
Pro
Vue.js 2

—

Adam Freeman

www.allitebooks.com

http://www.allitebooks.org

Pro Vue.js 2

Adam Freeman

www.allitebooks.com

http://www.allitebooks.org

Pro Vue.js 2

Adam Freeman
London, UK

ISBN-13 (pbk): 978-1-4842-3804-2 ISBN-13 (electronic): 978-1-4842-3805-9
https://doi.org/10.1007/978-1-4842-3805-9

Library of Congress Control Number: 2018956735

Copyright © 2018 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/9781484238042. For more detailed
information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:editorial@apress.com
mailto:bookpermissions@springernature.com
www.apress.com/bulk-sales
www.apress.com/9781484238042
www.apress.com/source-code
https://doi.org/10.1007/978-1-4842-3805-9
http://www.allitebooks.org

Dedicated to my lovely wife, Jacqui Griffyth.
(And also to Peanut.)

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

About the Author ��xxi

About the Technical Reviewer ��xxiii

 ■Part I: Getting Started with Vue�js �� 1

 ■Chapter 1: Your First Vue�js Application �� 3

Preparing the Development Environment ��� 3

Installing Node�js �� 3

Installing the @vue/cli Package ��� 4

Installing Git �� 5

Installing an Editor �� 5

Installing a Browser �� 6

Creating the Project �� 6

Understanding the Project Structure �� 6

Starting the Development Tools �� 8

Replacing the Placeholder Content �� 9

Adding a CSS Framework ��� 11

Styling the HTML Elements ��� 12

Adding Dynamic Content �� 13

Displaying the List of Tasks �� 14

Adding a Checkbox ��� 16

Filtering Completed Tasks �� 19

Creating New Tasks �� 21

Storing Data Persistently �� 23

Adding the Finishing Touches ��� 25

Summary �� 28

www.allitebooks.com

http://www.allitebooks.org

 ■ Table of ConTenTs

vi

 ■Chapter 2: Understanding Vue�js ��� 29

Should I Use Vue�js? ��� 29

Understanding Round-Trip Applications ��� 30

Understanding Single-Page Applications ��� 30

Understanding Application Complexity ��� 31

What Do I Need to Know? ��� 32

How Do I Set Up My Development Environment? ��� 32

What Is the Structure of This Book? ��� 32

Part 1: Getting Started with Vue�js �� 32

Part 2: Working with Vue�js ��� 32

Part 3: Advanced Vue�js Features �� 33

Are There Lots of Examples? �� 33

Where Can You Get the Example Code? ��� 35

Where Can You Get Corrections for This Book? �� 35

How Can You Contact Me? ��� 35

Summary �� 36

 ■Chapter 3: HTML and CSS Primer �� 37

Preparing for This Chapter ��� 37

Understanding HTML Elements �� 40

Understanding Element Content ��� 41

Understanding Attributes �� 42

Examining the Live HTML Document �� 44

Understanding Bootstrap �� 45

Applying Basic Bootstrap Classes �� 46

Using Bootstrap to Create Grids ��� 47

Using Bootstrap to Style Tables �� 48

Using Bootstrap to Style Forms �� 50

Summary �� 51

 ■ Table of ConTenTs

vii

 ■Chapter 4: Essential JavaScript Primer ��� 53

Preparing for This Chapter ��� 54

Using Statements ��� 56

Defining and Using Functions��� 57

Defining Functions with Parameters �� 58

Defining Functions That Return Results ��� 60

Using Functions as Arguments to Other Functions ��� 61

Using Variables and Types �� 62

Using the Primitive Types ��� 64

Using JavaScript Operators �� 66

Using Conditional Statements �� 67

The Equality Operator vs� the Identity Operator �� 68

Explicitly Converting Types ��� 69

Working with Arrays ��� 71

Using an Array Literal ��� 71

Reading and Modifying the Contents of an Array ��� 71

Enumerating the Contents of an Array �� 72

Using the Spread Operator ��� 73

Using the Built-in Array Methods �� 74

Working with Objects ��� 75

Using Object Literals ��� 76

Using Functions as Methods��� 77

Copying Properties from One Object to Another ��� 78

Understanding JavaScript Modules �� 78

Creating and Using a Simple JavaScript Module �� 79

Defining Multiple Features in a Module �� 81

Combining Multiple Files in a Module �� 83

 ■ Table of ConTenTs

viii

Understanding JavaScript Promises �� 84

Understanding the Asynchronous Operation Problem �� 84

Using a JavaScript Promise �� 85

Simplifying the Asynchronous Code ��� 86

Summary �� 87

 ■Chapter 5: SportsStore: A Real Application ��� 89

Creating the SportsStore Project �� 89

Adding Additional Packages ��� 90

Preparing the RESTful Web Service �� 92

Starting the Project Tools �� 95

Creating the Data Store �� 96

Creating the Product Store ��� 98

Creating the Product List �� 100

Adding the Product List to the Application ��� 101

Filtering the Price Data ��� 103

Adding Product Pagination ��� 104

Adding Category Selection ��� 112

Using the RESTful Web Service �� 115

Summary �� 118

 ■Chapter 6: SportsStore: Checkout and Orders ��� 119

Preparing for This Chapter ��� 119

Creating the Shopping Cart Placeholder �� 120

Configuring URL Routing �� 121

Displaying a Routed Component ��� 122

Implementing the Cart Features ��� 123

Adding a Module to the Data Store ��� 123

Adding the Product Selection Feature �� 125

Displaying the Cart Contents �� 127

Creating a Global Filter ��� 131

Testing the Basic Cart Features �� 132

 ■ Table of ConTenTs

ix

Making the Cart Persistent ��� 132

Adding the Cart Summary Widget �� 136

Adding the Checkout and Orders Features ��� 138

Creating and Registering the Checkout Components ��� 139

Adding Form Validation ��� 143

Adding the Remaining Fields and Validation �� 147

Summary �� 150

 ■Chapter 7: SportsStore: Scaling and Administration ��� 151

Preparing for This Chapter ��� 151

Dealing with Larger Amounts of Data ��� 153

Improving Page Navigation ��� 153

Reducing the Amount of Data Requested by the Application ��� 155

Adding Search Support ��� 161

Starting the Administration Features ��� 166

Implementing Authentication �� 166

Adding the Administration Component Structure ��� 173

Implementing the Order Administration Feature �� 175

Summary �� 178

 ■Chapter 8: SportsStore: Administration and Deployment ���������������������������������� 179

Preparing for This Chapter ��� 179

Adding the Product Administration Features �� 180

Presenting the Product List �� 182

Adding the Editor Placeholder and URL Routes �� 183

Implementing the Editor Feature �� 185

Deploying SportsStore �� 189

Preparing the Application for Deployment �� 189

Building the Application for Deployment �� 194

Testing the Deployment-Ready Application �� 195

Deploying the Application ��� 197

Summary �� 200

 ■ Table of ConTenTs

x

 ■Part II: Vue�js in Detail �� 201

 ■Chapter 9: Understanding Vue�js ��� 203

Preparing for This Chapter ��� 203

Adding the Bootstrap CSS Framework ��� 204

Running the Example Application ��� 205

Creating an Application Using the DOM API �� 205

Understanding How the DOM API Application Works �� 207

Creating a Vue Object ��� 208

Adding Data to the Vue Object �� 210

Adding an Event Handler �� 211

Correcting the Message�� 212

Understanding the Vue Object Structure �� 214

Introducing a Component ��� 214

Registering and Applying the Component �� 216

Separating the Template from the JavaScript Code ��� 218

Summary �� 220

 ■Chapter 10: Understanding Vue�js Projects and Tools ��������������������������������������� 221

Creating a Vue�js Development Project �� 222

Configuring the Linter ��� 225

Completing the Project Configuration ��� 226

Understanding the Project Structure �� 227

Understanding the Source Code Folder �� 228

Understanding the Packages Folder ��� 229

Using the Development Tools ��� 233

Understanding the Compilation and Transformation Process ��� 234

Understanding the Development HTTP Server ��� 236

Understanding Hot Model Replacement ��� 237

Understanding the Error Display ��� 240

Using the Linter �� 242

Customizing the Linter Rules �� 245

 ■ Table of ConTenTs

xi

Debugging the Application ��� 247

Exploring the Application State ��� 247

Using the Browser Debugger �� 248

Configuring the Development Tools �� 250

Building the Application for Deployment �� 250

Installing and Using an HTTP Server �� 253

Summary �� 254

 ■Chapter 11: Understanding Data Bindings �� 255

Preparing for This Chapter ��� 256

Understanding the Elements of a Component �� 258

Understanding the Template Element ��� 259

Understanding the Script Element �� 259

Understanding the Style Element ��� 259

Resetting the Component in the Example Application ��� 260

Displaying a Data Value �� 261

Using More Complex Expressions in a Data Binding �� 264

Calculating Values with Computed Properties �� 267

Calculating Data Values with a Method �� 270

Formatting Data Values with Filters ��� 273

Summary �� 279

 ■Chapter 12: Using the Basic Directives ��� 281

Preparing for This Chapter ��� 282

Setting an Element’s Text Content �� 284

Displaying Raw HTML��� 285

Selectively Displaying Elements ��� 287

Selectively Displaying Adjacent Peer Elements �� 289

Choosing Between Sections of Content �� 291

Selectively Displaying Elements Using CSS ��� 293

Setting an Element’s Attributes and Properties �� 296

Using an Object to Configure Classes ��� 298

 ■ Table of ConTenTs

xii

Setting Individual Styles ��� 301

Setting Other Attributes �� 302

Setting Multiple Attributes �� 303

Setting an HTMLElement Property �� 305

Summary �� 307

 ■Chapter 13: Using the Repeater Directive�� 309

Preparing for This Chapter ��� 310

Enumerating an Array ��� 311

Using the Alias �� 314

Identifying the Key �� 316

Getting the Item Index �� 319

Understanding Array Change Detection �� 322

Enumerating Object Properties �� 325

Understanding Object Property Ordering �� 327

Repeating HTML Elements Without a Data Source ��� 329

Using Computed Properties with the v-for Directive �� 330

Paging Data �� 330

Filtering and Sorting Data ��� 332

Summary �� 335

 ■Chapter 14: Handling Events ��� 337

Preparing for This Chapter ��� 338

Handling Events ��� 339

Understanding Events and Event Objects��� 340

Using a Method to Handle Events �� 342

Combining Events, Methods, and Repeated Elements ��� 345

Listening for Multiple Events from the Same Element ��� 346

Using Event Handling Modifiers ��� 350

Managing Event Propagation �� 350

Preventing Duplicate Events ��� 357

 ■ Table of ConTenTs

xiii

Using Mouse Event Modifiers ��� 358

Using Keyboard Event Modifiers �� 359

Summary �� 362

 ■Chapter 15: Working with Form Elements ��� 363

Preparing for This Chapter ��� 364

Creating Two-Way Model Bindings ��� 366

Adding a Two-Way Binding ��� 367

Adding Another Input Element �� 368

Simplifying Two-Way Bindings ��� 370

Binding to Form Elements �� 372

Binding to Text Fields �� 372

Binding to Radio Buttons and Checkboxes ��� 373

Binding to Select Elements ��� 376

Using the v-model Modifiers �� 377

Formatting Values as Numbers��� 377

Delaying Updates �� 379

Removing Whitespace Characters �� 380

Binding to Different Data Types �� 381

Selecting an Array of Items �� 381

Using Custom Values for Form Elements �� 383

Validating Form Data �� 387

Defining the Validation Rules �� 389

Performing Validation ��� 391

Responding to Live Changes �� 394

Summary �� 396

 ■Chapter 16: Using Components ��� 397

Preparing for This Chapter ��� 398

Understanding Components as Building Blocks ��� 399

Understanding Child Component Names and Elements ��� 402

Using Component Features in Child Components��� 404

 ■ Table of ConTenTs

xiv

Understanding Component Isolation �� 405

Using Component Props ��� 407

Creating Custom Events ��� 414

Using Component Slots �� 417

Summary �� 424

 ■Part III: Advanced Vue�js Features �� 425

 ■Chapter 17: Understanding the Component Lifecycle ��������������������������������������� 427

Preparing for This Chapter ��� 428

Understanding the Component Lifecycle�� 431

Understanding the Creation Phase ��� 431

Understanding the Mounting Phase ��� 433

Understanding Update Phase ��� 436

Understanding the Destruction Phase �� 443

Handling Component Errors ��� 446

Summary �� 449

 ■Chapter 18: Loosely Coupled Components �� 451

Preparing for This Chapter ��� 452

Creating the Product Display Component ��� 454

Creating the Product Editor Component ��� 455

Displaying the Child Components ��� 457

Understanding Dependency Injection ��� 459

Defining a Service �� 459

Consuming a Service via Dependency Injection ��� 460

Overriding Antecedent Services ��� 461

Creating Reactive Services ��� 463

Using Advanced Dependency Injection Features �� 466

Using an Event Bus �� 469

Sending Events Using an Event Bus ��� 470

 ■ Table of ConTenTs

xv

Receiving Events from the Event Bus ��� 471

Creating Local Event Buses �� 474

Summary �� 477

 ■Chapter 19: Using RESTful Web Services �� 479

Preparing for This Chapter ��� 480

Preparing the HTTP Server ��� 480

Preparing the Example Application ��� 481

Running the Example Application and HTTP Server ��� 484

Understanding RESTful Web Services �� 486

Consuming a RESTful Web Service �� 488

Handling the Response Data �� 489

Making the HTTP Request �� 489

Receiving the Response ��� 491

Processing the Data�� 492

Creating an HTTP Service ��� 494

Consuming the HTTP Service ��� 495

Adding Other HTTP Operations ��� 496

Creating an Error Handling Service �� 499

Summary �� 504

 ■Chapter 20: Using a Data Store ��� 505

Preparing for This Chapter ��� 506

Creating and Using a Data Store �� 509

Understanding Separate State and Mutations �� 511

Providing Access to the Vuex Data Store �� 512

Using the Data Store ��� 513

Inspecting Data Store Changes �� 516

Defining Computed Properties in the Data Store�� 518

Using a Getter in a Component ��� 520

Providing Arguments to Getters �� 521

 ■ Table of ConTenTs

xvi

Performing Asynchronous Operations �� 522

Receiving Change Notifications �� 525

Mapping Data Store Features into Components ��� 530

Using Data Store Modules �� 533

Registering and Using a Data Store Module ��� 534

Using Module Namespaces �� 538

Summary �� 540

 ■Chapter 21: Dynamic Components �� 541

Preparing for This Chapter ��� 542

Preparing Components for Dynamic Lifecycles �� 543

Getting the Application Data ��� 543

Managing Watch Events ��� 545

Displaying Components Dynamically ��� 546

Presenting Different Components in an HTML Element �� 546

Selecting Components Using a Data Binding ��� 548

Automatically Navigating Around the Application ��� 552

Using Asynchronous Components �� 557

Disabling Prefetch Hints ��� 560

Configuring Lazy Loading ��� 561

Summary �� 564

 ■Chapter 22: URL Routing�� 565

Preparing for This Chapter ��� 566

Getting Started with URL Routing ��� 567

Providing Access to the Routing Configuration ��� 569

Using the Routing System to Display Components ��� 570

Navigating to Different URLs �� 572

Understanding and Configuring URL Route Matching �� 577

Understanding URL Matching and Formatting �� 578

Using the HTML5 History API for Routing ��� 578

Using a Route Alias ��� 582

 ■ Table of ConTenTs

xvii

Getting Routing Data in Components �� 583

Matching Routes Dynamically �� 587

Using Regular Expressions to Match URLs ��� 591

Creating Named Routes �� 594

Dealing with Navigation Changes��� 597

Summary �� 601

 ■Chapter 23: URL Routing Element Features ��� 603

Preparing for This Chapter ��� 604

Working with Router-Link Elements ��� 606

Selecting the Element Type �� 608

Selecting the Navigation Event ��� 610

Styling Router Link Elements ��� 611

Creating Nested Routes �� 617

Planning the Application Layout ��� 617

Adding Components to the Project ��� 617

Defining the Routes �� 619

Creating the Navigation Elements �� 621

Testing the Nested Routes �� 622

Using Named Router-View Elements �� 624

Summary �� 628

 ■Chapter 24: Advanced URL Routing ��� 629

Preparing for This Chapter ��� 629

Using Separate Files for Related Routes �� 630

Guarding Routes ��� 632

Defining Global Navigation Guards ��� 632

Defining Route-Specific Guards�� 637

Defining Component Route Guards ��� 640

Loading Components on Demand �� 648

Displaying a Component Loading Message �� 649

 ■ Table of ConTenTs

xviii

Creating Routing-Free Components ��� 654

Summary �� 656

 ■Chapter 25: Transitions ��� 657

Preparing for This Chapter ��� 658

Creating the Components ��� 659

Configuring URL Routing��� 662

Creating the Navigation Elements �� 663

Getting Started with Transitions ��� 665

Understanding the Transition Classes and CSS Transition �� 668

Understanding the Transition Sequence ��� 670

Using an Animation Library �� 670

Switching Between Multiple Elements ��� 672

Applying a Transition to URL Routed Elements ��� 675

Applying a Transition for an Element’s Appearance�� 676

Applying Transitions for Collection Changes �� 678

Using Transition Events �� 680

Using the Enter and Leave Events �� 682

Drawing Attention to Other Changes �� 683

Summary �� 686

 ■Chapter 26: Extending Vue�js ��� 687

Preparing for This Chapter ��� 688

Creating Custom Directives �� 690

Understanding How Directives Work �� 692

Using Custom Directive Expressions �� 695

Using Custom Directive Arguments �� 696

Using Custom Directive Modifiers �� 698

Communicating Between Hook Functions �� 700

Defining Single Function Directives �� 701

 ■ Table of ConTenTs

xix

Creating Component Mixins ��� 702

Creating a Vue�js Plugin �� 706

Creating the Plugin ��� 709

Using a Plugin ��� 711

Summary �� 713

Index ��� 715

xxi

About the Author

Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently serving as chief
technology officer and chief operating officer of a global bank. Now
retired, he spends his time writing and long-distance running.

xxiii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for BluArancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

http://www.bluarancio.com/

PART I

Getting Started with Vue.js

3© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_1

CHAPTER 1

Your First Vue.js Application

The best way to get started with Vue.js is to dive in. In this chapter, I take you through a simple development
process to create an application to keep track of to-do items. In Chapters 5–8, I show you how to create
a more complex and realistic application, but for now, a simple example will be enough to demonstrate
how Vue.js applications are created and how the basic features work. Don’t worry if you don’t understand
everything in this chapter—the idea is to get an overall sense of how Vue.js works, and I explain everything in
detail in later chapters.

 ■ Note If you want a conventional description of Vue.js features, then you can jump to Part 2 of this book,
where I start the process of describing individual features in depth.

Preparing the Development Environment
There is some preparation required for Vue.js development. In the sections that follow, I explain how to get
set up and ready to create your first project.

Installing Node.js
The tools used for Vue.js development rely on Node.js—also known as Node—which was created in 2009
as a simple and efficient runtime for server-side applications written in JavaScript. Node.js is based on the
JavaScript engine used in the Chrome browser and provides an API for executing JavaScript code outside of
the browser environment.

Node.js has enjoyed success as an application server, but for this book, it is interesting because it has
provided the foundation for a new generation of cross-platform development and build tools. Some smart
design decisions by the Node.js team and the cross-platform support provided by the Chrome JavaScript
runtime have created an opportunity that has been seized upon by enthusiastic tool writers. In short, Node.
js has become essential for web application development.

It is important that you download the same version of Node.js that I use throughout this book. Although
Node.js is relatively stable, there are still breaking API changes from time to time that may stop the examples
I include in the chapters from working.

The version I have used is 8.11.2, which is the current Long-Term Support release at the time of writing.
There may be a later version available by the time you read this, but you should stick to the 8.11.2 release
for the examples in this book. A complete set of 8.11.2 releases, with installers for Windows and macOS and
binary packages for other platforms, is available at https://nodejs.org/dist/v8.11.2.

https://nodejs.org/dist/v8.11.2

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

4

When you install Node.js, make sure you select the option to add the Node.js executables to the path.
When the installation is complete, run command shown in Listing 1-1.

Listing 1-1. Checking the Node Version

node -v

If the installation has gone as it should, then you will see the following version number displayed:

v8.11.2

The Node.js installer includes the Node Package Manager (NPM), which is used to manage the
packages in a project. Run the command shown in Listing 1-2 to ensure that NPM is working.

Listing 1-2. Checking That NPM Works

npm -v

If everything is working as it should, then you will see the following version number:

5.6.0

Installing the @vue/cli Package
The @vue/cli package is the standard way to create and manage Vue.js projects during development. You
don’t have to use this package, but it provides everything that is needed to get started with Vue.js, and I use it
throughout this book.

 ■ Note as I write this, the @vue/cli package has been released in beta. there may be small changes made
before the final release, but the core features should remain the same. For details of any breaking changes,
check the errata for this book, available at https://github.com/Apress/pro-vue-js-2.

To install @vue/cli, open a new command prompt and run the command shown in Listing 1-3. If you
are using Linux or macOS, you may need to use sudo.

Listing 1-3. Installing the Vue Tools Package

npm install --global @vue/cli

https://github.com/Apress/pro-vue-js-2

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

5

Installing Git
The Git revision control tool is required to manage some of the packages required for Vue.js development.
If you are using Windows or macOS, then download and run the installer from https://git-scm.com/
downloads. (On macOS, you may have to change your security settings to open the installer, which has not
been signed by the developers.)

Git is already included in most Linux distributions. If you want to install the latest version, then consult
the installation instructions for your distribution at https://git-scm.com/download/linux. As an example,
for Ubuntu, which is the Linux distribution I use, I used the command shown in Listing 1-4.

Listing 1-4. Installing Git

sudo apt-get install git

Once you have completed the installation, open a new command prompt and run the command shown
in Listing 1-5 to check that Git is installed and available.

Listing 1-5. Checking Git

git --version

This command prints out the version of the Git package that has been installed. At the time of writing,
the latest version of Git for Windows and Linux is 2.17, and the latest version of Git for macOS is 2.16.3.

Installing an Editor
Vue.js development can be done with any programmer’s editor, from which there is an endless number to
choose. Some editors have enhanced support for working with Vue.js, including highlighting keywords and
expressions. If you don’t already have a preferred editor for web application development, then Table 1-1
describes some popular options for you to consider. I don’t rely on any specific editor for this book, and you
should use whichever editor you are comfortable working with.

Table 1-1. Popular Vue.js-Enabled Editors

Name Description

Sublime Text Sublime Text is a commercial cross-platform editor that has packages to support most
programming languages, frameworks, and platforms. See www.sublimetext.com for
details.

Atom Atom is a free, open source, cross-platform editor that has a particular emphasis on
customization and extensibility. See atom.io for details.

Brackets Brackets is a free open source editor developed by Adobe. See brackets.io for
details.

Visual Studio Code Visual Studio Code is a free, open source, cross-platform editor from Microsoft, with
an emphasis on extensibility. See code.visualstudio.com for details.

Visual Studio Visual Studio is Microsoft’s flagship developer tool. There are free and commercial
editions available, and it comes with a wide range of additional tools that integrate
into the Microsoft ecosystem.

https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/download/linux

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

6

Installing a Browser
The final choice to make is the browser that you will use to check your work during development. All the
current-generation browsers have good developer support and work well with Vue.js, but there is a useful
extension for Chrome and Firefox called vue-devtools that provides insights into the state of a Vue.js
application and that is especially useful in complex projects. See https://github.com/vuejs/vue-devtools
for details of installing the extension, which I use in later chapters. I used Google Chrome throughout this
book, and this is the browser I recommend you use to follow the examples.

Creating the Project
Projects are created and managed from the command line. Open a new command prompt, navigate to a
convenient location, and run the command shown in Listing 1-6 to create the project for this chapter.

Listing 1-6. Creating the Project

vue create todo --default

The vue command was installed as part of the @vue/cli package in Listing 1-3, and the command in
Listing 1-6 creates a new project called todo, which will be created in a folder of the same name. The project
will be created, and all of the packages required for Vue.js development will be downloaded and installed,
which can take a while because a large number of packages are required even for a simple project.

Understanding the Project Structure
Open the todo folder using your preferred editor, and you will see the project structure shown in Figure 1-1.
The figure shows the layout in my preferred editor—Visual Studio—and you may see the project content
presented slightly differently if you have chosen a different editor.

https://github.com/vuejs/vue-devtools

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

7

The layout of the project can be daunting, but by the end of the book you will know what the different
files and folders are for and how they are used. In Table 1-2, I have briefly described the files that are
important in this chapter. I describe the structure of Vue.js projects in detail in Chapter 10.

Figure 1-1. The project structure

Table 1-2. The Important Files in the Project

Name Description

public/index.html This is the HTML file that is loaded by the browser. It has an element in which
the application is displayed and a script element that loads the application
files.

src/main.js This is the JavaScript file that is responsible for configuring the Vue.js
application. It is also used to register any third-party packages that the
application relies on, which you will see demonstrated in later chapters.

src/App.vue This is the Vue.js component, which contains the HTML content that will be
displayed to the user, the JavaScript code required by the HTML, and the CSS
that styles the elements. Components are the main building blocks in a Vue.js
application, and you will see them used throughout this book.

src/assets/logo.png The assets folder is used to store static content, such as images. In a new
project, it contains a file called logo.png, which is an image of the Vue.js logo.

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

8

Starting the Development Tools
When you create a project using the vue command, a complete set of development tools is installed so that
the project can be compiled, packaged up, and delivered to the browser. Using the command prompt, run
the commands shown in Listing 1-7 to navigate to the todo folder and start the development tools.

Listing 1-7. Starting the Development Tools

cd todo
npm run serve

There is an initial preparation process while the development tools start, which can take a moment to
complete. Don’t be put off by the amount of time the preparation takes because this process is required only
when you start a development session.

When the startup process is complete, you will see a message like this one, which confirms that the
application is running and tells you which HTTP port to connect to:

 App running at:
 - Local: http://localhost:8080/
 - Network: http://192.168.0.77:8080/
 Note that the development build is not optimized.
 To create a production build, run npm run build.

The default port is 8080 although a different port will be selected if 8080 is not available. Open a new
browser window and navigate to http://localhost:8080 (or the URL specified if a different port has been
selected), and you will see the placeholder content shown in Figure 1-2. (The placeholder content changes
as new versions of the development tools are released, so don’t worry if you don’t see precisely the same
content.)

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

9

Replacing the Placeholder Content
The key building block in a Vue.js application is called a component, which is defined in files with the
vue extension. Here is the content of the App component, which you will find in the App.vue file in the src
folder:

<template>
 <div id="app">

 <HelloWorld msg="Welcome to Your Vue.js App" />
 </div>
</template>
<script>
 import HelloWorld from './components/HelloWorld.vue'

 export default {
 name: 'app',
 components: {
 HelloWorld
 }
 }
</script>
<style>

Figure 1-2. Running the example application

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

10

 #app {
 font-family: 'Avenir', Helvetica, Arial, sans-serif;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 text-align: center;
 color: #2c3e50;
 margin-top: 60px;
 }
</style>

The component consists of a template element that contains HTML content to be presented to the user,
a script element that contains the JavaScript code required to support the template, and a style element
that contains CSS styles. Vue.js combines the template, script, and style element to create the placeholder
content displayed in Figure 1-2.

In Listing 1-8, I have replaced the content in the template element, reset the script element, and
removed the style element, all of which will give me a clean foundation for the example application.

Listing 1-8. Removing the Placeholder Content in the App.vue File in the src Folder

<template>
 <div id="app">
 <h4>
 To Do List
 </h4>
 </div>
</template>

<script>
 export default {
 name: 'app'
 }
</script>

When you save the changes, the application will be automatically recompiled, and the browser will be
reloaded, producing the result shown in Figure 1-3.

Figure 1-3. Removing the placeholder content

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

11

Adding a CSS Framework
The new content isn’t going to appeal to many users. Although a component can contain CSS styles,
I prefer to use a CSS framework that will allow me to style the HTML content in an application consistently.
Throughout this book, I use the Bootstrap CSS framework. Stop the development tools using Control+C and
run the command shown in Listing 1-9 in the todo folder to add Bootstrap to the project.

Listing 1-9. Adding Bootstrap to the Project

npm install bootstrap@4.0.0

You may see warnings about unmet peer dependencies, which can be ignored. To add the Bootstrap
CSS file to the project, I added the statement shown in Listing 1-10 to the main.js file in the src folder.

Listing 1-10. Adding Bootstrap in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

Vue.config.productionTip = false

import "bootstrap/dist/css/bootstrap.min.css";

new Vue({
 render: h => h(App)
}).$mount('#app')

The import statement ensures that the CSS stylesheet from the Bootstrap framework will be included in
the application. (I explain how the import statement works in Chapter 4.) Don’t worry if you are not familiar
with Bootstrap because I describe the features I use in this book in Chapter 3.

CHOOSING A CSS FRAMEWORK FOR VUE.JS PROJECTS

Many of the most popular Css frameworks—including Bootstrap—have javascript support for
interactive components in addition to regular Css styles. these javascript features often rely on
packages like jQuery to access the elements in the htMl document, which conflicts with the way that
Vue.js works. For this reason, it is important to either use only the Css styles provided by a framework
or to pick a framework that has been written specifically for Vue.js.

the first approach—using just the Css styles—is the one that I have used throughout this book. not
only does this allow me to use a familiar framework, but it also helps keep the functionality provided by
Vue.js separate from the content styling. this isn’t possible with Vue.js-specific frameworks, which work
by using the features that I describe in this book and which would complicate explaining many of the
examples.

If you want to try a Vue.js-specific framework, then Veutify is a good place to start. (https://
vuetifyjs.com/). there is also a project that adapts Bootstrap for use in Vue.js projects, called
Bootstrap-Vue (https://bootstrap-vue.js.org).

https://vuetifyjs.com/
https://vuetifyjs.com/
https://bootstrap-vue.js.org

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

12

Styling the HTML Elements
Now that Bootstrap is part of the application, I can style the content in the component’s template element to
improve the appearance, as shown in Listing 1-11.

Listing 1-11. Styling Content in the App.vue File in the src Folder

<template>
 <div id="app">
 <h4 class="bg-primary text-white text-center p-2">
 To Do List
 </h4>
 </div>
</template>

<script>
 export default {
 name: 'app'
 }
</script>

Run the command shown in Listing 1-12 in the todo folder to restart the application.

Listing 1-12. Restarting the Application

npm run serve

Use the browser window to navigate to http://localhost:8080 and you will see the content shown in
Figure 1-4. If you see the text but it is not styled, then manually reload the browser window.

Figure 1-4. Styling the HTML content

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

13

Adding Dynamic Content
The next step is to add some data to the application and use it to display dynamic content to the user. In
Listing 1-13, I have modified the App component so that it will display a data value.

Listing 1-13. Displaying Data in the App.vue File in the src Folder

<template>
 <div id="app">
 <h4 class="bg-primary text-white text-center p-2">
 {{name}}'s To Do List
 </h4>
 </div>
</template>

<script>
 export default {
 name: 'app',
 data() {
 return {
 name: "Adam"
 }
 }
 }
</script>

The addition to the template element is a data binding that tells Vue.js to insert a data value when it
displays the HTML content. This type of data binding is called a text interpolation binding because it displays
a data value as the text content of an HTML element. It is also known as a mustache binding because the
double curly brackets (the {{ and }} characters) that denote the binding look like a handlebar mustache.

The data binding tells Vue.js to insert the name value into the h4 element when the HTML is displayed.
The name value used by the binding is provided by the change I made to the script element in Listing 1-13.
The data property provides the template with data values, and when the data binding is processed, Vue.js
checks the data property to look for a name value.

 ■ Tip Don’t worry about the odd syntax for the data function in listing 1-13. It soon becomes a familiar
pattern when working with Vue.js, and I explain how it works in Chapter 11.

When you save the App.vue file, the Vue.js development tools will detect the changes, update the
application, and cause the browser window to reload automatically, which will display the content shown in
Figure 1-5.

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

14

Notice that you don’t have to manually reload the browser window when you make changes to the files
in the project. The Vue.js development tools monitor the project for changes and trigger a browser reload
automatically when a change is detected. I describe the development tools in more detail in Chapter 10.

Displaying the List of Tasks
Vue.js supports a range of data bindings that can be used to produce dynamic content in different ways,
in addition to the text interpolation binding I used in the previous chapter. The next step for the example
application is to define a collection of objects that represent the to-do tasks for the user and display them, as
shown in Listing 1-14.

Listing 1-14. Displaying Tasks in the App.vue File in the src Folder

<template>
 <div id="app">
 <h4 class="bg-primary text-white text-center p-2">
 {{name}}'s To Do List
 </h4>
 <div class="container-fluid p-4">
 <div class="row">
 <div class="col font-weight-bold">Task</div>
 <div class="col-2 font-weight-bold">Done</div>
 </div>
 <div class="row" v-for="t in tasks" v-bind:key="t.action">
 <div class="col">{{t.action}}</div>
 <div class="col-2">{{t.done}}</div>
 </div>
 </div>
 </div>
</template>

Figure 1-5. Displaying a data value

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

15

<script>
 export default {
 name: 'app',
 data() {
 return {
 name: "Adam",
 tasks: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }]
 }
 }
 }
</script>

To display the list of tasks, I used the Vue.js feature that repeats a group of elements for each object in an
array. Here is the element to which the feature has been applied, which can be difficult to spot in the other
elements that are required to create the layout:

...
<div class="row" v-for="t in tasks" v-bind:key="t.action">
 <div class="col">{{t.action}}</div>
 <div class="col-2">{{t.done}}</div>
</div>
...

This is an example of a directive, which are special attributes whose names start with v- and that are
applied to HTML elements to apply Vue.js functionality. This is the v-for directive, and it duplicates the
element that it is applied to—and any contained elements—for each object in the array, assigning each
object to a variable so that it can be accessed in data bindings.

The value assigned to the v-for directive specifies the source of the objects and the name of the
variable that each one will be assigned to as they are processed. The expression in the example is t in
tasks, which identifies a property called tasks as the source of the objects and t as the name of the variable
that each one will be assigned to in turn as the objects are enumerated.

Within the elements contained by the v-for directive, the t variable can be used in data bindings to
access the object that is currently being enumerated, like this:

...
<div class="row" v-for="t in tasks" v-bind:key="t.action">
 <div class="col">{{t.action}}</div>
 <div class="col-2">{{t.done}}</div>
</div>
...

There are two text interpolation bindings, which will set the contents of the div elements to the action
and done properties of the object being processed. The v-bind element is another example of a directive,
and its job in this example is to help the v-for directive keep track of the elements related to each object.

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

16

To provide the template with the source of the objects, I added a tasks property to the object returned
by the data function, like this:

...
data() {
 return {
 name: "Adam",
 tasks: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }]
 }
...

The result is that Vue.js will enumerate the objects that are contained in the tasks array and add
a set of div element for each of them, with data bindings that display the values of the action and done
properties.

When you save the changes to the App.vue file, the development tools will update the application and
reload the browser to show the result in Figure 1-6. The additional div elements and the classes to which
they are assigned create a grid layout for the content and are not part of the Vue.js features.

Adding a Checkbox
The example application is starting to take shape, but using true/false values to indicate whether a task
has been completed isn’t what users expect. Vue.js includes directives that can be used to configure form
elements using data values, and in Listing 1-15, I have added an input element that displays the value of the
done property of each tasks object.

Figure 1-6. Displaying a list of tasks

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

17

Listing 1-15. Adding a Form Element in the App.vue File in the src Folder

<template>
 <div id="app">
 <h4 class="bg-primary text-white text-center p-2">
 {{name}}'s To Do List
 </h4>
 <div class="container-fluid p-4">
 <div class="row">
 <div class="col font-weight-bold">Task</div>
 <div class="col-2 font-weight-bold">Done</div>
 </div>
 <div class="row" v-for="t in tasks" v-bind:key="t.action">
 <div class="col">{{t.action}}</div>
 <div class="col-2">
 <input type="checkbox" v-model="t.done" class="form-check-input" />
 {{t.done}}
 </div>
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 name: 'app',
 data() {
 return {
 name: "Adam",
 tasks: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }]
 }
 }
 }
</script>

The v-model directive configures an input element so that it displays the value specified by its
expression. Vue.js adapts its behavior based on the type of the input element to which the v-model directive
has been applied so that the value is displayed in a text input element, for example. When the type of an
input element is checkbox, the v-model directive toggles the checkbox based on the value it is configured
to display. When you save the change to the App.vue file, you will see how the checkboxes match the text
values, as shown in Figure 1-7.

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

18

This type of directive creates a two-way data binding, which means that when you change the input
element, Vue.js will update the corresponding data value. You can see how this works by checking and
unchecking one of the checkboxes. Each time you make a change, the text displayed by the adjacent text
data binding also changes, as shown in Figure 1-8.

Figure 1-7. Using a directive to display a checkbox

Figure 1-8. The effect of a two-way data binding

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

19

This demonstrates one of the most important aspects of Vue.js applications, which is that the
application’s data is “live,” and when the data changes, all of the data bindings that use that data are updated
to reflect the change. In this case, the two-way data binding I added to the input element updates the done
property of the Collect Tickets to-do object. That change is reflected in the text data binding that displays
the done property, illustrating how data bindings have an ongoing relationship with the data with which they
are associated.

Filtering Completed Tasks
The live data model means you can easily add elements that allow the user to manage the presentation of
the application’s data. In the case of the example application, users care most about the tasks that remain
incomplete, and in Listing 1-16, I added a feature that allows the user to filter out the tasks that are already
done.

Listing 1-16. Filtering Tasks in the App.vue File in the src Folder

<template>
 <div id="app">
 <h4 class="bg-primary text-white text-center p-2">
 {{name}}'s To Do List
 </h4>
 <div class="container-fluid p-4">
 <div class="row">
 <div class="col font-weight-bold">Task</div>
 <div class="col-2 font-weight-bold">Done</div>
 </div>
 <div class="row" v-for="t in filteredTasks" v-bind:key="t.action">
 <div class="col">{{t.action}}</div>
 <div class="col-2 text-center">
 <input type="checkbox" v-model="t.done" class="form-check-input" />
 </div>
 </div>
 <div class="row bg-secondary py-2 mt-2 text-white">
 <div class="col text-center">
 <input type="checkbox" v-model="hideCompleted" class="form-check-input" />
 <label class="form-check-label font-weight-bold">
 Hide completed tasks
 </label>
 </div>
 </div>
 </div>
 </div>
</template>

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

20

<script>
 export default {
 name: 'app',
 data() {
 return {
 name: "Adam",
 tasks: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }],
 hideCompleted: true
 }
 },
 computed: {
 filteredTasks() {
 return this.hideCompleted ?
 this.tasks.filter(t => !t.done) : this.tasks
 }
 }
 }
</script>

In the script element, I added a computed property using a function called filteredTasks. The
computed property is used to define properties that operate on the application’s data, and this allows Vue.
js to detect changes to the application data efficiently, which is important in complex applications. The
filteredTask property uses the value of the newly defined hideCompleted property in the data section to
determine whether the user wants to see all of the tasks or just the ones that are incomplete.

To manage the value of the hideCompleted property, I added a checkbox to the template element and
used the v-model directive, like this:

...
<input type="checkbox" v-model="hideCompleted" class="form-check-input" />
...

To ensure that the user sees the data they have selected, I changed the expression of the v-for directive
so that it uses the filteredTasks property, like this:

...
<div class="row" v-for="t in filteredTasks" v-bind:key="t.action">
...

When the user toggles the checkbox, the v-model binding updates the hideCompleted property, which
changes the result produced by the filteredTasks property and presents the user with the set of tasks they
require. Save the changes and the browser will reload, producing the result shown in Figure 1-9.

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

21

Creating New Tasks
A to-do application that doesn’t allow the user to create new tasks isn’t much use. In Listing 1-17, I have
added new content to the template element that allows the user to enter details of a new to-do.

Listing 1-17. Creating New Tasks in the App.vue File in the src Folder

<template>
 <div id="app">
 <h4 class="bg-primary text-white text-center p-2">
 {{name}}'s To Do List
 </h4>
 <div class="container-fluid p-4">
 <div class="row">
 <div class="col font-weight-bold">Task</div>
 <div class="col-2 font-weight-bold">Done</div>
 </div>
 <div class="row" v-for="t in filteredTasks" v-bind:key="t.action">
 <div class="col">{{t.action}}</div>
 <div class="col-2 text-center">
 <input type="checkbox" v-model="t.done" class="form-check-input" />
 </div>
 </div>
 <div class="row py-2">
 <div class="col">
 <input v-model="newItemText" class="form-control" />
 </div>
 <div class="col-2">
 <button class="btn btn-primary" v-on:click="addNewTodo">Add</button>
 </div>
 </div>

Figure 1-9. Filtering tasks

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

22

 <div class="row bg-secondary py-2 mt-2 text-white">
 <div class="col text-center">
 <input type="checkbox" v-model="hideCompleted" class="form-check-input" />
 <label class="form-check-label font-weight-bold">
 Hide completed tasks
 </label>
 </div>
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 name: 'app',
 data() {
 return {
 name: "Adam",
 tasks: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }],
 hideCompleted: true,
 newItemText: ""
 }
 },
 computed: {
 filteredTasks() {
 return this.hideCompleted ?
 this.tasks.filter(t => !t.done) : this.tasks
 }
 },
 methods: {
 addNewTodo() {
 this.tasks.push({
 action: this.newItemText,
 done: false
 });
 this.newItemText = "";
 }
 }
 }
</script>

The input element uses the v-model directive to create a binding with a variable called newItemText,
and when the user edits the contents element, Vue.js will update the value of the variable. To trigger the
creation of the new data item, I applied the v-on directive to the button element, like this:

...
<button class="btn btn-primary" v-on:click="addNewTodo">
...

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

23

 The v-on directive is used to respond to events, which are typically triggered when the user performs
an action. In this case, I used the v-on directive to tell Vue.js to invoke a method called addNewTodo when the
click event is triggered on the button element, which will happen when the user clicks the button.

To support the changes in the template element, I made corresponding changes to the JavaScript code
in the script element. I added a methods property, which is where Vue.js looks for methods that are invoked
by directive expressions. Within methods, I defined a method called addNewTodo that adds a new object to the
tasks array using the value of the newItemText property as the action value. Once the new object has been
added to the array, I reset the newItemText value. The v-model binding that updates the newItemText value
when the content of the input element changes works in the other direction too, which means that setting
the newItemText to the empty string will clear the contents of the input element.

Save the changes, and you will see the content shown in Figure 1-10 when the browser reloads. Enter a
task description in the input element and click the Add button, and you will see a new to-do item appear in
the list.

Storing Data Persistently
There is no persistent data storage in the example application, which means that reloading the browser resets
the to-do list and any changes made by the user are lost. I am going to use the local storage feature that is
available in modern browsers so that I can store data without having to set up a server and also to demonstrate
that you can work directly with the features provided by browsers in a Vue.js application. I show you how to
work with servers in later chapters, but I am keeping things simple for this project. In Listing 1-18, I have added
statements to the script element of the component to store and retrieve the to-do list data. (I have not shown
the template element in the listing because it has not changed. I explain this convention in Chapter 2.)

Listing 1-18. Using Local Storage in the App.vue File in the src Folder

...
<script>

 export default {
 name: 'app',
 data() {

Figure 1-10. Creating a new task

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

24

 return {
 name: "Adam",
 tasks: [],
 hideCompleted: true,
 newItemText: ""
 }
 },
 computed: {
 filteredTasks() {
 return this.hideCompleted ?
 this.tasks.filter(t => !t.done) : this.tasks
 }
 },
 methods: {
 addNewTodo() {
 this.tasks.push({
 action: this.newItemText,
 done: false
 });
 localStorage.setItem("todos", JSON.stringify(this.tasks));
 this.newItemText = "";
 }
 },
 created() {
 let data = localStorage.getItem("todos");
 if (data != null) {
 this.tasks = JSON.parse(data);
 }
 }
 }
</script>
...

The local storage feature is provided through a global object called localStorage that defines getItem
and setItem methods and that is provided by the browser.

 ■ Tip the localStorage object isn’t specific to Vue.js development. It is a standard javascript object that is
available to all web applications, regardless of how they are written. see https://developer.mozilla.org/
en-US/docs/Web/API/Window/localStorage for a good description of how local storage works.

The storeData method added to the component uses the setItem method to store the to-do items and
is called when the user creates a new to-do or toggles an existing checkbox. The local storage feature is only
able to store string values, which means that I have to serialize the data objects as JSON before they can be
stored.

The created method that I added to the component in Listing 1-18 is called when Vue.js creates
the component and it provides me with an opportunity to load the data from local storage before the
application’s content is presented to the user. The final change made in Listing 1-18 is to remove the
placeholder to-do items, which are no longer required now that the user’s data is persistently stored.

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

25

When you save the changes, the browser will reload, and the application will store any to-do items you
create persistently, which means they will still be available when you reload the browser window or navigate
away to a different URL, such as the Apress website, and then back to http://localhost:8080, as shown in
Figure 1-11.

Adding the Finishing Touches
I am going to add two features to complete the example application. The first feature is the ability to delete
completed to-do tasks, which will be important now that they are stored persistently. The second feature is
to display a message when there are no to-do items to display. I added both features to the App component,
as shown in Listing 1-19.

Listing 1-19. Adding Finishing Touches in the App.vue File in the src Folder

<template>
 <div id="app">
 <h4 class="bg-primary text-white text-center p-2">
 {{name}}'s To Do List
 </h4>
 <div class="container-fluid p-4">
 <div class="row" v-if="filteredTasks.length == 0">
 <div class="col text-center">
 Nothing to do. Hurrah!
 </div>
 </div>
 <template v-else>
 <div class="row">
 <div class="col font-weight-bold">Task</div>
 <div class="col-2 font-weight-bold">Done</div>
 </div>

Figure 1-11. Storing data

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

26

 <div class="row" v-for="t in filteredTasks" v-bind:key="t.action">
 <div class="col">{{t.action}}</div>
 <div class="col-2 text-center">
 <input type="checkbox" v-model="t.done"
 class="form-check-input" />
 </div>
 </div>
 </template>
 <div class="row py-2">
 <div class="col">
 <input v-model="newItemText" class="form-control" />
 </div>
 <div class="col-2">
 <button class="btn btn-primary"
 v-on:click="addNewTodo">Add</button>
 </div>
 </div>
 <div class="row bg-secondary py-2 mt-2 text-white">
 <div class="col text-center">
 <input type="checkbox" v-model="hideCompleted"
 class="form-check-input" />
 <label class="form-check-label font-weight-bold">
 Hide completed tasks
 </label>
 </div>
 <div class="col text-center">
 <button class="btn btn-sm btn-warning"
 v-on:click="deleteCompleted">
 Delete Completed
 </button>
 </div>
 </div>
 </div>
 </div>
</template>

<script>

 export default {
 name: 'app',
 data() {
 return {
 name: "Adam",
 tasks: [],
 hideCompleted: true,
 newItemText: ""
 }
 },

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

27

 computed: {
 filteredTasks() {
 return this.hideCompleted ?
 this.tasks.filter(t => !t.done) : this.tasks
 }
 },
 methods: {
 addNewTodo() {
 this.tasks.push({
 action: this.newItemText,
 done: false
 });
 this.storeData();
 this.newItemText = "";
 },
 storeData() {
 localStorage.setItem("todos", JSON.stringify(this.tasks));
 },
 deleteCompleted() {
 this.tasks = this.tasks.filter(t => !t.done);
 this.storeData();
 }
 },
 created() {
 let data = localStorage.getItem("todos");
 if (data != null) {
 this.tasks = JSON.parse(data);
 }
 }
 }
</script>

The v-if and v-else directives are used to display elements conditionally, and I used them to display
a message when there are no items in the tasks array and to otherwise display the list of tasks. I also added
a button element and used the v-on directive to handle the click event by filtering out the completed to-do
items and then storing the objects that remain. When you save the change to the App.vue file, the application
will reload. If you check the Hide Completed Tasks checkbox and click the Delete Completed button, you
will see the result shown in Figure 1-12.

ChaPter 1 ■ Your FIrst Vue.js aPPlICatIon

28

Summary
In this chapter, I created a simple example application to introduce you to Vue.js projects and the Vue.js
development process. Although the example was simple, it allowed me to demonstrate some important Vue.
js concepts.

You saw that Vue.js comes with all the tools you need for development, and when you create a project,
everything that is required to prepare and package the application and deliver it to the browser for testing is
included.

You learned that Vue.js applications are built around components, which combine HTML and
JavaScript code. The JavaScript code is broken into sections, such as data and methods, and computed and
accessed through directives and data bindings. Underneath all of these features is the idea of a reactive data
model, which allows changes to be automatically reflected by the application.

There are many more Vue.js features available, as you can tell from the size of this book, but the
basic application that I created in this chapter has shown you the most essential characteristics of Vue.js
development and will provide a foundation for later chapters. In the next chapter, I put Vue.js in context and
describe the structure and content of this book.

Figure 1-12. Adding the finishing touches

29© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_2

CHAPTER 2

Understanding Vue.js

Vue.js is a flexible and powerful open-source framework for developing client-side applications, taking
design principles from the world of server-side development and applying them to HTML elements, creating
a foundation that makes building rich web applications easier. In this book, I explain how Vue.js works and
demonstrate the different features that it provides.

THIS BOOK AND THE VUE.JS RELEASE SCHEDULE

The Vue.js development team goes to a lot of effort to ensure that the Vue.js API changes as little as
possible, which is a refreshing change from the constant stream of breaking updates that characterize
other client-side frameworks. There are frequent updates to Vue.js, but you should find that they don’t
usually don’t prevent existing applications from working, which is good news for your projects and the
examples in this book.

Even so, there is always the possibility that a Vue.js release will stop some of the examples from
working as intended. It doesn’t seem fair or reasonable to ask readers to buy a new edition of this book
every time that happens, especially since the majority of Vue.js features are unlikely to change even in a
major release. Instead, I am going to post updates following the major releases to the GitHub repository
for this book, https://github.com/Apress/pro-vue-js-2.

This is an ongoing experiment for me (and for Apress), and the form these updates may take is
uncertain—not least because I don’t know what the major releases of Vue.js will contain—but the goal
is to extend the life of this book by updating the examples it contains.

I am not making any promises about what the updates will be like, what form they will take, or how long
I will produce them before folding them into a new edition of this book. Please keep an open mind and
check the repository for this book when new Vue.js versions are released. If you have ideas about how
the updates could be improved, then e-mail me at adam@adam-freeman.com and let me know.

Should I Use Vue.js?
Vue.js isn’t the solution to every problem, and it is important to know when you should use Vue.js and when
you should seek an alternative. Vue.js delivers the kind of functionality that used to be available only to native
application developers and makes it available entirely in the browser. This puts a lot of demand on the browser,
which has to run the Vue.js application, process the HTML elements, execute the JavaScript code, handle events,
and perform all of the other tasks required to start a Vue.js application like the one you saw in Chapter 2.

https://github.com/Apress/pro-vue-js-2
mailto:adam@adam-freeman.com

CHAPTEr 2 ■ UndErsTAndInG VUE.js

30

This kind of work takes time to perform, and the amount of time depends on the complexity of the Vue.
js application, the quality of the browser, and the processing capability of the device. You won’t notice any
delay when using the latest browsers on a capable desktop machine, but old browsers on underpowered
smartphones can really slow down the initial setup of a Vue.js app.

The goal, therefore, is to perform this setup as infrequently as possible and deliver as much of the app as
possible to the user when it is performed. This means giving careful thought to the kind of web application
you build. In broad terms, there are two kinds of web application: round-trip and single-page.

Understanding Round-Trip Applications
For a long time, web apps were developed to follow a round-trip model. The browser requests an initial
HTML document from the server. User interactions—such as clicking a link or submitting a form—led the
browser to request and receive a completely new HTML document. In this kind of application, the browser
is essentially a rending engine for HTML content, and all of the application logic and data resides on the
server. The browser makes a series of stateless HTTP requests that the server handles by generating HTML
documents dynamically.

A lot of current web development is still for round-trip applications, especially for line-of-business
projects, not least because they put few demands on the browser and have the widest possible client
support. But there are some serious drawbacks to round-trip applications: they make the user wait while
the next HTML document is requested and loaded, they require a large server-side infrastructure to process
all the requests and manage all the application state, and they can require more bandwidth because each
HTML document has to be self-contained, which can lead to the same content being included in each
response from the server. Vue.js is not well-suited to round-trip applications because the browser has to
perform the initial setup process for each new HTML document that is received from the server.

Understanding Single-Page Applications
Single-page applications (SPAs) take a different approach. An initial HTML document is sent to the browser,
but user interactions lead to Ajax requests for small fragments of HTML or data inserted into the existing
set of elements being displayed to the user. The initial HTML document is never reloaded or replaced,
and the user can continue to interact with the existing HTML while the Ajax requests are being performed
asynchronously, even if that just means seeing a “data loading” message.

Single-page applications are well-suited to Vue.js—and other client-side frameworks, including
Angular and React—because the work that the browser has to perform to initialize the application has to be
performed only once, after which the application runs in the browser, responding to user interaction and
requesting the data or content that is required in the background.

COMPARING VUE.JS TO REACT AND ANGULAR

There are two main competitors to Vue.js: react and Vue.js. There are differences between them, but,
for the most part, all of these frameworks are excellent, all of them work in similar ways, and all of them
can be used to create rich and fluid client-side applications.

One key difference is that Vue.js focuses only on presenting HTML content to the user and doesn’t
directly include functionality for other features, such as asynchronous HTTP requests or UrL routing.
But this difference is largely academic since these features are provided through packages that are
endorsed or even developed by the Vue.js development team, and most Vue.js projects use the same set
of packages.

CHAPTEr 2 ■ UndErsTAndInG VUE.js

31

The real difference between these frameworks is the developer experience. Angular requires you to use
Typescript to be effective, for example, whereas it is just an option with Vue.js projects. Vue.js and react
lean toward mixing HTML and javascript, which not everyone enjoys.

My advice is simple: pick the framework that you like the look of the most and switch to one of the
others if you don’t get on with it. That may seem like an unscientific approach, but there isn’t a bad
choice to make, and you will find that many of the core concepts carry over between frameworks even
if you change the one you use.

If you want a careful comparison of features, then see https://vuejs.org/v2/guide/comparison.html,
which has a comprehensive comparison between Vue.js and other frameworks, albeit one that is written by
the Vue.js team. But don’t get sucked into comparing low-level features because all of these frameworks
are good; all of them can be used to write large and complex projects, and the best framework is always
the one that suits your personal development style and in which you are most productive.

Understanding Server-Side Rendering
Server-side rendering (known as SSR) is another term that is related to SPAs and is intended to make web
applications respond more quickly when the user first navigates to a URL and to allow search engines to
better index web application content.

SSR uses Node.js as a server-side JavaScript runtime to execute the web application on the server to
produce the content that is presented to the user. At this point, the application is a round-trip application,
where each interaction results in a new HTTP request to the server, which continues to execute the
application on the user’s behalf and send the HTML that is produced back to the browser so that it can
be displayed to the user. At the same time, the code and content required to execute the application is
downloaded in the background and used to initialize the application, at which point it becomes a single-
page application and user interaction is handled by the code running in the browser.

There are packages available that support SSR for Vue.js applications, but I do not describe them in
this book. Server-side rendering is complex and is limited to servers that can execute JavaScript since they
are responsible for running the application on behalf of users. Applications must take care not to rely on
features or APIs that require a browser since those features are not available at the server. Seamlessly moving
between server-side rendering and client-side rendering can also be difficult and confusing to the user,
especially when there are problems. These difficulties and limitations mean that SSR is not suitable for most
Vue.js projects and should be approached with caution. See https://vuejs.org/v2/guide/ssr.html for
more details about the SSR support for Vue.js.

Understanding Application Complexity
The type of application isn’t the only consideration when deciding whether Vue.js would be well-suited to a
project. The complexity of a project is also important, and I often hear from readers who have embarked on a
project using a client-side framework such as Vue.js, Angular, or React when something much simpler would
have been sufficient. A framework such as Vue.js requires a substantial time commitment to master (as the
size of this book illustrates), and this effort isn’t justified if you just need to validate a form or populate a
select element programmatically.

In the excitement that surrounds client-side frameworks, it is easy to forget that browsers provide a
rich set of APIs that can be used directly and that these are the same APIs that Vue.js relies on for all of
its features. If you have a problem that is simple and self-contained, then you should consider using the
browser APIs directly, starting with the Document Object Model (DOM) API. You will see that some of the
examples in this book use the browser APIs directly, but a good place to start if you are new to browser

https://vuejs.org/v2/guide/comparison.html
https://vuejs.org/v2/guide/ssr.html

CHAPTEr 2 ■ UndErsTAndInG VUE.js

32

development is https://developer.mozilla.org, which contains good documentation for all of the APIs
that browsers support.

The drawback of the browser APIs, especially the DOM API, is that they can be awkward to work with,
and older browsers tend to implement features differently. A good alternative to working directly with the
browser APIs, especially if you have to support older browsers, is jQuery (https://jquery.org). jQuery
simplifies working with HTML elements and has excellent support for handling events, animations, and
asynchronous HTTP requests.

Rich client-side frameworks like Vue.js require too much investment and too many resources for simple
projects. They come into their own in complex projects, where there are complex workflows to implement,
different types of user to deal with, and large amounts of data to be processed. In these situations, you
can work directly with the browser APIs or with jQuery, but it becomes difficult to manage the code and
hard to scale up the application. The features provided by Vue.js make it easier to build large and complex
applications and to do so without getting bogged down in reams of unreadable code, which is often the fate
of complex projects that don’t adopt a framework.

What Do I Need to Know?
If you decide that Vue.js is the right choice for your project, then you should be familiar with the basics
of web development, have an understanding of how HTML and CSS work, and, ideally, have a working
knowledge of JavaScript. If you are a little hazy on some of these details, I provide primers for the HTML,
CSS, and JavaScript features I use in this book in Chapters 3 and 4. You won’t find a comprehensive reference
for HTML elements and CSS properties, though. There just isn’t the space in a book about Vue.js to cover all
of HTML. If you want to brush up on the fundamentals of HTML, CSS, and JavaScript, then I recommend
https://developer.mozilla.org as a good place to start.

How Do I Set Up My Development Environment?
The only development tools needed for Vue.js development are the ones you installed in Chapter 1 when
you created your first application. Some later chapters require additional packages, but full instructions are
provided. If you successfully built the application in Chapter 1, then you are set for Vue.js development and
for the rest of the chapters in this book.

What Is the Structure of This Book?
This book is split into three parts, each of which covers a set of related topics.

Part 1: Getting Started with Vue.js
Part 1 of this book provides the information you need to get started with Vue.js development. It includes
this chapter and primer/refresher chapters for the key technologies used in Vue.js development, including
HTML, CSS, and JavaScript. I also show you how to build your first Vue.js application and take you through
the process of building a more realistic application, called SportsStore.

Part 2: Working with Vue.js
Part 2 of this book takes you through the features that are required in most Vue.js projects. Vue.js includes a
lot of built-in functionality, which I describe in depth, along with the way that custom code and content is
added to a project to create bespoke features.

https://developer.mozilla.org
https://jquery.org
https://developer.mozilla.org

CHAPTEr 2 ■ UndErsTAndInG VUE.js

33

Part 3: Advanced Vue.js Features
Part 3 of this book explains how advanced Vue.js features can be used to create larger and more complex
applications. I describe the lifecycle of a Vue.js application, show you how to create a common data store,
and explain how to display parts of the application based on the user’s actions. I also show you how to
extend the built-in Vue.js features and how to perform unit testing in your projects.

Are There Lots of Examples?
There are loads of examples. The best way to learn Vue.js is by example, and I have packed as many of them
into this book as I can, along with screenshots so you can see the effects of each feature. To maximize the
number of examples in this book, I have adopted a simple convention to avoid listing the same code or
content over and over. When I create a file, I will show its full contents, just as I have in Listing 2-1. I include
the name of the file and its folder in the listing’s header, and I show the changes that I have made in bold.

Listing 2-1. Getting Data in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col"><error-display /></div>
 </div>
 <div class="row">
 <div class="col-8 m-3"><product-display /></div>
 <div class="col m-3"><product-editor /></div>
 </div>
 </div>
</template>

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";
 import ErrorDisplay from "./components/ErrorDisplay";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor, ErrorDisplay },
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

This is a listing from Chapter 21, which shows the contents of a file called App.vue that can be found in
the src folder. Don’t worry about the content of the listing or the purpose of the file; just be aware that this
type of listing contains the complete contents of a file and that the changes you need to make to follow the
example are shown in bold.

Some files in a Vue.js application can be long, but the feature that I am describing requires only a small
change. Rather than list the complete file, I use an ellipsis (three periods in series) to indicate a partial
listing, which shows just part of the file, as shown in Listing 2-2.

CHAPTEr 2 ■ UndErsTAndInG VUE.js

34

Listing 2-2. Preparing for Dynamic Display in the ProductEditor.vue File in the src/components Folder

...
<script>

 let unwatcher;

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },
 methods: {
 save() {
 this.$store.dispatch("saveProductAction", this.product);
 this.product = {};
 },
 cancel() {
 this.$store.commit("selectProduct");
 },
 selectProduct(selectedProduct) {
 if (selectedProduct == null) {
 this.editing = false;
 this.product = {};
 } else {
 this.editing = true;
 this.product = {};
 Object.assign(this.product, selectedProduct);
 }
 }
 },
 created() {
 unwatcher = this.$store.watch(state =>
 state.selectedProduct, this.selectProduct);
 this.selectProduct(this.$store.state.selectedProduct);
 },
 beforeDestroy() {
 unwatcher();
 }
 }
</script>
...

This is a later listing from Chapter 21, and it shows a set of changes that are applied to only one part of a
much larger file. When you see a partial listing, you will know that the rest of the file does not have to change
and that only the sections marked in bold are different.

In some cases, changes are required in different parts of a file, which makes it difficult to show as a
partial listing. In this situation, I omit part of the file’s contents, as shown in Listing 2-3.

CHAPTEr 2 ■ UndErsTAndInG VUE.js

35

Listing 2-3. Adding a Module in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";

import PrefsModule from "./preferences";
import NavModule from "./navigation";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500/products/";

export default new Vuex.Store({
 modules: {
 prefs: PrefsModule,
 nav: NavModule
 },
 state: {
 products: [],
 selectedProduct: null
 },

 // ...other data store features omitted for brevity...

})

The changes are still marked in bold, and the parts of the file that are omitted from the listing are not
affected by this example.

Where Can You Get the Example Code?
You can download the example projects for all the chapters in this book from https://github.com/Apress/
pro-vue-js-2. The download is available without charge and contains everything that you need to follow
the examples without having to type in all of the code.

Where Can You Get Corrections for This Book?
You can find errata for this book at https://github.com/Apress/pro-vue-js-2.

How Can You Contact Me?
If you have problems making the examples in this chapter work or if you find a problem in the book, then
you can e-mail me at adam@adam-freeman.com, and I will try my best to help. Please check the errata for this
book to see whether it contains a solution to your problem before contacting me.

https://github.com/Apress/pro-vue-js-2
https://github.com/Apress/pro-vue-js-2
https://github.com/Apress/pro-vue-js-2

CHAPTEr 2 ■ UndErsTAndInG VUE.js

36

Summary
In this chapter, I explained when Vue.js is a good choice for projects and outlines the alternatives and
competitors. I also outlined the content and structure of this book, explained where to get updates and how
to contact me if you have problems with the examples in this book. In the next chapter, I provide a primer for
the HTML and CSS features that I use in this book to demonstrate Vue.js development.

37© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_3

CHAPTER 3

HTML and CSS Primer

Developers come to the world of web app development via many paths and are not always grounded in the
basic technologies that web apps rely on. In this chapter, I provide a brief primer for HTML and introduce
the Bootstrap CSS library, which I use to style the examples in this book. In Chapter 4, I introduce the basics
of JavaScript and give you the information you need to understand the examples in the rest of the book. If
you are an experienced developer, you can skip these primer chapters and jump right to Chapter 5, where I
use Vue.js to create a more complex and realistic application.

 ■ Tip You can download the example project for this chapter—and for all of the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Preparing for This Chapter
For this chapter, I need a simple Vue.js project. I started by running the command shown in Listing 3-1 to
create a project called htmlcssprimer.

Listing 3-1. Creating the Example Project

vue create htmlcssprimer --default

The process of creating the project can take a few moments because there is a large number of packages
to be downloaded and installed.

 ■ Note At the time of writing, the @vue/cli package has been released in beta. There may be small changes
made before the final release, but the core features should remain the same. For details of any breaking
changes, check the errata for this book, available at https://github.com/Apress/pro-vue-js-2.

Once the project has been created, run the commands shown in Listing 3-2 to navigate to the project
folder and install the Bootstrap CSS framework, which I use in this chapter (and throughout the book) to
manage the appearance of the content in the Vue.js application.

https://github.com/Apress/pro-vue-js-2
https://github.com/Apress/pro-vue-js-2

ChApTer 3 ■ hTML And CSS priMer

38

Listing 3-2. Installing the Bootstrap Package

cd htmlcssprimer
npm install bootstrap@4.0.0

To include Bootstrap in the project, I added the statement shown in Listing 3-3 to the main.js file in the
src folder. I explain how the import statement works in Chapter 4, but for now, it is enough to simply add
the statement shown in the listing.

Listing 3-3. Adding a Statement in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

Vue.config.productionTip = false

import "bootstrap/dist/css/bootstrap.min.css";

new Vue({
 render: h => h(App)
}).$mount('#app')

Next, I replaced the placeholder content in the App.vue file with the template and script element
shown in Listing 3-4 and removed the style element entirely.

Listing 3-4. Replacing the Content of the App.vue File in the src Folder

<template>
 <div>
 <h4 class="bg-primary text-white text-center p-2">
 Adam's To Do List
 </h4>
 <div class="container-fluid p-4">
 <div class="row">
 <div class="col font-weight-bold">Task</div>
 <div class="col-2 font-weight-bold">Done</div>
 </div>
 <div class="row" v-for="t in tasks" v-bind:key="t.action">
 <div class="col">{{t.action}}</div>
 <div class="col-2">{{t.done}}</div>
 </div>
 </div>
 </div>
</template>

<script>
export default {
 data: function () {
 return {
 tasks: [{ action: "Buy Flowers", done: false },

ChApTer 3 ■ hTML And CSS priMer

39

 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }]
 }
 }
}
</script>

This is a simplified version of the to-do application from Chapter 1, with some basic dynamic content
but without features such as completing or adding new items. Save all of the changes and run the command
shown in Listing 3-5 in the htmlcssprimer folder to start the Vue.js development tools.

Listing 3-5. Starting the Vue.js Development Tools

npm run serve

The initial preparation of the project will take a moment, after which you will see a message telling you
that the application is ready. Open a new browser window and navigate to http://localhost:8080 to see
the content shown in Figure 3-1.

Figure 3-1. Running the example application

ChApTer 3 ■ hTML And CSS priMer

40

Understanding HTML Elements
At the heart of HTML is the element, which tells the browser what kind of content each part of an HTML
document represents. Here is an element from the example HTML document:

...
<h4 class="bg-primary text-white text-center p-2">
 Adam's To Do List
</h4>
...

As illustrated in Figure 3-2, this element has several parts: the start tag, the end tag, attributes, and the
content.

The name of this element (also referred to as the tag name or just the tag) is h4, and it tells the browser
that the content between the tags should be treated as a header. There are a range of header elements,
ranging from h1 to h6, where h1 is conventionally used for the most important content, h2 for slightly less
important content, and so on.

When you define an HTML element, you start by placing the tag name in angle brackets (the < and >
characters) and end an element by using the tag in a similar way, except that you also add a / character after
the left-angle bracket (<) to create the start tag and end tag.

The tag indicates the purpose of the element, and there is a wide range of element types defined by
the HTML specification. In Table 3-1, I describe the elements that I use in Listing 3-4 and some of the most
common elements from the examples in later chapters. For a complete list of tag types, you should consult
the HTML specification.

Figure 3-2. The anatomy of an HTML element

ChApTer 3 ■ hTML And CSS priMer

41

Understanding Element Content
Whatever appears between the start and end tags is the element’s content. An element can contain text
(such as Adam's To Do List in this case) or other HTML elements. Here is an example of an element from
Listing 3-4 that contains other HTML elements:

...
<div class="row">
 <div class="col font-weight-bold">Task</div>
 <div class="col-2 font-weight-bold">Done</div>
</div>
...

The outer element is known as the parent, while the elements it contains are known as children. Being
able to create a hierarchy of elements is an essential HTML feature, which allows complex layouts to be
created. The parent-child relationship is expanded in a large HTML document such that a single element
can be an antecedent to many other elements, all of which are its descendants.

Understanding Element Content Restrictions
Some elements have restrictions on the types of elements that can be their children. The div elements shown
in the previous section can contain any other element and are used to add structure, often so that content can
be easily styled. Other elements have more specific roles that require specific types of elements to be used as
children. For example, a tbody element, which you will see in later chapters and which represents the body of a
table, can contain only one or more tr elements, each of which represents a table row.

Table 3-1. Common HTML Elements Used in the Examples

Element Description

a Denotes a link (more formally known as an anchor), which the user clicks to navigate to a
new URL or a new location within the current document.

button Denotes a button; often used to submit a form to the server.

div A generic element; often used to add structure to a document for presentation purposes.

h1-h6 Denotes a header.

input Denotes a field used to gather a single data item from the user.

table Denotes a table, used to organize content into rows and columns.

tbody Denotes the body of the table (as opposed to the header or footer).

td Denotes a content cell in a table row.

template Denotes content that will be processed using JavaScript. Vue.js components use a template
element to contain their HTML content, and the element is also used to apply Vue.js
features to avoid creating invalid HTML documents.

th Denotes a header cell in a table row.

thead Denotes the header of a table.

tr Denotes a row in a table.

ChApTer 3 ■ hTML And CSS priMer

42

 ■ Tip don’t worry about learning all of the hTML elements and their relationships. You will pick up everything
you need to know as you follow the examples in later chapters, and most code editors will display a warning if
you try to create invalid hTML.

Understanding Void Elements
There are some elements that are not allowed to contain anything at all. These are called void or self-closing
elements, and they are written without a separate end tag, like this:

...
<input />
...

A void element is defined in a single tag, and you add a / character before the last angle bracket (the >
character). The element shown here is the most common example of a void element, and it is used to gather
data from the user in HTML forms. You will see many examples of void elements in later chapters.

Understanding Attributes
You can provide additional information to the browser by adding attributes to your elements. Here is the
attribute that was applied to the h4 element illustrated in Figure 3-2:

...
<h4 class="bg-primary text-white text-center p-2">
 Adam's To Do List
</h4>
...

Attributes are always defined as part of the start tag, and most attributes have a name and a value,
separated by an equal sign, as illustrated in Figure 3-3.

The name of this attribute is class, which is used to group related elements together, typically so
that their appearance can be managed consistently. This is why the class attribute has been used in this
example and the attribute value associates the h4 element with a number of classes that relate to styles
provided by the Bootstrap CSS package, which I describe later in the chapter.

Figure 3-3. The name and value of an attribute

ChApTer 3 ■ hTML And CSS priMer

43

Quoting Literal Values in Attributes
Vue.js relies on HTML element attributes to apply a lot of its functionality. Most of the time, the values of
attributes are evaluated as JavaScript expressions, such as with this element, taken from Listing 3-4:

...
<div class="row" v-for="t in tasks" v-bind:key="t.action">
...

The attribute values contain fragments of JavaScript. The value for the v-for attribute is an expression
that will enumerate the objects in an array called tasks and assign each of them to a temporary variable
called t. The tasks array is provided in the script element in Listing 3-4, but there will be occasions when
you need to provide a specific value rather than have Vue.js read a value from the script element, and this
requires additional quote characters to tell JavaScript that it is dealing with a literal value, like this:

...
<h3 v-on:click="name = 'Clicked'">{{ name }}</h3>
...

This element is from Chapter 14, and the value for the attribute is an expression that assigns the literal
string Clicked to a property called name. To denote the literal value, Clicked is surrounded by single quotes
(the ' character), which prevents Vue.js from looking for a Clicked value in the script element.

Applying Attributes Without Values
Not all attributes require a value; just defining them sends a signal to the browser that you want a certain
kind of behavior associated with the element. Here is an example of an element with such an attribute,
which you can find in Chapter 25:

...
<transition enter-active-class="animated fadeIn"
 leave-active-class=" animated fadeOut" mode="out-in"
 appear appear-active-class="animated zoomIn">
 <router-view />
</transition>
...

This is an element to which many attributes have been applied, but notice that the appear attribute
doesn’t have a value. It is the presence of the attribute that has an effect, and no value is required.

ChApTer 3 ■ hTML And CSS priMer

44

Examining the Live HTML Document
If you want to see the underlying HTML used by a web page, you may be used to right-clicking in the browser
window and selecting View Page Source from the pop-up window (or a similarly named menu item if you
are not using Google Chrome). But if you do that when the browser is displaying the example application,
you won’t see the HTML for the list of to-do items. Instead, you will see the following:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,initial-scale=1.0">
 <link rel="icon" href="/favicon.ico">
 <title>htmlcssprimer</title>
 <link as="script" href="/app.js" rel="preload">
</head>
 <body>
 <noscript>

 We're sorry but htmlcssprimer doesn't work properly without
 JavaScript enabled. Please enable it to continue.

 </noscript>
 <div id="app"></div>
 <!-- built files will be auto injected -->
 <script type="text/javascript" src="/app.js"></script></body>
</html>

You need to use the browser’s developer tools to see the HTML elements produced by a Vue.js
application. When the application runs, its JavaScript code is executed, and that produces the content you
see in the browser window.

Most browsers open their developer tools when the F12 key is pressed (which is why they are often
called the F12 tools), but there is usually a menu option or an item on the pop-up menu that appears when
you right-click in the browser window. For Google Chrome, this is the Inspect menu item, which opens the
developer tools and focuses on the HTML element you clicked.

Figure 3-4 shows the developer tools display after I right-clicked the Collect Tickets text in the browser
window and selected Inspect from the pop-up menu. It shows the HTML elements generated by the
application, including their content, attributes, and details of the CSS styles that affect them.

ChApTer 3 ■ hTML And CSS priMer

45

The view presented by the F12 developer tools is live, meaning that changes to the content generated by
the Vue.js application will be reflected in the elements you see. This is a good way of figuring out how your
application behaves, especially when you don’t get the results you expect.

Understanding Bootstrap
HTML elements tell the browser what kind of content they represent, but they don’t provide any information
about how that content should be displayed. The information about how to display elements is provided
using Cascading Style Sheets (CSS). CSS consists of a comprehensive set of properties, which can be used to
configure every aspect of an element’s appearance, and a set of selectors, which allow those properties to be
applied.

One of the main problems with CSS is that some browsers interpret properties slightly differently, which
can lead to variations in the way that HTML content is displayed on different devices. It can be difficult to
track down and correct these problems, and CSS frameworks have emerged to help web app developers style
their HTML content in a simple and consistent way.

The most popular CSS framework is Bootstrap, which was originally developed at Twitter but has
become a widely used open source project. Bootstrap consists of a set of CSS classes that can be applied
to elements to style them consistently and some optional JavaScript code that performs additional
enhancement (but which I do not use in this book). I use Bootstrap in my own projects; it works well across
browsers, and it is simple to use. I use the Bootstrap CSS styles in this book because they let me style my
examples without having to define and then list my own custom CSS in each chapter. Bootstrap provides a
lot more features than the ones I use in this book; see http://getbootstrap.com for full details.

I don’t want to get into too much detail about Bootstrap because it isn’t the topic of this book, but I do
want to give you enough information so you can tell which parts of an example are Vue.js features and which
are related to Bootstrap.

Figure 3-4. Inspecting an HTML element

http://getbootstrap.com

ChApTer 3 ■ hTML And CSS priMer

46

Applying Basic Bootstrap Classes
Bootstrap styles are applied via the class attribute, which is used to group together related elements. The class
attribute isn’t just used to apply CSS styles, but it is the most common use, and it underpins the way that Bootstrap
and similar frameworks operate. Here is an HTML element with a class attribute, taken from Listing 3-4:

...
<h4 class="bg-primary text-white text-center p-2">
 Adam's To Do List
</h4>
...

The class attribute assigns the h4 element to four classes, whose names are separated by spaces: bg-
primary, text-white, text-center, and p-2. These classes correspond to collections of styles defined by
Bootstrap, as described in Table 3-2.

Using Contextual Classes
One of the main advantages of using a CSS framework like Bootstrap is to simplify the process of creating a
consistent theme throughout an application. Bootstrap defines a set of style contexts that are used to style
related elements consistently. These contexts, which are described in Table 3-3, are used in the names of the
classes that apply Bootstrap styles to elements.

Table 3-3. The Bootstrap Style Contexts

Name Description

primary This context is used to indicate the main action or area of content.

secondary This context is used to indicate the supporting areas of content.

success This context is used to indicate a successful outcome.

info This context is used to present additional information.

warning This context is used to present warnings.

danger This context is used to present serious warnings.

muted This context is used to de-emphasize content.

dark This context is used to increase contrast by using a dark color.

white This context is used to increase contrast by using white.

Table 3-2. The h4 Element Classes

Name Description

bg-primary This class applies a style context to provide a visual cue about the purpose of the
element. See the “Using Contextual Classes” section.

text-white This class applies a style that sets the text color for the element’s content to white.

text-center This class applies a style that horizontally centers the element’s content.

p-2 This class applies a style that adds spacing around the element’s content, as
described in the “Using Margin and Padding” section.

ChApTer 3 ■ hTML And CSS priMer

47

Bootstrap provides classes that allow the style contexts to be applied to different types of elements.
The h4 element with which I started this section has been added to the bg-primary class, which sets the
background color of an element to indicate that it is related to the main purpose of the application. Other
classes are specific to a certain set of elements, such as btn-primary, which is used to configure button
and a elements so they appear as buttons whose colors are consistent with other elements in the primary
context. Some of these context classes must be applied in conjunction with other classes that configure the
basic style of an element, such as the btn class, which is combined with the btn-primary class.

Using Margin and Padding
Bootstrap includes a set of utility classes that are used to add padding, which is space between an element’s
edge and its content, and margin, which is space between an element’s edge and the surrounding elements.
The benefit of using these classes is that they apply a consistent amount of spacing throughout the
application.

The names of these classes follow a well-defined pattern. Here is the h4 element from Listing 3-4:

...
<h4 class="bg-primary text-white text-center p-2">
 Adam's To Do List
</h4>
...

The classes that apply margin and padding to elements follow a well-defined naming schema: first, the
letter m (for margin) or p (for padding), followed by an optional letter selecting specific edges (t for top, b for
bottom, l for left, or r for right), then a hyphen, and, finally, a number indicating how much space should be
applied (0 for no spacing, or 1, 2, 3, 4 or 5 for increasing amounts). If there is no letter to specify edges, then
the margin or padding will be applied to all edges. To help put this schema in context, the p-2 class to which
the h4 element has been added applies padding level 2 to all of the element’s edges.

Using Bootstrap to Create Grids
Bootstrap provides style classes that can be used to create different kinds of grid layout, ranging from one to
twelve columns and with support for responsive layouts, where the layout of the grid changes based on the
width of the screen. I use the grid layout for many of the examples in this book, including the component in
Listing 3-4, which presents its to-do items using this layout, like this:

...
<div class="container-fluid p-4">
 <div class="row">
 <div class="col font-weight-bold">Task</div>
 <div class="col-2 font-weight-bold">Done</div>
 </div>
<div class="row" v-for="t in tasks" v-bind:key="t.action">
 <div class="col">{{t.action}}</div>
 <div class="col-2">{{t.done}}</div>
 </div>
</div>
...

ChApTer 3 ■ hTML And CSS priMer

48

The Bootstrap grid layout system is simple to use. A top-level div element is assigned to the container
class (or the container-fluid class if you want it to span the available space). You specify a column by
applying the row class to a div element, which has the effect of setting up the grid layout for the content that
the div element contains.

Each row defines 12 columns, and you specify how many columns each child element will occupy by
assigning a class whose name is col- followed by the number of columns. For example, the class col-1
specifies that an element occupies one column, col-2 specifies two columns, and so on, right through to
col-12, which specifies that an element fills the entire row. If you omit the number of columns and just
assign an element to the col class, then Bootstrap will allocate an equal amount of the remaining columns.

Using Bootstrap to Style Tables
Bootstrap includes support for styling table elements and their contents, which is a feature I use in some of
the examples in later chapters. Table 3-4 lists the key Bootstrap classes for working with tables.

All these classes are applied directly to the table element, as shown in Listing 3-6, where I have
replaced the grid layout with a table.

Listing 3-6. Using a Table Layout in the App.vue File in the src Folder

<template>
 <div>
 <h4 class="bg-primary text-white text-center p-2">
 Adam's To Do List
 </h4>

 <table class="table table-striped table-bordered table-sm">
 <thead>
 <tr><th>Task</th><th>Done</th></tr>
 </thead>
 <tbody>
 <tr v-for="t in tasks" v-bind:key="t.action">
 <td>{{t.action}}</td>
 <td>{{t.done}}</td>
 </tr>
 </tbody>
 </table>
 </div>
</template>

Table 3-4. The Bootstrap CSS Classes for Tables

Name Description

table Applies general styling to a table element and its rows

table-striped Applies alternate-row striping to the rows in the table body

table-bordered Applies borders to all rows and columns

table-sm Reduces the spacing in the table to create a more compact layout

ChApTer 3 ■ hTML And CSS priMer

49

<script>
 export default {
 data: function () {
 return {
 tasks: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }]
 }
 }
 }
</script>

 ■ Tip notice that i have used the thead element when defining the tables in Listing 3-6. Browsers will
automatically add any tr elements that are direct descendants of table elements to a tbody element if one
has not been used. You will get odd results if you rely on this behavior when working with Bootstrap, and it is
always a good idea to use the full set of elements when defining a table.

Figure 3-5 shows the result of using a table instead of a grid to display to-do items.

Figure 3-5. Styling an HTML table

ChApTer 3 ■ hTML And CSS priMer

50

Using Bootstrap to Style Forms
Bootstrap includes styling for form elements, allowing them to be styled consistently with other elements in
the application. In Listing 3-7, I have added form elements to the example application.

Listing 3-7. Adding Form Elements in the App.vue File in the src Folder

<template>
 <div>
 <h4 class="bg-primary text-white text-center p-2">
 Adam's To Do List
 </h4>

 <table class="table table-striped table-bordered table-sm">
 <thead>
 <tr><th>Task</th><th>Done</th></tr>
 </thead>
 <tbody>
 <tr v-for="t in tasks" v-bind:key="t.action">
 <td>{{t.action}}</td>
 <td>{{t.done}}</td>
 </tr>
 </tbody>
 </table>

 <div class="form-group m-2">
 <label>New Item:</label>
 <input v-model="newItemText" class="form-control" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="addNewTodo">
 Add
 </button>
 </div>

 </div>
</template>

<script>
 export default {
 data: function () {
 return {
 tasks: [{ action: "Buy Flowers", done: false },
 { action: "Get Shoes", done: false },
 { action: "Collect Tickets", done: true },
 { action: "Call Joe", done: false }],
 newItemText: ""
 }
 },

ChApTer 3 ■ hTML And CSS priMer

51

 methods: {
 addNewTodo() {
 this.tasks.push({
 action: this.newItemText,
 done: false
 });
 this.newItemText = "";
 }
 }
 }
</script>

The basic styling for forms is achieved by applying the form-group class to a div element that contains
a label and an input element, where the input element is assigned to the form-control class. Bootstrap
styles the elements so that the label is shown above the input element and the input element occupies 100
percent of the available horizontal space, as shown in Figure 3-6.

Summary
In this chapter, I provided a brief overview of HTML and the Bootstrap CSS framework. You need to have a
good grasp of HTML and CSS to be truly effective in web application development, but the best way to
learn is by firsthand experience, and the descriptions and examples in this chapter will be enough to get
you started and provide just enough background information for the examples ahead. In the next chapter,
I continue the primer theme and introduce the most important JavaScript I use in this book.

Figure 3-6. Styling form elements

53© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_4

CHAPTER 4

Essential JavaScript Primer

In this chapter, I provide a quick tour of the most important features of the JavaScript language as they
apply to Vue.js development. I don’t have the space to describe JavaScript completely, so I have focused
on the essentials that you’ll need to get up to speed and follow the examples in this book. Table 4-1
summarizes the chapter.

Table 4-1. Chapter Summary

Problem Solution Listing

Provide instructions that will be executed by
the browser

Use JavaScript statements 5

Delay execution of statements until they are
required

Use JavaScript functions 6–8, 11, 12

Define functions with variable numbers of
parameters

Use default and rest parameters 9, 10

Express functions concisely Use fat arrow functions 14

Define variables and constants Use the let and const keywords 15, 16

Use the JavaScript primitive types Use the string, number, or boolean keywords 17, 18, 20

Define strings that include other values Use template strings 19

Execute statements conditionally Use the if and else and switch keywords 21

Compare values and identities Use the equality and identity operators 22, 23

Convert types Use the type conversion keywords 24–26

Group related items Define an array 27, 28

Read or change a value in an array Use the index accessor notation 29, 30

Enumerate the contents of an array Use a for loop or the forEach method 31

Expand the contents of an array Use the spread operator 32, 33

Process the contents of an array Use the built-in array method 34

Gather related values into a single unit Define an object 35–37

(continued)

Chapter 4 ■ essential JavasCript primer

54

Preparing for This Chapter
For this chapter, I need a simple Vue.js project. I started by running the command shown in Listing 4-1 to
create a project called jsprimer.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Listing 4-1. Creating the Example Project

vue create jsprimer --default

The project will be created, and the packages required for the application and the development tools
will be downloaded and installed, which can take some time to complete.

 ■ Note at the time of writing, the @vue/cli package has been released in beta. there may be small changes
made before the final release, but the core features should remain the same. For details of any breaking
changes, check the errata for this book, available at https://github.com/Apress/pro-vue-js-2.

Once the project has been created, use your preferred editor to replace the contents of the main.js file
in the src folder with the single statement shown in Listing 4-2. For this chapter, the focus is on JavaScript
rather than Vue.js, and the existing code is not required because it initializes a Vue.js application.

Listing 4-2. Replacing the Content of the main.js File in the src Folder

console.log("Hello");

This project requires a configuration change to override the default settings for the project. Add the
statements shown in Listing 4-3 to the project.json file, which is responsible for configuring the project
and which I describe in Chapter 10.

Problem Solution Listing

Define an operation that can be performed
on the values of an object

Define a method 38, 39

Copy properties and value from one object
to another

Use the Object.assign method 40

Group related features Define a JavaScript module 41–49

Observe an asynchronous operation Define a Promise and use the async and
await keywords

50–54

Table 4-1. (continued)

https://github.com/Apress/pro-vue-js-2
https://github.com/Apress/pro-vue-js-2

Chapter 4 ■ essential JavasCript primer

55

Listing 4-3. Changing the Project Configuration in the package.json File in the jsprimer Folder

...
"eslintConfig": {
 "root": true,
 "env": {
 "node": true
 },
 "extends": [
 "plugin:vue/essential",
 "eslint:recommended"
],
 "rules": {
 "no-console": "off",
 "no-declare": "off",
 "no-unused-vars": "off"
 },
 "parserOptions": {
 "parser": "babel-eslint"
 }
},
"postcss": {
 "plugins": {
 "autoprefixer": {}
 }
},
...

These changes disable warnings about JavaScript features that I use in the examples in this chapter,
produced by the JavaScript linter, which I describe in Chapter 10.

Save the changes to the main.js and package.json files; then open a new command prompt and
run the commands shown in Listing 4-4 to navigate to the project folder and start the Vue.js development
tools. Even though I am not using Vue.js features in this chapter, I am going to take advantage of the Vue.js
toolchain, which simplifies the process of executing JavaScript code in the browser.

Listing 4-4. Starting the Vue.js Development Tools

cd jsprimer
npm run serve

The initial preparation of the project will take a moment, after which you will see a message telling you
that the application is ready. Open a new browser window and navigate to http://localhost:8080, which
will produce the empty window shown in Figure 4-1.

Chapter 4 ■ essential JavasCript primer

56

If you open the browser’s F12 development tools and inspect the Console tab, you will see that the
statement in Listing 4-2 has produced a simple result, as shown in Figure 4-2.

All the examples in this chapter produce text output, so rather than show screenshots of the Console
tab, I will use just the text, like this:

[HMR] Waiting for update signal from WDS...
Hello

The first line is a message from the development tool that automatically reloads the browser when a
change in the src folder is detected. I won’t include this in the output from subsequent examples.

Using Statements
The basic JavaScript building block is the statement. Each statement represents a single command, and
statements are usually terminated by a semicolon (;). The semicolon is optional, but using them makes
your code easier to read and allows for multiple statements on a single line. In Listing 4-5, I have added
statements to the JavaScript file.

Figure 4-1. Running the example application

Figure 4-2. A message in the browser’s console

Chapter 4 ■ essential JavasCript primer

57

Listing 4-5. Adding JavaScript Statements in the main.js File in the src Folder

console.log("Hello");
console.log("Apples");
console.log("This is a statement");
console.log("This is also a statement");

The browser executes each statement in turn. In this example, all the statements simply write messages
to the console. The results are as follows:

Hello
Apples
This is a statement
This is also a statement

Defining and Using Functions
When the browser receives JavaScript code, it executes the statements it contains in the order in which
they are defined. This is what happened in the previous example. The statements in the main.js file were
executed one by one, all of which wrote a message to the console, all in the order in which they were defined
in the main.js. You can also package statements into a function, which won’t be executed until the browser
encounters a statement that invokes that function, as shown in Listing 4-6.

Listing 4-6. Defining a JavaScript Function in the main.js File in the src Folder

const myFunc = function () {
 console.log("This statement is inside the function");
};

console.log("This statement is outside the function");

myFunc();

Defining a function simple: use the const keyword followed by the name you want to give the function,
followed by the equal sign (=) and the function keyword, followed by parentheses (the (and) characters).
The statements you want the function to contain are enclosed between braces (the { and } characters).

In the listing, I used the name myFunc, and the function contains a single statement that writes a
message to the JavaScript console. The statement in the function won’t be executed until the browser
reaches another statement that calls the myFunc function, like this:

...
myFunc();
...

When you save the changes to the main.js file, the updated JavaScript code will be sent to the browser,
where it is executed and produces the following output:

This statement is outside the function
This statement is inside the function

Chapter 4 ■ essential JavasCript primer

58

You can see that the statement inside the function isn’t executed immediately, but other than
demonstrating how functions are defined, this example isn’t especially useful because the function is
invoked immediately after it has been defined. Functions are much more useful when they are invoked in
response to some kind of change or event, such as user interaction.

You can also define functions so you don’t have to explicitly create and assign a variable, as shown in
Listing 4-7.

Listing 4-7. Defining a Function in the main.js File in the src Folder

function myFunc() {
 console.log("This statement is inside the function");
}

console.log("This statement is outside the function");

myFunc();

The code works in the same way as Listing 4-6 but is more familiar for most developers and is the way
that I typically define functions in this book because it fits well into Vue.js development.

USING MODERN JAVASCRIPT FEATURES

Javascript has been modernized in recent years with the addition of convenient language features and a
substantial expansion of the utility functions available for common tasks such as array handling. not all
browsers support the latest features, so the vue.js development tools include the Babel package, which
is responsible for transforming Javascript written using the latest features into code that can be relied
on to work in most mainstream browsers. this means you are able to enjoy a modern development
experience without needing to pay attention to dealing with the differences between browsers and
keeping track of the features each supports. this translation is specific to the Javascript language,
and it doesn’t extend to the broader set of apis that you might want to use in your applications, such
as the local storage feature i used in Chapter 1. For this type of feature, you will need to consider the
browsers that your application must reach and whether the apis you desire are available. a good place
to start is caniuse.com, which will give you a good insight into the levels of support for an extensive set
of apis and related features.

Defining Functions with Parameters
JavaScript allows you to define parameters for functions, as shown in Listing 4-8.

Listing 4-8. Defining Functions with Parameters in the main.js File in the src Folder

function myFunc(name, weather) {
 console.log("Hello" + name + ".");
 console.log("It is" + weather + "today.");
}

myFunc("Adam", "sunny");

Chapter 4 ■ essential JavasCript primer

59

I added two parameters to the myFunc function, called name and weather. JavaScript is a dynamically
typed language, which means you don’t have to declare the data type of the parameters when you define the
function. I’ll come back to dynamic typing later in the chapter when I cover JavaScript variables. To invoke a
function with parameters, you provide values as arguments when you invoke the function, like this:

...
myFunc("Adam", "sunny");
...

The results from this listing are as follows:

Hello Adam.
It is sunny today.

Using Default and Rest Parameters
The number of arguments you provide when you invoke a function doesn’t need to match the number of
parameters in the function. If you call the function with fewer arguments than it has parameters, then the
value of any parameters you have not supplied values for is undefined, which is a special JavaScript value.
If you call the function with more arguments than there are parameters, then the additional arguments are
ignored.

The consequence of this is that you can’t create two functions with the same name and different
parameters and expect JavaScript to differentiate between them based on the arguments you provide when
invoking the function. This is called polymorphism, and although it is supported in languages such as Java
and C#, it isn’t available in JavaScript. Instead, if you define two functions with the same name, then the
second definition replaces the first.

There are two ways that you can modify a function to respond to a mismatch between the number
of parameters it defines and the number of arguments used to invoke it. Default parameters deal with the
situation where there are fewer arguments than parameters, and they allow you to provide a default value for
the parameters for which there are no arguments, as shown in Listing 4-9.

Listing 4-9. Using a Default Parameter in the main.js File in the src Folder

function myFunc(name, weather = "raining") {
 console.log("Hello" + name + ".");
 console.log("It is" + weather + "today.");
}

myFunc("Adam");

The weather parameter in the function has been assigned a default value of raining, which will be used
if the function is invoked with only one argument, producing the following results:

Hello Adam.
It is raining today.

Chapter 4 ■ essential JavasCript primer

60

Rest parameters are used to capture any additional arguments when a function is invoked with
additional arguments, as shown in Listing 4-10.

Listing 4-10. Using a Rest Parameter in the main.js File in the src Folder

function myFunc(name, weather, ...extraArgs) {
 console.log("Hello" + name + ".");
 console.log("It is" + weather + "today.");
 for (let i = 0; i < extraArgs.length; i++) {
 console.log("Extra Arg:" + extraArgs[i]);
 }
}

myFunc("Adam", "sunny", "one", "two", "three");

The rest parameter must be the last parameter defined by the function, and its name is prefixed with an
ellipsis (three periods, ...). The rest parameter is an array to which any extra arguments will be assigned. In
the listing, the function prints out each extra argument to the console, producing the following results:

Hello Adam.
It is sunny today.
Extra Arg: one
Extra Arg: two
Extra Arg: three

Defining Functions That Return Results
You can return results from functions using the return keyword. Listing 4-11 shows a function that returns a
result.

Listing 4-11. Returning a Result from a Function in the main.js File in the src Folder

function myFunc(name) {
 return ("Hello" + name + ".");
}

console.log(myFunc("Adam"));

This function defines one parameter and uses it to produce a result. I invoke the function and pass the
result as the argument to the console.log function, like this:

...
console.log(myFunc("Adam"));
...

Notice that you don’t have to declare that the function will return a result or denote the data type of the
result. The result from this listing is as follows:

Hello Adam.

Chapter 4 ■ essential JavasCript primer

61

Using Functions as Arguments to Other Functions
JavaScript functions can be treated as objects, which means you can use one function as the argument to
another, as demonstrated in Listing 4-12.

Listing 4-12. Using a Function as an Arguments in the main.js File in the src Folder

function myFunc(nameFunction) {
 return ("Hello" + nameFunction() + ".");
}

console.log(myFunc(function () {
 return "Adam";
}));

The myFunc function defines a parameter called nameFunction that it invokes to get the value to insert
into the string it returns. I pass a function that returns Adam as the argument to myFunc, which produces the
following output:

Hello Adam.

Functions can be chained together, building up more complex functionality from small and easily
tested pieces of code, as shown in Listing 4-13.

Listing 4-13. Chaining Functions Calls in the main.js File in the src Folder

function myFunc(nameFunction) {
 return ("Hello" + nameFunction() + ".");
}

function printName(nameFunction, printFunction) {
 printFunction(myFunc(nameFunction));
}

printName(function () { return "Adam" }, console.log);

This example produces the following output:

Hello Adam.

Using Arrow Functions
Arrow functions—also known as fat arrow functions or lambda expressions—are an alternative way of
defining functions and are often used to define functions that are used only as arguments to other functions.
Listing 4-14 replaces the functions from the previous example with arrow functions.

Chapter 4 ■ essential JavasCript primer

62

Listing 4-14. Using Arrow Functions in the main.js File in the src Folder

const myFunc = (nameFunction) => ("Hello" + nameFunction() + ".");

const printName = (nameFunction, printFunction) =>
 printFunction(myFunc(nameFunction));

printName(function () { return "Adam" }, console.log);

These functions perform the same work as the ones in Listing 4-13. There are three parts to an arrow
function: the input parameters, then an equal sign and a greater-than sign (the “arrow”), and finally the
function result. The return keyword and curly braces are required only if the arrow function needs to
execute more than one statement. There are more examples of arrow functions later in this chapter, and you
will see them used throughout the book.

 ■ Caution arrow functions cannot be used for all vue.js features. pay close attention to the examples in later
chapters and use the type of function that is shown.

Using Variables and Types
The let keyword is used to declare variables and, optionally, assign a value to the variable in a single
statement—as opposed to the const keyword I used in earlier examples, which creates a constant value that
cannot be modified.

When you use let or const, the variable or constant that you create can be accessed only in the
region of code in which they are defined, which is known as the variable or constant’s scope and which is
demonstrated in Listing 4-15.

Listing 4-15. Using let to Declare Variables in the main.js File in the src Folder

function messageFunction(name, weather) {
 let message = "Hello, Adam";
 if (weather == "sunny") {
 let message = "It is a nice day";
 console.log(message);
 } else {
 let message = "It is" + weather + "today";
 console.log(message);
 }
 console.log(message);
}

messageFunction("Adam", "raining");

In this example, there are three statements that use the let keyword to define a variable called message.
The scope of each variable is limited to the region of code that it is defined in, producing the following results:

It is raining today
Hello, Adam

Chapter 4 ■ essential JavasCript primer

63

This may seem like an odd example, but there is another keyword that can be used to declare variables:
var. The let and const keywords are relatively new additions to the JavaScript specification that is intended
to address some oddities in the way var behaves. Listing 4-16 takes the example from Listing 4-15 and
replaces let with var.

USING LET AND CONST

it is good practice to use the const keyword for any value that you don’t expect to change so that you
receive an error if any modifications are attempted. this is a practice that i rarely follow, however—in
part because i am still struggling to adapt to not using the var keyword and in part because i write
code in a range of languages and there are some features that i avoid because they trip me up when i
switch from one to another. if you are new to Javascript, then i recommend trying to use const and let
correctly and avoiding following my poor behavior.

Listing 4-16. Using var to Declare Variables in the main.js File in the src Folder

function messageFunction(name, weather) {
 var message = "Hello, Adam";
 if (weather == "sunny") {
 var message = "It is a nice day";
 console.log(message);
 } else {
 var message = "It is" + weather + "today";
 console.log(message);
 }
 console.log(message);
}

messageFunction("Adam", "raining");

When you save the changes in the listing, you will see the following results:

It is raining today
It is raining today

The problem is that the var keyword creates variables whose scope is the containing function, which
means that all the references to message are referring to the same variable. This can cause unexpected
results for even experienced JavaScript developers and is the reason that the more conventional let keyword
was introduced.

Chapter 4 ■ essential JavasCript primer

64

USING VARIABLE CLOSURE

if you define a function inside another function—creating inner and outer functions—then the inner
function is able to access the outer function’s variables, using a feature called closure, like this:

function myFunc(name) {
 let myLocalVar = "sunny";
 let innerFunction = function () {
 return ("Hello" + name + ". Today is" + myLocalVar + ".");
 }
 return innerFunction();

}

console.log(myFunc("Adam"));

the inner function in this example is able to access the local variables of the outer function, including its
parameter. this is a powerful feature that means you don’t have to define parameters on inner functions
to pass around data values, but caution is required because it is easy to get unexpected results when
using common variable names like counter or index, where you may not realize that you are reusing a
variable name from the outer function.

Using the Primitive Types
JavaScript defines a basic set of primitive types: string, number, boolean. This may seem like a short list, but
JavaScript manages to fit a lot of flexibility into these types.

 ■ Tip i am simplifying here. there are three other primitives that you may encounter. variables that have been
declared but not assigned a value are undefined, while the null value is used to indicate that a variable has no
value, just as in other languages. the final primitive type is Symbol, which is an immutable value that represents
a unique iD but which is not widely used at the time of writing.

Working with Booleans
The boolean type has two values: true and false. Listing 4-17 shows both values being used, but this type is
most useful when used in conditional statements, such as an if statement. There is no console output from
this listing.

Listing 4-17. Defining boolean Values in the main.js File in the src Folder

let firstBool = true;
let secondBool = false;

Chapter 4 ■ essential JavasCript primer

65

Working with Strings
You define string values using either the double quote or single quote characters, as shown in Listing 4-18.

Listing 4-18. Defining string Variables in the main.js File in the src Folder

let firstString = "This is a string";
let secondString = 'And so is this';

The quote characters you use must match. You can’t start a string with a single quote and finish with
a double quote, for example. There is no console output for this listing. JavaScript provides string objects
with a basic set of properties and methods, the most useful of which are described in Table 4-2.

Using Template Strings

A common programming task is to combine static content with data values to produce a string that can be
presented to the user. The traditional way to do this is through string concatenation, which is the approach
I have been using in the examples so far in this chapter, as follows:

...
let message = "It is" + weather + "today";
...

JavaScript also supports template strings, which allow data values to be specified inline, which can help
reduce errors and result in a more natural development experience. Listing 4-19 shows the use of a template
string.

Table 4-2. Useful string Properties and Methods

Name Description

length This property returns the number of characters in the string.

charAt(index) This method returns a string containing the character at the specified index.

concat(string) This method returns a new string that concatenates together the string on
which the method is called and the string provided as an argument.

indexOf(term, start) This method returns the first index at which term appears in the string or -1
if there is no match. The optional start argument specifies the start index
for the search.

replace(term, newTerm) This method returns a new string in which all instances of term are replaced
with newTerm.

slice(start, end) This method returns a substring containing the characters between the start
and end indices.

split(term) This method splits up a string into an array of values that were separated by
term.

toUpperCase()
toLowerCase()

These methods return new strings in which all the characters are uppercase
or lowercase.

trim() This method returns a new string from which all the leading and trailing
whitespace characters have been removed.

Chapter 4 ■ essential JavasCript primer

66

Listing 4-19. Using a Template String in the main.js File in the src Folder

function messageFunction(weather) {
 let message = `It is ${weather} today`;
 console.log(message);
}

messageFunction("raining");

Template strings begin and end with backticks (the ` character), and data values are denoted by curly
braces preceded by a dollar sign. This string, for example, incorporates the value of the weather variable into
the template string:

...
let message = `It is ${weather} today`;
...

This example produces the following output:

It is raining today

Working with Numbers
The number type is used to represent both integer and floating-point numbers (also known as real numbers).
Listing 4-20 provides a demonstration.

Listing 4-20. Defining number Values in the main.js File in the src Folder

let daysInWeek = 7;
let pi = 3.14;
let hexValue = 0xFFFF;

You don’t have to specify which kind of number you are using. You just express the value you require,
and JavaScript will act accordingly. In the listing, I have defined an integer value, defined a floating-point
value, and prefixed a value with 0x to denote a hexadecimal value.

Using JavaScript Operators
JavaScript defines a largely standard set of operators. I’ve summarized the most useful in Table 4-3.

Chapter 4 ■ essential JavasCript primer

67

Using Conditional Statements
Many of the JavaScript operators are used in conjunction with conditional statements. In this book, I tend
to use the if/else and switch statements. Listing 4-21 shows the use of both, which will be familiar to most
developers.

Listing 4-21. Using Conditional Statements in the main.js File in the src Folder

let name = "Adam";

if (name == "Adam") {
 console.log("Name is Adam");
} else if (name == "Jacqui") {
 console.log("Name is Jacqui");
} else {
 console.log("Name is neither Adam or Jacqui");
}

switch (name) {
 case "Adam":
 console.log("Name is Adam");
 break;
 case "Jacqui":
 console.log("Name is Jacqui");
 break;
 default:
 console.log("Name is neither Adam or Jacqui");
 break;
}

Table 4-3. Useful JavaScript Operators

Operator Description

++, -- Pre- or post-increment and decrement

+, -, *, /, % Addition, subtraction, multiplication, division, remainder

<, <=, >, >= Less than, less than or equal to, more than, more than or equal to

==, != Equality and inequality tests

===, !== Identity and nonidentity tests

&&, || Logical AND and OR (|| is used to coalesce null values)

= Assignment

+ String concatenation

?: Three operand conditional statement

Chapter 4 ■ essential JavasCript primer

68

This example produces the following results:

Name is Adam
Name is Adam

The Equality Operator vs. the Identity Operator
The equality and identity operators are of particular note. The equality operator will attempt to coerce
(convert) operands to the same type to assess equality. This is a handy feature, as long as you are aware it is
happening. Listing 4-22 shows the equality operator in action.

Listing 4-22. Using the Equality Operator in the main.js File in the src Folder

let firstVal = 5;
let secondVal = "5";

if (firstVal == secondVal) {
 console.log("They are the same");
} else {
 console.log("They are NOT the same");
}

The output from this example is as follows:

They are the same

JavaScript is converting the two operands into the same type and comparing them. In essence, the
equality operator tests that values are the same irrespective of their type. If you want to test to ensure that the
values and the types are the same, then you need to use the identity operator (===, three equal signs, rather
than the two of the equality operator), as shown in Listing 4-23.

Listing 4-23. Using the Identity Operator in the main.js File in the src Folder

let firstVal = 5;
let secondVal = "5";

if (firstVal === secondVal) {
 console.log("They are the same");
} else {
 console.log("They are NOT the same");
}

In this example, the identity operator will consider the two variables to be different. This operator
doesn’t coerce types. The result is as follows:

They are NOT the same

Chapter 4 ■ essential JavasCript primer

69

Explicitly Converting Types
The string concatenation operator (+) has precedence over the addition operator (also +), which means that
JavaScript will concatenate variables in preference to adding. This can cause confusion because JavaScript
will also convert types freely to produce a result—and not always the result that is expected, as shown in
Listing 4-24.

Listing 4-24. String Concatentation Operator Precedence in the main.js File in the src Folder

let myData1 = 5 + 5;
let myData2 = 5 + "5";

console.log("Result 1:" + myData1);
console.log("Result 2:" + myData2);

These statements produce the following result:

Result 1: 10
Result 2: 55

The second result is the kind that causes confusion. What might be intended to be an addition operation
is interpreted as string concatenation through a combination of operator precedence and over-eager type
conversion. To avoid this, you can explicitly convert the types of values to ensure you perform the right kind of
operation, as described in the following sections.

Converting Numbers to Strings
If you are working with multiple number variables and want to concatenate them as strings, then you can
convert the numbers to strings with the toString method, as shown in Listing 4-25.

Listing 4-25. Using the number.toString Method in the main.js File in the src Folder

let myData1 = (5).toString() + String(5);

console.log("Result:" + myData1);

Notice that I placed the numeric value in parentheses, and then I called the toString method. This
is because you have to allow JavaScript to convert the literal value into a number before you can call the
methods that the number type defines. I have also shown an alternative approach to achieve the same effect,
which is to call the String function and pass in the numeric value as an argument. Both of these techniques
have the same effect, which is to convert a number to a string, meaning that the + operator is used for string
concatenation and not addition. The output from this script is as follows:

Result: 55

There are some other methods that allow you to exert more control over how a number is represented
as a string. I briefly describe these methods in Table 4-4. All of the methods shown in the table are defined by
the number type.

Chapter 4 ■ essential JavasCript primer

70

Converting Strings to Numbers
The complementary technique is to convert strings to numbers so that you can perform addition rather than
concatenation. You can do this with the Number function, as shown in Listing 4-26.

Listing 4-26. Converting Strings to Numbers in the main.js File in the src Folder

let firstVal = "5";
let secondVal = "5";

let result = Number(firstVal) + Number(secondVal);
console.log("Result:" + result);

The output from this script is as follows:

Result: 10

The Number function is strict in the way that it parses string values, but there are two other functions you
can use that are more flexible and will ignore trailing non-number characters. These functions are parseInt
and parseFloat. I have described all three methods in Table 4-5.

Table 4-5. Useful String to Number Methods

Method Description

Number(str) This method parses the specified string to create an integer or real value.

parseInt(str) This method parses the specified string to create an integer value.

parseFloat(str) This method parses the specified string to create an integer or real value.

Table 4-4. Useful Number-to-String Methods

Method Description

toString() This method returns a string that represents a number in base 10.

toString(2)
toString(8)
toString(16)

This method returns a string that represents a number in binary, octal, or
hexadecimal notation.

toFixed(n) This method returns a string representing a real number with n digits after
the decimal point.

toExponential(n) This method returns a string that represents a number using exponential
notation with one digit before the decimal point and n digits after.

toPrecision(n) This method returns a string that represents a number with n significant
digits, using exponential notation if required.

Chapter 4 ■ essential JavasCript primer

71

Working with Arrays
JavaScript arrays work like arrays in most other programming languages. Listing 4-27 shows how you can
create and populate an array.

Listing 4-27. Creating and Populating an Array in the main.js File in the src Folder

let myArray = new Array();
myArray[0] = 100;
myArray[1] = "Adam";
myArray[2] = true;

I have created a new array by calling new Array(). This creates an empty array, which I assign to the
variable myArray. In the subsequent statements, I assign values to various index positions in the array.
(There is no output from this listing.)

There are a couple of things to note in this example. First, I didn’t need to declare the number of items
in the array when I created it. JavaScript arrays will resize themselves to hold any number of items. The
second point is that I didn’t have to declare the data types that the array will hold. Any JavaScript array can
hold any mix of data types. In the example, I have assigned three items to the array: a number, a string, and a
boolean.

Using an Array Literal
The array literal style lets you create and populate an array in a single statement, as shown in Listing 4-28.

Listing 4-28. Using the Array Literal Style in the main.js File in the src Folder

let myArray = [100, "Adam", true];

In this example, I specified that the myArray variable should be assigned a new array by specifying the
items I wanted in the array between square brackets ([and]). (There is no console output from this listing.)

Reading and Modifying the Contents of an Array
You read the value at a given index using square braces ([and]), placing the index you require between the
braces, as shown in Listing 4-29.

Listing 4-29. Reading the Data from an Array Index in the main.js File in the src Folder

let myArray = [100, "Adam", true];

console.log(`Index 0: ${myArray[0]}`);

You can modify the data held in any position in a JavaScript array simply by assigning a new value to
the index. Just as with regular variables, you can switch the data type at an index without any problems. The
output from the listing is as follows:

Index 0: 100

Chapter 4 ■ essential JavasCript primer

72

Listing 4-30 demonstrates modifying the contents of an array.

Listing 4-30. Modifying the Contents of an Array in the main.js File in the src Folder

let myArray = [100, "Adam", true];
myArray[0] = "Tuesday";

console.log(`Index 0: ${myArray[0]}`);

In this example, I have assigned a string to position 0 in the array, a position that was previously held
by a number and produces this output:

Index 0: Tuesday

Enumerating the Contents of an Array
You enumerate the content of an array using a for loop or using the forEach method, which receives a
function that is called to process each element in the array. Both approaches are shown in Listing 4-31.

Listing 4-31. Enumerating the Contents of an Array in the main.js File in the src Folder

let myArray = [100, "Adam", true];

for (let i = 0; i < myArray.length; i++) {
 console.log(`Index ${i}: ${myArray[i]}`);
}

console.log("---");

myArray.forEach((value, index) => console.log(`Index ${index}: ${value}`));

The JavaScript for loop works just the same way as loops in many other languages. You determine how
many elements there are in the array by using the length property.

The function passed to the forEach method is given two arguments: the value of the current item to
be processed and the position of that item in the array. In this listing, I have used an arrow function as the
argument to the forEach method, and this is the kind of use for which they excel (and you will see used
throughout this book). The output from the listing is as follows:

Index 0: 100
Index 1: Adam
Index 2: true

Index 0: 100
Index 1: Adam
Index 2: true

Chapter 4 ■ essential JavasCript primer

73

Using the Spread Operator
The spread operator is used to expand an array so that its contents can be used as function arguments.
Listing 4-32 defines a function that accepts multiple arguments and invokes it using the values in an array
with and without the spread operator.

Listing 4-32. Using the Spread Operator in the main.js File in the src Folder

function printItems(numValue, stringValue, boolValue) {
 console.log(`Number: ${numValue}`);
 console.log(`String: ${stringValue}`);
 console.log(`Boolean: ${boolValue}`);
}

let myArray = [100, "Adam", true];

printItems(myArray[0], myArray[1], myArray[2]);

printItems(...myArray);

The spread operator is an ellipsis (a sequence of three periods), and it causes the array to be unpacked
and passed to the printItems function as individual arguments.

...
printItems(...myArray);
...

The spread operator also makes it easy to concatenate arrays together, as shown in Listing 4-33.

Listing 4-33. Concatenating Arrays in the main.js File in the src Folder

let myArray = [100, "Adam", true];
let myOtherArray = [200, "Bob", false, ...myArray];

myOtherArray.forEach((value, index) => console.log(`Index ${index}: ${value}`));

Using the spread operator, I am able to specify myArray as an item when I define myOtherArray, with
the result that the contents of the first array will be unpacked and added as items to the second array. This
example produces the following results:

Index 0: 200
Index 1: Bob
Index 2: false
Index 3: 100
Index 4: Adam
Index 5: true

Chapter 4 ■ essential JavasCript primer

74

Using the Built-in Array Methods
The JavaScript Array object defines a number of methods that you can use to work with arrays, the most
useful of which are described in Table 4-6.

Table 4-6. Useful Array Methods

Method Description

concat(otherArray) This method returns a new array that concatenates the array on which it has
been called with the array specified as the argument. Multiple arrays can be
specified.

join(separator) This method joins all the elements in the array to form a string. The
argument specifies the character used to delimit the items.

pop() This method removes and returns the last item in the array.

shift() This method removes and returns the first element in the array.

push(item) This method appends the specified item to the end of the array.

unshift(item) This method inserts a new item at the start of the array.

reverse() This method returns a new array that contains the items in reverse order.

slice(start,end) This method returns a section of the array.

sort() This method sorts the array. An optional comparison function can be used
to perform custom comparisons.

splice(index, count) This method removes count items from the array, starting at the specified
index. The removed items are returned as the result of the method.

unshift(item) This method inserts a new item at the start of the array.

every(test) This method calls the test function for each item in the array and returns
true if the function returns true for all of them and false otherwise.

some(test) This method returns true if calling the test function for each item in the
array returns true at least once.

filter(test) This method returns a new array containing the items for which the test
function returns true.

find(test) This method returns the first item in the array for which the test function
returns true.

findIndex(test) This method returns the index of the first item in the array for which the
test function returns true.

forEach(callback) This method invokes the callback function for each item in the array, as
described in the previous section.

includes(value) This method returns true if the array contains the specified value.

map(callback) This method returns a new array containing the result of invoking the
callback function for every item in the array.

reduce(callback) This method returns the accumulated value produced by invoking the
callback function for every item in the array.

Chapter 4 ■ essential JavasCript primer

75

Since many of the methods in Table 4-6 return a new array, these methods can be chained together to
process data, as shown in Listing 4-34.

Listing 4-34. Processing an Array in the main.js File in the src Folder

let products = [
 { name: "Hat", price: 24.5, stock: 10 },
 { name: "Kayak", price: 289.99, stock: 1 },
 { name: "Soccer Ball", price: 10, stock: 0 },
 { name: "Running Shoes", price: 116.50, stock: 20 }
];

let totalValue = products
 .filter(item => item.stock > 0)
 .reduce((prev, item) => prev + (item.price * item.stock), 0);

console.log(`Total value: $${totalValue.toFixed(2)}`);

I use the filter method to select the items in the array whose stock value is greater than zero and use
the reduce method to determine the total value of those items, producing the following output:

Total value: $2864.99

Working with Objects
There are several ways to create objects in JavaScript. Listing 4-35 gives a simple example to get started.

Listing 4-35. Creating an Object in the main.js File in the src Folder

let myData = new Object();
myData.name = "Adam";
myData.weather = "sunny";

console.log(`Hello ${myData.name}.`);
console.log(`Today is ${myData.weather}.`);

I create an object by calling new Object(), and I assign the result (the newly created object) to a
variable called myData. Once the object is created, I can define properties on the object just by assigning
values, like this:

...
myData.name = "Adam";
...

Prior to this statement, my object doesn’t have a property called name. When the statement has
executed, the property does exist, and it has been assigned the value Adam. You can read the value of a
property by combining the variable name and the property name with a period, like this:

...
console.log(`Hello ${myData.name}.`);
...

Chapter 4 ■ essential JavasCript primer

76

The result from the listing is as follows:

Hello Adam.
Today is sunny.

Using Object Literals
You can define an object and its properties in a single step using the object literal format, as shown in
Listing 4-36.

Listing 4-36. Using the Object Literal Format in the main.js File in the src Folder

let myData = {
 name: "Adam",
 weather: "sunny"
};

console.log(`Hello ${myData.name}.`);
console.log(`Today is ${myData.weather}.`);

Each property that you want to define is separated from its value using a colon (:), and properties are
separated using a comma (,). The effect is the same as in the previous example, and the result from the
listing is as follows:

Hello Adam.
Today is sunny.

Using Variables as Object Properties
If you use a variable as an object property, JavaScript will use the variable name as the property name and
the variable value as the property value, as shown in Listing 4-37.

Listing 4-37. Using a Variable in an Object Literal in the main.js File in the src Folder

let name = "Adam"

let myData = {
 name,
 weather: "sunny"
};

console.log(`Hello ${myData.name}.`);
console.log(`Today is ${myData.weather}.`);

Chapter 4 ■ essential JavasCript primer

77

The name variable is used to add a property to the myData object; the property is called name, and its
value is Adam. This is a useful technique when you want to combine a set of data values into an object, and
you will see it used in examples in later chapters. The code in Listing 4-37 produces the following output:

Hello Adam.
Today is sunny.

Using Functions as Methods
One of the features that I like most about JavaScript is the way you can add functions to objects. A function
defined on an object is called a method. Listing 4-38 shows how you can add methods in this manner.

Listing 4-38. Adding Methods to an Object in the main.js File in the src Folder

let myData = {
 name: "Adam",
 weather: "sunny",
 printMessages: function () {
 console.log(`Hello ${myData.name}.`);
 console.log(`Today is ${myData.weather}.`);
 }
};

myData.printMessages();

In this example, I have used a function to create a method called printMessages. Notice that to refer to
the properties defined by the object, I have to use the this keyword. When a function is used as a method,
the function is implicitly passed the object on which the method has been called as an argument through the
special variable this. The output from the listing is as follows:

Hello Adam.
Today is sunny.

You can also define methods without using the function keyword, as shown in Listing 4-39.

Listing 4-39. Defining a Method in the main.js File in the src Folder

let myData = {
 name: "Adam",
 weather: "sunny",
 printMessages() {
 console.log(`Hello ${myData.name}.`);
 console.log(`Today is ${myData.weather}.`);
 }
};

myData.printMessages();

Chapter 4 ■ essential JavasCript primer

78

This is a more natural way to define methods, at least to my mind, and I have used this approach in
many of the examples in this book. The output from this listing is as follows:

Hello Adam.
Today is sunny.

Copying Properties from One Object to Another
In the examples in later chapters, I need to copy all of the properties from one object to another to
demonstrate different Vue.js features. JavaScript provides the Object.assign method for this purpose, as
demonstrated in Listing 4-40.

Listing 4-40. Copying Object Properties in the main.js File in the src Folder

let myData = {
 name: "Adam",
 weather: "sunny",
 printMessages() {
 console.log(`Hello ${myData.name}.`);
 console.log(`Today is ${myData.weather}.`);
 }
};

let secondObject = {};

Object.assign(secondObject, myData);

secondObject.printMessages();

This example creates a new object that has no properties and uses the Object.assign method to copy
the properties—and their values—from the myData object. This example produces the following output:

Hello Adam.
Today is sunny.

Understanding JavaScript Modules
The examples in the previous chapter were contained in a single JavaScript file. This is fine for simple
examples, but a complex web application can contain a large amount of code and content, which is
impossible to manage in one file.

To break up an application into more manageable chunks, JavaScript supports modules, which contain
JavaScript code that other parts of the application depend on. In the sections that follow, I explain the
different ways that modules can be defined and used.

Chapter 4 ■ essential JavasCript primer

79

Creating and Using a Simple JavaScript Module
Modules are typically defined in their own folders, so I created the src/maths folder and added to it a file
called sum.js, with the content shown in Listing 4-41.

Listing 4-41. The Contents of the sum.js File in the src/maths Folder

export default function(values) {
 return values.reduce((total, val) => total + val, 0);
}

The sum.js file contains a function that accepts an array of values and uses the JavaScript array reduce
method to sum them and return the result. What’s important about this example is not what it does but the
fact that the function is defined in its own file, which is the basic building block for a module.

There are two keywords used in Listing 4-41 that you will often encounter when defining modules.
The export keyword is used to denote the features that will be available outside the module. By default, the
contents of the JavaScript file are private and must be explicitly shared using the export keyword before they
can be used in the rest of the application. The default keyword is used when the module contains a single
feature, such as the function used in Listing 4-41. Together, the export and default keywords are used to
specify that the only function in the sum.js file is available for use in the rest of the application.

Using a Simple JavaScript Module
Another keyword is required to use a module: the import keyword. In Listing 4-42, I used the import
keyword to access the function defined in the previous section so that it can be used in the main.js file.

Listing 4-42. Using a Simple JavaScript Module in the main.js File in the src Folder

import additionFunction from "./maths/sum";

let values = [10, 20, 30, 40, 50];

let total = additionFunction(values);

console.log(`Total: ${total}`);

The import keyword is used to declare a dependency on the module. The import keyword can be used
in a number of ways, but this is the format you will use most often when working with modules you have
created yourself. Figure 4-3 illustrates the key parts.

The import keyword is followed by an identifier, which is the name by which the function will be known
by when it is used; the identifier in this example is additionFunction.

Figure 4-3. Declaring a dependency on a module

Chapter 4 ■ essential JavasCript primer

80

 ■ Tip notice that it is the import statement in which the identifier is applied, which means that the code that
consumes the function from the module chooses the name by which it will be known and that multiple import
statements for the same module in different parts of the application can use different names to refer to the
same function.

The from keyword follows the identifier, which is then followed by the location of the module. It is
important to pay close attention to the location because different behaviors are created by different location
formats, as described in the sidebar.

During the build process, the Vue.js tools will detect the import statement and include the function
from the sum.js file in the JavaScript file that is sent to the browser so that it can execute the application. The
identifier used in the import statement can be used to access the function in the module, in just the same
way that locally defined functions are used.

...
let total = additionFunction(values);
...

If you examine the browser’s JavaScript console, you will see that the code in Listing 4-42 uses the
module’s function to produce the following result:

Total: 150

UNDERSTANDING MODULE LOCATIONS

the location of a module changes the way that the build tools will look for the module when creating
the Javascript file that is sent to the browser. For modules you have defined yourself, the location is
specified as a relative path, starting with one or two periods, indicating that the path is relative to the
current file or to the current file’s parent directory. in listing 4-42, the location starts with a period.

...
import additionFunction from "./maths/sum";
...

this location tells the build tools that there is a dependency on the sum module, which can be found in
the maths folder, which is in the same directory as the file that contains the import statement (notice
that the file extension is not included in the location).

an alternative to specifying paths relative to the current file is to navigate relative to the project folder,
like this:

...
import additionFunction from "@/maths/sum";
...

Chapter 4 ■ essential JavasCript primer

81

When a location is prefixed with the @ character, the module is located relative to the src folder.

if you omit the initial periods and the @ character, then the import statement declares a dependency on
a module in the node_modules folder, which is where the packages installed during the project setup
are installed. this kind of location is used to access features provided by third-party packages, including
the vue.js packages, which is why you will see statements like this in vue.js projects:

...
import Vue from "vue";
...

the location for this import statement doesn’t start with a period and will be interpreted as a
dependency on the vue module in the project’s node_modules folder, which is the package that provides
the core vue.js application features.

Defining Multiple Features in a Module
Modules can contain more than one function or value, which is useful for grouping related features. To
demonstrate, I created a file called operations.js to the src/maths folder and added the code shown in
Listing 4-43.

Listing 4-43. The Contents of the operations.js File in the src/maths Folder

export function multiply(values) {
 return values.reduce((total, val) => total * val, 1);
}

export function subtract(amount, values) {
 return values.reduce((total, val) => total - val, amount);
}

export function divide(first, second) {
 return first / second;
}

This module defines three functions to which the export keyword has been applied. Unlike the
previous example, the default keyword is not used, and each function has its own name. A different
approach is required when using a module that contains multiple functions, as shown in Listing 4-44.

Listing 4-44. Using a Module in the main.js File in the src Folder

import additionFunction from "./maths/sum";
import { multiply, subtract } from "./maths/operations";

let values = [10, 20, 30, 40, 50];

console.log(`Sum: ${additionFunction(values)}`);
console.log(`Multiply: ${multiply(values)}`);
console.log(`Subtract: ${subtract(1000, values)}`);

Chapter 4 ■ essential JavasCript primer

82

The braces that follow the import keyword surround the list of functions that I want to use, which is the
multiply and subtract functions in this case, separated by commas. I only declare dependencies on the
functions that I require, and there is no dependency on the divide function, which is defined in the module
but not used in Listing 4-44. This example produces the following output:

Sum: 150
Multiply: 12000000
Subtract: 850

Changing Module Feature Names
One difference in this approach is that the names by which the functions are used are now defined by
the module and not the code that uses the functions. If you don’t want to use the names provided by the
module, then you can specify a name using the as keyword, as shown in Listing 4-45.

Listing 4-45. Using a Module Alias in the main.js File in the src Folder

import additionFunction from "./maths/sum";
import { multiply, subtract as minus } from "./maths/operations";

let values = [10, 20, 30, 40, 50];

console.log(`Sum: ${additionFunction(values)}`);
console.log(`Multiply: ${multiply(values)}`);
console.log(`Subtract: ${minus(1000, values)}`);

I used the as keyword to specify that the subtract function should be given the name minus when
imported into the main.js file. This listing produces the same output as Listing 4-44.

Importing an Entire Module
Listing the names of all the functions in a module gets out of hand for complex modules. A more elegant
approach is to import all the features provided by a module and just use the features you require, as shown
in Listing 4-46.

Listing 4-46. Importing an Entire Module in the main.js File in the src Folder

import additionFunction from "./maths/sum";
import * as ops from "./maths/operations";

let values = [10, 20, 30, 40, 50];

console.log(`Sum: ${additionFunction(values)}`);
console.log(`Multiply: ${ops.multiply(values)}`);
console.log(`Subtract: ${ops.subtract(1000, values)}`);

An asterisk is used to import everything in a module, followed by the as keyword and an identifier
through which the module functions and values will be accessed. In this case, the identifier is ops, which
means that the multiply, subtract, and divide functions can be accessed as ops.multiply, ops.subtract,
and ops.divide. This listing produces the same output as Listing 4-44.

Chapter 4 ■ essential JavasCript primer

83

Combining Multiple Files in a Module
Modules can span multiple files and are combined by defining an index.js file that brings together the
features that the module will provide to the rest of the application. I added an index.js file to the src/maths
folder with the code shown in Listing 4-47.

Listing 4-47. The Contents of the index.js File in the src/maths Folder

import addition from "./sum";

export function mean(values) {
 return addition(values)/values.length;
}

export { addition };
export * from "./operations";

This file starts the same way as earlier examples with an import statement to declare a dependency on
the function in the sum.js file, which is used in the exported function called mean.

The statement exports the function from the sum.js file so that it can be used outside of the module.
I don’t have to specify a location for this function since it has already been imported, and in this situation,
the function is contained within braces.

The final statement exports all of the features defined in the operations.js file, without needing to
import them first. This is useful when you want to make features available outside of the module but you
don’t need to use them directly in the index.js file.

Using an index.js file allows all the features to be imported in the main.js file in a single statement, as
shown in Listing 4-48.

Listing 4-48. Importing an Entire Module in the main.js File in the src Folder

import * as math from "./maths";

let values = [10, 20, 30, 40, 50];

console.log(`Sum: ${math.addition(values)}`);
console.log(`Multiply: ${math.multiply(values)}`);
console.log(`Subtract: ${math.subtract(1000, values)}`);
console.log(`Mean: ${math.mean(values)}`);

The location for the import doesn’t specify the file, which makes for a simplified statement. In this
example, all the module features can be accessed through the math identifier without requiring any
knowledge of which file in the module defines each feature. This example produces the following output:

Sum: 150
Multiply: 12000000
Subtract: 850
Mean: 30

Chapter 4 ■ essential JavasCript primer

84

Importing Individual Features from a Multifile Module
You don’t have to import all the features from a module, even when it has been defined using several files. In
Listing 4-49, I have changed the import statement so that only the functions that are used by the example are
imported, and I have used the as keyword to demonstrate that functions can be renamed.

Listing 4-49. Importing Specific Features in the main.js File in the src Folder

import { addition as add, multiply, subtract, mean as average} from "./maths";

let values = [10, 20, 30, 40, 50];

console.log(`Add: ${add(values)}`);
console.log(`Multiply: ${multiply(values)}`);
console.log(`Subtract: ${subtract(1000, values)}`);
console.log(`Average : ${average(values)}`);

This example combines features from previous listings to import four functions from the module and
rename two of them. This example produces the following output:

Add: 150
Multiply: 12000000
Subtract: 850
Average : 30

Understanding JavaScript Promises
A promise is a background activity that will be completed at some point in the future. The most common use
for promises in this book is requesting data using an HTTP request, which is performed asynchronously and
produces a result when a response is received from the web server.

Understanding the Asynchronous Operation Problem
The classic asynchronous operation for a web application is an HTTP request, which is typically used to
get the data and content that a user requires. I’ll get to the HTTP request shortly, but I need something
simpler to get started, so I added a function to the index.js file in the maths module to perform a task
asynchronously, as shown in Listing 4-50.

Listing 4-50. Adding a Function in the index.js File in the src/maths Folder

import addition from "./sum";

export function mean(values) {
 return addition(values)/values.length;
}

export { addition };
export * from "./operations";

Chapter 4 ■ essential JavasCript primer

85

export function asyncAdd(values) {
 setTimeout(() => {
 let total = addition(values);
 console.log(`Async Total: ${total}`);
 return total;
 }, 500);
}

The setTimeout function invokes a function asynchronously after a specified delay. In the listing,
the asyncAdd function receives a parameter that is passed to the addition function after a delay of 500
milliseconds, creating a background operation that doesn’t complete immediately for the examples in this
chapter and representing more useful operations such as making an HTTP request. In Listing 4-51, I have
updated the main.js file to use the asyncAdd function.

Listing 4-51. Performing Background Work in the main.js File in the src Folder

import { asyncAdd } from "./maths";

let values = [10, 20, 30, 40, 50];

let total = asyncAdd(values);

console.log(`Main Total: ${total}`);

The problem this example demonstrates is that the result from the asyncAdd function isn’t produced
until after the statements in the main.js file have been executed, which you can see in the output shown in
the browser’s JavaScript console:

Main Total: undefined
Async Total: 150

The browser executes the statements in the main.js file and invokes the asyncAdd function as
instructed. The browser moves on to the next statement in the main.js file, which writes a message to the
console using the result provided by asyncAdd—but this happens before the asynchronous task has been
completed, which is why the output is undefined. The asynchronous task subsequently completes, but it is
too late for the result to be used by the main.js file.

Using a JavaScript Promise
To solve the problem in the previous section, I need a mechanism that allows me to observe the
asynchronous task so that I can wait for it to complete and then write out the result. This is the role of the
JavaScript promise, which I have applied to the asyncAdd function in Listing 4-52.

Listing 4-52. Using a Promise in the index.js File in the src/maths Folder

import addition from "./sum";

export function mean(values) {
 return addition(values)/values.length;
}

Chapter 4 ■ essential JavasCript primer

86

export { addition };
export * from "./operations";

export function asyncAdd(values) {
 return new Promise((callback) => {
 setTimeout(() => {
 let total = addition(values);
 console.log(`Async Total: ${total}`);
 callback(total);
 }, 500);
 });
}

It can be difficult to unpack the functions in this example. The new keyword is used to create a Promise,
which accepts the function that is to be observed. The observed function is provided with a callback that is
invoked when the asynchronous task has completed and that accepts the result of the task as an argument.
Invoking the callback function is known as resolving the promise.

The Promise object that has become the result of the asyncAdd function allows the asynchronous task to
be observed so that follow-up work can be performed when the task completes, as shown in Listing 4-53.

Listing 4-53. Observing a Promise in the main.js File in the src Folder

import { asyncAdd } from "./maths";

let values = [10, 20, 30, 40, 50];

asyncAdd(values).then(total => console.log(`Main Total: ${total}`));

The then method accepts a function that will be invoked when the callback is used. The result passed to
the callback is provided to the then function. In this case, that means the total isn’t written to the browser’s
JavaScript console until the asynchronous task has completed and produces the following output:

Async Total: 150
Main Total: 150

Simplifying the Asynchronous Code
JavaScript provides two keywords—async and await—that support asynchronous operations without having
to work directly with promises. In Listing 4-54, I have applied these keywords in the main.js file.

 ■ Caution it is important to understand that using async/await doesn’t change the way that an application
behaves. the operation is still performed asynchronously, and the result will not be available until the operation
completes. these keywords are just a convenience to simplify working with asynchronous code so that you
don’t have to use the then method.

Chapter 4 ■ essential JavasCript primer

87

Listing 4-54. Using async and await in the main.js File in the src Folder

import { asyncAdd } from "./maths";

let values = [10, 20, 30, 40, 50];

async function doTask() {
 let total = await asyncAdd(values);
 console.log(`Main Total: ${total}`);
}

doTask();

These keywords can be applied only to functions, which is why I added the doTask function in this
listing. The async keyword tells JavaScript that this function relies on functionality that requires a promise.
The await keyword is used when calling a function that returns a promise and has the effect of assigning the
result provided to the Promise object’s callback and then executing the statements that follow, producing the
following result:

Async Total: 150
Main Total: 150

Summary
In this chapter I provided a brief primer on JavaScript, focusing on the core functionality that will get you
started for Vue.js development. In the next chapter, I start the process of building a more complex and
realistic project, called SportsStore.

89© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_5

CHAPTER 5

SportsStore: A Real Application

Most of the chapters of this book contain small examples that are focused on a specific feature. This is a
useful way to show you how different parts of Vue.js work, but there is sometimes a lack of context, and it can
be hard to connect the features in one chapter with those in other chapters. To help overcome this problem,
I am going to create a more complex application in this chapter and the chapters that follow.

My application, called SportsStore, will follow the classic approach taken by online stores everywhere.
I will create an online product catalog that customers can browse by category and page, a shopping cart
where users can add and remove products, and a checkout where customers can enter their shipping details
and place their orders. I will also create an administration area that includes facilities for managing the
catalog—and I will protect it so that only logged-in administrators can make changes. Finally, I show you
how to prepare the application so that it can be deployed.

My goal in this chapter and those that follow is to give you a sense of what real Vue.js development
is like by creating as realistic an example as possible. I want to focus on Vue.js, of course, and so I have
simplified the integration with external systems, such as the back-end data server, and omitted others
entirely, such as payment processing.

The SportsStore example is one that I use in a few of my books, not least because it demonstrates
the ways in which different frameworks, languages, and development styles can be used to achieve the
same result. You don’t need to have read any of my other books to follow this chapter, but you will find the
contrasts interesting if you already own my Pro ASP.NET Core MVC 2 or Pro Angular books, for example.

The Vue.js features that I use in the SportsStore application are covered in-depth in later chapters.
Rather than duplicate everything here, I tell you just enough to make sense of the example application and
refer you to other chapters for in-depth information. You can either read the SportsStore chapters end-to-
end and get a sense of how Vue.js works or jump to and from the detail chapters to get into the depth.

 ■ Caution Don’t expect to understand everything right away—Vue.js has a lot of moving parts, and the
SportsStore application is intended to show you how they fit together without diving too deeply into the details
that the rest of the book describes. If you get bogged down, then consider going to Part 2 of this book and
starting to read about individual features and return to this chapter later.

Creating the SportsStore Project
The first step in any development effort is to create the project. Open a new command prompt, navigate to a
convenient location, and run the command shown in Listing 5-1.

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

90

 ■ Note at the time of writing, the @vue/cli package has been released in beta. there may be small changes
made before the final release, but the core features should remain the same. For details of any breaking
changes, check the errata for this book, available at https://github.com/Apress/pro-vue-js-2.

Listing 5-1. Creating the SportsStore Project

vue create sportsstore --default

The project will be created, and the packages required for the application and the development tools
will be downloaded and installed, which can take some time to complete.

 ■ Tip You can download the example project for this chapter—and for all of the other chapters in this book—
from https://github.com/Apress/pro-vue-js-2.

Adding Additional Packages
Vue.js has a focus on core features that are supplemented by optional packages, some of which are
developed by the main Vue.js team and others by interested third-parties. Most of the packages required
for Vue.js development are added to the project automatically, but some additions are required for the
SportsStore project. Run the commands shown in Listing 5-2 to navigate to the sportsstore folder and add
the packages that are needed. (The npm tool can be used to add multiple packages in a single command, but I
have separated out each package to make the names and versions easier to see.)

Listing 5-2. Adding Packages

cd sportsstore
npm install axios@0.18.0
npm install vue-router@3.0.1
npm install vuex@3.0.1
npm install vuelidate@0.7.4
npm install bootstrap@4.0.0
npm install font-awesome@4.7.0
npm install --save-dev json-server@0.12.1
npm install --save-dev jsonwebtoken@8.1.1
npm install --save-dev faker@4.1.0

It is important to use the version numbers shown in the listing. You may see warnings about
unmet peer dependencies as you add the packages, but these can be ignored. The role that each package
plays in the SportsStore application is described in Table 5-1. Some of the packages are installed using
the --save-dev argument, which indicates they are used during development and will not be part of the
SportsStore application.

https://github.com/Apress/pro-vue-js-2
https://github.com/Apress/pro-vue-js-2

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

91

 ■ Note the vue-router and vuex packages can be installed automatically as part of the project template,
but I have added them separately so that I can demonstrate how they are configured and applied to a Vue.js
application. there is nothing wrong with using project tools to jump-start a project, but it is important that you
understand how everything in a Vue.js project works so that you have a good idea of where to start looking
when something goes wrong.

Incorporating the CSS Stylesheets into the Application
The Bootstrap and Font Awesome packages require import statements to be added to the main.js file, which
is where the top-level configuration of the Vue.js application is performed. The import statements, shown in
Listing 5-3, ensure that the content provided by these packages is incorporated into the application by the
Vue.js development tools.

Table 5-1. The Additional Packages Required for the SportsStore Project

Name Description

axios The Axios package is used to make HTTP requests to the web service that provides
SportsStore with data and services. Axios is not specific to Vue.js, but it is a common
choice for handling HTTP. I describe the use of Axios in Vue.js applications in
Chapter 19.

vue-router This package allows the application to display different content based on the
browser’s current URL. This process is known as URL routing, and I describe it in
detail in Chapters 22–24.

vuex This package is used to create a shared data store that simplifies managing data in a
Vue.js project. I describe Vuex data stores in detail in Chapter 20.

veulidate This package is used to validate the data that a user enters into form elements, as
demonstrated in Chapter 6.

bootstrap The Bootstrap package contains CSS styles that will be used to style the HTML
content that the SportsStore application presented to the user.

font-awesome The Font Awesome package contains a library of icons that SportsStore will use to
denote important features to the user.

json-server This package provides an easy-to-use RESTful web service for application
development, and it is this package that will receive the HTTP requests made
using Axios. This package is used in the JavaScript code added to the project in the
“Preparing the RESTful Web Service” section of this chapter.

jsonwebtoken This package is used to generate authorization tokens that will grant access to the
SportsStore administration features, which are added to the project in Chapter 7.

faker This package is used to generate test data, which I use in Chapter 7 to ensure that
SportsStore can deal with large amounts of data.

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

92

 ■ Tip Don’t worry about the rest of the statements in the main.js file at the moment. they are responsible
for initializing the Vue.js application, which I explain in Chapter 9, but understanding how they function isn’t
essential to get started with Vue.js development.

Listing 5-3. Incorporating Packages in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

Vue.config.productionTip = false

import "bootstrap/dist/css/bootstrap.min.css";
import "font-awesome/css/font-awesome.min.css"

new Vue({
 render: h => h(App)
}).$mount('#app')

These statements will let me use the CSS features that the packages provide throughout the application.

Preparing the RESTful Web Service
The SportsStore application will use asynchronous HTTP requests to get model data provided by a RESTful
web service. As I describe in Chapter 19, REST is an approach to designing web services that use the HTTP
method or verb to specify an operation and the URL to select the data objects that the operation applies to.

The json-server package that I added to the project in the previous section is an excellent tool for
quickly generating web services from JSON data or JavaScript code. To ensure that there is a fixed state that
the project can be reset to, I am going to take advantage of the feature that allows the RESTful web service
to be provided with data using JavaScript code, which means that restarting the web service will reset the
application data. I created a file called data.js in the sportsstore folder and added the code shown in
Listing 5-4.

Listing 5-4. The Contents of the data.js File in the sportsstore Folder

var data = [{ id: 1, name: "Kayak", category: "Watersports",
 description: "A boat for one person", price: 275 },
 { id: 2, name: "Lifejacket", category: "Watersports",
 description: "Protective and fashionable", price: 48.95 },
 { id: 3, name: "Soccer Ball", category: "Soccer",
 description: "FIFA-approved size and weight", price: 19.50 },
 { id: 4, name: "Corner Flags", category: "Soccer",
 description: "Give your playing field a professional touch",
 price: 34.95 },
 { id: 5, name: "Stadium", category: "Soccer",
 description: "Flat-packed 35,000-seat stadium", price: 79500 },
 { id: 6, name: "Thinking Cap", category: "Chess",
 description: "Improve brain efficiency by 75%", price: 16 },

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

93

 { id: 7, name: "Unsteady Chair", category: "Chess",
 description: "Secretly give your opponent a disadvantage",
 price: 29.95 },
 { id: 8, name: "Human Chess Board", category: "Chess",
 description: "A fun game for the family", price: 75 },
 { id: 9, name: "Bling Bling King", category: "Chess",
 description: "Gold-plated, diamond-studded King", price: 1200 }]

module.exports = function () {
 return {
 products: data,
 categories: [...new Set(data.map(p => p.category))].sort(),
 orders: []
 }
}

This file is a JavaScript module that exports a default function, with two collections that will be
presented by the RESTful web service. The products collection contains the products for sale to the
customer, the categories collection contains the distinct category property values, and the orders collection
contains the orders that customers have placed (but which is currently empty).

The data stored by the RESTful web service needs to be protected so that ordinary users can’t modify
the products or change the status of orders. The json-server package doesn’t include any built-in
authentication features, so I created a file called authMiddleware.js in the sportsstore folder and added
the code shown in Listing 5-5.

Listing 5-5. The Contents of the authMiddleware.js File in the sportsstore Folder

const jwt = require("jsonwebtoken");

const APP_SECRET = "myappsecret";
const USERNAME = "admin";
const PASSWORD = "secret";

module.exports = function (req, res, next) {

 if ((req.url == "/api/login" || req.url == "/login")
 && req.method == "POST") {
 if (req.body != null && req.body.name == USERNAME
 && req.body.password == PASSWORD) {
 let token = jwt.sign({ data: USERNAME, expiresIn: "1h" }, APP_SECRET);
 res.json({ success: true, token: token });
 } else {
 res.json({ success: false });
 }
 res.end();
 return;
 } else if ((((req.url.startsWith("/api/products")
 || req.url.startsWith("/products"))
 || (req.url.startsWith("/api/categories")
 || req.url.startsWith("/categories"))) && req.method != "GET")
 || ((req.url.startsWith("/api/orders")
 || req.url.startsWith("/orders")) && req.method != "POST")) {

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

94

 let token = req.headers["authorization"];
 if (token != null && token.startsWith("Bearer<")) {
 token = token.substring(7, token.length - 1);
 try {
 jwt.verify(token, APP_SECRET);
 next();
 return;
 } catch (err) { }
 }
 res.statusCode = 401;
 res.end();
 return;
 }
 next();
}

This code inspects HTTP requests sent to the RESTful web service and implements some basic security
features. This is server-side code that is not directly related to Vue.js development, so don’t worry if its
purpose isn’t immediately obvious. I explain the authentication and authorization process in Chapter 7.

 ■ Caution Don’t use the code in listing 5-5 other than for the SportsStore application. It contains weak
passwords that are hardwired into the code. this is fine for the SportsStore project because the emphasis is on
the development client side with Vue.js, but this is not suitable for real projects.

An addition is required to the package.json file so that the json-server package can be started from
the command line, as shown in Listing 5-6.

Listing 5-6. Adding a Script to the package.json File in the SportsStore Folder

{
 "name": "sportsstore",
 "version": "0.1.0",
 "private": true,
 "scripts": {
 "serve": "vue-cli-service serve",
 "build": "vue-cli-service build",
 "lint": "vue-cli-service lint",
 "json": "json-server data.js -p 3500 -m authMiddleware.js"
 },
 "dependencies": {
 "axios": "^0.18.0",
 "bootstrap": "^4.0.0",
 "font-awesome": "^4.7.0",
 "vue": "^2.5.16",
 "vue-router": "^3.0.1",
 "vuex": "^3.0.1"
 },

 // ...other configuration settings omitted for brevity...

}

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

95

The package.json file is used to configure the project and its tools. The scripts section contains the
commands that can be executed using the packages that have been added to the project.

Starting the Project Tools
All of the configuration for the project is complete, and it is time to start the tools that will be used for
development and make sure everything works. Open a new command prompt, navigate to the sportsstore
folder, and run the command shown in Listing 5-7 to start the web service.

Listing 5-7. Starting the SportsStore Web Service

npm run json

Open a new browser window and navigate to the URL http://localhost:3500/products/1 to test that
the web service is working, which should produce the result shown in Figure 5-1.

Without stopping the web service, open a second command prompt, navigate to the sportsstore
folder, and run the command shown in Listing 5-8 to start the Vue.js development tools.

Listing 5-8. Starting the Development Tools

npm run serve

The development HTTP server will be started, and the initial preparation process will be performed,
after which you will see a message indicating that the application is running. Use the browser to navigate to
http://localhost:8080, and you should see the content shown in Figure 5-2, which is a placeholder added
when the project was created.

Figure 5-1. Testing the web service

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

96

 ■ Tip Port 8080 is the default, but the Vue.js development tools will pick another port if 8080 is already in
use. If that happens, you can either stop the process using that port so that it is available for Vue.js or navigate
to the Url that is shown.

Creating the Data Store
The best place to start with any new application is its data. In all but the simplest projects, the Vuex package
is used to create a data store that is used to share data throughout the application, providing a common
repository that ensures all parts of the application are using the same data values.

 ■ Tip Vuex isn’t the only package that can be used to manage data in a Vue.js application, but it is developed
by the core Vue.js team and is well-integrated into the rest of the Vue.js world. Unless you have a specific
reason to do otherwise, you should use Vuex in your Vue.js projects.

Vuex data stores are generally defined as separate JavaScript modules, defined in their own directory.
I created the src/store folder (which is the conventional name) and added to it a file called index.js with
the content shown in Listing 5-9.

Figure 5-2. Running the application

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

97

Listing 5-9. The Contents of the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";

Vue.use(Vuex);

const testData = [];

for (let i = 1; i <= 10; i++) {
 testData.push({
 id: i, name: `Product #${i}`, category: `Category ${i % 3}`,
 description: `This is Product #${i}`, price: i * 50
 })
}

export default new Vuex.Store({
 strict: true,
 state: {
 products: testData
 }
})

The import statements declare dependencies on the Vue.js and Vuex libraries. Vuex is distributed as
a Vue.js plugin, which makes it easy to provide application-wide functionality in a project. I explain how
plugins work in Chapter 26, but for the SportsStore application, it is enough to know that plugins must be
enabled using the Vue.use method. If you forget to call the use method, then the data store features won’t be
available in the rest of the application.

A data store is created using the new keyword to create a Vuex.Store object, passing a configuration
object. The purpose of the state property is used to define the data values contained in the store. To get
the data store started, I have used a for loop to generate an array of test data that I have assigned to a state
property named products. I’ll replace this with data obtained from the web service in the “Using the RESTful
Web Service” section, later in this chapter.

The purpose of the strict property is less obvious and relates to the unusual way that Vuex works.
Data values are read-only and are modified only through mutations, which are just JavaScript methods that
change the data. You’ll see examples of mutations as I add features to the SportsStore application, and the
strict mode is a useful feature that generates a warning if you forget to use a mutation and modify data
values directly—something that happens often as you become used to the way that Vuex works.

To include the data store in the application, I added the statements shown in Listing 5-10 to the main.js
file, which acts as the main point of configuration for the application.

Listing 5-10. Adding the Vuex Data Store in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

Vue.config.productionTip = false

import "bootstrap/dist/css/bootstrap.min.css";
import "font-awesome/css/font-awesome.min.css"

import store from "./store";

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

98

new Vue({
 render: h => h(App),
 store
}).$mount('#app')

The import statement declares a dependency on the data store module and assigns it the store
identifier. Adding the store property to the configuration property used to create the Vue object ensures
that the data store features can be used throughout the application, as you will see as features are added to
SportsStore.

 ■ Caution a common mistake is to add the import statement to the main.js file but forget to add the store
property to the configuration object. this results in an error because the data store functionality won’t be added
to the application.

Creating the Product Store
The data store provides just enough of the application’s infrastructure to allow me to start work on the
most important user-facing feature: the product store. All online stores present the user with a selection of
products to purchase, and SportsStore is no exception. The basic structure of the store will be a two-column
layout, with category buttons that allow the list of products to be filtered and a table that contains the list of
products, as illustrated by Figure 5-3.

The basic building block for Vue.js applications is the component. Components are defined in files with
the .vue extension, and I started by creating a file called Store.vue in the src/components folder with the
content shown in Listing 5-11.

Figure 5-3. The basic structure of the store

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

99

Listing 5-11. The Contents of the Store.vue File in the src/components Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col bg-dark text-white">
 SPORTS STORE
 </div>
 </div>
 <div class="row">
 <div class="col-3 bg-info p-2">
 <h4 class="text-white m-2">Categories</h4>
 </div>
 <div class="col-9 bg-success p-2">
 <h4 class="text-white m-2">Products</h4>
 </div>
 </div>
 </div>
</template>

This component contains only a template element at the moment, which I have used to define a basic
layout using HTML elements styled with Bootstrap classes, which I described briefly in Chapter 3. There is
nothing special about this content at the moment, but it corresponds to the structure shown in Figure 5-3
and provides me with a foundation as I build up the product store. In Listing 5-12, I have replaced the
contents of the App.vue file, which allows me to replace the default content created when the project was set
up with the Store component created in Listing 5-11.

Listing 5-12. Replacing the Contents of the App.vue File in the src Folder

<template>
 <store />
</template>

<script>
import Store from "./components/Store";

export default {
 name: 'app',
 components: { Store }
}
</script>

A Vue.js application usually contains a number of components, and in most projects, the App
component, which is defined in the App.vue file, is responsible for deciding which of them should be
displayed to the user. I demonstrate how this is done when I add the shopping cart and checkout features in
Chapter 6, but the Store component is the only one I have defined so far, so this is the only one that can be
shown to the user.

The import statement in the script element declares a dependency on the component from Listing 5-11
and assigns it the Store identifier, which is assigned to the components property, telling Vue.js that the App
component uses the Store component.

When Vue.js processes the App component’s template, it will replace the store element with the HTML
in the template element in Listing 5-11, producing the result shown in Figure 5-4.

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

100

Creating the Product List
The next step is to create a component that will display the list of products to the user. I added a file called
ProductList.vue to the src/components folder with the content shown in Listing 5-13.

Listing 5-13. The Contents of the ProductList.vue File in the src/components Folder

<template>
 <div>
 <div v-for="p in products" v-bind:key="p.id" class="card m-1 p-1 bg-light">
 <h4>
 {{p.name}}

 {{ p.price }}

 </h4>
 <div class="card-text bg-white p-1">{{ p.description }}</div>
 </div>
 </div>
</template>

<script>

import { mapState } from "vuex";

export default {
 computed: {
 ...mapState(["products"])
 }
}
</script>

The script element imports the mapState function from the vuex package, which is used to provide
access to the data in the store. There are different Vuex functions for different types of operation, and
mapState is used to create a mapping between the component and state data in the data store. The
mapState function is used with the spread operator because it can map multiple data store properties in a

Figure 5-4. Adding a custom component to the application

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

101

single operation, even though only the products state property is mapped in this example. Data store state
properties are mapped as component computed properties, which I describe in detail in Chapter 11.

Vue.js uses a feature called directives to manipulate HTML elements. In the listing, I use the v-for
directive, which duplicates an element and its contents for each item in an array.

...
<div v-for="p in products" v-bind:key="p.id" class="card m-1 p-1 bg-light">
...

The result of using the mapState function is that I can use the products property with the v-for
directive to access the data in the data store, with the result that the same set of elements will be generated
for each product. Each product is temporarily assigned to a variable named p, which I can use to customize
the elements that are generated for each product, like this:

...
<div class="card-text bg-white p-1">{{ p.description }}</div>
...

The double braces (the {{ and }} characters) denote a data binding, which tells Vue.js to insert the
specified data value into the HTML element when it is displayed to the user. I explain how data bindings
work in Chapter 11, and I describe the v-for directive in detail in Chapter 13, but the result is that the value
of the description property of the current product object will be inserted into the div element.

 ■ Tip the v-for directive is applied alongside the v-bind directive, which is used to define an attribute
whose value is produced through a data value or a fragment of JavaScript. In this case, the v-bind directive
is used to create a key attribute, which the v-for directive uses to respond efficiently to changes in the
application’s data, as explained in Chapter 13.

Adding the Product List to the Application
Each component that you add to the project must be registered before it can be used to present content to
the user. In Listing 5-14, I have registered the ProductList component in the Store component so that I can
remove the placeholder content and replace it with the list of products.

Listing 5-14. Registering a Component in the Store.vue File in the src/components Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col bg-dark text-white">
 SPORTS STORE
 </div>
 </div>
 <div class="row">
 <div class="col-3 bg-info p-2">
 <h4 class="text-white m-2">Categories</h4>
 </div>

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

102

 <div class="col-9 p-2 ">
 <product-list />
 </div>
 </div>
 </div>
</template>

<script>

import ProductList from "./ProductList";

export default {
 components: { ProductList }
}
</script>

When components are used together, they form a relationship. In this example, the Store component
is the parent to the ProductList component, and, in return, the ProductList component is a child of
the Store component. In the listing, I followed the same pattern to register the component as I did when
added the Store component to the application: I imported the child component and added it to the parent
component’s components property, which allows me to use a custom HTML element to insert the child
component’s content into the parent component’s template. In Listing 5-14, I inserted the contents of the
ProductList component using a product-list element, which Vue.js understands as a common way
to express multipart names (although I could also have used ProductList or productList for the HTML
element tag instead).

The result is that the App component inserts the content from the Store component into its template,
which contains the content from the ProductList component, producing the result shown in Figure 5-5.

Figure 5-5. Displaying a list of products

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

103

Filtering the Price Data
Now that I have the basic list in place, I can start to add features. The first thing is to display the price
property of each product as a currency amount, rather than just a number. Vue.js components can define
filters, which are functions that are used to format data values. In Listing 5-15, I have added a filter to the
ProductList component named currency that formats a data value into a dollar amount.

Listing 5-15. Defining a Filter in the ProductList.vue File in the src/components Folder

<template>
 <div>
 <div v-for="p in products" v-bind:key="p.id" class="card m-1 p-1 bg-light">
 <h4>
 {{p.name}}

 {{ p.price | currency }}

 </h4>
 <div class="card-text bg-white p-1">{{ p.description }}</div>
 </div>
 </div>
</template>

<script>

import { mapState } from "vuex";

export default {
 computed: {
 ...mapState(["products"])
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD" }).format(value);
 }
 }
}
</script>

Component features are grouped together using properties in the object defined in the script element.
The ProductList component now defines two such properties: the computed property, which is providing
access to the data in the data store, and the filters property, which is used to define filters. There is one
filter in Listing 5-15, called currency, and it is defined as a function that accepts a value that uses the
JavaScript localization features to format a numeric value as a U.S. dollar amount, expressed in the format
used in the United States.

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

104

Filters are applied in the template by combining the name of a data value with the filter name,
separated by a bar (the | character), like this:

...

 {{ p.price | currency }}

...

When you save the changes to the ProductList.vue file, the browser will reload, and the prices will be
formatted as shown in Figure 5-6.

Adding Product Pagination
The products are shown to the user in a continuous list, which will be overwhelming for the user as the
number of products increases. To make the list of products more manageable, I am going to add support for
pagination, where a specified number of products will be shown on a page and the user can move from one
page to another to navigate through the products. The first step is to extend the data store so that details of
the page size and the currently selected page are stored, which I have done in Listing 5-16.

Listing 5-16. Preparing for Pagination in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";

Vue.use(Vuex);

Figure 5-6. Using a filter to format currency values

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

105

const testData = [];

for (let i = 1; i <= 10; i++) {
 testData.push({
 id: i, name: `Product #${i}`, category: `Category ${i % 3}`,
 description: `This is Product #${i}`, price: i * 50
 })
}

export default new Vuex.Store({
 strict: true,
 state: {
 products: testData,
 productsTotal: testData.length,
 currentPage: 1,
 pageSize: 4
 },
 getters: {
 processedProducts: state => {
 let index = (state.currentPage -1) * state.pageSize;
 return state.products.slice(index, index + state.pageSize);
 },
 pageCount: state => Math.ceil(state.productsTotal / state.pageSize)
 },
 mutations: {
 setCurrentPage(state, page) {
 state.currentPage = page;
 },
 setPageSize(state, size) {
 state.pageSize = size;
 state.currentPage = 1;
 }
 }
})

The additions to the data store to support validation demonstrate some of the key features provided by
the Vuex package. The first set of changes are new state properties, which define values for the number of
products, the currently selected page, and the number of products to show on each page.

The getters section is for properties whose values are computed using state properties. In Listing 5-16,
the getters section defines a processedProducts property, which returns only the products required for
the current page, and a pageCount property, which works out how many pages are required to display the
available product data.

The mutations section in Listing 5-16 is used to define methods that change the values of one or more
state properties. There are two mutations in the listing: the setCurrentPage mutation changes the value of
the currentPage property, and the setPageSize mutation sets the pageSize property.

The separation between standard data properties and computed properties is a theme that runs
through Vue.js development because it allows for efficient change-detection. When a data property changes,
Vue.js is able to determine the effect on the computed property and doesn’t have to recalculate values
when the underlying data has not changed. This is taken one step further by Vuex data stores, which require
changes to data values to be performed through mutations, rather than by assigning a new value directly.
This can feel awkward when you first start working with data stores, but it soon becomes second nature; in
addition, following this pattern provides some useful features, such as the ability to track changes and
undo/redo them using the Vue Devtools browser plugin, as described in Chapter 1.

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

106

 ■ Tip notice that both the getters and the mutations in listing 5-16 are defined as functions that receive a
state object as their first parameter. this object is used to access the values defined in the state section of
the data store, which cannot be accessed directly. See Chapter 20 for more details and examples.

Now that I have added the data and mutations to the data store, I can create a component that makes
use of them. I added a file called PageControls.vue in the src/components folder with the content shown in
Listing 5-17.

Listing 5-17. The Contents of the PageControls.vue File in the src/components Folder

<template>
 <div v-if="pageCount > 1" class="text-right">
 <div class="btn-group mx-2">
 <button v-for="i in pageNumbers" v-bind:key="i"
 class="btn btn-secpmdary"
 v-bind:class="{ 'btn-primary': i == currentPage }">
 {{ i }}
 </button>
 </div>
 </div>
</template>

<script>

 import { mapState, mapGetters } from "vuex";

 export default {
 computed: {
 ...mapState(["currentPage"]),
 ...mapGetters(["pageCount"]),
 pageNumbers() {
 return [...Array(this.pageCount + 1).keys()].slice(1);
 }
 }
 }
</script>

Not all of the pagination features are in place, but there is enough functionality here to get started.
This component uses the mapState and mapGetters helper functions to provide access to the data store
currentPage and pageCount properties. Not everything has to be defined in the data store, and the
component defines a pageNumbers function that uses the pageCount property to generate a sequence of
numbers that are used in the template to display buttons for the pages of products, which is done using the
v-for directive, which is the same directive that I used in Listing 5-17 to generate a repeating set of elements
in the product list.

 ■ Tip Data that is required by more than one part of the application should be placed in the data store, while
data that is specific to a single component should be defined in its script element. I have put the pagination
data in the store because I use it to request data from the web service in Chapter 7.

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

107

Earlier, I explained that the v-bind directive is used to define an attribute on an HTML element whose
value is determined using a data value or a fragment of JavaScript code. In Listing 5-17, I used the v-bind
directive to control the value of the class attribute, like this:

...
<button v-for="i in pageNumbers" v-bind:key="i" class="btn btn-secpmdary"
 v-bind:class="{ 'btn-primary': i == currentPage }">
...

Vue.js provides useful features for managing an element’s class membership, which allows me to add
the button element to the btn-primary class when it represents the current page of data, as I describe in
detail in Chapter 12. The result is that the button that represents the active button has an obviously different
appearance to the other page buttons, indicating to the user which page is being displayed.

To add the pagination component to the application, I used in import statement to declare a
dependency and added it to the parent’s component’s property, as shown in Listing 5-18.

Listing 5-18. Applying Pagination in the ProductList.vue File in the src/components Folder

<template>
 <div>
 <div v-for="p in products" v-bind:key="p.id" class="card m-1 p-1 bg-light">
 <h4>
 {{p.name}}

 {{ p.price | currency }}

 </h4>
 <div class="card-text bg-white p-1">{{ p.description }}</div>
 </div>
 <page-controls />
 </div>
</template>

<script>

import { mapGetters} from "vuex";
import PageControls from "./PageControls";

export default {
 components: { PageControls },
 computed: {
 ...mapGetters({ products: "processedProducts" })
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD" }).format(value);
 }
 }
}
</script>

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

108

I also changed the source of the data that is displayed by the ProductList component, so that it comes
from the data store’s processedProducts getter, which means that only the products in the currently selected
page will be displayed to the user. This use of the mapGetters helper function allows me to specify that the
processedProducts getter will be mapped using the name products, which allows me to change the source
of the data without having to make a corresponding change to the v-for expression in the template. When
you save the changes, the browser will reload and display the pagination buttons shown in Figure 5-7.

Changing the Product Page
To allow the user to change the page of products that the application displays, I need to respond when they
click one of the page buttons. In Listing 5-19, I have used the v-on directive, which is used to respond to
events, to respond when the click event is triggered by invoking the data store’s setCurrentPage mutation.

Listing 5-19. Responding to Button Clicks in the PageControls.vue File in the src/components Folder

<template>
 <div class="text-right">
 <div class="btn-group mx-2">
 <button v-for="i in pageNumbers" v-bind:key="i"
 class="btn btn-secpmdary"
 v-bind:class="{ 'btn-primary': i == currentPage }"
 v-on:click="setCurrentPage(i)">
 {{ i }}
 </button>
 </div>

Figure 5-7. Adding pagination buttons

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

109

 </div>
</template>

<script>

 import { mapState, mapGetters, mapMutations } from "vuex";

 export default {
 computed: {
 ...mapState(["currentPage"]),
 ...mapGetters(["pageCount"]),
 pageNumbers() {
 return [...Array(this.pageCount + 1).keys()].slice(1);
 }
 },
 methods: {
 ...mapMutations(["setCurrentPage"])
 }
 }
</script>

The mapMutations helper maps setCurrentPage to a component method, which is invoked by the v-on
directive when the click event is received.

...
<button v-for="i in pageNumbers" v-bind:key="i" class="btn btn-secpmdary"
 v-bind:class="{ 'btn-primary': i == currentPage }"
 v-on:click="setCurrentPage(i)">
...

The type of event is specified as an argument to the directive, which is separated from the directive
name using a colon. The expression for this directive tells Vue.js to invoke the setCurrentPage method and
to use the temporary variable i, which indicates the page that the user wants to display. The setCurrentPage
is mapped to the data store mutation of the same name, and the effect is that clicking one of the pagination
buttons changes the selection of products, as shown in Figure 5-8.

Figure 5-8. Changing the product page

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

110

Changing the Page Size
To complete the pagination feature, I want to allow the user to be able to select how many products are
displayed on each page. In Listing 5-20, I added a select element to the component’s template and wired it
up so that it invokes the setPageSize mutation in the data store when the user picks a value.

Listing 5-20. Changing Page Size in the PageControls.vue File in the src/components Folder

<template>
 <div class="row mt-2">
 <div class="col form-group">
 <select class="form-control" v-on:change="changePageSize">
 <option value="4">4 per page</option>
 <option value="8">8 per page</option>
 <option value="12">12 per page</option>
 </select>
 </div>
 <div class="text-right col">
 <div class="btn-group mx-2">
 <button v-for="i in pageNumbers" v-bind:key="i"
 class="btn btn-secpmdary"
 v-bind:class="{ 'btn-primary': i == currentPage }"
 v-on:click="setCurrentPage(i)">
 {{ i }}
 </button>
 </div>
 </div>
 </div>
</template>

<script>

 import { mapState, mapGetters, mapMutations } from "vuex";

 export default {
 computed: {
 ...mapState(["currentPage"]),
 ...mapGetters(["pageCount"]),
 pageNumbers() {
 return [...Array(this.pageCount + 1).keys()].slice(1);
 }
 },
 methods: {
 ...mapMutations(["setCurrentPage", "setPageSize"]),
 changePageSize($event) {
 this.setPageSize(Number($event.target.value));
 }
 }
 }
</script>

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

111

The new HTML elements add structure to the component’s template so that a select element is shown
alongside the pagination buttons. The select element displays options for changing the page size, and the
v-on directive listens for the change event, which is triggered when the user picks a value. If you just specify
the name of a method when using the v-on directive, the methods will receive an event object, which can
be used to access details of the element that triggered the event. I use this object to get the page size that the
user has selected and pass it to the setPageSize mutation in the data store, which has been mapped to the
component using the mapMutations helper. The result is that the page size can be changed by picking a new
value from the select element’s list, as shown in Figure 5-9.

 ■ Tip notice that I only have to invoke the mutation to make a change to the application’s state. Vuex and
Vue.js then work through the impact of the update automatically so that the user sees the selected page or the
number of products per page.

Figure 5-9. Changing page size

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

112

Adding Category Selection
The product list has started to shape up, and I am going to jump track and add support for narrowing the
list of products by category. I am going to follow the same pattern to develop this feature: expand the data
store, create a new component, and integrate the new component with the rest of the application. This is a
pattern that you will become familiar with when you start a new Vue.js project and each component adds
new content and features to the project. In Listing 5-21, I added a getter that returns a list of the categories
that the user will be able to choose from.

Listing 5-21. Adding a Category List in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";

Vue.use(Vuex);

const testData = [];

for (let i = 1; i <= 10; i++) {
 testData.push({
 id: i, name: `Product #${i}`, category: `Category ${i % 3}`,
 description: `This is Product #${i}`, price: i * 50
 })
}

export default new Vuex.Store({
 strict: true,
 state: {
 products: testData,
 productsTotal: testData.length,
 currentPage: 1,
 pageSize: 4,
 currentCategory: "All"
 },
 getters: {
 productsFilteredByCategory: state => state.products
 .filter(p => state.currentCategory == "All"
 || p.category == state.currentCategory),
 processedProducts: (state, getters) => {
 let index = (state.currentPage -1) * state.pageSize;
 return getters.productsFilteredByCategory
 .slice(index, index + state.pageSize);
 },
 pageCount: (state, getters) =>
 Math.ceil(getters.productsFilteredByCategory.length / state.pageSize),
 categories: state => ["All",
 ...new Set(state.products.map(p => p.category).sort())]
 },
 mutations: {
 setCurrentPage(state, page) {
 state.currentPage = page;
 },

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

113

 setPageSize(state, size) {
 state.pageSize = size;
 state.currentPage = 1;
 },
 setCurrentCategory(state, category) {
 state.currentCategory = category;
 state.currentPage = 1;
 }
 }
})

The currentCategory state property represents the category selected by the user, which defaults to All,
which the application will use to display all products regardless of category.

Getters can access the results of other getters in the data store by defining a second argument. This
allows me to define a productsFilteredByCategory getter and use it in the processedProducts and
pageCount getters to reflect the category selection in their results.

I defined the categories getter so that I can present the user with a list of the categories that are
available. The getter processes the products state array to select the values of the category properties and
uses them to create a Set, which has the effect of removing any duplicates. The Set is spread into an array,
which is sorted, resulting in an array of distinct categories, sorted by name.

The setCurrentCategory mutation changes the value of the currentCategory state property, which
will be the means by which the user changes the selected category and also resets the selected page.

To manage the category selection, I added a file called CategoryControls.vue in the src/components
folder, with the content shown in Listing 5-22.

Listing 5-22. The Contents of the CategoryControls.vue File in the src/components Folder

<template>
 <div class="container-fluid">
 <div class="row my-2" v-for="c in categories" v-bind:key="c">
 <button class="btn btn-block"
 v-on:click="setCurrentCategory(c)"
 v-bind:class="c == currentCategory
 ? 'btn-primary' : 'btn-secondary'">
 {{ c }}
 </button>
 </div>
 </div>
</template>

<script>
 import { mapState, mapGetters, mapMutations} from "vuex";

 export default {
 computed: {
 ...mapState(["currentCategory"]),
 ...mapGetters(["categories"])
 },
 methods: {
 ...mapMutations(["setCurrentCategory"])
 }
 }
</script>

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

114

The component presents a list of button elements to the user, generated by the v-for directive based
on the values provided by the categories property, which is mapped to the getter of the same name in the
data store. The v-bind directive is used to manage the class membership of the button elements so that the
button element that represents the selected category is added to the btn-primary class and all other button
elements are added to the btn-secondary class, ensuring that the user can easily see which category has
been chosen.

The v-on directive listens for the click event and invokes the setCurrentCategory mutation, which
allows the user to navigate between categories. The live data model means the change will be immediately
reflecting in the products shown to the user.

In Listing 5-23, I imported the new component and added to its parent’s components property so that I
can display the new features using the custom HTML element.

Listing 5-23. Adding the Category Selection in the Store.vue File in the src/components Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col bg-dark text-white">
 SPORTS STORE
 </div>
 </div>
 <div class="row">
 <div class="col-3 bg-info p-2">
 <CategoryControls />
 </div>
 <div class="col-9 p-2">
 <ProductList />
 </div>
 </div>
 </div>
</template>

<script>

 import ProductList from "./ProductList";
 import CategoryControls from "./CategoryControls";

 export default {
 components: { ProductList, CategoryControls }
 }

</script>

The result is that the user is presented with a list of buttons that can be used to filter the products by
category, as shown in Figure 5-10.

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

115

Using the RESTful Web Service
I like to start a project using test data because it lets me define the initial features without having to deal
with network requests. But now that the basic structure is in place, it is time to replace the test data with the
data provided by the RESTful web service. The json-server package that was installed and started at the
beginning of the chapter will provide the data that the application requires using the URLs listed in Table 5-2.

Vue.js doesn’t include built-in support for making HTTP requests. The most common choice of package
to handle HTTP is Axios, which is not specific to Vue.js but fits nicely into the development model and is
well-designed and easy to use.

HTTP requests are performed asynchronously. I want to perform my HTTP requests in the data store,
and Vuex supports asynchronous tasks using a feature called actions. In Listing 5-24, I added an action to
get the product and category data from the server and use it to set the state properties that the rest of the
application relies on.

Figure 5-10. Adding support for category filtering

Table 5-2. The URLs to Get the Application Data

URL Description

http://localhost:3500/products This URL will provide the list of products.

http://localhost:3500/categories This URL will provide the list of categories.

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

116

Listing 5-24. Requesting Data in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";

import Axios from "axios";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500";
const productsUrl = `${baseUrl}/products`;
const categoriesUrl = `${baseUrl}/categories`;

export default new Vuex.Store({
 strict: true,
 state: {
 products: [],
 categoriesData: [],
 productsTotal: 0,
 currentPage: 1,
 pageSize: 4,
 currentCategory: "All"
 },
 getters: {
 productsFilteredByCategory: state => state.products
 .filter(p => state.currentCategory == "All"
 || p.category == state.currentCategory),
 processedProducts: (state, getters) => {
 let index = (state.currentPage - 1) * state.pageSize;
 return getters.productsFilteredByCategory.slice(index,
 index + state.pageSize);
 },
 pageCount: (state, getters) =>
 Math.ceil(getters.productsFilteredByCategory.length / state.pageSize),
 categories: state => ["All", ...state.categoriesData]
 },
 mutations: {
 setCurrentPage(state, page) {
 state.currentPage = page;
 },
 setPageSize(state, size) {
 state.pageSize = size;
 state.currentPage = 1;
 },
 setCurrentCategory(state, category) {
 state.currentCategory = category;
 state.currentPage = 1;
 },
 setData(state, data) {
 state.products = data.pdata;
 state.productsTotal = data.pdata.length;
 state.categoriesData = data.cdata.sort();

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

117

 }
 },
 actions: {
 async getData(context) {
 let pdata = (await Axios.get(productsUrl)).data;
 let cdata = (await Axios.get(categoriesUrl)).data;
 context.commit("setData", { pdata, cdata});
 }
 }
})

The Axios package provides a get method that is used to send HTTP get requests. I request the data
from both URLs and use the async and await keywords to wait for the data. The get method returns an
object whose data property returns a JavaScript object that has been parsed from the JSON response from
the web service.

Vuex actions are functions that receive a context object that provides access to the data store features.
The getData action uses the context to invoke the setData mutation. I can’t use the mapMutation helper
inside the data store, so I have to use the alternative mechanism, which is to call the commit method and
specify the name of the mutation as an argument.

I need to invoke the action data store action when the application is initialized. Vue.js components have
a well-defined lifecycle, which I describe in Chapter 17. For each part of the lifecycle, there are methods
that a component can define that will be invoked. In Listing 5-25, I have implemented the created method,
which is invoked when the component is created and which I use to trigger the getData action, which is
mapped to a method using the mapActions helper.

Listing 5-25. Requesting Data in the App.vue File in the src Folder

<template>
 <store />
</template>

<script>
 import Store from "./components/Store";
 import { mapActions } from "vuex";

 export default {
 name: 'app',
 components: { Store },
 methods: {
 ...mapActions(["getData"])
 },
 created() {
 this.getData();
 }
 }
</script>

The result is that the test data has been replaced with the data obtained from the RESTful web service,
as shown in Figure 5-11.

ChaPter 5 ■ SPortSStore: a real aPPlICatIon

118

 ■ Note You may have to reload the browser to see the data from the web service. If you still don’t see the
new data, then stop and start the development tools using the command from listing 5-25.

Summary
In this chapter, I started the development of the SportsStore project. I started by defining the data source,
which provides access to shared data throughout the application. I also started work on the store, which
presents products to the user, with support for pagination and filtering by category. I completed this chapter
by using the Axios package to request data using HTTP from the RESTful web service, which allowed me to
remove the test data. In the next chapter, I continue development of the SportsStore application by adding
support for a shopping cart, checking out, and creating orders.

Figure 5-11. Using data from the web service

119© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_6

CHAPTER 6

SportsStore: Checkout and Orders

In this chapter, I continue adding features to the SportsStore application that I created in Chapter 5. I add
support for a shopping cart and a checkout process that allows the user to submit orders to the web service.

 ■ Tip You can download the example project for this chapter—and for all of the other chapters in this book—
from https://github.com/Apress/pro-vue-js-2.

Preparing for This Chapter
This chapter uses the SportsStore project from Chapter 5, and no changes are required in preparation for this
chapter. To start the RESTful web service, open a command prompt and run the following command in the
sportsstore folder:

npm run json

Open a second command prompt and run the following command in the sportsstore folder to start
the development tools and HTTP server:

npm run serve

Once the initial build process is complete, open a new browser window and navigate to
http://localhost:8080 to see the content shown in Figure 6-1.

https://github.com/Apress/pro-vue-js-2

Chapter 6 ■ SportSStore: CheCkout and orderS

120

Creating the Shopping Cart Placeholder
The next feature for the SportsStore application is a shopping cart, which will allow the user to gather
together the products they want to buy. I am going to create the shopping cart by adding a new component
to the application with some placeholder content and then add support for displaying to the user. Once that
is done, I’ll go back and implement the cart. To begin, I created a file called ShoppingCart.vue in the src/
components folder with the content shown in Listing 6-1.

Listing 6-1. The Contents of the ShoppingCart.vue File in the src/components Folder

<template>
 <h4 class="bg-primary text-white text-center p-2">
 Placeholder for Cart
 </h4>
</template>

The new component doesn’t provide any functionality currently, but it clearly indicates when the cart is
being displayed.

Figure 6-1. Running the SportsStore application

Chapter 6 ■ SportSStore: CheCkout and orderS

121

Configuring URL Routing
Simple applications display the same content to the user all the time, but as you add more features, there
comes a point where you need to display different components to the user. In the case of the example
application, I want to allow the user to easily navigate between the list of products and the shopping cart.
Vue.js supports a feature called dynamic components, which allows the application to change the content
that the user sees. This feature is built-on the Vue Router package so that the URL is used to determine the
content, which is known as URL routing. To set up the configuration required for the SportsStore application,
I created the src/router folder and added to it a file called index.js with the content shown in Listing 6-2.

 ■ Note urL routing is described in detail in Chapters 23–25. the dynamic component feature is described in
Chapter 21.

Listing 6-2. The Contents of the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import Store from "../components/Store";
import ShoppingCart from "../components/ShoppingCart";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: Store },
 { path: "/cart", component: ShoppingCart },
 { path: "*", redirect: "/"}
]
})

The Vue Router package must be registered with the Vue.use method in the same way as the Vuex
package was in Chapter 5. The index.js file exports a new VueRouter object, which is passed a configuration
object that sets up the mapping between URLs and the associated components.

 ■ Note In Listing 6-2, I have set the mode property to history, which tells Vue router to use a recent
browser apI to handle the urLs. this produces a more usable result, but it isn’t supported by older browsers, as
I explain in Chapter 22.

The routes property contains a set of objects that maps URLs to components so that the default URL
for the application will display the Store component, while the /cart URL will display the ShoppingCart
component. The third object in the routes array is a catchall route, which redirects any other URL to /,
which shows the Store as a useful fallback.

I added the statements shown in Listing 6-3 to the main.js file, which ensures that the routing features
are initialized and will be available throughout the application.

Chapter 6 ■ SportSStore: CheCkout and orderS

122

Listing 6-3. Enabling URL Routing in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

Vue.config.productionTip = false

import "bootstrap/dist/css/bootstrap.min.css";
import "font-awesome/css/font-awesome.min.css"

import store from "./store";
import router from "./router";

new Vue({
 render: h => h(App),
 store,
 router
}).$mount('#app')

The new statements import the module from Listing 6-3 and add it to the configuration object used to
create the Vue object. Without this step, the routing features won’t be enabled.

Displaying a Routed Component
Now that the routing configuration has been added to the application, I can ask it to manage the display of
components in the SportsStore application. In Listing 6-4, I removed the custom HTML element that displayed
the Store component and replaced it with one whose content will be determined by the current URL.

Listing 6-4. Adding a Routed View in the App.vue File in the src Folder

<template>
 <router-view />
</template>

<script>

 //import Store from "./components/Store";
 import { mapActions } from "vuex";

 export default {
 name: 'app',
 //components: { Store },
 methods: {
 ...mapActions(["getData"])
 },
 created() {
 this.getData();
 }
 }
</script>

Chapter 6 ■ SportSStore: CheCkout and orderS

123

The router-view element displays a component based on the configuration defined in Listing 6-4.
I commented out the statements that add the Store component, which are no longer required because the
routing system will be responsible for managing the content displayed by the App component.

If you navigate to http://localhost:8080, you will see the content displayed by the Store component,
but if you navigate to http://localhost:8080/cart, you will see the placeholder content for the cart, as
shown in Figure 6-2.

Implementing the Cart Features
Now that the application can display the cart component, I can add the features that provide cart
functionality. In the sections that follow, I expand the data store, add features to the Cart component to
display the user’s selection, and add navigation features so the user can select products and see a summary
of those selections in the cart.

Adding a Module to the Data Store
I am going to start by expanding the data store, which I am going to do by defining a JavaScript module that
is specific to the cart so that I can keep these additions separate from the existing data store features. I added
a file called cart.js to the src/store folder with the content shown in Listing 6-5.

Listing 6-5. The Contents of the cart.js File in the src/store Folder

export default {
 namespaced: true,
 state: {
 lines: []
 },
 getters: {
 itemCount: state => state.lines.reduce((total, line) =>
 total + line.quantity, 0),

Figure 6-2. Using URL routing

Chapter 6 ■ SportSStore: CheCkout and orderS

124

 totalPrice: state => state.lines.reduce((total, line) =>
 total + (line.quantity * line.product.price), 0),

 },
 mutations: {
 addProduct(state, product) {
 let line = state.lines.find(line => line.product.id == product.id);
 if (line != null) {
 line.quantity++;
 } else {
 state.lines.push({ product: product, quantity:1 });
 }
 },
 changeQuantity(state, update) {
 update.line.quantity = update.quantity;
 },
 removeProduct(state, lineToRemove) {
 let index = state.lines.findIndex(line => line == lineToRemove);
 if (index > -1) {
 state.lines.splice(index, 1);
 }
 }
 }
}

To extend the data store with a module, I created a default export that returns an object with state,
getters, and mutations properties, following the same format I used in Chapter 5 when I added the data
store to the project. I set the namespaced property to true to keep these features separate in the data store,
which means they will be accessed with a prefix. Without this setting, the features defined in the cart.js file
would be merged into the main data store, which can be confusing unless you ensure that the names used
for properties and functions cannot be confused.

To incorporate the module into the data store, I added the statements shown in Listing 6-6 to the
index.js file.

Listing 6-6. Adding a Module in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";
import CartModule from "./cart";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500";
const productsUrl = `${baseUrl}/products`;
const categoriesUrl = `${baseUrl}/categories`;

export default new Vuex.Store({
 strict: true,
 modules: { cart: CartModule },
 state: {
 products: [],

Chapter 6 ■ SportSStore: CheCkout and orderS

125

 categoriesData: [],
 productsTotal: 0,
 currentPage: 1,
 pageSize: 4,
 currentCategory: "All"
 },

 // ...other data store features omitted for brevity...
})

I used an import statement to declare a dependency on the cart module and identified it as CartModule.
To include the module in the data store, I added the modules property, which is assigned an object whose
property name specifies the prefix that will be used to access the features in the module and whose value is the
module object. In this listing, the features in the new data store module will be accessed using the prefix cart.

Adding the Product Selection Feature
The next step is to add the feature that will allow the user to add products to the cart. In Listing 6-7, I added a
button to each product listing that updates the cart when it is clicked.

Listing 6-7. Adding Product Selection in the ProductList.vue File in the src/components Folder

<template>
 <div>
 <div v-for="p in products" v-bind:key="p.id" class="card m-1 p-1 bg-light">
 <h4>
 {{p.name}}

 {{ p.price | currency }}

 </h4>
 <div class="card-text bg-white p-1">
 {{ p.description }}
 <button class="btn btn-success btn-sm float-right"
 v-on:click="handleProductAdd(p)">
 Add To Cart
 </button>
 </div>
 </div>
 <page-controls />
 </div>
</template>

<script>

import { mapGetters, mapMutations } from "vuex";
import PageControls from "./PageControls";

export default {
 components: { PageControls },
 computed: {

Chapter 6 ■ SportSStore: CheCkout and orderS

126

 ...mapGetters({ products: "processedProducts" })
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD" }).format(value);
 }
 },
 methods: {
 ...mapMutations({ addProduct: "cart/addProduct" }),
 handleProductAdd(product) {
 this.addProduct(product);
 this.$router.push("/cart");
 }
 }
}
</script>

I added a button element to the template and used the v-on directive to respond to the click event by
invoking the handleProductAdd method, which I added to the script element. This method invokes the
cart/addProduct mutation on the data store, which is the way that the prefix I specified in Listing 6-7 allows
me to access the features in the module when the namespaced property is true.

After the addProduct mutation has been invoked, the handleProductAdd method uses the routing
system to navigate to the /cart URL with this statement:...
this.$router.push("/cart");
...

The functionality provided by the Vue Router package is provided to components using the $router
property (accessing all properties and methods in a component requires using the this keyword). The
push method tells the router to change the browser’s URL, which has the effect of displaying a different
component. The result is that the cart component is displayed when you click one of the Add To Cart
buttons, as shown in Figure 6-3.

Chapter 6 ■ SportSStore: CheCkout and orderS

127

Displaying the Cart Contents
It is time to display the user’s product selections instead of the placeholder content that is currently
displayed. To make the content easier to manage, I am going to use a separate component that will be
responsible for displaying a single product selection. I added a file called ShoppingCartLine.vue to the src/
components folder with the content shown in Listing 6-8.

Listing 6-8. The Contents of the ShoppingCartLine.vue File in the src/components Folder

<template>
 <tr>
 <td>
 <input type="number" class="form-control-sm"
 style="width:5em"
 v-bind:value="qvalue"
 v-on:input="sendChangeEvent"/>
 </td>
 <td>{{ line.product.name }}</td>
 <td class="text-right">
 {{ line.product.price | currency }}
 </td>
 <td class="text-right">
 {{ (line.quantity * line.product.price) | currency }}

Figure 6-3. Using URL navigation

Chapter 6 ■ SportSStore: CheCkout and orderS

128

 </td>
 <td class="text-center">
 <button class="btn btn-sm btn-danger"
 v-on:click="sendRemoveEvent">
 Remove
 </button>
 </td>
 </tr>
</template>
<script>
 export default {
 props: ["line"],
 data: function() {
 return {
 qvalue: this.line.quantity
 }
 },
 methods: {
 sendChangeEvent($event) {
 if ($event.target.value > 0) {
 this.$emit("quantity", Number($event.target.value));
 this.qvalue = $event.target.value;
 } else {
 this.$emit("quantity", 1);
 this.qvalue = 1;
 $event.target.value = this.qvalue;
 }
 },
 sendRemoveEvent() {
 this.$emit("remove", this.line);
 }
 }
 }
</script>

This component uses the props feature, which allows the parent component to provide data objects to
its children. In this case, the component in Listing 6-8 defines a prop called line, which its parent will use to
provide the line from the shopping cart that it will display to the user. This component also sends custom
event, which it uses to communicate with its parent. When the user changes the value of the input element
that displays the quantity or clicks the Remove button, the component calls the this.$emit method to send
an event to its parent component. These features are a useful way to connect components to create features
that are local to one part of the application without using global features like the data store.

To display the contents of the cart to the user, I replaced the placeholder element in the ShoppingCart
component and replaced it with the HTML and JavaScript code shown in Listing 6-9.

Listing 6-9. Displaying Products in the ShoppingCart.vue File in the src/components Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col bg-dark text-white">
 SPORTS STORE

Chapter 6 ■ SportSStore: CheCkout and orderS

129

 </div>
 </div>
 <div class="row">
 <div class="col mt-2">
 <h2 class="text-center">Your Cart</h2>
 <table class="table table-bordered table-striped p-2">
 <thead>
 <tr>
 <th>Quantity</th><th>Product</th>
 <th class="text-right">Price</th>
 <th class="text-right">Subtotal</th>
 </tr>
 </thead>
 <tbody>
 <tr v-if="lines.length == 0">
 <td colspan="4" class="text-center">
 Your cart is empty
 </td>
 </tr>
 <cart-line v-for="line in lines" v-bind:key="line.product.id"
 v-bind:line="line"
 v-on:quantity="handleQuantityChange(line, $event)"
 v-on:remove="remove" />
 </tbody>
 <tfoot v-if="lines.length > 0">
 <tr>
 <td colspan="3" class="text-right">Total:</td>
 <td class="text-right">
 {{ totalPrice | currency }}
 </td>
 </tr>
 </tfoot>
 </table>
 </div>
 </div>
 <div class="row">
 <div class="col">
 <div class="text-center">
 <router-link to="/" class="btn btn-secondary m-1">
 Continue Shopping
 </router-link>
 <router-link to="/checkout" class="btn btn-primary m-1"
 v-bind:disabled="lines.length == 0">
 Checkout
 </router-link>
 </div>
 </div>
 </div>
 </div>
</template>

<script>

Chapter 6 ■ SportSStore: CheCkout and orderS

130

import { mapState, mapMutations, mapGetters } from "vuex";
import CartLine from "./ShoppingCartLine";

export default {
 components: { CartLine },
 computed: {
 ...mapState({ lines: state => state.cart.lines }),
 ...mapGetters({ totalPrice : "cart/totalPrice" })
 },
 methods: {
 ...mapMutations({
 change: "cart/changeQuantity",
 remove: "cart/removeProduct"
 }),
 handleQuantityChange(line, $event) {
 this.change({ line, quantity: $event});
 }
 }
}
</script>

Most of the content and code in this component uses features you have already seen, but
there are a few points of note. The first is the way that this component configures its
child ShoppingCartLine components, like this:...
<cart-line v-for="line in lines" v-bind:key="line.product.id"
 v-bind:line="line"
 v-on:quantity="handleQuantityChange(line, $event)"
 v-on:remove="remove" />
...

The cart-line element is used to apply the CartLine directive, and you can see the local connectivity
features that component relies on from the other side of the parent-child relationship. The v-bind directive
is used to set the value of the line prop, through which the CartLine directive receives the object it displays,
and the v-on directive is used to receive the custom events emitted by the CartLine directive.

Some of the content in the template in Listing 6-9 is displayed only if there are products in the cart.
Elements can be added or removed from the HTML document based on a JavaScript expression using the
v-if directive, which I describe in Chapter 12.

The template in Listing 6-9 contains a new element that hasn’t been seen before.

...
<router-link to="/" class="btn btn-primary m-1">Continue Shopping</router-link>
...

The router-link element is provided by the Vue Router package, and it is used to generate a navigation
element. When the component’s template is processed, the router-link element is replaced with an anchor
element (an element whose tag is a) that will navigate to the URL specified by the to attribute. The router-
link element is the counterpart to code-based navigation, and it can be configured to produce different
elements and to apply classes to its element when its location matches the current URL, all of which I
describe in Chapter 23. In Listing 6-9, I used the router-link element to allow the user to navigate back to
the product list and to proceed to the /checkout URL, which I will add to the application later in the chapter
to add support for the checkout process.

Chapter 6 ■ SportSStore: CheCkout and orderS

131

 ■ Tip the Bootstrap CSS framework can style a elements to look like buttons. the classes to which I added
the router-link elements in Listing 6-9 are carried over to the a elements they produce and are presented to
the user as Continue Shopping and Checkout buttons, which you can see in Figure 6-4.

The final feature of note in Listing 6-9 is the use of the data store state property that I defined in
Listing 6-5. I chose to keep the features defined in the data store module separate from the rest of the data
store, which means that a prefix must be used. When mapping getters, mutations, and actions, the prefix is
included in the name, but a different approach is required for accessing state properties.

...
 ...mapState({ lines: state => state.cart.lines }),
...

State properties are mapped by defining a function that receives the state object and selects the
property that is required. In this case, the selected property is lines, which is accessed using the cart prefix.

Creating a Global Filter
When I introduced the currency filter in Chapter 5, I defined it in a single component. Now that I have
added features to the project, there are more values that I need to format as currency values, but rather than
duplicate the same filter, I am going to register the filter globally so that it is available to all components, as
shown in Listing 6-10.

Listing 6-10. Creating a Global Filter in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

Vue.config.productionTip = false

import "bootstrap/dist/css/bootstrap.min.css";
import "font-awesome/css/font-awesome.min.css"

import store from "./store";
import router from "./router";

Vue.filter("currency", (value) => new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD" }).format(value));

new Vue({
 render: h => h(App),
 store,
 router
}).$mount('#app')

As you will learn in later chapters, many component features can be defined globally to avoid code
duplication. Global filters are defined using the Vue.filter method, which must be called before the Vue
object is created, as shown in Listing 6-10. See Chapter 11 for more details of using filters.

Chapter 6 ■ SportSStore: CheCkout and orderS

132

Testing the Basic Cart Features
To test the cart, navigate to http://localhost:8080 and click the Add To Cart button for the products you
want to select. Each time you click the button, the data store will be updated, and the browser will navigate
to the /cart URL, which will display a summary of your choices, as shown in Figure 6-4. You can increase
and decrease the quantity of each product, remove the product, and click the Continue Shopping button to
return to the store. (Clicking the Checkout button also returns you to the store at the moment because I have
not yet set up a route for the /cart URL, and the catchall route I defined in Listing 6-10 is redirecting the
browser to the default URL.)

Making the Cart Persistent
If you reload the browser or try to navigate to http://localhost:8080/cart by entering the URL into the
browser bar, you will lose any products that you have selected and will be presented with the empty cart
shown in Figure 6-5.

Figure 6-4. The cart summary

Chapter 6 ■ SportSStore: CheCkout and orderS

133

The URL changes performed using the routing system are handled differently from changes made by
the user. When an application performs navigation, the change is interpreted as a request to move within
that application, such as moving from the product list to the store. But when the user performs navigation,
the change is interpreted as a request to change the page. The fact that the current application knows how
to handle the new URL is irrelevant—the change terminates the current application and triggers fresh HTTP
requests for the application’s HTML document JavaScript, leading to a new instance of the application being
created. Any state data is lost during this period, which is why you see an empty cart.

There is no way to change the behavior of the browser, which means the only way to deal with this
problem is to make the cart persistent so that it is available to the newly created instance of the application
after the navigation is complete. There are lots of different ways to persist cart data, and a common
technique is to store the data on a server each time the user makes a change. I want to keep the focus on Vue.
js development and not creating a back end to store the data, so I am going to use the same approach I used
in Chapter 1 and store the data at the client using the local storage feature. In Listing 6-11, I have updated the
data store so that the product selections are stored persistently when a change is made.

Listing 6-11. Storing Data Persistently in the cart.js File in the src/store Folder

export default {
 namespaced: true,
 state: {
 lines: []
 },
 getters: {
 itemCount: state => state.lines.reduce((total, line) =>
 total + line.quantity, 0),
 totalPrice: state => state.lines.reduce((total, line) =>
 total + (line.quantity * line.product.price), 0),

 },
 mutations: {
 addProduct(state, product) {

Figure 6-5. The empty cart

Chapter 6 ■ SportSStore: CheCkout and orderS

134

 let line = state.lines.find(line => line.product.id == product.id);
 if (line != null) {
 line.quantity++;
 } else {
 state.lines.push({ product: product, quantity:1 });
 }
 },
 changeQuantity(state, update) {
 update.line.quantity = update.quantity;
 },
 removeProduct(state, lineToRemove) {
 let index = state.lines.findIndex(line => line == lineToRemove);
 if (index > -1) {
 state.lines.splice(index, 1);
 }
 },
 setCartData(state, data) {
 state.lines = data;
 }
 },
 actions: {
 loadCartData(context) {
 let data = localStorage.getItem("cart");
 if (data != null) {
 context.commit("setCartData", JSON.parse(data));
 }
 },
 storeCartData(context) {
 localStorage.setItem("cart", JSON.stringify(context.state.lines));
 },
 clearCartData(context) {
 context.commit("setCartData", []);
 },
 initializeCart(context, store) {
 context.dispatch("loadCartData");
 store.watch(state => state.cart.lines,
 () => context.dispatch("storeCartData"), { deep: true});
 }
 }
}

The actions I added to the data store module load, store, and clear the cart data using the local storage
API. Actions are not allowed to modify state data directly in the data store, so I have also added a mutation
that sets the lines property. The most important addition in Listing 6-11 is the initializeCart action,
which is responsible for dealing with the cart when the application starts. When the action is invoked, the
first statement calls the dispatch method, which is how actions are programmatically invoked. To observe
the data store for changes to the lines state property, I used the watch method, like this:

...
store.watch(state => state.cart.lines,
 () => context.dispatch("storeCartData"), { deep: true});
...

Chapter 6 ■ SportSStore: CheCkout and orderS

135

The arguments to the watch method are a function that selects the state property and a function to
invoke when a change is detected. This statement selects the lines property and uses the dispatch method
to invoke the storeCartData action when there is a change. There is also a configuration object that sets
the deep property to true, which tells Vuex that I want to receive notifications when there is a change to any
of the properties in the lines array, which is not done by default. As I explain in Chapter 13, without this
option, I would receive notifications only when the user adds or removes a line from the cart and not when
the quantity of an existing product selection is changed.

Vuex doesn’t provide a way to invoke any features when the data store is first initialized, so I added a
statement to the App component that calls the initializeCart action, alongside the existing statement that
requests the initial data from the RESTful web service, as shown in Listing 6-12.

Listing 6-12. Initializing the Cart in the App.vue File in the src Folder

<template>
 <router-view />
</template>

<script>
 import { mapActions } from "vuex";

 export default {
 name: 'app',
 methods: {
 ...mapActions({
 getData: "getData",
 initializeCart: "cart/initializeCart"
 })
 },
 created() {
 this.getData();
 this.initializeCart(this.$store);
 }
 }
</script>

The result of these changes is that the user’s cart is stored locally and product selections are not lost
when the user navigates directly to the /cart URL or when the browser is reloaded, as shown in Figure 6-6.

Chapter 6 ■ SportSStore: CheCkout and orderS

136

Adding the Cart Summary Widget
The final touch to complete the shopping cart is to create a summary that is shown at the top of the product
list so that the user can see an overview of their selections and navigate directly to the /cart URL without
having to add a product to the cart. I added a file called CartSummary.vue in the src/components folder and
added the content shown in Listing 6-13 to create a new component.

Listing 6-13. The Contents of the CartSummary.vue File in the src/components Folder

<template>
 <div class="float-right">
 <small>
 Your cart:
 0">
 {{ itemCount }} item(s) {{ totalPrice | currency }}

 (empty)

 </small>
 <router-link to="/cart" class="btn btn-sm bg-dark text-white"
 v-bind:disabled="itemCount == 0">
 <i class="fa fa-shopping-cart"></i>
 </router-link>
 </div>
</template>

Figure 6-6. Storing the cart data

Chapter 6 ■ SportSStore: CheCkout and orderS

137

<script>
 import { mapGetters } from 'vuex';

 export default {
 computed: {
 ...mapGetters({
 itemCount: "cart/itemCount",
 totalPrice: "cart/totalPrice"
 })
 }
 }
</script>

This component uses the v-else directive, which is a useful companion to v-if and shows an element
if the v-if expression is false, as described in Chapter 12. This allows me to display a summary of the cart if
it contains items and show a placeholder message if not.

 ■ Tip the router-link element in Listing 6-13 contains an i element, which is styled using classes defined
by Font awesome, which I added to the project in Chapter 5. this open source package provides excellent
support for icons in web applications, including the shopping cart I need for the SportsStore application.
See http://fontawesome.io for details.

To incorporate the new component into the application, I updated the Store component, as shown in
Listing 6-14.

Listing 6-14. Enabling the Component in the Store.vue File in the src/components Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col bg-dark text-white">
 SPORTS STORE
 <cart-summary />
 </div>
 </div>
 <div class="row">
 <div class="col-3 bg-info p-2">
 <CategoryControls />
 </div>
 <div class="col-9 p-2">
 <ProductList />
 </div>
 </div>
 </div>
</template>

<script>

 import ProductList from "./ProductList";

http://fontawesome.io

Chapter 6 ■ SportSStore: CheCkout and orderS

138

 import CategoryControls from "./CategoryControls";
 import CartSummary from "./CartSummary";

 export default {
 components: { ProductList, CategoryControls, CartSummary }
 }

</script>

The effect is to present the user with a compact summary of the cart, as shown in Figure 6-7, and allow
them to navigate directly to the cart summary by clicking the shopping cart icon.

Adding the Checkout and Orders Features
The next step after assembling a cart is to let the user check out and generate an order. To expand the data
store to support orders, I added a file called orders.js to the src/store folder with the code shown in
Listing 6-15.

Listing 6-15. The Contents of the orders.js File in the src/store Folder

import Axios from "axios";

const ORDERS_URL = "http://localhost:3500/orders";

export default {
 actions: {
 async storeOrder(context, order) {
 order.cartLines = context.rootState.cart.lines;
 return (await Axios.post(ORDERS_URL, order)).data.id;
 }
 }
}

Figure 6-7. The cart summary widget

Chapter 6 ■ SportSStore: CheCkout and orderS

139

The new data store module contains only an action to store an order, although I will add features when
I implement some administration features. The storeOrder action uses the Axios package to send an HTTP
POST request to the web service, which will store the order in the database.

To get data from another module, I use the rootState property of the action’s context object, which lets
me navigate to the cart module’s lines property so that the products that the customer has selected is sent
to the web service along with the details the user provided during the checkout process.

The json-server package that I have used as the RESTful web service for the SportsStore application
responds to POST requests with a JSON representation of the object that includes an id property. The id
property is assigned automatically and is used to uniquely identify the stored object in the database. In
Listing 6-15, I use the async and await keywords to wait for the POST request to complete and then return
the value of the id property that the server has provided.

For variety, I have not enabled the namespace feature, which means that this module’s getters,
mutations, and actions will be merged with those in the index.js file and will not be accessed using a prefix
(although, as I explain in Chapter 20, the state properties are always prefixed, even when the namespace
feature is not used and you can see an example of this in Chapter 7). In Listing 6-16, I imported the orders
module into the main data store file and added it to the modules property, just as I did for the cart module
earlier in the chapter.

Listing 6-16. Importing a Module in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";
import CartModule from "./cart";
import OrdersModule from "./orders";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500";
const productsUrl = `${baseUrl}/products`;
const categoriesUrl = `${baseUrl}/categories`;

export default new Vuex.Store({
 strict: true,
 modules: { cart: CartModule, orders: OrdersModule },

 // ...data store features omitted for brevity...

})

Creating and Registering the Checkout Components
To help the user complete the checkout process, I added a file called Checkout.vue in the src/components
folder with the content shown in Listing 6-17.

Listing 6-17. The Contents of the Checkout.vue File in the src/components folder

<template>
 <div>
 <div class="container-fluid">
 <div class="row">
 <div class="col bg-dark text-white">

Chapter 6 ■ SportSStore: CheCkout and orderS

140

 SPORTS STORE
 </div>
 </div>
 </div>
 <div class="m-2">
 <div class="form-group m-2">
 <label>Name</label>
 <input v-model="name" class="form-control "/>
 </div>
 </div>
 <div class="text-center">
 <router-link to="/cart" class="btn btn-secondary m-1">
 Back
 </router-link>
 <button class="btn btn-primary m-1" v-on:click="submitOrder">
 Place Order
 </button>
 </div>
 </div>
</template>

<script>

export default {
 data: function() {
 return {
 name: null
 }
 },
 methods: {
 submitOrder() {
 // todo: save order
 }
 }
}
</script>

I have started by adding one form element, which allows the user to enter their name. I’ll add the
remaining form elements shortly, but I started small so I can get everything set up without having to repeat
the same code repeatedly in the listings.

There are two features used by this component that I have not used previously because the SportsStore
application has been built around a Vuex data store. The first feature is that the component in Listing 6-17 has
its own local data, which is not shared with any other component. This is defined using the data property in
the script element and must be expressed in unusual way.

...
data: function() {
 return {
 name: null
 }
},
...

Chapter 6 ■ SportSStore: CheCkout and orderS

141

This fragment of code defines a single local data property called name, whose initial value is null. You
will become used to this expression as you become experienced in Vue.js development and it soon becomes
second nature. As I explain in Chapter 11, you will receive a warning if you forget to set up the data property
correctly. In Parts 2 and 3 of this book, I rely on data properties so that I can demonstrate different features
without the complication of adding a data store, and you will see lots of examples of how they work.

The second feature in Listing 6-17 is the use of the v-model directive to the input element, which
creates a two-way binding with the name property, which keeps the value of the name property and the
contents of the input element synchronized. This is a convenient feature for working with form elements,
which I describe in more detail in Chapter 15; however, I have not used it in earlier SportsStore components.
This is because it cannot be used with values from the data store since Vuex requires changes to be
performed using mutations, which the v-model directive doesn’t support, as I explain in detail in Chapter 20.

I also need a component that will display a message when an order has been submitted. I added a file
called OrderThanks.vue to the src/components folder with the content shown in Listing 6-18.

Listing 6-18. The Contents of the OrderThanks.vue File in the src/components Folder

<template>

 <div class="m-2 text-center">
 <h2>Thanks!</h2>
 <p>Thanks for placing your order, which is #{{orderId}}.</p>
 <p>We'll ship your goods as soon as possible.</p>
 <router-link to="/" class="btn btn-primary">Return to Store</router-link>
 </div>

</template>

<script>
 export default {
 computed: {
 orderId() {
 return this.$route.params.id;
 }
 }
 }
</script>

This component displays a value that is obtained by the URL of the current route, which it accesses
through the this.$route property, which is available in all components when the Vue Router package is
enabled. In this case, I get a parameter from the route that will contain the user’s order number, which will
be the value returned from the HTTP POST request from Listing 6-15.

To incorporate the components into the application, I defined new routes, as shown in Listing 6-19.

Listing 6-19. Adding Routes in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import Store from "../components/Store";
import ShoppingCart from "../components/ShoppingCart";
import Checkout from "../components/Checkout";
import OrderThanks from "../components/OrderThanks";

Chapter 6 ■ SportSStore: CheCkout and orderS

142

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: Store },
 { path: "/cart", component: ShoppingCart },
 { path: "/checkout", component: Checkout},
 { path: "/thanks/:id", component: OrderThanks},
 { path: "*", redirect: "/"}
]
})

The /checkout URL will display the component from Listing 6-17, which corresponds to the URL I used
in the router-link element displayed in the cart, which is presented to the user as a Checkout button.

The /thanks/:id URL displays the thank-you message, presented by the component created in
Listing 6-18. The colon in the second segment of the URL tells the routing system that this route should
match any two segment URL where the first segment is thanks. The content of the second URL segment will
be assigned to a variable named id, which is then displayed to the user by the OrderThanks component,
which I defined in Listing 6-18. I explain how to create complex routes and control the URLs they match in
Chapters 23–25.

It is the checkout component that is of immediate interest, and you see this by navigating to http://
localhost:8080/checkout or by navigating to http://localhost:8080, selecting a product, and then
clicking the Checkout button. Regardless of the path you choose, you will see the content in Figure 6-8.

 ■ Tip It is unusual for an online store to allow the customer to jump directly to the checkout part of the
process, and I demonstrate how to restrict navigation in Chapter 7.

Figure 6-8. The initial checkout component

Chapter 6 ■ SportSStore: CheCkout and orderS

143

Adding Form Validation
It is important to validate the data that users provide to ensure that the application receives all the data that
it requires in a format it is able to process. In Chapter 15, I demonstrate how you can create your own form
validation code, but in real projects, it is easier to use a package that handles validation for you, such as
Veulidate, which I added to the SportsStore project in Chapter 5. In Listing 6-20, I added statements to the
main.js file to declare a dependency on the Veulidate package and add its functionality to the application.

Listing 6-20. Enabling the Veulidate Package in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

Vue.config.productionTip = false

import "bootstrap/dist/css/bootstrap.min.css";
import "font-awesome/css/font-awesome.min.css"

import store from "./store";
import router from "./router";
import Vuelidate from "vuelidate";

Vue.filter("currency", (value) => new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD" }).format(value));

Vue.use(Vuelidate);

new Vue({
 render: h => h(App),
 store,
 router
}).$mount('#app')

Vuelidate is distributed as a Vue.js plugin that must be registered with the Vue.use method before the
Vue object is created, as shown in the listing. I explain how plugins work and how to create your own in
Chapter 26.

A key part of data validation is providing a message to the user when a value cannot be accepted or has
not been provided. This requires a number of tests to ensure that the message is useful and isn’t displayed
until the user submits the data, which can lead to the same code and content being duplicated for each input
element to which validation is required. To avoid this duplication, I added a file called ValidationError.vue
to the src/components folder, which I used to create the component shown in Listing 6-21.

Listing 6-21. The Contents of the ValidationError.vue File in the src/components Folder

<template>
 <div v-if="show" class="text-danger">
 <div v-for="m in messages" v-bind:key="m">{{ m }}</div>
 </div>
</template>

<script>

Chapter 6 ■ SportSStore: CheCkout and orderS

144

export default {
 props: ["validation"],
 computed: {
 show() {
 return this.validation.$dirty && this.validation.$invalid
 },
 messages() {
 let messages = [];
 if (this.validation.$dirty) {
 if (this.hasValidationError("required")) {
 messages.push("Please enter a value")
 } else if (this.hasValidationError("email")) {
 messages.push("Please enter a valid email address");
 }
 }
 return messages;
 }
 },
 methods: {
 hasValidationError(type) {
 return this.validation.$params.hasOwnProperty(type)
 && !this.validation[type];
 }
 }
}

</script>

The Vuelidate package provides details about data validation through an object that will be received by
this component’s validation prop. For the SportsStore application, I require two validators—the required
validator that ensures the user has provided a value and the email validator that ensures a value is a
correctly formatted e-mail address.

 ■ Tip Vuelidate supports a wide range of validators. See https://monterail.github.io/vuelidate for details.

To determine what messages the ValidationError component should display, I use the properties
shown in Table 6-1, which are defined on the object that will be received through the prop.

https://monterail.github.io/vuelidate

Chapter 6 ■ SportSStore: CheCkout and orderS

145

The component in Listing 6-21 uses the properties in Table 6-1 to decide whether the object it has
received via its prop is reporting validation errors and, if so, which messages should be displayed to the user.

This approach will make more sense when you see how the ValidationError component is applied. In
Listing 6-22, I have added data validation to the Checkout component and delegated reporting any problems
to the ValidationError component.

Listing 6-22. Validating Data in the Checkout.vue File in the src/components Folder

<template>
 <div>
 <div class="container-fluid">
 <div class="row">
 <div class="col bg-dark text-white">
 SPORTS STORE
 </div>
 </div>
 </div>
 <div class="m-2">
 <div class="form-group m-2">
 <label>Name</label>
 <input v-model="$v.name.$model" class="form-control "/>
 <validation-error v-bind:validation="$v.name" />
 </div>
 </div>
 <div class="text-center">
 <router-link to="/cart" class="btn btn-secondary m-1">
 Back
 </router-link>
 <button class="btn btn-primary m-1" v-on:click="submitOrder">
 Place Order
 </button>
 </div>
 </div>
</template>

Table 6-1. The Validation Object Properties

Name Description

$invalid If this property is true, then the element contents have contravened one of the
validation rules that has been applied.

$dirty If this property is true, then the element has been edited by the user.

required If this property exists, then the required validator has been applied to the element.
If the property is false, then the element does not contain a value.

email If this property exists, then the email validator has been applied to the element.
If the property is false, then the element does not contain a valid e-mail address.

Chapter 6 ■ SportSStore: CheCkout and orderS

146

<script>

import { required } from "vuelidate/lib/validators";
import ValidationError from "./ValidationError";

export default {
 components: { ValidationError },
 data: function() {
 return {
 name: null
 }
 },
 validations: {
 name: {
 required
 }
 },
 methods: {
 submitOrder() {
 this.$v.$touch();
 // todo: save order
 }
 }
}
</script>

Vuelidate data validation is applied using a validations property in the script elements, which has
properties that correspond to the name of the data value that will be validated. In the listing, I added a name
property and applied the required validator, which must be imported from the veulidate/lib/validators
location.

To connect the validation features to the input element, the target of the v-model directive must be
changed, like this:

...
<input v-model="$v.name.$model" class="form-control "/>
...

Validation features are accessed through a property called $v, which has properties that correspond
to the validation configuration. In this case, there is a name property, which corresponds to the name data
value, and its value is accessed using the $model property.

It is the object returned by the $v.name property that I pass to the ValidationError component, like this:

...
<validation-error v-bind:validation="$v.name" />
...

This approach provides access to the properties described in Table 6-1, which are used to display
validation error messages without needing any specific details of the data value being processed.

Chapter 6 ■ SportSStore: CheCkout and orderS

147

The $v object defines a $touch method, which marks all of the elements as dirty, as though the user
had edited them. This is a useful feature to trigger validation as the result of a user action, while not usually
displaying validation messages until the user interacts with an input element. To see the effect, navigate
to http://localhost:8080/checkout and click the Place Order button without entering anything into the
input element. You will see the error message asking you to provide a value, which will disappear when
you enter text into the field, as shown in Figure 6-9. Validation is performed live, and you will see the error
message again if you remove all the text from the input element.

Adding the Remaining Fields and Validation
In Listing 6-23, I have added the remaining data fields required for an order to the component, along with
the validation settings that each requires and the code required to submit an order when all of the data fields
are valid.

Listing 6-23. Completing the Form in the Checkout.vue File in the src/components Folder

<template>
 <div>
 <div class="container-fluid">
 <div class="row">
 <div class="col bg-dark text-white">
 SPORTS STORE
 </div>
 </div>
 </div>
 <div class="m-2">
 <div class="form-group m-2">
 <label>Name</label>
 <input v-model="$v.order.name.$model" class="form-control "/>
 <validation-error v-bind:validation="$v.order.name" />
 </div>
 </div>

Figure 6-9. Validating data

Chapter 6 ■ SportSStore: CheCkout and orderS

148

 <div class="m-2">
 <div class="form-group m-2">
 <label>Email</label>
 <input v-model="$v.order.email.$model" class="form-control "/>
 <validation-error v-bind:validation="$v.order.email" />
 </div>
 </div>

 <div class="m-2">
 <div class="form-group m-2">
 <label>Address</label>
 <input v-model="$v.order.address.$model" class="form-control "/>
 <validation-error v-bind:validation="$v.order.address" />
 </div>
 </div>

 <div class="m-2">
 <div class="form-group m-2">
 <label>City</label>
 <input v-model="$v.order.city.$model" class="form-control "/>
 <validation-error v-bind:validation="$v.order.city" />
 </div>
 </div>

 <div class="m-2">
 <div class="form-group m-2">
 <label>Zip</label>
 <input v-model="$v.order.zip.$model" class="form-control "/>
 <validation-error v-bind:validation="$v.order.zip" />
 </div>
 </div>

 <div class="text-center">
 <router-link to="/cart" class="btn btn-secondary m-1">
 Back
 </router-link>
 <button class="btn btn-primary m-1" v-on:click="submitOrder">
 Place Order
 </button>
 </div>
 </div>
</template>

<script>

import { required, email } from "vuelidate/lib/validators";
import ValidationError from "./ValidationError";
import { mapActions } from "vuex";

export default {
 components: { ValidationError },

Chapter 6 ■ SportSStore: CheCkout and orderS

149

 data: function() {
 return {
 order: {
 name: null,
 email: null,
 address: null,
 city: null,
 zip: null
 }
 }
 },
 validations: {
 order: {
 name: { required },
 email: { required, email },
 address: { required },
 city: { required },
 zip: { required }
 }
 },
 methods: {
 ...mapActions({
 "storeOrder": "storeOrder",
 "clearCart": "cart/clearCartData"
 }),
 async submitOrder() {
 this.$v.$touch();
 if (!this.$v.$invalid) {
 let order = await this.storeOrder(this.order);
 this.clearCart();
 this.$router.push(`/thanks/${order}`);
 }
 }
 }
}
</script>

I have grouped the data properties together so they are nested under an order object, and I have added
email, address, city, and zip fields. In the submitOrder method, I check the $v.$isvalid property, which
reports on the validity of all of the validators, and if the form is valid, I invoke the storeOrder action to send
the order to the web service, clear the shopping cart, and navigate to the /thanks URL, which displays the
component I defined in Listing 6-18. Figure 6-10 shows the checkout sequence.

Chapter 6 ■ SportSStore: CheCkout and orderS

150

Once you have completed the checkout process, you can click the Return to Store button and start over.
You can’t see the order that has been created at the moment because access to that data is restricted, but I
will add the required features to the SportsStore application in Chapter 7.

Summary
In this chapter, I added URL routing to the SportsStore application and used it to navigate to different
functional areas. I added a shopping cart, which allows users to make their product selection, and persisted
the cart data so that manual navigation or reloading the browser doesn’t cause data loss. I also created the
checkout process, which validates the data provided by the user and sends the order data to the web service
for storage. In the next chapter, I scale up the amount of data that the application has to work with and start
work on the administration features.

Figure 6-10. Creating an order through the checkout process

151© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_7

CHAPTER 7

SportsStore: Scaling and
Administration

In this chapter, I continue adding features to the SportsStore application that I created in Chapter 5. I add
support for dealing with larger amounts of data and begin to implement the features required to administer
the application.

 ■ Tip You can download the example project for this chapter—and for all of the other chapters in this book—
from https://github.com/Apress/pro-vue-js-2.

Preparing for This Chapter
To prepare for this chapter, I am going to increase the amount of product data that the application has to
work with. I used the Faker package, which I added to the project in Chapter 5, to generate a large number of
product objects by replacing the contents of the data.js file, as shown in Listing 7-1.

Listing 7-1. Generating Data in the data.js File in the sportsstore Folder

var faker = require("faker");

var data = [];
var categories = ["Watersports", "Soccer", "Chess", "Running"];

faker.seed(100);

for (let i = 1; i <= 500; i++) {
 var category = faker.helpers.randomize(categories);
 data.push({
 id: i,
 name: faker.commerce.productName(),
 category: category,
 description: `${category}: ${faker.lorem.sentence(3)}`,
 price: faker.commerce.price()
 })
}

https://github.com/Apress/pro-vue-js-2

Chapter 7 ■ SportSStore: SCaling and adminiStration

152

module.exports = function () {
 return {
 products: data,
 categories: categories,
 orders: []
 }
}

The Faker package is an excellent tool for producing randomized data during development, which
can be a useful way to find the limits of your application without having to manually create realistic data
by hand. The Faker package is described at http://marak.github.io/faker.js, and I used it to generate
product data with random names, descriptions, and prices.

To start the RESTful web service, open a command prompt and run the following command in the
sportsstore folder:

npm run json

Open a second command prompt and run the following command in the sportsstore folder to start
the development tools and HTTP server:

npm run serve

Once the initial build process is complete, open a new browser window and navigate to
http://localhost:8080 to see the content shown in Figure 7-1.

Figure 7-1. Running the SportsStore application

http://marak.github.io/faker.js

Chapter 7 ■ SportSStore: SCaling and adminiStration

153

Dealing with Larger Amounts of Data
You can already see that the application needs some work to deal with the amount of product data that is
provided by the web service, with a line of pagination buttons that is so long that it’s useless. In the sections
that follow, I’ll modify the SportsStore application to present the data in a more useful way and to reduce the
amount of data that is requested from the server.

Improving Page Navigation
I am going to start with the most obvious problem, which is that the user is presented with a long list of page
numbers, which makes navigation difficult. To address this, I am going to present the user with a restricted
list of page buttons that makes navigation easier, albeit without the ability to jump to any page, as shown in
Listing 7-2.

Listing 7-2. Improving Navigation in the PageControls.vue File in the /src/components Folder

<template>
 <div class="row mt-2">
 <div class="col-3 form-group">
 <select class="form-control" v-on:change="changePageSize">
 <option value="4">4 per page</option>
 <option value="8">8 per page</option>
 <option value="12">12 per page</option>
 </select>
 </div>
 <div class="text-right col">
 <button v-bind:disabled="currentPage == 1"
 v-on:click="setCurrentPage(currentPage - 1)"
 class="btn btn-secondary mx -1">Previous</button>
 4">
 <button v-on:click="setCurrentPage(1)"
 class="btn btn-secondary mx-1">1</button>
 ...

 <button v-for="i in pageNumbers" v-bind:key="i"
 class="btn btn-secpmdary"
 v-bind:class="{ 'btn-primary': i == currentPage }"
 v-on:click="setCurrentPage(i)">{{ i }}</button>

 <span v-if="currentPage <= pageCount - 4">
 ...
 <button v-on:click="setCurrentPage(pageCount)"
 class="btn btn-secondary mx-1">{{ pageCount}}</button>

 <button v-bind:disabled="currentPage == pageCount"
 v-on:click="setCurrentPage(currentPage + 1)"
 class="btn btn-secondary mx-1">Next</button>
 </div>
 </div>
</template>

Chapter 7 ■ SportSStore: SCaling and adminiStration

154

<script>
 import { mapState, mapGetters, mapMutations } from "vuex";

 export default {
 computed: {
 ...mapState(["currentPage"]),
 ...mapGetters(["pageCount"]),
 pageNumbers() {
 if (this.pageCount < 4) {
 return [...Array(this.pageCount + 1).keys()].slice(1);
 } else if (this.currentPage <= 4) {
 return [1, 2, 3, 4, 5];
 } else if (this.currentPage > this.pageCount - 4) {
 return [...Array(5).keys()].reverse()
 .map(v => this.pageCount - v);
 } else {
 return [this.currentPage -1, this.currentPage,
 this.currentPage + 1];
 }
 }
 },
 methods: {
 ...mapMutations(["setCurrentPage", "setPageSize"]),
 changePageSize($event) {
 this.setPageSize($event.target.value);
 }
 }
 }
</script>

There are no new Vue.js features required to change the way that pagination is now presented to the
user, and the changes present the user with the currently selected page and the option to select the pages
before and after, as well as the first and last pages, producing the result shown in Figure 7-2.

Chapter 7 ■ SportSStore: SCaling and adminiStration

155

The navigation model I used for the pages is modeled on Amazon, on the basis that it is an approach
that many users will already be familiar with. This is, however, a pagination model that assumes the user is
more likely to be interested in the first few pages and makes them easier to access.

Reducing the Amount of Data Requested by the Application
The application makes a single request when it starts and gets all of the data that is available from the web
service. This is not an approach that scales well, especially since most of the data is unlikely to be displayed
to the user since it will be used for the pages that are unlikely to be viewed. To address this, I am going to
request the data as the user requires it, as shown in Listing 7-3, in the expectation that most users will choose
products from the early pages.

Listing 7-3. Requesting Data in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";
import CartModule from "./cart";
import OrdersModule from "./orders";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500";
const productsUrl = `${baseUrl}/products`;
const categoriesUrl = `${baseUrl}/categories`;

Figure 7-2. Restricting pagination options

Chapter 7 ■ SportSStore: SCaling and adminiStration

156

export default new Vuex.Store({
 strict: true,
 modules: { cart: CartModule, orders: OrdersModule },
 state: {
 //products: [],
 categoriesData: [],
 //productsTotal: 0,
 currentPage: 1,
 pageSize: 4,
 currentCategory: "All",
 pages: [],
 serverPageCount: 0
 },
 getters: {
 // productsFilteredByCategory: state => state.products
 // .filter(p => state.currentCategory == "All"
 // || p.category == state.currentCategory),
 processedProducts: (state) => {
 return state.pages[state.currentPage];
 },
 pageCount: (state) => state.serverPageCount,
 categories: state => ["All", ...state.categoriesData]
 },
 mutations: {
 _setCurrentPage(state, page) {
 state.currentPage = page;
 },
 _setPageSize(state, size) {
 state.pageSize = size;
 state.currentPage = 1;
 },
 _setCurrentCategory(state, category) {
 state.currentCategory = category;
 state.currentPage = 1;
 },
 // setData(state, data) {
 // state.products = data.pdata;
 // state.productsTotal = data.pdata.length;
 // state.categoriesData = data.cdata.sort();
 // },
 addPage(state, page) {
 for (let i = 0; i < page.pageCount; i++) {
 Vue.set(state.pages, page.number + i,
 page.data.slice(i * state.pageSize,
 (i * state.pageSize) + state.pageSize));
 }
 },
 clearPages(state) {
 state.pages.splice(0, state.pages.length);
 },

Chapter 7 ■ SportSStore: SCaling and adminiStration

157

 setCategories(state, categories) {
 state.categoriesData = categories;
 },
 setPageCount(state, count) {
 state.serverPageCount = Math.ceil(Number(count) / state.pageSize);
 },
 },
 actions: {
 async getData(context) {
 await context.dispatch("getPage", 2);
 context.commit("setCategories", (await Axios.get(categoriesUrl)).data);
 },
 async getPage(context, getPageCount = 1) {
 let url = `${productsUrl}?_page=${context.state.currentPage}`
 + `&_limit=${context.state.pageSize * getPageCount}`;
 if (context.state.currentCategory != "All") {
 url += `&category=${context.state.currentCategory}`;
 }
 let response = await Axios.get(url);
 context.commit("setPageCount", response.headers["x-total-count"]);
 context.commit("addPage", { number: context.state.currentPage,
 data: response.data, pageCount: getPageCount});
 },
 setCurrentPage(context, page) {
 context.commit("_setCurrentPage", page);
 if (!context.state.pages[page]) {
 context.dispatch("getPage");
 }
 },
 setPageSize(context, size) {
 context.commit("clearPages");
 context.commit("_setPageSize", size);
 context.dispatch("getPage", 2);
 },
 setCurrentCategory(context, category) {
 context.commit("clearPages");
 context.commit("_setCurrentCategory", category);
 context.dispatch("getPage", 2);
 }
 }
})

These changes are simpler than they might appear and reflect the strict approach that Vuex takes to data
store features. Only actions can perform asynchronous tasks, which means that any activity that leads to an
HTTP request for data has to be performed using an action, and actions change state using mutations. As a
result, I have created actions with names that were previously used by mutations and added an underscore
to the mutation names so that I can still modify the data in the store. This may seem awkward, but the flow of
actions to mutations to state is a good model, and enforcing it helps with debugging, as I explain in Chapter 20.

Chapter 7 ■ SportSStore: SCaling and adminiStration

158

At the heart of the changes in Listing 7-3 is a change in the URLs that are sent to the web service.
Previously, the URL requested all of the product data like this:

...
http://localhost:3500/products
...

The json-server package that is providing the web service includes support for requested pages of data
and for filtering data, using URLs like this one:

...
http://localhost:3500/products?_page=3&_limit=4&category=Watersports
...

The _page and _limit parameters are used to request pages of data, and the category parameter is
used to select only objects whose category property is Watersports. This is the format of URL that the
changes in Listing 7-3 introduce into the SportsStore application.

The approach I have taken in the listing is to request data in the pages that will be displayed to the user.
The application keeps track of the data it has received from the web service and sends an HTTP request
when the user navigates to a page for which no data has been requested. The data that has been requested
from the server is discarded when the user changes the size of the page or selects a category, and two pages
are requested when the application starts to allow the user to navigate to one page without triggering a
network request.

 ■ Caution it can be tempting to implement sophisticated approaches to managing and caching data to minimize
the number of http requests that an application makes. Caching is hard to implement effectively, and the
complexity it adds to the project can often outweigh any benefits. i recommend starting with a simple approach,
such as the one in listing 7-3, and manage the data more actively only when you are sure that you need it.

Determining the Number of Items
When dealing with data in pages, it is difficult to determine how many objects are available in order to
display the pagination buttons. To assist with this issue, the json-server package includes an X-Total-
Count header in its responses, which indicates how many objects are in the collection. Each time that an
HTTP request is made for a page of data, I get the value of the header from the response and use it to update
the page count, like this:

...
context.commit("setPageCount", response.headers["x-total-count"]);
...

Not all web services will offer this feature, but there is usually something comparable available, such
that you can determine how many objects are available without requesting them all.

Chapter 7 ■ SportSStore: SCaling and adminiStration

159

Adding an Item to the Array of Pages
Vue.js and Vuex both do a good job of tracking changes and ensuring that the data in the application is live.
For the most part, this tracking is automatic, and no special actions are required. But this isn’t universally
true, and there are some limitations in the way that JavaScript works that mean Vue.js requires some
assistance for certain operations, one of which is assigning an item to an array index, which won’t trigger
the change detection process. When I receive a page of data from the server and add it to the array, I use the
method that Vue.js provides for this purpose, shown here:
...
Vue.set(state.pages, page.number + i, page.data.slice(i * state.pageSize,
 (i * state.pageSize) + state.pageSize));
...

The Vue.set method accepts three arguments: the object or array to modify, the property or index to
assign to, and the value to assign. Using Vue.set ensures that the change is recognized and handled as an
update, as I explain in Chapter 13.

Updating the Components to Use Actions
The changes that I made in Listing 7-3 require corresponding changes in the components that used
the mutations that have been replaced with actions. Listing 7-4 shows the changes required to the
CategoryControls component.

Listing 7-4. Using Actions in the CategoryControls.vue File in the src/components Folder

...
<script>
 import { mapState, mapGetters, mapActions} from "vuex";

 export default {
 computed: {
 ...mapState(["currentCategory"]),
 ...mapGetters(["categories"])
 },
 methods: {
 ...mapActions(["setCurrentCategory"])
 }
 }
</script>
...

To update the component, I replaced the mapMutations helper with mapActions. Both helpers add
methods to the component, and no changes are required to the rest of the component. In Listing 7-5, I
updated the PageControls component.

Chapter 7 ■ SportSStore: SCaling and adminiStration

160

Listing 7-5. Using Actions in the PageControls.vue File in the src/components Folder

...
<script>
 import { mapState, mapGetters, mapActions } from "vuex";

 export default {
 computed: {
 ...mapState(["currentPage"]),
 ...mapGetters(["pageCount"]),
 pageNumbers() {
 if (this.pageCount < 4) {
 return [...Array(this.pageCount + 1).keys()].slice(1);
 } else if (this.currentPage <= 4) {
 return [1, 2, 3, 4, 5];
 } else if (this.currentPage > this.pageCount - 4) {
 return [...Array(5).keys()].reverse()
 .map(v => this.pageCount - v);
 } else {
 return [this.currentPage -1, this.currentPage,
 this.currentPage + 1];
 }
 }
 },
 methods: {
 ...mapActions(["setCurrentPage", "setPageSize"]),
 changePageSize($event) {
 this.setPageSize($event.target.value);
 }
 }
 }
</script>
...

There is no visual change to the content presented to the user, but if you open the browser’s F12
developer tools and observe the Network tab as you navigate through the products, you will see the requests
sent for the pages of data, as shown in Figure 7-3.

Chapter 7 ■ SportSStore: SCaling and adminiStration

161

Adding Search Support

I am going to add the ability to search for products to the SportsStore application, which is always a good
idea when dealing with amounts of data are too large for the user to easily page through completely. In
Listing 7-6, I have updated the data store so that a search string can be included in the URL used to request
data, using the search feature provided by the json-server package that I am using for the web service.

Listing 7-6. Adding Search Support in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";
import CartModule from "./cart";
import OrdersModule from "./orders";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500";
const productsUrl = `${baseUrl}/products`;
const categoriesUrl = `${baseUrl}/categories`;

export default new Vuex.Store({
 strict: true,
 modules: { cart: CartModule, orders: OrdersModule },
 state: {
 categoriesData: [],

Figure 7-3. Requesting data in pages

Chapter 7 ■ SportSStore: SCaling and adminiStration

162

 currentPage: 1,
 pageSize: 4,
 currentCategory: "All",
 pages: [],
 serverPageCount: 0,
 searchTerm: "",
 showSearch: false
 },
 getters: {
 processedProducts: (state) => {
 return state.pages[state.currentPage];
 },
 pageCount: (state) => state.serverPageCount,
 categories: state => ["All", ...state.categoriesData]
 },
 mutations: {
 _setCurrentPage(state, page) {
 state.currentPage = page;
 },
 _setPageSize(state, size) {
 state.pageSize = size;
 state.currentPage = 1;
 },
 _setCurrentCategory(state, category) {
 state.currentCategory = category;
 state.currentPage = 1;
 },
 addPage(state, page) {
 for (let i = 0; i < page.pageCount; i++) {
 Vue.set(state.pages, page.number + i,
 page.data.slice(i * state.pageSize,
 (i * state.pageSize) + state.pageSize));
 }
 },
 clearPages(state) {
 state.pages.splice(0, state.pages.length);
 },
 setCategories(state, categories) {
 state.categoriesData = categories;
 },
 setPageCount(state, count) {
 state.serverPageCount = Math.ceil(Number(count) / state.pageSize);
 },
 setShowSearch(state, show) {
 state.showSearch = show;
 },
 setSearchTerm(state, term) {
 state.searchTerm = term;
 state.currentPage = 1;
 },
 },

Chapter 7 ■ SportSStore: SCaling and adminiStration

163

 actions: {
 async getData(context) {
 await context.dispatch("getPage", 2);
 context.commit("setCategories", (await Axios.get(categoriesUrl)).data);
 },
 async getPage(context, getPageCount = 1) {
 let url = `${productsUrl}?_page=${context.state.currentPage}`
 + `&_limit=${context.state.pageSize * getPageCount}`;

 if (context.state.currentCategory != "All") {
 url += `&category=${context.state.currentCategory}`;
 }

 if (context.state.searchTerm != "") {
 url += `&q=${context.state.searchTerm}`;
 }

 let response = await Axios.get(url);
 context.commit("setPageCount", response.headers["x-total-count"]);
 context.commit("addPage", { number: context.state.currentPage,
 data: response.data, pageCount: getPageCount});
 },
 setCurrentPage(context, page) {
 context.commit("_setCurrentPage", page);
 if (!context.state.pages[page]) {
 context.dispatch("getPage");
 }
 },
 setPageSize(context, size) {
 context.commit("clearPages");
 context.commit("_setPageSize", size);
 context.dispatch("getPage", 2);
 },
 setCurrentCategory(context, category) {
 context.commit("clearPages");
 context.commit("_setCurrentCategory", category);
 context.dispatch("getPage", 2);
 },
 search(context, term) {
 context.commit("setSearchTerm", term);
 context.commit("clearPages");
 context.dispatch("getPage", 2);
 },
 clearSearchTerm(context) {
 context.commit("setSearchTerm", "");
 context.commit("clearPages");
 context.dispatch("getPage", 2);
 }
 }
})

Chapter 7 ■ SportSStore: SCaling and adminiStration

164

Two state properties are required for the SportsStore search feature: the showSearch property will
determine if the user is presented with a search box, and the searchTerm property will specify the term
that is passed to the web service for searches. The json-server package supports searches through the q
parameter, which means that the application will generate URLs like this when searching:

...
http://localhost:3500/products?_page=3&_limit=4&category=Soccer&q=car
...

This URL requests the third page of four items whose category property is Soccer and have any field
that contains the term car. To present the user with the search feature, I added a file called Search.vue to
the src/components folder with the content shown in Listing 7-7.

Listing 7-7. The Contents of the Search.vue File in the src/components Folder

<template>
 <div v-if="showSearch" class="row my-2">
 <label class="col-2 col-form-label text-right">Search:</label>
 <input class="col form-control"
 v-bind:value="searchTerm" v-on:input="doSearch"
 placeholder="Enter search term..." />
 <button class="col-1 btn btn-sm btn-secondary mx-4"
 v-on:click="handleClose">
 Close
 </button>
 </div>
</template>

<script>

import { mapMutations, mapState, mapActions } from "vuex";

export default {
 computed: {
 ...mapState(["showSearch", "searchTerm"])
 },
 methods: {
 ...mapMutations(["setShowSearch"]),
 ...mapActions(["clearSearchTerm", "search"]),
 handleClose() {
 this.clearSearchTerm();
 this.setShowSearch(false);
 },
 doSearch($event) {
 this.search($event.target.value);
 }
 }
}
</script>

Chapter 7 ■ SportSStore: SCaling and adminiStration

165

This component responds to the data store properties to display an input element to the user that can
be used to enter a search term. The v-on directive is used to respond each time the user edits the contents of
the input by triggering a search. To bring the search feature into the application, I made the changes shown
in Listing 7-8 to the Store component.

Listing 7-8. Enabling Search in the Store.vue File in the src/components Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col bg-dark text-white">
 SPORTS STORE
 <cart-summary />
 </div>
 </div>
 <div class="row">
 <div class="col-3 bg-info p-2">
 <CategoryControls class="mb-5" />
 <button class="btn btn-block btn-warning mt-5"
 v-on:click="setShowSearch(true)">
 Search
 </button>
 </div>
 <div class="col-9 p-2">
 <Search />
 <ProductList />
 </div>
 </div>
 </div>
</template>

<script>
 import ProductList from "./ProductList";
 import CategoryControls from "./CategoryControls";
 import CartSummary from "./CartSummary";
 import { mapMutations } from "vuex";
 import Search from "./Search";

 export default {
 components: { ProductList, CategoryControls, CartSummary, Search },
 methods: {
 ...mapMutations(["setShowSearch"])
 }
 }
</script>

I added a button alongside the list of categories that will cause the search feature to be shown to the
user and registered the component I defined in Listing 7-7. The result is that the user can click the Search
button and enter text to perform a search, as shown in Figure 7-4. The results are presented in pages and
can filtered by category.

Chapter 7 ■ SportSStore: SCaling and adminiStration

166

Starting the Administration Features
Any application that presents content to the user requires some degree of administration. In the case
of SportsStore, this means managing the product catalog and the orders that customers have placed. In
the sections that follow, I start the process of adding administration features to the project, starting with
authentication and then building the structure that will present the admin features.

Implementing Authentication
The result of authentication with the RESTful web service is a JSON Web Token (JWT), which is returned
by the server and must be included in any subsequent requests to show that the application is authorized
to perform protected operations. You can read the JWT specification at https://tools.ietf.org/html/
rfc7519, but for the purposes of the SportsStore application, it is enough to know that the application can
authenticate the user by sending a POST request to the /login URL, including a JSON-formatted object in
the request body that contains name and password properties. There is only one set of valid credentials in
the authentication code used in Chapter 5, which is shown in Table 7-1.

Figure 7-4. Performing a search

Table 7-1. The Authentication Credentials
Supported by the RESTful Web Service

Name Description

admin secret

As I noted in Chapter 5, you should not hard-code credentials in real projects, but this is the username
and password that you will need for the SportsStore application.

If the correct credentials are sent to the /login URL, then the response from the RESTful web service
will contain a JSON object like this:

{
 "success": true,
 "token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkYXRhIjoiYWRtaW4iLCJleHBpcmVz
 SW4iOiIxaCIsImlhdCI6MTQ3ODk1NjI1Mn0.lJaDDrSu-bHBtdWrz0312p_DG5tKypGv6cA
 NgOyzlg8"
}

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

Chapter 7 ■ SportSStore: SCaling and adminiStration

167

The success property describes the outcome of the authentication operation, and the token property
contains the JWT, which should be included in subsequent requests using the Authorization HTTP header
in this format:

Authorization: Bearer<eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkYXRhIjoiYWRtaW4iLC
 JleHBpcmVzSW4iOiIxaCIsImlhdCI6MTQ3ODk1NjI1Mn0.lJaDDrSu-bHBtd
 Wrz0312p_DG5tKypGv6cANgOyzlg8>

If the wrong credentials are sent to the server, then the JSON object returned in the response will just
contain a success property set to false, like this:

{
 "success": false
}

I configured the JWT tokens returned by the server so they expire after one hour.

Extending the Data Store
To add support for including the authentication header in HTTP requests, I added a file called auth.js to the
src/store folder with the contents shown in Listing 7-9.

Listing 7-9. The Contents of the auth.js File in the src/store Folder

import Axios from "axios";

const loginUrl = "http://localhost:3500/login";

export default {
 state: {
 authenticated: false,
 jwt: null
 },
 getters: {
 authenticatedAxios(state) {
 return Axios.create({
 headers: {
 "Authorization": `Bearer<${state.jwt}>`
 }
 });
 }
 },
 mutations: {
 setAuthenticated(state, header) {
 state.jwt = header;
 state.authenticated = true;
 },
 clearAuthentication(state) {

Chapter 7 ■ SportSStore: SCaling and adminiStration

168

 state.authenticated = false;
 state.jwt = null;
 }
 },
 actions: {
 async authenticate(context, credentials) {
 let response = await Axios.post(loginUrl, credentials);
 if (response.data.success == true) {
 context.commit("setAuthenticated", response.data.token);
 }
 }
 }
}

The authenticate action uses Axios to send an HTTP POST request to the web service’s /login URL and
sets the authenticated and jwt state properties if the request is successful. The Axios create method is used
to configure an object that can be used to make requests, and I use this feature in the authenticatedAxious
getter to provide an Axios object that will include the Authorization header in all the requests it makes. In
Listing 7-10, I added the new module to the data store.

Listing 7-10. Adding a Module in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";
import CartModule from "./cart";
import OrdersModule from "./orders";
import AuthModule from "./auth";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500";
const productsUrl = `${baseUrl}/products`;
const categoriesUrl = `${baseUrl}/categories`;

export default new Vuex.Store({
 strict: true,
 modules: { cart: CartModule, orders: OrdersModule, auth: AuthModule },

 // ...data store features omitted for brevity...
})

Adding the Administration Components
To get started with authentication, I need two components, one of which will prompt the user for their
credentials and one that will be shown to the user once they have been authenticated and that will present
the administration features. To keep the administration features separate from the rest of the application,
I created the src/components/admin folder, to which I added a file called Admin.vue with the content shown
in Listing 7-11.

Chapter 7 ■ SportSStore: SCaling and adminiStration

169

Listing 7-11. The Contents of the Admin.vue File in the src/components/admin Folder

<template>
 <div class="bg-danger text-white text-center h4 p-2">Admin Features</div>
</template>

This is just a placeholder so that I have something to work with while I get the basic features in place,
and I’ll replace this content with real administration features shortly. To prompt the user for authentication
credentials, I added a file called Authentication.vue to the src/components/admin folder with the content
shown in Listing 7-12.

 ■ Note in listing 7-12, i have set the value of the username and password properties to the credentials from
table 7-1 to make the development process simpler. as you follow the examples and make changes to the
project, you will often have to reauthenticate, and this quickly becomes frustrating if you have to type in the
credentials every time. in Chapter 8, i will remove the values from the component as i prepare the application
for deployment.

Listing 7-12. The Contents of the Authentication.vue File in the src/components/admin Folder

<template>
 <div class="m-2">
 <h4 class="bg-primary text-white text-center p-2">
 SportsStore Administration
 </h4>

 <h4 v-if="showFailureMessage"
 class="bg-danger text-white text-center p-2 my-2">
 Authentication Failed. Please try again.
 </h4>

 <div class="form-group">
 <label>Username</label>
 <input class="form-control" v-model="$v.username.$model">
 <validation-error v-bind:validation="$v.username" />
 </div>
 <div class="form-group">
 <label>Password</label>
 <input type="password" class="form-control" v-model="$v.password.$model">
 <validation-error v-bind:validation="$v.password" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="handleAuth">Log In</button>
 </div>
 </div>
</template>

Chapter 7 ■ SportSStore: SCaling and adminiStration

170

<script>

import { required } from "vuelidate/lib/validators";
import { mapActions, mapState } from "vuex";
import ValidationError from "../ValidationError";

export default {
 components: { ValidationError },
 data: function() {
 return {
 username: "admin",
 password: "secret",
 showFailureMessage: false,
 }
 },
 computed: {
 ...mapState({authenticated: state => state.auth.authenticated })
 },
 validations: {
 username: { required },
 password: { required }
 },
 methods: {
 ...mapActions(["authenticate"]),
 async handleAuth() {
 this.$v.$touch();
 if (!this.$v.$invalid) {
 await this.authenticate({ name: this.username,
 password: this.password });
 if (this.authenticated) {
 this.$router.push("/admin");
 } else {
 this.showFailureMessage = true;
 }
 }
 }
 }
}

</script>

This component presents the user with a pair of input elements and a button that performs
authentication using the data store features from Listing 7-9, with data validation to ensure that the user
provides values for the username and password. If authentication fails, then a warning message is displayed.
If authentication is successful, then the routing system is used to navigate to the /admin URL. To configure
the routing system to support the new components, I added the routes shown in Listing 7-13.

Listing 7-13. Adding Routes in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

Chapter 7 ■ SportSStore: SCaling and adminiStration

171

import Store from "../components/Store";
import ShoppingCart from "../components/ShoppingCart";
import Checkout from "../components/Checkout";
import OrderThanks from "../components/OrderThanks";
import Authentication from "../components/admin/Authentication";
import Admin from "../components/admin/Admin";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: Store },
 { path: "/cart", component: ShoppingCart },
 { path: "/checkout", component: Checkout},
 { path: "/thanks/:id", component: OrderThanks},
 { path: "/login", component: Authentication },
 { path: "/admin", component: Admin},
 { path: "*", redirect: "/"}
]
})

To test the authentication process, navigate to http://localhost:8080/login, enter a username and
password, and click the Log In button. If you use the credentials from Table 7-1, authentication will succeed,
and you will see the placeholder admin content. If you use different credentials, authentication will fail, and
you will see an error. Both outcomes are shown in Figure 7-5.

Figure 7-5. Authenticating the user

Chapter 7 ■ SportSStore: SCaling and adminiStration

172

Adding the Route Guard
Currently, there is nothing to prevent the user from navigating directly to the /admin URL and bypassing
authentication. To prevent this, I added a route guard, which is a function that is evaluated when the route
is about to change and that can prevent or change navigation. The Vue Router package provides a range of
different route guard options, which I describe in Chapter 24. For this chapter, I need a guard that is specific
to the route for the /admin URL and that will prevent navigation if the user hasn’t been authenticated, as
shown in Listing 7-14.

Listing 7-14. Adding a Route Guard in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import Store from "../components/Store";
import ShoppingCart from "../components/ShoppingCart";
import Checkout from "../components/Checkout";
import OrderThanks from "../components/OrderThanks";
import Authentication from "../components/admin/Authentication";
import Admin from "../components/admin/Admin";

import dataStore from "../store";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: Store },
 { path: "/cart", component: ShoppingCart },
 { path: "/checkout", component: Checkout},
 { path: "/thanks/:id", component: OrderThanks},
 { path: "/login", component: Authentication },
 { path: "/admin", component: Admin,
 beforeEnter(to, from, next) {
 if (dataStore.state.auth.authenticated) {
 next();
 } else {
 next("/login");
 }
 }
 },
 { path: "*", redirect: "/"}
]
})

The beforeEnter function is invoked when the user navigates to the /admin URL and checks the data
store to see whether the user has been authenticated. Navigation guards work by invoking the next function
that is received as a parameter. Navigation is approved when the guard invokes the next function with no
arguments. Navigation is prevented by invoking next with a replacement URL, which in this example is /
login to prompt the user for credentials. To see the effect, navigate to http://localhost:8080/admin, and
you will see that the route guard redirects the browser to the /login URL instead, as shown in Figure 7-6.

Chapter 7 ■ SportSStore: SCaling and adminiStration

173

Notice that I used an import statement to access the data store. The mapState helper function that
I used in earlier examples and the $store property that can be used to access the data store directly
can be used only in components and isn’t available elsewhere in the application, such as in the routing
configuration. The import statement provides me with access to the data store, through which I can
read the value of the state property that the route guard needs to determine whether the user has been
authenticated.

Adding the Administration Component Structure
Now that the authentication features are in place, I am going to return to the main administration features.
The administrator will need the ability to manage the collection of products presented to the user and to see
orders and mark them as shipped. I will start by creating placeholder components for each of these areas of
functionality, use them to set up the structure that displays them to the user, and then implement the detail
of each feature. I added a file called ProductAdmin.vue to the src/components/admin folder with the content
shown in Listing 7-15.

Listing 7-15. The Contents of the ProductAdmin.vue File in the src/components/admin Folder

<template>
 <div class="bg-danger text-white text-center h4 p-2">
 Product Admin
 </div>
</template>

Next, I added a file called OrderAdmin.vue in the same folder with the content shown in Listing 7-16.

Listing 7-16. The Contents of the OrderAdmin.vue File in the src/components/admin Folder

<template>
 <div class="bg-danger text-white text-center h4 p-2">
 Order Admin
 </div>
</template>

To present these new components to the user, I replaced the content in the Admin component with the
elements shown in Listing 7-17.

Figure 7-6. The effect of a route guard

Chapter 7 ■ SportSStore: SCaling and adminiStration

174

Listing 7-17. Presenting Components in the Admin.vue File in the src/components/admin Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col bg-secondary text-white">
 SPORTS STORE Admin
 </div>
 </div>
 <div class="row">
 <div class="col-3 bg-secondary p-2">
 <router-link to="/admin/products" class="btn btn-block btn-primary"
 active-class="active">
 Products
 </router-link>
 <router-link to="/admin/orders" class="btn btn-block btn-primary"
 active-class="active">
 Orders
 </router-link>
 </div>
 <div class="col-9 p-2">
 <router-view />
 </div>
 </div>
 </div>
</template>

Applications can contain multiple router-view elements, and I have used one here so that I can
alternate between the product and order management components using URL routes, which I will configure
shortly. To choose the component, I have used router-link elements, which are formatted as buttons.
To indicate which button represents the active selection, I have used the active-class attribute, which
specifies a class to which the element will be added when the route specified by its to attribute is active, as
explained in Chapter 23.

To configure the new router-view element, I added the routes shown in Listing 7-18 to the application’s
routing configuration.

Listing 7-18. Adding Routes in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";
import Store from "../components/Store";
import ShoppingCart from "../components/ShoppingCart";
import Checkout from "../components/Checkout";
import OrderThanks from "../components/OrderThanks";
import Authentication from "../components/admin/Authentication";
import Admin from "../components/admin/Admin";
import ProductAdmin from "../components/admin/ProductAdmin";
import OrderAdmin from "../components/admin/OrderAdmin";

import dataStore from "../store";

Vue.use(VueRouter);

Chapter 7 ■ SportSStore: SCaling and adminiStration

175

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: Store },
 { path: "/cart", component: ShoppingCart },
 { path: "/checkout", component: Checkout},
 { path: "/thanks/:id", component: OrderThanks},
 { path: "/login", component: Authentication },
 { path: "/admin", component: Admin,
 beforeEnter(to, from, next) {
 if (dataStore.state.auth.authenticated) {
 next();
 } else {
 next("/login");
 }
 },
 children: [
 { path: "products", component: ProductAdmin },
 { path: "orders", component: OrderAdmin },
 { path: "", redirect: "/admin/products"}
]
 },
 { path: "*", redirect: "/"}
]
})

The new additions use the child route feature, which I describe in Chapter 23 and which allows nested
router-view elements to be used. The result is that navigating to /admin/products will display the Admin
component at the top level and then the ProductAdmin component, while the /admin/orders URL will show
the OrderAdmin component, as shown in Figure 7-7. There is also a fallback route that redirects the /admin
URL to /admin/products.

Implementing the Order Administration Feature
To let administrators manage orders, I need to present a list of objects from the server and provide the
means to mark each one as shipped. The starting point for these features is to expand the data store, as
shown in Listing 7-19.

Figure 7-7. Using child routes and nested router-view elements

Chapter 7 ■ SportSStore: SCaling and adminiStration

176

Listing 7-19. Adding Features in the orders.js File in the src/store Folder

import Axios from "axios";
import Vue from "vue";

const ORDERS_URL = "http://localhost:3500/orders";

export default {
 state: {
 orders:[]
 },
 mutations: {
 setOrders(state, data) {
 state.orders = data;
 },
 changeOrderShipped(state, order) {
 Vue.set(order, "shipped",
 order.shipped == null || !order.shipped ? true : false);
 }
 },
 actions: {
 async storeOrder(context, order) {
 order.cartLines = context.rootState.cart.lines;
 return (await Axios.post(ORDERS_URL, order)).data.id;
 },
 async getOrders(context) {
 context.commit("setOrders",
 (await context.rootGetters.authenticatedAxios.get(ORDERS_URL)).data);
 },
 async updateOrder(context, order) {
 context.commit("changeOrderShipped", order);
 await context.rootGetters.authenticatedAxios
 .put(`${ORDERS_URL}/${order.id}`, order);
 }
 }
}

You have already seen how Vue.js can be used to present data in pages that are requested on-demand,
so I have kept the order feature simple: all of the data is requested through the getOrders action, and an
order can be modified using the updateOrder action.

To provide a list of the orders and allow them to be marked and shipped, I replaced the placeholder
content from the OrderAdmin component and replaced it with the content and code shown in Listing 7-20.

Listing 7-20. Managing Orders in the OrderAdmin.vue File in the src/components/admin Folder

<template>
 <div>
 <h4 class="bg-info text-white text-center p-2">Orders</h4>
 <div class="form-group text-center">
 <input class="form-check-input" type="checkbox" v-model="showShipped" />
 <label class="form-check-label">Show Shipped Orders</label>
 </div>

Chapter 7 ■ SportSStore: SCaling and adminiStration

177

 <table class="table table-sm table-bordered">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>City, Zip</th>
 <th class="text-right">Total</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr v-if="displayOrders.length == 0">
 <td colspan="5">There are no orders</td>
 </tr>
 <tr v-for="o in displayOrders" v-bind:key="o.id">
 <td>{{ o.id }}</td>
 <td>{{ o.name }}</td>
 <td>{{ `${o.city}, ${o.zip}` }}</td>
 <td class="text-right">{{ getTotal(o) | currency }}</td>
 <td class="text-center">
 <button class="btn btn-sm btn-danger"
 v-on:click="shipOrder(o)">
 {{ o.shipped ? 'Not Shipped' : 'Shipped' }}
 </button>
 </td>
 </tr>
 </tbody>
 </table>
 </div>
</template>

<script>

import { mapState, mapActions, mapMutations } from "vuex";

export default {
 data: function() {
 return {
 showShipped: false
 }
 },
 computed: {
 ...mapState({ orders: state => state.orders.orders}),
 displayOrders() {
 return this.showShipped ? this.orders
 : this.orders.filter(o => o.shipped != true);
 }
 },
 methods: {
 ...mapMutations(["changeOrderShipped"]),
 ...mapActions(["getOrders", "updateOrder"]),
 getTotal(order) {
 if (order.cartLines != null && order.cartLines.length > 0) {
 return order.cartLines.reduce((total, line) =>

Chapter 7 ■ SportSStore: SCaling and adminiStration

178

 total + (line.quantity * line.product.price), 0)
 } else {
 return 0;
 }
 },
 shipOrder(order) {
 this.updateOrder(order);
 }
 },
 created() {
 this.getOrders();
 }
}
</script>

The component displays a table of orders, each of which has a button that changes the shipping status.
To see the effect, navigate to http://localhost:8080 and use the store features to create one or more orders
and then navigate to http://localhost:8080/admin, authenticate yourself, and click the Orders button to
see and manage the list, as shown in Figure 7-8.

Summary
In this chapter, I continued building the SportsStore application. I showed you how Vue.js and its core
libraries can be used to deal with larger amounts of data, and I put in place the initial administration
features, starting with authentication and order management. In the next chapter, I complete the
administration features and deploy the completed application.

Figure 7-8. Managing orders

179© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_8

CHAPTER 8

SportsStore: Administration and
Deployment

In this chapter, I complete the SportsStore application by adding the remaining administration features
and show you how to prepare and deploy the project. As you will see, the transition from development to
production is relatively simple and easy to perform.

Preparing for This Chapter
This chapter uses the SportsStore project from Chapter 7, and no changes are required in preparation for this
chapter.

 ■ Tip You can download the example project for this chapter—and for all of the other chapters in this book—
from https://github.com/Apress/pro-vue-js-2.

To start the RESTful web service, open a command prompt and run the following command in the
sportsstore folder:

npm run json

Open a second command prompt and run the following command in the sportsstore folder to start
the development tools and HTTP server:

npm run serve

Once the initial build process is complete, open a new browser window and navigate to
http://localhost:8080 to see the content shown in Figure 8-1.

https://github.com/Apress/pro-vue-js-2

Chapter 8 ■ SportSStore: adminiStration and deploYment

180

Adding the Product Administration Features
To complete the administration features, I need to give the SportsStore application the ability to create, edit, and
delete product objects. First, I am going to expand the data store to provide actions that support these operations
by sending HTTP requests to the web service and updating the product data, as shown in Listing 8-1.

Listing 8-1. Adding Administration Features in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";
import CartModule from "./cart";
import OrdersModule from "./orders";
import AuthModule from "./auth";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500";
const productsUrl = `${baseUrl}/products`;
const categoriesUrl = `${baseUrl}/categories`;

export default new Vuex.Store({
 strict: true,
 modules: { cart: CartModule, orders: OrdersModule, auth: AuthModule },
 state: {

Figure 8-1. Running the SportsStore application

Chapter 8 ■ SportSStore: adminiStration and deploYment

181

 // ...state properties omitted for brevity...
 },
 getters: {
 processedProducts: (state) => {
 return state.pages[state.currentPage];
 },
 pageCount: (state) => state.serverPageCount,
 categories: state => ["All", ...state.categoriesData],
 productById:(state) => (id) => {
 return state.pages[state.currentPage].find(p => p.id == id);
 }
 },
 mutations: {
 _setCurrentPage(state, page) {
 state.currentPage = page;
 },

 // ...other mutations omitted for brevity...

 setSearchTerm(state, term) {
 state.searchTerm = term;
 state.currentPage = 1;
 },
 _addProduct(state, product) {
 state.pages[state.currentPage].unshift(product);
 },
 _updateProduct(state, product) {
 let page = state.pages[state.currentPage];
 let index = page.findIndex(p => p.id == product.id);
 Vue.set(page, index, product);
 }
 },
 actions: {
 async getData(context) {
 await context.dispatch("getPage", 2);
 context.commit("setCategories", (await Axios.get(categoriesUrl)).data);
 },

 // ...other actions omitted for brevity...

 async addProduct(context, product) {
 let data = (await context.getters.authenticatedAxios.post(productsUrl,
 product)).data;
 product.id = data.id;
 this.commit("_addProduct", product);
 },
 async removeProduct(context, product) {
 await context.getters.authenticatedAxios
 .delete(`${productsUrl}/${product.id}`);
 context.commit("clearPages");
 context.dispatch("getPage", 1);
 },

Chapter 8 ■ SportSStore: adminiStration and deploYment

182

 async updateProduct(context, product) {
 await context.getters.authenticatedAxios
 .put(`${productsUrl}/${product.id}`, product);
 this.commit("_updateProduct", product);
 }
 }
})

The actions will be invoked by components to store, remove, or change a product, which requires an
HTTP request to the web service and a corresponding change to the local data. When a product is changed, I
locate the existing object and replace it, but for the other operations, I take slight shortcuts. When a product is
added, I insert it at the start of the current page of products, even though this means the page size is incorrect,
so that I don’t have to figure out which page the new object should be displayed on and get that data from the
server. When an object is deleted, I refresh the data so that I don’t have to deal with manually repaginating to
cover the gap. These shortcuts are performed using the _addProduct and _updateProduct mutations, whose
names I have prefixed with an underscore to indicate they are not for wider use. I also added a getter in
Listing 8-1 so that I can locate a product in the current page by its id. This type of getter has a parameter, and
it is used like a method, which means that I can define the logic that locates the product in the data store,
rather than having to get all of the objects in the page and performing the search in a component.

Presenting the Product List
To present the products to the user and provide the means to create, edit, and delete them, I removed the
placeholder content from the ProductAdmin component created in Chapter 7 and replaced it with the HTML
elements and code shown in Listing 8-2.

Listing 8-2. Adding Features in the ProductAdmin.vue File in the src/components/admin Folder

<template>
 <div>
 <router-link to="/admin/products/create" class="btn btn-primary my-2">
 Create Product
 </router-link>
 <table class="table table-sm table-bordered">
 <thead>
 <th>ID</th><th>Name</th><th>Category</th>
 <th class="text-right">Price</th><th></th>
 </thead>
 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td class="text-right">{{ p.price | currency }}</td>
 <td class="text-center">
 <button class="btn btn-sm btn-danger mx-1"
 v-on:click="removeProduct(p)">Delete</button>
 <button class="btn btn-sm btn-warning mx-1"
 v-on:click="handleEdit(p)">Edit</button>
 </td>
 </tr>

Chapter 8 ■ SportSStore: adminiStration and deploYment

183

 </tbody>
 </table>
 <page-controls />
 </div>
</template>

<script>

import PageControls from "../PageControls";
import { mapGetters, mapActions } from "vuex";

export default {
 components: { PageControls },
 computed: {
 ...mapGetters({
 products: "processedProducts"
 })
 },
 methods: {
 ...mapActions(["removeProduct"]),
 handleEdit(product) {
 this.$router.push(`/admin/products/edit/${product.id}`);
 }
 }
}

</script>

This component presents the user with a table of products, populated from the data model using the
v-for directive. Each row in the table has Delete and Edit buttons. Clicking a Delete button dispatches the
removeProduct action added to the data store in Listing 8-1. Clicking an Edit button or the Create Product button
redirects the browser to a URL that I will use to display an editor that can be used to modify or create products.

 ■ Tip notice that i am able to use the PageControls component from earlier chapters to handle pagination
of products. the administration features build on the same data store features used by the customer-facing
features in earlier chapters, which means that common functionality such as pagination can easily be reused.

Adding the Editor Placeholder and URL Routes
Following the pattern used in earlier chapters, I am going to create a placeholder component for the
editor and return to add its features once it has been integrated into the application. I added a file called
ProductEditor.vue in the src/components/admin folder with the content shown in Listing 8-3.

Listing 8-3. The Contents of the ProductEditor.vue File in the src/components/admin Folder

<template>
 <div class="bg-info text-white text-center h4 p-2">
 Product Editor
 </div>
</template>

Chapter 8 ■ SportSStore: adminiStration and deploYment

184

To integrate the editor component into the application, I added the route shown in Listing 8-4, which
will match the URLs I used in the ProductAdmin component when the user clicks the Edit or Create Product
button.

Listing 8-4. Adding a Route in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";
import Store from "../components/Store";
import ShoppingCart from "../components/ShoppingCart";
import Checkout from "../components/Checkout";
import OrderThanks from "../components/OrderThanks";
import Authentication from "../components/admin/Authentication";
import Admin from "../components/admin/Admin";
import ProductAdmin from "../components/admin/ProductAdmin";
import OrderAdmin from "../components/admin/OrderAdmin";
import ProductEditor from "../components/admin/ProductEditor";

import dataStore from "../store";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: Store },
 { path: "/cart", component: ShoppingCart },
 { path: "/checkout", component: Checkout},
 { path: "/thanks/:id", component: OrderThanks},
 { path: "/login", component: Authentication },
 { path: "/admin", component: Admin,
 beforeEnter(to, from, next) {
 if (dataStore.state.auth.authenticated) {
 next();
 } else {
 next("/login");
 }
 },
 children: [
 { path: "products/:op(create|edit)/:id(\\d+)?",
 component: ProductEditor },
 { path: "products", component: ProductAdmin },
 { path: "orders", component: OrderAdmin },
 { path: "", redirect: "/admin/products"}
]
 },
 { path: "*", redirect: "/"}
]
})

Chapter 8 ■ SportSStore: adminiStration and deploYment

185

As I explain in Chapter 22, the Vue Router package is able to handle complex patterns when it matches
URLs and includes support for regular expressions. The route that I added in Listing 8-4 will match the /
admin/products/create URL, which will indicate the user wants to add a new product, and the /admin/
products/edit/id URL, where the final segment is a numeric value that corresponds to the id property of
the product that the user wants to edit.

To see the product administration features, navigate to http://localhost:8080/login and go through
the authentication process. Once you are authenticated, you will see the list of products shown in
Figure 8-2. If you click one of the Delete buttons, the product you selected will be removed and deleted
from the web service. If you click the Create Product button or one of the Edit buttons, you will see the
placeholder content.

 ■ Tip remember that you can re-create all the test data by restarting the json-server process using the
command from the start of the chapter. this will reset the data and discard any changes, additions, or deletions
you have made.

Implementing the Editor Feature
The editor component will be used to create and edit products and will determine which activity the
user requires based on the route that has matched the current URL. In Listing 8-5, I have removed the
placeholder content and added the content and code required to create and modify products.

Figure 8-2. The product administration features

Chapter 8 ■ SportSStore: adminiStration and deploYment

186

Listing 8-5. Adding Features in the ProductEditor.vue File in the src/components/admin Folder

<template>
 <div>
 <h4 class="text-center text-white p-2" v-bind:class="themeClass">
 {{ editMode ? "Edit" : "Create Product" }}
 </h4>
 <h4 v-if="$v.$invalid && $v.$dirty"
 class="bg-danger text-white text-center p-2">
 Values Required for All Fields
 </h4>
 <div class="form-group" v-if="editMode">
 <label>ID (Not Editable)</label>
 <input class="form-control" disabled v-model="product.id" />
 </div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" v-model="product.name" />
 </div>
 <div class="form-group">
 <label>Description</label>
 <input class="form-control" v-model="product.description" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <select v-model="product.category" class="form-control">
 <option v-for="c in categories" v-bind:key="c">
 {{ c }}
 </option>
 </select>
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" v-model="product.price" />
 </div>
 <div class="text-center">
 <router-link to="/admin/products"
 class="btn btn-secondary m-1">Cancel
 </router-link>
 <button class="btn m-1" v-bind:class="themeClassButton"
 v-on:click="handleSave">
 {{ editMode ? "Save Changes" : "Store Product"}}
 </button>
 </div>
 </div>
</template>

<script>

import { mapState, mapActions } from "vuex";
import { required } from "vuelidate/lib/validators";

Chapter 8 ■ SportSStore: adminiStration and deploYment

187

export default {
 data: function() {
 return {
 product: {}
 }
 },
 computed: {
 ...mapState({
 pages: state => state.pages,
 currentPage: state => state.currentPage,
 categories: state => state.categoriesData
 }),
 editMode() {
 return this.$route.params["op"] == "edit";
 },
 themeClass() {
 return this.editMode ? "bg-info" : "bg-primary";
 },
 themeClassButton() {
 return this.editMode ? "btn-info" : "btn-primary";
 }
 },
 validations: {
 product: {
 name: { required },
 description: { required },
 category: { required },
 price: { required }
 }
 },
 methods: {
 ...mapActions(["addProduct", "updateProduct"]),
 async handleSave() {
 this.$v.$touch();
 if (!this.$v.$invalid) {
 if (this.editMode) {
 await this.updateProduct(this.product);
 } else {
 await this.addProduct(this.product);
 }
 this.$router.push("/admin/products");
 }
 }
 },
 created() {
 if (this.editMode) {
 Object.assign(this.product,
 this.$store.getters.productById(this.$route.params["id"]))
 }
 }
}
</script>

Chapter 8 ■ SportSStore: adminiStration and deploYment

188

The component presents the user with an HTML form with the fields required to create or edit a
product. The purpose for which the component has been created is determined by getting details of the
active route, and the data store is queried for the product when the user is performing an edit operation,
which is done using the created method, which I describe in Chapter 17. I use Object.assign, as described
in Chapter 4, to copy the properties from the data store object so that changes can be made without
updating the data store, allowing the user to click the Cancel button and discard changes. The form has basic
validation and invokes the actions in the data store to store or update a product.

To edit a product, navigate to http://localhost:8080/admin, perform authentication, and click one of
the Edit buttons. Use the form to make changes and then click the Save Changes button to see those changes
reflected in the product table, as shown in Figure 8-3.

To create a product, click the Create Product button, populate the form, and click the Store Product
button. You will see the new product at the top of the page, as shown in Figure 8-4.

Figure 8-3. Editing a product

Chapter 8 ■ SportSStore: adminiStration and deploYment

189

Deploying SportsStore
In the sections that follow, I go through the process of deploying the SportsStore application. I start by
making configuration changes that are required regardless of the platform to which the application is
deployed and that prepare SportsStore for production use. I then use Docker to create a container that
contains SportsStore and the services it requires to replace the development tools that have been used to run
the application during its development.

ALTERNATIVES TO DOCKER

i use docker in this chapter because it is simple and consistent, and you can follow the example on a
reasonably capable development machine, without the need for separate production hardware. there
are plenty of alternatives to docker to consider for your own projects, and Vue.js can be deployed in
countless different ways to suit the needs of different applications. You don’t have to use docker, but
regardless of how you choose to deploy your applications, remember to make the configuration changes
that are shown in the next section.

Preparing the Application for Deployment
To prepare the application for deployment, there are some small changes required. These changes don’t
alter the behavior of the application, but they are important because they disable features that are useful to
developers but that have an impact in production.

Figure 8-4. Creating a product

Chapter 8 ■ SportSStore: adminiStration and deploYment

190

Preparing the Data Store
The first change is to disable strict mode in the Vuex data store, as shown in Listing 8-6. This is a useful
feature during development because it warns you when you modify state properties directly, rather than
through a mutation, but it isn’t useful during production and affects performance, especially in complex
applications.

Listing 8-6. Preparing for Deployment in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";
import CartModule from "./cart";
import OrdersModule from "./orders";
import AuthModule from "./auth";

Vue.use(Vuex);

const baseUrl = "/api";
const productsUrl = `${baseUrl}/products`;
const categoriesUrl = `${baseUrl}/categories`;

export default new Vuex.Store({
 strict: false,
 modules: { cart: CartModule, orders: OrdersModule, auth: AuthModule },

 // ... data store features omitted for brevity...
})

During development, I used a separate process for handling web service requests. For the deployed
application, I am going to combine the HTTP requests for the application and its data into a single server,
which requires a change to the URLs that the data store uses to get data, which is why I altered the baseUrl
value. In Listing 8-7, I have changed the URL used by the authentication module.

Listing 8-7. Changing the URL in the auth.js File in the src/store Folder

import Axios from "axios";

const loginUrl = "/api/login";

export default {
 state: {
 authenticated: false,
 jwt: null
 },

 // ... data store features omitted for brevity...

}

The URL used to manage orders must also be changed, as shown in Listing 8-8.

Chapter 8 ■ SportSStore: adminiStration and deploYment

191

Listing 8-8. Changing the URL in the orders.js File in the src/store Folder

import Axios from "axios";
import Vue from "vue";

const ORDERS_URL = "/api/orders";

export default {
 state: {
 orders:[]
 },

 // ... data store features omitted for brevity...

}

Preparing the Authentication Component
The next change is to remove the credentials for administration authentication from the component, as
shown in Listing 8-9, which was useful during development but which should not be included in production.

Listing 8-9. Removing Credentials in the Authentication.vue file in the src/components/admin Folder

...
<script>

import { required } from "vuelidate/lib/validators";
import { mapActions, mapState } from "vuex";
import ValidationError from "../ValidationError";

export default {
 components: { ValidationError },
 data: function() {
 return {
 username: null,
 password: null,
 showFailureMessage: false,
 }
 },
 computed: {
 ...mapState({authenticated: state => state.auth.authenticated })
 },
 validations: {
 username: { required },
 password: { required }
 },
 methods: {
 ...mapActions(["authenticate"]),
 async handleAuth() {
 this.$v.$touch();
 if (!this.$v.$invalid) {
 await this.authenticate({ name: this.username,

Chapter 8 ■ SportSStore: adminiStration and deploYment

192

 password: this.password });
 if (this.authenticated) {
 this.$router.push("/admin");
 } else {
 this.showFailureMessage = true;
 }
 }
 }
 }
}

</script>
...

Loading the Administration Features On-Demand
Every feature of the SportsStore application is included in the JavaScript bundle that is created by the Vue.js
build tools, even though the administration features are likely to be used by a small fraction of the user base.
Vue.js makes it easy to break the application into separate bundles that can be loaded only when they are
first required. To separate the administration features into their own bundle, I added a file called index.js
in the src/components/admin folder with the code shown in Listing 8-10.

Listing 8-10. The Contents of the index.js File in the src/components/admin Folder

import Vue from "vue";
import VueRouter from "vue-router";
import Store from "../components/Store";
import ShoppingCart from "../components/ShoppingCart";
import Checkout from "../components/Checkout";
import OrderThanks from "../components/OrderThanks";

const Authentication = () =>
 import(/* webpackChunkName: "admin" */ "../components/admin/Authentication");
const Admin = () =>
 import(/* webpackChunkName: "admin" */ "../components/admin/Admin");
const ProductAdmin = () =>
 import(/* webpackChunkName: "admin" */ "../components/admin/ProductAdmin");
const OrderAdmin = () =>
 import(/* webpackChunkName: "admin" */ "../components/admin/OrderAdmin");
const ProductEditor = () =>
 import(/* webpackChunkName: "admin" */ "../components/admin/ProductEditor");

import dataStore from "../store";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: Store },
 { path: "/cart", component: ShoppingCart },

Chapter 8 ■ SportSStore: adminiStration and deploYment

193

 { path: "/checkout", component: Checkout},
 { path: "/thanks/:id", component: OrderThanks},
 { path: "/login", component: Authentication },
 { path: "/admin", component: Admin,
 beforeEnter(to, from, next) {
 if (dataStore.state.auth.authenticated) {
 next();
 } else {
 next("/login");
 }
 },
 children: [
 { path: "products/:op(create|edit)/:id(\\d+)?",
 component: ProductEditor },
 { path: "products", component: ProductAdmin },
 { path: "orders", component: OrderAdmin },
 { path: "", redirect: "/admin/products"}
]
 },
 { path: "*", redirect: "/"}
]
})

Normal import statements create a static dependency on a module, with the effect that importing a
component ensures it is included in the JavaScript file that is sent to the browser. As I explain in Chapter 21,
the type of import statement I used in Listing 8-10 is dynamic, which means that the components required
for the administration features will be put into a separate JavaScript file that is loaded the first time any of
these components are required. This ensures that the features are available for the small number of users
who require them but are not downloaded by the rest of the users.

 ■ Note You may find that the separate module that is created as a result of listing 8-10 is loaded anyway,
even if the administration features are not used. this is because Vue.js projects are configured to provide the
browser with prefetch hints, which are indications that there is content that may be required in the future.
the browser is free to ignore these hints but may choose to request the module anyway. in Chapter 21, i
demonstrate how to change the configuration of the project so that prefetch hints are not sent to the browser.

The awkward comment that I have included in the import statement ensures that the components are
packaged into a single separate file. Without these comments, each component would end up in a separate
file that would be requested from the server the first time it is required. Since these components provide
related features, I have grouped them together. This is a feature that is specific to the tool used by the Vue.
js tools to produce bundles of JavaScript code—known as webpack—and it may not work unless you have
created your project using the Vue.js command-line tools as I did in Chapter 5.

Creating the Data File
I have been working with test data that is generated programmatically when the RESTful web service starts,
which has been useful during development because the data is regenerated afresh each time, discarding any
modification. For deployment, I am going to switch to data that will be persisted, ensuring that changes are
preserved. I added a file called data.json to the sportsstore folder with the content shown in Listing 8-11.

Chapter 8 ■ SportSStore: adminiStration and deploYment

194

Listing 8-11. The Contents of the data.json File in the sportsstore Folder

{
 "products": [
 { "id": 1, "name": "Kayak", "category": "Watersports",
 "description": "A boat for one person", "price": 275 },
 { "id": 2, "name": "Lifejacket", "category": "Watersports",
 "description": "Protective and fashionable", "price": 48.95 },
 { "id": 3, "name": "Soccer Ball", "category": "Soccer",
 "description": "FIFA-approved size and weight", "price": 19.50 },
 { "id": 4, "name": "Corner Flags", "category": "Soccer",
 "description": "Give your playing field a professional touch",
 "price": 34.95 },
 { "id": 5, "name": "Stadium", "category": "Soccer",
 "description": "Flat-packed 35,000-seat stadium", "price": 79500 },
 { "id": 6, "name": "Thinking Cap", "category": "Chess",
 "description": "Improve brain efficiency by 75%", "price": 16 },
 { "id": 7, "name": "Unsteady Chair", "category": "Chess",
 "description": "Secretly give your opponent a disadvantage",
 "price": 29.95 },
 { "id": 8, "name": "Human Chess Board", "category": "Chess",
 "description": "A fun game for the family", "price": 75 },
 { "id": 9, "name": "Bling Bling King", "category": "Chess",
 "description": "Gold-plated, diamond-studded King", "price": 1200 }
],
 "categories": ["Watersports", "Soccer", "Chess"],
 "orders": []
}

Building the Application for Deployment
To build the SportsStore application so that it can be deployed, run the command shown in Listing 8-12
in the sportsstore folder.

Listing 8-12. Building the Project

npm run build

The build process generates JavaScript files that are optimized for delivery to the browser and that
exclude the development features, such as the automatic reloading of the browser when one of the source
files change. The build process can take a while, and when it is complete, you will see a summary of the
process, like this:

WARNING Compiled with 2 warnings

 warning

asset size limit: The following asset(s) exceed the recommended size limit (244 KiB).
This can impact web performance.
Assets:
 img/fontawesome-webfont.912ec66d.svg (434 KiB)

Chapter 8 ■ SportSStore: adminiStration and deploYment

195

 warning

entrypoint size limit: The following entrypoint(s) combined asset size exceeds the
recommended limit (244 KiB). This can impact web performance.

Entrypoints:
 app (346 KiB)
 css/chunk-vendors.291cfd91.css
 js/chunk-vendors.56adf36a.js
 js/app.846b07bf.js

 File Size Gzipped

 dist\js\chunk-vendors.56adf36a.js 160.98 kb 54.10 kb
 dist\js\app.846b07bf.js 25.08 kb 6.57 kb
 dist\js\admin.b43c91ef.js 11.62 kb 3.13 kb
 dist\css\chunk-vendors.291cfd91.css 159.97 kb 26.60 kb

 Images and other types of assets omitted.

 DONE Build complete. The dist directory is ready to be deployed.

The warnings about sizes can be ignored, and the output from the build process is a set of JavaScript and
CSS files that contain the content, code, and styles that the application requires, all of which are in the dist
folder. (You may see different warnings because the tools that are used in the build process are updated often.)

Testing the Deployment-Ready Application
Before packaging the application for deployment, it is worth performing a quick test just to make sure that
everything works as it should. During development, HTTP requests for HTML, JavaScript, and CSS files were
handled by the Vue.js development tools, which must not be used in production. As a production-suitable
alternative, I am going to install the popular Express package, which is a widely used web server that runs
on Node.js. Run the commands shown in Listing 8-13 to install the Express package and a related package
that is required to support URL routing.

Listing 8-13. Adding Packages

npm install --save-dev express@4.16.3
npm install --save-dev connect-history-api-fallback@1.5.0

I added a file called server.js to the sportsstore project folder and added the statements shown
in Listing 8-14, which configure the packages installed in Listing 8-13 so they will serve the SportsStore
application.

Listing 8-14. The Contents of the server.js File in the sportsstore Folder

const express = require("express");
const history = require("connect-history-api-fallback");
const jsonServer = require("json-server");
const bodyParser = require('body-parser');

Chapter 8 ■ SportSStore: adminiStration and deploYment

196

const auth = require("./authMiddleware");
const router = jsonServer.router("data.json");

const app = express();
app.use(bodyParser.json());
app.use(auth);
app.use("/api", router);
app.use(history());
app.use("/", express.static("./dist"));

app.listen(80, function () {
 console.log("HTTP Server running on port 80");
});

Run the command shown in Listing 8-15 in the sportstore folder to test the application.

Listing 8-15. Testing the Deployment Build

node server.js

This command executes the statements in the JavaScript file from Listing 8-14, which set up a web
server on port 80 and listens for requests. To test the application, navigate to http://localhost:80, and you
will see the application running, as illustrated in Figure 8-5.

Figure 8-5. Testing the application

Chapter 8 ■ SportSStore: adminiStration and deploYment

197

Deploying the Application
The first step is to download and install the Docker tools on your development machine, which is available
from www.docker.com/products/docker. There are versions for macOS, Windows, and Linux, and there are
some specialized versions to work with the Amazon and Microsoft cloud platforms. The free Community
edition is sufficient for this chapter.

 ■ Caution the company that produces the docker software has gained a reputation for making breaking
changes. this means that the example that follows may not work as intended with later versions. if you have
problems, check the repository for this book for updates (https://github.com/Apress/pro-vue-js-2).

Creating the Package File
To deploy the application to Docker, I need to create a version of the package.js file that will install
the packages that are required to run the application. I added a file called deploy-package.json to the
sportsstore folder with the content shown in Listing 8-16.

Listing 8-16. The Contents of the deploy-package.json File in the sportsstore Folder

{
 "name": "sportsstore",
 "version": "1.0.0",
 "private": true,

 "dependencies": {
 "faker": "^4.1.0",
 "json-server": "^0.12.1",
 "jsonwebtoken": "^8.1.1",
 "express": "4.16.3",
 "connect-history-api-fallback": "1.5.0"
 }
}

Creating the Docker Container
To define the container, I added a file called Dockerfile (with no extension) to the sportsstore folder and
added the content shown in Listing 8-17.

Listing 8-17. The Contents of the Dockerfile File in the sportsstore Folder

FROM node:8.11.2

RUN mkdir -p /usr/src/sportsstore

COPY dist /usr/src/sportsstore/dist

www.docker.com/products/docker
https://github.com/Apress/pro-vue-js-2

Chapter 8 ■ SportSStore: adminiStration and deploYment

198

COPY authMiddleware.js /usr/src/sportsstore/
COPY data.json /usr/src/sportsstore/
COPY server.js /usr/src/sportsstore/server.js
COPY deploy-package.json /usr/src/sportsstore/package.json

WORKDIR /usr/src/sportsstore

RUN npm install

EXPOSE 80

CMD ["node", "server.js"]

The contents of the Dockerfile use a base image that has been configured with Node.js and that
copies the files required to run the application, including the bundle file containing the application and the
package.json file that will be used to install the packages required to run the application in deployment.

Run the command in Listing 8-18 in the sportsstore folder to create an image that will contain the
SportsStore application, along with all of the tools and packages it requires.

Listing 8-18. Building the Docker Image

docker build . -t sportsstore -f Dockerfile

An image is a template for containers. As Docker processes the instructions in the Docker file, the NPM
packages will be downloaded and installed, and the configuration and code files will be copied into the
image.

Running the Application
Once the image has been created, create and start a new container using the command in Listing 8-19.

Listing 8-19. Creating a Docker Container

docker run -p 80:80 sportsstore

You can test the application by opening http://localhost in the browser, which will display the
response provided by the web server running in the container, as shown in Figure 8-6.

 ■ Tip if you receive an error because port 80 isn’t available, you can try a different port by changing the first
part of the -p argument. if you want to listen to port 500, for example, then the argument would be -p 500:80.

Chapter 8 ■ SportSStore: adminiStration and deploYment

199

To stop the container, run the command shown in Listing 8-20.

Listing 8-20. Stopping the Docker Container

docker ps

You will see a list of running containers, like this (I have omitted some fields for brevity):

CONTAINER ID IMAGE COMMAND CREATED
ecc84f7245d6 sportsstore "node server.js" 33 seconds ago

Using the value in the Container ID column, run the command shown in Listing 8-21.

Listing 8-21. Stopping the Docker Container

docker stop ecc84f7245d6

Figure 8-6. Running the containerized SportsStore application

Chapter 8 ■ SportSStore: adminiStration and deploYment

200

Summary
In this chapter, I completed the SportsStore application by adding support for administering the product
catalog and preparing for deployment, which illustrates how easy it is to move a Vue.js project from
development to production.

That’s the end of this part of the book. In Part 2, I begin the process of digging into the details and show
you how the features I used to create the SportsStore application work in depth.

PART II

Vue.js in Detail

203© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_9

CHAPTER 9

Understanding Vue.js

When you get started with Vue.js, it can be easy to be overwhelmed because there is a lot going on and not
all of it makes immediate sense. This chapter explains how Vue.js works and demonstrates that there is no
magic involved—something that can be helpful to bear in mind as I dig into the detail of individual Vue.js
features in the chapters that follow. Table 9-1 summarizes the chapter.

Preparing for This Chapter
To create the example project for this chapter, open a new command prompt, navigate to a convenient
location, and run the command shown in Listing 9-1. This command depends on the tools that I described in
Chapter 1, and you will need to complete the steps in that chapter before you are able to create the project.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Listing 9-1. Creating the Example Project

vue create nomagic

Table 9-1. Chapter Summary

Problem Solution Listing

Create a simple web application without Vue.js Use the DOM API 6

Create a simple web application using Vue.js Create a Vue object and configure it
with el and template properties

7

Present a data value to the user Define a data property and use a data
binding

8

Respond to user interaction through events Use the v-on directive 9

Generate data values that require calculation Define a computed property 10

Create a reusable unit of application functionality Define and apply a component 11–13

Define a component’s template as HTML Use a template element 14–16

https://github.com/Apress/pro-vue-js-2

Chapter 9 ■ Understanding VUe.js

204

Select default when prompted to select a preset. The project will be created, and the packages required
for the application and the development tools will be downloaded and installed, which can take some time
to complete.

 ■ Note at the time of writing, the @vue/cli package has been released in beta. there may be small changes
made before the final release, but the core features should remain the same. For details of any breaking
changes, check the errata for this book, available at https://github.com/Apress/pro-vue-js-2.

Once the project has been created, add a file called vue.config.js to the nomagic folder with the content
shown in Listing 9-2. This file is used to configure the Vue.js development tools, which I describe in Chapter 10.

Listing 9-2. The Contents of the vue.config.js File in the nomagic Folder

module.exports = {
 runtimeCompiler: true
}

Adding the Bootstrap CSS Framework
Run the command shown in Listing 9-3 in the nomagic folder to add the Bootstrap CSS package to the
project. This is the CSS framework that I will use to style the HTML content in this chapter.

Listing 9-3. Adding the Bootstrap Package

npm install bootstrap@4.0.0

One installation is complete, open the main.js file in the src folder and add the statement shown in
Listing 9-4.

Listing 9-4. Adding Bootstrap in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "bootstrap/dist/css/bootstrap.min.css";

Vue.config.productionTip = false

new Vue({
 render: h => h(App)
}).$mount('#app')

This statement includes the Bootstrap CSS styles in the content that is sent to the browser.

https://github.com/Apress/pro-vue-js-2

Chapter 9 ■ Understanding VUe.js

205

Running the Example Application
The project that is created by the command in Listing 9-1 includes the tools required for Vue.js development.
I explain how to use these tools in more detail in Chapter 10, but to start the development process, run the
command shown in Listing 9-5 in the nomagic folder.

Listing 9-5. Starting the Development Tools

npm run serve

The development HTTP server will start after an initial setup phase. Open a new browser window and
navigate to http://localhost:8080, and you will see the placeholder content shown in Figure 9-1.

Figure 9-1. Running the example application

Creating an Application Using the DOM API
I am going to start by creating a simple web application without using Vue.js at all and then demonstrate
how the same functionality can be created using basic Vue.js features.

To do this, I am going to the main.js file, which typically contains the JavaScript code that initializes
a Vue.js application. The main.js file is just a JavaScript file, which means that I can remove the code that
configures Vue.js and replace it with other statements.

In Listing 9-6, I have replaced the default content of the main.js file with a series of JavaScript
statements that use the Domain Object Model (DOM) API. The DOM API is provided by browsers to allow
JavaScript access to the HTML document and its content, and it is the foundation for all web applications.

Chapter 9 ■ Understanding VUe.js

206

Listing 9-6. Replacing the Contents of the main.js File in the src Folder

require('../node_modules/bootstrap/dist/css/bootstrap.min.css')

let counter = 1;

let container = document.createElement("div");
container.classList.add("text-center", "p-3");

let msg = document.createElement("h1");
msg.classList.add("bg-primary", "text-white", "p-3");
msg.textContent = "Button Not Pressed";

let button = document.createElement("button");
button.textContent = "Press Me";
button.classList.add("btn", "btn-secondary");
button.onclick = () => msg.textContent = `Button Presses: ${counter++}`;

container.appendChild(msg);
container.appendChild(button);

let app = document.getElementById("app");
app.parentElement.replaceChild(container, app);

Don’t worry about understanding this code in detail. You won’t need to work directly with the DOM
API in most Vue.js projects. The purpose of this example is to demonstrate that the main.js file is a regular
JavaScript file and that the code it contains can access the standard features provided by the browser.

The development tools that you started with the command in Listing 9-6 automatically detect changes
to the project’s files. These changes are compiled, packaged up into a single file that contains all of the
application’s functionality, and sent to the browser automatically, which means that as soon as you save the
change to the main.js file, the browser will be updated, and you will see the content shown in Figure 9-2.
An initial message is displayed to the user, which is replaced with a counter when the button is pressed. The
counter is incremented with each further button press.

Figure 9-2. Working directly with the Domain Object Model

Chapter 9 ■ Understanding VUe.js

207

Understanding How the DOM API Application Works
I use the DOM API to create a div element that contains an h1 element and a button element when the
code in the main.js file is executed. I add these elements to classes that correspond to styles defined by the
Bootstrap CSS framework, which sets their appearance. I then set up an event listener that responds to clicks
on the button element by updating a counter and displaying a message in the h1 element.

Once all of that is done, I locate the existing element in the HTML document whose ID is app and
replace it with the div element I created.

...
let app = document.getElementById("app");
app.parentElement.replaceChild(container, app);
...

This is how I present the example application to the user. When the browser sends a request to
http://localhost:8000, the development HTTP server responds with the contents of the project’s
index.html file, which contains these elements:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1.0">
 <title>nomagic</title>
 </head>
 <body>
 <div id="app"></div>
 </body>
</html>

I have highlighted the element that the JavaScript code replaces, which is how content is displayed to
the user.

When the development server produces a response to the browser’s HTTP request, it automatically
inserts a script element that loads the JavaScript file that contains all of the project’s JavaScript code, which
you can see by right-clicking in the browser window and selecting View Page Source from the pop-up menu.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1.0">
 <title>nomagic</title>
 </head>
 <body>
 <div id="app"></div>
 <script type="text/javascript" src="/app.js"></script>
 </body>
</html>

Chapter 9 ■ Understanding VUe.js

208

The JavaScript file that is provided contains the main.js code and any code that it depends on.
The browser executes the statements in the JavaScript file, which leads to the content I produced
programmatically being inserted into the HTML document.

The combined HTML, consisting of the elements in the index.html file and the elements generated by
the code in the main.js file, can be seen by right-clicking in the browser window and selecting Inspect from
the pop-up window, which will show the live view of the HTML document that has been created using the
DOM API.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1.0">
 <title>nomagic</title>
 </head>
 <body>
 <div class="text-center p-3">
 <h1 class="bg-primary text-white p-3">Button Not Pressed</h1>
 <button class="btn btn-secondary">Press Me</button>
 </div>
 <script type="text/javascript" src="/app.js"></script>
 </body>
</html>

The result isn’t especially impressive, but it demonstrates that JavaScript code can be used to access
the DOM API to replace elements in HTML documents, to create new content, and to respond to user
interaction. These are, as you will see, the foundation for any web application—including those created
using Vue.js.

Creating a Vue Object
Vue.js applications also use the DOM API to create HTML content, respond to events, and update data
values. The difference is that the approach taken by Vue.js is more elegant, is easier to understand, and
scales better.

I used the main.js file as a convenient way to get the browser to execute JavaScript code in the previous
section, but its regular purpose in a Vue.js application is to create a Vue object, which is the entry point into
the features provided by Vue.js. In Listing 9-7, I have replaced the DOM API code in the main.js file with
statements that create a Vue object, returning the main.js file to its intended purpose.

Listing 9-7. Creating a Vue Object in the main.js File in the src Folder

require('../node_modules/bootstrap/dist/css/bootstrap.min.css')

import Vue from "vue"

new Vue({
 el: "#app",
 template: `<div class="text-center p-3">
 <h1 class="bg-secondary text-white p-3">
 Vue: Button Not Pressed
 </h1>

Chapter 9 ■ Understanding VUe.js

209

 <button class="btn btn-secondary">
 Press Me
 </button>
 </div>`
});

The import statement is required to import the Vue object from the vue module, which was downloaded
and installed into the node_modules folder when the project was created. A Vue object is created using the
new keyword and the constructor accepts a configuration object whose properties provide settings that
control how the application behaves and define the content that it presents to the user.

In this example, there are two configuration properties: el and template. The Vue object uses the el
property to identify the element in index.html that will be replaced to display the application content. The
template property is used to provide Vue.js with the HTML content that will replace the element matched by
the el property. As you will recall, these are tasks that I had to perform manually when I was working directly
with the DOM API in the previous section.

In Listing 9-7, I set the el property to #app, which selects the element whose id attribute is set
to app. I set the template property so that it contains the same structure of HTML elements I created
programmatically in Listing 9-6, with the advantage that I am able to write the HTML directly, rather than
creating them using JavaScript statements. The configuration object is defined using JavaScript, which
means that I have to express the HTML content as a JavaScript string. I have used the backtick character (the
` character) so that I can split the string across multiple lines and make it easier to read.

 ■ Caution You can use the template property only if you have overridden the project settings as shown in
Listing 9-2. By default, the feature that processes template strings is disabled in Vue.js projects.

When the changes to the main.js file are saved, the browser will reload and present the content shown
in Figure 9-3. As the figure shows, I changed the message displayed in the h1 element and its background
color to make it obvious that there has been a change.

Figure 9-3. Using a Vue object

Chapter 9 ■ Understanding VUe.js

210

Adding Data to the Vue Object
My Vue object is displaying HTML content to the user, but that’s only part of the functionality that I require.
The next step is to add some data and have Vue.js display it to the user. In Listing 9-8, I added a variable
called counter to the application and modified the template string so that it is displayed to the user.

Listing 9-8. Adding a Variable in the main/js File in the src Folder

require('../node_modules/bootstrap/dist/css/bootstrap.min.css')

import Vue from "vue"

new Vue({
 el: "#app",
 template: `<div class="text-center p-3">
 <h1 class="bg-secondary text-white p-3">
 Button Presses: {{ counter }}
 </h1>
 <button class="btn btn-secondary">
 Press Me
 </button>
 </div>`,
 data: {
 counter: 0
 }
});

I added a data property to the Vue object’s configuration object. This object defines a counter
property, with the initial value of zero. To display the counter value to the user, I used a simple data
binding in the h1 element.

...
<h1 class="bg-secondary text-white p-3">
 Button Presses: {{ counter }}
</h1>
...

Data bindings are an important Vue.js feature that provides the connection between the Vue object’s
template content and its data object. When Vue.js displays the template content, it looks for data bindings,
evaluates them as JavaScript expressions, and includes the result in the HTML that is displayed to the user.
In this case, the data binding is just the name of one of the data object’s properties, and the result is that the
value of the counter property is added to the content of the h1 element.

The data is live or reactive, meaning that a change to the value of the counter property will be
automatically reflected in the contents of the h1 element. When the Vue object is created, it processes the
data object and replaces the properties so that it can detect when there are changes.

You can see the effect of the data reactivity using the Vue Devtools. Open the F12 developer tools
window, select the Vue tab, and click the <Root> item. In the right pane, move the mouse over the counter
item and click the + symbol to increment the value. Vue.js detects the new counter value and evaluates the
code in the template again, producing the results shown in Figure 9-4. (See https://github.com/vuejs/
vue-devtools for installation instructions if you have not installed the Vue Devtools extension.)

https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools

Chapter 9 ■ Understanding VUe.js

211

Adding an Event Handler
The next step to re-create the DOM API application in Vue.js is to increment the counter value automatically
when the button is clicked. When I used the DOM API, I was able to set up an event handler function
directly using a JavaScript statement, but a different approach is required for the Vue object, as shown in
Listing 9-9.

Listing 9-9. Handling an Event in the main.js File in the src Folder

require('../node_modules/bootstrap/dist/css/bootstrap.min.css')

import Vue from "vue"

new Vue({
 el: "#app",
 template: `<div class="text-center p-3">
 <h1 class="bg-secondary text-white p-3">
 Button Presses: {{ counter }}
 </h1>
 <button class="btn btn-secondary" v-on:click="handleClick">
 Press Me
 </button>
 </div>`,
 data: {
 counter: 0
 },

Figure 9-4. Changing a reactive data variable

Chapter 9 ■ Understanding VUe.js

212

 methods: {
 handleClick() {
 this.counter++;
 }
 }
});

The attribute I added to the button element is a directive, which is the Vue.js feature that applies
functionality to an HTML element. In this case, I have used the v-on directive to provide Vue.js with a
JavaScript expression to evaluate when the button element’s click event is triggered. In this example, the
expression is handleClick, which tells Vue.js to invoke a method called handleClick, which I defined
by adding a methods property to the Vue configuration object. The methods object defines a handleClick
function that increments the counter value.

Since Vue.js data is reactive, changing the counter value causes Vue.js to evaluate the data binding in
the h1 element, which changes the message displayed to the user, as shown in Figure 9-5.

Figure 9-5. Handling an event

Correcting the Message
The final change to create parity with the DOM API example 1 is to display a different message when the
user has yet to click the button. To create the equivalent using the Vue object, I made the changes shown in
Listing 9-10.

Listing 9-10. Displaying a Conditional Message in the main.js File in the src Folder

require('../node_modules/bootstrap/dist/css/bootstrap.min.css')

import Vue from "vue"

new Vue({
 el: "#app",
 template: `<div class="text-center p-3">

Chapter 9 ■ Understanding VUe.js

213

 <h1 class="bg-secondary text-white p-3">
 {{ message }}
 </h1>
 <button class="btn btn-secondary" v-on:click="handleClick">
 Press Me
 </button>
 </div>`,
 data: {
 counter: 0
 },
 methods: {
 handleClick() {
 this.counter++;
 }
 },
 computed: {
 message() {
 return this.counter == 0 ?
 "Button Not Pressed" : `Button Presses: ${this.counter}`;
 }
 }
});

The computed configuration defines data values that require some computation to produce a result. This
example uses an expression that checks the value of the counter property and returns the string that should
be displayed to the user. The new computed property is called message, and I display its value to the user in
the h1 element by putting its name in a data binding, just like I did with the data property earlier.

When the user clicks the button, the v-on directive invokes the handleClick method, which increments
the counter value. Vue.js detects the change and re-evaluates the data binding expressions defined in the
template content, which produces a new result from the message computed property, which is displayed to
the user through the data binding in the h1 element, as shown in Figure 9-6.

Figure 9-6. Using a computed property

Chapter 9 ■ Understanding VUe.js

214

Understanding the Vue Object Structure
The Vue object provides the same functionality as the code that used the DOM API in Listing 9-6, but the
result is an application that has better structure, which is easier to develop and maintain than working
directly with the DOM. It can be hard to see the advantages of the Vue.js approach when looking at the Vue
object in Listing 9-10, but already there is a structure emerging that separates the content, logic, and data in
the application, as shown in Figure 9-7.

Figure 9-7. The structure of the application

The Vue object’s template provides the HTML content that is presented to the user and contains the
data binding and event directive that provides the application’s interactivity. The application’s data consists
of the counter property and the msg computed property, and the logic that ties them together is contained in
the handleClick method.

Introducing a Component
The Vue object helps to separate the different aspects of an application, but the result is still awkward. In
most projects, the Vue object is used to configure the application, but the application’s functionality is
defined using components, which extend the functionality of the Vue object and which can be defined in files
that contain a more helpful mix of content types.

Components are defined in files with the .vue extension. The project was created with the App.vue file,
and in Listing 9-11 I have replaced the default contents of that file.

Listing 9-11. Replacing the Content of the App.vue File in the src Folder

<script>
export default {
 template: `<div class="text-center p-3">
 <h1 class="bg-secondary text-white p-3">
 {{ message }}
 </h1>

Chapter 9 ■ Understanding VUe.js

215

 <button class="btn btn-secondary" v-on:click="handleClick">
 Press Me
 </button>
 </div>`,
 data: function () {
 return {
 counter: 0
 }
 },
 methods: {
 handleClick() {
 this.counter++;
 }
 },
 computed: {
 message() {
 return this.counter == 0 ?
 "Button Not Pressed" : `Button Presses: ${this.counter}`;
 }
 }
}
</script>

The component shown in Listing 9-11 contains the same functionality that I defined using the Vue
object, except that the JavaScript properties are defined in a script element. This may not seem like much of
an improvement, but it does demonstrate that components are Vue objects just like the one I created in the
main.js file. Components allow an application to be composed of multiple components that are combined
to provide the user with complex functionality.

The JavaScript code is contained in a script element and contains the same functionality as the Vue
object. There are two important changes to the JavaScript code when moving from a regular Vue object to a
component. The first is that the configuration object must be exported, like this:

...
export default {

 // ...configuration properties omitted for brevity...
}
...

This allows the object to be imported from its module, which I do in Listing 9-12. The other change is to
the data property, which must be expressed as a function, like this:

...
data: function () {
 return {
 counter: 0
 }
},
...

The data property is assigned a function that returns an object whose properties provide the data values
for the component. This is an awkward approach, but Vue.js enforces this requirement to ensure that each
component has its own data.

Chapter 9 ■ Understanding VUe.js

216

Registering and Applying the Component
Components must be registered with Vue.js before they are used, and this is one of the main jobs usually
performed in the main.js file. In Listing 9-12, I replaced changed the Vue object’s configuration to use the
new component.

Listing 9-12. Configuring a Component in the main.js File in the src Folder

require('../node_modules/bootstrap/dist/css/bootstrap.min.css')

import Vue from "vue";
import MyComponent from "./App";

new Vue({
 el: "#app",
 components: { "custom": MyComponent },
 template: `<div class="text-center">
 <h1 class="bg-primary text-white p-3">
 This is the main.js file
 </h1>
 <custom />
 </div>`
});

The first new statement uses the import keyword, which imports the module from the App.vue file and
gives it the name MyComponent. The convention is to use the file name as the name of the import, but you can
use whatever name makes the most sense.

The next change is to add a components property to the Vue object’s configuration. This property is
assigned an object that provides Vue.js with a list of HTML elements and the components that are associated
with them. In this case, I have configured the components property to tell Vue.js that the custom element is
associated with MyComponent, which is the name I assigned to the component in the App.vue file.

I also changed the string assigned to the template configuration property so that it contains a simpler
set of HTML elements that include a custom element.

When the Vue object processes its template, it will encounter the custom element and replace it with
the HTML content provided by the component in the App.vue file. The result that the user is presented
with is a combination of HTML from the component’s template property and from the Vue object’s
template property. When you save the changes, the browser will reload, and you will see the content
shown in Figure 9-8.

Chapter 9 ■ Understanding VUe.js

217

The Vue object doesn’t usually display its own content, and the convention is to put just the HTML
element for the component in the template, which is what I have done in Listing 9-13.

Listing 9-13. Removing Template Content in the main.js File in the src Folder

require('../node_modules/bootstrap/dist/css/bootstrap.min.css')

import Vue from "vue";
import MyComponent from "./App";

new Vue({
 el: "#app",
 components: { "custom": MyComponent },
 template: "<custom />"
});

The Vue object replaces the div element in the index.html file with the custom element, which is
replaced by the contents of the component’s template element. When you save the change to the
main.js file, you will see the completed example application, illustrated in Figure 9-9.

Figure 9-8. Using a component

Chapter 9 ■ Understanding VUe.js

218

Separating the Template from the JavaScript Code
You can define component templates using the template property, but there is a different approach that
most developers find easier to work with. In Listing 9-14, I have removed the template string and replaced it
with a template element, which is how components are usually defined.

Listing 9-14. Using a Template Element in the App.vue File in the src Folder

<template>
 <div class="text-center p-3">
 <h1 class="bg-secondary text-white p-3">
 {{ message }}
 </h1>
 <button class="btn btn-secondary" v-on:click="handleClick">
 Press Me
 </button>
 </div>
</template>

<script>
export default {
 data: function () {
 return {
 counter: 0
 }
 },
 methods: {
 handleClick() {
 this.counter++;
 }
 },

Figure 9-9. Completing the example application

Chapter 9 ■ Understanding VUe.js

219

 computed: {
 message() {
 return this.counter == 0 ?
 "Button Not Pressed" : `Button Presses: ${this.counter}`;
 }
 }
}
</script>

The template element contains the same content as the string template it replaces, but this approach
means that most programmers’ editors are able to recognize the template as HTML content and provide
developer support, such as autocompleting element and attribute names and flagging errors. There is no
change in the way that the example appears or behaves, and this change is purely to make the development
experience more pleasant.

Using Separate JavaScript and HTML Files
Not everyone likes mixing JavaScript and HTML content in the same file. If you just can’t bring yourself to
use the combined format, then you can create separate files. To demonstrate, I added a file called App.html
to the src folder with the contents shown in Listing 9-15.

Listing 9-15. The Contents of the App.html File in the src Folder

<div class="text-center p-3">
 <h1 class="bg-secondary text-white p-3">
 {{ message }}
 </h1>
 <button class="btn btn-secondary" v-on:click="handleClick">
 Press Me
 </button>
</div>

In Listing 9-16, I removed the contents of the template element and added a src attribute that tells Vue.
js that the component’s content can be found in the HTML file.

Listing 9-16. Specifying an HTML File in the App.vue File in the src Folder

<template src="./App.html" />

<script>
export default {
 data: function () {
 return {
 counter: 0
 }
 },
 methods: {
 handleClick() {
 this.counter++;
 }
 },

Chapter 9 ■ Understanding VUe.js

220

 computed: {
 message() {
 return this.counter == 0 ?
 "Button Not Pressed" : `Button Presses: ${this.counter}`;
 }
 }
}
</script>

Summary
In this chapter, I explained that Vue.js uses the same DOM API to create web applications that can be
accessed by any developer using standard JavaScript, emphasizing that there is nothing mysterious or
magical about the way that Vue.js works. As you will see in the chapters that follow, while you could use the
DOM API directly, Vue.js provides a compelling set of features and an excellent developer experience that
results in more elegant, manageable, and scalable features. In the next chapter, I explain the structure of
Vue.js projects and explain how the development tools work.

221© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_10

CHAPTER 10

Understanding Vue.js Projects
and Tools

In Chapter 9, I briefly described how a Vue.js application works in order to provide context for the rest of the
book, and as part of that process, I created a project using the @vue-cli package and then used the tools it
contained. In this chapter, I explain how this kind of Vue.js project is structured and what each of the tools
does. Table 10-1 puts this chapter in context.

Table 10-1. Putting Vue.js Projects in Context

Question Answer

What are they? Projects created with the @vue-cli package are designed for the
development of complex applications.

Why are they useful? This kind of project includes a set of tools that simplifies Vue.js
development and makes it possible to easily work with some of
the advanced features that Vue.js provides.

How are they used? The project is created using the @vue/cli package, and a series
of questions are answered to determine the initial content of the
project.

Are there any pitfalls or limitations? This kind of project can be overkill if you are only experimenting
with Vue.js.

Are there any alternatives? You can create your own projects without using the @vue/
cli package, in which case you are free to assemble your own
toolchain, although this can be a time-consuming process.

Chapter 10 ■ Understanding VUe.js projeCts and tools

222

Table 10-2 summarizes the chapter.

Table 10-2. Chapter Summary

Problem Solution Listing

Create a new project Use the vue create command and select the
features your application requires

1

Start the development tools Use the npm run serve command 2-8

Avoid common code and content
errors

Use the linter feature 9–11

Debug an application Use the Vue Devtools browser extension of the
browser’s JavaScript debugger

12

Change the configuration of the
development tools

Add a .vue.config.js file to the project that
contains the settings you require

13

Prepare the application for
deployment

Use the npm run build command 14–19

Creating a Vue.js Development Project
Modern client-side development frameworks include their own development tools, and Vue.js is no
exception. That means you can create a project and start development using tools that have been created
specifically for use in Vue.js applications and that have been thoroughly tested by a large and active
community.

The @vue/cli package you installed in Chapter 1 is provided by the Vue.js team to simplify the creation
of Vue.js projects and install all of the development and build tools that are required. Run the command
in Listing 10-1 to create a new project using the vue create command, which is provided by the @vue/cli
package.

 ■ Note at the time of writing, the @vue/cli package has been released in beta. there may be small changes
made before the final release, but the core features should remain the same. For details of any breaking
changes, check the errata for this book, available at https://github.com/Apress/pro-vue-js-2.

Listing 10-1. Creating a New Project

vue create projecttools

 The vue create command uses an interactive process for selecting the options to create a project and
will prompt you as shown in Figure 10-1.

https://github.com/Apress/pro-vue-js-2

Chapter 10 ■ Understanding VUe.js projeCts and tools

223

The text can be hard to read from the image, but the vue create command starts by asking you to
choose a preset. There is one preset available—called default—that selects the same configuration used
in earlier chapters. This is the configuration that I use throughout the rest of the book because it lets me
demonstrate how different components are added to the project. There is nothing wrong with using project
tools when they are convenient, just as long as you understand what it is they are doing for you behind the
scenes. The other option is to manually select the features that you require. Use the arrow keys to select the
Manually Select Features option and press Enter, and you will see the list of features shown in Figure 10-2.

Figure 10-1. Selecting the project settings

Figure 10-2. The project features available for manual selection

Use the arrow keys to navigate up and down the list of features, which are toggled on and off using the
spacebar. Table 10-3 describes the features that are available. I describe the features that are directly related
to Vue.js development, either in this chapter or in later chapters. For other features, I have included a URL
that provides more details.

Chapter 10 ■ Understanding VUe.js projeCts and tools

224

For the purpose of this chapter, select the Babel, Router, Vuex, and Linter/Formatter features, as shown
in Figure 10-3.

Table 10-3. The Vue.js Project Features

Name Description

Babel The Babel feature is responsible for translating JavaScript source code that uses
recent additions to the JavaScript language into a form that can be executed by
older browsers, as described in the “Using the Development Tools” section.

TypeScript TypeScript is a superset of JavaScript that adds useful features such as static typing,
which makes JavaScript more like C# or Java. TypeScript isn’t required for Vue.js
development, but it can be helpful if you find JavaScript difficult to work with. See
https://vuejs.org/v2/guide/typescript.html for details.

PWA Support Progressive web apps are web applications that are presented to the user alongside
regular applications and that rely on a JavaScript feature called service workers to
deliver functionality when there is no connectivity. PWAs are not specific to Vue.
js, and while support for PWAs is improving, it is a technology that I left out of
this edition of the book because it is not yet mature enough for most projects. See
https://developer.mozilla.org/en-US/Apps/Progressive for details.

Router This feature installs the Vue Router package that is used to add structure to larger
applications using the browser’s URL. You can see routing in use in the SportsStore
application in Part 1 of this book, and I describe the features provided by Vue
Router in detail in Chapters 23–25.

Vuex This feature installs the Vuex package that is used to create shared data stores.
You can see Vuex in use in the SportsStore application in Part 1 of this book, and I
describe its features in detail in Chapter 20.

CSS Pre-processors CSS preprocessors, such as Sass and Less, make it easier to write complex CSS
styles, which can be useful if you are not using a CSS framework or want to extend
one. Even if you choose not to use a CSS framework, you don’t have to use a CSS
processor, however, as I explain in later chapters.

Linter/Formatter The Linter/Formatter feature installs a package that checks your code and content
for conformance to best-practice standards, as explained in the “Using the Linter”
section.

Unit Testing This feature installs unit testing tools, as described at https://cli.vuejs.org/
config/#unit-testing.

E2E Testing This feature installs end-to-end testing tools, as described at https://cli.vuejs.
org/config/#e2e-testing.

https://vuejs.org/v2/guide/typescript.html
https://developer.mozilla.org/en-US/Apps/Progressive
https://cli.vuejs.org/config/#unit-testing
https://cli.vuejs.org/config/#unit-testing
https://cli.vuejs.org/config/#e2e-testing
https://cli.vuejs.org/config/#e2e-testing

Chapter 10 ■ Understanding VUe.js projeCts and tools

225

Press Enter once you have selected the features. Additional options are presented to configure some of
the features you have chosen.

Configuring the Linter
The first option configures the linter, which was selected with the Linter/Formatter feature, as shown in
Figure 10-4.

Figure 10-3. Selecting features for the example project

Figure 10-4. Configuring the linter

Choose the “ESLint with error prevention only” option. The linter is responsible for inspecting the
project to make sure it conforms to a coding standard, and this question selects the coding rules that are
applied to the project. I explain what each option means in the “Using the Linter” section later in the
chapter. The next option is to choose when the linter is applied to the source code in the project, as shown in
Figure 10-5.

Chapter 10 ■ Understanding VUe.js projeCts and tools

226

This option configures when the linter is used to inspect the project. Select the “Lint on save” option,
which applies the linter each time a file in the project is saved.

Completing the Project Configuration
Once you have selected the project features, you will be asked what style of configuration you want, as
shown in Figure 10-6.

Figure 10-5. Configuring when the linter is applied

Figure 10-6. Selecting the style of configuration file

There are two options. You can choose to use separate configuration files for each of the features that
require configuration, or you can choose to include all of the configuration settings in the package.json file,
which is also used to keep track of the packages required by the application.

Select the In package.json option, which will add the configuration settings for the project’s features
to the package.json file, which is the same approach taken by the default configuration used in the other
chapters in this book.

Press Enter, and the last step is to decide whether you want to save the configuration you have created
so that it can be used to create other projects in the future. Press Enter to select No for this question because
this configuration isn’t required for any of the other projects I create in this book.

Now that you have answered all the questions, the project will be created, and the packages that are
required will be downloaded and installed. A Vue.js project requires a lot of packages, and the initial setup
can take a while to complete.

Chapter 10 ■ Understanding VUe.js projeCts and tools

227

Understanding the Project Structure
Use your preferred editor to open the projecttools folder, and you will see the project structure illustrated
in Figure 10-7. The figure shows the way that my preferred editor displays the files and folders created by the
vue create command, but you may see some minor differences depending on the editor you have chosen
and any changes that have been made to the project template since the time of writing.

Figure 10-7. The structure of the example project

Table 10-4. The Project Files and Folders

Name Description

node_modules This folder contains the packages that the application and development tools require,
as described in the “Understanding the Packages Folder” section.

public This folder contains static project assets, such as images that are not incorporated into the
bundle files sent to the browser, as described in the “Using the Development Tools” section.

src This folder contains the Vue.js application and its resources, and it is the main focus during
development, as described in the “Understanding the Source Code Folder” section.

.gitignore This file contains a list of files and folders that are excluded from version control when
using Git.

.babel.config.js This file contains the configuration settings for the Babel compiler, which I describe in
the “Using the Development Tools” section.

package.json This file contains a list of the packages required for Vue.js development as well
as the commands used for the development tools, which are described in the
“Understanding the Packages Folder” section.

package-lock.json This file contains a complete list of the packages required by the project and their
dependencies, which ensures that you will receive the same set of packages when you
run the npm install command.

Table 10-4 describes the most important files and folders in the project and the features they support.

Chapter 10 ■ Understanding VUe.js projeCts and tools

228

Understanding the Source Code Folder
The src folder is the most important part of any Vue.js project and contains the application’s HTML content,
source code, and other resources. This is the folder that is the focus of most development sessions, and
Figure 10-8 shows the contents of the src folder for a project created using the features selected at the start
of the chapter.

Figure 10-8. The contents of the src folder

The structure of the src folder will become more complex as you start to develop a project, but the
placeholder content provides just enough functionality to get started and to ensure that the development
tools are working. I am not going to describe the contents of the src folder in detail since it is the subject of
all the other chapters in this part of the book, but, for completeness, Table 10-5 describes the files that are
added when a new project is created.

Chapter 10 ■ Understanding VUe.js projeCts and tools

229

Understanding the Packages Folder
JavaScript application development depends on a rich ecosystem of packages, ranging from those that
contain the code that will be sent to the browser to small packages that are used behind the scenes during
development for a specific task. Lots of packages are required in a Vue.js project. The example project
created at the start of this chapter, for example, requires more than 900 packages.

There is a complex hierarchy of dependencies between these packages that is too difficult to manage
manually and that is handled using a package manager. Vue.js projects can be created using two different
package managers: NPM, which is the Node Package Manager and which was installed alongside Node.js
in Chapter 1, and Yarn, which is a recent competitor designed to improve package management. I use NPM
throughout this book for simplicity.

 ■ Tip You should use npM to follow the examples in this book, but you can find details of Yarn at
https://yarnpkg.com if you want to use it in your own projects.

Table 10-5. The Initial Contents of the src Folder

Name Description

assets This folder is used for the static resources required by the application and that are
included in the bundling process, as described in the “Using the Development Tools”
section. The vue create command adds an image file that contains the Vue.js logo to
this folder.

components This folder is used for the application’s components. An application can contain
many components, and additional folders are often used to group related
components. The vue create command adds a placeholder component to this folder
called HelloWorld.

views This folder is used to contain components that are displayed using the URL routing
feature. I do not follow this convention in the examples in this book and prefer to
group all components in the components folder.

App.vue This is the root component, which is conventionally used as the point at which
custom application content begins.

main.js This is the JavaScript file that creates the Vue object, as described in Chapter 9.

router.js This file is used to configure the URL routing system, which is used to select the
components that are displayed to the user. I describe the routing feature in detail
in Chapters 22–24, where I follow a different convention of creating a router folder
that contains an index.js file that contains the configuration statements and that
makes it easy to split the configuration into multiple files that are handled as a single
JavaScript module.

store.js This file is used to configure the data store, which is used to share data throughout the
application. I describe data stores in Chapter 20 where I follow a different convention
of creating a store folder that contains an index.js file, which makes it easy to split
the configuration into multiple files in large applications.

https://yarnpkg.com

Chapter 10 ■ Understanding VUe.js projeCts and tools

230

When a project is created, the package manager is given an initial list of packages required for Vue.
js development. The package manager inspects each package to get the set of packages it depends on. The
process is performed again to get the dependencies of these packages and repeated until a complete list
of the packages required for the project is built up. The package manager downloads and installs all the
packages and installs them into the node_modules folder.

The initial set of packages is defined in the package.json file using the dependencies and
devDependencies properties. The dependencies property is used to list the packages that the application will
require to run. You may see different details in your project, but here is the dependencies section from the
package.json file from my example project:

...
"dependencies": {
 "vue": "^2.5.16",
 "vue-router": "^3.0.1",
 "vuex": "^3.0.1"
},
...

Only three packages are required in the dependencies section for a Vue.js project: the vue package
contains the main features, the vue-router package contains navigation features that I describe in
Chapters 22–24, and the vuex package contains the data store features that I describe in Chapter 20. For
each package, the package.json file includes details of the version numbers that are acceptable, using the
format described in Table 10-6.

Table 10-6. The Package Version Numbering System

Format Description

2.5.16 Expressing a version number directly will accept only the package with the exact
matching version number, e.g., 2.5.16.

* Using an asterisk accepts any version of the package to be installed.

>2.5.16 >=2.5.16 Prefixing a version number with > or >= accepts any version of the package that is
greater than or greater than or equal to a given version.

<2.5.16 <= 2.5.16 Prefixing a version number with < or <= accepts any version of the package that is
less than or less than or equal to a given version.

~2.5.16 Prefixing a version number with a tilde (the ~ character) accepts versions to be
installed even if the patch level number (the last of the three version numbers)
doesn’t match. For example, specifying ~2.5.16 will accept version 2.5.17 or 2.5.18
(which would contain patches to version 2.5.16) but not version 2.6.0 (which
would be a new minor release).

^2.5.16 Prefixing a version number with a caret (the ^ character) will accept versions even
if the minor release number (the second of the three version numbers) or the
patch number doesn’t match. For example, specifying ^2.5.16 will allow versions
2.5.17 and 2.6.0, for example, but not version 3.0.0.

Chapter 10 ■ Understanding VUe.js projeCts and tools

231

The version numbers specified in the dependencies section of the package.json file will accept minor
updates and patches. This version flexibility is more important when it comes to the devDependencies
section of the file, which contains a list of the packages that are required for development but which will not
be part of the finished application. Here is the devDependencies section of my project:

...
"devDependencies": {
 "@vue/cli-plugin-babel": "^3.0.0-beta.15",
 "@vue/cli-plugin-e2e-cypress": "^3.0.0-beta.15",
 "@vue/cli-plugin-eslint": "^3.0.0-beta.15",
 "@vue/cli-plugin-unit-mocha": "^3.0.0-beta.15",
 "@vue/cli-service": "^3.0.0-beta.15",
 "@vue/test-utils": "^1.0.0-beta.16",
 "chai": "^4.1.2",
 "vue-template-compiler": "^2.5.16"
},
...

These packages provide the development toolset. As I noted at the start of the chapter, the @vue/cli
package is in beta at the time of writing, and you can see this reflected in the package version numbers.

UNDERSTANDING GLOBAL AND LOCAL PACKAGES

package managers can install packages so they are specific to a single project (known as a local
install) or so they can be accessed from anywhere (known as a global install). Few packages require
global installs, but one exception is the @vue/cli package that i installed in Chapter 1 as part of the
preparations for this book. the @vue/cli package requires a global install because it is used to create
new Vue.js projects. the individual packages required for the project are installed locally, into the
node_modules folder.

All the packages required to development are automatically downloaded and installed into the node_
modules folder when you create a Vue.js project, but Table 10-7 lists some NPM commands that you may find
useful during development. All of these commands should be run inside the project folder, which is the one
that contains the package.json file.

Chapter 10 ■ Understanding VUe.js projeCts and tools

232

The last command described in Table 10-7 is an oddity, but package managers have traditionally included
support for running commands that are defined in the scripts section of the package.json file. In a Vue.js
project, this feature is used to provide access to the tools that are used during development and that prepare
the application for deployment. Here is the scripts section of the package.json file in the example project:

...
"scripts": {
 "serve": "vue-cli-service serve",
 "build": "vue-cli-service build",
 "lint": "vue-cli-service lint"
},
...

These commands are summarized in Table 10-8, and I demonstrate their use in later sections.

Table 10-7. Useful NPM Commands

Command Description

npm install This command performs a local install of the packages specified in
the package.json file.

npm install package@version This command performs a local install of a specific version of a
package and updates the package.json file to add the package to
the dependencies section.

npm install --save-dev package
@version

This command performs a local install of a specific version of a
package and updates the package.json file to add the package to
the devDependencies section.

npm install --global package@
version

This command performs a global install of a specific version of a
package.

npm list This command lists all the local packages and their dependencies.

npm run This command executes one of the scripts defined in the package.
json file, as described next.

Table 10-8. The Commands in the Scripts Section of the package.json File

Name Description

serve This command starts the development tools, as described in the “Using the Development
Tools” section.

build This command performs the build process, as described in the “Building the Application for
Deployment” section.

lint This command starts the JavaScript linter, as described in the “Using the Linter” section.

The commands in Table 10-8 are run by using npm run followed by the name of the command that you
require, and this must be done in the folder that contains the package.json file. So, if you want to run the lint
command in the example project, you would navigate to the projecttools folder and type npm run lint.

Chapter 10 ■ Understanding VUe.js projeCts and tools

233

Using the Development Tools
The development tools added to a project automatically detect changes, compile the application, and
package the files ready to be used by the browser. These are tasks you could perform manually, but having
automatic updates makes for a more pleasant development experience. To start the development tools, open
a command prompt, navigate to the projecttools folder, and run the command shown in Listing 10-2.

Listing 10-2. Starting the Development Tools

npm run serve

The key package used by the development tools is called webpack, which is the backbone for many
JavaScript development tools and frameworks. Webpack is a module bundler, which means that it packages
JavaScript modules for use in a browser, although that’s a bland description for an important function, and it
is one of the key tools that you will rely on while developing a Vue.js application.

When you run the command in Listing 10-2, you will see a series of messages as webpack prepares
the bundles required to run the example application. Webpack starts with the main.js file and loads all the
modules for which there are import or require statements to create a set of dependencies. This process is
repeated for each of the modules that main.js depends on, and webpack keeps working its way through the
application until it has a complete set of dependencies for the entire application, which is then combined
into a single file, known as a bundle.

During the bundling process, webpack reports on its process as it works its way through the modules
and finds the ones that it needs to include in its bundle, like this:

...
10% building modules 4/7 modules 3 active ...\node_modules\webpack\hot\emitter.js
...

The bundling process can take a moment, but it needs to be performed only when you start the
development tools. Once the initial preparation has been completed, you will see a message like this one,
which tells you that the application has been compiled and bundled:

...
DONE Compiled successfully in 2099ms

 App running at:
 - Local: http://localhost:8080/
 - Network: http://192.168.0.77:8080/

Note that the development build is not optimized.
To create a production build, run npm run build.
...

Open a new browser tab and navigate to http://localhost:8080 to see the example application, which
is shown in Figure 10-9.

Chapter 10 ■ Understanding VUe.js projeCts and tools

234

 ■ Tip You will notice that the Url displayed by the browser is http://localhost:8080/#/. the additional
characters are the result of the vue-router package that was added to the project at the start of the chapter
and that i describe in detail in Chapters 22–24.

Figure 10-9. Using the development tools

Understanding the Compilation and Transformation Process
Although webpack focuses on pure JavaScript, its functionality can be extended to deal with other types
of content through extensions called loaders. The Vue.js development tools include several loaders, but
there are two of particular note. You don’t have to work directly with these loaders because they are used
automatically during development, but knowing what they do helps make sense of the capabilities of the
Vue.js development tools.

The first important loader is vue-loader, which is responsible for transforming the mixed content in
.vue files so that it can be compiled and packaged to be consumed by the browser, which is the foundation
for being able to define components in a single file that mixes HTML, JavaScript, and CSS content. The other
loader of note integrates the Babel compiler, which is responsible for compiling JavaScript code that uses
the latest language features into JavaScript that runs on the broadest range of browsers, many of which don’t
support those features. To demonstrate the effect of Babel, I added statements to the main.js file that rely on
recent JavaScript features, as shown in Listing 10-3.

 Listing 10-3. Adding Statements in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'
import router from './router'
import store from './store'

Chapter 10 ■ Understanding VUe.js projeCts and tools

235

Vue.config.productionTip = false

let first = "Hello";
const second = "World";
console.log(`Message ${first},${second}`);

new Vue({
 router,
 store,
 render: h => h(App)
}).$mount('#app')

These statements use three recent JavaScript features to write a message to the browser’s console: the
let keyword, the const keyword, and a template string. These are not features that are supported by all
browsers, and so Babel is used to transform the JavaScript code.

 ■ Tip When you save the changes to the main.js file, you will see a warning displayed at the command
prompt. this comes from the linter, which i describe in the “Using the linter” section and can be ignored for the
moment.

Seeing the result requires some work because of the way that the application code is bundled by
webpack, but if you use the Sources tab of the browser’s F12 developer tools, you should be able to explore
the contents of the application bundle, which are available in the webpack-internal section.

 ■ Tip don’t worry if you can’t locate the compiled source code. not all browsers support this feature, and it
isn’t always available in those that do. the important point to understand is that the compiler transforms the
javascript so that modern features can be used even when not all of the target browsers support them.

Locate the main.js file in the browser window, and you will see that the statements from Listing 10-3
have been transformed into the following:

...
var first = "Hello";
var second = "World";
console.log('Message' + first + ',' + second);
...

The compilation process has replaced the let and const keywords with var and replaced the template
string with conventional string concatenation. The result is JavaScript code that will run in all of the browsers
that Vue.js supports.

Chapter 10 ■ Understanding VUe.js projeCts and tools

236

UNDERSTANDING THE LIMITS OF BABEL

Babel is an excellent tool, but it deals only with javascript language features. Babel is not able to add
support for recent javascript apis to browsers that do not implement them. You can still use these
apis—as i demonstrated in part 1 when i used the local storage api—but doing so restricts the range
of browsers that can run the application.

In Listing 10-4, I commented out the statements I added in Listing 10-3 to prevent the warning message
displayed by the project tools.

Listing 10-4. Commenting Statements in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'
import router from './router'
import store from './store'

Vue.config.productionTip = false

//let first = "Hello";
//const second = "World";
//console.log(`Message ${first},${second}`);

new Vue({
 router,
 store,
 render: h => h(App)
}).$mount('#app')

Understanding the Development HTTP Server
To simplify the development process, the project incorporates the webpack-dev-server package, which is an
HTTP server that is integrated with webpack. The default port for the development HTTP server is 8080, and
the server starts listening for HTTP requests as soon as the initial bundling process is complete.

When an HTTP request is received, the development HTTP server returns the contents of the
public/index.html file. As it processes the index.html file, the development server makes an important
addition, which you can see by right-clicking in the browser window and selecting View Page Source
from the pop-up menu.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,initial-scale=1.0">
 <link rel="icon" href="/favicon.ico">
 <title>projecttools</title>
 <link as="script" href="/app.js" rel="preload">
 </head>

Chapter 10 ■ Understanding VUe.js projeCts and tools

237

 <body>
 <noscript>

 We're sorry but projecttools doesn't work properly without
 JavaScript enabled. Please enable it to continue.

 </noscript>
 <div id="app"></div>
 <!-- built files will be auto injected -->
 <script type="text/javascript" src="/app.js"></script></body>
</html>

The development server adds a script element that tells the browser to load a file called app.js, which
is the name of the bundle created by webpack during the startup sequence for the development tools. The
bundle doesn’t contain just the application code, however, and additional features are sent to the browser
that are integral to the Vue.js development experience, as described in the sections that follow.

Understanding Hot Model Replacement
The bundle that webpack creates includes support for a feature called Hot Module Replacement (HMR).
When you make a change to the application’s source or content files, the altered file is processed by webpack
and its loaders, bundled, and sent to the browser. In most cases, only a small change is sent to the browser,
and the application is updated without resetting the application’s state. To demonstrate, I added some
HTML elements and some JavaScript code to the App.vue file in the src folder, as shown in Listing 10-5.

Listing 10-5. Changing Content in the App.vue File in the src Folder

<template>
 <div id="app">
 <div>Button Clicks: {{ counter }}</div>
 <button v-on:click="incrementCounter">Press Me</button>
 <div id="nav">
 <router-link to="/">Home</router-link> |
 <router-link to="/about">About</router-link>
 </div>
 <router-view />
 </div>
</template>

<script>
export default {
 data() {
 return {
 counter: 0
 }
 },
 methods: {
 incrementCounter() {
 this.counter++;
 }
 }
}
</script>

Chapter 10 ■ Understanding VUe.js projeCts and tools

238

<style>

 #app {
 font-family: 'Avenir', Helvetica, Arial, sans-serif;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 text-align: center;
 color: #2c3e50;
 }

 #nav {
 padding: 30px;
 }

 #nav a {
 font-weight: bold;
 color: #2c3e50;
 }

 #nav a.router-link-exact-active {
 color: #42b983;
 }
</style>

The original bundle sent to the browser included code that opens a persistent HTTP connection back to
the server and waits for instructions. When you save the changes to the file, you will see messages displayed
on the command line as the component file is transformed, compiled, and bundled.

The persistent HTTP connection is then used to tell the browser that there is a replacement module
available, which is sent to the browser and used to update the application, as shown in Figure 10-10.

Figure 10-10. The hot module replacement feature

Chapter 10 ■ Understanding VUe.js projeCts and tools

239

For some changes, the HMR feature is able to update the application without resetting its state. This
works best for changes to HTML elements. In Listing 10-6, I have changed the element used to display the
message to the user.

Listing 10-6. Making an HTML Change in the App.vue File in the src Folder

...
<template>
 <div id="app">
 <h1>Button Clicks: {{ counter }}</h1>
 <button v-on:click="incrementCounter">Press Me</button>
 <div id="nav">
 <router-link to="/">Home</router-link> |
 <router-link to="/about">About</router-link>
 </div>
 <router-view />
 </div>
</template>
...

Click the button in the browser a few times before saving the changes to the App.vue file, and you will
see that the application is updated without losing the application’s state, ensuring that the value of the
counter property is preserved, as shown in Figure 10-11. Preserving the application’s state is useful when
you are working on an application feature that requires a navigation process or a form to be filled in and that
would otherwise require re-creating the required state each time a change is made.

Figure 10-11. A state-preserving update

Not all changes can be applied without resetting the application’s state. If you change the script
part of a component, then Vue.js has to destroy the existing component object and create a new one. The
state of the other components in the application remains unaffected, but the state of the component being
edited is lost. And, in some cases, the HMR feature just gets it wrong entirely, and you will have to reload the
application to see the effect of changes.

Chapter 10 ■ Understanding VUe.js projeCts and tools

240

Understanding the Error Display
One effect of the immediacy provided by the HMR feature is that you will tend to stop watching the console
output during development because your focus will naturally gravitate to the browser window. The risk
is that the content displayed by the browser remains static when the code contains errors because the
compilation process can’t produce a new module to send to the browser through the HMR feature.

To address this, the bundle produced by webpack includes an integrated error display that shows details
of problems in the browser window. To demonstrate the way that an error is handled, I added the statement
shown in Listing 10-7 to the script element of the App.vue file.

Listing 10-7. Creating an Error in the App.vue File in the src Folder

...
<script>
export default {
 not a valid statement
 data() {
 return {
 counter: 0
 }
 },
 methods: {
 incrementCounter() {
 this.counter++;
 }
 }
}
</script>
...

The addition isn’t a valid JavaScript statement. When the change to the file is saved, the build process
tries to compile the code and generates the following error message at the command prompt:

...
ERROR Failed to compile with 1 errors

 error in ./src/App.vue

Syntax Error: Unexpected token, expected , (12:8)

 14 | export default {
> 15 | not a valid statement
 | ^
 16 | data() {
 17 | return {
 18 | counter: 0
...

The same error message is displayed in the browser window, as shown in Figure 10-12, so there is no
chance that you won’t realize there is a problem even if you are not paying attention to the command-line
messages.

Chapter 10 ■ Understanding VUe.js projeCts and tools

241

In Listing 10-8, I have commented out the statement that caused the error, which allows the application
to be built without problems.

Listing 10-8. Commenting Out a Problem Statement in the App.vue File in the src Folder

...
<script>
export default {
 //not a valid statement
 data() {
 return {
 counter: 0
 }
 },
 methods: {
 incrementCounter() {
 //debugger;
 this.counter++;
 }
 }
}
</script>
...

Figure 10-12. Displaying an error in the browser window

Chapter 10 ■ Understanding VUe.js projeCts and tools

242

Using the Linter
The features I selected for the example project at the start of the chapter includes a linter—the ESLint
package—that is responsible for inspecting the project to make sure the code and content conform to a
set of rules. The configuration I chose for the linter means that it performs its checks whenever a change is
detected to files in the src folder.

When you choose to add the linter during the setup for a Vue.js project, you are offered a set of options
that determine the set of rules that are used to assess the project. These options are described in Table 10-9.

Table 10-9. The Vue.js Linter Rule Options

Option Description

Error Prevention Only This option applies only the “essential” Vue.js rules and the “recommended”
ESLint rules, both of which are described after the table.

Airbnb This option uses a set of rules developed by Airbnb and that are described at
https://github.com/airbnb/javascript. These rules are applied in addition
to the “essential” Vue.js rules described after the table.

Standard This option uses a set of rules known as “standard.” The rules are described at
https://github.com/standard/standard. These rules are applied in addition
to the “essential” Vue.js rules described after the table.

Prettier This option uses the Prettier tool, which is used to enforce code formatting, as
described at https://prettier.io. The formatting is performed in addition to
applying the “essential” Vue.js rules described after the table.

I chose the Error Prevention Only option at the start of the chapter, which is the most relaxed set of rules
that can be selected and which is focused on identifying problems that may lead to errors. The other options
go beyond error prevention to enforce style issues, which is something that I don’t get along with and prefer
not to use. (I find the “standard” rules especially frustrating because they include a long list of formatting
rules; see “The Joy and Misery of Linting” for my views on this kind of linting.)

THE JOY AND MISERY OF LINTING

linters can be a powerful tool for good, especially in a development team with mixed levels of skill and
experience. linters can detect common problems and subtle errors that lead to unexpected behavior
or long-term maintenance issues. i like this kind of linting, and i like to run my code through the linting
process after i have completed a major application feature or before i commit my code into version
control.

But linters can also be a tool of division and strife. in addition to detecting coding errors, linters can also
be used to enforce rules about indentation, brace placement, the use of semicolons and spaces, and
dozens of other style issues. Most developers have style preferences that they adhere to and believe
that everyone else should, too. i certainly do: i like four spaces for indentation and opening braces to
be on the same line as the expression they relate to. i know that these are part of the “one true way” of
writing code, and the fact that other programmers prefer two spaces, for example, has been a source of
quiet amazement to me since i first started writing code.

https://github.com/airbnb/javascript
https://github.com/standard/standard
https://prettier.io

Chapter 10 ■ Understanding VUe.js projeCts and tools

243

linters allow people with strong views about formatting to enforce them on others, generally under the
banner of being “opinionated.” the logic is that developers spend too much time arguing about different
coding styles and everyone is better off being forced to write in the same way. My experience is that
developers will just find something else to argue about and that forcing a code style is often just an
excuse to make one person’s preferences mandatory for an entire development team.

i often help readers when they can’t get book examples working (my e-mail address is adam@adam-
freeman.com if you need help), and i see all sorts of coding styles every week. i know, deep in my heart,
that anyone who doesn’t follow my personal coding preferences is just plain wrong. But rather than
forcing them to code my way, i get my code editor to reformat the code, which is a feature that every
capable editor provides.

My advice is to use linting sparingly and focus on the issues that will cause real problems. leave
formatting decisions to the individuals and rely on code editor reformatting when you need to read code
written by a team member who has different preferences.

There are two groups of rules that are applied when you select the Error Prevention Only option
described in Table 10-9. The first set of rules is provided by the ESLint developers and the other by the Vue.js
developers.

The ESLint rules are described at https://eslint.org/docs/rules, and they focus on general errors
that are commonly encountered in JavaScript programming. The Vue.js rules are, as you might imagine,
specific to Vue.js development. There are three sets of rules available, as described in Table 10-10. For
detailed descriptions of each group of rules, see https://github.com/vuejs/eslint-plugin-vue.

Table 10-10. The Vue.js Linter Rule Levels

Name Description

Essential These are rules are largely related to using directives correctly. Directives are
described in Chapters 12–15.

Strongly Recommended These are rules that are intended to help with the readability of code. They are
largely related to formatting and layout issues.

Recommended These are rules intended to ensure consistency.

The Essential rules are enabled by default, which means the Strongly Recommended and
Recommended rules are ignored. You can change the rules used for linting by changing the esLintConfig
section of the package.json file. Here is that section of the package.json file as it was created at the start of
the chapter:

...
"eslintConfig": {
 "root": true,
 "env": {
 "node": true
 },
 "extends": [
 "plugin:vue/essential",
 "eslint:recommended"
],

https://eslint.org/docs/rules
https://github.com/vuejs/eslint-plugin-vue

Chapter 10 ■ Understanding VUe.js projeCts and tools

244

 "rules": {},
 "parserOptions": {
 "parser": "babel-eslint"
 }
},
...

The extends section of the configuration file is used to select the sets of rules that will be applied. The
three values for the Vue.js-specific rules are plugin:vue/recommended, plugin:vue/strongly-recommended,
and plugin:vue/essential, corresponding to the rules described in Table 10-10. In Listing 10-9, I have
enabled the Strongly Recommended rules. When you select a set of rules, the higher-priority rules are also
applied so that selecting the Recommended rules will enforce the Strongly Recommended and Essential
rules too.

 ■ Tip if you selected the option to store feature settings in separate configuration files when you created the
project, then you can make these changes in the .eslintrc.json file instead of the package.json file.

Listing 10-9. Changing Vue.js Linting Rules in the package.json File in the projecttools Folder

...
"eslintConfig": {
 "root": true,
 "env": {
 "node": true
 },
 "extends": [
 "plugin:vue/strongly-recommended",
 "eslint:recommended"
],
 "rules": {},
 "parserOptions": {
 "parser": "babel-eslint"
 }
},
...

Changes to the linter configuration do not take effect until the development tools are restarted.
Use Control+C to stop the development tools and start them again by running the command shown in
Listing 10-10 in the projecttools folder.

Listing 10-10. Starting the Development Tools

npm run serve

Chapter 10 ■ Understanding VUe.js projeCts and tools

245

The linter will be run as part of the build process. Some of the rules that I enabled in Listing 10-9 relate
to the number of spaces used as indentation, and if you have followed my coding preferences for the listings,
you will see warnings like this one:

...
Module Warning (from ./node_modules/eslint-loader/index.js):
error: Expected indentation of 2 spaces but found 4 spaces (vue/html-indent)
at src\App.vue:2:1:
 1 | <template>
> 2 | <div id="app">
 | ^
 3 | <h1>Button Clicks: {{ counter }}</h1>
 4 | <button v-on:click="incrementCounter">Press Me</button>
...

You may not see this error depending on your coding style, but you will see this one, which relates
changes I made to the App.vue file in Listing 10-5:

...
error: Expected '@' instead of 'v-on:' (vue/v-on-style) at src\App.vue:4:17:
 2 | <div id="app">
 3 | <h1>Button Clicks: {{ counter }}</h1>
> 4 | <button v-on:click="incrementCounter">Press Me</button>
 | ^
 5 |
 6 | <div id="nav">
 7 | <router-link to="/">Home</router-link> |
...

As I explain in Chapter 14, there are two ways to register interest in an event—a short form and a long
form. One of the rules in the Strongly Recommended set enforces the use of the short form and warns when
the long form is used.

 ■ Tip You can use the npm run lint command to run just the linter, outside of the normal build process.

Customizing the Linter Rules
Neither of the rules for which I have received warnings suit my coding preferences. I am a dedicated four-
space coder, and I prefer the long form used to apply Vue.js features to HTML elements. But rather than
disable the entire set of rules, I can reconfigure or disable the rules that I don’t want and still get the benefit
of the ones that I find useful. In Listing 10-11, I have disabled the indentation rule and changed the directive
rule so that it checks for the long form and not the short form.

Chapter 10 ■ Understanding VUe.js projeCts and tools

246

Listing 10-11. Configuring Rules in the package.json File in the projecttools Folder

...
"eslintConfig": {
 "root": true,
 "env": {
 "node": true
 },
 "extends": [
 "plugin:vue/strongly-recommended",
 "eslint:recommended"
],
 "rules": {
 "vue/html-indent": "off",
 "vue/v-on-style": ["warn", "longform"]
 },
 "parserOptions": {
 "parser": "babel-eslint"
 }
},
...

Each rule has its own configuration options that can be seen in the summary page for the groups of
rules for which I provided URLs in the previous section. In this case, I configured two Vue.js-specific rules.
I set the vue/html-indent rule to off, which disables indentation checking for the HTML elements in a
component’s template element. I left the vue/v-on-style rule enabled but changed its configuration so that
it accepts the long form that I prefer and generates a warning when the short form is used. To see the effect
of the changes, stop and start the development tools again.

DISABLING LINTING FOR INDIVIDUAL STATEMENTS AND FILES

You may find that there are individual statements that cause the linter to report an error but that you are
not able to change. rather than disable the rule entirely, you can add a comment to the code that tells
the linter to ignore the rule for the next line, like this:

...
<!-- eslint-disable-next-line vue/v-on-style -->
...

if you want to disable every rule for the next statement, then you can omit the rule name, like this:

...
<!-- eslint-disable-next-line -->
...

Chapter 10 ■ Understanding VUe.js projeCts and tools

247

if you want to disable a rule for an entire file, then you can add a comment like this one at the top of the
file for Vue.js-specific rules and at the top of the script element for eslint rules:

...
<!-- eslint-disable vue/v-on-style -->
...

if you want to disable linting for all rules for a single file, then you can omit the rule name from the
comment, like this:

...
<!-- eslint-disable -->
...

these comments allow you to ignore code that doesn’t conform to the rules but that cannot be changed,
while still linting the rest of the project. You can also folders and file types to the package.json file to
exclude them from the linting process.

Debugging the Application
Not all problems can be detected by the compiler or the linter, and code that compiles perfectly can behave
in unexpected ways. There are two ways to understand the behavior of your application, as described in the
sections that follow.

Exploring the Application State
The Vue Devtools browser extension is an excellent tool for exploring the state of a Vue.js application. There
are versions available for Google Chrome and Mozilla Firefox, and you can find details of the project—
including support for any additional platforms since the time of writing—at https://github.com/vuejs/
vue-devtools. Once you have installed the extension, you will see an additional tab in the browser’s
developer tools window, which is accessed by pressing the F12 button (which is why these are also known as
the F12 tools).

The Vue tab in the F12 tools window allows you to explore and alter the application’s structure and
state. You can see the set of components that provide the application functionality and the data that each of
them provides. For the example application, if you open the Vue tab and expand the application structure
in the left pane, you will see the data for the App component in the right pane, including the value of the
counter property that I defined in Listing 10-5 and that is shown in Figure 10-13.

https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools

Chapter 10 ■ Understanding VUe.js projeCts and tools

248

You can click the values to change them. The changes update the application’s live data model and will
be reflected in the browser immediately if the value you change is displayed through a data binding.

The browser extension also displays information about an application’s Vuex store (which I describe in
Chapter 20), details of the custom events triggered by the application (which I describe in Chapter 14), and
details of the URL routing system, which I describe in Chapters 22–24.

Using the Browser Debugger
Modern browsers include sophisticated debuggers that can be used to control the execution of an
application and examine its state. The Vue.js development tools include support for creating source maps,
which allow the browser to correlate the minified and bundled code that it is executing with the developer-
friendly source code required for productive debugging.

Some browsers let you navigate through the application’s source code using these source maps and
create breakpoints, which will halt the execution of the application when they are reached and pass control
to the debugger. As I write this, the ability to create breakpoints is a fragile feature that doesn’t work on
Chrome and has mixed reliability in other browsers. As a consequence, the most reliable way to pass control
of the application to the debugger is to use the JavaScript debugger keyword, as shown in Listing 10-12.

Listing 10-12. Triggering the Debugger in the App.vue File in the src Folder

<template>
 <div id="app">
 <h1>Button Clicks: {{ counter }}</h1>
 <button v-on:click="incrementCounter">Press Me</button>

 <div id="nav">
 <router-link to="/">Home</router-link> |
 <router-link to="/about">About</router-link>
 </div>
 <router-view />
 </div>
</template>

Figure 10-13. Exploring the application state

Chapter 10 ■ Understanding VUe.js projeCts and tools

249

<script>
export default {
 data() {
 return {
 counter: 0
 }
 },
 methods: {
 incrementCounter() {
 debugger;
 this.counter++;
 }
 }
}
</script>

<style>

 /* ...styles omitted for brevity... */

</style>

The application will be executed as normal, but when the button is clicked and the incrementCounter
method is invoked, the browser will encounter the debugger keyword and halt execution. You can then use
the controls in the F12 tools window to inspect the variables and their values at the point at which execution
was stopped and manually control execution, as shown in Figure 10-14. The browser is executing the
minified and bundled code created by the development tools but displaying the corresponding code from
the source map.

Figure 10-14. Using the browser debugger

Chapter 10 ■ Understanding VUe.js projeCts and tools

250

Most browsers will ignore the debugger keyword unless the F12 tools window is open, but it is good
practice to remove it at the end of a debugging session. The default linter configuration includes a rule
that warns when the debugger keyword is left in code when you build the application for production, as
described in the next section.

Configuring the Development Tools
The default configuration contains sensible settings, but you can change the configuration to suit your
development needs. Configuration changes are defined by adding a file named .vue.config.js in the
project folder or by adding a vue section to the package.json file. To demonstrate a configuration change, I
created the vue.config.js file in the projecttools folder and added the content shown in Listing 10-13.

 Listing 10-13. The Contents of the vue.config.js File in the projecttools Folder

module.exports = {
 runtimeCompiler: true
}

This is the same configuration change that I made in Chapter 9, and it allows components to define
their templates as strings, rather than using template elements. The complete set of configuration options is
described at https://cli.vuejs.org/config/#vue-config-js, but Table 10-11 describes the most useful
options for most projects.

Table 10-11. Useful Configuration Options

Name Description

baseUrl This option is used to specify a URL prefix that is used to reach the application when
it is deployed as part of a larger site. The default URL is /.

outputDir This option is used to specify the directory used for building the production version
of the application, as described in “Building the Application for Deployment Section.”
The default directory is dist.

devServer This option is used to configure the development HTTP server using the options
described at https://webpack.js.org/configuration/dev-server.

runtimeCompiler This option enables the runtime compiler, which allows components to define their
templates using the template property but increases the amount of code sent to the
browser.

chainWebpack This option is used to configure webpack. I use this configuration option in
Chapter 21 to disable a webpack feature.

Building the Application for Deployment
The files created by the development tools are not suitable for production use and include extra
functionality, such as support for hot module replacement. When you are ready to deploy your application,
you must create a set of bundles containing just the application’s code and content, along with the modules
they depend on, so that these files can be deployed a production HTTP server.

Depending on the features you have selected, you may have to perform some configuration changes to
prepare the application for deployment, as I demonstrated for the SportsStore application in Chapter 8.

https://cli.vuejs.org/config/#vue-config-js
https://webpack.js.org/configuration/dev-server

Chapter 10 ■ Understanding VUe.js projeCts and tools

251

For the example project for this chapter, as noted in the previous section, it is a good idea to remove the
debugger keyword before deployment, so in Listing 10-14, I commented out the debugger statement in the
App.vue file.

Listing 10-14. Commenting Out the debugger Keyword in the App.vue File in the src Folder

...
<script>
export default {
 data() {
 return {
 counter: 0
 }
 },
 methods: {
 incrementCounter() {
 //debugger;
 this.counter++;
 }
 }
}
</script>
...

The linter rules that I enabled in Listing 10-9 perform additional checks that are flagged only when you
build for production. You may find these warnings useful, but my personal preference is to disable them, and
in Listing 10-15, I have returned to using only the essential Vue.js linting rules.

Listing 10-15. Changing Linter Rules in the package.json File in the projecttools Folder

...
"eslintConfig": {
 "root": true,
 "env": {
 "node": true
 },
 "extends": [
 "plugin:vue/essential",
 "eslint:recommended"
],
 "rules": {
 "vue/html-indent": "off",
 "vue/v-on-style": ["warn", "longform"]
 },
 "parserOptions": {
 "parser": "babel-eslint"
 }
 },
...

Chapter 10 ■ Understanding VUe.js projeCts and tools

252

To create the production build, run the command shown in Listing 10-16 in the projecttools folder.

Listing 10-16. Creating the Production Build

npm run build --modern

The --modern argument is an optional feature that creates two version of the application, one of which
is solely for modern browsers that support the latest JavaScript features and one for older browsers that
need extra code and libraries to handle those features. Aside from specifying this option when you build
the application, no further action is required, and the selection of the appropriate version is performed
automatically, as described at https://cli.vuejs.org/guide/browser-compatibility.html#modern-mode.

The build process can take a while to complete, especially for large applications. The result of the build
process is a dist folder that contains all the files that the application requires in deployment, as shown in
Figure 10-15. The name of the individual files will be different in your project.

The dist folder contains the index.html file that will be the entry point for the application and that
contains link and script elements that will load the JavaScript and CSS files, like this:

<!DOCTYPE html>
<html>
<head>
 <meta charset=utf-8>
 <meta http-equiv=X-UA-Compatible content="IE=edge">
 <meta name=viewport content="width=device-width,initial-scale=1">
 <link rel=icon href=/favicon.ico>

Figure 10-15. The contents of the dist folder

https://cli.vuejs.org/guide/browser-compatibility.html#modern-mode

Chapter 10 ■ Understanding VUe.js projeCts and tools

253

 <title>projecttools</title>
 <link as= style href=/css/app.b938236b.css rel=preload>
 <link as=script href=/js/app.b671844a.js rel=preload>
 <link as=script href=/js/chunk-vendors.02da9ab1.js rel=preload>
 <link href=/css/app.b938236b.css rel=stylesheet>
</head>
<body>
 <noscript>We're sorry but projecttools doesn't work properly without JavaScript

enabled. Please enable it to continue.</noscript><div id=app></div>
 <script src=/js/chunk-vendors.02da9ab1.js></script>
 <script src=/js/app.b671844a.js></script>
</body>
</html>

The JavaScript files include the application code and the Vue.js modules that it depends on, and no
further additions to the HTML file are required.

Installing and Using an HTTP Server
In a real project, the files in the dist folder would be copied to the production HTTP server, which may
be running in a hosted environment or in a local data center. To complete this chapter, I am going to use a
simple but powerful HTTP server written in JavaScript that can be downloaded and installed using NPM.

 ■ Caution the http server used during the development process is not suitable for production use. You must
use a different web server to deliver your application to users.

Run the commands shown in Listing 10-17 to install the Express package and a related package that is
required to support URL routing.

Listing 10-17. Adding Packages for the Production Build

npm install --save-dev express@4.16.3
npm install --save-dev connect-history-api-fallback@1.5.0

I added a file called server.js to the projecttools folder and added the statements shown in
Listing 10-18, which configure the packages installed in Listing 10-17 so they will serve the example application.

Listing 10-18. The Contents of the server.js File in the projecttools Folder

const express = require("express");
const history = require("connect-history-api-fallback");
const bodyParser = require('body-parser');

const app = express();
app.use(bodyParser.json());
app.use(history());
app.use("/", express.static("./dist"));

Chapter 10 ■ Understanding VUe.js projeCts and tools

254

app.listen(80, function () {
 console.log("HTTP Server running on port 80");
});

Run the command shown in Listing 10-19 in the projecttools folder to test the application.

Listing 10-19. Testing the Deployment Build

node server.js

This command executes the statements in the JavaScript file from Listing 10-18, which set up a web
server on port 80 and listens for requests. To test the application, navigate to http://localhost, and you will
see the application running, as illustrated in Figure 10-16.

Summary
In this chapter, I showed you how to create a Vue.js project using the @vue/cli package and explained the
development tools that it provides. I explained how projects are structured, how applications are compiled
and bundled, and how errors are reported, both from the compiler and from the optional linter. I finished
the chapter by describing the tools that can be used to debug an application and demonstrated how to build
a project in preparation for deployment. In the next chapter, I describe the Vue.js support for data bindings.

Figure 10-16. Testing the deployed application

255© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_11

CHAPTER 11

Understanding Data Bindings

In this chapter, I explain how to perform one of the most basic tasks required in web application
development: using a data binding to display a data value. I explain how to add a basic data binding,
known as the text interpolation binding, to a component’s template and how to create the data value for
that binding. I explain how Vue.js evaluates a data binding’s expression and demonstrate different ways
that values can be generated and formatted before they are displayed to the user. Table 11-1 puts the text
interpolation data binding in context.

Table 11-1. Putting Text Interpolation Data Bindings in Context

Question Answer

What are they? Data bindings connect a component’s data with the HTML
elements in its template. The text interpolation is the simplest of
the bindings that Vue.js supports.

Why are they useful? Data bindings make a Vue.js application interactive. Actions
performed by the user alter the application’s state, which are
reflected back to the user through data bindings.

How are they used? Text interpolation bindings are created using double curly brace
characters, {{ and }}, which is why they are often called mustache
bindings.

Are there any pitfalls or limitations? Vue.js allows complex expressions in data bindings. This is a useful
feature, but it is easy to get carried away and embed too much logic
in data binding, such that the project is hard to test and maintain.

Are there any alternatives? The text interpolation binding is only one of the bindings that Vue.
js supports, and other bindings are described later chapters.

Chapter 11 ■ Understanding data Bindings

256

Table 11-2 summarizes the chapter.

Table 11-2. Chapter Summary

Problem Solution Listing

Define a new component Create a file with the .vue extension and add template,
script, and style elements.

6, 7

Display a data value Add a data value and a text interpolation binding 8, 9

Compute a value Use a computed property or a method 10–14

Format a data property Use one or more filters 15–18

Preparing for This Chapter
For the examples in this chapter, run the command shown in Listing 11-1 in a convenient location to create a
new Vue.js project.

Listing 11-1. Creating a New Project

vue create templatesanddata --default

This command creates a project called templatesanddata. Once the setup process has finished, run
the command shown in Listing 11-2 in the templatesanddata folder to add the Bootstrap CSS package to
the project.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Listing 11-2. Adding the Bootstrap CSS Package

npm install bootstrap@4.0.0

Add the statement shown in Listing 11-3 to the main.js file in the src folder to incorporate the
Bootstrap CSS file into the application.

Listing 11-3. Incorporating the Bootstrap Package in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "bootstrap/dist/css/bootstrap.min.css";

Vue.config.productionTip = false

https://github.com/Apress/pro-vue-js-2

Chapter 11 ■ Understanding data Bindings

257

new Vue({
 render: h => h(App)
}).$mount('#app')

Add the statement shown in Listing 11-4 to disable the linter rule that warns when the browser’s
JavaScript console is used, which I rely on later in this chapter.

Listing 11-4. Configuring the Linter in the package.json File in the templatesanddata Folder

...
"eslintConfig": {
 "root": true,
 "env": {
 "node": true
 },
 "extends": [
 "plugin:vue/essential",
 "eslint:recommended"
],
 "rules": {
 "no-console": "off"
 },
 "parserOptions": {
 "parser": "babel-eslint"
 }
},
"postcss": {
 "plugins": {
 "autoprefixer": {}
 }
},
...

Run the command shown in Listing 11-5 in the templatesanddata folder to start the development tools.

Listing 11-5. Navigating to the Project Folder and Starting the Development Tools

npm run serve

The initial build process will be performed, after which you will see a message telling you that the
project has compiled successfully and the HTTP server is listening for requests on port 8080. Open a new
browser window and navigate to http://localhost:8080 to see the project’s placeholder content, as shown
in Figure 11-1.

Chapter 11 ■ Understanding data Bindings

258

Understanding the Elements of a Component
Components are the main building block in Vue.js applications, and all but the simplest projects will contain
several components. Components are defined in .vue files that contain HTML content that is displayed to
the user, data and JavaScript code to support the content, and CSS styles. The convention in Vue.js projects
is to define a root component that orchestrates the rest of the application; this is the App component, and it is
defined in a file called App.vue in the src folder. The default project options that I used to create the example
project added a root component with the content shown in Listing 11-6.

Listing 11-6. The Initial Contents of the App.vue File in the src Folder

<template>
 <div id="app">

 <HelloWorld msg="Welcome to Your Vue.js App"/>
 </div>
</template>

<script>
import HelloWorld from './components/HelloWorld.vue'

export default {
 name: 'app',
 components: {

Figure 11-1. Running the example application

Chapter 11 ■ Understanding data Bindings

259

 HelloWorld
 }
}
</script>

<style>
#app {
 font-family: 'Avenir', Helvetica, Arial, sans-serif;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 text-align: center;
 color: #2c3e50;
 margin-top: 60px;
}
</style>

Components are defined using three elements: the template element, the script element, and the
style element, which I briefly describe in the sections that follow.

Understanding the Template Element
The template element contains the component’s HTML content. Templates contain a single top-level
element (a div element in the template in Listing 11-6), which replaces the element that applies the
component, as described in Chapter 9. A component’s template contains a mix of regular HTML elements
and Vue.js enhancements that apply application features, such as data bindings, directives, and custom
elements that apply other components. You have seen examples of all these features in earlier chapters, but I
describe them in detail in this chapter and throughout the rest of the book.

Understanding the Script Element
The script element contains the component’s JavaScript module, whose properties configure the
component, define its data model, and provide the logic that supports its features. The different roles of the
script element mean that it can be difficult to understand when you start Vue.js development, but you will
soon become familiar with the most useful configuration properties.

Understanding the Style Element
The style element defines CSS styles, which can be configured so they apply only to the template elements
or have a wider effect in the application. Not all components require their own CSS styles, so you will
often encounter components that have just template and script elements, especially when using a CSS
framework like Bootstrap, as I do throughout this book. But there are some useful CSS features provided
by the script element, and it is worth understanding how they can be applied, even when using a CSS
framework.

As you will learn, it is the way that the template, script, and style elements are combined that makes
components useful, and these elements are the distinctive characteristic of Vue.js development.

Chapter 11 ■ Understanding data Bindings

260

Resetting the Component in the Example Application
The component in the App.vue file doesn’t do much, but I am still going to strip it right back to the basics so
that I can introduce features one by one. In Listing 11-7, I have simplified the template and script elements
and removed the style element, giving me a clean slate for the rest of the chapter.

Listing 11-7. Resetting the Contents of the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>This is the component</h3>
 </div>
</template>

<script>
 export default {
 name: "MyComponent"
 }
</script>

The template now contains a top-level div element that I have assigned to several classes that apply
Bootstrap CSS styles, which lets me apply styles without using a style element in this component. The div
element contains a single h3 element with a simple text message.

When you save the change to the App.vue file, the project will be compiled, the browser will reload, and
you will see the content shown in Figure 11-2.

Figure 11-2. Simplifying the component in the example application

The only property defined in the script element is name. The Vue Devtools browser extension
(described in Chapter 10) uses the optional name property to show the structure of the application, and
picking a distinctive and meaningful name can help make sense of what’s happening when you inspect
the application’s state. Open the browser’s F12 developer tools and switch to the Vue tab; you will see that
the component’s name is displayed in the layout, as shown in Figure 11-3. The display itself isn’t especially
useful at the moment, but it will provide more information as features are added.

Chapter 11 ■ Understanding data Bindings

261

Displaying a Data Value
One of the most important jobs that a component can do is display data to the user. Displaying a data
value requires two steps: defining a data property in the script element and adding a data binding to the
template element to present the value to the user, as shown in Listing 11-8.

Listing 11-8. Displaying a Data Value in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name }}</h3>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Kayak"
 }
 }
 }
</script>

Data values are defined using the data property in the JavaScript module. A specific pattern must be
followed to define data values for a component: the data property returns a function, the function returns an
object, and the properties defined by the object can be used to display data values to the user.

Figure 11-3. Inspecting the structure of the application

Chapter 11 ■ Understanding data Bindings

262

STEP-BY-STEP GUIDANCE FOR DEFINING DATA VALUES

adding support for data values requires an awkward pattern, and getting it wrong is one of the most
common errors in Vue.js development. start by defining a data property that returns a function like this:

...
<script>
 export default {
 name: "MyComponent",
 data: function() {
 }
 }
</script>
...

Use data, followed by a colon, followed by the function keyword, followed by an opening and a closing
parenthesis (the (and) characters) and then an opening and a closing curly brace (the { and }
characters). the next step is to return an object, using the Javascript object literal form described in
Chapter 4.

...
<script>
 export default {
 name: "MyComponent",
 data: function() {
 return {
 }
 }
 }
</script>
...

Use the return keyword, followed by opening and closing curly braces. the final step is to define the
data values that you require. a value is specified using a name, followed by a colon (the : character),
followed by the value.

...
<script>
 export default {
 name: "MyComponent",
 data: function() {
 return {
 myValue: 10
 }
 }
 }
</script>
...

Chapter 11 ■ Understanding data Bindings

263

Multiple data values are separated by placing a comma at the end of the previous line and then defining
a new value, like this:

...
<script>
 export default {
 name: "MyComponent",
 data: function() {
 return {
 myValue: 10, // <-- notice the comma here
 myOtherValue: "Hello, World"
 }
 }
 }
</script>
...

this is required only for data values, and once you gain a little experience with Vue.js development,
you will start to follow this pattern automatically. if you forget to define a function that returns an object,
then you will see a warning in the browser’s Javascript console, like this:

[Vue warn]: The "data" optionz should be a function that returns a per-instance value in
component definitions.

this warning isn’t displayed in the main browser window like the compiler errors i demonstrated in
Chapter 10, but it will generally cause other warnings and prevent data bindings from working correctly.

Data values in the script element are linked to HTML elements in the template element using data
bindings. There are a number of different types of data binding available, but to get started, I use the
simplest, which is the text interpolation binding, like this:

...
<h3>Product: {{ name }}</h3>
...

This type of binding inserts a data value into the text content of an HTML element and is denoted by
double curly braces ({{ and }}). The double braces are said to resemble a mustache, which is why this is also
known as the mustache binding. Save the changes to the App.vue file, and you will see the content displayed
in Figure 11-4.

Chapter 11 ■ Understanding data Bindings

264

The Vue Devtools tab in the browser’s F12 developer tools window will also be updated to show
the component’s data value. Data values are live, which means that changing the value is automatically
reflected throughout the application. For the example application, this means that changing the value of the
component’s name property will automatically update the text interpolation data binding in the template
element. The application doesn’t have the ability to alter the name value itself yet, but if you move the mouse
pointer over the value in the Vue Devtools panel, you will see a pencil icon that can be clicked to activate an
editor. Change the value to "Green Kayak" (taking care to retain the quote characters) and click the disk icon
to save the change. Vue.js will detect the change to the data property and update the HTML displayed to the
user, as shown in Figure 11-5.

Figure 11-4. Displaying a data value

Figure 11-5. Changing a data property using the Vue Devtools

Using More Complex Expressions in a Data Binding
When Vue.js displays a data binding, it evaluates its contents as a JavaScript expression. When the contents
of the data binding are just the name of a data property, then evaluating the expression produces the
property’s value, which is how the {{ name }} binding I used in the example is able to display the value of
the data property called name.

Treating data bindings as expressions means you can use more complex JavaScript statements in data
bindings. In Listing 11-9, I added two further data properties to the script element and a more complex
data binding to the template element.

Chapter 11 ■ Understanding data Bindings

265

Listing 11-9. Using a More Complex Data Binding Expression in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name }}</h3>
 <h3>Price: ${{ (price + (price * (taxRate / 100))).toFixed(2) }}</h3>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Kayak",
 price: 275,
 taxRate: 12
 }
 }
 }
</script>

I added data properties called price and taxRate, which I used in the new data binding expression to
calculate the total price and format the result so that it has two digits after the decimal place, which produces
the result shown in Figure 11-6 when the project is compiled and the browser reloads.

Figure 11-6. Putting a complex data expression in a data binding

Expressions can contain only a single statement, and it must produce a result, which means you
cannot invoke functions or perform complex tasks in a data binding. The context of the expression is the
component, which means you can only access the data defined by the component whose template contains
the data binding. This is how I am able to refer to the name, price, and taxRate properties without needing
to qualify the names in any way, but it also prevents me from accessing any of the global objects that
browsers provide for JavaScript code (such as window and document) or data defined by other components.

Expressions can also access commonly used JavaScript global objects and functions, such as the Math
and JSON objects, which are used to access math functions and to deal with JSON data. The most useful
global objects and functions that can be accessed from a template are described in Table 11-3.

Chapter 11 ■ Understanding data Bindings

266

The list of global objects and functions in Table 11-3 provides access to the most commonly required
features for JavaScript development but excludes access to objects that could be used to perform dangerous
operations, such as manipulating the DOM.

UNDERSTANDING UNDEFINED DATA PROPERTIES

One result of evaluating data bindings as expressions is that it can be hard to spot mistakes. Javascript
has a relaxed approach to accessing properties that do not exist and will return the special undefined
value if you read a property that has not been defined.

Vue.js evaluates the expression but doesn’t insert the result into the htML element and displays a
warning in the browser’s Javascript console, like this:

...

[Vue warn]: Property or method "category" is not defined on the instance but
referenced during render.
...

this is most commonly a problem with typos, where the name of a data property doesn’t match the
name used in a data binding intended to display its value, and it is worth watching the Javascript
console during development because this problem won’t produce a compiler error or be displayed in the
browser error overlay.

Table 11-3. Useful Global Objects and Functions Accessible in Binding Expressions

Name Description

parseFloat This function parses a floating-point number value.

parseInt This function parses an integer number value.

Math This object provides math functions.

Number This object provides methods useful for working with numeric values.

Date This object provides methods useful for working with dates.

Array This object provides methods useful for working with arrays.

Object This object provides methods useful for working with objects.

String This object provides string-related methods.

RegExp This object is used to perform regular expression searches.

Map This object is used to represent a collection of key-value pairs.

Set This object is used to represent a collection of unique values or objects.

JSON This object is used to serialize and deserialize JSON data.

Intl This object provides access to locale-specific formatting as demonstrated in
Listing 11-15. Details of the features provided by this object are at https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl

Chapter 11 ■ Understanding data Bindings

267

Calculating Values with Computed Properties
Keeping the expressions in data bindings simple is good practice because it makes the template easier to
read, makes it easier to maintain, and maximizes code reuse. To help keep templates simple, Vue.js provides
the computed property feature, which is used to generate values based on data properties so that you don’t
have to include complex expressions in data bindings. In Listing 11-10, I have defined a computed property
that calculates the total price for a product using the price and taxRate values.

 Listing 11-10. Using a Computed Property in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name }}</h3>
 <h3>Price: ${{ totalPrice.toFixed(2) }}</h3>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Kayak",
 price: 275,
 taxRate: 12
 }
 },
 computed: {
 totalPrice: function() {
 return this.price + (this.price * (this.taxRate / 100));
 }
 }
 }
</script>

A computed property is added to the component’s JavaScript module and assigned a literal object whose
property names are the names of the computed properties. Some component features are hard to describe
because they depend so heavily on the term property, and you may need to read the previous sentence again
to make sense of it.

 ■ Note notice that i have to use the this keyword in the computed property’s function to access the data
properties. this is a requirement you will see repeatedly as i describe different component features and you will
receive an error telling you that a property is not defined if you omit the this keyword from statements in the
script element.

Chapter 11 ■ Understanding data Bindings

268

In the listing, I defined a computed property called totalPrice with a function that performs the
calculation that was previously included in the data binding. Computed properties are used just like regular
data properties in data bindings, which means I am able to simplify the data binding like this:

...
<h3>Price: ${{ totalPrice.toFixed(2) }}</h3>
...

Understanding Reactivity and Computed Properties
Vue.js optimizes the update process by recalculating a computed property only when there is a change in
one of the values it depends on. To demonstrate, I added statements to the computed property’s function
that indicate when it is invoked, as shown in Listing 11-11.

 ■ Tip You don’t need to worry about optimizing reactivity in most projects, but it is useful to understand the
different features that are available and how they work together, which is why i have included this example.
see Chapter 17 for further details of reactivity in Vue.js applications.

Listing 11-11. Monitoring a Computed Property in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name }}</h3>
 <h3>Price: ${{ totalPrice.toFixed(2) }}</h3>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Kayak",
 price: 275,
 taxRate: 12
 }
 },
 computed: {
 totalPrice: function () {
 let tp = this.price + (this.price * (this.taxRate / 100));
 console.log(`Calculated: ${tp} (${this.taxRate})`);
 return tp;
 }
 }
 }
</script>

Chapter 11 ■ Understanding data Bindings

269

I use the console.log method to write a message to the browser’s JavaScript console each time the
function is invoked.

The application doesn’t have the ability to let the user change the data values yet, so save the changes to the
file and use the Vue Devtools to increase the value of the taxRate property. Each time you increase the property,
you will see a message displayed in the browser’s JavaScript console that reflects the change you made.

...
Calculated: 310.75 (13)
Calculated: 313.5 (14)
Calculated: 316.25 (15)
...

Vue.js knows that the totalPrice computed property depends on the taxRate value and invokes
the function to get a new value when taxRate is changed so that it can then evaluate the data binding
expression.

SIDE EFFECTS IN COMPUTED PROPERTIES

it is bad practice to include statements in a computed property’s function that make changes, which is
known as a side effect. side effects make an application harder to understand and can undermine the
efficiency of the Vue.js update process.

as a consequence, the Vue.js linter rules, which i described in Chapter 10, include a check for side
effects in computed properties. here is a component that contains a side effect:

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name }}</h3>
 <h3>Price: ${{ totalPrice.toFixed(2) }}</h3>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Kayak",
 price: 275,
 taxRate: 12,
 counter: 0
 }
 },
 computed: {
 totalPrice: function () {
 let tp = this.price + (this.price * (this.taxRate / 100));
 console.log(`Calculated: (${this.counter++})
 ${tp}(${this.taxRate})`);

Chapter 11 ■ Understanding data Bindings

270

 return tp;
 }
 }
 }
</script>

i have added a counter variable whose value is included in the string passed to the console.log
method. the side effect in this case is that the counter property is incremented with the ++ value.
the linter detects the side effect and reports the following error:

...
Unexpected side effect in "totalPrice" computed property
 console.log(`Calculated: (${this.counter++})
 ^
...

You can disable this linter rule, called vue/no-side-effects-in-computed-properties, but care is
required because side effects can produce unexpected behaviors and should be avoided.

Calculating Data Values with a Method
The main limitation of computed properties is that you can’t vary the values that are used to produce the
result. If I need to compute the total cost using two tax rates, for example, I have to use two computed
properties, each of which performs a similar calculation, as shown in Listing 11-12.

 Listing 11-12. Computing Similar Values in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name }}</h3>
 <h4>Price: ${{ lowTotalPrice.toFixed(2) }} (Low Rate)</h4>
 <h4>Price: ${{ highTotalPrice.toFixed(2) }} (High Rate)</h4>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Kayak",
 price: 275,
 lowTaxRate: 12,
 highTaxRate: 20
 }
 },
 computed: {
 lowTotalPrice: function () {
 let tp = this.price + (this.price * (this.lowTaxRate / 100));

Chapter 11 ■ Understanding data Bindings

271

 return tp;
 },
 highTotalPrice: function () {
 let tp = this.price + (this.price * (this.highTaxRate / 100));
 return tp;
 }
 }
 }
</script>

There are now two tax rates, and calculations are performed for each of them, producing the results
shown in Figure 11-7.

Figure 11-7. Performing multiple calculations

This approach in Listing 11-12 works, but it won’t scale well. As a rule of thumb, I dislike any approach
where the natural way to add a value is to cut and paste the code for an existing one because it is only a
matter of time before I duplicate the code but fail to update it to produce the correct value.

A better approach is to define a method, which will allow me to reuse the same code to compute
different prices without needing any duplication. In Listing 11-13, I have defined a method that calculates
the price of a product.

Listing 11-13. Defining a Method in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name }}</h3>
 <h4>Price: ${{ lowTotalPrice.toFixed(2) }} (Low Rate)</h4>
 <h4>Price: ${{ highTotalPrice.toFixed(2) }} (High Rate)</h4>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {

Chapter 11 ■ Understanding data Bindings

272

 return {
 name: "Kayak",
 price: 275,
 lowTaxRate: 12,
 highTaxRate: 20
 }
 },
 computed: {
 lowTotalPrice: function () {
 return this.getTotalPrice(this.lowTaxRate);
 },
 highTotalPrice: function () {
 return this.getTotalPrice(this.highTaxRate);
 }
 },
 methods: {
 getTotalPrice(taxRate) {
 return this.price + (this.price * (taxRate / 100));
 }
 }
 }
</script>

To define a method, I added a methods property to the component’s configuration object and used it to
define a function. Unlike computed properties, a method is able to define parameters. The function in this
example is called getTotalPrice, and it defines a taxRate parameter, which it uses to provide a result. I can
then invoke the method from the computed properties’ functions, like this:

...
lowTotalPrice: function () {
 return this.getTotalPrice(this.lowTaxRate);
},
...

Notice that I have to prefix the name of the method with the this keyword, just as when I use the data
properties. The this keyword isn’t required to access the parameter values in methods, which can be read
directly, but is required to access data property values.

...
getTotalPrice(taxRate) {
 return this.price + (this.price * (taxRate / 100));
}
...

Calling Methods Directly from Data Bindings
Using a method allows me to consolidate the code required to calculate the total price, but I can go one step
further and simplify the component by removing the computed properties entirely and calling the methods
directly from the data bindings, as shown in Listing 11-14.

Chapter 11 ■ Understanding data Bindings

273

Listing 11-14. Calling Methods Directly in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name }}</h3>
 <h4>Price: ${{ getTotalPrice(lowTaxRate).toFixed(2) }} (Low Rate)</h4>
 <h4>Price: ${{ getTotalPrice(highTaxRate).toFixed(2) }} (High Rate)</h4>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Kayak",
 price: 275,
 lowTaxRate: 12,
 highTaxRate: 20
 }
 },
 methods: {
 getTotalPrice(taxRate) {
 return this.price + (this.price * (taxRate / 100));
 }
 }
 }
</script>

This change shows the flexibility in the way that the different component features work together, but it is
also a step back because it has increased the complexity of the expressions in the data bindings. As you will
find, there are often choices to be made to strike a balance between different Vue.js features.

Formatting Data Values with Filters
To present the user with a dollar amount, I have combined a text character (the dollar sign) with the
JavaScript toFixed method, like this:

...
<h4>Price: ${{ getTotalPrice(lowTaxRate).toFixed(2) }} (Low Rate)</h4>
...

I can improve on this approach by using a filter, which is a function used to format the result of an
expression. In Listing 11-15, I have added a filter that formats a number value as a currency amount.

Listing 11-15. Adding a Filter in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name }}</h3>
 <h4>Price: {{ getTotalPrice(lowTaxRate) | currency }} (Low Rate)</h4>

Chapter 11 ■ Understanding data Bindings

274

 <h4>Price: {{ getTotalPrice(highTaxRate) | currency }} (High Rate)</h4>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Kayak",
 price: 275,
 lowTaxRate: 12,
 highTaxRate: 20
 }
 },
 methods: {
 getTotalPrice(taxRate) {
 return this.price + (this.price * (taxRate / 100));
 }
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD" }).format(value);
 }
 }
 }
</script>

Filters are defined as functions under a filters property in the component’s configuration object.
Filter functions receive the value through their parameter and return the formatted result. In the listing,
I have defined a currency filter that formats a value using the global Intl object, which provides access to
localized formatting. I used the NumberFormat method to specify the en-US locale (representing English as
it is spoken in the United States) and provided a configuration object that indicates I want to format a U.S.
dollar currency amount.

APPLICATION LOCALIZATION

i don’t describe localization in this book because it is not a Vue.js-specific feature. But my advice is to
think carefully about localization and to give it the time, resources, and attention it deserves.

Localization is a complex topic that is often handled badly, and many applications simply assume that
users will understand and accept conventions that are commonly used in the United states. as someone
who lives in the United Kingdom, i have become accustomed to seeing dates expressed in the wrong
format and amounts in British pounds shown with the U.s. dollar currency symbol. i can, at least, expect
to be able to read and understand most written text, which is not the case for non-english speakers.

Chapter 11 ■ Understanding data Bindings

275

But doing nothing can be better than doing a poor-quality job of localizing an application, which is what
happens if you don’t have the services of a fluent speaker for each of the languages you are targeting
and if you are not able to commit the time and money required to maintain an application in all of the
languages you target. having access to a localization api such as the one provided by the Intl object
i used in Listing 11-15 is only a small part of what it takes to localize an application, and there are
cultural and linguistic issues that cannot be handled by running your application’s content through
google translate.

Filters are applied using the bar symbol (the | character), like this:

...
<h4>Price: {{ getTotalPrice(lowTaxRate) | currency }} (Low Rate)</h4>
...

This expression tells Vue.js to format the result from the getTotalPrice method using the currency
filter. There is no visible change to the content displayed to the user, but using a filter has made the
component more robust by simplifying the data binding expression and helping to ensure that values are
formatted consistently. Filters may look like other features in the configuration object, but they have unique
characteristics, as I explain in the following sections.

Configuring Filters Using Arguments
The functions used for filters cannot access the rest of the component’s data, which means that the
formatting result cannot be based on another value. Isolating filters ensures that they do not undermine the
change-detection process, such that Vue.js doesn’t have to check for changes after calling a filter function,
unlike a method call, for example.

But formatting can be a complex task, and so Vue.js filters are allowed to accept arguments. In Listing 11-16,
I have added an argument to the currency filter that allows the number of fractional digits to be specified.

Listing 11-16. Adding a Filter Argument in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name }}</h3>
 <h4>Price: {{ getTotalPrice(lowTaxRate) | currency(3) }} (Low Rate)</h4>
 <h4>Price: {{ getTotalPrice(highTaxRate) | currency }} (High Rate)</h4>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Kayak",
 price: 275,
 lowTaxRate: 12,
 highTaxRate: 20
 }
 },

Chapter 11 ■ Understanding data Bindings

276

 methods: {
 getTotalPrice(taxRate) {
 return this.price + (this.price * (taxRate / 100));
 }
 },
 filters: {
 currency(value, places) {
 return new Intl.NumberFormat("en-US",
 {
 style: "currency", currency: "USD",
 minimumFractionDigits: places || 2,
 maximumFractionDigits: places || 2
 }).format(value);
 }
 }
 }
</script>

I have added a parameter named places to the currency function, which I use in the formatting
expression to set the minimumFractionDigits and maximumFractionDigits properties of the configuration
object passed to the Intl.NumberFormat method, which fixes the number of fractional digits in the result.

When defining parameters for filter functions, it is a good idea to use a default value, and in this
example, I default to using the value 2 if the filter is used without an argument.

Arguments are passed to the filter in the data binding expression. I changed one of the bindings in the
listing to specify three fractional digits, producing the result shown in Figure 11-8.

Figure 11-8. Adding an argument to a filter

Chaining Filters Together
Filters can be combined so that the output from one filter becomes the input to another, forming a chain
of filters. This allows formatting to be composed of several steps and allows fine-grained control over the
formatting process. In Listing 11-17, I defined two new filters and chained them together in the template.
I also changed the product details to make the effect of the filters easier to see (since Kayak is a palindrome,
and one of the filters reverses the characters in a string).

Chapter 11 ■ Understanding data Bindings

277

Listing 11-17. Chaining Filters in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name | reverse | capitalize }}</h3>
 <h4>Price: {{ getTotalPrice(lowTaxRate) | currency(3) }} (Low Rate)</h4>
 <h4>Price: {{ getTotalPrice(highTaxRate) | currency }} (High Rate)</h4>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 price: 48.95,
 lowTaxRate: 12,
 highTaxRate: 20
 }
 },
 methods: {
 getTotalPrice(taxRate) {
 return this.price + (this.price * (taxRate / 100));
 }
 },
 filters: {
 currency(value, places) {
 return new Intl.NumberFormat("en-US",
 {
 style: "currency", currency: "USD",
 minimumFractionDigits: places || 2,
 maximumFractionDigits: places || 2
 }).format(value);
 },
 capitalize(value) {
 return value[0].toUpperCase() + value.slice(1);
 },
 reverse(value) {
 return value.split("").reverse().join("");
 }
 }
 }
</script>

The new filters are capitalize, which makes the first letter of a string uppercase, and reverse, which
reverses the order of a string’s characters. Filters are chained together using the pipe character like this:

...
<h3>Product: {{ name | reverse | capitalize }}</h3>
...

Chapter 11 ■ Understanding data Bindings

278

This expression tells Vue.js to format the name value using the reverse filter and then pass the result
through the capitalize filter, producing the result shown in Figure 11-9.

Figure 11-9. Chaining filters together

Filters are applied in the order in which they are specified, and changing the order can often produce a
different result. To demonstrate, I have changed the order of the chained filters in Listing 11-18

Listing 11-18. Changing Filter Order in the App.vue File in the src Folder

...
<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3>Product: {{ name | capitalize | reverse }}</h3>
 <h4>Price: {{ getTotalPrice(lowTaxRate) | currency(3) }} (Low Rate)</h4>
 <h4>Price: {{ getTotalPrice(highTaxRate) | currency }} (High Rate)</h4>
 </div>
</template>
...

The name value is passed to the capitalize filter and then to the reverse filter, which produces the
result shown in Figure 11-10. The capitalize filter has no discernable effect when the filters are in this order
because the first letter of the name value is already an uppercase letter.

Chapter 11 ■ Understanding data Bindings

279

DEFINING A GLOBAL FILTER

When a filter is defined by a component, it can be used in that component’s template and the template
of any of its child components (child components are explained in Chapter 16). if you want to define
a filter so that it is available throughout the application, then you can use the Vue.filter method to
register the filter before the Vue object is created, like this:

...
Vue.filter("currency", (value) => new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD" }).format(value));
...

this first argument specifies the name by which the filter will be applied, and the second argument is
the function that formats the data value.

Summary
In this chapter, I introduced the text interpolation binding, which is used to present data values to the
user. Vue.js supports more advanced ways of connecting the data model to template elements, but the text
interpolation binding is the easiest to work with and provides the foundation for understanding how Vue.js
works. In the next chapter, I introduce the Vue.js directives feature.

Figure 11-10. The effect of changing filter ordering

281© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_12

CHAPTER 12

Using the Basic Directives

Directives are special attributes that apply Vue.js functionality to HTML elements in a component’s
template. In this chapter, I explain how to use the basic built-in directives that Vue.js provides, which
provide some of the most commonly required features in web application development. In Chapters 13–15,
I describe more complex directives, and in Chapter 26, I explain how to create custom directives when the
built-in ones don’t provide the features you require. Table 12-1 puts the built-in directives in context.

Table 12-1. Putting the Built-in Directives in Context

Question Answer

What are they? The built-in directives provide features that are commonly
required in web application development. The filters that I
describe in this chapter are used to manage the text or HTML
content of an element, determine whether an element is visible
to the user, and manage an element’s attributes. There are also
directives for responding to user interaction, repeating content,
and managing form elements that are described in later chapters.

Why are they useful? Directives make it easy to connect the data and code in a
component’s script element with the content in its template.

How are they used? Directives are applied to HTML elements as special attributes
whose names begin with v-, such as v-text and v-bind.

Are there any pitfalls or limitations? Some of the built-in directives are awkward to work with and
can produce unexpected results. This is more the case for the
directives described in later chapters.

Are there any alternatives? No. Directives are the Vue.js build block that connects a
component’s HTML elements and JavaScript code.

Chapter 12 ■ Using the BasiC DireCtives

282

Table 12-2 summarizes the chapter.

Table 12-2. Chapter Summary

Problem Solution Listing

Set an element’s text content Use the text interpolation binding or the
v-text directive

3

Display raw HTML Use the v-html directive 4–5

Selectively display elements Use the v-if, v-else, or v-show directive 6, 9–13

Selectively displaying peer elements Apply the directive to a template element 7–8

Set an attributes and properties Use the v-bind directive 14–19

Preparing for This Chapter
In this chapter, I continue working with the templatesanddata project created in Chapter 11. To prepare for
this chapter, I simplified the application’s root component, as shown in Listing 12-1.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Listing 12-1. Simplifying the Content of the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3>Product: {{ name }}</h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket"
 }
 },

https://github.com/Apress/pro-vue-js-2

Chapter 12 ■ Using the BasiC DireCtives

283

 methods: {
 handleClick() {
 // do nothing
 }
 }
 }
</script>

I have used the text interpolation binding to display the value of a data property called name, as described
in Chapter 11. I have also added a button element, to which I have applied the v-on directive, like this:

...
<button v-on:click="handleClick" class="btn btn-primary">
...

The v-on directive is used for working with events, as I describe in detail in Chapter 14. Some of the
directives that I describe in this chapters have useful features that can be seen only when the state of the
application changes and I need a mechanism for triggering those changes. This directive is configured
to respond to the click event, which is triggered when the user clicks the button element, by invoking a
method called handleClick. I have defined this method in the methods section of the component’s script
element, but it contains no statements at the moment. Later in the chapter, I’ll use the handleClick method
to demonstrate some useful directive features. Save the changes to the App.vue file and run the command
shown in Listing 12-2 in the templatesanddata folder to start the Vue.js development tools.

Listing 12-2. Starting the Development Tools

npm run serve

Open a new browser window and navigate to http://localhost:8080 to see the content shown in
Figure 12-1.

Figure 12-1. Running the example application

Chapter 12 ■ Using the BasiC DireCtives

284

Setting an Element’s Text Content
A good place to start is the most basic directive, which performs a task you are already familiar with: setting
an element’s text content. In Listing 12-3, I have replaced the text interpolation binding in the component’s
template with a directive.

Listing 12-3. Using a Directive in the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3>Product: </h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket"
 }
 },
 methods: {
 handleClick() {
 // do nothing
 }
 }
 }
</script>

This is the v-text directive, named after the attribute that is used to apply the directive to an HTML
element. Figure 12-2 shows the anatomy of the directive and the element to which it has been applied.

Figure 12-2. The anatomy of the v-text directive

Chapter 12 ■ Using the BasiC DireCtives

285

The directive is applied using a v-text attribute. The value of the attribute is an expression that Vue.js
evaluates to get the content that should be displayed to the user. This is the same type of expression used by
the text interpolation binding that I described in Chapter 11, and the result of this binding is to display the
value of the data property called name.

Unlike the text interpolation binding, the v-text directive completely replaces the contents of the
element to which it is applied, which is why I added a span element to the template in Listing 12-3.

Vue.js re-evaluates a directive’s expression when a change is detected, which you can test by using the
Vue Devtools to change the value of the name property in the browser, as shown in Figure 12-3.

Figure 12-3. The effect of a value change on a directive

Displaying Raw HTML
The text interpolation binding and the v-text directive automatically sanitize the content they display to
remove any characters that a browser might interpret as part of the HTML document structure. Sanitizing
data values helps prevent cross-site scripting (XSS) attacks, in which the browser interprets a data value as
HTML and allows an attacker to insert content or code into the browser. (You can learn more about how XSS
attacks work at https://en.wikipedia.org/wiki/Cross-site_scripting.) To demonstrate, I added a data
property whose contents are a script element, as shown in Listing 12-4.

Listing 12-4. Adding a Data Property in the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3>Product: </h3>

 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

https://en.wikipedia.org/wiki/Cross-site_scripting

Chapter 12 ■ Using the BasiC DireCtives

286

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 fragment: `<div class="form-group">
 Password
 <input class="form-control" />
 </div>`
 }
 },
 methods: {
 handleClick() {
 // do nothing
 }
 }
 }
</script>

The new data property is called fragment, and its value is a set of HTML elements that include an input
element. In the component’s template, I added a span element and applied the v-text binding that will
replace the element’s content with the fragment value. When you save the changes, the application will be
updated, and you will see that the fragment of HTML has been made safe, as shown in Figure 12-4.

Figure 12-4. Sanitizing data values

Sanitizing data values is a good idea and is essential when you are dealing with data that has been
provided by a user. But there may be times when you are dealing with trusted content that you want to be
treated as HTML and when sanitization will prevent the data from being displayed correctly. For these
situations, Vue.js provides the v-html directive, which I have used in Listing 12-5.

 ■ Caution Don’t use this feature unless you trust the source of the data you are displaying.

Chapter 12 ■ Using the BasiC DireCtives

287

Listing 12-5. Displaying HTML Content in the App.vue File in the src Folder

...
<template>
 <div class="bg-primary text-white text-center m-2 p-3">
 <h3 v-text="name" >Product:</h3>

 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
</template>
...

The v-html directive is applied in the same way as v-text but displays the data value without
sanitization, as shown in Figure 12-5. Without sanitization, the browser interprets the data value as HTML
elements and presents the user with an input element.

Figure 12-5. Displaying an HTML data value

Selectively Displaying Elements
The set of elements that a component displays often needs to change to adapt to changes in the component’s
state. Vue.js includes a set of directives that change the visibility of the HTML elements to which they are
applied based on the result of evaluating a data binding expression. In Listing 12-6, I have used the v-if
directive to control the visibility of an HTML element.

Listing 12-6. Selectively Displaying Content in the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3>Product: </h3>
 <h4 v-if="showElements">{{ price }}</h4>
 </div>

Chapter 12 ■ Using the BasiC DireCtives

288

 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 price: 275,
 showElements: true
 }
 },
 methods: {
 handleClick() {
 this.showElements = !this.showElements;
 }
 }
 }
</script>

In this example, I applied the v-if directive to an h4 element, like this:

...
<h4 v-if="showElements">{{ price }}</h4>
...

The directive will evaluate its expression and use the result to control the visibility of the h4 element.
The element will be visible if the expression result is truthy and hidden otherwise (see the “Understanding
Truthy and Falsy” sidebar for JavaScript truthiness). The result is that h4 element will be visible when the
data property called showElements is true and hidden when it is false.

I added a statement to the handleClick method that toggles the showElements value when the button is
clicked, which demonstrates that the v-if directive changes the visibility of the element to which it has been
applied when its expression result changes, as shown in Figure 12-6.

 ■ Tip to control visibility, the v-if directive destroys and re-creates elements and their contents or, if the
elements are the same type, reuses a single element to display different content. this means that only the
elements that are visible are part of the DOM. Use the v-show directive, described later in this chapter, to leave
an element in the DOM and manage its visibility using Css properties.

Chapter 12 ■ Using the BasiC DireCtives

289

UNDERSTANDING TRUTHY AND FALSY

Directives such as v-if evaluate their expressions to determine whether they are truthy or falsy, which
is an odd Javascript feature that often causes confusion and that provides a pitfall for the unwary. the
following results are always falsy:

– the false (boolean) value

– the 0 (number) value

– the empty string ("")

– null

– undefined

– NaN (a special number value)

all other values are truthy, which can be confusing. For example, "false" (a string whose content is the
word false) is truthy. the best way to avoid confusion is to only use expressions that evaluate to the
boolean values true and false.

Selectively Displaying Adjacent Peer Elements
The standard way to use the v-if directive is to apply it directly to the top-level element whose visibility is to
be managed. This approach becomes awkward if there are several elements at the same level whose visibility
is controlled by the same expression, as shown in Listing 12-7.

Listing 12-7. Applying the Same Directive to Peer Elements in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3>Product: </h3>
 <ul class="text-left">
 List item
 <li v-if="showElements">{{name}}

Figure 12-6. Controlling the visibility of an element

Chapter 12 ■ Using the BasiC DireCtives

290

 <li v-if="showElements">{{price}}
 Other list item

 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>
...

I want to control the visibility of two of the four li elements in the list, based on the same data binding
expression. Repeatedly applying directives is duplicative and error-prone and is best avoided. For some
elements, this problem can be solved by adding a neutral element as a common parent, such as a div or
span element, but that won’t work here because the result would be illegal HTML (ul elements are not
allowed to contain div or span elements).

In these situations, a template element can be used as the common parent, as shown in Listing 12-8.

Listing 12-8. Using a Template Element in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3>Product: </h3>
 <ul class="text-left">
 List item
 <template v-if="showElements">
 {{name}}
 {{price}}
 </template>
 Other list item

 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>
...

The directive is applied to the template element, which is removed during the compilation process
and doesn’t result in illegal HTML. The result is that the adjacent li elements are managed using a single
instance of the v-if directive, with the result shown in Figure 12-7.

 ■ Tip You can use the v-for directive and a computed property to achieve a similar effect with elements that
are not next to one another. the v-for directive is described in Chapter 13.

Chapter 12 ■ Using the BasiC DireCtives

291

Choosing Between Sections of Content
If you want to display alternate content based on a data value, then you can repeat the v-if directive and
negate one of the expressions, as shown in Listing 12-9.

Listing 12-9. Choosing Content to Display in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3 v-if="showElements">Product: {{name}}</h3>
 <h3 v-if="!showElements">Price: {{price}}</h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>
...

This approach works, but it is awkward, and you have to remember to update two expressions when
the criteria for displaying elements changes. This approach also becomes complex when the expressions
are more complex than checking to see whether a value is true. To avoid this kind of expression, Vue.
js provides the v-else directive, which works alongside v-if and doesn’t require its own expression, as
shown in Listing 12-10.

Listing 12-10. Simplifying Content Selection in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">

Figure 12-7. Using a template element to group peer elements

Chapter 12 ■ Using the BasiC DireCtives

292

 <h3 v-if="showElements">Product: {{name}}</h3>
 <h3 v-else>Price: {{price}}</h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>
...

The v-else directive is applied immediately after v-if, and it will automatically change the visibility of
the element it has been applied to in opposition to the v-if directive, as shown in Figure 12-8.

Figure 12-8. Choosing between content sections

Performing More Complex Selections
If a basic if/else approach isn’t sufficient, then you can also use the v-else-if directive, which is combined
with v-if and v-else to select elements and has its own expression. If the result of evaluating the v-if
expression is false, then the expression of the v-else-if directive is checked to see whether its elements
should be displayed, and if not, the v-else elements are shown. Multiple instances of the v-else-if
directive can be used to manage complex selections, as shown in Listing 12-11.

Listing 12-11. Performing a Complex Content Selection in the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3 v-if="counter % 3 == 0">Product: {{name}}</h3>
 <h3 v-else-if="counter % 3 == 1">Price: {{price}}</h3>
 <h3 v-else>Category: {{category}}</h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

Chapter 12 ■ Using the BasiC DireCtives

293

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 price: 275,
 category: "Watersports",
 counter: 0
 }
 },
 methods: {
 handleClick() {
 this.counter++;
 }
 }
 }
</script>

The expressions for the v-if and v-else-if directives rely on a counter property whose value is
incremented when the button is clicked. There is also a v-else directive whose element will be displayed
when both of the other directive expressions are false, producing the results shown in Figure 12-9.

Figure 12-9. Performing a more complex selection

Selectively Displaying Elements Using CSS
The v-if, v-else-if, and v-else directives hide elements, removing them from the Document Object
Model (DOM) and re-creating them again to make them visible. The result is that the DOM contains only
the elements that are visible to the user, which can be a problem, especially when using CSS styles that select
elements based on their position within their parent. Listing 12-12 demonstrates the type of problem that
can arise.

Chapter 12 ■ Using the BasiC DireCtives

294

Listing 12-12. Adding Position-Specific CSS in the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3 v-if="counter % 2 == 0">Product: {{name}}</h3>
 <h3 v-else>Price: {{price}}</h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 price: 275,
 counter: 0
 }
 },
 methods: {
 handleClick() {
 this.counter++;
 }
 }
 }
</script>

<style>
 h3:first-child { background-color: aquamarine; padding: 10px; color: black; }
</style>

I have simplified the template so there are only two header elements, to which I have applied the v-if
and v-else directives. I have also added a style element that contains a style with the h3:first-child
selector, which matches h3 elements that are the first children of their parent element.

You can see the problem that results when you save the changes and click the Press Me button. The
directives ensure that only one of the h3 elements is visible, but since the invisible elements are removed
from the DOM, the visible element is the first—and only—child of its parent and is always matched by the
CSS selector, as shown in Figure 12-10.

 ■ Tip You may have to reload the browser to see the effect of the style element.

Chapter 12 ■ Using the BasiC DireCtives

295

This sort of behavior is a problem when the intention of the CSS is to change the style properties only
of the element that displays the product name. The styles are not intended to affect the element for the price
because it is the second child of its parent in the template, but the way the invisible elements are removed
from the DOM causes an unexpected result.

In Listing 12-12, I can fix this issue by changing my CSS selector, but this isn’t always possible when
working with global styles applied to the entire application or when using third-party CSS frameworks such
as Bootstrap. In these situations, the v-show directive is a suitable alternative because it has the same effect
as v-if but doesn’t remove invisible elements from the DOM. In Listing 12-13, I have applied the v-show
directive to the component.

Listing 12-13. Leaving Invisible Elements in the DOM in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3 v-show="counter % 2 == 0">Product: {{name}}</h3>
 <h3 v-show="counter % 2 != 0">Price: {{price}}</h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>
...

The v-show directive is applied in the same way as v-if and can be used as a direct replacement. Save
the changes and click the Press Me button to increment the counter and cause the v-show directives to show
and hide their content. You can see how the v-show hides an element by examining it in the DOM using the
browser’s F12 tools, which will show that the elements remain in the DOM and have their display property
set to none, like this:

...
<h3 style="display: none;">Price: 275</h3>
...

Figure 12-10. Elements matched by a positional CSS selector

Chapter 12 ■ Using the BasiC DireCtives

296

Since elements are only hidden, rather than removed, the component’s styles are applied as expected,
as shown in Figure 12-11.

Figure 12-11. Hiding elements

Setting the display property can be more efficient than removing an element from the DOM, but the
v-show directive can’t be used with the template element and has no equivalent to the v-else-if and
v-else directives, which is why I have had to apply the v-show directive to both h3 elements.

Setting an Element’s Attributes and Properties
The v-bind directive is used to set an element’s attributes or properties. I start this section by focusing
on attributes, after which I’ll explain why properties are different. In Listing 12-14, I have used the v-bind
directive to assign elements to classes that correspond to Bootstrap CSS styles, which is the most common
use for the v-bind directive.

Listing 12-14. Assigning Elements to Classes in the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3 v-bind:class="elemClasses">Product: {{name}}</h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 highlight: false
 }
 },

Chapter 12 ■ Using the BasiC DireCtives

297

 computed: {
 elemClasses() {
 return this.highlight
 ? ["bg-light", "text-dark", "display-4"]
 : ["bg-dark", "text-light", "p-2"];
 }
 },
 methods: {
 handleClick() {
 this.highlight = !this.highlight;
 }
 }
 }
</script>

This example looks more complicated than it really is. The starting point is the directive, which I applied
to the h3 element like this:

...
<h3 v-bind:class="elemClasses">Product: {{name}}</h3>
...

The v-bind directive is configured with an argument as well as an expression, as shown in Figure 12-12.
The argument specifies the element attribute that the directive will configure, and evaluating the expression
provides the value for that attribute.

Figure 12-12. The anatomy of the v-bind directive

In Listing 12-14, the directive’s expression gets the value of a computed property that returns an array of
styles whose contents are determined by the value of a data property called highlight. This may seem like
an indirect way of setting styles, but it shows the flexible way that Vue.js features can be combined to manage
the content presented to the user. To see the effect, save the changes to the App.vue file and click the Press
Me button to toggle the value of the highlight property, producing the result shown in Figure 12-13.

Chapter 12 ■ Using the BasiC DireCtives

298

Clicking the button changes the membership of the host element between two groups of classes. When
the highlight property is true, the host element is a member of the bg-light, text-dark, and display-4
classes (light background color, dark text, and a large font size). When the highlight property is false, the
host element is a member of the bg-dark, text-light, and p-2 classes (dark background color, light text,
and extra padding).

USING THE DIRECTIVE SHORTHAND

the v-bind directive has two forms. the longhand form is the one that i used in the previous example
and combines the directive name, followed by a colon, followed by the name of the attribute to
configure. the shorthand form omits the directive name so that v-bind:class can also be expressed as
:class. this means that a directive such as this one:

...
<h3 v-bind:class="elemClasses">Product: {{name}}</h3>
...

can also be applied like this:...

<h3 :class="elemClasses">Product: {{name}}</h3>
...

the choice between long and shorthand form is one of personal preference and doesn’t change the way
that the directive behaves.

Using an Object to Configure Classes
The array syntax that I used in the previous section can become awkward to manage if there are multiple
inputs that determine the set of classes to which the host element should belong. The v-bind directive
can also use an object whose property names correspond to classes and whose value determines class
membership for the host element, as shown in Listing 12-15.

Figure 12-13. Setting an element’s class attribute

Chapter 12 ■ Using the BasiC DireCtives

299

Listing 12-15. Using an Object to Control Class Membership with the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3 v-bind:class="elemClasses" class="display-4">Product: {{name}}</h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 <button v-on:click="handleOtherClick" class="btn btn-primary">
 Or Press Me
 </button>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 highlight1: false,
 highlight2: false

 }
 },
 computed: {
 elemClasses() {
 return {
 "text-dark": this.highlight1,
 "bg-light": this.highlight2
 }
 }
 },
 methods: {
 handleClick() {
 this.highlight1 = !this.highlight1;
 },
 handleOtherClick() {
 this.highlight2 = !this.highlight2;
 }
 }
 }
</script>

Chapter 12 ■ Using the BasiC DireCtives

300

I added another button element and a method that toggles the value of a data property. The
elemClasses computed property returns an object like this:

...
return {
 "text-dark": this.highlight1,
 "bg-light": this.highlight2
}
...

The object property names control the host element’s membership of the bg-light and text-dark classes
based on the values of the two data properties. The v-bind directive adds its host element to those classes that
correspond to the properties who values are true and removes the element from the other classes.

 ■ Tip i put the property names in quotes in the object returned by the computed property in Listing 12-15.
the names of the classes used by the Bootstrap Css framework contain hyphens, which are allowed in object
property names only if they are quoted.

I am still able to use the class attribute in the template for those classes that the host element should
always be a member of.

...
<h3 v-bind:class="elemClasses" class="display-4">Product: {{name}}</h3>
...

The result is that the h3 element will always be a member of the display-4 class and will belong to the
bg-light and text-dark classes depending on the values toggled by the buttons, as shown in Figure 12-14.

Figure 12-14. Using an object to configure class memberships

Chapter 12 ■ Using the BasiC DireCtives

301

Setting Individual Styles
The v-bind attribute provides the same features for setting the style attribute as it does for classes, which
means it is possible to manage individual CSS style properties. In Listing 12-16, I have used the directive to
control the value of separate style properties.

Listing 12-16. Managing the Style Attribute in the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3 v-bind:style="elemStyles" class="display-4">Product: {{name}}</h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 highlight: false,
 }
 },
 computed: {
 elemStyles() {
 return {
 "border": "5px solid red",
 "background-color": this.highlight ? "coral": ""
 }
 }
 },
 methods: {
 handleClick() {
 this.highlight = !this.highlight;
 }
 }
 }
</script>

The elemStyles computed property returns an object whose property names are CSS property names.
The border property is a constant value, but the background-color property is determined by the value of
the highlighted property, which is changed when the button is clicked. As the data property changes, so
does the value of the background-color property on the h3 element, as shown in Figure 12-15.

Chapter 12 ■ Using the BasiC DireCtives

302

Setting Other Attributes
The v-bind directive can be used to set the value of any attribute, although without the special support for
the class and style properties that allows objects and arrays to be used. In Listing 12-17, I used the v-bind
directive to set the value of a custom attribute that matches selectors defined in the style element.

Listing 12-17. Setting a Custom Attribute in the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3 v-bind:data-size="size" class="display-4">Product: {{name}}</h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 highlight: false,
 }
 },
 computed: {
 size() {
 return this.highlight ? "big" : "small";
 }
 },

Figure 12-15. Setting individual style properties

Chapter 12 ■ Using the BasiC DireCtives

303

 methods: {
 handleClick() {
 this.highlight = !this.highlight;
 }
 }
 }
</script>

<style>
 [data-size=big] { font-size: 40pt; }
 [data-size=small] { font-size: 20pt; }
</style>

The HTML specification allows custom attributes whose name begins with data- to be applied to
any element. You don’t need to prefix custom attributes with data- when using Vue.js, but it is a convention
I follow when it is important to easily identify the attributes that are specific to my application.

In this example, I use the v-bind directive to manage the value of a custom data-size attribute, whose
value is taken from a computed property called size that returns big or small. These values correspond to
the selectors in the style element, which alter the font size, producing the result shown in Figure 12-16.

 ■ Tip You may have to reload the browser to see the effect of the style element in Listing 12-17.

Figure 12-16. Setting a custom attribute

Setting Multiple Attributes
A single v-bind directive can set multiple attributes. No argument is used when applying the directive to
its host element. Instead, the expression must produce an object whose property names represent the
attributes to be configured, as shown in Listing 12-18.

Listing 12-18. Setting Multiple Attributes in the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3 v-bind="attrValues">Product: {{name}}</h3>
 </div>

Chapter 12 ■ Using the BasiC DireCtives

304

 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 highlight: false,
 }
 },
 computed: {
 attrValues() {
 return {
 class: this.highlight ? ["bg-light", "text-dark"] : [],
 style: {
 border: this.highlight ? "5px solid red": ""
 },
 "data-size": this.highlight ? "big" : "small"
 }
 }
 },
 methods: {
 handleClick() {
 this.highlight = !this.highlight;
 }
 }
 }
</script>

<style>
 [data-size=big] { font-size: 40pt; }
 [data-size=small] { font-size: 20pt; }
</style>

The object returned by the attrValues computed property defines class, style, and data-size
properties, the values of which are determined by the value of the data property named highlight, which is
toggled by clicking the button. When the highlight value is false, the h3 element to which the directive has
been applied is configured like this:

...
<h3 class="" style="" data-size="small">Product: Lifejacket</h3>
...

Chapter 12 ■ Using the BasiC DireCtives

305

When the highlight value is true, the v-bind directive modifies the element like this:

...
<h3 class="bg-light text-dark" style="border: 5px solid red;" data-size="big">
 Product: Lifejacket
</h3>
...

A single binding manages multiple attributes, producing the result shown in Figure 12-17.

Figure 12-17. Managing multiple attributes with a single binding

Setting an HTMLElement Property
By default, the v-bind directive configures the host element’s attributes, as shown in the previous example.
It is also possible to use the v-bind directive to set the value of a property on the object in the Document
Object Model that represents the element.

When a browser processes an HTML document, it creates the Document Object Model and populates
it with objects that represent the HTML elements. These objects define properties that do not correspond to
attributes supported by the HTML elements, either because they provide specialized features or because of
quirks in the HTML and DOM specifications, which have not always been well managed.

You will not need this feature in most projects, but if you do find yourself in the position where setting
an attribute doesn’t give the required result, then you can use the prop modifier on the v-bind directive, as
shown in Listing 12-19.

 Listing 12-19. Setting an Element Property in the App.vue File in the src Folder

<template>
 <div class="container-fluid text-center">
 <div class="bg-primary text-white m-2 p-3">
 <h3 v-bind:text-content.prop="textContent"></h3>
 </div>
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
</template>

Chapter 12 ■ Using the BasiC DireCtives

306

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket",
 highlight: false,
 }
 },
 computed: {
 textContent() {
 return this.highlight ? "Highlight!" : `Product: ${this.name}`;
 }
 },
 methods: {
 handleClick() {
 this.highlight = !this.highlight;
 }
 }
 }
</script>

The modifier is used after the name of the property when applying the directive to its element,
separated by a period, like this:

...
<h3 v-bind:text-content.prop="textContent">Product: {{name}}</h3>
...

This configuration tells the v-bind directive to manage the value of an object property called text-
content. The text-content property provides access to an element’s text content, and this example sets the
content of the h3 element, as shown in Figure 12-18.

GETTING TO KNOW THE ELEMENT PROPERTIES

the Mozilla Foundation provides a useful reference for all the objects that are used to represent
htML elements in the DOM at developer.mozilla.org/en-US/docs/Web/API. For each element,
Mozilla provides a summary of the properties that are available and what each is used for. start with
HTMLElement (developer.mozilla.org/en-US/docs/Web/API/HTMLElement), which provides the
functionality common to all elements. You can then branch out into the objects that are for specific
elements, such as HTMLInputElement, which is used to represent input elements.

Chapter 12 ■ Using the BasiC DireCtives

307

Summary
In this chapter, I described some of the built-in directives that Vue.js provides for working with HTML
elements. I showed you how to manage an element’s content using the v-text and v-html directives, how to
selectively display content using the v-if and v-show directives, and how to set an element’s attributes using
the v-bind directive. In the next chapter, I describe the directive that is used to repeat content for each item
in an array.

Figure 12-18. Setting an element property

309© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_13

CHAPTER 13

Using the Repeater Directive

In this chapter, I continue to describe the built-in Vue.js directives and focus on the v-for directive, which
is commonly used to populate lists and generate rows for tables and grid layouts. Table 13-1 puts the v-for
directive in context.

Table 13-1. Putting the v-for Directive in Context

Question Answer

What is it? The v-for directive is used to duplicate a set of HTML elements
for each item in an array or for each property defined by an
object.

Why is it useful? The v-for directive defines a variable that provides access to the
object being processed, which can be used in data bindings to
customize the duplicated HTML elements.

How is it used? The v-for directive is applied to the top-level element to be
duplicated, and its expression specifies the source of the objects
and the variable name by which each of them can be referred to
in data bindings.

Are there any pitfalls or limitations? The v-for directive doesn’t support JavaScript collections such
as Set and Map, and attention must be paid to the order in
which properties defined by an object are enumerated.

Are there any alternatives? You could write a custom directive, as described in Chapter 26,
to perform a similar task, but the v-for directive contains a
number of optimizations that make it efficient when dealing
with large datasets.

Chapter 13 ■ Using the repeater DireCtive

310

Table 13-2 summarizes the chapter.

Preparing for This Chapter
In this chapter, I continue working with the templatesanddata project from Chapter 12. To prepare for this
chapter, I simplified the application’s root component, as shown in Listing 13-1.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Listing 13-1. Simplifying the Content of the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-primary text-white m-2 p-3 text-center">
 <h3>Product: {{ name }}</h3>
 </div>
 <div class="text-center">
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {

Table 13-2. Chapter Summary

Problem Solution Listing

Repeat the same set of elements for each object in an
array or each property defined by an object

Use the v-for directive 3, 13, 15–16

Refer to the current object in the set of elements that is
duplicated

Use the v-for directive’s alias
feature

4

Associate an HTML element with a specific object Define a key attribute using the
v-bind directive

5–7

Refer to the current object’s position in the array Use the v-for directive’s index
feature

8

Ensure that changes to an array index are detected Use the Vue.set method 9–11

Repeat elements without a data source Use a number value in place
of a data source in the v-for
directive’s expression

14

https://github.com/Apress/pro-vue-js-2

Chapter 13 ■ Using the repeater DireCtive

311

 return {
 name: "Lifejacket"
 }
 },
 methods: {
 handleClick() {
 // do nothing
 }
 }
 }
</script>

Save the changes to the App.vue file and run the command shown in Listing 13-2 in the
templatesanddata folder to start the Vue.js development tools.

Listing 13-2. Starting the Development Tools

npm run serve

Open a new browser window and navigate to http://localhost:8080 to see the content shown in
Figure 13-1.

Figure 13-1. Running the example application

Enumerating an Array
Most applications deal with arrays of related objects that must be presented to the user, typically to create
rows in a table or a grid layout. The v-for directive is used to repeat a set of HTML elements for each
object in an array. In Listing 13-3, I have used the v-for directive to enumerate an array of objects to
populate a table.

Chapter 13 ■ Using the repeater DireCtive

312

 ■ Note You will see some linter warnings for the examples in this section. the warnings will be addressed as
i introduce the features provided by the v-for directive.

Listing 13-3. Enumerating an Array in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <h2 class="bg-primary text-white text-center p-3">Products</h2>
 <table class="table table-sm table-bordered table-striped text-left">
 <tr><th>Name</th><th>Price</th></tr>
 <tbody>
 <tr v-for="p in products">
 <td>Name</td>
 <td>Category</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 products: [
 { name: "Kayak", price: 275 },
 { name: "Lifejacket", price: 48.95 },
 { name: "Soccer Ball", price: 19.50 }]
 }
 },
 methods: {
 handleClick() {
 // do nothing
 }
 }
 }
</script>

The value of the data property called products is an array of objects, and the v-for directive processes
each of the objects in the array to produce the content shown in Figure 13-2. This isn’t an especially useful
result yet, but the v-for directive causes confusion and warrants careful explanation.

Chapter 13 ■ Using the repeater DireCtive

313

I applied the v-for directive in the template like this:

...
<tr v-for="p in products">
 <td>Name</td>
 <td>Category</td>
</tr>
...

The v-for directive’s expression has to be in a specific form: <alias> in <source>. The source term is
the source of the objects that are to be processed and specifies the data property named products in this
example. The in keyword separates the array from alias, which is a temporary variable assigned to each
object in the array as it is processed.

In the example, the alias is p, and the source is products. Applying the directive tells v-for to duplicate
the tr element and the two td elements it contains for each object in the products array, like this:

...
<tbody>
 <tr><td>Name</td><td>Category</td></tr>
 <tr><td>Name</td> <td>Category</td></tr>
 <tr><td>Name</td> <td>Category</td></tr>
</tbody>
...

The product array contains three objects, and so the v-for directive duplicates the tr and td elements
three times.

Figure 13-2. Enumerating objects to create table rows

Chapter 13 ■ Using the repeater DireCtive

314

Using the Alias
The previous example repeated identical content for each object in the source. Most applications need to tailor
the content generated for each object, and that is the role of the alias, which is the variable that each object in
the array is assigned to when it is processed by the v-for directive. The alias is useful because it can be used in
data bindings within the elements that are repeated by the v-for directive, as shown in Listing 13-4.

Listing 13-4. Using the v-for Alias in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <h2 class="bg-primary text-white text-center p-3">Products</h2>
 <table class="table table-sm table-bordered table-striped text-left">
 <tr><th>Name</th><th>Price</th></tr>
 <tbody>
 <tr v-for="p in products">
 <td>{{ p.name }}</td>
 <td>{{ p.price | currency }}</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 products: [
 { name: "Kayak", price: 275 },
 { name: "Lifejacket", price: 48.95 },
 { name: "Soccer Ball", price: 19.50 }]
 }
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD", }).format(value);
 },
 },

Chapter 13 ■ Using the repeater DireCtive

315

 methods: {
 handleClick() {
 // do nothing
 }
 }
 }
</script>

The name of the alias variable in this example is p, and I have used the text interpolation binding to
display the value of each product’s name and price properties through the alias, with the binding expressions
p.name and p.price.

...
<tr v-for="p in products">
 <td>{{ p.name }}</td>
 <td>{{ p.price | currency }}</td>
</tr>
...

All the text interpolation features I described in Chapter 11 can be used with a v-for alias, and I
have reinstated the currency filter and used it to format the price property, producing the result shown in
Figure 13-3.

Figure 13-3. Using the v-for directive alias

It is the ability to include the object assigned to the alias in data bindings that makes the v-for directive
useful, allowing the content that is generated to be differentiated for each object that is processed.

Chapter 13 ■ Using the repeater DireCtive

316

Identifying the Key
If you look at the output from the development tools—either on the command line or in the browser’s
JavaScript console—you will see that the linter is reporting a warning.

...
error: Elements in iteration expect to have 'v-bind:key' directives (vue/require-v-for-key)
 5 | <tr><th>Name</th><th>Price</th></tr>
 6 | <tbody>
> 7 | <tr v-for="p in products">
 | ^
 8 | <td>{{ p.name }}</td>
 9 | <td>{{ p.price | currency }}</td>
 10 | </tr>
...

This warning relates to the way that the v-for directive handles changes to the order of the objects that
it processes. By default, the v-for directive responds to changes in the order of the objects it has processed
by updating the content displayed by each of the elements it has created. In the example, this means
revisiting each tr element that has been created and updating the text contained in the td elements.

Seeing how these changes are performed requires a little work. In Listing 13-5, I have added a statement
to the handleClick method that removes the first item from the array and inserts it again at the end. I have
also added a style element to the component with a style that selects an element with an id of tagged and
sets its background color.

 Listing 13-5. Adding a Style in the App.vue File in the src Folder

...
<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 products: [
 { name: "Kayak", price: 275 },
 { name: "Lifejacket", price: 48.95 },
 { name: "Soccer Ball", price: 19.50 }]
 }
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD", }).format(value);
 },
 },
 methods: {
 handleClick() {
 this.products.push(this.products.shift());
 }
 }
 }
</script>

Chapter 13 ■ Using the repeater DireCtive

317

<style>
 #tagged { background-color: coral; }
</style>
...

Save the change, and once the application has updated, open the browser’s F12 developer tools, switch
to the Console panel, and execute the statement shown in Listing 13-6.

Listing 13-6. Marking an Element

document.querySelector("tbody > tr").id = "tagged"

This statement uses the DOM API to select the first tr element that is a child of a tbody element and
sets its ID to tagged, which corresponds to the selector for the style in Listing 13-6. As soon as the command
is executed, the first row in the table body is shown in a different background color.

Click the Press Me button to see the default way the v-for directive deals with a change in the order
of its objects. Each time the handleClick method changes the order of the objects in the array, the v-for
directive updates the contents of the elements it has created, as shown in Figure 13-4.

Figure 13-4. Updating the contents of elements in place

The v-for directive has to update all the elements that it created because it doesn’t know how to
correlate them with the objects now that the array has been modified.

Providing the directive with a hint about which object is related to which element means selecting
a property and using it as a unique key, which is then identified using the v-bind directive, as shown in
Listing 13-7.

Listing 13-7. Selecting a Key in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid">
 <h2 class="bg-primary text-white text-center p-3">Products</h2>
 <table class="table table-sm table-bordered table-striped text-left">
 <tr><th>Name</th><th>Price</th></tr>

Chapter 13 ■ Using the repeater DireCtive

318

 <tbody>
 <tr v-for="p in products" v-bind:key="p.name">
 <td>{{ p.name }}</td>
 <td>{{ p.price | currency }}</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
 </div>
</template>
...

The v-bind directive is used to set an attribute named key, whose value is expressed using the alias
defined in the v-for directive expression. In this case, I have used p as the v-for alias, and I want to use the
name property as the key for the data objects, so I used p.name as the v-bind expression.

Save the changes to the component and, once the application has updated, execute the statement
shown in Listing 13-6 again to tag the first tr element in the table body. Once the background color has
changed, click the button to change the order of the objects in the products array. Now that the v-for
directive knows how to work out which object is associated with each set of elements, it is able to respond to
changes in the array’s order by moving elements around, as shown in Figure 13-5.

 ■ Tip You can disable the linter rule that requires keys if you want the default behavior, which can be faster
for small numbers of objects. see Listing 13-14 for an example.

Figure 13-5. Moving elements to respond to a change

Chapter 13 ■ Using the repeater DireCtive

319

Getting the Item Index
The v-for directive supports an additional variable that is assigned the index of the current object in the
array and that can be used for a range of purposes, such as displaying a row number in tables or targeting
elements with styles. In Listing 13-8, I added a new column to the table that displays the index and used the
v-bind directive to set an attribute on the table rows to which I apply a style.

Listing 13-8. Using a v-for Index in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <h2 class="bg-primary text-white text-center p-3">Products</h2>
 <table class="table table-sm table-bordered text-left">
 <tr><th>Index</th><th>Name</th><th>Price</th></tr>
 <tbody>
 <tr v-for="(p, i) in products"
 v-bind:key="p.name" v-bind:odd="i % 2 == 0">
 <td>{{ i + 1 }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.price | currency }}</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 products: [
 { name: "Kayak", price: 275 },
 { name: "Lifejacket", price: 48.95 },
 { name: "Soccer Ball", price: 19.50 },
 { name: "Corner Flags", price: 39.95 },
 { name: "Stadium", price: 79500 },
 { name: "Thinking Cap", price: 16 }
]
 }
 },

Chapter 13 ■ Using the repeater DireCtive

320

 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD", }).format(value);
 },
 },
 methods: {
 handleClick() {
 this.products.push(this.products.shift());
 }
 }
 }
</script>

<style>
 [odd]{ background-color: lightblue; }
</style>

To use the index feature, an additional variable is defined when applying the v-for expression, like this:

...
<tr v-for="(p, i) in products" v-bind:key="p.name" v-bind:odd="i % 2 == 0">
...

The index variable is separated from the alias using a comma (the , character), and both variables are
surrounded by parentheses. As the v-for directive enumerates objects, it assigns the current object to p and
sets i to be the position of the current object in the array, starting at zero. The index variable can be used in
data bindings, just like any other data value. In the listing, I have used the text interpolation binding to set
the contents of a new table column, using an expression to present the user with a sequence that begins with
one, rather than zero:

...
<td>{{ i + 1 }}</td>
...

I also used the index to set a custom attribute named odd on each tr element that is created and used
the modulo operator to indicate whether a row is odd.

...
<tr v-for="(p, i) in products" v-bind:key="p.name" v-bind:odd="i % 2 == 0">
...

The effect is that the odd-numbered rows are made members of the odd class, which matches the
selector in the style element and stripes the rows in the table, as shown in Figure 13-6. I added more items
to the products array in Listing 13-8 to emphasize the result.

Chapter 13 ■ Using the repeater DireCtive

321

THE EXPANDED FORM OF THE V-FOR DIRECTIVE

it may seem odd that i am able to access the index variable in Listing 13-8 using a v-bind directive that
is applied to the same element as v-for. this works because i have used the concise form of the v-for
directive, where it is applied to the outermost element that should be duplicated for each data object.
this is equivalent to using a template item, like this:

...
<tbody>
 <template v-for="(p, i) in products" >
 <tr v-bind:key="p.name" v-bind:odd="i % 2 == 0">
 <td>{{ i + 1 }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.price | currency }}</td>
 </tr>
 </template>
</tbody>
...

this is equivalent to the directive applied in Listing 13-8 but more clearly shows the way that the
directive and its contents interact. You don’t need to use a template element with the v-for directive
unless you need to duplicate multiple peer elements for each data object. if you do use a template
element, bear in mind that the v-bind directive for the key attribute must be applied to the elements
that are duplicated and not to the template.

Figure 13-6. Using the v-for directive’s index feature

Chapter 13 ■ Using the repeater DireCtive

322

USING CSS TO STRIPE TABLE ROWS

alternating colors in a table or grid layout is a common requirement, but there is an easier way to do
it than relying on the index feature provided by the v-for directive. Most Css frameworks, including
Bootstrap, implement table striping, but if you are relying on custom styles, then you can use Css
selectors like this in your component’s style element:

...
<style>
 tbody > tr:nth-child(even) { background-color: coral; }
 tbody > tr:nth-child(odd) { background-color: lightblue; }
</style>
...

the selectors for these styles match the odd and even tr elements that are children of a tbody
element. the important part of these selectors is :n-child(odd) and :nth-child(even), which can be
used to select any odd and even elements.

Understanding Array Change Detection
Vue.js will detect changes made to an array using the following methods: push, pop, shift, unshift, splice,
sort, and reverse. These are known as the mutating array methods because they change the content of the
array, which allows Vue.js to keep a reference to the array object and observe the changes. This is the type of
change I made in Listing 13-8 to demonstrate the key feature:

...
handleClick() {
 this.products.push(this.products.shift());
}
...

I used the shift method to remove an object from the array, which I then added back again using the
push method. Although the contents of the array change, the same array object remained assigned to the
data property named products.

Other operations produce a new array that reflects the changes they have made. The filter and slice
methods, for example, both return new arrays, which leads to a new array object being assigned to the data
property, as shown in Listing 13-9.

Listing 13-9. Creating a New Array in the App.vue File in the src Folder

...
handleClick() {
 this.products = this.products.filter(p => p.price > 20);
}
...

Chapter 13 ■ Using the repeater DireCtive

323

I replaced the statement in the handleClick method with one that uses the filter method to create
a new array that contains only those objects whose price value is greater than 20. I assign the new array
returned by the filter method to the products property, but this is an operation that Vue.js is designed to
cope with, and if there is overlap between the objects in the old array and the new array, the existing content
will be reused for efficiency. But, regardless of the amount of overlap, replacing the array with a new object
will update the content presented to the user, as shown in Figure 13-7.

Figure 13-7. Assigning a new array

Understanding Update Problems
There are two types of array change that Vue.js can’t detect and won’t respond to. The first is when an item in
the array is replaced, as shown in Listing 13-10.

Listing 13-10. Replacing an Array Item in the App.vue File in the src Folder

...
handleClick() {
 this.products[1] = { name: "Running Shoes", price: 100 };
}
...

The method uses the array index notation to assign a new object to position 1 in the array. Vue.js won’t
detect the change, and any changes made to the property values of the new object won’t be detected either.

To work around this limitation, Vue.js provides a method that replaces an object in an array and triggers
the change detection process. This method must be imported from its module before it can be used, as
shown in Listing 13-11.

Listing 13-11. Safely Replacing an Array Item in the App.vue File in the src Folder

...
<script>
 import Vue from "vue";

 export default {
 name: "MyComponent",

Chapter 13 ■ Using the repeater DireCtive

324

 data: function () {
 return {
 products: [
 { name: "Kayak", price: 275 },
 { name: "Lifejacket", price: 48.95 },
 { name: "Soccer Ball", price: 19.50 },
 { name: "Corner Flags", price: 39.95 },
 { name: "Stadium", price: 79500 },
 { name: "Thinking Cap", price: 16 }]
 }
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD", }).format(value);
 },
 },
 methods: {
 handleClick() {
 Vue.set(this.products, 1, { name: "Running Shoes", price: 100 });
 }
 }
 }
</script>
...

The Vue.set method accepts three arguments: the array to modify, the index of the object to be
replaced, and the new object. The effect is to perform the update and trigger the change detection process so
that the content presented to the user is updated, as shown in Figure 13-8.

 ■ Tip the Vue.set method can also be accessed as this.$set in components. i prefer to use Vue.set
because not all arrays are performed in components, and i like to keep the updates consistent.

Figure 13-8. Safely replacing an object in an array

Chapter 13 ■ Using the repeater DireCtive

325

The other change to an array that Vue.js cannot detect is when the array is shortened by changing the
value of the length property. This problem can be avoided by using the array splice method to remove
unwanted elements in a way that Vue.js can see.

Enumerating Object Properties
Although the most common use of the v-for directive is to enumerate the contents of an array, it can also be
used to enumerate the properties of an object, which is more useful than it may first appear. In Listing 13-12,
I have replaced the array of objects with a single object whose property names and values contain the
information I require.

Listing 13-12. Using an Object for Enumeration in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <h2 class="bg-primary text-white text-center p-3">Products</h2>
 <table class="table table-sm table-bordered text-left">
 <tr><th>Index</th><th>Name</th><th>Price</th></tr>
 <tbody>
 <tr v-for="(p, key, i) in products" v-bind:key="p.name">
 <td>{{ i + 1 }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p. price | currency }}</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
 </div>
</template>

<script>
 import Vue from "vue";

 export default {
 name: "MyComponent",
 data: function () {
 return {
 products: {
 1: { name: "Kayak", price: 275 },
 2: { name: "Lifejacket", price: 48.95 },
 3: { name: "Soccer Ball", price: 19.50 },
 4: { name: "Corner Flags", price: 39.95 }
 }
 }
 },

Chapter 13 ■ Using the repeater DireCtive

326

 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD", }).format(value);
 },
 },
 methods: {
 handleClick() {
 Vue.set(this.products, 5, { name: "Running Shoes", price: 100});
 }
 }
 }
</script>

In this listing, I changed the products property so that it returns an object. This object defines
properties whose values are themselves objects with name and price properties. To enumerate the properties
of the products object, I applied the v-for directive like this:

...
<tr v-for="(p, key, i) in products" v-bind:key="p.name">
...

When processing an object, the directive provides an alias, a new variable that contains the key, and the
index variable. Vue.js can detect when a property is modified but can’t tell when a new property is added to
the object, which is why I have used the Vue.set method in the handleClick method, like this:

...
Vue.set(this.products, 5, { name: "Running Shoes", price: 100});
...

The result is that the v-for directive will enumerate the properties of the object and duplicate content
for each of them, as shown in Figure 13-9.

Figure 13-9. Enumerating the properties of an object

Chapter 13 ■ Using the repeater DireCtive

327

Understanding Object Property Ordering
Properties are enumerated in the order returned by the JavaScript Object.keys method, which usually sorts
properties as follows:

 1. Keys with an integer value, including values that can be parsed to an integer, in
ascending order

 2. Keys with a string value, in the order they were defined

 3. All other keys, in the order they were defined

 ■ Caution this is the order that you will usually encounter, but there can be differences between Javascript
implementations. Use a computed property to sort the objects to ensure consistency, as demonstrated in the
next section.

To demonstrate the way that properties are sorted, I changed the keys for the products object and added
a column to the HTML table to display each key value, as shown in Listing 13-13.

Listing 13-13. Working with Object Keys in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <h2 class="bg-primary text-white text-center p-3">Products</h2>
 <table class="table table-sm table-bordered text-left">
 <tr><th>Index</th><th>Key</th><th>Name</th><th>Price</th></tr>
 <tbody>
 <tr v-for="(p, key, i) in products" v-bind:key="p.name">
 <td>{{ i + 1 }}</td>
 <td>{{ key }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p. price | currency }}</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button v-on:click="handleClick" class="btn btn-primary">
 Press Me
 </button>
 </div>
 </div>
</template>

<script>
 import Vue from "vue";

 export default {
 name: "MyComponent",
 data: function () {
 return {

Chapter 13 ■ Using the repeater DireCtive

328

 products: {
 "kayak": { name: "Kayak", price: 275 },
 22: { name: "Lifejacket", price: 48.95 },
 3: { name: "Soccer Ball", price: 19.50 },
 "4": { name: "Corner Flags", price: 39.95 }
 }
 }
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD", }).format(value);
 },
 },
 methods: {
 handleClick() {
 Vue.set(this.products, 5, { name: "Running Shoes", price: 100 });
 }
 }
 }
</script>

When the v-for directive enumerates the products object’s properties, they will be processed in the
following order: 3, 4, 22, kayak. When the button is clicked, and a new property is added to the object using 5
as a key, a new table row will be shown between the 4 and 22 keys, as shown in Figure 13-10.

Figure 13-10. The effect of object property ordering

Chapter 13 ■ Using the repeater DireCtive

329

Repeating HTML Elements Without a Data Source
The v-for directive can be used to duplicate HTML elements a specific number of times without needing
to use a data array or object as the data source. This feature is useful for creating content that isn’t tied to a
specific data item, such as pagination buttons, as demonstrated in Listing 13-14.

 Listing 13-14. Repeating Content in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid">
 <h2 class="bg-primary text-white text-center p-3">Products</h2>
 <table class="table table-sm table-bordered text-left">
 <tr><th>Index</th><th>Key</th><th>Name</th><th>Price</th></tr>
 <tbody>
 <tr v-for="(p, key, i) in products" v-bind:key="p.name">
 <td>{{ i + 1 }}</td>
 <td>{{ key }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p. price | currency }}</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <!-- eslint-disable-next-line vue/require-v-for-key -->
 <button v-for="i in 5" v-on:click="handleClick(i)"
 class="btn btn-primary m-1">
 {{ i }}
 </button>
 </div>
 </div>
</template>
...

When the source in the v-for expression is an integer value, the directive will repeat the HTML
elements the specified number of times and assign the current value to the alias. In this listing, I have
specified the number 5 when applying the v-for directive to the button element and used the alias as the
element’s content. The first value assigned to the alias is 1, which produces the result shown in Figure 13-11.

 ■ Tip notice that i disabled the linter rule that requires a key to be identified. since the sequence of values is
generated by the directive, there is no need to worry about the strategy for dealing with changes in the order of
array items.

Chapter 13 ■ Using the repeater DireCtive

330

Using Computed Properties with the v-for Directive
All the examples so far have used data properties, but the v-for directive will also work with computed
properties and methods, which makes it possible to use JavaScript to filter or sort the objects for which
content is duplicated. In the following sections, I demonstrate different ways in which you can manage the
data that is processed by the v-for directive.

Paging Data
Most applications need to present a subset of the available data to the user, which is typically done by
presenting pages of data. Combining a computed property with the feature for repeating content without a
data source makes it easy to implement pagination, as shown in Listing 13-15.

 ■ Tip You can see a more complex pagination example in the sportsstore application in part 1 of this book.

Listing 13-15. Paging Data in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <h2 class="bg-primary text-white text-center p-3">Products</h2>
 <table class="table table-sm table-bordered text-left">
 <tr><th>Name</th><th>Price</th></tr>
 <tbody>
 <tr v-for="p in pageItems" v-bind:key="p.name">
 <td>{{ p.name }}</td>
 <td>{{ p. price | currency }}</td>
 </tr>
 </tbody>
 </table>

Figure 13-11. Repeating elements without a data source

Chapter 13 ■ Using the repeater DireCtive

331

 <div class="text-center">
 <!-- eslint-disable-next-line vue/require-v-for-key -->
 <button v-for="i in pageCount" v-on:click="selectPage(i)"
 class="btn btn-secondary m-1"
 v-bind:class="{'bg-primary': currentPage == i}">
 {{ i }}
 </button>
 </div>
 </div>
</template>
<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 pageSize: 3,
 currentPage: 1,
 products: [
 { name: "Kayak", price: 275 },
 { name: "Lifejacket", price: 48.95 },
 { name: "Soccer Ball", price: 19.50 },
 { name: "Corner Flags", price: 39.95 },
 { name: "Stadium", price: 79500 },
 { name: "Thinking Cap", price: 16 },
 { name: "Unsteady Chair", price: 29.95 },
 { name: "Human Chess Board", price: 75 },
 { name: "Bling Bling King", price: 1200 }
]
 }
 },
 computed: {
 pageCount() {
 return Math.ceil(this.products.length / this.pageSize);
 },
 pageItems() {
 let start = (this.currentPage - 1) * this.pageSize;
 return this.products.slice(start, start + this.pageSize);
 }
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD", }).format(value);
 },
 },
 methods: {
 selectPage(page) {
 this.currentPage = page;
 }
 }
 }
</script>

Chapter 13 ■ Using the repeater DireCtive

332

I have changed back to using an array for this example and added some objects so there is more data
to work with. There are two new data properties: the pageSize property specifies the number of items per
page, and the currentPage property is used to keep track of the page that is being displayed to the user.
There are also two new computed properties: the pageCount property returns the number of pages that the
application requires, and the pageItems property returns just the data objects required for the current page.

To generate the pagination buttons, I use the pageItems property in the v-for expression, which allows
me to repeat the button element for each page that the user can select. I want to highlight the button that
represents the current page, which I do by using the v-bind directive to assign the element to a class based
on the v-for alias value. Finally, I use the v-on directive—which I describe in Chapter 14—to invoke a
method called selectPage when the user clicks a button, which allows me to change the currentPage value,
allowing the user to navigate between pages, as shown in Figure 13-12.

Figure 13-12. Paging data

Filtering and Sorting Data
Computed properties can also be used to filter and sort data before it is received by the v-for directive.
In Listing 13-16, I have added select elements whose values are used to alter the data that is displayed
to the user.

Listing 13-16. Filtering and Sorting Data in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <h2 class="bg-primary text-white text-center p-3">Products</h2>
 <table class="table table-sm table-bordered text-left">
 <tr><th>Name</th><th>Price</th></tr>
 <tbody>
 <tr v-for="p in pageItems" v-bind:key="p.name">
 <td>{{ p.name }}</td>
 <td>{{ p. price | currency }}</td>
 </tr>
 </tbody>
 </table>

Chapter 13 ■ Using the repeater DireCtive

333

 <div class="text-center">
 <button class="btn btn-secondary m-1" v-on:click="toggleSort"
 v-bind:class="{'bg-primary': sort}">
 Toggle Sort
 </button>
 <button class="btn btn-secondary m-1" v-on:click="toggleFilter"
 v-bind:class="{'bg-primary': filter}">
 Toggle Filter
 </button>
 <!-- eslint-disable-next-line vue/require-v-for-key -->
 <button v-for="i in pageCount" v-on:click="selectPage(i)"
 class="btn btn-secondary m-1"
 v-bind:class="{'bg-primary': currentPage == i}">
 {{ i }}
 </button>
 </div>
 </div>
</template>
<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 pageSize: 3,
 currentPage: 1,
 filter: false,
 sort: false,
 products: [
 { name: "Kayak", price: 275 },
 { name: "Lifejacket", price: 48.95 },
 { name: "Soccer Ball", price: 19.50 },
 { name: "Corner Flags", price: 39.95 },
 { name: "Stadium", price: 79500 },
 { name: "Thinking Cap", price: 16 },
 { name: "Unsteady Chair", price: 29.95 },
 { name: "Human Chess Board", price: 75 },
 { name: "Bling Bling King", price: 1200 }
]
 }
 },
 computed: {
 pageCount() {
 return Math.ceil(this.dataItems.length / this.pageSize);
 },
 pageItems() {
 let start = (this.currentPage - 1) * this.pageSize;
 return this.dataItems.slice(start, start + this.pageSize);
 },

Chapter 13 ■ Using the repeater DireCtive

334

 dataItems() {
 let data = this.filter
 ? this.products.filter(p => p.price > 100) : this.products;
 return this.sort
 ? data.concat().sort((p1, p2) => p2.price - p1.price) : data;
 }
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD", }).format(value);
 },
 },
 methods: {
 selectPage(page) {
 this.currentPage = page;
 },
 toggleFilter() {
 this.filter = !this.filter
 this.currentPage = 1;
 },
 toggleSort() {
 this.sort = !this.sort;
 this.currentPage = 1;
 }
 }
 }
</script>

This example uses a new computed property named dataItems to prepare the data for display based
on the data properties named sort and filter. The data property values are toggled by clicking the new
button elements, and the number of pagination buttons is updated based on the user’s choices, as shown in
Figure 13-13.

Figure 13-13. Paging and sorting data

Chapter 13 ■ Using the repeater DireCtive

335

Summary
In this chapter, I explained the use of the v-for directive and demonstrated how it can enumerate arrays, the
properties of an object, and a numeric sequence. I showed you how to use the alias, how to make updates
more efficient using a key, and how to get the index of the item being processed. I also demonstrated how
the v-for directive can be used with computed properties so that data can be paged, sorted, and filtered. In
the next chapter, I show you how to handle events using a Vue.js directive.

337© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_14

CHAPTER 14

Handling Events

In this chapter, I continue describing the built-in Vue.js directives, focusing on the v-on directive, which is
used for event handling and which Table 14-1 puts in context.

Table 14-2 summarizes the chapter.

Table 14-1. Putting the v-on Directive in Context

Question Answer

What is it? The v-on directive is used to listen and respond to events.

Why is it useful? This directive makes it easy to access component data or invoke
methods when responding to an event and makes event handling
an integrated part of Vue.js development.

How is it used? The v-on directive is applied to the HTML element whose events
you in which you are interested, and its expression is evaluated
when the events you specify are triggered.

Are there any pitfalls or limitations? The v-on directive works consistently and is generally easy to use,
just as long as you bear the DOM event propagation model in
mind when applying the directive, as described in the “Managing
Event Propagation” section.

Are there any alternatives? If you are interested in events triggered by form elements, then the
v-model directive, described in Chapter 15, may be more suitable.

Table 14-2. Chapter Summary

Problem Solution Listing

Handle an event emitted by an element Use the v-on directive 3, 7

Get details about an event Use the event object 4

Respond to an event outside of a directive
expression

Handle the event using a method and receive the
event object as a parameter

5, 6

Handle multiple events from the same
element

Apply the v-on directive for each event you want to
receive or detect the event type using the event object

8, 9

Manage event propagation Use the event propagation modifiers 10–14

Filter events based on key or mouse activity Use the mouse and keyboard modifiers 15–17

Chapter 14 ■ handling events

338

Preparing for This Chapter
In this chapter, I continue working with the templatesanddata project from Chapter 14. To prepare for this
chapter, I simplified the application’s root component, as shown in Listing 14-1.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-vue-js-2.

Listing 14-1. Simplifying the Content of the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-primary text-white m-2 p-3 text-center">
 <h3>{{ name }}</h3>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket"
 }
 }
 }
</script>

Save the changes to the App.vue file and run the command shown in Listing 14-2 in the
templatesanddata folder to start the Vue.js development tools.

Listing 14-2. Starting the Development Tools

npm run serve

Open a new browser window and navigate to http://localhost:8080 to see the content shown in
Figure 14-1.

https://github.com/Apress/pro-vue-js-2

Chapter 14 ■ handling events

339

Handling Events
Vue.js provides the v-on directive, which is used to create bindings for events. Events are triggered as the
result of user interaction with the HTML elements. There is a core set of events that all elements support,
and these are supplemented by events that are specific to the features that are unique to specific elements.
In Listing 14-3, I have used the v-on directive to tell Vue.js how I want it to respond when the user clicks the
h3 element in the component’s template.

Listing 14-3. Handling an Event in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-primary text-white m-2 p-3 text-center">
 <h3 v-on:click="name = 'Clicked!'">{{ name }}</h3>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket"
 }
 }
 }
</script>

The application of the v-on directive follows the pattern established in earlier chapters and that I have
broken down in Figure 14-2.

Figure 14-1. Running the example application

Chapter 14 ■ handling events

340

The name of the directive is followed by a colon and then an argument that specifies the name of the
event. The expression will be invoked when the event is triggered, and the expression for this example is a
fragment of JavaScript code that changes the value of the name property. To see the result, save the changes
and click the h3 element’s content in the browser window, producing the effect shown in Figure 14-3.

Clicking the element triggers the click event, which Vue.js responds to by evaluating the directive’s
expression. There is a visible change only for the first click, and you must reload the browser to reset the
application to its original state.

Understanding Events and Event Objects
There are a lot of different types of events available, and the ones that I use in this chapter are described in
Table 14-3.

 ■ Note see https://developer.mozilla.org/en-US/docs/Web/Events for detailed information about all
of the available events.

Figure 14-2. The anatomy of the v-on directive

Figure 14-3. Handling an event

https://developer.mozilla.org/en-US/docs/Web/Events

Chapter 14 ■ handling events

341

When browsers trigger events, they produce an object that describes the event, known as the event
object. The event object defines properties and methods that provide information about the event and can
be used to control how the event is processed. In Table 14-4, I have described the most useful event object
properties for Vue.js development. (If you are familiar with web development, you might be wondering
about the methods and other properties defined by event objects. As you will learn, you don’t need to use
these directly with the v-on directive, which takes care of a lot of event handling detail.)

The v-on directive makes the event object available through a variable named $event. In Listing 14-4,
I have updated the directive’s expression so that the value of the type property is displayed when the event is
triggered.

Listing 14-4. Using an Event Object in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-primary text-white m-2 p-3 text-center">
 <h3 v-on:click="name = $event.type">{{ name }}</h3>
 </div>
 </div>
</template>

Table 14-3. The Events Used in This Chapter

Event Description

click This event is triggered when the mouse button is pressed and released inside the bounds
of an element.

mousedown This event is triggered when the mouse button is pressed within the bounds of an
element.

mousemove The event is triggered when the mouse pointer moves within the bounds of the element.

mouseleave This event is triggered when the mouse pointer leaves the bounds of the element.

keydown This event is triggered when a key is pressed.

Table 14-4. Useful Event Object Properties

Property Description

target This property returns the DOM object that represents the HTML element that
triggered the event

currentTarget This property returns the DOM object that represents the HTML element that is
handling the event. The difference from the target property is explained in the
“Managing Event Propagation” section.

type This property returns the event type.

key For keyboard events, this property returns the key that the event relates to.

Chapter 14 ■ handling events

342

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket"
 }
 }
 }
</script>

The v-on directive handles the click event cause by clicking the h3 element and assigns the event
object created by the browser to the $event variable before evaluating the expression, producing the result
shown in Figure 14-4.

Using a Method to Handle Events
The v-on directive will evaluate fragments of JavaScript when an event is triggered, as the previous examples
demonstrated, but a more common approach is to invoke a method. Using methods minimizes the amount
of code in the template and allows events to be handled consistently. In Listing 14-5, I have added a method
to the component and updated the v-on directive’s binding so that the method will be invoked when the h3
element’s click event is triggered.

Listing 14-5. Using a Method in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-primary text-white m-2 p-3 text-center">
 <h3 v-on:click="handleEvent">{{ name }}</h3>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {

Figure 14-4. Using an event object

Chapter 14 ■ handling events

343

 return {
 name: "Lifejacket"
 }
 },
 methods: {
 handleEvent($event) {
 this.name = $event.type;
 }
 }
 }
</script>

I have set the directive’s expression to handleEvent, which tells v-on to invoke the method and pass it
the $event object when the click event is triggered, which produces the result shown in Figure 14-5. (You
don’t have to use $event as the name of the method parameter, but I tend to because it makes the purpose of
the parameter obvious.)

 ■ Tip vue.js is generally relaxed about the names of methods that are invoked when an event is triggered,
but you will receive an error if you use a method name that is also a built-in Javascript keyword, such as
delete.

Specifying just a method name is useful, but the real advantage in using methods comes when you have
multiple sources of the same event type that produce different results. In these situations, the v-for directive
can invoke a method with arguments that are used to determine the way that the event is handled, as shown
in Listing 14-6.

Listing 14-6. Using Method Arguments in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-primary text-white m-2 p-3 text-center">
 <h3 v-on:click="handleEvent('Soccer Ball', $event)">{{ name }}</h3>
 </div>
 <div class="bg-primary text-white m-2 p-3 text-center">
 <h3 v-on:click="handleEvent('Stadium', $event)">{{ name }}</h3>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Lifejacket"
 }
 },

Chapter 14 ■ handling events

344

 methods: {
 handleEvent(name, $event) {
 this.name = `${name} - ${$event.type}`;
 }
 }
 }
</script>

I have added another h3 element with the v-on binding. Both binding expressions call the handleEvent
method, but they provide different values for the first argument. The result is that a different message is
displayed to the user based on which element is clicked, as shown in Figure 14-5.

USING THE DIRECTIVE SHORTHAND

the v-on directive has two forms. the longhand form, as shown in Figure 14-2, combines the directive
name, followed by a colon, followed by the name of the event. the short form combines the @ sign with
the event name, such that v-on:click can also be expressed as @click. this means that a directive
such as this one:

...
<h3 v-on:click="handleEvent('Soccer Ball', $event)">{{ name }}</h3>
...

can also be expressed like this:

...
<h3 @click="handleEvent('Soccer Ball', $event)">{{ name }}</h3>
...

the choice between long and shorthand form is one of personal preference and doesn’t change the way
that the directive behaves.

Figure 14-5. Calling a method with an argument

Chapter 14 ■ handling events

345

Combining Events, Methods, and Repeated Elements
The ability to provide arguments when invoking the v-on directive becomes much more useful when
combined with the v-for directive. In Listing 14-7, I have used the v-for directive to repeat a set of elements
for objects in an array and used the v-on directive to set up event handlers for each one.

Listing 14-7. Repeating Elements in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <h3 class="bg-primary text-white text-center mt-2 p-2">{{message}}</h3>
 <table class="table table-sm table-striped table-bordered">
 <tr><th>Index</th><th>Name</th><th>Actions</th></tr>
 <tr v-for="(name, index) in names" v-bind:key="name">
 <td>{{index}}</td>
 <td>{{name}}</td>
 <td>
 <button class="btn btn-sm bg-primary text-white"
 v-on:click="handleClick(name)">
 Select
 </button>
 </td>
 </tr>
 </table>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 message: "Ready",
 names: ["Kayak", "Lifejacket", "Soccer Ball", "Stadium"]
 }
 },
 methods: {
 handleClick(name) {
 this.message = `Select: ${name}`;
 }
 }
 }
</script>

Chapter 14 ■ handling events

346

The v-for directive duplicates rows in the table for each object in the names array. The duplication
includes all of the data bindings and directives, which means that there is a button element with a v-on
binding for the click event in each table row, like this:

...
<button class="btn btn-sm bg-primary text-white" v-on:click="handleClick(name)">
 Select
</button>
...

The v-on binding expression is set up using the value of the v-for alias, which means that each
button element will invoke the handleClick method using the object that was being processed when it
was created. The handleClick method uses its parameter value to set the value of the message property,
which is displayed to the user in the h3 element. The effect is that clicking a button in the table displays the
corresponding value from the names array, as illustrated in Figure 14-6.

Listening for Multiple Events from the Same Element
There are two ways to handle different types of event on the same element. The first approach is to apply the
v-on directive separately for each event, as shown in Listing 14-8.

Listing 14-8. Handling Multiple Event Types in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <h3 class="bg-primary text-white text-center mt-2 p-2">{{message}}</h3>
 <table class="table table-sm table-striped table-bordered">
 <tr><th>Index</th><th>Name</th><th>Actions</th></tr>
 <tr v-for="(name, index) in names" v-bind:key="name">
 <td>{{index}}</td>
 <td>{{name}}</td>
 <td>

Figure 14-6. Event handling in repeated content

Chapter 14 ■ handling events

347

 <button class="btn btn-sm bg-primary text-white"
 v-on:click="handleClick(name)"
 v-on:mousemove="handleMouseEvent(name, $event)"
 v-on:mouseleave="handleMouseEvent(name, $event)">
 Select
 </button>
 </td>
 </tr>
 </table>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 counter: 0,
 message: "Ready",
 names: ["Kayak", "Lifejacket", "Soccer Ball", "Stadium"]
 }
 },
 methods: {
 handleClick(name) {
 this.message = `Select: ${name}`;
 },
 handleMouseEvent(name, $event) {
 if ($event.type == "mousemove") {
 this.message = `Move in ${name} ${this.counter++}`;
 } else {
 this.counter = 0;
 this.message = "Ready";
 }
 }
 }
 }
</script>

I added v-on directives to handle the mousemove and mouseleave events. The mousemove event is triggered
when the mouse pointer is moved over an element, and the mouseleave event is triggered when the pointer
moves away from the element. Both events are processed by the handleMouseEvent method, which uses the
$event variable to determine the event type and updates the message and counter properties. The result is
that a message and counter are displayed when the pointer is moved over the button elements, which are then
reset when the pointer leaves the screen area that the button occupies, as shown in Figure 14-7.

Chapter 14 ■ handling events

348

The second way to listen for multiple events is to apply the v-on directive without an event argument
and set the directive’s expression to an object whose property names are the event types and whose values
specify the methods that should be invoked, as shown in Listing 14-9.

Listing 14-9. Handling Multiple Events in a Single Directive in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <h3 class="bg-primary text-white text-center mt-2 p-2">{{message}}</h3>
 <table class="table table-sm table-striped table-bordered">
 <tr><th>Index</th><th>Name</th><th>Actions</th></tr>
 <tr v-for="(name, index) in names" v-bind:key="name">
 <td>{{index}}</td>
 <td>{{name}}</td>
 <td>
 <button class="btn btn-sm bg-primary text-white"
 v-on="buttonEvents"
 v-bind:data-name="name">
 Select
 </button>
 </td>
 </tr>
 </table>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {

Figure 14-7. Responding to several types of events

Chapter 14 ■ handling events

349

 buttonEvents: {
 click: this.handleClick,
 mousemove: this.handleMouseEvent,
 mouseleave: this.handleMouseEvent
 },
 counter: 0,
 message: "Ready",
 names: ["Kayak", "Lifejacket", "Soccer Ball", "Stadium"]
 }
 },
 methods: {
 handleClick($event) {
 let name = $event.target.dataset.name;
 this.message = `Select: ${name}`;
 },
 handleMouseEvent($event) {
 let name = $event.target.dataset.name;
 if ($event.type == "mousemove") {
 this.message = `Move in ${name} ${this.counter++}`;
 } else {
 this.counter = 0;
 this.message = "Ready";
 }
 }
 }
 }
</script>

The data property named buttonEvents returns an object that has click, mousemove, and mouseleave
properties, corresponding to the event that I want to process, and the value of these properties is the method
that should be invoked for each event. The limitation of this approach is that it doesn’t support passing
arguments to the methods, which receive only the $event argument. To work around this, I used the v-bind
directive to add a data-name attribute to each button element, like this:

...
<button class="btn btn-sm bg-primary text-white" v-on="buttonEvents"
 v-bind:data-name="name">
...

The $event object provides access to the HTML element that triggered the event, and I use the dataset
property to access the custom data- attributes to get the data-name value when processing an event like this:

...
let name = $event.target.dataset.name;
...

The result is the same as Listing 14-8 but without needing to define multiple v-on directives on the
button elements, which can produce a template that is hard to read.

Chapter 14 ■ handling events

350

 ■ Tip You can define the event mapping object as a string literal directly in the v-on directive’s expression if
you prefer, although can still produce a template that is difficult to make sense of.

Using Event Handling Modifiers
To keep event processing methods simple and focused, the v-on directive supports a set of modifiers that
are used to perform common tasks that usually require JavaScript statements. Table 14-5 describes the set of
v-on event handling modifiers.

Managing Event Propagation
The stop, capture, and self modifiers are used to manage the propagation of an event through the
hierarchy of HTML elements. When an event is triggered, the browser goes through three phases to locate
handlers for the event: the capture, target, and bubble phases. To demonstrate how these phases work—
and how they can be controlled using v-on modifiers—I have updated the component in the example
application, as shown in Listing 14-10.

Listing 14-10. Handling Events in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div id="outer-element" class="bg-primary p-4 text-white h3"
 v-on:click="handleClick">
 Outer Element

Table 14-5. The v-on Event Handling Modifiers

Modifier Description

stop This modifier is equivalent to calling the stopPropagation method on the event object, as
described in the “Stopping Event Propagation” section.

prevent This modifier is equivalent to calling the preventDefault method on the event object.
This modifier is demonstrated in Chapter 15.

capture This modifier enables capture mode for event propagation, as described in the “Receiving
Events in the Capture Phase” section.

self This modifier will invoke the handler method only if the event originated from the
element to which the directive has been applied, as demonstrated in the “Handling Only
Target Phase Events” section.

once This modifier will prevent subsequent events of the same type from invoking the handler
method, as demonstrated in the “Preventing Duplicate Events” section.

passive This modifier will enable passive event listening, which improves the performance
of touch events and is especially useful on mobile devices. See https://developer.
mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener for a good
description of when this option is used.

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

Chapter 14 ■ handling events

351

 <div id="middle-element" class="bg-secondary p-4"
 v-on:click="handleClick">
 Middle Element
 <div id="inner-element" class="bg-info p-4"
 v-on:click="handleClick">
 Inner Element
 </div>
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 methods: {
 handleClick($event) {
 console.log(`handleClick target: ${$event.target.id}`
 + ` currentTarget: ${$event.currentTarget.id}`);
 }
 }
 }
</script>

The template contains three nested div elements, with an id attribute and the v-on directive configured
to process the click event using the handleClick method. The method receives the $event object and
uses the target property to get details of the element that triggered the event and use the currentTarget
property to get details of the element whose v-on directive is processing the event.

To understand why there are two properties involved in handling an event, save the changes to the
component and then click the part of the browser window occupied by the inner element, as shown in
Figure 14-8.

Figure 14-8. Triggering an event in a set of nested elements

Chapter 14 ■ handling events

352

By default, a v-on directive will receive events in the target and bubble phases, which means that an
event will be received first by the v-on element on the element that triggered the event—the target—and
then by each of its antecedents in turn, all the way from the immediate parent element to the body element.
You can see this in the messages that have been written to the JavaScript console.

...
handleClick target: inner-element currentTarget: inner-element
handleClick target: inner-element currentTarget: middle-element
handleClick target: inner-element currentTarget: outer-element
...

The first message shows the target phase of the event, where the v-on directive on the element that
triggered the event invokes the handleClick method. In the target phase, the target and currentTarget
properties of the $event object are the same.

The second and third messages show the bubble phase, where the event propagates up the HTML
document to each parent element, causing each element’s v-on directive for that event type to invoke its
method. In this phase, the target property of the $event object returns the element that triggered the event,
and the currentTarget property returns the element whose v-on directive is currently processing the event.
Figure 14-9 shows the flow of events in the target and bubble phases.

 ■ Tip not all types of event have a bubble phase. as a rule of thumb, events that are specific to a single
element—such as gaining and losing focus—do not bubble. events that apply to multiple elements—such
as clicking a region of the screen that is occupied by multiple elements—will bubble. You can check to see
whether a specific event is going to go through the bubble phase by reading the bubbles property of the
$event object.

Figure 14-9. The target and bubble phases

Chapter 14 ■ handling events

353

Receiving Events in the Capture Phase
The capture phase provides an opportunity for elements to process events before the target phase. During
the capture phase, the browser starts with the body element and works its way down the hierarchy of
elements toward the target, following the opposite path to the bubble phase, and gives each element the
change to process the event, as shown in Figure 14-10.

The v-on directive doesn’t receive events during the capture phase unless the capture modifier is
applied, as shown in Listing 14-11.

Listing 14-11. Using the Capture Phase in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div id="outer-element" class="bg-primary p-4 text-white h3"
 v-on:click.capture="handleClick">
 Outer Element
 <div id="middle-element" class="bg-secondary p-4"
 v-on:click.capture="handleClick">
 Middle Element
 <div id="inner-element" class="bg-info p-4"
 v-on:click="handleClick">
 Inner Element
 </div>
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 methods: {

Figure 14-10. The capture phase

Chapter 14 ■ handling events

354

 handleClick($event) {
 console.log(`handleClick target: ${$event.target.id}`
 + ` currentTarget: ${$event.currentTarget.id}`);
 }
 }
 }
</script>

Modifiers are applied using a period and then the modifier name, like this:

...
v-on:click.capture="handleClick"
...

Adding the capture modifier to the v-on directive means that the elements will receive the event during
the capture phase, rather than the bubble phase. You can see the effect by clicking the inner element and
examining the messages displayed in the browser’s JavaScript console.

...
handleClick target: inner-element currentTarget: outer-element
handleClick target: inner-element currentTarget: middle-element
handleClick target: inner-element currentTarget: inner-element
...

The messages show that the event has worked its way down the HTML document, triggering the v-on
directive on the outer element and then the middle element.

Handling Only Target Phase Events
You can restrict the v-on directive so that it will only respond to events in the target phase. The self modifier
ensures that only events triggered by the element to which the directive has been applied will be processed,
as shown in Listing 14-12.

Listing 14-12. Selecting Target Phase Events in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div id="outer-element" class="bg-primary p-4 text-white h3"
 v-on:click.capture="handleClick">
 Outer Element
 <div id="middle-element" class="bg-secondary p-4"
 v-on:click.self="handleClick">
 Middle Element
 <div id="inner-element" class="bg-info p-4"
 v-on:click="handleClick">
 Inner Element
 </div>
 </div>
 </div>
 </div>
</template>

Chapter 14 ■ handling events

355

<script>
 export default {
 name: "MyComponent",
 methods: {
 handleClick($event) {
 console.log(`handleClick target: ${$event.target.id}`
 + ` currentTarget: ${$event.currentTarget.id}`);
 }
 }
 }
</script>

I have applied the self modifier to the v-on directive on the middle element. If you click the inner
element, you will see the following messages displayed in the browser’s JavaScript console:

...
handleClick target: inner-element currentTarget: outer-element
handleClick target: inner-element currentTarget: inner-element
...

The first message is received from the outer element, whose v-on directive uses the capture modifier
and so receives the event during the capture phase. The second message is from the inner element, which
is the target and received the event during the target phase. There is no message from the middle element
because the self modifier has prevented it from receiving the event during the bubble phase. You will see
these messages if you click the middle element:

...
handleClick target: middle-element currentTarget: outer-element
handleClick target: middle-element currentTarget: middle-element
...

The first of these messages is from the outer element again, which gets the event first during the capture
phase. The second message is from the middle element during the target phase, which is allowed by the
self modifier.

Stopping Event Propagation
The stop modifier halts the propagation of an event, preventing it from being processed by any subsequent
element’s v-on directive. In Listing 14-13, I have applied the stop directive to the middle element’s v-on
directive.

Listing 14-13. Stopping Event Propagation in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div id="outer-element" class="bg-primary p-4 text-white h3"
 v-on:click.capture="handleClick">
 Outer Element
 <div id="middle-element" class="bg-secondary p-4"
 v-on:click.stop="handleClick">
 Middle Element

Chapter 14 ■ handling events

356

 <div id="inner-element" class="bg-info p-4"
 v-on:click="handleClick">
 Inner Element
 </div>
 </div>
 </div>
 </div>
</template>
<script>
 export default {
 name: "MyComponent",
 methods: {
 handleClick($event) {
 console.log(`handleClick target: ${$event.target.id}`
 + ` currentTarget: ${$event.currentTarget.id}`);
 }
 }
 }
</script>

The stop modifier prevents an event from continuing its usual progress but doesn’t stop propagation
until it reaches the element to which it has been applied. In the example, this means that an element
triggered by the middle element will still go through the capture phase before being stopped during the
target phase. Since the outer element’s v-on directive is configured with the capture modifier, the following
messages are displayed in the browser’s JavaScript console:

...
handleClick target: middle-element currentTarget: outer-element
handleClick target: middle-element currentTarget: middle-element
...

COMBINING EVENT HANDLING MODIFIERS

You can apply multiple modifiers to a single v-on directive. the modifiers are processed in the order in
which they are specified, which means that different effects are achieved by using the same modifiers
in different combinations. this combination will process events during the target phase and then stop
them from being propagated any further.

...
v-on:click.self.stop="handleClick"
...

But if these modifiers are reversed, then events will be stopped in the target and bubble phases
(because the stop modifier is first).

...
v-on:click.stop.self="handleClick"
...

as a consequence, it is important to think through the consequences of combining modifiers, to test
combinations thoroughly, and to apply them consistently.

Chapter 14 ■ handling events

357

Preventing Duplicate Events
The once modifier stops a v-on directive from invoking its method more than once. This doesn’t stop the
normal event propagation process, but it does prevent an element from participating in it after the first
event has been processed. In Listing 14-14, I have applied the once modifier to the inner element in the
component’s template.

Listing 14-14. Stopping Duplicate Events in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div id="outer-element" class="bg-primary p-4 text-white h3"
 v-on:click.capture="handleClick">
 Outer Element
 <div id="middle-element" class="bg-secondary p-4"
 v-on:click.stop="handleClick">
 Middle Element
 <div id="inner-element" class="bg-info p-4"
 v-on:click.once="handleClick">
 Inner Element
 </div>
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 methods: {
 handleClick($event) {
 console.log(`handleClick target: ${$event.target.id}`
 + ` currentTarget: ${$event.currentTarget.id}`);
 }
 }
 }
</script>

The first time you click inside the inner element, you will see all the v-on directives respond, like this:

...
handleClick target: inner-element currentTarget: outer-element
handleClick target: inner-element currentTarget: inner-element
handleClick target: inner-element currentTarget: middle-element
...

The outer element is configured with the capture modifier, so it gets the event during the capture
phase. This is the first time that the click event has been handled by the inner element, so the target phase
of the event is just like normal. Finally, the middle element receives the event during the bubble phase,
where the stop modifier prevents it from going any further.

Chapter 14 ■ handling events

358

When you click the inner element again, you will see a different set of messages:

...
handleClick target: inner-element currentTarget: outer-element
handleClick target: inner-element currentTarget: middle-element
...

The once modifier prevents the inner element’s v-on directive from invoking the handleClick method
but doesn’t prevent the event from propagating to the other elements.

Using Mouse Event Modifiers
The v-on directive provides a set of modifiers that simplify processing mouse events when you need to
be specific about the conditions that trigger the event. Table 14-6 describes the set of v-on mouse event
modifiers.

When applied to the v-on directive, these modifiers restrict the events that are processed to those
triggered with the specified mouse button, as shown in Listing 14-15.

Listing 14-15. Using a Mouse Modifier in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div id="outer-element" class="bg-primary p-4 text-white h3"
 v-on:mousedown="handleClick">
 Outer Element
 <div id="middle-element" class="bg-secondary p-4"
 v-on:mousedown="handleClick">
 Middle Element
 <div id="inner-element" class="bg-info p-4"
 v-on:mousedown.right="handleClick">
 Inner Element
 </div>
 </div>
 </div>
 </div>
</template>

Table 14-6. The v-on Mouse Event Modifiers

Modifier Description

left This modifier selects only events that are triggered by the left mouse button.

middle This modifier selects only events that are triggered by the middle mouse button.

right This modifier selects only events that are triggered by the right mouse button.

Chapter 14 ■ handling events

359

<script>
 export default {
 name: "MyComponent",
 methods: {
 handleClick($event) {
 console.log(`handleClick target: ${$event.target.id}`
 + ` currentTarget: ${$event.currentTarget.id}`);
 }
 }
 }
</script>

In the listing, I have changed the v-on directives so they listen for the mousedown event, which is
triggered when any mouse button is pressed over an element, and applied the right modifier to the v-on
directive on the inner element so it will receive events only for the right mouse button.

The modifiers described do not prevent an event from being propagated. Instead, they prevent the v-on
directive to which they are applied from processing events that are triggered using other mouse buttons.
If you left-click the inner element, you will see the following messages in the browser’s JavaScript console,
which show that the v-on directives applied to the middle and outer elements receive the event, even though
it is not processed by the inner element’s directive:

...
handleClick target: inner-element currentTarget: middle-element
handleClick target: inner-element currentTarget: outer-element
...

If you right-click the inner element, then all three v-on directives will process the event, resulting in the
following messages:

...
handleClick target: inner-element currentTarget: inner-element
handleClick target: inner-element currentTarget: middle-element
handleClick target: inner-element currentTarget: outer-element
...

Using Keyboard Event Modifiers
Vue.js provides a set of keyboard event modifiers that are used to limit the keyboard events processed by a
v-on directive in a similar way to the mouse modifiers described in the previous section. In Listing 14-16,
I have modified the component so that it has an input element that I use to receive keyboard events.

Listing 14-16. Receiving Keyboard Events in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-primary p-4 text-white h3">
 {{message}}
 </div>
 <input class="form-control bg-light" placeholder="Type here..."
 v-on:keydown.ctrl="handleKey" />
 </div>
</template>

Chapter 14 ■ handling events

360

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 message: "Ready"
 }
 },
 methods: {
 handleKey($event) {
 this.message = $event.key;
 }
 }
 }
</script>

This example applies the ctrl modifier to the keydown event, which means that the handleKey event
will be invoked only for keydown event when the Control key is being held down. You can see the effect
by typing into the input element and observing the characters that are displayed in the text interpolation
binding in the div element. The data binding shows that the handleKey method is invoked when the Control
key is pressed on its own or in combination with another key but not otherwise, as shown in Figure 14-11.

Table 14-7 shows the set of key event modifiers provided by Vue.js. Some of these modifiers are for keys
that can be used in conjunction with others, such as the Shift and Control keys, and the rest make it easy to
specify commonly required keys such as Tab and the spacebar.

Figure 14-11. Using a modifier to filter key events

Chapter 14 ■ handling events

361

The exact modifier further restricts an event binding so that it will be invoked only when the specified
keys are pressed. The modifier in Listing 14-17, for example, will invoke the handleKey method only when
just the Control key is pressed and not when the Control key is pressed along with, say, the Shift key.

Listing 14-17. Matching Keys Exactly in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-primary p-4 text-white h3">
 {{message}}
 </div>
 <input class="form-control bg-light" placeholder="Type here..."
 v-on:keydown.ctrl.exact="handleKey" />
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 message: "Ready"
 }
 },

Table 14-7. The v-on Keyboard Event Modifiers

Modifier Description

enter This modifier selects the Enter key.

tab This modifier selects the Tab key.

delete This modifier selects the Delete key.

esc This modifier selects the Escape key.

space This modifier selects the spacebar.

up This modifier selects the up arrow key.

down This modifier selects the down arrow key.

left This modifier selects the left arrow key.

right This modifier selects the right arrow key.

ctrl This modifier selects the Control key.

alt This modifier selects the Alt key.

shift This modifier selects the Shift key.

meta This modifier selects the meta key.

exact This modifier selects only the specified
modifier key, as described after the table.

Chapter 14 ■ handling events

362

 methods: {
 handleKey($event) {
 this.message = $event.key;
 }
 }
 }
</script>

Summary
In this chapter, I demonstrated the different ways the v-on directive can be used to respond to events.
I showed you how to specify one or more events when applying the directive, how to invoke methods and
receive arguments when generating repeated content, and how to use modifiers to change event behavior
and select specific mouse buttons or keys. In the next chapter, I describe the Vue.js features for working with
form elements.

363© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_15

CHAPTER 15

Working with Form Elements

In this chapter, I describe v-model, which is the built-in directive used for HTML form elements. The
v-model directive creates a two-way data binding between a form element and a data value and ensures that
the application remains consistent, regardless of how the data is changed. I also show you how to combine
the v-model directive with some of the built-in directives described in earlier chapters to validate the data
entered into a form by the user. Table 15-1 puts the v-model directive in context.

Table 15-1. Putting the v-model Directive in Context

Question Answer

What is it? The v-model directive creates a two-way binding between an
HTML form element and a data property, ensuring that the two
remain consistent.

Why is it useful? Working with form elements is an important part of most web
applications, and the v-model directive takes care of creating data
bindings without needing to worry about the differences that exist
in the way that different form elements work.

How is it used? The v-model directive is applied to input, select, and textarea
elements, and its expression is the name of the data property to
which the bindings should be created.

Are there any pitfalls or limitations? The v-model directive cannot be used with Vuex data stores, which
I describe in Chapter 20.

Are there any alternatives? You can create the required bindings manually if you prefer, as
described in the “Creating Two-Way Model Bindings” section of
this chapter.

Chapter 15 ■ Working With Form elements

364

Table 15-2 summarizes the chapter.

Preparing for This Chapter
In this chapter, I continue working with the templatesanddata project from Chapter 14. To prepare for this
chapter, I simplified the application’s root component, as shown in Listing 15-1.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Listing 15-1. Simplifying the Content of the App.vue File in the src Folder

<template>
 <div class="container-fluid">

 <div class="bg-info m-2 p-2 text-white">
 Value: {{ dataValue }}
 </div>

 <div class="bg-primary m-2 p-2 text-white">
 <div class="form-check">
 <label class="form-check-label">
 <input class="form-check-input" type="checkbox"
 v-on:change="handleChange" />
 Data Value
 </label>
 </div>
 </div>

Table 15-2. Chapter Summary

Problem Solution Listing

Create a two-way data binding between a data
property and a form element

Use the v-model directive 1–9

Format input values as numbers Use the number modifier 10, 11

Delay binding updates Use the lazy modifier 12

Trim whitespace from input values Use the trim modifier 13

Populate an array with the user’s form selections Use the v-model directive to bind to
an array

14

Bind indirectly to values Use a custom value with the v-model
directive

15–17

Ensure that the user provides values that the
application can use

Validate the form data gathered
using the v-model directive

18–21

https://github.com/Apress/pro-vue-js-2

Chapter 15 ■ Working With Form elements

365

 <div class="text-center m-2">
 <button class="btn btn-secondary" v-on:click="reset">
 Reset
 </button>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 dataValue: false
 }
 },
 methods: {
 reset() {
 this.dataValue= false;
 },
 handleChange($event) {
 this.dataValue = $event.target.checked;
 }
 }
 }
</script>

Save the changes to the App.vue file and run the command shown in Listing 15-2 in the
templatesanddata folder to start the Vue.js development tools.

Listing 15-2. Starting the Development Tools

npm run serve

Chapter 15 ■ Working With Form elements

366

Open a new browser window and navigate to http://localhost:8080 to see the content shown in
Figure 15-1.

Creating Two-Way Model Bindings
All the data bindings I have created so far in this part of the book have been one-way, meaning that the data
flows from the component’s script element to the template element so that it can be displayed to the user.

The example application shows the one-way flow of data. When the state of the checkbox is changed,
the v-on directive invokes the handleChange method, which sets the dataValue property. This data change
triggers an update, which is displayed by the text interpolation data binding, as illustrated in Figure 15-2.

A one-way data binding works well when form elements are the only source of changes in an
application. They are less effective when the user has other means to make changes, such as the Reset
button in the example, whose v-on directive invokes the reset method, which sets dataValue to false. The
text interpolation binding reflects the new value correctly, but the input element isn’t aware of the change
and gets out of sync, as shown in Figure 15-3.

Figure 15-2. Using a one-way data binding

Figure 15-1. Running the example application

Chapter 15 ■ Working With Form elements

367

Adding a Two-Way Binding
Form elements need data to flow in two directions. The data must flow from the form to the data model
when the user manipulates the element, such as when typing into a field or checking a checkbox. The data
must also flow in the other direction when the data model is modified by other means—such as the Reset
button in the example—to ensure that the user is always presented with consistent data. In Listing 15-3,
I have created a binding between the checkbox and the data property.

Listing 15-3. Creating a Binding in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid">

 <div class="bg-info m-2 p-2 text-white">
 Value: {{ dataValue }}
 </div>

 <div class="bg-primary m-2 p-2 text-white">
 <div class="form-check">
 <label class="form-check-label">
 <input class="form-check-input" type="checkbox"
 v-on:change="handleChange"
 v-bind:checked="dataValue" />
 Data Value
 </label>
 </div>
 </div>

Figure 15-3. The limitations of a one-way data binding

Chapter 15 ■ Working With Form elements

368

 <div class="text-center m-2">
 <button class="btn btn-secondary" v-on:click="reset">
 Reset
 </button>
 </div>
 </div>
</template>
...

I used the v-bind directive to set the element’s checked property, which ensures that clicking the Reset
button has the effect of unchecking the checkbox, as shown in Figure 15-4.

There is now a two-way binding between the dataValue property and the checkbox. When the
checkbox is checked and unchecked, the input element sends the change event, which leads the v-on
directive to invoke the handleChange method, which sets the dataValue value. In the other direction, when
dataValue is changed as a result of clicking the Reset button, the v-bind directive sets the input element’s
checked attribute, which checks or unchecks the checkbox.

Two-way data bindings are the foundation for the effective use of HTML forms. In a Vue.js application,
the data model is authoritative, and changes to it can originate in different ways, all of which must be
accurately reflected in the form elements that the user sees.

Adding Another Input Element
The HTML and DOM specification for form elements isn’t consistent, and there are differences in the way
that different element types work that must be reflected in the v-on and v-bind directives used to create
two-way data bindings. In Listing 15-4, I have added a text input element, which shows the difference
between just two different form elements.

Figure 15-4. The effect of an additional data binding

Chapter 15 ■ Working With Form elements

369

Listing 15-4. Expanding the Form Elements in the App.vue File in the src Folder

<template>
 <div class="container-fluid">

 <div class="bg-info m-2 p-2 text-white">
 <div>Data Value: {{ dataValue }}</div>
 <div>Other Value: {{ otherValue || "(Empty)" }}</div>
 </div>

 <div class="bg-primary m-2 p-2 text-white">
 <div class="form-check">
 <label class="form-check-label">
 <input class="form-check-input" type="checkbox"
 v-on:change="handleChange"
 v-bind:checked="dataValue" />
 Data Value
 </label>
 </div>
 </div>

 <div class="bg-primary m-2 p-2">
 <input type="text" class="form-control"
 v-on:input="handleChange"
 v-bind:value="otherValue" />
 </div>

 <div class="text-center m-2">
 <button class="btn btn-secondary" v-on:click="reset">
 Reset
 </button>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 dataValue: false,
 otherValue: ""
 }
 },
 methods: {
 reset() {
 this.dataValue = false;
 this.otherValue = "";
 },

Chapter 15 ■ Working With Form elements

370

 handleChange($event) {
 if ($event.target.type == "checkbox") {
 this.dataValue = $event.target.checked;
 } else {
 this.otherValue = $event.target.value;
 }
 }
 }
 }
</script>

This example shows the differences that are required to create two-way bindings for different types
of element. When dealing with the checkbox, I have to listen to the change event and bind to the checked
attribute, but for the text input, I listen to the input event and bind to the value attribute. I have to make
similar adaptations in the handleChange event, setting the checked property for the checkbox and the value
property for the text input. The result is that there are now two form elements, each of which has two-way
bindings with a data property, as shown in Figure 15-5.

Simplifying Two-Way Bindings
The differences required to create the bindings complicates the process of setting up the bindings, and
it is easy to get confused about the needs of different element types and end up using the wrong events,
attributes, or properties.

Vue.js provides the v-model directive; it simplifies two-way bindings, automatically deals with the
differences between element types, and can be used on input, select, and textarea elements. In Listing 15-5,
I have simplified the bindings using the v-model directive.

Listing 15-5. Simplifying Two-Way Bindings in the App.vue File in the src Folder

<template>
 <div class="container-fluid">

 <div class="bg-info m-2 p-2 text-white">
 <div>Data Value: {{ dataValue }}</div>
 <div>Other Value: {{ otherValue || "(Empty)" }}</div>
 </div>

Figure 15-5. Adding another input element

Chapter 15 ■ Working With Form elements

371

 <div class="bg-primary m-2 p-2 text-white">
 <div class="form-check">
 <label class="form-check-label">
 <input class="form-check-input" type="checkbox"
 v-model="dataValue" />
 Data Value
 </label>
 </div>
 </div>

 <div class="bg-primary m-2 p-2">
 <input type="text" class="form-control" v-model="otherValue" />
 </div>

 <div class="text-center m-2">
 <button class="btn btn-secondary" v-on:click="reset">
 Reset
 </button>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 dataValue: false,
 otherValue: ""
 }
 },
 methods: {
 reset() {
 this.dataValue = false;
 this.otherValue = "";
 }
 //handleChange($event) {
 // if ($event.target.type == "checkbox") {
 // this.dataValue = $event.target.checked;
 // } else {
 // this.otherValue = $event.target.value;
 // }

 //}
 }
 }
</script>

The expression for the v-model directive is a property for which two-way bindings are created. There is
no need to receive events in a method, which allows me to remove the handleChange method, and the effect
is to refocus the component on its data and content, rather than the plumbing that connects them.

Chapter 15 ■ Working With Form elements

372

Binding to Form Elements
Before moving on, I am going to demonstrate how to use the v-model directive to create bindings for
different types of form element. Most of the differences between elements are handled by the v-model
directive, but a simple catalog of bindings means you can copy and paste into your own projects without
having to figure out the exact approach required for each of them.

Binding to Text Fields
The simplest bindings are created to input elements configured to allow the user to enter text. In Listing 15-6,
I have used input elements set up for plain text and passwords, along with two-way bindings using the v-model
directive.

Listing 15-6. Binding to Text Fields in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-info m-2 p-2 text-white">
 <div>Name: {{ name }} </div>
 <div>Password: {{ password }}</div>
 <div>Details: {{ details }}</div>
 </div>
 <div class="bg-primary m-2 p-2 text-white">
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" v-model="name" />
 </div>
 <div class="form-group">
 <label>Password</label>
 <input type="password" class="form-control" v-model="password" />
 </div>
 <div class="form-group">
 <label>Details</label>
 <textarea class="form-control" v-model="details" />
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Bob",
 password: "secret",
 details: "Has admin access"
 }
 }
 }
</script>

Chapter 15 ■ Working With Form elements

373

I have created two input elements, one of which defaults to a regular text field and one of which is
configured as a password field, and a textarea element. All three elements use the v-model directive to
create a two-way data binding to a data property defined by the component, producing the result shown in
Figure 15-6.

Binding to Radio Buttons and Checkboxes
In Listing 15-7, I have replaced the elements from the previous example with checkboxes and radio buttons
that present the user with a constrained set of choices. As with the previous example, each element uses the
v-model directive to create a two-way data binding with a data property.

Listing 15-7. Binding to Checkboxes and Radio Buttons in the App.vue File in the src Folder

<template>
 <div class="container-fluid">

 <div class="bg-info m-2 p-2 text-white">
 <div>Name: {{ name }} </div>
 <div>Has Admin Access: {{ hasAdminAccess }}</div>
 </div>
 <div class="bg-primary m-2 p-2 text-white">
 <div class="form-check">
 <input class="form-check-input" type="radio"
 v-model="name" value="Bob" />
 <label class="form-check-label">Bob</label>
 </div>

Figure 15-6. Binding to text fields

Chapter 15 ■ Working With Form elements

374

 <div class="form-check">
 <input class="form-check-input" type="radio"
 v-model="name" value="Alice" />
 <label class="form-check-label">Alice</label>
 </div>
 <div class="form-check">
 <input class="form-check-input" type="checkbox"
 v-model="hasAdminAccess" />
 <label class="form-check-label">Has Admin Access?</label>
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Bob",
 hasAdminAccess: true
 }
 }
 }
</script>

The key difference in this example is that when using radio buttons, each element must be configured
with a value attribute so that the v-model directive knows how to update the value of the data property.
The elements in Listing 15-7 produce the result shown in Figure 15-7.

The v-model directive can be combined with the v-for and v-bind directives to generate form elements
from an array of values, as shown in Listing 15-8, which is useful when the options presented to the user are
known only at runtime.

Figure 15-7. Binding to radio buttons and checkboxes

Chapter 15 ■ Working With Form elements

375

Listing 15-8. Generating Radio Buttons in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-info m-2 p-2 text-white">
 <div>Name: {{ name }} </div>
 </div>
 <div class="bg-primary m-2 p-2 text-white">
 <div class="form-check" v-for="n in allNames" v-bind:key="n">
 <input class="form-check-input" type="radio"
 v-model="name" v-bind:value="n" />
 <label class="form-check-label">{{ n }}</label>
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 allNames: ["Bob", "Alice", "Joe"],
 name: "Bob"
 }
 }
 }
</script>

The v-bind directive must be used to set the value attribute of the input elements; otherwise, Vue.js
won’t evaluate the attribute value as an expression. Figure 15-8 shows the result from Listing 15-8.

Figure 15-8. Generating form elements from data values

Chapter 15 ■ Working With Form elements

376

Binding to Select Elements
Select elements allow the user to be presented with a limited number of choices in a compact way, as shown
in Listing 15-9. The option elements that define the choices available to the user can be defined statically or
using the v-for directive or, as shown in the listing, by a mix of both.

Listing 15-9. Binding to a Select Element in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-info m-2 p-2 text-white">
 <div>Name: {{ name }} </div>
 </div>
 <div class="bg-primary m-2 p-2 text-white">
 <div class="form-group">
 <label>Selected Names</label>
 <select class="form-control" v-model="name">
 <option value="all">Everyone</option>
 <option v-for="n in allNames" v-bind:key="n"
 v-bind:value="n">Just {{ n}}</option>
 </select>
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 allNames: ["Bob", "Alice", "Joe"],
 name: "Bob"
 }
 }
 }
</script>

As with radio buttons, the v-bind directive must be used to set the value attribute. Figure 15-9 shows
the result of Listing 15-9.

Chapter 15 ■ Working With Form elements

377

Using the v-model Modifiers
The v-model directive provides three bindings that alter the two-way bindings it creates. These modifiers are
described in Table 15-3 and demonstrated in the sections that follow.

Formatting Values as Numbers
The number modifier addresses an oddity in the way that input elements work when the type attribute is set
to number and is demonstrated in Listing 15-10.

Listing 15-10. Using a Numeric Input Element in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-info m-2 p-2 text-white">
 <div>Amount: {{ amount }}, Amount + 10 = {{ amount + 10 }}</div>
 </div>

Figure 15-9. Binding to a select element

Table 15-3. The Modifiers for the v-model Directive

Modifier Description

number This modifier parses the value from the input into a number before assigning it to the data
property.

trim This modifier removes any leading and trailing whitespace from the input before assigning
it to the data property.

lazy This modifier changes the event to which the v-model directive listens so that the data
property is updated only when the user navigates away from the input element.

Chapter 15 ■ Working With Form elements

378

 <div class="form-group">
 <label>Amount</label>
 <input type="number" class="form-control" v-model="amount" />
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 amount: 100
 }
 }
 }
</script>

The HTML5 specification added a range of values for the type attribute, and the number value tells
the browser only to accept keystrokes for digits and decimal points. But the value entered by the user is
presented as a string by the browser. This combines with the dynamic JavaScript typing system to create
a problem, which you can see by changing the value in the Amount field to any number, such as 101. The
v-model directive responds to the events generated by the input element as the value is changed and
updates the data property named amount using the string value it receives, producing the effect shown on
the left in Figure 15-10.

The problem is seen in the text interpolation binding that adds 10 to the amount value. Since the
v-model directive has updated amount with a string, JavaScript interprets the data binding’s expression
as string concatenation, rather than addition, which means that 101 + 10 produces a result of 10110.
In Listing 15-11, I added the number modifier to the v-model directive, which avoids this problem.

Figure 15-10. The effect of the number modifier

Chapter 15 ■ Working With Form elements

379

Listing 15-11. Applying a Modifier in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid">
 <div class="bg-info m-2 p-2 text-white">
 <div>Amount: {{ amount }}, Amount + 10 = {{ amount + 10 }}</div>
 </div>
 <div class="form-group">
 <label>Amount</label>
 <input type="number" class="form-control" v-model.number="amount" />
 </div>
 </div>
</template>
...

The number modifier tells the v-model directive to convert the value entered by the user to a number
before using it to update the application.

 ■ Caution the number modifier doesn’t apply any restrictions on the characters that the input element
allows, and it will allow the directive to update the data model with a string if the value entered by the user
contains nondigit characters. When using this modifier, you must ensure that the user can enter only digits by
setting the type attribute of the input element to number.

Delaying Updates
By default, the v-model directive updates the data model after every keypress made into input or textarea
elements. The lazy modifier changes the event that the v-model directive listens to so that an update is
performed only when the navigates to another component. In Listing 15-12, I have applied the modifier to
the input element in the component’s template.

Listing 15-12. Applying a Modifier in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid">
 <div class="bg-info m-2 p-2 text-white">
 <div>Amount: {{ amount }}, Amount + 10 = {{ amount + 10 }}</div>
 </div>
 <div class="form-group">
 <label>Amount</label>
 <input type="number" class="form-control" v-model.number.lazy="amount" />
 </div>
 </div>
</template>
...

Chapter 15 ■ Working With Form elements

380

The lazy modifier will prevent the amount property from being updated until the input element loses
the focus, typically when the user tabs to another form element or clicks the mouse button outside of the
element.

Removing Whitespace Characters
The trim modifier removes leading and trailing whitespace characters from the text entered by the user
and can help avoid validation errors that are hard for the user to see. In Listing 15-13, I added a text input
element to the component and used the trim modifier on its v-model directive.

 ■ Note the trim modifier affects only the values entered into the element by the user. if another part of the
application sets the data property to a string that has leading or trailing whitespace, those characters will be
displayed to the user by the input element.

Listing 15-13. Trimming Whitespace in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-info m-2 p-2 text-white">
 <div>Name: **{{name}}** </div>
 </div>
 <div class="form-group">
 <label>Name</label>
 <input type="text" class="form-control" v-model.trim="name" />
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "Bob"
 }
 }
 }
</script>

I have surrounded the text interpolation binding that displays the value with asterisks to help
emphasize any leading or trailing whitespace. To test the modifier, save the changes to the component
and enter a string that begins or ends with spaces. These characters will be trimmed from the string that is
assigned to the data property, producing the result shown in Figure 15-11.

Chapter 15 ■ Working With Form elements

381

Binding to Different Data Types
The v-model directive is able to adapt the way it binds to the data model, which makes it possible to use
form elements in ways that are often useful for web application development, as described in the following
sections.

Selecting an Array of Items
If the v-model directive is applied to a checkbox and bound to a data property that is an array, then checking
and unchecking the box will add and remove a value from the array. This is easier to demonstrate than
explain, and in Listing 15-14 I have used the v-for directive to generate a set of checkboxes and used the
v-model directive to bind them to an array.

Listing 15-14. Creating a Binding to an Array in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="bg-info m-2 p-2 text-white">
 <div>Selected Cities: {{ cities }}</div>
 </div>

 <div class="form-check m-2" v-for="city in cityNames" v-bind:key="city">
 <label class="form-check-label">
 <input type="checkbox" class="form-check-input"
 v-model="cities" v-bind:value="city" />
 {{city}}
 </label>
 </div>

Figure 15-11. Trimming whitespace characters

Chapter 15 ■ Working With Form elements

382

 <div class="text-center">
 <button v-on:click="reset" class="btn btn-info">Reset</button>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 cityNames: ["London", "New York", "Paris", "Berlin"],
 cities: []
 }
 },
 methods: {
 reset() {
 this.cities = [];
 }
 }
 }
</script>

The v-for directive creates a checkbox element for each of the values in the cityName array, which
provides the set of values from which the user can select. Each input element is configured with a value
attribute that specifies the city name that will be added to the cities array when it is checked and removed
when it is unchecked. The v-model directive is configured to create a two-way data binding to the cities
array, which will be populated with the selected values. The two-way binding means that if another part of
the application—such as the reset method in this example—removes the value from the array, the v-model
directive will automatically uncheck the box. I used a text interpolation binding to display the selected
values, as shown in Figure 15-12.

Figure 15-12. Creating a data binding to an array

Chapter 15 ■ Working With Form elements

383

BINDING TO AN ARRAY USING A SELECT ELEMENT

a similar effect can be achieved using a select element that is configured to allow multiple selections,
like this:

...
<div class="form-control">
 <label>City</label>
 <select multiple class="form-control" v-model="cities">
 <option v-for="city in cityNames" v-bind:key="city">
 {{city}}
 </option>
 </select>
</div>
...

the v-for directive is applied to the option element and populates the select element with the
choices that will be presented to the user. the v-model directive is configured to bind to an array and
works in the same way as the group of checkboxes demonstrated in listing 15-14.

my preference is for the checkboxes because most users are unaware of the need to hold a modifier
key—such as the shift or Control keys on Windows to make contiguous and noncontiguous selections.
presenting the user with a collection of checkboxes presents a more obvious approach that i prefer to
explanatory text alongside the select element.

Using Custom Values for Form Elements
A common pattern with checkboxes is to toggle a value indirectly so that the true/false value provided

by the input element and its v-model binding is translated into different values by a computed property or a
data binding expression. In Listing 15-15, I have demonstrated this pattern by using the v-bind directive to
assign an element to classes that correspond to Bootstrap CSS classes.

Listing 15-15. Indirect Values in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="m-2 p-2 text-white" v-bind:class="elemClass">
 <div>Value: {{ elemClass }}</div>
 </div>
 <div class="form-check m-2">
 <label class="form-check-label">
 <input type="checkbox" class="form-check-input"
 v-model="dataValue" />
 Dark Color
 </label>
 </div>
 </div>
</template>

Chapter 15 ■ Working With Form elements

384

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 dataValue: false,
 }
 },
 computed: {
 elemClass() {
 return this.dataValue ? "bg-primary" : "bg-info";
 }
 }
 }
</script>

The v-model directive on the checkbox sets the data property named dataValue, which is used solely
by the elemClass computed property, which the v-bind directive on the div element uses to set class
membership. The effect is that toggling the checkbox moves the div element between the bg-primary and
bg-info classes, which Bootstrap uses to set the background color, as shown in Figure 15-13.

When the data property set by the checkbox is used this way, the computed property that converts
the true/false value can be eliminated by applying true-value and false-value attributes, as shown in
Listing 15-16.

Listing 15-16. Simplifying Bindings in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="m-2 p-2 text-white" v-bind:class="dataValue">
 <div>Value: {{ dataValue }}</div>
 </div>
 <div class="form-check m-2">
 <label class="form-check-label">
 <input type="checkbox" class="form-check-input"
 v-model="dataValue" true-value="bg-primary"
 false-value="bg-info" />

Figure 15-13. Using an indirect value set by a checkbox

Chapter 15 ■ Working With Form elements

385

 Dark Color
 </label>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 dataValue: "bg-info"
 }
 }
 }
</script>

The true-value and false-value attributes are used by the v-model directive to set dataValue, which
means that a computed property isn’t required to translate the user’s choice into class names that can be
used by the v-bind directive. The result is the same—toggling the checkbox changes the class membership
of the div element—but the code is simpler and cleaner.

Using Custom Values for Radio Buttons and Select Elements
The v-model directive can be combined with the v-bind directive to support values that can also be used for
radio buttons and select elements. In Listing 15-17, I have added both types of element and configured them
so they use the class names introduced in the previous section.

Listing 15-17. Using Custom Values for Other Elements in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="m-2 p-2 text-white" v-bind:class="dataValue">
 <div>Value: {{ dataValue }}</div>
 </div>
 <div class="form-check m-2">
 <label class="form-check-label">
 <input type="checkbox" class="form-check-input"
 v-model="dataValue" v-bind:true-value="darkColor"
 v-bind:false-value="lightColor" />
 Dark Color
 </label>
 </div>

 <div class="form-group m-2 p-2 bg-secondary">
 <label>Color</label>
 <select v-model="dataValue" class="form-control">
 <option v-bind:value="darkColor">Dark Color</option>
 <option v-bind:value="lightColor">Light Color</option>
 </select>
 </div>

Chapter 15 ■ Working With Form elements

386

 <div class="form-check-inline m-2">
 <label class="form-check-label">
 <input type="radio" class="form-check-input"
 v-model="dataValue" v-bind:value="darkColor" />
 Dark Color
 </label>
 </div>
 <div class="form-check-inline m-2">
 <label class="form-check-label">
 <input type="radio" class="form-check-input"
 v-model="dataValue" v-bind:value="lightColor" />
 Light Color
 </label>
 </div>
 </div>
</template>

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 darkColor: "bg-primary",
 lightColor: "bg-info",
 dataValue: "bg-info"
 }
 }
 }
</script>

To avoid duplicating the class names on each element, I use the v-bind directive to set the value
attribute for the input and option elements using the data properties named darkColor and lightColor.
The result is a set of form elements that manage the class membership of the div element without needing a
computed property to convert true/false values, as shown in Figure 15-14.

Figure 15-14. Using custom values for other elements

Chapter 15 ■ Working With Form elements

387

Validating Form Data
As soon as you begin using form elements, you need to start thinking about data validation. Users will enter
anything into text fields, and it is important to ensure that your application receives the data it requires to
function. In the following sections, I explain how form data can be validated, and to prepare, I have updated
the component so that it contains a simple form, as shown in Listing 15-18.

 ■ Note i am showing you how to write your own validation code in this section because it is interesting
and because it demonstrates how some of the features described in this chapter and earlier chapters can be
combined to produce useful features. in real projects, i suggest you rely on one of the excellent and widely
used open source packages for Vue.js form validation, such as vuelidate (https://github.com/monterail/
vuelidate), which i used in part 1 for the sportsstore project, or VeeValidate (http://vee-validate.
logaretm.com).

Listing 15-18. Creating a Form in the App.Vue File in the src Folder

<template>
 <div class="container-fluid">

 <div class="btn-primary text-white my-2 p-2">
 Name: {{ name }}, Category: {{ category }}, Price: {{ price }}
 </div>

 <form v-on:submit.prevent="handleSubmit">
 <div class="form-group">
 <label>Name</label>
 <input v-model="name" class="form-control" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input v-model="category" class="form-control" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input type="number" v-model.number="price" class="form-control" />
 </div>

 <div class="text-center">
 <button class="btn btn-primary" type="submit">Submit</button>
 </div>

 </form>
 </div>

</template>

https://github.com/monterail/vuelidate
https://github.com/monterail/vuelidate
http://vee-validate.logaretm.com
http://vee-validate.logaretm.com

Chapter 15 ■ Working With Form elements

388

<script>
 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "",
 category: "",
 price: 0
 }
 },
 methods: {
 handleSubmit() {
 console.log(`FORM SUBMITTED: ${this.name} ${this.category} `
 + ` ${this.price}`);
 }
 }
 }
</script>

The component defines data properties named name, category, and price that are presented to the
user through input elements, to which the v-model directive has been applied. Details of the values entered
are displayed above the form elements, as shown in Figure 15-15.

Figure 15-15. Presenting a form to the user

Chapter 15 ■ Working With Form elements

389

The input elements are contained within a form element to which the v-on directive has been applied
like this:

...
<form v-on:submit.prevent="handleSubmit">
...

The submit event is triggered when the user clicks the button element, whose type has been set to
submit. The prevent modifier is required to stop the browser from submitting the form to the HTTP server,
which is the default action for this event. The directive’s expression invokes a method called handleSubmit,
which would send the data to a web service in a real application but which simply writes out a message to
the browser’s JavaScript console in this example. Click the Submit button, and you will see a message like
this one in the JavaScript console:

...
FORM SUBMITTED: Running Shoes Running 100
...

I explain how to work with web services in Chapter 19, but for this chapter, the emphasis is on validating
the data entered by the user. The goal for this part of the chapter is to control the message displayed by the
handleSubmit method so that it is displayed only when the user has entered valid data for all the form fields.
When performing validation, it is important to have a clear set of requirements, and for this example, the
validation requirements for each property are described in Table 15-4.

Defining the Validation Rules
When you validate data, you will find that the same set of rules are applied repeatedly to different data
values provided by the user. To reduce code duplication, it is a good idea to define validation rules once and
reuse them. To define the validation rules that are required in Table 15-4, I added a JavaScript file called
validationRules.js to the src folder and added the code shown in Listing 15-19.

UNDERSTANDING WHY USERS ENTER BAD DATA

there are several reasons why users enter bad data into an application, requiring data validation. the
first type of bad data occurs when the user doesn’t understand the data that is required or the format
in which it must be expressed. a common example that i encounter is requiring credit cards to be
expressed with or without spaces between the number groups. You should make it clear to the user
if you require common data values to be expressed in a specific format. Better still, avoid the issue
entirely, accept all of the common formats, and convert them into the one you like automatically.

Table 15-4. The Validation Requirements

Name Description

name The user must provide a value that contains at least three characters.

category The user must provide a value that contains only letters.

price The user must provide a value that contains only digits and that is between 1 and 1,000.

Chapter 15 ■ Working With Form elements

390

the second type of bad data occurs when the user doesn’t care about the process and just wants to get
to the result. if you make the user endure long and complex forms or repeat a process over and over,
then you can expect to see a lot of results containing nonsense. to minimize this type of issue, ask the
user only for the data you really need, provide sensible default values where possible, and try to bear in
mind that few users will care as much about your products as services as you would like them to.

there is nothing you can do about the final reason for bad data, which is where a user is trying to
subvert the application. there will always be malicious users, and the more valuable your products
and services are, the more malicious users you will attract. Data validation on its own isn’t enough to
avoid this type of issue, and you must give proper effort to end-to-end security reviews, monitoring, and
remediation.

Listing 15-19. The Contents of the validationRules.js File in the src Folder

function required(name) {
 return {
 validator: (value) => value != "" && value !== undefined && value !== null,
 message: `A value is required for ${name}`
 }
}

function minLength(name, minlength) {
 return {
 validator: (value) => String(value).length >= minlength,
 message: `At least ${minlength} characters are required for ${name}`
 }
}

function alpha(name) {
 return {
 validator: (value) => /^[a-zA-Z]*$/.test(value),
 message: `${name} can only contain letters`
 }
}

function numeric(name) {
 return {
 validator: (value) => /^[0-9]*$/.test(value),
 message: `${name} can only contain digits`
 }
}

function range(name, min, max) {
 return {
 validator: (value) => value >= min && value <= max,
 message: `${name} must be between ${min} and ${max}`
 }
}

Chapter 15 ■ Working With Form elements

391

export default {
 name: [minLength("Name", 3)],
 category: [required("Category"), alpha("Category")],
 price: [numeric("Price"), range("Price", 1, 1000)]
}

This JavaScript file defines the validation functions that I will use to check the values entered by the user
and the combination of these functions for each of the properties that will be validated.

Performing Validation
The next step is to add the code that will perform the validation. In Listing 15-20, I have added the methods
and properties that are required to use the validation rules defined in the following section.

Listing 15-20. Performing Validation in the App.vue File in the src Folder

<template>
 <div class="container-fluid">

 <div class="bg-danger text-white my-2 p-2" v-if="errors">
 <h5>The following problems have been found:</h5>

 <template v-for="(errors) in validationErrors">
 <li v-for="error in errors" v-bind:key="error">{{error}}
 </template>

 </div>

 <form v-on:submit.prevent="handleSubmit">
 <div class="form-group">
 <label>Name</label>
 <input v-model="name" class="form-control" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input v-model="category" class="form-control" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input type="number" v-model.number="price" class="form-control" />
 </div>

 <div class="text-center">
 <button class="btn btn-primary" type="submit">
 Submit
 </button>
 </div>
 </form>
 </div>
</template>

Chapter 15 ■ Working With Form elements

392

<script>

 import validation from "./validationRules";
 import Vue from "vue";

 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "",
 category: "",
 price: 0,
 validationErrors: {},
 }
 },
 computed: {
 errors() {
 return Object.values(this.validationErrors).length > 0;
 }
 },
 methods: {
 validate(propertyName, value) {
 let errors = [];
 Object(validation)[propertyName].forEach(v => {
 if (!v.validator(value)) {
 errors.push(v.message);
 }
 });
 if (errors.length > 0) {
 Vue.set(this.validationErrors, propertyName, errors);
 } else {
 Vue.delete(this.validationErrors, propertyName);
 }
 },
 validateAll() {
 this.validate("name", this.name);
 this.validate("category", this.category);
 this.validate("price", this.price);
 return this.errors;
 },
 handleSubmit() {
 if (this.validateAll()) {
 console.log(`FORM SUBMITTED: ${this.name} ${this.category} `
 + ` ${this.price}`);
 }
 }
 }
 }
</script>

Chapter 15 ■ Working With Form elements

393

The validate method is used to validate an individual data property using the rules defined in
Listing 15-20, which are accessed through an import statement. Details of validation errors are stored in the
data property named validationErrors, which will have a property for each input field set to an array of
the validation messages that need to be presented to the user.

 ■ Tip the Vue.delete method that i use in listing 15-20 is the counterpart to the Vue.set method
described in Chapter 13 and is used to remove a property from an object so that Vue.js is aware of the change.

When the user clicks the Submit button, the handleSubmit method calls the validateAll method,
which calls the validate method for each of the data properties and performs the action—logging a
message in this example—only if there are no validation problems.

In the component’s template, I use the v-if directive to control the visibility of a div element, which
then relies on the v-for directive to enumerate the properties of the validationErrors object and then
again to create li elements for each message.

The result is that the values that the user has entered into the form are checked when the Submit button
is clicked, as shown in Figure 15-16, which illustrates the errors shown when the button is clicked without
changing any of the input fields.

Figure 15-16. Validating form data

Chapter 15 ■ Working With Form elements

394

Responding to Live Changes
The basic validation works, but the checks are performed only when the user clicks the Submit button. A
smoother approach is to validate the data as the user enters data into the input elements, providing more
immediate feedback. I don’t want to start showing errors immediately, so I’ll wait until the user has clicked
Submit once before responding to changes, as shown in Listing 15-21.

Listing 15-21. Responding to Changes in the App.vue File in the src Folder

...
<script>

 import validation from "./validationRules";
 import Vue from "vue";

 export default {
 name: "MyComponent",
 data: function () {
 return {
 name: "",
 category: "",
 price: 0,
 validationErrors: {},
 hasSubmitted: false
 }
 },
 watch: {
 name(value) { this.validateWatch("name", value) },
 category(value) { this.validateWatch("category", value) },
 price(value) { this. validateWatch("price", value) }
 },
 computed: {
 errors() {
 return Object.values(this.validationErrors).length > 0;
 }
 },
 methods: {
 validateWatch(propertyName, value) {
 if (this.hasSubmitted) {
 this.validate(propertyName, value);
 }
 },
 validate(propertyName, value) {
 let errors = [];
 Object(validation)[propertyName].forEach(v => {
 if (!v.validator(value)) {
 errors.push(v.message);
 }
 });
 if (errors.length > 0) {
 Vue.set(this.validationErrors, propertyName, errors);
 } else {

Chapter 15 ■ Working With Form elements

395

 Vue.delete(this.validationErrors, propertyName);
 }
 },
 validateAll() {
 this.validate("name", this.name);
 this.validate("category", this.category);
 this.validate("price", this.price);
 return this.errors;
 },
 handleSubmit() {
 this.hasSubmitted = true;
 if (this.validateAll()) {
 console.log(`FORM SUBMITTED: ${this.name} ${this.category} `
 + ` ${this.price}`);
 }
 }
 }
 }
</script>
...

I have added a watch section in the script element, which is used to define watchers. I explain watchers
in Chapter 17, but this feature allows a component to receive notifications when one of its data values changes.
In this example, I have added functions to the watch section so that I will receive notifications when the name,
category, and price properties change and use this to invoke a method named validateWatch, which will
validate the property value only after the Submit button has been clicked at least once, which is managed
through a new data property named hasSubmitted. The result is that the error messages displayed to the user
are updated immediately on edit once the Submit button has been clicked, as shown in Figure 15-17.

Figure 15-17. Immediate feedback for validation errors

Chapter 15 ■ Working With Form elements

396

Summary
In this chapter, I explained the use of two-way data bindings and described how they can be created using
the v-model directive. I also demonstrated how to validate the data that a user enters into an HTML form
using the v-model directive and other key Vue.js features. In the next chapter, I describe how components
can be used to add structure to an application.

397© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_16

CHAPTER 16

Using Components

In this chapter, I explain how components form the building blocks in a Vue.js application and allow related
content and code to be grouped together to make development easier. I show you how to add components
to a project, how to communicate between components, and how components can work together to present
content to the user. Table 16-1 puts components in context.

Table 16-2 summarizes the chapter.

Table 16-1. Putting Components in Context

Question Answer

What are they? Components can be composed to create complex functionality from
smaller building blocks.

Why are they useful? Building a complex application using a single component makes it
hard to tell which content and code relate to each feature. Breaking
an application into several components means that each can be
developed and tested individually.

How are they used? Components are declared using a components property in the
script element and applying using a custom HTML element.

Are there any pitfalls or limitations? Components are isolated from one another by default, and the
features that allow them to communicate can be complex to master.

Are there any alternatives? You don’t have to use multiple components to build an application,
and a single component may be acceptable for simple projects.

Table 16-2. Chapter Summary

Problem Solution Listing

Group related features Add components to the project 1–9

Communicate with a child component Use the props feature 10–12

Communicate with a parent component Use the custom event feature 13–14

Mix parent and child component content Use the slots feature 15–20

Chapter 16 ■ Using Components

398

Preparing for This Chapter
I continue working with the templatesanddata project from Chapter 15. To prepare for this chapter,
I simplified the application’s root component, as shown in Listing 16-1.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Listing 16-1. Simplifying the Content of the App.vue File in the src Folder

<template>

 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 Root Component
 </div>

</template>

<script>

export default {
 name: 'App'
}

</script>

Run the command shown in Listing 16-2 in the templatesanddata folder to start the development tools.

Listing 16-2. Navigating to the Project Folder and Starting the Development Tools

npm run serve

The initial bundling process will be performed, after which you will see a message telling you that the
project has compiled successfully and the HTTP server is listening for requests on port 8080. Open a new
browser window and navigate to http://localhost:8080 to see the project’s placeholder content, as shown
in Figure 16-1.

Figure 16-1. Running the example application

https://github.com/Apress/pro-vue-js-2

Chapter 16 ■ Using Components

399

Understanding Components as Building Blocks
Using a single component becomes increasingly difficult as the complexity of an application increases.
You saw an example of this in Chapter 15, where a form and its validation logic existed side by side, with the
result that it is hard to work out which parts of the template and script elements are responsible for dealing
with the form and which are related to validation. A component that has multiple responsibilities is hard to
understand, hard to test, and hard to maintain.

Components are the building block for Vue.js applications, and using multiple components in an
application allows for smaller units of functionality that are more easily written, maintained, and reused
throughout an application.

When using components to build an application, the effect is a parent-child relationship where one
component (the parent) delegates part of its template to another component (the child). The best way
to see how this works is by creating an example that demonstrates this relationship. Components are
conventionally defined in files with the .vue extension in the src/components folder, and I added a file
called Child.vue in that folder, with the content shown in Listing 16-3.

 ■ Note the project was created with a HelloWorld.vue file in the src/components, but i don’t use that file
in this chapter, and you can ignore—or delete—this file.

Listing 16-3. The Contents of the Child.vue File in the src/components Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3 h6">
 Child Component
 </div>
</template>

A component has to provide at least a template element, which is at the heart of the delegation process.
The next step is to set up the delegation and create the relationship between the parent and the child, as
shown in Listing 16-4.

Listing 16-4. Delegating to a Child Component in the App.vue File in the src Folder

<template>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 Root Component
 <ChildComponent></ChildComponent>
 </div>
</template>

<script>
import ChildComponent from "./components/Child";

export default {
 name: 'App',
 components: {
 ChildComponent
 }
}
</script>

Chapter 16 ■ Using Components

400

Three steps are required to set up the child component in the parent. The first step is to use an import
statement for the child component, like this:

...
import ChildComponent from "./components/Child";
...

The source used in the import statement must start with a period, which indicates that this is a local
import statement, rather than one that targets a package installed using a package manager. The most
important part of the import statement is the name to which the child component is assigned, which I have
marked in bold and which is ChildComponent in this example.

The name in the import statement is used to register the component, using a property named
components in the script element, like this:

...
export default {
 name: 'App',
 components: {
 ChildComponent
 }
}
...

The components property is assigned using an object whose properties are the components it uses,
and it is important to make sure you use the same name in the components object as you did in the import
statement. The final step is to add an HTML element to the parent component’s template with a tag that
matches the name used in the import statement and the components object, like this:

...
<div class="bg-secondary text-white text-center m-2 p-2 h5">
 Root Component
 <ChildComponent></ChildComponent>
</div>
...

When Vue.js processes the parent component’s template, it finds the custom HTML element and
replaces it with the content in the template element of the child component, producing the result shown in
Figure 16-2.

 ■ Note this example shows an important aspect of parent-child relationships: it is the parent that determines
the name by which a child component is defined. this may seem odd at first, but it allows meaningful names to
be used, reflecting the way that the child component is being applied. as you will see in later examples, a single
component can be used in different parts of the application, and allowing the parent to name its child means
that each use of the component can be given a name that suggests its use.

Chapter 16 ■ Using Components

401

If you use the browser’s F12 tools to examine the HTML document, you will see how the child
component has been used to replace the ChildComponent element.

...
<body>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 Root Component
 <div class="bg-primary text-white text-center m-2 p-3 h6">
 Child Component
 </div>
 </div>
 <script type="text/javascript" src="/app.js"></script>
</body>
...

The result is that part of the content presented by the App component, defined in the App.vue file, has
been delegated to the Child component, defined in the Child.vue file, as illustrated in Figure 16-3.

Figure 16-2. Adding a component to the example application

Figure 16-3. The parent-child component relationship

Chapter 16 ■ Using Components

402

Understanding Child Component Names and Elements
In Listing 16-4, I used the name in the import statement to set up the child component, which led to this
awkward-looking custom HTML element:

...
<div class="bg-secondary text-white text-center m-2 p-2 h5">
 Root Component
 <ChildComponent></ChildComponent>
</div>
...

This was a useful approach to demonstrate that it is the parent that names its child components, but
Vue.js has a more sophisticated approach to names, which can lead to more elegant HTML.

The first name feature is that Vue.js will automatically reformat custom HTML element tag names when
it looks for the child component to use, as shown in Listing 16-5.

Listing 16-5. Tag Name Reformatting in the App.vue File in the src Folder

<template>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 Root Component
 <ChildComponent></ChildComponent>
 <child-component></child-component>
 </div>
</template>

<script>
import ChildComponent from "./components/Child";

export default {
 name: 'App',
 components: {
 ChildComponent
 }
}
</script>

The new custom HTML element in the template demonstrates that Vue.js will accept hyphenated
tag names, which are then translated to the camel case format that is conventionally used for component
names, such that the tag child-component is recognized as an instruction to use ChildComponent. Both of
the custom HTML elements in Listing 16-5 tells Vue.js to delegate part of the parent component’s template
to an instance of the child component, producing the result shown in Figure 16-4.

Chapter 16 ■ Using Components

403

The components property is a map that Vue.js uses to translate custom HTML element tag names into
child component names, and this means that you can specify a completely different tag name when you
register a component, as shown in Listing 16-6.

Listing 16-6. Specifying a Tag Name in the App.vue File in the src Folder

<template>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 Root Component
 <MyFeature></MyFeature>
 <my-feature></my-feature>
 </div>
</template>

<script>
import ChildComponent from "./components/Child";

export default {
 name: 'App',
 components: {
 MyFeature: ChildComponent
 }
}
</script>

When you specify a property and value for a child component, the property name is used for the custom
HTML elements. In this example, I have set the name of the property to MyFeature, which means I can apply
the ChildComponent using the MyFeature and my-feature tags.

Figure 16-4. Flexible custom element tag formatting

Chapter 16 ■ Using Components

404

REGISTERING COMPONENTS GLOBALLY

if you have a component that you need throughout an application, then you can register it globally. the
advantage of this approach is that you don’t have to configure each parent component; however, the
drawback is that the same htmL element is used to apply the child component, which can lead to less
meaningful templates. to register a component globally, you add an import statement in the main.js file
and use the Vue.component method, like this:

import Vue from 'vue'
import App from './App'

import "../node_modules/bootstrap/dist/css/bootstrap.min.css";
import ChildComponent from "./components/Child";

Vue.config.productionTip = false

Vue.component("child-component", ChildComponent);

new Vue({
 render: h => h(App)
}).$mount('#app')

the Vue.component method must be called before the application’s Vue object is created, and its
arguments are the htmL element tag that will be used to apply the component and the component
object named in the import statement. the result is that the child-component element can be used
throughout the application to apply the component without any further configuration.

Using Component Features in Child Components
The child component I defined in Listing 16-6 contains just a template element, but Vue.js supports the full
range of features described in previous chapters in child components, including one-way and two-way data
bindings, event handlers, data and computed properties, and methods. In Listing 16-7, I have added a script
element to the child component and used it to support data bindings in the template.

Listing 16-7. Adding Features in the Child.vue File in the src/components Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3 h6">
 {{ message }}
 <div class="form-group m-1">
 <input v-model="message" class="form-control" />
 </div>
 </div>
</template>

Chapter 16 ■ Using Components

405

<script>
export default {
 data: function() {
 return {
 message: "This is the child component"
 }
 }
}
</script>

The script element I added defines a data property named message, which I use in the template
element with a text interpolation binding and the v-model directive. The result is the child component
displays an input element whose contents are reflected in the text data binding, as shown in Figure 16-5.

Understanding Component Isolation
Components are isolated from one another, which means you don’t have to worry about picking unique
property and method names or binding to a value that is owned by a different component.

In Figure 16-5, you can see that editing the contents of one input element has no effect on the other
child component, even though they both define and use a message property. This isolation also applies to
the parent and child components, which can be demonstrated by adding a message property to the parent
component in the example application, as shown in Listing 16-8.

Figure 16-5. Adding features to a child component

Chapter 16 ■ Using Components

406

Listing 16-8. Adding a Data Property in the App.vue File in the src Folder

<template>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 {{ message }}
 <MyFeature></MyFeature>
 <my-feature></my-feature>
 </div>
</template>

<script>
import ChildComponent from "./components/Child";

export default {
 name: 'App',
 components: {
 MyFeature: ChildComponent
 },
 data: function() {
 return {
 message: "This is the parent component"
 }
 }
}
</script>

There are now three data properties named message in the application, but Vue.js keeps each of them
isolated so that changes made to one have no effect on the other, as shown in Figure 16-6.

Figure 16-6. Isolation between parent and child components

Chapter 16 ■ Using Components

407

UNDERSTANDING CSS SCOPING

if you define custom styles in a component, you will find they are applied to elements defined by any
component. For example, this style:

...
<style>
 div { border: 5px solid red ; }
</style>
...

will match any div element in the application and apply a solid red border. if you want to restrict your
custom Css styles to the component that defines them, you can add the scoped attribute to the style
element, like this:

...
<style scoped>
 div { border: 5px solid red ; }
</style>
...

the scoped attribute tells Vue.js that the styles should be applied only to the elements in the current
component’s template element and not to elements in the templates of other components.

Using Component Props
Keeping components isolated is a good default policy because it avoids unexpected interactions. If
components were not isolated from one another, making a change to one message property would affect
all the components. On the other hand, in most applications, components have to work together to deliver
features for the user, and this means breaking through the barrier that separates components. One feature
for component collaboration is the prop, which allows a parent to provide a child with a data value.
In Listing 16-9, I have added a prop to the child component.

Listing 16-9. Adding a Prop in the Child.vue File in the src/components Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3 h6">
 {{ message }}
 <div class="form-group m-1 text-left">
 <label>{{ labelText }}</label>
 <input v-model="message" class="form-control" />
 </div>
 </div>
</template>

Chapter 16 ■ Using Components

408

<script>
 export default {
 props: ["labelText"],
 data: function () {
 return {
 message: "This is the child component"
 }
 }
 }
</script>

Props are defined using an array of strings assigned to a props property in the component’s script
element. In this case, the prop name is labelText. Once you have defined a prop, you can use it elsewhere
in the component, such as in the text interpolation binding. If you need to modify the value once it has been
received from the parent component, then you must use a data or computed property whose initial value is
obtained from the prop, as shown in Listing 16-10.

 ■ Note this approach is required because the flow of data in a prop is in one direction: from the parent
component to the child component. if you modify a prop value, the changes you make are likely to be
overwritten by the parent component.

Listing 16-10. Setting a Mutable Value from a Prop in the Child.vue File in the src/components Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3 h6">
 {{ message }}
 <div class="form-group m-1 text-left">
 <label>{{ labelText }}</label>
 <input v-model="message" class="form-control" />
 </div>
 </div>
</template>

<script>
 export default {
 props: ["labelText", "initialValue"],
 data: function () {
 return {
 message: this.initialValue
 }
 }
 }
</script>

The component defines a second prop, named initialValue, that is used to set the value of the
message property.

Chapter 16 ■ Using Components

409

Using a Prop in a Parent Component
When a component defines a prop, its parent can send it data values by using attributes on the custom
HTML element, as shown in Listing 16-11.

Listing 16-11. Using a Prop in the App.vue File in the src Folder

<template>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 {{ message }}
 <MyFeature labelText="Name" initialValue="Kayak"></MyFeature>
 <my-feature label-text="Category" initial-value="Watersports"></my-feature>
 </div>
</template>

<script>
 import ChildComponent from "./components/Child";

 export default {
 name: 'App',
 components: {
 MyFeature: ChildComponent
 },
 data: function () {
 return {
 message: "This is the parent component"
 }
 }
 }
</script>

Vue.js applies the same flexibility when matching attribute names to props as it does when matching
custom HTML elements to components. This means I can use labelText or label-text to set the value for
the prop, for example. The attributes in Listing 16-11 configure the child components to produce the result
shown in Figure 16-7.

 ■ Tip You may have to reload the browser to see the results of this example.

Chapter 16 ■ Using Components

410

 ■ Tip prop attribute values are literal, which means that the value is not evaluated as an expression.
if you want to pass a string to the child component, then you can do so like this: my-attr="Hello". You do
not need to use double quotes: my-attr="'Hello'". if you want a prop attribute value to be evaluated as an
expression, then use the v-bind directive. if you want the child component to respond to prop changes in data
bindings, then you can use a watcher, as described in Chapter 17.

When using a prop, it is important to bear in mind that the flow of data is only from the parent
component to the child, as shown in Figure 16-8. You will receive a warning if you attempt to modify a prop
value, reminding you that the prop should be used to initialize a data property, as shown in Listing 16-10.

Figure 16-7. Using a prop to configure a child component

Chapter 16 ■ Using Components

411

SETTING REGULAR ATTRIBUTES ON CUSTOM HTML ELEMENTS

When Vue.js replaces a custom htmL element with a child component’s template, it transfers any
nonprop attributes to the top-level template element, which can lead to confusing results, especially if
the element in the child’s template already has this attribute. For example, if this is the child’s template
element:

...
<template>
 <div id="childIdValue">This is the child's element</div>
</template>
...

and this is the parent’s template element:

...
<template>
 <my-feature id="parentIdValue"></my-feature>
</template>
...

Figure 16-8. The flow of data when using a prop

Chapter 16 ■ Using Components

412

then the attribute applied by the parent will override the child’s attribute, producing htmL like this in the
browser:

...
<div id="parentIdValue">This is the child's element</div>
...

the behavior is different for the class and style attributes, which browsers handle by combining the
two attribute values. if this is the child’s template element:

...
<template>
 <div class="bg-primary">This is the child's element</div>
</template>
...

and this is the parent’s template element:

...
<template>
 <my-feature class="text-white"></my-feature>
</template>
...

then the browser will combine the class attribute values to produce the following htmL in the browser:

...
<div class="bg-primary text-white">This is the child's element</div>
...

Care must be taken when both the parent and child components set the same attribute, and ideally this
situation should be avoided. if you want to make the parent responsible for specifying the htmL content
presented by a child element, then use the slots feature, which i describe in the “Using Component
slots” section.

Using Prop Value Expressions
Prop attribute values are not evaluated as expressions unless the v-bind directive is used, as shown in
Listing 16-12.

Listing 16-12. Using an Expression in the App.vue File in the src Folder

<template>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 <div class="form-group">
 <input class="form-control" v-model="labelText" />
 </div>
 <my-feature v-bind:label-text="labelText" initial-value="Kayak"></my-feature>
 </div>
</template>

Chapter 16 ■ Using Components

413

<script>
 import ChildComponent from "./components/Child";

 export default {
 name: 'App',
 components: {
 MyFeature: ChildComponent
 },
 data: function () {
 return {
 message: "This is the parent component",
 labelText: "Name"
 }
 }
 }
</script>

The parent component’s template includes an input element that uses the v-model directive to bind to
the labelText property. The same property is specified on the custom element for the child directive, which
tells Vue.js to set up a one-way binding between the child component’s labelText prop and the parent
component’s data property.

...
<my-feature v-bind:label-text="labelText" initial-value="Kayak"></my-feature>
...

The result is that when the parent component’s input element is edited, the new value is received by
the child component, where it is displayed by a text interpolation binding, as shown in Figure 16-9.

 ■ Caution the flow of changes remains one-way, even when using the v-bind directive. Changes made to
the prop value by the child component are not received by the parent and will be discarded when the property
used by the v-bind directive changes. see the next section for details of how to send data from a child
component to its parent.

Chapter 16 ■ Using Components

414

Creating Custom Events
The counterpart to the props feature is custom events, which allow a child component to send data to its
parent. To demonstrate the use of custom events, I expanded the functionality of the child component so
that it provides some self-contained functionality, as shown in Listing 16-13, which is more typical of how
components are used in real projects.

COMBINING PROPS AND CUSTOM EVENTS

at some point, most developers who are new to Vue.js development will try to get a parent and child
component to both display and change the same data value by combining custom events, props,
and the v-model directive. With a little effort, you will be able to get something working, but it goes
against the purpose of these features and will always be a brittle solution that will occasionally act
unpredictably and in ways that confuse the user. Use shared application state if you want multiple
components to be able to display and change the same data values, as described in Chapter 20.
For simpler applications, an event bus may suffice, as described in Chapter 18.

Listing 16-13. Adding Features to the Child.vue File in the src/components Folder

<template>
 <div class="bg-primary text-white text-center m-2 p-3 h6">
 <div class="form-group m-1 text-left">
 <label>Name</label>
 <input v-model="product.name" class="form-control" />
 </div>
 <div class="form-group m-1 text-left">
 <label>Category</label>
 <input v-model="product.category" class="form-control" />
 </div>

Figure 16-9. Using a prop value expression

Chapter 16 ■ Using Components

415

 <div class="form-group m-1 text-left">
 <label>Price</label>
 <input v-model.number="product.price" class="form-control" />
 </div>
 <div class="mt-2">
 <button class="btn btn-info" v-on:click="doSubmit">Submit</button>
 </div>
 </div>
</template>

<script>
 export default {
 props: ["initialProduct"],
 data: function () {
 return {
 product: this.initialProduct || {}
 }
 },
 methods: {
 doSubmit() {
 this.$emit("productSubmit", this.product);
 }
 }
 }
</script>

The component is a basic editor for product objects, with input elements that edit name, category, and
price properties of an object assigned to the data property named product, whose initial data values are
received using a prop called initialProduct.

There is also a button element that uses the v-on directive to respond to the click event by invoking a
method called doSubmit. It is this method that allows the component to communicate with its parent, which
it does like this:

...
doSubmit() {
 this.$emit("productSubmit", this.product);
}
...

The $emit method, which is called using the this keyword, is used to send a custom event. The first
argument is the event type, expressed as a string, and the optional second argument is a payload for the
event, which can be any value that the parent might find useful. In this case, I have sent an event called
productSubmit and included the product object as the payload.

Receiving a Custom Event from a Child Component
The v-on directive is used by a parent component to receive events from its child components, just like with
regular DOM events. In Listing 16-14, I have updated the App.vue file so that it provides the child component
with the initial data to edit and responds to its event when it is triggered.

Chapter 16 ■ Using Components

416

Listing 16-14. Responding to Child Component Events in the App.vue File in the src Folder

<template>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 <h6>{{ message }}</h6>
 <my-feature v-bind:initial-product="product"
 v-on:productSubmit="updateProduct">
 </my-feature>
 </div>
</template>

<script>
 import ChildComponent from "./components/Child";

 export default {
 name: 'App',
 components: {
 MyFeature: ChildComponent
 },
 data: function () {
 return {
 message: "Ready",
 product: {
 name: "Kayak",
 category: "Watersports",
 price: 275
 }
 }
 },
 methods: {
 updateProduct(newProduct) {
 this.message = JSON.stringify(newProduct);
 }
 }
 }
</script>

The v-on directive is used to listen for the child component’s custom event, using the name that was
passed as the first argument to the $emit method, which is productSubmit in this example:

...
<my-feature v-bind:initial-product="product" v-on:productSubmit="updateProduct">
...

In this case, the v-on binding is used to respond to the productSubmit event by invoking the
updateProduct method. The method used by the parent component receives the optional payload that
the child component used as the second argument to the $emit method, and in this example, a JSON
representation of the payload is assigned to the data property named message, which is displayed to the
user through a text interpolation binding. The result is that you can edit the values displayed by the child
component, click the Submit button, and see the data that is received by the parent component, as shown in
Figure 16-10.

Chapter 16 ■ Using Components

417

 ■ Note Custom events do not behave like regular Dom events, even though the v-on directive is used to
process both of them. Custom events are passed only to the parent component and are not propagated through
the hierarchy of htmL elements in the Dom, and they do not have capture, target, and bubble phases. if you
want to communicate beyond the parent-child relationship, then you can use an event bus, as described in
Chapter 18, or shared state, as described in Chapter 20.

Using Component Slots
If you are using a component in different parts of the application, you may want to tailor the appearance of
the HTML elements it presents to the user to suit the context.

For simple content changes, a prop can be used, or the parent component can directly style the custom
HTML element that is used to apply the child component.

For more complex content changes, Vue.js provides a feature called slots, which allow a parent
component to provide content through which the features provided by the child component will be
displayed. In Listing 16-15, I have added a slot to the child component, which will be used to display content
provided by the parent.

Figure 16-10. Handling a custom event from a child component

Chapter 16 ■ Using Components

418

Listing 16-15. Adding a Slot in the Child.vue File in the src/components Folder

...
<template>
 <div class="bg-primary text-white text-center m-2 p-3 h6">
 <slot>
 <h4>Use the form fields to edit the data</h4>
 </slot>
 <div class="form-group m-1 text-left">
 <label>Name</label>
 <input v-model="product.name" class="form-control" />
 </div>
 <div class="form-group m-1 text-left">
 <label>Category</label>
 <input v-model="product.category" class="form-control" />
 </div>
 <div class="form-group m-1 text-left">
 <label>Price</label>
 <input v-model.number="product.price" class="form-control" />
 </div>
 <div class="mt-2">
 <button class="btn btn-info" v-on:click="doSubmit">Submit</button>
 </div>
 </div>
</template>
...

The slot element denotes a region of the component’s template that will be replaced with whatever the
parent component includes between the start and end tags of the custom element used to apply the child
component. If the parent component doesn’t provide any content, then Vue.js will ignore the slot element,
which is what you will see if you save the Child.vue file and examine the content in the browser, as shown in
Figure 16-11.

 ■ Tip You may have to reload the browser to see the effect of this example.

Figure 16-11. Displaying the default content in a slot

Chapter 16 ■ Using Components

419

This provides a fallback that allows the child component to display useful content to the user. To
override the default content, the parent component has to include elements in its template, as shown in
Listing 16-16.

Listing 16-16. Providing Elements for a Slot in the App.vue File in the src Folder

...
<template>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 <h6>{{ message }}</h6>
 <my-feature v-bind:initial-product="product"
 v-on:productSubmit="updateProduct">
 <div class="bg-warning m-2 p-2 h3 text-dark">Product Editor</div>
 </my-feature>
 </div>
</template>
...

The div element that appears between the start and end tags of the my-feature element is used as the
content for the slot element in the child component’s template, producing the result shown in Figure 16-12.

Using Named Slots
If a child component can receive several regions of content from its parents, then it can assign names to its
slots, as shown in Listing 16-17.

Listing 16-17. Adding Named Slots in the Child.vue File in the src/components Folder

...
<template>
 <div class="bg-primary text-white text-center m-2 p-3 h6">
 <slot name="header">
 <h4>Use the form fields to edit the data</h4>
 </slot>

Figure 16-12. Providing content for a child component’s slot

Chapter 16 ■ Using Components

420

 <div class="form-group m-1 text-left">
 <label>Name</label>
 <input v-model="product.name" class="form-control" />
 </div>
 <div class="form-group m-1 text-left">
 <label>Category</label>
 <input v-model="product.category" class="form-control" />
 </div>
 <div class="form-group m-1 text-left">
 <label>Price</label>
 <input v-model.number="product.price" class="form-control" />
 </div>
 <slot name="footer"></slot>
 <div class="mt-2">
 <button class="btn btn-info" v-on:click="doSubmit">Submit</button>
 </div>
 </div>
</template>
...

The name attribute is used to assign names to each slot element. In this example, I have assigned the
name header to the element that appears above the input element and the name footer to the slot that
appears below them. The footer slot contains no elements, which means that nothing will be displayed
unless the parent component provides content.

To use a named slot, the parent adds a slot attribute to one of the elements contained between the
custom start and end tags, as shown in Listing 16-18.

Listing 16-18. Using Names Slots in the App.vue File in the src Folder

...
<template>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 <h6>{{ message }}</h6>
 <my-feature v-bind:initial-product="product"
 v-on:productSubmit="updateProduct">
 <div slot="header" class="bg-warning m-2 p-2 h3 text-dark">
 Product Editor
 </div>
 <div slot="footer" class="bg-warning p-2 h3 text-dark">
 Check Details Before Submitting
 </div>
 </my-feature>
 </div>
</template>
...

The parent has provided div elements for each of the named slots, which produces the result shown in
Figure 16-13.

Chapter 16 ■ Using Components

421

 ■ Tip if the child component defines an unnamed slot, then it will display any elements from the parent’s
template that are not assigned to a slot with a slot attribute. if the child component doesn’t define an unnamed
slot, then the parent’s unassigned elements will be discarded.

Using Scoped Slots
A scoped slot allows the parent component to provide a template into which the child component can insert
data, which can be useful when a child component performs a transformation using data that it receives
from the parent and the parent needs to control the formatting. To demonstrate the scoped slots feature,
I added a file called ProductDisplay.vue in the src/components folder and added the content shown in
Listing 16-19.

Listing 16-19. The Contents of the ProductDisplay.vue File in the src/components Folder

<template>

 <li v-for="prop in Object.keys(product)" v-bind:key="prop">
 <slot v-bind:propname="prop" v-bind:propvalue="product[prop]">
 {{ prop }}: {{ product[prop] }}
 </slot>

</template>

Figure 16-13. Using named slots

Chapter 16 ■ Using Components

422

<script>
export default {
 props: ["product"]
}
</script>

This component receives an object through a prop named product, whose properties and values are
enumerated in the template using the v-for directive. The slot element provides the parent with a chance
to replace the content that displays the property name and value but with the important addition of these
attributes:

...
<slot v-bind:propname="prop" v-bind:propvalue="product[prop]">
...

The propname and propvalue attributes allow the parent component to incorporate the values they are
assigned into the slot content, as shown in Listing 16-20.

Listing 16-20. Using a Scoped Slot in the App.vue File in the src Folder

<template>
 <div class="bg-secondary text-white text-center m-2 p-2 h5">
 <product-display v-bind:product="product">
 <div slot-scope="data" class="bg-info text-left">
 {{data.propname}} is {{ data.propvalue }}
 </div>
 </product-display>
 <my-feature v-bind:initial-product="product"
 v-on:productSubmit="updateProduct">
 <div slot="header" class="bg-warning m-2 p-2 h3 text-dark">
 Product Editor
 </div>
 <div slot="footer" class="bg-warning p-2 h3 text-dark">
 Check Details Before Submitting
 </div>
 </my-feature>
 </div>
</template>

<script>
 import ChildComponent from "./components/Child";
 import ProductDisplay from"./components/ProductDisplay";

 export default {
 name: 'App',
 components: {
 MyFeature: ChildComponent,
 ProductDisplay
 },

Chapter 16 ■ Using Components

423

 data: function () {
 return {
 message: "Ready",
 product: {
 name: "Kayak",
 category: "Watersports",
 price: 275
 }
 }
 },
 methods: {
 updateProduct(newProduct) {
 this.message = JSON.stringify(newProduct);
 }
 }
 }
</script>

The slot-scope attribute is used to select a name for a temporary variable that is created when the
templates are processed, and it will be assigned a property for each attribute that the child has defined on its
slot element, which can then be used in data bindings and directives in the slot content, like this:

...
<product-display v-bind:product="product">
 <div slot-scope="data" class="bg-info text-left">
 {{data.propname}} is {{ data.propvalue }}
 </div>
</product-display>
...

The result is that the HTML elements from the parent component are mixed with the data provided by
the child component, producing the result shown in Figure 16-14.

 ■ Tip expressions and data bindings in scoped slot content are evaluated in the context of the parent,
which means that Vue.js will look for any value you refer to that isn’t prefixed with the variable named in the
slot-scope attribute in the parent component’s script element.

Figure 16-14. Using a scoped slot

Chapter 16 ■ Using Components

424

Summary
In this chapter, I described the way that components are used as the building blocks for a Vue.js application,
allowing related content and code to be grouped for ease of development and maintenance. I explained
how components are isolated by default, how the prop and custom event features allow components
to communicate, and how the slots feature allows a parent component to provide content to a child
component. In Part 3 of this book, I describe the advanced Vue.js features.

PART III

Advanced Vue.js Features

427© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_17

CHAPTER 17

Understanding the Component
Lifecycle

When Vue.js creates a component, it begins a well-defined lifecycle that includes preparing the data values,
rendering the HTML content in the Document Object Model (DOM), and dealing with any updates. In
this chapter, I describe the different stages in the component lifecycle and demonstrate the various ways a
component can respond to them.

The component lifecycle is worth your attention for two reasons. First, the more you understand about
how Vue.js works, the better prepared you are to diagnose problems when you don’t get the results you
expect. The second reason is that some of the advanced features that I describe in the chapters that follow
are more easily understood and applied when you appreciate the context in which they operate. Table 17-1
puts the component lifecycle in context.

Table 17-1. Putting the Component Lifecycle in Context

Question Answer

What is it? Each component follows a well-defined lifecycle that begins
when Vue.js creates it and ends when it is destroyed.

Why is it useful? A well-defined lifecycle makes Vue.js components predictable,
and there are notification methods that allow a component to
respond to the different lifecycle stages.

How is it used? Vue.js follows the lifecycle automatically, and no direct action
is required. If a component wants to receive notifications about
its lifecycle, then it can implement the methods described in
Table 17-3.

Are there any pitfalls or limitations? One of the main reasons for implementing the lifecycle
notification methods is to use the DOM API to access the
component’s HTML content directly, rather than using
directives or other Vue.js features. This can undermine the
design of the application and make it harder to test and
maintain.

Are there any alternatives? You don’t have to pay any attention to the component lifecycle,
and many projects won’t need to implement the notification
methods at all.

Chapter 17 ■ Understanding the Component LifeCyCLe

428

Table 17-2 summarizes the chapter.

Preparing for This Chapter
For the examples in this chapter, run the command shown in Listing 17-1 in a convenient location to create a
new Vue.js project.

 ■ Tip you can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Listing 17-1. Creating a New Project

vue create lifecycles --default

This command creates a project called lifecycles. Once the project has been created, add a file called
vue.config.js to the lifecycles folder with the content shown in Listing 17-2. This file is used to enable
the ability to define templates as strings, as described in Chapter 10, and I use it for one of the examples in
this chapter.

Listing 17-2. The Contents of the vue.config.js File in the nomagic Folder

module.exports = {
 runtimeCompiler: true
}

Table 17-2. Chapter Summary

Problem Solution Listing

Receive a notification when a component is
created

Implement the beforeCreate or created
method

8

Receive a notification when access to the
DOM is permitted

Implement the beforeMount or mounted
method

9, 10

Receive a notification when a data property
changes

Implement the beforeUpdate or updated
method

11–12

Perform a task after an update Use the Vue.nextTick method 13

Receive notifications for individual data
properties

Use a watcher 14

Receive a notification when a component is
destroyed

Implement the beforeDestroy or
destroyed method

15, 16

Receive a notification when there is an error Implement the errorCaptured method 17, 18

https://github.com/Apress/pro-vue-js-2

Chapter 17 ■ Understanding the Component LifeCyCLe

429

Add the statement shown in Listing 17-3 to the linter section of the package.json file to disable the
rule that warns when the JavaScript console is used. I rely on the console for many of the examples in this
chapter.

Listing 17-3. Disabling a Linter Rule in the package.json File in the lifecycles Folder

...
"eslintConfig": {
 "root": true,
 "env": {
 "node": true
 },
 "extends": [
 "plugin:vue/essential",
 "eslint:recommended"
],
 "rules": {
 "no-console": "off"
 },
 "parserOptions": {
 "parser": "babel-eslint"
 }
},
...

Run the command shown in Listing 17-4 in the lifecycles folder to add the Bootstrap CSS package to
the project.

Listing 17-4. Adding the Bootstrap CSS Package

npm install bootstrap@4.0.0

Add the statement shown in Listing 17-5 to the main.js file in the src folder to incorporate the
Bootstrap CSS file into the application.

Listing 17-5. Incorporating the Bootstrap Package in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "bootstrap/dist/css/bootstrap.min.css";

Vue.config.productionTip = false

new Vue({
 render: h => h(App)
}).$mount('#app')

Chapter 17 ■ Understanding the Component LifeCyCLe

430

The final preparatory step is to replace the contents of the root component, as shown in Listing 17-6.

Listing 17-6. Replacing the Contents of the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white m-2 p-2">
 <div class="form-check">
 <input class="form-check-input" type="checkbox" v-model="checked" />
 <label>Checkbox</label>
 </div>
 Checked Value: {{ checked }}
 </div>
</template>

<script>

export default {
 name: 'App',
 data: function () {
 return {
 checked: true
 }
 }
}
</script>

Run the command shown in Listing 17-7 in the productapp folder to start the development tools.

Listing 17-7. Starting the Development Tools

npm run serve

The initial bundling process will be performed, after which you will see a message telling you that the
project has compiled successfully and the HTTP server is listening for requests on port 8080. Open a new
browser window and navigate to http://localhost:8080 to see the project’s placeholder content, as shown
in Figure 17-1.

Figure 17-1. Running the example application

Chapter 17 ■ Understanding the Component LifeCyCLe

431

Understanding the Component Lifecycle
The component lifecycle starts when Vue.js first initializes a component. The lifecycle incorporates
preparing the data properties, processing templates, dealing with data changes, and, ultimately, destroying a
component when it is no longer required. For each stage in the lifecycle, Vue.js provides methods that it will
invoke if implemented by a component. In Table 17-3, I describe each of the component lifecycle methods.

Understanding the Creation Phase
This is the initial phase of the lifecycle, where Vue.js creates a new instance of a component and prepares
it for use, including processing the properties in the script element, such as the data and computed
properties. After it has created the component—but before it has processed its configuration object—Vue.
js invokes the beforeCreate method. Once Vue.js has processed the configuration properties, including the
data properties, the created method is invoked. In Listing 17-8, I have added both of the methods for this
phase to the component.

Table 17-3. The Component Lifecycle Methods

Name Description

beforeCreate This method is invoked before Vue.js initializes a component, as described in the
“Understanding the Creation Phase” section.

created This method is invoked after Vue.js initializes a component, as described in the
“Understanding the Creation Phase” section.

beforeMount This method is invoked before Vue.js processes the component’s template, as
described in the “Understanding the Mounting Phase” section.

mounted This method is invoked after Vue.js processes the component’s template, as
described in the “Understanding the Mounting Phase” section.

beforeUpdate This method is invoked before Vue.js processes an update to the component’s
data, as described in the “Understanding the Update Phase” section.

updated This method is invoked after Vue.js processes an update to the component’s data,
as described in the “Understanding the Update Phase” section.

activated This method is invoked when a component that has been kept alive with the
keep-alive element is activated, as described in Chapter 22.

deactivated This method is invoked when a component that has been kept alive with the
keep-alive element is deactivated, as described in Chapter 22.

beforeDestroy This method is invoked before Vue.js destroys a component, as described in the
“Understanding the Destruction Phase” section.

destroyed This method is invoked after Vue.js destroys a component, as described in the
“Understanding the Destruction Phase” section.

errorCaptured This method allows a component to handle an error thrown by one of its children,
as described in the “Handling Component Errors” section.

Chapter 17 ■ Understanding the Component LifeCyCLe

432

Listing 17-8. Adding Creation Lifecycle Methods in the App.vue File to the src Folder

<template>
 <div class="bg-primary text-white m-2 p-2">
 <div class="form-check">
 <input class="form-check-input" type="checkbox" v-model="checked" />
 <label>Checkbox</label>
 </div>
 Checked Value: {{ checked }}
 </div>
</template>

<script>

export default {
 name: 'App',
 data: function () {
 return {
 checked: true
 }
 },
 beforeCreate() {
 console.log("beforeCreate method called" + this.checked);
 },
 created() {
 console.log("created method called" + this.checked);
 }
}
</script>

In the listing, the beforeCreate and created methods both write a message to the browser’s JavaScript
console that includes the value of the checked property.

 ■ Note the lifecycle methods are defined directly on the object in the script element and not under the
methods property.

Between the beforeCreate and created methods, Vue.js sets up the features that make components
useful, including methods and data properties, and you can see the messages shown in the browser’s
JavaScript console.

...
beforeCreate method called undefined
created method called true
...

When the beforeCreate method is called, Vue.js has yet to set up the component’s data properties and
so the value of the checked property is undefined. By the time the created method is called, the setup has
been performed, and the checked property has been created and assigned its initial value.

Chapter 17 ■ Understanding the Component LifeCyCLe

433

Understanding Component Object Creation
The message displayed by the beforeCreate method shows that Vue.js has created the component and
assigned it to this before invoking the method. The object assigned to this is the component, and if there
are multiple instances of a component used in an application, then there will be an object for each of them.
As Vue.js goes through the initialization process, it is this object to which the data properties, computed
properties, and methods are assigned. When you define a method, for example, you use the methods
property on configuration object used to create the component; during initialization, Vue.js assigns the
function you defined to the component object so that you can invoke it as this.myMethod(), without
needing to worry about the structure of the configuration object. When Vue.js first creates the component
object, it has few useful features, and most projects won’t need to implement the beforeCreate event.

Understanding the Reactivity Preparations
One of the key Vue.js features is reactivity, where a change to a data property is automatically propagated
throughout the application, triggering updates to computed properties, data bindings, and props to ensure
that everything is up-to-date.

During the creation phase, Vue.js processes the component’s configuration object from its script
element. A property is added to the component object for each of the data properties, with a getter and
setter so that Vue.js can detect when a property is read or modified. This means Vue.js is able to detect when
a property is used and update the affected parts of the application—but it also means that you must ensure
that you have defined all the data properties you require before Vue.js performs the creation phase.

 ■ Tip if an application requires external data, such as from a restful api, then the created method provides
a good opportunity to request the data, as demonstrated in Chapter 20.

Understanding the Mounting Phase
During the second phase of the component lifecycle, Vue.js deals with the component’s template, handling
the data bindings, directives, and other application features.

Accessing the Document Object Model
If a component requires access to the Document Object Model (DOM), then the mounted event indicates
that the component’s content has been processed and can be accessed through a property called $el, which
Vue.js defines on the component object.

In Listing 17-9, I have accessed the DOM to get data values that have been provided through an
attribute on the HTML element that applies the component. As I explained in Chapter 16, any attributes
applied to the HTML element that applies a component will be transferred to the top-level element in the
component’s template.

 ■ Caution accessing the dom directly should be done only when there is no alternative approach that fits
better into the Vue.js model. this example, where data is provided through attributes, can be useful when
integrating Vue.js into an environment that generates htmL documents programmatically. such approaches
should be used as an interim measure until a better approach can be implemented, such as using a restful
api, as described in Chapter 20.

Chapter 17 ■ Understanding the Component LifeCyCLe

434

Listing 17-9. Accessing the DOM in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white m-2 p-2">
 <div class="form-check">
 <input class="form-check-input" type="checkbox" v-model="checked" />
 <label>Checkbox</label>
 </div>
 Checked Value: {{ checked }}
 <div class="bg-info p-2">
 Names:

 <li v-for="name in names" v-bind:key="name">
 {{ name }}

 </div>
 </div>
</template>

<script>

 export default {
 name: 'App',
 data: function () {
 return {
 checked: true,
 names: []
 }
 },
 beforeCreate() {
 console.log("beforeCreate method called" + this.checked);
 },
 created() {
 console.log("created method called" + this.checked);
 },
 mounted() {
 this.$el.dataset.names.split(",")
 .forEach(name => this.names.push(name));
 }
 }
</script>

The mounted method will be called after the template has been processed and its content added to the
DOM, by which time the attributes added to the custom HTML element that applies the component will
have been transferred to the top-level div element from Listing 17-9. Within the mounted method, I use the
this.$el property to access the set of data- attributes to read the value of the data-names attribute, create
an array, and push each item into the names data property, whose values are displayed in a list using the
v-for directive.

Chapter 17 ■ Understanding the Component LifeCyCLe

435

 ■ Tip notice that i have defined the names property and assigned it an empty array in Listing 17-9. it is
important to define all the data properties before they are processed to set up reactivity; otherwise, the
changes will not be detected.

In Listing 17-10, I have added a data-name attribute to the HTML element that applies the component.

Listing 17-10. Adding an Attribute in the main.js File in the src Folder

import Vue from 'vue'
import App from './App'

import "bootstrap/dist/css/bootstrap.min.css";

Vue.config.productionTip = false

new Vue({
 el: '#app',
 components: { App },
 template: '<App data-names="Bob, Alice, Peter, Dora" />'
})

The result is that the component uses the DOM API provided by the browser to read the attribute
applied to its element and uses its contents to set a data property, as shown in Figure 17-2.

Figure 17-2. Accessing the DOM during the mounting lifecycle phase

Chapter 17 ■ Understanding the Component LifeCyCLe

436

Understanding Update Phase
Once the component has been initialized and its content has been mounted, it will enter the update phase,
where Vue.js reacts to changes made to the data properties. When a change is detected, Vue.js will call a
component’s beforeUpdate method and call the component’s updated method once the update has been
performed and the HTML content has been updated to reflect the change.

Most projects don’t need to use the beforeUpdate and updated methods, which are provided so that
a component can access the DOM directly before and after a change. As with direct DOM access in the
previous section, this is not something to be done lightly and should be performed only when none of the
standard Vue.js features are suitable. For completeness, in Listing 17-11, I have implemented both methods
for this phase.

Listing 17-11. Implementing the Update Phase Methods in the App.vue File in the src Folder

...
<script>
 export default {
 name: 'App',
 data: function () {
 return {
 checked: true,
 names: []
 }
 },
 beforeCreate() {
 console.log("beforeCreate method called" + this.checked);
 },
 created() {
 console.log("created method called" + this.checked);
 },
 mounted() {
 this.$el.dataset.names.split(",")
 .forEach(name => this.names.push(name));
 },
 beforeUpdate() {
 console.log(`beforeUpdate called. Checked: ${this.checked}`
 + ` Name: ${this.names[0]} List Elements: `
 + this.$el.getElementsByTagName("li").length);
 },
 updated() {
 console.log(`updated called. Checked: ${this.checked}`
 + ` Name: ${this.names[0]} List Elements: `
 + this.$el.getElementsByTagName("li").length);
 }
 }
</script>
...

The beforeUpdate and updated methods write out a message to the browser’s JavaScript console that
includes the values of the checked property, which include the first value in the names array and the number
of li elements in the component’s HTML content, which I access through the DOM. You will see the following
messages displayed in the browser’s JavaScript console when you save the changes to the component:

Chapter 17 ■ Understanding the Component LifeCyCLe

437

...
beforeCreate method called undefined
created method called true
beforeUpdate called. Checked: true Name: Bob List Elements: 0
updated called. Checked: true Name: Bob List Elements: 4
...

This sequence of messages reveals the initialization process that Vue.js goes through for the
component. In the created method, I add values to one of the component’s data properties, which leads
to a corresponding change in the HTML content presented to the user. When the beforeUpdate method is
called, there are no li elements in the component’s content, and there are four li elements by the time the
updated method is called and Vue.js has finished processing the update.

Understanding Update Consolidation
Notice there is only one call to the beforeUpdate and updated methods, even though I add four items to the
names array. Vue.js doesn’t respond to individual data changes, which would lead to a string of individual
DOM updates, which are expensive to perform. Instead, Vue.js maintains a queue of pending updates that
removes duplicate updates and allows changes to be batched together. To provide a clearer demonstration,
I added a button element to the component that leads to changes to both data properties, as shown in
Listing 17-12.

Listing 17-12. Making Multiple Changes in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white m-2 p-2">
 <div class="form-check">
 <input class="form-check-input" type="checkbox" v-model="checked" />
 <label>Checkbox</label>
 </div>
 Checked Value: {{ checked }}
 <div class="bg-info p-2">
 Names:

 <li v-for="name in names" v-bind:key="name">
 {{ name }}

 </div>
 <div class="text-white center my-2">
 <button class="btn btn-light" v-on:click="doChange">
 Change
 </button>
 </div>
 </div>
</template>

Chapter 17 ■ Understanding the Component LifeCyCLe

438

<script>
 export default {
 name: 'App',
 data: function () {
 return {
 checked: true,
 names: []
 }
 },
 beforeCreate() {
 console.log("beforeCreate method called" + this.checked);
 },
 created() {
 console.log("created method called" + this.checked);
 },
 mounted() {
 this.$el.dataset.names.split(",")
 .forEach(name => this.names.push(name));
 },
 beforeUpdate() {
 console.log(`beforeUpdate called. Checked: ${this.checked}`
 + ` Name: ${this.names[0]} List Elements: `
 + this.$el.getElementsByTagName("li").length);
 },
 updated() {
 console.log(`updated called. Checked: ${this.checked}`
 + ` Name: ${this.names[0]} List Elements: `
 + this.$el.getElementsByTagName("li").length);
 },
 methods: {
 doChange() {
 this.checked = !this.checked;
 this.names.reverse();
 }
 }
 }
</script>

Clicking the button invokes the doChange method, which toggles the value of the checked property and
reverses the order of the items in the names array, as shown in Figure 17-3.

Chapter 17 ■ Understanding the Component LifeCyCLe

439

Despite changes to two different data properties, the messages displayed in the browser’s JavaScript
console show that only one update was performed to the component’s HTML content.

...
beforeUpdate called. Checked: false Name: Dora List Elements: 4
updated called. Checked: false Name: Dora List Elements: 4
...

 ■ Tip the beforeUpdate and updated methods are called only if a change to one or more htmL elements
is required. if you make a change to a data property that doesn’t require a corresponding change to the
component’s htmL content, then these methods will not be invoked.

Using a Post-Update Callback
One consequence of the way that Vue.js consolidates and defers updates is that you cannot make a data
change and then work directly with the DOM in the expectation that the effect of the change will have been
applied to the component’s HTML elements. Vue.js provides the Vue.nextTick method, which can be used
to perform a task after all of the pending changes have been applied. In Listing 17-13, I have used nextTick
in the doChange method to illustrate the sequence of actions and method calls.

Figure 17-3. Making multiple changes

Chapter 17 ■ Understanding the Component LifeCyCLe

440

Listing 17-13. Using a Post-Update Callback in the App.vue File in the src Folder

...
<script>

 import Vue from "vue";

 export default {
 name: 'App',
 data: function () {
 return {
 checked: true,
 names: []
 }
 },
 beforeCreate() {
 console.log("beforeCreate method called" + this.checked);
 },
 created() {
 console.log("created method called" + this.checked);
 },
 mounted() {
 this.$el.dataset.names.split(",")
 .forEach(name => this.names.push(name));
 },
 beforeUpdate() {
 console.log(`beforeUpdate called. Checked: ${this.checked}`
 + ` Name: ${this.names[0]} List Elements: `
 + this.$el.getElementsByTagName("li").length);
 },
 updated() {
 console.log(`updated called. Checked: ${this.checked}`
 + ` Name: ${this.names[0]} List Elements: `
 + this.$el.getElementsByTagName("li").length);
 },
 methods: {
 doChange() {
 this.checked = !this.checked;
 this.names.reverse();
 Vue.nextTick(() => console.log("Callback Invoked"));
 }
 }
 }
</script>
...

The nextTick method accepts a function and an optional context object as its arguments, and the
function will be invoked at the end of the next update cycle. Save the changes, click the button, and you will
see the following sequence of messages displayed in the browser’s JavaScript console:

Chapter 17 ■ Understanding the Component LifeCyCLe

441

...
beforeUpdate called. Checked: false Name: Dora List Elements: 4
updated called. Checked: false Name: Dora List Elements: 4
Callback Invoked
...

The change that has led to the update is triggered by the doChange method, but the use of the nextTick
method ensures that the callback isn’t invoked until the effect of the change has been dealt with and the
DOM has been updated.

Observing Data Changes Using Watchers
The beforeUpdate and update methods tell you when a component’s HTML elements are updated but don’t
tell you what change was made, and these methods won’t be called at all if the change is to a data property
that isn’t referred to in a directive expression or data binding.

If you want to receive a notification when a data property changes, then you can use a watcher. In
Listing 17-14, I have added a watcher that will provide notifications when the data property named checked
is changed.

Listing 17-14. Using a Watcher in the App.vue File in the src Folder

...
<script>

 import Vue from "vue";

 export default {
 name: 'App',
 data: function () {
 return {
 checked: true,
 names: []
 }
 },
 beforeCreate() {
 console.log("beforeCreate method called" + this.checked);
 },
 created() {
 console.log("created method called" + this.checked);
 },
 mounted() {
 this.$el.dataset.names.split(",")
 .forEach(name => this.names.push(name));
 },
 beforeUpdate() {
 console.log(`beforeUpdate called. Checked: ${this.checked}`
 + ` Name: ${this.names[0]} List Elements: `
 + this.$el.getElementsByTagName("li").length);
 },

Chapter 17 ■ Understanding the Component LifeCyCLe

442

 updated() {
 console.log(`updated called. Checked: ${this.checked}`
 + ` Name: ${this.names[0]} List Elements: `
 + this.$el.getElementsByTagName("li").length);
 },
 methods: {
 doChange() {
 this.checked = !this.checked;
 this.names.reverse();
 Vue.nextTick(() => console.log("Callback Invoked"));
 }
 },
 watch: {
 checked: function (newValue, oldValue) {
 console.log(`Checked Watch, Old: ${oldValue}, New: ${newValue}`);
 }
 }
 }
</script>
...

Watchers are defined using a watch property on the component’s configuration object, which is
assigned an object containing a property for each property that is to be observed. A watch requires the
property’s name and a handler function that will be invoked with the new value and the previous value. In
the listing, I have defined a watcher for the checked property that writes out both the new and old values to
the browser’s JavaScript console. Save the changes and uncheck the checkbox, and you will see the following
sequence of messages, including the one from the watcher:

...
Checked Watch, Old: true, New: false
beforeUpdate called. Checked: false Name: Bob List Elements: 4
updated called. Checked: false Name: Bob List Elements: 4
...

Notice that the watcher’s handler function is invoked before the beforeUpdate and updated methods.

USING THE WATCH OPTIONS

there are two options that can be used to change the behavior of watchers, although they require the
watch to be expressed in a different way. the first option is immediate, which tells Vue.js to invoke
the handler as soon as the watcher is set up, during the creation phase, between the period when the
beforeCreate and created methods are invoked. to use this feature, the watcher is expressed as an
object with a handler property and an immediate property, like this:

...
watch: {
 checked: {
 handler: function (newValue, oldValue) {
 // respond to changes here
 },

Chapter 17 ■ Understanding the Component LifeCyCLe

443

 immediate: true
 }
}
...

the other option is deep, which will monitor all the properties defined by an object assigned to a data
property, which is more convenient than having to set up a separate watcher for each of them. the deep
option is applied like this:

...
watch: {
 myObject: {
 handler: function (newValue, oldValue) {
 // respond to changes here
 },
 deep: true
 }
}
...

the deep option cannot be used to create a watcher for all the data properties, only individual properties
that have been assigned an object. When you use a function for a watcher, you must not use an arrow
expression because this won’t be assigned to the component whose value has changed. instead, use
the traditional function keyword as shown.

Understanding the Destruction Phase
The final phase of the component lifecycle is its destruction, which typically happens when a component is
being displayed dynamically and is no longer required, as demonstrated in Chapter 22. Vue.js will invoke the
beforeDestroy method to give a component the opportunity to prepare itself and will invoke the destroy
method after the destruction process, which removes watchers, event handlers, and any child components.

To help demonstrate this part of the lifecycle, I added a file called MessageDisplay.vue to the src/
components folder with the content shown in Listing 17-15.

Listing 17-15. The Contents of the MessageDisplay.vue File in the src/components Folder

<template>
 <div class="bg-dark text-light text-center p-2">
 <div>
 Counter Value: {{ counter }}
 </div>
 <button class="btn btn-secondary" v-on:click="handleClick">
 Increment
 </button>
 </div>
</template>

Chapter 17 ■ Understanding the Component LifeCyCLe

444

<script>
export default {
 data: function () {
 return {
 counter: 0
 }
 },
 created: function() {
 console.log("MessageDisplay: created");
 },
 beforeDestroy: function() {
 console.log("MessageDisplay: beforeDestroy");
 },
 destroyed: function() {
 console.log("MessageDisplay: destroyed");
 },
 methods: {
 handleClick() {
 this.counter++;
 }
 }
}
</script>

This component displays a counter that can be incremented by clicking a button. It also implements
the created, beforeDestroy, and destroyed methods so that the start and end of the component’s lifecycle
can be seen in messages written to the browser’s JavaScript console. In Listing 17-16, I have simplified the
example application’s root component and applied the new component so that it is displayed only when the
data value named checked is true.

Listing 17-16. Applying a Child Component in the App.vue File in the src Folder

<template>
 <div class="bg-primary text-white m-2 p-2">
 <div class="form-check">
 <input class="form-check-input" type="checkbox" v-model="checked" />
 <label>Checkbox</label>
 </div>
 Checked Value: {{ checked }}
 <div class="bg-info p-2" v-if="checked">
 <message-display></message-display>
 </div>
 </div>
</template>

<script>
 import MessageDisplay from "./components/MessageDisplay"

 export default {
 name: 'App',
 components: { MessageDisplay },
 data: function () {

Chapter 17 ■ Understanding the Component LifeCyCLe

445

 return {
 checked: true,
 names: []
 }
 }
 }
</script>

As the checkbox is toggled, Vue.js creates and destroys the MessageDisplay component, as shown in
Figure 17-4.

 ■ Caution you should not rely on the destruction phase to perform important tasks because Vue.js won’t
always be able to complete the lifecycle. if the user navigates to another UrL, for example, the complete
application will be terminated without the opportunity to complete the lifecycle of the components.

When you uncheck the checkbox, the child component is destroyed, and its content is removed from
the DOM. When you check the checkbox, a new component is created, and the lifecycle starts again. If you
examine the browser’s JavaScript console, you will see messages like these as one component is destroyed
and another is created:

...
MessageDisplay: beforeDestroy
MessageDisplay: destroyed
MessageDisplay: created
...

If you click the Increment button before you toggle the checkbox, you will be able to see that the
component’s state is lost when it is destroyed. See Chapter 21 for details of how to create a shared state for an
application that will survive individual component lifecycle changes.

Figure 17-4. Creating and destroying a component

Chapter 17 ■ Understanding the Component LifeCyCLe

446

Handling Component Errors
There is one phase that falls outside of the standard lifecycle, and it occurs when an error arises in a child
component. To demonstrate this phase, I added the elements and code shown in Listing 17-17 to the
MessageDisplay component to generate an error when a button is clicked.

Listing 17-17. Generating an Error in the MessageDisplay.vue File in the src/components Folder

<template>
 <div class="bg-dark text-light text-center p-2">
 <div>
 Counter Value: {{ counter }}
 </div>
 <button class="btn btn-secondary" v-on:click="handleClick">
 Increment
 </button>
 <button class="btn btn-secondary" v-on:click="generateError">
 Generate Error
 </button>
 </div>
</template>

<script>
export default {
 data: function () {
 return {
 counter_base: 0,
 generate_error: false
 }
 },
 created: function() {
 console.log("MessageDisplay: created");
 },
 beforeDestroy: function() {
 console.log("MessageDisplay: beforeDestroy");
 },
 destroyed: function() {
 console.log("MessageDisplay: destroyed");
 },
 methods: {
 handleClick() {
 this.counter_base++;
 },
 generateError() {
 this.generate_error = true;
 }
 },
 computed: {
 counter() {
 if (this.generate_error) {
 throw "My Component Error";

Chapter 17 ■ Understanding the Component LifeCyCLe

447

 } else {
 return this.counter_base;
 }
 }
 }
}
</script>

The component error-handling support can deal with errors that arise when a component’s data is
modified, when a watch function is executed, or when one of the lifecycle methods is invoked. It doesn’t
work when an error arises handling an event, which is why the code in Listing 17-17 responds to the button
click by setting a data property that causes the counter computed property to generate an error using the
throw keyword.

To handle errors from its children, a component implements the errorCaptured method, which defines
three parameters: the error, the component that threw the error, and an information string that describes
what Vue.js was doing when the error occurred. If the errorCaptured method returns false, the error won’t
be propagated further up the hierarchy of components, which is a useful way to stop multiple components
from responding to the same error. In Listing 17-18, I have implemented the errorCaptured method in the
application’s root component and added elements to its template to display details of the error it receives.

Listing 17-18. Handling an Error in the App.vue File in the src Folder

<template>
 <div class="bg-danger text-white text-center h3 p-2" v-if="error.occurred">
 An Error Has Occurred
 <h4>
 Error : "{{ error.error }}" ({{ error.source }})
 </h4>
 </div>
 <div v-else class="bg-primary text-white m-2 p-2">
 <div class="form-check">
 <input class="form-check-input" type="checkbox" v-model="checked" />
 <label>Checkbox</label>
 </div>
 Checked Value: {{ checked }}
 <div class="bg-info p-2" v-if="checked">
 <message-display></message-display>
 </div>
 </div>
</template>

<script>
 import MessageDisplay from "./components/MessageDisplay"

 export default {
 name: 'App',
 components: { MessageDisplay },
 data: function () {
 return {
 checked: true,
 names: [],

Chapter 17 ■ Understanding the Component LifeCyCLe

448

 error: {
 occurred: false,
 error: "",
 source: ""
 }
 }
 },
 errorCaptured(error, component, source) {
 this.error.occurred = true;
 this.error.error = error;
 this.error.source = source;
 return false;
 }
 }
</script>

The errorCaptured method responds to an error by setting properties of a data object named error,
which is displayed to the user through the v-if and v-else directives. When you save the changes and click
the Generate Error button, you will see the error message shown in Figure 17-5.

DEFINING A GLOBAL ERROR HANDLER

Vue.js also provides a global error handler, which is used to deal with errors that are not dealt with by
the components in the application. the global handler is a function that receives the same arguments as
the errorCaptured method but is defined on the application’s top-level Vue object in the main.js file,
rather than in one of its components.

the global error handler allows you to receive a notification when no other part of the application has
dealt with a problem, which usually means you won’t be able to do anything especially useful to recover
from the situation. But if you need to perform a task when an error hasn’t been handled elsewhere, then
you can define a handler in the main.js file like this:

...
import Vue from 'vue'
import App from './App'

Figure 17-5. Handling an error

Chapter 17 ■ Understanding the Component LifeCyCLe

449

import "bootstrap/dist/css/bootstrap.min.css";

Vue.config.productionTip = false

Vue.config.errorHandler = function (error, component, source) {
 console.log(`Global Error Handler: ${error}, ${component}, ${source}`);
}

new Vue({
 el: '#app',
 components: { App },
 template: `<div><App data-names="Bob, Alice, Peter, Dora" /></div>`
})
...

this handler writes a message to the browser’s Javascript console, which is similar to the default
behavior. there are error tracking services that allow developers to collate and inspect errors by pushing
them to a central server for later analysis, and some of these provide out-of-the-box support for Vue.js
applications using the global error handler, although they can become expensive to use if you have large
numbers of users.

Summary
In this chapter, I described the lifecycle that Vue.js provides for its components and the methods that allow
to you receive notifications at each stop. I explained how changes to data values are processed, how to
access the component’s HTML content in the DOM, how to observe data values using watchers, and how
to handle errors. In the next chapter, I explain how to add structure to a Vue.js application using loosely
coupled components.

451© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_18

CHAPTER 18

Loosely Coupled Components

As a Vue.js application grows, the need to pass data and events between parent and child components
becomes harder to arrange, especially when components in different parts of the application need to
communicate. The result can be components whose own functionality is overtaken by the need to pass on
props for their descendants and relay events to their antecedents. In this chapter, I describe an alternative
approach, known as dependency injection, which allows components to communicate without being tightly
coupled to one another. I show you the different ways in which dependency injection can be used and
demonstrate how it frees up the structure of an application. I also show you how to use an event bus, which
combines dependency injection with the ability to register interest in custom events programmatically,
allowing a component to send a custom event to any interested receiver, rather than just its parent. Table 18-1
puts dependency injection and event buses in context.

Table 18-1. Putting Dependency Injection and Event Buses in Context

Question Answer

What are they? Dependency injection allows any component to provide services
to any of its descendants, where services can be values, objects, or
functions. Event buses build on the dependency injection feature to
provide a common mechanism for sending and receiving custom
events.

Why are they useful? These features allow the structure of an application to become
more complex without being bogged down in managing parent-
child relationship features that are used only to relay data to distant
descendants and antecedents.

How are they used? A component defines a service using the provide property and
declares a dependency on a service using the inject property. Event
buses are services that distribute a Vue object, which is used to send
and receive events using the $emit and $on methods.

Are there any pitfalls or limitations? Care must be taken to ensure that service and event names are
consistently used throughout the application. Without care,
different components will end up reusing a name that already has
meaning to another part of the application.

Are there any alternatives? Simple applications don’t need the features described in this
chapter and can rely on props and standard custom events.
Complex applications can benefit from shared application state,
which is a complementary approach that is described in Chapter 20.

Chapter 18 ■ LooseLy CoupLed Components

452

Table 18-2 summarizes the chapter.

Preparing for This Chapter
For the examples in this chapter, run the command shown in Listing 18-1 in a convenient location to create a
new Vue.js project.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Listing 18-1. Creating a New Project

vue create productapp --default

This command creates a project called productapp. Once the setup process has finished, add the
statement shown in Listing 18-2 to the linter section of the package.json file to disable the rules that warn
when the JavaScript console is used and when variables are defined but not used. I rely on the console for
many of the examples in this chapter and define placeholder variables that are used only when later features
are introduced.

Listing 18-2. Disabling a Linter Rule in the package.json File in the lifecycles Folder

...
"eslintConfig": {
 "root": true,
 "env": {
 "node": true
 },

Table 18-2. Chapter Summary

Problem Solution Listing

Define functionality that can be used by a
component’s descendants

Use the dependency injection feature to define a
service

10–12

Provide functionality that responds to
changes

Create a reactive service by defining a data
property and using it as the source for data values

13–14

Define functionality that will be used if no
service is provided

Specify a fallback using an object with the inject
property

15–16

Distribute custom events outside the
parent-child relationship

Use an event bus 17

Send events using an event bus Call the event bus $emit method 18

Receive events from an event bus Call the event bus $on method 19, 20

Distribute events to only part of an
application

Create a local event bus 21, 22

https://github.com/Apress/pro-vue-js-2

Chapter 18 ■ LooseLy CoupLed Components

453

 "extends": [
 "plugin:vue/essential",
 "eslint:recommended"
],
 "rules": {
 "no-console": "off",
 "no-unused-vars": "off"
 },
 "parserOptions": {
 "parser": "babel-eslint"
 }
},
...

Next, run the command shown in Listing 18-3 in the productapp folder to add the Bootstrap CSS
package to the project.

Listing 18-3. Adding the Bootstrap CSS Package

npm install bootstrap@4.0.0

Add the statement shown in Listing 18-4 to the main.js file in the src folder to incorporate the
Bootstrap CSS file into the application.

Listing 18-4. Incorporating the Bootstrap Package in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "../node_modules/bootstrap/dist/css/bootstrap.min.css";

Vue.config.productionTip = false

new Vue({
 render: h => h(App)
}).$mount('#app')

Run the command shown in Listing 18-5 in the productapp folder to start the development tools.

Listing 18-5. Starting the Development Tools

npm run serve

The initial bundling process will be performed, after which you will see a message telling you that the
project has compiled successfully and the HTTP server is listening for requests on port 8080. Open a new
browser window and navigate to http://localhost:8080 to see the project’s placeholder content, as shown
in Figure 18-1.

Chapter 18 ■ LooseLy CoupLed Components

454

Creating the Product Display Component
The core of the example application will be a component that displays a table containing details of product
objects, with buttons that will be used to edit or delete objects. I added a file called ProductDisplay.vue to
the src/components folder with the content shown in Listing 18-6.

Listing 18-6. The Contents of the ProductDisplay.vue File in the src/components Folder

<template>
 <div>
 <table class="table table-sm table-striped table-bordered">
 <tr>
 <th>ID</th><th>Name</th><th>Price</th><th></th>
 </tr>
 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.price | currency }}</td>
 <td>
 <button class="btn btn-sm btn-primary"
 v-on:click="editProduct(p)">
 Edit
 </button>
 </td>
 </tr>
 </tbody>
 </table>

Figure 18-1. Running the example application

Chapter 18 ■ LooseLy CoupLed Components

455

 <div class="text-center">
 <button class="btn btn-primary" v-on:click="createNew">
 Create New
 </button>
 </div>
 </div>
</template>

<script>
 export default {
 data: function () {
 return {
 products: [
 { id: 1, name: "Kayak", price: 275 },
 { id: 2, name: "Lifejacket", price: 48.95 },
 { id: 3, name: "Soccer Ball", price: 19.50 },
 { id: 4, name: "Corner Flags", price: 39.95 },
 { id: 5, name: "Stadium", price: 79500 }]
 }
 },
 filters: {
 currency(value) {
 return `$${value.toFixed(2)}`;
 }
 },
 methods: {
 createNew() {
 },
 editProduct(product) {
 }
 }
 }
</script>

This component defines a data property named products, which is assigned an array of objects that
are enumerated in the template using the v-for directive. Each products object produces a row in a table
with columns for id, name, and price values, and a button element that will be used to edit the object. There
is another button under the table that the user will click to create a new product, and the v-on directive has
been applied to both button elements so that the createNew and editProduct methods are invoked when
the buttons are clicked. These methods are empty at the moment.

Creating the Product Editor Component
I need an editor to allow the user to edit existing objects and create new ones. I started by adding a file called
EditorField.vue to the src/components folder and added the content shown in Listing 18-7.

Chapter 18 ■ LooseLy CoupLed Components

456

Listing 18-7. The Contents of the EditorField.vue File in the src/components Folder

<template>

 <div class="form-group">
 <label>{{label}}</label>
 <input v-model.number="value" class="form-control" />
 </div>

</template>

<script>

export default {
 props: ["label"],
 data: function () {
 return {
 value: ""
 }
 }
}

</script>

This component displays a label element and an input element. To combine the editor into a larger
unit of functionality, I added a file called ProductEditor.vue to the src/components folder and added the
content shown in Listing 18-8.

Listing 18-8. The Contents of the ProductEditor.vue File in the src/components Folder

<template>

 <div>
 <editor-field label="ID" />
 <editor-field label="Name" />
 <editor-field label="Price" />

 <div class="text-center">
 <button class="btn btn-primary" v-on:click="save">
 {{ editing ? "Save" : "Create" }}
 </button>
 <button class="btn btn-secondary" v-on:click="cancel">Cancel</button>
 </div>
 </div>

</template>
<script>

 import EditorField from "./EditorField";

Chapter 18 ■ LooseLy CoupLed Components

457

 export default {
 data: function () {
 return {
 editing: false,
 product: {
 id: 0,
 name: "",
 price: 0
 }
 }
 },
 components: { EditorField },
 methods: {
 startEdit(product) {
 this.editing = true;
 this.product = {
 id: product.id,
 name: product.name,
 price: product.price
 }
 },
 startCreate() {
 this.editing = false;
 this.product = {
 id: 0,
 name: "",
 price: 0
 };
 },
 save() {
 // TODO - process edited or created product
 console.log(`Edit Complete: ${JSON.stringify(this.product)}`);
 this.startCreate();
 },
 cancel() {
 this.product = {};
 this.editing = false;
 }
 }
 }
</script>

The editor presents a collection of editor components that can be used to edit or create objects. There
are fields for the id, name, and price values, along with button elements that use the v-on directive to
complete or cancel operations.

Displaying the Child Components
To complete the preparations for this chapter, I edited the root component to display the components
created in the previous sections, as shown in Listing 18-9.

Chapter 18 ■ LooseLy CoupLed Components

458

Listing 18-9. Displaying Components in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col-8 m-3">
 <product-display></product-display>
 </div>
 <div class="col m-3">
 <product-editor></product-editor>
 </div>
 </div>
 </div>
</template>

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor }
 }
</script>

The component displays its children side by side, as shown in Figure 18-2. Clicking the button elements
has no real effect because the components are not yet wired up to work together.

Figure 18-2. Adding features and components to the example application

Chapter 18 ■ LooseLy CoupLed Components

459

Understanding Dependency Injection
Dependency injection allows a component to define a service, which can be any value, function, or object,
and make it available to any of its descendants. Services provided through dependency injection are not
limited to just children and avoid the need to pass data through a chain of props to distribute it to the part of
the application where it is needed.

Defining a Service
In Listing 18-10, I have added a service to the root component that provides details of the Bootstrap CSS
classes that should be used for background and text. This service will be available to all the components in
the application since they are all descendants of the root component.

Listing 18-10. Defining a Service in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col-8 m-3">
 <product-display></product-display>
 </div>
 <div class="col m-3">
 <product-editor></product-editor>
 </div>
 </div>
 </div>
</template>

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor },
 provide: function() {
 return {
 colors: {
 bg: "bg-secondary",
 text: "text-white"
 }
 }
 }
 }
</script>

The provide property follows the same pattern as the data property and returns a function that
produces an object whose properties are the names of the services that will be available to descendant
components. In this example, I defined a service called colors whose bg and text properties provide the
names of classes associated with Bootstrap CSS styles.

Chapter 18 ■ LooseLy CoupLed Components

460

Consuming a Service via Dependency Injection
When a component wants to consume a service provided by its antecedents, it uses the inject property, as
shown in Listing 18-11, where I have configured the EditorField component so it consumes the colors
service defined in Listing 18-10.

Listing 18-11. Consuming a Service in the EditorField.vue File in the src/components Folder

<template>

 <div class="form-group">
 <label>{{label}}</label>
 <input v-model.number="value" class="form-control"
 v-bind:class="[colors.bg, colors.text]" />
 </div>

</template>

<script>

export default {
 props: ["label"],
 data: function () {
 return {
 value: ""
 }
 },
 inject: ["colors"]
}

</script>

The inject property is assigned an array that contains string values for the name of each service
that the component requires. When the component is initialized, Vue.js works its way up through the
component’s antecedents until it finds a service with the specified name, gets the service value, and assigns
it to a property with the service name on the component’s object. In this example, Vue.js works its way up
through the components looking for a service called colors, which it finds on the root component, and
uses the object that the root component has provided as the value for a component called colors on the
EditorField component. Creating a property that corresponds to the service allows me to use its properties
in a directive expression like this:

...
<input v-model.number="value" class="form-control"
 v-bind:class="[colors.bg, colors.text]" />
...

The result is that the root component is able to provide the names of the classes that should be used
to style elements without having to pass them through the chain of components. These classes names are
applied to the EditorField component’s input elements, producing the result shown in Figure 18-3.
(You will have to enter some text into the input elements to see the text color.)

Chapter 18 ■ LooseLy CoupLed Components

461

 ■ Tip you may have to reload the browser before you see the effect of this example.

Overriding Antecedent Services
When Vue.js creates a component with an inject property, it resolves the dependencies on the services
that are required, working its way up the chain of components and examining each to see whether there
is a provide property with a service that matches the required name. This approach means a component
can override one or more services that its antecedents provide, which can be a useful way to create more
specialized services that apply to only part of the application. To demonstrate, I added a provide property to
the ProductEditor component that defines a colors service, as shown in Listing 18-12.

Listing 18-12. Defining a Service in the ProductEditor.vue File in the src/components Folder

...
<script>

 import EditorField from "./EditorField";

 export default {
 data: function () {
 return {
 editing: false,
 product: {
 id: 0,
 name: "",
 price: 0
 }
 }
 },

Figure 18-3. Using dependency injection

Chapter 18 ■ LooseLy CoupLed Components

462

 components: { EditorField },
 methods: {

 // ...methods omitted for brevity...

 },
 provide: function () {
 return {
 colors: {
 bg: "bg-light",
 text: "text-danger"
 }
 }
 }
 }
</script>
...

When Vue.js creates an EditorField component and resolved the service specified by its inject
property, it will reach the service defined by the ProductEditor component and stop, which means that the
colors service will be resolved using the class names used in Listing 18-12, as shown in Figure 18-4.

 ■ Tip each service is resolved independently, which means a component can choose to override only some
of the services provided by its antecedents.

Figure 18-4. The effect of overriding a service

Chapter 18 ■ LooseLy CoupLed Components

463

UNDERSTANDING THE ANONYMITY OF SERVICES

dependency injection makes it possible to create loosely coupled applications because services are
provided and consumed anonymously. When a component defines a service, it doesn’t know which of
its descendants will use it, whether it will be overridden by one another component, or even if it will be
used at all.

equally, when a component uses a service, it doesn’t know which of its antecedents has provided it.
this approach allows components that need data or functionality to receive it from those components
that are able to provide it without needing to define rigid relationships or worry about passing it down
through a series of parent-child relationships.

Creating Reactive Services
Vue.js services are not reactive by default, which means that any changes made to the properties of the
object provided by the color service won’t be propagated to the rest of the application. But, since Vue.js
resolves dependencies for services each time a component is created, components created after a change
will receive the new values.

If you want to create a service that does propagate changes, then you must assign an object to a data
property and use this as the value for the service, as shown in Listing 18-13.

Listing 18-13. Creating a Reactive Service in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="text-right m-2">
 <button class="btn btn-primary" v-on:click="toggleColors">
 Toggle Colors
 </button>
 </div>
 <div class="row">
 <div class="col-8 m-3">
 <product-display></product-display>
 </div>
 <div class="col m-3">
 <product-editor></product-editor>
 </div>
 </div>
 </div>
</template>

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor },

Chapter 18 ■ LooseLy CoupLed Components

464

 data: function () {
 return {
 reactiveColors: {
 bg: "bg-secondary",
 text: "text-white"
 }
 }
 },
 provide: function() {
 return {
 colors: this.reactiveColors
 }
 },
 methods: {
 toggleColors() {
 if (this.reactiveColors.bg == "bg-secondary") {
 this.reactiveColors.bg = "bg-light";
 this.reactiveColors.text = "text-danger";
 } else {
 this.reactiveColors.bg = "bg-secondary";
 this.reactiveColors.text = "text-white";
 }
 }
 }
 }
</script>

The component defines a data property named reactiveColors, which has been assigned an
object with bg and text properties. During the component’s creation phase, Vue.js processes the data
property before the provide property, which means that the reactiveColors object is made reactive and
subsequently used as the value for the colors service. To help demonstrate a reactive service, I have also
added a button element that uses the v-on directive to invoke the toggleColors method, which changes the
bg and text values.

For this example to work, I need to comment out the provide property in the ProductEditor
component, as shown in Listing 18-14; otherwise, the service it provides will be used in preference to the
one in Listing 18-13.

 ■ Tip you may have to reload the browser to see the changes in this example.

Listing 18-14. Removing a Service in the ProductEditor.vue File in the src Folder

...
<script>

 import EditorField from "./EditorField";

 export default {
 data: function () {
 return {

Chapter 18 ■ LooseLy CoupLed Components

465

 editing: false,
 product: {
 id: 0,
 name: "",
 price: 0
 }
 }
 },
 components: { EditorField },
 methods: {

 // ...methods omitted for brevity...

 },
// provide: function () {
// return {
// colors: {
// bg: "bg-light",
// text: "text-danger"
// }
// }
// }
 }
</script>
...

The result is that when the button is clicked, the values of the service object’s properties are changed
and propagated throughout the application, as shown in Figure 18-5.

 ■ Caution any component can make changes to a reactive service and not just the component that defines
it. this can be a useful feature, but it can also cause unexpected behavior.

Chapter 18 ■ LooseLy CoupLed Components

466

Using Advanced Dependency Injection Features
There are two useful advanced features that can be used when consuming services. The first feature is
providing a default value that will be used if no antecedents define a service that a component requires.
The second feature is the ability to change the name by which the service will be known by the component.
I have applied both of these features in Listing 18-15.

Listing 18-15. Using Advanced Features in the EditorField.vue File in the src/components Folder

<template>

 <div class="form-group">
 <label>{{ formattedLabel }}</label>
 <input v-model.number="value" class="form-control"
 v-bind:class="[colors.bg, colors.text]" />
 </div>

</template>

<script>

 export default {
 props: ["label"],

Figure 18-5. Creating a reactive service

Chapter 18 ■ LooseLy CoupLed Components

467

 data: function () {
 return {
 value: "",
 formattedLabel: this.format(this.label)
 }
 },
 inject: {
 colors: "colors",
 format: {
 from: "labelFormatter",
 default: () => (value) => `Default ${value}`
 }
 }
 }

</script>

These features require the value of the inject property to be an object. The name of each property is
the name by which the service will be used inside the component. If no advanced features are required, then
the value of the property is the name of the service that is required, like this:

...
"colors": "colors",
...

This property tells Vue.js that the component requires a service called colors and wants to refer to it
as colors, which produces the same result as the earlier examples. The second property uses both of the
advanced features.

...
inject: {
 colors: "colors",
 format: {
 from: "labelFormatter",
 default: () => (value) => `Default ${value}`
 }
}
...

The from property tells Vue.js that it should look for a service called labelFormatter provided by the
component’s antecedents but that the service will be known as format when it is used by the component.
The default property provides a default value that will be used if none of the component’s antecedents
provides a labelFormatter service.

 ■ Note a factory function is required when you provide default values for services, which is why the value of
the default property in Listing 18-15 is assigned a function that returns another function as its result. When
Vue.js creates the component, it will invoke the default function to get the object that will be used as the
service.

Chapter 18 ■ LooseLy CoupLed Components

468

The default value in this example is a function that prefixes the value it receives with Default so that it
is obvious when the default service is used, producing the result shown on the left side of Figure 18-6.

The default value for the service has been used because none of the component’s antecedents provides
a service called labelFormatter. To demonstrate that a provided service will be used when it is available,
I created a service with this name, as shown in Listing 18-16.

Listing 18-16. Defining a Service in the App.vue File in the src Folder

...
<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor },
 data: function () {
 return {
 reactiveColors: {
 bg: "bg-secondary",
 text: "text-white"
 }
 }
 },

Figure 18-6. Using a default value for a service

Chapter 18 ■ LooseLy CoupLed Components

469

 provide: function() {
 return {
 colors: this.reactiveColors,
 labelFormatter: (value) => `Enter ${value}:`
 }
 },
 methods: {
 toggleColors() {
 if (this.reactiveColors.bg == "bg-secondary") {
 this.reactiveColors.bg = "bg-light";
 this.reactiveColors.text = "text-danger";
 } else {
 this.reactiveColors.bg = "bg-secondary";
 this.reactiveColors.text = "text-white";
 }
 }
 }
 }
</script>
...

The new service is a function that transforms the values it receives by prefixing them with the word
Enter, producing the result shown on the right side of Figure 18-6. Since this isn’t a default value for a service,
I don’t need to define a factory function.

Using an Event Bus
Dependency injection can be combined with another advanced Vue.js feature to allow components to send
and receive events outside beyond the parent-child relationship, producing a result known as the event bus.
The first step in creating an event bus is to define the service in the Vue object, as shown in Listing 18-17.

Listing 18-17. Creating an Event Bus Service in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "../node_modules/bootstrap/dist/css/bootstrap.min.css";

Vue.config.productionTip = false

new Vue({
 render: h => h(App),
 provide: function () {
 return {
 eventBus: new Vue()
 }
 }
}).$mount('#app')

Chapter 18 ■ LooseLy CoupLed Components

470

The value for the service is a new Vue object. This may seem strange, but it produces an object that can
be used to send and receive custom Vue.js events programmatically without relying on the application’s
hierarchy of components.

Sending Events Using an Event Bus
The $emit method is used to send events through an event bus, following the same basic approach that I
demonstrated in Chapter 16 when I showed you how to send events to a component’s parent. In Listing 18-18,
I have updated the ProductDisplay component so that it uses the event bus to send custom events when the
user clicks the Create New or Edit button.

Listing 18-18. Using the Event Bus in the ProductDisplay.vue File in the src/components Folder

...
<script>
 export default {
 data: function () {
 return {
 products: [
 { id: 1, name: "Kayak", price: 275 },
 { id: 2, name: "Lifejacket", price: 48.95 },
 { id: 3, name: "Soccer Ball", price: 19.50 },
 { id: 4, name: "Corner Flags", price: 39.95 },
 { id: 5, name: "Stadium", price: 79500 }]
 }
 },
 filters: {
 currency(value) {
 return `$${value.toFixed(2)}`;
 }
 },
 methods: {
 createNew() {
 this.eventBus.$emit("create");
 },
 editProduct(product) {
 this.eventBus.$emit("edit", product);
 }
 },
 inject: ["eventBus"]
 }
</script>
...

The inject property is used to declare a dependency on the eventBus service, whose $emit method is
used to send custom events called create and edit in the methods that are invoked when the user clicks the
button elements presented by the component.

Chapter 18 ■ LooseLy CoupLed Components

471

 ■ Note one drawback of the event bus model is that you must ensure that event names are unique within
the application so that the meaning of events is not confused. If your application becomes too large to allow
easy management of event names, then you should consider the shared state approach that I describe in
Chapter 20.

Receiving Events from the Event Bus
The feature that allows the event bus model to work is that Vue.js supports registering for events
programmatically, using the $on method, which can be performed once the component has been initialized
and its dependencies on services have been resolved. In Listing 18-19, I have used the event bus in the
ProductEditor component to receive the events sent in the previous section.

Listing 18-19. Receiving Events in the ProductEditor.vue File in the src/components Folder

...
<script>

 import EditorField from "./EditorField";

 export default {
 data: function () {
 return {
 editing: false,
 product: {
 id: 0,
 name: "",
 price: 0
 }
 }
 },
 components: { EditorField },
 methods: {
 startEdit(product) {
 this.editing = true;
 this.product = {
 id: product.id,
 name: product.name,
 price: product.price
 }
 },
 startCreate() {
 this.editing = false;
 this.product = {
 id: 0,
 name: "",
 price: 0
 };
 },

Chapter 18 ■ LooseLy CoupLed Components

472

 save() {
 this.eventBus.$emit("complete", this.product);
 this.startCreate();
 console.log(`Edit Complete: ${JSON.stringify(this.product)}`);
 },
 cancel() {
 this.product = {};
 this.editing = false;
 }
 },
 inject: ["eventBus"],
 created() {
 this.eventBus.$on("create", this.startCreate);
 this.eventBus.$on("edit", this.startEdit);
 }
 }
</script>
...

The inject property is used to declare a dependency on the eventBus service, and the created
method is used to register handler methods for the create and edit events, which are used to invoke the
startCreate and startEdit method defined at the start of the chapter.

Components can both send and receive events through the event bus, and in Listing 18-19, I have
used the $emit method to send an event called complete when the save method is called. This two-way
communication allows me to easily compose complex behaviors, and in Listing 18-20, I have further
updated the ProductDisplay component to update the data displayed to the user in response to the
complete event, which signals that the user either has finished editing an existing product or has created a
new one.

Listing 18-20. Receiving Events in the ProductDisplay.vue File in the src/components Folder

...
<script>

 import Vue from "vue";

 export default {
 data: function () {
 return {
 products: [
 { id: 1, name: "Kayak", price: 275 },
 { id: 2, name: "Lifejacket", price: 48.95 },
 { id: 3, name: "Soccer Ball", price: 19.50 },
 { id: 4, name: "Corner Flags", price: 39.95 },
 { id: 5, name: "Stadium", price: 79500 }]
 }
 },
 filters: {
 currency(value) {
 return `$${value.toFixed(2)}`;
 }
 },

Chapter 18 ■ LooseLy CoupLed Components

473

 methods: {
 createNew() {
 this.eventBus.$emit("create");
 },
 editProduct(product) {
 this.eventBus.$emit("edit", product);
 },
 processComplete(product) {
 let index = this.products.findIndex(p => p.id == product.id);
 if (index == -1) {
 this.products.push(product);
 } else {
 Vue.set(this.products, index, product);
 }
 }
 },
 inject: ["eventBus"],
 created() {
 this.eventBus.$on("complete", this.processComplete);
 }
 }
</script>
...

The created method is used to listen for the complete event and call the processComplete method
when it is received. The processComplete method uses the id property as a key to update objects that have
been edited or to add new objects.

The result is that the ProductDisplay and ProductEditor components are able to send and receive
events that allow them to respond to each other’s actions, outside of the parent-child relationship. There is
still some key functionality missing, but if you click the Edit or Create New button, you will see that the text
in the editor buttons will adapt accordingly, as shown in Figure 18-7.

Chapter 18 ■ LooseLy CoupLed Components

474

Creating Local Event Buses
You don’t have to use a single event bus for the entire application, and sections of the application can have
their own bus and use custom events without distributing them to components that perform unrelated
tasks. In Listing 18-21, I have added a separate event bus, called editingEventBus, to the ProductEditor
component and used it to send and receive custom events that will wire up the individual editor fields with
the rest of the application.

Listing 18-21. Creating a Local Event Bus in the ProductEditor.vue File in the src/components Folder

<template>

 <div>
 <editor-field label="ID" editorFor="id" />
 <editor-field label="Name" editorFor="name" />
 <editor-field label="Price" editorFor="price" />

 <div class="text-center">
 <button class="btn btn-primary" v-on:click="save">
 {{ editing ? "Save" : "Create" }}
 </button>
 <button class="btn btn-secondary" v-on:click="cancel">Cancel</button>
 </div>
 </div>

</template>

Figure 18-7. Using an event bus

Chapter 18 ■ LooseLy CoupLed Components

475

<script>

 import EditorField from "./EditorField";
 import Vue from "vue";

 export default {
 data: function () {
 return {
 editing: false,
 product: {
 id: 0,
 name: "",
 price: 0
 },
 localBus: new Vue()
 }
 },
 components: { EditorField },
 methods: {
 startEdit(product) {
 this.editing = true;
 this.product = {
 id: product.id,
 name: product.name,
 price: product.price
 }
 },
 startCreate() {
 this.editing = false;
 this.product = {
 id: 0,
 name: "",
 price: 0
 };
 },
 save() {
 this.eventBus.$emit("complete", this.product);
 this.startCreate();
 console.log(`Edit Complete: ${JSON.stringify(this.product)}`);
 },
 cancel() {
 this.product = {};
 this.editing = false;
 }
 },
 inject: ["eventBus"],
 provide: function () {
 return {
 editingEventBus: this.localBus
 }
 },

Chapter 18 ■ LooseLy CoupLed Components

476

 created() {
 this.eventBus.$on("create", this.startCreate);
 this.eventBus.$on("edit", this.startEdit);
 this.localBus.$on("change",
 (change) => this.product[change.name] = change.value);
 },
 watch: {
 product(newValue, oldValue) {
 this.localBus.$emit("target", newValue);
 }
 }
 }
</script>

There are a number of changes in this listing, but they all work toward providing a local event bus
dedicated to events for editing a product object, combining features from previous sections and previous
chapters. When the user starts to edit or create a new object, a target event is sent on the local event bus,
and when a change event is received on that bus, the product object is updated, reflecting a change made by
the user. Complementary changes are required in the component responsible for displaying the editor fields,
as shown in Listing 18-22.

Listing 18-22. Using a Local Event Bus in the EditorField.vue File in the src/components Folder

<template>

 <div class="form-group">
 <label>{{ formattedLabel }}</label>
 <input v-model.number="value" class="form-control"
 v-bind:class="[colors.bg, colors.text]" />
 </div>

</template>

<script>

 export default {
 props: ["label", "editorFor"],
 data: function () {
 return {
 value: "",
 formattedLabel: this.format(this.label)
 }
 },
 inject: {
 colors: "colors",
 format: {
 from: "labelFormatter",
 default: () => (value) => `Default ${value}`
 },
 editingEventBus: "editingEventBus"
 },

Chapter 18 ■ LooseLy CoupLed Components

477

 watch: {
 value(newValue) {
 this.editingEventBus.$emit("change",
 { name: this.editorFor, value: this.value});
 }
 },
 created() {
 this.editingEventBus.$on("target",
 (p) => this.value = p[this.editorFor]);
 }
 }

</script>

The result is that clicking an Edit button allows the user to edit an existing object, clicking the Create
New button allows the user to create a new object, and clicking the Create/Save button applies any changes
that are made, as shown in Figure 18-8.

Summary
In this chapter, I explained how the Vue.js dependency injection and event bus features can be used to break
through the parent-child relationship and create components that are loosely coupled. I demonstrated how
to define and consume services, how to make services reactive, and how to create an event bus to distribute
custom events throughout an application. In the next chapter, I explain how to use RESTful web services in
Vue.js applications.

Figure 18-8. Wiring up the editor components using a local event bus

479© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_19

CHAPTER 19

Using RESTful Web Services

In this chapter, I demonstrate how to consume a RESTful web service in a Vue.js application. I explain the
different ways that HTTP requests can be made and extend the example application so that it reads and
stores its data from a server. Table 19-1 puts using web services n context.

Table 19-2 summarizes the chapter.

Table 19-1. Putting RESTful Web Services in Context

Question Answer

What are they? RESTful web services provide data to web applications over HTTP requests.

Why are they useful? Many applications need to access data and allow users to create, modify,
and delete objects from a persistent data store.

How are they used? The web application sends an HTTP request to the server, using the request
type and the URL to identify the data and the operation that is required.

Are there any pitfalls or
limitations?

There is no standard for RESTful web services, which means there is
variation in the way that web services work. Within the Vue.js application,
HTTP requests are performed asynchronously, which many developers find
confusing. Special attention is required to deal with errors because Vue.js
won’t detect them automatically.

Are there any alternatives? You don’t have to use HTTP requests in a web application, especially if you
have only small amounts of data to work with.

Table 19-2. Chapter Summary

Problem Solution Listing

Get data from a web service Create Axios.get method and read the response
object’s data property

10–14

Consolidate the code that accesses a
web service

Create an HTTP service 15–17

Perform other HTTP operations Use the Axios method that corresponds to the HTTP
request type you require

18–19

Respond to errors Consolidate the requests and use a try/catch block to
trap and handle the error

20–23

Chapter 19 ■ Using restfUl Web serviCes

480

Preparing for This Chapter
In this chapter, I continue working with the productapp project from Chapter 18. Follow the instructions in
the following sections to prepare the example application for working with HTTP requests.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Preparing the HTTP Server
I need an additional package to receive the HTTP requests made by the example application in this chapter.
Run the command shown in Listing 19-1 in the productapp folder to install a package called json-server.

Listing 19-1. Installing a Package

npm install json-server@0.12.1

To provide the server with the data it will use to handle HTTP requests, add a file called restData.js in
the productapp folder with the contents shown in Listing 19-2.

Listing 19-2. The Contents of the restData.js File in the productapp Folder

module.exports = function () {
 var data = {
 products: [
 { id: 1, name: "Kayak", category: "Watersports", price: 275 },
 { id: 2, name: "Lifejacket", category: "Watersports", price: 48.95 },
 { id: 3, name: "Soccer Ball", category: "Soccer", price: 19.50 },
 { id: 4, name: "Corner Flags", category: "Soccer", price: 34.95 },
 { id: 5, name: "Stadium", category: "Soccer", price: 79500 },
 { id: 6, name: "Thinking Cap", category: "Chess", price: 16 },
 { id: 7, name: "Unsteady Chair", category: "Chess", price: 29.95 },
 { id: 8, name: "Human Chess Board", category: "Chess", price: 75 },
 { id: 9, name: "Bling Bling King", category: "Chess", price: 1200 }
]
 }
 return data
}

To allow NPM to run the json-server package, add the statement shown in Listing 19-3 to the scripts
section of the package.json file.

https://github.com/Apress/pro-vue-js-2

Chapter 19 ■ Using restfUl Web serviCes

481

Listing 19-3. Adding a Script in the package.json File in the productapp Folder

...
 "scripts": {
 "serve": "vue-cli-service serve",
 "build": "vue-cli-service build",
 "lint": "vue-cli-service lint",
 "json": "json-server restData.js -p 3500"
 },
...

Preparing the Example Application
To prepare the example application for this chapter, I am going to remove some features that are no longer
required, remove the data that was hard-coded into the application, and prepare for working with objects
that have a category property in addition to the id, name, and price properties I used in Chapter 18.

Installing the HTTP Package
First, however, I am going to add the package that I will use to make HTTP requests. Run the command
shown in Listing 19-4 in the productapp folder to install a package called Axios.

Listing 19-4. Installing a Package

npm install axios@0.18.0

Axios is a popular library for making HTTP requests in web applications. It isn’t specifically written for
Vue.js applications, but it has become the most common HTTP library used in Vue.js applications because
it is reliable and easy to use. You don’t have to use Axios in your own projects, and I describe the range of
options in the “Choosing an HTTP Request Mechanism” sidebar.

Simplifying the Components
I simplified the ProductEditor component so that is displays the input elements for editing directly to the
user, rather than through a separate component, which I used in Chapter 18 to demonstrate how to wire up
different parts of an application. Listing 19-5 shows the simplified component.

Listing 19-5. Simplifying the Component in the ProductEditor.vue File in the src/components Folder

<template>

 <div>
 <div class="form-group">
 <label>ID</label>
 <input class="form-control" v-model="product.id" />
 </div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" v-model="product.name" />
 </div>

Chapter 19 ■ Using restfUl Web serviCes

482

 <div class="form-group">
 <label>Category</label>
 <input class="form-control" v-model="product.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" v-model.number="product.price" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="save">
 {{ editing ? "Save" : "Create" }}
 </button>
 <button class="btn btn-secondary" v-on:click="cancel">Cancel</button>
 </div>
 </div>

</template>

<script>

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },
 methods: {
 startEdit(product) {
 this.editing = true;
 this.product = {
 id: product.id,
 name: product.name,
 category: product.category,
 price: product.price
 }
 },
 startCreate() {
 this.editing = false;
 this.product = {};
 },
 save() {
 this.eventBus.$emit("complete", this.product);
 this.startCreate();
 },
 cancel() {
 this.product = {};
 this.editing = false;
 }
 },

Chapter 19 ■ Using restfUl Web serviCes

483

 inject: ["eventBus"],
 created() {
 this.eventBus.$on("create", this.startCreate);
 this.eventBus.$on("edit", this.startEdit);
 }
 }
</script>

Next, I simplified the ProductDisplay component to remove the hard-coded data and add support for
displaying category values, as shown in Listing 19-6.

Listing 19-6. Simplifying the Component in the ProductDisplay.vue File in the src/components Folder

<template>
 <div>
 <table class="table table-sm table-striped table-bordered">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td>{{ p.price }}</td>
 <td>
 <button class="btn btn-sm btn-primary"
 v-on:click="editProduct(p)">
 Edit
 </button>
 </td>
 </tr>
 <tr v-if="products.length == 0">
 <td colspan="5" class="text-center">No Data</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="createNew">
 Create New
 </button>
 </div>
 </div>
</template>

Chapter 19 ■ Using restfUl Web serviCes

484

<script>

 import Vue from "vue";

 export default {
 data: function () {
 return {
 products: []
 }
 },
 methods: {
 createNew() {
 this.eventBus.$emit("create");
 },
 editProduct(product) {
 this.eventBus.$emit("edit", product);
 }
 },
 inject: ["eventBus"]
 }
</script>

Finally, I simplified the App component by removing the button that was used to toggle the input
element colors and the method and services that it used, as shown in Listing 19-7.

Listing 19-7. Simplifying the Component in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col-8 m-3"><product-display/></div>
 <div class="col m-3"><product-editor/></div>
 </div>
 </div>
</template>

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor }
 }
</script>

Running the Example Application and HTTP Server
Two command prompts are required for this chapter: one to run the HTTP server and the other to run the
Vue.js development tools. Open a new command prompt in the productapp folder and run the command
shown in Listing 19-8 to start the HTTP server.

Chapter 19 ■ Using restfUl Web serviCes

485

Listing 19-8. Starting the RESTful Server

npm run json

The server will start listening for requests on port 3500. To test that the server is running, open a new
web browser and request the URL http://localhost:3500/products/1. If the server is running and has
been able to find the data file, then the browser will show the following JSON data:

...
{
 "id": 1,
 "name": "Kayak",
 "category": "Watersports",
 "price": 275
}
...

Leave the HTTP server running and open another command prompt. Navigate to the productapp folder
and run the command shown in Listing 19-9 to start the Vue.js development tools.

Listing 19-9. Starting the Vue.js Development Tools

npm run serve

Once the initial bundling process is complete, open a new browser window and navigate to
http://localhost:8080, where you will see the example application, as shown in Figure 19-1.

Figure 19-1. Running the example application

Chapter 19 ■ Using restfUl Web serviCes

486

Understanding RESTful Web Services
The most common approach for delivering data to an application is to use the Representational State
Transfer pattern, known as REST, to create a data web service. There is no detailed specification for REST,
which leads to a lot of different approaches that fall under the RESTful banner. There are, however, some
unifying ideas that are useful in web application development.

The core premise of a RESTful web service is to embrace the characteristics of HTTP so that request
methods—also known as verbs—specify an operation for the server to perform, and the request URL
specifies one or more data objects to which the operation will be applied.

As an example, here is a URL that might refer to a specific product in the example application:

http://localhost:3500/products/2

The first segment of the URL—products—indicates the collection of objects that will be operated
on and allows a single server to provide multiple services, each of which with its own data. The second
segment—2—selects an individual object within the products collection. In the example, it is the value of
the id property that uniquely identifies an object and would be used in the URL, in this case, specifying the
Lifejacket object.

The HTTP verb or method used to make the request tells the RESTful server what operation should be
performed on the specified object. When you tested the RESTful server in the previous section, the browser
sent an HTTP GET request, which the server interprets as an instruction to retrieve the specified object and
send it to the client. It is for this reason that the browser displayed a JSON representation of the Lifejacket
object.

Table 19-3 shows the most common combination of HTTP methods and URLs and explains what each
of them does when sent to a RESTful server.

Caution is required because there can be considerable differences in the way that some RESTful web
services work, caused by differences in the frameworks used to create them and the preferences of the
development team. It is important to confirm how a web service uses verbs and what is required in the URL
and request body to perform operations.

Table 19-3. Common HTTP Methods and Their Effect in a RESTful Web Service

Method URL Description

GET /products This combination retrieves all the objects in the products collection.

GET /products/2 This combination retrieves the object whose id is 2 from the products
collection.

POST /products This combination is used to add a new object to the products collection.
The request body contains a JSON representation of the new object.

PUT /products/2 This combination is used to replace the object in the products collection
whose id is 2. The request body contains a JSON representation of the
replacement object.

PATCH /products/2 This combination is used to update a subset of the properties of the object
in the products collection whose id is 2. The request body contains a JSON
representation of the properties to update and the new values.

DELETE /products/2 This combination is used to delete the product whose id is 2 from the
products collection.

Chapter 19 ■ Using restfUl Web serviCes

487

Some common variations include web services that won’t accept any request bodies that contain id
values (to ensure they are generated uniquely by the server’s data store) and web services that don’t support
all of the verbs (it is common to ignore PATCH requests and only accept updates using the PUT verb).

CHOOSING AN HTTP REQUEST MECHANISM

there are three different ways of making asynchronous http requests. the first approach is to use the
XMLHttpRequest object, which is the original mechanism for asynchronous requests and dates from
when XMl was the standard data format for web applications. here is a fragment of code that sends an
http request to the restful web service used throughout this chapter:

...
let request = new XMLHttpRequest();
request.onreadystatechange = () => {
 if (request.readyState == XMLHttpRequest.DONE && request.status == 200) {
 this.products.push(...JSON.parse(request.responseText));
 }
};
request.open("GET", "http://localhost:3500/products");
request.send();
...

the api presented by the XMLHttpRequest object uses an event handler to receive updates, including
details of the response from the server when the request completes. the XMLHttpRequest is awkward
to use, and there is no support for modern features like the async/await keywords, but you can rely on
it being available in all of the browsers that can run vue.js applications. You can learn more about the
XMLHttpRequest api at https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest.

the second approach is to use the fetch api, which is a recent replacement for the XMLHttpRequest
object. the fetch api uses promises, rather than events, and is generally easier to work with. here is a
fragment of code that gets the product data, equivalent to the XMLHttpRequest example:

...
fetch("http://localhost:3500/products")
 .then(response => response.json())
 .then(data => this.products.push(...data));
...

if anything, the fetch api uses too many promises. the fetch method is used to make the http
request, which returns a promise that yields a result object, whose json method yields the eventual
results of the request parsed from the JsOn data. the fetch api can be used with the async and await
keywords, but dealing with the multiple promises requires care and can result in tortured statements
like this one:

...
this.products.push(
 ...await (await fetch("http://localhost:3500/products")).json());
...

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

Chapter 19 ■ Using restfUl Web serviCes

488

the fetch api is an improvement on XMLHttpRequest, but it isn’t supported in all browsers that can run
vue.js applications. You can find details of the fetch api at https://developer.mozilla.org/en-US/
docs/Web/API/Fetch_API.

the third approach is to use a package that uses the XMLHttpRequest object but hides the details and
presents an api that is more consistent with the rest of the vue.js development experience. i used the
axios package in this chapter because it is the most popular, but there are many choices available. vue.
js doesn’t have an “official” http package, but there are plenty of choices, and even packages that
are not specifically written for vue.js are easy to use, as this chapter demonstrates. the drawback of
using an http package is that the size of your application will increase because additional code will be
required by the browser.

Consuming a RESTful Web Service
The most important thing to understand about the HTTP requests that a web application makes is they are
asynchronous. This may seem obvious, but it causes confusion because the response from the server won’t
be available immediately. As a consequence, the code required for HTTP requests has to be written carefully
and requires the JavaScript features for dealing with asynchronous operations. Because HTTP requests
cause so much confusion, I am going to build up the code for the first request in a step-by-step fashion in the
sections that follow.

MAKING CROSS-ORIGIN REQUESTS

by default, browsers enforce a security policy that only allows Javascript code to make asynchronous
http requests within the same origin as the document that contains them. this policy is intended
to reduce the risk of cross-site scripting (Css) attacks, where the browser is tricked into executing
malicious code, which is well-described at http://en.wikipedia.org/wiki/Cross-site_scripting.
for web application developers, the same-origin policy can be a problem when using web services
because they are typically outside of the origin that contains the application’s Javascript code. two
Urls are considered to be in the same origin if they have the same protocol, host, and port and have
different origins if this is not the case. the Url that i use for the restful web service in this chapter has
a different origin than the Url used by the main application because they use different tCp ports.

the Cross-Origin resource sharing (COrs) protocol is used to send requests to different origins. With
COrs, the browser includes headers in the asynchronous http request that provide the server with
the origin of the Javascript code. the response from the server includes headers that tell the browser
whether it is willing to accept the request. the details of COrs are outside the scope of this book, but
there is an introduction to the topic at https://en.wikipedia.org/wiki/Cross-origin_resource_
sharing, and the COrs specification is available at www.w3.org/TR/cors.

COrs is something that happens automatically in this chapter. the json-server package that provides
the restful web service supports COrs and will accept requests from any origin, while the axios
package that i use to make http requests automatically applies COrs. When you select software for
your own projects, you must either select a platform that will allow all requests to be handled through a
single origin or configure COrs so that the server will accept the application’s requests for data.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
http://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
www.w3.org/TR/cors

Chapter 19 ■ Using restfUl Web serviCes

489

Handling the Response Data
It may seem counterintuitive, but the best place to start is with the code that will handle the data you
expect to receive from the server. In Listing 19-10, I have added a method to the script element of the
ProductDisplay component that will process the product data when it is received from the RESTful
web service.

Listing 19-10. Adding a Method in the ProductDisplay.vue File in the src/components Folder

...
<script>

 import Vue from "vue";

 export default {
 data: function () {
 return {
 products: []
 }
 },
 methods: {
 createNew() {
 this.eventBus.$emit("create");
 },
 editProduct(product) {
 this.eventBus.$emit("edit", product);
 },
 processProducts(newProducts) {
 this.products.splice(0);
 this.products.push(...newProducts);
 }
 },
 inject: ["eventBus"]
 }
</script>
...

The processProducts method will receive an array of product objects and use them to replace the
contents of the data property named products. As I explained in Chapter 13, Vue.js has some difficulties
detecting changes in arrays, so I used the splice method to remove any existing objects. I then used the
destructuring operator to unpack the values in the method’s argument and used the push method to
repopulate the array. Since the products array is a reactive data property, Vue.js will detect the changes
automatically and update the data bindings to reflect the new data.

Making the HTTP Request
The next step is to make the HTTP request and ask the RESTful web service for data. In Listing 19-11, I have
imported the Axios package and used it to send an HTTP request.

Chapter 19 ■ Using restfUl Web serviCes

490

Listing 19-11. Making an HTTP Request in the ProductDisplay.vue File in the src/components Folder

...
<script>

 import Vue from "vue";
 import Axios from "axios";

 const baseUrl = "http://localhost:3500/products/";

 export default {
 data: function () {
 return {
 products: []
 }
 },
 methods: {
 createNew() {
 this.eventBus.$emit("create");
 },
 editProduct(product) {
 this.eventBus.$emit("edit", product);
 },
 processProducts(newProducts) {
 this.products.splice(0);
 this.products.push(...newProducts);
 }
 },
 inject: ["eventBus"],
 created() {
 Axios.get(baseUrl);
 }
 }
</script>
...

Axios provides methods for each of the HTTP request types, such that GET requests are made using the
get method, POST requests are made using the post method, and so on. There is also a request method
that accepts a configuration object and can be used to make all types of requests; I use it in the “Creating an
Error Handling Service” section.

I make the HTTP request in the component’s created method. I want the result from my request to
trigger the Vue.js change mechanism when the data is received, and using the created method ensures that
the component’s data properties have been processed before I make the request to the HTTP server.

 ■ Tip some developers prefer to use the mounted method to make initial http requests. it doesn’t matter
which method you use, but it is a good idea to be consistent so that all of your components behave the same.

Chapter 19 ■ Using restfUl Web serviCes

491

Receiving the Response
The result from the Axios get method is a Promise that will produce the response from the server when
the HTTP request has completed. As I explained in Chapter 4, the then method is used to specify what will
happen when the work represented by a Promise is complete, and in Listing 19-12, I have used the then
method to process the HTTP response.

Listing 19-12. Receiving the HTTP Response in the ProductDisplay.vue File in the src/components Folder

...
<script>

 import Vue from "vue";
 import Axios from "axios";

 const baseUrl = "http://localhost:3500/products/";

 export default {
 data: function () {
 return {
 products: []
 }
 },
 methods: {
 createNew() {
 this.eventBus.$emit("create");
 },
 editProduct(product) {
 this.eventBus.$emit("edit", product);
 },
 processProducts(newProducts) {
 this.products.splice(0);
 this.products.push(...newProducts);
 }
 },
 inject: ["eventBus"],
 created() {
 Axios.get(baseUrl).then(resp => {
 console.log(`HTTP Response: ${resp.status}, ${resp.statusText}`);
 console.log(`Response Data: ${resp.data.length} items`);
 });
 }
 }
</script>
...

The then method receives an object from Axios that represents the response from the server and that
defines the properties shown in Table 19-4.

Chapter 19 ■ Using restfUl Web serviCes

492

In Listing 19-12, I use the status and statusText properties to write out details of the response to
the browser’s JavaScript console. Of more interest is the data property, which returns the payload sent
by the server and which Axios automatically decodes for JSON responses, which means I can read the
length property to find out how many objects have been included in the response. Save the changes to the
component and examine the browser’s JavaScript console, and you will see the following messages:

...
HTTP Response: 200, OK
Response Data: 9 items
...

Processing the Data
The final step is to read the data property from the response object and pass it to the processProducts
method so that the objects obtained from the RESTful web service will update the application, as shown in
Listing 19-13.

Listing 19-13. Processing the Response in the ProductDisplay.vue File in the src/components Folder

...
<script>

 import Vue from "vue";
 import Axios from "axios";

 const baseUrl = "http://localhost:3500/products/";

 export default {
 data: function () {
 return {
 products: []
 }
 },
 methods: {
 createNew() {
 this.eventBus.$emit("create");
 },

Table 19-4. The Axios Response Properties

Name Description

status This property returns the status code for the response, such as 200 or 404.

statusText This property returns the explanatory text that accompanies the status code, such as OK
or Not Found.

headers This property returns an object whose properties represent the response headers.

data This property returns the payload from the response.

config This property returns an object that contains the configuration options used to make the
request.

request This property returns the XMLHttpRequest object that was used to make the request.

Chapter 19 ■ Using restfUl Web serviCes

493

 editProduct(product) {
 this.eventBus.$emit("edit", product);
 },
 processProducts(newProducts) {
 this.products.splice(0);
 this.products.push(...newProducts);
 }
 },
 inject: ["eventBus"],
 created() {
 Axios.get(baseUrl).then(resp => this.processProducts(resp.data));
 }
 }
</script>
...

The effect is that the component will initiate an HTTP GET request in its created method. When the
response is received from the server, Axios parses the JSON data it contains and makes it available as part of
the response. The response data is used to populate the component’s products array, and the consequent
update evaluates the v-for directive in the template and displays the data shown in Figure 19-2.

I can streamline this code using the async/await keywords, which will let me make HTTP requests
without having to rely on the then method, which some developers find confusing. In Listing 19-14, I have
applied the async keyword to the create method and have used the await keyword to make the HTTP
request.

Figure 19-2. Getting data from the web service

Chapter 19 ■ Using restfUl Web serviCes

494

Listing 19-14. Streamlining the Request Code in the ProductDisplay.vue File in the src/components Folder

...
async created() {
 let data = (await Axios.get(baseUrl)).data;
 this.processProducts(data);
}
...

This code works in the same way as the code in Listing 19-13 but without the use of the then method to
specify the statements that will be executed when the HTTP request has completed.

Creating an HTTP Service
Before I go any further, I am going to change the structure of the application. The approach I took in the
previous section demonstrated how easy it is to make HTTP requests in a component, but the result is
that the functionality provided by the component to the user has been diluted with the code required
to communicate with the server. As the range of request types increases, the component will become
increasingly dedicated to dealing with HTTP.

I added a JavaScript file called restDataSource.js to the src folder and used it to define the JavaScript
class shown in Listing 19-15.

Listing 19-15. The Contents of the restDataSource.js File in the src Folder

import Axios from "axios";

const baseUrl = "http://localhost:3500/products/";

export class RestDataSource {

 async getProducts() {
 return (await Axios.get(baseUrl)).data;
 }
}

I have used the JavaScript class feature to define the RestDataSource class, which has an asynchronous
getProducts method that uses Axios to send an HTTP request to the RESTful web service and returns the
data that is received. In Listing 19-16, I have created an instance of the RestDataSource class and configured
it as a service in the main.js file so that it will be available throughout the application.

Listing 19-16. Configuring a Service in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "../node_modules/bootstrap/dist/css/bootstrap.min.css";
import { RestDataSource } from "./restDataSource";

Vue.config.productionTip = false

Chapter 19 ■ Using restfUl Web serviCes

495

new Vue({
 render: h => h(App),
 provide: function () {
 return {
 eventBus: new Vue(),
 restDataSource: new RestDataSource()
 }
 }
}).$mount('#app')

The new service is called restDataSource, and it will be available for use by all the components in the
application.

Consuming the HTTP Service
Now that I have defined a service, I can remove the Axios code from the ProductDisplay code and use the
service instead, as shown in Listing 19-17.

Listing 19-17. Using the HTTP Service in the ProductDisplay.vue File in the src/components Folder

...
<script>

 import Vue from "vue";

 //import Axios from "axios";
 //const baseUrl = "http://localhost:3500/products/";

 export default {
 data: function () {
 return {
 products: []
 }
 },
 methods: {
 createNew() {
 this.eventBus.$emit("create");
 },
 editProduct(product) {
 this.eventBus.$emit("edit", product);
 },
 processProducts(newProducts) {
 this.products.splice(0);
 this.products.push(...newProducts);
 }
 },
 inject: ["eventBus", "restDataSource"],
 async created() {
 this.processProducts(await this.restDataSource.getProducts());
 }
 }
</script>
...

Chapter 19 ■ Using restfUl Web serviCes

496

The inject property declares a dependency on the restDataSource service, which is used in the
created method to get the data from the RESTful web service and populate the data property named
products.

Adding Other HTTP Operations
Now that I have a basic structure in place, I can add the complete set of HTTP operations that the application
requires, expanding the service to use the methods provided by Axios, as shown in Listing 19-18.

Listing 19-18. Adding Operations in restDataSource.js in the src Folder

import Axios from "axios";

const baseUrl = "http://localhost:3500/products/";

export class RestDataSource {

 async getProducts() {
 return (await Axios.get(baseUrl)).data;
 }

 async saveProduct(product) {
 await Axios.post(baseUrl, product);
 }

 async updateProduct(product) {
 await Axios.put(`${baseUrl}${product.id}`, product);
 }

 async deleteProduct(product) {
 await Axios.delete(`${baseUrl}${product.id}`, product);
 }
}

I have added methods for saving new objects, updating existing objects, and deleting objects. All of
these methods use the async/await keywords, which will allow the component that requires the operation
to wait for the outcome. This is important because it means that the component can ensure that the local
representation of the data isn’t updated unless the HTTP operation completes successfully.

 ■ Tip stop and start the json-server package to reset the example data to its original state after you have
deleted or edited items. the contents of the Javascript file created in listing 19-2 will be used to repopulate the
database when the process starts.

In Listing 19-19, I have changed the ProductDisplay component to use the methods defined in
Listing 19-18 and added support for deleting objects.

Chapter 19 ■ Using restfUl Web serviCes

497

Listing 19-19. Adding Data Operations in the ProductDisplay.vue File in the src/components Folder

<template>
 <div>
 <table class="table table-sm table-striped table-bordered">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Category</th>
 <th>Price</th>
 <th></th>
 </tr>
 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td>{{ p.price }}</td>
 <td>
 <button class="btn btn-sm btn-primary"
 v-on:click="editProduct(p)">
 Edit
 </button>
 <button class="btn btn-sm btn-danger"
 v-on:click="deleteProduct(p)">
 Delete
 </button>
 </td>
 </tr>
 <tr v-if="products.length == 0">
 <td colspan="5" class="text-center">No Data</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="createNew">
 Create New
 </button>
 </div>
 </div>
</template>

<script>

 import Vue from "vue";

 export default {
 data: function () {
 return {
 products: []
 }
 },

Chapter 19 ■ Using restfUl Web serviCes

498

 methods: {
 createNew() {
 this.eventBus.$emit("create");
 },
 editProduct(product) {
 this.eventBus.$emit("edit", product);
 },
 async deleteProduct(product) {
 await this.restDataSource.deleteProduct(product);
 let index = this.products.findIndex(p => p.id == product.id);
 this.products.splice(index, 1);
 },
 processProducts(newProducts) {
 this.products.splice(0);
 this.products.push(...newProducts);
 },
 async processComplete(product) {
 let index = this.products.findIndex(p => p.id == product.id);
 if (index == -1) {
 await this.restDataSource.saveProduct(product);
 this.products.push(product);
 } else {
 await this.restDataSource.updateProduct(product);
 Vue.set(this.products, index, product);
 }
 }
 },
 inject: ["eventBus", "restDataSource"],
 async created() {
 this.processProducts(await this.restDataSource.getProducts());
 this.eventBus.$on("complete", this.processComplete);
 }
 }
</script>

It is important to use the await keyword when calling the asynchronous methods defined by the HTTP
service. If the await keyword is omitted, the subsequent statements in the component’s method will be
executed immediately regardless of the outcome of the HTTP request. For operations that ask the RESTful
web service to store or delete objects, that means the data that the application shows to the user will suggest
that the operation has completed immediately and successfully, even if an error occurs. For example, the use
of the await keyword in this method prevents the component from removing the object from the products
array until the HTTP request has completed:

...
async deleteProduct(product) {
 await this.restDataSource.deleteProduct(product);
 let index = this.products.findIndex(p => p.id == product.id);
 this.products.splice(index, 1);
},
...

Chapter 19 ■ Using restfUl Web serviCes

499

When you use the await keyword, any error that occurs during the execution of the asynchronous
operation will cause an exception to be thrown in the component’s method, which will stop the execution of
the statements in the component’s method and, in this case, prevent the user’s data from getting out of sync
with the data on the server.

 ■ Tip When you use the await keyword in a component’s method, you must remember to also apply the
async keyword, as shown in listing 19-19.

The result of these changes is that the application reads its data from the RESTful web service and is
able to create new products and edit and delete existing products, as illustrated in Figure 19-3.

Creating an Error Handling Service
Vue.js can’t detect exceptions that arise during asynchronous HTTP operations, and some additional work
is required to indicate to the user that an error has occurred. My preference is to create a component that
is dedicated to display the errors and have the RestDataSource class provide error notifications by sending
custom events through the event bus. In Listing 19-20, I have added support to the RestDataSource class for
handling exceptions by dispatching a custom event.

Figure 19-3. Performing HTTP operations

Chapter 19 ■ Using restfUl Web serviCes

500

Listing 19-20. Handling Errors in the restDataSource.js File in the src Folder

import Axios from "axios";

const baseUrl = "http://localhost:3500/products/";

export class RestDataSource {

 constructor(bus) {
 this.eventBus = bus;
 }

 async getProducts() {
 return (await this.sendRequest("GET", baseUrl)).data;
 }

 async saveProduct(product) {
 await this.sendRequest("POST", baseUrl, product);
 }

 async updateProduct(product) {
 await this.sendRequest("PUT", `${baseUrl}${product.id}`, product);
 }

 async deleteProduct(product) {
 await this.sendRequest("DELETE", `${baseUrl}${product.id}`, product);
 }

 async sendRequest(httpMethod, url, product) {
 try {
 return await Axios.request({
 method: httpMethod,
 url: url,
 data: product
 });
 } catch (err) {
 if (err.response) {
 this.eventBus.$emit("httpError",
 `${err.response.statusText} - ${err.response.status}`);
 } else {
 this.eventBus.$emit("httpError", "HTTP Error");
 }
 throw err;
 }
 }
}

Regular classes don’t go through the component lifecycle and can’t use the inject property to receive
services. With this in mind, I added a constructor that accepts an event bus, and I rewrote the class so that
all of the methods perform their work by calling the sendRequest method, which uses the Axios request
method. This method allows the details of the request to be specified using a configuration object and allows
me to consolidate the code that performs HTTP requests so that I can handle errors consistently.

Chapter 19 ■ Using restfUl Web serviCes

501

Axios won’t always be able to provide an object that contains the response, such as when the request
times out. For these situations, I provide a general description that indicates that the problem is related to an
HTTP request.

The Axios methods throw an error when an HTTP request returns a status code from the 400 and 500
ranges, which indicate a problem. In Listing 19-20, I use a try/catch block to catch the exception and send
a custom event called httpError. The object that is received in the catch block is a response property that
returns an object representing the response from the server. This object defines the properties described in
Table 19-4, and I have used it to formulate a simple message to accompany the custom event.

 ■ Tip notice that i still throw the event after sending the custom event. this is so that the component that
initiated the http request receives the exception and doesn’t proceed to update the local representation of the
data. Without the throw statement, only recipients of the custom event would know that there was a problem.

The constructor that I added in Listing 19-20 requires an event bus, which I provided in the main.js file,
as shown in Listing 19-21.

Listing 19-21. Configuring a Service in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "../node_modules/bootstrap/dist/css/bootstrap.min.css";
import { RestDataSource } from "./restDataSource";

Vue.config.productionTip = false

new Vue({
 render: h => h(App),
 data: {
 eventBus: new Vue()
 },
 provide: function () {
 return {
 eventBus: this.eventBus,
 restDataSource: new RestDataSource(this.eventBus)
 }
 }
}).$mount('#app')

The properties that define services cannot refer to other services, so I have defined a data property that
creates the event bus, which I then expose directly through its own provide property and as a constructor
argument to the RestDataSource class.

Creating an Error Display Component
I need a component that will receive the custom events and display an error message to the user. I added a
file called ErrorDisplay.vue to the src/components folder and added the content shown in Listing 19-22.

Chapter 19 ■ Using restfUl Web serviCes

502

Listing 19-22. The Contents of the ErrorDisplay.vue File in the src/components Folder

<template>
 <div v-if="error" class="bg-danger text-white text-center p-3 h3">
 An Error Has Occurred
 <h6>{{ message }}</h6>
 OK
 </div>
</template>

<script>

export default {
 data: function () {
 return {
 error: false,
 message: ""
 }
 },
 methods: {
 handleError(err) {
 this.error = true;
 this.message = err;
 }
 },
 inject: ["eventBus"],
 created() {
 this.eventBus.$on("httpError", this.handleError);
 }
}
</script>

This component registers its interest in the custom event in its created method by using the event
bus and responds when the event is received by revealing an element through the v-if directive. To apply
the component to the user, I made the changes shown to the application’s root component, as shown in
Listing 19-23.

Listing 19-23. Applying a Component in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col"><error-display /></div>
 </div>
 <div class="row">
 <div class="col-8 m-3"><product-display/></div>
 <div class="col m-3"><product-editor/></div>
 </div>
 </div>
</template>

Chapter 19 ■ Using restfUl Web serviCes

503

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";
 import ErrorDisplay from "./components/ErrorDisplay";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor, ErrorDisplay }
 }
</script>

An import statement assigns the name ErrorDisplay to the component, which is used to register it with
Vue.js and allows an error-display element to be added to the root component’s template. The result is
that any errors encountered during the HTTP request are displayed to the user, as shown in Figure 19-4.

 ■ Tip if you want to test the error handling, then the easiest ways are to stop the json-server process and
to change the baseUrl value in the RestDataSource class so that it refers to a Url that doesn’t exist, such as
http://localhost:3500/hats/.

RECOVERING FROM HTTP ERRORS

the approach that i have taken in the error handling component is an all-or-nothing approach, where
the user is presented with an OK button that navigates to the root Url, which effectively reloads the
application and gets fresh data. the drawback of this approach is that the user will lose any local state,
which can cause frustration, especially if the user tries to repeat a complex task only to end up in the
same state again.

a better approach is to allow the user to correct the problem and retry the http request, but this is
something that should be attempted only if the cause of the problem is clear and the solution is obvious.
it isn’t always easy to diagnose problems from an http request, even if the server provides extra error
information.

Figure 19-4. Displaying errors

Chapter 19 ■ Using restfUl Web serviCes

504

Summary
In this chapter, I demonstrated how a Vue.js application can access a RESTful web service using the Axios
package. I demonstrated how to perform data operations using HTTP requests, I showed you how to create a
separate class to separate details of the HTTP requests from the rest of the application, and I explained how
to deal with errors when they arise. In the next chapter, I explain how to use the Vuex package to create a
shared data store.

505© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_20

CHAPTER 20

Using a Data Store

In this chapter, I show you how to use the Vuex package to create a data store, which provides an alternative
approach to sharing data in an application and arranging coordination between components. Table 20-1
puts the Vuex data store in context.

Table 20-2 summarizes the chapter.

Table 20-1. Putting the Vuex Data Store in Context

Question Answer

What is it? A data store is a common repository for an application state,
managed by the Vuex package, which is an official part of the
Vue.js project.

Why is it useful? A data store can simplify the management of data by making it
readily available through an application.

How is it used? A data store is created using the Vuex package and registered in
the main.js file such that every component is given access to
the data store through a special $store property.

Are there any pitfalls or limitations? Vuex data stores work in a specific way that is counterintuitive
when you first start using them. Until you get used to the Vuex
approach, it is better to enable strict mode, although you
must remember to disable this feature before deploying your
application.

Are there any alternatives? If you can’t get on with Vuex, then you can use the dependency
injection feature and the event bus pattern, as described in
Chapter 18, to achieve similar results.

Chapter 20 ■ Using a Data store

506

Preparing for This Chapter
In this chapter, I continue using the productapp project from Chapter 19. To start the RESTful web service,
open a command prompt and run the command shown in Listing 20-1 in the productapp folder.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Listing 20-1. Starting the Web Service

npm run json

Open a second command prompt, navigate to the productapp directory, and run the command shown
in Listing 20-2 to download and install the Vuex package.

Listing 20-2. Installing the Vuex Package

npm install vuex@3.0.1

To prepare for this chapter, I removed all the statements from the ProductDisplay component that
manage the product data and use the event bus, leaving only empty methods that are invoked when the user
clicks a button, as shown in Listing 20-3.

Table 20-2. Chapter Summary

Problem Solution Listing

Create a data store Define a new module and use it to register the
Vuex plugin and create a Vuex.Store object

6

Register a data store Import the data store module and add a store
property to the Vue object’s configuration

7

Access a data store in a component Use the $store property 8

Make a change in a data store Invoke a mutation 9

Define a computed property in a data store Use a getter 10–13

Perform an asynchronous task in a data store Use an action 14–16

Observe a data store for changes Use a watcher 17–19

Map data store features into component
computed properties and methods

Use the mapping functions 20

Break a data store into separate files Create additional data store modules 21–24

Separate the features in a module from the
rest of a data store

Use the namespace feature 25, 26

https://github.com/Apress/pro-vue-js-2

Chapter 20 ■ Using a Data store

507

Listing 20-3. Simplifying the Contents of the ProductDisplay.vue File in the src/components Folder

<template>
 <div>
 <table class="table table-sm table-striped table-bordered">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td>{{ p.price }}</td>
 <td>
 <button class="btn btn-sm btn-primary"
 v-on:click="editProduct(p)">
 Edit
 </button>
 <button class="btn btn-sm btn-danger"
 v-on:click="deleteProduct(p)">
 Delete
 </button>
 </td>
 </tr>
 <tr v-if="products.length == 0">
 <td colspan="5" class="text-center">No Data</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="createNew">
 Create New
 </button>
 </div>
 </div>
</template>

<script>
 export default {
 data: function () {
 return {
 products: []
 }
 },
 methods: {
 createNew() { },
 editProduct(product) { },
 deleteProduct(product) { }
 }
 }
</script>

Chapter 20 ■ Using a Data store

508

I also removed the event bus from the ProductEditor component, as shown in Listing 20-4.

Listing 20-4. Simplifying the Contents of the ProductEditor.vue File in the src/components Folder

<template>

 <div>
 <div class="form-group">
 <label>ID</label>
 <input class="form-control" v-model="product.id" />
 </div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" v-model="product.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" v-model="product.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" v-model.number="product.price" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="save">
 {{ editing ? "Save" : "Create" }}
 </button>
 <button class="btn btn-secondary" v-on:click="cancel">Cancel</button>
 </div>
 </div>

</template>
<script>
 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },
 methods: {
 save() { },
 cancel() { }
 }
 }
</script>

Chapter 20 ■ Using a Data store

509

Save the changes and run the command shown in Listing 20-5 in the productapp directory to start the
Vue.js development tools.

Listing 20-5. Starting the Development Tools

npm run serve

Once the initial bundling process is complete, open a new browser window and navigate to
http://localhost:8080, where you will see the example application, as shown in Figure 20-1.

Creating and Using a Data Store
The process for getting started with shared application state involves several steps, but once the basic data
store is in place, the application can be readily scaled up, and the initial investment in time pays off. The
convention is to create the Vuex store in a folder called store. I created the src/store folder and added to it
a file called index.js with the contents shown in Listing 20-6.

Listing 20-6. The Contents of the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";

Vue.use(Vuex);

Figure 20-1. Running the example application

Chapter 20 ■ Using a Data store

510

export default new Vuex.Store({
 state: {
 products: [
 { id: 1, name: "Product #1", category: "Test", price: 100 },
 { id: 2, name: "Product #2", category: "Test", price: 150 },
 { id: 3, name: "Product #3", category: "Test", price: 200 }]
 },
 mutations: {
 saveProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 if (index == -1) {
 currentState.products.push(product);
 } else {
 Vue.set(currentState.products, index, product);
 }
 },
 deleteProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 currentState.products.splice(index, 1);
 }
 }
})

This is a basic Vuex data store. Getting the basic structure of the store is important, so I’ll go through
the code in Listing 20-6 step-by-step. The first two statements import the Vue.js and Vuex functionality from
their modules.

...
import Vue from "vue";
import Vuex from "vuex";
...

The next statement enables the Vuex functionality, like this:

...
Vue.use(Vuex);
...

Vuex is provided as a Vue.js plugin, which allows the core Vue.js features to be extended as I describe
in Chapter 26, and plugins are installed with the Vue.use method. The next statement creates the data store
and makes it the default export from the JavaScript module:

...
export default new Vuex.Store({
...

The new keyword is used to create a new Vuex.Store object, which accepts a configuration object as its
argument.

Chapter 20 ■ Using a Data store

511

Understanding Separate State and Mutations
One of the most challenging aspects of working with data stores is that the data is read-only, and all changes
are made using separate functions called mutations. When creating the data store, the application’s data
is defined using a state property, and the set of changes that can be made to that data is specified using a
mutations property. For the data store defined in Listing 20-6, there is one data item.

...
state: {
 products: [
 { id: 1, name: "Product #1", category: "Test", price: 100 },
 { id: 2, name: "Product #2", category: "Test", price: 150 },
 { id: 3, name: "Product #3", category: "Test", price: 200 }]
},
...

The state property has been used to define a products property, to which I have assigned an array of
objects. The data store in Listing 20-6 also defines two mutations.

...
mutations: {
 saveProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 if (index == -1) {
 currentState.products.push(product);
 } else {
 Vue.set(currentState.products, index, product);
 }
 },
 deleteProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 currentState.products.splice(index, 1);
 }
}
...

Mutations are functions that receive the current state of the data store and an optional payload
argument that provides context to make changes. In this example, the saveProduct mutation is a function
that receives an object and adds it to the products array or replaces an existing object in the array, while the
deleteProduct mutation is a function that receives an object and uses the id value to locate and remove the
corresponding object from the products array.

 ■ Tip notice that i have used Vue.set to replace an item in an array in the saveProduct mutation in
Listing 20-6. Data stores have the same change-detection limitations as the rest of a Vue.js application, as
described in Chapter 13.

Chapter 20 ■ Using a Data store

512

Mutation functions access the current state of the data store using the first function parameter, like this:

...
saveProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 if (index == -1) {
 currentState.products.push(product);
 } else {
 Vue.set(currentState.products, index, product);
 }
},
...

You don’t use the this keyword in mutations, and access to data is available only through the first
parameter. Most developers are used to freely reading and writing data, so it can feel awkward to define
separate functions to make changes. But, as you will learn, there are benefits to this approach that are
especially valuable in large and complex applications.

Providing Access to the Vuex Data Store
Once you have created a data store, the next step is to make it available to the application’s components.
This is done by configuring the Vue object in the main.js file, as shown in Listing 20-7.

Listing 20-7. Configuring the Vuex Data Store in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "../node_modules/bootstrap/dist/css/bootstrap.min.css";
import { RestDataSource } from "./restDataSource";
import store from "./store";

Vue.config.productionTip = false

new Vue({
 render: h => h(App),
 data: {
 eventBus: new Vue()
 },
 store,
 provide: function () {
 return {
 eventBus: this.eventBus,
 restDataSource: new RestDataSource(this.eventBus)
 }
 }
}).$mount('#app')

Chapter 20 ■ Using a Data store

513

The import statement is used to import the module from the store folder (which will load the index.js
file automatically) and assign it the name store, which is then used to define a property on the configuration
object used to create the Vue object. This has the effect of taking the Vuex store object created in the index.js
file and making it available in all components as the special variable $store, as demonstrated in the
following section.

Using the Data Store
The separation of data and its mutations feels awkward when you create the data store, but it fits well with
the structure of components. In Listing 20-8, I have updated the ProductDisplay component so that it reads
its data from the data store and uses the deleteProduct mutation when a Delete button is clicked.

Listing 20-8. Using the Data Store in the ProductDisplay.vue File in the src/components Folder

...
<script>
 export default {
 //data: function () {
 // return {
 // products: []
 // }
 //},
 computed: {
 products() {
 return this.$store.state.products;
 }
 },
 methods: {
 createNew() { },
 editProduct(product) { },
 deleteProduct(product) {
 this.$store.commit("deleteProduct", product);
 }
 }
 }
</script>
...

Accessing the data in the store is done through the $store property that is created by the addition to the
Vue configuration object shown in Listing 20-7. Because data store values are read-only, they are integrated
into the component as computed properties, and in the example, I have replaced the products data property
with a computed property of the same name that returns the value from the data store.

...
products() {
 return this.$store.state.products;
}
...

The $store property returns the data store, and the state property is used to access individual data
properties, such as the products property used in this example.

Chapter 20 ■ Using a Data store

514

USING STRICT MODE TO AVOID DIRECT STATE CHANGES

Vuex doesn’t enforce the separation between state and the operations by default, which means that
components are able to access and modify properties defined in the store’s state section. it is easy
to forget that changes should not be made directly, and doing so means that debugging tools like Vue
Devtools won’t detect the changes that are made.

to help avoid accidental changes, Vuex provides a strict setting that monitors the store’s state
properties and throws an error if a direct change is made. this feature is enabled by adding a strict
property to the configuration object used to create the store, like this:

import Vue from "vue";
import Vuex from "vuex";

Vue.use(Vuex);

export default new Vuex.Store({
 strict: true,
 state: {
 products: [
 { id: 1, name: "Product #1", category: "Test", price: 100 },
 { id: 2, name: "Product #2", category: "Test", price: 150 },
 { id: 3, name: "Product #3", category: "Test", price: 200 }]
 },
 mutations: {
 saveProduct(currentState, product) {
 let index = currentState.products
 .findIndex(p => p.id == product.id);
 if (index == -1) {
 currentState.products.push(product);
 } else {
 Vue.set(currentState.products, index, product);
 }
 },
 deleteProduct(currentState, product) {
 let index = currentState.products
 .findIndex(p => p.id == product.id);
 currentState.products.splice(index, 1);
 }
 }
})

this setting should only be used during development because it relies on expensive operations that may
hinder the performance of an application.

Applying mutations to a data store is done through the $store.commit methods and is similar to
triggering an event. The first argument to the comment method is the name of the mutation that should
be applied, expressed as a string, followed by an optional payload argument to provide context for the

Chapter 20 ■ Using a Data store

515

mutation. In this example, I have set the body of the component’s deleteProduct method, which is triggered
when the user clicks a Delete method, to apply the mutation of the same name:

...
deleteProduct(product) {
 this.$store.commit("deleteProduct", product);
}
...

Once you understand how values are read and modified, you can integrate the data store into the
application. In Listing 20-9, I have updated the ProductEditor component so that it modifies the data store
to create new products.

Listing 20-9. Using the Data Store in the ProductEditor.vue File in the src/components Folder

...
<script>

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },
 methods: {
 save() {
 this.$store.commit("saveProduct", this.product);
 this.product = {};
 },
 cancel() { }
 }
 }
</script>
...

The save method has been updated to apply the data store’s addProduct mutation, which will add a
new product to the products array in the state section of the data store. The result of the changes to the
components is that the user can fill out the form fields and click the Create button to add new products and
click the Delete buttons to remove them, as shown in Figure 20-2.

Chapter 20 ■ Using a Data store

516

ACCESSING THE DATA STORE OUTSIDE OF COMPONENTS

the data store can be accessed using the $store property in any component in the application. if you
want to access the data store in part of the application that isn’t a component, then you can use the
import statement, like this:

...
import dataStore from "../store";
...

this statement is from a later example in Chapter 24, where i use the data store in a code file that
doesn’t contain a component. this statement assigns the data store to the name dataStore, and the
expression that follows the from keyword is the path to the store folder that contains the index.js file.
once you have used the import statement, you can access the data store functionality like this:

...
dataStore.commit("setComponentLoading", true);
...

this is another statement from the same example in Chapter 24, where you can see this feature used in
context.

Inspecting Data Store Changes
The main advantage of using a data store is that it separates the application’s data from the components,
which keeps the components simple, allows them to interact easily, and makes the entire project easier to
understand and test.

Performing changes only through mutations makes it possible to keep track of the changes that are
made to the store’s data. The Vue Devtools browser plugin has integrated support for working with Vuex,
and if you open the browser’s F12 tools and navigate to the Vue tab, you will see a button with a clock icon,
which will show the data in the Vuex store when it is clicked, as shown in Figure 20-3.

Figure 20-2. Using the data store

Chapter 20 ■ Using a Data store

517

You can see the state section contains a products property whose value is an array of three objects.
You can explore each object in the array and see the properties it defines.

Leaving the F12 tools window open, use the main browser window to create three new items by
entering the details shown in Table 20-3. Click the Create button after entering each set of details so that a
new item is displayed in the table of products shown by the ProductDisplay component.

Once you have created all three products, click the Delete button for the Gloves product, which will
remove it from the list.

As you make each change, the Vuex section of the Vue Devtools tab will show the effect of each
mutation that was applied to the data, along with a snapshot of the store’s data and details of the payload
argument that was provided for each change, as shown in Figure 20-4.

Figure 20-3. Examining the data store

Table 20-3. The Products for Testing the Vuex Store

ID Name Category Price

100 Running Shoes Running 100

101 Snowboard Winter Sports 500

102 Gloves Winter Sports 35

Chapter 20 ■ Using a Data store

518

Each change can be undone to unwind the state of the data store and return it to an earlier stage, and
the entire state can be exported and then reimported again later. Being able to see every change that is made
to the store and what effect those changes had is a powerful tool that makes simplifies debugging complex
problems, although it does require a degree of discipline to ensure that changes are applied only through
mutations because changes made directly to state properties are not detected (see the “Using Strict Mode
to Avoid Direct State Changes” sidebar about the Vuex strict mode if you find it difficult to remember to use
mutations).

Defining Computed Properties in the Data Store
When you move an application’s data into a store, you will often find that several components have to
perform the same operation on a state value to get the data they require. Rather than duplicate the same
code in every component, you can use the Vuex getters feature, which is the equivalent of a computed
property in a component. In Listing 20-10, I have added two getters to the data store that transform the
product data.

Listing 20-10. Adding Getters in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";

Vue.use(Vuex);

export default new Vuex.Store({
 state: {
 products: [

Figure 20-4. The evolving state of the data store

Chapter 20 ■ Using a Data store

519

 { id: 1, name: "Product #1", category: "Test", price: 100 },
 { id: 2, name: "Product #2", category: "Test", price: 150 },
 { id: 3, name: "Product #3", category: "Test", price: 200 }]
 },
 mutations: {
 saveProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 if (index == -1) {
 currentState.products.push(product);
 } else {
 Vue.set(currentState.products, index, product);
 }
 },
 deleteProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 currentState.products.splice(index, 1);
 }
 },
 getters: {
 orderedProducts(state) {
 return state.products.concat().sort((p1, p2) => p2.price - p1.price);
 },
 filteredProducts(state, getters) {
 return getters.orderedProducts.filter(p => p.price > 100);
 }
 }
})

Getters are defined by adding a getters property to the store’s configuration object. Each getter is a
function that receives an object that provides access to the data store’s state properties and whose result is
the computed value. The first getter I defined sorts the product data by accessing the products array through
the state parameter.

...
orderedProducts(state) {
 return state.products.concat().sort((p1, p2) => p2.price - p1.price);
},
...

One getter can build on the result of another getter by defining a second parameter, which allows the
getter’s function to receive an object that provides access to the other getters in the store. The second getter
that I defined gets the sorted products produced by the orderedProducts getter and then filters them to
select only those whose price property is greater than 100.

...
filteredProducts(state, getters) {
 return getters.orderedProducts.filter(p => p.price > 100);
}
...

Chapter 20 ■ Using a Data store

520

Being able to compose getters to create more complex results is a useful feature that helps reduce code
duplication.

 ■ Caution getters should not make changes to the data in the store. it is for this reason that i have used the
concat method in the orderedProducts getter because the sort method sorts the objects in an array in place.
the concat method generates a new array and ensures that reading the value of the getter doesn’t cause a
change in the store’s state data.

Using a Getter in a Component
Reading a getter is done through the this.$store.getters property and uses the name of the getter to
read so that a getter called myGetter is read using this.$store.getters.myGetter. In Listing 20-11, I have
changed the computed property defined by the ProductDisplay component so that it obtains its data from
the filteredProducts getter.

Listing 20-11. Using a Getter in the ProductDisplay.vue File in the src/components Folder

...
<script>
 export default {
 computed: {
 products() {
 return this.$store.getters.filteredProducts;
 }
 },
 methods: {
 createNew() { },
 editProduct(product) { },
 deleteProduct(product) {
 this.$store.commit("deleteProduct", product);
 }
 }
 }
</script>
...

The v-for binding in the component’s template reads the value of the products computed property,
which gets its value from the getter in the data store. The result is a filtered and ordered set of products
displayed to the user, as shown in Figure 20-5.

Chapter 20 ■ Using a Data store

521

Providing Arguments to Getters
Getters can also receive additional arguments that are provided by the component and that can be used to
influence the value that it generated. In Listing 20-12, I have changed the filteredProducts getter so that
the amount used to filter product objects can be specified as an argument.

Listing 20-12. Using a Getter Argument in the index.js File in the src/store Folder

...
getters: {
 orderedProducts(state) {
 return state.products.concat().sort((p1, p2) => p2.price - p1.price);
 },
 filteredProducts(state, getters) {
 return (amount) => getters.orderedProducts.filter(p => p.price > amount);
 }
}
...

The syntax is awkward, but to receive an argument a getter must return a function, which will be
invoked when the getter is read and provided with the argument by the component. In this example, the
result of the getter is a function that receives an amount argument to be applied when the product objects are
filtered. In Listing 20-13, I have updated the computed property defined by the ProductDisplay component
to pass a value to the getter.

Listing 20-13. Using a Getter Argument in the ProductDisplay.vue File in the src/components Folder

...
<script>
 export default {
 computed: {
 products() {
 return this.$store.getters.filteredProducts(175);
 }
 },

Figure 20-5. Using a data store getter

Chapter 20 ■ Using a Data store

522

 methods: {
 createNew() { },
 editProduct(product) { },
 deleteProduct(product) {
 this.$store.commit("deleteProduct", product);
 }
 }
 }
</script>
...

The result is that only one of the example product objects is displayed because its price is the only one
that exceeds the value specified by the component, as shown in Figure 20-6.

Performing Asynchronous Operations
Mutations perform synchronous operations, which means they are perfect for dealing with local data but
are not suitable for working with a RESTful web service. For asynchronous tasks, Vuex provides a feature
called actions, which allow tasks to be performed and changes fed back into the data store through
mutations. In Listing 20-14, I have added actions to the data store that consume the RESTful web service.

Listing 20-14. Adding Actions in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500/products/";

export default new Vuex.Store({
 state: {
 products: []
 },

Figure 20-6. Using a getter argument

Chapter 20 ■ Using a Data store

523

 mutations: {
 saveProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 if (index == -1) {
 currentState.products.push(product);
 } else {
 Vue.set(currentState.products, index, product);
 }
 },
 deleteProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 currentState.products.splice(index, 1);
 }
 },
 getters: {
 orderedProducts(state) {
 return state.products.concat().sort((p1, p2) => p2.price - p1.price);
 },
 filteredProducts(state, getters) {
 return (amount) => getters.orderedProducts.filter(p => p.price > amount);
 }
 },
 actions: {
 async getProductsAction(context) {
 (await Axios.get(baseUrl)).data
 .forEach(p => context.commit("saveProduct", p));
 },
 async saveProductAction(context, product) {
 let index = context.state.products.findIndex(p => p.id == product.id);
 if (index == -1) {
 await Axios.post(baseUrl, product);
 } else {
 await Axios.put(`${baseUrl}${product.id}`, product);
 }
 context.commit("saveProduct", product);
 },
 async deleteProductAction(context, product) {
 await Axios.delete(`${baseUrl}${product.id}`);
 context.commit("deleteProduct", product);
 }
 }
})

Actions are defined by adding an actions property to the store’s configuration object, and each action is
a function that receives a context object that provides access to the state, getters, and mutations. Actions are
not permitted to modify the state data directly and must work through mutations, using the commit method.
In the listing, I have removed the dummy data from the products array and defined three actions that use
Axios to communicate with the RESTful web service and update the data store using its mutations.

Chapter 20 ■ Using a Data store

524

 ■ Tip You don’t have to include the term Action in the names you give your actions. i like to make sure my
actions and mutations are clearly differentiated, but that’s just personal preference and isn’t a requirement.

In Listing 20-15, I have updated the ProductDisplay component so that it uses the store’s actions to get
the initial data from the web service when the user clicks a Delete button.

Listing 20-15. Using Actions in the ProductDisplay.vue File in the src/components Folder

...
<script>
 export default {
 computed: {
 products() {
 return this.$store.state.products;
 }
 },
 methods: {
 createNew() { },
 editProduct(product) { },
 deleteProduct(product) {
 this.$store.dispatch("deleteProductAction", product);
 }
 },
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>
...

Actions are invoked using the dispatch method, which accepts the name of the argument to use and
an optional argument that will be passed on to the action, similar to the way that mutations are used. There
is no direct support for populating a Vuex store when it is created, so I have used the component’s created
method, described in Chapter 17, to invoke the getProductsAction action and get the initial data from the
web service. (I have also changed the data used for the products computed property so that it is read from
the state data rather than the getters, ensuring that all of the data received from the server is displayed.)

In Listing 20-16, I have updated the ProductEditor component so that it uses actions to store or update
data in the web service.

Listing 20-16. Using Action in the ProductEditor.vue File in the src/components Folder

...
<script>

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },

Chapter 20 ■ Using a Data store

525

 methods: {
 save() {
 this.$store.dispatch("saveProductAction", this.product);
 this.product = {};
 },
 cancel() { }
 }
 }
</script>
...

The result is that the data is obtained from the web service, as shown in Figure 20-7, and creating or
deleting objects results in a corresponding change at the server.

Receiving Change Notifications
The Vuex data store can be used for all of an application’s state and not just the data that is displayed to the
user. In the example application, the user selects a product for editing by clicking a button provided by the
ProductDisplay component, but the ProductEditor component provides the editing features. To enable
this type of coordination between components, Vuex provides watchers that trigger notifications when a
data value changes, equivalent to the watchers provided by Vue.js components (described in Chapter 17).
In Listing 20-17, I have added a state property to the data store that indicates which product the user has
chosen, along with a mutation that sets its value.

Figure 20-7. Using data store actions

Chapter 20 ■ Using a Data store

526

Listing 20-17. Adding a State Property and Mutation in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500/products/";

export default new Vuex.Store({
 state: {
 products: [],
 selectedProduct: null
 },
 mutations: {
 saveProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 if (index == -1) {
 currentState.products.push(product);
 } else {
 Vue.set(currentState.products, index, product);
 }
 },
 deleteProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 currentState.products.splice(index, 1);
 },
 selectProduct(currentState, product) {
 currentState.selectedProduct = product;
 }
 },
 getters: {
 // ...getters omitted for brevity...
 },
 actions: {
 // ...actions omitted for brevity...
 }
})

In Listing 20-18, I have updated the ProductDisplay component so that it invokes the selectProduct
mutation when the user clicks the Create New button or one of the Edit buttons.

Listing 20-18. Using a Mutation in the ProductDisplay.vue File in the src/components Folder

...
<script>
 export default {
 computed: {
 products() {
 return this.$store.state.products;
 }
 },

Chapter 20 ■ Using a Data store

527

 methods: {
 createNew() {
 this.$store.commit("selectProduct");
 },
 editProduct(product) {
 this.$store.commit("selectProduct", product);
 },
 deleteProduct(product) {
 this.$store.dispatch("deleteProductAction", product);
 }
 },
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>
...

When the user clicks the Create New button, the component’s createNew method is invoked, which
triggers the selectProduct mutation without an argument, setting the selectedProduct state property to
null, which signals that the user has not selected an existing product to be edited. When the user clicks one
of the Edit buttons, the editProduct method is invoked, which triggers the same mutation but provides a
product object, signaling that this is the object the user wants to edit.

To respond to the signals that the ProductDisplay component is sending through the data store,
I added a Vuex watcher to the ProductEditor component, as shown in Listing 20-19.

Listing 20-19. Watching a Data Store Value in the ProductEditor.vue File in the src/components Folder

...
<script>

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },
 methods: {
 save() {
 this.$store.dispatch("saveProductAction", this.product);
 this.product = {};
 },
 cancel() {
 this.$store.commit("selectProduct");
 }
 },

Chapter 20 ■ Using a Data store

528

 created() {
 this.$store.watch(state => state.selectedProduct,
 (newValue, oldValue) => {
 if (newValue == null) {
 this.editing = false;
 this.product = {};
 } else {
 this.editing = true;
 this.product = {};
 Object.assign(this.product, newValue);
 }
 });
 }
 }
</script>
...

I used the component’s created lifecycle method, described in Chapter 17, to create the watcher; this
is done using the watch method, which is accessed as this.$store.watch. The watch method accepts two
functions: the first function is used to select the data value to watch, and the second function is invoked
when there is a change to the selected data, using the same function style used by component watches.

 ■ Tip the result of the watch method is a function that can be invoked to stop receiving notifications. You can
see an example of this function in use in Chapter 21.

The effect is that the component reacts to the signals that are sent through the data store by changing
its local state and copying the values from the selected product if there is one. You can test the changes by
clicking the Create New or Edit buttons and checking that the form fields respond, as shown in Figure 20-8.

Chapter 20 ■ Using a Data store

529

UNDERSTANDING INDIRECTION AND LOCAL COMPONENT STATE

there is an oddity in the code in Listing 20-19 that is worth attention: i use Object.assign to copy the
values from the object in the data store to the local product property, like this:

...
} else {
 this.editing = true;
 this.product = {};
 Object.assign(this.product, newValue);
}
...

You may wonder why i didn’t simply work directly with the state property in the data store. the first
reason is using the v-bind directive to create two-way bindings on Vuex data values is awkward. it
can be done, but it requires using separate data and event bindings or creating computed properties
that have both setters and getters. the result isn’t ideal, and my preference is to use local state in the
component, as in this example.

Figure 20-8. Using a data store watcher

Chapter 20 ■ Using a Data store

530

the second reason is that working directly with the object in the data store can cause confusion for
the user. since this object in the data store is the same object that is displayed by the v-for directive
used by the ProductDisplay component, any changes made in the input elements are reflected
immediately in the table. if the user cancels the operation without clicking the save button, the changes
won’t be sent to the web service but will be displayed by the application, leading the user to believe that
the changes have been saved when they have not.

When you first start working with Vuex, the temptation is to do everything in the application using data
in the store, but that isn’t always the best approach, and some application features are best handled by
combining the data store with local state data.

Mapping Data Store Features into Components
Using data store features in components can lead to a lot of similar code, with several computed properties
that access state variables and methods that trigger mutations and actions. Vuex provides a set of functions
that generate functions that provide access to data store features automatically and that can be used to
simplify components. Table 20-4 describes the mapping functions.

These functions add features from the data store alongside a component’s local properties and
methods. In Listing 20-20, I have used the functions from Table 20-4 to provide access to the data store in the
ProductDisplay component.

Listing 20-20. Generating Members in the ProductDisplay.vue File in the src/components Folder

<template>
 <div>
 <table class="table table-sm table-striped table-bordered">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td>{{ p.price }}</td>
 <td>

Table 20-4. The Vuex Feature Mapping Functions

Name Description

mapState This function generates computed properties that provide access to the data store’s
state values.

mapGetters This function generates computed properties that provide access to the data store’s
getters.

mapMutations This function generates methods that provide access to the data store’s mutations.

mapActions This function generates methods that provide access to the data store’s actions.

Chapter 20 ■ Using a Data store

531

 <button class="btn btn-sm btn-primary"
 v-on:click="editProduct(p)">
 Edit
 </button>
 <button class="btn btn-sm btn-danger"
 v-on:click="deleteProduct(p)">
 Delete
 </button>
 </td>
 </tr>
 <tr v-if="products.length == 0">
 <td colspan="5" class="text-center">No Data</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="createNew()">
 Create New
 </button>
 </div>
 </div>
</template>

<script>

 import { mapState, mapMutations, mapActions } from "vuex";

 export default {
 computed: {
 ...mapState(["products"])
 },
 methods: {
 ...mapMutations({
 editProduct: "selectProduct",
 createNew: "selectProduct",
 }),
 ...mapActions({
 getProducts: "getProductsAction",
 deleteProduct: "deleteProductAction"
 })
 },
 created() {
 this.getProducts();
 }
 }
</script>

The functions described in Table 20-4 are imported from the vuex module and are applied with the
JavaScript spread operator (the ... expression) to create properties and methods that map onto the data
store.

Chapter 20 ■ Using a Data store

532

There are two ways to create data store mappings. The first way is to pass a string array to the mapping
function, which tells Vuex to create properties or methods with the name that matches the one used in the
data store, like this:

...
computed: {
 ...mapState(["products"])
},
...

This tells Vuex to create a computed property called products that returns the value of the products
data store state property. If you don’t want to use the names from the data store, then you can pass a
map object to the functions in Table 20-4, which provides Vuex with names that should be used in the
component, like this:

...

...mapActions({
 getProducts: "getProductsAction",
 deleteProduct: "deleteProductAction"
})
...

This example tells Vuex to create methods called getProducts and deleteProduct that invoke the data
store actions called getProductsAction and deleteProductAction.

INVOKING MAPPED METHODS WITHOUT ARGUMENTS

the methods generated by the mapping functions for mutations and actions will accept arguments,
which are then passed on to the data store. Care is required if you want to invoke one of these methods
directly from an event binder without an argument. in Listing 20-20, i had to make a change to the
event binding for the Create new button.

...
<button class="btn btn-primary" v-on:click="createNew()">
...

previously, the expression for the v-on directive specified only the method name. this has the effect of
invoking the mapped method created by Vuex with the event object provided by the directive, which is
passed on to the mapped mutation. the example application depends on the mutation being invoked
without an argument, so i added empty parentheses to the v-on directive’s expression to prevent an
argument from being provided.

Chapter 20 ■ Using a Data store

533

Using Data Store Modules
As the complexity of an application increases, so does the amount of data and code in the store. Vuex
provides support for modules, which allows a data store to be broken up into self-contained sections that are
easier to write, understand, and manage.

Each module is defined in a separate file. To demonstrate, I added a file called preferences.js to the
src/store folder with the content shown in Listing 20-21.

Listing 20-21. The Contents of the preferences.js File in the src/store Folder

export default {
 state: {
 stripedTable: true,
 primaryEditButton: false,
 dangerDeleteButton: false
 },
 getters: {
 editClass(state) {
 return state.primaryEditButton ? "btn-primary" : "btn-secondary";
 },
 deleteClass(state) {
 return state.dangerDeleteButton ? "btn-danger" : "btn-secondary";
 },
 tableClass(state, payload, rootState) {
 return rootState.products.length > 0
 && rootState.products[0].price > 500 ? "table-striped" : ""
 }
 },
 mutations: {
 setEditButtonColor(currentState, primary) {
 currentState.primaryEditButton = primary;
 },
 setDeleteButtonColor(currentState, danger) {
 currentState.dangerDeleteButton = danger;
 }
 }
}

When you define a module, you define a JavaScript object that has the same state, getters, mutations,
and actions properties that you have seen in earlier sections of this chapter. The difference is that the context
objects that are passed to the functions defined in the module provide access only to the state data and other
features in the local module. If you want to access data store features in the main module, then you can
define an additional argument, like this:

...
tableClass(state, payload, rootState) {
 return rootState.products.length > 0
 && rootState.products[0].price > 500 ? "table-striped" : ""
}
...

Chapter 20 ■ Using a Data store

534

This getter defines a rootState parameter that is used to access the products property, allowing the
result from the getter to be determined based on the price value of the first product in the array.

 ■ Tip When accessing the root data store module, you must define the payload argument even if you are not
going to use it, as shown in Listing 20-21.

Registering and Using a Data Store Module
To incorporate a module in the data store, you must use the import statement and configure the data store
using the modules property, as shown in Listing 20-22.

Listing 20-22. Registering a Module in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";

import PrefsModule from "./preferences";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500/products/";

export default new Vuex.Store({
 modules: {
 prefs: PrefsModule
 },
 state: {
 products: [],
 selectedProduct: null
 },

 // ...other data store features omitted for brevity...
})

Vuex combines the state, getters, mutations, and actions defined in the module with those defined
directly in the index.js file, which means that components don’t have to worry about where different parts
of the data store have been defined. In Listing 20-23, I have updated the ProductDisplay component so that
it uses the data and mutations defined in the module.

Listing 20-23. Using Module Features in the ProductDisplay.vue File in the src/components Folder

<template>
 <div>
 <table class="table table-sm table-bordered" v-bind:class="tableClass">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>

Chapter 20 ■ Using a Data store

535

 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td>{{ p.price }}</td>
 <td>
 <button class="btn btn-sm"
 v-bind:class="editClass"
 v-on:click="editProduct(p)">
 Edit
 </button>
 <button class="btn btn-sm"
 v-bind:class="deleteClass"
 v-on:click="deleteProduct(p)">
 Delete
 </button>
 </td>
 </tr>
 <tr v-if="products.length == 0">
 <td colspan="5" class="text-center">No Data</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="createNew()">
 Create New
 </button>
 </div>
 </div>
</template>

<script>

 import { mapState, mapMutations, mapActions, mapGetters } from "vuex";

 export default {
 computed: {
 ...mapState(["products"]),
 ...mapGetters(["tableClass", "editClass", "deleteClass"])
 },
 methods: {
 ...mapMutations({
 editProduct: "selectProduct",
 createNew: "selectProduct",
 }),
 ...mapMutations(["setEditButtonColor", "setDeleteButtonColor"]),
 ...mapActions({
 getProducts: "getProductsAction",
 deleteProduct: "deleteProductAction"
 })
 },

Chapter 20 ■ Using a Data store

536

 created() {
 this.getProducts();
 this.setEditButtonColor(false);
 this.setDeleteButtonColor(false);
 }
 }
</script>

I have used the mapping functions to map the getters and mutations provided by the data store module
and tied their values into the component’s template using the v-bind directive. I invoke the mutations in the
component’s created method, and you can see the effect of the getter that accesses the root data store state
by changing the price property of the first product in the table to more than 500, as shown in Figure 20-9.
When the value is less than 500, the table rows are not striped; when the value is greater than 500, the rows
are displayed in alternating colors.

Accessing Module State
A different approach is required if you want to access the state properties defined in a module. Although the
getters, mutations, and actions are seamlessly merged with the rest of the data store, the state data is kept
separate and must be accessed using the name assigned to the module when it is imported, as shown in
Listing 20-24.

Listing 20-24. Accessing Module State Data in the ProductDisplay.vue File in the src Folder

<template>
 <div>
 <table class="table table-sm table-bordered"
 v-bind:class="'table-striped' == useStripedTable">

Figure 20-9. Using features provided by a data store module

Chapter 20 ■ Using a Data store

537

 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td>{{ p.price }}</td>
 <td>
 <button class="btn btn-sm"
 v-bind:class="editClass"
 v-on:click="editProduct(p)">
 Edit
 </button>
 <button class="btn btn-sm"
 v-bind:class="deleteClass"
 v-on:click="deleteProduct(p)">
 Delete
 </button>
 </td>
 </tr>
 <tr v-if="products.length == 0">
 <td colspan="5" class="text-center">No Data</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="createNew()">
 Create New
 </button>
 </div>
 </div>
</template>

<script>

 import { mapState, mapMutations, mapActions, mapGetters } from "vuex";

 export default {
 computed: {
 ...mapState(["products"]),
 ...mapState({
 useStripedTable: state => state.prefs.stripedTable
 }),
 ...mapGetters(["tableClass", "editClass", "deleteClass"])
 },
 methods: {
 ...mapMutations({
 editProduct: "selectProduct",
 createNew: "selectProduct",
 }),

Chapter 20 ■ Using a Data store

538

 ...mapMutations(["setEditButtonColor", "setDeleteButtonColor"]),
 ...mapActions({
 getProducts: "getProductsAction",
 deleteProduct: "deleteProductAction"
 })
 },
 created() {
 this.getProducts();
 this.setEditButtonColor(false);
 this.setDeleteButtonColor(false);
 }
 }
</script>

The mapState method is passed an object whose properties are the names that will be used as the local
properties and whose values are functions that receive a state object and select the data store value that is
required. In the example, I have used this feature to create a computed property called useStripedTable that
is mapped to the stripedTable state property defined in the prefs module.

Using Module Namespaces
The default behavior for modules is to merge the getters, mutations, and actions they offer into the data store
so that components are unaware of the store structure but keep the state data separate so that it must be
accessed using a prefix. If you enable the namespace feature, as shown in Listing 20-25, then all the features
must be accessed using a prefix.

Listing 20-25. Enabling the Namespace Feature in the preferences.js File in the src/store Folder

export default {
 namespaced: true,
 state: {
 stripedTable: true,
 primaryEditButton: true,
 dangerDeleteButton: false
 },
 getters: {
 editClass(state) {
 return state.primaryEditButton ? "btn-primary" : "btn-secondary";
 },
 deleteClass(state) {
 return state.dangerDeleteButton ? "btn-danger" : "btn-secondary";
 },
 tableClass(state, payload, rootState) {
 return rootState.products.length > 0
 && rootState.products[0].price > 500 ? "table-striped" : ""
 }
 },
 mutations: {
 setEditButtonColor(currentState, primary) {
 currentState.primaryEditButton = primary;
 },

Chapter 20 ■ Using a Data store

539

 setDeleteButtonColor(currentState, danger) {
 currentState.dangerDeleteButton = danger;
 }
 }
}

When you map the features defined by the module into a component, the name of the feature you
want must be prefixed with the name that was used to register the module with the data store, as shown in
Listing 20-26.

Listing 20-26. Using a Module Namespace in the ProductDisplay.vue File in the src/components Folder

...
<script>
 import { mapState, mapMutations, mapActions, mapGetters } from "vuex";

 export default {
 computed: {
 ...mapState(["products"]),
 ...mapState({
 striped: state => state.prefs.stripedTable
 }),
 ...mapGetters({
 tableClass: "prefs/tableClass",
 editClass: "prefs/editClass",
 deleteClass: "prefs/deleteClass"
 })
 },
 methods: {
 ...mapMutations({
 editProduct: "selectProduct",
 createNew: "selectProduct",
 setEditButtonColor: "prefs/setEditButtonColor",
 setDeleteButtonColor: "prefs/setDeleteButtonColor"
 }),
 ...mapActions({
 getProducts: "getProductsAction",
 deleteProduct: "deleteProductAction"
 })
 },
 created() {
 this.getProducts();
 this.setEditButtonColor(false);
 this.setDeleteButtonColor(false);
 }
 }
</script>
...

Chapter 20 ■ Using a Data store

540

To select getters, mutations, and actions, the namespace is used, followed by a forward slash
(the / character) followed by the function name, like this:

...

...mapGetters({
 tableClass: "prefs/tableClass",
 editClass: "prefs/editClass",
 deleteClass: "prefs/deleteClass"
})
...

This fragment maps the tableClass, editClass, and deleteClass getters in the prefs namespace.

Summary
In this chapter, I showed you how to use Vuex to create a data store for a Vue.js application. I showed you
how to modify state data using mutations, how to synthesize values using getters, and how to perform
asynchronous tasks using actions. I also demonstrated the Vuex functions for mapping data store features
into components and how you can structure the data store using modules and namespaces. In the next
chapter, I describe the Vue.js dynamic components feature.

541© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_21

CHAPTER 21

Dynamic Components

Simple applications can present all their content to the user at once, but more complex projects will need to
be more selective and display different components to the user at different times. In this chapter, I explain
the built-in Vue.js features that allow components to be displayed dynamically based on user interaction and
to load components only when they are required, which can help reduce the amount of data users consume.
Table 21-1 puts dynamic components in context.

 ■ Tip The features described in this chapter are often used with URL routing, which I describe in Chapter 22.

Table 21-1. Putting Dynamic Components in Context

Question Answer

What are they? Dynamic components are displayed to the user only when they are
required.

Why are they useful? Complex applications have too many features to present to the user
at once. Being able to change the components that are shown to
the user allows an application to present complex content without
overwhelming the user.

How are they used? The Vue.js is directive can be used to select components
dynamically.

Are there any pitfalls or limitations? Care must be taken to ensure that dynamic components do not
make assumptions about their lifecycle, which can be an issue when
introducing dynamic components to an existing project. See the
“Preparing Components for Dynamic Lifecycles” section for details.

Are there any alternatives? Applications do not have to display their components dynamically.
Simple applications can display all of their content at once, as
demonstrated by the example applications in earlier chapters.

ChapTeR 21 ■ DynamIC ComponenTs

542

Table 21-2 summarizes the chapter.

Preparing for This Chapter
I continue using the productapp example in this chapter from Chapter 21. To start the RESTful web service,
open a command prompt and run the command shown in Listing 21-1 in the productapp folder.

Listing 21-1. Starting the Web Service

npm run json

Open a second command prompt, navigate to the productapp directory, and run the command shown
in Listing 21-2 to start the Vue.js development tools.

Listing 21-2. Starting the Development Tools

npm run serve

Once the initial bundling process is complete, open a new browser window and navigate
to http://localhost:8080, where you will see the example application, as shown in Figure 21-1.

 ■ Tip you can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

Table 21-2. Chapter Summary

Problem Solution Listing

Select a component dynamically Use the is attribute and the v-bind directive 6–12

Load a component only when it is required Define an asynchronous component 13–14

Disable prefetch hints Change the application configuration 15

Fine-tune asynchronous components Use the lazy loading configuration options 16, 17

https://github.com/Apress/pro-vue-js-2

ChapTeR 21 ■ DynamIC ComponenTs

543

Preparing Components for Dynamic Lifecycles
The ProductDisplay and ProductEditor components were written with the assumption that they will
be created when the application is initialized and exist until the application is terminated. That can be a
problem when components are displayed dynamically because Vue.js won’t create components until they
are needed and will destroy them once they are not visible to the user. The result is that watchers and event
handlers may miss important notifications and expensive tasks, such as getting data from a web service, will
be repeated each time a component is created even though the application has already received the data it
requires.

Getting the Application Data
In Listing 21-3, I have removed the statement in the ProductDisplay component’s created method that
gets the initial data from the web service. As I start to display components to the user dynamically, Vue.js
will create a new instance of this component each time the user wants to see the table of products, and the
instance that is created will have its own lifecycle that includes invoking its created method.

Figure 21-1. Running the example application

ChapTeR 21 ■ DynamIC ComponenTs

544

Listing 21-3. Avoiding Duplicate Requests in the ProductDisplay.vue File in the src/components Folder

...
<script>

 import { mapState, mapMutations, mapActions, mapGetters } from "vuex";

 export default {
 computed: {
 ...mapState(["products"]),
 ...mapState({
 useStripedTable: state => state.prefs.stripedTable
 }),
 ...mapGetters({
 tableClass: "prefs/tableClass",
 editClass: "prefs/editClass",
 deleteClass: "prefs/deleteClass"
 })
 },
 methods: {
 ...mapMutations({
 editProduct: "selectProduct",
 createNew: "selectProduct",
 setEditButtonColor: "prefs/setEditButtonColor",
 setDeleteButtonColor: "prefs/setDeleteButtonColor"
 }),
 ...mapActions({
 //getProducts: "getProductsAction",
 deleteProduct: "deleteProductAction"
 })
 },
 created() {
 //this.getProducts();
 this.setEditButtonColor(false);
 this.setDeleteButtonColor(false);
 }
 }
</script>
...

Tasks that should be performed only once must be handled by components that are not going to be
displayed dynamically. In most Vue.js projects, the top-level component is used to coordinate the visibility
of the application’s other components and will always be visible to the user. In Listing 21-4, I have made the
App component responsible for getting the initial data from the web service.

Listing 21-4. Getting Data in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col"><error-display /></div>
 </div>

ChapTeR 21 ■ DynamIC ComponenTs

545

 <div class="row">
 <div class="col-8 m-3"><product-display /></div>
 <div class="col m-3"><product-editor /></div>
 </div>
 </div>
</template>

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";
 import ErrorDisplay from "./components/ErrorDisplay";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor, ErrorDisplay },
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

I have used the Vuex dispatch method to invoke the action called getProductsAction, which I defined
in Chapter 20. Since I will not be displaying the App component dynamically, I can rely on this task being
performed only once.

Managing Watch Events
The ProductEditor component uses a data store watcher to determine when the user clicks a Create New
or Edit button. When components are created dynamically, it can be difficult to ensure that changes to
the application’s state are handled before Vue.js creates the components it requires, with the result that a
component can miss the events that configure it for use. In Listing 21-5, I have changed the ProductEditor
component to use existing data store values in its created method.

Listing 21-5. Preparing for Dynamic Display in the ProductEditor.vue File in the src/components Folder

...
<script>

 let unwatcher;

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },
 methods: {
 save() {
 this.$store.dispatch("saveProductAction", this.product);
 this.product = {};
 },

ChapTeR 21 ■ DynamIC ComponenTs

546

 cancel() {
 this.$store.commit("selectProduct");
 },
 selectProduct(selectedProduct) {
 if (selectedProduct == null) {
 this.editing = false;
 this.product = {};
 } else {
 this.editing = true;
 this.product = {};
 Object.assign(this.product, selectedProduct);
 }
 }
 },
 created() {
 unwatcher = this.$store.watch(state =>
 state.selectedProduct, this.selectProduct);
 this.selectProduct(this.$store.state.selectedProduct);
 },
 beforeDestroy() {
 unwatcher();
 }
 }
</script>
...

The created method processes the current data values in the data store and uses the watch method to
create a watcher to observe future changes. The result of the watch method is a function that can be used to
stop receiving notifications, and I have used this function in the beforeDestroy lifecycle method to ensure
that the watcher doesn’t linger around when Vue.js has destroyed the component.

Displaying Components Dynamically
Now that the components have been updated so they can be created and destroyed without causing any
problems, I can change the way the application presents its content. In this section, I demonstrate how
to work directly with the Vue.js support for dynamically selecting components, which will provide the
foundation for explaining how to use the popular Vue-Router package.

Presenting Different Components in an HTML Element
Vue.js supports a special attribute on HTML elements to specify the component whose content will be used
to replace that element when the application is running. The special attribute is called is, and it can be used
on any element, although the convention is to use the component element, as shown in Listing 21-6.

 ■ Tip you will see a linter warning when you save the changes in Listing 21-6. This will be resolved in the
next section.

ChapTeR 21 ■ DynamIC ComponenTs

547

Listing 21-6. Using the is Attribute in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col"><error-display /></div>
 </div>
 <div class="row">
 <div class="col">
 <component is="ProductDisplay"></component>
 </div>
 </div>
 </div>
</template>

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";
 import ErrorDisplay from "./components/ErrorDisplay";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor, ErrorDisplay },
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

At runtime, Vue.js will encounter the is attribute on the component element and evaluate the
attribute’s value to determine which component should be displayed. In the listing, the is attribute is set to
ProductDisplay, which is the name assigned by an import statement in the script element and which has
been used with the components configuration property, with the result that the user is presented with the
table of products, as shown in Figure 21-2.

ChapTeR 21 ■ DynamIC ComponenTs

548

Selecting Components Using a Data Binding
The is attribute becomes interesting when it is used with a data binding, which allows the components
presented to the user to be changed while the application is running. In Listing 21-7, I have added a data
binding to the App component’s template that sets the value of the is attribute based on the user’s selection.

Listing 21-7. Using a Data Binding in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">
 <div class="btn-group btn-group-toggle">
 <label class="btn btn-info"
 v-bind:class="{active: (selected == 'table') }">
 <input type="radio" v-model="selected" value="table" />
 Table
 </label>
 <label class="btn btn-info"
 v-bind:class="{active: (selected == 'editor') }">
 <input type="radio" v-model="selected" value="editor" />
 Editor
 </label>
 </div>
 </div>
 </div>

Figure 21-2. Displaying a component

ChapTeR 21 ■ DynamIC ComponenTs

549

 <div class="row">
 <div class="col">
 <component v-bind:is="selectedComponent"></component>
 </div>
 </div>
 </div>
</template>

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";
 import ErrorDisplay from "./components/ErrorDisplay";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor, ErrorDisplay },
 created() {
 this.$store.dispatch("getProductsAction");
 },
 data: function() {
 return {
 selected: "table"
 }
 },
 computed: {
 selectedComponent() {
 return this.selected == "table" ? ProductDisplay : ProductEditor;
 }
 }
 }
</script>

The input elements in this example allow the user to select which component is displayed by changing
the data property named selected using the v-model directive. The value of the is attribute on the
component element reflects the chosen value using the v-bind directive, which reads the value of a computed
property that uses the selected value to identify the component that the user requires, producing the result
shown in Figure 21-3.

ChapTeR 21 ■ DynamIC ComponenTs

550

The user is presented with a button group that allows the component displayed by the application to
be selected: clicking the Table button shows the ProductDisplay component, and clicking the Editor button
shows the ProductEditor button.

Understanding the Component Lifecycle
It is worth taking a moment to inspect the state of the application to see how Vue.js is dealing with the
dynamic changes. Click the Table and Editor buttons while viewing the application’s components using Vue
Devtools, and you will see that components are being created and destroyed as they are required, with the
result that the App component has only one child at any given moment, as shown in Figure 21-4.

Figure 21-3. Selecting components using a data binding

ChapTeR 21 ■ DynamIC ComponenTs

551

REUSING DYNAMIC COMPONENTS

Vue.js provides an alternative approach to managing dynamic components that does not require them
to be created each time they are required and destroyed when they are not. If you surround the element
that displays the component—the element with the is attribute—with a keep-alive element, Vue.js
will make components inactive when they are not required instead of destroying them. here is an
example of applying the keep-alive element:

...
<div class="row">
 <div class="col">
 <keep-alive>
 <component v-bind:is="selectedComponent"></component>
 </keep-alive>
 </div>
</div>
...

The advantage of this feature is you don’t have to worry about updating components to avoid repeating
one-off tasks or missing important events. The disadvantage is that resources are consumed by
components that are not active and that may not be required again.

Figure 21-4. Creating and destroying components

ChapTeR 21 ■ DynamIC ComponenTs

552

my advice is to let Vue.js create and destroy components as they are needed, but if you do use the
keep-alive element, then you can receive notifications when components become activate and
inactive by implementing the activated and deactivated lifecycle methods (see Chapter 17 for details
of the component lifecycle).

Automatically Navigating Around the Application
Making the user choose components has allowed me to demonstrate how components are displayed
dynamically, but it isn’t the way that most applications need to work. What I want is for the application to
automatically present the appropriate component to the user based on their actions, which means giving all
the components in the application the ability to change the components that are displayed to the user, such
that clicking an Edit button, for example, will automatically select the editor component.

I started by adding a file called navigation.js to the src/store folder with the code shown in
Listing 21-8.

Listing 21-8. The Contents of the navigation.js File in the src/store Folder

export default {
 namespaced: true,
 state: {
 selected: "table"
 }
 ,
 mutations: {
 selectComponent(currentState, selection) {
 currentState.selected = selection;
 }
 }
}

This Vuex module will extend the data store so that I can navigate around the application. I will use
the selected state property as the value of the is attribute and change its value using the selectComponent
mutation. In Listing 21-9, I have imported the module into the main data store.

Listing 21-9. Adding a Module in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";

import PrefsModule from "./preferences";
import NavModule from "./navigation";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500/products/";

ChapTeR 21 ■ DynamIC ComponenTs

553

export default new Vuex.Store({
 modules: {
 prefs: PrefsModule,
 nav: NavModule
 },
 state: {
 products: [],
 selectedProduct: null
 },

 // ...other data store features omitted for brevity...

})

The next step is to use the new data store state property as the value of the is attribute in the App
component’s template, as shown in Listing 21-10. In addition to using the data store, I have removed the
button elements that allow the user to explicitly select the component to display.

Listing 21-10. Using the Data Store in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <!-- <div class="row">
 <div class="col text-center m-2">
 <div class="btn-group btn-group-toggle">
 <label class="btn btn-info"
 v-bind:class="{active: (selected == 'table') }">
 <input type="radio" v-model="selected" value="table" />
 Table
 </label>
 <label class="btn btn-info"
 v-bind:class="{active: (selected == 'editor') }">
 <input type="radio" v-model="selected" value="editor" />
 Editor
 </label>
 </div>
 </div>
 </div> -->
 <div class="row">
 <div class="col">
 <component v-bind:is="selectedComponent"></component>
 </div>
 </div>
 </div>
</template>

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";
 import ErrorDisplay from "./components/ErrorDisplay";

 import { mapState } from "vuex";

ChapTeR 21 ■ DynamIC ComponenTs

554

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor, ErrorDisplay },
 created() {
 this.$store.dispatch("getProductsAction");
 },
 // data: function() {
 // return {
 // selected: "table"
 // }
 // },
 computed: {
 ...mapState({
 selected: state => state.nav.selected
 }),
 selectedComponent() {
 return this.selected == "table" ? ProductDisplay : ProductEditor;
 }
 }
 }
</script>

All that remains is to invoke the data store mutation to change the component displayed to the user.
In Listing 21-11, I have updated the ProductDisplay component so that the user will be presented with the
editor when clicking a Create New or Edit button.

Listing 21-11. Adding Navigation in the ProductDisplay.vue File in the src/components Folder

...
<script>
 import { mapState, mapMutations, mapActions, mapGetters } from "vuex";

 export default {
 computed: {
 ...mapState(["products"]),
 ...mapState({
 useStripedTable: state => state.prefs.stripedTable
 }),
 ...mapGetters({
 tableClass: "prefs/tableClass",
 editClass: "prefs/editClass",
 deleteClass: "prefs/deleteClass"
 })
 },
 methods: {
 editProduct(product) {
 this.selectProduct(product);
 this.selectComponent("editor");
 },
 createNew() {
 this.selectProduct();
 this.selectComponent("editor");
 },

ChapTeR 21 ■ DynamIC ComponenTs

555

 ...mapMutations({
 selectProduct: "selectProduct",
 selectComponent: "nav/selectComponent",
 //editProduct: "selectProduct",
 //createNew: "selectProduct",
 setEditButtonColor: "prefs/setEditButtonColor",
 setDeleteButtonColor: "prefs/setDeleteButtonColor"
 }),
 ...mapActions({
 deleteProduct: "deleteProductAction"
 })
 },
 created() {
 this.setEditButtonColor(false);
 this.setDeleteButtonColor(false);
 }
 }
</script>
...

I have redefined the editProduct and createNew methods so they are no longer directly mapped to the
selectProduct data store mutation. Instead, I have created local methods that invoke the selectProduct
and selectComponent mutations to identify the object that will be edited and then display the editor
components. In Listing 21-12, I have updated the ProductEditor component so that it navigates to the table
display once the user has completed or canceled an editing task.

SEPARATING NAVIGATION FROM OTHER OPERATIONS

notice that I have handled navigation in the example application’s components, rather than incorporating it
directly into the data store mutations such as selectProduct. It can be tempting to perform navigation as
part of other state changes, but this assumes that the components will always be displayed when a given
mutation or action is performed. This may be the case when you start displaying components dynamically,
but it often changes as a project becomes more complex and the user is presented with different paths
through the application’s features. performing navigation in each component may seem more complex, but
it results in an application that more readily accommodates new features.

Listing 21-12. Adding Navigation in the ProductEditor.vue File in the src/components Folder

...
<script>

 let unwatcher;

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },

ChapTeR 21 ■ DynamIC ComponenTs

556

 methods: {
 async save() {
 await this.$store.dispatch("saveProductAction", this.product);
 this.$store.commit("nav/selectComponent", "table");
 this.product = {};
 },
 cancel() {
 this.$store.commit("selectProduct");
 this.$store.commit("nav/selectComponent", "table");
 },
 selectProduct(selectedProduct) {
 if (selectedProduct == null) {
 this.editing = false;
 this.product = {};
 } else {
 this.editing = true;
 this.product = {};
 Object.assign(this.product, selectedProduct);
 }
 }
 },
 created() {
 unwatcher = this.$store.watch(state =>
 state.selectedProduct, this.selectProduct);
 this.selectProduct(this.$store.state.selectedProduct);
 },
 beforeDestroy() {
 unwatcher();
 }
 }
</script>
...

This component uses the data store features directly, without using the Vuex mapping functions.
I added the async keyword to the save method, which allows me to use the await keyword when saving a
product so that navigation isn’t performed until after the HTTP operation has completed.

The result is that the user’s actions automatically select the component that will be displayed,
automatically switching between the table and editor, as shown in Figure 21-5.

ChapTeR 21 ■ DynamIC ComponenTs

557

Using Asynchronous Components
In larger applications, there are often features that are not required by all users or are required only
occasionally, such as advanced settings or administration tools. By default, these unused components are
included in the JavaScript bundle sent to the browser, which wastes bandwidth and increases the time taken
for the application to start. To avoid this problem, Vue.js provides the asynchronous component feature,
which is used to defer the loading of components until they are required—a feature that is also known as
lazy loading. To demonstrate the asynchronous component feature, I added a file called DataSummary.vue to
the src/components folder with the content shown in Listing 21-13.

Listing 21-13. The Contents of the DataSummary.vue File in the src/components Folder

<template>
 <div>
 <h3 class="bg-success text-center text-white p-2">
 Summary
 </h3>
 <table class="table">
 <tr><th>Number of Products:</th><td> {{ products.length}} </td></tr>
 <tr><th>Number of Categories:</th><td> {{ categoryCount }} </td></tr>
 <tr>
 <th>Highest Price:</th><td> {{ highestPrice | currency }} </td>
 </tr></table>
 </div>
</template>

<script>

 import { mapState, } from "vuex";

 export default {
 computed: {
 ...mapState(["products"]),

Figure 21-5. Navigating between components

ChapTeR 21 ■ DynamIC ComponenTs

558

 categoryCount() {
 if (this.products.length > 0) {
 return this.products.map(p => p.category)
 .filter((cat, index, arr) => arr.indexOf(cat)
 == index).length;
 } else {
 return 0;
 }
 },
 highestPrice() {
 if (this.products.length == 0) {
 return 0;
 } else {
 return Math.max(...this.products.map(p => p.price));
 }
 }
 },
 filters: {
 currency(value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD" }).format(value);
 }
 }
 }
</script>

This component displays a summary of the data in the store, which, for the purposes of this chapter,
is a feature I don’t want the browser to load until it is required. In Listing 21-14, I have registered the new
component so that it will be lazily loaded.

UNDERSTANDING THE COST OF LAZY LOADING

The term lazy refers to the fact that the component won’t be loaded from the hTTp server until it is
required. This is in contrast to the default strategy of eager loading, where components are loaded as
part of the main application bundle, even though they may not be required.

Both approaches represent a compromise. eager loading requires a larger initial download and trades
bandwidth and startup speed for a smoother user experience because all the code and content that the
user could require is always available. Lazy loading reduces the size of the initial download but trades
this against the need to make additional hTTp requests for components if they are required.

you can make the initial assessment of which components should be lazily loaded based on how
you expect the application to be used, but it is important to validate your expectations once you
have deployed your application. If you find that most users are performing actions that lazily load
components, then you should change the configuration of the application because you are incurring the
downsides of both approaches, such that there is no bandwidth saving and the user has to wait while
lazy loading is performed.

ChapTeR 21 ■ DynamIC ComponenTs

559

Listing 21-14. Lazily Loading a Component in the App.vue File in the src/components Folder

<template>
 <div class="container-fluid">
 <div class="col">
 <div class="col text-center m-2">
 <button class="btn btn-primary"
 v-on:click="selectComponent('table')">
 Standard Features
 </button>
 <button class="btn btn-success"
 v-on:click="selectComponent('summary')">
 Advanced Features
 </button>
 </div>
 </div>
 <div class="row">
 <div class="col">
 <component v-bind:is="selectedComponent"></component>
 </div>
 </div>
 </div>
</template>

<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";
 import ErrorDisplay from "./components/ErrorDisplay";

 const DataSummary = () => import("./components/DataSummary");

 import { mapState, mapMutations } from "vuex";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor, ErrorDisplay, DataSummary },
 created() {
 this.$store.dispatch("getProductsAction");
 },
 methods: {
 ...mapMutations({
 selectComponent: "nav/selectComponent"
 })
 },
 computed: {
 ...mapState({
 selected: state => state.nav.selected
 }),
 selectedComponent() {
 switch (this.selected) {
 case "table":
 return ProductDisplay;

ChapTeR 21 ■ DynamIC ComponenTs

560

 case "editor":
 return ProductEditor;
 case "summary":
 return DataSummary;
 }
 }
 }
 }
</script>

There are a number of changes in the listing, but this one that tells Vue.js that this is a component that
should be loaded only when it is required:

...
const DataSummary = () => import("./components/DataSummary");
...

The standard use of the import keyword creates a static dependency, which webpack processes by
including the component in the JavaScript bundle it creates. But this form of import, where it is used as a
function and the component is specified as the argument, creates a dynamic dependency, which webpack
handles by putting the component in its own bundle. The result of the import function is a JavaScript
Promise that is fulfilled when the component is loaded. The loading process begins as soon as the import
function is invoked, so it is important to assign the component reference, which is DataSummary in this
example, a function that, in turn, invokes import.

...
const DataSummary = () => import("./components/DataSummary");
...

When DataSummary is selected for use with the is attribute, Vue.js detects the function, which signifies
an asynchronous component. The function is invoked to start the loading process, and the component is
displayed once it is complete.

Disabling Prefetch Hints
By default, the project is configured to provide the browser with prefetch hints that indicate that there is
application content that may be required in the future. The intention of this feature is that it allows the
browser to decide whether it makes sense to get the content before it is needed. This tends to undermine
the idea of lazy loading for Vue.js modules that are likely to be required by a small number of users since
the JavaScript file will be downloaded and then discarded without being used. To disable the prefetch hint
feature, I added a file called vue.config.js in the productapp folder and added the statements shown in
Listing 21-15.

Listing 21-15. Disabling Prefetch Hints in the vue.config.js File in the productapp Folder

module.exports = {
 chainWebpack: config => {
 config.plugins.delete('prefetch');
 }
}

ChapTeR 21 ■ DynamIC ComponenTs

561

To apply the configuration change, stop the development tools and restart them by running the
command shown in Listing 21-16 in the productapp folder.

Listing 21-16. Starting the Vue.js Development Tools

npm run serve

To test the asynchronous component, navigate to http://localhost:8080 and click the Advanced
Features button, which will show component defined in Listing 21-13, as shown in Figure 21-6.

You are unlikely to see any delay in loading the component because the browser and HTTP server are
running on the same workstation. But if you open the browser’s F12 development tools and switch to the
Network tab, you will see that there is an HTTP request for a JavaScript file when you click the Advanced
Features button. This is the file that contains the DataSummary component and is called 1.js for me,
although you may see a different name.

Configuring Lazy Loading
Vue.js provides a set of configuration options that can be used to fine-tune the loading process for
asynchronous components, as described in Table 21-3.

Figure 21-6. Lazily loading a component

ChapTeR 21 ■ DynamIC ComponenTs

562

The most useful of these configuration options is the loading property, which specifies a component
that should be shown to the user while the asynchronous component is loading, and the delay option,
which specifies the delay before the loading component is shown to the user and ensures that the user
doesn’t see the loading message for operations that complete quickly.

 ■ Caution you should not use the loading property to specify a lazily loaded component because it may not
have been loaded by the time it is required.

To prepare for a demonstration of the properties described in Table 21-3, I needed a component that I
can display during loading, so I added a file called LoadingMessage.vue to the src/components folder with
the content shown in Listing 21-17.

Listing 21-17. The Contents of the LoadingMessage.vue File in the src/components Folder

<template>
 <h3 class="bg-info text-white text-center m-2 p-2">
 Lazily Loading Component...
 </h3>
</template>

This component consists of just a template that will display a message to the user. In Listing 21-18,
I have used this component to configure the lazy loading of the DataSummary component.

Listing 21-18. Configuring Lazy Loading in the App.vue File in the src Folder

...
<script>
 import ProductDisplay from "./components/ProductDisplay";
 import ProductEditor from "./components/ProductEditor";
 import ErrorDisplay from "./components/ErrorDisplay";
 import LoadingMessage from "./components/LoadingMessage";

Table 21-3. The Lazy Loading Configuration Options

Name Description

component This property is used to define the import function that will load the asynchronous
component.

loading This property is used to specify a component that will be displayed to the user during the
loading process.

delay This property is used to specify a delay, expressed in milliseconds, before the loading
component is shown to the user. The default value is 200.

error This property is used to specify a component that will be displayed to the user if the
loading operation fails or times out.

timeout This property is used to specify the timeout period for load operations, expressed in
milliseconds. The default value waits forever.

ChapTeR 21 ■ DynamIC ComponenTs

563

 const DataSummary = () => ({
 component: import("./components/DataSummary"),
 loading: LoadingMessage,
 delay: 100
 });

 import { mapState, mapMutations } from "vuex";

 export default {
 name: 'App',
 components: { ProductDisplay, ProductEditor, ErrorDisplay, DataSummary },
 created() {
 this.$store.dispatch("getProductsAction");
 },
 methods: {
 ...mapMutations({
 selectComponent: "nav/selectComponent"
 })
 },
 computed: {
 ...mapState({
 selected: state => state.nav.selected
 }),
 selectedComponent() {
 switch (this.selected) {
 case "table":
 return ProductDisplay;
 case "editor":
 return ProductEditor;
 case "summary":
 return DataSummary;
 }
 }
 }
 }
</script>
...

The component property is assigned the import function that load will the component, and I have
specified that the user will see the LoadingMessage component if the load operation takes more than 100
milliseconds. To see the effect, navigate to http://localhost:8080 and click the Advanced Features button,
which will produce the loading sequence shown in Figure 21-7.

 ■ Note It can be hard to test the configuration features during development because the asynchronous
component will be loaded too quickly to see the component specified by the component property. my approach
is to use the Google Chrome developer tools to create a network profile that adds several seconds of latency to
hTTp requests and to enable this profile before triggering the lazy load.

ChapTeR 21 ■ DynamIC ComponenTs

564

COMBINING COMPONENTS INTO A SHARED BUNDLE

By default, each asynchronous component will be put into its own file and loaded only when it is
required. an alternative approach is to group related components so they are all loaded the first time
that any of them is required. This is done by adding a comment that is detected by webpack during the
build process, like this:

...
const DataSummary = () => ({
 component:
 import(/* webpackChunkName: "advanced" */ "./components/DataSummary"),
 loading: LoadingMessage,
 delay: 100
});
...

The comment sets the value of a property called webpackChunkName, and webpack will package all
asynchronous components with the same webpackChunkName value into a single bundle. The name you
specify won’t be used as the name of the bundle file, which is selected dynamically during the build
process.

Summary
In this chapter, I demonstrated how components can be displayed dynamically. I showed you how to use the
is attribute to select a component, which is a good approach for simpler projects. I also showed you how to
load components on demand, which can be a good way to deal with components that are not required by all
users. In the next chapter, I introduce URL routing, which builds on the features described in this chapter.

Figure 21-7. Configuring the lazy loading process

565© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_22

CHAPTER 22

URL Routing

In this chapter, I start to describe the URL routing feature, which builds on the dynamic components that I
described in Chapter 21 but uses the current URL to select the components that are displayed to the user.
URL routing is a complex topic, and I continue to describe different aspects of this feature in Chapters 23
and 24. Table 22-1 puts URL routing in context.

Table 22-2 summarizes the chapter.

Table 22-1. Putting URL Routing in Context

Question Answer

What is it? URL routing selects components to display to the user based on the
current URL.

Why is it useful? Using the URL to select components allows the user to navigate
directly to a specific part of the application and allows complex
applications to be composed in a way that is easier to maintain than
selecting components in code.

How is it used? The Vue Router package is added to a project, and a router-
view element is used to display the component selected by the
application’s routing configuration.

Are there any pitfalls or limitations? It can be difficult to find the appropriate balance between concisely
expressing routes and creating routes that are easy to read and
understand.

Are there any alternatives? URL routing is optional, and the features described in this chapter
are required only for complex applications.

Chapter 22 ■ UrL roUting

566

Preparing for This Chapter
In this chapter, I continue using the productapp project from Chapter 21. The URL routing feature requires
a package called vue-router to be added to the project. Run the command shown in Listing 22-1 in the
productapp folder to install the package.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-vue-js-2.

Listing 22-1. Installing the Routing Package

npm install vue-router@3.0.1

To start the RESTful web service, open a command prompt and run the command shown in Listing 22-2
in the productapp folder.

Listing 22-2. Starting the Web Service

npm run json

Table 22-2. Chapter Summary

Problem Solution Listing

Configure URL routing Create a VueRouter object and provide it with a
configuration object that has a routes property

4, 5

Display a routed component Use the router-view element 6

Navigate in code Use the $router.push method 7

Navigate in a template Use the router-link element 8

Configure the routing mode Use the mode property when creating the
VuewRouter object

9

Define a catchall route Define a route with * as the path 10

Define an alias for a route Use the route property 11

Get details of the route in code Use the $route object 12–14

Control the URLs matched by a route Add a dynamic segment, use regular expressions,
or use optional segments

15–20

Assign a name to a route Use the name property 21–23

Receive notifications when the active
route changes

Implement one or more guard methods 24

https://github.com/Apress/pro-vue-js-2

Chapter 22 ■ UrL roUting

567

Open a second command prompt, navigate to the productapp directory, and run the command shown
in Listing 22-3 to start the Vue.js development tools.

Listing 22-3. Starting the Development Tools

npm run serve

Once the initial bundling process is complete, open a new browser window and navigate to
http://localhost:8080, where you will see the example application, as shown in Figure 22-1.

Getting Started with URL Routing
Before I get into the detail of how to use and configure URL routing, I am going to provide a quick
introduction to the main features so that you have some context for more detailed topics. The first step when
you start using URL routing is to configure the set of routes, which are mappings between the URLs that the
application will support and the components that each will display. The convention is to put the routing
configuration in a folder called router, so I created the src/router folder in the example project and added
to it a file called index.js with the code shown in Listing 22-4.

Figure 22-1. Running the example application

Chapter 22 ■ UrL roUting

568

 ■ Tip When you create a project and select individual features, one of the options will be router, which
installs the vue-router package and sets up a basic routing configuration.

Listing 22-4. The Contents of the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";

Vue.use(VueRouter);

export default new VueRouter({
 routes: [
 { path: "/", component: ProductDisplay },
 { path: "/edit", component: ProductEditor}
]
})

It is important to get the basic configuration right when setting up the routing package, so I will go
through each line of the code in Listing 22-4 and explain its purpose, just as I did in Chapter 20 when setting
up a Vuex data store, which follows a similar pattern. The first set of statements imports the functionality that
the routing configuration requires from other modules.

...
import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";
...

The first two import statements are for the Vue.js and Vue Router features. The other import statements
provide access to the components that will be displayed to the user, and this be a long list of statements in a
complex application.

The next statement enables the Vue Router functionality:...
Vue.use(VueRouter);
...

Vue Router is provided as a Vue.js plugin, which allows the Vue.js core functionality to be extended,
as I describe in Chapter 26, and plugins are installed with the Vue.use method.

 ■ Caution if you forget to call the Vue.use method, Vue.js will not recognize the router-view and
router-link htML elements that are used by the Vue router package.

Chapter 22 ■ UrL roUting

569

The next statement creates the routing configuration and makes it the default export from the module
in the routes folder:

...
export default new VueRouter({
...

The new keyword is used to create a VueRouter object, which accepts a configuration object. The
configuration in this example provides a basic set of instructions for how to display two components.

...
routes: [
 { path: "/", component: ProductDisplay },
 { path: "/edit", component: ProductEditor}
]
...

The routes property is used to define mappings between URLs and components. The mappings in this
example tell Vue Router to display the ProductDisplay component for the application’s default route and to
display the ProductEditor component for the /edit URL. Don’t worry about the URL routes at the moment
because they will be easier to understand once you see how they are applied and used.

Providing Access to the Routing Configuration
The next step is to add the routing functionality to the application so that it can be used by components, as
shown in Listing 22-5.

Listing 22-5. Enabling the Routing Configuration in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "../node_modules/bootstrap/dist/css/bootstrap.min.css";
import { RestDataSource } from "./restDataSource";
import store from "./store";
import router from "./router";

Vue.config.productionTip = false

new Vue({
 render: h => h(App),
 data: {
 eventBus: new Vue()
 },
 store,
 router,
 provide: function () {
 return {
 eventBus: this.eventBus,
 restDataSource: new RestDataSource(this.eventBus)
 }
 }
}).$mount('#app')

Chapter 22 ■ UrL roUting

570

To add the URL routing functionality to the application, I used an import statement that specifies
the router module and gives it the name router (I don’t have to specify the index.js file because this is
the default name that is looked for when a module is imported). The import statement loads the routing
configuration from the index.js file in the router folder. I added a router property to the Vue configuration
object, which makes the URL routing functionality available to the application’s components.

 ■ Caution if you forget to add the router property shown in Listing 22-5, the UrL routing package won’t be
set up properly, and you will encounter errors in the examples that follow.

Using the Routing System to Display Components
Now that the routing system is enabled, I can use it to display components to the user, as shown in Listing 22-6,
where I have used URL routing to replace the existing content and code that displayed components dynamically.

Listing 22-6. Using URL Routing in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>

<script>
 // import ProductDisplay from "./components/ProductDisplay";
 // import ProductEditor from "./components/ProductEditor";
 // import ErrorDisplay from "./components/ErrorDisplay";

 //import { mapState } from "vuex";

 export default {
 name: 'App',
 // components: { ProductDisplay, ProductEditor, ErrorDisplay },
 created() {
 this.$store.dispatch("getProductsAction");
 },
 // computed: {
 // ...mapState({
 // selected: state => state.nav.selected
 // }),
 // selectedComponent() {
 // return this.selected == "table" ? ProductDisplay : ProductEditor;
 // }
 // }
 }
</script>

Chapter 22 ■ UrL roUting

571

The Vue Router uses the router-view element to display content, replacing the previous element that
used the is attribute. Because the Vue Router package will be responsible for selecting the component
displayed by the router-view element, I am able to simplify the component’s configuration object,
removing the components property, the computed properties, and all of the import statements. The result
of these changes is that responsibility for the content presented by the router-view element is delegated to
Vue Router, producing the result shown in Figure 22-2. (The Create New and Edit buttons have no effect yet,
but I’ll wire them up shortly.)

 ■ Tip When adding and changing routing features, you may not always get the response you expect. if that
happens, the first thing to try is to reload the browser to get a fresh copy of the application, which will often sort
out the problem.

This may look like the previous examples, but there is an important difference, which can be seen by
examining the browser’s URL bar. When you navigate to http://localhost:8080, the browser actually
displays this URL:

http://localhost:8080/#/

Figure 22-2. Using the Vue Router package

Chapter 22 ■ UrL roUting

572

The important part to note is the last part of the URL, which is #/. Carefully edit the URL in the
browser’s URL bar to navigate to this URL:

http://localhost:8080/#/edit

This is the same URL that was previously displayed but with edit appended to the end. Press Enter and
the content displayed by the browser will change, as shown in Figure 22-3.

Rather than use a data store property to select the component shown to the user, Vue Router uses
the browser’s URL, and the part of the URL that follows the # character corresponds to the configuration
I defined in Listing 22-4.

...
routes: [
 { path: "/", component: ProductDisplay },
 { path: "/edit", component: ProductEditor}
]
...

The value specified by the path property corresponds to the part of the URL that follows the # character.
Vue Router monitors the current URL, and when it changes, it selects the component to display in the
router-view element by finding the corresponding routes configuration item based on its path property
and displaying the component specified by its component property.

Navigating to Different URLs
To change the component that is displayed to the user, I have to change the browser’s URL, at which point
Vue Router will compare the new URL to its configuration and display the corresponding component. Vue
Router provides features for navigating to new URLs, and in Listing 22-7, I have updated the ProductDisplay
component to use them.

Figure 22-3. The effect of changing the URL

Chapter 22 ■ UrL roUting

573

Listing 22-7. Navigating Programatically in the ProductDisplay.vue File in the src/components Folder

...
<script>
 import { mapState, mapMutations, mapActions, mapGetters } from "vuex";

 export default {
 computed: {
 ...mapState(["products"]),
 ...mapState({
 useStripedTable: state => state.prefs.stripedTable
 }),
 ...mapGetters({
 tableClass: "prefs/tableClass",
 editClass: "prefs/editClass",
 deleteClass: "prefs/deleteClass"
 })
 },
 methods: {
 editProduct(product) {
 this.selectProduct(product);
 //this.selectComponent("editor");
 this.$router.push("/edit");
 },
 createNew() {
 this.selectProduct();
 //this.selectComponent("editor");
 this.$router.push("/edit");
 },
 ...mapMutations({
 selectProduct: "selectProduct",
 //selectComponent: "nav/selectComponent",
 setEditButtonColor: "prefs/setEditButtonColor",
 setDeleteButtonColor: "prefs/setDeleteButtonColor"
 }),
 ...mapActions({
 deleteProduct: "deleteProductAction"
 })
 },
 created() {
 this.setEditButtonColor(false);
 this.setDeleteButtonColor(false);
 }
 }
</script>
...

The effect of adding the router property in Listing 22-7 is that all the components in the application are
given access to Vue Router features through a $router variable, similar to the way that components are able
to access the Vuex data store using the $store property. The $router property returns an object that defines
the navigation methods described in Table 22-3.

Chapter 22 ■ UrL roUting

574

The difference between these methods is that navigation performed with the push method results in
an entry in the browser’s history with the effect that clicking the browser’s back button will return to the
previous route. The replace method changes the URL without adding to the browser’s history, which means
that moving backward may cause the browser to navigate away from the Vue.js application. In the listing, I
disabled the selectComponent method, which applied to a mutation to the data store, and replaced it with
calls to the Vue Router push method to navigate to the /edit URL.

...
this.$router.push("/edit");
...

The result is that clicking the Create New button or an Edit button tells Vue Router to ask the browser to
navigate to the #/edit URL. URL routing is a two-stage process. The push method changes the URL, which
Vue Router observes and uses to change the component displayed to the user. Put another way, clicking a
button changes the URL, which in turn changes the component displayed to the user, as shown in Figure 22-4.

Table 22-3. The Vue Router Navigation Methods

Name Description

push(location) This method navigates to the specified URL. This method accepts optional
callback arguments that are invoked when the navigation is complete or if there
is an error.

replace(location) This method performs the same task as the push method but doesn’t leave an
entry in the browser’s history, as discussed after the table.

back() This method navigates to the previous URL in the browser’s history.

forward() This method navigates to the next URL in the browser’s history.

Figure 22-4. Navigating around the application

Chapter 22 ■ UrL roUting

575

Navigating Using HTML Elements
The $router methods are not the only way to navigate around the application. Vue Router also supports a
custom HTML element that triggers navigation when it is clicked. The $router methods and the custom
HTML element can be freely mixed in a component, as shown in Listing 22-8.

Listing 22-8. Adding URL Navigation in the ProductEditor.vue File in the src/components Folder

<template>

 <div>
 <div class="form-group">
 <label>ID</label>
 <input class="form-control" v-model="product.id" />
 </div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" v-model="product.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" v-model="product.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" v-model.number="product.price" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="save">
 {{ editing ? "Save" : "Create" }}
 </button>
 <router-link to="/" class="btn btn-secondary">Cancel</router-link>
 </div>
 </div>

</template>

<script>

 let unwatcher;

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },

Chapter 22 ■ UrL roUting

576

 methods: {
 async save() {
 await this.$store.dispatch("saveProductAction", this.product);
 //this.$store.commit("nav/selectComponent", "table");
 this.$router.push("/");
 this.product = {};
 },
 // cancel() {
 // this.$store.commit("selectProduct");
 // //this.$store.commit("nav/selectComponent", "table");
 // this.$router.push("/");
 // },
 selectProduct(selectedProduct) {
 if (selectedProduct == null) {
 this.editing = false;
 this.product = {};
 } else {
 this.editing = true;
 this.product = {};
 Object.assign(this.product, selectedProduct);
 }
 }
 },
 created() {
 unwatcher = this.$store.watch(state =>
 state.selectedProduct, this.selectProduct);
 this.selectProduct(this.$store.state.selectedProduct);
 },
 beforeDestroy() {
 unwatcher();
 }
 }
</script>

In the component’s template, I have used the router-link element to create an HTML element that will
trigger navigation when it is clicked. The URL that will be navigated to is specified using the to attribute, like
this:

...
<router-link to="/" class="btn btn-secondary">Cancel</router-link>
...

In this case, I have specified /, which is the first route defined in the configuration. When the template is
processed and displayed to the user, the result is an anchor (a) element like this:

...
Cancel
...

Chapter 22 ■ UrL roUting

577

The href attribute is specified so that the URL that the browser navigates to is relative to the # part of
the URL, although you should not specify this in the to attribute because there are other ways that URL
navigation can be implemented, as I explain shortly. The Bootstrap CSS framework that I use throughout this
book supports styling anchor elements so they appear as buttons, which allows me to present the routing
link as a seamless replacement for the button element that it replaces. Since the URL navigation is handled
directly by the anchor element, I have been able to remove the cancel method.

Not all navigation can be performed just using an HTML element because some additional tasks must
be performed in response to the user’s action, as the save method demonstrates. The Save/Create button in
the component’s template cannot be replaced with a router-link element because the data that the user
has entered must be sent to the web service. For this type of activity, the $router.push method can be used,
as shown in the listing. The changes in Listing 22-8 allow the user to navigate back from the editor to the
table, either by clicking the Save/Create button to save their changes or by clicking Cancel to abandon them,
as shown in Figure 22-5.

Understanding and Configuring URL Route Matching
The examples in the previous section have given you a brief overview of how URL routing works, including
defining the routes and the different ways of navigating around the application. In the sections that follow,
I dig a little deeper and explain how to change the format of URLs to make them friendlier to the user and
different ways that routes can be expressed to match URLs.

Figure 22-5. Navigating back to the display of products

Chapter 22 ■ UrL roUting

578

Understanding URL Matching and Formatting
Vue Router examines the current URL and works its way down through the list of routes in its configuration
until it finds a match. To match a route, a URL must contain the same number of segments, and each
segment must contain the value specified in the routing configuration. Here are the routes I defined in the
index.js file in the src/router folder in Listing 22-4:

...
routes: [
 { path: "/", component: ProductDisplay },
 { path: "/edit", component: ProductEditor}
]
...

When considering an application’s routes, bear in mind that routes are matched in the order in which
they are defined and that the routing system is interested only in part of the URL. By default, the part of
the URL that is used by the routing system follows the # character, known as the URLs fragment or named
anchor. The URL http://localhost:8080/#/edit will match the route whose path is /edit, as illustrated in
Figure 22-6.

URL fragments were originally intended to refer to specific locations in an HTML document so that
the user could navigate around complex static content. For Vue.js applications, URL fragments are used for
routing because they can be changed without causing the browser to send an HTTP request to the server
and lose the application’s state.

Using the HTML5 History API for Routing
URL fragments are supported by all browsers, but the result is application URLs that have an odd structure
and that can be confusing to users. One of the attractions of using URL routing is that users can navigate
directly to a specific part of the application by changing the URL, but this can be an error-prone process if
the importance of the # character isn’t understood. If the user navigates to /edit instead of /#/edit, for
example, the browser will assume that the user is trying to navigate to a new URL and will send an HTTP
request to the server, with the result that the browser will navigate away from the Vue.js application.

A better alternative is to configure Vue Router so that it uses the HTML 5 History API, which allows
for more robust and elegant URLs but which isn’t supported by older browsers, although Vue Router will
automatically fall back to using fragments in browsers that don’t support the History API. In Listing 22-9,
I have updated the routing configuration so that Vue Router will use the History API.

Figure 22-6. The fragment part of a URL

Chapter 22 ■ UrL roUting

579

Listing 22-9. Enabling the History API in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: ProductDisplay },
 { path: "/edit", component: ProductEditor}
]
})

The mode property is added to the Vue Router configuration object to specify the mechanism used for
URL routing, using the values shown in Table 22-4.

In the listing, I specified the history value for the mode property, which tells Vue Router to use the
History API. To see the effect, reload the browser and click one of the Edit buttons once the application has
reloaded, as shown in Figure 22-7.

 ■ Tip With many of the examples in this chapter, you may have to reload the browser window or manually
navigate to http://localhost:8080 to see the changes.

Table 22-4. The mode Property Configuration Values

Name Description

hash This mode uses the URL fragment for routing, which offers the widest browser support but
produces awkward URLs. This is the default mode that is used if the mode property is not
specified.

history This mode uses the History API for routing, which offers the most natural URLs but is not
supported by older browsers.

Chapter 22 ■ UrL roUting

580

Instead of a URL that includes a fragment, such as http://localhost:8080/#/edit, the application has
navigated to http://localhost:8080/edit. The History API allows navigation using complete URLs without
triggering a browser reload, with the effect that the part of the URL used for routing changes, as shown in
Figure 22-8.

 ■ Note For browsers that don’t support the history api, which includes older versions of internet explorer, Vue
router will automatically try to use the hash setting instead, which will return the application to using the UrL
fragment to define the route. to disable this behavior, you can set the fallback property to false in the routing
configuration object.

Providing a Catchall Route
Using the History API requires additional work to ensure a smooth experience for the user, who may
navigate directly to a URL that has meaning to the application but for which there is no HTML document on
the server. In the case of the example application, that means the user may type http://localhost:8080/
edit into the URL bar, which will lead the browser to send an HTTP request for a document called edit.
There is no such HTML document on the server, but the webpack development server has been configured
to respond to any request with the index.html file.

It doesn’t matter what URL has been requested; if there is no content available, the server will always
return the contents of the index.html file and will never return a 404 – Not Found error. This is useful when
the user requests a URL that corresponds to one of the routes defined by the application, such as /edit in

Figure 22-8. The effect of using the History API

Figure 22-7. Using the History API for routing

Chapter 22 ■ UrL roUting

581

the case of the example application, but it leaves the user looking at an empty window when the URL doesn’t
correspond to a route.

 ■ Caution You must ensure that you configure your production http server to return the contents of the
index.html file if you are using the history api for routing. the Vue.js team provides instructions for commonly
used production servers at https://router.vuejs.org/en/essentials/history-mode.html.

To address this problem, a catchall route can be defined that matches any request and redirects it to
another URL, as shown in Listing 22-10

Listing 22-10. Creating a Catchall Route in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: ProductDisplay },
 { path: "/edit", component: ProductEditor},
 { path: "*", redirect: "/" }
]
})

The path property of this route is an asterisk (the * character), which allows it to match any URL.
Instead of a component property, this route has a redirect property, which tells Vue.js to perform a
redirection to the specified URL. The overall effect is combined with the fallback feature of the HTTP server,
which mean that requests for which there is no content will be handled with the contents of the index.
html file, and if the URL doesn’t correspond to a route, the browser will then be redirected to the / URL. To
test this feature, open a new browser window and request the http://localhost:8080/does/not/exist
URL. As Figure 22-9 shows, the browser will display the application, even though the requested URL doesn’t
correspond to any of the application’s routes.

 ■ Tip redirections can also be defined as a function, which allows aspects of the UrL that the user has
requested to be incorporated into the redirected UrL. See Chapter 23 for an example.

https://router.vuejs.org/en/essentials/history-mode.html

Chapter 22 ■ UrL roUting

582

When the Vue.js application starts, Vue Router inspects the current URL and starts working its way
through its routes to find a match. The first and second routes do match the current URL because that
URL is neither / nor /edit. Vue Router reaches the final URL, which matches anything and which causes
a redirection to /. The matching process begins again, but now the first route matches, which causes the
application to display the ProductDisplay component.

Using a Route Alias
One potential pitfall of using redirection is that the user will see that the URL they typed into the browser
will be immediately replaced with the redirected URL, which may be confusing. An alternative is to create an
alias for a route, which allows it to match more than one URL without needing a redirection. In Listing 22-11,
I have added an alias to the routing configuration to change the way that unmatched URLs are handled.

Listing 22-11. Using a Route Alias in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: ProductDisplay, alias: "/list" },
 { path: "/edit", component: ProductEditor } ,
 { path: "*", redirect: "/" }
]
})

Figure 22-9. The effect of a catchall route

Chapter 22 ■ UrL roUting

583

The alias property is used to create an alias for a route, which allows it to match multiple URLs without
using redirection. The alias I created defines the /list URL as an alias of the root URL, which can be tested
by navigating to http://localhost:8080/list. As Figure 22-10 shows, the ProductDisplay component is
displayed without the current URL being modified.

Getting Routing Data in Components
In addition to the $router property, the Vue Router package also provides components with a $route
property that describes the current route and that can be used to adapt the content or behavior of
components. To demonstrate, I added a new route to the example application, as shown in Listing 22-12.

Listing 22-12. Adding a Route in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: ProductDisplay, alias: "/list" },
 { path: "/edit", component: ProductEditor },
 { path: "/create", component: ProductEditor },
 { path: "*", redirect: "/" }
]
})

The new route matches the /create URL and targets the ProductEditor component, which means that
there are two different URLs—/edit and /create—that will lead the application to display the editor feature.
In Listing 22-13, I have replaced the button elements in the ProductDisplay component’s template with a
router-link element that targets the /edit and /create URLs.

Figure 22-10. Using a routing alias

Chapter 22 ■ UrL roUting

584

Listing 22-13. Targeting Routes in the ProductDisplay.vue File in the src/components Folder

...
<template>
 <div>
 <table class="table table-sm table-bordered" v-bind:class="tableClass">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td>{{ p.price }}</td>
 <td>
 <router-link to="/edit" v-bind:class="editClass"
 class="btn btn-sm">
 Edit
 </router-link>
 <button class="btn btn-sm"
 v-bind:class="deleteClass"
 v-on:click="deleteProduct(p)">
 Delete
 </button>
 </td>
 </tr>
 <tr v-if="products.length == 0">
 <td colspan="5" class="text-center">No Data</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <router-link to="/create" class="btn btn-primary">
 Create New
 </router-link>
 </div>
 </div>
</template>
...

Notice that the component doesn’t know what the result of navigating to the /edit or /create URL
will be. This is similar to the effect of using a data store to coordinate components, as described in
Chapter 21, with the advantage that you can easily reconfigure the application just by editing the routing
configuration. Now that there are two different URLs that display the ProductEditor component, I can use
the $route property to see which of them has been used and change the content that is presented to the
user, as shown in Listing 22-14.

Chapter 22 ■ UrL roUting

585

Listing 22-14. Accessing Route Information in the ProductEditor.vue File in the src/components Folder

<template>

 <div>
 <h3 class="btn-primary text-center text-white p-2">
 {{ editing ? "Edit" : "Create"}}
 </h3>
 <div class="form-group">
 <label>ID</label>
 <input class="form-control" v-model="product.id" />
 </div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" v-model="product.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" v-model="product.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" v-model.number="product.price" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="save">
 {{ editing ? "Save" : "Create" }}
 </button>
 <router-link to="/" class="btn btn-secondary">Cancel</router-link>
 </div>
 </div>

</template>

<script>

 let unwatcher;

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },
 methods: {
 async save() {
 await this.$store.dispatch("saveProductAction", this.product);
 this.$router.push("/");
 this.product = {};
 },

Chapter 22 ■ UrL roUting

586

 selectProduct(selectedProduct) {
 if (this.$route.path == "/create") {
 this.editing = false;
 this.product = {};
 } else {
 this.product = {};
 Object.assign(this.product, selectedProduct);
 this.editing = true;
 }
 }
 },
 created() {
 unwatcher = this.$store.watch(state =>
 state.selectedProduct, this.selectProduct);
 this.selectProduct(this.$store.state.selectedProduct);
 },
 beforeDestroy() {
 unwatcher();
 }
 }
</script>

When the selectProduct method is called, the component inspects the $route object to get details of
the route. The $route property is assigned an object that describes the current route. Table 22-5 describes
the most useful properties provided by the $route object.

In the listing, I use the path property to determine whether the /create or /edit URL has been used
and configure the component accordingly. To make the difference more obvious, I have added an h3
element that uses a text interpolation binding to display a header. To test these changes, you can click a
Create New or Edit button displayed by the ProductDisplay component or navigate directly to the
http://localhost:8080/create and http://localhost:8080/edit URLs, which produce the result shown
in Figure 22-11.

Table 22-5. Useful $route Properties

Name Description

name This property returns the name of the route, as described in the “Creating Named
Routes” section.

path This property returns the URL path, such as /edit/4.

params This property returns a map object for the parameters matched by a dynamic route, as
described in the “Matching Routes Dynamically” section.

query This property returns a map object containing the query string values. For the URL
/edit/4?validate=true, for example, the query property would return an object with
a validate property whose value is true.

Chapter 22 ■ UrL roUting

587

Matching Routes Dynamically
The problem with the changes I made in the previous section is that the /edit URL tells the ProductEditor
component that the user wants to perform an edit operation but doesn’t specify which object should be
edited.

I can address this using a dynamic segment, which is added to a route when a component needs
to receive data from the URL. In Listing 22-15, I extended the routing configuration so that it includes a
dynamic segment.

Listing 22-15. Using a Dynamic Segment in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: ProductDisplay, alias: "/list" },
 { path: "/edit/:id", component: ProductEditor },
 { path: "/create", component: ProductEditor },
 { path: "*", redirect: "/" }
]
})

Figure 22-11. Responding to different routes in a component

Chapter 22 ■ UrL roUting

588

Segment variables are defined by prefixing the segment with a colon (the : character), like this:

...
{ path: "/edit/:id", component: ProductEditor },
...

The path property for this route contains two segments. The first segment matches URLs that start with
/edit, just as in previous examples. The second segment is dynamic and will match any URL segment and
assign the value of that segment to a variable named id. The result is that this route will match any URL that
contains two segments where the first segment is /edit, such as /edit/10.

To target the new URL and its dynamic segment, I have updated the router-link elements in the
template of the ProductDisplay component, as shown in Listing 22-16.

Listing 22-16. Targeting a Dynamic Segment in the ProductDisplay.vue File in the src/components Folder

...
<template>
 <div>
 <table class="table table-sm table-bordered" v-bind:class="tableClass">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th>
 </tr>
 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td>{{ p.price }}</td>
 <td>
 <router-link v-bind:to="'/edit/' + p.id "
 v-bind:class="editClass" class="btn btn-sm">
 Edit
 </router-link>
 <button class="btn btn-sm"
 v-bind:class="deleteClass"
 v-on:click="deleteProduct(p)">
 Delete
 </button>
 </td>
 </tr>
 <tr v-if="products.length == 0">
 <td colspan="5" class="text-center">No Data</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <router-link to="/create" class="btn btn-primary">
 Create New
 </router-link>
 </div>
 </div>
</template>
...

Chapter 22 ■ UrL roUting

589

This change means that clicking an Edit button will navigate to a URL that includes the corresponding
object’s id property so that clicking the button for the Stadium product, for example, will navigate to /edit/5.

Components can access dynamic segment variables through the $route.params property. In Listing 22-17,
I have updated the ProductEditor component to retrieve the product object from the data store based on the
value of the id dynamic segment.

Listing 22-17. Using a Dynamic Segment Value in the ProductEditor.vue File in the src/components Folder

...
<script>

 let unwatcher;

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },
 methods: {
 async save() {
 await this.$store.dispatch("saveProductAction", this.product);
 this.$router.push("/");
 this.product = {};
 },
 selectProduct() {
 if (this.$route.path == "/create") {
 this.editing = false;
 this.product = {};
 } else {
 let productId = this.$route.params.id;
 let selectedProduct
 = this.$store.state.products.find(p => p.id == productId);
 this.product = {};
 Object.assign(this.product, selectedProduct);
 this.editing = true;
 }
 }
 },
 created() {
 unwatcher = this.$store.watch(state => state.products,
 this.selectProduct);
 this.selectProduct();
 },
 beforeDestroy() {
 unwatcher();
 }
 }
</script>
...

Chapter 22 ■ UrL roUting

590

In the selectProduct method, I get the value of the id segment through the $route object and get the
object that the user has selected through the data store.

It may be hard to spot, but I have also changed the target of the data store watcher in this listing. The
ProductDisplay component no longer uses the data store for the user’s editing selection, which may have
led you to expect that the watcher is now redundant. The watcher is still required, however, but it observes
the products array of objects.

...
unwatcher = this.$store.watch(state => state.products, this.selectProduct);
...

The user can now navigate directly to a URL that will edit an object, and the result is that the
ProductEditor component will be displayed to the user before the data store is populated with the data
from the HTTP request sent to the web service by the App component. To ensure that the user sees the data
they require, I use a data store watcher that invokes the selectProduct method.

 ■ Tip the Vue router package provides a more elegant way of waiting for data, which i describe in
Chapter 24.

The effect of these changes is that clicking one of the Edit buttons presented by the ProductDisplay
component navigates to a URL such as /edit/4, which the user can also navigate to directly using the
browser’s URL bar.

When the URL is matched by the routing system, the ProductEditor component reads the value of
the dynamic segment, locates the corresponding object from the data store, and displays it to the user for
editing, as shown in Figure 22-12.

Figure 22-12. Using a dynamic segment

Chapter 22 ■ UrL roUting

591

Using Regular Expressions to Match URLs
Dynamic segments expand the range of URLs that a route will match, but the result can be a route that
matches URLs that you want to handle later in the routing configuration. To help increase the precision of
routes, Vue Router supports the use of regular expressions for dynamic segments that provide fine-grained
control of the URLs that will be matched.

In Listing 22-18, I have revised the routing configuration to add a dynamic segment with a regular
expression and to apply a regular expression to the existing id segment.

Listing 22-18. Using Regular Expressions in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: ProductDisplay, alias: "/list" },
 { path: "/:op(create|edit)/:id(\\d+)", component: ProductEditor },
 //{ path: "/create", component: ProductEditor },
 { path: "*", redirect: "/" }
]
})

Regular expressions are applied in parentheses after the name of a dynamic segment. The new dynamic
segment is called op, and the regular expression that I have applied allows it to match segments that contain
create or edit, which has allowed me to combine two routes into one and comment out the dedicated
/create route.

...
{ path: "/:op(create|edit)/:id(\\d+)", component: ProductEditor },
...

The regular expression I applied to the id segment will match segments that consist of only one or
more digits. The d character in this expression has to be escaped with two backslashes (the \ character) to
prevent it from being interpreted as a literal d character, and the plus sign (the + character) specifies that the
expression should match only one or more digits.

...
{ path: "/:op(create|edit)/:id(\\d+)", component: ProductEditor },
...

The result is that this route will now match two segment URLs where the first segment is /create or
/edit and the second segment contains one or more digits.

Chapter 22 ■ UrL roUting

592

Defining Optional Segments
The route that I defined in Listing 22-18 doesn’t work exactly as I would like because it doesn’t match
/create, which is the URL that the ProductDisplay component navigates to when the user clicks the Create
New button. Dynamic segments can be marked as optional using a question mark (the ? character), which is
the symbol for matching zero or more instances of an expression. In Listing 22-19, I have applied a question
mark to make the id segment optional.

Listing 22-19. Using an Optional Segment in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/", component: ProductDisplay, alias: "/list" },
 { path: "/:op(create|edit)/:id(\\d+)?", component: ProductEditor },
 { path: "*", redirect: "/" }
]
})

Since the id segment is optional, this route will now match any one-segment URLs like /edit and
/create and any two-segment URLs where the first segment is /edit or /create and the second segment
consists of one or more digits.

This routing configuration will match a URL such as /create/10, which the existing code in the
ProductEditor component will treat as though it is a request to edit the object whose id is 10. This shows
the importance of updating components when you change an application’s routing configuration, and in
Listing 22-20, I have modified the ProductEditor component to avoid this issue by examining the new
dynamic segment introduced in Listing 22-19.

Listing 22-20. Using a New Segment in the ProductEditor.vue File in the src/components Folder

...
<script>

 let unwatcher;

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },

Chapter 22 ■ UrL roUting

593

 methods: {
 async save() {
 await this.$store.dispatch("saveProductAction", this.product);
 this.$router.push("/");
 this.product = {};
 },
 selectProduct() {
 if (this.$route.params.op == "create") {
 this.editing = false;
 this.product = {};
 } else {
 let productId = this.$route.params.id;
 let selectedProduct
 = this.$store.state.products.find(p => p.id == productId);
 this.product = {};
 Object.assign(this.product, selectedProduct);
 this.editing = true;
 }
 }
 },
 created() {
 unwatcher = this.$store.watch(state => state.products,
 this.selectProduct);
 this.selectProduct();
 },
 beforeDestroy() {
 unwatcher();
 }
 }
</script>
...

As a result of the regular expressions added to the routing configuration, URLs such as /edit/apples
won’t be matched by the route that selects the ProductEditor component. Instead, the routing system will
continue working its way through the routing configuration until it reaches the catch-all route, which
performs a redirection to the application’s root URL, as shown in Figure 22-13.

Chapter 22 ■ UrL roUting

594

Creating Named Routes
If you don’t want to embed URLs into your component’s code and templates, then you can assign

your names to your routes and use these instead. The advantage of this approach is that it is easy to change
the URLs used by an application, without having to change all of the navigation elements and code in
its components, which you can see demonstrated in Chapter 23. The disadvantage is that using named
routes requires an awkward syntax. In Listing 22-21, I have added names to the routes that target the
ProductDisplay and ProductEditor components.

Listing 22-21. Naming a Route in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { name: "table", path: "/", component: ProductDisplay, alias: "/list" },
 { name: "editor", path: "/:op(create|edit)/:id(\\d+)?",
 component: ProductEditor },
 { path: "*", redirect: "/" }
]
})

The name property is used to assign a name to a route, and I have used the names table and editor.
In Listing 22-22, I have used a route’s name for navigation instead of its URL.

Figure 22-13. Using regular expressions in a route

Chapter 22 ■ UrL roUting

595

Listing 22-22. Navigating by Route Name in the ProductEditor.vue File in the src/components Folder

<template>

 <div>
 <h3 class="btn-primary text-center text-white p-2">
 {{ editing ? "Edit" : "Create"}}
 </h3>
 <div class="form-group">
 <label>ID</label>
 <input class="form-control" v-model="product.id" />
 </div>
 <div class="form-group">
 <label>Name</label>
 <input class="form-control" v-model="product.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" v-model="product.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" v-model.number="product.price" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" v-on:click="save">
 {{ editing ? "Save" : "Create" }}
 </button>
 <router-link v-bind:to="{name: 'table'}" class="btn btn-secondary">
 Cancel
 </router-link>
 </div>
 </div>

</template>

<script>

 let unwatcher;

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },
 methods: {
 async save() {
 await this.$store.dispatch("saveProductAction", this.product);
 this.$router.push({name: "table"});
 this.product = {};
 },

Chapter 22 ■ UrL roUting

596

 selectProduct() {
 if (this.$route.params.op == "create") {
 this.editing = false;
 this.product = {};
 } else {
 let productId = this.$route.params.id;
 let selectedProduct
 = this.$store.state.products.find(p => p.id == productId);
 this.product = {};
 Object.assign(this.product, selectedProduct);
 this.editing = true;
 }
 }
 },
 created() {
 unwatcher = this.$store.watch(state => state.products,
 this.selectProduct);
 this.selectProduct();
 },
 beforeDestroy() {
 unwatcher();
 }
 }
</script>

To navigate to a route by name, an object that has a name property is passed to the $router.push
method or assigned to a router-link element’s to attribute. The value of the name property is the name of
the required route, and the v-bind directive must be used to ensure that Vue.js interprets the attribute value
as a JavaScript expression.

If a route has dynamic segments, then the object that is used for navigation defines a params property
that is used to provide segment values. In Listing 22-23, I have changed the navigation element and code to
use names and provide parameter values.

Listing 22-23. Navigating with Parameters in the ProductDisplay.vue File in the src/components Folder

...
<template>
 <div>
 <table class="table table-sm table-bordered" v-bind:class="tableClass">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Category</th>
 <th>Price</th>
 <th></th>
 </tr>
 <tbody>
 <tr v-for="p in products" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td>{{ p.price }}</td>

Chapter 22 ■ UrL roUting

597

 <td>
 <router-link v-bind:to="{name: 'editor',
 params: { op: 'edit', id: p.id}}"
 v-bind:class="editClass" class="btn btn-sm">
 Edit
 </router-link>
 <button class="btn btn-sm"
 v-bind:class="deleteClass"
 v-on:click="deleteProduct(p)">
 Delete
 </button>
 </td>
 </tr>
 <tr v-if="products.length == 0">
 <td colspan="5" class="text-center">No Data</td>
 </tr>
 </tbody>
 </table>
 <div class="text-center">
 <router-link v-bind:to="{name: 'editor', params: { op: 'create'}}"
 class="btn btn-primary">
 Create New
 </router-link>
 </div>
 </div>
</template>
...

The v-bind directive is required when using a name and providing parameters with a router-link
element; otherwise, Vue.js won’t interpret the value of the to attribute as a JavaScript object and will treat
the value as a URL instead.

Dealing with Navigation Changes
When a route change requires new content, the existing component is destroyed, and an instance of the new
component is created, following the lifecycle I described in Chapter 17 and Chapter 21. When a route change
displays the same component, the Vue Router package simply reuses the existing component and notifies it that
there has been a change. To demonstrate the problem, I added new navigation features to the ProductEditor
component that allow the user to move through the objects available for editing, as shown in Listing 22-24.

Listing 22-24. Adding Navigation Features in the ProductEditor.vue File in the src/components Folder

<template>

 <div>
 <h3 class="btn-primary text-center text-white p-2">
 {{ editing ? "Edit" : "Create"}}
 </h3>
 <div class="form-group">
 <label>ID</label>
 <input class="form-control" v-model="product.id" />
 </div>

Chapter 22 ■ UrL roUting

598

 <div class="form-group">
 <label>Name</label>
 <input class="form-control" v-model="product.name" />
 </div>
 <div class="form-group">
 <label>Category</label>
 <input class="form-control" v-model="product.category" />
 </div>
 <div class="form-group">
 <label>Price</label>
 <input class="form-control" v-model.number="product.price" />
 </div>
 <div class="text-center">

 <button class="btn btn-primary" v-on:click="save">
 {{ editing ? "Save" : "Create" }}
 </button>
 <router-link to="{name: 'table'}" class="btn btn-secondary">
 Cancel
 </router-link>

 <router-link v-if="editing" v-bind:to="nextUrl" class="btn btn-info">
 Next
 </router-link>
 </div>
 </div>

</template>

<script>

 let unwatcher;

 export default {
 data: function () {
 return {
 editing: false,
 product: {}
 }
 },
 computed: {
 nextUrl() {
 if (this.product.id != null && this.$store.state.products != null) {
 let index = this.$store.state.products
 .findIndex(p => p.id == this.product.id);
 let target = index < this.$store.state.products.length - 1
 ? index + 1 : 0
 return `/edit/${this.$store.state.products[target].id}`;
 }
 return "/edit";
 }
 },

Chapter 22 ■ UrL roUting

599

 methods: {
 async save() {
 await this.$store.dispatch("saveProductAction", this.product);
 this.$router.push({name: "table"});
 this.product = {};
 },
 selectProduct(route) {
 if (route.params.op == "create") {
 this.editing = false;
 this.product = {};
 } else {
 let productId = route.params.id;
 let selectedProduct
 = this.$store.state.products.find(p => p.id == productId);
 this.product = {};
 Object.assign(this.product, selectedProduct);
 this.editing = true;
 }
 }
 },
 created() {
 unwatcher = this.$store.watch(state => state.products,
 () => this.selectProduct(this.$route));
 this.selectProduct(this.$route);
 },
 beforeDestroy() {
 unwatcher();
 },
 beforeRouteUpdate(to, from, next) {
 this.selectProduct(to);
 next();
 }
 }
</script>

I added a router-link element that is displayed when a product is edited and that navigates to the
next product in the data store. The component displayed to the user doesn’t change, which means that Vue
Router won’t destroy the existing instance of the ProductEditor component and create a new one.

Components can implement methods to receive notifications from the routing system. I describe
the full range of methods in Chapter 24, but for this chapter, it the beforeRouteUpdate method that is
important because it is called when the route is about to change without destroying the component. The
beforeRouteUpdate method defines three parameters, which are described in Table 22-6.

Chapter 22 ■ UrL roUting

600

The objects received through the to and from parameters define the same set of properties as the
$route object, as described in Table 22-5. In the listing, the implementation of the beforeRouteUpdate
method passes the to object to the selectProduct method so that the component can update its state.
Bear in mind that the active route has not yet changed, so I can’t use the $route object to respond to the
update. Once I have processed the change, I invoke the next function, which allows other components in
the application to receive the notification (this may seem like an odd requirement, but the next function can
also be used to prevent or alter navigation, which I describe in Chapter 24).

To test the routing notifications, navigate to http://localhost:8080, click one of the Edit buttons, and
then click the Next button to navigate through the product objects, as shown in Figure 22-14.

Table 22-6. The beforeRouteUpdate Parameters

Name Description

to This parameter is assigned an object that describes the route that the application is about
to navigate to.

from This parameter is assigned an object that describes the current route, which the
application is about to navigate away from.

next This parameter is assigned a function that must be invoked to allow the notification to
be processed by other components. It can also be used to take control of the navigation
process, which I describe in Chapter 24.

Figure 22-14. Responding to routing notifications

Chapter 22 ■ UrL roUting

601

Summary
In this chapter, I showed you how to select components dynamically using URL routing. I showed you
different ways to define routes, how to enable the HTML5 History API to route without URL fragments, how
to provide a catchall route, and how to name routes and creates aliases for them. I also demonstrated the
use of dynamic segments to get data from a URL and showed you how to receive notifications when a route
change will display the same component. In the next chapter, I describe the HTML elements used to manage
routing in more detail.

603© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_23

CHAPTER 23

URL Routing Element Features

In this chapter, I describe some of the features provided by the router-link and router-view elements.
I will show you how to change the way that router-link elements are processed, how to use different events
for navigation, and how to respond to route activation by changing the styles applied to navigation elements.
I’ll also show you how to use more than one router-view element in an application and how to manage two
or more router-view elements when they appear in the same template. Table 23-1 puts this chapter into
context.

Table 23-1. Putting Routing Element Features in Context

Question Answer

What are they? The router-link element provides features that control the
HTML that is generated, the events that trigger navigation, and the
classes to which the element will be added to indicate the active
route. The router-view element provides features that allow
multiple elements to exist in a single component’s template.

Why are they useful? The router-link features are useful when you need to present
navigation through nonstandard elements or when you want to
provide feedback using styles from a CSS framework. The router-
view features are useful in complex applications because they
allow more advanced compositions of content to be created.

How are they used? These features are applied using attributes on the router-link
and router-view elements, with corresponding support in the
application’s routes.

Are there any pitfalls or limitations? Care must be taken to ensure that there are suitable catchall routes
and redirections defined to ensure that the application doesn’t
present the user with an empty window or provide confusing
feedback through navigation elements.

Are there any alternatives? These features are optional, and you don’t have to use them.

Chapter 23 ■ UrL roUting eLement FeatUres

604

Table 23-2 summarizes the chapter.

Preparing for This Chapter
In this chapter, I continue using the productapp project from Chapter 23. To prepare for this chapter,
I have commented out the create method in the ProductDisplay component, as shown in Listing 23-1.
The statements in this method were used to demonstrate the use of the data store in Chapter 20 and are
not required for this chapter because they cause the data store values to be reset each time a new instance
of the ProductDisplay component is created.

Listing 23-1. Disabling a Method in the ProductDisplay.vue File in the src/components Folder

...
<script>
 import { mapState, mapMutations, mapActions, mapGetters } from "vuex";

 export default {
 computed: {
 ...mapState(["products"]),
 ...mapState({
 useStripedTable: state => state.prefs.stripedTable
 }),
 ...mapGetters({
 tableClass: "prefs/tableClass",
 editClass: "prefs/editClass",
 deleteClass: "prefs/deleteClass"
 })
 },
 methods: {
 editProduct(product) {
 this.selectProduct(product);
 this.$router.push("/edit");
 },

Table 23-2. Chapter Summary

Problem Solution Listing

Configure the elements used for
navigation

Use the attributes provided by the router-link
element

4–7

Style an element when it matches the
active URL

Define styles that select the router-link-active
and router-link-exact-active classes

8

Ensure that an element is styled only
when it exactly matches the active route

Apply the exact attribute 9

Change the classes used to indicate the
active route

Use the exact-active-class and active-class
attributes

10

Create nested routes Apply multiple router-view elements in the
application and target them with routes defined
using the children property

11–17

Chapter 23 ■ UrL roUting eLement FeatUres

605

 createNew() {
 this.selectProduct();
 this.$router.push("/edit");
 },
 ...mapMutations({
 selectProduct: "selectProduct",
 setEditButtonColor: "prefs/setEditButtonColor",
 setDeleteButtonColor: "prefs/setDeleteButtonColor"
 }),
 ...mapActions({
 deleteProduct: "deleteProductAction"
 })
 },
 //created() {
 // this.setEditButtonColor(false);
 // this.setDeleteButtonColor(false);
 //}
 }
</script>
...

To start the RESTful web service, open a command prompt and run the command shown in Listing 23-2
in the productapp folder.

Listing 23-2. Starting the Web Service

npm run json

Open a second command prompt, navigate to the productapp directory, and run the command shown
in Listing 23-3 to start the Vue.js development tools.

Listing 23-3. Starting the Development Tools

npm run serve

Once the initial bundling process is complete, open a new browser window and navigate to
http://localhost:8080, where you will see the example application, as shown in Figure 23-1.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this
book—from https://github.com/Apress/pro-vue-js-2.

https://github.com/Apress/pro-vue-js-2

Chapter 23 ■ UrL roUting eLement FeatUres

606

Working with Router-Link Elements
The router-link element is more flexible than it first appears and supports some useful options for
customizing the HTML element that it generates and for providing useful feedback to the user. To prepare
for the sections that follow, I added router-link elements to the template of the App component, as shown
in Listing 23-4.

Listing 23-4. Adding Navigation Elements in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">
 <router-link to="/list" class="m-1">List</router-link>
 <router-link to="/create" class="m-1">Create</router-link>
 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>

Figure 23-1. Running the example application

Chapter 23 ■ UrL roUting eLement FeatUres

607

<script>

 export default {
 name: 'App',
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

These router-link elements are processed as part of the component’s template and transformed into
anchor elements, as shown in Figure 23-2.

The router-link element is configured by applying the attributes described in Table 23-3, the most
useful of which I demonstrate in the sections that follow.

Figure 23-2. Navigating using router-link elements

Table 23-3. The Router Link Attributes

Name Description

tag This attribute specifies the tag type of the HTML element that will be generated
when the router-link element is transformed, as described in the “Selecting
the Element Type” section.

event This attribute specifies the event that will trigger navigation, as described in the
“Selecting the Navigation Event” section.

exact This attribute specifies whether partial URL matching will be used when
identifying the element that corresponds to the active route, as described in the
“Styling Router Link Elements” section.

active-class This attribute specifies the class that the element will be added to when the
active URL starts with the navigation target of the element, as described in the
“Styling Router Link Elements” section.

(continued)

Chapter 23 ■ UrL roUting eLement FeatUres

608

Selecting the Element Type
By default, router-link elements are transformed into anchors, which is the element with the a tag.
If you use the browser’s F12 tool to examine the Document Object Model, you can see how the router-link
elements I added in Listing 23-4 have been transformed.

...
<div class="col text-center m-2">
 List
 Create
</div>
...

 ■ Tip if you have clicked one of the a elements, you may see that it has been added to the router-link-
active and router-link-exact-active classes. i explain what these represent in the “styling router Link
elements” section.

The tag attribute can be used to choose a different element type that will be used instead of the anchors
when the router-link element is transformed. This can be useful when you want to present a series of
navigation elements in ways where a elements cannot be used or where you want to apply CSS styles where
the selectors will not match anchor elements. In Listing 23-5, I have used the tag attribute to populate a list
with navigation elements.

Name Description

exact-active-class This attribute specifies the class that the element will be added to when the
active URL matches the navigation target of the element, as described in the
“Styling Router Link Elements” section.

to This attribute specifies the navigation location and will add an entry to the
browser’s history, equivalent to the push navigation method described in
Chapter 22.

replace This attribute specifies the navigation location but will not add an entry to the
browser’s history, equivalent to the replace navigation method described in
Chapter 22.

append This attribute specifies a relative URL, which can be useful when you are
navigating using data provided by a user and you want to ensure that the
navigation is contained in a specific section of the application.

Table 23-3. (continued)

Chapter 23 ■ UrL roUting eLement FeatUres

609

Listing 23-5. Specifying Tag Type in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">

 <router-link tag="li" to="/list">List</router-link>
 <router-link tag="li" to="/create">Create</router-link>

 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>

<script>

 export default {
 name: 'App',
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

The tag attribute specifies that the router-link elements should be replaced with li elements when
the component’s template is processed. If you save the changes and use the browser’s F12 development
tools to examine the Document Object Model, you will see these elements:

...

 <li class="">List
 <li class="">Create

...

Navigation occurs when you click one of the li elements, as shown in Figure 23-3.

Chapter 23 ■ UrL roUting eLement FeatUres

610

Selecting the Navigation Event
The default navigation event is click, which means that navigation is performed when the user clicks the
element created by the router-link element. The event attribute is used to specify an alternative event,
which allows navigation to be performed in different ways. In Listing 23-6, I have used the event attribute so
that navigation will be performed when the user moves the mouse pointer over the navigation element.

 ■ Caution Users will expect navigation to occur when they click an element because that is how most web
applications work. Use the event attribute with caution because you can easily confuse your users and create
unexpected results.

Listing 23-6. Specifying the Navigation Event in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">

 <router-link tag="li" event="mouseenter" to="/list">
 List
 </router-link>
 <router-link tag="li" event="mouseenter" to="/create">
 Create
 </router-link>

 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>

Figure 23-3. Changing the navigation element type

Chapter 23 ■ UrL roUting eLement FeatUres

611

<script>

 export default {
 name: 'App',
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

The mouseenter event is triggered when the mouse pointer enters the region of the browser window
occupied by the HTML element, which means that navigation occurs without the user having to click a
mouse button.

Styling Router Link Elements
When you apply styles to router-link elements, it is important to remember you are styling the element
into which the router-link has been transformed and not the router-link element itself. In Listing 23-7, I
have added a style attribute to the App component that is used to defines styles for the navigation elements.

Listing 23-7. Styling Navigation Elements in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">

 <router-link tag="li" event="mouseenter" to="/list">
 List
 </router-link>
 <router-link tag="li" event="mouseenter" to="/create">
 Create
 </router-link>

 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>

<script>

 export default {
 name: 'App',
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

Chapter 23 ■ UrL roUting eLement FeatUres

612

<style scoped>
 router-link { text-align: right; color: yellow; background-color: red; }
 li { text-align: left; color:blue; background-color: lightblue; }
</style>

It is important to remember that it is the browser that evaluates style selectors and does so after the
router-link elements have been transformed to the element type specified by the tag attribute. For this
reason, the first style defined in Listing 23-7 won’t match any elements because there are no router-link
elements to select after the component’s template has been processed. This is a common cause of confusion,
especially when using tools that manage CSS styles automatically. The selector of the second style matches
the transformed elements and will be applied to the component’s content, as shown in Figure 23-4.

 ■ Tip You may have to reload the browser to see the new styles shown in Figure 23-4.

Responding to the Active Route
When the current URL matches the target of a navigation element, the Vue Router package adds the element
to the router-link-active and router-link-exact-active classes, which can be used to apply styles that
provide feedback to the user. In Listing 23-8, I have defined styles that use these classes in their selectors.
I have also removed the event attributes so that navigation occurs when the user clicks, and I have added
new router-link elements that navigate to the /edit and /edit/1 URLs.

Listing 23-8. Styling the Active Navigation Element in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">

 <router-link tag="li" to="/list">List</router-link>
 <router-link tag="li" to="/create">Create</router-link>

Figure 23-4. Styling navigation elements

Chapter 23 ■ UrL roUting eLement FeatUres

613

 <router-link tag="li" to="/edit">Edit</router-link>
 <router-link tag="li" to="/edit/1">Edit Kayak</router-link>

 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>

<script>

 export default {
 name: 'App',
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

<style scoped>
 li { text-align: left; color:blue; background-color: lightblue; }
 .router-link-active { font-size: xx-large; }
 .router-link-exact-active { font-weight: bolder; }
</style>

The navigation elements are automatically added and removed from the classes when the route changes.
If the target specified by the to attribute matches the current URL exactly, then the element is added to the
router-link-exact-active class, which applies the style that makes the element text bold. The element is
added to the router-link-active class if the current URL starts with the target specified by the to attribute.
You can see the difference by clicking the Edit Kayak link, which will navigate to the /edit/1 URL. The Edit
element, whose target is /edit, is added to the router-link-active class because the current URL starts with
its target: /edit/1 starts with /edit. The Edit Kayak link is added to both classes because the current URL starts
with its target and matches its target exactly. The result is that the Edit element is shown with larger text, while
the Edit Kayak link is shown with larger text that is also bold, as illustrated in Figure 23-5.

Chapter 23 ■ UrL roUting eLement FeatUres

614

Using the router-link-active classes for partial URL matches isn’t always helpful and can be disabled
by adding the exact attribute to the router-link element, as shown in Listing 23-9.

Listing 23-9. Disabling Partial URL Matching in the App.vue File in the src Folder

...
<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">

 <router-link tag="li" to="/list">List</router-link>
 <router-link tag="li" to="/create">Create</router-link>
 <router-link tag="li" to="/edit" exact>Edit</router-link>
 <router-link tag="li" to="/edit/1">Edit Kayak</router-link>

 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>
...

The exact attribute will take effect regardless of the value assigned to it, and it is the presence of the
attribute, rather than its value, that disables the partial matching feature. The attribute applied in the listing
prevents the Edit element from being added to the router-link-active class when the user has navigated
to the /edit/1 URL, as shown in Figure 23-6.

Figure 23-5. Responding to the active route classes

Chapter 23 ■ UrL roUting eLement FeatUres

615

Changing the Active Route Classes
When you are using a CSS framework, such as the Bootstrap framework that I have used throughout this
book, you will find there are often classes that are used to indicate when an element is active and that these
do not correspond to the names of the classes used by Vue Router. The active-class and exact-active-
class attributes can be used to specify the names of classes to which elements should be added when their
target matches the current URL. In Listing 23-10, I have replaced the list of navigation elements with a set of
more conventional button elements and used the active-class-exact attribute to specify the name of the
Bootstrap class used to indicate an active button. I have also removed the style element since I no longer
require custom CSS styles.

 ■ Tip You can change the classes used to indicate routes globally by using linkActiveClass and
linkExactActiveClass properties in the routing configuration object, which means you don’t have to specify
these classes on every element.

Listing 23-10. Specifying Active Class Names in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">
 <div class="btn-group">
 <router-link tag="button" to="/list"
 exact-active-class="btn-info"
 class="btn btn-primary">
 List
 </router-link>
 <router-link tag="button" to="/create"
 exact-active-class="btn-info"
 class="btn btn-primary">

Figure 23-6. Disabling partial URL mapping

Chapter 23 ■ UrL roUting eLement FeatUres

616

 Create
 </router-link>
 <router-link tag="button" to="/edit"
 exact-active-class="btn-info"
 class="btn btn-primary">
 Edit
 </router-link>
 <router-link tag="button" to="/edit/1"
 exact-active-class="btn-info"
 class="btn btn-primary">
 Edit Kayak
 </router-link>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>

<script>

 export default {
 name: 'App',
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

The new router-link elements are all assigned to the btn and btn-primary classes, which are
Bootstrap classes for styling buttons and will be assigned to the btn-info class when they represent the
active route, with the effect shown in Figure 23-7.

Figure 23-7. Changing the active route classes

Chapter 23 ■ UrL roUting eLement FeatUres

617

Creating Nested Routes
So far, the routing examples have assumed that the application has only one set of components to display
and that when one of them is selected, it will always present the same content. In complex applications, one
top-level component may need to display different child components, and to support this requirement, the
Vue Router package supports nested routes, which are also known as child routes.

Planning the Application Layout
When using nested routes, it is important to understand your objective. For the example application, I am
going to provide the user with a top level of navigation elements that allows the user to choose between the
product-related features and a component that will set the application’s preferences. Figure 23-8 shows the
application structure I intend to create.

Deciding on the set of URLs that the application will support makes creating the routes simpler. The
URLs that I am going to use in the example application are described in Table 23-4 and follow the same basic
approach that I have used in earlier examples.

Adding Components to the Project
To create the structure I require, I need to add a component to the project. First, I added a file called
Preferences.vue to the src/components folder with the content shown in Listing 23-11.

Figure 23-8. The structure of the application

Table 23-4. The URLs for the Example Application

URL Description

/products/table This URL will display the table of products.

/products/create This URL will display the editor to create a new product.

/products/edit/10 This URL will display the editor to modify the specified product.

/preferences This URL will display the preference settings.

Chapter 23 ■ UrL roUting eLement FeatUres

618

Listing 23-11. The Contents of the Preferences.vue File in the src/components Folder

<template>
 <div>
 <h4 class="bg-info text-white text-center p-2">Preferences</h4>
 <div class="form-check">
 <input class="form-check-input" type="checkbox"
 v-bind:checked="primaryEdit" v-on:input="setPrimaryEdit">
 <label class="form-check-label">Primary Color for Edit Buttons</label>
 </div>
 <div class="form-check">
 <input class="form-check-input" type="checkbox"
 v-bind:checked="dangerDelete" v-on:input="setDangerDelete">
 <label class="form-check-label">Danger Color for Delete Buttons</label>
 </div>
 </div>
</template>

<script>

 import { mapState } from "vuex";

 export default {
 computed: {
 ...mapState({
 primaryEdit: state => state.prefs.primaryEditButton,
 dangerDelete: state => state.prefs.dangerDeleteButton
 })
 },
 methods: {
 setPrimaryEdit() {
 this.$store.commit("prefs/setEditButtonColor", !this.primaryEdit);
 },
 setDangerDelete() {
 this.$store.commit("prefs/setDeleteButtonColor", !this.dangerDelete);
 }
 }
 }
</script>

This is the component that will display the preferences to the user. It presents the values of two state
properties from the data store using checkboxes and updates those values when the user toggles the
controls. These are the same data store state properties that are used to set the color of the Edit and Delete
buttons shown by the ProductDisplay component.

Next, I added a file called Products.vue to the src/components folder with the content shown in
Listing 23-12.

Listing 23-12. The Contents of the Products.vue file in the src/component Folder

<template>
 <router-view></router-view>
</template>

Chapter 23 ■ UrL roUting eLement FeatUres

619

This component contains only a template element that, in turn, contains only a router-view element.
This component will allow me to display the list of products or the editor.

Defining the Routes
With the components in place, I can define the application’s routing configuration to implement the set of
URLs described in Table 23-4, as shown in Listing 23-13.

Listing 23-13. Defining Routes in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";
import Preferences from "../components/Preferences";
import Products from "../components/Products";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/preferences", component: Preferences},
 { path: "/products", component: Products,
 children: [
 { name: "table", path: "list", component: ProductDisplay},
 { name: "editor", path: ":op(create|edit)/:id(\\d+)?",
 component: ProductEditor},
 { path: "", redirect: "list" }
]
 },
 { path: "/edit/:id", redirect: to => `/products/edit/${to.params.id}`},
 { path: "*", redirect: "/products/list" }
]
})

These routes contain a lot of information, so I am going to unpack each of them and explain how it
contributes toward the structure that I described at the start of this section. The first route follows the format
you have seen in earlier examples, shown here:

...
{ path: "/preferences", component: Preferences},
...

This route tells Vue Router to display the Preferences component when the URL is /preferences.
There are no dynamic segments, names, redirections, or other special features used in this route, and the
selected component will be displayed in the router-view element defined in the App component’s template.

Chapter 23 ■ UrL roUting eLement FeatUres

620

The next route is more complex and is best approached in steps. The first part is simple enough.

...
{ path: "/products", component: Products,
...

The path and component properties tell Vue Router that the Products component should be displayed
when the URL is /products. As with the previous route, the Products component will be displayed in
the router-view element in the App component’s template. But the Product component’s template also
contains a router-view element, for which a component must be selected, and that is the purpose of the
children property that this route defines:

...
{ path: "/products", component: Products,
 children: [
 { name: "table", path: "list", component: ProductDisplay},
 { name: "editor", path: ":op(create|edit)/:id(\\d+)?",
 component: ProductEditor},
 { path: "", redirect: "list" }
]
},
...

The children property is used to define a set of routes that will be applied to the router-view element
in the Products component’s template. The value of each child route’s path property is combined with the
path of its parent to match a URL and select a component so that the ProductDisplay component will be
selected for the /products/list URL. Child routes can include dynamic segments and regular expressions,
which you can see in the route that selects the ProductEditor component for the /create and /edit/id
URLs.

The final route in the children section is a catchall route that will perform a redirection, such that any
URL that starts with /products but is not matched by the first two routes will be redirected to /products/
list. Notice that the path for this route is an empty string, rather than an asterisk, because I want to match
URLs that don’t have a value for this segment.

Handling Old URLs
When the set of URLs supported by an existing application changes, it is important to ensure that you either
update the URLs used in components or create redirections or aliases between the old and new URLs. The
editing feature was previously accessed through the /edit/:id path but is now accessed through /products/
edit/:id. To ensure that the old URL still functions, I defined the redirection route in Listing 23-13.

...
{ path: "/edit/:id", redirect: to => `/products/edit/${to.params.id}`},
...

In Chapter 22, I created a redirection using a fixed URL. That won’t work in this situation because I need
to pass along the value of the dynamic id segment to the new route. As the listing shows, redirections can
also be expressed as a function, which receives the matched route and returns the redirection URL. In this
example, the redirection function receives the route and composes the redirection URL so that it includes
the id value.

Chapter 23 ■ UrL roUting eLement FeatUres

621

Creating the Navigation Elements
In Listing 23-14, I replaced the navigation buttons in the App component’s template with ones that target the
URLs described in Table 23-4.

Listing 23-14. Navigating to the New URLs in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">
 <div class="btn-group">
 <router-link tag="button" to="/products" active-class="btn-info"
 class="btn btn-primary">
 Products
 </router-link>
 <router-link tag="button" to="/preferences"
 active-class="btn-info" class="btn btn-primary">
 Preferences
 </router-link>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>

<script>

 export default {
 name: 'App',
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

These router-link elements will be transformed into button elements that navigate to the /products
and /preferences URLs and that are styled using the Bootstrap btn and btn-primary classes, which apply
basic button styles in the primary color of the Bootstrap color scheme.

To indicate when the button represents the active route, I add the elements to the btn-info class, which
applies a different Bootstrap color to the button, using the active-class attribute.

Chapter 23 ■ UrL roUting eLement FeatUres

622

Testing the Nested Routes
All the changes required to support the nested router-view element are in place. You can see the effect
by navigating to http://localhost:8080 and using the Products and Preferences button to change the
content of the router-view element in the template of the App component, which produces the results
shown in Figure 23-9.

To see the nested router-view element in action, click the Products button and then click one of the
Edit buttons shown in the table. The component displayed by the router-view element in the Products
component will change to show the editor, and you can return to the table view by clicking the Save or
Cancel button, as shown in Figure 23-10.

Figure 23-9. Selecting components for the top-level router-view element

Chapter 23 ■ UrL roUting eLement FeatUres

623

Notice that the router-link elements and code that uses named routes automatically target URLs
that work with the new routes. When I defined the routes in Listing 23-13, I applied the names I defined in
Chapter 22 to corresponding routes in the new configuration.

...
{ path: "/products", component: Products,
 children: [
 { name: "table", path: "list", component: ProductDisplay},
 { name: "editor", path: ":op(create|edit)/:id(\\d+)?",
 component: ProductEditor},
 { path: "", redirect: "list" }
]
},
...

When router-link elements that use named routes are processed, the result is a URL that will target
the specified route, and this means that names keep working even when the routes they relate to change.
You can see this in the Edit buttons that are presented in the table view, which are created with this
router-link element:

...
<router-link v-bind:to="{name: 'editor', params: { op: 'edit', id: p.id}}"
 v-bind:class="editClass" class="btn btn-sm">
 Edit
</router-link>
...

Figure 23-10. Selecting components for the nested router-view element

Chapter 23 ■ UrL roUting eLement FeatUres

624

The to attribute is set using a name, which specifies the editor route. When this element is processed,
the result is an anchor element whose target corresponds to the named route, like this:

...

 Edit

...

Working with named routes can require awkward code and HTML, but the result can be a more flexible
and robust application that adapts to changes in its routing configuration without requiring corresponding
changes in its components.

Using Named Router-View Elements
Some components need multiple router-view elements in the same template so that two or more child
components can be selected dynamically. The name attribute is used to differentiate between router-view
elements when they are in the same template, and these names are then used in the routes to select the
components that will be displayed.

To help demonstrate this feature, I created a new component by adding a file called SideBySide.vue in
the src/components folder with the content shown in Listing 23-15.

Listing 23-15. The Contents of the SideBySide.vue File in the src/components Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">
 <h3 class="bg-secondary text-white text-center p-2">Left View</h3>
 <router-view name="left" class="border border-secondary p-2" />
 </div>
 <div class="col text-center m-2">
 <h3 class="bg-secondary text-white text-center p-2">Right View</h3>
 <router-view name="right" class="border border-secondary p-2" />
 </div>
 </div>
 </div>
</template>

This component has a template element that contains two router-view elements, which are
differentiated using the name attribute so that one is named left and the other is named right. The
Bootstrap classes and the structural elements will present the user with contents of the router-view
elements side by side. To target the new router-view elements, I am going to add support for the URLs
described in Table 23-5.

Chapter 23 ■ UrL roUting eLement FeatUres

625

To target these URLs, I added the navigation elements shown in Listing 23-16 to the top-level App
component’s template.

Listing 23-16. Adding Navigation Elements in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">
 <div class="btn-group">
 <router-link tag="button" to="/products"
 active-class="btn-info" class="btn btn-primary">
 Products
 </router-link>
 <router-link tag="button" to="/preferences"
 active-class="btn-info" class="btn btn-primary">
 Preferences
 </router-link>
 <router-link to="/named/tableleft" class="btn btn-primary"
 active-class="btn-info">
 Table Left
 </router-link>
 <router-link to="/named/tableright" class="btn btn-primary"
 active-class="btn-info">
 Table Right
 </router-link>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>

Table 23-5. The URLs for the Named Router View Elements

URL Description

/named/tableleft This URL will display the table of products in the left element and the editor
in the right element.

/named/tableright This URL will display the table of products in the right element and the editor
in the left element.

Chapter 23 ■ UrL roUting eLement FeatUres

626

<script>

 export default {
 name: 'App',
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

To complete the support for the new URLs and target the named router-view elements, I created the
routes shown in Listing 23-17.

Listing 23-17. Adding Routes in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";
import Preferences from "../components/Preferences";
import Products from "../components/Products";
import SideBySide from "../components/SideBySide";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 { path: "/preferences", component: Preferences},
 { path: "/products", component: Products,
 children: [
 { name: "table", path: "list", component: ProductDisplay},
 { name: "editor", path: ":op(create|edit)/:id(\\d+)?",
 component: ProductEditor},
 { path: "", redirect: "list" }
]
 },
 { path: "/edit/:id", redirect: to => `/products/edit/${to.params.id}`},

 { path: "/named", component: SideBySide,
 children:[
 { path: "tableleft",
 components: {
 left: ProductDisplay,
 right: ProductEditor
 }
 },
 { path: "tableright",
 components: {
 left: ProductEditor,
 right: ProductDisplay

Chapter 23 ■ UrL roUting eLement FeatUres

627

 }
 }
]
 },
 { path: "*", redirect: "/products" }
]
})

The components property is used when defining routes that target named router-view elements. This
property is assigned an object whose properties are the names of the router-view elements and whose
values are the component that should be displayed, like this:

...
{ path: "tableleft",
 components: {
 left: ProductDisplay,
 right: ProductEditor
 }
},
...

The components property tells the Vue Router package to display ProductComponent in the router-view
element named left and the ProductEditor component in the router-view element named right.

 ■ Note the property that targets named elements is components (plural) and not the component (singular)
property used in the other routes in Listing 23-17.

To see the result, navigate to http://localhost:8080 and click the Table Left and Table Right buttons,
which target the URLs for the routes defined in Listing 23-17, producing the result shown in Figure 23-11.

Chapter 23 ■ UrL roUting eLement FeatUres

628

Summary
In this chapter, I described some of the advanced features that are available when using use URL routing
in a Vue.js application. I explained how the router-link element can be configured to produce different
HTML elements and respond to different events and how to style navigation elements to provide feedback
to the user. For the router-view element, I showed you how to use nested routes so that an application can
contain more than element and how to name those elements when they are defined in the same template. In
the next chapter, I describe the advanced URL routing features.

Figure 23-11. Using named router-view elements

629© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_24

CHAPTER 24

Advanced URL Routing

In this chapter, I describe the more advanced URL routing features. I start by showing you how to structure
a complex routing configuration using multiple files, how to use router guards to control navigation, and
how to lazily load components when they are selected by a route. I finish this chapter by showing you how
to work with components that have not been written to work with the Vue Router package. Table 24-1
summarizes the chapter.

Preparing for This Chapter
In this chapter, I continue using the productapp project from Chapter 23. No changes are required for this
chapter. To start the RESTful web service, open a command prompt and run the command shown in
Listing 24-1 in the productapp folder.

Listing 24-1. Starting the Web Service

npm run json

Open a second command prompt, navigate to the productapp directory, and run the command shown
in Listing 24-2 to start the Vue.js development tools.

Table 24-1. Chapter Summary

Problem Solution Listing

Group related routes Define separate modules for each group of routes 3–5

Inspect and intercept navigation Use a route guard 6, 9–11

Change the target of navigation Supply a replacement URL in the route guard’s
next function

7, 8

Access a component before navigation is
complete

Use the callback feature in the beforeRouteEnter
guard method

12–15

Lazily load components Use dynamic dependencies for components 16–21

Use components that are unware of the
routing system

Use the props feature when defining routes 22–23

Chapter 24 ■ advanCed UrL roUting

630

Listing 24-2. Starting the Development Tools

npm run serve

Once the initial bundling process is complete, open a new browser window and navigate to
http://localhost:8080, where you will see the example application, as shown in Figure 24-1.

 ■ Tip You can download the example project for this chapter—and for all the other chapters in this book—
from https://github.com/Apress/pro-vue-js-2.

Using Separate Files for Related Routes
As the number of URLs supported by an application increases, it becomes more difficult to keep track of the
routes and the part of the application they support. Additional JavaScript files can be used to group related
routes, which can then be imported into the main routing configuration.

There is no hard-and-fast way to group routes, and the approach that I am going to take in this chapter
is to separate the routes that deal with the side-by-side presentation of components using named router-
view elements from those that deal with the basic functionality presented by the rest of the application. I
added a file called basicRoutes.js in the src/router folder and added the code shown in Listing 24-3.

Figure 24-1. Running the example application

https://github.com/Apress/pro-vue-js-2

Chapter 24 ■ advanCed UrL roUting

631

Listing 24-3. The Contents of the basicRoutes.js File in the src/router Folder

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";
import Preferences from "../components/Preferences";
import Products from "../components/Products";

export default [

 { path: "/preferences", component: Preferences },
 { path: "/products", component: Products,
 children: [{ name: "table", path: "list", component: ProductDisplay },
 { name: "editor", path: ":op(create|edit)/:id(\\d+)?",
 component: ProductEditor
 },
 { path: "", redirect: "list" }]
 },
 { path: "/edit/:id", redirect: to => `/products/edit/${to.params.id}` },
]

This file exports an array of routes that deal with the basic URLs supported by the application. Next, I
added a file called sideBySideRoutes.js in the src/router folder and added the code shown in Listing 24-4.

Listing 24-4. The Contents of the sideBySideRoutes.js File in the src/router Folder

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";
import SideBySide from "../components/SideBySide";

export default {

 path: "/named", component: SideBySide,
 children: [
 { path: "tableleft",
 components: { left: ProductDisplay, right: ProductEditor }
 },
 { path: "tableright",
 components: { left: ProductEditor, right: ProductDisplay }
 }
]
}

Moving these groups of routes into dedicated files allows me to simplify the index.js file, as
shown in Listing 24-5, which shows how I have imported the routes defined in the basicRoutes.js and
sideBySideRoutes.js files.

Listing 24-5. Importing Routes in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

//import ProductDisplay from "../components/ProductDisplay";

Chapter 24 ■ advanCed UrL roUting

632

//import ProductEditor from "../components/ProductEditor";
//import Preferences from "../components/Preferences";
//import Products from "../components/Products";
//import SideBySide from "../components/SideBySide";

import BasicRoutes from "./basicRoutes";
import SideBySideRoutes from "./sideBySideRoutes";

Vue.use(VueRouter);

export default new VueRouter({
 mode: "history",
 routes: [
 ...BasicRoutes,
 SideBySideRoutes,
 { path: "*", redirect: "/products" }
]
})

I import the contents of each file using an import statement and give the contents a name that I use in
the routes property. The basicRoutes.js file exports an array, which must be unpacked using the spread
operator, which I described in Chapter 4. The sideBySideRoutes.js file exports a single object and can be
used without the spread operator. There is no visible change to the way that the application functions, but
the routing configuration has been broken up, which will make managing related routes simpler.

Guarding Routes
One drawback of allowing the user to navigate around the application using URLs is they may try to access
parts of the application under undesirable circumstances, such as accessing administration features when
they are unauthenticated or accessing editing features before the data has been loaded from the server.
Navigation guards control access to routes, and they can respond to an attempt at navigation by redirecting it
to another URL or canceling the navigation completely. Navigation guards can be applied in different ways,
as I explain in the sections that follow.

Defining Global Navigation Guards
Global navigation guards are methods that are defined as part of the routing configuration and are used to
control access to all of the routes in the application. There are three global navigation guard methods that
are used to register functions to control navigation, as described in Table 24-2.

Table 24-2. The Global Navigation Guard Methods

Name Description

beforeEach This method is called before the active route is changed.

afterEach This method is called after the active route is changed.

beforeResolve This method is similar to beforeEach, but it is called after all the route-specific and
component guards, which I describe in the next section, have been checked, as
described in the “Understanding Guard Ordering” section.

Chapter 24 ■ advanCed UrL roUting

633

Each of these methods is called on the VueRouter object and accepts a function that is invoked during
navigation. This is easier to explain with an example, and in Listing 24-6, I have used the beforeEach method
to prevent navigation from routes whose path starts with /named to the /preferences URL.

Listing 24-6. Guarding a Route in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import BasicRoutes from "./basicRoutes";
import SideBySideRoutes from "./sideBySideRoutes";

Vue.use(VueRouter);

const router = new VueRouter({
 mode: "history",
 routes: [
 ...BasicRoutes,
 SideBySideRoutes,
 { path: "*", redirect: "/products" }
]
});

export default router;

router.beforeEach((to, from, next) => {
 if (to.path == "/preferences" && from.path.startsWith("/named")) {
 next(false);
 } else {
 next();
 }
});

The global route guards are the most flexible type of guard because they can be used to intercept all
navigation, but they are awkward to set up, as Listing 24-6 shows. The VueRouter object is created with the
new keyword, and then the function you want to be invoked is passed to the corresponding method from
Table 24-2. In this example, I have passed a function to the beforeEach method, which means it will be
invoked before each navigation attempt.

The function receives three arguments. The first two arguments are objects that represent the route
that the application is navigating to and the route that the application is about to navigate away from. These
objects define the properties I described in Chapter 22, and I use their path properties in the listing to check
to see whether the application is navigating to /preferences from /named.

The third argument is a function that is invoked to accept, redirect, or cancel the navigation and
will pass on the navigation requests to the next route guard for processing, which is why this argument is
usually called next. The different outcomes are specified by passing different arguments to the function, as
described in Table 24-3.

Chapter 24 ■ advanCed UrL roUting

634

In the listing, I pass the next function false if the current URL starts with /named and the target URL is /
preferences, which cancels the navigation request. For all other navigation, I call the next method without
an argument, which allows the navigation to proceed.

 ■ Caution You must remember to call the next function in your guards. there can be multiple guards defined in
an application, and they won’t be invoked if you forget to call the function, which can lead to unexpected results.

Redirecting the Navigation Request to Another URL
An alternative to canceling navigation is to redirect it to another URL. In Listing 24-7, I have added an additional
guard function that intercepts requests for the /named/tableright URL and redirects them to /products.

 ■ Tip When there are multiple global guard functions, they are executed in the order in which they are
passed to the beforeEach or beforeAfter method.

Listing 24-7. Defining Another Guard in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import BasicRoutes from "./basicRoutes";
import SideBySideRoutes from "./sideBySideRoutes";

Vue.use(VueRouter);

const router = new VueRouter({
 mode: "history",
 routes: [
 ...BasicRoutes,

Table 24-3. Uses of the Next Function for Navigation Guards

Method Use Description

next() When the function is invoked with no arguments, navigation will proceed.

next(false) When the function is passed false as its argument, navigation will be canceled.

next(url) When the function is passed a string, it is interpreted as a URL and becomes the new
navigation target.

next(object) When the function is passed an object, it is interpreted as the new navigation target,
which is useful for selecting routes by name, as shown in the “Redirecting to a
Named Route” section.

next(callback) This is a special version of the next function that can be used in only one situation,
as described in the “Accessing the Component in the beforeRouteEnter Method”
section, and that is not otherwise supported.

Chapter 24 ■ advanCed UrL roUting

635

 SideBySideRoutes,
 { path: "*", redirect: "/products" }
]
});

export default router;

router.beforeEach((to, from, next) => {
 if (to.path == "/preferences" && from.path.startsWith("/named")) {
 next(false);
 } else {
 next();
 }
});

router.beforeEach((to, from, next) => {
 if (to.path == "/named/tableright") {
 next("/products");
 } else {
 next();
 }
});

I could have implemented this check in the existing guard function, but I wanted to demonstrate
support for multiple guards, which can be a useful way of grouping related checks in complex applications.
To see the effect of the redirection, navigate to http://localhost:8080/preferences and then click the
Table Right button. Instead of showing the components side by side, the application navigates to the
/products URL, as shown in Figure 24-2.

Figure 24-2. Redirecting navigation with a route guard

Chapter 24 ■ advanCed UrL roUting

636

 ■ Tip When you perform a redirection in a route guard, a new navigation request is started and invokes all
of the guard functions again. For this reason, it is important not to create a redirection loop where two guard
functions cause the application to bounce between the same two UrLs.

Redirecting to a Named Route
If you want to redirect a navigation request to a named route, then you can pass an object that has a name
property to the next function, as shown in Listing 24-8.

Listing 24-8. Redirecting to a Named Route in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import BasicRoutes from "./basicRoutes";
import SideBySideRoutes from "./sideBySideRoutes";

Vue.use(VueRouter);

const router = new VueRouter({
 mode: "history",
 routes: [
 ...BasicRoutes,
 SideBySideRoutes,
 { path: "*", redirect: "/products" }
]
});

export default router;

router.beforeEach((to, from, next) => {
 if (to.path == "/preferences" && from.path.startsWith("/named")) {
 next(false);
 } else {
 next();
 }
});

router.beforeEach((to, from, next) => {
 if (to.path == "/named/tableright") {
 next({ name: "editor", params: { op: "edit", id: 1 } });
 } else {
 next();
 }
});

In the listing, I used the next function to redirect the navigation to the route named editor, with the
effect shown in Figure 24-3.

Chapter 24 ■ advanCed UrL roUting

637

Defining Route-Specific Guards
Individual routes can implement their own guards, which can offer a more natural way to manage
navigation. The only one-guard method available for use directly in routes is beforeEnter, and I have used it
in Listing 24-9 to guard two routes.

Listing 24-9. Guarding Individual Routes in the sideBySideRoutes.js File in the src/router Folder

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";
import SideBySide from "../components/SideBySide";

export default {

 path: "/named", component: SideBySide,
 children: [
 {
 path: "tableleft",
 components: { left: ProductDisplay, right: ProductEditor }
 },
 {
 path: "tableright",
 components: { left: ProductEditor, right: ProductDisplay },
 beforeEnter: (to, from, next) => {
 next("/products/list");
 }
 }
],

Figure 24-3. Redirecting navigation to a named route

Chapter 24 ■ advanCed UrL roUting

638

 beforeEnter: (to, from, next) => {
 if (to.path == "/named/tableleft") {
 next("/preferences");
 } else {
 next();
 }
 }
}

When using nested routes, you can guard the parent and individual children. In the listing, I have added
a guard to the parent routes that redirects requests for /named/tableleft to /preferences, which you can
test by clicking the application’s Table Left button, as shown in Figure 24-4.

Understanding Guard Ordering
In Listing 24-9, I added a guard to one of the child routes that redirects requests for /named/tableright to /
products/list. But if you click the Table Right button, you will see that this guard doesn’t have the intended
effect.

This happens because the global route guards are executed before the route-specific ones, and one of the
global guards is already redirecting requests for /named/tableright. When a guard performs a redirection,
the processing of the current route change is abandoned, and a new navigation begins, meaning that any
guards that would be executed after the one that performs the redirection won’t be able to inspect the request.

As noted in Table 24-2, the global beforeResolve method is executed after all the other types of guard,
which is a useful way to define a global guard as a final check after the route-specific guards have been
checked. In Listing 24-10, I have used the beforeResolve method to change the guard function that was
blocking the route guard defined in Listing 24-9.

Listing 24-10. Changing a Guard in the index.js File in the src/router Folder

import Vue from "vue";
import VueRouter from "vue-router";

import BasicRoutes from "./basicRoutes";
import SideBySideRoutes from "./sideBySideRoutes";

Vue.use(VueRouter);

Figure 24-4. Guarding a single route

Chapter 24 ■ advanCed UrL roUting

639

const router = new VueRouter({
 mode: "history",
 routes: [
 ...BasicRoutes,
 SideBySideRoutes,
 { path: "*", redirect: "/products" }
]
});

export default router;

router.beforeEach((to, from, next) => {
 if (to.path == "/preferences" && from.path.startsWith("/named")) {
 next(false);
 } else {
 next();
 }
});

router.beforeResolve((to, from, next) => {
 if (to.path == "/named/tableright") {
 next({ name: "editor", params: { op: "edit", id: 1} });
 } else {
 next();
 }
})

In real projects, this would be a useful change to make only if there were a set of URLs for which the
route-specific guard would not intercept, but you can see the effect of the timing change by clicking the Table
Right button. The application will start navigating to /named/tableright, which will be intercepted by the
route-specific guard, which redirects the application to /products/list instead, as shown in Figure 24-5.

Figure 24-5. The effect of route guard ordering

Chapter 24 ■ advanCed UrL roUting

640

Defining Component Route Guards
In Chapter 22, I used the beforeRouteUpdate method in the ProductEditor component to respond to route
changes, like this:

...
beforeRouteUpdate(to, from, next) {
 this.selectProduct(to);
 next();
}
...

This is one of the route guard methods that components can implement to participate in guarding
the routes that select them to be displayed. The use of the beforeRouteUpdate method to receive a change
notification is a useful technique, but this method forms part of the set of the component guard methods,
which are described in Table 24-4.

These methods receive the same three arguments as the other guards and can be used to accept,
redirect, or cancel navigation. In Listing 24-11, I have implemented the beforeRouterLeave method to ask
the user to confirm navigation when the route is about to change.

Listing 24-11. Route Guarding in the Preferences.vue File in the src/components Folder

<template>
 <div>
 <div v-if="displayWarning" class="text-center m-2">
 <h5 class="bg-danger text-white p-2">
 Are you sure?
 </h5>
 <button class="btn btn-danger" v-on:click="doNavigation">
 Yes
 </button>
 <button class="btn btn-danger" v-on:click="cancelNavigation">
 Cancel
 </button>
 </div>
 <h4 class="bg-info text-white text-center p-2">Preferences</h4>
 <div class="form-check">

Table 24-4. The Component Guard Methods

Name Description

beforeRouteEnter This method is called before the component that has been selected by the target
route is confirmed, and it is used to control access to routes before they lead
to components being created. A specific technique is required to access the
component in this method, as described in the “Accessing the Component in the
beforeRouteEnter Method” section.

beforeRouteUpdate This method is called when the route that has selected the current component
changes, and this component has also been selected by the new route.

beforeRouteLeave This method is called when the application is about to navigate away from the
route that has selected the current component.

Chapter 24 ■ advanCed UrL roUting

641

 <input class="form-check-input" type="checkbox"
 v-bind:checked="primaryEdit" v-on:input="setPrimaryEdit">
 <label class="form-check-label">Primary Color for Edit Buttons</label>
 </div>
 <div class="form-check">
 <input class="form-check-input" type="checkbox"
 v-bind:checked="dangerDelete" v-on:input="setDangerDelete">
 <label class="form-check-label">Danger Color for Delete Buttons</label>
 </div>
 </div>
</template>

<script>

 import { mapState } from "vuex";

 export default {
 data: function() {
 return {
 displayWarning: false,
 navigationApproved: false,
 targetRoute: null
 }
 },
 computed: {
 ...mapState({
 primaryEdit: state => state.prefs.primaryEditButton,
 dangerDelete: state => state.prefs.dangerDeleteButton
 })
 },
 methods: {
 setPrimaryEdit() {
 this.$store.commit("prefs/setEditButtonColor", !this.primaryEdit);
 },
 setDangerDelete() {
 this.$store.commit("prefs/setDeleteButtonColor", !this.dangerDelete);
 },
 doNavigation() {
 this.navigationApproved = true;
 this.$router.push(this.targetRoute.path);
 },
 cancelNavigation() {
 this.navigationApproved = false;
 this.displayWarning = false;
 }
 },
 beforeRouteLeave(to, from, next) {
 if (this.navigationApproved) {
 next();
 } else {
 this.targetRoute = to;
 this.displayWarning = true;

Chapter 24 ■ advanCed UrL roUting

642

 next(false);
 }
 }
 }
</script>

The beforeRouteLeave method is invoked when the application is going to navigate to a route that will
display a different component. In this example, I prompt the user for confirmation and prevent navigation
until it is received. To see the effect, click the Preferences button and then click the Products button. The
route guard will prevent navigation until you click the Yes button, as shown in Figure 24-6.

Accessing the Component in the beforeRouteEnter Method
The beforeRouteEnter method is invoked before the component is created, which ensures that
navigation can be canceled before the component lifecycle begins. This can cause a problem if you want
to use this method to perform a task that requires access to the component’s properties and methods,
such as requesting data from a web service. To address this limitation, the next function passed to the
beforeRouteEnter method can accept a callback function that is invoked once the component has
been created, which allows the beforeRouteEnter method to access the component but only once the
opportunity to cancel or redirect the navigation has passed. To demonstrate, I created a component that
uses the beforeRouteEnter method to access a method defined by the component by adding a file called
FilteredData.vue in the src/component folder with the contents shown in Listing 24-12.

Figure 24-6. Using a component route guard

Chapter 24 ■ advanCed UrL roUting

643

Listing 24-12. The Contents of the FilteredData.vue File in the src/components Folder

<template>
 <div>
 <h3 class="bg-primary text-center text-white p-2">
 Data for {{ category }}
 </h3>

 <div class="text-center m-2">
 <label>Category:</label>
 <select v-model="category">
 <option>All</option>
 <option>Watersports</option>
 <option>Soccer</option>
 <option>Chess</option>
 </select>
 </div>

 <h3 v-if="loading" class="bg-info text-white text-center p-2">
 Loading Data...
 </h3>

 <table v-else class="table table-sm table-bordered">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Category</th>
 <th>Price</th>
 </tr>
 <tbody>
 <tr v-for="p in data" v-bind:key="p.id">
 <td>{{ p.id }}</td>
 <td>{{ p.name }}</td>
 <td>{{ p.category }}</td>
 <td>{{ p.price }}</td>
 </tr>
 </tbody>
 </table>
 </div>
</template>

<script>

 import Axios from "axios";

 const baseUrl = "http://localhost:3500/products/";

 export default {
 data: function () {
 return {
 loading: true,
 data: [],

Chapter 24 ■ advanCed UrL roUting

644

 category: "All"
 }
 },
 methods: {
 async getData(route) {
 if (route.params != null && route.params.category != null) {
 this.category = route.params.category;
 } else {
 this.category = "All";
 }
 let url = baseUrl
 + (this.category == "All" ? "" : `?category=${this.category}`);
 this.data.push(...(await Axios.get(url)).data);
 this.loading = false;
 }
 },
 watch: {
 category() {
 this.$router.push(`/filter/${this.category}`);
 }
 },
 async beforeRouteEnter(to, from, next) {
 next(async component => await component.getData(to));
 },
 async beforeRouteUpdate(to, from, next) {
 this.data.splice(0, this.data.length);
 await this.getData(to);
 next();
 }
 }
</script>

This component allows the user to filter product data by category, which is retrieved fresh from the web
service each time, which is requested using Axios, which is described in Chapter 19. (For simplicity, I have used
Axios directly and store the data in the component, rather than modify the repository and the data store.)

This component presents the user with a select element to choose the category that is used to filter
the data. When the select element is used, the category property is modified, which causes the watcher
to perform a navigation to a URL that includes the category name, so selecting the Soccer category, for
example, will navigate to the /filter/Soccer URL.

The component implements two of the component route guard methods, both of which are used to invoke
the component’s asynchronous getData method, which accepts a route object and uses it to get the appropriate
data from the web service. The json-server package that I added in Chapter 19 supports filtering data, so a
request for http://localhost:3500/products?category=Soccer, for example, will return only those objects
whose category property is Soccer. One of the route guard methods is easy to understand, as shown here:

...
async beforeRouteUpdate(to, from, next) {
 this.data.splice(0, this.data.length);
 await this.getData(to);
 next();
}
...

Chapter 24 ■ advanCed UrL roUting

645

This is the pattern of working with components that I have used throughout this book, which uses this
to refer to the component object, so this.getData is used to invoke the getData method defined by the
component, for example. Achieving the same effect in the beforeRouteEnter method requires a different
approach.

...
async beforeRouteEnter(to, from, next) {
 next(component => component.getData(to));
},
...

The beforeRouteEnter method is invoked before the component is created and its regular lifecycle
begins, which means that this cannot be used to access the component. Instead, the next method can
be passed a function that will be invoked once the component has been created and that receives the
component object as its argument. In the listing, I use the next function to invoke the getData method on
the component once it has been created.

This may seem like an oddly complex approach to requesting data, which could as easily be done using
the created method as part of the component’s lifecycle, which I described in Chapter 17. The reason that
the beforeRouteEnter method is useful is that it allows for navigation to be canceled before the component
is created, which is something that cannot be done in the created method, which is invoked only after
navigation has been completed and the component has already been created. To demonstrate, I added a
check in the beforeRouteEnter method that will redirect navigation if the user has specified a category value
other than All in the URL, as shown in Listing 24-13.

Listing 24-13. Guarding a Component in the FilteredData.vue File in the src/components Folder

...
async beforeRouteEnter(to, from, next) {
 if (to.params.category != "All") {
 next("/filter/All");
 } else {
 next(async component => await component.getData(to));
 }
},
...

The method redirects any attempts to navigate to a URL that displays the component unless that URL targets
the All category, which requests all the data from the server. Once the component is displayed, navigation to
other components is permitted because those changes are guarded by the beforeRouteUpdate method.

This is an example that is more readily understood when you can see it working. To add support for the
new component, I added the statements shown in Listing 24-14 to the set of basic routes.

Listing 24-14. Adding a Route in the basicRoutes.js File in the src/router Folder

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";
import Preferences from "../components/Preferences";
import Products from "../components/Products";
import FilteredData from "../components/FilteredData";

export default [

Chapter 24 ■ advanCed UrL roUting

646

 { path: "/preferences", component: Preferences },
 {
 path: "/products", component: Products,
 children: [{ name: "table", path: "list", component: ProductDisplay },
 {
 name: "editor", path: ":op(create|edit)/:id(\\d+)?",
 component: ProductEditor
 },
 { path: "", redirect: "list" }]
 },
 { path: "/edit/:id", redirect: to => `/products/edit/${to.params.id}` },
 { path: "/filter/:category", component: FilteredData }
]

To make it easy to navigate to the new route, I added the navigation element shown in Listing 24-15 to
the top-level App component’s template.

Listing 24-15. Adding a Navigation Element in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">
 <div class="btn-group">
 <router-link tag="button" to="/products"
 active-class="btn-info" class="btn btn-primary">
 Products
 </router-link>
 <router-link tag="button" to="/preferences"
 active-class="btn-info" class="btn btn-primary">
 Preferences
 </router-link>
 <router-link to="/named/tableleft" class="btn btn-primary"
 active-class="btn-info">
 Table Left
 </router-link>
 <router-link to="/named/tableright" class="btn btn-primary"
 active-class="btn-info">
 Table Right
 </router-link>
 <router-link to="/filter/All" class="btn btn-primary"
 active-class="btn-info">
 Filtered Data
 </router-link>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <router-view></router-view>
 </div>
 </div>

Chapter 24 ■ advanCed UrL roUting

647

 </div>
</template>

<script>

 export default {
 name: 'App',
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

The result is a new button element that navigates to a route that selects the FilteredData component.
The route guard method will allow navigation only when the category dynamic segment is All and will
redirect other requests. Once the component has been displayed, picking a difference component using the
select element will navigate to a URL that is guarded by the beforeRouteUpdate method, which responds to
the route change by getting the data in the specified category, as shown in Figure 24-7.

DEVELOPING WITH COMPONENT ROUTE GUARDS

Working with component route guards can be difficult. the vue.js development tools dynamically update
the application, but this happens in a way that doesn’t correctly trigger the route guard methods, and
you may have to reload the browser window to see your route guards working.

Similarly, when the browser and the web service are both running on the same development
workstation, the response from the web service can be so quick that you don’t have a chance to see
the feedback that the component presents to the user while waiting for data. if you want to slow down
the data loading so you can see how the component behaves while waiting for data, then add this
statement before making the http request:

...
await new Promise(resolve => setTimeout(resolve, 3000));
...

Figure 24-7. Accessing a component object in the route guard

Chapter 24 ■ advanCed UrL roUting

648

For the component in Listing 24-15, for example, this statement would be inserted into the getData
method immediately before the statement that uses axios to send the http request and will introduce a
three-second pause before sending the request.

Loading Components on Demand
The components required by a route can be excluded from the application’s JavaScript bundle and loaded
only when required, using the same basic features that I described in Chapter 21. When using URL routing,
only the basic lazy loading feature is supported, and the configuration options, such as loading or delay, are
ignored (however, I demonstrate how to display a loading message using route guards in the next section).
In Listing 24-16, I have changed the statement that imports the FilteredData component so that it is lazily
loaded.

Listing 24-16. Lazily Loading a Component in the basicRoutes.js File in the src/router Folder

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";
import Preferences from "../components/Preferences";
import Products from "../components/Products";

const FilteredData = () => import("../components/FilteredData");

export default [

 { path: "/preferences", component: Preferences },
 {
 path: "/products", component: Products,
 children: [{ name: "table", path: "list", component: ProductDisplay },
 {
 name: "editor", path: ":op(create|edit)/:id(\\d+)?",
 component: ProductEditor
 },
 { path: "", redirect: "list" }]
 },
 { path: "/edit/:id", redirect: to => `/products/edit/${to.params.id}` },
 { path: "/filter/:category", component: FilteredData }
]

This is the import function that I used in Chapter 21, and it has the same effect. The FilteredData
component is excluded from the main application JavaScript bundle and is placed in its own bundle that is
loaded the first time it is required.

To ensure that the FilteredData is being loaded only when it is required, navigate to http://
localhost:8080 and open the browser’s F12 developer’s tools to the Network tab. In the main browser
window, click the Filtered Data button, and you will see that an HTTP request is sent to the server for a
file named 0.js, as shown in Figure 24-8. (You may see a different file name in the request, but that isn’t
important.)

Chapter 24 ■ advanCed UrL roUting

649

During the build process, two separate bundles of JavaScript code have been created. The app.js file
contains the main part of the application, and the 0.js file contains just the FilteredData component. (The
other requests shown by the F12 tools are the initial HTTP request, requests for data from the web service,
and the connection back to the server that the development tools use to update the browser.)

 ■ Tip the lazy loading feature for UrL routing will provide prefetch hints by default. See Chapter 21 for
details and the configuration instructions for disabling this feature.

Displaying a Component Loading Message
At the time of writing, the features described in Chapter 21 to display a loading or error component are not
supported by the Vue Router package. To create a comparable feature, I am going to combine a data store
property with router guards to display a message to the user while lazily loading a component. To start, I
added a property to the data store that will indicate when a component is being loaded and a mutation to
change its value, as shown in Listing 24-17.

Listing 24-17. Adding a Data Property and Mutation in the index.js File in the src/store Folder

import Vue from "vue";
import Vuex from "vuex";
import Axios from "axios";

import PrefsModule from "./preferences";
import NavModule from "./navigation";

Vue.use(Vuex);

const baseUrl = "http://localhost:3500/products/";

Figure 24-8. Lazily loading a component

Chapter 24 ■ advanCed UrL roUting

650

export default new Vuex.Store({
 modules: {
 prefs: PrefsModule,
 nav: NavModule
 },
 state: {
 products: [],
 selectedProduct: null,
 componentLoading: false
 },
 mutations: {
 setComponentLoading(currentState, value) {
 currentState.componentLoading = value;
 },
 saveProduct(currentState, product) {
 let index = currentState.products.findIndex(p => p.id == product.id);
 if (index == -1) {
 currentState.products.push(product);
 } else {
 Vue.set(currentState.products, index, product);
 }
 },

 // ...other data store features omitted for brevity...

 }
})

To indicate when a component is being loaded, I added the elements shown in Listing 24-18 to the App
component’s template, along with a mapping to the data store property created in Listing 24-17.

Listing 24-18. Displaying a Loading Message in the App.vue File in the src Folder

<template>
 <div class="container-fluid">
 <div class="row">
 <div class="col text-center m-2">
 <div class="btn-group">
 <router-link tag="button" to="/products"
 active-class="btn-info" class="btn btn-primary">
 Products
 </router-link>
 <router-link tag="button" to="/preferences"
 active-class="btn-info" class="btn btn-primary">
 Preferences
 </router-link>
 <router-link to="/named/tableleft" class="btn btn-primary"
 active-class="btn-info">
 Table Left
 </router-link>
 <router-link to="/named/tableright" class="btn btn-primary"
 active-class="btn-info">

Chapter 24 ■ advanCed UrL roUting

651

 Table Right
 </router-link>
 <router-link to="/filter/All" class="btn btn-primary"
 active-class="btn-info">
 Filtered Data
 </router-link>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col m-2">
 <h3 class="bg-warning text-white text-center p-2"
 v-if="componentLoading">
 Loading Component...
 </h3>
 <router-view></router-view>
 </div>
 </div>
 </div>
</template>

<script>
 import { mapState } from "vuex";

 export default {
 name: 'App',
 computed: {
 ...mapState(["componentLoading"]),
 },
 created() {
 this.$store.dispatch("getProductsAction");
 }
 }
</script>

To set the value of the data store property and display the message to the user, I added a guard to the
route that targets the lazily loaded component, as shown in Listing 24-19.

Listing 24-19. Adding a Route Guard in the basicRoutes.js File in the src/router Folder

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";
import Preferences from "../components/Preferences";
import Products from "../components/Products";

const FilteredData = () => import("../components/FilteredData");

import dataStore from "../store";

export default [

 { path: "/preferences", component: Preferences },

Chapter 24 ■ advanCed UrL roUting

652

 {
 path: "/products", component: Products,
 children: [{ name: "table", path: "list", component: ProductDisplay },
 {
 name: "editor", path: ":op(create|edit)/:id(\\d+)?",
 component: ProductEditor
 },
 { path: "", redirect: "list" }]
 },
 { path: "/edit/:id", redirect: to => `/products/edit/${to.params.id}` },
 { path: "/filter/:category", component: FilteredData,
 beforeEnter: (to, from, next) => {
 dataStore.commit("setComponentLoading", true);
 next();
 }
 }
]

The import statement in this example provides access to the data store. The $store that I used in
the examples in Chapter 20 is available only in components, and access to the data store is available
through an import statement in the rest of the application. The guard method in Listing 24-19 uses the
setComponentLoading mutation to update the data store and then calls the next function.

DEALING WITH LOADING ERRORS

the lazy loading feature for UrL routing doesn’t support an error component. to deal with errors when
loading components or when invoking route guards, you can use the onError method defined by the
VueRouter object to register a callback function that will be invoked when there is a problem.

The guard method defined in Listing 24-19 indicates when the loading process starts, but I also need
to indicate when it is complete so that the user no longer sees the loading message. In Listing 24-20, I have
updated the route guard in the component that will be lazily loaded.

 ■ Caution You might be tempted to put both mutation statements in the beforeRouteEnter guard method
in the component. this will not work because the component’s code is what the application is loading, and the
route guard method can’t be invoked before the loading process is complete.

Listing 24-20. Updating a Route Guard in the FilteredData.vue File in the src/components Folder

...
async beforeRouteEnter(to, from, next) {
 if (to.params.category != "All") {
 next("/filter/All");
 } else {
 next(async component => {
 component.$store.commit("setComponentLoading", false);

Chapter 24 ■ advanCed UrL roUting

653

 await component.getData(to)
 });
 }
},
...

I added a statement to the callback function that is invoked once navigation has been confirmed and
the component has been created. Using the component parameter, I update the data store and apply the
mutation that signals the loading process is complete, producing the effect shown in Figure 24-9.

Hiding the Outgoing Component During Loading
If you examine Figure 24-9, you will see that the component that is about to be removed is displayed to the
user throughout the loading process. While this is acceptable for many projects, care must be taken to use
the v-show directive if you want to hide the old component while waiting for the new one to be loaded, as
shown in Listing 24-21.

Listing 24-21. Hiding an Element in the App.vue File in the src Folder

...
<div class="row">
 <div class="col m-2">
 <h3 class="bg-warning text-white text-center p-2"
 v-if="componentLoading">
 Loading Component...
 </h3>
 <router-view v-show="!componentLoading"></router-view>
 </div>
</div>
...

As I explained in Chapter 12, the v-show hides an element without removing it. This is important
because if you use the v-if or v-else directive, the router-view element will be removed from the
Document Object Model, and the loaded component will never be initialized and displayed to the user.
Using the v-show directive leaves the router-view element in the document and available as a target to
display the lazily loaded component, as shown in Figure 24-10.

Figure 24-9. Displaying a message while lazily loading a component

Chapter 24 ■ advanCed UrL roUting

654

Creating Routing-Free Components
Not all components are written to take advantage of the Vue Router package and the $router and $route
properties that it provides. If you want to use components written by a third party, for example, you will
find that most are configured using the Vue.js props feature, which I described in Chapter 16. Vue Router
includes support for providing prop values to components as part of its route configuration, which
makes it possible to integrate components into an application that uses URL routing without having to
modify them or write awkward wrappers to adapt them. To demonstrate this feature, I added a file called
MessageDisplay.vue in the src/components folder with the content shown in Listing 24-22.

Listing 24-22. The Contents of the MessageDisplay.vue File in the src/components Folder

<template>
 <h3 class="bg-success text-white text-center p-2">
 Message: {{ message }}
 </h3>
</template>

<script>
 export default {
 props: ["message"]
 }
</script>

This component displays a message using a prop, which is all that I need to demonstrate this feature. In
Listing 24-23, I have added two routes to the application’s configuration that target the new component and
configure it using different prop values.

Listing 24-23. Adding Routes in the basicRoutes.js File in the src/router Folder

import ProductDisplay from "../components/ProductDisplay";
import ProductEditor from "../components/ProductEditor";
import Preferences from "../components/Preferences";
import Products from "../components/Products";
import MessageDisplay from "../components/MessageDisplay";

const FilteredData = () => import("../components/FilteredData");

Figure 24-10. Hiding the router view during component loading

Chapter 24 ■ advanCed UrL roUting

655

import dataStore from "../store";

export default [

 { path: "/preferences", component: Preferences },
 {
 path: "/products", component: Products,
 children: [{ name: "table", path: "list", component: ProductDisplay },
 {
 name: "editor", path: ":op(create|edit)/:id(\\d+)?",
 component: ProductEditor
 },
 { path: "", redirect: "list" }]
 },
 { path: "/edit/:id", redirect: to => `/products/edit/${to.params.id}` },
 { path: "/filter/:category", component: FilteredData,
 beforeEnter: (to, from, next) => {
 dataStore.commit("setComponentLoading", true);
 next();
 }
 },
 { path: "/hello", component: MessageDisplay, props: { message: "Hello, Adam"}},
 { path: "/hello/:text", component: MessageDisplay,
 props: (route) => ({ message: `Hello, ${route.params.text}`})},
 { path: "/message/:message", component: MessageDisplay, props: true},
]

Props are passed to a component using a props property when defining the route. The routes added in
Listing 24-23 show three different ways of passing props to a component using the props property. In the first
route, the prop value is entirely independent of the route and will always be set to the same value, which you
can see by navigating to http://localhost:8080/hello, where you will see the result shown in Figure 24-11.

Figure 24-11. Passing fixed prop values

Chapter 24 ■ advanCed UrL roUting

656

The other two routes use the values of the path’s dynamic segment to set the prop value. The props
value can be assigned a function that receives the current route as its parameter and returns an object
containing the props value, like this:

...
{ path: "/hello/:text", component: MessageDisplay,
 props: (route) => ({ message: `Hello, ${route.params.text}`})},
...

This example takes the value from the text segment and uses it to set the value of the message prop,
which is a useful technique if the values from the URL need to be processed. If you don’t need to process the
dynamic segment, then you can use the final technique, which is to set the props value to true, like this:

...
{ path: "/message/:message", component: MessageDisplay, props: true},
...

This has the effect of using the params values from the current route as prop values, which avoids the
need to explicitly define mappings for each of the dynamic segments and props (although the names of
the segments must match the names of the props expected by the component). To see the effect, navigate
to http://localhost:8080/hello/adam and http://localhost:8080/message/Hello%20Adam, which will
produce the results shown in Figure 24-12.

Summary
In this chapter, I explained how to use multiple JavaScript files to group related routes to make the routing
configuration more manageable. I also showed you how to guard routes to control their activation and
demonstrated how to lazily load components when they are required by a route. I completed this chapter
by showing you how to configure a component’s props, which is a useful technique when you want to use
components that have not been written to get their configuration information from the routing system. In
the next chapter, I show you how to use the transitions feature.

Figure 24-12. Mapping dynamic segment values to component props

657© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_25

CHAPTER 25

Transitions

The Vue.js transition feature allows you to respond when an HTML element is added or removed or changes
position. When combined with the features provided by modern browsers, transitions can be used to draw
the user’s attention to the part of the application that has been affected by their actions. In this chapter,
I show you the different ways that transitions can be used, demonstrate how to use third-party CSS and
JavaScript animation packages, and show you how to draw the user’s attention to other types of change, such
as when a data value is modified. Table 25-1 puts this chapter in context.

Table 25-1. Putting Transitions in Context

Question Answer

What are they? Transitions are instructions to add and remove elements
from classes at key moments, such as when they are
added and removed from the DOM. The classes are used
to gradually apply changes in the element’s style to create
animation effects.

Why are they useful? Transitions can be a useful way to draw the user’s attention to
important changes or to make changes less jarring.

How are they used? Transitions are applied with the transition and
transition-group elements.

Are there any pitfalls or limitations? It is easy to get carried away and create an application that
contains effects that frustrate the user and disrupt effective
workflows.

Are there any alternatives? Transitions are an optional feature, and you do not have to
use them in your projects.

Chapter 25 ■ transitions

658

Table 25-2 summarizes the chapter.

Preparing for This Chapter
To create the project required for the examples in this chapter, run the command shown in Listing 25-1 in a
convenient location to create a new Vue.js project.

Listing 25-1. Creating the Example Project

vue create transitions --default

This command creates a project called transitions. Once the setup process has finished, run the
commands shown in Listing 25-2 in the transitions folder to add the Bootstrap CSS and Vue Router
packages to the project.

Listing 25-2. Adding Packages

npm install bootstrap@4.0.0
npm install vue-router@3.0.1

To provide the effects for the examples in this chapter, I use the animate.css and popmotion packages.
Run the commands shown in Listing 25-3 in the transitions folder to download and install the packages.

Listing 25-3. Adding the Animation Packages

npm install animate.css@3.6.1
npm install popmotion@8.1.24

Add the statements shown in Listing 25-4 to the main.js file in the src folder to incorporate the
Bootstrap and the animation packages into the application.

Table 25-2. Chapter Summary

Problem Solution Listing

Apply a transition Use the transition element and define
styles that match the transition classes

13, 15, 16, 20–22

Use an animation library Use the transition element attributes
to specify the classes that will apply the
animation

14, 17

Determine how the transition
between elements is presented

Use the mode attribute 15

Apply a transition to a group of
repeated elements

Use the transition-group element 18

Receive notifications for
transitions

Handle the transition events 19

Chapter 25 ■ transitions

659

Listing 25-4. Incorporating the Packages in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "bootstrap/dist/css/bootstrap.min.css";
import "animate.css/animate.min.css";
import "popmotion/dist/popmotion.global.min.js";

Vue.config.productionTip = false

new Vue({
 render: h => h(App)
}).$mount('#app')

Creating the Components
I need some basic components for this chapter. I started by adding a file called SimpleDisplay.vue to the
src/components folder with the contents shown in Listing 25-5.

Listing 25-5. The Contents of the SimpleDisplay.vue File in the src/components Folder

<template>
 <div class="mx-5 border border-dark p-2">
 <h3 class="bg-warning text-white text-center p-2">Display</h3>

 <div v-if="show" class="h4 bg-info text-center p-2">Hello, Adam</div>

 <div class="text-center">
 <button class="btn btn-primary" v-on:click="toggle">
 Toggle Visibility
 </button>
 </div>
 </div>
</template>

<script>

 export default {
 data: function () {
 return {
 show: true
 }
 },
 methods: {
 toggle() {
 this.show = !this.show;
 }
 }
 }

</script>

Chapter 25 ■ transitions

660

This component displays a message whose visibility is managed using the v-if directive. Next, I added
a file called Numbers.vue to the src/components folder with the content shown in Listing 25-6.

Listing 25-6. The Contents of the Numbers.vue File in the src/components Folder

<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-success text-white text-center p-2">Numbers</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input class="form-control" v-model.number="first" />
 </div>
 <div class="col-1 h3">+</div>
 <div class="col">
 <input class="form-control" v-model.number="second" />
 </div>
 <div class="col h3">= {{ total }} </div>
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 data: function () {
 return {
 first: 10,
 second: 20
 }
 },
 computed: {
 total() {
 return this.first + this.second;
 }
 }
 }
</script>

This component displays two input elements that use the v-model directive to update data properties,
which are summed by a computed property, which is also displayed in the template. Next, I added a file
called ListMaker.vue to the src/components folder with the content shown in Listing 25-7.

Listing 25-7. The Contents of the ListMaker.vue File in the src/components Folder

<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-info text-white text-center p-2">My List</h3>
 <table class="table table-sm">
 <tr><th>#</th><th>Item</th><th width="20%" colspan="2"></th></tr>
 <tr v-for="(item, i) in items" v-bind:key=item>

Chapter 25 ■ transitions

661

 <td>{{i}}</td>
 <td>{{item}}</td>
 <td>
 <button class="btn btn-sm btn-info" v-on:click="moveItem(i)">
 Move
 </button>
 <button class="btn btn-sm btn-danger" v-on:click="removeItem(i)">
 Delete
 </button>
 </td>
 </tr>
 <controls v-on:add="addItem" />
 </table>
 </div>
</template>

<script>

 import Controls from "./ListMakerControls";

 export default {
 components: { Controls },
 data: function () {
 return {
 items: ["Apples", "Oranges", "Grapes"]
 }
 },
 methods: {
 addItem(item) {
 this.items.push(item);
 },
 removeItem(index) {
 this.items.splice(index, 1);
 },
 moveItem(index) {
 this.items.push(...this.items.splice(index, 1));
 }
 }
 }
</script>

This component displays an array of items. New items can be added to the array, and the existing
items can be moved to the end of the array or removed from it. I will be making changes to the component’s
template later in the chapter, and to avoid having to list HTML elements that are not directly related to the
examples, I created a supporting component by adding a file called ListMakerControls.vue in the src/
components folder with the content shown in Listing 25-8.

Listing 25-8. The Contents of the ListMakerControls.vue in the src/components Folder

<template>
 <tfoot>
 <tr v-if="showAdd">

Chapter 25 ■ transitions

662

 <td></td>
 <td><input class="form-control" v-model="currentItem" /></td>
 <td>
 <button id="add" class="btn btn-sm btn-info" v-on:click="handleAdd">
 Add
 </button>
 <button id="cancel" class="btn btn-sm btn-secondary"
 v-on:click="showAdd = false">
 Cancel
 </button>
 </td>
 </tr>
 <tr v-else>
 <td colspan="4" class="text-center p-2">
 <button class="btn btn-info" v-on:click="showAdd = true">
 Show Add
 </button>
 </td>
 </tr>
 </tfoot>
</template>

<script>
 export default {
 data: function () {
 return {
 showAdd: false,
 currentItem: ""
 }
 },
 methods: {
 handleAdd() {
 this.$emit("add", this.currentItem);
 this.showAdd = false;
 }
 }
 }
</script>

This component allows new items to be added to the list and is a dependency of the component I
created in Listing 25-7.

Configuring URL Routing
To set up the URL routing system, I created the src/router folder and added to it a file called index.js with
the content shown in Listing 25-9.

Listing 25-9. The Contents of the index.js File in the src/router Folder

import Vue from "vue"
import Router from "vue-router"

Chapter 25 ■ transitions

663

import SimpleDisplay from "../components/SimpleDisplay";
import ListMaker from "../components/ListMaker";
import Numbers from "../components/Numbers";

Vue.use(Router)

export default new Router({
 mode: "history",
 routes: [
 { path: "/display", component: SimpleDisplay },
 { path: "/list", component: ListMaker },
 { path: "/numbers", component: Numbers },
 { path: "*", redirect: "/display" }
]
})

This configuration enables the History API mode and defines /display, /numbers, and /list routes
that target the components created in the previous section. There is also a catchall route that redirects the
browser to the /display URL. In Listing 25-10, I imported the router into the main.js file and added the
property that will make the routing features available.

Listing 25-10. Enabling Routing in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'

import "bootstrap/dist/css/bootstrap.min.css";
import "animate.css/animate.min.css";
import "popmotion/dist/popmotion.global.min.js";
import router from "./router";

Vue.config.productionTip = false

new Vue({
 router,
 render: h => h(App)
}).$mount('#app')

Creating the Navigation Elements
The final preparatory step is to add navigation elements to the root component’s template that will target the
URLs defined in the routing configuration, as shown in Listing 25-11.

Listing 25-11. Adding Navigation Elements in the App.vue File in the src Folder

<template>
 <div class="m-2">
 <div class="text-center m-2">
 <div class="btn-group">
 <router-link tag="button" to="/display"
 exact-active-class="btn-warning" class="btn btn-secondary">
 Simple Display
 </router-link>

Chapter 25 ■ transitions

664

 <router-link tag="button" to="/list"
 exact-active-class="btn-info" class="btn btn-secondary">
 List Maker
 </router-link>
 <router-link tag="button" to="/numbers"
 exact-active-class="btn-success" class="btn btn-secondary">
 Numbers
 </router-link>
 </div>
 </div>
 <router-view />
 </div>
</template>

<script>
 export default {
 name: 'App'
 }
</script>

Run the command shown in Listing 25-12 in the transitions folder to start the development tools.

Listing 25-12. Starting the Development Tools

npm run serve

The initial bundling process will be performed, after which you will see a message telling you that the
project has compiled successfully and the HTTP server is listening for requests on port 8080. Open a new
browser window and navigate to http://localhost:8080 to see the content shown in Figure 25-1.

Figure 25-1. Running the example application

Chapter 25 ■ transitions

665

GUIDANCE FOR APPLYING TRANSITIONS

Developers often get carried away when applying transitions, and the result is applications that users
find frustrating. these features should be applied sparingly, they should be simple, and they should
be quick. Use transitions to help the user make sense of your application and not as a vehicle to
demonstrate your artistic skills. Users, especially for corporate line-of-business applications, have to
perform the same task repeatedly, and excessive and long animations just get in the way.

i suffer from this tendency, and, unchecked, my applications behave like Las Vegas slot machines. i have
two rules that i follow to keep the problem under control. the first is that i perform the major tasks or
workflows in the application 20 times in a row. in the case of the example application, that might mean
adding 20 items to the list, moving them around, and then deleting them. i remove or shorten any effect
that i find myself having to wait to complete before i can move on to the next step in the process.

the second rule is that i don’t disable effects during development. it can be tempting to comment out
a transition or animation when i am working on a feature because i will be performing a series of quick
tests as i write the code. But any animation that gets in my way will also get in the user’s way, so i leave
the transitions in place and adjust them—generally reducing their duration—until they become less
obtrusive and annoying.

You don’t have to follow my rules, of course, but it is important to make sure that the transitions are
helpful to the user and not a barrier to working quickly or a distracting annoyance.

Getting Started with Transitions
By default, the changes that are made to HTML elements in a component’s template take effect immediately,
which you can see by clicking the Toggle Visibility button shown by the SimpleDisplay component. Each
time you click the button, the show data property is modified, which causes the v-if directive to immediately
show and hide the element to which it has been applied, as shown in Figure 25-2.

 ■ Note static screenshots are not ideally suited to showing changes in the application. the examples in this
chapter are best experienced firsthand to help appreciate how the Vue.js transition features work.

Figure 25-2. The default behavior for state changes

Chapter 25 ■ transitions

666

The Vue.js transition feature can be used to manage the change from one state to the other, which
is done using the transition component. The basic use of the transition component is to apply a CSS
transition, which I have done in Listing 25-13.

VUE.JS TRANSITIONS VERSUS CSS TRANSITIONS AND ANIMATIONS

there is a clash of terms for the features i describe in this chapter. the Vue.js transition feature is used
to respond to changes in the application state. this is most typically related to htML elements being
added and removed from the DoM, but it can also be responding to a change in a data value.

the most common way to respond to a change in an htML element is to use the Vue.js transition
feature to apply a CSS transition. a Css transition is a gradual change between one set of Css property
values and another, which has the effect of animating the change in the element. You can see an
example of a Css transition in Listing 25-13. a Css animation is similar to a Css transition but provides
more options over how the Css property values are changed. the other term you may encounter is CSS
transforms, which allows you to move, rotate, scale, and skew htML elements. transforms are often
combined with Css transitions or animations to create more complex effects.

if you find yourself getting bogged down with these terms, remember that it is the Vue.js transition
feature that is most important for Vue.js application development. after the initial examples that allow
me to demonstrate how the Vue.js features work, i don’t use the Css features directly and rely on third-
party packages to provide the effects that are shown to the user. i recommend you do this in your own
projects as well because the results are more predictable—and less frustrating—than trying to create
your own complex effects working directly with the Css transition, animation, and transform features.

Listing 25-13. Applying a Transition in the SimpleDisplay.vue File in the src/components Folder

<template>
 <div class="mx-5 border border-dark p-2">
 <h3 class="bg-warning text-white text-center p-2">Display</h3>

 <transition>
 <div v-if="show" class="h4 bg-info text-center p-2">Hello, Adam</div>
 </transition>

 <div class="text-center">
 <button class="btn btn-primary" v-on:click="toggle">
 Toggle Visibility
 </button>
 </div>
 </div>
</template>

<script>

 export default {
 data: function () {
 return {
 show: true

Chapter 25 ■ transitions

667

 }
 },
 methods: {
 toggle() {
 this.show = !this.show;
 }
 }
 }

</script>

<style>
 .v-leave-active {
 opacity: 0;
 font-size: 0em;
 transition: all 250ms;
 }

 .v-enter {
 opacity: 0;
 font-size: 0em;
 }

 .v-enter-to {
 opacity: 1;
 font-size: x-large;
 transition: all 250ms;
 }
</style>

This example is easier to understand once you have seen it work. Once you have saved the changes
shown in the listing, reload the browser and click the Toggle Visibility button. Instead of the instantaneous
change, the visibility of the element changes gradually, as shown in Figure 25-3. (It may be hard to discern
from the figure, but the HTML element becomes smaller and fades from view gradually.)

 ■ Tip You may find that you have to reload the browser to see the expected results for the examples in this
chapter. this is a consequence of the way that the webpack bundling process deals with changes.

Figure 25-3. The effect of a transition

Chapter 25 ■ transitions

668

The transition is applied by wrapping the element you want to handle in a transition element, like this:

...
<transition>
 <div v-if="show" class="h4 bg-info text-center p-2">Hello, Adam</div>
</transition>
...

Vue.js doesn’t animate the element itself—instead, it adds the element to a number of classes and
leaves the browser to apply any effects that are associated with those classes. This isn’t as complex as it might
seem once you understand the steps that are involved, which I describe in the following sections.

Understanding the Transition Classes and CSS Transition
The effect of the transition element is to add the element it contains to a series of classes during its
transition, which for the case of the example is when the element is added or removed from the DOM.
Table 25-3 describes these classes.

The element that is being transitioned is added and removed from the classes shown in the table
as the transition starts and stops and always in the same order. Figure 25-4 shows the sequence of class
memberships when the element is added to the DOM, showing the relationship between the transition and
the classes.

Table 25-3. The Transition Classes

Name Description

v-enter The element is added to this class before it is added to the DOM and removed
immediately afterward.

v-enter-active The element is added to this class before it is added to the DOM and is removed
when the transition is complete.

v-enter-to The element is added to this class immediately after it has been added to the DOM
and is removed when the transition is complete.

v-leave The element is added to this class at the start of the transition and is removed after
one frame.

v-leave-active The element is added to this class when the transition begins and removed when it
finishes.

v-leave-to The element is added to this class one frame into the transition and is removed when
it is complete.

Chapter 25 ■ transitions

669

The v-enter class is used to define the initial state of the HTML element before it is added to the DOM.
In Listing 25-13, I defined a CSS style with a selector that matches elements in the v-enter class like this:

...

.v-enter {
 opacity: 0;
 font-size: 0em;
}
...

When an element is a member of the v-enter class, its opacity will be zero (making the element
transparent), and its text will have zero height (which will set the height of the element for this example).
This represents the starting state for the element before it is added to the DOM, such that it is transparent
and has zero height.

In Listing 25-13, I used a CSS style with a selector that matches elements in the v-enter-to class like this:

...

.v-enter-to {
 opacity: 1;
 font-size: x-large;
 transition: all 250ms;
}
...

The value for the opacity property makes the element fully opaque, and the value of font-size
property specifies large text. The properties defined by the v-enter-to style represent the end state of the
transition, and this is the part that many developers find confusing. The key is the transition property,
which tells the browser to gradually change the values of all the CSS properties applied to the element
from their current values to the values defined by this style and to do so over a period of 250 milliseconds.
Browsers can gradually alter the value of CSS properties that can be expressed using numeric values, which
includes font sizes, padding and margins, and even colors.

Figure 25-4. The entering transition

Chapter 25 ■ transitions

670

Understanding the Transition Sequence
Putting the classes and the CSS styles together produces the Vue.js transition that reveals the element. When
you click the Toggle Visibility button, the v-if directive determines it should add the div element to the
DOM. The div element is already a member of several Bootstrap classes, which set the text size, background,
padding, and other display characteristics. To prepare for the transition, Vue.js adds the element to the
v-enter class, which sets the opacity and font-size properties; these properties set the initial appearance
of the element to be transparent and give it no height.

Immediately after it is added to the DOM, the element is removed from the v-enter class and added
to the v-enter-to class. The change in styles increases the opacity and font size over a period of 250
milliseconds, with the result that the element quickly grows in size and opacity. At the end of the 250
milliseconds, the element is removed from the v-enter-to class and is styled only by its membership of the
Bootstrap classes, with the effect shown in Figure 25-5.

Using an Animation Library
You can use the CSS transition, animation, and translation features directly, but they are difficult to use, and
it takes experience and careful testing to get good results for anything but the most basic of effects. A better
approach is to use an animation library such as the animate.css package that I added to the project at the
start of the chapter. There are lots of good-quality animation libraries to use, and they contain effects that are
ready to use and easy to apply.

In Listing 25-14, I have replaced my custom effects for the div element in the SimpleDisplay
component with ones provided by the animate.css library.

 ■ Tip You don’t have to use animate.css, but i recommend it as a good place to start if you are new to
transitions. You can see the complete range of effects that the package includes at https://github.com/
daneden/animate.css.

Figure 25-5. The effect of the enter transition

https://github.com/daneden/animate.css
https://github.com/daneden/animate.css

Chapter 25 ■ transitions

671

Listing 25-14. Using Library Animations in the SimpleDisplay.vue File in the src/components Folder

<template>
 <div class="mx-5 border border-dark p-2">
 <h3 class="bg-warning text-white text-center p-2">Display</h3>

 <transition enter-to-class="fadeIn" leave-to-class="fadeOut">
 <div v-if="show" class="animated h4 bg-info text-center p-2">
 Hello, Adam
 </div>
 </transition>

 <div class="text-center">
 <button class="btn btn-primary" v-on:click="toggle">
 Toggle Visibility
 </button>
 </div>
 </div>
</template>

<script>

 export default {
 data: function () {
 return {
 show: true
 }
 },
 methods: {
 toggle() {
 this.show = !this.show;
 }
 }
 }

</script>

The animate.css package requires that the elements it is applied to are members of the animated class,
which I have applied directly to the div element in Listing 25-14. To apply the individual effects, I have used
the enter-to-class and leave-to-class attributes, which allow the names of the classes that elements are
added to during a transition to be changed. Table 25-4 lists the attributes that allow classes to be selected.

Chapter 25 ■ transitions

672

In the listing, I used the enter-to-class and leave-to-class attributes to specify animation classes
provided by the animate.css package. As the class names suggest, the fadeIn class applies an effect where
the element fades into view, while the fadeOut class applies an effect that makes the element fade away.

Switching Between Multiple Elements
The effect of a transition can be applied to multiple elements that are displayed by a combination of the
v-if, v-else-if, and v-else directives. A single transition element is required, and Vue.js will
automatically add the elements to the correct classes when they are added or removed from the DOM.
In Listing 25-15, I have added an element whose visibility is managed by the v-else directive and that is
contained by the same transition element as the element to which the v-if directive has been applied.

Listing 25-15. Adding an Element in the SimpleDisplay.vue File in the src/components Folder

<template>
 <div class="mx-5 border border-dark p-2">
 <h3 class="bg-warning text-white text-center p-2">Display</h3>

 <transition enter-active-class="fadeIn"
 leave-active-class="fadeOut" mode="out-in">
 <div v-if="show" class="animated h4 bg-info text-center p-2"
 key="hello">
 Hello, Adam
 </div>
 <div v-else class="animated h4 bg-success text-center p-2"
 key="goodbye">
 Goodbye, Adam
 </div>
 </transition>

 <div class="text-center">
 <button class="btn btn-primary" v-on:click="toggle">

Table 25-4. The Transition Class Selection Attributes

Name Description

enter-class This attribute is used to specify the name of the class that will be used instead of
v-enter.

enter-active-class This attribute is used to specify the name of the class that will be used instead of
v-enter-active.

enter-to-class This attribute is used to specify the name of the class that will be used instead of
v-enter-to.

leave-class This attribute is used to specify the name of the class that will be used instead of
v-leave.

leave-active-class This attribute is used to specify the name of the class that will be used instead of
v-leave-active.

leave-to-class This attribute is used to specify the name of the class that will be used instead of
v-leave-to.

Chapter 25 ■ transitions

673

 Toggle Visibility
 </button>
 </div>
 </div>
</template>

<script>

 export default {
 data: function () {
 return {
 show: true
 }
 },
 methods: {
 toggle() {
 this.show = !this.show;
 }
 }
 }

</script>

When want to apply transitions to multiple elements of the same type, like the two div elements in this
example, then the key attribute must be applied so that Vue.js can tell the elements apart:

...
<div v-if="show" class="animated h4 bg-info text-center p-2" key="hello">
 Hello, Adam
</div>
...

 ■ Tip notice that i have applied the effect using the enter-active-class and leave-active-class
attributes. When using an animation library to transition between elements, it can be important to apply the
animation throughout the transition; otherwise, there is an unfortunate glitch where the outgoing element snaps
back into view for a fraction of a second before being removed.

By default, Vue.js transitions both elements at the same time, which means that one element is fading
in as the other is fading out. This doesn’t create the desired effect for this example because one element is
intended to be the replacement for the other. I have told Vue.js to stagger the transitions for the elements
using the mode attribute on the transition element, which can be given the values described in Table 25-5.

Table 25-5. The mode Attribute Values

Name Description

in-out The incoming element is transitioned first, followed by the outgoing element.

out-in This outgoing element is transitioned first, followed by the incoming element.

Chapter 25 ■ transitions

674

I have chosen the out-in mode in Listing 25-15, which means that Vue.js will wait until the outgoing
element completes its transition before starting the transition for the incoming element, with the results
shown in Figure 25-6.

ADJUSTING THE SPEED OF ANIMATION LIBRARY EFFECTS

Using an animation library is a good way to apply transitions, but they won’t always be perfectly suited
to your needs. a common problem that i encounter is that they can take too long to complete, which
becomes an issue when you are switching between multiple elements and have to wait for several
effects to be performed.

some animation libraries allow you to specify a speed for an effect, but for other packages—including
animate.css—you can change the amount of time by creating a class that sets the animation-
duration property, like this:

...
<style>
 .quick { animation-duration: 250ms }
</style>
...

You can then add the element to this class during the transition, like this:

...
<transition enter-active-class="fadeIn quick"
 leave-active-class="fadeOut quick" mode="out-in">
...

each transition will be performed in the time span you specify, which is 250 milliseconds in this example.

Figure 25-6. Transitioning multiple elements

Chapter 25 ■ transitions

675

Applying a Transition to URL Routed Elements
The same approach can be used to apply an effect when the element displayed by a router-view element
changes, as shown in Listing 25-16.

Listing 25-16. Applying a Transition in the App.vue File in the src Folder

<template>
 <div class="m-2">
 <div class="text-center m-2">
 <div class="btn-group">
 <router-link tag="button" to="/display"
 exact-active-class="btn-warning" class="btn btn-secondary">
 Simple Display
 </router-link>
 <router-link tag="button" to="/list"
 exact-active-class="btn-info" class="btn btn-secondary">
 List Maker
 </router-link>
 <router-link tag="button" to="/numbers"
 exact-active-class="btn-success" class="btn btn-secondary">
 Numbers
 </router-link>
 </div>
 </div>
 <transition enter-active-class="animated fadeIn"
 leave-active-class=" animated fadeOut" mode="out-in">
 <router-view />
 </transition>
 </div>
</template>

<script>
 export default {
 name: 'App'
 }
</script>

You don’t need to provide a key attribute when using the router-view element because the URL
routing system is able to differentiate between components. You can see the effect of the transition in
Listing 25-16 by using the navigation buttons, as shown in Figure 25-7.

Chapter 25 ■ transitions

676

Applying a Transition for an Element’s Appearance
By default, Vue.js doesn’t apply a transition to the initial display of an element. You can override this by adding
the appear attribute to the transition element. By default, Vue.js will use the enter classes, but you can also use
classes specifically for the initial appearance or specify classes using the attributes, as described in Table 25-6.

In Listing 25-17, I have applied a transition that will be applied only when the element first appears.

Listing 25-17. Adding a Transition in the App.vue File in the src Folder

<template>

 <div class="m-2">
 <div class="text-center m-2">
 <div class="btn-group">
 <router-link tag="button" to="/display"
 exact-active-class="btn-warning" class="btn btn-secondary">

Figure 25-7. Applying a transition to URL routed elements

Table 25-6. The VueTransition Classes for an Element’s Appearance

Name Description

v-appear The element is added to this class before its initial appearance and is removed
immediately after it is added to the DOM. A custom class can be specified using the
appear-class attribute.

v-appear-active The element is added to this class before its initial appearance and removed when
the transition is complete. A custom class can be specified using the appear-active-
class attribute.

v-appear-to The element is added to this class immediately after it has been added to the DOM
and is removed when the transition is complete. A custom class can be specified
using the appear-to-class attribute.

Chapter 25 ■ transitions

677

 Simple Display
 </router-link>
 <router-link tag="button" to="/list"
 exact-active-class="btn-info" class="btn btn-secondary">
 List Maker
 </router-link>
 <router-link tag="button" to="/numbers"
 exact-active-class="btn-success" class="btn btn-secondary">
 Numbers
 </router-link>
 </div>
 </div>
 <transition enter-active-class="animated fadeIn"
 leave-active-class=" animated fadeOut" mode="out-in"
 appear appear-active-class="animated zoomIn">
 <router-view />
 </transition>
 </div>

</template>

<script>
 export default {
 name: 'App'
 }
</script>

I added the appear attribute, which does not require a value, and used the appear-active-class
attribute to tell Vue.js that the element should be assigned to the animated and zoomIn classes throughout
the transition. The result is that the component displayed by the router-view element zooms into view
when the application first starts, as shown in Figure 25-8.

 ■ Tip You will have to reload the browser to see this transition.

Figure 25-8. Applying a transition for an element’s initial appearance

Chapter 25 ■ transitions

678

Applying Transitions for Collection Changes
Vue.js includes support for applying transitions to elements generated using the v-for directive, allowing
effects to be specified for when an element is added, removed, or moved. In Listing 25-18, I have applied
transitions to the ListMaker component.

Listing 25-18. Applying a Transition in the ListMaker.vue File in the src/components Folder

<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-info text-white text-center p-2">My List</h3>
 <table class="table table-sm">
 <tr><th>#</th><th>Item</th><th width="20%" colspan="2"></th></tr>
 <transition-group enter-active-class="animated fadeIn"
 leave-active-class="animated fadeOut"
 move-class="time"
 tag="tbody">
 <tr v-for="(item, i) in items" v-bind:key=item>
 <td>{{i}}</td>
 <td>{{item}}</td>
 <td>
 <button class="btn btn-sm btn-info" v-on:click="moveItem(i)">
 Move
 </button>
 <button class="btn btn-sm btn-danger"
 v-on:click="removeItem(i)">
 Delete
 </button>
 </td>
 </tr>
 </transition-group>
 <controls v-on:add="addItem" />
 </table>
 </div>
</template>

<script>
 import Controls from "./ListMakerControls";

 export default {
 components: { Controls },
 data: function () {
 return {
 items: ["Apples", "Oranges", "Grapes"]
 }
 },
 methods: {
 addItem(item) {
 this.items.push(item);
 },

Chapter 25 ■ transitions

679

 removeItem(index) {
 this.items.splice(index, 1);
 },
 moveItem(index) {
 this.items.push(...this.items.splice(index, 1));
 }
 }
 }
</script>

<style>
 .time {
 transition: all 250ms;
 }
</style>

The transition-group element requires some care when it is applied because it adds an element to
the DOM, unlike the transition element. To ensure that the component produces valid HTML, the tag
attribute is used to specify the type of HTML element that will be generated. Since the example component
uses the v-for directive to generate a set of table rows, I specified the tbody element, which represents a
table body.

...
<transition-group enter-active-class="animated fadeIn"
 leave-active-class="animated fadeOut" move-class="time" tag="tbody">
...

The enter and leave transitions are applied in the same way as in earlier examples, and I used the
enter-active-class and leave-active-class attributes to put the elements generated by the v-for
directive into the animated, fadeIn, and fadeOut classes as they are added and removed. The remaining
attribute is move-class, which is used to apply a class when an element is moved from one position to
another. Vue.js will automatically transition the element from its existing position to its new one, and if that
is the only effect you require, then the move-class attribute can be used to associate the element with a
style that specifies the time that the move will take. In the listing, I specified a class called time and defined
a corresponding CSS style that uses the transition property to specify that all of the element’s properties
should be changed over a period of 250 milliseconds.

 ■ Note the elements managed by a transition-group attribute must have a key, as described in Chapter 13.

The attributes I used with the transition-group element result in new elements fading into place,
deleted elements fading away, and elements moving into place when the Move button is clicked, the last of
which is shown in Figure 25-9.

Chapter 25 ■ transitions

680

Using Transition Events
The transition and transition-group elements emit events that can be handled to provide fine-grained
control over transitions, including adapting them based on the state of the application. Table 25-7 describes
the events.

In Listing 25-19, I have defined handlers for transition events using the v-on directive and used them to
apply an effect programmatically.

Listing 25-19. Handling Transition Events in the ListMakerControls.vue File in the src/components Folder

<template>
 <tfoot>

Figure 25-9. Animating collection item moves

Table 25-7. The Transition Events

Name Description

before-enter This method is invoked before an enter transition starts and receives the HTML element
that is affected.

enter This method is invoked before an enter transition starts and receives the HTML element
that is affected and a callback that must be invoked to tell Vue.js that the transition has
completed.

after-enter This method is invoked before an enter transition completes and receives the HTML
element that is affected.

before-leave This method is invoked before a leave transition starts and receives the HTML element
that is affected.

leave This method is invoked before a leave transition starts and receives the HTML element
that is affected and a callback that must be invoked to tell Vue.js that the transition has
completed.

after-leave This method is invoked before a leave transition completes and receives the HTML
element that is affected.

Chapter 25 ■ transitions

681

 <transition v-on:beforeEnter="beforeEnter"
 v-on:after-enter="afterEnter" mode="out-in">
 <tr v-if="showAdd" key="addcancel">
 <td></td>
 <td><input class="form-control" v-model="currentItem" /></td>
 <td>
 <button id="add" class="btn btn-sm btn-info"
 v-on:click="handleAdd">
 Add
 </button>
 <button id="cancel" class="btn btn-sm btn-secondary"
 v-on:click="showAdd = false">
 Cancel
 </button>
 </td>
 </tr>
 <tr v-else key="show">
 <td colspan="4" class="text-center p-2">
 <button class="btn btn-info" v-on:click="showAdd = true">
 Show Add
 </button>
 </td>
 </tr>
 </transition>
 </tfoot>
</template>

<script>
 export default {
 data: function () {
 return {
 showAdd: false,
 currentItem: ""
 }
 },
 methods: {
 handleAdd() {
 this.$emit("add", this.currentItem);
 this.showAdd = false;
 },
 beforeEnter(el) {
 if (this.showAdd) {
 el.classList.add("animated", "fadeIn");
 }
 },
 afterEnter(el) {
 el.classList.remove("animated", "fadeIn");
 }
 }
 }
</script>

Chapter 25 ■ transitions

682

In the handler for the before-enter event, I check the value of the showAdd data property to see whether
the change should be animated. The result is that the transition effect is applied when the user clicks the
Show Add button, while there is no effect when the user clicks the Add or Cancel button.

Using the Enter and Leave Events
The enter and leave events are useful when you want to perform a custom transition from start to end,
typically where you want to generate a sequence of values for an element property programmatically or
use a JavaScript library that does that for you. In Listing 25-20, I have handled the event method by adding
the HTML element to animate.css classes and then listening for the DOM event that indicates when the
animation is complete.

Listing 25-20. Using the Enter Event in the ListMakeControls.vue File in the src/components Folder

<template>
 <tfoot>
 <transition v-on:enter="enter" mode="out-in">
 <tr v-if="showAdd" key="addcancel">
 <td></td>
 <td><input class="form-control" v-model="currentItem" /></td>
 <td>
 <button id="add" class="btn btn-sm btn-info"
 v-on:click="handleAdd">
 Add
 </button>
 <button id="cancel" class="btn btn-sm btn-secondary"
 v-on:click="showAdd = false">
 Cancel
 </button>
 </td>
 </tr>
 <tr v-else key="show">
 <td colspan="4" class="text-center p-2">
 <button class="btn btn-info" v-on:click="showAdd = true">
 Show Add
 </button>
 </td>
 </tr>
 </transition>
 </tfoot>
</template>

<script>
 import { styler, tween } from "popmotion";

 export default {
 data: function () {
 return {
 showAdd: false,
 currentItem: ""
 }
 },

Chapter 25 ■ transitions

683

 methods: {
 handleAdd() {
 this.$emit("add", this.currentItem);
 this.showAdd = false;
 },
 enter(el, done) {
 if (this.showAdd) {
 let t = tween({
 from: { opacity: 0 },
 to: { opacity: 1 },
 duration: 250
 });
 t.start({
 update: styler(el).set,
 complete: done
 })
 }
 }
 }
 }
</script>

This example uses the popmotion package, which is an animation library that uses JavaScript rather
than CSS. The details of how popmotion works are not important for this chapter—see http://popmotion.
io for details—and the listing serves only to demonstrate that you can use the enter and leave events to
perform transitions using JavaScript.

 ■ Note notice that the enter method in Listing 25-20 defines a done parameter. this is a callback function
that is used to tell Vue.js that the transition is complete. Vue.js won’t trigger the after-enter event until
the done function is invoked, so it is important to ensure that you call this method directly or use it as the
completion callback for your Javascript library, as i did in the listing.

Drawing Attention to Other Changes
If you want to draw the user’s attention when there is a change in the application’s data, then you can use a
watcher to respond to new values. In Listing 25-21, I have used the popmotion package to create a transition
effect when the user enters new values into the input elements presented by the Numbers component.

Listing 25-21. Responding to Changes in the Numbers.vue File in the src/components Folder

<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-success text-white text-center p-2">Numbers</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input class="form-control" v-model.number="first" />

http://popmotion.io
http://popmotion.io

Chapter 25 ■ transitions

684

 </div>
 <div class="col-1 h3">+</div>
 <div class="col">
 <input class="form-control" v-model.number="second" />
 </div>
 <div class="col h3">= {{ displayTotal }} </div>
 </div>
 </div>
 </div>
</template>

<script>

 import { tween } from "popmotion";

 export default {
 data: function () {
 return {
 first: 10,
 second: 20,
 displayTotal: 30
 }
 },
 computed: {
 total() {
 return this.first + this.second;
 }
 },
 watch: {
 total(newVal, oldVal) {
 let t = tween({
 from: Number(oldVal),
 to: Number(newVal),
 duration: 250
 });
 t.start((val) => this.displayTotal = val.toFixed(0));
 }
 }
 }
</script>

When the value of the total computed property changes, the watcher responds by using the popmotion
package to generate a series of values between the old and new values, each of which is used to update the
displayTotal property that is displayed in the component’s template.

This type of update can be combined with a CSS animation by using the $el property to get the
component’s DOM element, using it to locate the element you want to animate, and adding it to the
appropriate classes, as shown in Listing 25-22.

Chapter 25 ■ transitions

685

Listing 25-22. Adding an Animation in the Numbers.vue File in the src/components Folder

<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-success text-white text-center p-2">Numbers</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input class="form-control" v-model.number="first" />
 </div>
 <div class="col-1 h3">+</div>
 <div class="col">
 <input class="form-control" v-model.number="second" />
 </div>
 <div id="total" class="col h3">= {{ displayTotal }} </div>
 </div>
 </div>
 </div>
</template>

<script>

 import { tween } from "popmotion";

 export default {
 data: function () {
 return {
 first: 10,
 second: 20,
 displayTotal: 30
 }
 },
 computed: {
 total() {
 return this.first + this.second;
 }
 },
 watch: {
 total(newVal, oldVal) {
 let classes = ["animated", "fadeIn"]
 let totalElem = this.$el.querySelector("#total");
 totalElem.classList.add(...classes);
 let t = tween({
 from: Number(oldVal),
 to: Number(newVal),
 duration: 250
 });
 t.start({
 update: (val) => this.displayTotal = val.toFixed(0),
 complete: () => totalElem.classList.remove(...classes)
 });

Chapter 25 ■ transitions

686

 }
 }
 }
</script>

To ensure that the animation can be applied again, I remove the element from the animation classes
when the change has been completed. The result is that new results are displayed as a smooth transition, as
shown in Figure 25-10, although this is an effect that is difficult to capture in a screenshot.

Summary
In this chapter, I explained the different ways in which Vue.js transitions can be used. I demonstrated how
to use the transition and transition-group elements, how to assign elements to classes, how to use
third-party packages, and how to respond to the transition events. I also showed you how to draw the user’s
attention to other types of change, such as when a data value changes. In the next chapter, I describe the
different ways you can extend Vue.js.

Figure 25-10. Using a watcher to respond to value changes

687© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9_26

CHAPTER 26

Extending Vue.js

Vue.js provides all the features that are required for most web application projects. But if you find that you
need to extend Vue.js, then there are several different techniques available, and they are the topic of this
chapter. I show you how to supplement the built-in directives with your own custom code, how to define
common features for components using mixins, and how to group a wider range of related features using a
plugin. Table 26-1 puts this chapter in context.

Table 26-1. Putting the Vue.js Features in Context

Question Answer

What are they? The features described in this chapter allow you to extend the
functionality provided by Vue.js.

Why are they useful? These features can be useful if you have common code that is
required throughout an application and for which you cannot use
dependency injection. These features can also be useful if you have
common functionality that is required by multiple application
projects.

How are they used? Directives are created using a series of functions that are invoked
as the state of the element they are applied to changes. Mixins are
defined as groups of features that are merged with those defined by
a component when a new instance is created. Plugins are JavaScript
modules that can contain a wide range of Vue.js features that can be
used throughout an application.

Are there any pitfalls or limitations? These are advanced features that should be used with care and
that are not required by most features. Before using these features,
consider whether the desired result can be achieved using the
features from earlier chapters.

Are there any alternatives? These are optional features that are not required in most projects,
where the built-in functionality provided by Vue.js will be sufficient.

Chapter 26 ■ extending Vue.js

688

Table 26-2 summarizes the chapter.

Preparing for This Chapter
To create the project required for the examples in this chapter, run the command shown in Listing 26-1 in a
convenient location.

Listing 26-1. Creating the Example Project

vue create extendingvue --default

Once the setup process has finished, run the command shown in Listing 26-2 in the extendingvue
folder to add the Bootstrap CSS package to the project.

Listing 26-2. Adding the Bootstrap CSS Package

npm install bootstrap@4.0.0

Add the statement shown in Listing 26-3 to the main.js file in the src folder to incorporate the
Bootstrap package into the application.

Listing 26-3. Incorporating the Bootstrap Package in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'
import "bootstrap/dist/css/bootstrap.min.css";

Vue.config.productionTip = false

new Vue({
 render: h => h(App)
}).$mount('#app')

Table 26-2. Chapter Summary

Problem Solution Listing

Define a custom directive Implement one or more hook functions and register
the directive using the directives property of a
component

7–8, 16–18

Get information about how a
custom directive has been applied

Read the properties of the binding object 9–14

Pass data between hook functions Use data properties on the HTML element to which
the component has been applied

15

Define base features for
components

Define a mixin 19–22

Create a mixed set of related
features

Create a plugin 23–31

Chapter 26 ■ extending Vue.js

689

I added a file called Numbers.vue to the src/components folder with the content shown in Listing 26-4.

Listing 26-4. The Contents of the Numbers.vue File in the src/components Folder

<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-success text-white text-center p-2">Numbers</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input class="form-control" v-model.number="first" />
 </div>
 <div class="col-1 h3">+</div>
 <div class="col">
 <input class="form-control" v-model.number="second" />
 </div>
 <div class="col h3">= {{ total }} </div>
 </div>
 </div>
 </div>
</template>

<script>
 export default {
 data: function () {
 return {
 first: 10,
 second: 20
 }
 },
 computed: {
 total() {
 return this.first + this.second;
 }
 }
 }
</script>

This is the same component I used at the start of Chapter 25, without the transitions that I added in
later examples. To integrate this component into the application, replace the contents in the App.vue file, as
shown in Listing 26-5.

Listing 26-5. The Contents of the App.vue File in the src Folder

<template>
 <div class="m-2">
 <numbers />
 </div>
</template>

<script>

Chapter 26 ■ extending Vue.js

690

import Numbers from "./components/Numbers"

export default {
 name: 'App',
 components: { Numbers }
}
</script>

Run the command shown in Listing 26-6 in the transitions folder to start the development tools.

Listing 26-6. Starting the Development Tools

npm run serve

The initial bundling process will be performed, after which you will see a message telling you that the
project has compiled successfully and the HTTP server is listening for requests on port 8080. Open a new
browser window and navigate to http://localhost:8080 to see the content shown in Figure 26-1.

Creating Custom Directives
The built-in directives provided by Vue.js cover the key tasks that are required in most applications, but you
can also create your own directives if you need to work directly with the HTML elements presented by an
application and you need to do so across the application. I added a src/directives folder and added to it a
file called colorize.js with the content shown in Listing 26-7.

 ■ Tip notice that i have created a javascript file. Only components are written using .vue files ,which allow
a mix of htML, Css, and javascript. directives are written using only javascript.

Figure 26-1. Running the example application

Chapter 26 ■ extending Vue.js

691

Listing 26-7. The Contents of the colorize.js File in the src/directives Folder

export default {
 update(el, binding) {
 if (binding.value > 100) {
 el.classList.add("bg-danger", "text-white");
 } else {
 el.classList.remove("bg-danger", "text-white");
 }
 }
}

I’ll explain how custom directives work shortly, but it helps to show what this code does before digging
into how it does it. In Listing 26-8, I registered the directive and applied it to an HTML element.

WHY YOU PROBABLY DON’T NEED A CUSTOM DIRECTIVE

the basic building block in a Vue.js application is the component, and this is what you should create
when you want to add features to your project. directives are harder to work with, have more limited
features available, and can require manipulating htML elements using javascript apis, which can be a
tedious process.

directives can be useful if you want to manipulate an htML element at a low level, but this is something
that can be done using the built-in directives in most cases since the most common changes needed
are supported by directives such as v-bind, as described in Chapter 12. if you find yourself creating a
custom directive, it is worth taking a moment to ask yourself if you are able to achieve the same result
using one of the other Vue.js features.

Listing 26-8. Registering and Applying a Directive in the Numbers.vue File in the src/components Folder

<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-success text-white text-center p-2">Numbers</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input class="form-control" v-model.number="first" />
 </div>
 <div class="col-1 h3">+</div>
 <div class="col">
 <input class="form-control" v-model.number="second" />
 </div>
 <div v-colorize="total" class="col h3">= {{ total }} </div>
 </div>
 </div>
 </div>
</template>

<script>

Chapter 26 ■ extending Vue.js

692

 import Colorize from "../directives/colorize";

 export default {
 data: function () {
 return {
 first: 10,
 second: 20
 }
 },
 computed: {
 total() {
 return this.first + this.second;
 }
 },
 directives: { Colorize }
 }
</script>

Custom directives are registered using the directives property, which is assigned an object. In this
example, I have used the import keyword to give the directive the name Colorize, which I then apply to an
HTML in the component’s template as an attribute whose name is prefixed with v-, like this:

...
<div v-colorize="total" class="col h3">= {{ total }} </div>
...

I have specified the total property as the attribute’s value, which I’ll return to when I explain how the
directive works. To test the directive, reload the browser and enter values that provide a total that is greater
than 100. When you do this, the background and text colors of the result are changed, as shown in Figure 26-2.

Understanding How Directives Work
Directives define methods, known as hook functions, that are invoked at key moments in the lifecycle of the
component whose template they have been applied to. Table 26-3 describes the directive hook functions.

Figure 26-2. The effect of the custom directive

Chapter 26 ■ extending Vue.js

693

In Listing 26-7, the custom directive implements the update hook, which allows it to update the HTML
element when the component whose template contains the HTML element is updated. When you entered a
new value in one of the input elements, the change triggered an update for the component, which led to the
directive’s update hook function being invoked, providing the directive with an opportunity to modify the
HTML element to which it has been applied.

The first argument to the hook functions is an HTMLElement object that implements the standard DOM
API and that can be used to modify the HTML content presented to the user. I used this object in the hook
function to add and remove classes that correspond to Bootstrap CSS styles, like this:

...
export default {
 update(el, binding) {
 if (binding.value > 100) {
 el.classList.add("bg-danger", "text-white");
 } else {
 el.classList.remove("bg-danger", "text-white");
 }
 }
}
...

This is the standard DOM API, which I don’t describe in this book but which you can learn about at
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement.

REGISTERING DIRECTIVES GLOBALLY

in Listing 26-8, i registered the custom directive for use in a single component. You can also
register directives so they can be used globally so that you don’t have to register them for individual
components. global registration is done in the main.js file, using the Vue.directive method, like this:

Table 26-3. The Directive Hook Functions

Name Description

bind This method is called when the directive is first initialized and provides an
opportunity to perform any initial tasks.

inserted This method is called when the element to which the directive has been applied is
inserted into its parent.

update This method is called when the component whose template contains the element to
which the directive has been applied is updated. This method may be called before
the component’s children have been updated.

componentUpdated This method is called when the component whose template contains the element
to which the directive has been applied is updated and after its children have been
updated.

unbind This method is called to provide an opportunity to clean up before the directive is no
longer associated with the element.

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement

Chapter 26 ■ extending Vue.js

694

...
import Vue from 'vue'
import App from './App'

import "bootstrap/dist/css/bootstrap.min.css";

import Colorize from "./directives/colorize";
Vue.directive("colorize", Colorize);

Vue.config.productionTip = false

new Vue({
 el: '#app',
 components: { App },
 template: '<App/>'
})
...

the first argument is the name by which the directive will be applied, and the second argument is the
object or function imported from the custom directive’s javascript file. the Vue.directive method
must be called before you create the new Vue object for the application, as shown in the code fragment,
and the result is that you can use the directive throughout the application without needing to use the
directives property.

The second argument passed to the hook functions is an object that represents the directive’s binding to
the HTML element and that defines the properties shown in Table 26-4.

 ■ Tip the hook functions are also provided with the VNode objects that Vue.js uses to keep track of htML
elements internally, but i do not describe them in this chapter because they are not that useful. see
https://vuejs.org/v2/api/#VNode-Interface for details.

Table 26-4. The Properties Defined by the Binding Object

Name Description

name This property returns the name used to apply the directive to the HTML element without
the v- prefix. This would be colorize for the directive applied in Listing 26-8.

expression This property returns the expression used to apply the directive, expressed as a string. In
the example, this would be total. You don’t have to process the expression to get a result,
which is provided through the value property.

value This property returns the current value produced by evaluating the expression used to apply
the directive. For the example, this will be the current value of the component’s total property

oldValue This property returns the previous expression value but is available only for the update
and componentUpdated hook functions.

arg This property returns the argument used to apply the directive if there is one.

modifiers This property returns the modifiers used to apply the directive if there are any.

https://vuejs.org/v2/api/#VNode-Interface

Chapter 26 ■ extending Vue.js

695

The custom directive I defined in Listing 26-7 uses the value property to get the current value of the
expression, which it uses to decide whether to add or remove the element from the Bootstrap CSS classes.

...
export default {
 update(el, binding) {
 if (binding.value > 100) {
 el.classList.add("bg-danger", "text-white");
 } else {
 el.classList.remove("bg-danger", "text-white");
 }
 }
}
...

Note that the directive doesn’t have any direct relationship to the component and that it receives its
value through the expression without any context about the meaning of that value.

 ■ Caution the properties described in table 26-4 are read-only. Custom directives should make changes
only through the htML element.

Using Custom Directive Expressions
The temptation when creating custom directives is to put too much logic into the directive and not rely on
the core Vue.js features and, as a result, create a directive that cannot be widely applied. The directive that I
defined in Listing 26-7 falls into this trap because it hard-codes the value that triggers the element coloring
in the JavaScript code. A better approach is to rely on the Vue.js expression feature to let the component
control the directive’s behavior, as shown in Listing 26-9.

Listing 26-9. Using an Expression in the Numbers.vue File in the src/components Folder

...
<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-success text-white text-center p-2">Numbers</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input v-colorize="first > 45" class="form-control"
 v-model.number="first" />
 </div>
 <div class="col-1 h3">+</div>
 <div class="col">
 <input class="form-control" v-model.number="second" />
 </div>
 <div v-colorize="total > 50" class="col h3">= {{ total }} </div>
 </div>

Chapter 26 ■ extending Vue.js

696

 </div>
 </div>
</template>
...

Instead of providing the directive with the total value, I have used expressions that allow the value that
triggers the classes, meaning that I am able to apply the same directive to different elements with different
trigger values. In Listing 26-10, I have made the corresponding change to the directive.

Listing 26-10. Removing the Trigger Value in the colorize.js File in the src/directives Folder

export default {
 update(el, binding) {
 if (binding.value) {
 el.classList.add("bg-danger", "text-white");
 } else {
 el.classList.remove("bg-danger", "text-white");
 }
 }
}

The result is that the directive will change the background and font color of the first input element if its
value exceeds 45 and the div element if the total exceeds 50, as shown in Figure 26-3.

Using Custom Directive Arguments
A directive can be provided with arguments that provide additional information to shape its behavior, such
as the way that the event you want to handle is specified when using the v-on directive, as described in
Chapter 14. Custom directives can also receive an argument, and in Listing 26-11 I have used an argument
to specify the name of the class that will be used to change the background color of the element that the
directive is applied to.

Figure 26-3. Applying the same directive to multiple elements

Chapter 26 ■ extending Vue.js

697

Listing 26-11. Receiving an Argument in the colorize.js File in the src/directives Folder

export default {
 update(el, binding) {
 const bgClass = binding.arg || "bg-danger";
 if (binding.value) {
 el.classList.add(bgClass, "text-white");
 } else {
 el.classList.remove(bgClass, "text-white");
 }
 }
}

I use the arg property to get the class name, falling back to the bg-danger class if no argument is
provided. In Listing 26-12, I have added an argument to one of the directives to specify the bg-info class.

Listing 26-12. Adding an Argument in the Numbers.vue File in the src/components Folder

...
<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-success text-white text-center p-2">Numbers</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input v-colorize:bg-info="first > 45" class="form-control"
 v-model.number="first" />
 </div>
 <div class="col-1 h3">+</div>
 <div class="col">
 <input class="form-control" v-model.number="second" />
 </div>
 <div v-colorize="total > 50" class="col h3">= {{ total }} </div>
 </div>
 </div>
 </div>
</template>
...

As a result, entering a value that exceeds 45 into the first input element puts the element into a class for
which Bootstrap uses a different background color, as shown in Figure 26-4.

Chapter 26 ■ extending Vue.js

698

Using Custom Directive Modifiers
Modifiers provide directives with additional instructions, which can be used to supplement arguments. In
Listing 26-13, I have updated the custom directive so that it checks for modifiers that specify whether the
background and text colors should be changed.

Listing 26-13. Receiving Modifiers in the colorizer.js File in the src/directives Folder

export default {
 update(el, binding) {
 const bgClass = binding.arg || "bg-danger";
 const noMods = Object.keys(binding.modifiers).length == 0;
 if (binding.value) {
 if (noMods || binding.modifiers.bg) {
 el.classList.add(bgClass);
 }
 if (noMods|| binding.modifiers.text) {
 el.classList.add("text-white");
 }
 } else {
 el.classList.remove(bgClass, "text-white");
 }
 }
}

Modifiers are accessed through the object returned by the modifiers property of the binding
parameter. If no modifiers have been applied, then the object will have no properties, but for each modifier
that has been applied, there will be a property whose name is the modifier and whose value is true. For
my example directive, I want to change both the background and text colors if there are no modifiers. If
modifiers have been used, then the bg modifier will indicate that the background color should be changed,
and the text modifier will indicate that the text color should be changed. In Listing 26-14, I have used
different combinations of modifiers to the directive and applied the directive to the second input element.

Figure 26-4. Using an argument in a custom directive

Chapter 26 ■ extending Vue.js

699

Listing 26-14. Using Directive Modifiers in the Numbers.vue File in the src/components Folder

...
<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-success text-white text-center p-2">Numbers</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input v-colorize:bg-info.bg="first > 45" class="form-control"
 v-model.number="first" />
 </div>
 <div class="col-1 h3">+</div>
 <div class="col">
 <input v-colorize:bg-info="second > 30"
 class="form-control" v-model.number="second" />
 </div>
 <div v-colorize.bg.text="total > 50" class="col h3">
 = {{ total }}
 </div>
 </div>
 </div>
 </div>
</template>
...

The modifiers for the example directive are optional, so I am able to use the v-colorizer attribute with no
modifiers, with just the bg modifier, and with both the bg and text modifiers. This has the effect that I am able
to configure each HTML element to which the directive has been applied separately, as shown in Figure 26-5.

Figure 26-5. Using modifiers to configure the directive

Chapter 26 ■ extending Vue.js

700

Communicating Between Hook Functions
The nature of custom directives is simple and stateless, and it requires some effort if you want to pass data
between the hook functions so that some result produced in the bind hook, for example, can be reused in
the update hook or so that the outcome of one invocation of the update hook can be used in the next update.
The solution to this problem is to use the HTML element to store the data you require using data attributes.
In Listing 26-15, I have modified the custom directive so it uses the data attribute to keep track of whether
the element has been added to the Bootstrap classes.

Listing 26-15. Using Data Attributes in the colorize.js File in the src/directives Folder

export default {
 update(el, binding) {
 const bgClass = binding.arg || "bg-danger";
 const noMods = Object.keys(binding.modifiers).length == 0;
 if (binding.value) {
 if (noMods || binding.modifiers.bg) {
 el.classList.add(bgClass);
 el.dataset["bgClass"] = true;
 }
 if (noMods|| binding.modifiers.text) {
 el.classList.add("text-white");
 el.dataset["textClass"] = true;
 }
 } else {
 if (el.dataset["bgClass"]) {
 el.classList.remove(bgClass);
 el.dataset["bgClass"] = false;
 }
 if (el.dataset["textClass"]) {
 el.classList.remove("text-white");
 el.dataset["textClass"] = false;
 }
 }
 }
}

The dataset property provides access to the HTML element’s data- attributes, and I create data-
bgClass and data-textClass attributes to indicate when the element has been added to the Bootstrap
classes. There is no visual change in this example, but if you set the first HTML element’s value so that it is
greater than 45 and then inspect the element using the browser’s F12 tools, you will see that the directive has
been able to use the element to store its state data, like this:

...
<div class="col h3 bg-danger text-white"
 data-bg-class="true" data-text-class="true">
 = 70
</div>
...

This may seem like an odd approach, but it means that the HTML element provides the consistent
source of data used by the directive without having the need to add features for local state data and a
separate directive lifecycle.

Chapter 26 ■ extending Vue.js

701

Defining Single Function Directives
Directives are prone to code duplication if they need to perform the same task during setup and again when
there is a change, as shown in Listing 26-16.

Listing 26-16. Adding a Hook in the colorizer.js File in the src/directives Folder

export default {
 bind(el, binding) {
 if (binding.value) {
 el.classList.add("bg-danger", "text-white");
 } else {
 el.classList.remove("bg-danger", "text-white");
 }
 },
 update(el, binding) {
 if (binding.value) {
 el.classList.add("bg-danger", "text-white");
 } else {
 el.classList.remove("bg-danger", "text-white");
 }
 }
}

I have simplified the directive so that it no longer uses arguments, modifiers, or data attributes, and I
have added the bind hook. The result is that the initial value of the expression used to apply the directive is
used to configure the HTML element, albeit by duplicating the same statements in each hook.

This is such a common pattern that Vue.js supports an optimization, which allows the directives that
require only the bind and update hooks to be expressed as a single function, as shown in Listing 26-17.

Listing 26-17. Using a Single Function in the colorizer.js File in the src/directives Folder

export default function (el, binding) {
 if (binding.value) {
 el.classList.add("bg-danger", "text-white");
 } else {
 el.classList.remove("bg-danger", "text-white");
 }
}

The drawback of this approach is that you cannot specify any other hooks, but it does allow most
directives to be expressed as a single function without having to duplicate any code. To show that Vue.
js applies the directive as though it had a bind hook, I increased the initial value of one of the Numbers
component’s data properties, as shown in Listing 26-18.

Listing 26-18. Increasing a Data Property in the Numbers.vue File in the src/components Folder

...
<script>

 import Colorize from "../directives/colorize";

 export default {
 data: function () {

Chapter 26 ■ extending Vue.js

702

 return {
 first: 50,
 second: 20
 }
 },
 computed: {
 total() {
 return this.first + this.second;
 }
 },
 directives: { Colorize }
 }
</script>
...

The new value exceeds the threshold used to apply the directive, which produces the result shown in
Figure 26-6.

Creating Component Mixins
Mixins are a useful way to provide shared features to components to help reduce code duplication. The
advantage of mixins is simplicity, but the drawback is that they cannot be used to share state, for which
features like dependency injection or a data store are required.

I like to define mixins in their own folder to keep them separate from the rest of the project. To
demonstrate a mixin, I created the src/mixins directory and added to it a file called numbersMixin.js with
the content shown in Listing 26-19.

Listing 26-19. The Contents of the numbersMixin.js File in the src/mixins Folder

import Colorize from "../directives/colorize";

export default {
 data: function () {
 return {

Figure 26-6. Using a single function to provide the bind hook

Chapter 26 ■ extending Vue.js

703

 first: 50,
 second: 20
 }
 },
 computed: {
 total() {
 return 0;
 }
 },
 directives: { Colorize },
}

A mixin can contain any component code feature, including data and computed properties, methods,
filters, and directives. If you are building a set of related components that share common functionality, then
a mixin can be a good way to avoid copying and pasting the same code into the script element of .vue files.
The mixin in Listing 26-19 contains data properties, a computed property, and a directive registration, all of
which I took from the existing Numbers component, albeit the total computed property returns zero, which I
have done to show how mixins work.

In Listing 26-20, I have updated the Numbers component so it uses the mixin and only defines the
functionality that is different.

Listing 26-20. Using a Mixin in the Numbers.vue File in the src/components Folder

...
<script>
 import mixin from "../mixins/numbersMixin";

 export default {
 computed: {
 total() {
 return this.first + this.second;
 }
 },
 mixins: [mixin]
 }
</script>
...

Mixins are applied using the mixins property, which is assigned an array of the mixin objects. When
a mixin is used, Vue.js treats the component as though it had defined the features provided by the mixins.
When the component defines a feature that has the same name, such as the total computed property in
Listing 26-20, then the component’s feature overrides the one provided by the mixin.

APPLYING A MIXIN TO ALL COMPONENTS

Mixins can be registered globally, which applies their features to all the components in an application.
this is not something that should be done lightly because its effects are wide-ranging and usually cause
expected behavior. Mixins are registered globally in the main.js file using the Vue.mixin method, like this:

Chapter 26 ■ extending Vue.js

704

...
import Vue from 'vue'
import App from './App'

import "bootstrap/dist/css/bootstrap.min.css";

Vue.config.productionTip = false

import mixin from "./mixins/numbersMixin";

Vue.mixin(mixin);

new Vue({
 el: '#app',
 components: { App },
 template: '<App/>'
})
...

the Vue.mixin method must be called before you create the new Vue object for the application, as
shown in the code fragment. When you register a mixin like this, you don’t need to use the mixins
property in individual components.

This allows the mixin to provide generic functionality that is overridden by more specialized behavior.
To show how a single mixin can be used to provide the foundation for related components, I created a file
called Subtraction.vue in the src/components folder with the content shown in Listing 26-21.

 ■ Tip When a mixin and a component both implement a lifecycle method, as described in Chapter 17, Vue.js
invokes the mixin’s method and then invokes the method defined by the component.

Listing 26-21. The Contents of the Subtraction.vue File in the src/components Folder

<template>
<div class="mx-5 p-2 border border-dark">
 <h3 class="bg-info text-white text-center p-2">Subtraction</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input class="form-control" v-model.number="first" />
 </div>
 <div class="col-1 h3">-</div>
 <div class="col">
 <input class="form-control" v-model.number="second" />
 </div>
 <div v-colorize.bg.text="total > 50" class="col h3">= {{ total }}</div>
 </div>
 </div>

Chapter 26 ■ extending Vue.js

705

</div>
</template>

<script>

 import mixin from "../mixins/numbersMixin";

 export default {

 computed: {
 total() {
 return this.first - this.second;
 }
 },
 mixins: [mixin]
 }
</script>

This component has the same basic structure as the Numbers component but overrides the total
computed property so that the value of one data property is subtracted from the other, instead of the addition
performed by the original component. All of the other component features are provided by the mixin. In
Listing 26-22, I have updated the top-level App component to display the new component.

Listing 26-22. Adding a Component in the App.vue File in the src Folder

<template>
 <div class="m-2">
 <numbers />
 <subtraction />
 </div>
</template>

<script>

import Numbers from "./components/Numbers";
import Subtraction from "./components/Subtraction";

export default {
 name: 'App',
 components: { Numbers, Subtraction }
}
</script>

I have displayed the new component alongside the existing one, producing the result shown in Figure 26-7.

 ■ Note each component that uses a mixin gets its own data properties, which are not shared with the other
components. if you want components to operate on the same data values, then see Chapter 18 for details of
dependency injection or Chapter 20 for information about data stores.

Chapter 26 ■ extending Vue.js

706

Creating a Vue.js Plugin
Plugins allow broad sets of features to be applied globally throughout an application without needing to
configure each feature individually. These features include directives and mixins but also allow methods and
properties to be defined globally, which is how package like Vuex (Chapter 20) and Vue Router (Chapter 22)
provide access to their functionality.

To demonstrate how plugins are created and used, I am going to define a set of global features that will
support the simple math operations performed by the components in the example application.

To get started, I created the src/plugins/maths folder and added to it a file called filters.js with the
content shown in Listing 26-23.

Listing 26-23. The Contents of the filters.js File in the src/plugins/maths Folder

export default {

 currency: function (value) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD" }).format(value);
 },

 noDecimal: function (value) {
 return Number(value).toFixed(0);
 }
}

This file defines two filter functions that format numeric values and assigns them to properties whose
names I will use to register the filters shortly. The purpose of these filters isn’t as important as the way they
can be included in a plugin. See Chapter 11 for details of how filters work.

Figure 26-7. Creating similar components using the same mixin

Chapter 26 ■ extending Vue.js

707

Plugins can also include directives, so I created a file called directives.js in the src/plugins/maths
folder with the content shown in Listing 26-24.

Listing 26-24. The Contents of the directives.js File in the src/plugins/maths Folder

export default {

 borderize: function (el, binding) {
 if (binding.value) {
 el.classList.add("border", "border-dark");
 } else {
 el.classList.remove("border", "border-dark");
 }
 }
}

This file defines a single-function directive that applies a border to its HTML element when its
expression is true. This isn’t an especially useful directive, but, as noted earlier, custom directives are rarely
useful and are not needed in most applications.

Plugins can also define global methods and properties that can be accessed throughout the application.
I added a file called globals.js in the src/plugins/maths folder with the content shown in Listing 26-25.

Listing 26-25. The Contents of the globals.js File in the src/plugins/maths Folder

export default {
 sumValues(...vals) {
 return vals.reduce((val, total) => total += val, 0);
 },

 getSymbol(operation) {
 switch (operation.toLowerCase()) {
 case "add": return "+";
 case "subtract": return "-";
 case "multiply": return "*";
 default: return "/";
 }
 }
}

In the listing, I have defined a sumValues function that uses a rest argument to receive an array of values
that are summed to produce a result and a getSymbol method that takes the name of a math operation and
returns the symbol that represents it.

You can also use a plugin to add properties and methods to every component, similar to the way that
Vuex provides the $store property and Vue Router provides $route and $router. I added a file called
componentFeatures.js in the src/plugins/maths folder with the content shown in Listing 26-26.

Listing 26-26. The Contents of the componentFeatures.js File in the src/plugins/maths Folder

export default {
 $calc: {
 add(first, second) {
 return first + second;
 },

Chapter 26 ■ extending Vue.js

708

 subtract(first, second) {
 return first - second;
 },
 multiply(first, second) {
 return first * second;
 },
 divide(first, second) {
 return first / second;
 }
 }
}

The convention is that features provided to components have names that begin with a dollar sign, and
in the listing, I have defined a $calc object with add, subtract, multiply, and divide methods that perform
basic math operations.

Plugins can contain components, which is a useful way to ensure that common functionality is available
throughout the application. I added a file called Operation.vue to the src/plugins/maths folder with the
content shown in Listing 26-27.

Listing 26-27. The Contents of the Operation.vue File in the src/plugins/maths Folder

<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-info text-white text-center p-2">{{ operation }}</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input class="form-control" v-model.number="first" />
 </div>
 <div class="col-1 h3">{{ symbol }}</div>
 <div class="col">
 <input class="form-control" v-model.number="second" />
 </div>
 <div class="col h3" v-borderize="total > 25">= {{ total }}</div>
 </div>
 </div>
 </div>
</template>

<script>

import Vue from "vue";

export default {
 props: ["firstVal", "secondVal", "operation"],
 data: function () {
 return {
 first: Number(this.firstVal),
 second: Number(this.secondVal)
 }
 },

Chapter 26 ■ extending Vue.js

709

 computed: {
 symbol() {
 return Vue.getSymbol(this.operation);
 },
 total() {
 switch (this.operation.toLowerCase()) {
 case "add":
 return this.$calc.add(this.first, this.second);
 case "subtract":
 return this.$calc.subtract(this.first, this.second);
 case "multiply":
 return this.$calc.multiply(this.first, this.second);
 case "divide":
 return this.$calc.divide(this.first, this.second);
 }
 }
 }
}
</script>

This component presents a standardized interface for performing simple operations on two numbers
and builds on some of the other features in the plugin, which I will explain shortly.

Creating the Plugin
The features that I have defined in the previous section have to be combined to create a plugin. I added a file
called index.js in the src/plugins/maths folder and added the code shown in Listing 26-28, which brings
together the different features to create a plugin.

Listing 26-28. The Contents of the index.js File in the src/plugins/maths Folder

import filters from "./filters";
import directives from "./directives";
import globals from "./globals";
import componentFeatures from "./componentFeatures";
import Operation from "./Operation";

export default {
 install: function (Vue) {

 Vue.filter("currency", filters.currency);
 Vue.filter("noDecimal", filters.noDecimal);
 Vue.directive("borderize", directives.borderize);
 Vue.component("maths", Operation);

 Vue.sumValues = globals.sumValues;
 Vue.getSymbol = globals.getSymbol;

 Vue.prototype.$calc = componentFeatures.$calc;
 }
}

Chapter 26 ■ extending Vue.js

710

Plugins are objects that define an install function, which receives a Vue object and an optional
configuration object. The methods provided by the Vue object are used to register each feature, which I have
imported from the JavaScript files that I created in the previous section, as described in Table 26-5.

In Listing 26-28, I have used the filter, directive, and component methods to register the features
that were defined in the previous section. To register the global methods and properties, new members are
added to the Vue object, like this:

...
Vue.getSymbol = globals.getSymbol;
...

This statement makes the getSymbol method available throughout the application, which means it can
be accessed through the Vue object, as this statement from the component in Listing 26-27 demonstrates:

...
symbol() {
 return Vue.getSymbol(this.operation);
},
...

Methods and properties that you want to access in each component are added to the Vue.prototype
object, like this:

...
Vue.prototype.$calc = componentFeatures.$calc;
...

This statement sets up the $calc object so that it can be accessed as this.$calc in components, as this
statement from the component Listing 26-27 shows:

...
return this.$calc.add(this.first, this.second);
...

Through a combination of these techniques and the methods in Table 26-5, a plugin is able to provide a
Vue.js application with a wide range of features.

Table 26-5. The Vue Methods for Registering Plugin Features

Name Description

Vue.directive This method is used to register a directive. The arguments are the name by which the
directive will be applied and the directive object.

Vue.filter This method is used to register a filter. The arguments are the name by which the filter
will be applied and the filter object.

Vue.component This method is used to register a component. The arguments are the name by which
the component will be applied and the component object.

Vue.mixin This method is used to register a mixin. The argument to this method is the mixin
object.

Chapter 26 ■ extending Vue.js

711

Using a Plugin
Plugins are enabled with the Vue.use method, which is the same method that I used to register the data
store and URL routing plugins in earlier chapters, the only difference being that those plugins were in their
own NPM packages. In Listing 26-29, I have imported the custom package in the example application and
enabled it with the Vue.use method.

Listing 26-29. Using the Plugin in the main.js File in the src Folder

import Vue from 'vue'
import App from './App.vue'
import "bootstrap/dist/css/bootstrap.min.css";

Vue.config.productionTip = false

import MathsPlugin from "./plugins/maths";
Vue.use(MathsPlugin);

new Vue({
 render: h => h(App)
}).$mount('#app')

Once a plugin has been enabled, its features can be used throughout the application. In Listing 26-30, I
have added the component I defined to the top-level App component’s template.

Listing 26-30. Using a Plugin’s Component in the App.vue File in the src Folder

<template>
 <div class="m-2">
 <numbers />
 <subtraction />
 <maths operation="Divide" firstVal="10" secondVal="20" />
 </div>
</template>

<script>

import Numbers from "./components/Numbers";
import Subtraction from "./components/Subtraction";

export default {
 name: 'App',
 components: { Numbers, Subtraction }
}
</script>

Notice that I don’t have to register the component and that I can just add a maths element to the
template because the features provided by the plugin are available throughout the application.
In Listing 26-31, for example, I have used one of the filters and a global method in the Numbers component.

Chapter 26 ■ extending Vue.js

712

Listing 26-31. Using Plugin Features in the Numbers.vue File in the src/components Folder

<template>
 <div class="mx-5 p-2 border border-dark">
 <h3 class="bg-success text-white text-center p-2">Numbers</h3>

 <div class="container-fluid">
 <div class="row">
 <div class="col">
 <input v-colorize:bg-info.bg="first > 45" class="form-control"
 v-model.number="first" />
 </div>
 <div class="col-1 h3">+</div>
 <div class="col">
 <input v-colorize:bg-info="second > 30"
 class="form-control" v-model.number="second" />
 </div>
 <div v-colorize.bg.text="total > 50" class="col h3">
 = {{ total | currency }}
 </div>
 </div>
 </div>
 </div>
</template>

<script>
 import mixin from "../mixins/numbersMixin";
 import Vue from "vue";

 export default {

 computed: {
 total() {
 return Vue.sumValues(this.first, this.second);
 }
 },
 mixins: [mixin]
 }
</script>

The result is that the value displayed by the component is formatted as a currency amount, and a new
component is displayed to the user, as shown in Figure 26-8.

Chapter 26 ■ extending Vue.js

713

Summary
In this chapter, I described the different ways that the functionality provided by Vue.js can be extended. I
showed you how to create a custom directive, with the caveat that this is rarely the best approach; how to
provide components with common features using a mixin; and how to provide a range of related features by
creating a plugin.

And that is all I have to teach you about Vue.js. I started by creating a simple application and then took
you on a comprehensive tour of the different building blocks in the framework, showing you how they can
be created, configured, and applied to create web applications.

I wish you every success in your Vue.js projects, and I can only hope that you have enjoyed reading this
book as much as I enjoyed writing it.

Figure 26-8. Using plugin features

715© Adam Freeman 2018
A. Freeman, Pro Vue.js 2, https://doi.org/10.1007/978-1-4842-3805-9

��������� A
Angular and Vue.js, 30
Axios

errors, 500
installing, 481
making requests, 490, 496
response data, 492
responses, 491

��������� B
Bootstrap CSS, 45

applying classes, 46
contextual classes, 46
forms, 50
framework, 11
grid layout, 47
margin, 47
padding, 47
tables, 48

��������� C
Change detection process

limitations, 323
Vue.delete method, 393
Vue.set method, 323

Components, 9, 214
asynchronous, 557
as building blocks, 399
child element names, 402
computed properties, 267
CSS scoping, 407
custom events, 414

$this method, 415
v-on directive, 416

data properties, 261
dynamic, 546

data binding, 548
keep-alive element, 551

errors, 446
filters, 273

arguments, 276
chaining, 276
global filters, 279

inject property, 460
is attribute, 546
isolation from other

components, 405
lazy loading, 557
lifecycle, 431

creation phase, 432
destruction phase, 443
error handling, 446
methods, 24, 431
mounting phase, 433
update consolidation, 437
watchers, 441

methods, 270
mixins, 702
parent-child relationships, 399
props, 407

defining, 408
expressions, 412
using, 409

provide property, 459
registering, 216
slots, 418

named slots, 419
scoped slots, 421

$store property, 513
templates (see Templates)
update phase, 436
using in templates, 216
Vue.nextTick method, 440
watchers, 441

Computed properties, 212, 267
CSS style scoping, 407
Custom events, 414

��������� D
Data bindings, 210

binding to an array, 381
input element bindings, 372

Index

https://doi.org/10.1007/978-1-4842-3805-9

■ INDEX

716

one-way bindings, 366
text interpolation binding, 13, 263
two-way bindings, 17, 367
v-model directive, 17

Data properties, 210
Data store

actions, 522
change notifications, 525
commit method, 515
defining, 509
dispatch method, 524
getters, 518

additional arguments, 521
inspecting, 516
installing Vuex package, 506
mapActions helper, 530
mapGetters helper, 530
mapMutations helper, 530
mapState helper, 530
modules, 533

namespaces, 538
mutations, 515
namespaces, 538
registering, 512
$store property, 513
strict mode, 514
Vuex.Store object, 509
watchers, 526

Dependency injection, 459
consuming a service, 460
defining a service, 459
fallback services, 466
inject property, 460
overriding services, 461
provide property, 459
reactive services, 463

Directives
custom, 690

arguments, 696
binding object, 695
expressions, 695
global registration, 693
modifiers, 698
values, 696

hook functions, 692
is attribute, 546
v-bind, 15, 296

classes, 296
configuration object, 299
data attributes, 302
multiple attributes, 303
properties, 305
styles, 301

v-else, 25, 292

v-for, 15, 311
alias, 314
change detection, 322
index, 319
key, 316
no data source, 329
update limitations, 323
Vue.set method, 323

v-html, 286
v-if, 25, 287
v-model, 17, 370

binding to an array, 381
lazy modifier, 379
number modifier, 377

v-on, 23, 211, 339
capture modifier, 353
custom events, 416
event objects, 340
event propagation, 350, 352
handling events with

methods, 342
keyboard modifiers, 359
mouse modifiers, 358
multiple events, 346
once modifier, 357
self modifier, 354
stop modifier, 355

v-show, 295
v-text, 284

Docker, 197
Domain Object Model

(DOM) API, 205
Dynamic components, 546

��������� E
Error handling, 446
Event bus, 469

$emit method, 470
local event buses, 474
$on method, 471
receiving events, 471
sending events, 470

Events, 339
creating custom events, 414
event bus, 469
handling, 211

��������� F
Filtering data, 332
Filters, 273

creating a global filter, 131
Form elements

binding

Data bindings, 210 (cont.)

■ INDEX

717

to checkboxes, 373
to radio buttons, 373
to select elements, 376
to text fields, 372

creating data bindings, 372
validating data, 387

��������� G
GitHub repository, 35

��������� H, I
History API, 579
HTML

attributes, 42
literal values, 43

element content, 41
element structure, 40
live HTML document, viewing, 44
tags, 40
void elements, 42

��������� J, K
JavaScript

arrays, 71
accessing values, 71
built-in methods, 74
enumerating, 72
literal arrays, 71
spread operator, 73

arrow functions, 61
closure, 64
conditional statements

equality operator, 68
identity operator, 68
if/else, 67
switch, 67

constants, defining, 62
const keyword, 62
functions, 57

default parameters, 59
fat arrow functions, 61
rest parameters, 59
results, 60
using functions as arguments, 61

let keyword, 62
modules, 79

composing modules, 83
importing, 82
import locations, 80
multiple features, 81
renaming features, 82

objects, 75
literal objects, 76

methods, 77
properties, 76

primitive types
boolean, 64
numbers, 66
strings, 65

promises, 84
async keyword, 86
await keyword, 86

statements, 56
parameters, 58

template strings, 66
truthy and falsy, 289
type conversion, 69
variables

closure, 64
defining, 62

jQuery, 32

��������� L
Lazy loading, 557
Linting, 225, 242
Localization, 275
Local storage API, 24

��������� M
Methods, data values, 270–272
Mixins, 702

��������� N, O
npm run build command, 252
npm run serve command, 233

��������� P, Q
Projects

Babel compiler, 234
basic project structure, 6
configuring development

tools, 250
creating, 222
debugging, 247
development tools, 233
ESLint package, 243
features, 223
hot module replacement, 237
linting, 225, 242
package management, 229

NPM, 229
Yarn, 229

src folder, 228
vue.confuig.js file, 250
webpack, 233

■ INDEX

718

��������� R
React and Vue.js, 30
Round-trip applications, 30

��������� S
script element, 259
Server-side rendering, 31
Single-page applications, 30
Slots, 418
Sorting data, 332
SportsStore

additional packages, 90
administration, 166
authentication, 166
category selection, 112
creating the project, 89
data loading, 155
data store, 96
deployment, 189

build process, 194
configuration changes, 190
Docker, 197
dynamic imports, 192

formatting data, 103
form validation, 143
global filter, 131
JSON Web Token, 166
pagination, 104
route guard, 172
searching, 161
shopping cart, 120
URL routing, 121
web service, 92, 115

style element, 259

��������� T
Template elements, 218, 259
Templates, 218

data bindings, 210, 263
defining as strings, 208
global objects and functions, 265
script element, 259
style element, 259
template element, 259

Tools
Bootstrap CSS framework, 11
Code Editor, 5
Git, 5
Node.js, 3
@vue/cli package, 4
Vue Devtools, 6

Vue.js development tools, 4
starting, 8

Transitions
events, 680
transition classes, 668
transition element, 666

attributes, 671
mode attribute, 673

transition-group element, 678
using animation library, 670

��������� U
URL routing, 567

aliases for routes, 582
catch-all routes, 581
children property, 619
configuration, 567
dynamic segments, 587
history API, 579
mode property, 579
modules, 630
named routes, 594
navigation in code, 573
navigation methods, 573
nested routes, 617
props, 654
push method, 573
regular expressions, 591
$route object, 583
route guards, 632

redirection, 634
router-link element, 575

active routes, 612
configuration, 606
exact attribute, 614
nested routes, 617

$router object, 573, 583
router-view element, 570
setting up, 569
URL style, 579

��������� V
@vue/cli package, 4, 222
vue create command, 222
Vue.delete method, 393
Vue Devtools browser extension, 247
Vue.nextTick method, 440
Vue objects

creating, 208
data property function, 215
el property, 208
template property, 208

■ INDEX

719

Vue.set method, 323
Vuex, installing, 506

��������� W, X, Y, Z
Watchers, 441
Web services

Axios, 481

cross-origin requests, 488
errors, 500
Fetch API, 487
HTTP methods and operations, 486
HTTP service objects, 494
making requests, 490, 496
response data, 492
responses, 491

	Table of Contents
	About the Author
	About the Technical Reviewer
	Part I: Getting Started with Vue.js
	Chapter 1: Your First Vue.js Application
	Preparing the Development Environment
	Installing Node.js
	Installing the @vue/cli Package
	Installing Git
	Installing an Editor
	Installing a Browser

	Creating the Project
	Understanding the Project Structure
	Starting the Development Tools

	Replacing the Placeholder Content
	Adding a CSS Framework
	Styling the HTML Elements

	Adding Dynamic Content
	Displaying the List of Tasks
	Adding a Checkbox
	Filtering Completed Tasks
	Creating New Tasks
	Storing Data Persistently
	Adding the Finishing Touches

	Summary

	Chapter 2: Understanding Vue.js
	Should I Use Vue.js?
	Understanding Round-Trip Applications
	Understanding Single-Page Applications
	Understanding Server-Side Rendering

	Understanding Application Complexity

	What Do I Need to Know?
	How Do I Set Up My Development Environment?
	What Is the Structure of This Book?
	Part 1: Getting Started with Vue.js
	Part 2: Working with Vue.js
	Part 3: Advanced Vue.js Features

	Are There Lots of Examples?
	Where Can You Get the Example Code?
	Where Can You Get Corrections for This Book?
	How Can You Contact Me?
	Summary

	Chapter 3: HTML and CSS Primer
	Preparing for This Chapter
	Understanding HTML Elements
	Understanding Element Content
	Understanding Element Content Restrictions
	Understanding Void Elements

	Understanding Attributes
	Quoting Literal Values in Attributes
	Applying Attributes Without Values

	Examining the Live HTML Document
	Understanding Bootstrap
	Applying Basic Bootstrap Classes
	Using Contextual Classes
	Using Margin and Padding

	Using Bootstrap to Create Grids
	Using Bootstrap to Style Tables
	Using Bootstrap to Style Forms

	Summary

	Chapter 4: Essential JavaScript Primer
	Preparing for This Chapter
	Using Statements
	Defining and Using Functions
	Defining Functions with Parameters
	Using Default and Rest Parameters

	Defining Functions That Return Results
	Using Functions as Arguments to Other Functions
	Using Arrow Functions

	Using Variables and Types
	Using the Primitive Types
	Working with Booleans
	Working with Strings
	Using Template Strings

	Working with Numbers

	Using JavaScript Operators
	Using Conditional Statements
	The Equality Operator vs. the Identity Operator
	Explicitly Converting Types
	Converting Numbers to Strings
	Converting Strings to Numbers

	Working with Arrays
	Using an Array Literal
	Reading and Modifying the Contents of an Array
	Enumerating the Contents of an Array
	Using the Spread Operator
	Using the Built-in Array Methods

	Working with Objects
	Using Object Literals
	Using Variables as Object Properties

	Using Functions as Methods
	Copying Properties from One Object to Another

	Understanding JavaScript Modules
	Creating and Using a Simple JavaScript Module
	Using a Simple JavaScript Module

	Defining Multiple Features in a Module
	Changing Module Feature Names
	Importing an Entire Module

	Combining Multiple Files in a Module
	Importing Individual Features from a Multifile Module

	Understanding JavaScript Promises
	Understanding the Asynchronous Operation Problem
	Using a JavaScript Promise
	Simplifying the Asynchronous Code

	Summary

	Chapter 5: SportsStore: A Real Application
	Creating the SportsStore Project
	Adding Additional Packages
	Incorporating the CSS Stylesheets into the Application

	Preparing the RESTful Web Service
	Starting the Project Tools

	Creating the Data Store
	Creating the Product Store
	Creating the Product List
	Adding the Product List to the Application
	Filtering the Price Data
	Adding Product Pagination
	Changing the Product Page
	Changing the Page Size

	Adding Category Selection

	Using the RESTful Web Service
	Summary

	Chapter 6: SportsStore: Checkout and Orders
	Preparing for This Chapter
	Creating the Shopping Cart Placeholder
	Configuring URL Routing
	Displaying a Routed Component

	Implementing the Cart Features
	Adding a Module to the Data Store
	Adding the Product Selection Feature
	Displaying the Cart Contents
	Creating a Global Filter
	Testing the Basic Cart Features
	Making the Cart Persistent
	Adding the Cart Summary Widget

	Adding the Checkout and Orders Features
	Creating and Registering the Checkout Components
	Adding Form Validation
	Adding the Remaining Fields and Validation

	Summary

	Chapter 7: SportsStore: Scaling and Administration
	Preparing for This Chapter
	Dealing with Larger Amounts of Data
	Improving Page Navigation
	Reducing the Amount of Data Requested by the Application
	Determining the Number of Items
	Adding an Item to the Array of Pages
	Updating the Components to Use Actions

	Adding Search Support

	Starting the Administration Features
	Implementing Authentication
	Extending the Data Store
	Adding the Administration Components
	Adding the Route Guard

	Adding the Administration Component Structure
	Implementing the Order Administration Feature

	Summary

	Chapter 8: SportsStore: Administration and Deployment
	Preparing for This Chapter
	Adding the Product Administration Features
	Presenting the Product List
	Adding the Editor Placeholder and URL Routes
	Implementing the Editor Feature

	Deploying SportsStore
	Preparing the Application for Deployment
	Preparing the Data Store
	Preparing the Authentication Component
	Loading the Administration Features On-Demand
	Creating the Data File

	Building the Application for Deployment
	Testing the Deployment-Ready Application
	Deploying the Application
	Creating the Package File
	Creating the Docker Container
	Running the Application

	Summary

	Part II: Vue.js in Detail
	Chapter 9: Understanding Vue.js
	Preparing for This Chapter
	Adding the Bootstrap CSS Framework
	Running the Example Application

	Creating an Application Using the DOM API
	Understanding How the DOM API Application Works

	Creating a Vue Object
	Adding Data to the Vue Object
	Adding an Event Handler
	Correcting the Message
	Understanding the Vue Object Structure

	Introducing a Component
	Registering and Applying the Component
	Separating the Template from the JavaScript Code
	Using Separate JavaScript and HTML Files

	Summary

	Chapter 10: Understanding Vue.js Projects and Tools
	Creating a Vue.js Development Project
	Configuring the Linter
	Completing the Project Configuration

	Understanding the Project Structure
	Understanding the Source Code Folder
	Understanding the Packages Folder

	Using the Development Tools
	Understanding the Compilation and Transformation Process
	Understanding the Development HTTP Server
	Understanding Hot Model Replacement
	Understanding the Error Display

	Using the Linter
	Customizing the Linter Rules

	Debugging the Application
	Exploring the Application State
	Using the Browser Debugger

	Configuring the Development Tools
	Building the Application for Deployment
	Installing and Using an HTTP Server

	Summary

	Chapter 11: Understanding Data Bindings
	Preparing for This Chapter
	Understanding the Elements of a Component
	Understanding the Template Element
	Understanding the Script Element
	Understanding the Style Element

	Resetting the Component in the Example Application
	Displaying a Data Value
	Using More Complex Expressions in a Data Binding
	Calculating Values with Computed Properties
	Understanding Reactivity and Computed Properties

	Calculating Data Values with a Method
	Calling Methods Directly from Data Bindings

	Formatting Data Values with Filters
	Configuring Filters Using Arguments
	Chaining Filters Together

	Summary

	Chapter 12: Using the Basic Directives
	Preparing for This Chapter
	Setting an Element’s Text Content
	Displaying Raw HTML
	Selectively Displaying Elements
	Selectively Displaying Adjacent Peer Elements
	Choosing Between Sections of Content
	Performing More Complex Selections

	Selectively Displaying Elements Using CSS

	Setting an Element’s Attributes and Properties
	Using an Object to Configure Classes
	Setting Individual Styles
	Setting Other Attributes
	Setting Multiple Attributes
	Setting an HTMLElement Property

	Summary

	Chapter 13: Using the Repeater Directive
	Preparing for This Chapter
	Enumerating an Array
	Using the Alias
	Identifying the Key
	Getting the Item Index
	Understanding Array Change Detection
	Understanding Update Problems

	Enumerating Object Properties
	Understanding Object Property Ordering

	Repeating HTML Elements Without a Data Source
	Using Computed Properties with the v-for Directive
	Paging Data
	Filtering and Sorting Data

	Summary

	Chapter 14: Handling Events
	Preparing for This Chapter
	Handling Events
	Understanding Events and Event Objects
	Using a Method to Handle Events
	Combining Events, Methods, and Repeated Elements
	Listening for Multiple Events from the Same Element
	Using Event Handling Modifiers
	Managing Event Propagation
	Receiving Events in the Capture Phase
	Handling Only Target Phase Events
	Stopping Event Propagation

	Preventing Duplicate Events

	Using Mouse Event Modifiers
	Using Keyboard Event Modifiers
	Summary

	Chapter 15: Working with Form Elements
	Preparing for This Chapter
	Creating Two-Way Model Bindings
	Adding a Two-Way Binding
	Adding Another Input Element
	Simplifying Two-Way Bindings

	Binding to Form Elements
	Binding to Text Fields
	Binding to Radio Buttons and Checkboxes
	Binding to Select Elements

	Using the v-model Modifiers
	Formatting Values as Numbers
	Delaying Updates
	Removing Whitespace Characters

	Binding to Different Data Types
	Selecting an Array of Items
	Using Custom Values for Form Elements
	Using Custom Values for Radio Buttons and Select Elements

	Validating Form Data
	Defining the Validation Rules
	Performing Validation
	Responding to Live Changes

	Summary

	Chapter 16: Using Components
	Preparing for This Chapter
	Understanding Components as Building Blocks
	Understanding Child Component Names and Elements
	Using Component Features in Child Components

	Understanding Component Isolation
	Using Component Props
	Using a Prop in a Parent Component
	Using Prop Value Expressions

	Creating Custom Events
	Receiving a Custom Event from a Child Component

	Using Component Slots
	Using Named Slots
	Using Scoped Slots

	Summary

	Part III: Advanced Vue.js Features
	Chapter 17: Understanding the Component Lifecycle
	Preparing for This Chapter
	Understanding the Component Lifecycle
	Understanding the Creation Phase
	Understanding Component Object Creation
	Understanding the Reactivity Preparations

	Understanding the Mounting Phase
	Accessing the Document Object Model

	Understanding Update Phase
	Understanding Update Consolidation
	Using a Post-Update Callback
	Observing Data Changes Using Watchers

	Understanding the Destruction Phase

	Handling Component Errors
	Summary

	Chapter 18: Loosely Coupled Components
	Preparing for This Chapter
	Creating the Product Display Component
	Creating the Product Editor Component
	Displaying the Child Components

	Understanding Dependency Injection
	Defining a Service
	Consuming a Service via Dependency Injection
	Overriding Antecedent Services
	Creating Reactive Services
	Using Advanced Dependency Injection Features

	Using an Event Bus
	Sending Events Using an Event Bus
	Receiving Events from the Event Bus
	Creating Local Event Buses

	Summary

	Chapter 19: Using RESTful Web Services
	Preparing for This Chapter
	Preparing the HTTP Server
	Preparing the Example Application
	Installing the HTTP Package
	Simplifying the Components

	Running the Example Application and HTTP Server

	Understanding RESTful Web Services
	Consuming a RESTful Web Service
	Handling the Response Data
	Making the HTTP Request
	Receiving the Response
	Processing the Data

	Creating an HTTP Service
	Consuming the HTTP Service
	Adding Other HTTP Operations
	Creating an Error Handling Service
	Creating an Error Display Component

	Summary

	Chapter 20: Using a Data Store
	Preparing for This Chapter
	Creating and Using a Data Store
	Understanding Separate State and Mutations
	Providing Access to the Vuex Data Store
	Using the Data Store
	Inspecting Data Store Changes

	Defining Computed Properties in the Data Store
	Using a Getter in a Component
	Providing Arguments to Getters

	Performing Asynchronous Operations
	Receiving Change Notifications
	Mapping Data Store Features into Components
	Using Data Store Modules
	Registering and Using a Data Store Module
	Accessing Module State

	Using Module Namespaces

	Summary

	Chapter 21: Dynamic Components
	Preparing for This Chapter
	Preparing Components for Dynamic Lifecycles
	Getting the Application Data
	Managing Watch Events

	Displaying Components Dynamically
	Presenting Different Components in an HTML Element
	Selecting Components Using a Data Binding
	Understanding the Component Lifecycle

	Automatically Navigating Around the Application

	Using Asynchronous Components
	Disabling Prefetch Hints
	Configuring Lazy Loading

	Summary

	Chapter 22: URL Routing
	Preparing for This Chapter
	Getting Started with URL Routing
	Providing Access to the Routing Configuration
	Using the Routing System to Display Components
	Navigating to Different URLs
	Navigating Using HTML Elements

	Understanding and Configuring URL Route Matching
	Understanding URL Matching and Formatting
	Using the HTML5 History API for Routing
	Providing a Catchall Route

	Using a Route Alias
	Getting Routing Data in Components
	Matching Routes Dynamically
	Using Regular Expressions to Match URLs
	Defining Optional Segments

	Creating Named Routes

	Dealing with Navigation Changes
	Summary

	Chapter 23: URL Routing Element Features
	Preparing for This Chapter
	Working with Router-Link Elements
	Selecting the Element Type
	Selecting the Navigation Event
	Styling Router Link Elements
	Responding to the Active Route
	Changing the Active Route Classes

	Creating Nested Routes
	Planning the Application Layout
	Adding Components to the Project
	Defining the Routes
	Handling Old URLs

	Creating the Navigation Elements
	Testing the Nested Routes

	Using Named Router-View Elements
	Summary

	Chapter 24: Advanced URL Routing
	Preparing for This Chapter
	Using Separate Files for Related Routes
	Guarding Routes
	Defining Global Navigation Guards
	Redirecting the Navigation Request to Another URL
	Redirecting to a Named Route

	Defining Route-Specific Guards
	Understanding Guard Ordering

	Defining Component Route Guards
	Accessing the Component in the beforeRouteEnter Method

	Loading Components on Demand
	Displaying a Component Loading Message
	Hiding the Outgoing Component During Loading

	Creating Routing-Free Components
	Summary

	Chapter 25: Transitions
	Preparing for This Chapter
	Creating the Components
	Configuring URL Routing
	Creating the Navigation Elements

	Getting Started with Transitions
	Understanding the Transition Classes and CSS Transition
	Understanding the Transition Sequence

	Using an Animation Library
	Switching Between Multiple Elements
	Applying a Transition to URL Routed Elements
	Applying a Transition for an Element’s Appearance

	Applying Transitions for Collection Changes
	Using Transition Events
	Using the Enter and Leave Events

	Drawing Attention to Other Changes
	Summary

	Chapter 26: Extending Vue.js
	Preparing for This Chapter
	Creating Custom Directives
	Understanding How Directives Work
	Using Custom Directive Expressions
	Using Custom Directive Arguments
	Using Custom Directive Modifiers
	Communicating Between Hook Functions
	Defining Single Function Directives

	Creating Component Mixins
	Creating a Vue.js Plugin
	Creating the Plugin
	Using a Plugin

	Summary

	Index

