if a project is configured to use CVS and you right-click the project
name, the CVS submenu will appear on the context menu. If the project was not configured to use CVS, then
the Versioning submenu would appear on the context menu. Similarly a Subversion submenu would appear
on the context menu if you had checked out a project from a Subversion repository.

Figure 6-8. The Versioning window displayed by the Show Changes option

The Versioning window displays any files that were added, modified, or deleted. For each
file listed, you can individually choose to commit the file, ignore the file and exclude it from
the commit, or revert the file modifications back to the repository version. The Status column
will contain one of the following:

Locally New: Files that were added have a status of Locally New. They exist in the NetBeans
project but have not yet been added to the code repository. If you right-click the file in the
Versioning window, you can choose to open the file in the Source Editor or to commit the
file, which adds it to the CVS repository.

Locally Deleted: Files that were deleted from the project have a status of Locally Deleted.
You can right-click the deleted file and choose to commit it. This confirms the deletion
with the CVS repository. You can also select to update the file, which downloads the latest
version of the file from the repository, effectively undoing the deletion.

Locally Modified: Files that were modified have a status of Locally Modified. You can com-
mit and update these files. If you commit a modified file, the changes you made are saved
into the CVS repository. If you update the file, the local changes you made are undone.
You may also want to know what you changed in a file and compare the differences.
(These CVS options are covered in the following sections.)

Another way to view changes is to select Versioning ➤ Show All Changes from the main
menu. This shows all the changes to all the open projects that are CVS-enabled. You should be
careful, since different projects may have files with the same name. It is safer to view CVS
changes project by project rather than by using the Show All Changes option.

CHAPTER 6 ■ MANAGING VERSION CONTROL 149

8954Ch06.qxp 1/28/08 11:36 AM Page 149

Committing Changes
When you want to commit the changes made in your project, you have several options. You
can commit a single file, multiple files, an entire package, or an entire project.

To commit a file that is locally new, right-click the file and select CVS ➤ Commit from the
context menu. In the Commit dialog box, shown in Figure 6-9, you see the name of the file to
commit, the status, the commit action, and the repository path. The commit action is the only
option you can modify.

Figure 6-9. Committing a new file

By default, a Java source file’s commit action is set to Add As Text. By clicking the field, you
can change it to Add As Binary or Exclude from Commit. The Add As Binary option should be
used for images, compiled class files, or other binary files. The Exclude from Commit option is
useful when you are working with multiple files and want to exclude one or more of them
from being committed, such as if you want to commit an entire project but exclude one file
that you are still developing.

In the text box at the top of the Commit dialog box, you can add a commit message, which
is intended to provide a clue to the changes being committed. It should be brief but still con-
vey the reason for the change to the code. The “Searching History” section later in this chapter
explains how to view the history of a file and see the comments made for each version of a file.

To commit multiple files, hold down the Ctrl key (in Windows) and click each file one at a
time. You can also commit an entire package or the entire project by selecting it, right-clicking,
and choosing CVS ➤ Commit. The Commit All Changes option is available from the CVS main
menu, but make sure you are certain you know the ramifications of performing this action. All
added, modified, and deleted files in all open projects will be committed if you use the Commit
All Changes option. This will look very similar to Figure 6-6 except that multiple files would be
listed.

CHAPTER 6 ■ MANAGING VERSION CONTROL150

8954Ch06.qxp 1/28/08 11:36 AM Page 150

■Note When you commit multiple files, the commit message that is entered is applied to all the files. If you
want your files to have different commit messages, you should commit them in separate batches.

Updating Files
Performing a CVS update on a file can sometimes be a little confusing. A CVS update operation
grabs the latest copy of the file from the CVS repository and tries to merge it with the local copy.
If changes have not been made to the local copy, then the file is said to be patched. Updates on
a code base should always be performed prior to making any local changes so that you are sure
you are working with the latest code.

When code is updated and a merge performed, CVS tries to figure out the changes that
differ between the two files (the local copy and the repository copy). A simple scenario can
demonstrate the functionality. Assume you have the following class named NewFile:

public class NewFile {

public NewFile() {
System.out.println("In the constructor");

}
}

You have just retrieved a fresh copy of version 1.4 of the file onto your local machine.
Another developer, John, does the same and immediately modifies the code. He adds a new
method and commits the code, thereby creating version 1.5. He should really run the code
through unit tests before committing it, but we’ll let him off the hook this time. Here is the
modified code:

public class NewFile {

public NewFile() {
System.out.println("In the constructor");

}

public void doNothing() {
System.out.println("In the doNothing method");

}
}

You still have the original code. If you modify the constructor and want to commit your
changes, there is a problem. Your copy of the file does not have the new doNothing method. If
you were able to commit the code, you would essentially overwrite John’s changes and they
would be lost. You could review the file’s versions, but not if you didn’t know John had made
the changes.

Assume you went ahead and tried to commit the file. The commit will fail, and you will
receive an error message similar to “Up-to-date check failed for file.” This is warning you that

CHAPTER 6 ■ MANAGING VERSION CONTROL 151

8954Ch06.qxp 1/28/08 11:36 AM Page 151

the copy of the file in the CVS repository does not match what you have. This situation is
where the CVS update function comes in handy.

When you choose CVS ➤ Update for the file, the CVS tool compares the files, line by line,
to see what changed. Suppose you made the following change to the string in the println
method in the NewFile class:

public class NewFile {

public NewFile() {
System.out.println("******** In the constructor ********");

}
}

When you update the file, the tool sees that only one line differs in your local file and the three
lines for the doNothing method differ in the remote file in the repository. It then combines
these lines into one file:

public class NewFile {

public NewFile() {
System.out.println("******** In the constructor ********");

}

public void doNothing() {
System.out.println("In the doNothing method");

}
}

From a developer’s perspective, this feature is fantastic. You no longer need to compare
files manually to see changes or copy and paste the new or updated code. However, you
should use it with caution, since conflicts may occur. If you and the other developer modify
the same line or lines, CVS cannot make automatic assumptions. It merges the files and warns
of a conflict during the update operation, as shown in Figure 6-10.

Figure 6-10. Merge conflicts warning during a CVS update operation

The filename will be shown in red in the Projects and Files windows. You can open the
file and see what conflicts occurred. The file now contains invalid Java syntax, since CVS
inserted text into the file during the update operation to identify the conflicting lines, as
shown in Figure 6-11.

CHAPTER 6 ■ MANAGING VERSION CONTROL152

8954Ch06.qxp 1/28/08 11:36 AM Page 152

Figure 6-11. The line conflicts in the merged file

In this example, both developers modified the text in the System.out.println statement
in the nextNewMethod method. The text that was added identifies the following changes:

• <<<<<<< NewFile.java denotes the start of the section where text in the local file differs
from that of the file in the repository.

• System.out.println("next new method goes here 1234567890 "); is the text that differs
and is present in the locally modified file.

• ======= denotes the end of the section of text that differs in the locally modified file.

• >>>>>>> 1.9 denotes the end of the section of text that differs in the remote repository
file.

If there were multiple consecutive lines of code, they would appear between the section
delimiters. If lines of code differ in multiple sections of the file, these delimiters appear in each
location of conflict. This allows you to review the conflicting code and attempt to choose
which line you want to include in the file prior to committing it. The NetBeans CVS module
also provides a Resolve Conflicts tool that attempts to help you in this process, as discussed in
the next section.

Resolving Conflicts
When a filename shows up in red in the Projects window, as described in the previous section,
right-click the filename and select CVS ➤ Resolve Conflicts. The Resolve Conflicts tool opens,
as shown in Figure 6-12. This tool makes it very convenient to edit files that have conflicts. It
takes out some of the guesswork in reading the CVS merge text that was inserted into the file.
It also allows you to see a side-by-side comparison of the changes.

CHAPTER 6 ■ MANAGING VERSION CONTROL 153

8954Ch06.qxp 1/28/08 11:36 AM Page 153

Figure 6-12. The Resolve Conflicts tool

It may not be easy to see all the text in Figure 6-12, since it is a wide screenshot, but I
wanted to show the general screen layout. The top-left section shows the locally modified file,
with each conflict highlighted. The top-right section shows the CVS repository version (remote
file). Each conflict is highlighted. The lower half of the window shows the results that occur
after the merge operation. In either the top-left or top-right pane, you can review and accept
each conflicting line, one at a time. If you decide to accept the locally modified file’s changes,
click the Accept or Accept & Next button in the top-left pane. If you want to accept the
changes from the remote file, use the buttons in the top-right pane.

When you are finished accepting changes, click the OK button at the bottom of the win-
dow. The CVS merge text will be removed from the file. If you accepted any changes from the
locally modified file, you still need to commit the file before the changes are saved into the
repository.

You may also encounter conflicts when you attempt to commit changes to a file that was
modified by another user. If you run a commit operation before an update operation, you may
receive a warning such as this:

cvs commit: Up-to-date check failed for `NewFile.java'
cvs [commit aborted]: correct above errors first!

This message means you need to run an update operation. After you do so, the NetBeans CVS
tool should warn you that conflicts were created between the local and repository versions.
After you resolve the conflicts, you will be able to commit the changes to the file.

CHAPTER 6 ■ MANAGING VERSION CONTROL154

8954Ch06.qxp 1/28/08 11:36 AM Page 154

Reverting Modifications
When programming, you probably frequently write some code and then immediately want to
undo what you changed. Whether it is incorrect code or you were just experimenting with
some new algorithms, you need to be able to roll back one or more code changes. The Net-
Beans CVS tool allows you to do so.

If you have locally modified a file and need to undo the changes, right-click and select
CVS ➤ Revert Modifications. You will receive a Yes/No prompt asking if you want to overwrite
your locally selected files with the current versions from the repository. If you click Yes, the
changes to your code are undone, and the file should match the latest version of code stored
in the CVS repository. You can also use the Revert Modifications option at the package or proj-
ect level. Right-click a specific package or project and select CVS ➤ Revert Modifications.

Comparing Differences
One of the most important features of any CVS tool is the ability to compare the differences
between two files. When you make changes to a local file, you may need to compare it against
the remote version stored in the repository. This is useful if you modify a file and forget to
commit it for a period of time. If you later come back to the file and need to know what
changed, you can easily check it against the repository version. For this, you can use the Diff
tool, which is one of my favorite NetBeans features.

To compare differences in locally modified files, right-click the file or files and select CVS ➤
Diff. The Diff window opens, as shown in Figure 6-13.

Figure 6-13. The Diff window

The Diff tool was significantly reworked in NetBeans 6 and is explained in more detail in
the “Working with the Local History” section later in this chapter. This feature serves for version
control system (VCS) file comparisons as well as local history file comparisons. When you use it
for a VCS file comparison, you’ll see the VCS toolbar displayed along the top.

CHAPTER 6 ■ MANAGING VERSION CONTROL 155

8954Ch06.qxp 1/28/08 11:36 AM Page 155

Note that changes to the files are highlighted line by line. Different lines are highlighted in
different colors. Typically, green lines were added, blue lines were modified, and red lines were
removed. However, it has been my experience that the CVS color-coding in Diff tools is not an
exact science and sometimes appears incorrectly.

In the Diff tool, you can use the up and down arrow icons along the top to navigate the
differences between the files. You can also use the toolbar icons either to update the local file
or to commit it.

To compare differences in multiple files or the entire project, select CVS ➤ Diff. In this
case the top pane of the Diff window will include the selected files and display their status and
location. Choosing a file from the list will open the file’s difference comparison in the bottom
pane of the window.

Searching History
One of the nice features of the NetBeans CVS tool is the ability to search the history of files in
the repository. Using the Search History tool, you can query versions of files for several param-
eters and perform a variety of important operations.

To search the history of an individual file, package, or project, right-click the element and
select CVS ➤ Search History. If you are searching an individual file, the Search History tool
automatically queries the repository and displays all the versions of that file. If you are search-
ing multiple files at the package or project level, the Search History tool will open but not
display results. You will need to enter search terms manually or just click the Search button to
execute the search without any filtering parameters. Figure 6-14 shows the results of searching
on the com.email package without any filtering parameters.

Figure 6-14. The CVS history for the com.email package

CHAPTER 6 ■ MANAGING VERSION CONTROL156

8954Ch06.qxp 1/28/08 11:36 AM Page 156

You can use the fields at the top of the Search History window to filter the search results.

• The “Message” field allows you to query the commit messages that were saved for each
file in the range you are searching (package, project, and so on).

• The “Username” field allows you to query for all the versions that were added by a spe-
cific user in the CVS repository.

• The “From” and “To” fields allow you to query by revision date, branch, and tag.

These search filters are very useful if you are looking for a specific version of a file that might
have dozens or hundreds of versions.

Each file and version that matches the filter parameters is displayed in the search results
pane in the lower half of the Search History window. Versions are grouped under a file head-
ing, and the version number and date, username, and commit message are listed.

For each version, several convenient links are listed on the right side of each row. The first
link, Diff to #.#, allows you to perform a diff operation on the current version of the file against
the previous version. This feature can help you understand what historic changes to a file took
place over time. This is frequently used if something breaks in your application and you need
to go back and see where it broke and who broke it. The other two links are for the Find Com-
mit In feature. Clicking the first link allows you to query the current project for any files that
were committed at the same time as the file you selected. Clicking the second link for Open
Projects allows you to query all open projects in their respective CVS repositories for any files
that were committed at the same time. This makes it easier to identify the 5, 10, or 200 files
that were all committed simultaneously as a batch.

Right-clicking a version row in the Search History window opens a context menu with
more options. For example, if you right-clicked the row for version 1.3 in the example shown
in Figure 6-14, you would see the following options:

Diff to 1.2: Runs a diff operation between versions 1.3 and 1.2.

Rollback Changes: Runs an update operation based on the previous version’s code.

Rollback to 1.3: Overwrites the local file with the specified version.

View 1.3: Downloads and opens the specified version in the Source Editor.

Find Commit in “Email-Framework”: Finds matching committed files in the project.

Find Commit in Open Projects: Finds matching committed files in all open projects.

The one feature that may not be obvious is the ability to perform diff operations on non-
sequential versions. Select a file in the Search History window and click the small Diff button
next to the Search button. The selected file appears in the Search History window as a single
node that you can expand to see individual versions. The difference is that you can use the
multiple-item select key (the Ctrl key in Windows) to select two rows. The differences between
the files appear in the two panes below the list. Figure 6-15 shows an example of comparing
the local copy with version 1.1 of the NewFile class. You can use this tool to select and compare
any two versions of a file.

CHAPTER 6 ■ MANAGING VERSION CONTROL 157

8954Ch06.qxp 1/28/08 11:36 AM Page 157

Figure 6-15. Seeing differences in two nonsequential versions

Adding Annotations
The Annotation tool is simple but powerful. It displays two important pieces of information
on a line-by-line basis directly in the Source Editor window: the version number when the line
was last modified and the username of who made that modification.

To view annotations, select a file in the Source Editor or the Projects window and select
CVS ➤ Show “File.java” Annotations. In the example shown in Figure 6-16, the source file
contains numerous modifications, ranging from version 1.1 to 1.18. Being able to view these
annotations can quickly help you understand when changes were made and who made them.
This is much faster than reviewing each version of a file manually or performing numerous
diff operations between the different versions.

Figure 6-16. The CVS annotations for a source file

To turn off the display of annotations, select CVS ➤ Hide Annotations.

CHAPTER 6 ■ MANAGING VERSION CONTROL158

8954Ch06.qxp 1/28/08 11:36 AM Page 158

Using Subversion
Subversion is rapidly becoming a popular version control system. CVS is probably still the
leader as far as number of users, but Subversion is rapidly gaining ground. It was built in an
attempt to replace CVS and improve on its functionality. For a tutorial on Subversion features
and how it differs from CVS, refer to the Subversion web site at http://subversion.tigris.org.

Installing Subversion
In NetBeans 6, the Subversion module became a standard part of the IDE. There is no longer a
need to download and install it. Unlike with the CVS module, this is only half the battle.

You also need to install the actual Subversion client on your machine. You can download
the Subversion software by visiting the Subversion web site at http://subversion.tigris.org.
On the Subversion site is a section on the main menu titled Documents and Files. This con-
tains several How-To documents that describe the installation steps, Subversion best
practices, and also a CVS-to-Subversion Crossover Guide.

■Note For those of you on a Windows platform, the installation of the Subversion software is quite easy.
Just click the Next button about seven or eight times. The Subversion installer takes care of the rest.

Once you have installed the Subversion client and the NetBeans Subversion module, you
are ready to begin working with Subversion repositories.

Performing Common Subversion Operations
Many of the version control features for CVS and Subversion are nearly identical in NetBeans.
The Update, Commit, Diff, and Search History tools function the same, have the same look
and feel, and contain the same information. Here we’ll cover some of the areas where the two
version control tools differ.

Checking Out Code
When you choose Versioning ➤ Subversion ➤ Checkout, the Subversion Checkout wizard
starts. The first step to check out code is to specify the protocol. The Subversion module allows
you to check out code using several protocols: File, HTTP, HTTPS, SVN, and SVN+SSH.

To check out the Subversion project code, use the URL http://svn.collab.net/repos/
svn/trunk, as shown in Figure 6-17. After you enter the URL, you can optionally either enter a
username or password if you have one assigned or leave the fields blank for anonymous
access. Click the Next button to move to the Folders to Checkout window.

CHAPTER 6 ■ MANAGING VERSION CONTROL 159

8954Ch06.qxp 1/28/08 11:36 AM Page 159

http://subversion.tigris.org
http://subversion.tigris.org
http://svn.collab.net/repos

Figure 6-17. Checking out a Subversion project

In the Folders to Checkout window, specify the repository folder. You can enter the folder
name manually in the “Repository Folder” field or click the Browse button to connect to the
repository and browse the available options. You can also select the revision and the local
folder for which to check out the code. Once you complete the fields, click the Finish button.

The Subversion module connects to the repository and attempts to download the code. In
the Output window, you will see Subversion logging such as the following:

co -r HEAD http://svn.collab.net/repos/svn/trunk@HEAD
D:\projects\trunk --non-interactive --config-dir
C:\Documents and Settings\adam\.netbeans\5.5rc2\config\svn\config

U D:\projects\trunk\www\project_license.html
...
U D:\projects\trunk\subversion\libsvn_client\compat_providers.c

Checked out revision 22009.

==[IDE]== May 29, 2007 7:11:35 PM Checking out... finished.

The first few lines of the output show the Subversion statements that have run, then the
downloading of individual files is indicated, and finally some summary information appears.

Once the code has finished downloading, if it contains NetBeans project metadata, the
tool attempts to open the project. Otherwise, you will see a dialog box that asks if you want to
create a new project. If you click the Create Project button, the New Project wizard appears
and prompts you through its steps.

Working with Branches
One of the features that differs between Subversion and CVS is working with branches. In the
Subversion module, you can create a branch, or copy, of a file, folder, or entire project and

CHAPTER 6 ■ MANAGING VERSION CONTROL160

8954Ch06.qxp 1/28/08 11:36 AM Page 160

http://svn.collab.net/repos/svn/trunk@HEAD

place it in your repository. The previous commit messages and history for the copied file are
linked to the original. You can then later merge changes between these branches if necessary.

In the NetBeans Subversion module, you can copy a file by right-clicking the name and
selecting Subversion ➤ Create Copy. The Copy dialog box appears, as shown in Figure 6-18.
There you can select the destination folder in the repository for the copy of the file or files, or
you can click the Browse button to view the existing tags and branches and choose where to
copy the file. If you are branching an entire project, you can create a new folder under the
branches node. You can also enter a description in the “Copy Description” text box. This
description will be attached to the copy of the file. When you have the fields set correctly, click
the Copy button.

Figure 6-18. The Subversion Copy dialog box

You can also choose to switch the local working copy of a file or project to a specific
branch or tag. Right-click the item to which you wish to switch and select Subversion ➤ Switch
to Copy. The Switch dialog box opens, as shown in Figure 6-19. There you select to which
branch or revision you want to switch. Once the switch is complete, you can edit and make
changes to the file locally. The changes to the file occur to the branch to which you switched,
not to the original file.

Figure 6-19. The Subversion Switch dialog box

Merging Changes
One of the other differences between the CVS and Subversion modules is the Merge Changes
tool. This Subversion tool allows you to merge changes made in one or two different reposi-
tory revisions and pull them into your local working code.

CHAPTER 6 ■ MANAGING VERSION CONTROL 161

8954Ch06.qxp 1/28/08 11:36 AM Page 161

To merge changes, right-click a file and choose Subversion ➤ Merge Changes from
Branch. If you select One Repository Folder from the “Merge From” drop-down list, you will
see the fields in Figure 6-20. You must fill in the “Repository File” field or use the Browse but-
ton to query the repository and choose an item. You must also set the “Starting Revision” and
“Ending Revision” fields. The Search button next to each field lets you query the repository
and pick a revision from a list.

Figure 6-20. The Subversion Merge into dialog box

When you are ready, click the Merge button. The Subversion tool grabs the changes from
the specified revision or revisions and merges them into your local working code. If merge
conflicts occur, you must follow the standard version control process of resolving conflicts, as
discussed earlier in this chapter.

If you specify a Merge From value of Two Repository Folders, then the fields to set change
slightly. First you must specify a repository file and matching starting revision. Then you must
pick a separate repository file and ending revision. This process allows you to merge changes
from two separate revisions into your local working code.

If you specify a Merge From value of One Repository Folder Since Its Origin, only two fields
need to be set: “Repository File” and “Ending Revision.” This allows you to merge changes in a
local working file since it was first created until the ending revision that you specify.

Using Local History
The Local History tool is new in NetBeans 6. Several other Java IDEs contain this type of fea-
ture. Previous versions of NetBeans lacked a local history, which has long been a sticking point

CHAPTER 6 ■ MANAGING VERSION CONTROL162

8954Ch06.qxp 1/28/08 11:36 AM Page 162

mentioned during the Java IDE wars that take place online. I’m personally very glad that it was
added in NetBeans 6, since it is a very useful feature.

A Local History tool is quite similar to a VCS, such as CVS or Subversion. It serves as a
local repository of file versions as each change is made and saved to a file. It allows a program-
mer to recover content that was removed, discover content that was added, or identify content
that changed, using an easy-to-understand Diff comparison. This type of tool is extremely
useful to have since it helps you recover code that may have been deleted but not committed
to your VCS. The NetBeans Undo feature can usually catch code deletions, but only up to a
certain point (and not at all if you closed NetBeans).

Configuring Local History Properties
NetBeans allows you to configure several properties related to the Local History tool. To access
the properties, navigate to Tools ➤ Options. In the Basic Options window, select the Miscella-
neous icon to display a list of tabs. Select the Versioning tab, and you will see a list of versioning
systems displayed on the left side of the tab.

If you select Local History from the list of versioning systems, the Local History settings
will be displayed in the center of the tab, as shown in Figure 6-21.The “Keep Local History Files
for” field allows you to specify the number of days that local versions of files are saved. The
default value for the field is 7, but you may want to set this much higher.

Figure 6-21. The Local History properties

I often write code, only to change it quickly for something I believe to be better. If I com-
mit this modified file, then I have that code stored in my VCS, but the original version is lost. It
may very well have been code I should not have committed to a VCS, but there may have been

CHAPTER 6 ■ MANAGING VERSION CONTROL 163

8954Ch06.qxp 1/28/08 11:36 AM Page 163

an interesting algorithm or idea expressed in it. If the “Keep Local History Files for” field is set
too low, I could lose that code. You might ask why I don’t just commit the original version of
code. In many professional software shops, you can’t commit code to a VCS unless it compiles
and doesn’t break the build.

The second field, named “Number of Files to Keep,” specifies the number of files the Local
History tool persists.

Working with the Local History
To demonstrate the capabilities of the Local History tool, create a new Java class in any proj-
ect. Navigate to File ➤ New File and generate a new Java class. For this example I’ll start with
the following source file:

package com.pronetbeans.examples;

/**
* @author Adam Myatt
*/
public class Calculate {

public Calculate() {
}

public int checkNum(int origVal) {

int returnVal = 0;

if (origVal > 10) {
returnVal = origVal - 1;

} else {
returnVal = origVal + 1;

}

return returnVal;
}

}

The Calculate class contains a method checkNum. If I remove the constructor and add a
main method, such as the following, I will have some original, deleted, and new content to dis-
play in the file’s local history:

public static void main(String[] args) {
System.out.println("Hello Calculator");

}

You can view the local history for a file by right-clicking its name in the Projects or Files
window and selecting Local History ➤ Show Local History. A new tabbed window will open
in the Source Editor, with the name File.java [Local History], where File.java is the name
of the file you selected. For the Calculate class, the tab would read Calculate.java [Local

CHAPTER 6 ■ MANAGING VERSION CONTROL164

8954Ch06.qxp 1/28/08 11:36 AM Page 164

History]. The Show History window displays information in two main sections: the version
history on the top and file comparisons (Diff) on the bottom, as shown in Figure 6-22.

Figure 6-22. The local history for the Calculate.java source file

In Figure 6-22 the local history for Calculate.java shows two versions. The first version,
listed at the bottom of the list, was the default class when I initially created the file. It con-
tained only a class and a constructor. The second version, which appears at the top of the list,
contained a default constructor and the checkNum method. The important thing to note is that
the topmost version is not the current version of the file; it is only the most recent version
prior to the current file. Figure 6-22 shows the Current File pane on the right side of the win-
dow. It contains the most current content of the file.

If the Calculate.java file were modified in any way, a new version would appear in the
versioning pane at the top of the window. Using this tool, you can now perform an intelligent
Diff between the current file content and any previous version.

Closely examine the code highlighting and lines that connect the version in the left pane
and the current file in the right pane. In the left pane in Figure 6-22, line 18 is highlighted pink,
indicating it has been removed. The coloring scheme here is nearly identical to that of a CVS
or Subversion Diff. You should also be able to see the small arrow icon next to line 18 in the left
pane. If you mouse over this arrow, the pop-up tooltip will display “Insert.” If you click the
arrow, the highlighted text in the left pane will be added back into the current file automati-
cally. The line in the left pane will no longer be highlighted, since the Local History Diff tool no
longer sees a difference between the two files for this line.

One of the nicest features about this Diff window is the ability to edit code right in the
Current File window. The source code displayed is no different than a normal source file tab in
the Source Editor. You can perform code editing, debugging, refactoring, etc. As you change
each line of code, you can watch the Diff highlighting change.

CHAPTER 6 ■ MANAGING VERSION CONTROL 165

8954Ch06.qxp 1/28/08 11:36 AM Page 165

Labeling Versions
As previously mentioned, the top pane of the Local History tool contains the list of versions
for a file. Notice that the list of versions has two columns: the Version column and the Label
column. The label column allows you to make short notes about specific local versions of a
Java source file, as shown in Figure 6-23.

Figure 6-23. The local history versions and labels pane

To add a label to a version, simply click anywhere in the label column on the same line
as a listed version and type some text. After you enter the text, click out of the box to save it.
Labeling versions of files can prove useful if you are trying to remember the content of a spe-
cific version. This is nice if you want to make several recoverable versions of a file without
committing them to a remote VCS. The labels can help you identify the different versions.

Deleting Versions
Individual versions from the list of versions in the top pane of the Local History tool can be
deleted. To delete a specific version, right-click a version from the list and select Delete from
History on the context menu. The version is immediately removed from the list and cannot be
recovered.

This feature is particularly useful if you have rapidly created a number of versions and
want to remove the unnecessary ones from the list.

Reverting to Versions
The Local History tool also allows you to revert the current file back to a previous version. This
may be necessary if you want to roll back a number of changes.

The earlier discussion of the Diff tool explains how to insert content or changes from a
previous version into the current file. If you want to revert the current file completely back to a
previous version, you should not have to use the Diff tool and manually update the content.
The “Revert to” feature allows you to switch version content instantly.

To revert back to a previous version, right-click a Java source file in the Projects window
and select Local History ➤ Revert to. This will open the “Revert to” window, as shown in Figure
6-24. Once there, select a version and click the Revert button. This will revert the current file’s
content back to the selected version. You can also revert back to a previous version using the

CHAPTER 6 ■ MANAGING VERSION CONTROL166

8954Ch06.qxp 1/28/08 11:36 AM Page 166

list of versions in the top pane of the Local History window. You can right-click any version in
the version list and select Revert from History.

Figure 6-24. The Local History “Revert to” window

Summary
This chapter covered one of the core practices of software development: storing code in a
source repository. It gave a brief crash course in version control and how to perform specific
operations using a version control module in NetBeans. There are many additional operations
that we did not cover. I encourage you to experiment with the version control module of your
choice to understand all of its features fully.

Regardless of which version control software you use (CVS, Subversion, or another sys-
tem), NetBeans tries to provide a standard user interface. As discussed in this chapter, many
operations, such as update, commit, diff, search history, and show annotations, behave simi-
larly. The important thing to remember is how to perform the core operations that allow you
to store and retrieve your code.

One of the new features of NetBeans 6 is the Local History tool. This allows you to see
changes to your Java source files without having to store them in a VCS. You can use the Local
History tool to view, compare, delete, and revert to previous versions of files. You can also use
the new Diff tool to compare versions of files and add, update, or remove content from the
current version of the file.

CHAPTER 6 ■ MANAGING VERSION CONTROL 167

8954Ch06.qxp 1/28/08 11:36 AM Page 167

8954Ch06.qxp 1/28/08 11:36 AM Page 168

Generating and Accessing
Javadoc

One of the most important aspects of writing code is documentation. Project documenta-
tion should not only cover system design, architecture, and logic, but also include details on
how each class and method functions. The Java platform provides a very useful documenta-
tion tool called Javadoc.

The Javadoc tool scans source code and extracts special types of comments to create a
bundle of HTML files. These files are linked together in a cross-referenced documentation web
site commonly referred to by programmers as Javadoc or the project Javadoc. Developers tradi-
tionally generate this Javadoc bundle and store it with the rest of their project documentation.

Future project developers can then use the Javadoc as a quick reference for the function-
ality of the code. It is also useful to project architects and project managers who want a handle
on what code does without having to read through the actual source.

This chapter describes the NetBeans features for creating and working with Javadoc.

Elements of Javadoc
Adding Javadoc comments to source code is extremely simple. You can use a variety of special
documentation elements, or tags, that the Javadoc tool will recognize as having special mean-
ing. During the generation of the HTML files, these special elements are formatted and marked
for each Java member for which they are provided.

The following sections provide a quick overview of the main elements used in writing
Javadoc. This is not a complete list, of course, but covers the elements you will probably use
most often.

Class Description
The first Javadoc element that should be written for a class is the overall class description. The
first sentence of this description should be as brief and direct as possible. The Javadoc tool will
insert the first sentence from the class description into the index page for each package that
lists the classes it contains.

The entire class description can be as brief or detailed as you feel is necessary. There are
no rules or best practices regarding the length of class descriptions. You should attempt to
describe the overall purpose and function of the class. Some programmers provide sample

169

C H A P T E R 7

8954Ch07.qxp 1/28/08 11:37 AM Page 169

usage code in the class description that can serve as a type of user manual. Here is an example
of a class description in Javadoc:

package com.pronetbeans.chapters;

/**
* Utility class for representing static constant color values.
* The color constants used in this class are string representations
* of HTML color codes.
*/
public class ColorConstants {

// code for class here
}

Notice that the first line starts with the characters /**. This is how you flag a comment as
a Javadoc comment and not just as a regular comment. The last line ends with the characters
*/. The asterisks in between are optional as of Java 1.4, but they are usually added to provide a
consistent visual flow.

Class Tags
The following are some class tags commonly used in Javadoc:

@author: Specifies who wrote the class. Multiple @author tags are allowed. The text for the
author of a class can be just a name or can include an email address, web site URL, or
other contact information. You can format the information that is displayed using the
HTML
 tag.

@version: Specifies the version of the class. Certain source code repositories allow you to
use wildcard variables in this field, so when the code is checked out, the actual version
and date can be inserted in place of the wildcard variables.

@since: Specifies the version of the code in which this class was added. This can be useful
if you are writing an actual API that other programmers will use. As your API evolves over
time, it is important to note in which version a specific class was added.

@see: Allows you to include a reference to an element in the class or another Java class or
package. You can link directly to a specific method or to a section in the Javadoc.

■Note By default, NetBeans does not include the @author and @version tags during the generation of a
project’s Javadoc. To include the tags, you need to edit the properties of a project, as described later, in the
section “Configuring Project Javadoc Settings.”

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC170

8954Ch07.qxp 1/28/08 11:37 AM Page 170

The following shows the class tags added to the sample Javadoc in the previous section:

package com.pronetbeans.chapters;

/**
* Utility class for representing static constant color values.
* The color constants used in this class are string representations
* of HTML color codes.
*
* @author John Doe
john.doe@somesite.com
John Doe Consulting
* @author Jane Doe
* @version 1.45
* @since 2.1.0
* @see com.pronetbeans.chapters
*/
public class ColorConstants {

// code for class here
}

Class Member Variables
Each member variable defined in a class should have a matching Javadoc statement. Public
member variables usually represent some type of constant and thus should have a full
description explaining how to use them. The following shows the ColorConstants class in an
abbreviated form. Notice that each member variable has a description.

public class ColorConstants {

/** The HTML code for the color blue. */
public static final String BLUE = "#0000FF";

/** The HTML code for the color red. */
public static final String RED = "#FF0000";

}

Constructors
Javadoc descriptions can also be added for constructors. For constructors that have parame-
ters, the description should include what effect the parameters might have on the state of the
object as it is instantiated.

If a constructor has a parameter, you can use the @param Javadoc tag to describe it. The
@param tag should be followed by a space, the name of the parameter, another space, and the
description of the parameter, as in this example:

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC 171

8954Ch07.qxp 1/28/08 11:37 AM Page 171

mailto:doe@somesite.com

public class ColorConstants {

/** Default constructor */
public ColorContstants() {

}

/** This constructor allows the debug mode to be enabled or disabled.
*
* @param debug true if logging should be enabled, false otherwise.
*/
public ColorConstants(boolean debug) {

// do something with the debug variable
}

}

Methods
Javadoc for class methods is probably the most common type of documentation you will write
as a programmer. A method has a description, just like a class, a member variable, and a con-
structor. The first sentence of the description is listed in the method summary section.

Method Javadoc can also include tags for the method parameters, method return type, and
any exceptions that the method may throw, as follows:

@param: Describes a method’s parameter. The @param tag should be followed by a space,
the name of the parameter, another space, and the description of the parameter. If there
are multiple parameters in a method definition, use multiple @param tags.

@return: Documents the return type of a method. The @return tag specifies the description
of the parameter being returned to the calling code. A method can have only one return
parameter, so only one @return tag is valid. Methods with a return type of void do not need
a @return tag.

@throws: Describes an exception thrown by a method. You must use one @throws tag per
exception. This lets programmers know what type of exceptions to expect to have to
handle in their code.

Here is an example of Javadoc for a method:

public class ColorConstants {

/**
* Retrieve a list of all color code constants.
*
* @param filter A filter value to retrieve color codes that match.
* @return An ArrayList of the color code values.

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC172

8954Ch07.qxp 1/28/08 11:37 AM Page 172

* @throws NullPointerException If the filter parameter is null.
*/
public ArrayList listColorCodes(String filter)

throws NullPointerException, NumberFormatException {

// do something

}
}

Creating Javadoc in NetBeans
In NetBeans, you can write Javadoc directly in a source file in the Source Editor window. One
of the nice features that the editor provides is the ability for Javadoc comments to utilize code
folding. Sections of Javadoc can be collapsed and expanded for ease of viewing.

■Tip Javadoc for certain classes can be quite long. Sometimes when you are developing, it can visually get
in your way. You can fix this with the menu option View ➤ Code Folds ➤ Collapse All Javadoc. You can also
set Javadoc to be collapsed by default by choosing Tools ➤ Options ➤ Editor and selecting the Javadoc
Comments field.

Configuring Javadoc Hint Settings
Beginning with NetBeans 6, the Source Editor contains a set of hints for creating and correct-
ing Javadoc. You can configure some basic properties of this functionality in the NetBeans
Options window.

To configure the Javadoc Hint Settings, navigate to Tools ➤ Options. In the Basic Options
window, click the Java Code icon in the top of the window and select the Hints tab that appears.
The Hints tab contains areas for enabling or disabling specific types of hints in Java code.

The Hints tab allows you to activate a hint for creating Javadoc and for errors in Javadoc,
as shown in Figure 7-1. If you click the node labeled “Create Javadoc,” the Options panel in the
upper right of the tab will activate and allow you to choose a value from the “Show As” drop-
down list. The possible values you can select are Error, Warning, and Warning on Current Line.

These values affect how inline code hints are displayed in the Source Editor for a Java file.
If Javadoc does not exist for one or more elements of a Java file, then NetBeans will prompt
you to do so using the status notifications mentioned earlier.

Set the Create Javadoc hint to show as an error. This denotes a hint that checks for a com-
plete lack of Javadoc for one or more elements in a Java source file. If a Java source file is open
in the Source Editor, then each class name, member variable, constructor, and method that
has no Javadoc will be highlighted red as an error, as shown in Figure 7-2.

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC 173

8954Ch07.qxp 1/28/08 11:37 AM Page 173

Figure 7-1. The Javadoc Hints properties in the Basic Options window

Figure 7-2. Missing Javadoc highlighted as an error

Once the hints appear in the gutter, you can click each one to generate the appropriate
Javadoc comments. When you click the hint lightbulb in the gutter, a single pop-up option will
ask you to “Create missing Javadoc for <element-name>.” Clicking it will generate the skeleton
Javadoc for the element.

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC174

8954Ch07.qxp 1/28/08 11:37 AM Page 174

You can also set the Create Javadoc hint to show as a warning instead of as an error. This
denotes a hint that checks for a complete lack of Javadoc for one or more elements in a Java
source file. If a Java source file is open in the Source Editor, then each class name, member
variable, constructor, and method that has no Javadoc will be highlighted in the gutter as a
warning-style lightbulb. You can then click each lightbulb to see the generate Javadoc prompt,
as shown in Figure 7-3.

Figure 7-3. Missing Javadoc highlighted as a warning

Finally, you can also set the Create Javadoc hint to show as a warning on the current line.
This is nearly the same as the previous two options, except the lightbulb warning icons will
not display unless you click in the line for a specific element that is missing Javadoc. This is
visually less invasive but not as thorough a warning system if you care about being notified of
missing Javadoc in your code.

Configuring Project Javadoc Settings
Each Java-based project has a settings window you can use to configure Javadoc properties.
With a Java project open in NetBeans, right-click the project and select Properties from the
context menu. When the Project Properties window opens, click the Documenting node under
the Build node. This will display the Javadoc properties for the project, as shown in Figure 7-4.

The first check box in the Javadoc Project Properties window is the “Include Private and
Package Private Members” field. Selecting this field tells the Javadoc tool to include the Javadoc
for all private and package private elements in the generated report. Typically these elements
are not included, especially if you are writing a public API or code that others will use. By their
very nature, private and package private elements shouldn’t be used by others, so it is doubtful
you would need to include them.

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC 175

8954Ch07.qxp 1/28/08 11:37 AM Page 175

Figure 7-4. Javadoc Project Properties window

The next five check boxes under the Generate section are options that affect specific ele-
ments that appear in the generated report. They instruct the Javadoc tool as to what to include
or exclude, such as a navigation bar, a complete index of Java elements, an alphabetized and
separate index by letter, and various other pages.

Under the Document Additional Tags section are two check boxes: @author and @version.
By default these are not selected, but they can easily be enabled for the project by selecting the
check boxes.

The field “Browser Window Title” allows you to specify how the name of the generated
Javadoc appears in the title bar of the web browser you use to view it. I typically enter the proj-
ect name in this field, just to be thorough.

The field “Additional Javadoc Options” allows you to specify command-line arguments to
the Javadoc tool. There are numerous additional settings you can use for which the NetBeans
Project Properties window could not possibly contain fields. The “Additional Javadoc Options”
field allows you to specify them, such as a header HTML file that includes a company logo or a
footer with a copyright notice, as shown in Figure 7-4.

The final field is the “Preview Generated Javadoc” check box. It is selected by default and
prompts NetBeans to open the default web browser and load the initial page for the generated
Javadoc report. Once the report opens, you can see the affect of any additional command-line
options you specified, such as a copyright notice, as shown in Figure 7-5.

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC176

8954Ch07.qxp 1/28/08 11:37 AM Page 176

Figure 7-5. Javadoc report with copyright notice in footer

Generating Project Javadoc
Once you have finished writing Javadoc comments in your source, you need to generate the
HTML files. NetBeans makes this extremely easy to do. Simply select a project and choose
Build ➤ Generate Javadoc for “ProjectName”. You can also right-click a project in the Projects
window and select Generate Javadoc for Project.

Once you have directed NetBeans to generate the files, the Output window appears, and
you can watch the logging statements fly by as your project Javadoc is generated. After the
process is complete, the project Javadoc homepage (typically index.html) should open in your
Internet browser. If it does not open, then in the Files window, locate the javadoc directory in
the dist directory and open the index.html file.

■Tip The directory where the Javadoc is generated is typically dist/javadoc. While currently there is
no setting to change this systemwide, you can set this individually for each project. Look in nbproject/
project.properties for the dist.javadoc.dir property. You can set this to whatever you want, but I
recommend leaving it as is unless you have a specific requirement to change it.

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC 177

8954Ch07.qxp 1/28/08 11:37 AM Page 177

Accessing Javadoc
Along with tools for creating Javadoc for your projects, NetBeans provides several features to
help you access existing Javadoc quickly and easily.

Attaching to Libraries and Platforms
If your project makes use of third-party libraries, you may want to consider attaching the asso-
ciated Javadoc. Doing so allows you quick access to the documentation for that code and
speeds up your development process.

Adding Libraries
NetBeans allows you to specify one or more JAR files as a library. Libraries are a good way to
organize the third-party JAR files you want to use. You can define the binary class files that are
executed, the matching source code, and the path to the Javadoc documentation.

To work with libraries, select Tools ➤ Libraries. In the Library Manager, you can add new
libraries, remove libraries, or modify existing libraries. The window has three tabs for managing
a library: Classpath, Sources, and Javadoc. Each tab allows you to add a reference to one or
more JAR or zip files for the class files, source code, or Javadoc. If the Javadoc resides in a direc-
tory, you can add a reference to that directory using the Javadoc tab, as shown in Figure 7-6.

Figure 7-6. The Javadoc tab in the Library Manager

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC178

8954Ch07.qxp 1/28/08 11:37 AM Page 178

Adding Javadoc for Platforms
You can also add Javadoc for each Java platform that is defined in NetBeans. When you down-
load and install a JDK, you should also make sure to download the source and the Javadoc.
These can prove to be valuable resources, especially to novice programmers. Even pros can’t
remember every class and method usage in the entire Java platform. Having local access to the
Javadoc for your JDK, as opposed to having to go online to look it up, can save valuable time.

In NetBeans, you can add the Javadoc to each platform by selecting Tools ➤ Java Platforms.
In this window, you can view the default platform with which NetBeans is configured as well as
any additional platforms you may have installed.

For each platform, the window has three tabs: Classes, Sources, and Javadoc. The JAR files
should have been included automatically when you originally added the new platform. You
need to reference the sources and Javadoc on each tab manually, as shown in Figure 7-7. Once
you have added Javadoc to your libraries and Java platforms, you can view the context-sensitive
Javadoc during coding.

Figure 7-7. Adding Javadoc in the Java Platform Manager

Viewing Context-Sensitive Javadoc
During the code-editing process, you can view context-sensitive Javadoc. This allows you
quick access to documentation and usage information directly in the Source Editor window.

As you code, you may have already seen the first method of viewing Javadoc, if you have
the code completion feature activated (see Chapter 3). When you type a period after a package
or class name, the code completion box appears. For the Java element highlighted in the code
completion box, an additional pop-up window also appears, displaying the Javadoc for the
currently selected element. If you use the keyboard arrow keys to scroll up and down the list,
the Javadoc window should update accordingly, as shown in Figure 7-8.

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC 179

8954Ch07.qxp 1/28/08 11:37 AM Page 179

Figure 7-8. Context-sensitive Javadoc during code completion

You can also force the Javadoc window to appear. Highlight the class or package for which
you wish to view the Javadoc and press Ctrl+Shift+Spacebar. The pop-up window will display
the Javadoc for the selected item. This can sometimes prove faster than opening the Javadoc
in a web browser.

■Tip You can also highlight or select an element and right-click. On the context menu that appears is an
item called Show Javadoc. The Show Javadoc option will attempt to open the Javadoc page specific to the
element you selected. If you have not attached the Javadoc to the library or platform to which the element
belongs, you will see the status message “Javadoc Not Found” at the bottom of the Source Editor window.

One additional way you can view context-sensitive Javadoc is by using the Javadoc View
window. You can access this window by navigating to Window ➤ Other ➤ Javadoc View. This
opens a small window along the bottom of the Source Editor that is similar to the Output win-
dow, as shown in Figure 7-9. The Javadoc View window displays the WYSIWYG view of Javadoc
embedded in Java code.

Figure 7-9. The Javadoc View window

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC180

8954Ch07.qxp 1/28/08 11:37 AM Page 180

If a Java source file is open in the Source Editor, you can select a specific element and see
the Javadoc displayed in the Javadoc View window. Open a Java source file in the Source Editor
and select the class name. The Javadoc for the class is displayed in the Javadoc View window,
as shown in Figure 7-9.

As you select different elements, such as method names, class member variables, or con-
structors, the Javadoc View window will change accordingly. This assumes you have added
some Javadoc for the selected element. Otherwise the Javadoc View window will not display
anything.

Searching Javadoc
The Javadoc Search tool, shown in Figure 7-10, provides quick and convenient access to
search Javadoc registered with NetBeans. Any Javadoc that has been referenced for a library or
platform can be searched and displayed using the tool. It can also display any Javadoc that
was generated for any open project.

Figure 7-10. The Javadoc Search tool

If you are in the Source Editor writing code, highlight the term you wish to display in the
Search tool and press Shift+F1. The Javadoc Search tool will immediately open and display the
search results for the selected text. I have found this to be one of the fastest and easiest meth-
ods for viewing Javadoc.

The Javadoc Search window is divided into two sections: searching and viewing. The top
pane allows you to search for Javadoc elements based on partial name matching. In the exam-
ple in Figure 7-10, I started off by typing Date in the search field. When you have finished
entering the phrase you want to search for, press the Enter key or click the Find button next to
the search field.

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC 181

8954Ch07.qxp 1/28/08 11:37 AM Page 181

The tool scans all the known Javadoc and displays the results. If you select any result in
the list, the matching Javadoc page is displayed in the lower pane. You can jump directly to the
source code for an element by clicking the View Source button. You can also sort the search
results by name, package, and type by clicking the corresponding buttons. There is also a but-
ton to toggle the display of the HTML viewer window (lower pane). Move your mouse over
each button to see a tooltip describing its function.

In the HTML viewer pane at the bottom of the window, you can scroll up and down a page
of Javadoc for the selected element, exactly as if you were viewing it in an external browser.
You can also click the hyperlinks in the Javadoc, just like in an external browser.

The buttons along the top of the HTML viewer pane allow you to navigate back and forth
through the Javadoc you have viewed. Similar to a browser, the pane has Back, Forward, Stop,
Reload, and History buttons.

The Javadoc Search tool can be docked as a window inside the Source Editor section of
NetBeans, just like a page of source code. It is often faster and easier to leave the Search tool
open for viewing Javadoc rather than use an external browser window. It can provide quick
access to Javadoc for your associated libraries and source code.

Summary
This chapter provided a quick overview of the Javadoc-related features available in NetBeans.
Writing Javadoc to go along with your code is a best practice for any new or seasoned devel-
oper to follow. NetBeans tries to make working with Javadoc simple by providing some helpful
tools. This includes the Javadoc Search tool for querying all the Javadoc associated with your
code and libraries.

As you saw in this chapter, there are many different tags you can use in your Javadoc. The
entire list can be quite complex, but many developers who first start out using Javadoc need
only the basics. To learn more about Javadoc, visit http://java.sun.com/j2se/javadoc.

CHAPTER 7 ■ GENERATING AND ACCESSING JAVADOC182

8954Ch07.qxp 1/28/08 11:37 AM Page 182

http://java.sun.com/j2se/javadoc

Managing Builds with Ant
and Maven

Many problems can occur while building and developing software. One of the biggest chal-
lenges is attempting to build and compile a software application on a platform other than the
one for which it was developed. Imagine three programmers working on the same application
on three different platforms: Linux, Windows, and Mac.

Many existing build tools work fine but do not offer as much flexibility as some develop-
ers would like and are usually specific to a particular operating system. It can also prove
difficult to extend their functionality and integrate them with Java IDE tools.

Ant was created to address many problems in the arena of cross-platform source code
compilation. Because Ant is written in Java, tasks that are performed by Ant are executed by
Java objects. Ant can also be extended using standard Java classes. This makes it an ideal tool
for structuring cross-platform software builds (at least for the platforms that support a JDK).

Because Ant runs entirely in Java, no operating system–specific build configurations need
to be written. You can create and structure a single build configuration and execute it across
multiple platforms. This helps ensure that a build process is reliable and repeatable, which is a
key foundation to developing quality software.

Maven, another project management and build tool, is similar to Ant. You typically run it
via the command line to manage project builds. You can use it to compile Java source files,
update library dependencies, generate Javadoc, generate WAR files, build project documenta-
tion, and so on. It also helps enforce consistency and standardization.

Ant and Maven can be tightly integrated with NetBeans 6. NetBeans makes full use of Ant
and its capabilities for each type of project. If you install the Maven module, you can use it,
instead of Ant, as the build tool for several types of projects. In this chapter, we explore how
Ant and Maven work with NetBeans.

Ant Tasks and Targets
Ant uses XML files to store build configurations. Typically named build.xml, the build configura-
tion file contains the definitions of specific tasks and targets. A task is a specific operation to be
executed by an Ant Java class. A target is a group of one or more tasks that can then be executed
by Ant.

183

C H A P T E R 8

8954Ch08.qxp 1/28/08 11:37 AM Page 183

One of the key things to remember regarding Ant targets is that they can be dependent
on each other. For example, a target can contain an attribute named depends that directs
Ant to process other targets first. This can lead to a cycle such as the following pseudo-build
configuration:

target = "build-full", depends on ➥

"compile source, create javadoc, package classes to jar"
target = "package classes to jar", depends on "compile source, create javadoc"
target = "create javadoc", depends on "compile source"
target = "compile source"

These targets contain dependencies on other targets. Ant resolves any conflicts in dupli-
cate dependencies and does not execute the same target more than once. In the example,
when build-full is executed, the three targets on which it depends are executed in order
from left to right. The first target could also be defined as follows:

target = "build-full", depends on "package classes to jar"

This line is valid because the build-full target depends on the package classes to jar target.
In turn, that target depends on the create javadoc and compile source targets.

Needless to say, there are numerous ways you could structure targets and their depend-
encies, but this is just a very quick overview. For more discussion and information on Ant
targets and semantics of dependencies, you can read Pro Apache Ant by Matthew Moodie
(Apress, 2005).

As mentioned previously, targets are just groups of tasks. A task is basically a Java class
that performs the actual processing and work. In the build configuration file, tasks can con-
tain attributes and tags that further define how they function. See Table 8-1 for a partial list of
Ant tasks with brief descriptions.

Table 8-1. Some Common Ant Tasks

Task Description

java Executes a Java file in the current JVM

javac Compiles one or more source files

jspc Compiles one or more JSP files into Java source files

javadoc Runs the Javadoc tool for the specified Java source files

copy Copies one or more files to a specific location

delete Deletes one or more files

mkdir Makes a new directory on the file system

move Moves one or more files to a specific location

rename Renames a file or directory

mail Sends an SMTP email message

input Interacts with the user to retrieve command-line input

jar Packages a set of source or class files into a JAR file

unjar Extracts the source or class files from a JAR file

war Packages a set of files (an entire application) into a WAR file

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN184

8954Ch08.qxp 1/28/08 11:37 AM Page 184

Task Description

unwar Extracts a set of files from a WAR file

zip Packages a set of source or class files into a zip file

unzip Extracts the source or class files from a zip file

ftp Performs an FTP operation

scp Transfers files to a remote machine via SSH

cvs Performs various CVS operations

junit Executes a set of JUnit test classes

junitreport Creates a JUnit report based on JUnit test data

Many additional tasks are available for use in Ant. You can even extend Ant and implement
your own custom tasks. Once you understand a few of the Ant tasks, you can write your own
build scripts, such as the one shown in Listing 8-1.

Listing 8-1. Sample Ant Build Script

<?xml version="1.0" ?>

<project name="pronetbeans" default="dist" basedir=".">

<property name="dir.src" value="src" />
<property name="dir.build" value="build" />
<property name="dir.build.classes" value="${dir.build}/classes" />
<property name="dir.dist" value="dist" />

<target name="init">
<mkdir dir="${dir.build}" />
<mkdir dir="${dir.build.classes}" />
<mkdir dir="${dir.dist}" />

</target>

<target name="compile" depends="init">
<javac srcdir="${dir.src}" destdir="${dir.build.classes}" />

</target>

<target name="dist" depends="compile">
<jar jarfile="${dir.dist}/pronetbeans.jar"

basedir="${dir.build.classes}" />
</target>

</project>

The build file in Listing 8-1 contains several important sections. The first section defines
the project name:

<project name="pronetbeans" default="dist" basedir=".">

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN 185

8954Ch08.qxp 1/28/08 11:37 AM Page 185

The project tag has an attribute named default, which defines the target that is executed by
Ant if no target is specified on the command line when Ant is run. It also defines a basedir
attribute, which specifies where the root directory for the project’s files is located. Using the
basedir attribute makes specifying directory paths easy, since you do not need to have a full
path defined throughout the build file.

The property tags define a variable that can be specified once and referred to numerous
times in the build file:

<property name="dir.src" value="src" />
<property name="dir.build" value="build" />
<property name="dir.build.classes" value="${dir.build}/classes" />
<property name="dir.dist" value="dist" />

This is a convenient and easy way to define directory paths, directory names, filenames, and
so on. To refer to the value of a defined property, you can use the syntax ${variable}.

The first target that is defined is named init. This target contains three mkdir tasks:

<target name="init">
<mkdir dir="${dir.build}" />
<mkdir dir="${dir.build.classes}" />
<mkdir dir="${dir.dist}" />

</target>

Each mkdir task will create the directory specified by the dir attribute. Many Ant build files
contain a target that initializes the overall build by creating directories and setting up any
needed configurations.

The compile target will perform the actual compilation of the source code. It lists a
dependency on the init target that will execute before the compile target:

<target name="compile" depends="init">
<javac srcdir="${dir.src}" destdir="${dir.build.classes}" />

</target>

The dependency ensures the build and build/classes directories are created. The javac task
performs the compilation of the source and is essentially the same as calling the javac exe-
cutable on the command line. The srcdir attribute specifies the location of the source code
that will be compiled. The destdir attribute specifies the location where the compiled classes
are placed.

The dist target serves as a wrapper for the jar task. It depends on the compile task, since
the source code should be compiled before being packaged into a JAR file:

<target name="dist" depends="compile">
<jar jarfile="${dir.dist}/pronetbeans.jar"

basedir="${dir.build.classes}" />
</target>

The jarfile attribute specifies the location and name of the JAR file to create. The basedir
attribute specifies the location of the class files that should be compiled and packaged.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN186

8954Ch08.qxp 1/28/08 11:37 AM Page 186

■Note Listing 8-1 is a very simple and basic example of a build file. A single target can wrap many tasks.
Tasks can contain numerous subelements and other tasks. For further examples, see the Apache Ant docu-
mentation or any NetBeans project build.xml file.

When NetBeans creates a project, it also creates a build.xml file and supporting files for
the project. It defines the targets and tasks it needs to manage the compilation and build of
the project. The structure and location of the build.xml file and supporting files is discussed
later in this chapter in the section “NetBeans Project Build Files.”

Configuring Ant Properties in NetBeans
You can configure several Ant properties directly in NetBeans. These allow basic control over
several pieces of Ant functionality.

To access the Ant properties, select Tools ➤ Options. In the Basic Options window, click the
Miscellaneous icon and make sure the Ant tab is selected. You will see the Ant properties, as
shown in Figure 8-1.

Figure 8-1. The Ant properties in the Basic Options window

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN 187

8954Ch08.qxp 1/28/08 11:37 AM Page 187

The following properties are available:

Ant Home: This defines the directory location where the Ant program executable and
supporting files are installed. When NetBeans is initially installed, a distribution of Ant is
installed along with it. You can also download and install a separate version of Ant and
change the Ant Home property to reference that location. Each major version of NetBeans
supports a slightly newer version of Ant. Go to the NetBeans web site to determine the
supported Ant versions.

Save All Modified Files Before Running Ant: If you are modifying several files at a time and
need to execute a target, NetBeans will save each modified file before executing the Ant
target specified. This can save you a lot of time and is also convenient.

Reuse Output Tabs from Finished Processes: This is a space saver. If you uncheck this option,
every time you execute an Ant task, a new tab will open in the Output window. This doesn’t
sound too bad until you have spent several hours executing build targets and end up with
dozens of tabs. If the property is checked, each time you execute an Ant target, NetBeans
will reuse an existing tab for any target process that previously was complete.

Always Show Output: This directs NetBeans to bring the Output window to focus if it is
not already and there is an error.

Verbosity Level: This specifies the amount of output that should be logged in the Output
window. Several tasks, such as copy, delete, and move, have a verbose attribute that can be
set. Your choices for this property are Quiet, Normal, Verbose, and Debug. This property is
set to Normal by default.

Classpath: This section allows you to add JARs and directories that can be used by all Ant
scripts in NetBeans. Click the Manage Classpath button to open the Classpath Editor.

NetBeans Project Build Files
NetBeans uses several related files to structure the build environment for a Java project. It uses
targets and tasks, as in a normal Ant build file, but specific menu items and shortcuts are
linked directly to targets, making for a tight integration between Ant and NetBeans.

Ant build files are not visible in the Projects window. NetBeans tries to abstract away the
details of how projects are maintained and built during the normal day-to-day development
tasks. You can view the Ant build files by switching to the Files window for a project. In this
view, you can see the build.xml file for the project. Additional files are located in the nbproject
directory. The following sections describe each of the project build files.

The build.xml File
The build.xml file is what Ant initially executes whenever a target needs to be executed. If you
open the file, you will notice immediately that it contains very little information except for some
comments. This is done to provide a flexible environment for you to work with NetBeans and Ant.

The targets that wrap Ant tasks are placed in the build-impl.xml file, which is explicitly
referenced in the build.xml file via an import tag:

<import file="nbproject/build-impl.xml"/>

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN188

8954Ch08.qxp 1/28/08 11:37 AM Page 188

The import tag essentially makes the content of the build-impl.xml file function as if it were
located in the build.xml file. Any targets defined in the imported file can also be overridden in
the build.xml file.

The system-generated build-impl.xml file should never be modified (not that it can’t be
changed, but it’s a best practice to leave it as is). If you need to modify or augment the behav-
ior of a target, you can override it be redefining it in the build.xml file with a different set of
tasks that it will perform.

You may want to override Ant targets for various reasons, such as to modify how an exist-
ing target works, add custom behaviors to the NetBeans build process, or integrate third-party
tools into your Ant build scripts.

For example, for code I have written, I have needed to use the java.util.ResourceBundle
class to read name/value pairs from a .properties file. In a project of type Java Application or
Java Class Library, I will add the .properties file to the default package in the Source Packages
node. When the code is compiled, the .properties file is compiled into the corresponding
default package in the build/classes directory and is subsequently packaged into the JAR file.
The problem arises when I do not want the .properties file to be included in the JAR but still
want it copied into the build/classes and dist directories for easy access. I can arrange this in
NetBeans by doing two things: excluding the .properties file from the JAR file and overriding
a target defined in the build-impl.xml file.

First, to exclude the .properties file from the list of files that are included in the JAR file
during the packaging process, I open the Project Properties window (right-click the project
name and select Properties) and select the Packaging node on the left. The “Exclude from JAR
File” field typically contains the value **/*.java,**/*.form. As shown in Figure 8-2, I add
**/*.properties to the end of the value. Now when the JAR file is created, the .properties file
will not be included.

Figure 8-2. Setting the “Exclude from JAR File” field for a project

At this stage, the .properties file will also not be copied to the build/classes or dist
directory. I remedy this by overriding the -post-jar target. If you open the build-impl.xml file
and locate the target named jar, you will see its dependencies listed in the following order:

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN 189

8954Ch08.qxp 1/28/08 11:37 AM Page 189

• init

• compile

• -pre-jar

• -do-jar-with-manifest

• -do-jar-without-manifest

• -do-jar-with-mainclass

• -do-jar-with-libraries

• -post-jar

The last target in the dependency chain is –post-jar. If you look at the definition of this
target, you will see the following XML code:

<target name="-post-jar">
<!-- Empty placeholder for easier customization. -->
<!-- You can override this target in the ../build.xml file. -->

</target>

Notice that no tasks are in the –post-jar target. This is an empty placeholder target, pro-
vided so that you can define custom behaviors by overriding this task in the build.xml file.
Here is the new –post-jar target I define at the bottom of the build.xml file:

<target name="-post-jar">
<copy todir="${build.classes.dir}" >

<fileset dir="${src.dir}" includes="**/*.properties" />
</copy>
<copy todir="${dist.dir}" >

<fileset dir="${src.dir}" includes="**/*.properties" />
</copy>

</target>

The new –post-jar target contains two copy tasks. Each task copies any .properties files from
the source packages to the corresponding location in the build/classes directory and also
into the dist directory.

The build-impl.xml File
The build-impl.xml file contains the core of the Ant tasks that NetBeans uses to execute and
manage the project build. Project-related actions include Build, Clean and Build, Run Main Pro-
ject, Run File, Test, and Generate Javadoc. Whether these actions are activated via menu items or
via keyboard shortcuts, they tie directly to Ant targets in the project build configuration.

As discussed in the previous section, the content of the build-impl.xml file is imported
into the build.xml file. Any target can be overridden, but for the most part you should not
need to override the core targets. The build-impl.xml file for a Java Application or Java Class
Library project is divided into several sections, as detailed in Table 8-2.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN190

8954Ch08.qxp 1/28/08 11:37 AM Page 190

Table 8-2. Sections of the build-impl.xml File

Section Description

Initialization Initialize properties defined in the build file and in separate .properties
files. Perform several conditional checks on project parameters and
settings.

Compilation Create build directories, compile the project code, or compile single files.

Dist Create the distribution directory and package the compiled class files into
a JAR file.

Execution Execute the project class files or a single class file.

Debugging Provide tasks for debugging projects and code in NetBeans.

Javadoc Run the Javadoc tool against the project code and open a browser to view
the generated report.

JUnit compilation Compile all the project test files or a single test file.

JUnit execution Execute one or all tests in a project.

JUnit debugging Provide debugging tasks for project tests.

Applet Provide Ant tasks for executing a Java applet.

Cleanup Delete the build and dist directories and all the files inside them.

The build files for a Web Application project (and other project types in NetBeans) differ from
those for a Java Application or Java Class Library project. The same types of files are created, but
they may contain different sets of targets and tasks. For example, the build-impl.xml file for a
Web Application project contains targets for compiling JSP files, packaging the application into a
WAR file instead of a JAR file, and deploying the code to the target application server. However,
the core targets and tasks are similar across each of the project types.

The build-before-profiler.xml File
The build-before-profiler.xml file is only a backup of the build.xml file. When you first
initiate the NetBeans Profiler for a project, the build.xml file is copied and named
build-before-profiler.xml. The original build.xml file is modified with the addition of
an import statement:

<import file="nbproject/ profiler-build-impl.xml "/>

■Note Chapter 5 describes how to install, configure, and use the NetBeans Profiler, the code profiling tool
that allows you to profile for memory, CPU, and performance problems, as well as monitor threads. For more
information about using the NetBeans Profiler, read Chapter 5 or visit http://profiler.netbeans.org/.

This import in the build.xml file allows the targets and tasks defined in the profiler-build-
impl.xml file to be run during the normal project build.xml execution.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN 191

8954Ch08.qxp 1/28/08 11:37 AM Page 191

http://profiler.netbeans.org

The profiler-build-impl.xml File
The profiler-build-impl.xml file defines the targets for profiling the project, a single file, applets,
or tests, depending on how you activate the NetBeans Profiler. It is imported into the build.xml
file so that the targets are part of the overall build configuration for a project. Similar to build.xml,
the targets can be executed by using the menu items from the Profile menu. If you selected Profile
➤ Profile Main Project, then the profile target would execute:

<target name="profile" if="netbeans.home"
depends="profile-init,compile"
description="Profile a project in the IDE.">

<nbprofiledirect>
<classpath>

<path path="${run.classpath}"/>
</classpath>

</nbprofiledirect>
<profile/>

</target>

The profile target depends on the profile-init and compile targets to work correctly. You can’t
really profile code unless it compiles. It also wraps the nbprofiledirect task that defines the
classpath for the classes to profile.

You can also profile a single source code file if a Main method is defined in the class. With
the file open in the Source Editor, select Profile ➤ Profile Other ➤ Profile “MyFile.java”. You
can also right-click the file in the Projects window and select Profile from the context menu.
The profile-single target will then execute:

<target name="profile-single" if="netbeans.home"
depends="profile-init,compile-single"
description="Profile a selected class in the IDE.">

<fail unless="profile.class">Must select a file in the IDE</fail>
<nbprofiledirect>
<classpath>

<path path="${run.classpath}"/>
</classpath>

</nbprofiledirect>
<profile classname="${profile.class}"/>

</target>

The profile-single target contains a fail clause that requires a class be selected for profiling.
The profile task explicitly defines which class should be profiled via the classname attribute.

Several other targets are included in this file, but the only other two to note are -profile-
pre-init and -profile-post-init. These two targets are initially blank. The profile target
depends on the profile-init target, which, in turn, depends on the -profile-pre-init and
-profile-post-init targets. You can override them in the build.xml file if there are additional
tasks you need to execute before and after a profiling session executes.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN192

8954Ch08.qxp 1/28/08 11:37 AM Page 192

The project.properties File
The project.properties file contains the name/value pairs of properties used throughout the
various Ant build files. It contains project settings, project configuration details, and directory
definitions. The build file will recognize the properties after execution of the following target
from the build-impl.xml file:

<target name="-init-project" depends="-pre-init,-init-private,-init-user">
<property file="nbproject/project.properties"/>

</target>

This target uses a property task to reference and load the information in the project.properties
file. The properties can then be referenced in the usual format of ${propertyName}.

The following are some of the key values in the project.properties file:

build.dir=build
build.classes.dir=${build.dir}/classes
build.test.classes.dir=${build.dir}/test/classes
dist.dir=dist
dist.javadoc.dir=${dist.dir}/javadoc
javac.source=1.5
main.class=com.email.NewFile
src.dir=src
test.src.dir=test

Some of these properties define directory paths; others define project settings. Such properties
as java.source and main.class can be set in the Project Properties window.

Working with Targets
You can activate the targets in the build configuration in several ways. The first and obvious is
through the main menu items that correlate to specific targets. The second is by running the
targets directly from the build files.

Locate the build.xml file in the Files window and right-click it to see the build file context
menu. The context menu contains two relevant items: Run Target and Debug Target.

Running Targets
From the build file context menu, expand the Run Target submenu. You will see several target
names displayed, as shown in Figure 8-3. If you click one of them, it will run that target. This is
handy, especially if there is a target you want to run that performs a small chunk of work you
need done without running the target that is at the beginning of a dependency chain.

Clicking the Other Targets option displays a submenu that allows you to execute the
remaining targets that are not in the first submenu.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN 193

8954Ch08.qxp 1/28/08 11:37 AM Page 193

Figure 8-3. Context menu for build files

Debugging Targets
One of the many interesting features NetBeans provides is the ability to debug Ant files. In much
the same way as you can debug Java source files, you can step through a build file line by line.

You can set a breakpoint in a build file, just as in a regular source code file: by clicking the
line number in the glyph margin, as shown in Figure 8-4. You can then activate the debugging
session for the target by right-clicking the build.xml file, selecting Debug Target, and choosing
run from the submenu. This will trigger a debugging session for the run target and allow you to
step through the build file.

Figure 8-4. Setting a breakpoint in an Ant build file

Since Ant is so tightly integrated with NetBeans, you can access full debugging informa-
tion using the IDE tools. For example, you can open the Local Variables window by selecting
Window ➤ Debugging ➤ Local Variables or via the shortcut Alt+Shift+1.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN194

8954Ch08.qxp 1/28/08 11:37 AM Page 194

As shown in Figure 8-5, a variety of variables are available during the debugging session.
As you step through the build file, you can watch the values of those variables. This can be
very useful if you need help debugging sporadic errors that occur while building your project
code.

Figure 8-5. Local variables during an Ant debug session

Stopping and Rerunning Targets
One of the new features of NetBeans 6 is the ability to stop Ant targets that are executing. This
can prove useful if you find an Ant target running for a long period of time or if you trigger a
particular target and quickly decide you need to run another. You can also trigger an Ant target
to run again. Rerunning a target is convenient if you are debugging a target and need to access
it quickly.

The buttons to stop and rerun Ant targets were added to the margin of the Output win-
dow. If you execute a build of a Java Application project the Output window should appear, as
shown in Figure 8-6. The build output displays as text with the message “BUILD SUCCESS-
FUL.” Notice the margin to the left of the Output window. The Rerun Ant Target button
displays two arrows pointing to the right. If you click it, the project build will execute again
and the output will be displayed in the window.

Figure 8-6. The Ant Stop and Rerun buttons in the Output window

When the Rerun Ant Target button is pressed, notice that the square Stop button under it
lights up. Even though it is enabled for only a moment, you can click this button to stop the
Ant target at any time (assuming your target takes a few seconds to execute or if you’re really
quick with the mouse).

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN 195

8954Ch08.qxp 1/28/08 11:37 AM Page 195

Creating Shortcuts to Ant Targets
For the past several versions, NetBeans has provided the ability to create shortcuts to Ant targets.
If there is a specific target you access frequently when working on a project, you can create a
shortcut, add it to a menu, or add it to a toolbar. This saves you the time of navigating the target
tree of the build.xml file in the Files window.

You can create keyboard, menu, and toolbar shortcuts to Ant targets. Follow these steps to
create all three types of shortcuts to the Javadoc Ant target:

1. In the Files window, find the build.xml file and click the plus sign next to the node to
display the tree list of Ant targets. Right-click the Javadoc target and select Create
Shortcut from the context menu.

2. In the “Create Shortcut to Ant Target” window, click the Add a Menu Item, Add a Tool-
bar Button check box, and Add a Keyboard Shortcut check box and click Next. As
shown in Figure 8-7, you need to select the menu on which you want the shortcut to
appear and name the shortcut. Once you have set the name and selected the menu,
click the Next button.

Figure 8-7. Selecting a menu for the shortcut and naming the menu item

3. On the next screen select the toolbar on which the Ant target shortcut will appear, such
as the Build toolbar, as shown in Figure 8-8. Then enter a value for the “Select toolbar
button text” field and click the Next button.

Figure 8-8. Selecting a toolbar for the shortcut and naming the toolbar text

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN196

8954Ch08.qxp 1/28/08 11:37 AM Page 196

4. Finally, press any combination of keys to select a keyboard shortcut for the Javadoc Ant
target. You can avoid keyboard shortcut conflicts by navigating to Tools ➤ Options and
viewing the existing shortcuts listed in the Keymap section of the Basic Options window.

With the new menu, toolbar, and keyboard shortcut, you have quick access to the “gener-
ate project JavadocAnt” target. An important thing to note is that these shortcuts are specific
to your project, not the IDE. If you close the project and open another, the shortcuts will not
apply to the newly opened projects.

■Tip The procedure described in this section can be used to create a shortcut for any Ant target. You can
create a set of toolbars and shortcuts to provide quick access to the Ant targets you plan to use most often.

Introduction to Maven
Maven is a project management and build tool similar to Ant. It allows you to manage your
project builds in a consistent manner while enforcing strict dependencies between projects.

You can work with Maven 2.X directly in NetBeans 6. Throughout the rest of this chapter I
refer simply to Maven, but I am referencing Maven 2, which is the version that the NetBeans 6
module supports.

Maven allows you to perform a build using a project object model (POM). It also uses a
common set of features and plugins that are made available in the Maven build system. Thus,
all projects you build using the Maven repository can share the same set of plugins, enabling a
uniform build process and a simpler experience for the developer. The NetBeans Maven plugin
attempts to make it even simpler by connecting pieces of Maven functionality to the menus
and tools with which NetBeans users are familiar.

Working with Maven Projects
NetBeans provides an excellent plugin for Maven 2. It allows you to generate Maven projects
directly in the IDE and perform many common actions with them. The Maven module is not
part of the NetBeans install by default. You need to download it using the Plugin Manager.

To download the Maven plugin, perform the following steps:

1. Select Tools ➤ Plugins from the main menu.

2. Select the Available Plugins tab and click the Reload Catalog button. The list of modules
displayed should refresh from the Update Centers you have previously configured.

3. Select the check box next to the Maven module and click the Install button.

4. On the confirmation pop-up that appears, click the Next button and accept the license
agreement. The Maven module will download and be installed.

5. If prompted, select to Restart the IDE. When NetBeans restarts, the Maven module will
be installed.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN 197

8954Ch08.qxp 1/28/08 11:37 AM Page 197

Configuring Maven Properties
The Maven plugin for NetBeans 6 allows you to configure a number of properties that affect
how it works. You can access the properties by selecting Tools ➤ Options from the main menu
to open the Basic Options window. Once it opens, click the Miscellaneous icon in the top navi-
gation menu and select the Maven 2 tab from the list that appears. The Maven properties will
be displayed, as shown in Figure 8-9.

Figure 8-9. The Maven properties in the Basic Options window

The Maven 2 tab allows you to set a variety of properties. By default, NetBeans uses the
Maven software that is bundled with the plugin. You can direct NetBeans to use an external
version of Maven by setting the “Maven Home” field. Click the Browse button next to the field
to select the local Maven repository on your machine.

There are also several sections in the Maven 2 tab that allow you to set the policy for
checksum validation, plugin updates, and multiproject build failures. These sections allow
you to customize how you want each event handled by selecting the appropriate radio button
in each section.

The “Index” field allows you to specify how the Maven repository of plugins and projects
is scanned for changes. You can set this field to various time periods or click the Index Now
button to trigger an immediate indexing of the repository.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN198

8954Ch08.qxp 1/28/08 11:37 AM Page 198

Creating Maven Projects
To create a new Maven project, do the following:

1. Select File ➤ New Project from the main menu.

2. Select Maven from the list of Categories in the left pane.

3. Select Maven Project from the list of Projects in the right pane.

4. Click the Next button.

5. On the Maven Archetype screen, select Maven Webapp Archetype to use as a template
for your project, as shown in Figure 8-10. This will create a typical Maven project for a
web application.

Figure 8-10. The Maven Archetype screen in the New Project wizard

6. Click the Next button to continue to the Name and Location screen.

7. On the Name and Location screen, enter a value for the “Project Name” field.

8. Select a value for the “Project Location” field by clicking the Browse button and choos-
ing a base directory for the project.

9. At the bottom of the Name and Location screen, enter the Maven-specific information for
the “Group Id,” “Version,” and “Package” fields, as shown in Figure 8-11. The “Package”
field is optional because you do not need to specify a package hierarchy, but it is strongly
recommended that you do so.

10. Click the Finish button to end the wizard and generate the project.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN 199

8954Ch08.qxp 1/28/08 11:37 AM Page 199

Figure 8-11. The Name and Location screen in the New Project wizard

The Maven project will be generated. If you look at the lines displayed in the Output win-
dow, you will see Maven attempt to download a number of libraries. The project will also
attempt an initial build.

Configuring Maven Project Properties
Each Maven project can be configured and customized beyond the general Maven properties.
Similar to Java Application and Web Application projects, you can right-click a project name
listed in the Projects window and select Properties from the context menu. The Maven Project
Properties window will appear.

The Maven Project Properties window provides several nodes in the Categories pane that
allow you to customize how the Maven project functions. The Categories listed allow you to do
the following:

General: Lets you set the Maven project data. You can change the “GroupId,” “ArtifactId,”
“Version,” “Packaging,” “Name,” and “Description” fields for the Maven project.

Sources: Displays the absolute directory path of the project folder. Also allows you to spec-
ify the Java Source/Binary Format for the project as well as the Encoding Format.

Run: Specifies properties for running the application. If the project is not a web application,
then when you click it, the Run category will display fields that allow you to set the Main
Class, Arguments, Working Directory, and VM options. These properties are similar to the
runtime properties for a Java Application project. If the Maven project is a Web Application,
the Run category node will display web server–related properties. You can specify the Java
application server (Tomcat, WebLogic, and so on), set the Context Path for the web applica-
tion, and set the Relative URL.

Actions: Lets you map the NetBeans project actions to the matching Maven goals. If you
select an action from the pane on the right, you will see the matching goal displayed in
the “Execute Goals” field, as shown in Figure 8-12. This lets you customize how Maven
runs the goals and passes them properties.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN200

8954Ch08.qxp 1/28/08 11:37 AM Page 200

Figure 8-12. The Actions node in the Maven Project Properties screen

Adding Library Dependencies
As previously mentioned, one of the benefits of using Maven as a build system is its excellent
ability to manage project dependencies. The NetBeans Maven plugin lets you take advantage
of this via the Libraries node of the Maven project in the Projects window.

To add a project dependency to a Maven project, right-click the Libraries node and select
Add Library from the context menu. The Add Library window will appear, prompting you to
enter the fields to identify the dependency. You can enter the “GroupId,” “ArtifactId,” and
“Version” fields to identify the dependency, as shown in Figure 8-13. The “Scope” field allows
you to specify what type of library dependency you are adding, such as compile time, runtime,
and so on.

Figure 8-13. The Add Library window for Maven project dependencies

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN 201

8954Ch08.qxp 1/28/08 11:37 AM Page 201

Once you fill out the required fields in the Add Library window, click the Ok button. The
library dependency will appear under the Libraries node for the Maven project in the Projects
window. You can view the contents of the dependent project by expanding the plus icon listed
next to the node. You can drill down and see what classes exist inside the project as well as
view the pom.xml for the dependent project.

Summary
This chapter provided a quick introduction to the Ant and Maven build tools. It covered the
concepts of targets and tasks and how they provide the necessary functionality to the build
process of your application.

Ant offers a full array of tasks that provide functionality such as compiling source code,
packaging class files, sending SMTP email, and sending files via FTP. Much of this functionality
is created and inserted into build files when you create a NetBeans Java project. The generated
build files are linked directly to menu items in NetBeans. As you use the build-related tools
available in the NetBeans IDE, you are actually executing Ant targets. Even though NetBeans
abstracts away many of the details, you should still be familiar with Ant and its functionality, in
case you want to customize or extend the build process.

Maven provides a project build tool similar to Ant but with better control over project
dependencies. It lets you take advantage of a local repository of libraries and plugins. The
NetBeans Maven plugin lets you create projects, configure dependencies, and take advantage
of all the standard goals that Maven provides.

NetBeans makes it easy to work with Ant and Maven, including compiling, testing, running,
and debugging projects. These build systems provide standard file structures, help enforce best
practices on your projects, and provide a repeatable suite of functions for working with projects.

CHAPTER 8 ■ MANAGING BUILDS WITH ANT AND MAVEN202

8954Ch08.qxp 1/28/08 11:37 AM Page 202

JUnit Testing

Untested code has the potential to contain errors and bugs. Whether caused by an invalid
assumption, an explicit coding mistake, or an otherwise-unknown issue, bugs that appear in
code cause problems. Developers lose time trying to find such mistakes, organizations lose
productivity, and companies lose money. For more critical systems, human lives can be lost if
a software glitch occurs. This is why developers test code.

Testing should come as naturally as breathing. Every time code is being written, it should
have a matching test. I won’t go into the hotly debated topic of exactly when a test should be
written. Some say after the code is finished, and some say before a single line of code is writ-
ten. This chapter makes the general assumption that you write a class and then write a test.
For those of you who write tests first, I also review how to create empty JUnit test classes.

An industry-standard mechanism for testing code is via a framework called JUnit. This
framework defines a simple API to extend to implement tests. JUnit tests can be executed via
the command line, Ant tasks, or numerous Java tools.

Full support for JUnit is bundled directly into NetBeans. NetBeans provides various wiz-
ards and code-generation tools for the supported JUnit version (JUnit 3 and 4 at the time of
this writing).

Creating a JUnit Test Case
There are two scenarios for creating JUnit tests in NetBeans. The first is writing a test for a class
that does not yet exist. The second is generating a JUnit class to test an existing Java source file.

Creating a New Test Class
NetBeans provides an option in the New File wizard for different types of JUnit classes. Here
are the steps for creating a new empty test:

1. For any open Java project, right-click the project name in the Projects window and
select New ➤ Other.

2. In the wizard, select the JUnit category. In the File Types section on the right, select the
JUnit Test item. Then click the Next button.

203

C H A P T E R 9

8954Ch09.qxp 1/28/08 11:38 AM Page 203

3. In the New JUnit Test window, shown in Figure 9-1, enter a class name. It is predefined
as NewEmptyJUnitTest, but can be changed to whatever you need. Typically, JUnit tests
follow a standard naming convention. If the class that will be tested is called MyFile,
then the matching JUnit test is usually named MyFileTest. Though not required, this is
a best practice.

Figure 9-1. Generating an empty JUnit test class

4. If desired, you can change the values in the “Location” and “Package” fields. The “Loca-
tion” field should be set to Test Packages, and the “Package” field is initially blank. If
you right-click the name of a package that already exists in the Test Packages node and
create a new empty test, this field is prepopulated with the package name.

5. You can select the check boxes to have the NetBeans New File wizard automatically
generate method stubs for the “Test Initializer” and “Test Finalizer” fields. In simplest
terms, these are generic utility methods used in a test class, but they are optional.

6. Optionally, select the Source Code Hints check box. If this is checked, NetBeans will
insert some suggestions into the generated JUnit test file.

7. When you click the Finish button you will be prompted to choose a JUnit version for
the JUnit test to use to generate the test skeleton.

8. Choose the radio button next to the appropriate version and click the Select button.

For ease of viewing, the comments have been stripped from the file, but the resulting
code looks like the following for JUnit 3.x:

CHAPTER 9 ■ JUNIT TESTING204

8954Ch09.qxp 1/28/08 11:38 AM Page 204

package com.pronetbeans.examples;
import junit.framework.*;

public class NewEmptyJUnitTest extends TestCase {

public NewEmptyJUnitTest(String testName) {
super(testName);

}
@Override
protected void setUp() throws Exception {

super.setUp();
}

@Override
protected void tearDown() throws Exception {

super.tearDown();
}
// TODO add test methods here. The name must begin with 'test'. For example:
// public void testHello() {}

}

The NewEmptyJUnitTest class imports the standard junit.framework package. It also extends
TestCase, which is the superclass for all JUnit tests. The empty method stubs for the setUp and
tearDown methods have been generated and can be modified if desired.

Currently, there are no test methods in the NewEmptyJUnitTest class. If you selected the
Source Code Hints check box in the wizard, you will see a TODO directive in the code (as in the
preceding example), which will show up in the NetBeans Task List window.

■Tip You can open the NetBeans Task List window by selecting Window ➤ Task List or using the keyboard
shortcut Ctrl+6. The Task List window allows you to track all the TODO comments in your code. You can jump
directly to them in the source by double-clicking any TODO listed in the window.

For the same JUnit test, the code that gets generated for JUnit 4.x looks like the following:

public class NewEmptyJUnitTest {

public NewEmptyJUnitTest() {
}

@BeforeClass
public static void setUpClass() throws Exception {
}

CHAPTER 9 ■ JUNIT TESTING 205

8954Ch09.qxp 1/28/08 11:38 AM Page 205

@AfterClass
public static void tearDownClass() throws Exception {
}

@Before
public void setUp() throws Exception {
}

@After
public void tearDown() throws Exception {
}

}

The JUnit 4.x version uses annotations to mark up the methods in the test class. The method
names are unimportant in the JUnit 4.x version and can really be named almost anything you
want, as long as they have the appropriate annotations applied.

Creating a Test for an Existing Class
You can also create a new JUnit test class by modeling the test on an existing Java source file.
The NetBeans JUnit module will examine the source file and generate method stubs and sam-
ple test code in each method. For example, suppose you have the following Calc class:

public class Calc {

public int checkNum(int origVal) {

int returnVal = 0;

if(origVal > 10) {
returnVal = origVal - 1;

}
else {

returnVal = origVal + 1;
}

return returnVal;
}

}

This code contains a checkNum method, which takes a single parameter as an int primitive,
performs a simple check comparison on it, and returns a modified value. To make sure this
code functions as expected, you want to exercise the method using a variety of tests. You also
want the tests to be repeatable, so you decide to create a JUnit test.

CHAPTER 9 ■ JUNIT TESTING206

8954Ch09.qxp 1/28/08 11:38 AM Page 206

Using the Create Tests Dialog Box
To create the JUnit test based on the Calc class, right-click the Calc class name in the Projects
window and select Tools ➤ Create JUnit Tests. With a class selected, you can also use the key-
board shortcut Ctrl+Shift+U. The Create Tests dialog box will appear, as shown in Figure 9-2.

Figure 9-2. The Create Tests dialog box for generating JUnit tests

The Create Tests dialog box has several fields already filled out. The “Class Name” field con-
tains a package and class name for the JUnit test. You can change this to whatever you want,
but typically the package name should mirror the same package as the original source file.

■Note Remember the NetBeans project structure. The src directory contains the source packages, and
the test directory contains the test sources. You can have a test with the same package name as its match-
ing source class without having them in the same directory.

In the Create Tests dialog box, you can also specify the method access levels that will be
included for the new JUnit class. These determine which methods in the original source file
will have matching JUnit test methods generated.

The Optional Code section allows you to specify what is autogenerated in the test. You can
have the wizard generate the Test Initializer and Test Finalizer methods as well as the default
method bodies for all the methods that will be tested.

The Optional Comments section has check boxes for comments and hints. The Javadoc
Comments option directs the wizard to generate standard Javadoc for the test methods that
are created. The Source Code Hints option inserts TODO directives or other comments into the
code as hints to the programmer of actions to take.

CHAPTER 9 ■ JUNIT TESTING 207

8954Ch09.qxp 1/28/08 11:38 AM Page 207

Once you have specified the options you want, click the OK button. The JUnit test will be
generated.

■Tip During the process of creating a JUnit test, you are prompted to choose either JUnit 3.x or JUnit 4.x.
Once you have made that choice, the IDE remembers it. The next time you create a JUnit test, it skips
prompting you for the version. NetBeans adds the correct JUnit version’s library to the list of compile-time
test libraries. If you want to change the version of JUnit your project uses, simply remove the library from
the Test Libraries node in the Projects window.

Using the New File Wizard
An alternate method of creating a test for an existing class is to use the New File wizard. Select
New ➤ Other. In the JUnit category, select the Test for Existing Class option and click the Next
button. You’ll see the New Test for Existing Class window, as shown in Figure 9-3. This window
looks very similar to the Create Tests dialog box (see Figure 9-2), but with two main differ-
ences. First, you need to specify the class you want to test. Click the Browse button and
navigate the project package structure to find the class you want to test. Once you have
selected which class to test, you will notice the other difference. In the “Created Test Class”
field, you’ll see that the wizard automatically named the JUnit test class for you based on the
class you selected to test.

Figure 9-3. Creating a JUnit test for an existing class

CHAPTER 9 ■ JUNIT TESTING208

8954Ch09.qxp 1/28/08 11:38 AM Page 208

Viewing the Test
Whether you use the New File wizard or the Create JUnit Tests wizard, once the test class is
generated it will open in the Source Editor window. You will also see that the package and class
are listed under the Test Packages node in the Projects window.

Here is an excerpt from the sample CalcTest class for JUnit 3.x:

/**
* Test of checkNum method, of class com.pronetbeans.examples.Calc.
*/
public void testCheckNum() {

System.out.println("checkNum");

int origVal = 0;
Calc instance = new Calc();

int expResult = 0;
int result = instance.checkNum(origVal);
assertEquals(expResult, result);

// TODO review the generated test code and remove the default call to fail.
fail("The test case is a prototype.");

}

The wizard analyzed the Calc class, determined that the public method checkNum should be
included, and generated a test method for it named testCheckNum.

The testCheckNum method includes sample test code. This is the result of selecting the
Default Method Bodies check box in the wizard. This test code does the following:

• Declares an int named origVal and sets it to zero

• Creates an instance of the Calc class named instance

• Declares an int named expResult and sets it to zero

• Passes the origVal variable to the checkNum method of the Calc class instance

• Sets the int that is returned to an int variable named result

• Calls a JUnit method assertEquals to test if the expected result (expResult) matches the
actual result (result)

• Automatically fails the test by calling the JUnit method fail

The intention of this test is to pass a sample value to Calc.checkNum and compare the
expected return result with the actual return result. The call to the fail method is automati-
cally inserted into the test method to make sure that you at least review the method prior to
running it. The fail and assertEquals methods are inherited from the TestCase superclass.

CHAPTER 9 ■ JUNIT TESTING 209

8954Ch09.qxp 1/28/08 11:38 AM Page 209

The foregoing testCheckNum JUnit test method would appear as follows if you used JUnit
4.x to generate the test:

/**
* Test of checkNum method, of class com.pronetbeans.examples.Calc.
*/
@Test
public void checkNum() {

System.out.println("checkNum");

int origVal = 0;
Calc instance = new Calc();

int expResult = 0;
int result = instance.checkNum(origVal);
assertEquals(expResult, result);

// TODO review the generated test code and remove the default call to fail.
fail("The test case is a prototype.");

}

The JUnit 4.x version of the test does not vary much from the JUnit 3.x version. The main
difference is the @Test annotation that flags the method as a JUnit test. It also does not contain
the word test in the name of the method.

■Tip In the test file in the Source Editor, you can press Ctrl+Spacebar to open the code completion box.
Here, you can review the numerous overloaded assertEquals methods and the other inherited JUnit meth-
ods available in the test class.

Modifying the Test
In this example, you will want to make a few changes to the code to make sure the test will pass.
First, change the value of the origVal variable to 20. The Calc.checkNum method takes the value
20 and performs an if-else check on it. It should then subtract 1 from the value and return the
value 19. Knowing what the method should return, you can set the expResult variable in the
testCheckNum method to a value of 19. If you make these changes and remove the explicit call to
fail, the resulting test method looks like this (JUnit 3.x):

public void testCheckNum() {
System.out.println("checkNum");

CHAPTER 9 ■ JUNIT TESTING210

8954Ch09.qxp 1/28/08 11:38 AM Page 210

int origVal = 20;
Calc instance = new Calc();

int expResult = 19;
int result = instance.checkNum(origVal);
assertEquals(expResult, result);

}

and this (JUnit 4.x):

@Test
public void checkNum() {

System.out.println("checkNum");

int origVal = 20;
Calc instance = new Calc();

int expResult = 19;
int result = instance.checkNum(origVal);
assertEquals(expResult, result);

}

When the JUnit test classes execute, the testCheckNum and checkNum methods should now pass.
You do not have to use one of the assertEquals methods to pass or fail a test method. You

can perform any manual comparison you like and explicitly fail the test case. Suppose you
want the expected result to be 18. Based on an original value of 20, the actual result should be
19. You could write a test to check if the expected and actual results were equal and fail the
test, since they should not be equal, like this:

public void testCheckNumFail() {

int origVal = 20;
Calc instance = new Calc();

int expResult = 18;
int result = instance.checkNum(origVal);
if(expResult == result) {

fail("The expected result should NOT match the actual result.");
}

}

Running JUnit Tests
Once you have written JUnit tests, you need to execute them. You can choose to run all the
tests in a project or to run a test individually.

CHAPTER 9 ■ JUNIT TESTING 211

8954Ch09.qxp 1/28/08 11:38 AM Page 211

You can run the tests for an entire project in any of the following ways:

• Right-click the project name and select Test Project from the context menu.

• From the main menu, select Run ➤ Test “Project-Name.”

• Use the keyboard shortcut Alt+F6.

You can run a single test in any of the following ways (using the Calc class test from the
previous section as an example):

• Right-click the test class under the Test Packages node in the Projects window and
select Run File. NetBeans knows it should be run as a JUnit test.

• If the test class is open in the Source Editor, right-click anywhere in the code and select
Run File from the context menu.

• If the test class is selected in the Source Editor, Projects, or Files window, then from the
main menu select Run ➤ Run File ➤ Run “Calc.java.”

• If the test class is selected, use the keyboard shortcut Shift+F6.

• If the test’s matching source class is open, select Run ➤ Run File ➤ Test “Calc.java.” This
will execute the matching JUnit test in the Test Packages node.

Viewing Test Results
After one or more JUnit tests have executed, you can view the results in the JUnit Test Results
window. To open this window, select Window ➤ Output ➤ JUnit Test Results. Figure 9-4 shows
an example of test results.

Figure 9-4. The JUnit Test Results window after test case execution

At the top of the JUnit Test Results window are two buttons that represent different views of
the JUnit results and a button for filtering results. By default, the Statistics view appears. Clicking
the Output button displays the standard output and error results from the JUnit test execution. If
you used System.out.* or System.err.* in any of the tests or tested classes, the data will be listed.

The button to the right of the Output button allows you to filter the view to show only failed
tests. If you click this filter button and execute the project tests, you will see lines displayed only
for test classes that had at least one failure. This is a nice feature, especially if you are running

CHAPTER 9 ■ JUNIT TESTING212

8954Ch09.qxp 1/28/08 11:38 AM Page 212

hundreds of tests and receiving only a handful of failures. You can quickly see what is failing and
avoid having to scroll down a long list of test classes that passed.

In the Statistics view for this example, you see the message “Both tests passed,” since only
two test methods were created. For each JUnit test class in the test package, you should see an
individual line, with the fully qualified class name and a pass/fail label next to it.

You can click the plus icon next to the class name to expand the class and display the
individual method test cases. If a test method passed, it will be listed with a green “passed”
label, along with the approximate time it took to execute.

To see what happens when a test fails, you can modify the CalcTest code from the previous
section. In the testCheckNumFail method, change the code int expResult = 18; to read int
expResult = 19;. The expected and actual results will then be equivalent, the if statement will
pass, and the explicit call to the fail method will run, thereby failing the test case. After chang-
ing the code and running the JUnit tests, the JUnit Test Results window should display the
results shown in Figure 9-5.

Figure 9-5. The JUnit Test Results window after a test fails

In this example, the Statistics view now shows the message “1 test passed, 1 test failed.”
Alongside the fully qualified class name is a red “FAILED” message. If numerous classes were
listed, you could quickly pick out which class had at least one failure in it. Clicking the plus
icon next to the class displays the individual test methods.

One of the nice features of the JUnit Test Results window is that, for any test method that
failed, you can see error-related output by clicking the plus icon next to it. The message “The
expected result should NOT match the actual result” was the text that was logged with the
explicit call to the fail method in the CalcTest.testCheckNumFail method. You can double-
click the line that lists that the testCheckNumFail method failed, and the CalcTest class will
open in the Source Editor.

Generating Test Case Reports
An additional option for viewing JUnit results data is available. Since NetBeans projects are lay-
ered on top of Ant, you can use the JUnit Ant tasks to generate test case reports. (See Chapter 8
for more information about Ant tasks.)

Listing 9-1 shows a sample Ant task that allows you to execute the project test classes and
generate a special output of JUnit test results.

CHAPTER 9 ■ JUNIT TESTING 213

8954Ch09.qxp 1/28/08 11:38 AM Page 213

Listing 9-1. Ant Task for Executing Test Classes and Generating Test Result Output

<target name="JUnit-Tests-With-Reports" depends="compile,compile-test">
<junit fork="yes" dir="${basedir}" failureProperty="test.failed">

<classpath location="${build.classes.dir}" />
<classpath location="${build.test.classes.dir}" />
<formatter type="xml" />
<test name="${testcase}" todir="${reports.junit.dir}" if="testcase" />
<batchtest todir="${reports.junit.dir}" unless="testcase">

<fileset dir="${test.src.dir}">
<include name="**/*Test.java" />

</fileset>
</batchtest>

</junit>

<junitreport todir="${reports.junit.dir}">
<fileset dir="${reports.junit.dir}">

<include name="TEST-*.xml" />
</fileset>
<report format="frames" todir="${reports.junit.dir}" />

</junitreport>

</target>

The target is named JUnit-Tests-With-Reports, so it stands out as a custom Ant task in your build
file. It depends on the NetBeans project targets of compile and compile-test, so each time this
target is executed, the code in the Source and Test Packages nodes is always compiled afresh.

It then uses the junit and junitreport Ant tasks. The script defines several classpath and
directory properties to tell the Ant tasks where the source is located, which files to include,
where to dump the output of the JUnit test execution, and where the final JUnit test results
report is deposited. The property ${reports.junit.dir} is defined higher up in the build file
as follows:

<property name="reports.junit.dir" value="reports/junit/" />

I use a reports base directory so that my other plug-ins can deposit results into subdirectories
within it.

Once you have created the new target, you can trigger it to run the project tests and
generate the JUnit report files any time you wish. The JUnit test result format is similar to a
Javadoc-style web site. It lists the tests by package and class and displays the pass/fail results
for each individual method. Figure 9-6 shows a sample test results report. As you can see, this
report provides information that is nearly the same as that in the NetBeans JUnit Test Results
window. However, with this approach, you can zip or tar the report files and catalog the results
or send them to a colleague.

CHAPTER 9 ■ JUNIT TESTING214

8954Ch09.qxp 1/28/08 11:38 AM Page 214

Figure 9-6. A sample JUnit test results report

Configuring JUnit Properties in NetBeans
You may have noticed that as you use the various JUnit wizards and tools, several properties
are enabled or disabled by default (see Figures 9-1, 9-2, and 9-3).

As you create more and more test cases, you will not want to have to repeatedly check the
same properties that you use most often. You can set which JUnit properties are enabled by
default to save time when generating JUnit test classes.

To set the properties, select Tools ➤ Options. Click the Advanced Options button. In the
left pane under the Testing folder, select the JUnit Tests option. The pane on the right will dis-
play the JUnit default properties, as shown in Figure 9-7. Using the check boxes, you can
disable and enable properties as desired.

■Tip The Test Skeleton Generator property contains the values JUnit 3.x, JUnit 4.x, and Ask. Using this
property you can set JUnit either to generate test skeletons for a specific version of JUnit every time or to
ask you which version. Since I do a lot of Java 5 work, I tend to set this to JUnit 4.x so that I can include
annotations in my test classes.

CHAPTER 9 ■ JUNIT TESTING 215

8954Ch09.qxp 1/28/08 11:38 AM Page 215

Figure 9-7. The JUnit default properties in the Advanced Options window

The properties in the Expert section offer additional settings:

Generate main Method: Specifies that a main method should be generated during the
creation of the JUnit test.

Body of the main Method: Contains the default method body for the main method that is
created. Adding a main method to your JUnit tests is necessary if you want to execute your
tests from the command line.

Summary
This chapter covered how to run JUnit tests on your code, whether JUnit 3.x or 4.x. Writing tests
that are thorough and repeatable provides a comfort level as source code evolves. Programmers
can make enhancements to application code, run the set of project tests, and know what passes
and fails.

The industry standard for testing is the JUnit framework. NetBeans provides support for
JUnit via Ant build files and several integrated tools. You can use NetBeans to generate tests
based on existing classes, execute all tests in a project, and view test results directly within
the IDE.

CHAPTER 9 ■ JUNIT TESTING216

8954Ch09.qxp 1/28/08 11:38 AM Page 216

Refactoring

Refactoring capabilities are very important when working in the software industry. Anyone
who has ever had to overhaul an existing code base has run into issues with changing code.
One of the most common examples is moving classes between packages and having to edit
the package statements manually at the top of each file. Another example is wanting to delete
an element in code (such as a class member or an old utility method) and not knowing if code
in your application still makes use of that element.

Performing these types of operations manually can be time consuming and prone to error.
In the days before advanced development environments, programmers used simpler tools, like
basic text editors, vi, or Emacs. While some of these tools allow you to search, match, and replace
text, they are not Java-aware and thus may produce incorrect results.

With the advanced capabilities available in IDE tools like NetBeans, developers have tool
sets for refactoring code. With access to parsed source files and near-real-time syntax validation,
NetBeans can intelligently allow a developer to alter source code.

In this chapter, we review the NetBeans refactoring options.

NetBeans Refactoring Options
NetBeans provides many refactoring options on its Refactor menu:

• Move

• Rename

• Copy

• Safe Delete

• Use Supertype Where Possible

• Move Inner to Outer Level

• Encapsulate Fields

• Pull Up

• Push Down

• Convert Anonymous to Inner

217

C H A P T E R 1 0

8954Ch10.qxp 1/28/08 11:39 AM Page 217

• Introduce Variable, Constant, Field, or Method

• Extract Interface

• Extract Superclass

• Change Method Parameters

These refactorings are discussed in more detail in the following sections. Executing each refac-
toring presents a dialog box with options for the corresponding refactoring. All of them
include a Preview button that allows you to simulate the refactoring.

When it comes to refactoring, no tool is perfect, so I recommend previewing changes
before applying them. As shown in Figure 10-1, the preview window allows you to review each
and every change that will be made to your code before it is applied. For most of the refactor-
ings, the preview window will also display a Diff window. This will show the existing class
compared to what the updated class would look like after the refactoring. This is a powerful
new feature in NetBeans 6, since you can see each change actually highlighted in the source
code.

Figure 10-1. Previewing changes for Rename refactoring

The icons along the left side of the preview window let you work with the preview as follows:

• The top icon refreshes the refactoring changes listed in the window in case anything
changes, such as code edits in the Source Editor.

• The second icon collapses or expands the tree hierarchy of the changes. This can be
very useful when the list of changes is long.

• The third icon displays the logical view of the refactoring actions that will be per-
formed. Each potential change is listed by each class underneath each package.

• The fourth icon displays the physical view of the refactoring actions that will be per-
formed. Each potential change is listed by each class.

• The last two icons let you navigate up and down to each change.

CHAPTER 10 ■ REFACTORING218

8954Ch10.qxp 1/28/08 11:39 AM Page 218

As you use the icons to navigate up and down the changes in the preview window, the Diff
comparison window will automatically jump to and display the matching change. This lets
you examine each change if you are concerned about the validity of the refactoring. You can
either click the Do Refactoring button to apply the changes or click Cancel if you don’t want
the changes to be made.

Move Class Refactoring
Moving a Java class from one package to another seems like a simple task at first glance. A
developer can manually copy and paste a source file into the new directory and then edit the
package statement at the top of the file. However, if other classes import or reference that
class, then the developer must also search through and modify those files.

In NetBeans, Move Class refactoring does exactly what the name implies. It allows you to
move a Java class to a different project or a different package hierarchy or between source and
test packages. It also corrects the references to the moved class that exist in other classes.

To apply Move Class refactoring, select a class, and then choose Refactor ➤ Move. You will
see the Move Class dialog box, as shown in Figure 10-2. In the Move Class dialog box, you can
choose to move the class to a different project, source package location, or package.

■Tip If you move one or more classes to the wrong package and apply the changes, don’t panic. Most
refactorings can be undone in NetBeans. From the main Refactoring menu, just select the Undo option.

Figure 10-2. The Move Class dialog box

You can also activate Move Class refactoring by dragging and dropping a class in the
Projects window into a different location. The only difference in using the refactoring in this
manner is that an additional option appears in the Move Class dialog box: Move Without
Refactoring. If this option is checked, NetBeans moves the class without scanning additional
classes to correct references to the moved class. You might want to use this option if you need
to move a class out of a package temporarily and move it back later. For example, while testing
a package or running some analysis tool against a package, you may want to quickly exclude a
class under development.

CHAPTER 10 ■ REFACTORING 219

8954Ch10.qxp 1/28/08 11:39 AM Page 219

Rename Refactoring
Rename refactoring can serve two main purposes:

Renaming Java classes: Rename refactoring allows you to change not only the name of the
class but also any constructors, internal usages, and references to the renamed class by
other classes. If you need to rename a Java class, this is definitely the way to do it.

Renaming entire package structures: This can be useful if a programmer named a package
incorrectly or misspelled a word that appears in the package structure. Rather than hav-
ing to make the corrections manually, you can apply the Rename option to correct the
errors all at once across the entire project.

To rename a class or package, select it and choose Refactor ➤ Rename. Enter the new name
in the Rename Refactoring window and click the Refactor button. The changes will be made to
the package name. If you want to preview the changes before executing the refactoring, click the
Preview button instead. The Preview Refactoring window will appear listing each change to be
made.

Safe Delete Refactoring
During the software development process, programmers frequently revisit previously written
code. They review what was written and decide what can and cannot be cleaned up and
removed. One common mistake is removing a class member variable that you think is not used,
only to find out it does indeed appear in your code, and now your class does not compile.

With Safe Delete refactoring, you can identify each usage of a class, method, or field in
code before deleting it. This functionality can be invaluable, especially if you are removing a
class method that may be used by multiple classes.

For example, consider the following code fragment, which is a sample method that
declares several method local variables and performs some nonsense operations:

public void calc() {

int y = 2;
int x = 0;
int z = 0;

z = x + y;

if(z>3) {
System.out.println("Z was greater than 3");

}
else if(y==2){

System.out.println("x = " + x);
}

}

During a review of this class, you decide to delete the variable x. You could visually scan the
class to see if the x variable is being used anywhere. In this example, it is pretty easy to find x

CHAPTER 10 ■ REFACTORING220

8954Ch10.qxp 1/28/08 11:39 AM Page 220

as output in the System.out.println statement. However, if this method were a 100 lines long
and contained multiple nested statements, spotting x would be much more difficult.

To execute the Safe Delete refactoring, highlight the variable you want to delete (x in the
example) and select Refactor ➤ Safe Delete from the main menu. In the Safe Delete dialog box,
checking the Search in Comments check box makes sure that the element is also deleted in any
Javadoc comments in which it may appear. The only other option is the standard Preview but-
ton, allowing you to review each change before it is made.

If an element is used nowhere in your code, it is safe to delete. However, if the element
you are attempting to delete is used somewhere in your code, some additional steps may be
necessary. After clicking the Refactor button in the initial Safe Delete dialog box, a list of errors
and warnings will appear, as shown in Figure 10-3. As long as only warnings are displayed, you
can proceed with the refactoring.

If you see errors in the list, you’ll need to do a bit of work. The Show Usages button is key
to resolving any sections in your code that reference the variable being deleted. Click the Show
Usages button to open the Usages window, as shown in Figure 10-4.

Figure 10-3. List of errors and warnings for Safe Delete refactoring

The Usages window displays each usage of the element you are trying to delete. Click a
usage in the window, and the exact line in the source code will open in the Source Editor win-
dow. After navigating to each usage and manually correcting the code not to use the variable
being deleted, you can click the Rerun Safe Delete button.

Figure 10-4. Viewing usages of the element to delete

CHAPTER 10 ■ REFACTORING 221

8954Ch10.qxp 1/28/08 11:39 AM Page 221

Safe Delete refactoring may seem like a waste of time in certain circumstances. For
instance, you may not need it if you are deleting a local variable in a method that is five or ten
lines long. It is most useful if you have a class member variable or method that runs across
numerous classes. The Safe Delete option allows you to review each usage and make sure you
do not delete the element until there are no more references to it.

Use Supertype Where Possible Refactoring
Use Supertype Where Possible refactoring converts usage of a subclass to a superclass. Suppose
you have the following code in a source file:

ArrayList myarray = new ArrayList();

If you want to convert it to use a specific superclass, double-click or highlight the object type
ArrayList and select Refactor ➤ Use Supertype Where Possible. You’ll see the Use Supertype
dialog box, which allows you to select a superclass or interface, as shown in Figure 10-5.

Figure 10-5. Use Supertype Where Possible dialog box for java.util.ArrayList

Obviously, this is a ridiculously simple example, but it demonstrates the core functionality.
This method can also be used in conjunction with Extract Superclass refactoring, described
later in this chapter.

Move Inner to Outer Level Refactoring
Move Inner to Outer Level refactoring converts an inner class to a separate external class
declared in its own file. Suppose you have the following code, in which the InnerClass class
is declared inside the OuterClass class.

public class OuterClass {
public class InnerClass {

public void execute() {
System.out.println("execute...");

}
}

}

CHAPTER 10 ■ REFACTORING222

8954Ch10.qxp 1/28/08 11:39 AM Page 222

To move the InnerClass class to its own source file, highlight the class name and select Refactor
➤ Move Inner to Outer Level. In the Move Inner to Outer Level dialog box, you can specify a
new name for the class that is being moved, as shown in Figure 10-6. This can be convenient,
especially since inner classes are often named to make sense within the context of the contain-
ing outer class. Optionally, you can select to declare a field for the current outer class and enter
a name for that field.

Figure 10-6. The Move Inner to Outer Level dialog box

If you apply the refactoring without selecting the Declare Field check box, then when you
click the Refactor button, the following code results:

public class InnerMain {
public void execute() {

System.out.println("execute…");
}

}

The InnerClass code is moved to its own individual source file with its new name, InnerMain,
in the same package as OuterClass.

If you select the Declare Field for the Current Outer Class option and name a variable, the
refactored code looks like this:

public class InnerMain {

com.pronetbeans.examples.OuterClass outer;

public void execute() {
System.out.println("execute...");

}
}

This option can be useful when separating the classes, especially if the InnerClass class made
use of the members or methods of the OuterClass class.

CHAPTER 10 ■ REFACTORING 223

8954Ch10.qxp 1/28/08 11:39 AM Page 223

Encapsulate Fields Refactoring
When writing applications, it is often useful to represent objects in the real world as classes
with attributes. For example, you may choose to represent the fields for an employee as an
Employee class with first name and last name public members:

public class Employee {
public String FirstName;
public String LastName;

}

Of course, you might also include address, phone number, organizational, and personal fields
in the class.

Such an Employee class is quick and easy to work with, such as in the following code:

public class NewHire {
public static void main(String[] args) {

Employee newemp = new Employee();
newemp.FirstName = args[0];
newemp.LastName = args[1];
saveEmployee(newemp);

}
}

In the NewHire class, an instance of Employee is instantiated and the FirstName and LastName
fields are set from the arguments passed on the command line. (Obviously, there are a lot of
problems with the code in the NewHire class, such as no parameter or error checking, but here
we are just focusing on the topic of encapsulation.)

As a programmer, you should be starting to realize this approach has some negative design
features. For example, suppose your client has requested that the employee name be stored in
the database with initial capital letters, such as John Smith. However, in the application the val-
ues need to be processed in uppercase. You could rewrite the entire application to add the usage
of String.toUpperCase() anywhere the Employee.FirstName and Employee.LastName fields are
output or processed throughout the entire code base. You could also encapsulate the fields.

Encapsulation involves controlling access to a class member variable using getter and set-
ter methods. The class member variable is set to private so that no code outside the class can
interact with it. The getter and setter methods are usually given a public accessor so that any
code can retrieve or set the value of the member variable.

In the following code, the Employee class has been modified to use getters and setters for
the FirstName and LastName member variables:

public class Employee {
private String FirstName;
private String LastName;

public void setFirstName(String FirstName) {
this.FirstName = FirstName;

}

CHAPTER 10 ■ REFACTORING224

8954Ch10.qxp 1/28/08 11:39 AM Page 224

public String getFirstName() {
return this.FirstName;

}

public void setLastName(String LastName) {
this.LastName = LastName;

}

public String getLastName() {
return this.LastName;

}
}

You can also modify the code in the NewHire class to interact with the updated Employee
class. The NewHire class must now use the getter and setter methods:

public class NewHire {
public static void main(String[] args) {

Employee newemp = new Employee();
newemp.setFirstName(args[0]);
newemp.setLastName(args[1]);

saveEmployee(newemp);
}

}

With this type of design, you are in a better position to modify the code to handle special
conditions. In the example, the code in the Employee class can be modified to convert the
member variables to uppercase when they are set using Employee.setFirstName and
Employee.setLastName:

public class Employee {
private String FirstName;
private String LastName;

public void setFirstName(String FirstName) {
if(FirstName!=null) {

this.FirstName = FirstName.toUpperCase();
} else {

this.FirstName = null;
}

}

public String getFirstName() {
return this.FirstName;

}

CHAPTER 10 ■ REFACTORING 225

8954Ch10.qxp 1/28/08 11:39 AM Page 225

public void setLastName(String LastName) {
if(LastName!=null) {

this.LastName = LastName.toUpperCase();
} else {

this.LastName = null;
}

}

public String getLastName() {
return this.LastName;

}
}

■Note It is usually preferable to perform any data conversion, checking, or modification in the setter method
for a member variable rather than in the getter method. If the data conversion is implemented in the getter,
each time the data is retrieved, the data conversion will take place, thus reducing performance slightly.

Generally, it is a common best practice never to have a public member of a class for which
you write other code to set or get the value. Arguably, the only exception to the rule is with
static constants.

Now that you have read a quick review of a key object-oriented concept, we can discuss
how NetBeans can assist in encapsulation. (I apologize to those of you groaning about now, but
this is one of the most frequent mistakes I see programmers make, so it deserves some review.)

Encapsulate Fields refactoring in NetBeans allows you easily to implement the design
paradigm of encapsulation. It helps you to generate getter and setter methods for the mem-
bers of a class to enforce good design.

Suppose you have the simple Employee class shown at the beginning of this section:

public class Employee {
public String FirstName;
public String LastName;

}

If you highlight the name of the class and select Refactor ➤ Encapsulate Fields, the Encapsulate
Fields dialog box will list all the class fields, unselected by default. If you highlight a specific class
field and select the Encapsulate Fields option, the dialog box will still display the entire list of
fields in the class, but only the field you highlighted will be selected. For example, if you high-
lighted the FirstName field, the dialog box will list both the fields, as shown in Figure 10-7.

You can disable or enable creation of the getter and setter methods using the check box
next to each one. In this dialog box, you can also manually alter the names of the getter and
setters methods. The “Fields’ Visibility” and “Accessors’ Visibility” drop-down lists allow you to
set the access level to the original fields (should be private) and to the getters and setters
(should be public), respectively.

CHAPTER 10 ■ REFACTORING226

8954Ch10.qxp 1/28/08 11:39 AM Page 226

Figure 10-7. Encapsulate Fields dialog box

In my opinion, the Use Accessors Even When Field Is Accessible option should always
remain checked. Then the refactoring procedure attempts to correct code in other classes that
use the class member variables and convert it to use the accessors (getters and setters). The
only time you might want to disable this option is when you set the Fields’ Visibility option to
anything other than private. The refactoring will then perform the Encapsulate Fields opera-
tion but will not convert code to use the accessors.

Once the overall refactoring is complete, the Employee class should look like this:

public class Employee {
private String FirstName;
private String LastName;

public String getFirstName()
{

return FirstName;
}

public void setFirstName(String FirstName)
{

this.FirstName = FirstName;
}

public String getLastName()
{

return LastName;
}

public void setLastName(String LastName)
{

this.LastName = LastName;
}

}

CHAPTER 10 ■ REFACTORING 227

8954Ch10.qxp 1/28/08 11:39 AM Page 227

Pull Up Refactoring
Pull Up refactoring is useful when dealing with classes and superclasses. It allows you to move
class members and methods from a subclass up into the superclass.

For example, suppose you have a Vehicle class and a Truck class that extends Vehicle:

public class Vehicle
{

public void start()
{

// start the vehicle
}

}

public class Truck extends Vehicle
{

public void stop()
{

// stop the vehicle
}

}

If you want to move the stop() method from the Truck subclass to the Vehicle superclass,
select the stop() method and select Refactor ➤ Pull Up. In the Pull Up dialog box, select the
destination supertype, the exact list of members to pull up, and whether or not to make them
abstract, as shown in Figure 10-8.

Figure 10-8. The Pull Up dialog box

Once the refactoring changes have been applied, the Truck and Vehicle classes look like this:

public class Vehicle
{

public void start()
{

// start the vehicle
}

CHAPTER 10 ■ REFACTORING228

8954Ch10.qxp 1/28/08 11:39 AM Page 228

public void stop()
{

// stop the vehicle
}

}

public class Truck extends Vehicle
{
}

Push Down Refactoring
Push Down refactoring is exactly the opposite of Pull Up refactoring. It pushes an inner class,
field, or method in a superclass down into a subclass. For example, suppose that you added a
lowerTailgate() method to the Vehicle class shown in the previous example:

public class Vehicle
{

public void start()
{

// start the vehicle
}

public void stop()
{

// stop the vehicle
}

public void lowerTailgate()
{

// lower tailgate of vehicle
}

}

public class Truck extends Vehicle
{
}

However, since many vehicles (such as cars, planes, and boats) do not have tailgates, you want
to push the lowerTailgate() method down to the Truck subclass.

Select the lowerTailgate() method and choose Refactor ➤ Push Down. In the Push Down
dialog box, select which class members you want to push down into the subclass, as shown in
Figure 10-9. You can also choose whether you would like to keep them abstract if they already
are abstract.

CHAPTER 10 ■ REFACTORING 229

8954Ch10.qxp 1/28/08 11:39 AM Page 229

Figure 10-9. The Push Down dialog box

After you have applied the code changes, you can view the result. As expected, the
lowerTailgate() method will now be in the Truck subclass:

public class Truck extends Vehicle
{

public void lowerTailgate()
{

// do something
}

}

If the superclass has multiple subclasses (which is usually the case), you could still per-
form a Push Down refactoring of a method from a particular class. For example, if you had
a Car subclass that extended Vehicle, you could still push down a method from the Vehicle
class. Suppose the Truck, Car, and Vehicle classes were defined as follows:

public class Vehicle
{

public void changeTire()
{

// general method for changing tire
}

}

public class Car extends Vehicle
{

// car class
}

public class Truck extends Vehicle
{
// truck class

}

CHAPTER 10 ■ REFACTORING230

8954Ch10.qxp 1/28/08 11:39 AM Page 230

The Truck class represents a large tractor-trailer. Changing a tire for this type of vehicle will
most likely involve a different procedure than for a car. Thus, you might want to have the
changeTire() method in the Car and Truck classes override the one in the Vehicle superclass.
The changeTire() method in the Vehicle class should also be left as abstract (even though
some vehicles, such as boats, do not have tires that need changing).

In the Push Down dialog box, you need to select the check box to keep the changeTire()
method abstract in the Vehicle class. Preview the changes to make sure the code is modified
as you expect. In Figure 10-10, notice that the third suggested operation is altering Vehicle.
changeTire() to make it abstract. If the Keep Abstract option is not selected during the refac-
toring operation, then the line in the preview window would say, “Remove changeTire()
element.” You could prevent it from being removed from the Vehicle class by unselecting
the check box next to this option.

Figure 10-10. Push Down refactoring with one superclass and two subclasses

Convert Anonymous to Inner Refactoring
Convert Anonymous to Inner refactoring is used to separate an anonymous inner class into an
actual inner class. There are several varieties of anonymous inner classes:

• Inner class for defining and instantiating an instance of an unnamed subclass

• Inner class for defining and instantiating an anonymous implementation of an interface

• Anonymous inner class defined as an argument to a method

For this section, we focus on the first type: unnamed subclasses.
Suppose you have the following code:

public class Item {
public void assemble() {

System.out.println("Item.assemble");
}

}

CHAPTER 10 ■ REFACTORING 231

8954Ch10.qxp 1/28/08 11:39 AM Page 231

public class Factory {
public void makeStandardItem(int type) {

if(type==0) {
// make extremely unusual item .01% of the time
Item myitem = new Item() {

public void assemble() {
System.out.println("anonymous Item.assemble");

}
};
myitem.assemble();

} else {
// make standard item 99.9% of the time
Item myitem = new Item();
myitem.assemble();

}
}

}

The code declares a class Item with a method named assemble(). The Factory class defines a
variable myitem of type Item and instantiates an anonymous subclass of Item that overrides the
assemble() method.

Why would you bother using an anonymous inner class instead of a normal inner or outer
class? In this example, if the one-off case where the anonymous inner class is used were the only
area where it is needed, you might not want to create a separate class. However, if you find that
you need the code in the anonymous subclass in multiple areas, you might want to convert it to
an inner class.

To convert the code to an inner class, click anywhere inside the anonymous class or high-
light the name of the Item class constructor in the following section of the code:

Item myitem = new Item() {
public void assemble() {

System.out.println("anonymous Item.assemble");
}

};

Then select Refactor ➤ Convert Anonymous Class to Inner. In the Convert Anonymous Class to
Inner dialog box, you’ll see the default class name of NewClass, as shown in Figure 10-11. You
can set the name of the new inner class that will be created, the access level, and whether it
should be declared static. If the constructor for the anonymous class has any parameters, the
dialog box will also list them.

CHAPTER 10 ■ REFACTORING232

8954Ch10.qxp 1/28/08 11:39 AM Page 232

Figure 10-11. The Convert Anonymous Class to Inner dialog box

Suppose you named the new inner class StrangeItem. The refactored code would look
like this:

private class StrangeItem extends Item {

public void assemble() {
System.out.println("anonymous Item.assemble");

}
}

This class would be declared inside the Factory class, since that is where the original anony-
mous inner class resides.

In the following code, notice that the creation of the anonymous inner class has been
altered to create an instance of the new inner class:

public void makeStandardItem(int type) {
if(type==0) {

// make extremely unusual item .01% of the time
Item myitem = new StrangeItem();
myitem.assemble();

} else {
// make standard item 99.9% of the time
Item myitem = new Item();
myitem.assemble();

}
}

The purpose of this refactoring is to make your code more reusable and modular. Extracting the
anonymous inner class into its own inner class helps improve many aspects of your code. It
makes no sense to redefine the same anonymous inner class in multiple places in the Factory
class, and Convert Anonymous to Inner refactoring can help correct the situation.

CHAPTER 10 ■ REFACTORING 233

8954Ch10.qxp 1/28/08 11:39 AM Page 233

Introduce Method Refactoring
As you review code in a project, you may notice that certain sections of code, even small ones,
contain similar-looking blocks of code. These blocks of code can be extracted into a separate
method that can then be called. Separating out blocks of code makes your code more read-
able, more reusable, and easier to maintain.

As a simple example, suppose you have the following code:

public void processArray(String[] names)
{

for(int i=0;i < names.length; i++)
{

names[i] = names[i].toUpperCase();
}
// rest of method here

}

This block of code contains a loop that iterates through a String array and converts each
String to uppercase. You might want to put this code into a separate method. Introduce
Method refactoring can do this for you.

To activate the refactoring, highlight the code you want to convert to a method and
select Refactor ➤ Introduce Method. In this example, highlight the entire for loop in the
processArray(String[]) method.

In the Introduce Method dialog box, you can set the name of the new method and the
access level, as shown in Figure 10-12. The refactoring is even smart enough to assume that
a String array should be passed into the method and lists it as a parameter for the new
method.

Figure 10-12. The Introduce Method dialog box

After applying the refactoring, the resulting code has the loop split out:

public void processArray(String[] names)
{

ConvertArrayToUpper(names);
// other method code here

}

CHAPTER 10 ■ REFACTORING234

8954Ch10.qxp 1/28/08 11:39 AM Page 234

private void ConvertArrayToUpper(final String[] names)
{

for(int i=0;i < names.length; i++)
{

names[i] = names[i].toUpperCase();
}

}

You can see that not only has the selected code been extracted into a separate method, but it
was also replaced with the correct call to the new method with the correct parameter.

Extract Interface Refactoring
Extract Interface refactoring allows you to select public non-static methods and move them into
an interface. This can be useful as you attempt to make your code more reusable and easier to
maintain.

For example, suppose you want to extract two public non-static methods in the following
Item class into an interface:

public class Item {
public void assemble() {

System.out.println("Item.assemble");
}

public void sell() {
System.out.println("sell me");

}
}

You can activate the refactoring by highlighting the class in the Projects window (or simply
by having the class open in the Source Editor) and selecting Refactor ➤ Extract Interface. As
shown in Figure 10-13, the options for the Extract Interface refactoring are quite straightfor-
ward. You can specify the name of the new interface that will be created. You can also select
exactly which methods you want to include in the interface.

Figure 10-13. The Extract Interface dialog box

CHAPTER 10 ■ REFACTORING 235

8954Ch10.qxp 1/28/08 11:39 AM Page 235

After applying the refactoring, the code for the interface looks like this:

public interface ItemInterface {
void assemble();
void sell();

}

public class Item implements ItemInterface {
public void assemble() {

System.out.println("Item.assemble");
}

public void sell() {
System.out.println("sell me");

}
}

The original Item class has been modified to implement the ItemInterface.

Extract Superclass Refactoring
Extract Superclass refactoring is nearly identical to Extract Interface refactoring. The only dif-
ference is that Extract Superclass pulls methods into a newly created superclass and extends
the refactored class.

In the refactored code example from the previous section, you might want to modify the
Item class to have a superclass:

public class Item implements ItemInterface {
public void assemble() {

System.out.println("Item.assemble");
}

public void sell() {
System.out.println("sell me");

}
}

Starting with the Item class selected, select Refactor ➤ Extract Superclass. As shown in
Figure 10-14, the Extract Superclass dialog box allows you to set the name of the new super-
class that will be created. You can select which members you wish to extract and place in the
superclass. Since the Item class implements the ItemInterface, you can decide if you want to
extract the implements clause into the superclass. You can also select whether or not the
methods that are extracted are made abstract in the superclass. Selecting this option inserts
abstract methods into the superclass and leaves the concrete implementations in the Item
subclass.

CHAPTER 10 ■ REFACTORING236

8954Ch10.qxp 1/28/08 11:39 AM Page 236

Figure 10-14. The Extract Superclass dialog box

For this example, select all the members for extraction. Then select the “Make Abstract”
field only for the Item.sell() method. Preview the changes and apply the refactoring. The fol-
lowing code will be generated:

public interface ItemInterface {
void assemble();
void sell();

}

public abstract class ItemSuperclass implements ItemInterface {

public void assemble() {
System.out.println("Item.assemble");

}

public abstract void sell();
}

public class Item extends ItemSuperclass {

public void sell() {
System.out.println("sell me");

}
}

Now you have an Item class with a concrete implementation of the sell() method. It extends
the ItemSuperclass. ItemSuperclass implements ItemInterface and contains an abstract
sell() method and a concrete implementation of the assemble() method. ItemInterface
contains the definitions of the assemble() and sell() methods.

CHAPTER 10 ■ REFACTORING 237

8954Ch10.qxp 1/28/08 11:39 AM Page 237

With refactoring options like Introduce Method, Extract Interface, and Extract Superclass,
you can attempt to structure your code to take full advantage of good design principles. Ide-
ally, for new code projects you would design classes correctly and wouldn’t need refactoring.
However, many programmers take over projects that have been implemented poorly and need
refactoring.

Change Method Parameters Refactoring
Change Method Parameters refactoring is one of the most useful options in NetBeans. I have
made extensive use of it on projects I inherited from other developers. In the old days of
development, changing a method signature was time consuming. You would need to modify
the method and then search through all your code to make sure all the references to it were
updated. No sooner would you finish that task than you would decide to change the data
types on the arguments or rearrange their ordering in the method. Change Method Parame-
ters refactoring can reduce time spent on such operations.

Suppose you had the following code:

public class Item extends ItemSuperclass {

public void sell() {
System.out.println("sell me");

System.out.println("Price(12345) : " + findPrice(12345));
}

public double findPrice(long itemNumber) {

double price = 0.00;
// look up itemNumber in database and set price variable
return price;

}
}

The Item class contains a findPrice(long) method. The method accepts an item number, looks
it up in a database, and returns a price to the calling sell() method. If your client decided he
also wants to be able to return the price and the currency in which the price is specified, you
would need to alter the findPrice(long) method.

Assume you need to add a String argument to the findPrice(long) method that allows
you to specify the type of currency. Highlight the name of the method and select Refactor ➤
Change Method Parameters. In the Change Method Parameters dialog box, you can add and
remove parameters to the method. You can also change the order of the parameters and
specify the method’s new access level.

■Tip You don’t actually have to alter the parameters of a method to reorder them. You can use Change Method
Parameters refactoring just to reorder parameters—a task I find myself doing often when I am developing code.

CHAPTER 10 ■ REFACTORING238

8954Ch10.qxp 1/28/08 11:39 AM Page 238

To add the new parameter, click the Add button. A new line appears in the parameters
grid. Change the name, type, and default value fields, as shown in Figure 10-15. Then click the
Next button, preview the changes, and apply the refactoring.

Figure 10-15. The Change Method Parameters dialog box

Your refactored code will look like this:

public class Item extends ItemSuperclass {

public void sell() {
System.out.println("sell me");

System.out.println("Price(12345) : " + findPrice(12345, "USD"));
}

public double findPrice(long itemNumber, String currencyType) {

double price = 0.00;
// look up itemNumber in database and set price variable
return price;

}
}

Notice that the findPrice(long) method has been altered to include the new parameter. The
sell() method has also been altered to call the modified method and pass it the default value
of "USD", which was specified during the refactoring operation.

Refactoring Keyboard Shortcuts
At the time of this writing, NetBeans 6 did not provide many shortcuts for the refactoring fea-
tures. The only shortcut defined is for Rename refactoring, which you can activate by pressing
Ctrl+R.

CHAPTER 10 ■ REFACTORING 239

8954Ch10.qxp 1/28/08 11:39 AM Page 239

■Tip You can add your own shortcut for each refactoring option by selecting Tools ➤ Options ➤ Keymap ➤
Refactor. Make sure to explore the existing key mappings to get an idea of what is already used. NetBeans
will prevent duplicates from being added.

Summary
In this chapter, you saw the wide variety of refactoring options available in the NetBeans IDE.
You can use them to rework existing code or to make your new coding smoother.

Some of these refactorings will obviously be used more often than others, but you should
become familiar with when and how to use each one. Applying these refactoring options when
working with large code bases can be a lifesaver.

CHAPTER 10 ■ REFACTORING240

8954Ch10.qxp 1/28/08 11:39 AM Page 240

Code-Quality Tools

Since the early days of computers, programmers have been striving to write “good” code.
The exact definition of good varies greatly, depending on which programming language you
are examining. It also depends on whom you ask to define what is and is not “good” code. For
the purpose of the tools discussed in this chapter, I assume a practical definition of good Java
code to include loosely the following:

• Consistent and easy-to-understand formatting (i.e., indentation and spacing)

• Consistent naming conventions

• No compile-time errors

• No runtime errors (or at least the ability to handle runtime errors)

• Adherence to best practices and good design

• Easy-to-understand and thorough in-code documentation

Some of the foregoing characteristics of “good” code are easy to enforce, while others are
not. Many companies and organizations have documented standards that attempt to enforce
(or at least suggest) that developers adhere to them. This in itself has proved difficult for many
organizations. To adhere to coding standards, developers need to have read them thoroughly
and to be reviewing their code constantly to make sure it conforms.

This can be a time-consuming and difficult process to do manually. This is where auto-
mated code-quality tools can be helpful, especially when used directly in a developer’s coding
environment, such as NetBeans. This chapter reviews the NetBeans plugins available for man-
aging code quality in your Java projects.

Working with Checkstyle
Checkstyle is a development tool that Java programmers can use to scan code automatically
for coding style violations. Released under the LGPL license, it is freely available from Source-
Forge at http://checkstyle.sourceforge.net.

Checkstyle can be used as a stand-alone tool, as part of an Ant build script, or as a NetBeans
IDE plugin. It can also be integrated with other tools, such as Eclipse, Emacs JDE, Maven, and
QALab.

241

C H A P T E R 1 1

8954Ch11.qxp 1/28/08 11:39 AM Page 241

http://checkstyle.sourceforge.net

Overview of Checkstyle Checks
The Checkstyle tool contains a number of “checks.” Each check is a specific area of coding
standards and styles that Checkstyle can identify. You can configure Checkstyle using one or
more checks and apply those checks against your code. Checkstyle will then generate a report
or list of violations. You can then use the list of violations to review and improve your code.

Checkstyle can scan your code and identify a number of areas that violate the generally
accepted coding standards and styles. Some areas that can be identified include

• Duplicate imports

• Missing Javadoc comments

• Improper naming conventions

• Missing file headers

• Missing whitespace characters around identifiers

• Duplicate blocks of code

• Numerous coding best practices

Many of these areas have specific checks you can configure in Checkstyle, as discussed in the
following sections.

The StrictDuplicateCode Check
Checkstyle can scan your code and help identify duplicate lines, including places where a devel-
oper may have copied and pasted blocks of similar code. Repeating large blocks of similar code
can lead to more maintenance points, duplication of similar bugs, and harder-to-understand
code.

You can configure Checkstyle to use the StrictDuplicateCode check to identify blocks of
duplicate code. The StrictDuplicateCode check can be configured using the following listing in
the Checkstyle configuration file:

<module name="StrictDuplicateCode">
<property name="min" value="10"/>

</module>

This check contains a “min” property that allows you to specify the number of lines Checkstyle
uses to consider a block of code to be duplicative. In this example it is set to 10. If Checkstyle
finds any block of 10 lines of code in more than one place, this block will be considered a
duplicate. It will locate duplicate matches even if the code is indented differently. However,
code that is identical functionally but may use different variable names will not be identified
as a duplicate.

Once Checkstyle has identified duplicate sections of code, you can examine them. If the
functionality is generic enough, it may warrant the work to move the duplicative code into a
reusable method that can then be called over and over. This will lessen the number of lines of
code, make it easier to understand, and make it more reusable.

CHAPTER 11 ■ CODE-QUALITY TOOLS242

8954Ch11.qxp 1/28/08 11:39 AM Page 242

The UnusedImports Check
The UnusedImports check is one of the simplest sounding yet most useful that Checkstyle can
provide. It can scan an entire code base and identify any Java import statements that are not
actually used, are not needed (i.e., importing classes from the java.lang package), or are
duplicates of other imports.

This can be useful for several reasons. Cleaning up unused imports can save you headaches.
If you import classes from a third-party library, you need to maintain the project reference to
that library, even if the imported classes are not actually used in your code. This can occur over
time as multiple developers update code and comment out or remove pieces of functionality.

NetBeans can easily solve this on a class-by-class basis using the Fix Imports feature. This
feature is typically available on the context menu when you right-click inside a Java source file
open in the Source Editor. However, there is no easy way to enforce this across a project’s large
code base all at one time. This is where Checkstyle can help identify where you have unused
imports. You can then open the Java source files where the issues are located and use the Net-
Beans Fix Imports feature to correct the situation.

If you are building your project code in a continuous-integration server, such as Hudson,
Continuum, or Cruise Control, an unused import can actually cause your build to fail (thus
costing you time and money to fix). During long-term maintenance of a Java application, you
may upgrade different libraries, such as database drivers, logging packages, XML parsers, and
database connection pooling drivers. An unused import from one of these libraries may refer-
ence a specific class or package that is not used in your code for one reason or another. If the
JAR file that contains the imported classes is not correctly located in or referenced by the proj-
ect, the build can fail. In this example, an unused import statement may cause you to waste
time trying to figure out why the build failed, why your project is missing a required library, or
where that library JAR file can be located so that it can be added back to the project.

Checkstyle contains an easy-to-use check that allows you to identify areas where imports
are not used, are unnecessary, or are duplicated. The UnusedImports check can be configured
using the following listing in the Checkstyle configuration file:

<module name="UnusedImports"/>

The MagicNumber Check
The concept of magic numbers is more of a coding best practice than a coding style. A magic
number is considered to be any numeric literal other than –1, 0, 1, or 2 that may appear in
your Java code.

Many experienced developers could tell you that magic numbers are typically a bad thing,
though not always, depending on the situation. If you hard-code numeric literals in your code,
it makes it more difficult to maintain the program and to understand the logic. Review the
code in Listing 11-1.

Listing 11-1. The MagicNumberExample Class

public class MagicNumberExample {

public List<String> calculate(List<String> data) throws Exception{

CHAPTER 11 ■ CODE-QUALITY TOOLS 243

8954Ch11.qxp 1/28/08 11:39 AM Page 243

List<String> returnData = new ArrayList();
Iterator<String> mydata = data.iterator();

while(mydata.hasNext()) {
String nextVal = mydata.next();

if(nextVal.length()<5) {
returnData.add(nextVal);

}

// do something else

if(nextVal.length()<5) {
// log the data String

}
}

return returnData;
}

}

In Listing 11-1, the MagicNumberExample class has a method that iterates through a set of
String data. It checks the length of each String and does something with it in several places if
the length is less than 5. The value of 5 may have a special meaning throughout this class and
other classes because it pertains to checking the length of a String. If you needed to change
the value, you would have to ensure that you update the value 5 in multiple places. This leaves
open the possibility of bugs if you do not update the value 5 in each and every place it occurs.
You would typically create a class or method-scoped constant to replace each instance of the
magic number.

Checkstyle can scan your code and identify areas where these magic numbers occur. This
allows you to focus on determining whether or not they really are magic numbers and how
you should handle them.

There are times when numeric literals appear in your code that should not necessarily
be considered magic numbers. One example is when setting parameters for a java.sql.
PreparedStatement, as shown in Listing 11-2.

Listing 11-2. Code for Setting Parameters of a PreparedStatement

public void updateCustomer(int custid,
String first,
String last,
String email,
String phone,
String company) {

Connection conn;
PreparedStatement pstmt;

CHAPTER 11 ■ CODE-QUALITY TOOLS244

8954Ch11.qxp 1/28/08 11:39 AM Page 244

String sql = "UPDATE customer SET FIRST=?, LAST=?, EMAIL=?, " +
" PHONE=?, COMPANY=? WHERE ID=?";

try {
// assume DataSourceFactory does a JDNI lookup
// and returns a javax.sql.DataSource
conn = DataSourceFactory.getDataSource().getConnection;

pstmt = conn.prepareStatement(sql);

pstmt.setString(1, first);
pstmt.setString(2, last);
pstmt.setString(3, email);
pstmt.setString(4, phone);
pstmt.setString(5, company);
pstmt.setInt(6, custid);

} catch (Exception e) {
// error handling

} finally {
// database connection clean up

}
}

Listing 11-2 uses numeric literals to specify the parameters of the PreparedStatement.
Using Checkstyle to apply the MagicNumber check to the code would result in the identifica-
tion of several violations. Since –1, 0, 1, and 2 are typically exempt, the lines that would get
reported as violations would be

pstmt.setString(3, email);
pstmt.setString(4, phone);
pstmt.setString(5, company);
pstmt.setInt(6, custid);

I’ve seen programmers assume that since Checkstyle reports these as magic numbers, they
must be evil. One way they try to “fix” the violation is by using a countervariable, such as this:

int i = 0;
pstmt.setString(++i, first);
pstmt.setString(++i, last);
pstmt.setString(++i, email);
pstmt.setString(++i, phone);
pstmt.setString(++i, company);
pstmt.setInt(++i, custid);

Whether or not this is good code is a matter of opinion. On one hand, you could argue
that by not specifying parameter numbers explicitly, you can easily move the lines up or down
to reorder the parameters if the SQL statement changes. On the other hand, you could argue
that seeing the parameter numbers stated explicitly makes it easier to understand precisely
which variable is being set to which field in the SQL that the PreparedStatement is executing.
Regardless of your opinion, you need to be flexible when working with magic numbers.

CHAPTER 11 ■ CODE-QUALITY TOOLS 245

8954Ch11.qxp 1/28/08 11:39 AM Page 245

Checkstyle has several configuration options available. The MagicNumber check can be
configured using the following listing in the Checkstyle configuration file:

<module name="MagicNumber"/>

This simple listing will run Checkstyle, with the defaults applied to the MagicNumber check
(that is, exclude –1, 0, 1, and 2).

You can also set a parameter to ignore specific numbers, as in the following listing:

<module name="MagicNumber">
<property name="ignoreNumbers" value="0, 1, 2, 3, 4, 6"/>

</module>

The “ignoreNumbers” property instructs the MagicNumber check to scan for magic numbers
but to ignore 0, 1, 2, 3, 4, and 6. For the code in Listing 11-2, the only violation that would be
identified would be the number 5 in the line of code

pstmt.setString(5, company);

You can also specify types of numeric literals to match using the MagicNumber check. Try
the following check configuration:

<module name="MagicNumber">
<property name="tokens" value="NUM_FLOAT, NUM_INT"/>
<property name="ignoreNumbers" value="0, 1, 2, 3, 4, 6"/>

</module>

This check specifies the same list of numbers to ignore but also specifies a “tokens” parameter.
This tells the MagicNumber check to look for all floats and ints in the code and to flag them
as violations. In addition, the “ignoreNumbers” parameter instructs the code to ignore all val-
ues of 0, 1, 2, 3, 4, and 6.

The MultipleVariableDeclarations Check
Another useful Checkstyle check to run against your code is the MultipleVariableDeclarations
check. This can identify places in your code where multiple variables are declared and initial-
ized on the same line. Review the following code:

public void doSomething() {
int a, b, c, d, e, f, g, h = 0;
String firstName, lastName, email = "";

}

Code like this can be difficult to understand and document. For example, try writing some in-
code documentation that correctly informs the reader how each variable differs and what it is
used for. Furthermore, if future changes to the code cause the different variables to be initial-
ized to different values, you will have to break them out onto separate lines anyway.

Having each variable declared on a separate line makes for cleaner code that is easier to
document and easier to modify (i.e., you will be able to change initialization values quickly
without having to worry about how the change affects other variables). The code would typi-
cally be written as follows:

CHAPTER 11 ■ CODE-QUALITY TOOLS246

8954Ch11.qxp 1/28/08 11:39 AM Page 246

public void doSomething2() {
int a = 0;
int b = 0;
int c = 0;
int d = 0;
int e = 0;
int f = 0;
int g = 0;
int h = 0;
String firstName = "";
String lastName = "";
String email = "";

}

The MultipleVariableDeclarations check can be configured using the following listing in
the Checkstyle configuration file:

<module name="MultipleVariableDeclarations" />

Sample Checkstyle Configuration File
Once you have identified the list of Checkstyle checks you want to use, you can put them into
a single configuration file (Listing 11-3).

Listing 11-3. A Checkstyle Configuration File

<?xml version="1.0"?>

<!DOCTYPE module PUBLIC
"-//Puppy Crawl//DTD Check Configuration 1.2//EN"
"http://www.puppycrawl.com/dtds/configuration_1_2.dtd">

<module name="Checker">

<module name="StrictDuplicateCode" />

<module name="TreeWalker">

<module name="UnusedImports" />

<module name="MagicNumber">
<property name="tokens" value="NUM_FLOAT, NUM_INT" />
<property name="ignoreNumbers" value="0, 1, 2, 3, 4, 6" />

</module>

<module name="MultipleVariableDeclarations" />

</module>
</module>

CHAPTER 11 ■ CODE-QUALITY TOOLS 247

8954Ch11.qxp 1/28/08 11:39 AM Page 247

http://www.puppycrawl.com/dtds/configuration_1_2.dtd

The configuration file lists several module definitions that were discussed in the previous
section of the chapter. The other module definitions need a little explanation. The Checker
module is the top-level module and references a Checkstyle class named com.puppycrawl.
tools.checkstyle.Checker. This is the top-level check, encapsulating the other checks. Any
module or check that runs under this parent node is one that typically applies checks across
the entire code base, regardless of class or package.

The StrictDuplicateCode check appears as a child of the Checker module since Checkstyle
compares code across all classes when trying to locate duplicates. The TreeWalker module
references the com.puppycrawl.tools.checkstyle.TreeWalker class in the Checkstyle JAR file.
The TreeWalker module is the parent module for all checks that run against an individual class.
This module also creates a Java syntax tree of all the tokens that appear in the source file. The
TreeWalker then iterates through each token and applies any child modules that are configured
inside the TreeWalker module tag in the configuration file. In the sample file in Listing 11-3, the
TreeWalker would execute the UnusedImports, MagicNumber, and MultipleVariableDeclara-
tions checks on each token in a source file.

Regardless of the checks you include in the configuration file, they can be used to run
Checkstyle in an Ant task, via the command line, or in an IDE as a plugin. The next section dis-
cusses using Checkstyle configuration files to enable the Checkstyle plugins for NetBeans.

Working with Checkstyle in NetBeans
At the time of this writing, several Checkstyle plugins were available for NetBeans. This section
reviews two of those plugins, how to install them, and how to run them against a Java project.

Installing the Checkstyle-Task List Plugin
The Checkstyle-Task List plugin was written by Stanislav Aubrecht, a member of the NetBeans
team at Sun Microsystems. One of his job duties involves working on the NetBeans Task List
feature. The NetBeans Task List is the window that shows various TODO, FIXME, or VCS merge
conflict statements that appear throughout your code. As a logical extension to it, he contributed
a NetBeans Checkstyle plugin that displays results in the Task List.

You can download the plugin from the NetBeans Plugin Portal at http://plugins.netbeans.
org. Once at the site, you can search for the term Checkstyle. Several results should be returned.
Select the plugin labeled “Checkstyle-Task List Integration.” You can then download a ZIP file
that contains the .nbm modules needed to install it. To install the plugin, follow these steps:

1. Unzip the plugin into a directory.

2. In NetBeans, navigate to Tools ➤ Plugins.

3. Select the Downloaded tab and click the Add Plugins button.

4. Select the .nbm file and click the Open button. The module will then be listed in the
Downloaded tab, as shown in Figure 11-1.

5. Click the Install button and accept the license when prompted. After the plugin has
been installed, close the Plugins window.

CHAPTER 11 ■ CODE-QUALITY TOOLS248

8954Ch11.qxp 1/28/08 11:39 AM Page 248

http://plugins.netbeans

Figure 11-1. The Plugins window listing the module ready to be installed

Configuring the Checkstyle-Task List Plugin
Once the plugin has been installed you can configure which Checkstyle configuration file it
uses. By default it points at a configuration file that includes the standard Sun Microsystems–
recommended checks.

To change the configuration file, perform the following steps:

1. On the main menu, select Tools ➤ Options.

2. In the Options window, select the Miscellaneous icon in the top menu bar.

3. Click the Checkstyle tab to display the Checkstyle configuration settings.

4. Click the Browse button next to the “Configuration file location” field. Navigate your
local file system and select a Checkstyle configuration file. The Checkstyle tab of the
Options window should now display the updated Checkstyle file location, as shown in
Figure 11-2.

5. Click the OK button to close the Options window.

The Checkstyle-Task List plugin will now be configured to use the new configuration file that
was set in the Options window.

CHAPTER 11 ■ CODE-QUALITY TOOLS 249

8954Ch11.qxp 1/28/08 11:39 AM Page 249

Figure 11-2. The Checkstyle configuration file path in the Options window

Running the Checkstyle-Task List Plugin
The Checkstyle-Task List plugin displays its results in the Task List. You do not actually have to
run the plugin to see results. All you have to do is open the Task List window.

Once the Task List window is open, the resultant violations will appear in the list of tasks,
as shown in Figure 11-3. It will display the different types of code violations identified by the
Checkstyle checks contained in the configuration file you set up in the previous section. The
second column displays the name of the file where the violation was found. The third column
shows the line number where the violation was found. The fourth column displays the
absolute path to the file where the specific violation was found.

Figure 11-3. The Checkstyle results displayed in the Task List window

CHAPTER 11 ■ CODE-QUALITY TOOLS250

8954Ch11.qxp 1/28/08 11:39 AM Page 250

The Checkstyle violations displayed in the Task List can be double-clicked to jump
directly to the matching line of source code for the file in the Source Editor. Once you correct
the violation in your code, the matching violation will disappear from the Task List. This can
be an effective way of locating coding-standard violations and fixing them.

Installing the Checkstyle Beans Plugin
The Checkstyle Beans plugin was written by Petr Hejl. It can be downloaded from http://www.
sickboy.cz/checkstyle/. Once at the site, you should see a Download link in the main naviga-
tion menu. Download the ZIP file and extract the .nbm files to a directory on your local machine.
You can then install the plugin by doing the following:

1. In NetBeans, navigate to Tools ➤ Plugins.

2. Select the Downloaded tab and click the Add Plugins button.

3. Select the .nbm files and click the Open button. The modules will then be listed in the
Downloaded tab, as shown in Figure 11-4.

Figure 11-4. The Checkstyle Beans plugin displayed in the Plugins window

4. Click the Install button.

5. Click the Next button and accept the license.

6. After the plugin has been installed, click the Finish button to close the install wizard.

7. Click the Close button to close the Plugins window.

CHAPTER 11 ■ CODE-QUALITY TOOLS 251

8954Ch11.qxp 1/28/08 11:39 AM Page 251

http://www

Configuring the Checkstyle Beans Plugin
Once the plugin has been installed, you can configure which Checkstyle configuration file
it uses. By default it uses an internal configuration file that includes the standard Sun
Microsystems–recommended checks.

To configure the plugin, perform the following steps:

1. On the main menu, select Tools ➤ Options.

2. In the Options window, select the Miscellaneous icon in the top menu bar.

3. Click the Checkstyle tab to display the Checkstyle configuration settings.

4. Click the check box next to the “Use custom configuration file” field. The text field and
Browse button next to it will become enabled.

5. Click the Browse button to navigate to your local file system. Select a Checkstyle configu-
ration file. The Options window should now display the updated Checkstyle file location,
as shown in Figure 11-5.

Figure 11-5. The Checkstyle Beans properties in the Options window

6. The “Don’t perform checkstyle for GUI builder generated code” field is selected by
default. If you uncheck it, then the Checkstyle plugin will scan areas of code generated
by the Matisse GUI builder when working with Swing applications.

7. Click the OK button to close the Options window.

The Checkstyle Beans plugin will now be configured to use the new configuration file that was
set in the Options window.

CHAPTER 11 ■ CODE-QUALITY TOOLS252

8954Ch11.qxp 1/28/08 11:39 AM Page 252

Running the Checkstyle Beans Plugin
The Checkstyle Beans plugin displays its results in two ways. The first is similar to the Checkstyle-
Task List plugin. It will list the violations identified by Checkstyle in the NetBeans Task List.
The second way it displays its results is via source code annotations.

You do not actually have to run the plugin to see results. All you have to do is open a Java
source file in the Source Editor. Annotations should appear in the glyph margin if any Check-
style violations are present in the file, as shown in Figure 11-6.

Figure 11-6. The annotations in the glyph margin for the Checkstyle violations

The annotation glyphs may be difficult to see in Figure 11-6. It displays the source code
discussed in the earlier section “The MagicNumber Check,” but with a few changes. The fol-
lowing line is flagged as a violation:

float fltNum = 1.2f;

This line of source code is an addition to the code in Listing 11-2. It was added as an example
to demonstrate the configuration settings for the MagicNumber check. The other line that is
flagged is

pstmt.setString(5, company);

This line is flagged because the numeric literal 5 in the code is identified as a magic number.
Checkstyle uses the configuration file from the earlier section “Sample Checkstyle Configura-
tion File” to identify these violations.

You can also view the list of all the Checkstyle violations for the entire project by opening
the Task List window. You can open the Task List window using the main menu and selecting
Window ➤ Task List. You can also use the keyboard shortcut Ctrl+6.

Once the Task List window is open, the resultant violations will appear in the list of tasks,
as shown in Figure 11-7. It will display the different types of code violations identified by the
Checkstyle checks contained in the configuration file you set up in the previous section. The
second column displays the name of the file where the violation was found. The third column
shows the line number where the violation was found. The fourth column displays the
absolute path to the file where the specific violation was found.

CHAPTER 11 ■ CODE-QUALITY TOOLS 253

8954Ch11.qxp 1/28/08 11:39 AM Page 253

Figure 11-7. The Checkstyle results displayed in the Task List window

The Checkstyle violations displayed in the Task List can be double-clicked to jump directly
to the matching line of source code for the file in the Source Editor. Once you correct the viola-
tion in your code, the matching violation will disappear from the Task List. This can be an
effective way of locating coding-standard violations and fixing them.

Working with PMD
PMD is another static analysis tool for identifying coding violations and code bugs. While
Checkstyle focuses more on coding standards and styles, PMD focuses on code bugs, subopti-
mal code, and a variety of other coding problems.

You can download the PMD tool from its SourceForge site at http://pmd.sourceforge.net/.
The PMD libraries allow you to use PMD from the command line, as part of an Ant build script,
or as part of an IDE plugin.

Overview of PMD Checks
Just like Checkstyle, PMD has a large number of checks. Each check represents a specific area
of coding issues, bugs, and problems that PMD can identify. You can configure PMD using one
or more checks and apply those checks against your code. PMD will then generate a report or
list of violations. You can then use the list of violations to review and improve your Java code.

PMD can scan your code and identify a number of areas that violate the generally
accepted coding best practices. It can also identify potentials or issues with your code. Some
areas that can be identified include

• Unused variables, methods, and parameters

• Unoptimized or inefficient code

• Poorly designed code

• Improper naming conventions

• Duplicate blocks of code

• Numerous coding best practices

CHAPTER 11 ■ CODE-QUALITY TOOLS254

8954Ch11.qxp 1/28/08 11:39 AM Page 254

http://pmd.sourceforge.net

Many of these areas have specific checks that you can configure in PMD, as discussed in the
following sections.

MissingBreakInSwitch Check
PMD can scan your code and identify switch statements that have no break statements. A
properly written switch statement contains a break in each and every case, including the
default case, as shown here:

public void demoSwitch(int x) {

switch(x) {

case 0:
System.out.println("x is 0");
break;

case 1:
System.out.println("x is 2");
break;

default:
System.out.println("x is default");
break;

}
}

If all the break statements were missing from the case statements, there could be a poten-
tial bug. For example, remove the break statements, pass in the value of 1 to the method, and
execute the code that looks like this:

public void demoSwitch(int x) {

switch(x) {

case 0:
System.out.println("x is 0");

case 1:
System.out.println("x is 2");

default:
System.out.println("x is default");

}
}

With this code, if the value of the method parameter were 1, the second case statement would
execute. The standard output stream will output “x is 2”. Program execution will then fall
through to execute the default statement and “x is default” would print to the standard out-
put stream. If the code’s purpose were to modify records in a database or update financial
transactions, then this type of code execution would definitely be identified as a bug.

CHAPTER 11 ■ CODE-QUALITY TOOLS 255

8954Ch11.qxp 1/28/08 11:39 AM Page 255

You can configure PMD to use the MissingBreakInSwitch to identify switch statements
with no break statement. The MissingBreakInSwitch check can be configured using the follow-
ing listing in the PMD configuration file:

<rule ref="rulesets/design.xml/MissingBreakInSwitch"/>

The check may also be executed if the entire group of design checks is executed by speci-
fying the following:

<rule ref="rulesets/design.xml"/>

This would execute all the design-related checks in PMD that belong to the design group. For
an entire listing of these checks, see http://pmd.sourceforge.net/rules/design.html.

UseStringBufferForStringAppends Check
The UseStringBufferForStringAppends check can scan your code and identify incorrect String
appending. Programmers typically write code that appends multiple Strings, especially in
loops, which is inefficient. This check can scan for places where += is used to append Strings
instead of a StringBuffer or StringBuilder.

Assume you have the following code that generates a meaningless HTML table structure:

public String getHtml(int numRows) {

String returnValue = "<table>";

for(int i=0; i < numRows; i++) {
returnValue += "<tr><td>" + i + "</td><td>" + (i*i) + "</td></tr>";

}

return returnValue;
}

The getHtml method appends multiple Strings of HTML code into one long String that represents
an HTML table. Inside the for loop, the table rows and columns are continuously appended to
returnValue using the += construct. This is inefficient because it generates multiple redundant
String and StringBuffer objects, leading to a slight degradation in memory and performance. If
the numRows value was quite large, such as 10,000,000, then the performance degradation would be
much more noticeable.

The UseStringBufferForStringAppends check can locate the incorrect String appending,
allowing you to identify and correct it. The check not only catches the += construct in the pre-
ceding code, such as this:

returnValue += "<tr><td>" + i + "</td><td>" + (i*i) + "</td></tr>";

it can also check the alternate syntax of this:

returnValue = returnValue + "<tr><td>" + i + "</td><td>" + (i*i) + "</td></tr>";

You can configure PMD to use the UseStringBufferForStringAppends check to identify
invalid String appending using the following listing in the PMD configuration file:

CHAPTER 11 ■ CODE-QUALITY TOOLS256

8954Ch11.qxp 1/28/08 11:39 AM Page 256

http://pmd.sourceforge.net/rules/design.html

<rule ref="rulesets/optimizations.xml/UseStringBufferForStringAppends"/>

The check may also be executed if the entire group of optimization checks is executed by
specifying the following:

<rule ref="rulesets/optimizations.xml "/>

This would execute all the optimization-related checks in PMD that belong to the optimiza-
tion group. For an entire listing of these checks, see http://pmd.sourceforge.net/rules/
optimizations.html.

Sample PMD Configuration File
Once you have identified the list of PMD checks you want to use, you can put them into a
single configuration file (Listing 11-4).

Listing 11-4. A PMD Configuration File

<?xml version="1.0"?>

<ruleset name="My Ruleset"
xmlns="http://pmd.sf.net/ruleset/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pmd.sf.net/ruleset/1.0.0

http://pmd.sf.net/ruleset_xml_schema.xsd"
xsi:noNamespaceSchemaLocation="http://pmd.sf.net/ruleset_xml_schema.xsd">

<rule ref="rulesets/coupling.xml"/>

<rule ref="rulesets/unusedcode.xml">
<exclude name="UnusedLocalVariable"/>

</rule>

<rule ref="rulesets/optimizations.xml/AvoidArrayLoops"/>
<rule ref="rulesets/optimizations.xml/UseStringBufferForStringAppends"/>

<rule ref="rulesets/design.xml/AvoidReassigningParameters"/>
<rule ref="rulesets/design.xml/CloseResource"/>
<rule ref="rulesets/design.xml/MissingBreakInSwitch"/>
<rule ref="rulesets/design.xml/PreserveStackTrace"/>
<rule ref="rulesets/design.xml/SingularField"/>

<rule ref="rulesets/imports.xml/DontImportJavaLang"/>
<rule ref="rulesets/imports.xml/ImportFromSamePackage"/>

<rule ref="rulesets/logging-java.xml/SystemPrintln"/>

</ruleset>

CHAPTER 11 ■ CODE-QUALITY TOOLS 257

8954Ch11.qxp 1/28/08 11:39 AM Page 257

http://pmd.sourceforge.net/rules
http://pmd.sf.net/ruleset/1.0.0
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://pmd.sf.net/ruleset/1.0.0pmd.sf.net/ruleset_xml_schema.xsd
http://pmd.sf.net/ruleset_xml_schema.xsd

The configuration file lists several methods for specifying PMD checks. The first listing,
<rule ref="rulesets/coupling.xml"/>, contains the entire group of coupling checks. This will
execute all the checks contained in the group. As previously mentioned, the entire list of
checks is available at the PMD project site, http://pmd.sourceforge.net.

The second listing specifies the entire unused-code group of checks. However, it also
specifies an explicit exclude of the UnusedLocalVariable check. Thus, all checks in the group
will execute except for the UnusedLocalVariable.

The remaining entries in the file specify individual checks. The format is typically

<rule ref="rulesets/CATEGORY.xml/INDIVIDUAL-CHECK"/>

Once you have created the list of checks you wish to use, you can then apply those to your
Java code projects. Having a standard list of checks you use to enforce good coding practices
can be essential to writing and maintaining Java code. PMD can help dramatically in this area.

Working with PMD in NetBeans
At the time of this writing, the NetBeans PMD plugin had been updated by Radmin Kubacki. It
contains support for the newest PMD library release, version 4.1. This section focuses on using
the updated plugin. If you have an earlier version of the plugin, I strongly suggest updating it
to support the PMD 4.1 release. This section reviews the plugin, how to install it, and how to
run it against Java code in NetBeans.

Installing the NetBeans PMD Plugin
To download and install the NetBeans PMD plugin, go to the PMD project site, at http://pmd.
sourceforge.net. The main navigation menu should contain a link to IDE plugins. Navigate
the list and locate the NetBeans PMD plugin. The links will guide you to download a ZIP file
for the plugin “pmd-netbeans 2.1.”

To install the plugin, do the following:

1. Unpack the ZIP file onto your local machine.

2. In NetBeans, navigate to Tools ➤ Plugins.

3. Select the Downloaded tab and click the Add Plugins button.

4. Select the pmd.nbm file you extracted from the ZIP file.

CHAPTER 11 ■ CODE-QUALITY TOOLS258

8954Ch11.qxp 1/28/08 11:39 AM Page 258

http://pmd.sourceforge.net
http://pmd

5. Once the plugin is listed in the Downloaded tab, as shown in Figure 11-8, click the
Install button.

Figure 11-8. The PMD plugin listed in the Downloaded tab of the Plugins window

6. Click the Next button on the pop-up window and accept the license.

7. Once the plugin installs, click the Finish button. You will be prompted to restart the IDE.

Configuring the NetBeans PMD Plugin
Once the NetBeans PMD plugin is installed, you need to configure the checks it will use. Sev-
eral configuration options are available for you to change that affect the plugin’s behavior in
NetBeans.

To change the plugin configuration options:

1. Select Tools ➤ Options from the main menu. The Basic Options window will appear.

2. Select the Miscellaneous icon in the main toolbar along the top.

3. Select the PMD tab. The PMD configuration screen will be displayed, as shown in
Figure 11-9.

CHAPTER 11 ■ CODE-QUALITY TOOLS 259

8954Ch11.qxp 1/28/08 11:39 AM Page 259

Figure 11-9. The PMD configuration tab in the Options window

The “Enable scan” property is unchecked by default. If you select it, PMD will automati-
cally scan your code at certain intervals. If it identifies a piece of code that violates one of the
rules specified in the configuration file, then it lists an annotation in the glyph margin. If you
do not select the field, you would need to trigger PMD manually to run before the annotation
would appear.

The rest of the PMD configuration tab includes the Manage rules button and the Manage
rulesets button. If you click the Manage rules button, the PMD Rule editor window will appear,
as shown in Figure 11-10. The Rule editor lets you easily manage the entire list of checks that
the PMD plugin will use to apply to the code in your NetBeans project. The “Available rules”
section lists all the checks you can use as defined in the PMD configuration file that is refer-
enced. We’ll discuss how to change which configuration file is referenced in a few moments.

You can select one or more rules from the “Available rules” section and click the right-facing
arrows to move them into the “Chosen rules” section, as shown on the right of Figure 11-10. The
rules come from the checks file included inside the module. Once a check appears in the list of
chosen rules, you can click it to view its information and an example. The information about a
check and an example of it are displayed in the middle of the PMD Rule editor window. The
check’s properties are also displayed at the bottom of the window. Click the OK button to save
the list of checks you selected, and return to the PMD configuration tab in the Options window.

As previously mentioned, the PMD configuration tab also contains a Manage rulesets
button. If you click it, the PMD Rulesets editor window will open. The top section of the win-
dow will display any referenced ruleset files. If none are displayed, you can click the Add
RuleSet button, browse for a local ruleset file, and click Open. The selected ruleset file will
appear in the top section of the PMD Rulesets editor, as shown in Figure 11-11.

CHAPTER 11 ■ CODE-QUALITY TOOLS260

8954Ch11.qxp 1/28/08 11:39 AM Page 260

Figure 11-10. The PMD Rule editor window

Figure 11-11. The PMD Rulesets editor window

CHAPTER 11 ■ CODE-QUALITY TOOLS 261

8954Ch11.qxp 1/28/08 11:39 AM Page 261

Once you have selected a ruleset file, I recommend unchecking the “Include PMD Standard
Rules” check box in the middle of the Rulesets editor window. If you select it, PMD will use the
default PMD rulesets instead of your ruleset file.

The bottom section of the PMD Rulesets editor window allows you to specify ruleset JAR
files, as opposed to individual ruleset files.

Once you have configured which rulesets you want the plugin to use, click the OK button
to return to the Options window. You can then click the Manage rules button on the PMD con-
figuration tab to view and manage the individual rules from the ruleset file. For information
on how the rules are written and how to write your own rules, see the PMD site, at http://
pmd.sourceforge.net/howtowritearule.html.

Running the NetBeans PMD Plugin
Once you have configured the PMD plugin, you will then want to run it against your Java code. If
the “Enable scan” property from the previous section is enabled, then PMD annotations should
appear in the glyph margin of the Source Editor when you open a class, as shown in Figure 11-12.

Figure 11-12. The PMD violation annotations in the Source Editor glyph margin

Alternatively, you can right-click the Source Package node for a project in the Projects
window and select Tools ➤ Run PMD. The PMD plugin will scan your source code and display
a list of violations that matches the PMD checks in the PMD Output window, as shown in
Figure 11-13.

Figure 11-13. The PMD violations listed in the PMD Output window

CHAPTER 11 ■ CODE-QUALITY TOOLS262

8954Ch11.qxp 1/28/08 11:39 AM Page 262

http://pmd.sourceforge.net/howtowritearule.html
http://pmd.sourceforge.net/howtowritearule.html

The PMD Output window displays a three-column list of violations. The columns include

Location: The fully qualified class name and line number where the issue is located

Rule Name: The PMD check name that flagged the code violation

Recommendation: The PMD description of the coding violation that was identified

You can also select a specific violation in the PMD Output window and double-click it.
Doing so will open the matching source file in the Source Editor and place the cursor directly
at the offending line of code. This can be a quick and easy way of navigating violations identi-
fied by PMD and correcting them.

Working with SQE
The Software Quality Environment (SQE) tool is a NetBeans plugin that aims to provide a one-stop
shop for static analysis of Java code. It brings together in one platform multiple code-quality tools
such as Checkstyle, PMD, FindBugs, and Dependency Finder.

With this plugin, you can execute each tool individually or as a group and view the results.
It attempts to provide a consolidated section for configuring the tools as well as an area for
graphing and trending the resultant violations that are identified. This section discusses how
to download, install, and use the SQE plugin to support your code-quality processes.

Installing the SQE Plugin
To download and install SQE, perform the following steps:

1. Go to the project web site, at https://sqe.dev.java.net/.

2. The project site should contain a link to the SQE Update Center URL, such as
https://sqe.dev.java.net/updatecenters/sqe/updates.xml.

3. In NetBeans, select Tools ➤ Plugins from the main menu. The Plugins window will
open.

4. Select the Settings tab to display the list of Update Centers.

5. Click the Add button, enter SQE in the “Name” field, and paste the SQE Update Center
URL into the URL field. Click the OK button, and the SQE Update Center will appear in
the list of registered Update Centers in the Plugins window.

6. Click the Available Plugins tab. The SQE modules will be displayed, as shown in
Figure 11-14.

7. Select the check boxes next to the modules and click the Install button.

8. Click the Next button, accept the license, and proceed with the installation.

9. After the modules have been installed, click the Close button to exit from the Plugins
window.

CHAPTER 11 ■ CODE-QUALITY TOOLS 263

8954Ch11.qxp 1/28/08 11:39 AM Page 263

https://sqe.dev.java.net
https://sqe.dev.java.net/updatecenters/sqe/updates.xml

Figure 11-14. The SQE modules available to download in the Plugins window

Configuring the SQE Plugin
Once the SQE plugin has been installed, you can configure each of the individual static analy-
sis tools that come with it. I discuss the configurations only briefly. The tool is still under heavy
development, and parts of the tool configuration screen either are not complete or are subject
to change.

To access the SQE configuration, select Tools ➤ Options from the main menu. The
Options window will open. Select the Quality icon in the top navigation menu. The SQE
configuration options will appear as individual tabs for the tools that came with the plugin,
as shown in Figure 11-15.

You can select each icon to display the properties for the specific tool, such as Checkstyle,
FindBugs, and PMD. At the time of this writing, the Checkstyle properties section was not
complete and so it displays a blank tab. However, you can select the FindBugs and PMD icons
to edit those tools’ configuration options.

The PMD options in the Options window allow you to select or unselect from a single
master list which checks are applied to the code. You can unselect the Enabled check box next
to a rule to disable it from being applied to your code. As you select each check in the Rule col-
umn, a description and code sample of the check are displayed in the bottom part of the
Options window.

The FindBugs options tab is very similar. It allows you to enable or disable individual
checks via the check box in the Enabled column.

Future versions of the SQE plugin will have more configuration options available, but, as I
mentioned before, it is still under development.

CHAPTER 11 ■ CODE-QUALITY TOOLS264

8954Ch11.qxp 1/28/08 11:39 AM Page 264

Figure 11-15. The PMD options for the SQE plugin in the Options window

Running the SQE Plugin
Once the SQE plugin is installed and configured, you have several options for running it. You
can trigger all the code-quality tools to run at the same time or run each tool individually.

To run all the tools at once, select Quality ➤ Code Defects ➤ Check Quality from the main
menu. This will immediately trigger a scan of your code and display the SQE Result window. If
for some reason it does not display, you can open it manually by selecting Window ➤ Quality
➤ SQE Result from the main menu.

Once the scan completes, the SQE Result window will display the violations that were
identified by each tool. However, the violations are displayed for only one tool at a time, as
shown in Figure 11-16. At the top of the SQE Result window is a drop-down field labeled
“Provider.” If you expand the drop-down, you can see each of the code-quality tools that exe-
cuted. Selecting PMD from the list will display the violations identified by PMD, as shown in
Figure 11-16.

CHAPTER 11 ■ CODE-QUALITY TOOLS 265

8954Ch11.qxp 1/28/08 11:39 AM Page 265

Figure 11-16. The PMD results displayed in the SQE Result window

The violations in the SQE Result window are listed by category, with a count of the total
violations and a count of each group of violations. You can click the plus icon and expand the
groups to view individual violations. Each violation will list the fully qualified class name and
line number where the violation is located. Additionally, if you select a violation, the right
pane of the SQE Result window will display a description of it. You can also double-click a vio-
lation to open the matching source file in the Source Editor.

After you have run the code-quality tools, you can open any Java source file in the Source
Editor. If it contains a violation, you will see an annotation in the Source Editor glyph margin.
This allows you to see at a glance in the source code how many code-quality violations exist.
You can place the mouse over each annotation to see a tooltip explaining the violation, as
shown in Figure 11-17.

Figure 11-17. A code-quality annotation tooltip displayed in the Source Editor

Instead of running all the code-quality tools as a group, you can run them individually. If
you select Quality ➤ Code Defects from the main menu, the submenu displays the options
Run FindBugs, Run PMD, and Run Checkstyle. Selecting any of these submenu items will run
the matching code-quality tool individually. The results will display in the SQE Result window.

CHAPTER 11 ■ CODE-QUALITY TOOLS266

8954Ch11.qxp 1/28/08 11:39 AM Page 266

The SQE plugin has another feature that some developers will find useful. It can track the
history of code-quality violations and display a trended graph, as shown in Figure 11-18. To
activate this feature, select Window ➤ Quality ➤ SQE History.

Figure 11-18. The History graph of code-quality results

At the time of this writing, the history feature was not quite complete. Eventually it is
intended to provide a graph of the violations of each code-quality tool. You will be able to
select a project from the drop-down and see its trended results. From your perspective as a
developer, this can be useful in showing the history of the quality of your code. If, over time,
the number of violations goes up, then either your tool configuration has changed or your
code contains more bugs than it should.

Summary
This chapter reviewed the concepts of code quality, coding styles, and development best prac-
tices. It discussed the importance of being able to identify coding bugs, bad code formatting,
and potential performance issues. Manually reviewing code can take developers too long and
can prove to be error prone and difficult. Coding tools like Checkstyle and PMD can help
automate and standardize the process.

This chapter reviewed the Checkstyle and PMD code-quality tools. It discussed an
overview of each tool, some of the items they can check for, and a sample configuration file for
each. It then went on to review how to use each as a NetBeans plugin, discussing how to
download, install, configure, and run each of them.

Finally, the chapter discussed the SQE plugin. This plugin attempts to consolidate various
code-quality tools, such as Checkstyle, PMD, and FindBugs, into one tool. It provides a num-
ber of interesting features, such as the ability to run all the tools at once, view the results in
one window, and monitor the history of violations in each project for each code-quality tool.
This can lead to a productivity savings for developers as well as identify sudden increases in
coding bugs, issues, or bad formatting.

CHAPTER 11 ■ CODE-QUALITY TOOLS 267

8954Ch11.qxp 1/28/08 11:39 AM Page 267

8954Ch11.qxp 1/28/08 11:39 AM Page 268

Developing JRuby/Ruby on
Rails Applications

For me, the most exciting new feature of NetBeans 6 is its support for Ruby and the Ruby on
Rails framework. I struggled a bit with the organization of this chapter, since the two project
types are relatively distinct. To me they’re analogous to a General Java Application (Ruby) and
a Web Application (Ruby on Rails). Add JRuby to the mix and an entire book could easily (and
may someday) be dedicated to just the subject of Ruby, Ruby on Rails, and NetBeans.

I was initially going to discuss Ruby and Ruby on Rails as separate topics. However, that
would have meant repeating too much information (editing, testing, and so on). So, following
the DRY (don't repeat yourself) principle, I’ve decided to talk about the features of Ruby
and Ruby on Rails together, especially since Ruby on Rails is really just a superset of Ruby—
anything you can do in Ruby you can do in Ruby on Rails (but not vice versa).

Given the large amount of material to cover in this one chapter, I will assume that you
already have a basic understanding of Ruby and the Ruby on Rails framework. I will go into
more depth when discussing JRuby. Over the following pages I cover

• How to get the Ruby support in NetBeans

• Creating, editing, testing, debugging, and running Ruby and Ruby on Rails projects

• Managing RubyGems and Rails plugins

• IRB and the Rails Console

• JRuby

I also struggled with how much to talk about the Ruby and Ruby on Rails concepts. I’m
really limited to covering the ways that NetBeans supports Ruby and Ruby on Rails develop-
ment. For a more tutorial approach to learning Ruby, please see the NetBeans web site at
http://www.netbeans.org/kb/60/ruby/index.html.

Installing Ruby Support
Keeping with the NetBeans IDE tradition of excellent “out of the box” productivity, Ruby lan-
guage support, the Ruby on Rails framework, and the JRuby runtime all come bundled with
the full distribution of NetBeans.

269

C H A P T E R 1 2

8954Ch12.qxp 1/28/08 11:40 AM Page 269

http://www.netbeans.org/kb/60/ruby/index.html

However, if you happen to have one of the smaller distributions of NetBeans without
Ruby, you can easily install it via the Plugin Manager by doing the following (see Figure 12-1):

Figure 12-1. Adding Ruby via the Plugin Manager

1. Open the Plugin Manager by navigating to Tools ➤ Plugins.

2. Select the Available Plugins tab and click the “Category” column header to sort the list.

3. Select the check box next to the Ruby modules of interest. At a minimum, you will need
“Ruby and Rails,” which provides all of the NetBeans support for Ruby and Ruby on
Rails (projects, editing, and so on). Unless you already have a Ruby or JRuby runtime
installed, you will also want to select the “JRuby on Rails Distribution.” All of the other
plugins in the Ruby category are optional (Depot Sample, Color Themes, and so on),
but there’s really no reason not to install them as well.

4. Click the Install button to launch the Plugin Installer.

5. Accept the license and click Install to complete the Installation.

For more, see: http://www.netbeans.org/kb/60/ruby/setting-up.html#downloading.

Configuring Your Environment
NetBeans comes bundled with the JRuby interpreter, and its location is specified in the Ruby
page of the Options dialog (see Figure 12-2).

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS270

8954Ch12.qxp 1/28/08 11:40 AM Page 270

http://www.netbeans.org/kb/60/ruby/setting-up.html#downloading

Figure 12-2. Ruby Options dialog

For those of you using NetBeans to learn Ruby and Ruby on Rails, the JRuby interpreter is
all you need to begin your journey. However, if you already have a native Ruby interpreter
installed, you can use this dialog to point NetBeans to the location of that interpreter by doing
the following:

1. Select Tools ➤ Options (NetBeans ➤ Preferences on the Mac).

2. Select Ruby on the Toolbar.

3. Type the location of your Ruby executable in the list or click Browse to navigate to its
location.

■Note The next version of NetBeans, 6.1, will allow the Ruby interpreter to be set on a per-project basis,
very similar to how the Java Platform Manager works today in NetBeans.

The Ruby Options page also includes settings for debugging and the Rails project view.
Configuring the Ruby debugger is covered later, in the section “Debugging Your Project.” The
Show Logical Project View setting is covered later, in the section “Creating a Ruby on Rails
Project.”

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 271

8954Ch12.qxp 1/28/08 11:40 AM Page 271

Creating a Ruby Application Project
NetBeans provides four Ruby project types:

• Ruby application

• Ruby application with existing sources

• Ruby on Rails application

• Ruby on Rails application with existing sources

In this section I talk about the first two project types. I address the second two in the following
section.

As the names implies, you can create a Ruby application either from scratch or from an
existing Ruby application you previously created outside of NetBeans.

Ruby Application
The steps for creating a Ruby project are quite consistent with the other NetBeans project types.

1. Select File ➤ New Project.

2. Select Ruby under Categories and Ruby Application under Projects.

3. Give the project a name, if you so desire, and change the default project location (by
default, NetBeans provides the last location at which you created a project).

4. Select whether you want your project to be the main project (the project acted on by
menu selections such as Run) and whether you want to create a Main file (the file exe-
cuted when the project is Run). A customizable default name of main.rb is suggested
for you.

5. The dialog also indicates the Ruby interpreter in use, with an option to change it. As
noted earlier, the Ruby interpreter is currently set for the entire IDE and not at a proj-
ect level. However, clicking the Change button will open the IDE’s Options dialog so
that you can change it if you so desire (see “Configuring Your Environment,” earlier, for
more information).

6. Click Finish. Once the New Project wizard completes, you have a fully functional
“Hello World” Ruby application—just press F6 to run it.

The only other files present in a new Ruby project are Rakefile.rb, which I address later,
in the section “Running Rake Tasks,” and README, which provides basic documentation on your
project (see Figure 12-3).

By default the Source Files node maps to the underlying lib directory, where Ruby source
files generally reside (see “Customizing the Ruby Project” for instructions on how to change
the location of the Source Files directory). The Test Files node maps to the underlying test
directory and is the intended location for your Ruby tests (see the later section “Testing Your
Ruby Project” for more information).

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS272

8954Ch12.qxp 1/28/08 11:40 AM Page 272

Figure 12-3. Ruby Project layout

Ruby Application with Existing Sources
If you already have Ruby sources laying around, you can easily and harmlessly work with them
in NetBeans by choosing to create a new Ruby application with existing sources. The wizard asks
for the location of your existing Ruby project folder as well as the names of your Source and Test
folders. These values can later be changed or added to via the Project Properties dialog.

I say “harmlessly” because NetBeans simply adds an nbproject directory to your project,
from which it maintains metadata used by NetBeans. Once you delete the folder, it’s no longer
a “NetBeans Project” (and this is exactly what NetBeans does when you delete a project from
the IDE).

Creating a Ruby on Rails Project
As with Ruby projects, you have two options for creating your Rails application, either from
scratch or from existing sources if you have them.

Ruby on Rails Application
In the New Ruby on Rails Application dialog (Figure 12-4), you specify a project name and
location and whether you want the project to be the main project recognized by the IDE. You
can also select the database that will be preconfigured for you in the database.yml file. Don’t
worry about the “If Using JRuby” options; I discuss these later when I talk about JRuby.

NETBEANS VS. THE COMMAND LINE

It’s important to remember while working with NetBeans and Ruby on Rails that NetBeans is simply a veneer
(albeit a very powerful one) on top of the existing Ruby on Rails framework. Most of the tasks that are run by
NetBeans (creating a new project, running a generator, and so on) are calling out directly to the underlying
Ruby interpreter. So the wizards you see in NetBeans are nice graphical interfaces to the parameters and
options you’d alternatively have to specify on the command line. I often find myself thinking, “Gee, I wish
NetBeans did such and such,” only to realize it’s really the Ruby on Rails script that I wish had that feature.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 273

8954Ch12.qxp 1/28/08 11:40 AM Page 273

Figure 12-4. New Ruby on Rails Application dialog

■Note For the examples in this chapter, I assume that MySQL is the database, because that is what is
most commonly used by Rails developers.

The second page of the New Project wizard will detect the installed version of Rails, with
the option to update to the latest version if one is available.

When you click Finish, the wizard will run the rails command to create the project and
show the results in the Output window. This would be equivalent to running rails <project
name> from the command line. Note that the created files appear as a hyperlink that you can
click to open that file in the editor (Figure 12-5).

Figure 12-5. New Ruby on Rails application output

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS274

8954Ch12.qxp 1/28/08 11:40 AM Page 274

■Note By default, the Project window shows a logical view of the project structure (Figure 12-6), which
may be unfamiliar to existing Rails developers. To see your project by physical view, open Ruby Options (see
the earlier section “Configuring Your Environment”) and deselect “Show Logical Project View.” To see the
effects of this change, however, you will need to restart the IDE.

Figure 12-6. Project view

Unlike with creating a Ruby application, there is no Hello World version of the application
that’s ready to run. This is because NetBeans just runs the underlying rails command (see the
sidebar “NetBeans vs. the Command Line”).

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 275

8954Ch12.qxp 1/28/08 11:40 AM Page 275

Ruby on Rails with Existing Sources
The process for creating a Ruby on Rails application from existing sources is practically identi-
cal to creating a Ruby on Rails application from scratch. This is because there’s no need to tell
NetBeans the location of your project sources and test directories (since all Ruby on Rails
applications share an identical project structure). Just point NetBeans to your project directory
and go. Ah, the beauty of Rails conventions.

Adding Files to the Project
Whether you’ve created a Ruby application or a Ruby on Rails application, you need to add
new files and make it actually do something more constructive than just saying hello to the
world.

NetBeans provides several Ruby file templates (types) to help get you started, with Ruby
File being the most generic, requiring simply a name and a location. A Ruby Module will let
you specify an optional parent module, while a Ruby Class will let you specify an optional par-
ent module and/or class. All three file types can be used interchangeably; the Ruby Module
and Ruby Class templates just help you set up the file structure a bit.

For example, to create a new class, do the following (see Figures 12-7 and 12-8):

1. Select File ➤ New File.

2. Select Ruby from the Categories list and Ruby Class from the File Types list.

3. Give your class a name.

■Note Ruby on Rails convention dictates that filenames always be lowercase and with underscores sepa-
rating the words. So, for example, if you create a new class CreditCheck, the recommended filename will
be credit_check. Also note, however, that the file can be called anything you want and doesn’t have to
match the class name.

4. In the “File Name” field, NetBeans has suggested a filename, but feel free to change it.

5. Using this dialog you can also specify whether your new class is in a module or extends
a class.

6. The “Project” field is an informational, read-only field.

7. The “Location” drop-down will default to Source Files. You can alternatively use the
“Folder” field to create the file in any location you like.

8. The “Created File” field is an informational, read-only field, showing the full name and
location of the new file.

In a Ruby on Rails project you’d probably want to run a couple of generators before
adding more files.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS276

8954Ch12.qxp 1/28/08 11:40 AM Page 276

Figure 12-7. New Ruby Class dialog

Figure 12-8. New Ruby class

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 277

8954Ch12.qxp 1/28/08 11:40 AM Page 277

Working with Generators
Working from the command line, you can run a command such as “ruby script/generate
<generator> <options>”. NetBeans gives you a nice graphical interface on top of this
(Figure 12-9).

Figure 12-9. Rails Generator dialog

To access the generators, right-click the project and select Generate from the context
menu. The command is context sensitive such that if you have the Controllers node selected,
the dialog will assume you want to generate a new controller (Figure 12-10). This also works
for Models and Database Migrations.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS278

8954Ch12.qxp 1/28/08 11:40 AM Page 278

Figure 12-10. Accessing the Rails generators for a project

The input fields for the generator will change based on the generator you select. You can
see from Figure 12-9 that controller takes “Name” and “Views” arguments. If you look at model,
it just has a single arguments field. You also have the option to skip or overwrite existing files
or merely to preview the changes made by the generator. All of these options are available via
the command line, so NetBeans makes them available as well. The other nice thing about the
Generator dialog is that it gives you the Rails help text for that generator. For the Controller
generator, for example, this would be the same text you’d see if you typed on the command
line the following from the project directory:

ruby script/generate controller -h

Finally, the Install Generators button will launch the Ruby Gem Manager, filtered by gems with
generator in the title or description.

■Note After installing a generator, restart the IDE to see it appear as an option in the Rails Generator dialog.

As the generator is running, its output appears in the Output window (Figure 12-11). Once
complete, artifacts that were created are presented as hyperlinks, so you can quickly open them
up in the editor.

Figure 12-11. Rails Generator output with hyperlinks

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 279

8954Ch12.qxp 1/28/08 11:40 AM Page 279

The Ruby Editor
The Ruby Editor is a cornerstone of the IDE’s first-class Ruby language support. Most of the
features covered in Chapter 2, “The Source Editor,” are also supported for the Ruby language,
so I will not repeat them here. But I do think it’s worth pointing out some of the features
unique to Ruby.

Code Completion
Code completion for a dynamic language is much trickier than for a statically typed language
such as Java because types generally have to be inferred based on usage patterns. Regardless,
NetBeans steps up to the challenge and provides you with first-class code completion for Ruby.

As with Java, if you press Ctrl+Space as you are typing, completion is provided for vari-
ables, method names, class names, and constants. In addition, various Ruby built-ins, such as
keywords and predefined constants, are provided. In all cases, Ruby documentation (rdoc) is
also displayed, if it exists for the associated element.

In many contexts, NetBeans knows the exact type. For example, if you type Dir.c and
invoke code completion, the editor shows you only the methods of class Dir that start with c
as well as inherited methods and module mixins (Figure 12-12).

Figure 12-12. Code completion

Code completion also works for all kinds of literals in your code: strings, regular expres-
sions, arrays, hashes, symbols, numbers, and so on, and you can even use it with the nil
keyword. For example, with arrays, try code completion with [1,2,3].ea to see the each
method and its documentation (Figure 12-13).

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS280

8954Ch12.qxp 1/28/08 11:40 AM Page 280

Figure 12-13. Code completion on literals

Code completion also provides help in specific contexts. For example, if you invoke code
completion within the string of a require or load statement, you see a list of available imports,
as shown in Figure 12-14.

Figure 12-14. Code completion: require statement

If you invoke code completion while typing a regular expression, you get help with regular
expression syntax, as shown in Figure 12-15.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 281

8954Ch12.qxp 1/28/08 11:40 AM Page 281

Figure 12-15. Code completion: regular expression

If you’re typing Ruby code and can’t remember the names or meanings of global variables
or what the escape codes are following a percent sign, use code completion, as shown in
Figures 12-16 and 12-17.

Figure 12-16. Code completion: global variables

Figure 12-17. Code completion: escape codes

There are more scenarios. For example, invoking code completion after a def keyword
lists only the inherited methods from the superclasses.

In Ruby on Rails applications there’s even code completion for ActiveRecord classes. This
is a handy feature because, as you may already know, most methods in a model class are gen-
erated dynamically. However, NetBeans parses the migration files to determine the methods
that the Ruby on Rails framework will make available to you, as shown in Figure 12-18.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS282

8954Ch12.qxp 1/28/08 11:40 AM Page 282

Figure 12-18. ActiveRecord completion

Code Templates
Code templates are covered in depth in Chapter 3. However, I think it’s worthwhile to discuss
some of the benefits that are particular to Ruby. If you’re a TextMate developer, then you
already know the benefit of code templates, and you’ll be happy to learn that all of the Text-
Mate templates have been incorporated into NetBeans. Templates exist for both Ruby and
RHTML files, as shown in Figure 12-19.

Figure 12-19. Ruby template for vp (validates_presence_of)

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 283

8954Ch12.qxp 1/28/08 11:40 AM Page 283

Running Rake Tasks
Both Ruby and Ruby on Rails applications support the running of Rake tasks via the project’s
context menu option Run Rake Task (Figure 12-20). Pausing on a particular task will cause a
tooltip to appear with an explanation of that task, as shown in the figure.

Figure 12-20. Run Rake Task menu

You’ll notice that the last menu option is Refresh List. If you add a new Rake task to your
project, just run the Refresh List task to get your tasks to appear in the Run Rake Task menu.

For example, if you add the following into Rakefile.rb:

desc "My Rake Task"
task :my_rake_task do
puts "My Rake Task"

end

just right-click the project and choose Run Rake Task ➤ Refresh List to get the test task into the
list. You may now run the task from the project’s context menu.

■Note A Rake task needs a description before the task name will appear in the Run Rake Tasks menu. The
task description appears in the tooltip, as show in Figure 12-20.

As you can see in Figure 12-20, all of the predefined Rails Rake tasks are available from the
context menu of the project. The most popular Rake task, db:migrate, has been given its own
top-level menu, Migrate Database (Figure 12-21). Via this menu you can migrate to any version
of your database schema. The “To Current Version” option is always the same as the highest

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS284

8954Ch12.qxp 1/28/08 11:40 AM Page 284

version in the list, “To Version 7 – CreateUsers” in Figure 12-21. “To Version 0 – Clear” deletes all
the tables in your database.

Figure 12-21. Migrate Database context menu

Customizing the Ruby Project
The project properties are one area where Ruby and Ruby on Rails projects are quite different,
so I cover each project type separately.

Ruby Project Properties
To access the project’s properties, right-click the project and select Properties at the bottom of
the menu. There are three categories of project properties: Sources, Run, and Java. The Sources
properties allow you to customize the name and location of the Source Files and Test Files fold-
ers in the Projects view. Again, this works similarly to other NetBeans project types.

In the Run category, you can change the Main Script that’s run when the project is run.
Additionally, you can set project arguments. For example, set “Argument” to “World” and
change main.rb to the following:

puts "Hello " + ARG[0]

The working directory defaults to the Source Files directory (lib by default), and this can
be changed with the Working Directory property. For example, if you have in the project’s lib
directory a file named hello.txt containing the text “Hello World,” then adding the following
to main.rb reads the file’s contents and displays it in the Output window:

puts gets

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 285

8954Ch12.qxp 1/28/08 11:40 AM Page 285

If you prefer to have hello.txt in a different location, you can set your working directory
to that location so that it can still be found. As their names imply, Ruby Options and Rake
Arguments are used to pass values to the Ruby interpreter or Rake command. The Java cate-
gory is covered later in this chapter.

Ruby on Rails Project Properties
Ruby on Rails doesn’t have a Sources category, since the source and test file locations are fixed
by the Ruby on Rails conventions. However, under the Rails category, you can configure the
default port on which the server will start. You can also set the “Encoding” field and the argu-
ments passed to Rake (see Figure 12-22).

Figure 12-22. Ruby on Rails Project Properties window

The Ruby Gem Manager
The Ruby Gem Manager allows you to install new RubyGems as well as view and update exist-
ing gems. To access the Gem Manager, select RubyGems from the Tools menu.

On most systems other than Windows, the Ruby installation directory that the Gem Man-
ager is trying to access is often privileged. Several solutions to this problem are documented
at http://wiki.netbeans.org/wiki/view/RubyGems. For the purposes of this book, I’m going to
change my gem repository permissions via the following steps:

• Open a terminal window and cd to #{NetBeans Installation Directory}/ruby1.

• Type sudo chown -fR #{username} gems, which for me would be sudo chown -fR
bleonard jruby1.0.1.

The Ruby Gem Manager has four tabs (Figure 12-23):

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS286

8954Ch12.qxp 1/28/08 11:40 AM Page 286

http://wiki.netbeans.org/wiki/view/RubyGems

Figure 12-23. Ruby Gem Manager

Updated: This tab shows you installed gems for which new versions are available. The
list includes the name of the gem, its currently installed version, and a short description.
Selecting a gem will display the same information as well as the number of the new
version available. From here you can choose to update the selected gem or all of the
updated gems.

Installed: This tab shows you the gems you currently have installed, with a button to unin-
stall the selected gem.

New Gems: This tab allows you to add new gems to your Ruby installation. This is best
done using the Search text box, which is also available for the Updated and Installed tabs
but is most useful here, where more than 2,200 gems (and growing rapidly) appear in the
list. After you perform a search, the total in the tab will update to indicate how many
gems were found that match your search criteria, as shown in Figure 12-24.

Settings: This tab allows you to configure proxies.

Figure 12-24. Ruby Gems: new gems

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 287

8954Ch12.qxp 1/28/08 11:40 AM Page 287

Managing Rails Plugins
Like gems for Ruby, plugins extend the functionality of Rails. Rails plugins are configured on a
project-by-project basis and are accessible via the Rails Plugins context menu item off of the
particular project (Figure 12-25).

Figure 12-25. Rails Plugins context menu item

The Rails Plugins dialog has four pages: Installed, New Plugins, Repositories, and Settings
(Figure 12-26).

Figure 12-26. Rails Plugins dialog

The Installed page of the Rails Plugins dialog will show all installed plugins, whether
installed via NetBeans or using the script/plugin install command from the command line.
By default, no plugins are installed in a Rails project. From this page, Rails plugins can be
uninstalled from the project or updated to their most current version.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS288

8954Ch12.qxp 1/28/08 11:40 AM Page 288

The New Plugins page will list all Rails plugins available on the configured repositories,
which, by default, is only http://dev.rubyonrails.com/svn/rails/plugins/. The Repositories
page allows you to add new repositories or unregister existing repositories. You have the fol-
lowing options when adding a new Rails plugin repository:

1. Click the Find New button to display a list of known Rails plugin repositories.

2. Click the Add URL button to add your own repository manually.

Finally, the Settings tab allows you to configure a proxy if necessary. Clicking the Configure
Proxies button takes you to the General page of the Options dialog, where proxy settings are
configured for the entire IDE.

Testing Your Ruby Project
Ruby’s Test::Unit framework is well integrated into the NetBeans IDE.

Creating Tests
The dialog for creating a new unit test is identical to that for creating a new class, as described
earlier, in the section “Adding Files to the Project,” the only difference being that the class will
extend Test::Unit::TestCase.

Follow these steps to create a new unit test:

1. Select File ➤ New File.

2. Select Ruby from the Categories list and Ruby Unit Test from the File Types list
(Figure 12-27).

Figure 12-27. New Ruby Unit Test dialog

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 289

8954Ch12.qxp 1/28/08 11:40 AM Page 289

http://dev.rubyonrails.com/svn/rails/plugins

At a minimum, set the class name and ensure that “Location” is set to “Test Files.”

■Note For Ruby projects, the test class name generally matches the name of the class being tested, pre-
fixed by “Test”. Following this pattern, NetBeans will automatically add the require statement for the test
following the “Test” prefix. For example, to test an existing class named “ShoppingCart”, you would name
your test class TestShoppingCart and NetBeans would produce the test template shown in Figure 12-28.

Figure 12-28. Unit testing template

■Tip Once the test class is created, you can easily navigate from the test class to the tested class by choos-
ing Navigate ➤ Go to Tested Class. From the tested class you can navigate back to the test class by choosing
Navigate ➤ Go to Test.

Running Tests
Run your unit test by selecting Run ➤ Run File ➤ Test <class name>. This will execute your test
whether you’re currently viewing the test class or the class under test. Alternatively, you can
select Run ➤ Run File ➤ Run <test class name>, but this works only when viewing the test class.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS290

8954Ch12.qxp 1/28/08 11:40 AM Page 290

Test results will appear in the Output window, as shown in Figure 12-29. The output is
hyperlinked, so you can easily navigate back to the failed tests for investigation.

Figure 12-29. Unit test results

Debugging Your Project
If you’re familiar with the Java debugging capabilities in NetBeans, you’ll be very comfortable
working with the Ruby debugger. Therefore, I don’t go into too much detail here since the con-
cepts covered in Chapter 4, “Debugging,” also apply here.

However, it is worth noting that you currently can’t debug Ruby on Rails projects using the
bundled JRuby interpreter. This will be addressed when JRuby 1.1 is released. Even with the
native Ruby interpreter, debugging Ruby applications leaves a lot to be desired, which is why
NetBeans provides an option to install the Fast Debugger gem (ruby-debug-ide).

If you attempt to debug a Ruby project that is running on the native Ruby interpreter with-
out the Fast Debugger installed, NetBeans will prompt you to install it, as shown in Figure 12-30.

Figure 12-30. Fast Debugger installation prompt

Alternatively, you can install the Fast Debugger using the Ruby Gem Manager. See the ear-
lier section “The Ruby Gem Manager” for more information.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 291

8954Ch12.qxp 1/28/08 11:40 AM Page 291

Once you’ve installed the Fast Debugger, debugging a Ruby on Rails application will be as
slick as with any Java application, giving you visual access to the call stack, threads, and local
variables. All of these features are even supported for RHTML files in Ruby on Rails applications.

IRB and the Rails Console
Two interactive tools that you currently start from the command line are available from within
NetBeans: IRB (for Ruby) and the Rails Console (for Rails).

You access IRB by choosing Window ➤ Other ➤ Ruby Shell (IRB). IRB opens at the root of
your system, so you probably want to change to your project directory. You can do this using
the Dir.chdir method.

A nice feature of the IRB console integrated in NetBeans is tab completion. For example,
typing [1, 2, 3].ea and then pressing the Tab key produces what is shown in Figure 12-31.

Figure 12-31. Code completion in IRB

From within NetBeans you can also open the Rails Console for any given Ruby on Rails
project. You can access the Rails Console from the project’s context menu by right-clicking the
Ruby on Rails project and selecting Rails Console.

JRuby
JRuby is simply the Ruby language running on the JVM rather than the CRuby interpreter.
Everything I’ve discussed up to this point is applicable to both Ruby and JRuby, and you should
notice little difference in switching between the two runtimes. To learn more about JRuby, visit
http://www.jruby.org.

Being able to run Ruby on the JVM does bring an interesting dimension to the mix. First
of all, you can now leverage the vast array of Java libraries in existence today, whether in the
public domain or in your own private domain. Second, and probably more interesting for the
enterprise, is that you can write Ruby on Rails applications that will run on your existing
deployment infrastructure, be that WebSphere, WebLogic, JBoss, GlassFish, or any other
servlet container. In this section I give examples of both.

Calling Java from Ruby
JRuby allows you to define and interact with Java classes from within Ruby, and the best part is
that you continue to use the Ruby syntax to which you’re already accustomed.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS292

8954Ch12.qxp 1/28/08 11:40 AM Page 292

http://www.jruby.org

The first step to working with your Java classes is making them available to the JRuby
interpreter, and NetBeans can help with this step.

■Note If you’re working with any of the standard Java libraries (those that ship with the JVM), then this
step is unnecessary because they are already bundled with the JRuby runtime.

If you open the project properties page, we can now address the Java category. From here you
can configure JRuby with the Java libraries you want to use in your project (essentially just as
you would need to do when working from a Java project).

The second step is to include Java:

include Java

The third step is to import the Java classes you’re going to use. For example, if you wanted
to work with a java.util.ArrayList, you would need to type the following:

include Java
import java.util.ArrayList

However, working with the java.util.ArrayList in Ruby becomes much more interesting,
for types are not declared and we use the Ruby syntax to create new objects. For example:

dogs = ArrayList.new
dogs.add "Spaniel"
dogs.add "Hound"
dogs.add "Retriever"

dogs.each do |dog|
puts dog

end

This is fun stuff because we’re using a Java class as if it were a Ruby class, iterators and all. This
demonstrates how you can easily make use of your existing Java APIs directly from a Ruby class.

Running Rails on Your Favorite Servlet Container
As discussed in the beginning of this section, one of the more exciting aspects of JRuby is the
ability to deploy Ruby on Rails applications to a Java servlet container. This lets you take
advantage of all the agility the Ruby on Rails framework has to offer while leveraging your
existing deployment infrastructure.

From speaking with a lot of developers, I’ve learned that getting a new deployment run-
time onto a production server can be a challenge. Several developers have even told me that
they notified their server administrators that the application was written in Rails only after it
was in production!

All of this is possible through a Rails plugin called GoldSpike, which packages your Ruby
on Rails application as a WAR file for easy deployment to a servlet container. You can learn
more at http://wiki.jruby.org/wiki/Goldspike.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 293

8954Ch12.qxp 1/28/08 11:40 AM Page 293

http://wiki.jruby.org/wiki/Goldspike

If you think you’ll want to deploy your application as a WAR file, then when creating the
project select the option to “Add Rake Targets to Support App Server Deployment (.war)” (see
Figure 12-32).

Figure 12-32. Configuring a new Rails project with GoldSpike

If you have an existing project you’d like to WAR, you can use the Rails Plugin dialog to
add the GoldSpike plugin to your project.

In order to run the Rake targets added by the GoldSpike plugin, you also need to install
the ActiveRecord-JDBC Ruby gem, which you can do via the Ruby Gem Manager. See the ear-
lier section “The Ruby Gem Manager” for details.

■Note The war:standalone:create Rake target expects the Java jar command to be accessible on the
path. Configure your environment to ensure that your Java bin directory is on your path (you should be able
to run jar -version successfully from the command line).

Once these components are installed, you’re ready to create a WAR of your Rails project.
To accomplish this, run the Rake task war:standalone:create (Figure 12-33). The process takes
several minutes to complete, and once you’re done you’ll have a deployable WAR file in your
project’s root directory.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS294

8954Ch12.qxp 1/28/08 11:40 AM Page 294

Figure 12-33. war:standalone:create output

You can now deploy and run the WAR file on your favorite servlet container.

Putting It All Together
Here you’ll use many of the features you learned about in the previous sections to build a sim-
ple Ruby on Rails application: an online visitor log, just like the kind you might find at a bed
and breakfast, but digital.

Creating the Database
Before creating your project, you’ll create your project’s database. As noted earlier, the examples
in this chapter assume MySQL as the database.

1. Select Window ➤ Services.

2. Expand the Database node.

3. If you already have a connection to a MySQL database in the list, skip to step 6.

4. Right-click the MySQL (Connector/J driver) and select Connect Using....

5. Set the Database URL to “jdbc:mysql://localhost/mysql” and the User Name to Root.
Click OK to establish the connection. Using this connection you can create another
MySQL database.

6. Right-click the MySQL connection and select Connect and then OK.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 295

8954Ch12.qxp 1/28/08 11:40 AM Page 295

mysql://localhost/mysql%E2%80%9D

7. Right-click the MySQL connection again and select Execute Command.

8. Enter the command create database visitor_log_development.

9. Right-click the file and choose Run Statement.

10. Verify in the Output window that execution was successful.

Creating the Project
To create the project, do the following:

1. Select File ➤ New Project.

2. Select Ruby in the Categories list and Ruby on Rails Application in the Projects list.
Click Next.

3. Name your project visitor_log and click Finish.

■Note It’s generally a Rails convention to name your project using lowercase, rather than CamelCase,
lettering.

4. In the Projects window, right-click the Models node and select Generate.

5. The selected generator should already be Model. If not, please set it to such.

6. Set the “Arguments” field to “VisitorLog name:string comments:text data:datetime”
and click OK to run the model generator.

7. Right-click the visitor_log project and select Migrate Database ➤ To Current Version.

8. Right-click the visitor_log project and select Generate.

9. Set the generator to scaffold. Set both the Model and Controller names to VisitorLog.

Running the Project

1. Choose Run ➤ Run Main Project to see the fruits of your labor. NetBeans will start the
WEBrick server and launch the browser to http://localhost:3000/. Append visitor_log
to the end of the URL to see your application.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS296

8954Ch12.qxp 1/28/08 11:40 AM Page 296

http://localhost:3000

■Tip If you would like Rails to run a specific controller on launch, open routes.rb, uncomment the line
map.connect '', :controller => "welcome", and replace the controller value with the name of the
controller you’d like to run. You also need to delete index.html from the Public folder. Alternatively, you can
have NetBeans launch directly into the page you want to run by choosing Run ➤ Run File while viewing that
page in the editor. For example, in the editor, open Views ➤ visitor_log ➤ list.rhtml and then select Run ➤
Run File > Run “list.rhtml”. This feature also works from the controller. For example, while viewing
list.rhml in the editor, select Navigate ➤ Go to Rails Action or View to open the list controller action asso-
ciated with this view. From here you can also select Run ➤ Run File ➤ Run “visitor_log_controller.rb”.

Notes:

1. The port number used by the server is configurable in the project’s properties.

2. If another Rails project is already running at port 3000, NetBeans will automatically increment the port
number, to prevent a “port in use” error when starting the server.

3. If you have installed Mongrel, then Mongrel will be started. NetBeans starts whatever is configured as the
default server.

Summary
The Ruby features come bundled with the full download of the IDE, yet they’re easy to get as
plugins if you’ve already installed one of the smaller distributions. NetBeans comes bundled
with the JRuby interpreter, but it is also easily configurable to work with an existing interpreter
on your system, whether it be JRuby or native Ruby.

Out of the box, NetBeans has support for creating or working with your existing Ruby
and/or Ruby on Rails applications. Once the projects are opened in NetBeans, you can easily
add additional files or run Rails generators.

The Ruby language editor in NetBeans is first class, providing all the features you’d expect
for a statically typed language (code completion, rdoc integrations, go to type, go to declaration),
even though Ruby is a dynamic language.

Testing and debugging are also supported, with debugging at the same level as Java
debuggers—a real treat for Rails developers who are used to running the debugger from the
command line.

NetBeans also supports running Rake tasks as well as managing your Ruby gems and Rails
plugins. Additionally, you do not have to leave NetBeans to launch either the IRB or the Rails
Console.

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS 297

8954Ch12.qxp 1/28/08 11:40 AM Page 297

The chapter concluded with JRuby, where I went into a bit more depth on the technology,
for which the big benefits are the abilities to call Java libraries from your Ruby code as well as
to deploy your Rails applications to a Java servlet container.

As stated at the beginning of this chapter, the topic of Ruby, Ruby on Rails, and JRuby is
quite a bit to condense into a single chapter. I’ve been more broad then deep, showing you
what’s possible and providing you an opportunity to explore further on your own. To that
extent, here are a couple of resources to continue your learning:

• Project homepage (maintained by NetBeans engineering): http://ruby.netbeans.org

• Product homepage (maintained by NetBeans Documentation Team): http://
www.netbeans.org/products/ruby

• Mailing list: users@ruby.netbens.org

CHAPTER 12 ■ DEVELOPING JRUBY/RUBY ON RAILS APPLICATIONS298

8954Ch12.qxp 1/28/08 11:40 AM Page 298

http://ruby.netbeans.org
http://www.netbeans.org/products/ruby
http://www.netbeans.org/products/ruby
mailto:users@ruby.netbens.org

Developing Web Applications

Several options are available in NetBeans for creating and working with web applications.
The first is the Web Application project type. This includes standard HTML, JSP, and visual
JSF support. There are also additional types of web application support available through
plugins, such as Struts, JSF, and jMaki.

Prior to NetBeans 6, two types of Web Application projects were available in NetBeans:
Web Applications and Visual Web Applications. These project types have been combined into
one standard type of project named Web Application. With this type of project you can choose
whether or not to add visual JSF support through the ability to add frameworks such as Struts
and JSF.

This chapter focuses on providing an overview to each type of web application tool avail-
able while highlighting the updated and new features available in NetBeans 6.

Create a Web Application Project
To create a new web application, select File ➤ New Project. In the New Project window, choose
the Web category. You will see the following project type choices:

• Web Application

• Web Application with Existing Sources

• Web Application with Existing Ant Script

The first item in the list is the one on which this chapter focuses. The second and third items
are the same as the Web Application type. They differ only in how the project is created.

Follow these steps to create a Web Application project:

1. In the New Project window, select Web Application from the list, and then click the
Next button to continue. As you can see in Figure 13-1, several options are available
when creating a Web Application project.

2. The first few items to set in the wizard are the project name and location. Enter a value
in the “Project Name” field. It will be appended to the value in the “Project Location”
field to create what is displayed in the third field, “Project Folder.” You will want to pick
a generic location for the “Project Location” field. In Figure 13-1, you can see that I
selected the folder D:\projects.

299

C H A P T E R 1 3

8954Ch13.qxp 1/28/08 11:41 AM Page 299

Figure 13-1. Web Application properties in the New Web Application wizard

■Tip If you want your project to have a long, meaningful name but not an identical directory structure, you
can do that. When creating your project, start by picking a short name, such as surveytool. When the project
is created, you will see a path structure like c:\projects\surveytool (assuming your root location was
c:\projects). Then in the Projects window, right-click the project name and select Rename Project. Enter
the full name you want to assign the project, such as MyCustomer Survey Tool. The project structure will
stay the same, but the project name displayed in the Projects window will have the long name you originally
wanted.

3. Set the “Server” field to specify to which application server you will deploy the project.
This can easily be changed later through the Project Properties window, so don’t panic
if you feel you’ve selected the wrong server. The options that appear in the “Server”
field drop-down list may vary, depending on the NetBeans bundle you downloaded and
installed. For the most part, NetBeans comes bundled with Tomcat. If you selected the
correct option during installation, the Sun Java System Application Server (GlassFish)
will also appear in the list. If the server you wish to use does not appear in the list, click
the Add button to activate the Add Server Instance wizard. See the “Defining Java
Application Servers” section later in this chapter for details on setting up an applica-
tion server.

4. Fill in the “Context Path” field to define the URL where your application can be
accessed once deployed to the application server.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS300

8954Ch13.qxp 1/28/08 11:41 AM Page 300

5. Set the other fields to specify the Java Enterprise Edition (EE) version of the application
and the source level and that the new project should be the main project.

6. Once you have set the configuration options for your application, click the Next button.

7. In the next window, the New Project wizard prompts you to add a framework to the web
application. This list will vary, depending on which modules you have installed and
activated. By default, you should see Visual Web JavaServer Faces, JavaServer Faces, and
Struts in the list. Click the check box next to the Struts option, and you should see addi-
tional fields appear in the bottom half of the window, as shown in Figure 13-2.

Figure 13-2. Specifying the framework and properties for the Java web application

8. The Struts Configuration section allows you to set the main high-level properties that
the Struts framework will use for your web application. You can set the “Action URL
Pattern” field, which is initialized by default to *.do. This is the pattern that your web
application will use to map file URLs to Struts actions, as defined in the Struts configu-
ration files. Before continuing, you should also modify the package structure in the
“Application Resource” field to conform to the Java package structure your application
will use.

9. Once you’re satisfied with the settings, click the Finish button to generate the web
application.

Once the new web application has been created, you can browse the nodes in the Projects
window.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 301

8954Ch13.qxp 1/28/08 11:41 AM Page 301

Navigating the Web Application Project
Like every other project type, Web Application projects are structured as a set of parent–child
nodes with special designations. For the Web Application project type, the files are sorted into
the following nodes:

• Web Pages • Test Packages

• Configuration Files • Libraries

• Server Resources • Test Libraries

• Source Packages

This structure is how NetBeans arranges the files. The Source Packages, Test Packages, Libraries,
and Test Libraries items should look familiar. They are the same as for a regular Java Application
or Java Class Library project, as discussed in Chapter 2, on the Source Editor. They contain the
Java source files, the source of the test files, any project libraries, and any test-specific libraries,
respectively. The new nodes you have not seen before are Web Pages, Configuration Files, and
Server Resources.

Web Pages
The Web Pages node in the Projects window defines where the actual web content should be
located. This is where you can add HTML, JSP, CSS, images, and folders to your application.

If you look at the project structure in the Files window, you will see a top-level directory
named web. This directory is where the content in the Web Pages node is located.

You will see that it contains a sample index.jsp file as well as the standard WEB-INF directory.
If you look in the WEB-INF directory, you will also find a web.xml file and the struts-config.xml file.

Configuration Files
Configuration Files is a special node that does not represent an actual folder in the project
structure. The items that appear under this node are categorized as items to which you would
normally need access when making configuration changes to the application. It also contains
the deployment descriptor for the web application.

The Configuration Files node contains the web.xml, struts-config.xml, and other project
configuration files. These are the same files that appear under the WEB-INF directory in the
Web Pages node.

■Note The files under the Configuration Files node are not copies of the files under other nodes. They sim-
ply represent an alternative method for viewing and accessing them. If you find it confusing, you don’t even
need to use the Configuration Files node.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS302

8954Ch13.qxp 1/28/08 11:41 AM Page 302

If you have captured any database schemas, you will be able to view the schema file under
this node as well.

Server Resources
The Server Resources node is used primarily with Enterprise projects; however, there are a few
uses for it in Web Application projects. Several files and objects are placed under this node
after they have been created.

If you define a JDBC Resource, JDBC Connection Pool, JMS Resource, Persistence Resource,
or JavaMail Resource, it will be listed under the Server Resources node. This is handy, since it
gives you quick access to related resources. The items under the Server Resources node appear
under the Setup directory in the Files window.

JavaScript and CSS File Support
NetBeans 6 has improved built-in support for CSS and JavaScript. The Source Editor allows
you to open these file types and work with them in an intelligent manner.

Working with CSS Files
Out of the box, NetBeans 6 provides good support for CSS files. You can use the New File wiz-
ard to add a CSS file to your project and have a visual editor for modifying the style properties.
You’ll also be able to benefit from syntax coloring, rule creation, and CSS validation. If you are
developing a web application, then as a best practice you make frequent use of CSS files. Any
tools that can assist you in working with them are very valuable.

To add a new CSS file to your current Web Application project, select File ➤ New File from
the main menu. In the New File window, select the Web category, choose the Cascading Style
Sheet file type, and then click Next. Enter the filename. Do not add the .css extension. Select
the folder in which the file will be located, and then click Finish.

The CSS file will be added to your project and will open in the Source Editor window. The
file contains a comment block that lists the name of the file, the date it was originally created,
the author, and a sample explanation of the purpose of the file. It also contains a TODO directive
suggesting that the initial text in the file be modified. You can see this listed in the Task List
window by selecting Window ➤ Task List or by pressing Ctrl+6.

Figure 13-3 shows the CSS file in the Source Editor. The toolbar along the top of the win-
dow includes a CSS-specific icon: Create Rule.

■Tip In the NetBeans IDE, you can see the function for each icon by placing the mouse over it and reading
the tooltip that is displayed.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 303

8954Ch13.qxp 1/28/08 11:41 AM Page 303

Figure 13-3. Default content in new CSS file

The Create Rule button is on the far-left side of the toolbar. When you click the Create Rule
icon, the Style Rule Editor dialog box appears. It allows you to define a new style class or element
definition. You can use the Style Rule Editor to define a set of styles for an HTML element. The
dialog box provides a drop-down list of HTML elements and allows you to choose multiple
HTML elements. To add elements to the Style Rule Hierarchy list on the right, click the > button.

For example, in Figure 13-4, the <h1>, <h2>, and <h3> elements were chosen from the “HTML
Element” drop-down list and added to the Style Rule Hierarchy list. Once you have created a
Style Rule Hierarchy list to your liking, click the OK button. The new style rule is then added to
the CSS file (but without any style definitions), like this:

h1 h2 h3 {

}

Figure 13-4. The Style Rule Editor dialog box

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS304

8954Ch13.qxp 1/28/08 11:41 AM Page 304

Once you have created the empty style rule, you need to define styles. You can do so man-
ually in the text displayed in the Source Editor, or you can use the Style Builder. To open the
Style Builder window, go to the main menu and select Window ➤ Other ➤ Css Style Builder.
The Style Builder window should open and be visible along the bottom of the screen, as shown
in Figure 13-5. (This may vary slightly, depending on how many windows you have open at
the time.)

Figure 13-5. Editing styles in the Style Builder

The Style Builder provides a graphical interface for editing styles. You can use it to set font
attributes, margins, borders, background attributes, and more. To use the Style Builder for a
specific element in a CSS file, place the cursor anywhere inside the corresponding style. As
you select different properties from the list, the Css Preview window on the right will show
what the text will look like with the style applied. (If you are defining a style for a nontext
HTML element, the preview pane will not display anything.)

As you set the various properties for the style, you will see the text in the Source Editor
change to correspond to your selections. Once you are finished, you can close the CSS file
from the Source Editor window. The Style Builder will also close.

■Note The CSS Preview window is a separate window that can be opened, docked, or closed independent of
the Css Style Builder window. You can close it to save screen space or to have more room to view the Css Style
Builder window. To reopen the window, go to the main menu and select Window ➤ Other ➤ Css Preview.

Working with JavaScript Files
NetBeans 6 also provides improved JavaScript support. You can now take advantage of basic
code completion, improved syntax highlighting and recognition, and code templates.

There are several ways you can work with JavaScript in a Web Application project. First,
add a block of JavaScript directly to an HTML file. Open an HTML file in the Source Editor,
such as the following:

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 305

8954Ch13.qxp 1/28/08 11:41 AM Page 305

<html>
<head>

<title>My Page</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

</head>
<body>
</body>

</html>

Then add a script tag and several simple JavaScript methods:

<script type="text/javascript">

function showPopup(textVal) {
alert(textVal);

}

function showWarning(warnText) {
// do something with warning text
showPopup(warntext);

}

function showError(errorText) {
// do something with error text

}
</script>

After adding this JavaScript to the HTML file, place your cursor on the blank line below
the comment inside the showError method. Then press Ctrl+Spacebar to activate the code
completion window. You will see a list of suggestions displayed in the code completion win-
dow, as shown in Figure 13-6.

Figure 13-6. Code completion menu for Javscript embedded in HTML files

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS306

8954Ch13.qxp 1/28/08 11:41 AM Page 306

For JavaScript, the code completion will typically list any objects or functions defined in
the HTML file in which you are currently working. The list also contains a listing of objects
from the DOM, core JavaScript method (denoted as JS Core), and any JavaScript keywords. You
can use the up and down keys to navigate the list and press the Enter key to select the item
you want from the list.

■Note At the time of this writing, JavaScript code completion did not allow you to type a partial method or
object name to filter the list of results. Hopefully, this feature will make it into the final release of NetBeans 6.

As any web developer knows, you can also work with stand-alone JavaScript files (“.js”
files). To create a stand-alone JavaScript file, do the following:

1. Right-click the Web Pages node for a project in the Projects window and select New ➤
Other.

2. In the New File wizard that appears, select Web from the Category section.

3. In the File Types section, select JavaScript File and click the Next button.

4. Specify the JavaScript file’s name in the “File Name” field.

5. Using the “Folder” field, specify the folder where the JavaScript file will be located. If
you activated the New File wizard by right-clicking the Web Pages node, then the
“Folder” field will be set to web. Otherwise you must use the Browser button to select
the folder where you want to place the file.

6. Click the Finish button to create the file and open it in the Source Editor.

With the new stand-alone JavaScript file open in the Source Editor, paste in the same func-
tions you embedded in the HTML file. Change the function names to showPopup2, showWarning2,
and showError2. You will be able to see the syntax coloring displayed. You can also click inside
the code and place the cursor next to a parenthesis or curly brace. The matching curly brace or
parenthesis will be highlighted for easy identification, as shown in Figure 13-7.

Figure 13-7. Identifying matching braces in JavaScript

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 307

8954Ch13.qxp 1/28/08 11:41 AM Page 307

Once you have placed JavaScript code inside a stand-alone file, you can use it from within
any JSP or HTML file. Insert the following code between the <head> and </head> tags in the
document:

<script type="text/javascript" src="my-standalone-js-file.js"></script>

Once you have added the script tag that references your stand-alone JavaScript file, the
methods and objects within it will appear in the code completion pop-up window if activated
from within the HTML file.

Building a Web Application
In NetBeans, you can choose to compile and build an entire web application without neces-
sarily having to deploy it to an application server. Building an application in NetBeans is quite
simple. Select the Build ➤ Build Main Project menu option. This assumes the project you want
to build is set as the main project. If it is not, you can set it to the main project by right-clicking
the project name in the Projects window and choosing Set Main Project. You can also right-
click a project name and choose Build Project from the context menu if you want to build a
specific project.

Once you have started the project build process, the Output window will appear. You will
see a number of lines scroll through the Output window. The output lines are caused by the
actions that are taking place in the background, based on the project’s build configuration (in
other words, the project’s Ant build file). Choosing the Build menu option actually activates an
Ant target for the current project. For more details on how NetBeans projects are structured
and integrated with Ant, see Chapter 8.

The basics of what happened during the build are abstracted away for the most part. You
should see a “Build Successful” message as one of the last lines in the Output window. This tells
you that the Java source files compiled correctly and that the web application was packaged as
specified in the project properties. You can now run the application, work with the compiled
application files externally from NetBeans, or continue with your development work.

Cleaning and Building a Project
You may also choose the Build ➤ Clean and Build Main Project menu option. This does the same
set of tasks as the Build option, with one difference: all content inside the build directory in the
NetBeans project structure is deleted. This ensures that no class files or other resource files are
present.

After deleting the content of the build directory, the project is then recompiled into the
build directory. This is sometimes necessary if you have built an application, made numerous
code changes, and want to feel confident that the compiled code is using the most current
version of the source files. This also comes in handy after updating your application from a
source code repository such as CVS.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS308

8954Ch13.qxp 1/28/08 11:41 AM Page 308

■Caution In NetBeans, you may occasionally have a problem cleaning and building a running web appli-
cation. If JAR files in the WEB-INF/lib directory are in use by the application server, they often cannot be
deleted by the clean operation. You need to go to the Runtime window and stop the running application
server (as described in the “Defining Java Application Servers” section later in this chapter) before initiating
the clean and build operation.

Compiling JSP Files
For web applications, you may also want to make sure that all the JSP files are compiled dur-
ing the project build operation. This is a configurable option that is disabled by default. It is
highly recommended that you enable it, since it will let you know if your JSP files will compile
correctly. To enable this property, do the following:

1. Right-click the project name in the Projects window and select Properties.

2. Under the Build category, choose Compiling.

3. Select the check box next to the Test Compile All JSP Files During Builds field.

4. Click the OK button.

The next time you build your project, you should notice some additional text in the Output win-
dow under the heading compile-jsps. With each project build, all the JSP files will be compiled.

Repeating and Stopping Builds
Two new features added as of NetBeans 6 are the options to repeat a build and to stop a cur-
rently running build. These menu options appear on the main Build menu.

If you initiated at least one build or run operation, you should be able to select Repeat
Build/Run AppName (operation) from the main Build menu. The AppName will be the name
of the application in which the last build or run operation occurred, and the operation will be
either Build or Run. This helps clear up any confusion, especially if you are working in multi-
ple open projects.

The Build ➤ Stop Build/Run option is useful when the build operation takes a long time
and you need to stop it. This saves you from having to wait through the entire build process.

You will also see new icons in the Output window as of NetBeans 6, as shown in Figure 13-8.
These represent the Repeat Build and Run and Stop Build/Run options. The two green triangles
activate the repeat build/run operation, and the square under it will stop a currently running
build or run operation.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 309

8954Ch13.qxp 1/28/08 11:41 AM Page 309

Figure 13-8. The Repeat Build/Run and Stop Build/Run icons in the Output window

Running a Web Application
A large component of developing web applications is being able to test and run them in an
application server. During the regular course of development, most programmers will run a
JSP page dozens of times to make sure it functions as expected.

When a web application is run, it is first built, packaged, and deployed. If the associated
Java application server is not started, NetBeans attempts to start and deploy the application to
it. When you choose to run an application, NetBeans uses the project’s Ant build file to com-
pile, package, and run the application files.

To run the web application, select Run ➤ Run Main Project, or press F6. The Output window
will appear. As the various steps in the build configuration process, you will notice a separate tab
for the run operation in the Output window.

The various build steps will execute—compiling any Java source files, compiling JSP files,
copying files to the project build directory, and so on. Before the application actually runs, you
will notice that the application files are packaged into a distribution file. For a Java Application
project, a JAR file is created. For Web Application projects, a WAR file is created. The WAR file is
a glorified JAR file that allows the entire web application to be packaged and distributed
together. You can then take this WAR file and deploy it to one or more servers.

If the application WAR file is not created, you can set the project to create one. To force a
Web Application project to generate a WAR file, perform the following steps:

1. Right-click the project name in the Projects window and select Properties.

2. Select Packaging from the Categories list on the left.

3. Check the Create WAR File property check box.

Once the run and run/deploy steps in the build process execute, the target application
server will be started. Additional tabs will open in the Output window for the application
server. Figure 13-9 shows an example of the tabs and output for an application running and
deployed to the Tomcat application server.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS310

8954Ch13.qxp 1/28/08 11:41 AM Page 310

Figure 13-9. The output tabs when running a JSP page

The five icons along the left margin of the tab shown in Figure 13-9 allow quick access to
the application server and the ability to start, stop, and restart it. From top to bottom, the
icons are Start the Server, Start the Server in Debug Mode, Restart the Server, Stop the Server,
and Refresh the Server Status. The Refresh the Server Status option is useful when the applica-
tion server takes a long time to stop or shut down. Sometimes application servers can hang or
time out, and the ability to refresh the status can save you some headaches.

Defining Java Application Servers
Web applications can be deployed to a variety of Java application servers. Among that list are
Tomcat, BEA WebLogic, GlassFish, the Sun Java System Application Server (SJSAS), JBoss, and
others. Web applications can be associated only with application servers that have been iden-
tified in NetBeans through the Servers window.

The Servers window allows you to define an application server, reference the root directory
where it is installed, and configure a variety of server properties. Once this process is complete,
you can manage the server directly in NetBeans, control it (starting, stopping, restarting, and so
on), and deploy web applications to it.

To access the tool, select Tools ➤ Servers. The initial list of servers registered with
NetBeans will vary, depending on what you originally installed. If you downloaded any web-
related bundle, you may have either Tomcat or GlassFish listed in the Servers window.

The Servers window will list the currently configured application servers in the left pane.
If a specific server is selected, its properties appear in the right pane. Click the Add Server but-
ton on the lower-left side of the window to define a new application server for use with your
NetBeans Web Application projects. When adding a new server, you will need to know the base
directory location for the installed server as well as some additional parameters.

Once an application server is configured, you will see it listed under the Servers node in
the Services window. From there, you can control the server, view information about it, and
access the various web applications that may be deployed.

With an application server configured for use in NetBeans, you can configure web appli-
cations to use it through the project properties for the application.

The following sections discuss how to add specific types of servers and then how to set
your web applications to deploy to your configured servers.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 311

8954Ch13.qxp 1/28/08 11:41 AM Page 311

Using Tomcat
NetBeans currently ships with a bundled version of the Tomcat Java application server. Tomcat
is a de facto standard widely used by the programming industry to deploy Java applications.

Setting Tomcat Properties
You can use the Tomcat properties available in the Servers window to configure the server. As
shown in Figure 13-10, the Servers window displays multiple tabs for the bundled Tomcat server:
Connection, Startup, Platform, Deployment, Classes, Sources, and Javadoc. Each tab contains a
set of properties you can modify. For example, on the Connection tab, you can change the port
on which the server listens and the username and password for the manager role.

■Note If you plan on running multiple instances of Tomcat on your machine, you will need to change the
value in the “Server Port” field. The default is 8080, but this can be set to any port that is not in use. If you
accidentally set the server port to one in use, you will see an error message in the Server Output tab in the
Output window when the server starts up.

Figure 13-10. The Tomcat server selected in the Servers window

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS312

8954Ch13.qxp 1/28/08 11:41 AM Page 312

Click the Platform tab to view two very important fields:

Java Platform: Allows you to select in which version of Java the application will run. If you
have a heterogeneous development environment, you may need to be able to test Tomcat
in different versions of the JVM.

VM Options: Allows you to pass command-line parameters to the JVM during startup.
One issue you may encounter is memory constraints. You may be testing or profiling your
application code in Tomcat and receive an “out of memory” error. This happens when
your application code uses up the maximum amount of memory the JVM is allowed to
allocate. You can adjust the initial and upper limit for memory allocation by passing
parameters to the JVM via the VM Options field. The value –Xms200m –Xmx500m sets the ini-
tial amount of memory allocated to the JVM to around 200MB and the maximum amount
it can expand to consume to around 500MB.

The Deployment tab in the Servers window is new for Tomcat in NetBeans 6. It contains
two important fields:

Deployment Timeout: The amount of time NetBeans waits while deploying an application
before it considers the deployment to have failed.

JDBC Driver Deployment: Instructs NetBeans to deploy database drivers to the application
if necessary.

Once you have modified the properties to your needs, click the OK button to close the
Servers window. You will need to restart the Tomcat application server for the changes to take
effect.

Working with Applications Deployed to Tomcat
The Tomcat server should appear in the Servers window and under the Servers node in the Ser-
vices window. In the Services window, you’ll see a Web Applications node under the Tomcat
listing. (Other servers may have different nodes available.) Tomcat simply lists the applications
that have been deployed in the server instance, as shown in Figure 13-11.

Figure 13-11. Web applications deployed to the Tomcat server listed in the Services window

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 313

8954Ch13.qxp 1/28/08 11:41 AM Page 313

For each deployed web application listed under the Web Applications node, you have sev-
eral options. Right-click the application name to see a context menu with the following options:

Start: Allows you explicitly to start a web application instance that is deployed to Tomcat.
The Tomcat server itself may be started, but that does not mean every web application
instance has also been started. When you run a web application in NetBeans, then by
default it is deployed to the application server and started. It should not be stopped
unless you have done so explicitly.

Stop: Allows you to stop a running web application. This will make the application
unavailable via a web browser, but it does not undeploy it from Tomcat. Tomcat will still
recognize it, and you can restart the application whenever you wish.

Undeploy: Stops the web application and undeploys it from the server. The server will no
longer list the application under the Web Applications node. You will need to redeploy it
to Tomcat to be able to view it.

Open in Browser: Opens the NetBeans default web browser and navigates to the URL for
the web application. The server URL and port are defined in the Tomcat properties. The
context path for the URL that is opened is project specific and defined in the project
properties. This is basically the same as using the Run Main Project option for a web
application, in that it opens the application in the browser.

Controlling the Tomcat Server
NetBeans also provides the ability to control the Tomcat server in the Services window. Right-
click the server name in the Services window to see a context menu with the following options:

Start, Start in Debug Mode, and Start in Profile Mode: Allow you to start the Tomcat appli-
cation server for the specified purposes.

Stop: Allows you to shut down the application server so no web applications can be
accessed. Note that this does not explicitly stop each individual web application as does
the Stop option on the context menu for an application under the Web Applications node.
The next time you start Tomcat, the web applications will all be available, unless you
explicitly used the Stop option for a specific application.

Restart: Stops and restarts the Tomcat server. This is useful if you want to clear any sessions
in progress or clean up any potential memory leaks caused by your application code.

Refresh: Polls the application server to see what state it is in and refreshes the menu items
that may be available.

Edit server.xml: Opens Tomcat’s main configuration file, server.xml, in the Source Editor.
If you need to make changes to the overall server configuration, you can conveniently
access it directly in NetBeans.

View Admin Console: Opens a new web browser window and navigates to the Tomcat
admin console. You can log in to this web application and perform administrative func-
tions for Tomcat.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS314

8954Ch13.qxp 1/28/08 11:41 AM Page 314

View Server Log and View Server Output: Open the Output window in NetBeans and give
focus to the Server Log tab and Server Output tab, respectively.

Properties: Opens the Servers window, with the Tomcat server selected. This allows you
quick access to the Tomcat configuration properties that you are allowed to change
directly in NetBeans, as described earlier.

Using GlassFish
The GlassFish Java application server is an open source product that branched from the Sun
Java System Application server. It is a Java EE5-compliant server that comes with the Full or
Web & Java EE installation bundles of NetBeans 6.

Setting GlassFish Properties
Like Tomcat, you can use the Servers window to view and edit GlassFish properties. Select
Tools ➤ Servers from the main menu and the Servers window will open. Select GlassFish from
the list of Java EE Servers and the tabbed properties will display in the right-hand pane.

Many of the properties are similar to Tomcat, in that you can specify the admin user’s
username and password and instruct NetBeans to use the HTTP Monitor with the server. The
Classes, Sources, and Javadoc tabs are also quite straightforward. The final tab, Options, allows
you to specify the startup timeout and the deployment timeout, as shown in Figure 13-12.

Figure 13-12. The Options tab for GlassFish in the Servers window

The Options tab shown in Figure 13-12 also lets you specify two additional values. The
Directory Deployment Enabled check box instructs GlassFish to deploy and run the applica-
tion directly from the project’s build directory. If it is not selected, then the application is
deployed to the default GlassFish domain. The location of the domain folder can be found by
clicking the Connection tab for GlassFish in the Servers window.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 315

8954Ch13.qxp 1/28/08 11:41 AM Page 315

If you look inside that directory, you’ll see an applications directory. This is the directory
where GlassFish deploys the web application if you unselect the Directory Deployment
Enabled check box in the Options tab. This can impact the speed of the deployment process
negatively.

Working with Applications Deployed to GlassFish
The GlassFish server will also appear in the Services window under the Servers node. From
there, you can control the server and the applications that are deployed to it.

If you expand the plus icon next to the GlassFish node, you will see nodes labeled Applica-
tions and Resources. The Applications node is where the web, enterprise, and EAR applications
have been deployed. You can expand the Applications node to view the individual applications.

If you right-click an application under the Applications node, a context menu appears.
This lets you undeploy an application from the server, disable it from running while leaving it
deployed, and view the properties of the application.

Controlling GlassFish
If you right-click the GlassFish node in the Services window, you will see options for control-
ling it. This is similar to Tomcat in that you can start, stop, and restart the GlassFish server. You
can also start the server in debug or profile mode, remove the server from the list of servers,
view the server log, or open a browser to the admin console.

When you start GlassFish, you may notice that it takes quite a bit of memory (especially
on the Windows platform). You can use the GlassFish admin console to adjust the startup
memory parameters. Right-click the GlassFish node in the Services window and select View
Admin Console. Assuming the GlassFish server is already started, a web browser will open and
load the admin console login page.

When you are presented with the login page, enter the admin username and password
that you configured when GlassFish was installed. The default username and password are
typically admin.

Once you have logged into the admin console, there are numerous options from which to
choose. You have to drill down through several menus to locate the JVM startup parameters.
To locate them, follows these steps:

1. In the left navigation pane, click Application Server. The right pane will display a set of
tabs.

2. Click the JVM Settings tab. A submenu of tabs will appear.

3. Click the JVM Options tab. A list of JVM startup options will appear, as shown in
Figure 13-13.

4. Locate the –Xmx512m property in the list and change it to a lower value. I have found
300 to work nicely without sacrificing too much performance.

5. Click the Save button. The window will refresh and you should see the message “New
values successfully saved.”

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS316

8954Ch13.qxp 1/28/08 11:41 AM Page 316

Figure 13-13. Setting the max memory for GlassFish startup in the admin console

The maximum amount of memory GlassFish should use will be lowered. If you restart GlassFish,
it should consume less memory on your system.

Setting the Application Server for a Project
After you have added an application server in the Servers window, it is available for use. You
can modify which application server a project will use by doing the following:

1. Right-click the name of a project in the Projects window and select Properties.

2. Select the Run category in the left pane.

3. Select the desired application server from the “Server” field drop-down list.

4. Click the OK button.

Once you have switched the application server in the project properties, no further actions are
necessary.

NetBeans makes it extremely easy to toggle the application server a project will use. This
is invaluable if you need to test your application across different types of servers to ensure
compatibility. It can also come in handy if you must develop an application that will be
deployed onto one server for development and testing purposes but deployed to a different
server for production.

HTTP Monitoring
One of the most annoying things about developing web applications is not knowing what is
going on behind the scenes when you are testing a particular page. Often, you read and write
from the Request, Response, and Session objects and need to know what the values for session
attributes were for a specific page request.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 317

8954Ch13.qxp 1/28/08 11:41 AM Page 317

At one time or another, many web developers have written code that grabs the values
from the Session or Request objects, iterates through the names, and prints out the current
values. This is often done in an attempt to know the precise values passed to a JSP page or
servlet. The HTTP Monitor can help make that type of debugging a thing of the past. In my
opinion, the HTTP Monitor is one of the best features available in NetBeans.

The HTTP Monitor allows you to view all the state information for a particular page request
directly within the IDE. You can also perform powerful actions such as modifying the state infor-
mation, replaying a specific page request from a sequence of requests, and saving a page request
for later viewing.

The HTTP Monitor must be supported by and enabled for the application server to which
you are deploying. At the time of this writing, only Tomcat, GlassFish, and the SJSAS supported
the HTTP Monitor.

Enabling the HTTP Monitor
You can enable the HTTP Monitor for a server in the Servers window as follows:

1. Select Tools ➤ Servers.

2. In the Servers window, select a server from the left pane.

3. In the server properties displayed in the right pane, you will see an Enable HTTP Moni-
tor check box if the server supports the HTTP Monitor (see Figure 13-10 earlier in this
chapter). Check this box, and then click Close.

Using the HTTP Monitor
Once you configure an application server to work with the HTTP Monitor, you can start using
the tool. When you run a single JSP page or an entire web application, the HTTP Monitor will
automatically activate. After the browser has finished processing the initial request, the HTTP
Monitor window will open and display any results, as shown in Figure 13-14.

Figure 13-14. Sample output in the HTTP Monitor

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS318

8954Ch13.qxp 1/28/08 11:41 AM Page 318

Viewing Record Information
In the example in Figure 13-14, the HTTP Monitor displays several records under the Current
Records node on the left side of the window. The current records are HTTP requests that have
been made in the application you have deployed to the server. You can click any record to view
the data for it.

Once you select a record, the fields and values for that specific record will display in sev-
eral tabs on the right side of the HTTP Monitor window:

Request: Displays request information, such as the URI, method, protocol, and client IP
address. Also shows an individual listing of parameters and values from the query string.
Additionally, it displays request attributes that exist after the request.

Cookies: Displays the incoming and outgoing cookies.

Session: Displays general information about the session, such as the session ID, the time it
was created, and the time it was last accessed. This tab also displays the session attributes
that existed before the request and the attributes that exist after the request.

Context: Displays general servlet context data as well as context attributes and initializa-
tion parameters.

Client and Server: Displays client information, such as the protocol, client IP address,
character encoding, locale, software used, and accepted file formats. Also displays server
information, such as the hostname, port, application server platform, and Java version.

Headers: Displays the typical HTTP headers, such as user-agent, host, connection, and
cookie.

You can use the data displayed in the HTTP Monitor to perform a forensic analysis of all
the request-related variables. If you examine the records displayed in Figure 13-14, you will
see they are formatted as HTTP protocol, page name, and date/time. The records listed in the
figure were all done via a GET request.

Manipulating Records
When you right-click a single request under the Current Records node, you will see several
options on the context menu:

Delete: Permanently deletes the request record. There is no undo for this type of operation,
so make sure you really want to delete the record.

Save: Moves the record under the Saved Records node. It will then be saved for further
examination. Once you close the NetBeans IDE software, the items under the Current
Records node will be lost. Only the records that have been saved will be accessible.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 319

8954Ch13.qxp 1/28/08 11:41 AM Page 319

Replay: Directs NetBeans to perform the exact HTTP request again automatically. All
request attributes, session variables, context parameters, and cookies are put in place to
simulate the original request exactly. A web browser window will open, and the requested
page will load. After the request is completed, a new record will appear at the end of the
Current Records list. The fields and values that result from the request may or may not be
identical to the original request. You may have changed application code before replaying
the request, which may affect the values.

Edit and Replay: Allows you to select a request record, alter some of the fields and values,
and replay the request in the web application. This is invaluable for testing things like
query string parameters, cookies, and header variables. This is one of the particularly
interesting features I use most often, as described next.

Editing and Replaying Records
When you select the Edit and Replay item from the record’s context menu, the Edit and Replay
window appears. Via the Add Parameter button, you can specify a name/value pair for a new
query string parameter. You can also edit or delete any of the existing query string parameters.
Figure 13-15 shows an example of three query string parameters displayed in the Edit and
Replay window.

Figure 13-15. Editing the query string in the HTTP Monitor

Once you have added, modified, or deleted the request parameters, you can trigger the
replay operation by clicking the Send HTTP Request button. If you change your mind and
decide to not replay the request, click the Cancel button.

Here are several scenarios where the Edit and Replay feature may come in handy:

• You need to test a JSP page that displays different data based on the value of a query
string parameter.

• You want to add a cookie value to test a “remember my username” feature on a login
form.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS320

8954Ch13.qxp 1/28/08 11:41 AM Page 320

• You want to change the server hostname to which the request will be sent during a test
of a clustered server.

• You need to change the HTTP header accept-language to an alternate value to test the
internationalization capabilities of your web application.

• You want to change the HTTP header user-agent to test the cross-platform, cross-
browser capabilities of some JavaScript in a web application.

There are many reasons for using the HTTP Monitor. It is a simple yet powerful tool,
which every web application programmer should get to know. I encourage you to try it out
and experiment.

Working with Web Application Frameworks
Web application frameworks provide some great functionality. They can extend your web
applications and provide many nonstandard features, widgets, and tools that can drastically
improve both the backend architecture and the front GUI.

Many frameworks provide plugins that integrate the frameworks into NetBeans. You can
generate content, use new file wizards, and view and manage framework widgets.

Leveraging Struts
Craig McClanahan originally kicked off the Apache Struts framework around mid-2000. The first
major version was released in 2001, providing a Java Model-View-Controller (MVC) framework.
Since then, Java developers have been using it to build web applications that cleanly separate
business logic, control flow, and presentation.

This section assumes you have a working knowledge of Struts. If you are new to Struts, I
strongly suggest learning about its capabilities. You can find information at the official web
site (http://struts.apache.org) or refer to a book on the topic, such as Beginning Apache
Struts: From Novice to Professional by Arnold Doray (Apress, 2006).

Adding Struts Support
In the opening section of the chapter “Create a Web Application Project,” you saw how to add
Struts support to a new application. In the New Project window, the Frameworks screen lets
you select the Struts framework. You can also specify the Action URL Pattern, the Application
Resource file, and whether you want to add the Struts TLDs, as shown in Figure 13-2.

You can also add Struts support to an existing web application. To add the Struts framework
to an existing web application, follow these steps:

1. Right-click the project name in the Projects window and select Properties.

2. Click Frameworks in the Categories section, and then click the Add button on the right
side of the window.

3. Select Struts in the list of options and click the OK button.

4. Customize the text in the “Action URL Pattern” field if necessary.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 321

8954Ch13.qxp 1/28/08 11:41 AM Page 321

http://struts.apache.org

5. Customize the package hierarchy text in the “Application Resource” field.

6. Optionally, select the Add Struts TLDs check box.

7. Click the OK button.

Once Struts support has been added to the project, you will notice additional files under
the various nodes in the Projects window. A welcomeStruts.jsp file is listed under the
Web Pages node. The default index.jsp page will also be modified to include a link to the
new welcomeStruts.jsp page using the Struts action URL pattern Welcome.do, which maps to
welcomeStruts.jsp.

You will also see a file named struts-config.xml listed under the Configuration Files node.
This file contains the basic Struts configuration information, the action mappings, plugin defini-
tions, and so on. The web.xml file has also been modified to include references to the necessary
Struts servlets. Some additional XML configuration files may appear in the WEB-INF directory
that do not appear under the Configuration Files node.

The Struts resource file ApplicationResource.properties will appear in a package hierar-
chy under the Source Packages node. This file contains name/value pairs used throughout the
application code and the Struts superclasses.

The Struts JAR file and supporting JAR files will be listed in the Libraries node.
If you chose to add Struts TLD files when you added the Struts framework support to the

project, a few changes are made to the project. The files struts-logic.tld, struts-bean.tld,
struts-html.tld, struts-nested.tld, and struts-tiles.tld are added to the WEB-INF direc-
tory under the Web Pages node. These files contain basic configuration information for the
various Struts constructs. The web.xml file is also modified to include the correct references to
the local TLD files. You should see the following added to the web.xml file:

<jsp-config>
<taglib>

<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

</taglib>
<taglib>

<taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-html.tld</taglib-location>

</taglib>
<taglib>

<taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>

</taglib>
<taglib>

<taglib-uri>/WEB-INF/struts-nested.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-nested.tld</taglib-location>

</taglib>
<taglib>

<taglib-uri>/WEB-INF/struts-tiles.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-tiles.tld</taglib-location>

</taglib>
</jsp-config>

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS322

8954Ch13.qxp 1/28/08 11:41 AM Page 322

■Note One of the disadvantages of the NetBeans Struts support is that you cannot change the overall settings
after initial setup. When you add Struts support to a project, you can set the various parameters. Once you have
clicked OK, you are locked into the settings you have chosen. If you go back to the Frameworks node in the
Project properties, you will see the fields grayed out. If you need to make any changes to those parameters, you
must make them directly in the configuration files. Perhaps this feature will be improved in a future version.

Adding Forms
As you build a Struts-based web application, you may need to create your own ActionForm
classes. In Struts, when you need to validate and store the input data from users, you create a
subclass of org.apache.struts.action.ActionForm. These classes are used to transfer data
between JSP pages and other Struts classes, such as Actions.

To create a new Struts ActionForm class, follow these steps:

1. Right-click the project name in the Projects window, select New, and choose File/Folder.

2. Select the Struts category from the list on the left and choose the Struts ActionForm
Bean from the File Types list on the right. Click the Next button to move to the next
step of the wizard, as shown in Figure 13-16.

Figure 13-16. Customizing ActionForm Bean fields

3. Most of the ActionForm Bean fields are already filled out for you. The “Project,”
“Location,” “Superclass,” and “Configuration File” fields are preset to the suggested
values. All you need to specify is the “Class Name” and the “Location” values. Then
click the Finish button.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 323

8954Ch13.qxp 1/28/08 11:41 AM Page 323

■Tip When naming Struts classes, I usually end the names of ActionForm Beans with the word Form and
end Struts actions with the word Action. It also helps to separate them into distinct packages, such as
com.mydomain.projectname.forms and com.mydomain.projectname.actions.

Once the file has been created, it should open in the Source Editor window. You will
notice that the ActionForm class has several default properties and basic content in the stan-
dard validate method.

Adding Actions
Actions are Struts’ way of handling the Request and Response objects in the web application
server container. You can use Struts actions to read information to the request, respond back
to the calling client, and dispatch work to other classes.

To create a new Struts Action class, follow these steps:

1. Right-click the project name in the Projects window, select New, and choose File/Folder.

2. Select the Struts category from the list on the left and Struts Action from the File Types
list on the right. Click the Next button to move to the next step of the wizard, as shown
in Figure 13-17.

Figure 13-17. Adding a new Struts action

3. In the example in Figure 13-17, the “Class Name” has been set to MenuAction. The “Super-
class” field is set to org.apache.struts.action.Action. The “Configuration File” field
references the struts-config.xml file that was generated when you added Struts support
to the project. When the Action class is created, its definition and action mapping will be
listed in the struts-config.xml file. Once the properties are set, click the Next button.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS324

8954Ch13.qxp 1/28/08 11:41 AM Page 324

4. You can choose to associate an ActionForm Bean with the Struts action you are about to
create. If you select the Use ActionForm Bean check box, the remaining properties will
be enabled, as shown in Figure 13-18.

Figure 13-18. Associating an ActionForm Bean with a Struts action

5. Select an ActionForm Bean to associate with the Struts action. The “ActionForm Bean
Name” field is a drop-down list of existing ActionForm Beans in the project. You must
select an existing ActionForm Bean; otherwise, you cannot proceed.

6. The last field you need to set is the “Input Resource” text box. This is the view associ-
ated with the ActionForm Bean. You can use the Browse button next to the field to
navigate the list of files under the Web Pages node in the Projects window and select
the one you wish to use. Once you are finished, click the Finish button.

The new action will be generated and opened in the Source Editor window. The action
mapping will also be added to the struts-config.xml file:

<action-mappings>
<action input="/menu.jsp" name="MenuActionForm"

path="/menu.do" scope="session"
type="com.pronetbeans.struts.forms.MenuAction"/>

<action path="/Welcome" forward="/welcomeStruts.jsp"/>
</action-mappings>

You will see that the path for the welcomeStruts.jsp file is /Welcome instead of /Welcome.do.
This is due to the forward attribute, which specifies that requests for the path /Welcome should
be forwarded immediately to the welcomeStruts.jsp file instead of to a Struts action.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 325

8954Ch13.qxp 1/28/08 11:41 AM Page 325

■Tip One problem with using Struts Action classes is with testing. In Chapter 9, you will learn about using
JUnit in NetBeans to create tests for your code. The problem with trying to use JUnit to test Struts actions is
that you need to be able to simulate the internal state of the Struts application. This is extremely difficult to
do. Instead, you can use an open source project available from SourceForge.net called StrutsTestCase.
This tool effectively extends JUnit and allows you to test Struts Action classes. For more detailed informa-
tion on the project, visit the web site at http://strutstestcase.sourceforge.net/.

Configuring Struts
As previously mentioned, the struts-config.xml file is where many of the overall configura-
tion settings for Struts are defined. It is also where navigation rules such as forwards and
action mappings are defined.

The file allows a variety of tags, but the sections you will use most often are form-beans,
global-exceptions, global-forwards, and action-mappings. If you read the previous sections
on Action and ActionForm classes, the form-beans and action-mappings sections should look
familiar. The global-exceptions section allows you to map an error response to a specific
action. The global-forwards section allows you to map a URL pattern to an action. This is
handy if you want to map a URL like www.mydomain.com/tv to a longer or more complicated
action-mapping name.

NetBeans does not provide the same sort of interface for the struts-config.xml file as it
does for the web.xml file (at least not yet). However, it does provide a few wizards, which are
available from the context menu. With the struts-config.xml file open in the Source Editor,
right-click anywhere in the file. You should see a Struts option on the context menu.

The Struts menu will contain options such as Add Action, Add Forward, and Add Excep-
tion. These wizards allow you to define new actions, forwards, and so on for existing Struts
components without creating new classes. For example, the Add Action menu item gives
access to a wizard that allows you to specify a new action mapping, as shown in Figure 13-19.
In this dialog box, set the “Action Class” and “Action Path” values. You can then customize the
other fields in the same manner as discussed previously. Then click the Add button. You
should see the new action defined in the struts-config.xml file.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS326

8954Ch13.qxp 1/28/08 11:41 AM Page 326

http://strutstestcase.sourceforge.net
http://www.mydomain.com/tv

Figure 13-19. The Add Action dialog box

Leveraging Struts 2
The Struts framework currently supports two major versions: Struts 1.X and Struts 2.X. Struts 2
has been completely reworked, providing new features, easier configuration, and better support
for more modern technologies.

Struts 2 provides a number of new and improved features, such as

Ajax support via special Struts-type tags

Usage of POJOs instead of ActionForms to capture form input

Better Spring integration

Enhanced form tags

Easier plugin installation

Struts 2 has been out for a while. However, at the time of this writing the Struts 2 plugin
for NetBeans was still under development. You can go to the project web site at https://
nbstruts2support.dev.java.net/. There were no binary releases when I last visited. I had to
use the CVS client in NetBeans to download and build the source code from the project site. It
should build fine and prompt you to open as a NetBeans project.

Currently, when I use the plugin there is basic support in the New Project window for
adding the Struts 2 framework to the project. The plugin provides only a few other Struts-
related integrations with NetBeans, but it is still early in the project.

If you use Struts 2, I strongly suggest you keep an eye on this project as it develops.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 327

8954Ch13.qxp 1/28/08 11:41 AM Page 327

https://nbstruts2support.dev.java.net
https://nbstruts2support.dev.java.net

Leveraging Visual JavaServer Faces
The Visual JavaServer Faces support was previously known as the Visual Web Pack. It was ported
over from Sun’s Studio Creator Java IDE. Starting with NetBeans 6, there is no more Visual Web
Pack. The Visual JSF capability has been integrated into the IDE (depending on the bundle you
choose to download).

NetBeans Visual JSF gives you powerful features for working with JSF, Ajax, and data binding.
It includes support for an impressive array of technology standards, including JSF 1.2, Struts, EJB
3.0, Java Servlets 2.5, JSP Standard Tag Libraries, Java API for XML Web Services (JAX-WS) 2.0, and
a variety of XML- and web service–related APIs. Bundled with the NetBeans IDE, these technolo-
gies greatly enhance your ability to develop cutting-edge Java applications effectively. We next
discuss how to configure and take advantage of the Visual JSF capabilities.

Getting Started
One of the biggest gaps in functionality of earlier versions of NetBeans was its lack of a good
WYSIWYG web design tool. Java Studio Creator contained a pretty reasonable tool for perform-
ing visual JSF development, and many developers, including myself, secretly wished for it to
become part of NetBeans.

At the JavaOne 2006 conference, I visited many of the Sun booths in the pavilion area.
One of the NetBeans development team members was present and mentioned that the differ-
ent Sun IDE products were being modularized for inclusion in other tools. He also made the
comment that a visual web design tool was coming soon for the next major release of NetBeans,
version 5.5. Suffice it to say, I was delighted at this news.

The Visual Web Pack was delivered with NetBeans 5.5 at the end of October 2006 as a
technology preview. It was later released as a production-ready version in December 2006.
Based on the JSF Visual Designer from Studio Creator, the VWP has been updated and made
available as an add-on pack for NetBeans 5.5. For NetBeans 6, the concept of the Visual Web
Pack has been done away with. The Visual JSF support is better integrated with the IDE and
web applications.

The Visual JSF module provides a variety of time-saving and productivity-improving features
that make working with JSF easy and fun. For example, you can drag-and-drop JSF components
from a palette onto a JSP page. It also offers the usual types of components—buttons, form
elements, text fields, and so on—but it also provides some nonstandard components, such as
Trees, Tab sets, Remove lists, Breadcrumbs, and more. All of these components can be configured
visually in the Visual Designer window or textually in the Properties window. They can also be
bound to data without having to write a single line of code.

In the past, tools like Macromedia UltraDeveloper provided similar capabilities. However,
as you used the automated capabilities, they generated multiple lines of obtuse code that was
difficult to understand, hard to maintain, and not always the optimal method for obtaining
the desired functionality. The automatic code generated by the Visual JSF module is quite dif-
ferent. It actually looks like Java code a programmer would write. This makes software written
in NetBeans easier to work with and more maintainable.

The Visual JSF module also comes with the Visual Database Query Editor. This tool is very
similar to Microsoft SQL Server’s Enterprise Manager tool for working with SQL.

All these tools are brought together in NetBeans. When combined with the overall ease of
use that NetBeans provides, you have an extremely powerful software development platform.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS328

8954Ch13.qxp 1/28/08 11:41 AM Page 328

Configuring Visual JSF Options
The NetBeans Visual JSF module allows you to configure several options that affect its operation.
You can view and modify these properties by selecting Tools ➤ Options from the main menu.

In the Basic Options window that appears, select the Miscellaneous icon to display a row
of tabs. Select the Visual Web tab to display the Visual JSF properties, as shown in Figure 13-20.

Figure 13-20. The Visual Web properties in the Basic Options window

You can set the following properties for it:

Target Browser Window: This property determines the specific screen resolution size for
the web pages you develop. If you set it to the smallest size, 640✕480 (600✕300 page), and
open a JSP page in the Visual Designer, the page visually denotes the shape and size. This
allows you to add and arrange components according to the window size of your user
community.

Default Font Size: This is the size of fonts for text components that are dropped onto the
Visual Designer window for a JSP page. The font size displayed in the Visual Designer may
differ from what is rendered in a web browser, due to default browser settings. You can set
the default font size value for the Visual Designer to any standard font size.

Grid Height and Grid Width: These properties control the number of pixels between grid
lines in the Visual Designer window. They define the height and width of each square that
appears in the grid. This is a very important element to review, especially if the Snap to
Grid property is enabled.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 329

8954Ch13.qxp 1/28/08 11:41 AM Page 329

Snap to Grid: This property instructs the Visual Designer to snap components to the near-
est grid line automatically. This affects almost all the work you do in the Visual Designer.

Show Grid: This property, enabled by default, determines if the grid lines are displayed in
the Visual Designer window.

The remaining fields on the Visual Web tab deal with data sources and data binding. When
you bind a database table to a component, several Java objects are created. (Data binding is
covered later in this chapter in the “Data Binding” section.) These properties affect the creation
of those Java objects as follows:

Create RowSets in Session: This property affects where a CachedRowSet object is created,
regardless of where you drag-and-drop it. The property is enabled by default. If you unse-
lect it, binding a database table to a component will result in the rowset’s being created
where you bind the data.

Check for Duplicate RowSets: This property affects the creation of rowsets as you drop
them onto components. If you bind a database table to a component, NetBeans first
attempts to determine if a matching rowset already exists. If the property is selected,
which it is by default, NetBeans will prompt you either to reuse the existing rowset or to
create a new one. If the property is unselected, NetBeans will automatically generate a
new rowset.

Suffix for Data Providers: This property specifies the text that is added to the name of the
data provider class generated during a data-binding operation. If you drop a database
table onto a component, a data provider class is created using the name of the database
table combined with the value of the Suffix for Data Providers property. For example, if
you created a data binding for a table named customers, the data provider would be
named customersDataProvider.

Suffix for RowSets: This property specifies the suffix for the rowset class that is created. For
example, the rowset created for the customers table would be named customersRowSet.

Prompt for Data Source Name: If selected, you will be prompted to enter the name of the
data source when you drag-and-drop the data source into a Visual Web page.

After you have set the Visual Web properties, click the OK button in the Basic Options
window. You have now configured the Visual Web module and are ready to create your first
project.

Creating a Visual Web Application
After you’ve configured the Visual Web module to suit your preferences, you can add the Visual
JSF framework to a Web Application project type in NetBeans. Follow these steps to start a new
project:

1. Select File ➤ New Project from the main menu.

2. In the New Project window, select Web from the Categories section on the left, select
Web Application from the list of projects on the right, and then click the Next button.

3. Fill out the “Project Name” and “Project Location” fields.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS330

8954Ch13.qxp 1/28/08 11:41 AM Page 330

4. Specify a Java package in the “Default Java Package” field.

5. Make sure you select either Tomcat 6 or GlassFish in the “Server” drop-down list.

6. Make sure that the “Java EE Version” field is set to Java EE 5.

7. Click the Next button to proceed to the Frameworks screen.

8. Select Visual Web JavaServer Faces from the list of frameworks. A list of JSF-specific
properties will be displayed, as shown in Figure 13-21.

Figure 13-21. The properties for the Visual Web JavaServer Faces framework

9. Fill out the “Default Java Package” field with your application’s correct package hierarchy.

10. Enter the desired “Servlet URL Mapping.” The default is /faces/*. Then click the Finish
button.

As you can see, adding Visual Web capabilities to a Web Application project is very simple.
Your new project will be listed in the Projects window. Let’s review the project structure in the
Projects window.

Navigating the Visual Web Application Project Structure
A Web Application project has a standard structure. But when you add Visual Web JSF support,
it modifies the list of nodes displayed in the Projects window. The Web Application project is
still structured as a set of parent–child nodes, but there are some additions to the standard list.
It better organizes the different components that make up a Visual Web Application project
into easy-to-understand sections.

Let’s take a look at what each of these nodes contains.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 331

8954Ch13.qxp 1/28/08 11:41 AM Page 331

Web Pages

The Web Pages node is where the web-related content is stored. You can add JSP, HTML, CSS,
images, and so on to this node.

One difference is that for a Visual Web–enabled project you can right-click any JSP file
under the Web Pages node and select Set As Start Page. This option specifies that the file you
clicked will be the default page displayed when the web application runs. The start page in the
Web Pages node is denoted by a small green triangle next to the filename.

You can add new file types to this section by right-clicking the Web Pages node and select-
ing New ➤ Other. In the New File wizard, select JavaServer Faces from the Categories section
in the left pane. The list of available file types will then appear in the right pane of the window.
For a Visual Web Application project, the following file types are available:

Visual Web JSF Page: A JSP page with Visual JSF enabled. You can drag-and-drop
components from the Palette and edit in WYSIWYG mode.

Visual Web JSF Page Fragment: A fragment of a JSP page with Visual JSF enabled. You can
drag-and-drop components from the Palette and edit in WYSIWYG mode. This type of file
is frequently used for common content that is dynamically included in other JSP pages.

JSF Managed Bean: Represents a managed bean class.

Visual Web JSF Request Bean: Represents a managed bean class that is stored in the
request scope.

Visual Web JSF Session Bean: Represents a managed bean class that is stored in the
session scope.

Visual Web JSF Application Bean: Represents a managed bean class that is stored in the
application scope.

After you click the Finish button to complete the wizard, the new file will be added under
the Web Pages node and will open in the Source Editor.

You should be aware of the differences between a Visual Web JSF Page and a standard JSP
file. The Visual Web JSF Page is actually a standard JSP file with “special” features enabled. It is
marked with a special icon and file type so that NetBeans knows to open it in the Visual
Designer. The JSP file type is intended for use with standard HTML and JSP content. Even if
you copied the JSP source content from a Visual Web JSF Page file into a JSP file, the Visual
Web module will still treat the JSP file as a standard JSP file.

The Visual Web JSF Page Fragment file type is the same as the Visual Web JSF Page file
type. However, you can include the Visual Web JSF Page Fragment file type inside a Visual Web
JSF Page file type. In JSP code, you can use a special include directive to include the content of
one JSP file inside another JSP. Many programmers use this approach when designing sites. If
a site has a common page header, footer, or navigation menu, then each section can be con-
tained in a JSP page and included into any page that needs to display that content. This way,
the code for those sections is located in one place, making maintenance significantly easier.
Visual Web JSF Page and Visual Web JSF Page Fragment file types are no different. They allow
you to encapsulate commonly used sections into reusable pieces.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS332

8954Ch13.qxp 1/28/08 11:41 AM Page 332

Load Generator Scripts

This node will appear for your project only if the JMeter Load Testing module has been installed
in NetBeans. If it has not been installed, the node will not appear. It appears by default for most
projects. You can use it to add JMeter scripts to test your project.

Configuration Files

The Configuration Files node does not represent an actual folder in the project structure. The
items that appear under this node are categorized as items to which you would normally need
access when making configuration changes to the application. It also contains the deployment
descriptor for the web application.

The Configuration Files node contains the web.xml, faces-config.xml, and other project
configuration files. These are the same files that appear under the WEB-INF directory in the
Web Pages node.

■Note The files under the Configuration Files node are not copies of the files under other nodes. They sim-
ply represent an alternative method for viewing and accessing them. If you find it confusing, you don’t even
need to use the Configuration Files node.

Server Resources

The Server Resources node is where various types of resources are located. If you define a Java
Database Connectivity (JDBC) resource, JDBC connection pool, Java Message Service (JMS)
resource, persistence resource, JavaMail resource, and so on, they will be listed under this
node. This is handy, since it gives you quick access to related resources.

Any items under the Server Resources node will appear under the Setup directory in the
Files window.

Source Packages and Test Packages

The Source Packages node is where you define the Java source code to be used in your applica-
tion. Here, you can add and maintain the package statements you would normally use, such as
com.mycompany.projectname. Adding packages is extremely easy. Right-click the Source Pack-
ages node and select New ➤ Java Package. In the New Java Package window, you can specify the
name of the new package, such as com.yourcompany.product. After you click the Finish button,
the new package name is added under Source Packages in the Projects window.

The Test Packages node is nearly identical to the Source Packages node. However, the Test
Packages node specifies the package structure for your application’s test classes and JUnit tests.
If you were to execute the project tests by selecting Run ➤ Test MyProjectName, the classes in
the Test Packages node would be executed.

Libraries and Test Libraries

The Libraries node is for defining class libraries that your application will use. If you need to
use nonstandard libraries or classes from an external project, you can define them here. To

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 333

8954Ch13.qxp 1/28/08 11:41 AM Page 333

add a JAR file to the libraries for your project, right-click the Libraries node and select Add
JAR/Folder.

Similar to the Libraries node, the Test Libraries node contains class files or JAR files that
your project test classes need to reference. You can add files to your test libraries by right-
clicking the Test Libraries node and selecting Add JAR/Folder. The JAR file for JUnit exists
by default in the Test Libraries section.

Themes

The Themes node contains the themes you can use with your project. Themes are a collection
of look-and-feel configurations that can be applied to a Visual Web–enabled application. They
are made up of properties files, JavaScript files, CSS files, and images. Any component that
appears in the Palette window under the Basic, Composite, and Layout sections uses themes.

In JSF 1.2 and Java EE 5 Visual Web Application projects, there is only one default theme:
Web UI Default Theme. A small arrow next to the filename indicates that it has been applied to
the project.

The Visual Web module allows you to add your own themes and to apply them to your
project.

Component Libraries

The Component Libraries node is used to add new component libraries to the project. A com-
ponent library, such as BluePrints AJAX Components, can be imported into NetBeans via the
Component Library Manager.

You can access the manager by selecting Tools ➤ Component Libraries. Once you have
imported component libraries using the manager, they will be available to be added to a spe-
cific project.

To add a new component library to the project, right-click the Component Libraries node
and select Add Component Library. The list of eligible libraries will appear, and you can add
them to the project.

Data Source References

The Data Source References node contains a list of data sources configured for the Visual
Web–enabled application. If you bind a database table to a component, then you instruct
NetBeans to reference the associated data source.

This node is handy because it displays all the database-related connections that are used
by your Visual Web Application projects. You do not have to go searching through your project
code and configuration to discern which data sources you are using.

If you open a project that has incorrect or missing data sources, you can use the Data
Source References node to resolve or correct the missing data source. To do so, right-click the
Data Source References node and select Resolve Data Source(s) from the context menu.

Working with Visual Web Application Projects
In the NetBeans IDE, you’ll use a variety of windows while working on your Visual Web–enabled
project. Each window has a specific purpose, some specifically for the Visual Web module in
NetBeans. Several of the most commonly used windows are described in the following sections.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS334

8954Ch13.qxp 1/28/08 11:41 AM Page 334

Visual Designer Window

The Visual Designer window is where you’ll perform the majority of the work for your Visual
Web Application projects. The Visual Designer is the WYSIWYG interface for working with JSF
in NetBeans, as shown in Figure 13-22. The Visual Designer window contains a white design
surface with a dotted grid. You can drag-and-drop components onto this surface and arrange
them any way you desire.

Figure 13-22. The Visual Designer window

At the top left of the Visual Designer window are three view buttons: Design, JSP, and Java.
The Design view, which appears by default, shows the visual design surface. The JSP view
shows the source code of the JSP page, and the Java view shows the Java source code for the
backing bean that matches the JSP page.

■Note Throughout the rest of this chapter, I refer to the Visual Web JSF Page file type as a JSP page or JSP
file. The Visual Web JSF Page file type represents a JSF-aware JSP page that is specially recognized in the
Visual Designer. Technically, you can add a non-JSF JSP page, but for the purposes of this chapter I use the
term JSP to refer to a JSF-aware JSP file.

To the right of the view buttons are several icons that provide access to common functions,
as described in Table 13-1.

Table 13-1. Toolbar Icons in the Visual Designer

Icon Function Description

Preview in Browser Allows you to generate an HTML view of the JSP page
currently open in the Visual Designer window. It will then
open in the default browser.

Refresh Refreshes the page and components in case they are not
displaying correctly.

Show Virtual Forms Displays any virtual forms that have been configured in
the JSP file and outlines the components that are associ-
ated with each virtual form.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 335

8954Ch13.qxp 1/28/08 11:41 AM Page 335

The drop-down list on the right of the Visual Designer toolbar is the “Target Browser”
property. It specifies a screen resolution size for the web page you are developing. If you set it
to the smallest size, 640✕480 (600✕300 page), and open a JSP page in the Visual Designer, you
will notice the page visually denotes the shape and size.

Navigator Window

The Navigator window displays a listing of the objects in a specific page. If you are viewing a
Visual Web JSF Page in the Visual Designer window, the page name will appear as the top-level
node in the Navigator window, as shown in Figure 13-23.

Figure 13-23. The page node in the Navigator window

You can expand the page node and view the components that are part of the page. In
Figure 13-23, you can see that the body node contains several child nodes, including a form
component with button, table, dropDown, and textArea components. This list of components
represents the Visual Web JSF elements that appear for a Visual Web JSF Page in the Visual
Designer. You can right-click any of the components listed in the Navigator window and
manage them via the various context menu options.

The Navigator window also displays nodes for the request bean, session bean, and appli-
cation bean. These nodes are identical to the RequestBean, SessionBean, and ApplicationBean
nodes that appear in the Projects window for a Visual Web–enabled application. You can
double-click each of the nodes in the Navigator window to open the corresponding source
code in the Source Editor window.

If the Navigator window is not displayed in the NetBeans IDE, you can open it by selecting
Window ➤ Navigating ➤ Navigator or by using the shortcut Ctrl+7.

Palette Window

The Palette window displays components specific to the file opened in the IDE. If you open a
JSP file, the Palette window will display the JSF components you will use in the Visual Designer.
You can click a component in the Palette window and drag-and-drop it into the JSP file open in
the Visual Designer. The components available differ slightly, based on the Java EE version you

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS336

8954Ch13.qxp 1/28/08 11:41 AM Page 336

configured for the project. Several of the components are discussed further in the “Working
with JSF Components” section later in this chapter.

If the Palette window is not displayed, you can open it by selecting Window ➤ Palette.

Properties Window

The Properties window shows context-sensitive properties and values. As you select various
elements in the NetBeans IDE, the associated properties are displayed in the Properties win-
dow. If you select an element or node in the Projects window, Navigator window, or Visual
Designer window, its properties are listed in the Properties window.

If the Properties window is not visible in the IDE, you can open it by selecting Window ➤
Properties or by using the keyboard shortcut Ctrl+Shift+7.

Using the Page Navigation Tool
The Page Navigation tool is one of those technologies that really surprise you with how well
they work. When I first started working with Visual Web JSF technology and read about the
Page Navigation tool, I was excited but skeptical. It seemed too good to be true. After minutes
of playing around and testing it, I realized it not only worked, but worked well.

Defining Navigation Rules

In NetBeans 5.5, the navigation rules defined in the faces-config.xml file were displayed in the
Page Navigation window. It allowed a visual method for editing the navigation links between
web pages. In NetBeans 6, the window has been reworked to be a GUI that is displayed only
when you open the faces-config.xml file.

Here is an example of a faces-config.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee" ➥

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ➥

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee ➥

http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd">

<navigation-rule>
<from-view-id>/addUsers.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/results.jsp</to-view-id>

</navigation-case>
</navigation-rule>

</faces-config>

The faces-config.xml file contains navigation rules that define the starting view, speci-
fied by the from-view-id tag. Each navigation result can also contain one or more cases that
determine the destination view based on an outcome. In the preceding example, if the
addUsers.jsp view returns an outcome of success, then the JSF controller routes page flow
to the results.jsp view.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 337

8954Ch13.qxp 1/28/08 11:41 AM Page 337

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee�java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd

If you are confused by the format of the tags in the faces-config.xml file or simply don’t
like to work with it, you can use a GUI for editing the file.

Starting with NetBeans 6, when you open the faces-config.xml file it opens in GUI edit-
ing mode by default. The PageFlow tab is selected, which displays each Visual Web JSF Page
and the associated links between them.

Using the faces-config.xml Editor

To open the faces-config.xml editor, double-click the faces-config.xml file in the Projects win-
dow under the Configuration Files node. The faces-config.xml editor window has a blank white
background and dotted grid lines. If you have any JSP pages in your project, they are displayed
in the Page Navigation window as rectangles that show an icon and the page name. You can use
this window to create actual Visual Web JSF Pages and link them together.

Let’s add several pages, configure some components, and create links to demonstrate use
of the editor.

1. Within your Visual Web Application projects in the Projects window, double-click the
faces-config.xml file under the Configuration Files node.

2. Right-click in a blank spot in the editor window and select New File. The standard
New File wizard will appear.

3. Click through the New File wizard to generate a Visual Web JSF Page named Menu. You
do not need to enter a file extension of .jsp, because it is assumed. When you complete
the New File wizard, a new file icon labeled Menu.jsp is added to the faces-config.xml
editor, as shown in Figure 13-24. The Menu.jsp file is also added in the Projects window
under the Web Pages node. It is the same as if you had right-clicked the Web Pages node,
selected New ➤ Other, and added the Menu.jsp file.

Figure 13-24. The Menu.jsp file icon in the faces-config.xml editor

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS338

8954Ch13.qxp 1/28/08 11:41 AM Page 338

4. Double-click the Menu.jsp icon in the faces-config.xml editor. The corresponding file
will open in the Visual Designer window.

5. From the Palette window, drag-and-drop three Button components and one Hyperlink
component onto the Menu.jsp file in the Visual Designer window.

6. Set the component properties as follows:

• Select the first Button component. Set its id property to btnProducts and the text
property to Products.

• Select the second Button component. Set its id property to btnServices and the
text property to Services.

• Select the third Button component. Set its id property to btnAboutUs and the text
property to About Us.

• Select the Hyperlink component. Set its id property to lnkSiteMap and the text
property to Site Map.

7. Save the changes by pressing Ctrl+S.

8. In the faces-config.xml editor, right-click in an empty space window and select New
File.

9. Use the New File wizard to add four new Visual Web JSF Pages named Products,
Services, Aboutus, and Sitemap.

10. Arrange the four pages you just created in a vertical column on the right side of the
editor window. Put the Menu page on the left side of the window.

11. Click the plus sign next to the Menu page icon. It will expand and display a list of the
Button and Hyperlink components contained within it. Next to each component name
is a small icon denoting the type of link.

12. Click and hold the icon next to the btnProducts item. Then drag the cursor onto the
Products page and release the mouse button. An orange line now connects the two
pages.

13. You have just created a JSF navigation rule in the faces-config.xml file. Click the XML
tab along the top of the window to toggle to the faces-config.xml file. You will see the
new navigation rule:

<navigation-rule>
<from-view-id>/Menu.jsp</from-view-id>
<navigation-case>

<from-outcome>case1</from-outcome>
<to-view-id>/Products.jsp</to-view-id>

</navigation-case>
</navigation-rule>

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 339

8954Ch13.qxp 1/28/08 11:41 AM Page 339

14. The rule basically states that once the btnProducts button is clicked, if the button’s
action method in the backing bean returns the value case1, then the page flow will be
directed to the Products.jsp page. To verify this, click the Menu.jsp icon and double-
click the btnProducts link. The backing bean for the Menu.jsp file will open in the
Source Editor. Notice that the Java tab of the Visual Designer window is selected. The
cursor will also be placed inside the btnProducts_action method so that you can alter
the code if necessary. Notice that the return outcome is already set to case1, as shown
in this code snippet:

public String btnProducts_action() {
// TODO: Process the action. Return value is a navigation
// case name where null will return to the same page.

return "case1";
}

15. Use the faces-config.xml editor to link the other components in the Menu.jsp file to the
other pages you’ve created:

• Connect the btnServices Button component to the Services.jsp page.

• Connect the btnAboutUs Button component to the Aboutus.jsp page.

• Connect the lnkSiteMap Hyperlink component to the Sitemap.jsp page.

The resulting layout of the files displayed in the faces-config.xml editor should look
something like Figure 13-25.

Figure 13-25. The linked files in the faces-config.xml editor

If your page links do not look like the ones in Figure 13-25, you can adjust them. You can
click and drag the page icons up and down in the window so that they are ordered in any fash-
ion you desire.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS340

8954Ch13.qxp 1/28/08 11:41 AM Page 340

You can also move the connector lines that connect the pages. If you mouse over a connec-
tor line, you will see a small square anywhere the line changes directions. The little squares can
be clicked and dragged around to change the layout of the link lines.

Working with JSF Components
The JSF components in NetBeans provide an amazing array of features and flexibility. They
abstract away many of the mundane technical details of JSF so that you can focus on making
your application work.

In simple terms, the JSF components are a combination of HTML tags and JSTL tags that
have properties, trigger events, and the ability to bind to data. In many cases, you can add a
component to a JSP page, configure its properties, and bind it to a database table, field, or Java
object without having to write a single line of code.

Like other NetBeans components, the JSF components are available in the Palette win-
dow, primarily from three sections:

• The Basic section contains components for text, form elements, hyperlinks, images,
and calendars. The components all share a similar look and feel due to the theme that
has been applied to the project.

• The Layout section contains components such as forms, page separators, tabs, grid
panels, and layout panels. These elements are typically used for page layout and group-
ing of items.

• The Composite section contains only a few components. These are combination com-
ponents that provide nicely wrapped functionality representing commonly used
widgets in a web application. Much of the programming for these widgets has already
been done.

Setting Component Properties

After you’ve added a component to your page, you can click it and view its properties in the
Properties window, where you can set the attributes for a component exactly as if you were
writing code, only it’s easier.

For example, Figure 13-26 shows a page with some components from the Basic section of
the Palette window. If you click one of the Text Field components in the upper left of this page,
you can edit its properties. Suppose that you set the id property to txtName, the columns prop-
erty to 16, the text property to John, and the maxLength field to 100. You also enabled the
required check box. You could then view the corresponding JSP code for the component by
clicking the JSP tab in the Visual Designer window. It would look as follows:

<webuijsf:textField binding="#{formComponents.txtName}"
columns="16"
id="txtName"
maxLength="100"
required="true"
style="left: 72px; top: 24px; position: absolute"
text="John" />

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 341

8954Ch13.qxp 1/28/08 11:41 AM Page 341

Figure 13-26. Sample JSF components from the Basic section of the Palette window

As you can see, the property settings in the Properties window are reflected in the code. Using
the Properties window can often be faster than switching to the code view and trying to locate
a specific line of code.

Setting Component Event Handlers

Most components have event handlers. There are client-side JavaScript behaviors that can be
configured via the component properties in the Properties window. There are also server-side
Java event handlers that are evoked when certain actions occur.

To set an event handler for a component, right-click it and select Edit Event Handler. This
displays a submenu with a list of event handlers available for that specific type of component.

Let’s return to the sample page in Figure 13-26. Suppose you want to set an event handler for
when the value changes in the txtNameText Field component. Right-click that component and
select Edit Event Handler ➤ processValueChange. The Java view of the Visual Designer window
will open, displaying the source code for the JSP page’s backing bean. The page should automati-
cally scroll down to the txtName_processValueChange method. The method will be empty by
default. You can use the ValueChangeEvent object passed in as a parameter to query the old and
new values of the Text Field component whose value has changed. For example, you can retrieve
the old and new values and output them to the standard output stream as in this code snippet:

public void txtName_processValueChange(ValueChangeEvent event) {

Object objOld = event.getOldValue();
Object objNew = event.getNewValue();

if(objOld!=null) {
System.out.println("Old=" + objOld.toString());

}
if(objNew!=null) {

System.out.println("New=" + objNew.toString());
}

}

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS342

8954Ch13.qxp 1/28/08 11:41 AM Page 342

If other components in the JSP page use event handlers, they will also be listed in the JSP
page’s backing bean source code. There is no guarantee that they will be placed sequentially in
a file, so you might consider using the Navigator window (select Window ➤ Navigator or press
Ctrl+7 to open this window) to view the list of methods in the file. Any event handlers will
show up in the Navigator window, because they are implemented as Java methods.

Data Binding
Data binding is an important feature provided by the Visual Web module in NetBeans 6. It
allows you to associate data with components automatically without having to write any code.
You can bind a component to values in another component, a Java object, or a database table.

The really interesting aspect of data binding is that it can be performed via drag-and-drop
in the NetBeans IDE. You can also change the data bindings at any time and use a powerful
SQL editor to modify database-related bindings.

Binding to an Object

The NetBeans Visual Web module allows you to bind components to a Java object. You can
create properties in the RequestBean, SessionBean, or ApplicationBean class and bind them to
a component.

For example, suppose you wanted to display some application-scoped variables to the
users of a web application. You can bind, or link, those application-scoped variables to spe-
cific components in a JSP file.

To see how this works, create a HomeOffice class with three encapsulated class members:
location, manager, and numEmployees. Add the appropriate public getters and setters for each
member variable. The code should look similar to the following:

public class HomeOffice {

private String location;

public String getLocation() {
return this.location;

}

public void setLocation(String location) {
this.location = location;

}

private String manager;

public String getManager() {
return this.manager;

}

public void setManager(String manager) {
this.manager = manager;

}

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 343

8954Ch13.qxp 1/28/08 11:41 AM Page 343

private int numEmployees;

public int getNumEmployees() {
return this.numEmployees;

}

public void setNumEmployees(int numEmployees) {
this.numEmployees = numEmployees;

}

}

Next, create a member variable and associated getter and setter for the HomeOffice class
in the ApplicationBean class for your Visual Web Application projects. The code added to the
ApplicationBean class should look like this:

private HomeOffice homeOffice;

public HomeOffice getHomeOffice() {
return this.homeOffice;

}

public void setHomeOffice(HomeOffice homeOffice) {
this.homeOffice = homeOffice;

}

Finally, you can add several lines to the ApplicationBean.init method that will create an
instance of the HomeOffice class, as follows:

private void _init() throws Exception {

HomeOffice homeOff = new HomeOffice();
homeOff.setLocation("Buffalo");
homeOff.setManager("John Doe");
homeOff.setNumEmployees(210);
setHomeOffice(homeOff);

}

Then you will need to create a new JSP file in your Visual Web Application projects and
add several components to it. Perform the following steps to create the JSP file for this exam-
ple and bind some data:

1. Right-click the Web Pages node in the Projects window and select New ➤ Other.

2. Select the JavaServer Faces category and the Visual Web JSF Page file type, and then
click the Next button.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS344

8954Ch13.qxp 1/28/08 11:41 AM Page 344

3. Name the file and choose a folder location in the project. Then click the Finish button.

4. With the new file open in the Visual Designer window, add six Static Text components
(by dragging them from the Palette window into the page’s design area), as follows:

• Set the first Static Text component’s id property to lblLocation and the text prop-
erty to Office Location :.

• Place the second Static Text component beneath the first one. Set its id property to
lblManager and the text property to Manager :.

• Place the third Static Text component beneath the second one. Set its id property
to lblNumEmployees and the text property to # Employees :.

• Place the fourth Static Text component next to the lblLocation component. Set its
id property to txtLocation.

• Place the fifth Static Text component next to the lblManager component. Set its id
property to txtManager.

• Place the sixth Static Text component next to the lblNumEmployees component. Set
its id property to txtNumEmployees.

• Next, you need to bind the Static Text components txtLocation, txtManager, and
txtNumEmployees to the corresponding data elements in the HomeOffice class in the
ApplicationBean.

5. Right-click the txtLocation component in the Visual Designer window (or in the Outline
window) and select Bind to Data.

6. The Bind to Data window will appear. If it is not already selected, click the Bind to an
Object tab.

7. In the Bind to Data window, the ApplicationBean1 node contains the HomeOffice class
listing. Expand the homeOffice node to see the member variables that are part of the
HomeOffice class.

8. To bind the txtLocation component to the corresponding application-level property,
click the line property: location String, as shown in Figure 13-27. The Current Text
property setting field at the top of the window should display
#{ApplicationBean1.homeOffice.location}.

9. Click the OK button to apply the binding. You will see that the txtLocation component
displays the value abc. This indicates that it has been bound to string data.

10. Repeat steps 5 through 9 to bind the txtManager and txtNumEmployees components to
their corresponding HomeOffice properties.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 345

8954Ch13.qxp 1/28/08 11:41 AM Page 345

Figure 13-27. The Bind to Data window

You now have a JSP page that displays six Static Text components: three bound and three
unbound, as shown in Figure 13-28.

Figure 13-28. The components after the data-binding operation

If you run the application and navigate to the JSP page, you should see the following:

Office Location : Buffalo
Manager : John Doe
Employees : 210

Binding to a Database Table

The NetBeans Visual Web module provides the ability to bind a database table to a JSF Table
component. When you drag-and-drop the database table onto the component, NetBeans gen-
erates code in the page’s backing bean and the JSP file.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS346

8954Ch13.qxp 1/28/08 11:41 AM Page 346

To bind the data to the table, follow these steps:

1. Drag-and-drop a JSF Table component from the Palette window into a JSP page in
the Visual Designer window. A table with three columns and several rows of filler
data will be displayed, as shown in Figure 13-29. If you click the JSP tab in the Visual
Designer window, you will see that the JSF tag <webuijsf:table> was added to the file.
The <webuijsf:table> also contains the nested tags <webuijsf:tableRowGroup>,
<webuijsf:tableColumn>, and <webuijsf:staticText>.

Figure 13-29. A JSF Table component in the Visual Designer

2. Now you need to connect to a database and bind data to the Table component. In the
NetBeans Services window, expand the Database node to list the database connections
you have defined. Expand the nodes in the Services window for the database connec-
tion you want to use until you locate a database table. For this example, I used an
Oracle database table named CUST, which is defined as follows:

CREATE TABLE CUST
(
LAST_NAME VARCHAR2(50),
FIRST_NAME VARCHAR2(50),
BUSINESS VARCHAR2(200),
JOBTITLE VARCHAR2(100),
ADDRESS1 VARCHAR2(100),
ADDRESS2 VARCHAR2(100),
CITY VARCHAR2(100),
STATE VARCHAR2(20),
ZIP VARCHAR2(20),
COUNTRY VARCHAR2(100),
CUST_ID INTEGER

)

3. Click and drag the database table name in the Services window and drop it onto the
JSF Table component. NetBeans will process for a moment, but it will eventually
refresh the JSF Table component in the Visual Designer.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 347

8954Ch13.qxp 1/28/08 11:41 AM Page 347

The table will be reformatted to display all the columns from the database table. The col-
umn names will appear as the column headers in the table. The column values are represented
as the various data-binding placeholders, such as abc for character fields and 1 for numeric
fields.

If you look in the Navigator window and expand the page node for the JSP file, you will see
a node that defines an implementation of the CachedRowSetDataProvider class. The class name
should start with the name of the database table you originally selected to bind and end with
DataProvider.

The following code was also added to the JSP page’s backing bean in the Managed Com-
ponent Definition section near the top of the source file:

private CachedRowSetDataProvider custDataProvider = new ➥

CachedRowSetDataProvider();

public CachedRowSetDataProvider getCustDataProvider() {
return custDataProvider;

}

public void setCustDataProvider(CachedRowSetDataProvider crsdp) {
this.custDataProvider = crsdp;

}

The JSP page’s backing bean must also specify the CachedRowSet that returns the data and
add it to the CachedRowSetDataProvider class. The backing bean’s init method contains the
following line:

custDataProvider.setCachedRowSet((javax.sql.rowset.CachedRowSet) ➥

getValue("#{SessionBean1.custRowSet}"));

As you can see in this code snippet, a CachedRowSet was retrieved from the SessionBean1
object and set in the custDataProvider class (the CachedRowSetDataProvider).

When you bind the database table to the JSF Table component, NetBeans generates an
implementation of the CachedRowSet, which resides in SessionBean1. If you look in the Naviga-
tor window under the SessionBean1 node, you will see the listing for the CachedRowSet. Its
name starts with the name of the database table you selected for binding and ends with
RowSet. You should also be able to see a short description of the SQL query that the
CachedRowSet represents. This is discussed in the “Working with the Visual Database Query
Editor” section later in this chapter.

The SessionBean1 class defines the CachedRowSet as a member variable and creates the
associated getter and setter methods. It also adds code to the init method that sets the
CachedRowSet’s data source name, table name, and SQL command. See the following code
snippet:

private void _init() throws Exception {
custRowSet.setDataSourceName("java:comp/env/jdbc/dataSource");
custRowSet.setCommand("SELECT * FROM ITMSDB.CUST");
custRowSet.setTableName("CUST");

}

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS348

8954Ch13.qxp 1/28/08 11:41 AM Page 348

private CachedRowSetXImpl custRowSet = new CachedRowSetXImpl();

public CachedRowSetXImpl getCustRowSet() {
return custRowSet;

}

public void setCustRowSet(CachedRowSetXImpl crsxi) {
this.custRowSet = crsxi;

}

The JSF Table component can then bind to the CachedRowSetDataProvider, which in turn
retrieves the implementation of the CachedRowSet class (CachedRowSetXImpl) that retrieves the
data from the database.

After you have added the appropriate objects and settings to the application code, you
can customize the JSF Table component using the Table Layout window (Figure 13-30). Here,
we’ll look at the binding-related options.

Figure 13-30. Table Layout options for a Table component bound to a database table

In the Columns tab of the Table Layout window, notice that the database table fields are
listed in the Selected box, because all the fields were originally added during the automatic
data-binding process. You can remove fields from the list (and the data binding) by selecting
the field name in the Selected list and clicking the < button. The field you selected will be

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 349

8954Ch13.qxp 1/28/08 11:41 AM Page 349

removed from the Selected list and appear in the Available list. When you click the OK button,
the table will appear in the Visual Designer window without that column.

For example, to format the table that I bound to the CUST database table (shown in the
previous section), I used the < button to remove all the fields from the Selected list, except for
LAST_NAME, FIRST_NAME, BUSINESS, JOBTITLE, and CITY, as shown in Figure 13-30. Then I clicked
each field in the Selected list and changed the “Header Text” field to an easier-to-read value:
Last Name, First Name, Job Title, and so on.

Then I clicked the Options tab in the Table Layout window. In the “Title” field, I entered
the text List of Customers. This title will display along the header of the table. I activated pag-
ination by selecting the Enable Pagination check box, and then I set the “Page Size” field to 4.
(Normally, you would want between 20 and 50 records on a page, but that depends on the
data, your application, and the software requirements.) Then I clicked the OK button, and the
JSF Table component refreshed and appeared in its modified format.

If you want to view the JSP page in a browser and test it, you first need to set it as the start
page so that it loads in the browser (assuming you haven’t set up any page navigation). To do
this, right-click the page in the Projects window and select Set As Start Page. A green arrow will
appear next to the page name, denoting it as the start page.

Next, run the application by selecting Run ➤ Run Main Project (or pressing F6). After your
application builds, the page will load in the browser. My sample table looks like Figure 13-31.

Figure 13-31. A data-bound JSF Table component displayed in a web browser

Working with the Visual Database Query Editor

When you bind a JSF component to a database table, a CachedRowSet object maintains an SQL
command that selects fields from a database table. You can use a SQL query-editing tool, called
the Visual Database Query Editor, to manipulate the SQL query that was created automatically
during the binding.

To open a query in the query editor, locate the CachedRowSet in the Navigator window. You
can double-click the name or right-click and select Edit SQL Statement. The Visual Database
Query Editor window opens and displays the SQL statement, as shown in Figure 13-32. If you
have ever used the SQL tools in the Microsoft SQL Server Enterprise Manager, this tool should
look familiar.

In the Visual Database Query Editor, you can select which columns you want to include in
the query, set the sort order for each column, manually edit the SQL, and view the results of
the query. This tool allows you to customize the SQL and the associated data completely in the
CachedRowSet that is bound to a JSF component.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS350

8954Ch13.qxp 1/28/08 11:41 AM Page 350

Figure 13-32. The Visual Database Query Editor

The editor window has four sections. The top section shows which tables are currently
included in the query. You can right-click anywhere in the top section and select Add Table
from the context menu. The Select Table(s) to Add dialog box lists the SQL tables available
based on the defined database connection. You can select one or more tables and click the OK
button. The tables will then appear in the top section of the query editor.

The second section allows you to perform several convenient actions:

• You can assign database table columns with aliases via the Alias column.

• You can also determine if columns should be included in the SELECT clause of the SQL
statement by selecting or unselecting the check box in the Output column.

• In the Sort Type column, you can specify if the table field will be sorted in ascending or
descending order.

• The Sort Order column allows you to specify in which order the table field will be
sorted.

• The Criteria column allows you to specify a value (depending on the column’s data
type) to use in a SQL WHERE clause. For example, if you specified a value of LIKE 'New%'
in the Criteria column for the CITY column, then the SQL would contain something
similar to WHERE CITY LIKE 'New%'.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 351

8954Ch13.qxp 1/28/08 11:41 AM Page 351

The third section contains the raw SQL text, which you can alter manually. If you modify
any fields in the top two sections, you will see the changes to the SQL displayed here.

If you right-click in the window and select Run Query, any results that match the SQL
query will be displayed in the bottom section.

Leveraging the jMaki Framework
jMaki is a JavaScript and Ajax framework that provides a variety of web-based widgets. It can be
used directly in NetBeans via a wrapper plugin. The plugin can provide support to add jMaki to
a web application, display the widgets in the Palette window, and allow you to drag-and-drop
widgets into web pages.

Installing the jMaki Framework
The jMaki framework plugin is available from the jMaki project at Java.net. The project site
makes available an update center module to download that allows you to download the actual
plugin.

Go to the project site at http://ajax.dev.java.net/. In the Download section you can
choose to download the NetBeans plugin or a smaller .nbm module that installs only the
update center for the jMaki plugin.

If you download either plugin, save it to your local drive. In NetBeans, go to the Plugin
Manager by selecting Tools ➤ Plugins. In the Plugin window click the Downloaded tab and
locate the downloaded plugin by clicking the Add Plugins button. After locating the plugin,
click the Install button and proceed through the remainder of the installation. If you selected
to install the jMaki update center, you can then go to the Available Plugins tab and Reload
Catalog to see the list of jMaki plugins. Select the jMaki plugins from the list and perform a
normal installation. You may be prompted to restart NetBeans.

Adding jMaki Support to a Web Application
Once jMaki has been installed, you can add the framework to a project. During the New Project
wizard, the Frameworks screen will display a list of frameworks you can add to your framework.
The jMaki Ajax Framework can be selected from the list.

If you select the jMaki Ajax Framework, the bottom portion of the screen will display the
jMaki Ajax Framework configuration. The CSS Layout section lets you choose a web page lay-
out to apply to the initial JSP file in the project. If you scroll through the list, you will see a
variety of layouts, such as left sidebar, right sidebar, and no layout. Select the Right Sidebar
layout, as shown in Figure 13-33. Then click the Finish button to generate the project.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS352

8954Ch13.qxp 1/28/08 11:41 AM Page 352

http://ajax.dev.java.net

Figure 13-33. Adding the jMaki framework to a project

The project will be generated and displayed in the Projects window. The default web applica-
tion page is named index.jsp. It contains the layout that was specified in the Frameworks screen
of the New Project wizard. An additional file was also generated. The jmaki-right-sidebar.css
file was created during project generation. It is based on the type of CSS layout that was specified
in the New Project wizard. The index.jsp file contains a <link> tag that imports the styles from
the jmaki-right-sidebar.css file. This allows the index.jsp to have the specified formatting that
you chose.

If you run the project, you can view the initial page layout. Select Run ➤ Run Main Project
from the main menu. The application server will start, the project will build, and a web browser
will open displaying the index.jsp. You will see that it contains a top section, left content area,
and right sidebar, as shown in Figure 13-34. It should match the CSS layout you chose in the
New Project wizard.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 353

8954Ch13.qxp 1/28/08 11:41 AM Page 353

Figure 13-34. The index.jsp page display for the right sidebar layout

The page layout shown in Figure 13-34 is just one example that jMaki can provide. As you
saw in the New Project wizard, you can create pages with different layouts. To add a new JSP
page to the project with a different layout, do the following:

1. Right-click the Web Pages node in the Projects window and select New ➤ Other.

2. In the New File wizard, select the Web category from the left pane and Stylized JSP
(jMaki) from the right pane. Then click the Next button.

3. Provide a value for the “JSP File Name” field. Use the Browse button next to the “Folder”
field to choose a folder under the Web Pages node where the new page will be located.

4. Scroll through the list of CSS Layouts and select a value.

5. Click the Finish button to complete the New File wizard. The new JSP file will open in
the Source Editor.

Working with jMaki Widgets
jMaki provides widgets in the form of JSP tag libraries that generate Ajax-enabled JavaScript
and HTML components. jMaki itself is composed of several of these modules, but it also pro-
vides components from other popular JavaScript frameworks, such as Google, Dojo, Flickr,
Scriptaculous, Spry, and Yahoo.

The available components are displayed in the Palette window, as shown in Figure 13-35.
You can click and drag a component from the Palette into one of the Stylized JSP (jMaki) pages
you created in the project.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS354

8954Ch13.qxp 1/28/08 11:41 AM Page 354

Figure 13-35. The jMaki widgets in the Palette window

You can use any of the widgets in the different jMaki categories in the Palette. One of my
favorites is the Spry Accordion. If you click and drag it into a JSP page, the following code will
be added:

<a:widget name="spry.accordion"
value="{ items :
[{ label :'Books', content : 'Book content'},
{ id : 'bar', label :'Magazines', include : 'test.jsp', lazyLoad : true},
{ label :'Newspaper', content : 'Newspaper content', selected: true}
]}"/>

This Spry Accordion code will generate a set of sliding layers. Each layer will have a visible area
with text that identifies which layer it is. As each layer is clicked, it slides completely open,
showing the entire layer’s content. All other layers visible slide shut.

The foregoing Spry Accordion code uses an array to store the different layers. Each array
element can have several attributes used to customize the layer. The first array element looks
like this:

[{ label :'Books', content : 'Book content'},

The layer’s label is identified with the label attribute. The content attribute can be a block of
text that will appear in the layer.

Each layer can include an external page in case you want dynamic content or a lot of con-
tent to be displayed. The second array element shows you how to do so with the following code:

{ id : 'bar', label :'Magazines', include : 'test.jsp', lazyLoad : true},

The id attribute denotes the unique identifier used for the specific layer. The include attribute
lets you specify a web page to include as the content of the layer. The lazyLoad attribute speci-
fies the way to load the page.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 355

8954Ch13.qxp 1/28/08 11:41 AM Page 355

The third and final element of the layer array has this code:

{ label :'Newspaper', content : 'Newspaper content', selected: true}

The only difference with this element is its usage of the selected attribute. If the selected attrib-
ute is set to true, then that layer is selected and displayed in the rendered content. If you run the
page to which you added the widget, the generated content will look similar to Figure 13-36. In
this example, I added the Spry Accordion code to the right sidebar content section of the Stylized
JSP page from the previous section.

Figure 13-36. The Accordion widgets displayed in the web browser

Customizing Widgets
You can customize jMaki widgets directly by editing the code displayed in the Source Editor.
You can also use the jMaki Customizer window. This window allows you to edit the widget’s
text and any attributes it may have.

To use the Widget Customizer window, click inside the code for a widget that is displayed
in the Source Editor. Then click the jMaki button in the Source Editor toolbar. The Widget Cus-
tomizer window will appear, with the Spry Accordion widget’s attributes and code displayed,
as shown in Figure 13-37.

The top section contains any arguments the widget may have. Initially the Spry Accordion
widget did not have an args attribute displayed in the code. The widget was thus using the
default value. If you look at the Args section, you will see an argument named gradient. The
value for the argument is set to Blue. If you click inside the “Value” attributes field, you can
select a new color from the drop-down list that appears. This allows you to change the default
arguments for the widget.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS356

8954Ch13.qxp 1/28/08 11:41 AM Page 356

Figure 13-37. The Widget Customizer window

You can also edit the main body of the widget. The bottom half of the Widget Customizer
window shows the value of the widget. It lists the layer array text that you can edit and change
as you see fit.

The Widget Customizer window also has a Usage tab. If you select it, the tab will display
the name of the widget, its description, and an image that shows you what the widget typically
looks like. If you click the OK button the Widget Customizer window will close and any
changes you made to the widget code will be displayed in the Source Editor.

Summary
This chapter focused on creating web applications in NetBeans. In it we covered how to create
a web application and manage its properties and settings and the overall structure and layout
of its files. We discussed building, running, and deploying an application along with the vari-
ous properties and tools for controlling those operations. We reviewed working with web
application files, such as HTML and CSS.

The chapter also provided an overview of the NetBeans tools for working with Struts in a
web application. It covered how to use the IDE wizards to add actions and forms as well as
how to make modifications to the overall Struts configuration.

As you learned in this chapter, before you can deploy an application to a Java application
server, that server must be registered in NetBeans. We covered how to set up and work with the
Tomcat and GlassFish application servers.

Next, you learned about one of my favorite NetBeans tools, the HTTP Monitor. The HTTP
Monitor is a valuable tool for examining HTTP request data, modifying values such as query
string parameters and HTTP headers, and replaying specific HTTP requests.

The chapter also covered the NetBeans Visual Web JavaServer Faces framework, beginning
with how to install it and configure its options. Then it ran through the process of creating a
Visual Web–enabled application, reviewing the project structure, and setting project properties.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS 357

8954Ch13.qxp 1/28/08 11:41 AM Page 357

Visual Web–enabled projects make use of several standard NetBeans windows and tools,
including the Palette, Properties, and Navigator windows. They also use special windows called
the Visual Designer window and the Visual Database Query Editor.

You also saw how to create Visual Web–enabled pages, add JSF components to them, and
configure the navigation links between them. The faces-config.xml editor is a powerful tool to
drag-and-drop links between JSP pages and create JSF navigation rules in the faces-config.xml
file. We also explored the NetBeans data-binding capabilities. With these, you can automatically
connect JSF components to database tables by simply dragging-and-dropping items. You
can easily configure the bound data using the various properties and windows that NetBeans
provides.

Finally, we covered the jMaki framework. You can add this powerful JavaScript and Ajax
framework to your web application. It gives you quick access to some amazing Ajax-enabled
widgets on the Palette. You can drag-and-drop these widgets into your source code and edit
their code to quickly configure and customize them.

The frameworks discussed in this chapter can extend the functionality of the standard
Web Application projects. Each framework offers a different set of features that can make you
more productive and deliver better functionality to end users. Understanding how to use the
widgets in NetBeans can help you when working with them.

CHAPTER 13 ■ DEVELOPING WEB APPLICATIONS358

8954Ch13.qxp 1/28/08 11:41 AM Page 358

Developing Web Services:
JAX-WS, SOA, BPEL,
and RESTful

The concept of software as a service is not new. People in the IT community have been dis-
cussing it for years. A related idea in software architecture, modularization, involves making
portions of software separate and loosely coupled. Web services provide this loose coupling by
separating software components.

Many of the tools that implement the alphabet soup of web service technologies are diffi-
cult to work with and have a steep learning curve. The NetBeans IDE attempts to supply simple
solutions to working with these technologies. It provides support for the latest web service
specifications, such as Java EE 5 and the Java API for XML Web Services (JAX-WS). These tools
allow you to use Java EE 5 and annotations for defining web service servers and clients quickly
and easily.

NetBeans 6 also provides support for service-oriented architecture (SOA) tools like the
Business Process Execution Language (BPEL) and its supporting features. You can use visual
tools to design a business process, invoke web services, and test the entire process. These
tools let you construct what is known as a composite application, made up of various logical
processes and web services. This helps enforce the modularization that web services aim to
provide and allows you to interact with them quickly and easily.

Installing the Web Services Modules
To use the XML, SOA, and BPEL tools available in NetBeans, you can download and install
the full NetBeans 6 bundle. You can also download one of the smaller bundles and later install
the needed modules. For working with the web services in this chapter you will need to down-
load the following NetBeans 6 modules: SOA, BPEL, Composite Application.

To locate and install the module, do the following:

1. Go to the main menu and select Tools ➤ Plugins. The Plugin Manager window will
open.

2. Select the Available Plugins tab and click the Reload Catalog button. The remote
update centers will be checked for new plugins.

359

C H A P T E R 1 4

8954Ch14.qxp 1/28/08 11:41 AM Page 359

3. Scroll down the list of available plugins and locate the ones named SOA, BPEL, and
Composite Application.

4. Select the check box next to the module name and click the Install button. A plugin
installer prompt will pop open. Click the Next button.

5. Select the radio button next to the “I accept the terms” field and click the Install button.

6. You should see a message denoting the success or failure of the plugin installation
process. Click the Finish button to close the window and return to the Plugin Manager.

7. Click the Close button to exit the Plugin Manager.

The modules are now ready to be used. You can verify their installation by searching for
them in the Installed tab of the Plugin Manager.

Creating Web Services
One of my first experiences with web services was several years ago. As a beginner, I started
using the several Apache libraries for working with XML and web services. These were a little
unwieldy and took quite some time to learn, considering the numerous acronyms, specifica-
tions, and implementations to sift through. Eventually, I began to comprehend the technology,
and I found I could do some interesting web service calls via the Simple Object Access Protocol
(SOAP).

SOAP provided some nifty capabilities, particularly RPC-type calls via HTTP that commu-
nicated on the standard port 80. This allowed web services to bypass many corporate firewalls
and also added some flexibility in the web services paradigm, laying the groundwork for web
applications to evolve into SOA applications.

Up to this point, working with the various web service technologies was a little difficult.
When Sun introduced the Java EE 5 platform, it included JAX-WS, a new API combined with
annotations that greatly simplified the process of working with web services. This XML-based
document approach is similar to SOAP and replaces the XML-RPC type of web services that
existed in the past.

NetBeans 6 provides several convenient tools for creating web services using JAX-WS.
These tools can help you quickly create web service servers and clients as well as get rid of
much of the boilerplate code you typically write.

In NetBeans, you can specify several different web service file types via the New File wizard:

Web Service: Creates an empty web service that is part of an EJB or web container that is
called by a client application.

Web Service Client: Specifies the client application that calls a web service.

Web Service from WSDL: Generates a web service based on a Web Services Description
Language (WSDL) file. A WSDL file is an XML-based file that describes a web service as
defined by the W3C specification. It acts like an interface to the web service by describing
its network bindings, protocol, and messages.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL360

8954Ch14.qxp 1/28/08 11:41 AM Page 360

WSDL Document: Creates an empty WSDL file that describes a web service using XML.

Logical Handler: Creates a Java class that allows you to perform preprocessing and post-
processing of web service messages.

Message Handler: Creates a Java class that allows you to perform preprocessing and post-
processing of web service messages. This handler differs from the Logical Handler in that
it affects the body and header of the message. This file type is typically used for security
and/or logging purposes.

Secure Token Service (STS): Creates an empty, secure web service that is part of an EJB or
web container that is called by a client application.

These file types can be employed in several different types of NetBeans projects. The fol-
lowing examples use a Web Application project type for the web service and a Java Application
project type for the client.

Creating a Web Service
Let’s say you wanted to create a web service in a Web Application project that allowed client
applications to retrieve customer information. Define a simple Customer class such as the
following:

package com.pronetbeans.examples.services;

public class Customer {

public Customer() {}

private long Id;
private String FirstName;
private String LastName;

public long getId() {
return Id;

}

public void setId(long Id) {
this.Id = Id;

}

public String getFirstName() {
return FirstName;

}

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 361

8954Ch14.qxp 1/28/08 11:41 AM Page 361

public void setFirstName(String FirstName) {
this.FirstName = FirstName;

}

public String getLastName() {
return LastName;

}

public void setLastName(String LastName) {
this.LastName = LastName;

}
}

The Customer class contains three member variables. The Id variable represents the number
used to identify a customer uniquely in a database system. The FirstName and LastName vari-
ables define the customer’s name. I’ve used a simple example for demonstration purposes.
Obviously, a Java class that represents a real customer would have numerous fields for items
such as billing address, shipping address, phone numbers, payment details, and so on.

■Tip You don’t actually have to type all the getter and setter methods in the example. You can highlight the
three member variables, right-click in the Source Editor window, and select Refactor ➤ Encapsulate Fields,
which will generate the getter and setter methods for you. See Chapter 10 for details on refactoring.

In this example, the Customer class will be populated with data and sent to the client
applications that execute the web service. To create the web service, follow these steps:

1. Right-click the project name in the Projects window and select New ➤ Other.

2. In the New File wizard, select Web Services from the list of categories in the left pane
and Web Service from the list of file types in the right pane. Then click the Next button
to continue.

3. In the Name and Location screen, shown in Figure 14-1, specify a value for the “Web
Service Name” field, such as CustomerInfo. This is the name that client applications
will use to call the web service, so try to make it a meaningful one. You can also specify
the “Location” and “Package” fields in this window.

4. Choose how your web service is generated by selecting either the Create an Empty Web
Service option or the Delegate to Existing Session Enterprise Bean option. Specify an
EJB if necessary. Then click Finish.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL362

8954Ch14.qxp 1/28/08 11:41 AM Page 362

Figure 14-1. Adding a web service in the Name and Location screen

The Create an Empty Web Service option will simply generate a skeleton web service class
with no code or operations. More often than not, you will choose this default option. If you
leave it selected and click the Finish button, the following web service class will be generated
(the package and import statements are not included):

@WebService()
public class CustomerInfo {

}

The Delegate to Existing Session Enterprise Bean option allows you to expose an EJB as a
web service. When you click the Browse button to select an EJB, a dialog box will display a list
of any enterprise modules or projects currently open in the Projects window. Once you have
selected an EJB from this dialog box, you can click Finish to complete the new file creation
process. The new web service class is created with the following code:

@WebService
public class CustomerInfoImpl {

@EJB
private com.pronetbeans.examples.NewSessionLocal newSessionBean;

}

In this example, the NewSessionLocal class is the EJB selected to expose as a web service. It is
marked with the @EJB annotation.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 363

8954Ch14.qxp 1/28/08 11:41 AM Page 363

mailto:@EJBprivatecom.pronetbeans.examples.NewSessionLocalnewSessionBean
mailto:@EJBprivatecom.pronetbeans.examples.NewSessionLocalnewSessionBean

Regardless of how you choose to generate a web service, you should end up with a class
that is marked with the javax.jws.WebService annotation. This annotation allows JAX-WS to
handle the Java class like a web service.

Once you have created a web service, you need to give it functionality by adding operations.

Adding an Operation to a Web Service
You can add an operation to a web service by right-clicking inside a class displayed in the
Source Editor and selecting Web Service ➤ Add Operation. The Add Operation dialog box will
appear, allowing you to specify a Java method name, parameters, return type, and exceptions.

The name of the operation is what the client calls. The “Return Type” field denotes the
type of value that is returned to the client. The field contains a drop-down list of suggested
values, such as long, String, and int. You can choose one of these values or type directly in the
field. If the return type is not listed, you can click the Browse button to open the Browse Class
dialog box. This dialog box allows you to type a partial or complete name of a Java class and
view the matching results. For example, if you search on the value Cust, the Customer class cre-
ated in the previous example will appear in the results.

You can then choose to add an input parameter to the operation. The bottom half of the
Add Operation dialog box allows you to add, edit, and remove parameters. Each parameter
has a type and a name associated with it. You can also order the parameters in the operation
using the Up and Down buttons in the dialog box.

For this example, I have specified a name of getCustomerById, a return type of
com.pronetbeans.examples.services.Customer, and a single parameter of long lngCustomerId.
Once the fields are properly set, the Add Operation dialog box should look like Figure 14-2.

Figure 14-2. The Add Operation dialog box for a web service

Finally, click the OK button to create the operation. The code that is generated will look
similar to the following:

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL364

8954Ch14.qxp 1/28/08 11:41 AM Page 364

@WebMethod(operationName = "getCustomerById")
public Customer getCustomerById(@WebParam(name = "lngCustomerId")

long lngCustomerId) {
//TODO write your implementation code here:
return null;

}

In the preceding code, you can see that the method is marked with the @WebMethod anno-
tation. The matching import statement for the @WebMethod annotation is also added to the class
as import javax.jws.WebMethod;. This annotation identifies the method as a web operation
that should be exposed through the web service. The input parameter is also marked with an
annotation named @WebParam, which contains a name attribute that defines the name of the
parameter explicitly. You can learn more about this class (and all of the annotation classes) by
reviewing the Java EE 5 Javadoc available at http://java.sun.com.

The body of the method is empty, but you can quickly add content to make the web
service functional. In the following code, I have defined and instantiated an instance of the
Customer class. I then perform an if-else check on the input parameter to see whether it
matches a certain value. If it matches either of two values, I populate the Customer object with
fake data to be returned to the calling client application. This is to simulate a query to a data
source. If the lngCustomerId parameter does not match either of the two hard-coded values,
the Customer object is populated with meaningless values and returned.

@WebMethod(operationName = "getCustomerById")
public Customer getCustomerById(@WebParam(name = "lngCustomerId")

long lngCustomerId) {

Customer cust = new Customer();

if(lngCustomerId ==1234567890) {
cust.setId(1234567890);
cust.setFirstName("Adam");
cust.setLastName("Myatt");

} else if(lngCustomerId ==123) {
cust.setId(123);
cust.setFirstName("John");
cust.setLastName("Doe");

} else {
cust.setId(-1);
cust.setFirstName("");
cust.setLastName("");

}
return cust;

}

The web service operation I defined here will accept a customer identification number as a
parameter, retrieve the customer data from a data source, and return a Customer class filled
with customer data.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 365

8954Ch14.qxp 1/28/08 11:41 AM Page 365

http://java.sun.com

Yes, Virginia, there is a Santa Claus! With a few quick clicks, you have a real working web
service in NetBeans using Java EE 5 and JAX-WS.

Testing the Web Service
The GlassFish server comes with a web service testing application, which you can use to test
your web service without having to write a client application. To test the web service, follow
these steps:

1. Press F6 or select Run ➤ Run Main Project. Once the project runs and deploys, the
application server will start automatically.

2. Expand the Web Services node in the Projects window, right-click the web service, and
select Test Web Service. A web browser will open.

3. Once the web browser has opened, you will see the web service testing page for the spe-
cific service you are testing. In this example, the CustomerInfo web service is exposed
and available to be tested using a simple HTML form, as shown in Figure 14-3. The text
field represents the input parameter for the web service method. For this example, enter
the value 1234567890 in the input field. Then click the getCustomerById button to submit
the value.

Figure 14-3. The GlassFish web service testing application

The testing application returns a Customer object filled with data as specified in the defini-
tion of the getCustomerById method. The results page will display the SOAP request XML:

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Header/>
<S:Body>

<ns2:getCustomerById xmlns:ns2="http://services.examples.pronetbeans.com/">
<lngCustomerId>1234567890</lngCustomerId>

</ns2:getCustomerById>
</S:Body>

</S:Envelope>

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL366

8954Ch14.qxp 1/28/08 11:41 AM Page 366

http://schemas.xmlsoap.org/soap/envelope
http://services.examples.pronetbeans.com

This SOAP envelope defines the body of the request, the function name getCustomerById, and
the input parameter lngCustomerId. The value that was specified in the web service testing
application is listed between the opening and closing tags that define the lngCustomerId
parameter.

The application also displays the SOAP response XML:

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<ns2:getCustomerByIdResponse

xmlns:ns2="http://services.examples.pronetbeans.com/">
<return>

<firstName>Adam</firstName>
<id>1234567890</id>
<lastName>Myatt</lastName>

</return>
</ns2:getCustomerByIdResponse>

</S:Body>
</S:Envelope>

The data returned in the SOAP response shows that the web service actually functioned
correctly and returned the correct values for the id, firstName, and lastName fields.

Creating a Web Service Client
A web service client represents the application code that executes a web service. It can be cre-
ated as part of a Web Application project or a standard Java Application project. This allows
you to call a web service from almost any type of Java application.

For the purposes of this chapter, I show you how to create a new web service client in a
Java Application project. To create the project and the web service client, follow these steps:

1. Select File ➤ New Project from the main menu.

2. In the New Project window, select Java from the list of categories on the left and Java
Application from the list of available project types on the right, and then click the Next
button.

3. In the Name and Location window, name the project, select a project location, and
specify the name and package of the Main class for the application. Click the Finish
button to generate the project.

4. In the Projects window, right-click the project name and select New ➤ Other.

5. In the New File wizard, select Web Services from the list of Categories in the left pane and
Web Service Client from the list of file types in the right pane. Then click the Next button.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 367

8954Ch14.qxp 1/28/08 11:41 AM Page 367

http://schemas.xmlsoap.org/soap/envelope
http://services.examples.pronetbeans.com

6. In the WSDL and Client Location window, shown in Figure 14-4, first specify the WSDL
file. Your choices are Project, Local File, and WSDL URL. If you select “Local File,” you can
browse to and select a WSDL file on the local file system. If you select the “WSDL URL”
field, you must enter a complete URL to the WSDL file, such as http://www.myhost.com/
webapp/mywebService?wsdl. For this example, select the “Project” radio button, and
then click the Browse button. In the Browse Web Services dialog box, expand the proj-
ect name node, select the web service, and click the OK button.

Figure 14-4. The WSDL and Client Location window for creating a web service client

7. Specify the Java package hierarchy for the web service client.

8. Click the Finish button to complete the process.

As NetBeans generates the web service client, you will see a progress bar and a status
message indicating that it is importing the WSDL file. After the web service client is generated,
a new node named Web Service References appears under the project name in the Projects
window. The WSDL file is located under the Web Service References node. Double-click the
WSDL file node (CustomerInfoService in this example), to open the WSDL file in the Source
Editor window. The following is a snippet of XML from the WSDL file:

<message name="getCustomerById">
<part name="parameters" element="tns:getCustomerById"></part>

</message>
<message name="getCustomerByIdResponse">

<part name="parameters" element="tns:getCustomerByIdResponse"></part>
</message>

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL368

8954Ch14.qxp 1/28/08 11:41 AM Page 368

http://www.myhost.com

<portType name="CustomerInfo">
<operation name="getCustomerById">

<input message="tns:getCustomerById"></input>
<output message="tns:getCustomerByIdResponse"></output>

</operation>
</portType>
<binding name="CustomerInfoPortBinding" type="tns:CustomerInfo">

<soap:binding transport="ashttp://schemas.xmlsoap.org/soap/http"
style="document"></soap:binding>

<operation name="getCustomerById">
<soap:operation soapAction=""></soap:operation>
<input>

<soap:body use="literal"></soap:body>
</input>
<output>

<soap:body use="literal"></soap:body>
</output>

</operation>
</binding>

Calling the Web Service
The WSDL file defines several configuration options for the service and allows web service
clients to interact with the service via the defined port, binding, and message. The WSDL file
allows you to use JAX-WS and the NetBeans web services tools to create Java code easily that
calls the web service, as follows:

1. Open the Main class that was generated during the project creation process. You will
see that the main method is empty.

2. Right-click anywhere inside the main method and select Web Service Client Resources
➤ Call Web Service Operation. The Select Operation to Invoke dialog box will appear,
as shown in Figure 14-5.

Figure 14-5. The Select Operation to Invoke dialog box

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 369

8954Ch14.qxp 1/28/08 11:41 AM Page 369

ashttp://schemas.xmlsoap.org/soap/http

3. Expand each node in the Select Operation to Invoke window until you can see the
getCustomerById web service.

4. Click the web service name, and then click the OK button. NetBeans will generate code
to call the web service inside the main method.

For this chapter’s example, the following template code is generated:

public static void main(String[] args) {

try { // Call Web Service Operation
com.pronetbeans.examples.CustomerInfoService service = new ➥

com.pronetbeans.examples.CustomerInfoService();
com.pronetbeans.examples.CustomerInfo port = service.getCustomerInfoPort();

// TODO initialize WS operation arguments here
long lngCustomerId = 0;

// TODO process result here
com.pronetbeans.examples.Customer result = ➥

port.getCustomerById(lngCustomerId);
System.out.println("Result = "+result);

} catch (Exception ex) {
// TODO handle custom exceptions here

}
}

The first two lines in the try block define and instantiate instances of the
CustomerInfoService and CustomerInfo classes. Creating these instances initializes the
web service for execution. The code then calls the getCustomerById method, passing in the
lngCustomerId parameter. You can specify any value for the lngCustomerId field other than
the default value of 0 that is listed. The getCustomerById method returns a Customer instance,
which can then be used to retrieve the desired values.

You can modify the main methods as follows:

public static void main(String[] args) {
try {

CustomerInfoService service = new CustomerInfoService();
CustomerInfo port = service.getCustomerInfoPort();

long lngCustomerId = 1234567890;

Customer result = port.getCustomerById(lngCustomerId);

System.out.println(" Cust Id = " + result.getId());
System.out.println(" First = " + result.getFirstName());
System.out.println(" Last = " + result.getLastName());

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL370

8954Ch14.qxp 1/28/08 11:41 AM Page 370

} catch (Exception ex) {
ex.printStackTrace();

}
}

You can remove the fully qualified package names for the classes and add the necessary
imports by selecting Source ➤ Fix Imports (or use the shortcut Ctrl+Shift+I).

The modified main method also contains a value for the lngCustomerId field, which is
passed to the getCustomerById method, which calls the web service on the remote server.
Once the Customer object is returned, you can call the getter methods to retrieve the values
that were passed along by the web service.

Running the Web Service Client
To run the web service client, you can simply press F6 to run the project, assuming you used
the Main class that was specified during the project creation process. If you added the web
service code to a different class, select Run ➤ Run File ➤ Run “<YourFile.java>” to execute that
specific class.

Once the Main class runs, the web service client is invoked and passes the request to the
remote web service via the SOAP request. It then receives the SOAP response via the XML and
translates the returned values into the Customer object. (The SOAP request and response are
described in the earlier section “Testing the Web Service.”)

Testing the Web Service Client
To understand fully what is taking place between the web service client and the web service,
you can use a network-monitoring program such as Ethereal to monitor the TCP/IP traffic that
is exchanged between the client and server. You can also use the HTTP Monitor built in to the
NetBeans IDE, as described in Chapter 13, but certain nonparameterized pieces of data do not
display in the HTTP Monitor.

Using a network-monitoring program allows you to view the protocols, IP address, and
entire set of data exchanged between the client and server. You can start by following these steps:

1. Activate your network monitor to track the incoming and outbound data.

2. Make sure that the web service has been deployed to a running Java application server.

3. Open the client application and run it. The Main class should execute, call the web
service client, and retrieve data from the remote web service.

4. Disable your network-monitoring program and view the accumulated data.

In the results, you should be able to see that the application performed an HTTP GET on
the WSDL file:

GET /ProNetBeansServicesWebApp/CustomerInfo?WSDL HTTP/1.1

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 371

8954Ch14.qxp 1/28/08 11:41 AM Page 371

The contents of the WSDL file are returned from the server to the client. The web service
client then performs an HTTP POST operation and passes the request as follows:

POST /ProNetBeansServicesWebApp/CustomerInfo HTTP/1.1
Content-Length: 302
SOAPAction: ""
Content-Type: text/xml; charset=utf-8
Accept: text/xml, application/xop+xml, text/html, image/gif, ➥

image/jpeg, *; q=.2, */*; q=.2
User-Agent: Java/1.5.0_10
Host: localhost:8080
Connection: keep-alive

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Header/>
<S:Body>

<ns2:getCustomerById xmlns:ns2="http://services.examples.pronetbeans.com/">
<lngCustomerId>1234567890</lngCustomerId>

</ns2:getCustomerById>
</S:Body>

</S:Envelope>

The SOAP response that appears as part of the server response will look similar to this:

X-Powered-By: Servlet/2.5
Content-Type: text/xml;charset=utf-8
Content-Length: 364
Date: Wed, 13 Sep 2007 19:00:51 GMT
Server: Sun Java System Application Server Platform Edition 9.0_01

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<ns2:getCustomerByIdResponse

xmlns:ns2="http://services.examples.pronetbeans.com/">
<return>

<firstName>Adam</firstName>
<id>1234567890</id>
<lastName>Myatt</lastName>

</return>
</ns2:getCustomerByIdResponse>

</S:Body>
</S:Envelope>

You can see that the SOAP XML passed back and forth between the client and server is nearly
identical to the SOAP XML you saw when testing the web service using the GlassFish web test-
ing application.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL372

8954Ch14.qxp 1/28/08 11:41 AM Page 372

http://schemas.xmlsoap.org/soap/envelope
http://services.examples.pronetbeans.com
http://schemas.xmlsoap.org/soap/envelope
http://services.examples.pronetbeans.com

■Note In the preceding examples, I’ve formatted the XML on multiple lines and added spaces to make it
easier to read. In the actual GET and POST HTTP operations, the XML is typically sent in one long string, with-
out spaces, to minimize the number of characters that are transmitted.

Once your web service client’s code has finished running, look at the Output window. As
expected, the Customer logging text should appear as shown here:

Customer
Id = 123456
First = Adam
Last = Myatt

Creating a Web Service from a WSDL File
NetBeans also provides a wizard for generating a new web service based on an existing WSDL
file. If you want to import an existing WSDL file or create a new one manually in an application
and then model a web service from it, you can do so using the New File wizard.

To create a new web service from a WSDL file, follow these steps:

1. Right-click the project name in the Projects window and select New ➤ Other.

2. Select Web Services from the list of categories in the left pane and Web Service From
WSDL from the list of file types in the right pane. Click the Next button to proceed.

3. In the Name and Location screen, specify the web service name as well as values for
the “Location” and “Package” fields, as shown in Figure 14-6.

4. Click the upper Browse button to locate the local WSDL file. The dialog box allows you
to browse your entire file system, not just WSDL files in open projects. Once you have
located the WSDL file you want to use, click the Open button and review the settings in
the Name and Location window.

5. If the WSDL file defines multiple services and ports, click the Browse button next to the
“Web Service Port” field to specify the port you wish to use.

6. Click the Finish button to complete the process. NetBeans will generate the web serv-
ice and list it in the Projects window under the Web Services node. The Java source file
that represents the web service should also open in the Source Editor.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 373

8954Ch14.qxp 1/28/08 11:41 AM Page 373

Figure 14-6. Creating a web service from a WSDL file

Creating a Message Handler
A message handler is a Java class that can typically access the header and body blocks of a SOAP
message in a web service or client.

Generating a New Message Handler
To create a message handler, follow these steps:

1. Right-click the project name in the Projects window and select New ➤ Other.

2. In the New File window, select Web Services from the categories list in the left pane
and Message Handler from the file types list in the right pane. Click the Next button to
proceed.

3. In the Name and Location screen, you need to specify values for the “Message Handler
Name,” “Location,” and “Package” fields. After entering values in these fields, click the
Finish button to generate the new handler class.

The skeleton code for the message handler that is generated will look similar to the following:

public class PnbMessageHandler implements SOAPHandler<SOAPMessageContext>{

public boolean handleMessage(SOAPMessageContext messageContext) {
SOAPMessage msg = messageContext.getMessage();
return true;

}

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL374

8954Ch14.qxp 1/28/08 11:41 AM Page 374

public Set<QName> getHeaders() {
return Collections.EMPTY_SET;

}

public boolean handleFault(SOAPMessageContext messageContext) {
return true;

}

public void close(MessageContext context) {
}

}

In the preceding code, the handleMessage method is processed for all incoming and out-
going messages. You can use the SOAPMessage object to gain access to various bits and pieces of
information for each message that passes into and out of the web service (for example, if you
wanted to log a specific header for each request).

Adding the Message Handler to a Web Service
To configure the web service to use the new handler, you must add it to the service, as follows:

1. Under the web application’s Web Services node, right-click the web service name and
select Configure Handlers.

2. The Configure Message Handlers dialog box will appear. Click the Add button to open
the Add Message Handler Class dialog box, as shown in Figure 14-7.

Figure 14-7. The Add Message Handler Class dialog box

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 375

8954Ch14.qxp 1/28/08 11:41 AM Page 375

3. Expand the Source Packages node and select the message handler class. Then click the
OK button.

4. The class you selected will now appear in the Handler Classes list in the Configure
Message Handlers dialog box. Click the OK button to complete the process.

A new file named CustomerInfo_handler.xml is created and added to the package where
the Message Handler class exists. Its content defines the basic handler chain for the web serv-
ice and lists the name and class for each handler that is configured for a web service.

<?xml version="1.0" encoding="UTF-8"?>
<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
<handler-chain>
<handler>
<handler-name>

com.pronetbeans.examples.PnbMessageHandler
</handler-name>
<handler-class>

com.pronetbeans.examples.PnbMessageHandler
</handler-class>

</handler>
</handler-chain>

</handler-chains>

The web service class itself is also modified to reference the handler chain:

@WebService()
@HandlerChain(file = "CustomerInfo_handler.xml")

public class CustomerInfo {
// class content removed for brevity

}

Now when you build, deploy, and execute the web service, the message handler class is invoked.

Creating a Logical Handler
A logical handler is a Java class that can handle blocks of a SOAP message in a web service or
client for the purpose of reading or modifying the message to augment its processing. Typical
uses for a logical handler in a web service are logging and security.

To create a logical handler, follow these steps:

1. Right-click the project name in the Projects window and select New ➤ Other.

2. In the New File wizard, select Web Services from the categories list in the left pane
and Logical Handler from the file types list in the right pane. Click the Next button to
proceed.

3. In the Name and Location screen, you need to specify values only for the “Logical Han-
dler Name,” “Location,” and “Package” fields. Once you have specified the values, click
the Finish button to generate the new handler class.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL376

8954Ch14.qxp 1/28/08 11:41 AM Page 376

http://java.sun.com/xml/ns/javaee

The skeleton code for the logical handler that is generated will look similar to the following:

public class PnbLogicalHandler implements LogicalHandler<LogicalMessageContext> {

public boolean handleMessage(LogicalMessageContext messageContext) {
LogicalMessage msg = messageContext.getMessage();
return true;

}

public boolean handleFault(LogicalMessageContext messageContext) {
return true;

}

public void close(MessageContext context) {
}

}

As with a message handler, the handleMessage method of a logical handler is executed for
each incoming and outgoing message. You can use the LogicalMessage object to gain access to
the internals of the SOAP message.

Working with SOA and BPEL
NetBeans 6 provides a variety of tools for working with SOA and BPEL applications. You can use
tools to create and manage a WSDL file, create and modify a BPEL process, define a Composite
Application project, and execute and test a business process.

Creating a BPEL Module Project
A BPEL Module project contains the design logic for a business process. You can visually define
a flow of data, perform various conditional branches and checks, and invoke web services,
depending on the desired functionality of your business process.

To create the BPEL Module project, follow these steps:

1. Select File ➤ New Project from the main menu.

2. In the New Project window, select SOA from the list of categories in the left pane and
BPEL Module from the list of projects in the right pane. Then click the Next button.

3. In the Name and Location screen, enter the name for the BPEL Module project, and
then click the Finish button.

The BPEL Module project will be generated and listed in the Projects window. It contains
a single subnode called Process Files, which is where the BPEL processes and WSDL files are
created. You can add the BPEL process files directly to this node.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 377

8954Ch14.qxp 1/28/08 11:41 AM Page 377

Creating the BPEL Process File
The BPEL process file is what allows you to define an actual business process in a visual repre-
sentation. To create a BPEL process, follow these steps:

1. Right-click the Process Files folder under the BPEL Module project name in the Pro-
jects window and select New ➤ Other.

2. In the New File window, select SOA from the categories listed in the left pane and BPEL
Process from the file types listed in the right pane. Click the Next button to continue.

3. In the Name and Location screen, as shown in Figure 14-8, enter the filename for the
new BPEL process and select a folder. The default folder that is suggested for use is the
src directory in the project.

4. Enter a value for the “Target Namespace” field. This field specifies the XML namespace for
the BPEL process that aligns with the targetNamespace attribute in the XML definition.

5. Click the Finish button to complete the process.

Figure 14-8. The Name and Location screen for creating a BPEL process

The BPEL process file will be generated and listed under the Process Files node in the Projects
window.

The BPEL process file will also open in the BPEL Design window in the center of the IDE.
An empty BPEL process will be displayed in the window. It contains a Process Start point, an
empty Sequence component (represented by a rectangle), and a Process End point, as shown
in Figure 14-9.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL378

8954Ch14.qxp 1/28/08 11:41 AM Page 378

Figure 14-9. A BPEL process displayed in the BPEL Design window

Navigating the BPEL Design Window
The BPEL Design window, which currently shows the empty BPEL process, offers two views for
working with the business process: Source and Design. The Design button is selected by default.
Click the Source button to see the mostly empty XML code that defines the current process:

<?xml version="1.0" encoding="UTF-8"?>
<process

name="pnbProcess"
targetNamespace=" http://enterprise.netbeans.org/bpel/PnbBpelModule/pnbProcess"
xmlns=" http://docs.oasis-open.org/wsbpel/2.0/process/executable/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns=" http://enterprise.netbeans.org/bpel/PnbBpelModule/pnbProcess ">

<sequence>
</sequence>

</process>

Once you have visually created the BPEL process, this XML definition will include the
detailed XML code. As you make changes in the Design view, NetBeans updates the XML code.

Along with the Source and Design buttons, the BPEL Design window toolbar, shown in
Figure 14-10, includes the following buttons:

Figure 14-10. The BPEL Design window toolbar

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 379

8954Ch14.qxp 1/28/08 11:41 AM Page 379

http://enterprise.netbeans.org/bpel/PnbBpelModule/pnbProcess
http://docs.oasis-open.org/wsbpel/2.0/process/executable
http://www.w3.org/2001/XMLSchema
http://enterprise.netbeans.org/bpel/PnbBpelModule/pnbProcess

Show Partner Links: Toggles the display of BPEL components called partner links. This
button is selected by default so that the components are displayed in the diagram. Once
you have created a large diagram with numerous components, you may want to hide
these components by clicking the button.

Show Sequences: Toggles the display of BPEL components called sequences. This button is
selected by default, and you can click it to hide these components.

Expand All: Expands any minimized/collapsed nodes displayed in the BPEL process
Design view.

Editing Mode: If selected, enables editing of the BPEL process in the Design view.

Navigation Mode: If selected, allows you to click and drag around a BPEL process dis-
played in the Design view. This is particularly useful when you are zoomed in or have a
large process layout.

Fit Diagram: Automatically scales the content displayed in the window so that it fits in
one window.

Fit Width: Automatically scales the content displayed to fit horizontally, which may or
may not add a vertical scrollbar to the window.

Zoom: Displays the content in the window at a zoom level of 100%. Depending on the size
of the content displayed in the window, there may or may not be horizontal and vertical
scrollbars. You can manually enter a percentage for the zoom level in the small text field
displayed to the right of the button. Next to that is a sliding bar you can click and drag to
set the zoom level.

Zoom In / Out: Allows you to zoom in or out of the BPEL process displayed in the Design
view.

Print Preview: Displays a paginated preview of the BPEL process, allowing you to print it out.

Advanced Search: If clicked, will open a small Advanced Search pop-up window that
allows you to search the BPEL process for any type of BPEL component.

Validate XML: Allows you to validate XML.

The Validate XML feature is available for most XML files. For BPEL process files, it validates
the content to ensure that it follows the defined XSD and rules. If you click the Validate XML
button without adding any content to the newly created BPEL process, the Output window will
open and display an error message:

XML validation started.
D:/projects/website/PnbBpelModule/src/pnbProcess.bpel:2,0
To be instantiated, an executable business process must contain at least
one <receive> or <pick> activity annotated with a createInstance="yes" attribute.

1 Error(s), 0 Warning(s).
XML validation finished

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL380

8954Ch14.qxp 1/28/08 11:41 AM Page 380

The BPEL process displayed in the BPEL Design window also denotes the error with a white
X in a red circle in the upper-right corner of the Process component. If you click the red circle, you
will see a small dialog box that lists any errors for the BPEL process, as shown in Figure 14-11.

Figure 14-11. The error dialog box in the BPEL Design window

Creating the WSDL File
A BPEL process uses web services and WSDL files to define a link into and out of the business
process. You can use NetBeans to create and manage a WSDL file that describes that interac-
tion. Once the WSDL file has been created, you can add it to the business process and
associate it with the various component operations in the process.

To create a WSDL file in the BPEL Module project, follow these steps:

1. Right-click the Process Files node in the Projects window for the BPEL Module project
and select New ➤ WSDL Document.

2. The Name and Location screen will appear, because you already elected to create a
WSDL document. Define the filename and the target namespace, and click the Finish
button to proceed to the Abstract Configuration screen.

3. In the Abstract Configuration screen, shown in Figure 14-12, specify a value for the
“Port Type Name” and “Operation Name” fields. The port type defines one or more
operations for a web service. The operation name defines the initial web service func-
tion you want to create in the WSDL file.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 381

8954Ch14.qxp 1/28/08 11:41 AM Page 381

Figure 14-12. Creating a WSDL file in the Abstract Configuration screen

4. The “Operation Type” field defines the functioning of the web service in the WSDL file.
The drop-down lists offers four choices:

• Request-Response Operation: The web service will receive a value and send a
response. This is most commonly used in services that receive an input parameter,
perform a lookup or calculation, and return a result to the calling client. Possible
uses for this type of service include an authentication or authorization service, a
product order querying system, and a financial calculation service.

• One-Way Operation: The web service operation will only receive an input message
and will not send any output. This type of operation could be useful when creating
a logging application that can be called by other services.

• Solicit-Response Operation: The web service operation sends an output message to
another service and waits to receive the reply. This type of service might be used with
a process that monitors a local resource waiting for a condition to be true. If the con-
dition occurs, it activates and notifies another service and waits for a response.

• Notification Response: The web service operation sends an output message only
and does not wait for a response.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL382

8954Ch14.qxp 1/28/08 11:41 AM Page 382

5. The remainder of the Abstract Configuration screen prompts you to specify the input
and output parameters for the operation. Depending on the value for the “Operation
Type” field, these input and/or output sections may or may not be filled out. To add an
input or output parameter, click the Add button that appears under each section. A new
line will be added to the grid in the specific section and allow you to type directly in the
column fields. You can also optionally add any faults (errors) that occur in the process.
Once you have specified the input, output, and fault parameters, click the Next button.

6. In the Concrete Configuration screen, shown in Figure 14-13, specify the binding
name. The binding name defines the binding type and subtype for the web service.

Figure 14-13. The Concrete Configuration screen when creating a WSDL file

7. The only available value for the “Binding Type” field is SOAP.

8. Choose a value for the “Binding Subtype” field. The binding subtype defines how the
binding will be translated into a SOAP message. You have three choices:

• RPC Literal: The SOAP binding will be defined as <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>.

• Document Literal: The SOAP binding will be defined as <soap:binding style=
"document" transport="http://schemas.xmlsoap.org/soap/http"/>.

• RPC Encoded: The SOAP binding will be defined as <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>.

9. Set the values for the “Service Name” and “Port Name” fields. These names affect how
the web service is called, so specify something meaningful.

10. Once you have finished specifying the values for the WSDL file, click the Finish button
to complete the process.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 383

8954Ch14.qxp 1/28/08 11:41 AM Page 383

http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/http

The WSDL file will be generated and listed under the Process Files node in the Projects win-
dow. The WSDL file is also opened in the WSDL Editor.

The WSDL XML will define the SOAP binding according to your selection for the binding
subtype. If you chose RPC literal (the default), the SOAP binding will appear as follows:

<operation name="getOrderPrice">
<soap:operation/>
<input name="input1">
<soap:body use="literal"

namespace="http://j2ee.netbeans.org/wsdl/pnbWSDL"/>
</input>
<output name="output1">
<soap:body use="literal"

namespace="http://j2ee.netbeans.org/wsdl/pnbWSDL"/>
</output>

</operation>

Notice that the <soap:body> tag has an attribute of use with a value of literal, based on the
selection in the Concrete Configuration screen (Figure 14-13).

If you selected Document Literal for the binding subtype, the SOAP operation defined fol-
lowing the SOAP binding will appear as follows:

<operation name=" getOrderPrice">
<soap:operation/>
<input name="input1">

<soap:body use="literal"/>
</input>
<output name="output1">

<soap:body use="literal"/>
</output>

</operation>

If you selected RPC Encoded for the binding subtype, the SOAP operation is defined as
follows:

<operation name=" getOrderPrice">
<soap:operation/>
<output name="output1">
<soap:body use="encoded"

encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
namespace="http://j2ee.netbeans.org/wsdl/wsdl232232323"/>

</output>
</operation>

Navigating the WSDL Editor
As the name implies, the WSDL Editor allows you to edit a WSDL file. It has three main views:
Tree, Source, and Column. Since the WSDL file contains metadata that describes the web serv-
ice and how to access it, you should be familiar with creating and modifying WSDL files.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL384

8954Ch14.qxp 1/28/08 11:41 AM Page 384

http://j2ee.netbeans.org/wsdl/pnbWSDL
http://j2ee.netbeans.org/wsdl/pnbWSDL
http://schemas.xmlsoap.org/soap/encoding
http://j2ee.netbeans.org/wsdl/wsdl232232323

The WSDL Editor displays the Tree view, a parent-child node view of the XML elements in
a WSDL file, by default. (You can also toggle Tree view off and on by clicking the Tree icon in
the toolbar, to the right of the WSDL button.) As you can see in Figure 14-14, it is intended to
provide a simple view of the data in the file.

Figure 14-14. The Tree view of a WSDL file in the WSDL Editor

For each of the nodes that appear in the Tree view of the WSDL Editor, you can access spe-
cific sets of actions by right-clicking the node. You can right-click most nodes and select Go to
Source, which toggles the WSDL Editor to the Source view and places the cursor in the section
of XML that corresponds to the node you selected. This is useful if the WSDL file is quite long
and you do not want to search through numerous lines of XML for a specific element.

You can also modify the WSDL file by adding new elements to it. In several sections, you
can right-click a node and select Add ➤ Element, where Element is a context-sensitive element
that can be added to the node. Using the context menus, you can add additional services, port
names, bindings, operations, input/output parameters, and so on. All of this can be done
without having to write any XML code.

The WSDL Editor also offers the Column view, which can be accessed by clicking the Col-
umn icon in the editor’s toolbar. This is a great way to work with XML-based data, such as a
WSDL file, because it gives you a left-to-right view of the parent-child relationships, as shown
in Figure 14-15. If you select an element that contains a subnode (or child), a new column
appears to the right of the current column and displays the child nodes. This provides a type of
navigation that is similar to the standard Tree view but can be easier for some people to follow.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 385

8954Ch14.qxp 1/28/08 11:41 AM Page 385

Figure 14-15. Column view of a WSDL file in the WSDL Editor

The Column view of the WSDL file provides the same sort of context menu features that
are available in the Tree view. You can right-click any node to access the context-specific set-
tings and options for it.

You can also view the WSDL file using the Partner view. The Partner view provides a nice
GUI for viewing the web service information. You can view and modify the Partner Link Types
as well as any Messages, as shown in Figure 14-16.

Figure 14-16. Partner view of a WSDL file in the WSDL Editor

The Partner view also lets you add and edit the messages displayed. If you double-click
the getOrderPriceRequest message name, it will turn into a text field that allows you to change
the value. You can also add part names and specify their types by clicking the Add Part button.

You can even add a new message to the WSDL file by clicking the Add Message button dis-
played on the right side of Figure 14-16. This adds a new box to the screen directly under the
getOrderPriceReply. You can then use the GUI to modify the message name and the parts it
contains.

Now that you’ve seen how to create a WSDL file and how to navigate the WSDL Editor, let’s
get back to the BPEL process we created earlier and add to it.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL386

8954Ch14.qxp 1/28/08 11:41 AM Page 386

Working with the BPEL Designer and the BPEL Mapper
The pnbProcess BPEL process you created in the section “Creating the BPEL Process File” is
relatively blank, as shown earlier in Figure 14-9. You need to add functionality to it.

You can add BPEL components to the BPEL process in the BPEL Design window by
dragging-and-dropping them from the Palette window. The Palette window contains compo-
nents specific to web services and BPEL, as described in Table 14-1. (You can open the Palette
window by selecting Window ➤ Palette or pressing Ctrl+Shift+8.)

Table 14-1. The BPEL and Web Service Components in the Palette Window

Category Component Description

Web Service Invoke Sends a message to a partner web service defined by a
partner link.

Web Service Receive Waits for an incoming message from a web service
defined by a partner link that was originally initiated by
the Invoke component.

Web Service Reply Sends a message to a web service defined by a partner
link in reply to a message that came in through the
Receive component.

Web Service Partner Link Defines a web service that will interact with the BPEL
process.

Basic Activities Assign Copies data between different variables and allows you
to assign new data type values to variables.

Basic Activities Empty Represents an empty activity that does nothing. You can
use this component if your BPEL process needs to
ignore certain outcomes or paths.

Basic Activities Wait Causes the BPEL process to pause for a specified
amount of time according to various criteria.

Basic Activities Throw Generates an error or exception from within a BPEL
process.

Basic Activities Exit Halts the flow of a BPEL process.

Structured Activities If Represents a conditional process that allows you to
determine separate paths of execution for a BPEL
process.

Structured Activities While Repeats a branch in the process as long as a condition
continues to succeed.

Structured Activities Repeat Until Repeats a branch in the process as long as a condition
continues to succeed after each loop iteration.

Structured Activities For Each Repeats a branch inside a Scope component as defined
by specific criteria.

Structured Activities Pick Executes an activity after an event has occurred.

Structured Activities Flow Allows a BPEL process to perform multiple actions in
parallel sequence.

Structured Activities Sequence Defines a group of activities that are executed in a
sequential order.

Structured Activities Scope Defines an activity with an individual scope that con-
tains its own internal local variables, links, and errors.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 387

8954Ch14.qxp 1/28/08 11:41 AM Page 387

To have a BPEL process receive a message, perform a conditional check, and send a reply,
you need to configure the conditional check in the If component. You do this through the
BPEL Mapper window, which allows you visually to construct logical expressions, assign val-
ues to input and output parameters, and create logical checks of data.

When the If component is selected in the BPEL process, the BPEL Mapper window will
display the list of variables in the left pane and a result node in the right pane, allowing you to
map a true or false Boolean condition to it. The toolbar along the top of the BPEL Mapper
window contains several drop-down menus that allow you to choose from specific categories
of components, such as date and time elements, Boolean elements, and operators (addition,
subtraction, multiplication).

Once you have reviewed the web services and BPEL components that are available, you
can begin to add them to your BPEL process. The following sections walk you through creating
a sample BPEL process.

Adding a Partner Link Component
To be able to interact with a web service, a BPEL process needs to have a Partner Link component:

1. Select the Partner Link component in the Palette window and drag it to a blank spot on
the BPEL process canvas in the BPEL Design window. (You can also click a WSDL file in
the Projects window and drag-and-drop it onto the BPEL process canvas.) Once the
Partner Link component has been added, the Partner Link Property Editor window will
open, as shown in Figure 14-17.

Figure 14-17. The Partner Link Property Editor

2. In the Partner Link Property Editor, specify a value for the “Name” field and select a
WSDL file to which to apply the partner link.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL388

8954Ch14.qxp 1/28/08 11:41 AM Page 388

3. Choose to use an existing partner link type or create a new partner link type. The part-
ner link type is defined in the WSDL and specifies interaction rules.

4. Click the OK button. A square representing the partner link is added to the BPEL process.

Adding a Receive Component
The next task in this example is to add a Receive component to the BPEL process:

1. Click the Receive component in the Palette window and drag it over the Process Start circle.

2. While still holding down the mouse, move the component straight down until you see a
small dotted circle light up, as shown in Figure 14-18 (it will appear orange on your screen).

Figure 14-18. Adding a Receive component to the BPEL process

3. Once the circle is filled with orange, release the mouse, and the Receive component
will be added to the BPEL process.

4. Next, you want to associate the Receive component with a partner link so that when a
web service sends a message, the BPEL process will receive and act on it. Double-click
the Receive component to open the Receive Property Editor window, as shown in
Figure 14-19.

5. In the Receive Property Editor window, specify the name of the Receive component as
it will appear in the BPEL process, define the partner link from which the component
will receive a message, and specify the web service operation that will send the Receive
component a message.

6. In the “Input Variable” field, create or use an existing local variable to store the mes-
sage received from the web service via the partner link.

7. Click the OK button. The Receive component will be configured to receive a message
from the partner link. You should also be able to see an orange dotted line connecting
the Partner Link and Receive components.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 389

8954Ch14.qxp 1/28/08 11:41 AM Page 389

Figure 14-19. The Receive Property Editor

Adding a Reply Component
Next, you will add the Reply component, which responds to the partner link with a message
allowing the calling web service to retrieve a value. To do so, follow these steps:

1. Select the Reply component in the Palette window and drag it over the Receive compo-
nent in the BPEL process.

2. While holding down the mouse button, move the mouse straight down until the orange
dotted circle target below the Receive component becomes filled in. This indicates that
you are over a target location where you can drop the component.

3. Release the mouse button to add the Reply component to the BPEL process.

4. Double-click the Reply component to open the Reply Property Editor window, as
shown in Figure 14-20.

Figure 14-20. The Reply Property Editor

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL390

8954Ch14.qxp 1/28/08 11:41 AM Page 390

5. In the Reply Property Editor window, specify the name of the Reply component as it
will appear in the BPEL process. Also specify to which partner link and operation the
component will send a reply.

6. In the “Output Variable” field, create a new variable or specify an existing variable that
will hold the reply message to be transmitted back to the partner link.

7. Click the OK button to proceed.

At this point, the BPEL process should contain a Partner Link component, a Receive com-
ponent, and a Reply component, as shown in Figure 14-21. The remaining steps you will
perform determine how the input variable is checked, what conditions apply, and how the
output variable is set.

Figure 14-21. The BPEL process containing Partner Link, Receive, and Reply components

Adding an If Component
Next, to add a conditional check to the BPEL process, do the following:

1. Click the If component in the Palette window and drag it over the BPEL process.

2. Move the mouse directly below the Receive component and drop the If component
into the circle target below the Receive component. Now you need to configure the If
component using the BPEL Mapper.

3. Open the BPEL Mapper window by selecting Window ➤ Other ➤ BPEL Mapper or
pressing Ctrl+Shift+9.

4. To configure the If component to check an input variable and return true if a certain con-
dition is met, click Operator in the BPEL Mapper window menu bar and select EQUAL.
The EQUAL element appears in the center section of the BPEL Mapper window. It con-
tains two lines with variables any1 and any2 and a third line labeled return Boolean.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 391

8954Ch14.qxp 1/28/08 11:41 AM Page 391

5. Select Number ➤ Number Literal. This adds a single-line element labeled Number Literal.
Double-click the empty line and enter a value, such as 1000.

6. In the left pane, expand the Variables node until you find the OrderIdVar variable.

7. Drag the OrderIdVar variable to the right and drop it onto the any1 line of the EQUAL
element. A line connecting the two elements will appear.

8. Click and drag a line between the Number Literal element connecting it to the any2 line
of the EQUAL element.

9. Click and drag a line between the return Boolean line of the EQUAL element and the
Result node in the right pane of the BPEL Mapper window. The final result should look
similar to Figure 14-22.

Figure 14-22. The If component configured in the BPEL Mapper

Adding an Assign Component
Continue with the following steps to add an Assign component and finish creating the sample
BPEL process:

1. Drag an Assign component from the Palette window onto the BPEL process in between
the two pieces of the If component.

2. Click the Assign component in the BPEL process and open the BPEL Mapper window
(select Window ➤ Other ➤ BPEL Mapper or press Ctrl+Shift+9).

3. Add a Number Literal element by selecting Number ➤ Number Literal.

4. Once the Number Literal element is displayed in the center pane of the BPEL Mapper
window, double-click it and enter a number, such as 123456789.

5. Click and drag a line from the Number Literal element over to the Price variable in the
right pane of the BPEL Mapper window, as shown in Figure 14-23.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL392

8954Ch14.qxp 1/28/08 11:41 AM Page 392

Figure 14-23. Configuring the Assign component in the BPEL Mapper window

Reviewing the Completed BPEL Process
The finished BPEL process should look similar to Figure 14-24 and perform the following steps:

Figure 14-24. The completed BPEL process

• The BPEL process receives a message from a web service and assigns it to the OrderIdVar
variable.

• The process compares the OrderIdVar variable to a numeric value of 1000. If the vari-
able is equal to 1000, the If condition succeeds and activates the Assign component.

• The Assign component will assign the value of 123456789 to the Price variable.

• The If component finishes and hands off control to the Reply component.

• The Reply component passes the Price variable back as a response to the partner link
web service.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 393

8954Ch14.qxp 1/28/08 11:41 AM Page 393

■Tip You can print a copy of the BPEL process design from the IDE. To see a print preview first, with the
BPEL file open in the BPEL Design window, select File ➤ Print Preview.

Once the BPEL process is complete, you need to add it to a Composite Application project
in order to use it, as described in the next section.

Creating a Composite Application
A Composite Application project is deployed to a Java Business Integration (JBI) server. The
GlassFish server mentioned in previous chapters fully supports JBI server functionality. You
can add a JBI module to it to execute your business application (also known as a BPEL
Module).

Creating a Composite Application Project
To create a new Composite Application project, perform the following steps:

1. Select File ➤ New Project from the main menu.

2. In the New Project window, select SOA from the categories section on the left and
Composite Application from the list of projects on the right. Click the Next button.

3. In the Name and Location screen, enter a project name and location.

4. Click the Finish button to generate the Composite Application project.

Setting Composite Application Project Properties
You can review and configure several project properties that affect the Composite Application
project. To access the properties, right-click the project name and select Properties from the
context menu.

In the Project Properties window, you will see several nodes in the left pane. If you select a
node, the related properties appear in the right pane of the window. The different nodes and
their properties are as follows:

General: Displays properties such as Service Assembly Alias, Service Assembly Descrip-
tion, Service Unit Alias, and Service Unit Description.

Packaging Project: Displays properties that define the target components and service
assembly artifacts for the Composite Application project, as shown in Figure 14-25. Also
allows you to specify the JBI filename, which is typically a JAR file that is deployed to the
target application server.

Running Project: Displays a drop-down list of available application servers that support
JBI functionality.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL394

8954Ch14.qxp 1/28/08 11:41 AM Page 394

Figure 14-25. The Composite Application project’s Packaging Project properties

Adding a JBI Module
To enable the Composite Application project to use the BPEL Module project created in the
previous section, you need to add a JBI module by following these steps:

1. Right-click the JBI Modules node in the Projects window and select Add JBI Module.

2. In the Select Project dialog box, locate and select a BPEL Module project, and then
click the Add Project JAR Files button. The JAR file for the BPEL Module project will
appear under the JBI Modules node.

3. Once the JBI module has been added to the Composite Application project, deploy it to
the JBI application server by right-clicking the project name and selecting Deploy Project.

■Note You must first start the target application server before you can deploy the Composite Application
project.

Testing the Composite Application and BPEL Process
NetBeans composite applications allow you to write test cases similar to JUnit tests. You can
generate a test case that exercises a web service that, in turn, runs the BPEL process.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 395

8954Ch14.qxp 1/28/08 11:41 AM Page 395

To create a new test case for your Composite Application project, do the following:

1. Right-click the Test node in the Projects window and select New Test Case from the
context menu. The New Test Case wizard will appear.

2. In the first window, enter the test case name and click the Next button.

3. Expand the node for the BPEL Module and select the WSDL file that contains the oper-
ation to test. Click the Next button to proceed to the next window.

4. Select the actual operation defined by the WSDL file you previously selected.

5. Click the Finish button to generate the test. The new test will appear under the Test
node in the Projects window for the Composite Application project.

The new test contains two subnodes: Input and Output. If you double-click the Input node,
a file will open in the Source Editor named Input.xml. It contains XML content that represents a
SOAP message, as shown in Figure 14-26, which will be passed to the web service and, in turn,
passed to the BPEL process.

Figure 14-26. The input SOAP message

To customize the input passed to the web service, you can change the text inside the
<OrderId> and </OrderId> tags. This is the value assigned to the OrderId variables received by
the Receive component in the BPEL process. Once you have configured the Input node text,
you can execute the test in one of two ways:

• Right-click the project name and select Test Project, or press Alt+F6 to execute all of the
tests in a project. For this example, this executes the single test contained under the
Test node in the Composite Application project.

• To execute a specific test, right-click the test and select Run from the context menu.

Once your test runs, it will load the results into the Output node and the matching
Output.xml. The Output.xml file shows the output SOAP message that results, which contains
the value 123456789 in this example:

<soapenv:Envelope
xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/ ➥

http://schemas.xmlsoap.org/soap/envelope/" ➥

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL396

8954Ch14.qxp 1/28/08 11:41 AM Page 396

http://schemas.xmlsoap.org/soap/envelope/�schemas.xmlsoap.org/soap/envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ➥

xmlns:xsd="http://www.w3.org/2001/XMLSchema" ➥

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" ➥

xmlns:pnb="http://j2ee.netbeans.org/wsdl/pnbWSDL">
<soapenv:Body>
<pnb:getOrderPriceResponse>
<Price>123456789</Price>

</pnb:getOrderPriceResponse>
</soapenv:Body>

</soapenv:Envelope>

Creating RESTful Web Services
One of the myriad new technologies in the area of web services is the concept of Representa-
tional State Transfer (also known as REST). It’s a type of architecture for defining and addresses
web resources without the use of messaging layers like SOAP.

This section assumes you have a basic working knowledge of RESTful Web Services using
Java. It will explain how best to use NetBeans to work with them. At the time of this writing,
the Java API for RESTful Web Services, JSR-311, was still being finalized. Some of the APIs, and
the NetBeans support of them, are thus subject to change.

Installing the RESTful Module
To begin taking advantage of RESTful technologies in NetBeans, you must first install the
module. It is available from the NetBeans Beta update center and in the near future hopefully
will be part of the standard NetBeans module offerings.

To locate and install the module do the following:

1. Go to the main menu and select Tools ➤ Plugins. The Plugin Manager window will open.

2. Select the Available Plugins tab and click the Reload Catalog button. The remote
update centers will be checked for new plugins.

3. Scroll down the list of available plugins and locate the one named RESTful Web Services.

4. Select the check box next to the module name and click the Install button. A plugin
installer prompt will pop open. Click the Next button.

5. Select the radio button next to the “I accept the terms” field and click the Install button.

6. You should see a message denoting the success or failure of the plugin installation
process. Click the Finish button to close the window and return to the Plugin Manager.

7. Click the Close button to exit the Plugin Manager.

The module is now ready to be used. You can verify its installation by searching for it in
the Installed tab of the Plugin Manager.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 397

8954Ch14.qxp 1/28/08 11:41 AM Page 397

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope
http://j2ee.netbeans.org/wsdl/pnbWSDL

Creating RESTful Web Services from Patterns
NetBeans allows you to create RESTful Web Services in several ways. The New File wizard lets
you generate web services from a pattern catalog. The patterns you can use include:

Singleton: Typically a single class with GET and PUT for wrapping a web service resource.

Container-Item: Creates an item resource class and a container resource class. Utilizes a
POST method for adding to the container.

Client-Controlled Container-Item: Creates an item resource class and a container resource
class. Utilizes a PUT method for adding to the container.

Creating the Service
Before you can create a RESTful Web Service, you need to create a web application to contain it.
Use the New Project wizard to create a new Web Application. Once the Web Application has been
generated, locate it in the Projects window. To create a RESTful Web Service from a pattern, do
the following:

1. Right-click the project name and select New ➤ Other. The New File wizard will appear.

2. Select Web Services from the list of Categories.

3. Select RESTful Web Services from Patterns from the list of File Types.

4. Click the Next button. The Select Pattern screen will appear, as shown in Figure 14-27.

Figure 14-27. The Select Pattern screen

5. Select the radio button next to the Singleton item. Then click the Next button. The
Specify Resource Classes screen will appear.

6. For the “Resource Package” field, enter the value com.pronetbeans.examples.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL398

8954Ch14.qxp 1/28/08 11:41 AM Page 398

7. For the “Resource Name” field, enter the value Customer.

8. Select the value text/html from the MIME Type drop-down field.

9. Enter the value java.lang.String for the “Representation Class” field. The Specify
Resource Classes screen should contain the values displayed in Figure 14-28.

Figure 14-28. The Specify Resource Classes screen

10. To generate the web service, click the Finish button. The New File wizard will close.

The web service will be generated and will be available in the project. If you look at the
Projects window, the project will now contain a node named RESTful Web Services. If you
expand the node, the CustomerResource you created will appear under it. You can double-
click it to open the matching CustomerResource.java source file.

The stub code that was generated by the New File wizard looks like the following (plus the
Javadoc statements that were removed for brevity):

@UriTemplate("customer")
public class CustomerResource {

@HttpContext
private UriInfo context;

public CustomerResource() {
}

@HttpMethod("GET")
@ProduceMime("text/html")
public String getHtml() {

//TODO return proper representatin object
throw new UnsupportedOperationException();

}

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 399

8954Ch14.qxp 1/28/08 11:41 AM Page 399

@HttpMethod("PUT")
@ConsumeMime("text/html")
public void putHtml(String content) {
}

}

This gives you the basic code you need to get started with writing your web service.
You should modify the getHtml method so that it does not throw an

UnsupportedOperationException. I changed it as follows:

public String getHtml() {
return "Hello RESTful World";

}

The RESTful Web Services can now be tested.

Testing the Service
To test a RESTful Web Service in NetBeans, you can use a special testing page that can be gen-
erated. Right-click the project name in the Projects window and select Test RESTful Web
Services from the context menu.

The application will trigger a build, the associated Java application server will start, and
the default web browser should open, pointing to the test page. The test page lists each service
on the left. If you select the hyperlinked service, you can see the resource and an area for Test
Input, as shown in Figure 14-29.

Figure 14-29. The test page for a RESTful Web Service

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL400

8954Ch14.qxp 1/28/08 11:41 AM Page 400

The Test Input section lets you select the method to test. The methods are the Java meth-
ods in the CustomerResource class that you annotated with @GET, @POST, and so on. If you select
the GET option and click the Test button, the page will refresh. Select the Raw View tab in the
Test Output section and you should see the output shown in Figure 14-29.

Creating a Client to Read the Service
NetBeans also contains a wizard for generating a RESTful client to read the web services you
created. Using the Web Application project from the last section, you can create the client.
Perform the following steps:

1. Right-click the project name and select New ➤ Other. The New File wizard will appear.

2. Select Web Services from the list of Categories.

3. Select RESTful Web Service Client Stubs from the list of File Types.

4. Click the Next button. The Select Projects Containing RESTful Web Services screen will
appear, as shown in Figure 14-30.

Figure 14-30. The Select Projects Containing RESTful Web Services screen

5. Specify a value for the “Folder” field. It is set to reststubs by default.

6. Click the Add Project button to select a project that contains the RESTful Web Services.
Select the RESTful_HelloWorld project you created in the previous section.

7. Click the Finish button to end the New File wizard and generate the client stubs.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL 401

8954Ch14.qxp 1/28/08 11:41 AM Page 401

The wizard will generate a folder named reststubs. It will contain an HTML file,
reststub.html, and several JavaScript files: RESTful_HelloWorld.js, helloworld.js, and
support.js. These files make up the client stub you can use to call the RESTful Web Service
you generated in the previous section.

Summary
In this chapter, we discussed working with web services using JAX-WS, SOA, BPEL, and REST.
The NetBeans IDE provides a variety of tools for making it easier to work with these technolo-
gies. You first learned how to install SOA and BPEL support. Then you moved on to creating
web services using JAX-WS and Java EE 5 annotations, adding an operation, and testing it.
Creating a web service is extremely easy in NetBeans, and you can use the available wizards to
generate operations. The GlassFish server provides a web testing application that you can use
to test a web service.

As you learned, NetBeans also allows you to create a web service client that executes a
remote web service, and you have the option to create empty skeleton web services and gen-
erate web services from a WSDL file. You can also create message and logical handlers that
allow you to read and modify the header and body of a SOAP message.

You also learned how to model a business process using BPEL visual design tools. You can
add a variety of BPEL components onto a canvas and use a visual mapping tool to create logical
expressions. The BPEL process can interact with web services using components called partner
links, which allow a web service to pass in and retrieve variables from a business process. You
can then add the BPEL module to a composite application, which can be deployed and tested
on a JBI application server.

Finally, the chapter discussed RESTful Web Services. It walked through the process for
installing the module and using the NetBeans wizards to generate a new web service and client.

CHAPTER 14 ■ DEVELOPING WEB SERVICES: JAX-WS, SOA, BPEL, AND RESTFUL402

8954Ch14.qxp 1/28/08 11:41 AM Page 402

Developing GUI Applications

NetBeans has some impressive capabilities for developing Java GUI applications. First, it
provides the Matisse GUI Builder, which allows for what-you-see-is-what-you-get (WYSIWYG)
design of applications. The GUI Builder includes intuitive, easy-to-use features, such as
guides, anchors, and the GroupLayout approach to component layout. When combined with
the other NetBeans features, this gives developers a professional coding environment for
developing full-fledged desktop applications.

JSR-296 defines the Swing Application Framework, which intends to simplify the building
of Java Desktop Applications. NetBeans 6 provides some basic support for this framework and
allows you to utilize some of its features.

NetBeans 6 also provides support for JSR-295, Beans Binding, which allows you to synchro-
nize values of GUI components with values in entity classes.

In this chapter we review how to create, develop, and build a simple GUI application. The
main features of NetBeans GUI building tools are covered, such as the main GUI Builder win-
dow, the GUI components available in the Palette window, and the different database-related
and Beans Binding features added in NetBeans 6.

Creating a Simple GUI Application
This section shows how to create a simple GUI application in NetBeans. You will learn how to
generate the project, add the visual Java components into the project, and execute the appli-
cation. In this section you will build a simple GUI application for enabling text-to-speech
capabilities using the FreeTTS library.

Working with the Palette Window
One of the first tools to understand when working with GUI applications is the list of available
components in the Palette window. When you have a Swing- or AWT-based Java class open in
the IDE, the contextual nature of the Palette window allows it to display the various GUI-related
components, as shown in Figure 15-1.

403

C H A P T E R 1 5

8954Ch15.qxp 1/28/08 11:42 AM Page 403

Figure 15-1. The Palette window, displaying the available GUI components

As you can see in Figure 15-1, the Palette window provides components for Swing Contain-
ers, Swing Controls, Swing Menus, and Swing Windows that are part of the javax.swing package,
as shown in Tables 15-1, 15-2, 15-3, and 15-4.

Table 15-1. Swing Container Components Available in the Palette Window

Component Name Representative Class

Panel javax.swing.JPanel

Tabbed Pane javax.swing.JTabbedPane

Split Pane javax.swing.JSplitPane

Scroll Pane javax.swing.JScrollPane

Tool Bar javax.swing.JToolBar

Desktop Pane javax.swing.JDesktopPane

Internal Frame javax.swing.JInternalFrame

Layered Pane javax.swing.JLayeredPane

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS404

8954Ch15.qxp 1/28/08 11:42 AM Page 404

Table 15-2. Swing Control Components Available in the Palette Window

Component Name Representative Class

Label javax.swing.JLabel

Button javax.swing.JButton

Toggled Button javax.swing.JToggleButton

Check Box javax.swing.JCheckBox

Radio Button javax.swing.JRadioButton

Button Group javax.swing.ButtonGroup

Combo Box javax.swing.JComboBox

List javax.swing.JList

Text Field javax.swing.JTextField

Text Area javax.swing.JTextArea

Scroll Bar javax.swing.JScrollBar

Slider javax.swing.JSlider

Progress Bar javax.swing.JProgressBar

Formatted Field javax.swing.JFormattedTextField

Password Field javax.swing.JPasswordField

Spinner javax.swing.JSpinner

Separator javax.swing.JSeparator

Text Pane javax.swing.JTextPane

Editor Pane javax.swing.JEditorPane

Tree javax.swing.JTree

Table javax.swing.JTable

Table 15-3. Swing Menu Components Available in the Palette Window

Component Name Representative Class

Menu Bar javax.swing.JMenuBar

Menu javax.swing.JMenu

Menu Item javax.swing.JMenuItem

Menu Item/CheckBox javax.swing.JCheckBoxMenuItem

Menu Item/RadioButton javax.swing.JRadioButtonMenuItem

Popup Menu javax.swing.JPopupMenu

Separator javax.swing.JSeparator

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 405

8954Ch15.qxp 1/28/08 11:42 AM Page 405

Table 15-4. Swing Window Components Available in the Palette Window

Component Name Representative Class

Dialog javax.swing.JDialog

Frame javax.swing.JFrame

Color Chooser javax.swing.JColorChooser

File Chooser javax.swing.JFileChooser

Option Pane javax.swing.JOptionPane

The Palette window also provides AWT components that are part of the java.awt package,
as shown in Table 15-5. The Beans and Java Persistence sections in Figure 15-1 are interfaces
from the javax.persistence package for working with persistence units.

Table 15-5. AWT Components Available in the Palette Window

Component Name Representative Class

Label java.awt.Label

Button java.awt.Button

Text Field java.awt.TextField

Text Area java.awt.TextArea

Checkbox java.awt.Checkbox

Choice java.awt.Choice

List java.awt.List

Scrollbar java.awt.Scrollbar

Scroll Pane java.awt.ScrollPane

Panel java.awt.Panel

Canvas java.awt.Canvas

Menu Bar java.awt.MenuBar

Popup Menu java.awt.PopupMenu

Creating the Project
You can create Java GUI applications inside a standard NetBeans Java Application project. You
can create the project by performing the following steps:

1. Select File ➤ New Project from the main menu.

2. In the New Project window, select Java from the Categories list and Java Application
from the Projects list. Click the Next button to continue.

3. In the Name and Location screen, enter a value for the “Project Name” field.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS406

8954Ch15.qxp 1/28/08 11:42 AM Page 406

4. Next, select a value for the “Project Location” field by using the Browse button.

5. Finally, uncheck the “Create Main Class” field. There is no need to generate an empty
Main class at this point. This will set up the correct properties for the project, as shown
in Figure 15-2. Click the Finish button to finalize the creation of the project.

Figure 15-2. The Name and Location screen in the New Project window

Once the project has been generated, it will open in the Projects window. You can now
add classes to it and continue creating the text-to-speech application.

Creating the Initial JFrame Class
To add a Java JFrame class, do the following:

1. In the Projects window, right-click the Source Packages node and select New ➤ Other
from the context menu.

2. In the New File window, select Swing GUI Forms from the Categories list on the left and
JFrame Form from the File Types list on the right. Click the Next button to continue.

3. In the Name and Location screen, enter a value for the “Class Name” field, such as SayIt.

4. Next, enter a Java package hierarchy in the “Package” field, such as
com.pronetbeans.examples, as shown in Figure 15-3.

5. Finally, click the Finish button to generate the class. It will open in the Form Editor (a
special GUI editing tool discussed in the next few sections).

The new SayIt class will be generated. The matching form will display in the Form Editor,
as discussed in the next section.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 407

8954Ch15.qxp 1/28/08 11:42 AM Page 407

Figure 15-3. The Name and Location screen for the new JFrame class

Working with the Form Editor
Once you have created a Java class to represent the GUI, you can begin to work with it in the
NetBeans Form Editor. The Form Editor is similar to the standard Source Editor. It provides a
code-based view of the Java SayIt class and a WYSIWYG view of the GUI form of the SayIt class.

The first time you open the SayIt class in the Form Editor, it will show the Design view
by default, with the Design icon selected. It will display a rectangular grey area, as shown in
Figure 15-4, where you can add components from the palette to design visually the GUI form
you will create.

Figure 15-4. A blank JFrame displayed in Design view in the Form Editor

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS408

8954Ch15.qxp 1/28/08 11:42 AM Page 408

Understanding the Form Editor Toolbar
Along the top of the Form Editor is a toolbar displaying GUI-related items and actions. As shown
in Figure 15-4, the Source and Design icons appear on the left side of the toolbar. If you select
the Source icon, the Form Editor will display the Java source code for the SayIt class. The toolbar
will also change to look nearly identical to the standard source code–based toolbar displayed by
the Source Editor, except for one difference. The toolbar still includes the Source and Design
icons. If you select the Design icon, you will toggle back to the WYSIWYG Design view of the
SayIt class in the Form Editor.

The toolbar displayed in the Design view of the Form Editor, as shown in Figure 15-4, con-
tains other useful icons. If you place the mouse over each icon, a pop-up tooltip is displayed.
The icons and their intention are as follows:

Selection Mode: The default mode of the Form Editor. It allows you to select components,
move them around on the form, and add new components to the form.

Connection Mode: An alternate mode for the Form Editor. It allows you to generate code that
modifies one component (the target) via an action from another component (the source).
This is discussed in more detail in the later section “Adding Events Using Connection Mode.”

Preview Design: Opens the form in a new pop-up window, allowing you to see how it
would look if you actually built and ran the project. Note that no event-handling code is
actually triggered, even though you can click buttons, enter text, and so on.

Align left in column: Aligns the left edge of two or more components in the form.

Align right in column: Aligns the right edge of two or more components in the form.

Center horizontally: Horizontally aligns two or more components in the form using the
exact center of each component.

Align top in row: Aligns the top edge of two or more components in the form.

Align bottom in row: Aligns the bottom edge of two or more components in the form.

Center vertically: Vertically aligns two or more components in the form using the exact
center of each component.

Change horizontal resizability: Enabled or disabled for each component. If enabled, it
allows the component to be automatically resized horizontally when the parent JFrame is
resized horizontally. You can resize the JFrame by clicking and holding the lower-right cor-
ner of it and moving the mouse.

Change vertical resizability: Enabled or disabled for each component. If enabled, it allows
the component to be automatically resized vertically when the parent JFrame is resized
vertically. You can resize the JFrame by clicking and holding the lower-right corner of it
and moving the mouse.

Adding Components to the Form
Once you have created a form, you can add components to it. There are several ways to do
this, such as using the components displayed in the Palette window and using the Add Mode
icon on the toolbar.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 409

8954Ch15.qxp 1/28/08 11:42 AM Page 409

The Add Mode icon on the Form Editor toolbar is not displayed by default. To display it,
right-click on an empty place on the toolbar and select Show Add Button from the context menu
that appears. A new icon will appear on the Form Editor toolbar that looks like a plus sign, as
shown in Figure 15-5. If you place the mouse over the icon the tooltip should state “Add Mode.”

Figure 15-5. The Add Mode icon on the Form Editor toolbar

You can now click the Add Mode button to display a set of menus for adding Swing and AWT
components to the form. Click the Add Mode icon and select Swing Controls ➤ Text Area. A text
area component will appear on the Palette. You can move the mouse anywhere and the compo-
nent will follow. When you are ready to finalize the component’s position, click the form and the
component will be positioned accordingly.

You can also add components to the form by dragging-and-dropping them from the Palette
window. With the Palette window displayed, click a component, keep the mouse button pressed,
and move the mouse over the form in the Form Editor. The Form Editor will display alignment
guidelines for aligning the component with other components, as shown in Figure 15-6.

Figure 15-6. The Form Editor, displaying the text area and button

Figure 15-6 shows a text area component stretched across most of the form. It also shows
an attempt to place a new button component below the text area component. As you move
the button component around the form, a series of dashed lines appear in different locations,

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS410

8954Ch15.qxp 1/28/08 11:42 AM Page 410

depending on the component’s alignment. It may be difficult to see in Figure 15-6, but a
dashed alignment guideline is displayed aligning the left edges of the text area and button
components. With the button component selected, if you were to move it away from the left
edge of the text area component, then the alignment guideline would disappear.

Next, we will place a second button component onto the form. Drag-and-drop a button
component from the Palette and position it in the lower-right corner of the form. With the
mouse button still pressed, move the component so that it looks horizontally centered with
the first button component shown in Figure 15-6. When the second button component is
actually horizontally centered with the first, an alignment guideline will appear confirming
that the two components are indeed centered, as shown in Figure 15-7.

Figure 15-7. A horizontal alignment guideline centering the buttons

Modifying Component Properties
Once you have added a text area and two button components to the form, you can modify their
properties. Each component, including the JFrame, has a large number of properties you can
set directly in NetBeans using the Properties window.

To display the Properties window, select Window ➤ Properties from the main menu or use
the keyboard shortcut Ctrl+Shift+7. The Properties window will appear, typically on the right
side of the Form Editor. As with any other window, you can click and drag the window’s title
bar to dock it in a more convenient location.

If you do not have a specific element selected in the Form Editor, the Properties window
will appear blank. Select the text area component in the Form Editor, and the Properties win-
dow will display properties specific to that component, as shown in Figure 15-8.

Figure 15-8. The Properties window, displaying the properties for the text area

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 411

8954Ch15.qxp 1/28/08 11:42 AM Page 411

Configure the text area component by doing the following:

1. Select the Properties tab in the Properties window, as shown in Figure 15-8.

2. Set the toolTipText property to “Enter text to be spoken here.”

3. Select the Code tab in the Properties window.

4. Set the Variable Name property to “TextToBeSpoken.”

Configure the first button component (labeled “jButton1”) by doing the following:

1. Select the Properties tab in the Properties window, as shown in Figure 15-8.

2. Set the text property to “Speak Text.”

3. Set the toolTipText property to “Click to hear the text in the text area spoken.”

4. Select the Code tab in the Properties window.

5. Set the Variable Name property to “SpeakTextButton.”

Configure the second button component (labeled “jButton2”) by doing the following:

1. Select the Properties tab in the Properties window, as shown in Figure 15-8.

2. Set the text property to “Clear Text.”

3. Set the toolTipText property to “Click to clear the text from the text area.”

4. Select the Code tab in the Properties window.

5. Set the Variable Name property to “ClearTextButton.”

Once you have finished modifying the various properties of the form components, the
finished form should look like Figure 15-9.

Figure 15-9. The finished GUI form of the SayIt class

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS412

8954Ch15.qxp 1/28/08 11:42 AM Page 412

The SayIt class contains the following autogenerated main method:

public static void main(String args[]) {
java.awt.EventQueue.invokeLater(new Runnable() {

public void run() {
new SayIt().setVisible(true);

}
});

}

This initiates the constructor, which is defined as

public SayIt() {
initComponents();

}

The constructor calls the initComponents method, which is private to the class and performs
the actual initialization of the components that appear on the form:

// <editor-fold defaultstate="collapsed" desc="Generated Code">
private void initComponents() {

jScrollPane1 = new javax.swing.JScrollPane();
TextToBeSpoken = new javax.swing.JTextArea();
SpeakTextButton = new javax.swing.JButton();
ClearTextButton = new javax.swing.JButton();

setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

TextToBeSpoken.setColumns(20);
TextToBeSpoken.setRows(5);
TextToBeSpoken.setToolTipText("Enter text to be spoken here.");

jScrollPane1.setViewportView(TextToBeSpoken);

SpeakTextButton.setText("Speak Text");
SpeakTextButton.setToolTipText(➥

"Click to hear the text in the text area spoken.");

ClearTextButton.setText("Clear Text");
ClearTextButton.setToolTipText("Click to clear the text from the text area.");

// additional GroupLayout initialization code removed
}

The private initComponents method initializes an instance of each component that was
placed in the Java GUI form of the JFrame class. It then sets several properties of the jTextArea
TextToBeSpoken, such as the number of columns, the number of rows, and the text displayed
in the tooltip. It also sets the text and tooltip text for each of the buttons.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 413

8954Ch15.qxp 1/28/08 11:42 AM Page 413

One of the benefits the Matisse GUI Builder in NetBeans provides is accurate code gen-
eration and the ability to keep the autogenerated code up to date, especially when
components are changed. The text area and two button components were given default
names and properties when they were first added to the form. Changing their properties in
the Properties window causes Matisse to rename the instances of the components and to
set their properties accordingly.

Adding Events Using Connection Mode
An important concept when working with GUI applications is that of event handling. Whether
it is the pressing of a key on the keyboard, the click of a mouse, or some other occurrence,
events need to be handled appropriately. Events are how users interact with an application.
For the sample speech-to-text application we are developing in this section, we will discuss
only a few types of events.

First, the application will allow users to type text into the text area. Then they can click the
Speak Text button, causing the FreeTTS code to activate (discussed in the next section).
Finally, users can click the Clear Text button to clear the text from the text area and start over.
The two events we focus on here are the two button clicks. First we focus on the Clear Text
button click event.

There are several ways to add event-handling code using the Matisse GUI Builder. The
first is to use the Connection Mode button on the Form Editor toolbar to open the Connection
Wizard. Connection Mode allows you to select two components displayed in the form for
which event handling is related. For example, if the Clear Text button is clicked (event 1), then
the text area component’s text property should be set to blank (event 2). Thus, we can use the
Connection Mode as follows to generate event-handling code:

1. Click the Connection Mode icon in the Form Editor toolbar.

2. Click the Clear Text button. It will be highlighted with a red border.

3. Click the text area. It will be highlighted with a red border, and the Connection Wizard
window will appear.

4. In the Select Source Event screen of the Connection Wizard, expand the plus icon next
to the mouse node. This will display the possible mouse-related events.

5. Select the mouseClicked event. The Method Name will suggest a name for the event-
handler method that will be generated, as shown in Figure 15-10, but you can edit the
text field to any value you wish. Unless you have a good reason, it is usually a best
practice to name event handlers with the name of the component to which the event
applies, followed by the name of the event. In Figure 15-10, the suggested name is
ClearTextButtonMouseClicked. ClearTextButton is the instance name of the compo-
nent and MouseClicked is the name of the event.

6. Click the Next button to proceed to the Specify Target Operation screen.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS414

8954Ch15.qxp 1/28/08 11:42 AM Page 414

7. In the Specify Target Operation screen, the component TextToBeSpoken is listed as the
target for the operation. This is because it was clicked second when in Connection Mode.
Here you can specify that the target component have a property set, a specific method
called, or other custom code executed in the class. Click the Set Property radio button.

Figure 15-10. The Select Source Event Screen in the Connection Wizard

8. Select the text property displayed in the list of properties. The Specify Target Operation
screen will look like Figure 15-11.

Figure 15-11. The Specify Target Operation screen in the Connection Wizard

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 415

8954Ch15.qxp 1/28/08 11:42 AM Page 415

9. Click the Next button to proceed to the Enter Parameters screen. In this screen you can
specify a parameter to use to set the text property of the TextToBeSpoken text area
component.

10. Select the Value radio button. The field will become enabled and allow you to enter
text. It is empty by default, representing an empty String. Notice that the “Generated
Parameters Preview” field at the bottom of the screen shows two quotation marks sym-
bolizing as much, shown in Figure 15-12. This essentially sets the text property of the
text area to be blank.

Figure 15-12. The Enter Parameters screen of the Connection Wizard

11. Finally, click the Finish button.

After you click the Finish button in the Enter Parameters screen, the Connection Wizard
window will disappear. The Form Editor window will automatically switch to the Source view
and display the newly added Java source code for the event handler as shown:

private void ClearTextButtonMouseClicked(java.awt.event.MouseEvent evt) {
TextToBeSpoken.setText("");

}

The ClearTextButtonMouseClicked event-handler method is in turn called by a
MouseListener that is added to the ClearTextButton button in the Matisse-generated
code in the form:

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS416

8954Ch15.qxp 1/28/08 11:42 AM Page 416

ClearTextButton.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseClicked(java.awt.event.MouseEvent evt) {

ClearTextButtonMouseClicked(evt);
}

});

Adding Events Manually
Obviously, you do not always have to use the Connection Mode to create event-handling code.
If you did, then the Matisse GUI Builder tool would not be as useful or easy to use. You can also
add event-handling code manually via the context menus for each component of the form.

Right-click the SpeakTextButton and select Events ➤ Mouse ➤ mouseClicked, as shown in
Figure 15-13. The Form Editor will switch to the Source view and display the newly generated
event-handler method, SpeakTextButtonMouseClicked.

Figure 15-13. The event-handling submenus on the context menu

The empty event handler in code looks like the following:

private void SpeakTextButtonMouseClicked(java.awt.event.MouseEvent evt) {
// TODO add your handling code here:

}

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 417

8954Ch15.qxp 1/28/08 11:42 AM Page 417

This also triggers the Form Editor to generate code automatically inside the initComponents
method to register the event handler. A new MouseListener is added to the SpeakTextButton,
which in turn calls the SpeakTextButtonMouseClicked method:

SpeakTextButton.addMouseListener(new java.awt.event.MouseAdapter() {
public void mouseClicked(java.awt.event.MouseEvent evt) {

SpeakTextButtonMouseClicked(evt);
}

});

You will then need to add the code inside the SpeakTextButtonMouseClicked event handler
that takes the text from the text area and enables it to be spoken. This is covered later, in the sec-
tion “Adding FreeTTS Code to an Event Handler.”

Using FreeTTS
The FreeTTS project is a 100 percent pure Java speech synthesis system. Originally based on Flite
from Carnegie Mellon University, it was written by Sun Microsystems Laboratories. It provides a
Java speech synthesis engine, support for a variety of voices, and partial support for the Java
Speech API (JSAPI).

Downloading the Library
To download FreeTTS, go to the project site at http://freetts.sourceforge.net. FreeTTS
provides several different types of packages for download. For our purposes you will need to
download the bin package, which contains the compiled binaries of FreeTTS. Once you have
downloaded FreeTTS, extract it to a directory on your local machine.

Adding FreeTTS as a Project Library
For the speech-to-text application to be able to use FreeTTS, you need to add it as a library for
the project. To add FreeTTS to the project, do the following:

1. In the Projects window, right-click the Libraries node and select Add JAR/Folder.

2. Browse the file system and locate the freetts.jar file that was included in the FreeTTS
bin package you downloaded.

3. Click the Open button in the Add JAR/Folder window. The freetts.jar file will then be
listed under the Libraries node in the Projects window.

You can now import FreeTTS classes into the project and voice-enable the application
that was developed earlier in this chapter.

Adding FreeTTS Code to an Event Handler
Earlier in this chapter, you added the SpeakTextButtonMouseClicked event handler to the
SpeakTextButton in the form. The empty event handler in code looks like the following:

private void SpeakTextButtonMouseClicked(java.awt.event.MouseEvent evt) {
// TODO add your handling code here:

}

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS418

8954Ch15.qxp 1/28/08 11:42 AM Page 418

http://freetts.sourceforge.net

To voice-enable the application, you can modify the method as follows:

private void SpeakTextButtonMouseClicked(java.awt.event.MouseEvent evt) {
String sText = TextToBeSpoken.getText();
if (sText != null && sText.trim().length() > 0) {

VoiceManager voiceManager = null;
Voice syntheticVoice = null;

try {
voiceManager = VoiceManager.getInstance();
syntheticVoice = voiceManager.getVoice("kevin");
syntheticVoice.allocate();
syntheticVoice.speak(sText);

} catch (Exception e) {
e.printStackTrace();

} finally {
syntheticVoice.deallocate();

}
}

First, the method retrieves the text from the SpeakTextButton using the following code:

String sText = TextToBeSpoken.getText();

It then checks to make sure that the text from the text area has a value. Next, it declares a
VoiceManager and a Voice class. These classes allow you to access the speech engine. The method
then retrieves an instance of VoiceManager using the VoiceManager.getInstance static method
and in turn retrieves an instance of Voice using voiceManager.getVoice.

The code in the SpeakTextButtonMouseClicked event handler then calls the Voice.
allocate method. This internally creates an audio output thread and audio output handler.
You can then call the Voice.speak method, which takes a String as an argument. This string is
the text to be spoken. In the foregoing method, we pass in the text from the text area. In the
“finally” clause we call Voice.deallocate. This cleans up the audio output thread and shuts
down the voice processing.

With the code that is now included in the SpeakTextButtonMouseClicked event-handler,
you can now test out the GUI application. To test it out fully, do the following:

1. Turn on your computer’s speakers and make sure the audio volume is not on mute.

2. Run the application, selecting Run ➤ Run main project from the main menu.

3. In the form window that appears, type a sentence into the text area.

4. Click the button labeled “Speak Text.” You should hear the text you typed spoken by the
FreeTTS library.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 419

8954Ch15.qxp 1/28/08 11:42 AM Page 419

Using the Swing Application Framework
NetBeans 6 introduces support for the Swing Application Framework, JSR-296. This framework
has a set of Java classes that provide an infrastructure common to many Java desktop-based
applications. The framework can help offer assistance with commonly used features. Here are
several examples:

GUI state persistence between application executions

Creating and managing both synchronous and asynchronous actions

Resource management (strings, images, component labels, tooltips, and so on)

The Swing Application Framework support in NetBeans 6 includes several template proj-
ect types, various new file wizards, an Action Customizer window for managing actions, tight
integration with the Matisse GUI Builder and Form Editor window, and more.

This section discusses how to create a NetBeans project based on the Swing Application
Framework as well as how to use the IDE to take full advantage of the framework. For more
information on the Swing Application Framework, visit the project site at https://
appframework.dev.java.net.

Creating a Java Desktop Application Project
The Java Desktop Application is a new project type that provides support for the Swing Appli-
cation Framework. Creating a project of this type will generate a skeleton application with
basic features such as menus, a status bar, and persistence of the GUI state. To create a Java
Desktop Application project, perform the following steps:

1. Select File ➤ New Project from the main menu. The New Project window will appear.

2. Select Java from the list of Categories in the left pane of the Choose Project screen.

3. Select Java Desktop Application from the list of Projects in the right pane of the Choose
Project screen.

4. Click the Next button to proceed to the Name and Location screen.

5. Enter a value for the “Project Name” field, such as ProNetBeansDesktopApp.

6. Choose a value for the “Project Location” field. You can enter one by typing directly in
the field or by clicking the Browse button to select one from your local file system.

7. Modify the “Application Class” field to contain an appropriate Java package hierarchy
and class name for the initial project form.

8. Select Basic Application from the Choose Application Shell section. The Name and
Location screen of the New Desktop Application window should look like Figure 15-14.

9. Click the Finish button to close the New Desktop Application window.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS420

8954Ch15.qxp 1/28/08 11:42 AM Page 420

https://appframework.dev.java.net
https://appframework.dev.java.net

Figure 15-14. The Name and Location screen for the new Java Desktop Application project

After you generate the project, a form named ProNetBeansDesktopView class opens in the
Form Editor, as shown in Figure 15-15. It contains several components, complete with initial-
ization code. A JMenuBar is stretched across the top of the main JFrame. It contains two JMenus
with their own JMenuItems contained within. The bottom of the JFrame also contains several
JLabels and a JProgressBar, for creating a progress bar.

Figure 15-15. The new skeleton form displayed in the Form Editor

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 421

8954Ch15.qxp 1/28/08 11:42 AM Page 421

Next, switch to the Source view of the Form Editor for the ProNetBeansDesktopApp class.
The first thing you should notice is that the ProNetBeansDesktopApp class extends the org.
jdesktop.application.FrameView class. The FrameView class is the base class for forms in the
Swing Application Framework.

The single argument constructor that exists in the class takes a SingleFrameApplication
as the argument. It then passes it to the FrameView super class constructor and calls the
initComponents methods to initialize the GUI components on the form.

The class defines and instantiates an instance of org.jdesktop.application.ResourceMap.
The ResourceMap provides resource management for the entire Java Desktop Application
project. It allows the application code to access the name/value properties stored in the
ProNetBeansDesktopApp.properties file. The .properties file was generated automatically by
the IDE when the project was originally generated.

The remainder of the code in the constructor deals with initializing and setting up the Timer
and TaskMonitor classes for the progress bar. The progress bar is visible in the lower-right corner
of the form, as shown in Figure 15-15.

The initComponents method was autogenerated by NetBeans when the class was created. It
is guarded as autogenerated code and cannot be changed directly in the Form Editor. The code in
the initComponents method can be changed by moving and resizing components in the Design
view of the Form Editor, changing properties for each component in the Properties window.

It contains code for initializing the GUI components, such as mainPanel = new javax.swing.
JPanel();. It also performs the component layout on the form, based on how the components
are visually arranged:

javax.swing.GroupLayout mainPanelLayout = new javax.swing.GroupLayout(mainPanel);
mainPanel.setLayout(mainPanelLayout);
mainPanelLayout.setHorizontalGroup(
mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGap(0, 400, Short.MAX_VALUE)
);

mainPanelLayout.setVerticalGroup(
mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGap(0, 252, Short.MAX_VALUE)
);

Using Actions
Once the main ProNetBeansDesktopApp class has been created, you can add a menu item and
pop-up window using the GUI Builder actions. This section demonstrates how to create a new
JDialog window, add components to it, and then use the GUI Builder’s action capabilities to tie
events together.

Creating the JDialog Window
To create the new JDialog window needed for this example, do the following:

1. Right-click the project name in the Projects window and select New ➤ Other.

2. Select Swing GUI Forms in the Categories list in the left pane of the Choose File Type
screen.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS422

8954Ch15.qxp 1/28/08 11:42 AM Page 422

3. Select JDialog Form in the File Types list in the right pane of the Choose File Type screen.

4. Click the Next button.

5. For the “Class Name” field, enter the value HelloWorldBox.

6. Enter com.pronetbeans.examples for the “Package” field.

7. Click the Finish button.

The JDialog form will open in the Form Editor window. It will appear as a square grey
form, similar to a JFrame. Click anywhere on the grey part of the JDialog. Once it is selected,
click and hold the lower-right corner of the component and resize it. Make the component
look like a standard OK-Cancel dialog window, where it is a short but wide rectangle, as
shown in Figure 15-16. Once you have made the JDialog component a similar size, you can
perform the following steps:

Figure 15-16. The HelloWorldBox JDialog form

1. Open the Palette window by selecting Window ➤ Palette (or by pressing Ctrl+Shift+8).

2. Drag a JLabel component from the Palette window and place it in the center of the form.

3. Drag a JButton component from the Palette window and place it in the center of the
form, just below the JLabel.

4. Double-click the JLabel on the form. The text will become editable. Enter the value
Hello World! Swing Application Framework was here.

5. Open the Properties window by selecting Window ➤ Properties (or by pressing
Ctrl+Shift+7).

6. Click the JButton on the form.

7. With the JButton selected on the form, edit the text property in the Properties win-
dow and change the value to Close. The JDialog window should now look similar
to Figure 15-16.

Creating New Actions
The Swing Application Framework has the ability to create actions based on the org.jdesktop.
application.Action class. With these actions you can quickly and easily tie application func-
tionality together.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 423

8954Ch15.qxp 1/28/08 11:42 AM Page 423

In the example from the previous section, we created and customized a JDialog window.
Now, we can enable its use via actions. To enable the first action, right-click on the Close but-
ton of the HelloWorldBox JDialog form from Figure 15-16 and select Set Action. The Set Action
window will appear, as shown in Figure 15-17.

Figure 15-17. The Set Action window

The Set Action window allows you to specify an action to use when the button is clicked.
You can specify an existing action by selecting one from the “Action” drop-down list, as in
Figure 15-17. You can also create a new action, name it, and specify custom attributes.

To create a new action, perform the following steps:

1. Select Create New Action from the “Action” drop-down field.

2. Enter the value closeWindow in the “Action’s Method” field.

3. Enter the value Close in the “Text” field.

4. Enter the value Click this button to close this dialog window in the “Tool Tip”
field.

5. In the “Accelerator” section, select the Ctrl and Shift check boxes. In the “Letter” field,
type the character C.

6. Click the OK button. The Set Action window will disappear.

When the Set Action window has closed, the HelloWorldBox class will contain this newly
generated code:

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS424

8954Ch15.qxp 1/28/08 11:42 AM Page 424

@Action
public void closeWindow() {

}

The @Action annotation indicates that the method is an action of type org.jdesktop.
application.Action from the Swing Application Framework API. If you look inside the
Matisse-generated initComponents method, you will see that the new closeWindow action has
been registered as the action for the jButton1 component (the Close button).

javax.swing.ActionMap actionMap = org.jdesktop.application.Application.getInstance(➥

com.pronetbeans.examples.ProNetBeansDesktopApp.class).getContext().getActionMap(➥

HelloWorldBox.class, this);

jButton1.setAction(actionMap.get("closeWindow"));

This code retrieves the ActionMap instance for the HelloWorldBox class. It then retrieves the
ActionMap named “closeWindow,” which matches the annotated closeWindow method that was
generated. It is then up to the programmer to add code into the closeWindow method to make
it do something.

For this example, we will add the code setVisible(false); so that when the button is clicked
the HelloWorldBox JDialog disappears and gives the appearance of closing as intended. Thus, the
final closeWindow method might look like this:

@Action
public void closeWindow() {

setVisible(false);
}

Actions store resource strings in a .properties file that has the same name as the action’s
.java file. The file is formatted as a standard name/value pair, similar to using a ResourceBundle
class to access it. The keys for each property are derived from the action name. The types of
properties stored can include text, tooltips, accelerator shortcuts, blocking titles, blocking mes-
sages, and icon paths.

For the JDialog window displayed in Figure 15-16, there is a matching HelloWorldBox.
properties file in the com.pronetbeans.examples.resources package in the Projects window.
If you open the file, you will see content similar to the following:

jLabel1.text=Hello World! Swing Application Framework was here.
jButton1.text=Close
closeWindow.Action.text=Close
closeWindow.Action.accelerator=shift ctrl pressed C
closeWindow.Action.shortDescription=Click this button to close this dialog window

The property names, such as closeWindow.Action.text and jButton1.text, are used in
the initComponents method of the class. As previously discussed, an instance of org.jdesktop.
application.ResourceMap retrieves the value of each property, such as:

jLabel1.setText(resourceMap.getString("jLabel1.text"));

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 425

8954Ch15.qxp 1/28/08 11:42 AM Page 425

The property jLabel1.text is in the HelloWorldBox.properties file and matches the text “Hello
World! Swing Application Framework was here.”

The next step we take in demonstrating how to create and use actions involves adding a
new menu item to the ProNetBeansDesktopView JFile menu. Open the ProNetBeansDesktopView
class in the Form Editor and select the File menu along the top. It should display the default
Exit menu item. In the Palette window, locate the Swing Menus section and drag a Menu Item
component (representing a JMenuItem class) and place it just below the Exit menu item. As you
move the mouse cursor near the Exit menu item, an orange dashed line should appear, either
below or above it, depending on how close to the top or bottom of the Exit menu item you are.
This denotes the location where the new Menu Item component will be placed when you drop
it onto the menu. Once you drop the component, the File menu on the form will then contain
a new menu item named “Item,” with no shortcut display. The list of menu items will be dis-
played, as shown in Figure 15-18.

Figure 15-18. The list of menu items on the File menu of the form

Select the Item submenu. Once the Item submenu is highlighted with an orange border,
right-click it and select Set Action from the context menu. The Set Action window will open.
Do the following to configure the action:

1. Select Create New Action from the “Action” drop-down field.

2. Enter showHelloWorld in the “Action’s Method” field.

3. Enter Say Hello in the “Text” field.

4. Enter Click to open the Hello World JDialog in the “Tool Tip” field.

5. Click inside the “Letter” field. Press and hold the Ctrl and Shift keys. Then press the R
key. The Ctrl and Shift check boxes should be selected. The “Letter” field should display
a capital R character.

Once you have entered the values into the fields, the Set Actions window will look like
Figure 15-19.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS426

8954Ch15.qxp 1/28/08 11:42 AM Page 426

Figure 15-19. The Set Action window for the showHelloWorld action

The showHelloWorld method is then added to the ProNetBeansDesktopView class. It is defined
as follows:

@Action
public void showHelloWorld() {

}

You can then add code to the showHelloWorld method to display the HelloWorldBox JDialog
form:

@Action
public void showHelloWorld() {

if (showHelloWorldBox == null) {
JFrame mainFrame = ProNetBeansDesktopApp.getApplication().getMainFrame();
showHelloWorldBox = new HelloWorldBox(mainFrame, true);
showHelloWorldBox.setLocationRelativeTo(mainFrame);

}

ProNetBeansDesktopApp.getApplication().show(showHelloWorldBox);
}

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 427

8954Ch15.qxp 1/28/08 11:42 AM Page 427

This code retrieves the application’s main JFrame, instantiates an instance of the HelloWorldBox
form, and sets the location of it relative to the main JFrame. Finally, it calls the show method to
display the HelloWorldBox JDialog form.

If you haven’t already figured it out, the preceding list of steps is nearly identical to how
the Java Desktop Application’s project “About Box” works (see the Help menu item and the
About submenu in the ProNetBeansDesktopView form). When the project is generated, the
main GUI form for the project already contains menu items such as File ➤ Exit and Help ➤
About. If you look through the project code, you will see that the ability to show and hide the
ProNetBeansDesktopAboutBox form is nearly identical to the steps described in this section.

Working with the Application Actions Window
The actions provided by the Swing Application Framework are useful, but they can be difficult
to manage in a large code base, especially if you have to go searching to find them. NetBeans
provides a convenient way to locate and manage all the actions in a project, via the Application
Actions window.

You can open the window by selecting Window ➤ Other ➤ Application Actions from the
main menu. The Application Actions window will appear and display a list of all methods
annotated with @Action, which refers to the org.jdesktop.application.Action class. The
Applications Actions window is shown in Figure 15-20.

Figure 15-20. The Application Actions window

The Application Actions window will display a list of actions, which includes the Name,
Text, Accelerator keyboard shortcut (if applicable), Icon, Task, Method, and Class. The list
displayed belongs to the main project opened in the Projects window. However, if you have
multiple projects open that use the Swing Application Framework, you can switch between
them via the “Project” field at the top of the Application Actions window. When you select a
project, only the actions for that project will be displayed in the window. You can also filter the
list of actions to a specific class by selecting it from the “Class” drop-down field.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS428

8954Ch15.qxp 1/28/08 11:42 AM Page 428

There are also several buttons along the bottom of Application Actions window that allow
you to manage the list of actions. Clicking the New Action button opens the Create New
Action window, which is similar in look and functionality to the Set Action window shown
in Figure 15-17.

The Application Actions window also has an Edit Action button. You can select an action
from the list, click the Edit Action button, and use the Edit Action Properties window that
appears to customize the action, as shown in Figure 15-21.

Figure 15-21. The Edit Action Properties window

The Edit Action Properties window does not allow you to change the “Action’s Class” or
“Action’s Method” field. However, you can edit the “Text” and “Tool Tip” fields as well as change
the Accelerator. You can also change the blocking-related properties on the Advanced tab if the
Background Task check box is enabled. Once you have changed the properties to your liking,
click the Close button to exit the Edit Action Properties window.

The Application Actions window in Figure 15-20 also contains a View Source button.
Select an action from the list and click the View Source button. The Form Editor will open the
file that contains the action and jump directly to the matching line of code in the Source view.

The Application Actions window also lets you delete an action from the list. Select an
action from the list and click the Delete Action button. It will be deleted. The action will disap-
pear from the list. However, the matching method in the class will not be deleted. All that will
happen is that the @Action annotation will be removed. The initComponents method of the
class will also have removed the association of the action with the component used to trigger it.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 429

8954Ch15.qxp 1/28/08 11:42 AM Page 429

Using Beans Binding
Beans Binding, JSR-295, is new to NetBeans 6. It provides component and data-binding capa-
bilities similar to those in the NetBeans 5.5 Visual Web Pack. In NetBeans 5.5 you could create
Visual Web projects that tied the properties of components to beans, entity classes, database
fields, or other component properties. Beans Binding is a similar concept, but applied to GUI
development and Java Desktop Applications.

In this section I review the Beans Binding capabilities provided by NetBeans 6, how to
create a database, how to create a Java Desktop Application project, and how to link a GUI
form to the database table providing full create-read-update-delete (CRUD) capabilities. This
specific set of steps has been extremely well documented in various online Beans Binding
tutorials, so here I cover the steps as briefly as possible. I then break out when applicable and
discuss various customizations, windows, and tools for effectively using Beans Binding in
NetBeans. For more information on Beans Binding, see the official project page at https://
beansbinding.dev.java.net.

Creating the Database
For this example of Beans Binding, we connect a GUI form to the data in a database table. This
section assumes you have installed and configured the Java DB in NetBeans. The Java DB (for-
merly known as Derby) is included as part of Java SE 6 or can be downloaded and installed
separately. You can point NetBeans at your Java DB install by selecting Tools ➤ Java DB Data-
base ➤ Settings from the main menu and specifying the location.

To create the sample database for this section, do the following:

1. Select Tools ➤ Java DB Database ➤ Start Server from the main menu.

2. Once the database server has started, select Tools ➤ Java DB Database ➤ Create Data-
base. The Create Java DB Database window will appear.

3. Enter a name for the database, such as ProNetBeansDoughnuts.

4. Enter values for the “User Name” and “Password” fields.

5. Click the OK button to generate the database.

6. In the Services window, expand the Databases node until you see the connection to
your new database. Right-click it and select Connect from the context menu.

7. When the database has connected, expand the node. Right-click the Tables node that
appears and select Create Table from the context menu. The Create Table window will
appear.

8. Enter the value doughnuts for the “Table name” field.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS430

8954Ch15.qxp 1/28/08 11:42 AM Page 430

https://beansbinding.dev.java.net
https://beansbinding.dev.java.net

9. Create four columns, as shown in Figure 15-22, named ID, NAME, DESCRIPTION, and
PRICE.

Figure 15-22. The DOUGHNUTS table schema

10. Once the columns have been configured with the correct parameters, click the OK but-
ton to close the Create Table window.

The DOUGHNUTS table will be generated and listed under the Tables node in the Services
window for the new database. You can now insert data into the table using a few simple SQL
statements. Right-click the DOUGHNUTS table node in the Services window and select View
Data from the context menu. An SQL Command window will open.

The SQL Command window allows you to enter SQL statements and execute them against
the defined database connection. You can enter the following SQL statements one at a time into
the SQL Command window. Execute them individually by right-clicking inside the window and
selecting Run Statement.

insert into DOUGHNUTS values(1,'Glazed','Plain doughnut with glaze',1.25)
insert into DOUGHNUTS values(2,'Old Fashioned','Plain doughnut',1.25)
insert into DOUGHNUTS values(3,'Sugared','Plain doughnut with white sugar',1.25)
insert into DOUGHNUTS values(4,'Jelly','Jelly filled puff',1.25)
insert into DOUGHNUTS values(5,'Chocolate','Chocolate dough, no topping',1.25)

You can then enter a SQL query to view the entered data, such as

Select * from DOUGHNUTS

This will display the table data in a simple grid at the bottom of the SQL Command window.
You can also use the newer Design Query window added in NetBeans 6. Previously, the Design
Query tool was available to users of the Visual Web Pack in NetBeans 5.5. It allows visual manip-
ulation of tables and columns to create and generate SQL queries. To use it, right-click the
DOUGHNUTS table node in the Services window and select Design Query from the context
menu. The Design Query window will appear, as shown in Figure 15-23.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 431

8954Ch15.qxp 1/28/08 11:42 AM Page 431

Figure 15-23. The DOUGHNUTS table displayed in the Design Query window

The Design Query window provides four sections. The first section, on top, allows you to
visualize the database tables and their schema. To display additional tables and create SQL
joins, right-click inside the blank space in this section and select Add Table from the context
menu that appears.

The second section from the top displays the columns. It allows you to set if they appear
in the SQL statement as well as if and how they are ordered. The third section from the top dis-
plays the SQL query. As items are modified in the top two sections, the SQL displayed in this
third section is dynamically modified. You can also edit the SQL directly in this third section
and have the changes updated in the other sections. The fourth and final section displays the
results of the SQL statement in a simple grid.

I encourage you to explore this useful and handy database tool in more depth. There is
more functionality available that has not been discussed here, since this is not an in-depth
view of the tool.

Creating the Project
This section discusses how to create and configure a Java Desktop Application project. Earlier
in this chapter we reviewed how to create a Java Desktop Application project that used the
“Basic Application” Application Shell. This section deals with using the “Database Application”
Application Shell.

To create the project, do the following:

1. Select File ➤ New Project from the main menu. The New Project window will open.

2. On the Choose Project screen, select Java from the list of Categories in the left pane
and Java Desktop Application from the list of Projects in the right pane.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS432

8954Ch15.qxp 1/28/08 11:42 AM Page 432

3. Click the Next button.

4. On the Name and Location screen, enter a value for the “Project Name” field, such as
“BeansBindingSampleApp.”

5. Enter a fully qualified package name and class name in the “Application Class” field.

6. Select Database Application from the list of available application shells. The Name and
Location screen should look like Figure 15-24. Click the Next button to continue.

Figure 15-24. The Name and Location screen

7. On the Master Table screen, select the ProNetBeansDoughnuts database from the
“Database Connection” drop-down list.

8. Select DOUGHNUTS from the “Database Table” drop-down list. The “Columns to
Include” list should display the list of all the columns in the DOUGHNUTS table, as
shown in Figure 15-25.

9. Then click the Next button to display the Detail Options screen.

10. On the Detail Options screen, select the ID column in the “Columns to Include” list on the
right and click the < button. The ID column will disappear from the list and be displayed in
the “Available Fields” list on the left. This will instruct NetBeans not to generate a text field
for it in the detail section of the GUI form. Only the “Name,” “Description,” and “Price”
fields will have text fields generated, since they appear in the “Columns to Include” list.

11. Click the Finish button to close the New Project wizard.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 433

8954Ch15.qxp 1/28/08 11:42 AM Page 433

Figure 15-25. The Master Table screen

Once NetBeans has finished generating the project code, run the project by selecting Run
➤ Run Main Project from the main menu. The project code will compile, build, and run. A
GUI form class named BeansBindingSampleView will display by default when the project runs,
as shown in Figure 15-26. As you can see in the figure, a data grid is displayed listing the data
from the DOUGHNUTS table. Underneath the data grid are three text fields that display the
information for each record when a specific record is selected in the data grid.

Figure 15-26. The finished application window displaying the DOUGHNUTS table data

If you experiment with the GUI form displayed in Figure 15-26, you will see that a number
of capabilities are present. The GUI form uses a combination of the Swing Application

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS434

8954Ch15.qxp 1/28/08 11:42 AM Page 434

Framework, Beans Binding, and Java Persistence to provide a fully functional database
table–editing tool. You can add, view, edit, and delete records from the table using the buttons
at the bottom of the form. Once you make changes you want to persist, you can click the Save
button, which becomes enabled when a change is made to the list of data.

You may also notice that as you select an item in the data grid, the corresponding details
for that record are displayed in the text fields below the data grid. You can also resize the
columns in the data grid and drag-and-drop the column headers around to rearrange the
fields in the table.

To test whether the automatically generated code actually works, go ahead and edit the
data. Select a row in the data grid. In the text fields below, change any of the values. As you do
so, the Save button becomes enabled. Click the Save button, wait a second or two, and then
close the entire application. In NetBeans, rerun the project by selecting Run ➤ Run Main Pro-
ject (or pressing F6). The GUI form will open again and display the data, including the
changes you made. As far as Java GUI applications go, this is an amazing set of features to
have automatically generated for you.

Exploring the Generated Application
Now we explore the application in more detail. One of the features you may have noticed
regards selecting items in the data grid. As you selected an item, the corresponding values for
that record were displayed in the text fields at the bottom of the window. Also, as you changed
the text in the text fields, the corresponding data in the data grid also changed. This “glue”
between components is one part of Beans Binding.

Open the BeansBindingSampleView class in the Form Editor. The Design view should be
displayed by default. Select the text field to the right of the Description label. The text field will
then be highlighted with an orange border, and various anchors and guidelines will appear
denoting its specific position on the form, as shown in Figure 15-27.

Figure 15-27. The highlighted “Description” text field on the form

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 435

8954Ch15.qxp 1/28/08 11:42 AM Page 435

Next, view the properties for the component. You can do so by opening the Properties
window by selecting Window ➤ Properties from the main menu. You can also right-click the
text field component and select Properties from the context menu that appears.

In the Properties window, look at the Binding tab and locate the text property. Click the
ellipsis next to it to open the Bind window.

Working with the Bind Window
The Bind window contains two tabs: Binding and Advanced. The Binding tab contains two
fields, named “Binding Source” and “Binding Expression,” as shown in Figure 15-28.

Figure 15-28. The Binding tab of the Bind window

The current settings in the Bind window denote that the “text” property of the Description
text box is bound to the property ${selectedElement.description} of the masterTable compo-
nent, which is an instance of javax.swing.JTable.

This binding is defined and configured in the autogenerated initComponents method. A
column binding is added to the JTable, as specified by the name ${description}:

columnBinding = jTableBinding.addColumnBinding(➥

org.jdesktop.beansbinding.ELProperty.create("${description}"));
columnBinding.setColumnName("Description");
columnBinding.setColumnClass(String.class);

Then farther down the method, the text field component is configured:

binding = org.jdesktop.beansbinding.Bindings.createAutoBinding(
org.jdesktop.beansbinding.AutoBinding.UpdateStrategy.READ_WRITE,
masterTable,
org.jdesktop.beansbinding.ELProperty.create("${selectedElement.description}"),
descriptionField,
org.jdesktop.beansbinding.BeanProperty.create(

"text_ON_ACTION_OR_FOCUS_LOST"));

This code defines and creates a binding between the JTable named masterTable and the
descriptionField text field component. The column in the table used in the binding is speci-
fied by the ELProperty expression ${selectedElement.description}. This specifies that the
description field of the element selected in the table should bind to the descriptionField
component.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS436

8954Ch15.qxp 1/28/08 11:42 AM Page 436

Other arguments of the createAutoBinding method are specified in the preceding code.
The first argument specifies the binding update strategy. In this case it is set to READ_WRITE and
will be discussed momentarily. The last argument of the createAutoBinding method defines
how and when the data is synced between the two components. In this case it is set to sync
when the field loses focus or the Enter key is pressed. The other options are discussed in a
moment as well.

The Advanced tab of the Bind window displays a number of additional options you can
configure, as shown in Figure 15-29.

Figure 15-29. The Advanced tab of the Bind window

The “Name” field is set to null by default. You can enter any name you wish that helps
identify the name of this specific binding. You can then later use that name to assist in retriev-
ing the specific binding from the group of bindings if you need to customize the code or
perform some binding-specific action.

The fields in the Update Properties section specify how the target and source components
in the binding get updated. The “Update Mode” field can be set to

Always sync (read/write): If a change is made to the source component, then the target
component gets updated (and vice versa). This is the default setting.

Only read from source (read only): The target component will receive updates from the
source component only. The source component does not receive updates.

Read from source once (read once): The target component is updated only once, when the
binding between the two components first takes effect.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 437

8954Ch15.qxp 1/28/08 11:42 AM Page 437

The “Update Source When” field specifies when the sync between the target and source
components is performed. It is normally only available to use to bind to the text property of
either a text field or text area. It can be set to

Enter is pressed or focus is lost: As the name implies, the sync occurs either when the Enter key
is pressed or the focus is lost, typically by pressing Tab or by clicking outside the component.

Focus leaves: The sync occurs when focus is lost on the component, typically by pressing
Tab or by clicking outside the component.

While typing: The sync occurs when the user types a character inside the component.

If you are developing an application with a lot of text fields or text areas, the setting of the
“Update Source When” property should be taken into consideration. This is discussed in the
following section.

The Advanced tab of the Bind window also contains a “Converter” field. If you need to
convert data types between the source and target components, you can do so by specifying a
Converter that has been added to the form.

The “Validator” field lets you specify a class that extends org.jdesktop.beansbinding.
Validator or custom code to validate the component input before the components are
synced.

The remaining section on the Advanced tab of the Bind window allows you to handle
either null or incomplete values from the source component. The “Null Source Value” field
lets you specify a value or custom code to use when the source component value contains the
value null. If you select the check box next to the “Null Source Value” field label, the text field
immediately to the right will become enabled. Next, click the ellipsis button to the right of the
field and the Null Value window will open, as shown in Figure 15-30.

Figure 15-30. The Null Value window

The drop-down list at the top of the window is set to “Plain text” by default. This setting
allows you to enter a value into the text area below it. You can then select the “Define as a

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS438

8954Ch15.qxp 1/28/08 11:42 AM Page 438

Resource” check box to enable the text you entered to be stored in a .properties file, using the
ResourceMap functionality of the Swing Application Framework.

The drop-down list at the top of the Null Value window can also be set to “Resource Bundle.”
This displays several fields that allow you to browse the Source Packages of the project and
choose a .properties file. You can then select a key that exists in the .properties file for which
the value should be used.

The drop-down list at the top of the Null Value window can also be set to “Custom code.”
The window will then display a field for entering code specific to the data type that is expected
for the field. For the text property of the text field component, a value for the data type
java.lang.String is expected. You can enter a pair of empty quotation marks to signify that
an empty String should be used if the value null occurs in the field.

Once you have selected the appropriate setting for the null value, click the OK button to
close the Null Value window.

The “Unreadable Source Value” field on the Advanced tab of the Bind window can be con-
figured nearly identically to the “Null Source Value” field.

Understanding the “Update Source When” Field
The “Update Source When” field is set to “While typing” by default. What this specifically
means is that as each and every character is typed into the text field or text area component,
the source and target components are synced. Whether this is a good idea or not depends on
the needs of your application and the type of binding behavior you want to enforce.

I next demonstrate the effect of this setting on some sample code. Open the
BeansBindingSampleView class in the Form Editor and select the Source view. At the
bottom of the constructor, locate the following code:

bindingGroup.addBindingListener(new AbstractBindingListener() {
@Override
public void targetChanged(Binding binding, PropertyStateEvent event) {

// save action observes saveNeeded property
setSaveNeeded(true);

}
});

This adds a binding listener (essentially an event listener) to the group of bindings. It is a new
AbstractBindingListener that overrides the targetChanged method that fires when the target
component is changed. This in turn sets the class member variable saveNeeded to true, which
in turn enables the Save button that is displayed on the form.

Add a debugging statement to the code so that it looks like the following:

bindingGroup.addBindingListener(new AbstractBindingListener() {
@Override
public void targetChanged(Binding binding, PropertyStateEvent event) {

// save action observes saveNeeded property
setSaveNeeded(true);
System.out.println("targetChanged:" + binding.getTargetValueForSource());

}
});

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 439

8954Ch15.qxp 1/28/08 11:42 AM Page 439

Next, we need to change the “Update Source When” field for one of the components by
performing the following steps:

1. In the Form Editor window, select the Design view for the BeansBindingSampleView class.

2. Right-click the text field next to the “Description” field label and select Properties from
the context menu.

3. On the Binding tab of the Properties window, locate the text property and click the
ellipsis button next to its value. The Bind window will open.

4. Click the Advanced tab in the Bind window.

5. For the “Update Source When” field, select the value “Enter is pressed or focus is lost.”

6. Click the OK button to close the Bind window.

7. Click the Close button to close the Properties window for the “Description” text field.

8. Finally, run the project.

Once the project has run, make sure the Output window is open and select a record in the
data grid. Click inside the “Description” text field and type several characters. If you look at the
Output window, you will see nothing. Click outside the field. The Output window will display
the following:

targetChanged : value: Plain doughnut with white sugar coatingTYPING

The characters “TYPING” represent the new characters that were added to the field. They were
not output into the Output window until the text field lost focus due to the setting of the
“Update Source When” field. When the focus of the component was lost, the targetChanged
method that was overridden in the binding listener was executed, thereby triggering the
System.out.println.

To see this more clearly, click inside the text field next to the “Name” label. Type the char-
acters 12345 one at a time, pausing for a second after each character. If you watch the Output
window, you will see one line of text at a time appear as the targetChanged method is executed,
eventually displaying the following results:

targetChanged : value: Sugared1
targetChanged : value: Sugared12
targetChanged : value: Sugared123
targetChanged : value: Sugared1234
targetChanged : value: Sugared12345

This is due to the default setting for the “Update Source When” field of the “Name” text field,
which is set to “While typing.”

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS440

8954Ch15.qxp 1/28/08 11:42 AM Page 440

Writing a Custom Validator
As discussed earlier, you have the ability to specify a Validator for a source component in the
Bind window. As input is entered into a source component, it can be validated and either
accepted or rejected before syncing with the target component. In this section we create a
custom validation component and tie it to the “Name” and “Description” text fields of the
BeansBindingSampleView class.

First, create a new Java class using the New File wizard:

1. Right-click the project name in the Projects window and select New ➤ Other.

2. Select Java from the list of Categories in the left pane and select Java Class from the list
of File Types in the right pane.

3. Click the Next button.

4. On the Name and Location screen, specify a value for the new class, such as
MyTextValidator.

5. Specify a package, such as com.pronetbeans.examples.validators.

6. Click the Finish button.

Once NetBeans finishes generating the stub of the class, it will open in the Source Editor:

package com.pronetbeans.examples.validators;

/**
*
* @author Adam Myatt
*/
public class MyTextValidator {

}

To continue, change the code so the class extends the org.jdesktop.beansbinding.
Validator class. If you do not use the fully qualified class name you can right-click in the
Source Editor and select Fix Imports to add the missing import statement to your code.

An error glyph will appear in the margin, since the MyTextValidator class does not imple-
ment all the abstract methods from the Validator class. Click the glyph in the margin and select
“Implement All Abstract Methods” from the suggestion that appears. A method stub will be gen-
erated as follows:

@Override
public Validator.Result validate(Object arg0) {

throw new UnsupportedOperationException("Not supported yet.");
}

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 441

8954Ch15.qxp 1/28/08 11:42 AM Page 441

Change the method to actually validate the input, for example:

@Override
public Validator.Result validate(Object arg0) {

Validator.Result result = null;
if(arg0 instanceof String) {

String sResult = (String) arg0;

if(sResult.indexOf('$')!=-1) {
result = new Validator.Result("123", "Invalid dollar sign");
System.out.println("The text value contained a dollar sign.");

}
}

return result;
}

The method now defines a Validator.Result. This is the expected object that will be
returned. It is initialized to null since the method should return null if the input is valid. For
the sake of sanity, I check the Object argument passed in to see whether it is a String. If it is, I
then perform some sort of validation on the text. In this example I check for the existence of
the dollar sign character. Perhaps in this application I do not want data entry staff entering
pricing information into these fields

If the dollar sign character is found anywhere in the String, the code instantiates an
instance of Validator.Result. The first argument to the constructor is a String representing a
meaningless error code. This can be null or something meaningful in your application. The
second argument in the constructor is the error message that is typically logged in the event
that the Validator finds the input invalid.

To add the custom validator to the BeansBindingSampleView form, you have to copy and
paste it. Look in the Projects window and locate the MyTextValidator class node in the com.
pronetbeans.examples.validators package. Right-click the node and select Copy from the
context menu.

Next, open the BeansBindingSampleView class in the Form Editor. If the Inspector window
is not displayed, open it by selecting Window ➤ Navigating ➤ Inspector from the main menu.
Right-click the top node, “Form BeansBindingSampleView,” and select Paste from the context
menu. If you look at the bottom of the list, an instance of the MyTextValidator class will be
displayed.

To configure the “Name” and “Description” text fields, perform the following steps:

1. Select the “Name” text field. Right-click the component and select Properties from the
context menu.

2. Select the Binding tab of the Properties window.

3. Locate the text property and click the ellipsis button next to it. The Bind window will
open.

4. Click the Advanced tab in the Bind window.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS442

8954Ch15.qxp 1/28/08 11:42 AM Page 442

5. Select the Validator drop-down field and choose the MyTextValidator instance.

6. Click the OK button to close the Bind window. Click the Close button to close the
Properties window.

7. Repeat steps 1 through 6 with the “Description” text field component.

Once you have configured the text field component to use the MyTextValidator, run the
project. When the BeansBindingSampleView form opens, select a record in the data grid. Then
click inside the “Name” text field and type several characters, such as ABC. Remember that the
“Update Source When” field in the Bind window for the “Name” text field is set to “While typ-
ing.” As you type inside the text field, the corresponding value in the data grid is synced and
displays each new character. Now, type a dollar sign character. Notice that the corresponding
value in the data grid did not update. Type several other characters. The value in the data grid
still does not update. If you delete the dollar sign from the “Name” text field, you will notice
that the corresponding value in the data grid updates to the new value. This occurs because
the dollar sign has been deleted and the MyTextValidator.validate returns null.

Summary
This chapter discussed a number of topics related to Java and Swing GUI development. First,
it reviewed how to create a simple Java GUI application. It discussed the basics of creating a
project, creating a basic JFrame class, and how to manipulate the class in the Form Editor.

The chapter then went on to review different tools that NetBeans provides along with the
Matisse GUI Builder, such as the Palette window with Swing GUI components, the Form Edi-
tor, and handling component events.

A sample application was developed that demonstrated how to implement basic text-to-
speech capabilities. The chapter reviewed how to create the form, add components to it, and
download a third-party library and use it in the project.

Next, the chapter went on to discuss the Swing Application Framework, JSR-296. This pro-
vides a number of conveniences and tools for creating GUI applications. Step by step we created
a sample Java Desktop Application project and demonstrated the usage of actions and how to
develop a GUI form that uses them.

Finally, the chapter discussed Beans Binding, JSR-295. This API provides the ability to
connect properties of two components together so that data between them is synced. You can
use this to update a database field when a form component value is changed or change values
of database fields or bean properties using visual components like sliders. NetBeans integrates
well with Beans Binding by providing application shells, wizards, and tools to enable usage of
the framework.

The chapter reviewed how to create a sample database, create a Java Desktop Application
project, and configure a GUI form to use binding effectively. It concluded by using some of the
binding-related tools and writing a custom validator for validating input.

CHAPTER 15 ■ DEVELOPING GUI APPLICATIONS 443

8954Ch15.qxp 1/28/08 11:42 AM Page 443

8954Ch15.qxp 1/28/08 11:42 AM Page 444

Developing Rich Client
Applications

Rich client applications are applications written for the desktop. After several years in which
the Web has been the dominant target for application developers, the desktop is increasingly
undergoing a resurgence in popularity. This is especially true in the context of Java Web Start
technology, which enables desktop applications to be distributed via the Web. Java and the
Swing Toolkit on the desktop are both becoming a more viable option, particularly in light of
the great performance strides made in Java and Swing in JDK 6.

However, a typical hindrance to the creation of medium- to large-size applications is the
amount of boilerplate code that needs to be written at the start. Everything, from the applica-
tion’s life cycle to its windowing system, menu bars, and options settings, for example, need to
be created from scratch, before the domain-level items, that is, the business logic, can begin to
be added. Typically, developers spend more time on the infrastructure than on the domain,
whereas the domain is the real added value they provide to their users. It is in this area that
NetBeans offers a tailor-made solution.

The infrastructure, on top of which the IDE is created, called the NetBeans Platform, can be
extracted and reused as a framework for your own applications. Similar to how the JavaServer
Faces framework provides a predefined out-of-the-box starter kit for web development, so the
NetBeans Platform provides an extensive infrastructure for application developers engaged in
Swing-based desktop development.

The benefits of using the NetBeans Platform, the full range of features it provides, practi-
cal steps for getting started, and a demo of a complete application are covered in this chapter.
The demo is necessarily small, but, despite that, several of the main principles of the NetBeans
Platform will come to light when you work on that part of the chapter. However, for a full
examination of the NetBeans Platform and all that it has to offer, you are advised to read Rich
Client Programming: Plugging into the NetBeans Platform (Prentice-Hall, April 2007).

445

C H A P T E R 1 6

8954Ch16.qxp 1/28/08 11:43 AM Page 445

Features Provided by the NetBeans Platform
The NetBeans Platform provides the following main features:

• User interface management: The NetBeans Platform provides Windows, menus, toolbars,
and other presentation components. You will write modules that the NetBeans Platform
will automatically manage for you, saving you time and producing cleaner, more bug-
free code.

• Data and presentation management: The NetBeans Platform, principally via the Window
System API, Visual Library API, and Explorer & Property Sheet API, provides a rich set of
user interface elements for presenting data to the user and for letting the user manipu-
late that data.

• Setting management: You can manage saving and restoring settings via the Options
Settings API and the NbPreferences API. These are easy to implement and provide a
mechanism for storage that is safe, simple, transparent, and often automatic.

• Graphical editing: By using NetBeans IDE as the SDK for the NetBeans Platform, you can
use the “Matisse” GUI Builder to create drag-and-drop graphical views of data. In addition,
the Visual Library API will let you put together complex modeling and graphing views.

• Editor: Applications built on the NetBeans Platform can reuse the NetBeans Editor,
which is a powerful and extensible tool set that can be extended and customized. You
can use it independent of the NetBeans Platform.

• Wizard framework: The NetBeans Platform provides NetBeans APIs for easily building
extensible, user-friendly wizards to guide you through more complex tasks, generate
common artifacts, and set up project source structures.

• Storage management: This is an abstraction of file-based data access. Files in the NetBeans
Platform’s paradigm may be local files, or they may exist remotely. For example, files could
exist on an FTP server, in a CVS repository, in an XML file, or in a database. Where this data
is stored is completely transparent to other modules that work with this data.

• A huge selection of additional components: The NetBeans IDE uses features such as its
Favorites window and Component Palette that are provided by loosely coupled mod-
ules. Since they are loosely coupled, they lack strong dependencies on each other and
can easily be reused by any other application created on top of the NetBeans Platform.
As a result, you can simply adopt NetBeans IDE’s versioning support, specialized edi-
tors, specialized UI components, remote data access via FTP, other transports, and
most other features typical to NetBeans IDE. The NetBeans IDE modules, as well as
many others, can provide convenient ways to work with a variety of Java and Internet
technologies via plugins that any application can reuse.

• Internet-based update delivery: Applications based on the NetBeans Platform can use Java
Web Start technology to deliver custom sets of modules as updates based on a user’s role,
for complex applications. A Web Start–enabled application is always up to date and com-
bines the advantages of centralized management and deployment with the advantages of
a rich client user experience. For non-Web Start applications, you can simply add a Plugin
Manager, which lets the user download updates or new functionality via the Web.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS446

8954Ch16.qxp 1/28/08 11:43 AM Page 446

Getting Started
Getting started with the NetBeans Platform is as simple as downloading the NetBeans IDE,
which is a superset of the NetBeans Platform. NetBeans IDE is also the NetBeans Platform’s
software development kit (SDK). Obtaining the NetBeans Platform itself means removing the
modules that are specific to theNetBeans IDE. Tools in the NetBeans IDE make this process
very easy, as is shown later. Removing the NetBeans IDE’s modules will leave you with the
NetBeans Platform, the small subset of NetBeans IDE that forms its core.

Alternatively, however, you can use any other IDE, instead of the NetBeans IDE, for devel-
oping NetBeans Platform applications. In this case, you would download just the NetBeans
Platform. A separate download providing only the NetBeans Platform is available via the
Download section of http://www.netbeans.org. Once you have the NetBeans Platform, you
can use it as a runtime container and deploy the modules you create to it. However, prior to
the phase where you begin developing your modules in a different IDE, the wizards that
NetBeans IDE provides for generating project source structures and NetBeans API stubs are
unmissable, and, until alternative IDEs provide similar tools for setting up a source structure
and creating API stubs, NetBeans IDE is a “must have” when it comes to getting started with
the NetBeans Platform.

Though once you have the source structures and NetBeans API stubs available, you can
simply use any other IDE to develop them and then return to the NetBeans IDE for deployment
and debugging, this chapter assumes you are using the NetBeans IDE as the SDK for the entire
development process on top of the NetBeans Platform.

Terminology
A small set of terms is germaine specifically to the NetBeans Platform. They are used repeatedly
in this context, and, before continuing, we briefly outline them here.

• NetBeans Platform: The skeleton application that provides a common basis for Swing
applications.

• NetBeans Platform application: An application created with the NetBeans Platform as
its starting point.

• NetBeans Runtime Container: The minimal configuration needed for modular develop-
ment. The container consists of the Utilities API, the Module System API, the FileSystems
API, Bootstrap, and Startup, as shown in Figure 16-1. This last glues the other pieces
together. This minimal subset of the NetBeans Platform provides a basis for headless
deployment, class loading, and dynamic enablement/disablement of features in an
application.

• NetBeans System FileSystem: The general registry of an application’s configuration data.
It is built from the layer.xml configuration files of all the modules in the application,
together with a read/writable directory on disk. Among other things, NetBeans Platform
applications store a wide variety of data relating to the user interface in the System
FileSystem. For example, the System FileSystem contains a folder called “Menu,” which
contains subfolders with names such as “File” and “Edit.” These subfolders contain files
that represent Java classes that implement the actions that appear in the File and Edit
menus in the application.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 447

8954Ch16.qxp 1/28/08 11:43 AM Page 447

http://www.netbeans.org

Figure 16-1. Relationship of the APIs in the NetBeans Runtime Container

• NetBeans Module: A single building block of a NetBeans Platform application. A module
consists of a group of Java classes that provides an application with a specific feature.
The Java classes use the Java Manifest file to declare the JAR as a module.

• NetBeans layer file: Each module provides an XML file known as a layer file. Normally,
the file is named layer.xml. A module uses its layer file to register its functionality in
the NetBeans System FileSystem. For example, if a module provides actions, it will reg-
ister these actions in the layer file, where it will specify how the actions will be invoked.
If the action will be invoked from the File menu, the module registers the action in the
“Menus/File” folder.

• NetBeans APIs: The public interfaces and classes available to NetBeans Platform
application developers. You’ll find an overview at the end of this chapter.

For a full conceptual explanation of these terms and their relationships to one another, see
Rich Client Programming: Plugging into the NetBeans Platform (Prentice-Hall, April 2007).

The next section explores the tools that NetBeans IDE makes available specifically for
NetBeans Platform developers.

NetBeans Platform SDK
This section introduces you to all of the NetBeans Platform–related tools in the NetBeans Plat-
form SDK, that is, the NetBeans IDE. You will find these tools very useful as you create NetBeans
Platform applications. At the very least, it is good to be aware of them, for you might need them
and at that point it will be good to know they’re there.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS448

8954Ch16.qxp 1/28/08 11:43 AM Page 448

Project Templates
The NetBeans IDE comes with a set of project templates that make setting up a module’s source
structure as simple as clicking through a wizard. Open the New Project wizard (Ctrl+Shift+N)
and you will see three project templates, as shown in Figure 16-2, that set up three project
structures that relate to NetBeans Platform development.

Figure 16-2. New Project wizard category that provides the three NetBeans module project types

The project templates shown in Figure 16-2 are as follows:

• Module: Creates the source structure of a single building block of your rich client
application.

• Module Suite: Creates the source structure of a rich client application. By default, all the
modules that make up the NetBeans IDE are included in the application this wizard
creates. To exclude modules or clusters of related modules, you need to right-click the
application project node, choose the Properties menu item, and use the Libraries tab to
exclude the clusters and modules you do not need.

• Library Wrapper Module: Creates a module that holds one or more third-party libraries,
such as Log4J and JDom. The libraries are those needed by one or more of the modules in
the suite. It makes sense to create a separate module for each of your third-party libraries
so that whenever one of them is updated by their owner, you can distribute updates easily
and with as little impact on the existing modules as possible. For example, if you have a
library wrapper module for library Log4J, when library Log4J’s version number incre-
ments, you would create a new version of your module and distribute that module to
your users while all the other modules remain unchanged.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 449

8954Ch16.qxp 1/28/08 11:43 AM Page 449

File Templates
Once you have created a module, file templates are available to generate stubs for the most
commonly used NetBeans APIs. To use these, right-click the module project that you have cre-
ated; several of them will then be listed in a context pop-up menu. To see all of them, choose
Other. Then, within the New File wizard, you will find a Module Development category, which
contains all the file templates that relate specifically to NetBeans Platform development, as
shown in Figure 16-3.

Figure 16-3. New File wizard category that provides wizards for generating NetBeans API stubs

The following file templates are listed in Figure 16-3:

• Java SE Library Descriptor: Wraps a library such that, when the application is deployed,
the library is available in the Library Manager. The difference between this and the
Library Wrapper Module, discussed earlier, is that the Java SE Library Descriptor pro-
vides a module to the user, while the Library Wrapper Module provides it to a module.
In the latter case, the user does not see the library in the NetBeans IDE. In the former, it
is selected from the Library Manager in order to be put on the classpath, such as the
libraries used by applications making use of a web framework, such as Struts.

• Language Support: Provides a starting point for implementing a “Schliemann”
declaration-based editor. The Schliemann Project was introduced in NetBeans Platform
6 as a wrapper around the more complex Lexer API, to provide a simplified underlying
framework allowing for generic language support for languages such as JavaScript.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS450

8954Ch16.qxp 1/28/08 11:43 AM Page 450

• Action: Creates a class that will perform an action from a menu item or toolbar button,
depending on where it is registered in the layer.xml file. The wizard lets you register the
action in the appropriate place.

• JavaHelp Help Set: Creates all the files required by a JavaHelp set. A dummy HTML file is
also created.

• File Type: Lets the NetBeans Platform recognize a new file type. You can register a new
file type either by its extension or by its XML root element, if you are working with XML
files.

• Module Installer: Specifies code that should be executed at startup or shutdown of a
module. The best module installer is an empty one, since module installers add to the
startup time of an application.

• Options Panel: Lets you extend the Options window with new panels. In combination
with the NbPreferences API, you can enable the user to set options that relate to your
application.

• Project Template: Adds new samples to the New Project wizard in the NetBeans IDE.

• Update Center: Installs the URL to an XML file that defines an update center. The URL is
installed in the Plugin Manager, so the user does not need to do so manually.

• Window Component: Creates a new window that integrates with the NetBeans Platform
window system. Each window can be minimized/maximized, dragged/dropped, and
undocked from the window frame. You can use the “Matisse” GUI Builder to design the
content of the window.

• Wizard: Provides the stubs for a multistep set of dialogs, known as a “wizard.” Once you
have filled out the wizard stubs provided by the Wizard file template, the wizard can
serve to let the user create files, specify settings, or something else that needs to be
done over a guided series of steps.

As you can see from this list, some of the file templates are useful in adding something to
NetBeans IDE specifically (such as the Project Template wizard), while others are useful in the
context of any NetBeans Platform application (such as the Window Component wizard).

NetBeans Platform Manager
The NetBeans Platform Manager, shown in Figure 16-4, is a tool that lets you register multiple
NetBeans Platforms in the NetBeans IDE. Once you have registered a NetBeans Platform, you
can specify that modules or applications should compile against that specific NetBeans Platform.
You may want to do that if, for example, you are creating an application for an earlier version
of the NetBeans Platform. For example, you may want to use the tools provided by NetBeans
IDE 6 while creating an application to run on the 5.0 version of the NetBeans Platform. In such
a case, you would register NetBeans Platform 5.0 in the NetBeans Platform Manager and then
specify, in your module’s or your application’s Project Properties dialog box, that the applica-
tion should compile against NetBeans Platform 5.0.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 451

8954Ch16.qxp 1/28/08 11:43 AM Page 451

Figure 16-4. The NetBeans Platform Manager

Another use for the NetBeans Platform Manager is to allow quick and efficient browsing
through NetBeans API Javadoc. To do this, register the ZIP file containing the NetBeans
sources (which you can get from www.netbeans.org) by clicking the Add ZIP/Folder button in
the NetBeans Platform Manager (shown in Figure 16-4) and then choosing the ZIP file from
where you downloaded it on disk. Then you can hold down the Ctrl key and move the mouse
over the identifier of a class or other item defined in the NetBeans API Javadoc. When you do
so, the identifier becomes a blue hyperlink, as shown in Figure 16-5. When you click the link,
the corresponding NetBeans API source file opens, as shown here, so that you can read the
source code and related Javadoc, shown in Figure 16-6.

Figure 16-5. The editor, showing a hyperlink under the NetBeans API Node class

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS452

8954Ch16.qxp 1/28/08 11:43 AM Page 452

http://www.netbeans.org

Figure 16-6. The editor, showing what happens when you click the hyperlink in Figure 16-5

Navigating through NetBeans API Javadoc and sources in this way makes for easy reading
of the code. It is recommended that you set up the NetBeans Platform sources in this way, to
speed up your learning and simplify the development process.

Project Properties Dialogs
When you right-click on a module project’s node in the Projects window or Files window,
you can choose Properties. When you do so, you will see the Project Properties box shown in
Figure 16-7.

Figure 16-7. The Project Properties dialog, showing the modules available to the current module

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 453

8954Ch16.qxp 1/28/08 11:43 AM Page 453

A module project’s Project Properties box lists the following categories:

• Sources: Shows the module’s project folder on disk and sets the JDK of the sources.

• Libraries: Sets the modules containing the classes the current module can use.

• Display: Sets display name and other texts principally used by the Plugin Manager.

• API Versioning: Sets versioning information, including which packages are public.

• Build: Sets compiling and packaging information, such as the module’s license.

An application also has a Project Properties box. You can specify application-level settings
here, as indicated in Figure 16-8.

Figure 16-8. Project Properties dialog, showing the modules available to the current application

The Project Properties box for an application lists the following categories:

• Sources: Shows the application’s project folder on disk and sets the modules in the suite.

• Libraries: Sets the modules and groups of modules available to the current application.

• Build: Sets whether the suite is for an application or a collection of modules as well as
the display name, About box icon, and launcher name of the application.

• Splash Screen: Sets the application’s splash screen as well as the splash screen’s progress
bar and progress bar text.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS454

8954Ch16.qxp 1/28/08 11:43 AM Page 454

Context Menu Items
When you right-click a module, the module-related menu items shown in Figure 16-9 are avail-
able, that is, in addition to standard menu items such as “Close” and “Delete.” The context menu
lists the following items:

Figure 16-9. A section of the context menu items available to module project nodes

• Run: Runs the module, which installs it into a new instance of the IDE.

• Debug: Runs the module in debug mode.

• Profile: Attaches the Profiler to the module so that threads can be analyzed and bottle-
necks identified.

• Test: Runs the module’s JUnit tests.

• Install/Reload in Target Platform: Installs the module in a new instance of the IDE.

• Install/Reload in Development IDE: Installs the module in the current development IDE.

• Create NBM: Creates a binary file, similar to a ZIP file, that can be installed as a plugin.

• Generate Javadoc: Generate Javadoc for the module.

• Generate Architecture Description: Generates an architecture description document.

An application also has a set of menu items specifically tailored to applications, as shown
in Figure 16-10. The context menu lists the following items:

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 455

8954Ch16.qxp 1/28/08 11:43 AM Page 455

Figure 16-10. A section of the context menu items available to application project nodes

• Run: Runs the application.

• Debug: Runs the application in debug mode.

• Profile: Profiles the application, to analyze threads and identify bottlenecks.

• Build ZIP Distribution: Creates a binary of the application and archives it, with its
distribution structure.

• Build JNLP Application: Creates a Web Start–capable application.

• Run JNLP Application: Creates and runs a Web Start–capable application.

• Debug JNLP Application: Creates and runs a Web Start–capable application in debug mode.

• Build Mac OS Application: Creates a distribution of the application for Mac OS X.

• Create NBMs: Creates a binary NBM file for each of the modules in the suite, together
with an XML file, called the autoupdate descriptor, for defining an update center.

Now that I have introduced you to all the tools that NetBeans IDE, as the SDK of the
NetBeans Platform, provides to ease the development process, it’s time for you to create
a NetBeans Platform application.

Meeting the APIs Outside of the Platform
Before creating your first NetBeans Platform application, create a simple Java application that
makes use of some of the NetBeans APIs. Typically, an introduction to the NetBeans Platform
would begin by getting you to work with the NetBeans Platform. Here, however, you will sim-
ply make use of some of its APIs and then, once you are comfortable with them, move the
application to the NetBeans Platform. You will then look at the benefits of having done so. By
the end of this section, you will have created the small application shown in Figure 16-11.
When you run that application, you will have the file browser shown in Figure 16-12.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS456

8954Ch16.qxp 1/28/08 11:43 AM Page 456

Figure 16-11. The source structure of the simple Swing application you build in this section

Figure 16-12. The simple Swing application at runtime

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 457

8954Ch16.qxp 1/28/08 11:43 AM Page 457

You begin by putting the necessary NetBeans APIs on the application’s classpath. Then you
use them in a JFrame, to create a simple file browser. You will use the following NetBeans APIs:

• User Interface (UI) Utilities API (org.openide.awt.jar)

• Dialogs API (org.openide.dialogs.jar)

• Explorer & Property Sheet API (org.openide.explorer.jar)

• Nodes API (org.openide.nodes.jar)

• Utilities API (org.openide.util.jar)

For a brief description of each of these APIs, see the section titled “Summary of the Main
NetBeans APIs” at the end of this chapter.

Getting Started
You can begin creating your application by taking the following steps:

1. Create a Java application called “FileBrowser,” by using the wizard obtained when you
choose File ➤ New Project and then Java Application from the Java category.

2. Right-click the FileBrowser’s Libraries node and add the JARs listed earlier to your appli-
cation. You will find them in the platform7 directory, within the root directory where
you installed the NetBeans IDE. The first four are found in the platform7/modules sub-
directory, while the last, that is, org.openide.util, is found in the platform7/lib
subdirectory.

Using the Explorer & Property Sheet API
The Explorer & Property Sheet API provides a set of UI components that can render your
application’s data models. In the next section, you create a data model. A good thing about the
NetBeans APIs is this separation of concerns: data models are handled by the Nodes API, while
their views come from the Explorer & Property Sheet API. Changing the view on top of your
data model is generally as simple as replacing one view with another. You will see this in
action during this section.

Begin by exposing the UI components provided by the Explorer & Property Sheet API to
the IDE’s Component Palette. You do this so that you can drag-and-drop these views onto your
Swing container, just like any other Swing component. Here, your Swing container will be a
JFrame. You will see that the UI components the Explorer & Property Sheet API provides are
very useful for interacting with the data model provided by the Nodes API in the next section.

1. To do so, choose Tools ➤ Palette ➤ Swing/AWT Components. In the Palette Manager,
click “Add from JAR” and then browse to “org.openide.explorer.jar” in the NetBeans
root directory’s platform7/modules subdirectory.

2. Click Next. Select the beans shown in Figure 16-13.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS458

8954Ch16.qxp 1/28/08 11:43 AM Page 458

Figure 16-13. The Palette Manager, showing the beans available in the
Explorer & Property Sheet JAR

3. Click Next. Choose Swing Containers and then click Finish. Once you have a Swing
container, you will see that the Palette contains your new UI components, provided
by your selected beans. You now have the following new UI components:

• BeanTreeView: The class typically used for displaying nodes in a JTree-like
hierarchical structure.

• ChoiceView: Displays child nodes in a JComboBox.

• ContextTreeView: Displays a tree of nodes but not its leaves.

• ListView: Displays child nodes in a JList, optionally indented.

• MenuView: Displays child nodes in a JMenu.

• PropertySheetView: Displays node properties in a property sheet.

• TreeTableView: Combines a tree with a table, showing nodes in the tree and their
properties.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 459

8954Ch16.qxp 1/28/08 11:43 AM Page 459

You will not use ListTableView and IconView very much, and you may find that they are
being maintained less than the other views in the list. Explorer views are managed by the API’s
ExplorerManager class, which provides functionality to them, as needed. An explorer view
finds its Explorer Manager by looking up the AWT hierarchy until it finds it. You will work with
it in a later step.

1. In your FileBrowser application, create a JFrame called “Explorer.” Do so by right-
clicking the “FileBrowser” project node in the Projects window and then choosing
New ➤ JFrame Form. Type Explorer in the “Class Name” field and filebrowser in the
“Package Name” field. Click Finish.

2. Select the JFrame and open the Component Palette (Ctrl+Shift+8), if it isn’t open
already. From the Palette, drag-and-drop “ContextTreeView” and “ListView,” which you
added there earlier, onto your new “Explorer” JFrame. (These two views together will
display the files on disk.) Then resize them to a more manageable size, to get the gen-
eral layout shown in Figure 16-14.

Figure 16-14. The “Matisse” GUI Builder, showing the two dropped explorer views

3. Click the Source button in the top left corner of the GUI Builder. In the source, change
the class signature to implement ExplorerManager.Provider. The IDE’s lightbulb
hint prompts you to let it add an import statement for org.openide.explorer.
ExplorerManager. Next, it will prompt you to let it create an abstract method for you,
which it adds to the end of the class. You will fill this method out in the next step.

4. Declare an explorer manager to manage your explorer views:

private ExplorerManager em;

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS460

8954Ch16.qxp 1/28/08 11:43 AM Page 460

5. Next, instantiate it at the start of the constructor:

em = new ExplorerManager();

6. Return it in the getExplorerManager method, which was created in the previous step:

public ExplorerManager getExplorerManager() {
return em;

}

7. Now set the root of the node hierarchy, in the constructor, right after the statement
that creates the explorer manager:

em.setRootContext(FileNode.files());

■Note The referenced class in the preceding statement does not exist yet; you will create it in the next
subsection.

Using the Nodes API
In this subsection, you create the node hierarchy that will be shown by the explorer views you
defined in the previous section. Create a new Java class and name it FileNode. This class will
extend the NetBeans API AbstractNode class, a commonly used convenience base class. Set it
as your root node, and then create the node’s children beneath it:

public final class FileNode extends AbstractNode {

public FileNode(File f) {
super(new FileKids(f));
setName(f.getName());

}

public static Node files() {
AbstractNode n = new AbstractNode(new FileKids(null));
n.setName("Root");
return n;

}

}

The Nodes API requires you to pass a Children object to an AbstractNode’s constructor.
The Children object will create subnodes only when needed, such as when the user expands a
node in one of the explorer views. At this point, the addNotify method is called and the child
nodes are created. Children.Keys is typically used, here working with java.io.File, represent-
ing files on disk:

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 461

8954Ch16.qxp 1/28/08 11:43 AM Page 461

public final class FileKids extends Children.Keys<File> {

File file;

public FileKids(File file) {
this.file = file;

}

@Override
protected Node[] createNodes(File f) {

FileNode n = new FileNode(f);
return new Node[]{n};

}

@Override
protected void addNotify() {

if (file == null) {
File[] arr = File.listRoots();
if (arr.length == 1) {

arr = arr[0].listFiles();
}
setKeys(arr);

} else {
File[] arr = file.listFiles();
if (arr != null) {

setKeys(arr);
}

}
}

}

Your application is now complete. It consists of two explorer views, one that will list folders
and files on disk, the other of which will not show leaves. That is how file browsers typically dis-
play files. You are using the Nodes API and the Explorer & Property Sheet API in combination,
separating your data model from your views.

Running the Application
Finally, to run your application, use the Main class, which was generated for us when we created
the Java application:

public class Main {
public static void main(String[] args) {

Explorer.main(args);
}

}

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS462

8954Ch16.qxp 1/28/08 11:43 AM Page 462

Alternatively, or probably better, is to make the Explorer class be the main class instead
and to discard the preceding class altogether.

Right-click the application and choose Run. This displays the file browser. You can browse
through your file system, using an application built on top of the NetBeans APIs. Now remove
one or both of the views and replace them with one or more of the other explorer views in the
Component Palette. Then run the application again. For example, drag-and-drop IconView
and then run the application again. You will see the same nodes, but displayed in a different
view. The separation of concerns between data models and views provided by the NetBeans
APIs makes this possible.

However, even though the NetBeans APIs have made life more convenient, if you move the
application to the NetBeans Platform, you will gain a lot more besides. On the simplest level,
you will have a highly flexible window system and be able to bundle the Plugin Manager, which
will make it easy to add new plugins to extend your application. The next section goes into a lot
of detail about how to port your application and, in the end, what to do with the result.

Assembling a NetBeans Platform Application
In this section, you create your first NetBeans Platform application, using the NetBeans IDE to
do so. It will be a fully functioning application, with an independent life cycle, its own launcher,
and a splash screen. You will refer back to the tools introduced in an earlier section, and you
will get to know some more about the NetBeans APIs.

In creating your application, notice that you will be assembling it rather than creating it
from scratch. You will begin by using a wizard to create the framework of your application.
Next, you will add one single module, which will contain everything relevant from your origi-
nal application. You will bundle all the NetBeans modules you want to reuse in your own
application, such as the module that provides the Plugin Manager, so that your users will be
able to extend their distribution of your application easily.

Toward the end, you will brand the application such that various user interface elements
provided by the NetBeans Platform’s own modules will be hidden, because your application
will not need them. In taking these steps, you will be assembling the application, since most of
its pieces exist already, and you will provide only one specific module, that is, the module con-
taining the original application’s features.

Getting Started
To begin creating your application on the NetBeans Platform, take the following initial steps to
set up your framework.

1. Create a Module Suite project called “FileBrowser” by using the wizard obtained when
you choose File ➤ New Project and then Module Suite from the NetBeans Modules cat-
egory. Now you have the starting point of your application.

2. Create a Module project called “FileBrowserPlugin” by right-clicking the “FileBrowser”
application’s “Modules” node and choosing “Add New.” You now have the basis of your
application. It consists of a module suite called “File Browser,” which is your application
framework, containing one module called “FileBrowserPlugin,” as shown in Figure 16-15.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 463

8954Ch16.qxp 1/28/08 11:43 AM Page 463

Figure 16-15. The FileBrowser application, with one contributed module

However, right now your new “FileBrowser” application contains a lot more than one
module. In fact, it contains all the modules that are part of the NetBeans IDE. You do
not need all these modules in the simple application you will be creating in this chap-
ter. In the next step, you exclude all the unnecessary modules.

3. Right-click the “FileBrowser” application project node and choose Properties. The Pro-
ject Properties dialog opens. In the Libraries node, deselect all the “clusters” except
“platform7.” A cluster is a group of related modules. When you click OK, the only set of
modules your application provides will be those that make up the NetBeans Platform.

In addition, though, the application will include the one module that you created in
the previous step, that is, the module called “FileBrowserPlugin.” In the remainder of
this section, you move the relevant parts of the original “FileBrowser” application into
that module’s source structure.

Using the Window System API
Any GUI application needs to display an interface for user interaction. Typically, though, as
applications expand in size, JFrames simply are insufficient. Menus, toolbars, and a docking
framework are common requirements for medium- to large-sized applications. The NetBeans
Platform provides the framework for these features “out of the box.” You can plug your own
windows into its windowing system by means of the NetBeans Window System API’s
TopComponent class.

The Window System API provides several additional classes, for the placement and open-
ing of windows. But for the purposes of this demo, you focus specifically on the TopComponent
class. The TopComponent class is a JPanel with additional methods that let it integrate into the
NetBeans Window System. In this section, you use a wizard to create a TopComponent class.

After you create your TopComponent class, you will use the “Matisse” GUI Builder to design
its layout and content. The content will come from your original application. You will simply
copy and paste the content of your original JFrame onto your TopComponent, in the “Matisse”
GUI Builder’s Design mode. You will also move the Java source files from your original simple
Swing application into your module’s source structure. For the purposes of this simple appli-
cation, you will then have completed porting your application.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS464

8954Ch16.qxp 1/28/08 11:43 AM Page 464

Typically, however, the porting process is much longer and more involved. For this reason,
the NetBeans Platform Porting Tutorial (http://platform.netbeans.org/tutorials/60/
nbm-porting-basic.html) provides a full step-by-step procedure you can follow to learn about
the full process.

1. Right-click the “FileBrowserPlugin” project node and then choose New ➤ Window
Component.

2. In the New Window wizard, choose “editor” in Window Position. By doing this, you
specify that the window will appear in the “editor” area of your application, that is, the
main area of your application where, in the NetBeans IDE, the editor is shown. Also,
select “Open on Application Start,” which adds code that will open the new window
when the application first starts up. Click Next.

3. Type FileBrowser in the “Class Name Prefix” field. The wizard shows you the files that
will be created, all prefaced by FileBrowser. Optionally, you could add an icon, which
must have a dimension of 16✕16 pixels. The icon, if you select it, will be shown in the
window’s tab. Click Finish. The IDE adds a new class that extends the NetBeans API
TopComponent class to your module’s source structure. In addition, some XML files are
added, for persistence of the window’s state. Typically, you never need to touch these
XML files. A class that extends the NetBeans API CallableSystemAction class is also
created. In the layer file, entries have been added that will let the user invoke the
action from the Window menu. When the user invokes the action, the window will
open, if it is closed.

4. Double-click the FileBrowserTopComponent class and notice that it opens in the “Matisse”
GUI Builder. In the next step, you will copy the user interface from your original applica-
tion onto this window class in the Design mode.

5. In your original application, expand the “Source Packages” folder and the filebrowser
package, and then double-click the “Explorer” JFrame. It then opens in the Design mode
of the “Matisse” GUI Builder.

6. Select both explorer views, right-click, and then choose Copy.

7. Open the FileBrowserTopComponent class in the GUI Builder’s Design mode and then
choose Paste.

8. Click the Source view of the FileBrowserTopComponent class. Notice that the class
extends TopComponent, which is the NetBeans API class discussed earlier. Also notice the
red error marks in the right sidebar. Click one of them and notice that the org.openide.
explorer package is missing. To add this package, right-click the “FileBrowserPlugin”
module and choose Properties. In the Libraries category, click Add Dependency. Put
org.openide.explorer in the Filter field, and you will then see “Explorer & Property
Sheet API” in the Module list. Select it and click OK. Click OK again to close the Project
Properties box and to confirm that you want to declare this dependency. In the editor,
notice that the red error marks have disappeared.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 465

8954Ch16.qxp 1/28/08 11:43 AM Page 465

http://platform.netbeans.org/tutorials/60/nbm-porting-basic.html
http://platform.netbeans.org/tutorials/60/nbm-porting-basic.html

9. Now, as in the original “Explorer” JFrame, let the TopComponent class implement
ExplorerManager.Provider. As before, click the lightbulb in the left sidebar and the
appropriate import statement is added; click it again, and the required method is
created at the end of the class. Return the ExplorerManager from this method, as you
did in the “Explorer” JFrame.

10. Before going further, copy the FileNode class and the FileKids class from the original
application into the module’s main package, where the other files are already found.
Open one of them and notice that the org.openide.nodes package is required but miss-
ing. Repeat step 8, and you will find that the Nodes API is needed. Make sure to set a
dependency on it before continuing.

11. Back in the FileBrowserTopComponent class, instantiate the ExplorerManager and set its
root context as before. The TopComponent constructor should now be as follows:

private FileBrowserTopComponent() {
em = new ExplorerManager();
em.setRootContext(FileNode.files());
initComponents();
setName(NbBundle.getMessage(FileBrowserTopComponent.class, ➥

"CTL_FileBrowserTopComponent"));
setToolTipText(NbBundle.getMessage(FileBrowserTopComponent.class, ➥

"HINT_FileBrowserTopComponent"));
// setIcon(Utilities.loadImage(ICON_PATH, true));

}

12. Compile the FileBrowserPlugin class. Compilation should succeed without a problem.
If it does not, make sure to fix the problem before continuing.

This simple porting exercise is now complete. The user interface you had originally is now
defined in the TopComponent. The supporting Java source files are in the module’s source struc-
ture. You have set the required dependencies on the Nodes API and the Explorer & Property
Sheet API. The other required depdendencies were set for you by the New Window wizard.

Branding the Application
If you were to run your application right now, all the modules that make up the NetBeans Plat-
form would be installed and the related user interface elements from all these modules would
be displayed. However, even though you need all the modules provided by the NetBeans Plat-
form, you do not need all their user interface elements. For example, you do not need all the
menu items that the NetBeans Platform’s modules provide. In this subsection, you create a
new module.

You do so for one purpose only: to brand the application. You will do this by deleting items
from this new module’s layer file. When all the layer files are merged and the application starts,
your branding module’s layer file will cause the menu items you deleted not to be displayed.

Create a new module, as done in a previous section, and name it “FileBrowserBranding.”
In the Module wizard, make sure the new module will be added to your already existing File-
Browser application. When you complete the wizard, you should see Figure 16-16.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS466

8954Ch16.qxp 1/28/08 11:43 AM Page 466

Figure 16-16. The FileBrowser application, with functionality and branding module

Now you will remove the unnecessary menu items from the new module’s layer file. Expand
the Important Files node. Then expand the XML Layer node. When you expand this specific
node, two subnodes appear. The first shows all the contributions that the current module has
made to the System FileSystem. The second shows everything provided by all the modules that
make up the current application. Since you want to exclude menu items provided by other mod-
ules, expand the second node. Within that node, expand “Menu Bar,” and then right-click all the
nodes you want to exclude from your own application. Do the same within the “Toolbars” node.

You do not need any toolbars in your simple application, so you can right-click all the
nodes within the “Toolbars” node, and then choose Delete. In the “Menu Bar” node, we only
need “File|Exit,” “Tools|Plugins,” and “Tools|Options.” You can delete all the other items within
that folder. Figure 16-17 shows how the relevant part of the project structure will look while
you are performing this task.

Figure 16-17. Hiding menu items contributed by NetBeans Platform modules

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 467

8954Ch16.qxp 1/28/08 11:43 AM Page 467

When you now open the layer file in the editor, you will see the effect of the deletions you
performed in the previous step. Many folders and files are listed, with _hidden appended. You
could have typed these into the layer file manually, but the user interface in the previous step
simplified this process for you.

<filesystem>
<folder name="Menu">

<file name="Edit_hidden"/>
<folder name="File">

<file name="Separator2.instance_hidden"/>
<file name="Separator3.instance_hidden"/>
<file name="Separator4.instance_hidden"/>
<file name="org-openide-actions-PageSetupAction.instance_hidden"/>
<file name="org-openide-actions-PrintAction.instance_hidden"/>
<file name="org-openide-actions-SaveAction.instance_hidden"/>
<file name="org-openide-actions-SaveAllAction.instance_hidden"/>
<file name="org-openide-actions-SaveAsAction.shadow_hidden"/>

</folder>
<file name="GoTo_hidden"/>
<file name="Help_hidden"/>
<folder name="Tools">

<file name="Separator1.instance_hidden"/>
<file name="Separator2.instance_hidden"/>
<file name="Separator3.instance_hidden"/>
<file name="org-netbeans-modules-favorites-templates- ➥

TemplatesAction.instance_hidden"/>
<file name="org-openide-actions-ToolsAction.instance_hidden"/>

</folder>
<file name="View_hidden"/>
<file name="Window_hidden"/>

</folder>
<folder name="Toolbars">

<file name="Edit_hidden"/>
<file name="File_hidden"/>
<file name="Memory_hidden"/>

</folder>
</filesystem>

You have now done some basic branding. Other types of branding could cover icons,
localization, splash screen, and so on. You could brand your application within a separate
module, as done here, or you could do so within one of the functionality modules. However,
if you provide branding in a separate module, as done here, you are able to make multiple
branding modules available, so your end user would have a choice. Possibly one branding
module would hide different items to another branding module, for example. In this way, you
could provide tailor-made solutions for different kinds of users of the same application. There
are several ways of doing this, but this is one of them.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS468

8954Ch16.qxp 1/28/08 11:43 AM Page 468

Running the Application
Right-click the FileBrowser application and choose Run. The application starts up, first show-
ing the splash screen. Then the the file browser is deployed again, as before, but this time on
the NetBeans Platform, as shown in Figure 16-18.

Figure 16-18. The file browser deployed to the NetBeans Platform

Since you have created a very simple application, it doesn’t do much more than the origi-
nal. However, it is now integrated into the NetBeans Platform, so you can easily extend it, as a
later section in this chapter shows. You ported the user interface of our application to a Top-
Component.

Distributing the Application
Now that our application is complete, we can distribute it. We can let the IDE create a ZIP
distribution or a JNLP application. We begin by creating a ZIP distribution.

1. Right-click the application and choose Build ZIP Distribution. The IDE creates cross-
platform launchers for your application and creates an archive in the application’s
“dist” folder.

2. Open the Files window (Ctrl+2) and then expand the “dist” folder to see the newly
created archive file shown in Figure 16-19.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 469

8954Ch16.qxp 1/28/08 11:43 AM Page 469

Figure 16-19. The newly created archive file in the Files window

In addition to creating a ZIP distribution, you can create and run a Java Network Launch
Protocol (JNLP) application. Java Web Start, another name for JNLP, is a mechanism for pro-
gram delivery through a standard web server. Typically initiated through the browser, these
programs are deployed to the client and executed outside the scope of the browser. You can
use this technology to deliver your NetBeans Platform application to your end users.

Right-click the application and choose “Build JNLP Application,” “Run JNLP Application,”
or “Debug JNLP Application.” The Files window (Ctrl+2) shows the JNLP files that are created as
required by the Web Start technology. Refer to the JNLP product page (http://java.sun.com/
products/javawebstart/) for details on how to use them, now that you have all the necessary
files.

When you distribute your application via JNLP, you are making the complete application
available to your users. You continue to be in full control of the application, and whatever is
provided by the application is what all your users will have available to them. However, if you
distribute your application as a ZIP file, the users will be able to run it locally, on their own sys-
tem. In that case, you have less control. On the other hand, the users will be able to pick and
choose the additional functionality they want to make use of. Additional functionality is pro-
vided by new modules, distributed as plugins to your end users. The next section discusses
this aspect of application distribution.

Updating the Application
One of the menus you did not remove when you branded the application was the Tools menu.
Within it, the users will see Options and Plugins. When they select Options, they will see the
Options window. You can use the Options Dialog and SPI to extend the Options window with

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS470

8954Ch16.qxp 1/28/08 11:43 AM Page 470

http://java.sun.com/products/javawebstart
http://java.sun.com/products/javawebstart

new panels to let your users define settings specific to your application. However, when your
users select Plugins, they will see the Plugin Manager.

Via the Plugin Manager, they will be able to add new plugins. Distributing plugins can be
done in several ways. You could put them on a server, for example. The users would then need
to download them and use the Downloaded tab in the Plugin Manager to install them.

In addition, you can let the IDE generate an XML file called the “autoupdate descriptor.”
The descriptor defines the location of your modules as well as other information, such as their
descriptions. When you put the descriptor on a server, your users will be able to register it in
the Settings tab in the Plugin Manager. Then they will be able to use the Plugin Manager to
access your plugins and install them into their application.

To create this descriptor, right-click the application and choose Create NBMs. Then look
in the “build/updates” folder, in the Files window, where you will find the updates.xml file.
That file is the application’s autoupdate descriptor. Open it in the editor and notice that your
modules are defined there, between <module> tags. Information between these tags is taken
from various sources, such as a module’s manifest.

Further Reading
The following resources will bring you further information:

• NetBeans IDE JavaHelp (Help ➤ Help Contents in NetBeans IDE 6.0)

• NetBeans Platform home (http://platform.netbeans.org/)

• NetBeans 6 API list (http://bits.netbeans.org/6.0/javadoc/index.html)

• NetBeans API changes from 5.5 to 6 (http://bits.netbeans.org/6.0/javadoc/
apichanges.html)

• Rich Client Programming: Plugging into the NetBeans Platform by Tim Boudreau,
Jaroslav Tulach, and Geertjan Wielenga (Prentice-Hall, April 2007)

• NetBeans developer FAQ (http://wiki.netbeans.org/wiki/view/NetBeansDeveloperFAQ)

• NetBeans Platform Porting Tutorial (http://platform.netbeans.org/tutorials/60/
nbm-porting-basic.html)

• NetBeans Platform mailing list (dev@openide.netbeans.org)

Summary of the Main NetBeans APIs
Though there are many NetBeans APIs supporting the features described in the previous sec-
tions, the ones you will use on a daily basis, to a greater or lesser extent, are the following:

• Actions API: Provides system actions, such as Copy and Delete, which can optionally be
implemented context sensitively. The actions can be invoked from a menu item, a tool-
bar button, a keyboard shortcut, or combinations of these.

• Auto Update Services API: Lets a module access the Plugin Manager to programmati-
cally download, install, uninstall, enable, or disable modules made available there.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 471

8954Ch16.qxp 1/28/08 11:43 AM Page 471

http://platform.netbeans.org
http://bits.netbeans.org/6.0/javadoc/index.html
http://bits.netbeans.org/6.0/javadoc/apichanges.html
http://bits.netbeans.org/6.0/javadoc/apichanges.html
http://wiki.netbeans.org/wiki/view/NetBeansDeveloperFAQ
http://platform.netbeans.org/tutorials/60/nbm-porting-basic.html
http://platform.netbeans.org/tutorials/60/nbm-porting-basic.html
mailto:dev@openide.netbeans.org

• Command Line Parsing API: Lets a module participate in parsing an application’s com-
mand line.

• Common Palette API: Provides the infrastructure of a palette, which you can enable and
then populate with items, enabling users to drag/drop items into an editor or window.
One use is where you want to let the user add code snippets to the editor by dragging-
and-dropping an item from the palette.

• Datasystems API: Sits on top of File Objects, provided by the File System API, to give File
Objects logical behavior, such as a name and a set of operations.

• Dialogs API: Provides general classes for showing and working with dialogs, user
messages, and wizards.

• Editor Code Completion API: Lets you add an autocomplete feature to your custom
editor or to one of the existing editors.

• Explorer & Property Sheet API: Provides explorer views that render nodes. Swing compo-
nents are provided for rendering nodes in structures such as trees, lists, combo boxes,
tables, and menus.

• File System API: Provides access to the NetBeans concept of a file system, which is a
virtual file system, with the flexible NetBeans File Objects instead of java.io.File.

• I/O APIs: Provides access to the Output window, together with the possibility of creating
hyperlinks in the Output window, which link back to a line in an editor.

• JavaHelp Integration API: Provides integration with the JavaHelp API.

• Lexer API: Lets you create a sequence of tokens to enable, for example, syntax coloring,
code completion, or hyperlinking in the editor.

• Module System API: Provides the pluggable modular architecture underpinning
NetBeans Platform applications.

• MultiView Windows API: Lets you create an editor with multiple panels, which can be
source editor panels or provided by Swing components.

• Navigator API: Provides a dedicated window for showing the structure or outline of a
document.

• Nodes API: Lets you present hierarchical structures visually.

• Options Dialog and SPI: Lets you extend the Options window with your own panels for
user settings.

• Progress API: Provides access to a progress bar integrated in the bottom right corner of
your application.

• Task List API: Provides a dedicated window for showing problems, such as errors and
warnings, associated with the current folders, documents, or both.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS472

8954Ch16.qxp 1/28/08 11:43 AM Page 472

• UI Utilities API: Provides utility classes relating to the visual appearance of your appli-
cation. For example, you use the StatusDisplayer class to write to the application’s
status bar.

• Utilities API: Provides general classes needed by your application, such as the classes
for the registration and usage of the Lookup mechanism, enabling intermodular
communication.

• Visual Library API: Provides reusable and extendable widgets and actions for visualiza-
tion, graphs, and modeling.

Summary
Though the full length and breadth of the NetBeans Platform could not be covered within the
space of a single chapter, you should now have a basic overview of several of its key aspects.
The NetBeans IDE’s tools for NetBeans Platform development have been covered in some
detail. You have also built a basic application on top of the NetBeans Platform. Though simple,
it shows several of the main advantages of NetBeans Platform applications. For example, the
pluggability of your new application has been outlined, as well as its windowing system. In
addition, you have seen how your application has been assembled from preexisting modules
provided by the NetBeans Platform combined with your own modules. Your first module pro-
vided your application’s new functionality; your second module branded the application.

The main feature that has not been touched on here is the NetBeans-specific approach to
intermodular communication. In order to show you within one chapter how to create an appli-
cation, this aspect could not be covered. Larger applications, containing multiple modules,
need a coherent strategy for communicating in a decoupled way with each other. Details on
this important aspect are described in Rich Client Programming: Plugging into the NetBeans
Platform (Prentice-Hall, April 2007). It is my hope that this introduction to the NetBeans Plat-
form has whetted your appetite for more. See the Further Reading section in this chapter for
sources of more detailed information.

CHAPTER 16 ■ DEVELOPING RICH CLIENT APPLICATIONS 473

8954Ch16.qxp 1/28/08 11:43 AM Page 473

8954Ch16.qxp 1/28/08 11:43 AM Page 474

■Numbers and Symbols
@author tags, 170
@param tags, 171–172
@return tags, 172
@see tags, 170
@since tags, 170
@throws tags, 172
@version tags, 170
@WebMethod annotation, 365
@WebParam annotation, 365
${cursor} text, in expanded trycatch

abbreviation, 64
. (Period) key, accessing code completion box

with, 57

■A
Abstract Configuration screen, creating

WSDL file in, 381–383
AbstractNode class, passing Children object

to constructor, 461–462
Access Method drop-down list, choices in, 146
Action class, creating new Struts, 324–326
Action file template, 451
ActionForm Bean fields, customizing, 323
ActionForm Beans, associating with actions,

325
ActionForm class, 323–324
action-mappings, 326
actions. See also GUI Builder actions

adding Struts to web applications,
324–326

configuring, 426–427
creating new, 423–428

Actions section, in New Breakpoint window,
78, 81

ActiveRecord-JDBC Ruby gem, 294
Add Library window, for Maven project

dependencies, 201
Add Message Handler Class dialog box, 375
Add Mode icon, 410
Add Operation dialog box, for a web service,

364
Additional Javadoc Options field, Javadoc

Project Properties window, 176
Advanced Options, setting, 18–19
Advanced Options window, Confirm Delete

setting in, 20
Advanced tab, of Bind window, 437–439

alignment icons, on Form Editor toolbar, 409
All Methods for Given Class field, in New

Breakpoint window, 80
Allocation Stack Traces tab, 127
Allocations Comparison window, in Source

Editor, 128–129
Alt+F6, 212
Alt+Shift+1, opening Local Variables window

with, 194
Alt+Shift+6, opening Sessions window with,

88
annotation coloring, 16
annotation glyph margin, 32
annotation glyphs, 32–36
Annotation tool, CVS, 158
annotations, viewing and hiding, 158
anonymous inner classes, varieties of, 231
Ant

accessing properties, 187
available properties in, 188
configuring properties in NetBeans,

187–188
managing builds with, 183–202
problems addressed by, 183
tasks and targets, 183–187

Ant build script
important sections in, 185–187
setting breakpoint in, 194

Ant targets, 184–187
creating shortcuts to, 196–197
debugging, 194–195
overriding, 189–190
stopping and rerunning, 195

Ant tasks, 184–185
Apache Struts framework. See Struts

framework
Application Actions window, working with,

428–429
Application Finished pop-up window, 130
application servers

Java Tomcat, 312–314
modifying for project, 317

assertEquals method, 209–211
Assign component, adding to BPEL process,

392–393
Attach Profiler window, 137, 140
Attach Wizard window, 137–138
Aubrecht, Stanislav, 248

Index

475

8954Index.qxp 1/28/08 11:43 AM Page 475

Auto Popup Completion Window check box,
55

autoupdate descriptor, 456
AWT components, available in Palette

window, 406

■B
BadDebugExample class, 73
Basic Options window

Ant properties in, 187
configuring code completion in, 53–57
configuring keymaps, 17
configuring Profiler properties in, 104
fields in, 104–105
Javadoc hint properties in, 174
setting Visual Web properties in, 329–330

Beans Binding
Create Java DB Database window for, 430
NetBeans support for, 403
using, 430–443

BeansBindingSampleApp
creating, 432–434
exploring, 435–439
Master Table screen, 434
Name and Location screen, 433
viewing component properties, 436
window displaying DOUGHNUTS table

data, 434
BeansBindingSampleView class

adding binding listener to, 439
adding custom validator to form, 442
adding debugging statement to, 439–440
changing Update Source When field, 440
opening in Form Editor, 442

Beginning Apache Struts: From Novice to
Professional, 321

Bind window, working with, 436–439
binding name, of WSDL file, 383–384
Binding tab, of Bind window, 436
bookmark icons, in Editor menu, 45
BPEL and SOA applications, working with,

377–394
BPEL Design window, 379–381
BPEL Designer, working with, 387–394
BPEL Mapper window, working with, 388
BPEL Module project

creating, 377
creating WSDL files, 381–384
using with Composite Application project,

395–396
BPEL process

adding components to, 387–393
creating files, 378–379
interaction with web service, 388–394
reviewing completed, 393–394
using in composite application, 395–396

braces ({ }). See curly braces ({ })
branding, FileBrowser application, 466–468
Break when hit count field, New Breakpoint

window, 78
Breakpoint Type drop-down field, in New

Breakpoint window, 78–80
breakpoints, 76–85. See also class breakpoint;

exception breakpoint; field
breakpoint; method breakpoint;
thread breakpoint

Breakpoints window, 84–85
Browse CVS Module dialog box, 147–148
Browse Tags dialog box, 148
Browser Executable Properties window, 19
Browser Executable property, 19
Browser Window Title field, Javadoc Project

Properties window, 176
build process, 308

compiling JSP files during, 309
repeating and stopping, 309–310

build-before-profiler.xml file, 191
build-impl.xml file, 189–191
building web applications, repeating and

stopping, 310
build.xml file, creating shortcuts to Ant

targets, 196–197
Business Process Execution Language

(BPEL), 359
business processes, BPEL Module, 377,

381–384

■C
CachedRowSet object, 350–352
Calculator class, 82–83
calibration, of Profiler, 105–106
CauseOutOfMemoryError class, 129–130
Center horizontally icon, on Form Editor

toolbar, 409
Center vertically icon, on Form Editor

toolbar, 409
Change horizontal resizability icon, on Form

Editor toolbar, 409
Change Method Parameters dialog box,

238–239
Change Method Parameters refactoring,

238–239
Change vertical resizability icon, Form Editor

toolbar, 409
Checker module, in Checkstyle, 248
checkNum method, 209
Checkstyle

Checker module in, 248
overview of checks, 242
sample configuration file, 247–248
TreeWalker module, 248
violations, 253–254
working with, 241–254

■INDEX476

8954Index.qxp 1/28/08 11:43 AM Page 476

Checkstyle Beans plugin
installing and configuring, 251–252
running, 253–254

Checkstyle-Task List plugin
installing and configuring, 248–249
running, 250–251
web site address, 248

Children.Keys, creating, 461–462
Choose Type & Project screen, in New

Profiling Point window, 119–120
City Lights color profile, 15
class breakpoint, adding, 77–78
class description element, Javadoc, 169–170
class members, displaying in code

completion box, 58–59
class member variables, Javadoc, 171
Class Name field, in New Breakpoint window,

80–81
“Class Name Prefix” field, in New Window

wizard, 465
class tags, Javadoc, 170–171
classes, moving from subclass to superclass,

228
ClearTextButtonMouseClicked event-

handler method, called by
MouseListener, 416

closeWindow method, 425
code

abbreviations predefined in NetBeans,
62–63

checking out, from repository, 147–148
reverting modifications to, 155
stepping through, 88–97
testing, 203

code commenting icon, in Editor menu, 45–46
code completion

ActiveRecord classes, 282
configuring, 53–57
escape codes, 282
global variables, 282
invoking after def keyword, 282
keystrokes affecting, 56–57
regular expressions, 282
require statement, 281
in Ruby Editor, 280–282
templates and, 53–71
using, 57–61
using after super and this, 60

code completion box
displaying elements from String class, 58
locating class member variable in, 60

Code Completion Natural Sort check box, 56
code completion window, activating, 306
Code Editor, setting indentation, 11–14
code folding

Javadoc comments and, 173
in Source Editor, 30–31

code indentation, in Source Editor, 36–37
code style, customizing, 11–14
code syntax error highlighting, in Source

Editor, 31
code templates, 53

creating, 65–67
customizing, 63–67
list of for Java, 64
modifying, 63–65
in Ruby, 283
using, 62–63

code-quality tools, 241–267
color profiles, 15
ColorConstants class, 171
colors, customizing, 15–17
com.email package, results of searching on,

156
commenting code icon, in Editor menu,

45–46
comments, in Javadocs, 169–173, 178–179,

182
Commit dialog box, 150
compile target, in Ant build script, 186
Component Libraries node, 334
Component Palette, opening, 460
component Palette/Palette window, in

Source Editor, 49–52
component properties, modifying, 411–414
components, adding to a form, 409–411
Composite Application project, creating,

394–396
composite applications, 359
Concrete Configuration screen, 383–384
Conditions section, in New Breakpoint

window, 78–79, 81
configuration fields, Struts, 322
Configuration Files node, 322, 333

Web Application project, 302
Connection Mode

adding events using, 414–416
on Form Editor toolbar, 409

Connection Wizard, adding event-handling
code with, 414–416

constructors
Javadoc, 171–172
using code completion with, 59

context menu items
for application project nodes, 455–456
for module project nodes, 455

context menus, in Source Editor, 39–44
Convert Anonymous Class to Inner dialog

box, 231–233
Converter field, of Bind window Advanced

tab, 438
Copy dialog box, in Subversion, 161
CPU performance, analyzing, 114–124
CPU profiling, 108–113

■INDEX 477

8954Index.qxp 1/28/08 11:43 AM Page 477

Create JUnit Tests wizard, 209
“Create Shortcut to Ant Target” window,

196–197
Create Tests dialog box, using, 207–208
createAutoBinding method, arguments, 437
CSS files, adding to Web Application project,

303–305
Ctrl+4, opening Output window with, 86
Ctrl+6, opening NetBeans Task List window

with, 205
Ctrl+F5, starting project debug session with,

86
Ctrl+R, activating Rename refactoring with,

239
Ctrl+Shift+– (minus)/Ctrl+Shift++ (plus),

using with code folding, 31
Ctrl+Shift+8, opening Palette window with,

49
Ctrl+Shift+9, opening BPEL Mapper window

with, 391
Ctrl+Shift+U, opening Create Tests dialog

box with, 207
Ctrl+Slash (/)/Ctrl+Shift+Slash (/),

commenting/uncommenting code
with, 46

Ctrl+Spacebar, activating code completion
window with, 54, 306

Ctrl+Tab, 23
curly braces ({})

identifying matching in JavaScript,
307–308

identifying starting and ending, 38–39
placement of, 14

Current Line buttons, in Customize Profiling
Point window, 121

current-line highlighting, in Source Editor,
31

Customer class, 362–364
customization

configuring keymaps, 17
fonts and colors, 15–17
setting Code Editor indentation, 11–14
setting internal web browser, 11

Customize Breakpoint window, customizing
breakpoints in, 83–84

Customize Filter Sets window, 111–112
Customize Profiling Point window, editing

profiling points in, 121
Customize Properties screen, for a

stopwatch profiling point, 120
Customize window, for watch expressions,

98–99
CVS (Concurrent Versioning System),

143–144
common operations, 148–158
Diff window, 155–156
project configuration for, 145–148

using, 146–147, 149–158
Versioning window, 148–149

CVS repository
adding annotations, 158
checking out code from, 147–148
committing changes to, 150
comparing file differences in, 155–156
importing project into, 145–147
resolving conflicts, 153–154
reverting modifications, 155
searching history, 156–158
showing changes to, 148–149
updating files, 151–153

■D
data binding, in Visual JavaServer Faces,

343–352
Data Source Drag and Drop properties, 330
Data Source References node, 334
database table, binding to, 346–350
debug session, stopping, 87–88
DebugEvaluateExpression class, 95
DebugEvaluateExpression2 class, 96–97
Debugger Console tab, error message in, 76
debugging, 73–101

common actions in, 74
Java code, 86–87
project-level settings, 74–76
Ruby project, 291–292
starting debug sessions, 86–87
stepping through code, 88–97
stopping debug session, 87–88

Debugging Console tab, in Output window,
87

Debugging tab, in Output window, 86
DebugLocalVariables class, 100
DebugRunIntoMethod class, 94
DebugStepping class, stepping into code,

89–90
DebugSteppingOut class, 90–91
DebugSteppingOverExp class, 92–93
Declare Field check box, in Move Inner to

Outer Level dialog box, 223
Declare Field for the Current Outer Class

option, results from, 223
Delay of Completion Window Auto Popup

property, 56
Deployment tab, important fields in, 313
Design Query window

DOUGHNUTS table displayed in, 432
viewing entered data in, 431–432

Diff comparison window, previewing
changes in, 218–219

Diff tab, of Fonts & Colors section, 16
Diff tool, 16
Diff window, CVS, 155–156
dist target, in Ant build script, 186

■INDEX478

8954Index.qxp 1/28/08 11:43 AM Page 478

Do Refactoring button, 219
Document Additional Tags section, Javadoc

Project Properties window, 176
Document Literal binding type, 383–384
documentation, Javadoc, 169–173
doNothing method, 151
Doray, Arnold, 321
doSomething method, shortcut for

accessing, 91
Downloaded tab, Plugin Manager, 10
downloading, 1

Maven plugin, 197
NetBeans files, 1–2

dual-file editing, 28

■E
Edit Action Properties window, using, 429
Edit CVS Root dialog box, 145–146
Editor menu (toolbar), in Source Editor,

44–46
enable/disable breakpoint menu, 83
Encapsulate Fields dialog box, class fields

listed in, 226–226
Encapsulate Fields refactoring, 224–227
Enter Parameters screen, in Connection

Wizard, 416
error stripes, in Source Editor, 32–36
/etc/netbeans.conf, customizing, 5
Ethereal, testing web service client with,

371–373
Evaluate Expression window, 95–97
event handlers

adding FreeTTS code to, 418–419
JSF component, 342–343
naming in Connection Wizard, 414

event handling
adding manually, 417–418
adding using Connection Mode, 414–416
using Connection Mode, 414–416

events. See event handling
exception breakpoint, adding, 78–79
Exclude classes field, in New Breakpoint

window, 78
“Exclude from JAR File” field, setting for Ant

project, 189
Explorer & Property Sheet API, using for file

browser, 458–461
Explorer JFrame, creating in FileBrowser

application, 460
explorer manager, declaring, 460
ext option, in Access Method drop-down list,

146
external Java application, profiling, 139–140
Extract Interface dialog box, 235–236
Extract Interface refactoring, 235–236
Extract Superclass dialog box, 236–238
Extract Superclass refactoring, 236–238

■F
faces-config.xml file, 337–339
fail method, 209
Fast Debugger gem, installing, 291–292
features, disabling rarely used, 9
field breakpoint, adding, 81–83
Field Name field, in New Breakpoint window,

81
file arrangement, in Source Editor, 28–29
file browser, creating simple, 458–463
file debug session, starting, 87
File menu, list of menu items on, 426
file templates, 53, 67–70

NetBeans APIs, 450–451
File Type template, 451
file types, for Visual Web application, 332
FileBrowser application

branding, 466–468
creating JNLP for, 470
creating ZIP distribution for, 469–470
excluding unnecessary modules in, 464
getting started with, 458
running, 462–463, 469
updating, 470–471

FileBrowserBranding module, 466–468
FileBrowserPlugin class, compiling, 466
FileBrowserTopComponent class, creating,

464–466
FileNode class, creating and setting as root

node, 461
files

adding CSS to Web Application projects,
303–305

adding web application to project, 303–305
arranging in Source Editor, 28–29
comparing differences in, 155–156
compiling JSP, 309
navigating in Source Editor, 29
opening in Source Editor, 30
patched, 151
WAR, 310

Files window, 23, 27
Filter drop-down list, Quick Filter option, 111
filter sets, managing, 111–112
find text selection icons, in Editor menu, 45
FindBugs options tab, in Options window,

264
Firefox command-line arguments, 20
Fix Imports feature, using in UnusedImports

check, 243
fixed watches, 99
fonts, customizing, 15–17
Fonts & Color section, of Plugin Manager, 16
fori abbreviation, in NetBeans, 63
fork option, in Access Method drop-down

list, 146

■INDEX 479

8954Index.qxp 1/28/08 11:43 AM Page 479

Form Editor
blank JFrame displayed in, 408
displaying text area and button, 410
skeleton form displayed in, 421
understanding the toolbar, 409
working with, 408–418

Form Editor toolbar, icons and their
intention, 409

form-beans, 326
forms

ActionForm class, 323–324
adding components to, 409–411

FreeTTS, using, 418–419
From and To fields, Search History window,

157

■G
garbage-collection algorithm, changing type

of, 5
“Generate Debugging Info” property, 74–76
Generate section, Javadoc Project Properties

window, 176
generators, accessing for Rails project,

278–279
getCustomersByCountry method, 116–117
getCustomersByCountry2 method, 117
getLogMessage method, 94
getter and setter methods

controlling class member access with,
224–225

disabling or enabling, 226–227
generating getter methods, 362
manually altering names of, 226
NewHire class use of, 225

GlassFish
controlling Java application server,

315–317
installing, 3–4
JBI server support, 394
web service testing application, 366–367

global filters, applying to filter set, 111–112
global-exceptions, 326
global-forwards, 326
glyph gutter, 32. See also annotation glyph

margin
glyph margin, 16, 32–33
glyphs. See annotation glyphs
Go To Declaration menu, in Source Editor,

40–41
Go To End Point option, on Profiling Point

submenu, 121
Go To File tool, in Source Editor, 43
Go To Line feature, in Source Editor, 43
Go To Source menu, in Source Editor, 40
Go To Super Implementation menu, in

Source Editor, 41–42
Go To Test menu, in Source Editor, 42

GoldSpike plugin
adding to your project, 294
Ruby on Rails, 293

GroupLayout approach, used in NetBeans,
403

GUI applications
creating in NetBeans project, 406–407
creating simple, 403–419
developing in NetBeans, 403

GUI Builder, in NetBeans, 403
GUI Builder actions, using, 422–428

■H
handleMessage method, 375, 377
heap dump

displayed in Source Editor, 130
tabs of, 131–132

heap size, displaying in VM Telemetry
window, 135

HeapWalker tool, working with, 129, 134–141
Hejl, Petr, 251
HelloWorldBox class, newly generated code

for, 424
HelloWorldBox JDialog form, 423
highlighting, 16. See also current-line

highlighting
syntax and error, 52

hint settings, configuring in Javadoc, 173–175
History graph, of code-quality results, 267
hotkeys, configuring, 17
HTML files

adding block of JavaScript to, 305–306
adding to your project, 67
generating Javadoc, 177
Javadoc, 169

HTML Insert Table wizard, 50
HTTP Monitor, using, 317–321

■I
icons, in preview window, 218–219
IDE debugging, common actions in, 74
If component

adding to BPEL process, 391–392
configured in BPEL Mapper, 392

ifelse abbreviation, in NetBeans, 63
ignoreNumbers property, for MagicNumber

check, 246
Import Project Options window, CVS Root

window in, 145
import tag, 188–189
imports. See also packages (imports)

identifying unused in Source Editor, 39
initComponents method

called by constructor, 413
closeWindow action for jButton1, 425
column binding added to JTable, 436
configuring text field component, 436

■INDEX480

8954Index.qxp 1/28/08 11:43 AM Page 480

installation, of NetBeans IDE, 2–4
Installed tab, Plugin Manager, 9
Internet Explorer command-line arguments,

20
Introduce Method dialog box, 234–235
Introduce Method refactoring, 234–235
IRB and Rails Console tools, 292

■J
JAR files

specifying as library, 178
Struts, 322

Java API for XML Web Services (JAX-WS), 359
Java application

profiling an external, 139–140
working in Projects window, 25–27

Java Application project, web service client
creation in, 367–373

Java application server
list of, 311
profiling remote, 137–139
setting for project, 317
Tomcat, 312–315

Java applications
adding packages to, 25
profiling, 106–134
specifying package structure for, 26
working in Files window, 27
working in Source Editor window, 28,

30–32
Java Business Integration (JBI) server,

Composite Application deployed to,
394–396

Java Class file type, creating, 67–68
Java classes

calling from Ruby, 292–293
moving from one package to another, 219
moving from subclass to superclass, 228
renaming, 220

Java code, debugging, 86–88
Java Desktop Application, creating, 420–422
Java Desktop Application project

creating and configuring, 432–435
exploring, 435–443

Java EE 5, 359
Java GUI applications. See GUI applications
Java IDE tools, code templates as features of,

62
Java JFrame class

creating initial, 407
Name and Location screen for, 408

Java Network Launch Protocol (JNLP)
application, creating, 470

Java objects, created by data binding, 330
Java Platform Manager, 179
Java platforms, attaching Javadoc to, 179
Java project, attaching profiler to, 106–107

Java SE Library Descriptor template, 450
Java speech synthesis system, FreeTTS

project as, 418
Java Studio Creator, 328
Java Swing, component Palette window for,

50
Java web application. See Web Application

project
java.awt package, AWT components Palette

window in, 406
Javadoc

accessing, 178–182
attaching to libraries and platforms,

178–179
code folding, 173
configuring hint settings in, 173–175
creating in NetBeans, 173
elements of, 169–173
generating HTML files, 177
introduction to, 169
searching, 181–182
viewing context-sensitive, 179–181

Javadoc Ant target, creating shortcuts to,
196–197

Javadoc Hint Settings, configuring, 173–175
Javadoc Project Properties window, 176
Javadoc Search tool, 181–182
Javadoc View window, 180
JavaHelp Help Set template, 451
java.lang.String, constructors, 59
JavaScript and CSS file support, 303–308
JavaScript files, working with, 305–308
JavaServer Faces framework, 301
java.sql.ResultSet class, elements of, 59
java.util package, importing, 57
JAX-WS, creating web services with, 361–367
JBI module, adding to Composite

Application project, 395
JDialog form, resizing, 423
JDialog window, creating, 422–423
JFrame class. See Java JFrame class
jMaki Customizer window, using, 356
jMaki framework

adding support for to project, 352–354
installing, 352
leveraging, 352–357
working with widgets, 354–356

jMaki widgets
customizing, 356–357
in Palette window, 355
working with, 354–356

JNLP application. See Java Network Launch
Protocol (JNLP) application

JNLP product page, web site address, 470
JRuby, 292–295

calling Java from Ruby, 292–293
interpreter bundled with NetBeans, 270

■INDEX 481

8954Index.qxp 1/28/08 11:43 AM Page 481

JRuby/Ruby on Rails applications,
developing, 269–298

JSF component
setting component event handlers,

342–343
setting component properties, 341–342
working with in Visual JavaServer Faces,

341
JSF Table component, binding table to,

346–350
JSP component, working with in Virtual

JavaServer Faces, 343
JSP files

data binding and, 344–346
enabling compiling property, 309

JSR-295, NetBeans support for, 403
JSR-296, Swing Application Framework

defined by, 403
JTable, column binding added to, 436
jump list, navigating in Editor menu, 44
JUnit, 326

configuring properties in, 215–216
Create Tests dialog box, 207–208
New File wizard, 208

JUnit properties, configuring in NetBeans,
215–216

JUnit test class, generating, 204
JUnit Test Results window, 212–213
JUnit tests

creating, 207–208
creating test case, 203–205, 206–210
generating test case reports, 213–214
running, 211–212
viewing, 209–210
viewing results, 212–213

JVM startup options, customizing, 5
JVM startup parameters, locating, 316–317

■K
keyboard shortcuts

accessing doSomething method, 91
activating Step Over debug feature, 92
code folding, 31
opening Output window, 86
opening Sessions window, 88
starting project debug session, 86
stepping through code lines, 89–90
stopping debug session, 87
working with code completion box, 56–57

keymaps, configuring, 17
Kubacki, Radmin, 258

■L
language-specific color settings, 16
Language Support template, 450
layer file, NetBeans, 448
libraries, attaching Javadoc to, 178–179

Libraries node, 27, 333
library dependencies, adding to Maven

projects, 201–202
Library Manager, managing libraries in, 178
library wrapper module, 449
license agreements, NetBeans 6, 8
line highlighting. See current-line

highlighting
line numbers, in Source Editor, 30
literals, code completion on, 280–281
Live Results window, 113–114
load-generator scripts, 333
Local History tool, using, 162–167
local option, in Access Method drop-down

list, 146
Local Variables window, 99–101

during Ant debug session, 195
opening, 194

Logical Handler file type, 361
logical handlers, creating, 375–377

■M
Macromedia UltraDeveloper, 328
macros

icons in Editor menu, 45
in Source Editor, 47–49

MagicNumber check, in Checkstyle, 243–246
MagicNumberExample class, 243–244
Main class, running application with,

462–463
main method

modifying, 370–371
SayIt class autogenerated, 413

Manage rules button, in PMD configuration
tab, 260

Manage rulesets button, in PMD
configuration tab, 260–262

Manual Integration screen, in Attach Wizard
window, 138

Match Classes field, in New Breakpoint
window, 79

Matisse GUI Builder, 446
adding event-handling code with, 414–416
benefit of, 414
provided in NetBeans, 403
with two explorer views, 460

Maven, 183
configuring properties, 198
creating new project, 199–200
downloading plugin for, 197
introduction to, 197
managing builds with, 183–202

Maven Archetype screen, in New Project
wizard, 199

Maven Project Properties window, 202
Maven projects, working with, 197–202
McClanahan, Craig, 321

■INDEX482

8954Index.qxp 1/28/08 11:43 AM Page 482

memory analysis results
comparing, 128
ProfilePerson and ProfileMemory classes,

126–127
memory profiling, 124–127
Memory toolbar, for garbage collection, 22
menu bars, customizing, 18
menu.jsp file, 338–339
menus, in Source Editor, 39–46
Merge into dialog box, in Subversion, 162
Message field, Search History window, 157
message handler, creating, 374–376
Message Handler file type, 361
method access levels, specifying, 207–208
method breakpoint, adding, 79–80
Method Name field, in New Breakpoint

window, 80
method stubs, automatically generating, 204
methods

Javadoc, 172–173
using code completion with, 58

Migrate Database context menu, 285
MissingBreakInSwitch check, in PMD,

255–256
mkdir tasks, in Ant build script, 186
Model-View-Controller (MVC) framework,

321
modularization, 359
Module Installer template, 451
module project structure, for rich client

applications, 449
module suite, for rich client applications, 449
Module to Checkout window, 148
modules, disabling rarely used, 9
Moodie, Matthew, 184
Move Class dialog box, 219
Move Class refactoring, 219
Move Inner to Outer Level dialog box, 223
Move Inner to Outer Level refactoring,

222–223
MultipleVariableDeclarations check, in

Checkstyle, 246–247
MyTextValidator, creating, 441–443

■N
Name and Location screen

adding a web service in, 363
in Maven New Project wizard, 199

names, for web application projects, 300
Navigator window, 23
NbPreferences API, 446
NetBeans

adding a new file template into, 70
Ant and Maven integrated with, 183
color profile, 15–17
configuring JUnit properties in, 215–216
configuring keymaps, 17

configuring proxy settings, 10–11
creating a new file template inside, 70
creating Javadoc in, 173, 177
customizing, 12–14, 16–18
customizing fonts and colors, 15–17
downloading files, 1–2
Evaluate Expression window, 95–97
how it assists in encapsulation, 226–227
initial IDE layout, 21–22
installation, 2–4
license agreement, 3
Maven plugin, 197
navigating, 21–24
project build files, 188–193
refactoring options, 217–219
RESTful technologies in, 397
setting Code Editor indentation, 11–14
setting internal web browser, 11
starting a file debug session, 87
starting a project debug session, 86–87
stopping a debug session, 87–88
summary of main APIs, 471–473
web site address for sources, 452
working with PMD in, 258–263

NetBeans 6
Beans Binding new to, 430–443
Ruby support, 269–298

NetBeans APIs, 448
changes from 5.5 to 6, 471
summary of main, 471–473
web site address, 471

NetBeans Beta update center, RESTful
module in, 397

NetBeans developer FAQ, web site address,
471

NetBeans Editor, 446
NetBeans IDE, for NetBeans Platform, 447
NetBeans Java Application project, 413
NetBeans Java Application project, creating

GUI application inside of, 406–407
NetBeans JVM startup options, customizing, 5
NetBeans layer file, 448
NetBeans module, 448
NetBeans Platform, 445, 447

assembling an application, 463–471
data and presentation management, 446
Favorites window and Component Palette,

446
features provided by, 446
getting started with, 447
graphical editing, 446
Internet-based update delivery, 446
meeting APIs outside of, 456–463
resources, 471
SDK, 448–456
settings management, 446
storage management, 446

■INDEX 483

8954Index.qxp 1/28/08 11:43 AM Page 483

terminology, 447–448
user interface management, 446
web site address, 447, 471
wizard framework, 446

NetBeans Platform application, 447
assembling, 463–471
getting started with, 463–464

NetBeans Platform Manager. See Platform
Manager

NetBeans Platform modules, hiding menu
items contributed by, 467

NetBeans Platform Porting Tutorial, web site
address, 465

NetBeans Platform SDK, 448–456
NetBeans Plugin Portal, web site address, 248
NetBeans plugins, for managing code quality,

241–267
NetBeans PMD plugin

configuring, 259–262
downloading and installing, 258–259
running, 262–263

NetBeans Platform Porting Tutorial, web site
address, 471

NetBeans Profiler, 4, 191. See also Profiler
NetBeans runtime container, relationship of

APIs in, 447
NetBeans Source Editor. See Source Editor
NetBeans Struts 2 plugin project, web site

address, 327
NetBeans System FileSystem, 447
NetBeans Task List window, opening, 205
network monitoring program, testing web

service client with, 371–373
New Breakpoint window, adding breakpoints

in, 77–83
New File wizard

for creating a Java class, 67–68
creating a new Java class in, 441–443
creating web service in, 362
using, 208

new operator, using code completion with,
60–61

New Plugins tab, Plugin Manager, 8–9
New Profiling Point window, 119
New Project window, Name and Location

screen in, 407
New Project wizard, Maven screens in, 199
New Ruby Class dialog, creating new class in,

276
New Ruby on Rails Application dialog, 274
New Ruby Unit Test dialog, 289
New Watch window, 99
New Web Application wizard, Web

Application properties in, 299
Nodes API, using, 461–462
Null Source Value field, of Bind window

Advanced tab, 438

■O
objects, data binding to, 343–346
Options Panel template, 451
Options Settings API, 446
Options window

Java Editor properties in, 55
PMD options for SQE plugin in, 265
setting advanced options in, 55–56

Oracle date functions, creating code
template for, 67

Outline window, 336
Output window, 24

buttons to stop and rerun Ant targets, 195
Debugging tab in, 86

■P
package statements, 57
package structures

renaming, 220
specifying, 26

packages (imports)
adding to applications, 25
working with, 57

Page Navigation tool, 337–339
Palette Manager, performing configuration

tasks with, 51–52
Palette window, 24, 336–337. See also

component Palette/Palette window
AWT components available in, 406
BPEL and web service components in,

387–388
displaying GUI components, 404
JSF components, 341
Swing components in, 404–406
working with, 403

Partner Link component, adding to BPEL
process, 388–389

Partner Link Property Editor window, 388
patched files, 151
patterns, creating RESTful web services from,

398–401
Period (.) key, accessing code completion box

with, 57
Platform Manager, 451–453
Platform tab, important fields in, 313
platforms, attaching Javadoc to, 178–179
Plugin Manager

for downloading Maven plugin, 197
installing Ruby support with, 269–270
Server and External Tool Settings, 19–20
system settings, 20
updating FileBrowser application with,

470–471
using, 6–10

plugins
installation, 8
managing, 5–7

■INDEX484

8954Index.qxp 1/28/08 11:43 AM Page 484

PMD configuration tab, in PMD plugin,
259–260

PMD Output window, PMD violations listed
in, 262–263

PMD plugin. See NetBeans PMD plugin
PMD Rule editor window, 260–261
PMD Rulesets editor window, 261
PMD tool

configuring, 256–257
sample configuration file, 257–258
web site address, 254
working with, 254–258

-post-jar target, overriding in Ant project,
189–190

PreparedStatement, setting parameters of,
244–245

Preview Design icon, on Form Editor toolbar,
409

Preview Generated Javadoc check box, Javadoc
Project Properties window, 176

Preview Refactoring window, 220
preview window, icons on, 218–219
Pro Apache Ant, 184
-profile-post-init target, 192
-profile-pre-init target, 192
Profile Project window

filtering capability of, 110–112
initializing CPU profiling in, 109

ProfileMemory class, 125–127
ProfilePerson class, 124–125

memory analysis results, 126–127
profiling memory of, 125

Profiler
activating calibration of, 105
attaching to a Java project, 106–107
calibration, 105–106
configuring, 103–105
default Filter field setting, 110
monitoring threads in, 132–134
running, 112–113

Profiler Agent, starting and initializing, 112
Profiler Control Panel window

activating Profiler Telemetry from, 134
opening, 107
understanding, 107–108

Profiler Remote Pack
downloading and using, 138–139
web site address, 139

Profiler Telemetry
understanding, 134–136
viewing the Telemetry Overview, 134–135

profiler-build-impl.xml file, 192
profile-single target, executing, 192
ProfileStringAppending class

mockup of, 114–116
specifying constructor for, 110
steps to profile, 117–118

profiling, 103–141
profiling points

adding, 118–120
analyzing CPU performance with, 118–124
locating, 122–123
modifying, 121–122

Profiling Points report, viewing, 123–124
Profiling Points window, 122–123
profiling session, initializing, 109
project build files

build.xml file, 188–190
NetBeans, 188–193

project builds, managing with Maven, 197–202
project creation

Files window, 27
Source Editor window, 28, 30–32

project documentation, importance of, 169
Project Javadoc, 169

configuring settings for, 175–176
generating, 176

Project Properties dialog (window), 453–454
compilation properties in, 75
configuring project Javadoc settings in,

175–176
project-level debugging settings, 74–76

project tag, in Ant build script, 185–186
Project Template, 451
project templates, NetBeans Platform SDK,

449
project-level debugging settings. 74–76. See

also debugging
project.properties file, Ant, 193
project types, Web Application, 299
projects

adding web application files to, 303–305
building Web Application, 308–310
creating Web Application, 299–301
navigating Web Application, 302–303
running Web Application, 310–311
setting application server for, 317
Web Application HTTP monitoring, 321

Projects window, 23
Libraries node, 27
Source Packages, 25
Test Libraries node, 27
Test Packages node, 26
working in, 25–27

ProNetBeansDesktopView class, 422
adding showHelloWorld method to,

427–428
opening in Form Editor, 421

ProNetBeansDesktopView JFile menu,
adding menu item to, 426

ProNetBeansDoughnuts database, creating,
430–431

Properties window, 24, 337
displaying, 411

■INDEX 485

8954Index.qxp 1/28/08 11:43 AM Page 485

property tags, in Ant build script, 186
proxy settings, configuring, 10–11
pserver option, in Access Method drop-down

list, 146
pu abbreviation, in NetBeans, 62
public member variables, 171
Pull Up dialog box, 228–229
Pull Up refactoring, 228
Push Down dialog box, moving classes from

super- to subclass, 229–231
Push Down refactoring, 229–231

■Q
Question pop-up window, 130
Quick Filter option, in Filter drop-down list,

111

■R
Rails Console, opening, 292
Rails Generator, 278–279
Rails Plugins dialog, 288
Rake tasks, running, 284–285
re abbreviation, in NetBeans, 62
Receive component, adding to BPEL process,

389
records

editing and replaying, 320–321
manipulating, 319–320
viewing, 319

Refactor menu
refactoring options in, 217–219

refactoring
Change Method Parameters, 238–239
Convert Anonymous to Inner, 231–233
Encapsulate Fields, 224–227
Extract Interface, 235–236
Extract Superclass, 236–238
importance of previewing changes, 218
Introduce Method, 234–235
keyboard shortcuts, 239–240
Move Class, 219
Move Inner to Outer Level, 222–223
options in NetBeans, 217–219
Pull Up, 228
Push Down, 229–231
Rename, 220
Safe Delete, 220
Use Supertype Where Possible, 222

Remote application server setting, in Attach
Wizard window, 137–138

remote Java application server, profiling,
137–139

Remote radio button, in Attach Method
section, 137

Remote System screen, in Attach Wizard
window, 138

Rename refactoring, 220

renaming, classes and pack structures, 220
Reply component, adding to BPEL process,

390–391
Rerun Ant Target button, in Output window,

195
Rerun Last Profiling Session icon, in Profiler

window, 113
Resolve Conflicts tool, CVS, 153–154
resource strings, storage of in .properties file,

425–426
RESTful client, creating, 401–402
RESTful module, locating and installing, 397
RESTful web services

creating, 397
creating client to read, 401–402
creating from patterns, 398–401
testing, 400–401

Revert to window, in Local History tool, 167
Review Attach Settings screen, 140
Review Attach Settings screen, in Attach

Wizard window, 138
rich client applications, developing, 445–473
Rich Client Programming: Plugging into the

NetBeans Platform, 445, 473
RPC Encoded binding type, 383–384
RPC Literal binding type, 383–384
Ruby

calling Java classes from, 292–293
changing working directory, 285
code templates, 283
configuring your environment, 270–271
creating application project, 272
customizing project, 285–286
NetBeans project types, 272
Options dialog, 271
project properties, 285–286
setting project arguments, 285
web site address, 298

Ruby application
adding files to, 276–279
creating, 272
creating with existing resources, 273
debugging, 291–292
testing, 289–291

Ruby Class, 276
Ruby documentation (rdoc), display of, 280
Ruby Editor, 280–283
Ruby file templates, 276
Ruby Gem Manager, 286–287

launching, 279
Ruby Module, 276
Ruby on Rails

managing plugins, 288–289
New Plugins page, 289
options when adding new repository, 289
running on servlet container, 293–295
web site address, 298

■INDEX486

8954Index.qxp 1/28/08 11:43 AM Page 486

Ruby on Rails project
adding files to, 276–279
building, 295–297
configuring with GoldSpike, 294
creating, 273, 276–296
customizing, 285–286
properties, 286
Properties window, 286
running, 296–297

Ruby support
installing, 269–270
web site address for setting up, 270

Rule editor. See PMD Rule editor window
Run Into Method debugging feature, 94
Run Rake Task menu, 284
Run to Cursor debugging feature, 93
Runtime window, 23

■S
Safe Delete dialog box, 221
Safe Delete refactoring, 220–222
Save As Template dialog box, 70
SayIt class

autogenerated main method, 413
creating, 407
finished GUI form of, 412

Schliemann Project, 450
Search History window, CVS, 156–158
Search in Comments check box, in Safe

Delete dialog box, 221
Select Operation to Invoke dialog box, 369
Select Process window, 140
Select Projects Containing RESTful Web

Services screen, 401
Select Root Methods window, 109–110
Select Source Event Screen, in Connection

Wizard, 415
Select Target Type screen, for attaching to

external application, 140
Selection Mode, on Form Editor toolbar, 409
Send HTTP Request button, triggering replay

operation with, 320
serr abbreviation, in NetBeans, 62
Server and External Tool Settings, 19–20
Server Manager tool, 311–315, 317
Server Resources node, 333

Web Application project, 303
Servers window, 311
service-oriented architecture (SOA) tools, 359
Services window, 23
Sessions window, 88
Set Action window, 424

creating new actions in, 423–428
for showHelloWorld action, 427

Set Quick Filter window, 111
setter methods, generating, 362

Settings section, in New Breakpoint window,
78

Settings tab, 6–7
setVisible(false) code, adding, 425
Shift+F1, displaying search results with, 181
Shift+F5, stopping debug session with, 87
Shift+F6, 212
shifting lines icons, in Editor menu, 45
shortcut keys, configuring, 17
shortcuts

creating to Ant targets, 196–197
partial list in Source Editor, 46–47

Show Usages button, in Safe Delete dialog
box, 221

showHelloWorld action, Set Action window
for, 427

Simple Object Access Protocol (SOAP), 360
Small Toolbar Icons option, 22
SOA and BPEL applications, working with,

377–394
SOAP binding, for WSDL files, 383–384
SOAP messages

logical handlers, 376–377
message handlers, 374–376

Software Quality Environment (SQE) tool,
working with, 263–267

source code, using CVS storage, 143, 146–158
source code repositories

checking code in Subversion, 159–160
common CVS operations, 148–149, 151,

153–158
CVS project configuration, 145–148
merging changes in Subversion, 161–162
project configuration in CVS, 145
working with Subversion branches, 160–161

Source Editor, 25–52
annotation glyphs and error stripe, 32–36
arranging and navigating files in, 27–29
code folding in, 30–31
code indentation, 36–37
code-quality annotation tooltip displayed

in, 266
context menus, 39–44
glyph margin PMD violation annotations

in, 261
Go To Declaration menu in, 40–41
Go To File tool in, 43
Go To Line feature in, 43
Go To Source menu in, 40
Go To Super Implementation menu in,

41–42
Go To Test menu in, 42
heap dump displayed in, 130
identifying starting and ending braces,

38–39
identifying unused imports in, 39
line number display in, 30

■INDEX 487

8954Index.qxp 1/28/08 11:43 AM Page 487

menus, 39–46
navigating jump list in, 44
opening files in, 30
other context menu items in, 44
shortcuts, 46–47
supporting features and tools, 47–52
syntax and error highlighting in, 31–32
working in, 30–39
working in the Projects window, 25–27

Source Editor margin, profiling point glyphs
in, 120

Source Editor window, 23, 28, 30
annotation glyphs, 32
code folding, 30–31
code syntax error highlighting, 31
current-line highlighting, 31
displaying files, 30
error stripes, 32
file arrangement, 28–29
line numbers, 30

Source Packages
node, 333
in Projects window, 25–26

SourceForge, web site address, 241, 254
sout abbreviation, in NetBeans, 62
SpeakTextButton, adding FreeTTS code to,

418–419
SpeakTextButtonMouseClicked event

handler
adding to SpeakTextButton, 418
testing and voice enabling, 419

SpeakTextButtonMouseClicked method, 418
Specify Root Methods window, 109–110
Specify Target Operation screen, in

Connection Wizard, 414–415
Spry Accordion widget, jMaki framework

palette, 355–356
SQE configuration, accessing, 264
SQE modules, available in Plugins window,

264
SQE plugin

configuring, 264
downloading and installing, 263
PMD options for in Options window, 265
running, 265–267
web site address, 263
working with, 263–267

SQE Result window, PMD results displayed
in, 266

SQE Update Center URL, web site address,
263

SQL Command window, entering and
executing SQL statements in, 431

SQL queries
viewing entered data with, 431
Visual Database Query Editor and,

350–352

src directory, contents of, 207
state information, viewing with HTTP

Monitor, 318–319
statement continuation indentation, 12–13
static method code completion, in NetBeans,

58
Step Into debugging feature, 89–90
Step Out debugging feature, 90–91
Step Over debugging feature, 91–92
Step Over expression, 92–93
stepping into code, DebugStepping class,

89–90
Stop icon, in Output window, 87
Stop On drop-down field, values in New

Breakpoint window, 77–78, 80–81
stop() method, moving from subclass to

superclass, 228
stopwatch profiling point, customizing,

119–120
StrictDuplicateCode check, in Checkstyle,

242
Struts 2, leveraging, 327
Struts Action class, creating, 324–325
Struts ActionForm class, creating, 323
struts-config.xml file, 326–327
Struts framework, 301, 321–326

Action class, 324–326
ActionForm class, 323–324
adding to web application, 321–323
configuration files, 326–327
dialog box, 327
testing applications, 326
versions supported by, 327

Struts JAR file, 322
Struts resource file, 322
Struts TestCase, 326
Style Builder, editing styles in, 305
Style Rule Editor, 304
Style Rule Hierarchy list, adding elements to,

304–305
Subversion, 143

common operations, 159–162
installing, 159
web site address, 159

Suggestion glyph icon, 32–34
super and this, using code completion with,

60
surviving generation, 135
Suspend drop-down field, in New Breakpoint

window, 78
Swing application, source structure of

simple, 457
Swing Application Framework

defined by JSR-296, 403
using, 420–429
web site address, 420

■INDEX488

8954Index.qxp 1/28/08 11:43 AM Page 488

Swing Container components, in Palette
window, 404–405

Swing Control components, in Palette
window, 405

Swing Menu components, in Palette window,
405–406

Swing Window components, in Palette
window, 406

Switch dialog box, in Subversion, 161
syntax and error highlighting, in Source

Editor, 31–32
System FileSystem, NetBeans, 447
system settings, Plugin Manager, 20

■T
tables, binding to, 346–350
targets

in Ant, 183
working with Ant, 193–197

tasks, in Ant, 183
telemetry. See Profiler Telemetry
Telemetry Overview window, viewing, 134–135
Template Manager, 68–69
templates. See also code templates

adding and creating, 70
and code completion, 53–71
file templates, 71
viewing, 69

test class
creating for an existing class, 206–208
creating new, 203–206

test directory, contents of, 207
Test Libraries node, in Projects window, 27,

333
Test Packages node, in Projects window, 26,

333
Test Skeleton Generator property, 215
testing

JUnit framework, 203, 205–210, 216
Ruby project, 289–291
Struts Action classes, 326

text area component, configuring, 412
Themes node, 334
this. See super and this
thread breakpoint, adding, 81
thread monitoring, in NetBeans Profiler,

132–134
Threads (Details) tab, displaying, 133–134
Threads Timeline window, during Profile

Monitoring session, 132
Threads window, 132–134
Tomcat, NetBeans bundled with, 300
Tomcat Java application server, 312–315

controlling, 314–315
setting properties, 312–313
working with applications deployed to,

313–314

toolbars, customizing, 19
tools, code-quality, 241–267
toolTipText property, setting, 412
TopComponent class, creating, 464–466
TreeWalker module, in Checkstyle, 248
trycatch abbreviation

expanded text for, 64
in NetBeans, 62–63

try-catch-finally form, used by Java error
handling, 64–65

■U
UI components, in Swing Container, 459–460
Undo option, in main Refactoring menu, 219
unnamed subclasses, 231
Unreadable Source Value field, of Bind

window Advanced tab, 439
UnusedImports check, in Checkstyle, 243
Update Center and Module Manager, merged

in NetBeans 6, 6
Update Center Customizer window, 7
Update Center template, 451
Update Properties section, of Bind window

Advanced tab, 437
“Update Source When” field

of Bind window Advanced tab, 438
understanding, 439–440

updates, 5
Updates tab, Plugin Manager, 7
Usages window, 221
Use Accessors Even When Field Is Accessible

option, 227
Use Supertype Where Possible dialog box, for

java.util.ArrayList, 222
Use Supertype Where Possible refactoring,

222
Username field, Search History window, 157
UseStringBufferForStringAppends check, in

PMD, 256–257

■V
Validator, writing custom, 441–443
Validator field, of Bind window Advanced

tab, 438
Validator.Result, defined by MyTextValidator

method stub, 441–442
Value radio button, in Connection Wizard,

416
version control, 143

adding annotations in CVS, 158
committing changes in, 150–151
common CVS operations, 148, 149–150,

154–158
comparing file differences in, 155–156
configuring project to use, 145–148
CVS, 143, 146–158
CVS conflict resolution, 153–154

■INDEX 489

8954Index.qxp 1/28/08 11:43 AM Page 489

reverting CVS modifications, 155
searching history in CVS, 156–158
showing changes in CVS, 148–149
updating CVS files, 151–153
using Subversion, 159–162

Versioning menu, CVS-specific commands
in, 144

versioning menus, dynamic naming of,
149–149

Versioning window, CVS, 148–149
versions, in Local History tool, 166–167
View Source button, in Application Actions

window, 429
Visual Database Query Editor, 328

data binding with, 350–352
Visual Designer window, toolbar icons in,

335–336
Visual JavaServer Faces

configuring Data Source Drag and Drop
properties, 329–330

creating Visual Web application, 331–337
data binding, 343–348, 349–352
introduction to, 328
JSF components and, 341–343
leveraging, 328–352
navigating, 331–334
Page Navigation tool, 337–339
starting new Visual Web application

project, 330–331
Visual Web Application

creating, 331–336
file types available for, 332
navigating project structure, 332–334
nodes, 332–334
project layout navigation, 334–337
starting new project, 330–331

Visual Web JSF Pages, creating and linking
together, 338–341

Visual Web Pack. See Visual JavaServer Faces
Visual Web Services nodes, 333
VM Telemetry Overview window, with

graphs, 135
VM Telemetry window, 136
Voice.allocate method, 419
VoiceManager.getInstance static method,

419
voiceManager.getVoice, 419

■W
WAR files, 310

creating for Rails project, 294–295
setting project to create, 310

watch debugging feature, 97–99
Watches window, 97–99
Web Application frameworks, working with,

321–357

Web Application project
adding CSS files to, 303–305
adding files, 304–305
adding jMaki support to, 352–354
adding Struts support to, 321–323
adding Struts-based actions, 324–326
adding Struts-based forms, 323–324
cleaning and building, 308
configuring Struts-based, 326–327
creating, 299
HTTP monitoring, 317–321
navigating, 302–303
nodes that files are sorted in, 302
selecting properties and framework for,

300–301
Struts-based, 321–327
Web Pages node, 302, 332
working with JavaScript in, 305–307

web browser, setting internal, 11
web browser–specific command-line

arguments, specifying, 20
web service client

calling web service from, 369–371
creating, 367–371
file type, 360
running, 371
testing, 371–373

web service components, in Palette window,
387–388

Web Service file type, 360–361
Web Service from WSDL file type, 360
web services

adding message handlers to, 375–376
adding operations to, 364–365
calling, 369–371
creating logical handlers, 376–377
creating message handlers, 374–376
creating in a project, 360–367
creating from WSDL file, 373
file types, 360–361
interaction between BPEL process and,

388–394
project and client creation, 367–373
support for, 359
testing, 366–367
tools for creating, 360
web service client creation, 367–373
WSDL files and, 382–384

Web Services Description Language (WSDL)
files, 360

web services modules, locating and
installing, 359–360

web site addresses
Beans Binding information, 430
Checkstyle-Task List plugin, 248
FreeTTS download, 418
GoldSpike plugin information, 293

■INDEX490

8954Index.qxp 1/28/08 11:43 AM Page 490

Javadoc information, 182
JNLP product page, 470
NetBeans 6 API list, 471
NetBeans bundles, 1
NetBeans developer FAQ, 471
NetBeans Platform, 447, 471
NetBeans Platform Porting Tutorial,

465, 471
NetBeans Plugin Portal, 248
NetBeans sources, 452
NetBeans Struts 2 plugin project, 327
PMD tool, 254
Profiler Remote Pack, 139
Ruby and Ruby on Rails resources, 298
setting up Ruby support, 270
SourceForge Checkstyle tool, 241
SQE plugin, 263
SQE Update Center URL, 263
Subversion, 159
Swing Application Framework

information, 420

web.xml file, Struts modifications, 322
Window Component template, 451
Window System API, using, 464–466
windows, in IDE windowing system, 22–24
Wizard file template, 451
WSDL Editor, navigating, 384–386
WSDL file type, 361
WSDL files

creating in BPEL Module project, 381–384
creating web services from, 373
Column view, 385–386
Source view, 385

■XYZ
ZIP distribution

creating for application, 469–470
Tree view, 385

■INDEX 491

8954Index.qxp 1/28/08 11:43 AM Page 491

Offer valid through 07/08.

8954Index.qxp 1/28/08 11:43 AM Page 492

	Prelims
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Downloading, Installing, and Customizing NetBeans
	Downloading Files
	Installing the NetBeans IDE
	Customizing the NetBeans JVM Startup Options
	Managing Plugins and Updates
	Using the Plugin Manager
	Settings Tab
	Updates Tab
	New Plugins Tab
	Installed Tab
	Downloaded Tab

	Setting a Proxy
	Customizing the IDE
	Setting the Internal Web Browser
	Setting Code Editor Indentation
	Statement Continuation Indent
	Number of Spaces per Indent
	Expand Tabs to Spaces
	Add New Line Before Brace

	Choosing Fonts and Colors
	Fonts and Color Profiles
	Language-Specific Color Settings
	Highlighting
	Diff Coloring
	Annotation Coloring

	Configuring Keymaps
	Setting Advanced Options
	Menu Bars
	Toolbars
	Server and External Tool Settings
	System

	Navigating and Understanding the IDE Layout
	Initial Layout
	Windows
	Projects Window
	Files Window
	Services Window
	Navigator Window
	Source Editor
	Output Window
	Properties Window
	Palette Window

	Summary

	The Source Editor
	Working in the Projects Window
	Source Packages
	Test Packages
	Libraries
	Test Libraries

	Working in the Files Window
	Arranging and Navigating
	Arranging Files in the Source Editor
	Navigating Files in the Source Editor

	Working in the Source Editor
	Opening Files
	Line Numbers
	Code Folding
	Current-Line Highlighting
	Syntax and Error Highlighting
	Annotation Glyphs and the Error Stripe
	Code Indentation
	Identifying Starting and Ending Braces
	Identifying Unused Imports

	Source Editor Menus
	Context Menus
	Go To Source
	Go To Declaration
	Go To Super Implementation
	Go To Test
	Go To Line
	Go to File
	Other Items

	Editor Menu (Toolbar)
	Jump List
	Find Text Selection
	Bookmarks
	Shifting Lines
	Macros
	Commenting Code

	Source Editor Shortcuts
	Supporting Features and Tools
	Macros
	Component Palette

	Summary

	Code Completion and Templates
	Code Completion
	Configuring Code Completion
	Basic Options
	Advanced Options
	Code Completion Keystrokes

	Using Code Completion
	Packages (Imports)
	Methods
	Class Members
	Constructors
	super and this
	The new Operator

	Code Templates
	Using Code Templates
	trycatch
	ifelse
	fori

	Customizing Templates
	Modifying Code Templates
	Creating a Code Template

	File Templates
	Using File Templates
	Working with File Templates
	Adding and Creating Templates

	Summary

	Debugging
	What Is IDE Debugging?
	Project-Level Debugging Settings
	Breakpoints
	Adding a Breakpoint
	Adding a Class Breakpoint
	Adding an Exception Breakpoint
	Adding a Method Breakpoint
	Adding a Thread Breakpoint
	Adding a Field Breakpoint

	Disabling Breakpoints
	Deleting Breakpoints
	Customizing Breakpoints
	Breakpoints Window
	Grouping Breakpoints

	Debugging Java Code
	Starting a Project Debug Session
	Starting a File Debug Session
	Stopping a Debug Session

	Stepping Through Code
	Step Into
	Step Out
	Step Over
	Step Over Expression
	Run to Cursor
	Run Into Method
	Evaluate Expression

	Debugging with Watches
	Local Variables Window
	Summary

	Profiling
	Configuring Profiler Properties
	Profiler Calibration
	Profiling Java Applications
	Attaching the Profiler to a Project
	Understanding the Profiler Control Panel Window
	CPU Profiling
	Initializing CPU Profiling
	Running the Profiler
	Viewing the Results

	Analyzing CPU Performance Example
	Analyzing CPU Performance with Profiling Points
	Adding a Profiling Point
	Modifying Profiling Points
	Locating Profiling Points
	Viewing a Profiling Point Report

	Memory Profiling
	Running a Memory Analysis
	Viewing the Memory Analysis Results
	Comparing Memory Analysis Results
	Working with the HeapWalker

	Understanding the Profiler Telemetry
	Viewing the Telemetry Overview
	Viewing the Main VM Telemetry Window

	Profiling External and Remote Applications
	Profiling a Remote Java Application Server Running in NetBeans
	Profiling a Remote Java Application Server Using the Profiler Remote Pack
	Profiling an External Java Application

	Summary

	Managing Version Control
	Using CVS
	Configuring a Project to Use CVS
	Importing a Project into the Repository
	Checking Out Code from the Repository

	Performing Common CVS Operations
	Showing Changes
	Committing Changes
	Updating Files
	Resolving Conflicts
	Reverting Modifications
	Comparing Differences
	Searching History
	Adding Annotations

	Using Subversion
	Installing Subversion
	Performing Common Subversion Operations
	Checking Out Code
	Working with Branches
	Merging Changes

	Using Local History
	Configuring Local History Properties
	Working with the Local History
	Labeling Versions
	Deleting Versions
	Reverting to Versions

	Summary

	Generating and Accessing Javadoc
	Elements of Javadoc
	Class Description
	Class Tags
	Class Member Variables
	Constructors
	Methods

	Creating Javadoc in NetBeans
	Configuring Javadoc Hint Settings
	Configuring Project Javadoc Settings
	Generating Project Javadoc

	Accessing Javadoc
	Attaching to Libraries and Platforms
	Adding Libraries
	Adding Javadoc for Platforms

	Viewing Context-Sensitive Javadoc
	Searching Javadoc

	Summary

	Managing Builds with Ant and Maven
	Ant Tasks and Targets
	Configuring Ant Properties in NetBeans
	NetBeans Project Build Files
	The build.xml File
	The build-impl.xml File
	The build-before-profiler.xml File
	The profiler-build-impl.xml File
	The project.properties File

	Working with Targets
	Running Targets
	Debugging Targets
	Stopping and Rerunning Targets
	Creating Shortcuts to Ant Targets

	Introduction to Maven
	Working with Maven Projects
	Configuring Maven Properties
	Creating Maven Projects
	Configuring Maven Project Properties
	Adding Library Dependencies

	Summary

	JUnit Testing
	Creating a JUnit Test Case
	Creating a New Test Class
	Creating a Test for an Existing Class
	Using the Create Tests Dialog Box
	Using the New File Wizard

	Viewing the Test
	Modifying the Test

	Running JUnit Tests
	Viewing Test Results
	Generating Test Case Reports

	Configuring JUnit Properties in NetBeans
	Summary

	Refactoring
	NetBeans Refactoring Options
	Move Class Refactoring
	Rename Refactoring
	Safe Delete Refactoring
	Use Supertype Where Possible Refactoring
	Move Inner to Outer Level Refactoring
	Encapsulate Fields Refactoring
	Pull Up Refactoring
	Push Down Refactoring
	Convert Anonymous to Inner Refactoring
	Introduce Method Refactoring
	Extract Interface Refactoring
	Extract Superclass Refactoring
	Change Method Parameters Refactoring
	Refactoring Keyboard Shortcuts
	Summary

	Code-Quality Tools
	Working with Checkstyle
	Overview of Checkstyle Checks
	The StrictDuplicateCode Check
	The UnusedImports Check
	The MagicNumber Check
	The MultipleVariableDeclarations Check

	Sample Checkstyle Configuration File
	Working with Checkstyle in NetBeans
	Installing the Checkstyle-Task List Plugin
	Configuring the Checkstyle-Task List Plugin
	Running the Checkstyle-Task List Plugin
	Installing the Checkstyle Beans Plugin
	Configuring the Checkstyle Beans Plugin
	Running the Checkstyle Beans Plugin

	Working with PMD
	Overview of PMD Checks
	MissingBreakInSwitch Check
	UseStringBufferForStringAppends Check

	Sample PMD Configuration File
	Working with PMD in NetBeans
	Installing the NetBeans PMD Plugin
	Configuring the NetBeans PMD Plugin
	Running the NetBeans PMD Plugin

	Working with SQE
	Installing the SQE Plugin
	Configuring the SQE Plugin
	Running the SQE Plugin

	Summary

	Developing JRuby/Ruby on Rails Applications
	Installing Ruby Support
	Configuring Your Environment
	Creating a Ruby Application Project
	Ruby Application
	Ruby Application with Existing Sources

	Creating a Ruby on Rails Project
	Ruby on Rails Application
	Ruby on Rails with Existing Sources

	Adding Files to the Project
	Working with Generators

	The Ruby Editor
	Code Completion
	Code Templates

	Running Rake Tasks
	Customizing the Ruby Project
	Ruby Project Properties
	Ruby on Rails Project Properties

	The Ruby Gem Manager
	Managing Rails Plugins
	Testing Your Ruby Project
	Creating Tests
	Running Tests

	Debugging Your Project
	IRB and the Rails Console
	JRuby
	Calling Java from Ruby
	Running Rails on Your Favorite Servlet Container

	Putting It All Together
	Creating the Database
	Creating the Project
	Running the Project

	Summary

	Developing Web Applications
	Create a Web Application Project
	Navigating the Web Application Project
	Web Pages
	Configuration Files
	Server Resources

	JavaScript and CSS File Support
	Working with CSS Files
	Working with JavaScript Files

	Building a Web Application
	Cleaning and Building a Project
	Compiling JSP Files
	Repeating and Stopping Builds

	Running a Web Application
	Defining Java Application Servers
	Using Tomcat
	Setting Tomcat Properties
	Working with Applications Deployed to Tomcat
	Controlling the Tomcat Server

	Using GlassFish
	Setting GlassFish Properties
	Working with Applications Deployed to GlassFish
	Controlling GlassFish

	Setting the Application Server for a Project

	HTTP Monitoring
	Enabling the HTTP Monitor
	Using the HTTP Monitor
	Viewing Record Information
	Manipulating Records
	Editing and Replaying Records

	Working with Web Application Frameworks
	Leveraging Struts
	Adding Struts Support
	Adding Forms
	Adding Actions
	Configuring Struts

	Leveraging Struts 2
	Leveraging Visual JavaServer Faces
	Getting Started
	Configuring Visual JSF Options
	Creating a Visual Web Application
	Navigating the Visual Web Application Project Structure
	Working with Visual Web Application Projects
	Using the Page Navigation Tool
	Working with JSF Components
	Data Binding

	Leveraging the jMaki Framework
	Installing the jMaki Framework
	Adding jMaki Support to a Web Application
	Working with jMaki Widgets
	Customizing Widgets

	Summary

	Developing Web Services: JAX-WS, SOA, BPEL, and RESTful
	Installing the Web Services Modules
	Creating Web Services
	Creating a Web Service
	Adding an Operation to a Web Service
	Testing the Web Service

	Creating a Web Service Client
	Calling the Web Service
	Running the Web Service Client
	Testing the Web Service Client

	Creating a Web Service from a WSDL File
	Creating a Message Handler
	Generating a New Message Handler
	Adding the Message Handler to a Web Service

	Creating a Logical Handler

	Working with SOA and BPEL
	Creating a BPEL Module Project
	Creating the BPEL Process File
	Navigating the BPEL Design Window
	Creating the WSDL File
	Navigating the WSDL Editor
	Working with the BPEL Designer and the BPEL Mapper
	Adding a Partner Link Component
	Adding a Receive Component
	Adding a Reply Component
	Adding an If Component
	Adding an Assign Component
	Reviewing the Completed BPEL Process

	Creating a Composite Application
	Creating a Composite Application Project
	Setting Composite Application Project Properties
	Adding a JBI Module
	Testing the Composite Application and BPEL Process

	Creating RESTful Web Services
	Installing the RESTful Module
	Creating RESTful Web Services from Patterns
	Creating the Service
	Testing the Service

	Creating a Client to Read the Service

	Summary

	Developing GUI Applications
	Creating a Simple GUI Application
	Working with the Palette Window
	Creating the Project
	Creating the Initial JFrame Class
	Working with the Form Editor
	Understanding the Form Editor Toolbar
	Adding Components to the Form
	Modifying Component Properties
	Adding Events Using Connection Mode
	Adding Events Manually

	Using FreeTTS
	Downloading the Library
	Adding FreeTTS as a Project Library
	Adding FreeTTS Code to an Event Handler

	Using the Swing Application Framework
	Creating a Java Desktop Application Project
	Using Actions
	Creating the JDialog Window
	Creating New Actions

	Working with the Application Actions Window

	Using Beans Binding
	Creating the Database
	Creating the Project
	Exploring the Generated Application
	Working with the Bind Window

	Understanding the “Update Source When” Field
	Writing a Custom Validator

	Summary

	Developing Rich Client Applications
	Features Provided by the NetBeans Platform
	Getting Started
	Terminology
	NetBeans Platform SDK
	Project Templates
	File Templates
	NetBeans Platform Manager
	Project Properties Dialogs
	Context Menu Items

	Meeting the APIs Outside of the Platform
	Getting Started
	Using the Explorer & Property Sheet API
	Using the Nodes API
	Running the Application

	Assembling a NetBeans Platform Application
	Getting Started
	Using the Window System API
	Branding the Application
	Running the Application
	Distributing the Application
	Updating the Application

	Further Reading
	Summary of the Main NetBeans APIs
	Summary

	Index

