
Programming 101
The How and Why of Programming
Revealed Using the Processing
Programming Language
—
Jeanine Meyer

www.allitebooks.com

http://www.allitebooks.org

Programming 101
The How and Why of Programming

Revealed Using the Processing
Programming Language

Jeanine Meyer

www.allitebooks.com

http://www.allitebooks.org

Programming 101

ISBN-13 (pbk): 978-1-4842-3696-3			 ISBN-13 (electronic): 978-1-4842-3697-0
https://doi.org/10.1007/978-1-4842-3697-0

Library of Congress Control Number: 2018946534

Copyright © 2018 by Jeanine Meyer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484236963. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jeanine Meyer
Mt Kisco, New York, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3697-0
http://www.allitebooks.org

To my family, who inspire and teach me.

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: �Basics�� 1

Programming Concepts��� 2

Programming Languages and Natural Languages��� 2

Values and Variables�� 3

Functions�� 5

Specifying Positions and Angles�� 5

Colors��� 6

Development Environment��� 6

Role of Planning��� 7

Under the Covers��� 7

Processing Programming Features�� 8

Processing Development Environment��� 8

Functions�� 10

Angles��� 11

Implementing Hello, World��� 13

Implementing the Daddy Logo��� 21

Planning�� 21

Daddy Logo Program�� 24

Things to Look Up�� 27

How to Make This Your Own�� 27

What You Learned�� 28

What’s Next�� 29

About the Author�� xiii

About the Technical Reviewers��xv

Acknowledgments��xvii

Introduction���xix

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: �Interactions�� 31

Programming Concepts��� 33

Events��� 33

Randomness��� 34

Displaying Images from Files��� 34

Calculations, Including Built-in Functions�� 34

Looping��� 35

Processing Programming Features�� 35

Under the Covers��� 39

Polygon Sketch Operation Overview�� 40

Implementing the Polygon Sketch��� 42

Planning�� 42

Polygon Sketch Program�� 46

Coin Toss Sketch Operation Overview�� 48

Implementing the Coin Toss Sketch��� 50

Planning�� 50

Things to Look Up�� 53

How to Make This Your Own�� 54

What You Learned�� 55

What’s Next�� 55

Chapter 3: �Animation Using Arrays and Parallel Structures������������������������������������ 57

More on the Sketches�� 57

Programming Concepts��� 63

Animation��� 63

Logical Operations�� 63

Arrays��� 64

Parallel Structures�� 64

Compound Statements��� 64

Pseudo-Random Processing�� 64

Processing Programming Features�� 65

Table of Contents

vii

Implementing a Bouncing Ball��� 69

Planning�� 69

Program�� 70

Implementing a Set of Three Bouncing Balls��� 71

Planning�� 72

Program�� 72

Implementing Pentagon Bouncing��� 74

Planning�� 74

Implementing Bouncing Polygons�� 76

Planning�� 76

Program�� 77

Under the Covers��� 79

Things to Look Up�� 80

How to Make This Your Own�� 80

What You Learned�� 81

What’s Next�� 81

Chapter 4: �Classes��� 83

Programming Concepts��� 83

Classes��� 83

Phases of Operations�� 84

Tolerance or Margin�� 85

Processing Programming Features�� 85

Classes��� 85

Dynamic Arrays�� 86

Tolerance and OK So Far Coding�� 88

Bouncing Objects Overview��� 88

Implementing the Bouncing Objects�� 90

Planning�� 90

Program�� 92

Make Path and Travel Path Overview��� 96

Table of Contents

viii

Implementing the Make Path and Travel Path��� 100

Planning�� 100

Program�� 102

Jigsaw Overview�� 105

Implementing the Jigsaw�� 107

Planning�� 108

Program�� 109

Under the Covers��� 120

Things to Look Up�� 121

How to Make This Your Own�� 122

What You Learned�� 122

What’s Next�� 122

Chapter 5: �More Interactions��� 123

More on the Sketches�� 123

Programming Concepts��� 123

Ballistic Motion��� 124

Character (char) Data Type vs. String Data Type�� 125

Use of Files��� 125

Case Statement�� 125

Elapsed Time�� 125

Regular Expressions��� 125

Processing Programming Features�� 126

The char Data Type��� 126

The keyPressed Function, key, and keyCode�� 126

Table Files��� 127

The Case Statement��� 127

The millis and Other Time Functions�� 129

Under the Covers��� 130

Slingshot Operation Overview�� 132

Table of Contents

ix

Implementing the Slingshot Sketch��� 133

Planning�� 133

Programming the Slingshot Sketch�� 136

Snake Operation Overview��� 145

Implementing the Snake Sketch�� 146

Planning�� 147

Programming the Snake Sketch��� 148

Image Test Operation Overview�� 156

Implementing the Image Test��� 159

Things to Look Up�� 164

How to Make This Your Own�� 164

What You Learned�� 165

What’s Next�� 165

Chapter 6: �Images, Graphics, and Building on Prior Work����������������������������������� 167

More on the Sketches�� 167

Programming Concepts��� 168

Error Handling�� 168

Images as Arrays of Pixels��� 168

Transformations�� 169

Processing Programming Features�� 169

Getting a File from the Web�� 169

Pixel Processing��� 170

The beginShape and endShape Vertex Functions�� 171

Transformations�� 171

Under the Covers��� 172

Image to Grayscale Operation Overview�� 172

Implementing the Image to Grayscale��� 180

Planning�� 180

Programming the Image to Grayscale�� 181

Origami Flower Operation Overview�� 186

Table of Contents

x

Implementing the Origami Flower Sketch��� 187

Planning�� 187

Programming the Origami Flower�� 189

Things to Look Up�� 193

How to Make This Your Own�� 193

What You Learned�� 194

What’s Next�� 194

Chapter 7: �Using Files for Making a Holiday Card��� 195

Programming Concepts��� 196

Files�� 196

Libraries��� 197

Fonts��� 197

Callbacks�� 198

Feedback to Users�� 198

Processing Programming Features�� 198

Use of the Sound Library�� 198

Making and Saving an Image of the Current Window�� 199

Use of Java Input/Output Library�� 200

Subclasses��� 201

Show Fonts Sketch Operation Overview�� 202

Implementing the Show Fonts Sketch��� 203

Programming the Show Fonts Sketch�� 204

Make Card Sketch Operation Overview��� 205

Implementing the Make Card Sketch��� 210

Planning�� 210

Programming the Make Card Sketch�� 212

Under the Covers��� 218

Things to Look Up�� 219

How to Make This Your Own�� 219

What You Learned�� 219

What’s Next�� 220

Table of Contents

xi

Chapter 8: �Combining Videos, Images, and Graphics�� 221

Programming Concepts��� 221

Video��� 221

Copying a Video�� 222

Processing Programming Features�� 222

Video��� 222

Classes and Subclasses��� 224

Under the Covers��� 224

Family Collage Operation Overview��� 225

Implementing the Family Collage Sketch�� 227

Planning�� 227

Programming the Family Collage Sketch��� 228

Things to Look Up�� 237

How to Make This Your Own�� 237

What You Learned�� 242

What’s Next�� 242

Chapter 9: �Hangman�� 243

More on the Sketches�� 243

Programming Concepts��� 245

Implementing an Existing Application�� 246

Testing and Scaling Up��� 246

Processing Programming Features�� 247

Hangman Sketches Operation Overview�� 249

Implementing the Hangman Sketches��� 253

Planning�� 253

Programming the Hangman Sketches�� 255

Things to Look Up�� 268

How to Make This Your Own�� 269

What You Learned�� 269

What’s Next�� 269

Table of Contents

xii

Chapter 10: �3D��� 271

Programming Concepts��� 274

Processing Programming Features�� 275

Under the Covers��� 284

Rolling Ball at Alhambra Operation Overview�� 284

Implementing the Rolling Ball at Alhambra�� 285

Planning�� 285

Programming the Rolling Ball at Alhambra�� 286

Rotating Cube Operation Overview�� 291

Implementing the Rotating Cube��� 291

Planning�� 291

Programming the Rotating Cube�� 293

Things to Look Up�� 298

How to Make This Your Own�� 299

What You Learned�� 301

What’s Next�� 302

�Appendix A: Publishing on the Web��� 303

�Implementation�� 306

�Preloading of Images��� 307

�Adding HTML to the body Element��� 308

�Adding Responses to Touch��� 309

Index�� 313

Table of Contents

xiii

About the Author

Jeanine Meyer is a Professor at Purchase College/State

University of New York, where she teaches courses for

students in the combined mathematics and computer

science major, and across the College, including general

education mathematics courses. Before coming to Purchase,

she taught at Pace University, and prior to that was a

manager and research staff member at IBM Research in

robotics and manufacturing. She also worked as a research

consultant at IBM for educational grant programs. 

She was moved to create this book because of a general wish to make programming

less mysterious and more appealing while featuring the challenges. She also felt the

need for an activity as she was phasing into retirement and she always enjoys spending

time with favorite pictures and video clips as well as producing new programs. Because

the unusual winter weather caused her to be housebound for many weeks, and with the

excellent support and help provided by the Apress team, the book is ahead of schedule.

She will need another retirement activity now, although programming, computer games,

and playing piano can occupy the day. Her other hobbies include origami (hints of this

are in the text), doing crossword puzzles, learning Spanish using Duolingo, enjoying

Aviva’s company and her cooking, baking, walking around town, and volunteering for

progressive causes.

xv

About the Technical Reviewers

Massimo Nardone has more than 23 years of experience in

security, web and mobile development, and cloud and IT

architecture. His true IT passions are security and Android.

He has been programming and teaching programming with

Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for

more than 20 years. 

He holds a master of science degree in computing

science from the University of Salerno, Italy. He has worked

as a project manager, software engineer, research engineer,

chief security architect, information security manager,

PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect for many years.

He has worked as a visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University).

His technical skills include security, Android, cloud, Java, MySQL, Drupal, Cobol,

Perl, web and mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,

Python, Pro Rails, Django CMS, Jekyll, Scratch, and more. He holds four international

patents in the PKI, SIP, SAML, and proxy areas.

He currently works as Chief Information Security Office (CISO) for Cargotec Oyj and

he is member of the ISACA Finland Chapter Board. Massimo has reviewed more than

40 IT books for different publishing companies and he is the coauthor of Pro Android

Games (Apress, 2015).

xvi

Takashi Mukoda is an international student at Purchase

College/State University of New York. At Purchase College,

he majors in mathematics/computer science and new media

and has worked as a teaching assistant for computing and

mathematics courses. 

Takashi likes playing the keyboard and hiking in

mountains to take pictures. His interest in programming

and art has led him to create multimedia art pieces.

Some of them are built with Processing and interact with

human motion and sounds. See his web site at

http://www.takashimukoda.com.

About the Technical Reviewers

http://www.takashimukoda.com/

xvii

Acknowledgments

Much appreciation to the subjects of the illustrations in this book, starting with my father

(Joseph), and including my mother (Esther), Aviva, Grant, Liam, and especially Annika.

Thanks to my children, Aviva and Daniel, for the photography, video and computer

graphics work.

My students, teaching assistants, and colleagues always provide ideas, stimulation,

feedback, and advice. Thanks especially to Irina Shablinsky for her efforts teaching me

Processing, how to teach Processing, and introducing me to Takashi Mukoda. Thanks to

David Jameson, whose comments and concerns made me produce the Under the Covers

section for each chapter.

Thanks to the crew at Apress/Springer Nature, including Louise Corrigan, Nancy

Chen, James Markham, and others I do not know by name. Much appreciation to the

technical reviewers, Massimo Nardone and Takashi Mukoda.

xix

Introduction

Processing is a programming language built on top of another programming language

called Java. To quote from the https://processing.org page, “Processing is a flexible

software sketchbook and a language for learning how to code within the context of the

visual arts.” The term for a program in Processing is sketch. However, Processing can be

used to create applications that are far more than static sketches. You can use Processing

to create dynamic, interactive programs. It is a great tool for learning programming.

The ten chapters in this book share a common design and structure. My goal is to

introduce you to programming, focusing on the Processing language. In each chapter,

I explain general programming concepts and specific Processing features through the

use of one or more specific examples. The code, along with files such as image files, are

combined as zip files and available https://github.com/Apress/programming-101.

I hope the examples are entertaining; the goal, however, is not for you to learn the

specific examples, but instead understand the concepts and features.

The introduction to each chapter starts with a brief description of the concepts

and programming features used and the examples, then you need to be patient while

I provide background. Each chapter includes a discussion of general “Programming

Concepts” prior to plunging into the details. These are not limited to the Processing

language, but are present in most programming languages. Presenting the concepts in a

general way might help you if you are coming to this book knowing another language OR

you hope to move on to another language someday.

Next, I describe the “Processing Programming Features” that are used to realize

those concepts and produce the examples. This section will have actual code in it and

maybe short examples.

A section called “Under the Covers” describes what Processing is doing for us behind

the scenes and the relationship between Processing and Java. This section appears

in different places in each chapter. It might be of more interest for readers who know

something about Java, but I urge everyone to give it at least a quick scan.

I then provide an overview of each example, with screen shots showing the operation

of the program. Please note that in some cases, I have modified the programs to obtain

the screen shots. I then go on to describe the implementation of the example, which

https://processing.org/
https://github.com/Apress/programming-101

xx

contains a “Planning” and a “Program” section. The “Planning” section is where I

describe my thought process. Programs do not spring into existence—at least for

me—not like Mozart composing a symphony, which was said to emerge all at once from

his mind. It is an iterative process for most of us. This section contains a table indicating

the relationship of the functions. The “Program” section includes a table with one

column for code and another column with an explanation of that line of code. These

tables are long and are not meant to be read as poetry or fine literature. Instead, skip

around. Use the function relationship table. If you download the code and try it out, you

can use this section to improve your understanding of the program. The most critical

step is to make changes, and I provide suggestions in the “How to Make This Your Own”

section. This set of sections is repeated for each example.

A section titled “Things to Look Up” will contain a list of Processing features related

to the ones described in the chapter. Processing is a large language and it is growing. I

can show you only a small subset of the features and each feature is used in one way,

perhaps using default values. You can and should consult other references to learn

more. You can look things up in multiple ways. For example, you can go to the web

site at https://processing.org/reference/ and just keep that open. Alternatively, if

you want to look up how to draw a rectangle in Processing, it can be efficient to enter

“processing.org rectangle” into Google (or another search engine) or the address field of

browsers such as Chrome to retrieve a list of possible sites. It is best to use “processing.

org” because processing is a common English word. You can try “Processing rectangle,”

but you will need to skip over some sites that have nothing to do with the Processing

language.

Remember that the goal of this chapter is not to teach you how to make my

examples, from peanut-shaped bald men to certain games to rotating 3D cubes, but to

help you understand how to make your own programs! Make small changes and then

large changes. Make your own programs! Chapters will close with two more sections: a

brief review, “What You Learned,” and “What’s Next.”

The book also has an Appendix describing what is called ProcessingJS. This is a way

to publish most types of Processing sketches on the Web. It also makes use of examples.

You are welcome to look at the chapters in any order but later examples do depend

on an understanding of concepts introduced earlier. Moreover, because one of the

main techniques of programming is to reuse code, there are many instances of later

examples copying parts of earlier examples. Do not be concerned: The tables in the

Introduction

https://processing.org/reference/

xxi

“Implementation” section contain complete programs. It is beneficial for your learning

process to recognize the repetition.

Please do take a pause in reading to explore, experiment, and make your own

programs. Learning how to program is critical for understanding how we function in

today’s world and it might help you get a job, but the fact that drives me and, I hope will

drive you, is that it is fun.

Enjoy,

Jeanine

Introduction

1
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0_1

CHAPTER 1

Basics
The goal of this chapter is to get you started. The programming example will be a static

drawing of two cartoonish figures, as shown in Figure 1-1. Be aware that the examples

in subsequent chapters will increase in complexity, as we will be producing programs

that are highly interactive and, possibly, involving random effects, reading files, and

exhibiting behavior based on various conditions.

Figure 1-1.  Fat and skinny Daddy logos

2

The Daddy logo is a version of a drawing my father would make, often as his

signature on a letter or note or artwork. I hope that you will design or recall a drawing

or symbol that has meaning to you and makes you happy the same way this cartoonish

peanut-shaped, bald guy makes me.

We will need to do some work to start us off and get to the point that the coding

is clear, but it is not too difficult. The traditional first task in using any programming

language is to get the program to display the phrase “Hello, world.” This works well in

demonstrating several important concepts, including what happens if the programmer

makes certain types of errors. Because of the features built into Processing, you can

produce a pretty fancy version of “Hello, world.”

Be patient with me and with yourself. At the end of the chapter, you will be able to

implement your own Daddy logo.

�Programming Concepts
This section, included in each chapter, is to provide a general introduction to concepts.

I begin with comparing and contrasting programming languages with natural languages.

�Programming Languages and Natural Languages
Programming languages have some similarities with natural languages but they

also have significant differences. Programming languages are defined by rules just

as a natural language’s grammar defines what is proper English, Spanish, or other

language. A program contains statements of different types just as we find in English (or

Spanish, etc.) and there also are ways to construct compound statements. Statements

in programming languages contain terms and expressions involving terms. In

programming languages, programmers often come up with our own names for things.

The names must follow certain rules, but these are not unduly restrictive. This is a

difference from natural languages, in which we mainly use the official words of the

language, whereas in programming, we are extending the language all the time.

A more significant difference between programming languages and natural

languages is that the rules must be obeyed at all times when using programming

languages! Consider that we all frequently utter grammatically incorrect statements

when we speak and yet generally are understood. This is not the situation in

programming. The good news in the case of Processing, and certain other languages, is

Chapter 1 Basics

3

that the Processing system generally indicates where an error occurs. The development

environments for Processing and other computer languages are themselves computer

programs and they do not exhibit any impatience while we fix errors and try the program

again. I will give some examples of statements, right after I introduce the concept of

values and variables.

�Values and Variables
Programming involves containers or buckets where we can store specific types of things

(values). These kinds (types) of things are called data types. The following are some

examples of data.

int //Integer e.g., 10

float //decimal value (e.g., 5.3)

boolean //logical values (e.g., true/ false)

char //single character (e.g., 'a')

String //a string of characters (e.g., "hello world")

 //String should start with a capitalized "S"

Our programs can include literal values such as 5, 100.345, and “Hello” in the

code. In addition, a feature in all programming languages is what is termed variables.

A variable is a construct for associating a name of our choosing with a value. We

can initialize the variable, change it, and use it in an expression; that is, the value

associated, often termed in the variable, can vary. Using variables makes our programs

less mysterious. Moreover, we can define one variable in terms of another, making

relationships explicit and preventing certain errors. In Processing, Java, and some, but

not all, programming languages, variables need to be declared, or set up before use. One

characteristic of variables is termed scope, which indicates what code has access (e.g.,

global variables vs. local variables), but that is best explained later.

The following are examples of Processing statements. Explanation is given in

comments and later.

int classSize; // this declares, that is, sets up classSize to

 // be a variable.

classSize = 21; //assigns the value 21 to the variable classSize.

classSize = classSize + 5; //takes whatever is the current value held in

 // the variable class size

 // and adds 5 to it and resets classSize to the new value

Chapter 1 Basics

4

float score = 0; //declares the variable score AND

 // assigns it a value. This is called initialization.

if (score == 0) {

 text("You did not score anything.", 100,100);

 text("Try again.", 100,300);

 }

The // indicates that the rest of the line is a comment, meaning that Processing

ignores it. It is intended for readers of the code, including you, to make things clear. You

also can use the delimiters /* and */ for long comments.

Note  My examples, because they are surrounded by explanations, tend not to
have as many comments as I would use outside of teaching and writing books.

There are rules for variable and function names in all programming languages.

Generally, they must start with a letter, uppercase or lowercase, and cannot contain

spaces. The most important guidance for naming is that the names should have meaning

for you. The programming language will accept single character names or names with no

apparent meaning, but these will not be helpful when you are trying to recall what you

were trying to do. So-called camel casing, as in classSize, can be helpful.

A single equal sign (=) means assignment and is used in what are called, naturally

enough, assignment statements and initialization statements. The statement

classSize = classSize + 5;

will seem less illogical if you read it as:

 classSize is assigned or gets the total of classSize and 5.

A double equal sign (==) is a comparison operator and often appears in an if

statement. Think of it as like < or <=.

The if statement is an example of a compound statement. The expression score ==

0 is interpreted as a comparison. If the value of the variable score is equal to zero, then

the statement within the brackets is executed. If the value of score is greater than zero

or less than zero, nothing happens. Again, you will see many more statements in the

context of examples.

Chapter 1 Basics

5

�Functions
Programming work in any language is structured into units. One important way of

structuring code comes with different names: function, procedure, subroutine, method.

These are ways of packaging one or more statements into one unit. You will read about

functions in “Processing Programming Features” and methods in “Under the Covers.”

Briefly, functions are defined and functions are invoked. I can give you directions to my

house, which is analogous to defining a function. At some later time, I can direct you to

go to my house, which is analogous to invoking the function.

Programs can be considerably shorter as well as easier to modify through the use of

functions and variables, so understanding both of these concepts is important. You do

not need to accept this or understand this right now. It will be demonstrated later by my

sketch for displaying two Daddy logos that takes just one statement more than displaying

the Daddy logo just once.

�Specifying Positions and Angles
Displaying drawings and images and text on the screen requires a coordinate system.

The coordinate system used by most computer languages and many graphical tools

is similar to what we learned (but might or might not remember) from high school

geometry, with one big difference. Horizontal positions, sometimes called x positions,

are specified starting from the left. Vertical positions, sometimes called y, are specified

starting from the top of the screen. Figure 1-2 shows the coordinate system with a small

circle at the 100, 200 location.

Figure 1-2.  Coordinate system

Chapter 1 Basics

6

If you say to yourself, “This is upside down,” then I know you understood. The unit is

very small, so if your code positions something at 100, 200 and later at 101, 201, you probably

will not detect the difference. Your intuition regarding this will improve with experience.

Note A s a teaser, Processing has facilities for 3D as well as 2D. We get to 3D in
later chapters.

In this chapter, my Daddy logo has a smile made by specifying an arc of an ellipse. To

produce the arc, I need to write code to indicate a starting angle and an ending angle of

the arc. The system used in most computer languages is not the standard one in which

a right angle is 90 degrees, a U-turn is a 180, and snowboarders do 1080s. It might be

upsetting to realize this, but the notion of degrees with a circle consisting of 360 degrees

was invented by people. I typically offer my students extra credit to identify where and

when this happened. Instead, in most programming languages, we use a measure

called radians. Think of wrapping a circle with lengths equal to one radius. How many

lengths will this take? You know the answer: It is not a whole number, it is π, an irrational

number often approximated by 3.14159. You will see radians in use, so be patient.

�Colors
There are different ways to specify colors in computer languages and computer

applications, and Processing supports more than one. In this text, we stick with

grayscale and RGB (red/green/blue). Because of how these values are stored, the range

of grayscale is from 0 to 255 and the values for redness, greenness, and blueness are

specified by a number from 0 to 255. This approach is used in many applications. If you

want to use a certain color that you see in a photo, you can open the image file in Adobe

PhotoShop or the online Pixlr or some other graphics tool, use the eye drop on the pixel

(picture element) you want, and an information window will tell you the RGB value. See

also in the mention of the Color Selector in “Thinks to Look Up.”

�Development Environment
Programmers need to prepare programs and test programs. We also need to save our

work to come back to it another time. We might need to send the program to someone

else. Processing has what is termed an integrated development environment, the

Chapter 1 Basics

7

Processing development environment (PDE), which provides a way to prepare and

make changes to a program as well as test it and save it. To give you a different example,

Hypertext Markup Language (HTML) documents containing JavaScript are prepared and

saved using a text editor, such as Sublime. The resulting files are opened (and run) using

a browser, such as Chrome.

�Role of Planning
I close this first “Programming Concepts” section by noting that preparing programs

such as a Processing sketch generally involving planning and design. It might be best to

step away from the keyboard. Some of the plans might need to be modified when you get

to writing the code, but it is best to have plans!

�Under the Covers
As I indicated earlier, Processing is a language built on Java. This means that the

Processing code you write is Java code that the development environment puts into a

larger Java program prepared for handling Processing sketches. In Java, there are no

functions, but, instead, what are termed methods. I will introduce methods for our use in

Processing in Chapter 4.

The PDE makes use of libraries, collections of methods holding the built-in functions

of Processing, such as functions to draw a rectangle.

In the big Java program, there are calls to functions that we write, or, to put it more

accurately, we code the body of the function. For example, all Processing sketches

contain a function called setup, the purpose of which is to do what the name implies.

It nearly always includes a statement that defines the width and height of the window,

for example. The big Java program invokes the setup program once at the start of the

sketch. Similarly, we can write the body of a function named draw. The Java program

invokes this function over and over, the frequency defined by the frame rate, which can

be reset by assigning a value to the built-in variable frameRate. This enables us to build

applications producing animations and responding to events such as a user clicking the

mouse button. There are many other functions for which we, the programmers, specify

the response to an event; for example, keyPressed or mouseClick.

Chapter 1 Basics

8

The Java program also defines default settings. Processing and other computer

languages and many computer applications provide powerful features. If we needed to

specify each aspect of each feature before anything happens, it would be tremendously

burdensome. It is important to be aware that certain things can be adjusted, though, as

you will see in our very first example later, with the discussion on default values for font,

text size, fill color, and stroke color.

The design and capabilities of Processing provide us a way to get started creating and

implementing our ideas quickly.

�Processing Programming Features
In this section, I explain the concepts focusing on Processing features. There will be

small coding examples to prepare for the larger (although not too large) examples

covered later in the chapter.

To use Processing, you need to go to the processing.org web site and follow the

directions to download and install Processing on your computer.

�Processing Development Environment
To describe the PDE in abstract terms is too difficult, so let’s get started. Once you have

downloaded and installed Processing, open it. At the top of the PDE window, you will see

the Processing File toolbar.

Click File, which will open a drop-down menu. Select New. The toolbar will change

to hold more options. A window that looks like Figure 1-3 will appear on your screen.

The number after sketch_ will be different than what you see here. I believe in saving

early and often so, at this point, you can think about where you want to save your

Processing work in terms of the file system on your computer. I leave that to you. You

also should give some thought to what you will name each sketch. I suggest the name

first0 for this one. Click File, then select Save As… and proceed with a file name and a

location in the usual way for your operating system.

Chapter 1 Basics

9

Using Save As… in the PDE produces a folder, in this case named first0, which

contains a file named first0.pde. The examples explored in future chapters will

consist of folders containing additional items. For example, a Processing sketch named

myFamily that makes use of an image file aviva.jpg and an image file daniel.jpg will

be a folder named myFamily containing a file named myFamily.pde and a folder named

data that contains the two files aviva.jpg and daniel.jpg. The relationship of these

files is shown in Figure 1-4.

Figure 1-3.  Window for new sketch

Chapter 1 Basics

10

�Functions
Processing uses the term function for grouping together one or more statements into

something that can be invoked (called). Functions are defined with header statements

and then the body, a sequence of statements, contained within brackets. You will see

in this chapter and every chapter definitions for the setup function, a function that

Processing expects the programmer to supply. The header is

void setup()

The term void indicates that this function does not produce or return a value. The

opening and closing parentheses with nothing between them indicate that this function

does not expect any parameters.

The Daddy logo example includes a function called daddy that does the work of

drawing the cartoon. Its header is

void daddy(int x, int y, int w, int h)

The parameters are the things between the parentheses. The parameter list is the

place for the programmer to give names and specify the data type. This means that when

I wrote the code to invoke daddy, which is necessary because daddy was something I

made up, not anything Processing expects, Processing will check that the values cited in

the call are the correct type.

Figure 1-4.  Typical file structure for a sketch

Chapter 1 Basics

11

I feel obliged to show you an example of a function that does produce a value, a

standard one supplied in many textbooks.

float calculateTax (float bill, float rate) {

 return (bill*rate);

}

The header indicates that this function calculates a floating-point value, sometimes

called a decimal number. The code includes what is termed an expression: bill*rate.

The asterisk indicates multiplication.

Because it generates a value, a call of this function can be used in an expression.

With this function defined, I could write an expression (part of a statement) with

something like this.

 Total = 150.53 + calculateTax(150.53, .07);

Processing will assign the 150.53 to the parameter bill and the .07 to the parameter

rate, perform the multiplication bill * rate, which in this case is 150.53 * .07, and

return the result so it is available to be added to 150.53. The variable Total will be set to

161.0671.

I hope the names of these variables are suggestive. My examples are more complex and

more interesting and, because context is given, more understandable, in later chapters.

�Angles
Processing provides us built-in variables—PI, TWO_PI, HALF_PI, QUARTER_PI, to use when

requiring specification of angles. These names are case-sensitive. Figure 1-5 shows the

designation of some angles.

Chapter 1 Basics

12

In Processing, angles start at 0 and move clockwise around the circle as the number

increases. Notice the location of PI/3. However, you can designate a negative angle. The

angle labeled –PI/4 could also be specified as PI+.75PI or 1.75*PI.

Processing provides a function named radians for converting from the degree system

to radian measure. So radians(90) will produce a floating-point number very close to

PI/2 and radians(180) will produce a floating-point number very close to PI. We can

Figure 1-5.  Diagram showing some angles in radians

Chapter 1 Basics

13

go back and forth between degrees and radians, but I suggest building up your intuition

in radians. One way to do that is to examine my code and change the smile. You get

immediate feedback and can try again.

�Implementing Hello, World
In Processing, we need to write a function named setup. Here is the code for my first try

at a Hello, World program.

// a Hello, world program

void setup() {

 size(900,600);

 text("Hello, world",100,200);

}

It is not necessary, but it is good practice to put a comment at the start, as I did here.

The // indicates a comment, which is ignored by Processing.

The first line of actual code is the header line of a function, which has several

elements. The term setup gives a name to the function. As I indicated earlier, we define

a setup function to get our sketch started. The parentheses, (), after the name indicate

that there are no parameters to this function. Parameters are extra information passed

to the function and you will see examples of parameters in the Daddy logo example. The

brackets, the opening { on the first line and the closing } on the last line, mark off the

body, or contents, of the function. People follow different conventions for the location of

the brackets. They do not have to be where they are, but can instead be what you see here:

void setup()

 {size(900,600);

 text("Hello, world",100,200);}

My general advice is to not be skimpy about line breaks or blank lines. I also need

to tell you that indentation is not required and is not interpreted by Processing, but I

advise you to use indentation for functions and for compound statements such as the

if and for loop constructs we see later because it will make your code easier for you to

understand. There is a keyboard shortcut (Command+T) for automatic indentation.

Chapter 1 Basics

14

The first statement within the body of the function specifies the size of the display

window. The width is set at 900 and the height at 600. When you run or execute the

program, you will see what these settings produce.

The second and last statement within the body of the function does the work of

displaying the string “Hello, world” at the position 100 pixel units from the left side of the

display window and 200 pixel units from the top.

You should save the program, which you do by clicking File and then selecting Save.

Select Save rather than Save As… to save the file in the same place as you indicated in the

first Save As… command. Of course, you could wait to rename the program and then use

Save As…, but my motto is to save early and often.

The next step is to try the program by running it. Do this by clicking on the play

(triangle/arrow) button in the upper left of the screen shown in Figure 1-6.

Figure 1-6.  The first sketch

Chapter 1 Basics

15

The result will be disappointing, but it is educational. You should see what is shown

in Figure 1-7, namely the phrase “Hello, world” in tiny, white letters.

Now, perhaps you do not see anything. Perhaps the program did not even start.

This could happen if you made any syntactic mistakes, or mistakes of form. To put it in

practical terms, Processing can detect syntactic errors but cannot correct them. Examine

Figure 1-8. I made a mistake, omitting a comma between the 100 and the 200. The

Processing program shows that there is a problem in the statement indicating the call

to the function text. The message, called an error message, does not say what I know

happened: It does not say anything about a missing comma. It does say that the function

text() expects three parameters. Error messages might not tell you everything, but they

generally are helpful. One of the most common syntactic mistakes is a problem with

brackets or parentheses. Processing can detect when there are too many or too few.

Figure 1-7.  Result of running first0

Chapter 1 Basics

16

In addition to syntactic mistakes, we could make semantic mistakes, mistakes of

meaning or faulty logic. If you or I had written “Hellowold,” the rules of Processing would

accept it, but it might not be what we intended. Similarly, if we intended to draw a red

circle and instead drew a blue one or if we produced a drawing with the left eye not on

the face, that would be a semantic mistake. Processing does not help us notice or fix

these. We are on our own.

You can say that the program shown in Figure 1-6 and producing the result shown in

Figure 1-7 represents a semantic error. I will say it was a success—the desired message

was displayed—but we can do better. Remember my mention of default values? The call

to the text function makes use of the current settings for text size, text font, text color,

and text alignment. I will show you an improvement. To encourage good habits, go to the

File menu, select Save As…, and save with a new name, first1. The improved sketch will

change the text size and the color. I leave font and alignment to you.

The Processing function fill() sets the color of a shape or the color of text and the

function stroke() sets the color of the outline of a shape. If we use just one number, the

color is grayscale, or black to white. The value should be a number from 0 to 255, where

0 is black and 255 is white. If we use three numbers, the numbers specify the amounts of

redness, greenness and blueness. As with positions and angles, you will gain intuition on

this as you use it.

Figure 1-8.  Example of a syntactic mistake and error message

Chapter 1 Basics

17

Here is the complete code for the improved sketch; notice that two statements have

been added to the original sketch, and I also changed the comment at the start.

// improved Hello, world program, setting size and color

void setup() {

 size(900,600);

 textSize(30); //bigger than default

 fill(250,0,250); //changed color for text

 text("Hello, world",100,200);

}

The call to the function textSize sets the new size. The call to the fill function sets

the color. Save the sketch and then run this program; it will produce what is shown in

Figure 1-9.

Figure 1-9.  Result of first1, the improved sketch

Chapter 1 Basics

18

Because Processing facilitates much more than displaying text, I describe one more

program here. Click File, select Save As…, and save this file with the name first2. Now

modify the program with the addition of one more statement. I provide the whole sketch,

but it is just the line with the call to the ellipse function that is to be added. The ellipse

is centered at 180, 200. Its width is 300 and its height is 200. Ellipses can be specified in

different ways depending on the setting of a variable named ellipseMode. You can look

this up to see the possibilities.

// a Hello, world inside of ellipse

void setup() {

 size(900,600);

 ellipse(180,200,300,200);//I fiddled with these values

 textSize(30); //bigger than the default

 fill(250,0,250); //changed color for text

 text("Hello, world",100,200);

}

Do take my comment “I fiddled” seriously; that is, I tried a few things until the result

was what I wanted. Save and run the program. You should see what is displayed in

Figure 1-10.

Chapter 1 Basics

19

Why is the ellipse white with a black border? The answer is that the default value for

fill is 255, producing white, and the default for stroke is 0, producing black. I strongly

urge you to put the book down (or close the window on whatever application you are

reading the e-book version) and do some experiments. Put a call to the fill function

and a call to the stroke function before the ellipse command. Change “Hello, world” to

something else. Draw a circle instead of an ellipse. Try stuff!

This activity with Hello, world examples introduced the basics, but not every

feature required for the Daddy logo project. Here is a list of what additional Processing

constructs will be used, with short explanations.

•	 Declaration of variables, including initialization. An example of this is

int skinnyFaceWidth = 60;

This sets skinnyFaceWidth as a variable of data type int and an initial

value of 60. I say initial value, but in fact, this variable and many of the

others do not change: They are not assigned different values.

Figure 1-10.  Hello, world inside an ellipse

Chapter 1 Basics

20

•	 The color data type and the color function: This is an unusual, but

acceptable situation of one name being used for two distinct things.

In Processing, color is a data type similar to int or float. The color

function is used to produce a value of data type color. The following

code could appear:

color skinTone = color(255,224,189);

I advise you to not use the same name for different things even if

they are related.

•	 The ellipseMode function: Processing provides different ways to

specify an ellipse. For example, a programmer can specify the center

or the upper left corner. I use it here to introduce the idea. A call to

ellipseMode(CENTER);

means that the parameters specify the center of the ellipse. In different

situations, you might find one way more natural than the other.

•	 Expressions, making use of arithmetic operators: You will read later

in the “Planning” section how my code defines certain variables in

terms of other variables. For example, the center of the arc that is the

mouth is set to be a certain distance, namely one tenth of the height,

further down the screen than the center of the ellipse that is the lower

part of the peanut shape. My code converts (the technical term cast is

used) the results to be rounded to an integer.

int mouthYoffset = int(.10*h);

•	 Definition of a programmer defined-function, daddy, with

parameters: Defining what are called programmer-defined functions

is the main lesson of this chapter. The function I define is called

daddy and its parameters are used to specify the position and the

dimensions of the Daddy figure.

•	 Definition of the draw function and turning off the invocation of draw:

In the Daddy logo example, the draw function calls the daddy function

two times (wait for the next section). Normally, the draw function gets

Chapter 1 Basics

21

invoked over and over. How often draw is invoked is called the frame

rate and you can change this. It would not do any harm to repeat this,

but I decided to show how to turn it off through the use of noLoop().

These all are best explained in the context of use, so be patient to read what follows.

�Implementing the Daddy Logo
With the introduction using the Hello, world examples, and hoping you have done some

noodling around in Processing on your own, I move on to the Daddy logo. I describe my

thought process when planning the sketch, then explain declaration of variables, use of

expressions, color data type and color function, the draw function, and programmer-

defined functions.

�Planning
My approach to producing the peanut shape is to draw two ellipses, one slightly on top

of the other, with no borders. Borders are turned off by a call to the function noStroke().

The drawing of borders is turned back on by a call to stroke with the desired color.

I won’t quite call this a hack, but it is a trick. To make the mouth, I used the noFill()

function because I just wanted the outline.

My plan is to define a function called daddy with parameters indicating the

position of the Daddy logo cartoon and the width and height of the peanut-shaped

figure. The two ellipses, eyes, mouth, and hair will each be placed using horizontal and

vertical values derived from the parameters. I also will make use of global variables.

I could have achieved the same effects by putting a lot of code inside the setup

function because this is just a static drawing. However, I am using a function as well

as defining the contents of draw and making use of variables to model good practices.

This approach does require me to work out the relative position of the two ellipses

(the upper and lower parts of the face) and the relative positions of each of the circles

representing eyes, the arc that represents the mouth, and the two arcs that represent

the one hair on the top of the head.

Doing this work, figuring out these relationships, allows me (through my code) to

produce a Daddy or peanut shape at different horizontal and vertical positions and

different widths and heights.

Chapter 1 Basics

22

I define a programmer-defined function called daddy. The header line is

void daddy(int x, int y, int w, int h)

This defines daddy as a function expecting four parameters, each integer (whole

numbers), with the names x, y, w, and h. You could think of parameters as additional

information sent with the invocation of the function. Normally, I would choose longer

names, but decided that these were clear enough, standing for the horizontal position,

the vertical position, the width, and the height. The parameters will each be referenced

in the body of the function. Their values will be the values set by a call to the function.

The function is called twice, both in the draw function:

daddy(ctrx,ctry,faceWidth, faceHeight);

daddy(3*ctrx, 2*ctry,skinnyFaceWidth, skinnyFaceHeight);

This is a chicken-and-egg situation. I haven’t told you what is inside my daddy

function. All I can say now is that the first call of daddy will set the x appearing inside the

function to the value of ctrx, the value of y appearing inside the function to the value of

ctry, and so on for w and h. The ctrx and ctry are variables that I have named. They will

be the horizontal coordinate and the vertical coordinate of the center of one of the two

circles used in the Daddy cartoon.

The variables cited in these two lines are global variables, to be explained soon.

Just from looking at these two statements, assuming that skinnyFaceWidth and

skinnyFaceHeight are appropriately named, we can make a safe guess that the skinny

Daddy figure is three times as far from the left and twice as far down the screen and that

is indeed what appears in Figure 1-1.

Execution of code starts with the setup function. The draw function is invoked next.

In this particular case, the first statement in the draw function is executed, which means

control goes to the daddy function. All the statements in the daddy function are executed

with the parameters referenced in the call in the first statement. Then control returns

to draw and the second statement is executed. This means control goes again to the

daddy function with all the statements executed with the new set of parameters. Control

returns to draw and the last statement is executed. As you see here, this last statement is

noLoop();. The effect of this is to stop looping; that is, stop any further invocation of draw.

Note I could have left off turning off looping and you would not have noticed.
Processing would have drawn the two cartoons over and over in the same place.

Chapter 1 Basics

23

Global variables are declared outside of functions, whereas local variables are declared

inside of functions. Global variables are used inside of functions and persist, or stay around

when a function completes. In contrast, local variables go away when the function completes.

The benefits of local variables and the more elaborate scoping rules of many computer

languages and many other features apply more in big, or at least bigger, programming projects

involving more than one person, than they do in teaching examples. Still, it is a good practice

to think about what values you want to persist and what values are only used within a function.

Some of the expressions defining variables in terms of other variables produce

floating-point numbers, which are then cast to integers. (I could have made everything

integers, but decided to do it this way mainly to show you casting.) The critical thing is

that all the settings for the eyes and the mouth and the lower and upper ellipses that

produce the peanut shape are defined in terms of x, y, w, and h. For example, inside the

daddy function, there is the declaration with initialization of a local variable that will be

used for the horizontal positioning of the eyes.

int eyeXoffset = int((15.0/80.0)*w);

This statement sets up eyeXoffset as a variable of data type int and initializes

it to be a fraction of the value of w, which is the width of the upper ellipse. This

value is rounded off to be an integer. How did I arrive at the fraction 15.0/80.0?

Experimentation. Why don’t I write it 15/80? Because division of integers always rounds

down to the largest integer not larger than the value. This means 15/80 produces 0,

whereas 15.0/80.0 produces 0.1875. So, although my code casts to integer when the

calculation is over, I do not want the intermediate value to be an integer.

By the way, there are two eyes, but only one variable with the name eyeXoffset.

If you examine the code, you will notice that in one place, the expression uses addition

for eyeXoffset and in another, the expression indicates subtraction.

One last step in planning is to produce a function table. Table 1-1 shows the

functions for the Daddy logo sketch.

Table 1-1.  Daddy Logo Functions

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program daddy

(two places)

daddy draw

Chapter 1 Basics

24

�Daddy Logo Program
My daddyLogo sketch starts with comments.

// This produces a peanut-like shape that was a self-portrait by my father

// he sometimes used it as a signature.

// daddy using variables and function

// this version draws two different faces

Creating comments such as these at the start is a good practice. You also should

put comments throughout the code. This is a case of “Do as I say, not as I do,” as I omit

comments in the code because I produce Table 1-2 with an explanation of each statement.

The sketch continues, first with the declaration of the global variables, then with

the definitions of setup, draw, and daddy. The general procedure for programming

in Processing requires me to define a setup and a draw. I chose to name and define a

function I call daddy. The advantage of doing that is that I could put in multiple calls to

the function and produce cartoons at distinct places in the display window of distinct

widths and heights. If I tried to do this with what I call naked numbers, I would eventually

produce the same thing, but probably have some situations with eyes outside the head.

Note  When programmers need to refer to any built-in Processing function or
variable, we need to use the name accurately, including case. However, when we
make up our own names, it is totally up to us, as long as we are consistent. I could
have decided that the width of the skinny face would be held in a variable named
skinniW, but if I later referred to it as skinnyW, Processing would have called
it an error. Therefore misspelling of names is fine, if you are consistent. Also be
willing to use longer names, perhaps with camelCasing because that will help you
understand your program and be consistent.

Table 1-2 explains the coding using a two-column table, as promised.

Chapter 1 Basics

25

Table 1-2.  Code for Daddy Logo Sketch

int ctrx = 100; Horizontal location for first face

int ctry = 160; Vertical location

int faceWidth = 80; Width of lower part of first face

int faceHeight = 100; Height of both parts of first face

int skinnyFaceWidth = 60; Width of second face

int skinnyFaceHeight = 130; Height of second face

int eyeSize = 10; Eye size for both faces

color skinTone = color(255,224,189); Color of faces

void setup() Header for required setup function

{ Opens setup function

size(800,600); Specifies size of window

} Closes setup function

void draw() Header for draw

{ Opens draw function body

daddy(ctrx,ctry,faceWidth, faceHeight); Calls daddy function to make first face

�daddy(3*ctrx, 2*ctry,skinnyFaceWidth,

skinnyFaceHeight);

Calls daddy function to make second face

noLoop(); Turns off looping: no more draw

} Closes draw function

void daddy(int x,int y, int w, int h) Header function for daddy function

{

noStroke(); Turn off outline to produce peanut shape by

drawing two ellipses

fill(skinTone);

int eyeXoffset = int((15.0/80.0)*w); Calculate x offset for eyes

int eyeYoffset = int(.35*h); Calculate y offset for eyes

(continued)

Chapter 1 Basics

26

Table 1-2.  (continued)

int mouthYoffset = int(.10*h); Calculate y offset for mouth (note that there

is no x offset, as the smile is in the middle)

int mouthWidth = int(.5*w); Calculate width of the ellipse that will be

used for the mouth

int mouthHeight = int(.3*h); Calculate height of the ellipse that will be

used for the mouth

int hairOffsetY = eyeYoffset*3; Calculate the y offset of the hair

int hairRadius = 3*eyeSize; Calculate the radius of the hairs

ellipse(x,y,1.2*w,h); Draw lower ellipse

ellipse(x,y-h/2,w,h); Draw upper ellipse

stroke(0); Turn outline back on

fill(0); Set fill to black for the eyes

ellipse(x-eyeXoffset,y-eyeYoffset,

eyeSize,eyeSize);

Draw left eye (to the viewer’s left)

ellipse(x+eyeXoffset,y-eyeYoffset,

eyeSize,eyeSize);

Draw right eye

noFill(); Turn off fill in preparation for the hair and

mouth

arc(x,y-hairOffsetY,hairRadius,

hairRadius,-PI/2,PI/2);

Draw first part of the hair

arc(x,y-hairOffsetY-hairRadius,

hairRadius,hairRadius,PI/2,PI*3/2);

Draw second part of the hair

stroke(240,0,0); Set color of stroke to red for the mouth

arc(x,y+mouthYoffset,mouthWidth,mouthHeight,

QUARTER_PI,3*QUARTER_PI);

Draw mouth

} Closes daddy function

Chapter 1 Basics

27

�Things to Look Up
The examples in this chapter made use of ellipses and arcs, which are pieces of ellipses.

Processing also supports drawing rectangles, triangles, and lines, and you can look these

up. The functions are rect, triangle, and line. The Processing document provides an

explanation and short examples, which you can try and then modify. There also is a way

to define your own shapes using beginShape, vertex, and endShape. Shapes respond

to the current fill and stroke settings. There will be examples of each of these in later

chapters, but you can start your exploration now.

Processing provides alternative ways to specify an ellipse or a rectangle. Look up

ellipseMode and rectMode. The default methods are different for ellipse and rectangle.

The Hello, world examples demonstrated some ways to modify how text is displayed.

You can change fonts (see loadFont or createFont) and you can change the alignment

of text using textAlign. You can set the size of the text, either in the createFont

statement or using textSize.

As I mentioned, Processing does provide a function called radians that converts

from degrees to radians. You can look it up and use it, but, again, I urge you to practice

working directly with radians, using the built-in constants PI, HALF_PI, and so on.

The PDE, under Tools on the toolbar, the Color Selector tool. This can provide the

RGB values into your program.

�How to Make This Your Own
With this and anything else, proceed slowly. You can copy all the code and make sure it

runs and produces exactly what is shown in the picture. You then can do some or all of

the following:

•	 Add a third instance of the Daddy logo somewhere else in the

window. This requires the addition of just one more statement to the

draw function.

•	 Change the values of the global variables, including those indicating

widths, heights, and also skin color.

Chapter 1 Basics

28

•	 Change the daddy function itself while still thinking of it as some sort

of face or head.

•	 Add a nose, perhaps by using two lines. Look up line.

•	 Make the smile bigger. You can make the arc cover more of the

same ellipse, change the size of the ellipse, or do both.

•	 Substitute a frown for the smile.

•	 Make the hair longer. Add another hair or two.

•	 Look up how to draw rectangles and add a hat.

•	 Change the daddy function totally; that is, create a function that

produces a small drawing with parameters setting the horizontal

and vertical position and other attributes such as width and height.

How about pumpkins? How about houses? How about flowers? (For

flowers, or anything with curved lines that are not arcs, you might

want to wait for later chapters.) Remember the technique of defining

variables in terms of other variables. This is critical.

�What You Learned
You learned how to create a Processing sketch. This included the roles of setup and

draw, although you will learn more about draw in later chapters. You also saw how to

draw an ellipse and an arc, which is a piece of an ellipse. You learned the roles of fill,

stroke, noFill, noStroke, and noLoop.

The most important concept in this chapter was how to expand the language by

creating a function. Functions have a specific format, with a header giving the name,

the return value (more on this in later chapters), and specification of the parameters.

Another concept, perhaps equally important, is the notion of a variable, a way of

associating a value with a name. This example did not show all the power of functions

or variables, but provided an introduction. One benefit of defining the function with

parameters is that the relationships among the different values are specified, so there

will be no eyes outside the head, for example. Another benefit was the ease in drawing

two cartoons, not just one, and at different places in the window.

Chapter 1 Basics

29

�What’s Next
Chapter 2 introduces event handling: how to set up a response to mouse actions. It also

introduces stochastic processing, or modeling events that have a random or probabilistic

aspect. The chapter provides examples of the for-loop, a type of compound statement,

and the use of expressions to produce polygons. There will be two examples. In one,

you let your user, viewer, player, or audience click the mouse on the display window

and a polygon will appear at that spot. The polygons start off as triangles and increase

the number of sides until a set limit is reached and go then back again to triangles. The

other example is what I categorize as a coin toss. However, I use two photos of family

members. You can find and use photos of the head and the tail of an actual coin or any

two photos you wish.

Chapter 1 Basics

31
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0_2

CHAPTER 2

Interactions
In this chapter, you will learn how to prepare a Processing sketch that reacts to events

such as clicking your mouse on the screen.

Note  I use the term player for the person running the program. No matter what
term is used, you, the program designer and builder, should have the future user in
mind when you are doing the work. You are the user, player, or client when you are
testing the program.

The examples for this chapter are a sketch in which polygons are drawn where the

player clicks the mouse (see Figure 2-1) and a coin-toss type of application, which in my

example, alternates between different images of my granddaughter (see Figure 2-2).

32

The program also keeps track of totals, which my code classifies as heads or tails

even though there are no images of coins.

Figure 2-1.  Polygon drawing sketch, after many clicks

Chapter 2 Interactions

33

These examples provide an opportunity to explain important programming concepts

such as events. There will be some mathematics here and this is a good thing, even a

great thing, because of the power it gives us to build beautiful, fun, and useful programs.

�Programming Concepts
In this section, I provide background on programming event handling and producing

(simulating) random phenomena along with other features common to programming

languages. These facilities are present in many programming languages although the

details differ.

�Events
The term event is not that easy to define in programming, although it is easy enough to

give examples: a mouse click on the screen or a key press or the passage of a specified

amount of time or the player responding to a prompt for a file name. The capability of

Figure 2-2.  Window of my “coin toss” sketch after several clicks

Chapter 2 Interactions

34

event-based or event-driven programming is that programmers can specify the event

and what we want to have happen when the event is detected (the event handling) and

the underlying system does the work of detecting if and when the event happens and

follows through on our directions. This is a tremendous boon to programming as you

will see when I explain how some, although not all, events are handled in Processing and

describe the examples. It means that we can focus on one thing at a time.

�Randomness
Building a computer program means specifying everything. What if you want to

build a game in which certain actions do not occur all the time, but according to a set

probability? I am not implying that games are not serious business, because they are,

but what if you want to simulate for serious study a phenomenon such as traffic in

which certain conditions arise based on probabilities? It seems impossible. However,

most programming languages have functions that produce values within a set range

that are random or, more accurately, appear random according to the probabilistic

pattern specified. This is called pseudo-random processing. It is still the object of ongoing

research, but I will assume the pseudo-random features are completely reliable.

�Displaying Images from Files
Most programming languages have facilities for incorporating the use of image files,

but this is an area in which Processing excels. It is important to keep in mind that image

files are large and complex objects. Moreover, there are different types of encodings for

images, such as .gif, .jpg, .tiff, and .png.

�Calculations, Including Built-in Functions
You might say that programming languages specialize in performing calculations.

Mathematical operators, such as + and *, are used to form expressions. Programming

languages typically have a large set of built-in functions, such as the trigonometric

functions and functions to produce random values.

Programming courses once typically started with attention to precedence rules.

Consider an expression

a + b * c

Chapter 2 Interactions

35

Is it evaluated by first multiplying the values of b and c and then adding in the value

of a or are the value of a and the value of b added together and then that sum added to

the value of c? All programming languages have set rules for this and they tend to be

the same: Multiply b and c first and then add in a. The precedence rules follow the silly

mnemonic Please Excuse My Dear Aunt Sally (PEMDAS) for performing operations

in the correct order: parentheses, exponent, multiplication, division, addition, and

subtraction. However, my strong advice to you is to use parentheses and break up long

expressions into parts, possibly over several statements.

�Looping
Looping, or doing the same thing over and over again, is a feature of all programming

languages. One construct for looping that appears essentially the same in different

languages is the for-loop. A variable, called the loop or index variable, is declared and

given an initial value. An operation that changes the variable is defined and a condition

to govern if the looping is to be continued also is defined.

�Processing Programming Features
Processing has multiple facilities for mouse events and key events. In this chapter,

I explain the implementation of a program responding to a mouse click on the screen.

More elaborate examples are covered in later chapters.

In the previous chapter, I explained how programmers provide the body of the setup

function and the draw function. The Processing system invokes these functions at the

appropriate times. Similarly, Processing has functions such as mouseReleased and others

that provide a way to specify the response—the event handling—for given events. When

the mouse button is pressed and then released, the mouseReleased function, if provided

by the programmer, is invoked. Therefore, setting up the response for the mouse button

being released requires us to have a draw function, even if there is nothing in the body of

the function, and write something in the body of the mouseReleased function.

Obtaining information on which key is being pressed is done using the keyPressed

function. This will be demonstrated in Chapters 5 and 7. See also the remarks in “Under

the Covers” later in this chapter.

To access the mouse position, I use the built-in variables mouseX and mouseY inside

the mouseReleased function. This allows me to write code that positions something at

the point at which the player has released the mouse.

Chapter 2 Interactions

36

The polygon-drawing sketch draws regular polygons of varying number of sides

centered at the mouse position. The coin-toss sketch displays one or a choice of two

images positioned with the upper left corner at the mouse position. Further details

follow in the “Implementing the Polygon Sketch” section.

Responding to the passage of time to produce animation is discussed in Chapter 3.

In Chapter 10, I describe how to implement the absence of an event, making a cube

rotate when the mouse is dragged on the screen or making it move “by itself” after no

action. In this chapter, I also discuss prompting a player for a file name and responding

when a file name is given.

Processing has a built-in function named random that can take one parameter and

produce a floating-point number from zero up to but not quite including the parameter.

The call random(1) will produce a fraction from 0 up to, but not including 1.

Note  We do not write the random function, but if we did, the header line would be 

float random(float upper)

which indicates that the function returns a floating-point number. In fact, there is
an alternative form of random, with the header 

float random(float lower, float upper)

This indicates that the function can be invoked with two parameters: one the lower
and one the upper limit. The result is something greater than or equal to the lower
limit and less than the upper limit.

There is one more detail that I want to clear up just in case it worries you. Can we
use integer values or integer variables in places calling for floats? The answer is
yes, and that is what I do for this example. We cannot do the reverse and use a
float when an integer is the designated value.

My code compares the output of random(1) with the number .5. If it is greater or

equal to that number, one choice is made (which I call Heads, although it is displayed as

one picture of Annika). Otherwise, if it is not greater than or equal, the program takes the

other path.

Chapter 2 Interactions

37

Images are incorporated into a Processing sketch by first using the Processing

toolbar: Select Sketch/Add a file… to bring each image file into the sketch folder. The

sketch folder will now contain a subfolder named data, which will hold all the image

files, and the PDE file. (If and when tabs are used, the code in each tab produces a

new PDE file. This will be demonstrated in a later chapter.) In the code, the image files

are referenced using a global variable of type PImage. The setup function would have

a statement that uses the function loadImage to assign a value to the global variable.

Finally, somewhere in the code, the programmer would use the image function to make

the image appear in the display window. The image function displays the image with the

original dimensions or with specified dimensions. Here are fragments of code, based on

the assumption that an image file named smirk.JPG has been added to the sketch.

PImage myGD;

void setup() {

 size(1000,1000);

 myGD = loadImage("smirk.JPG");

}

void draw() {

 image(myGD,10,10);

 image(myGD,20,20,300,300);

}

The result, as shown in Figure 2-3, suggests that the picture at its full size is very big,

in fact, bigger than the 1,000 × 1,000 window set up for the sketch. The first call to image is

not a syntactic error, even though it could be viewed as unsuccessful. The result is to fit in

as much of the image possible. Notice also that the picture is drawn twice, with the second

version up near the top, with the dimensions changed to 300 × 300. Supplying the width

and height parameters can result in a distorted image, so it is good practice to determine

the actual dimensions of an image and make the dimensions you specify proportional.

This is a case of “Do as I say, not as I do,” because I ignored the actual dimensions and

made the images 100 × 100. I am more careful in examples later in the text.

Chapter 2 Interactions

38

Figure 2-3.  Drawing two versions of a large image

Chapter 2 Interactions

39

The for-loop in Processing provides a way to do repeated operations involving

variables. The following example adds up the numbers from 1 to 10.

 sum = 0;

 for (int i=1; i<=10; i++) {

 sum = sum + i;

 }

This works because, first of all, the variable sum is initialized to zero. Then the for-

loop starts with the variable i set to the value 1. This value is less than or equal to 10,

so the body of the loop is executed. The body contains the one assignment statement:

taking the current value of the variable sum and adding the current value of the variable i

to it. The for-loop now increments the value of i by executing the expression i++. This is

shorthand for i = i + 1. So now, the variable i holds the value 2. This value is less than

or equal to 10, so the body of the for-loop is executed. The assignment statement sets the

variable sum to be its current value + 2. So now sum holds the value 3. Jumping ahead, the

variable sum has been set to 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10. The value of i is 10 and

then incremented to 11. This is not less than or equal to 10 so the for-loop terminates.

For the polygon example, I use a for-loop to draw the sides of the polygon by

calculations using trigonometric functions that, in turn, use angles calculated based on

the number of sides of the polygon.

The coin toss example makes use of a font other than the default font. Two options

are available: loadFont and createFont. I leave it to you to research the difference in the

Processing reference.

�Under the Covers
It is a requirement in Processing that the draw function must be present for

mouseReleased and similar mouse and keyboard events to be handled. What is taking

place here is that the presence of the draw function, even with an empty body (see the

code later) signals to the Java program constructed with our Processing code to include

a call to the draw function and perform checking on the mouse, the keys, or both. It also

means that variables such as mouseX and mouseY have valid values. All these tasks require

actions, but they are “under the covers” and we do not have to be concerned with them.

The frequency of invoking draw and checking for events and updating mouseX and other

variables is set by the function frameRate. My code sets the frame rate to 6, which is

relatively slow. You can evaluate if it makes the sketch not responsive enough.

Chapter 2 Interactions

40

The PDE and then the executing of a Processing sketch could be one of several

programs running on the computer. The issue for the operating system is what program

is the one to get the information about events. The technical term for this is focus. In

some cases, it will be necessary to click the display window of the sketch to give it the

focus. That generally happens naturally for mouse events, but might not happen for

keystrokes. I will repeat this for the examples involving the keyboard.

�Polygon Sketch Operation Overview
My design objective for this sketch was to demonstrate interactivity and showcase the

use of a for-loop. A deeper goal was to show that something complex could be handled

by a small amount of mathematics. Finally, I wanted the examples in this chapter to

be only a little more complex than the ones in the first chapter, making use of global

variables and a function with parameters indicating the position and the attributes

of a drawing of a certain type. You can evaluate how well I did after reading the

“Implementing the Polygon Sketch” section.

My sketch would include a function named polygon that draws a polygon of a

specified number of sides. The program starts with a four-sided polygon (you will see

why I would call it a diamond, rather than a square) in the center of the window

(see Figure 2-4). You also will notice that there are directions: Click on screen.

Chapter 2 Interactions

41

When the player clicks the window, a triangle appears as shown in Figure 2-5. The

position of the triangle is based on where on the screen the player clicks. Subsequent

clicks produce more polygons with the number of sides of the polygon going from

three to ten and then back to three. The first figure I included in this chapter for the

polygon sketch, Figure 2-1, shows the sketch after seven clicks. Notice that one polygon

is partially outside the display window at the upper left corner. My instructions should

have said “window” and not “screen,” but my sloppiness gives me a chance to point

out two things: (1) Processing will not consider it an error if our code specifies drawing

something outside or partially outside the window boundaries, and (2) the Processing/

Java system needs to manage the whole computer screen, including other programs

running at the same time.

Figure 2-4.  Starting window for polygon sketch

Chapter 2 Interactions

42

�Implementing the Polygon Sketch
Next, I describe the implementation. As we move ahead, think about the similarities to

the examples you have already seen.

�Planning
To do the program, I will create a function called polygon and have statements that

invoke the function. There is no correct answer as to which is to be done first, and

sometimes I go back and forth. The trick is to not be paralyzed and do nothing. Trust in

yourself that you will complete the job.

Figure 2-5.  Polygon sketch after the first click

Chapter 2 Interactions

43

Before writing any code, I know, as I have hinted in the text, that I will make use of

four functions: setup, draw, mouseReleased, and a function of my own design, polygon.

The relationship of the functions is shown in Table 2-1.

The sketch will have global variables, namely choice and limit, that keep track of

the number of sides of the polygon and the limit before going back to three, namely 10.

I now must tackle explaining the drawing of a polygon! I want to produce a polygon

with n sides. Think of a circle and then think of dividing the circle into n equal parts (n

will start at 3 and go up to 10). My father (the one who signed his name with a peanut

shape and one hair) would give his pie order as 30 degrees. Forget the degrees, because

we are using radians, but do think about angles. If a polygon has n sides, then the size of

the angle for one piece of the pie would be the angle representing the whole circle divided

by n. In Processing, this is the expression TWO_PI/n. Please do not try or feel bad because

you do not want to try, to calculate what this is in degrees for different values of n. It is the

correct amount and, after all, you want to cultivate your intuition in terms of calculations.

Figure 2-6 shows a circle with an angle A and a triangle. The n for this example is 6.

The heavy horizontal line represents the horizontal distance from the center to the

point on the circle and the heavy vertical line represents the vertical distance from the

horizontal axis to the point on the circle. The size of these lines is provided for us by

the trig functions. Recall, if you can, the definitions of sine and cosine. I use radius to

indicate the length of the line from the center to the circle. This means that the size of

the horizontal line is radius * cos(A) and the size of the vertical line is radius * sin(A).

I use these calculations to determine the position of the point on the circle. If the

center of the circle is at x, y, then the horizontal dimension of the point on the circle is

x+radius*cos(A). The calculation for the vertical value for the circle diagram is somewhat

subtle in terms of the circle diagram. Recall the fact that the coordinate system is upside

down! The vertical dimension of the point on the circle is y-radius*sin(A).

Table 2-1.  Function Table for Polygon Sketch

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program polygon

mouseReleased Underlying Java program polygon

polygon mouseReleased

Chapter 2 Interactions

44

We are not done, but we are close. It appears that I have explained the calculation

for one end of one edge of a polygon. A better term for end is vertex. What is the code

for drawing the whole edge? What is the code for drawing all the edges? This is where

the for-loop comes into play. My code will set a variable named angle set to TWO_PI/n

where n is the number of sides in the polygon. Then, my code draws a line from the point

at an angle equal to zero to a point at an angle equal to angle (too many uses of the name

“angle”). The code is clearer than my attempts at prose. Let’s define two new variables,

pangle1 and pangle2. At the first iteration, pangle1 is equal to zero and pangle2 is equal

to angle. At the next iteration, pangle1 is set to angle and pangle2 is set to 2 * angle.

I hope you can see where I am going. I use a for-loop to draw the edges. In the body of

the for-loop, the variable i assumes the values 0, then 1, and keeps going until it is one

less than n. For a three-sided polygon (also known as a triangle), the variable i will be 0,

1, and 2. This means three edges are drawn, which is exactly what we want.

for (int i=0;i<n;i++)

 {

 float pangle1 = angle * i;

 float pangle2 = angle * (i+1);

 float xp1 = x + rad * cos(pangle1);

Figure 2-6.  Circle showing angle and lines for cos and sin

Chapter 2 Interactions

45

 float yp1 = y + rad * sin(pangle1);

 float xp2 = x + rad * cos(pangle2);

 float yp2 = y + rad * sin(pangle2);

 line(xp1,yp1,xp2,yp2);

 }

Notice that I did not use y-rad*sin(pangle1) and so forth. I wanted my circle

diagram to be familiar to you from your previous exposure to trig functions and so

wanted the triangle to not be upside down. The program would work either way.

You will see the code in context in Table 2-2. You can experiment with this or just

accept it, but keep trig functions and for-loops in mind for later projects.

Now that I have explained the polygon function itself, you might ask how it is used in

the sketch. Functions are defined and functions are invoked (or called). I now show the

calling of the polygon function. It will be in the mouseReleased function as indicated already

in the function relationship table. I had to decide on the parameters, which are analogous to

the parameters for the daddy function in Chapter 1. The parameters specify the position, the

size, and the number of sides (i.e., which polygon). The header of my polygon function is

void polygon(float x, float y, float w, int n)

The first two parameters specify the position of the center of the polygon. The third

parameter indicates the size, which is interpreted as twice the radius of the bounding

circle; that is, the radius used in the expressions to determine the vertices. The first

three parameters are all specified as floats. The fourth and last parameter indicates the

number of sides.

The position of the polygon will be based on the mouse location. Processing provides

the mouseX and mouseY variables holding the coordinates of the mouse. My code

produces a polygon centered at the x, y location held in the parameters. The size of the

polygon is a fixed amount, but my code allows flexibility if I want to change it.

Implementation for producing the sequence of polygons, starting with triangles and

continuing to ten-sided polygons, then reverting back to triangles, is done in a standard

way that you can apply in different programs. One int variable, which I named choices,

is initialized at 3 (you cannot have a polygon with fewer than three sides). This variable is

incremented using the ++ operator. There is a subtle point here: The value of choices++

is the original value of choices. After this value is used, the variable is incremented by 1.

My next piece of code uses an if statement to compare choices with a variable I defined

named limit. If the value of choices is bigger than limit, the true-clause of the if

Chapter 2 Interactions

46

statement is invoked and choices is set to 3. I can be self-critical here and suggest that

I could and, probably, should, have declared a variable with a name such as original

and initialized it to 3, to be used in the code in place of the “naked number” 3. The

variable original would not be changed. This would make it easier to modify the sketch

to produce polygons starting at a different number of sides.

�Polygon Sketch Program
The polygon sketch is organized much like the example in the last chapter. First

there are global variables and then definitions for setup, draw, and, for this example,

mouseReleased. The sketch also includes my function, polygon (see Table 2-2).

Table 2-2.  Code for Polygon Sketch

int choices = 3; Starting number for polygons; we start with

triangles

int limit = 10; Last number; biggest polygon has 10 sides

void setup() Header for setup

{

size(800,600); Set size of window

fill(255,0,0); Set color for instructions

textSize(18); Set text size

�text("Click on screen",20,20); Display instructions

}

void draw() Header for draw

{

�polygon(.5*width, .5*height,

100.0, 4);

Invoke polygon function to draw one

four-sided polygon at center of window

}

void mouseReleased() Header for mouseReleased

{

(continued)

Chapter 2 Interactions

47

Table 2-2.  (continued)

�polygon(mouseX,mouseY,

100.0,choices++);

Draw a polygon with sides equal to value of

choices at location of mouse, then increment

choices

�if (choices > limit) { choices = 3;} If choices over the limit, set (back) to 3

}

void polygon(float x, float y,

float w, int n)

Header for polygon function

{

float angle = TWO_PI / n; Calculate the angle for a wedge of the polygon

float rad = w/2; Set rad to be half of w parameter

for (int i=0;i<n;i++) For-loop head going from 0 to 1 less than n

parameter

{

float pangle1 = angle * i; Angle for start of edge

�float pangle2 = angle * (i+1); Angle for end of edge

�float xp1 = x + rad * cos(pangle1); Calculate the x coordinate

�float yp1 = y + rad * sin(pangle1); Calculate the y coordinate

�float xp2 = x + rad* cos(pangle2); Calculate the x coordinate

�float yp2 = y + rad * sin(pangle2); Calculate the y coordinate

line(xp1,yp1,xp2,yp2); Draw the edge

}

}

Chapter 2 Interactions

48

�Coin Toss Sketch Operation Overview
The second example for this chapter is what I call a coin toss, although, again, I use my

choice of images. My program keeps track of the results, calling them Heads and Tails.

The opening window is shown in Figure 2-7.

Figure 2-7.  Opening window for coin toss sketch

Chapter 2 Interactions

49

The first click produced what is shown in Figure 2-8 and a couple more clicks results

in what is shown in Figure 2-9.

Figure 2-8.  After a first click in the coin toss sketch

Chapter 2 Interactions

50

Figure 2-9.  After three clicks in coin toss sketch

�Implementing the Coin Toss Sketch
I will describe the planning and then the details of the coin toss program. Here and in

the rest of the book, you will benefit by thinking about what you already know how to do

and what is new.

�Planning
You know that the setup function does set up the window. For this application, it will be

used for other operations that need to be done just once at the start, including creating

and setting the font for text, loading in two images, and displaying the directions “Click

on the screen.” The draw function serves to allow Processing to respond to events, such as

the mouse button being released. There is nothing in the body of the draw function, but it

needs to be present. The mouseReleased function will be where the main action occurs:

performing the choice based on a pseudo-random calculation between two images.

Chapter 2 Interactions

51

My first step for what I call the coin toss is identifying the pair of image files I will

use. I have a large and growing collection of photos of family members, so that is not a

problem. After starting a new sketch by clicking File and then New and giving it a name

(my choice of name was cointossImages), I then follow the procedure in Processing

to use the Sketch drop-down menu and Add a file… two times. This produces a folder

named cointossImages that contains two items: a PDE file named cointossImages and

a data subfolder. The subfolder contains two files: braid.jpg and smirk.JPG.

Table 2-3 is the function relationship table. Note that I could have defined one of my

own functions to do the work done in mouseReleased, but chose not to for this sketch.

Table 2-3.  Coin Toss Functions

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program

mouseReleased Underlying Java program

I did want to keep a tally of the random choices made. I label these Heads and

Tails. It could have been Smirk and Braid. I named the variables used for the tally headc

and tailc. These are global variables, which means they are declared outside of any

function. I could have initialized them in the declaration statements, but instead they are

initialized in setup. The mouseReleased function erases the whole window each time. It

makes the choice (simulates a coin toss), displays one or the other image, and increases

the corresponding variable holding the count. Finally, mouseReleased displays text

showing the counts. You can examine the code and, hopefully, appreciate the brevity,

in Table 2-4.

Chapter 2 Interactions

52

Table 2-4.  Code for Coin Toss Sketch

PImage coinh,coint; Declares image variables

PFont font; Declares font variable

int headc,tailc; Holds counts

void setup() { Header for setup

size(600,400); Set size of window

frameRate(6); Set (slow) frame rate

headc = 0; Initializes count of heads

tailc = 0; And count of tails

font = createFont("Ariel",20); Creates font, sets size

textFont(font); Sets font to be used

coinh = loadImage("smirk.JPG"); Sets image used for head

coint = loadImage("braid.jpg"); Sets image used for tail

fill(0,0,240); Sets color for instructions

Text("Click on the

screen.",100,100);

Displays instructions

}

void draw() { Header for draw

} No body

void mouseReleased() { Header for mouseReleased

background(255); Erase whole window

if (.5<=random(1)){ Make random choice

image(�coinh,mouseX,mouseY,

100,100);

Display head

headc = headc+1; Increment head count

} Close the if-true clause

else { Else: not-true clause

(continued)

Chapter 2 Interactions

53

�Things to Look Up
You could look up the following functions: mouseClicked, mousePressed, mouseDragged,

and mouseMoved. Processing also keeps track of the current mouse coordinates in the

variables mouseX and mouseY and the coordinates of the mouse at the last iteration of

draw in the variables pMouseX and pMouseY. These built-in variables can be accessed in

any function, not just the mouse functions. I have other examples making use of these

functions and variables and you also can try your own experiments.

The procedure I have described uploads the image files in the data folder located

within the sketch folder. (You can look up an alternative way of dragging them into the

sketch.) Image files also can be accessed from anywhere on the local computer using a

complete address or from a web site using a URL. This approach assumes the computer

is connected. I will describe these alternative places to get image files in Chapter 6 and

Chapter 7. Look up loadImage. You can experiment with this. Do keep in mind that

loading from the data folder or elsewhere on the local computer or, especially, from a

web site is not instantaneous.

image(�coint,mouseX,mouseY,

100,100);

Display head

tailc = tailc+1; Increment tail count

} Close the else clause

text("Heads",10,20); Display label “Heads”

text(headc,10,50); Display head tally

text("Tails",80,20); Display label “Tails”

text(tailc,80,50); Display tail tally

} Close mouseReleased

Table 2-4.  (continued)

Chapter 2 Interactions

54

�How to Make This Your Own
You can take my daddy function from Chapter 1 or, even better, take the function you

(hopefully) designed and coded for your own figure and substitute it for the polygon

function to draw your figure at the mouse location. You must code the call with the

appropriate set of parameters.

For the coin toss, you should choose your own pair of images.

A good exercise is to think about how to simulate a crooked coin in a more or less

exact way. That is, what if I wanted the head image to show up twice as often as the tail

image? The answer is to replace the .5 in the if statement with something else. One way

to calculate the amount is to think of the interval from 0 to 1 as being made up of two

parts: Let’s call them A and B. If the value returned by random() is in the A part, my code

will display the head image and increment the head count; otherwise it will display the

tail image and increment the tail count. The following is mathematics, not programming.

I start with two simultaneous equations.

 A + B = 1

 A = 2 * B

Continuing with the standard algebraic manipulations, I replace A in the first

equation with 2 * B.

 2 * B + B = 1

Combining the Bs, I get

 3 * B = 1

This yields a value for B:

 B = 1/3

I can then calculate the value of A. This indicates the value to use in my code. The

value of A will be from 0 to 2.0/3.0 and B will be the rest. I could do the division and write

.6666666, but instead I let the computer do the work. Using what is called pseudo-code, a

mixture of code and English, the following suggests what my code will be:

 if ((2.0/3.0) >= random(1))

 { do the head things}

 else

 { do the tail things}

Chapter 2 Interactions

55

You can pose different exercises for yourself. The concept that something can be

random but not “even money” is important in building games and models for real-life

situations such as studying traffic or predicting weather or elections.

�What You Learned
This chapter reinforced the lessons started in Chapter 1 on the roles of the setup and draw

functions. You saw that mouseReleased was similar to setup and to draw in that it also is

invoked by action of Processing. The first example made use of a programmer-defined

function, polygon, that was analogous to my definition and use of daddy in Chapter 1.

The chapter featured use of the image function and explained the procedure for how

image files are added into the data subfolder in the sketch folder.

The examples made use of the random, sin, and cos functions. Familiarity with these

functions lets us include a wide variety of effects into our programs.

The polygon example featured the use of a for-loop. This is a highly useful construct

for doing a sequence of similar things. Similarly, Processing provides us the if and if/

else constructs for controlling what statements are executed depending on conditions.

�What’s Next
Chapter 3 involves the production of animation. It also will introduce arrays, a value that

is a set (sequence) of values of the same data type.

Chapter 2 Interactions

57
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0_3

CHAPTER 3

Animation Using Arrays
and Parallel Structures
Animation is the technique of producing a sequence of still pictures fast enough that

our eye–mind connection interprets the sequence as motion. This chapter introduces

the topic of animation by presenting four sketches. You’ll first implement a bouncing

ball, namely a circle that moves in a window, changing direction (bouncing) off the

sides. You’ll then implement a set of three bouncing balls, a bouncing pentagon, and

a bouncing polygon in which the user can change the number of sides by pressing the

mouse button.

Before actually implementing the sketches, I present a high-level overview of them

and review some of their programming concepts and processing features.

�More on the Sketches
Processing has facilities, notably the draw function, that make it relatively easy to

produce animations, as draw is invoked over and over.

The static figures in this chapter cannot fully convey the animation. Figure 3-1

shows the bouncing ball sketch. We’ll build on the bouncing ball sketch to produce

the bouncing balls sketch and the bouncing pentagon sketch and then the bouncing

polygon sketch. In the next chapter, which introduces classes, I’ll approach going from

bouncing ball to bouncing balls in a different way and then show bouncing things.

Building on one application or taking from one application to build another one is a very

common technique that I am demonstrating in several ways in this chapter.

58

Figure 3-1.  Screen shot of bouncing ball

Chapter 3 Animation Using Arrays and Parallel Structures

59

Figure 3-2 shows the sketch with a change in the background color and the statement

that erases the window before redrawing the circle (ball) in the new position commented

out. This causes the whole trajectory to be displayed. You can see the ball “bouncing” off

the sides. You might want to produce a nonlifelike effect by not erasing the window, but

showing all positions of objects.

Figure 3-2.  Screen shot of bouncing ball, with no erasure of window

Chapter 3 Animation Using Arrays and Parallel Structures

60

Figure 3-3 shows three bouncing balls, each of a different size and each moving at

a different rate. I use this example to introduce arrays and a technique called parallel

structures.

Figure 3-3.  Screen shot of bouncing balls

Chapter 3 Animation Using Arrays and Parallel Structures

61

Figure 3-4 shows a bouncing pentagon.

Figure 3-4.  Screen shot of bouncing pentagon

Chapter 3 Animation Using Arrays and Parallel Structures

62

The last example starts off as a bouncing pentagon, but changes to a random polygon

after a mouse click. You know how to draw polygons and you have had an introduction

to the use of pseudo-random calculations, so understanding this application will build

on what you know. Figure 3-5 shows the sketch after several mouse clicks.

At this point, you should have a basic understanding of the the bouncing concept.

The remaining sections show you exactly how to make it happen for several distinct

sketches.

Figure 3-5.  Bouncing polygon

Chapter 3 Animation Using Arrays and Parallel Structures

63

�Programming Concepts
This section contains general background on many features useful for programming. As

I have said before, although there is support for these in most programming languages,

the details do vary.

�Animation
If you have ever examined a reel of film, you will recall that the reel contained frames

of still images. Movies are shown at sufficient speed that we see motion. Computer

programs can display one scene and then another scene and then another. If the

changes are fast and small, the scene appears lifelike. Commercial movies use a rate of

24 frames per second, called the refresh cycle.

Computer animation for production of movies is not done in real time and is still

the subject of research and development. Computer games, in contrast, do have to

accomplish tasks such as calculating the effects of many objects on many other objects

and displaying the results fast enough to appear for the players. Both are worthy subjects

of exploration.

�Logical Operations
For the simple bouncing ball, you need to understand that there is no ball and there

are no walls. What you will see in the code is a set of variables that define the ball’s

coordinates, its trajectory, and the location of the walls. The choice of variables

is dependent on Processing and your imagination, but what is common across

programming languages is the use of logical expressions to make decisions such as

checking for collisions (simulated collisions) and, if a collision can be deemed to have

occurred, what are the changes in variables needed to define the new trajectory. My

approach, which works in many languages, is to define the trajectory by specifying a

change variable for each dimension. I write code that checks if the ball is at or outside

the walls and, if it is, reverse the sign of one or the other of the change variables. The

code is presented and explained later. A general concept is that just as we include

expressions that add and subtract and multiple and divide, we also can have expressions

that make comparisons that return the value true or the value false. These values,

called Boolean values after George Boole, can themselves be used in expressions.

Chapter 3 Animation Using Arrays and Parallel Structures

64

�Arrays
The bouncing balls example demonstrates a use of sets of values. This can be

implemented in most computer languages by a construct called an array. An array

is a list or sequence of items. The items are constrained to have the same datatype in

Processing, though not in some other languages. Referencing and changing a specific

item requires the use of an index value. Typically, the index value goes from 0 to one less

than the number of items in the set.

�Parallel Structures
Parallel structures refer to the technique of setting up arrays with corresponding

values. In the next chapter, I introduce the notion of classes. Parallel structures can be

considered a way to address part of the problem that classes address, namely linking

together related values.

�Compound Statements
This concept will be illustrated later by multiple if statements appearing in a for-loop,

but because it is a general concept and frequently used, I mention it here. A function

(or whatever the appropriate term is for a given programing language) contains one or

more statements. Format varies but all programming languages have a construct that

includes a check on a condition and then either has one true clause or a true clause and

a not-true (else) clause. These clauses can contain one or more statements. Similarly,

programming languages have one or more looping constructs, containing one or more

statements. Any compound statement can go where a simple statement can go. Cautions

are provided later in the discussion for Processing.

�Pseudo-Random Processing
Once a programming language provides some sort of random result, we can use

calculations to get a wide variety of results. For example, I wanted to calculate a random

choice from a range of integers to designate a polygon to have from 3 to 14 sides. The

random function called with a parameter n returns a floating-point number from 0 to just

under n. I use the function int to turn this into an integer. The value calculated by the

int function is the largest integer not larger than the parameter. (Some programming

Chapter 3 Animation Using Arrays and Parallel Structures

65

languages have a function like this and name it floor, and that is a good name.)

If nsides is a variable of data type int, then

nsides = 3+int(random(12));

sets nsides to be a random choice from 3 to 14. The point here is that the random

function can be used to make a random choice from a range of integers.

�Processing Programming Features
Processing is ideally suited for animation programs because the draw function is invoked

at fixed intervals of time.

Caution L et me insert a warning here, from the Processing documentation. The
program attempts to invoke draw at the current frameRate but it might fail if
there is too much to do. This has never been an issue for me, but it is a worthy
challenge to see if you can put too much computing invoked for each iteration.

For these examples, I put the work of displaying the ball, balls, or pentagon by code

in the draw function. This includes putting the work in a function invoked by draw.

The relevant variables are bx and by for the ball coordinates and dx and dy to define

how each coordinate changes at each frame. I use the names dx and dy because in

common usage a change is called a delta. Moving the ball means adding the current

value to the change value. I write code using logical expressions that checks each

updated coordinate against the boundaries of the Processing window. These expressions

determine if a comparison expression is true or false.

Logical expressions also might include combinations of comparison operations.

The operator that I use to combine two comparisons is the || operator. This performs a

logical OR test. The logical expressions I use for checking about the walls check for either

of two things being true. The built-in variable width holds the width of the window

and height holds the height. Note that bx and by define the center of the ball; it is this

value that is used to determine if a collision has taken place. I could do the slightly more

complex checking for the edge of the circles, but decided that I liked the way this looks.

The code follows.

Chapter 3 Animation Using Arrays and Parallel Structures

66

 bx = bx + dx;

 if ((bx>=width)||(bx<=0))

 {dx = -dx;}

 by = by + dy;

 if ((by>=height)||(by<=0))

 {dy = -dy;}

Here is what the first three lines do.

•	 Adjust bx, the horizontal coordinate, by dx, the change value for the

horizontal coordinate.

•	 Check if EITHER the new value of bx is equal to or greater than width,

the built-in variable holding the width of the window, meaning it is

off the screen to the right OR if bx is equal to or less than 0, meaning it

is off the screen to the left.

•	 If either of these are true, change the sign of dx. If it was positive,

it becomes negative; if it was negative, it becomes positive. The

modified dx will be used at the next iteration.

See if you can interpret the next three lines; that is, what happens for the vertical

coordinate.

I repeat that the assignment statement dx = -dx; does the right thing if dx is

originally positive or originally negative. This fact lets me combine the bx>=width

condition with the bx<=0 condition. Notice the operator || is a logical OR. If either of the

two comparisons is true, the ball is considered to have hit a wall and the delta for that

dimension, dx or dy, must be changed for the next iteration. The calculations are again

done separately for each dimension. You might need to consider the different cases to

accept that this works.

For the bouncing balls example, I make use of sets of values (i.e., multiple arrays) for

holding the information about the balls.

Array variables, like any variables, need to be declared. The statements

int[] counts;

float[] distances;

Chapter 3 Animation Using Arrays and Parallel Structures

67

declare two arrays. They do not create the array, specifically, set up space for it in

memory, and they do not populate the array: assign items to the array. The counts array

will hold integers and the distances array will hold floating-point numbers. As is always

the case, you can name variables whatever you want. Processing does not care, so the

names should be meaningful to us, the programmers. I am using plurals here in this

made-up example to be suggestive.

To reference an item in an array, you use an indexing expression, such as counts[2]

or counts[myCount]. This assumes, of course, that the array has been created and

populated.

Here is the standard example demonstrating the use of arrays and a for-loop.

void setup() {

 float[] scores = {90, 85, 70, 95};

 float sum = 0;

 float average;

 for(int i=0;i<scores.length;i++) {

 sum = sum + scores[i];

 }

 average = sum/scores.length;

 println("The average is "+average);

}

The code makes use of a couple of new features. The code declares and defines an

array with four items, all in one statement. You can look at the name of the array and guess

that the values are intended to be scores on tests. The expression scores.length holds

the number of items in the array, namely four. The code computes the average (mean)

by initializing a variable named sum to be zero. A for-loop goes through the items in the

array and adds each, one at a time, to sum. Notice the expression scores[i]. After the

for-loop, the variable average is assigned the result of sum divided by scores.length.

Of course, I could have used four because I knew it, but knowing the construction

scores.length prepares us for situations when this is not the case. The function println

causes a message to appear on what is called the console, shown in Figure 3-6. The

println function is highly useful for debugging.

Chapter 3 Animation Using Arrays and Parallel Structures

68

You might have noticed that this setup function does not have a size statement.

A small window does appear using default values.

In the bouncing balls example, my code declares and initializes each array in one

statement. I have decided that there will be three balls, so the declaration of the set of

x-coordinate values is

float[] bxs = {900/2,900/4, 900 * .75};

I know I will set the width of the window to 900. This initialization places one ball in

the center in terms of x coordinate, one over to the left and one over to the right. These

values are arbitrary.

Figure 3-6.  Example showing results of println

Chapter 3 Animation Using Arrays and Parallel Structures

69

If I wanted to declare the array variable and specify its size, but not supply the values

of the items, I could use the following code:

float[] bxs = new float[3];

Alternatively, if I need to wait until some later time when the number of items is

determined, say by the setting of a variable named count, I would use the following

declaration:

float[] bxs;

and later

bxs = new float[count];

The new operator creates the array. The values of the items still need to be set.

Yes, you do need to be careful about brackets, sometimes called braces, { and },

versus square brackets [and] versus parentheses (and). Index values are specified

within square brackets. Sets of things, including items in arrays and sets of statements in

functions, make use of braces. Parentheses are used in header statements for functions,

for calls of functions, and for specifying precedence of operations, among other things.

�Implementing a Bouncing Ball
My discussion of general programming concepts and Processing features probably

provides enough background for you to move on to the “Program” section, but at the risk

of being redundant I will describe my planning process.

�Planning
My plan for the bouncing ball was to make something simple to demonstrate animation.

I first need to define the variables necessary to specify the ball, namely a circle. A circle

is an ellipse with equal width and height and that value is stored in the variable I named

balldiam. The ball’s position is held in the variables bx and by and the changes in

position are held in the two variables dx and dy. All these are global variables; that is,

they are defined outside of any function.

Chapter 3 Animation Using Arrays and Parallel Structures

70

Note T he variables’ names for this sketch are pretty short. Perhaps they could be
longer. Do not avoid typing long[er] names. We tend to spend more time staring at
our code rather than typing it, so making names meaningful is more important than
making them short.

The sketch just uses two functions: setup and draw. In this case, there is code

in both. The action is all in the draw function, which is invoked over and over. I do

not change the default frame rate, which is 60 frames per second. You might want to

experiment with decreasing that number to see when you notice the ball move in jerky

steps. Now is the time to appreciate the design of Processing.

The draw function includes the statement

background(0);

This has the effect of erasing everything by making the whole window black. You

can use a different number for the parameter. The circle is then drawn again at a new

position. As I explained earlier, an if statement is used to make the determination

if a change in the delta values is warranted. Erasing and then redrawing the circle

representing the ball is what makes the sketch produce animation. The functions are

described in Table 3-1.

�Program
Table 3-2 describes the coding. Notice that the code starts with the declaration of global

variables.

Table 3-1.  Bouncing Ball Function Table

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program

Chapter 3 Animation Using Arrays and Parallel Structures

71

You will see most of this code again or statements highly similar to those in this

sketch in the next examples.

�Implementing a Set of Three Bouncing Balls
The bouncing balls sketch is built by modifying the bouncing ball sketch, making use of

the technique of parallel structures.

Table 3-2.  Bouncing Ball Code

float bx,by,dx,dy; Declare four variables for x and y position and x and y changes

int balldiam = 20; Declare and initialize the size of the ball

void setup() { Header of setup

size(800,600); Set dimensions of window

bx = width/2; Set bx to be horizontal center. The built-in width variable is

set by the call to size.

by = height/2; Set by to be vertical center

dx = 1; Set horizontal change

dy = 2; Set vertical change

} Close setup

void draw(){ Header of draw

background(0); Erase the window

ellipse(bx,by,balldiam,

balldiam);

Draw the ball (namely a circle at the current bx, by position

bx = bx+dx; Increment bx

if ((bx>=width)||(bx<=0)) Check if at or beyond the vertical bounds

{dx = -dx;} If so, change horizontal change variable

by = by + dy; Increment by

if ((by>=height)||(by<=0)) Check if at or beyond top or bottom bounds

{dy = -dy;} If so, change vertical change variable

} Close draw

Chapter 3 Animation Using Arrays and Parallel Structures

72

�Planning
One array holds the x-coordinate values for each ball. Another holds the y coordinates.

A third array holds the values for changing the x coordinate and a fourth holds the values

for changing the y coordinate. One more array holds the diameters for the different balls.

The values at index J in each of the arrays together represent the information necessary

to display the Jth ball. This technique, parallel structures, provides a systematic way to

handle information on sets of things.

My code does not change the number of items in each array, just the value of

individual items in the bxs, bys, dxs, and dxy arrays. It is possible to change the number

of items in an array and this will be demonstrated in later examples. Processing also has

its ArrayList construct that you can look up (see the “Things to look up” section). What

I want you to appreciate now is that the compilation process for Processing (and Java)

seeks to produce efficient code; for that to happen, we need to specify that a variable is

an array holding items of a specific data type and that there will be a set number of items.

�Program
The modification of the bouncing ball sketch to produce the bouncing balls sketch is

pretty much statement by statement. Each of the global variable declarations is replaced

by a declaration of an array. As I indicated before, the values are arbitrary. The setup

function consists of just the one statement specifying the dimensions of the window.

I chose to put the initializations in the declaration statements.

The new draw function will start with a background statement as in the original

bouncing ball and then have one for-loop. The header of the for-loop is

for (int i=0;i<bxs.length;i++)

There is an assumption here that the arrays are all the same size. If this is not true,

there will be errors caught at runtime.

The body of the for-loop contains statements that correspond to the ones in the

original bouncing ball sketch, but refer to items in an array. The function relationship

table is the same as the one for the simple bouncing ball shown in Table 3-1. The code is

shown in Table 3-3.

Chapter 3 Animation Using Arrays and Parallel Structures

73

Table 3-3.  Bouncing Balls Code

float[] bxs = {450, 225, 675}; Declaration and initialization of the x

coordinate array

float[] bys = {450, 300, 150}; Declaration and initialization of the y

coordinate array

float[] dxs = { 3,2,1}; Declaration and initialization of the

horizontal change (delta) array

float[] dys = {3,1,2}; Declaration and initialization of the

vertical change (delta) array

int[] balldiams = {20,40,60}; Declaration and initialization of the

diameters array

void setup() { Header of setup

size(900,600); Set window dimensions

} Close setup

void draw(){ Header of draw

background(0); Erase window

for (int i=0;i<bxs.length;i++) Go through all items

{ Start the for-loop

�ellipse(bxs[i],bys[i],balldiams[i],

balldiams[i]);

Draw the ith circle using the current

information

bxs[i] = bxs[i]+dxs[i]; Add current horizontal change (delta)

value for the ith ball

�if ((bxs[i]>=width)||(bxs[i]<=0))

{dxs[i] = -dxs[i];}

The whole if statement, including the

if-true clause

bys[i] = bys[i] + dys[i]; Add current vertical change (delta)

value for the ith ball

�if ((bys[i]>=height)||(bys[i]<=0))

{dys[i] = -dys[i];}

The whole if statement, including the

if-true clause

} End the for-loop

} End the draw function

Chapter 3 Animation Using Arrays and Parallel Structures

74

�Implementing Pentagon Bouncing
For this sketch, I go back to the original single bouncing ball and modify it to produce a

pentagon in place of a circle. It makes sense to use the bouncing ball sketch as a base.

Let’s say you want to bounce a pentagon. Copy and paste the polygon function definition

from the sketch described in Chapter 2. Because that sketch displayed polygons

with black edges against a gray (default) background, if you want to keep the black

background, you will need to change the color of lines. The function call stroke(255)

changes the color of lines to white. I also changed the balldiam variable to be bigger. The

last step is to replace the call to ellipse with a call to polygon. For a pentagon, this is

polygon(bx,by,balldiam,5);

A screen shot is shown in Figure 3-4.

�Planning
To produce this sketch, I use what I already have (see Chapter 2), namely, a function that

produces a polygon with the position, size, and number of sides specified in the function

parameters. The call to the polygon function is substituted for the statement invoking

the ellipse function. It does not matter that ellipse is part of the basic Processing

language and polygon is something I made up.

The function relationship table, Table 3-4, has one additional row from the table for

the bouncing ball and bouncing balls.

This is essentially the same program. Examine the code in Table 3-5 and notice the

changes.

Table 3-4.  Bouncing Pentagon Functions

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program polygon

polygon draw function

Chapter 3 Animation Using Arrays and Parallel Structures

75

Table 3-5.  Bouncing Pentagon Code

float bx,by,dx,dy; Declare position and change variables

int balldiam = 100; Declare and initialize size of bounding circle for

pentagon

void setup() { Header for setup

size(800,600); Set dimensions of window

bx = width/2; Set horizontal coordinate

by = height/2; Set vertical coordinate

dx = 1; Set horizontal change variable

dy = 2; Set vertical change variable

stroke(255); Set line color to white

}

void draw(){ Header for draw

background(0); Erase window

polygon(bx,by,balldiam,5); Invoke function to draw pentagon

bx = bx+dx; Increment horizontal variable

if ((bx>=width)||(bx<=0)) Check if at or beyond vertical bounds

{dx = -dx;} If so, reverse x change variable

by = by + dy; Increment vertical variable

if ((by>=height)||(by<=0)) Check if at top or bottom bounds

{dy = -dy;} If so, reverse y change variable

} Close draw function

void polygon(float x, float y,

float w, int n)

Header for polygon function; parameters are

x, y position, w for size, and n for number of sides

{

float angle = TWO_PI / n; Set angle by dividing circle into n parts

float rad = w/2; Set radius to half of size parameters

(continued)

Chapter 3 Animation Using Arrays and Parallel Structures

76

�Implementing Bouncing Polygons
I decided to squeeze in one more example. It is not because I think there is anything

wrong with bringing in the polygon function and not fully using it in Bouncing Pentagon,

but I thought you would appreciate the addition. My last example is my attempt to add

mystery. The sketch will make full use of the polygon function, with the number of

sides of the polygon changing. The change is done by placing a call to random function

in the mousePressed function. It makes use of a global variable, nsides, that is set in

mousePressed and used in the call to polygon present in the draw function. A screen shot

for this is shown in Figure 3-5.

�Planning
My goal now is to provide the viewer a way to change the type of polygon that is

bouncing. What I do is define a new global variable and initialize it to 5.

int nsides = 5;

Table 3-5.  (continued)

for (int i=0;i<n;i++) for-loop header

{

float pangle1 = angle * i; Starting angle for this wedge

float pangle2 = angle * (i+1); Ending angle

float xp1 = x + rad * cos(pangle1); Compute x location for start

�float yp1 = y + rad * sin(pangle1); Compute y location for start

float xp2 = x + rad* cos(pangle2); Compute x location for end

�float yp2 = y + rad * sin(pangle2); Compute y location for end

line(xp1,yp1,xp2,yp2); Draw line connecting points

} Close the for-loop

} Close the polygon function

Chapter 3 Animation Using Arrays and Parallel Structures

77

Then I modify the bouncingPentagon sketch by adding a definition for mousePressed

that changes nsides using a calculation with random. I modify the call to the polygon

function to use nsides for the last parameter and not the number 5. The variable nsides

needed to be global, meaning that the value persists and that it is accessible by all

functions. Declaring it outside of any function makes it global. The variable is assigned a

value in one function, mousePressed, and used in another, draw.

The function relationship table, Table 3-6, has one more row than

bouncingPentagon.

�Program
The bouncing polygons sketch is essentially the same as the bouncing pentagon,

with the addition of the definition of the mousePressed function. Examine the code in

Table 3-7. The places where there are additions or changes are marked by bold text in the

comments.

Table 3-6.  Bouncing Polygons Functions

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program polygon

polygon draw function

mousePressed Underlying Java program

Chapter 3 Animation Using Arrays and Parallel Structures

78

Table 3-7.  Bouncing Polygons Code

float bx,by,dx,dy; Declare position and change variables

int balldiam = 100; Declare and initialize size of bounding circle for

pentagon

int nsides = 5; Declare and initialize nsides

void setup() { Header for setup

size(800,600); Set dimensions of window

bx = width/2; Set horizontal coordinate

by = height/2; Set vertical coordinate

dx = 1; Set horizontal change variable

dy = 2; Set vertical change variable

stroke(255); Set line to white

} Close setup

void draw(){ Header for draw

background(0); Erase window

polygon(bx,by,balldiam,nsides); Invoke polygon at position bx, by, with size

balldiam, and (current) value of nsides

bx = bx+dx; Increment horizontal variable

if ((bx>=width)||(bx<=0)) Check if at or beyond vertical bounds

{dx = -dx;} If so, reverse x change variable

by = by + dy; Increment vertical variable

if ((by>=height)||(by<=0)) Check if at top or bottom bounds

{dy = -dy;} If so, reverse y change variable

} Close draw function

void polygon(float x, float y,

float w, int n)

Header for polygon function; parameters are x,

y position, w for size, and n for number of sides

{

(continued)

Chapter 3 Animation Using Arrays and Parallel Structures

79

�Under the Covers
Processing is doing a considerable amount of work here. Most specifically, the

implementation is invoking the draw function over and over. The power of Processing

also is demonstrated by the action of mousePressed. First of all, it is the underlying Java

program that invokes mousePressed when the mouse button is pressed. Second, the code

in mousePressed changes the global variable nsides variable that is referenced in draw.

Perhaps you have wondered why arrays in Processing and, indeed, most computer

languages, are indexed starting from 0 and not 1. Consider the following: If an array of

values is stored starting at an address in memory, say at A, then the location of the first

item would be at A. The location of the second item would be A + 1 * size_of_one_item.

The location of the item pointed to be the index J would be at A+J*size_of_one_item. You

can see that this works if the index values go from 0 to one less than the number of items.

Table 3-7.  (continued)

float angle = TWO_PI/n; Set angle by dividing circle into n parts

float rad = w/2; Set radius to half of size parameters

for (int i=0;i<n;i++) for-loop header

{

float pangle1 = angle * i; Starting angle for this wedge

float pangle2 = angle * (i+1); Ending angle

�float xp1 = x + rad * cos(pangle1); Compute x location for start

float yp1 = y + rad * sin(pangle1); Compute y location for start

float xp2 = x + rad* cos(pangle2); Compute x location for end

float yp2 = y + rad * sin(pangle2); Compute y location for end

line(xp1,yp1,xp2,yp2); Draw line connecting points

} Close the for-loop

} Close the polygon function

void mousePressed() { Header for mousePressed

nsides = 3+int(random(12)); Set nsides to be 3 + integer from 0 through 11

} Close mousePressed

Chapter 3 Animation Using Arrays and Parallel Structures

80

You also can go back to Chapter 2 and notice that the for-loop for specifying the angles

works with the index value for the loop starting at 0 and not 1. Of course, doing it another

way just requires some different coding, but this does work nicely.

One of the design points behind the creation of Java many years ago was runtime

checking on array bounds. In many of the existing languages, this was not done, so

strange and hard-to-catch errors occurred.

�Things to Look Up
There are several operators for comparing numbers in addition to the >= and <= used

in these examples; for example, > and <. The single equal sign (=) is not a comparison

operator, but the operator for assignment. The double equal sign (==) is the comparison

operator. Look these up.

There are operators that work on logical values: || and &&. Take note of | and & and

also note the operator ! for logical not.

Shapes are a construct that could be used to make a shape with fill and stroke

colors. Look up beginShape and vertex. You will see examples of shapes later in the text.

It is an alternative way to do polygons.

You can read about arrays in the Processing documentation. A later example shows

the use of append to add an item to an existing array.

There are other types of arrays; look up ArrayList and HashMap.

You can investigate mousePressed vs. mouseClicked vs. mouseReleased.

�How to Make This Your Own
Bounce other things, again going back to what you did in Chapter 1, or try something new.

Think about having an array that specifies the color of each ball (circle). Look up the

color function and the color data type. Hint: In the for-loop, use fill.

Think about the physics: Make the bouncing thing slow down when it hits a wall

or invent your own physics. You can change colors, for example. A frequent idea of my

students is to look up how to incorporate sound and play a sound file when it hits a wall.

You will need to use a library for this. Examples making use of libraries come later.

Change the walls. I did the simplest thing, letting the virtual container be the window itself.

Move on completely from these examples and think about how responding to mouse

events and making use of random can be used in a new project.

Chapter 3 Animation Using Arrays and Parallel Structures

81

�What You Learned
This chapter showed you how to produce animation by using the full power of the draw

function. The examples included expressions with comparison operators and logical

operators. The if construct was used to check on the position of things.

The chapter introduced arrays and their use in parallel structures. The for-loop,

introduced in Chapter 2, was used to manipulate sets of things.

The chapter demonstrated the power of event-driven programming. Along with

the power of functions and variables, programmers can focus on one thing at a time:

What needs to be done in (by) setup, what in draw, what in mousePressed, and what in

functions we invent?

What I can call a metalevel lesson in this chapter was building new sketches based

on old ones. This is the way programmers work, so it is not just for instruction. I modified

(enhanced) the sketch for a single bouncing ball to build a sketch that has three balls.

Then, returning to the original single bouncing ball sketch, I took the code that draws

a polygon from the polygon example in Chapter 2 and added it to the bouncing ball

sketch, making certain small changes. I modified it once more to make the bouncing

polygon. This is a powerful approach and something for you to focus on, along with the

delight of making programs in which things move. Be sure to follow the suggestions in

the “How to Make This Your Own” section and go off on your own to build new sketches.

�What’s Next
The next chapter introduces classes and objects of classes. The examples include

another bouncing sketch, this one involving a set of different things: circle, rectangles,

and images. Other examples are making a path and then seeing an image travel on

the path and a jigsaw puzzle. Classes are an important, practical organizing tool in

programming.

Chapter 3 Animation Using Arrays and Parallel Structures

83
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0_4

CHAPTER 4

Classes
This chapter introduces the concept of a class, a way to associate data and code. A class

defines a set of objects that are defined by a set variables and a set of procedures, which

are termed methods, that make use of those variables. In the previous chapter, I showed

the use of arrays to hold similar items of information. The technique of using a set of

such arrays is termed parallel structures. Classes are a more structured way to model

things, with the models consisting of information and behavior. I want to inspire you

to view defining classes as a way to make programming easy and practical and not the

application of some abstract technique.

The examples of this chapter include bouncing objects (a circle, two rectangles, and

an image), a program in which the user creates a path and then an image travels on the

path just made, and a jigsaw puzzle. The sketches are different in terms of the amount

of player interactions, but they all make use of the programming techniques of classes.

The operation of each of the three sketches is described in the Overview sections.

�Programming Concepts
This section contains general background on classes, phases of operations, and the idea

of providing for tolerance or margin in making certain determinations.

�Classes
Classes were developed as a strategy to make programming structured. The use of

classes is called object-oriented programming (OOP). The basic idea is to specify a set of

variables and a set of methods. Objects of the class are created by executing one of the

methods, which is called the constructor. The variables are accessed and changed only

through the methods (this is not always true, but close enough for now); that is, after

creating the class, if a programmer tried to change the variables directly and not through

one of the methods, it would be a syntax error. Moreover, many, although not all, of the

84

programming languages supporting classes also supported a way to create a hierarchy of

classes, based on a concept called inheritance. A subclass, also called a child class, shares

some, but not all the variables and the methods of the superclass, also called the parent

class. One feature, which you will see in use, is that the parent constructor is invoked in

the child constructor using the function super.

The bouncing things demonstrate the use of classes and inheritance. Some of the

code for handling the circle, rectangle, and image is the same and some is different.

You might argue that if the code is the same, it could simply be cut and pasted where it is

appropriate, but the OOP approach is more disciplined. It also means that the code that

is the same appears just once and can be debugged just once. Wait and see.

�Phases of Operations
Many programs have distinct phases or states. For example, making a path and then

watching an image travel on the path has those two states.

	 1.	 The player moves the mouse and positions (x and y coordinates)

are stored and a short line segment is added to the path displayed.

	 2.	 After the player releases the mouse button, the image is made to

move along the path.

Because there are just two phases, a Boolean variable can be used to distinguish

between them. In contrast, the jigsaw puzzle has three states.

	 1.	 The pieces are placed randomly in the window. The player

attempts to put the puzzle together by moving (dragging)

individual pieces.

	 2.	 The puzzle has been put together by the player; that is, the program

determines that the puzzle is complete. At this point, nothing can

happen until the player clicks on one of the two buttons.

	 3.	 The player has clicked the Restore button and the pieces slowly

move into their proper positions.

For this situation and others like it, it is necessary to use an integer variable.

More complex situations might require more elaborate definitions. My motivation

in bringing it up is to prepare you for the descriptions of these examples and to provide

assurances that what appear to be complex situations might be addressed by thinking

about different program states.

Chapter 4 Classes

85

�Tolerance or Margin
Earlier in this chapter, I used the phrase “close enough” in describing the jigsaw puzzle

game. For many applications, and not just games, it would be much too strict to require

our players, users, or customers to locate a position on the screen or exactly position

items being dragged on the screen by the mouse, the trackpad, or a finger (especially a

finger). The pixel unit is simply too small. Similarly, if there is an application asking for

numbers or even the spelling of a name, you need to decide if you want to require exact

answers or be more flexible. For positioning pieces in the jigsaw puzzle, I declare and set

a variable I call tolerance. You will see it in use.

�Processing Programming Features
As a gentle introduction before plunging into the examples, I will describe an

implementation of bouncing balls using a class named Ball and a single array that holds

Ball objects. This is an alternative to the implementation in Chapter 3 using parallel

structures for the information.

�Classes
Using classes in Processing requires planning as well as coding. I need to determine

what information defines a ball object and then how the program is to create a ball

object and what is to be done with the ball object. These actions are often called the

behaviors. The information is represented by the variables, and the behaviors, including

creating each ball object, are represented by the methods. From Chapter 3, you and

I know what is involved with a bouncing balls program. Here is the definition of the class

named Ball using the format of Processing.

class Ball {

 float bx;

 float by;

 float dx;

 float dy;

 int balldiam;

Chapter 4 Classes

86

 Ball (float x, float y, float vx, float vy, int diam) {

 bx = x;

 by = y;

 dx = vx;

 dy = vy;

 balldiam = diam;

 }

 void moveAndShow() {

 ellipse(bx,by,balldiam,balldiam);

 bx = bx + dx;

 by = by + dy;

 if ((bx>=width) || (bx<=0)) {dx = -dx;}

 if ((by>=height) || (by<=0)) {dy = -dy;}

 }

}

I follow the convention that classes have names starting with a capital letter. I have

included the declaration of five variables with the class. Each Ball object (now I am

using capital B) has those five variables. The next piece of code is the constructor method,

indicated by having the same name as the class name and, also, not having a return value

declaration. Otherwise, it appears as a regular function. The code in the constructor

stores the parameters in the variables. This is more or less standard, although there are

situations in which parameters are used in the creation of an object, but not retained

in variables. The next piece of code is a typical function, with header including the

designation of the return type or void, a name, moveAndShow, and parameters. In this

case, the return is void and there are no parameters. The code in moveAndShow should

be familiar to you. Yes, there are several brackets, but use your mind and your finger to

match them up: one set { } for the whole class and one set for each method.

Before showing how the class is used, that is, how the methods are invoked to create

and move each Ball object, I need to explain how the information on a set of balls is

created and referenced.

�Dynamic Arrays
In the previous chapter, arrays were used to hold information on the bouncing balls.

The number of balls and, therefore, the size of each array and the initial values were

all known when I wrote the program and expressed in the declaration statements.

Chapter 4 Classes

87

In the bouncing balls, and the other examples in this chapter, I do know everything,

but my implementation requires that I create the objects during program execution.

This means I need to create and populate the arrays dynamically.

For each of the implementations for the alternate bouncing balls, bouncing things,

make a path and travel, and jigsaw, I make use of a single array holding objects. These

arrays are constructed dynamically because code has to be executed to create each thing.

For the bouncing balls, an array is declared as a global variable. This declaration,

with an initialization is

Ball[] balls = {};

This statement declares balls to be an array of things of data type Ball. To put it

another way, the data type for balls is Ball[]. The balls array can only contain items

of data type Ball. Processing determines that Ball has indeed been defined as a class

so the data type exists. It is okay that the class definition is later in the sketch. Processing

scans the whole sketch. My definition of the Ball class has extended the language. The

statement also initializes the array to be an empty array, {}, which is a legitimate value.

I need to show you two things: how to create a single Ball object and how to store

them, or more precisely, references to the objects, in the balls array.

The way to create a single Ball object is first to declare a variable of type Ball:

Ball oneBall;

and, later, include code such as this:

oneBall = new Ball(width/2, height/2, 1, 2, 20);

The term new is an operator used just for this purpose, creating new objects.

The way my code stores them in the balls array combines the creation of the new

object with adding them, called append, to the array. My code needs to explicitly refer to

the data type of the array, which it does:

 balls = (Ball[]) append(balls,

 new Ball(width/2,width/2,3,3,20));

 balls = (Ball[]) append(balls,

 new Ball(width/4,width/3,2,1,40));

 balls = (Ball[]) append(balls,

 new Ball(width*.75,width/6,1,2,60));

Chapter 4 Classes

88

The (Ball[]) term applies what is called a cast. It takes the output of the append

function and makes it an array of type Ball[]. The append works for any array, so we

need to do this cast operation to establish the correct data type. This is not something I

expect you to have figured out for yourself, so that is why I am telling you.

I need to show you one more thing: the draw function. It is much simpler than the

one using the parallel arrays because the action is in the moveAndShow method.

void draw(){

 background(0);

 for (int i=0;i<balls.length;i++) {

 balls[i].moveAndShow();

 }

}

I will get to the explanation of bouncing things soon. The draw for that sketch has just

one more statement.

�Tolerance and OK So Far Coding
This determination of the jigsaw puzzle being complete is done using what I call ok so

far coding. I program a for-loop that compares where a piece is with where it should be.

Before the loop, the variable oksofar is set to true. This should be defined in terms of a

horizontal distance and a vertical distance from the first piece. This allows the player to

position the jigsaw anywhere in the window. As soon as my code determines that either

the horizontal distance or the vertical distance is greater than the value in the variable I

named tolerance, the oksofar variable is set to false and the for-loop is exited using

the break; statement. The ok so far coding and the use of break to exit for-loops (and

other types of loops) have applications much wider than jigsaw puzzles and other games.

�Bouncing Objects Overview
Figure 4-1 shows a screen shot of two circles, a rectangle and an image. The objects

appear to move and to bounce against the edges of the window. These are three different

types of objects with classes defining the types of objects. The feature called inheritance

provides a systematic way to use the same code for all the types when possible and

different code when required by the differences among the types.

Chapter 4 Classes

89

One extra feature, requested by one of my students, is to reverse the direction of the

image of Annika riding the elephant after hitting a wall. This is shown Figure 4-2.

Figure 4-1.  Bouncing circles, rectangle, and image

Chapter 4 Classes

90

�Implementing the Bouncing Objects
The bouncing things sketch features three types of objects bouncing within the window:

a circle, a rectangle, and an image. It turns out that this is a perfect candidate for

demonstrating inheritance, a way of building one class on another.

�Planning
When planning this sketch, I knew I wanted three types of things bouncing around.

I decided to call them Ball, Box, and Picture. For bouncing balls, the variables defining

the things would include variables for position, size, and the change variables. For

Ball and Box, I use these and no other variables would be needed. To define a Picture

object, I also use the variables for position, size, and change, but there would be two

more variables, each a PImage created by a call to loadImage. At this point, because of my

experience, I also knew to define a base class that I named Thing.

Figure 4-2.  Screen shot of bouncing things, with image facing the other direction

Chapter 4 Classes

91

I started off by planning to write a constructor and one other method, moveAndShow.

It then occurred to me that moving any of the objects and checking for hitting the

boundaries would be the same coding for all three types of bouncing things. However,

displaying the thing needs to be different. This insight led me to plan to specify two

methods: show and move.

Just like the classy bouncing balls, I will make use of one array to hold references to

all the things. The declaration of this array is

Thing[] things = {};

and I use coding in the setup function, making use of append, to populate the array.

Now, here comes the explanation of the inheritance mechanism. It does exactly

what I need. I define a class named Thing and then three more classes: Ball, Box, and

Picture. The header line for the Box class will be

class Box extends Thing

Box is called the subclass and Thing is the superclass. The header lines for the Ball

and Picture classes follow the same format.

Within the definition of each subclass, I have the option of adding variables and

defining methods, including methods with the same names as methods in the parent

class. Such a method in the subclass is said to override the method in the superclass.

For the bouncing things example, the Thing class will have a move method that the three

subclasses inherit. There will be a show class that is empty in the Thing class that will be

overridden by methods in each of the three subclasses. (It is possible to have a method in

a superclass that is overridden by methods in some subclasses but not others, although

this is not the case for this example.)

The inheritance and subclass–superclass structure is what enables me to write a

for-loop in the draw function that has the statements

things[i].show();

things[i].move();

Make note of the dot (.) notation for invoking a method of an object. Processing will

invoke the appropriate show and the appropriate move without any more work on my

part. If a particular Thing object has its own show function defined in a subclass, that is

the method that will be invoked.

Chapter 4 Classes

92

By the way, when one of my students did request the extra feature for the picture

reversing when hitting a wall, it was relatively easy to do because the show coding for the

Picture was isolated.

Note T here is an alternative way to produce a reverse image using the scale
transformation. I decided to create the reverse image outside of Processing, which
provides the opportunity to use a different image entirely.

The function table for bouncing things is shown in Table 4-1.

�Program
You now can examine the whole sketch in Table 4-2. The coding is shorter than it would

be if I repeated the coding that was the same for the different types of things. It also

means that code is debugged once, not multiple times and changes can be made in one

place. Another benefit is that there is no coding by me along these lines: If this thing is a

box, do this with it. The underlying Processing implementation handles all that.

Table 4-1.  Bouncing Things Functions

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program The show and move methods

Thing super

Ball Setup Calls Thing by calling super

Box Setup Calls Thing by calling super

Picture Setup Calls Thing by calling super

Thing method move Draw

Ball method show Draw

Box method show Draw

Picture method show Draw

Chapter 4 Classes

93

Table 4-2.  Bouncing Things Code

Thing[] things = {}; Declared and initialized,; will hold all the

Things

void setup() { Header for setup

�things = (Thing[]) append(things,

new Ball(width/2,width/2,3,3,20));

Create new Thing and append to things;

this one is a Ball

�things = (Thing[]) append(things,

new Box(width/4,width/3,2,1,40,57));

Create new Thing and append to things;

this one is a Box

�things = (Thing[]) append(things,new

Picture(width/5,width*.6,2,3,120,100,

�"annikalookright.jpg","annikalook.

jpg"));

Create new Thing and append to things;

this one is a Picture

�things = (Thing[]) append(things,

new Ball(width*.75,width/6,1,2,60));

Create new Thing and append to things;

this one is a Ball

size (900,600); Set size of window

} Close setup

void draw(){ Header for draw

background(0); Set black background

for (int i=0;i<things.length;i++) { For-loop, going through things

things[i].show(); Show the ith thing

things[i].move(); Move the ith thing

} Close for-loop

} Close draw

class Thing { Class definition of Thing

float bx; The (current) x coordinate

float by; The (current) y coordinate

float dx; Amount to increment bx

(continued)

Chapter 4 Classes

94

Table 4-2.  (continued)

float dy; Amount to increment by

int wdiam; Width

int hdiam; Height

�Thing (float x, float y, float vx,

float vy, int w, int h)

Constructor for Thing; will be called using

super function

{

bx = x; Set object variable from parameter

by = y; Set object variable from parameter

dx = vx; Set object variable from parameter

dy = vy; Set object variable from parameter

wdiam = w; Set object variable from parameter

hdiam = h; Set object variable from parameter

} Close Thing

void move() { Header for move

bx = bx + dx; Increment x coordinate

by = by + dy; Increment y coordinate

if ((bx>=width) || (bx<=0)) {dx = -dx;} Check if at or beyond left and right window

“walls”; if so, change sign of dx

if ((by>=height) || (by<=0)) {dy = -dy;} Check if at or beyond top or bottom window

“walls”; if so, change sign of dy

} Close move

void show() { Header for show method

No code; it is overridden by show in

subclasses

} Close show method

} Close Thing class

(continued)

Chapter 4 Classes

95

Table 4-2.  (continued)

class Ball extends Thing { Header for Ball class

No additional variables

Ball (float x, float y, float vx,

float vy, int diam) {

Header for constructor for Ball class

super(x,y,vx,vy,diam,diam); Invokes Thing constructor

} Close Ball constructor

void show(){ Header for show method

ellipse(bx,by,wdiam,hdiam); Display an ellipse

} Close show method

} Close Ball class

class Box extends Thing { Header for Box class

No additional variables

�Box (float x, float y, float vx, float vy,

int w, int h) {

Header for constructor for Box class

super(x,y,vx,vy,w,h); Invokes Thing constructor

} Close Box constructor

void show(){ Header for show method

rect(bx,by,wdiam,hdiam); Display a rectangle

} Close show method

} Close Box class

class Picture extends Thing { Header for Picture class

PImage pic; Additional variable

PImage picR; Additional variable

Picture (float x, float y, float vx,

float vy, int w, int h, String

imagefilename, String imagefilenameR)

Header for constructor for Picture class

{

(continued)

Chapter 4 Classes

96

�Make Path and Travel Path Overview
The path making and image travel sketch is an example of a program with multiple

phases, namely drawing a path and then moving an image on the path. Figure 4-3 shows

a path drawn by dragging the mouse. This is the first phase. Note that I need to modify

this and other sketches to obtain the desired screen shots. In normal operation, after the

player releases the mouse key, the next phase starts immediately.

Table 4-2.  (continued)

super(x,y,vx,vy,w,h); Invoke Thing constructor

pic = loadImage(imagefilename); Load in the image and set variable

picR = loadImage(imagefilenameR); Load in the image and set variable

} Close Picture constructor

void show() { Header for show method

if (dx>0) { Determine which picture to show by

checking sign of dx

image(pic,bx,by,wdiam,hdiam);} Show one picture, close if-true clause

else { else

image(picR,bx,by,wdiam,hdiam); Show the alternate picture

} Close else clause

} Close show method

} Close Picture class

Chapter 4 Classes

97

Figure 4-3.  Screen shot of path drawn by player

Chapter 4 Classes

98

As soon as the mouse button is released, the first phase stops. The path is erased and

the image is moved along the path. Figure 4-4 shows a screen capture of the sketch with

the image somewhere along the path.

Figure 4-4.  Image travels on the path

Chapter 4 Classes

99

Figure 4-5 shows a screen shot of the sketch modified to remove the erasing of the

screen for a time-lapse photography effect. Notice that it is the center of the image that

rides along the path.

A player, viewer, or user makes a path by pressing down on the main mouse button

and dragging. The path is marked by a black line that grows. Releasing the button will

start a new phase: The window is cleared, including the path line, and an image appears

to move along where the path was. The image moves at the same speed as the path was

drawn.

Figure 4-5.  Screen shot of sketch modified to show images and path

Chapter 4 Classes

100

�Implementing the Make Path and Travel Path
One thing to keep in mind is that this example could be viewed as two stubs, or partial

programs to build on. One stub is the making of a path, including drawing it on the

screen and recording the locations. The other stub is following a path: moving an object,

in this case an image, along a set of locations. Consequently, the sketch has two phases—

creating the path and making the image travel on the path—although the first phase has

two parts: starting the path creation process and adding to it.

�Planning
My plans for the Make Path and Travel Path sketch are to construct the path using the

mouse event functions. I needed to review the mouse event functions to see how they

worked: when they were invoked and how they worked together. It turned out that

mousePressed is invoked when the mouse button is pressed and mouseDragged is invoked

when the mouse has been moved if and only if the mouse button is pressed. This last fact

saves me from declaring, initializing, setting, and resetting my own Boolean variable. The

mouseReleased function is invoked when the button is released. All the coding involved

with making the path could be done in these mouse event functions. I would define a

class, Location, that would store a pair of floats representing the horizontal and vertical

coordinates. The sequence of Location objects would be stored in an array. The mouseX

and mouseY variables hold the values to define the Location object.

Making the path has two aspects: forming and storing the information in a new

Location object and drawing the next small piece of the path in the window. For the

second part, Processing supplies pmouseX and pmouseY, which, as the names suggest, are

the previous x and y coordinates. If these two variables did not exist, I could define and

use my own, but Processing does the work for me.

I declare and make use of a variable I name pathmade to signal the change from

making a path to moving the image along a path. The work of moving the image is done

in the draw function and that is all that is done in this function. The variable p, a local

variable in the draw function, is declared and set:

Location p = path[pathI];

where pathI points to an item, the next item, in the path array.

I made the decision to position the image so that its center is moving along the path

as opposed to the upper left corner. I do some work in setup to modify the dimensions

Chapter 4 Classes

101

of the image to make it small enough to look okay in the window. This is accomplished

by modifying the original width and height by dividing each by 3. I then compute the

values of half the modified width and half the modified height and store these values in

global variables so this does not need to be done for each iteration. With these values,

the statement to display the image is

image(biker,p.xp-half_imageW,p.yp-half_imageH,imageW,imageH);

See the “Things to Look Up” section for an alternative approach.

The dot notation is the way to access the variables. Some purists would say that

I should use methods for accessing and setting variables of objects, often called getters

and setters. The argument is that restricting access serves to prevent errors and provides

a way to insert code around every access and setting of variables.

You might be asking, “What is the timing for the mouseDragged event? What is the

timing for displaying the image on the path?” The correct answer is that it is based on the

frame rate. However, another and perhaps better answer is that it is the same for making

the path and using it for the image to travel.

Table 4-3 shows the functions and the relationships for the make path and move

image along path sketch.

Table 4-3.  Make Path and Move Functions

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program Does access the xp and yp variables of a

Location object

Location mousePressed, mouseDragged

mousePressed Underlying Java program Location

mouseDragged Underlying Java Program Location

mouseReleased Underlying Java Program

Chapter 4 Classes

102

�Program
The major programming techniques for the make a path and image travel sketch are the

use of a class to define Location objects and the use of a Boolean variable, pathmade, to

determine the phase or state of the sketch. The Location class is pretty simple as there is

just one method, the constructor method.

Three mouse event functions are used to define the path, with mousePressed starting

things off by resetting the path array to be an empty array and then immediately adding

(appending) the current mouse location. This function also sets the index variable,

pathI, to 0, and the Boolean variable pathmade to false. The mouseDragged function is

called over and over as long as the mouse button is pressed. It is used to append more

locations to the path array. The mouseReleased function finishes up the path creation

phase by setting pathmade to true. It is typical in these cases to need to think about the

very first entry of a list such as the path array and then subsequent entries. The code

follows in Table 4-4.

Table 4-4.  Make Path and Move Image Code

Location[] path = {}; Will hold positions on the path; starts off as

empty array, which is different than having no

initial value

Boolean pathmade = false; Indicates which phase

int pathI = 0; Index into path array

String instructions = "Press mouse button

down, drag, and release to make a path";

Instructions displayed in the window

float imageW; Width of image; this is calculated

float imageH; Height of image; this is calculated

float half_imageW; Used to have center of image ride along the path;

it is calculated

float half_imageH; Used to have center of image ride along the path;

it is calculated

PImage biker; Will hold the image

(continued)

Chapter 4 Classes

103

Table 4-4.  (continued)

void setup() { Header of setup function

size(900, 600); Dimensions of window

background(255); Window will be white

biker = loadImage

("bikerchickWGrant.jpg");

Load in the image

imageW = biker.width/3; Display at smaller width

imageH = biker.height/3; Display at smaller height

half_imageW = imageW/2; Calculated amount of half the width

half_imageH = imageH/2; Calculated amount of half the height

strokeWeight(3); Thickness of line for path

fill(0); Black for instructions text

textSize(24); Set size for all text

text(instructions,10,20); Display instructions

frameRate(30); Slow down frame rate

} Close setup function

void draw() { Header for draw function

if (pathmade) { If pathmade, will display image

background(255); Erases window

text(instructions,10,20); Redisplay instructions

Location p = path[pathI]; Set current position on path

pathI++; Increment the index variable for next time

image(biker,p.xp-half_imageW,

p.yp-half_imageH,imageW,imageH);

Display image, with adjustment so center of

image is on the path

if (pathI>=path.length)

{pathI = 0;}

After end of path reached, reset to start travel

again at start of path

} Closes clause if (pathmade)

} Close draw function; the draw function does

nothing if path making is in process

(continued)

Chapter 4 Classes

104

Table 4-4.  (continued)

void mousePressed(){ Header for mousePressed function

path = new Location[0]; Sets path array to be empty by creating a new,

empty array

pathI = 0; Sets pathI for indexing to 0

pathmade = false; No drawing of image

�path = (Location[]) append(path,new

Location(mouseX,mouseY));

This will be the first item in path

} Close mousePressed function

void mouseDragged(){ Header for mouseDragged; only invoked if

button pressed

path = (Location[]) append(path,new

Location(mouseX,mouseY));

Create new location object at current mouse

location and add to the path array

line(pmouseX,pmouseY,mouseX,mouseY); Draw a line from last mouse position to current one

} Close mouseDragged function

void mouseReleased() { Header for mouseReleased function

pathmade = true; Set up to now draw image

} Close mouseReleased function

class Location { Class definition for Location objects

float xp; Object variable

float yp; Object variable

Location (float x, float y) { Constructor function

xp = x; Store x parameter

yp = y; Store y parameter

} Close the Location (constructor) function

} Close the class definition

Chapter 4 Classes

105

�Jigsaw Overview
The last example is a simple jigsaw puzzle. The pieces are all equal-sized rectangles

created dynamically with horizontal and vertical cuts. They are positioned randomly in

the window. There are two buttons: Mix up and Restore. Figure 4-6 shows an opening

window. The player moves pieces around by dragging, and as soon as the pieces are

close enough to the correct relative positions, the puzzle is deemed done.

Figure 4-6.  Opening window for jigsaw

Chapter 4 Classes

106

If the player is impatient or just enjoys watching what I think of as a slow dance,

pressing the Restore button will cause the pieces to move slowly to their proper

positions. Figure 4-7 shows the pieces on their way to the correct relative positions.

Figure 4-7.  Pieces on the way to restored positions

Chapter 4 Classes

107

The restored picture is shown in Figure 4-8. This is my daughter in Cuba, getting out

of one of the famous, painstakingly maintained cars from the 1950s.

Figure 4-8.  Restored picture

�Implementing the Jigsaw
The jigsaw puzzle is the longest sketch so far, but if you think about what you already

know and read the planning section and then scan the program before plunging into the

details, you will find that it is not too difficult to understand.

Chapter 4 Classes

108

�Planning
I have made programs for jigsaw puzzles before in which I used another program to

create the pieces. I also have experimented with having pieces snap together. I decided

for this sketch to use the original image and cut it up in the program. This means the

pieces are all the same rectangular shape.

I decided to set the Processing window to be the full display. Then I wrote code to

make a new image to fit the window. You can examine the code in the setup function

that does this work. It is more complex than you might have expected because I need

to retain what is called the aspect ratio of the original image. I used the createImage

function to create a new PImage variable and used the copy function to set the contents

of the new PImage variable. The individual pieces are created using these same two

functions.

I created a Button class and a Piece class and, as was the case in previous examples,

there is an array, buttons, that holds the two Button objects, and an array, pieces, that

holds the Piece objects. The work of making the pieces is split between a function,

makePieces, and the constructor Piece.

The movement of the pieces by the player makes use of the mouse event functions

in similar ways to the make a path and image travel example. For the jigsaw, the

mouseReleased function checks if the puzzle should be considered done. The Processing

function abs, which performs the mathematical absolute function, is used so the positive

or negative discrepancies from the correct value are treated the same.

The Restore button causes what I call a dance of the pieces back into position.

My code calculates how much each piece is to move horizontally and vertically in each

frame of the restore dance in arrays called deltaxs and deltays.

Table 4-5 is the function table for jigsaw.

Chapter 4 Classes

109

�Program
The jigsaw sketch is the longest one so far (see the code in Table 4-6). Do not be

concerned: The sketches will not all be getting longer and longer in the next chapters.

Give each of the functions a quick scan and then look at the global variables’

declarations and the comments. After that, you can skip around, examining a function in

detail. Table 4-5 will be helpful. (Making a functions table for your own projects before

you start the detailed programming is recommended.)

Table 4-5.  Jigsaw Functions

Function Name Invoked by Invokes

setup Underlying Java program makeButtons, makePIeces

draw Underlying Java program drawButtons, drawPieces, and variables of

Piece object

makeButtons setup Button (twice)

makePieces setup Piece (multiple times); note: mixes up pieces

drawButtons draw Button.display

Button makeButtons Button

Piece makePieces Piece

mouseClicked Underlying Java program Button.isOver, mixUpPieces; uses Piece

variables

mousePressed Underlying Java program Piece.isOver

mouseDragged Underlying Java program Adjusts Piece px and py

mouseReleased Underlying Java program Computations involving Piece variables

drawPieces draw Piece.display; computations involving Piece

variables

mixUpPieces mouseClicked Sets Piece px and py variables

Button.isOver mouseClicked

Button.display drawButtons

Piece.isOver mousePressed

Piece.display drawPieces

Chapter 4 Classes

110

Table 4-6.  Jigsaw Code

Piece[] pieces; Holds references to the jigsaw pieces

PImage original; Original image

PImage originalA; Image modified to fit in window

int phase = 0; Keeps track of phases

Button[] buttons; Holds references to the two Buttons

int NHor = 4; Number of pieces in a row

int NVer = 3; Number of pieces in a column

int NoP = NHor * NVer; Number of pieces

float oriWidth; Width of original image

float oriHeight; Height of original image

float oriRatio; Ration

int adjustedWidth; Target width

int adjustedHeight; Target height

int wedgeW; Width of a piece

int wedgeH; Height of a piece

int pieceMoving = -1; Keeps track of which piece is being dragged

int offsetx; Horizontal offset of mouse from upper corner of

image

int offsety; Vertical offset of mouse from upper corner of

image

int tolerance = 20; Margin for pieces being off from correct position

relative to first piece

int travelBackFrames; Number of frames to dance back to proper position

int[] deltaxs = new int[NoP]; Holds horizontal deltas for the dance back

int[] deltays = new int[NoP]; Holds vertical deltas for the dance back

void setup(){ Header for setup

(continued)

Chapter 4 Classes

111

Table 4-6.  (continued)

frameRate(30); Set frameRate

travelBackFrames = 30*2; Number of frames for the restore dance

�original = loadImage("cubaOldCarR.

jpg");

Load in original image

size(displayWidth,displayHeight); Set window to full screen

oriWidth = original.width; Store width of image

oriHeight = original.height; Store height of image

oriRatio = oriHeight/oriWidth; Compute ratio

adjustedWidth = round

(min(.75 * displayWidth,oriWidth));

Calculate first try at target width

�adjustedHeight = round(min(oriRatio *

adjustedWidth,.75*displayHeight));

Calculate (using ratio) target width

�adjustedWidth = round(

adjustedHeight/oriRatio);

Recalculate target width

wedgeH = round(adjustedHeight/NVer); Calculate width of pieces

wedgeW = round(adjustedWidth/NHor); Calculate height of pieces

�originalA = createImage(adjusted

Width,adjustedHeight,RGB);

Create new PImage object to hold adjusted image

originalA.copy(original,0,0,

round(oriWidth),

round(oriHeight),0,0,

adjustedWidth,adjustedHeight);

Now put data into originalA using calculated

values

makeButtons(); Invoke makeButtons

makePieces(); Invoke makePieces

}

void makeButtons() { Header for makeButtons

buttons = new Button[2]; Create array for the two Button objects

(continued)

Chapter 4 Classes

112

Table 4-6.  (continued)

�buttons[0] = new Button(50,30,80,40,

color(200,0,0),"Mix up");

Create the Mix up button

buttons[1] = new

Button(200,30,80,40,

color(0,100,0),"Restore");

Create the Restore button

} Close makeButtons

void drawButtons() { Header for drawButtons

for (int i=0;i<buttons.length;i++) Loop through the buttons

{ Loop clause

buttons[i].display(); Invoke display method

} Close loop clause

} Close drawButtons

void mouseClicked() { Header for mouseClicked

int mx, my; Declare variables to hold mouse positions

mx = mouseX; Hold mouseX

my = mouseY; Hold mouseY

if (buttons[0].isOver(mx,my)) Check if over the Mix up button

{ If true clause

mixUpPieces(); Invoke mixUpPieces

phase = 0; Set to phase for working on puzzle

} Close if true clause

if (buttons[1].isOver(mx,my)) Check if over the Restore button; note that both

will not be true

{ Open if true clause

phase = 2; Set for restore dance

for (int i=0;i<NoP;i++) Loop through all pieces

(continued)

Chapter 4 Classes

113

Table 4-6.  (continued)

{ Open loop clause

deltaxs[i] = floor(((100.0 +

pieces[i].locx)

- pieces[i].px)/travelBackFrames);

Calculate how much this piece will move each

frame horizontally

deltays[i] = floor(((100.0 +

pieces[i].locy)

- pieces[i].py)/travelBackFrames);

Calculate how much this piece will move each

frame vertically

} Close for loop clause

} Close if over Restore

} Close mouseClicked

void mousePressed() { Header for mousePressed

int mx = mouseX; Store mouseX

int my = mouseY; Store mouseY

for (int i=0; i<NoP;i++) Loop through pieces

{ Open loop clause

if (pieces[i].isOver(mx,my)) Check if over this piece

{ Open if true clause

pieceMoving = i; Store which piece is being moved

break; Leave for-loop

} Close if over this piece

} Close for loop clause; no action if not over any piece

} Close mousePressed

void mouseDragged() { Header for mouseDragged

if (pieceMoving>= 0) Check if an actual piece is moving

{ Open if true clause

�pieces[pieceMoving].px=

mouseX- offsetx;

Adjust x coordinate of this piece

(continued)

Chapter 4 Classes

114

�pieces[pieceMoving].py=

mouseY - offsety;

Adjust y coordinate of this piece

} Close if clause

} Close mouseDragged

void mouseReleased(){ Header mouseReleased

pieceMoving = -1; Set for no piece being moved

int firstx = pieces[0].px; Calculation is in terms of piece 0, so store x

position

int firsty = pieces[0].py; Store y position

boolean oksofar = true; Start with ok so far true

for (int i=1;i<NoP;i++) Look through the remainder of the pieces

{ Open for-loop clause

int pxi = pieces[i].px; Store the x value

int pyi = pieces[i].py; Store the y value

int perfectpx = firstx

+ pieces[i].locx;

This is what the x value should be

int perfectpy = firsty

+ pieces[i].locy;

This is what the y value should be

int errorx = abs(perfectpx-pxi); This is x discrepancy

int errory = abs(perfectpy-pyi); This is y discrepancy

if ((errorx>tolerance)

|| (errory>tolerance))

Check if either one is greater than tolerance

{ oksofar = false; No longer okay

break; Leave for-loop

} Close if true clause

} Close for-loop

if (oksofar) { Are pieces all close enough

Table 4-6.  (continued)

(continued)

Chapter 4 Classes

115

text("Close enough.

�You can click Restore or Mix up to try

again.",500,20);

Display message

phase = 1; Set phase to 1

} Close if oksofar true clause

} Close mouseReleased

void makePieces(){ Header for makePieces

pieces = new Piece[NoP]; Create pieces array to hold pieces; values will be

put in later

int alli = 0; Index variable into pieces array

for (int i=0;i<NHor;i++) Loop for the columns

for (int j=0;j<NVer;j++) Loop for the rows

{ Open clause

int rx =

round(random(.75*displayWidth));

Generate random x value for positioning piece

int ry =

round(random(.75*displayHeight));

Generate random y value for positioning piece

�pieces[alli] = new Piece(wedgeW*i,

wedgeH*j,rx,ry,wedgeW,wedgeH);

Create Piece object; the first two parameters

indicate distance from the 0th piece, the next two

where to place the piece now (calculated using

random), the width and the height

pieces[alli].display(); Display Piece just created

alli++; Increment alli

} Close for-loops

} Close makePieces

Table 4-6.  (continued)

(continued)

Chapter 4 Classes

116

void mixUpPieces() { Header for mixUpPieces

for (int i=0;i<NoP;i++) For-loop through pieces

{ Open loop clause

int rx =

round(random(.75*displayWidth));

Generate random horizontal position up to .75 of

width

int ry =

round(random(.75*displayHeight));

Generate random vertical position up to .75 of

height

pieces[i].px=rx; Set the Piece object variable

pieces[i].py=ry; Set the Piece object variable

} Close for-loop

} Close mixUpPieces

void draw() { Header for draw

if (phase == 0) For phase == 0

{ Open if true clause

background(255); Erase window

drawPieces(); Draw the pieces

drawButtons(); Draw the buttons

} Close if phase==0 clause

if (phase == 2) For phase == 2 (dance)

{ Open if true clause

for (int i=0;i<NoP;i++) { Loop over pieces

�pieces[i].px=pieces[i].px+deltaxs[i]; Set the x value by the calculated amount

�pieces[i].py=pieces[i].py+deltays[i]; Set the y value by the calculated amount

} Close for-loop

background(255); Erase window

drawPieces(); Draw the pieces

Table 4-6.  (continued)

(continued)

Chapter 4 Classes

117

drawButtons(); Draw the buttons

if (abs(pieces[0].px-100)

<5*tolerance)

{

Check if the first (index 0) pieces is close to the

specified x position and if so snap pieces into

place

for (int i=0;i<NoP;i++) { Loop over the pieces

pieces[i].px=100+pieces[i].locx; Set the x value

pieces[i].py=100+pieces[i].locy; Set the y value

} Close for-loop

phase = 0; Set phase to 0

} Close if 0th piece close enough

} Close of phase was 2

} Close draw

void drawPieces() { Header for drawPieces

for(int i=0;i<NoP;i++) For-loop over pieces

{ Open loop clause

pieces[i].display(); Display the ith piece

} Close for-loop

} Close drawPieces

class Button { Header for class Button

int cx,cy; For center of button

int bw, bh, bwsq, bhsq; Dimensions, calculated values for determining

isOver

color col; color

String label; label

Button (int x,int y,int bwid,

int bht,color c, String lab) {

Header for Button constructor

Table 4-6.  (continued)

(continued)

Chapter 4 Classes

118

cx = x; Set variable

cy = y; Set variable

bw = bwid; Set variable

bh = bht; Set variable

bwsq = bw*bw; Calculate and set

bhsq = bh*bh; Calculate and set

col = c; Set variable

label = lab; Set variable

} Close Button

boolean isOver(int x,int y) (Header for isOver method

float disX = cx- x; Calculate and set

float disXsq = disX * disX; Calculate and set

float disY = cy - y; Calculate and set

float disYsq = disY * disY; Calculate and set

float v = (disXsq / bwsq)

+ (disYsq/bhsq);

Calculation for over an ellipse

return (v<1); Return true or false

} Close isOver

void display() { Header for display

fill(col); Set fill with the color

ellipse(cx,cy,bw,bh); Draw an ellipse

fill(0); Set fill to black

textAlign(CENTER,CENTER); Set alignment

text (label,cx,cy); Display label

} Close display

} Close the Button class

Table 4-6.  (continued)

(continued)

Chapter 4 Classes

119

class Piece (Header for Piece class

int locx; Hold relative x distance from 0th piece

int locy; Hold relative y distance from 0th piece

int px; x coordinate

int py; y coordinate

int pw; width

int ph; height

PImage content; image

Piece (int locxC, int locyC,

int x, int y, int w, int h)

Header for constructor

{ Open method

locx = locxC; Store variable

locy = locyC; Store variable

px = x; Store variable

py = y; Store variable

pw = w; Store variable

ph = h; Store variable

content = createImage(pw,ph,RGB); Create a new PImage object

content.copy(originalA,locxC,

locyC,pw,ph,0,0,pw,ph);

Copy over the portion of the image for this piece

}

Close constructor

boolean isOver(int mx,int my) { Header for isOver for a Piece object

if ((mx>=px) && (mx<=(px+pw))

&& (my>=py) && (my<(py+ph)))

Is the mx, my position on the rectangle of the

piece

{ Open if true clause

Table 4-6.  (continued)

(continued)

Chapter 4 Classes

120

The intent when the player drags a piece around is for the piece to move smoothly

with the mouse virtually stuck to the initial point of contact. To accomplish this, it is

necessary for the code to calculate what I term the offsets in x and y from the location of

the piece as defined for the upper left corner and the location of the mouse. You will see

this in the program.

You might notice that because I know that I am slicing up the image into three rows

with four pieces in each row and using the variables NHor set to 4 and NVer set to 3,

I know NoP is 12. I am building flexibility into the coding just in case I want to change

things in the future, such as slicing the puzzle up into more pieces.

�Under the Covers
Now I can provide a further explanation of functions versus methods and, briefly, how

Processing is implemented. Java does not have stand-alone functions; it only has classes

and methods of the classes. The inventors Ben Fry and Casey Reas, joined soon by

offsetx = mx- px; Calculate the x offset from upper left corner so

piece moves smoothly

offsety = my- py; Calculate the y offset

return true; Return true; yes, it is over this piece

} Close if true clause

else { Not over

return false; Return false

} End else clause

} Close isOver

void display() { Header for display

image(content,px,py,pw,ph); Display this piece

} Close display

} Close Piece class

Table 4-6.  (continued)

Chapter 4 Classes

121

Dan Shiffman and over time by a large community of developers, defined a class called

PApplet. The code for our Processing sketch will be housed within a class that extends

the PApplet class definition. All our functions are methods of this class.

Java has a system of access modifiers that can define limits on what code can access

what methods. This is not to keep things secret in a security sense, but to impose limits

that Java can check to keep programmers from making mistakes and, more generally,

make it possible for teams of people to work together. However, for Processing sketches

to work, code in what we have called the underlying Java program must be able to

invoke the setup, draw, mouseReleased, and other Processing functions. This means

that setup, and so on need to have the access modifier public in the header. You only

need to know this if you decide to port your Processing code into Java yourself. The PDE

does this for us.

I am being repetitive, but I do want to emphasize that making use of subclasses and

superclasses means that Processing does a considerable amount of work for us. Consider

the for-loop in the bouncing things sketch in which the appropriate method is invoked

to display a circle or a rectangle or an image.

�Things to Look Up
You can read about classes in the Processing documentation for a complementary

exposition on the topic.

An alternative way to address the orientation of the image is to just have one image

file and use the transformation expression scale (-1,0) to produce the reversed image.

There will be examples making use of transformations in 2D and 3D but you can explore

these features now.

The ImageMode function can be used to change how the location of an image is

interpreted. Look up ImageMode(CENTER) to see how to ease the calculation of the image

traveling on the path.

Processing has a facility to use tabs to break up a sketch into parts, such as putting

each class definition in its own tab. Do read about this and consider it for your projects.

Chapter 4 Classes

122

�How to Make This Your Own
My vague term “things” is intended to inspire you to build sketches with bouncing things

other than circles, rectangles, and images. You can build on what you did in the previous

chapter when I urged you to build on bouncing ball to bounce something else.

Taking lessons from the make path and travel program and the jigsaw program, think

about creating a path in different ways. Perhaps your user can click on a few points and

store the locations and then have something move incrementally from point to point.

You can study the bouncing things sketch and the make a path sketch and try to

move objects along more complex paths. Consider using random movement, although

too much randomness tends to just be a mess.

�What You Learned
This chapter introduced the idea of classes defining objects, with specification of data,

the variables, and behavior, the methods. You will see more uses of classes in the rest

of the book. The three examples certainly were different, but they each made use of the

techniques associated with OOP.

The examples made extensive use of calculations to determine values for

repositioning objects and if it is time to change the phase of the application.

�What’s Next
I call the next chapter “More Interactions.” The interactions featured in the examples

involve the use of the mouse, the use of arrow keys, and the use of the keyboard to input

text. One of the applications adds data to a file stored in the sketch folder.

Chapter 4 Classes

123
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0_5

CHAPTER 5

More Interactions
This chapter continues with classes and with more interactions by providing three

new sketches. The first example is a game in which the player uses a slingshot to hit a

chicken. You’ll then create a snake sketch, which is my version of a snake game. The

final sketch tests the interpretation of what a player sees. It was inspired by a psychology

student who wanted to record reactions from test participants.

�More on the Sketches
The slingshot sketch makes use of the same mouse event functions that you learned

about in the previous chapter to perform a dragging operation, moving the circle

representing the rock and lengthening the two lines representing cords in the slingshot.

Releasing the mouse button releases the rock, which then travels in an arc. If the chicken

is hit, the image is replaced with feathers.

The snake sketch responds to pressing the arrow keys and grows when it passes over

food, represented by circles. The game ends when the snake goes off the window, passes

over itself, or a set period of time has elapsed.

In the image test sketch, a photo is shown for a short period of time and then the

user is asked to write a response. An important feature of this sketch is the use of a

comma-separated value (CSV) table. The player’s responses are added to and stored in

the table for later examination. This example increases your battery of interactions to

include text and files.

�Programming Concepts
The general programming techniques and concepts relevant to the examples in this

chapter include ballistic motion, the single character data type versus String datatype,

taking in and outputting tabular data, case statement, measuring the passage of time,

and Regular expressions.

124

�Ballistic Motion
One of the earliest uses of computers was in the calculation of trajectories for missiles.

The topic is called ballistic motion, namely simulation of motion under forces such as

gravity. It might be too fancy a term for my slingshot program. Figure 5-1 shows a screen

shot from the sketch modified to show the rock’s motion as a parabolic arc. You also can

see the feathers picture on top of the chicken because the window has not been erased.

Figure 5-1.  Screen shot from slingshot showing arc

The approach used with the slingshot is related to a mathematical technique called

finite differences. My code starts off the flight of the rock by computing the angle of

the cord going from the rock to the top of the slingshot. The cord represents a vector.

My code resolves the vector into horizontal and vertical components. The horizontal

component is used as the horizontal delta factor to change the position of the rock each

frame. The vertical component is used as the vertical delta factor. Leaving the slingshot,

the rock’s position for each frame is calculated based on the two factors. The vertical

factor changes each frame; the horizontal one does not. (Ballistic calculations for

underwater torpedoes need to modify the horizontal factor as well to allow for resistance

by the water.) This approach does work. Some readers might wonder why there is not a

square somewhere in the code because parabolas arise from squaring! Rest assured that

this is a parabola.

Chapter 5 More Interactions

125

�Character (char) Data Type vs. String Data Type
Most programming languages support two distinct data types: the character, often

abbreviated as char, a data type for single characters, and the complex data type

String for zero, one, or more characters. I will go into more detail when I explain how

Processing handles characters and strings of characters.

�Use of Files
Although the focus in most Processing sketches is on interactions with the user,

Processing along with other programming languages provides ways to access, modify,

and save files, and also to create and then save files. The files have an existence

independent of the program.

�Case Statement
In the examples shown so far, you have seen the if statement in use. Most programming

languages provide another way to check on certain types of conditions that might fit

the problem better even though the use, often multiple use, of if or if–else could

handle the situation. The underlying program checks if the condition satisfies one of

several cases. In the “Processing Programming Features” section I indicate how the

implementation in other languages might be different.

�Elapsed Time
Programming applications often require a check on time elapsed since something

happened. Computers come with internal clocks and we can put them to work.

�Regular Expressions
Regular expressions are a way to define a pattern and detect if a character string contains

instances of the pattern. A pattern can be defined that indicates the absence of a string or

class of strings. Capabilities include extracting portions of the string that match parts of

the pattern so that they can be rearranged. The invention and use of Regular expressions

predates Java. Processing, Java, and many other programming languages have facilities

for defining a Regular expression and using it to check on a string. If a programming

Chapter 5 More Interactions

126

language or other tool contains functions for Regular expressions, these functions will

perform much better—and faster—than anything we can program in the language

ourselves, so it makes sense to be aware of the capability. It is possible to look up Regular

expression patterns for things such as an e-mail address, a web address (URL), credit

card numbers, and Social Security numbers, and this is a way to explore the topic.

�Processing Programming Features
The programming concepts that I choose to discuss in this chapter are quite varied,

although they each are present in the examples. Now, I discuss the Processing features

for these techniques individually.

�The char Data Type
The char data type in Processing holds a single character or symbol. A variable of data

type char is initialized or assigned a value using single quotation marks:

char mykey = 'J';

The String data type, in contrast, is a complex data type. It is a class with its own

set of methods. Processing will automatically cast (convert) char values into String

values in situations such as concatenation with a String object or printing on the

console or using text to display in the window, but it still can be critical to realize the

difference between the two data types. The key and keyCode variables, typically used

in the keyPressed function, refer to char values. The code I found in the Processing

documentation to handle keyboard input makes use of the function str to convert a

char into a String, so this is what you will see in the image test code, although the str

could be omitted.

�The keyPressed Function, key, and keyCode
Just as there is a mousePressed function that is invoked by the underlying Java program

when the mouse button is pressed, there is a keyPressed function invoked when a key

on the keyboard is pressed. The built-in variable keyCode is set if the key is one of the

special keys such as Enter, Backspace, or Delete. The built-in variable key is set for the

letters, numbers, and other symbols.

Chapter 5 More Interactions

127

For accepting text from the keyboard, I use an approach found in the Processing

documentation. The task is to do two things: display the text as it is typed in the

window—this is not done automatically—and store the result after the player is done as

indicated by pressing the key labeled either Return or Enter. It makes use of two global

variables: myText and answer. The myText variable is used for the immediate display.

The answer variable is set only when the player has clicked the Return or Enter key.

�Table Files
The type and purpose of the file determines what Processing functions are available.

You already have read about (and, hopefully used) loadImage to make use of an image

file to be stored in a variable of data type PImage. Processing supports a data type named

Table. For the image test sketch, you will see the use of loadTable and saveTable as well

as some other functions. For this example, I prepared a spreadsheet file using Microsoft

Excel, saved it as a CSV file, and uploaded that file to the data subfolder for the sketch.

�The Case Statement
Processing provides the switch statement for handling cases. The value on which the

case determination is made must be a primitive data type such as char or int. A String

will not work. Another thing that will not work is a variable. This means I cannot use

my favorite example: calculating the days in a month, using the name or three-letter

abbreviation for the month. Here is an implementation of the dice game known as

craps. Notice that there are two phases to the game, corresponding to a first throw and

corresponding to a follow-up throw. A throw of 7 or 11 wins on a first throw; 2, 3, or 12

loses. If the first throw is anything else, the value is store as the point and there must be a

follow-up throw. For the follow-up throw, throwing the point means a win; throwing a 7

means a loss and anything else means that there must, again, be a follow-up throw.

boolean first = true;

int point;

void setup() {

 size (600,500);

 textSize(20);

}

Chapter 5 More Interactions

128

void draw() {

}

void mouseClicked() {

 background(100);

 int choice = 1+ int(random(12));

 text("you threw "+str(choice),100,60);

 if (first) {

 switch(choice) {

 case 7: case 11:

 text("you win",100,100);

 break;

 case 2: case 3: case 12:

 text("you lose",100,100);

 break;

 default:

 text("follow up throw. Your point is "+str(choice),100,100);

 first = false;

 point = choice;

 }

 }

 else {

 switch(choice) {

 case 7:

 text("you lose",100,400);

 first = true;

 break;

 default:

 if (choice==point) {

 text("you win", 100, 400);

 first = true;

 }

 }

 }

}

Chapter 5 More Interactions

129

The break; statement means that control jumps out of the switch statement.

The requirement for a break; statement makes it possible to combine cases as I

have done for 7 and 11 and for 2, 3, and 12. A specification of all other cases is done

using the label default. It is tempting to write else, but that is not what works in

Processing.

As I hinted earlier, some other languages—JavaScript, for example—have

different case statements. For example, JavaScript does allow strings and variables

as case designations. The Visual Basic and VB.net languages allow specification of

cases using expressions and lists and, as a result, do not require something like a

break; statement.

There are situations, such as detecting the arrow keys, that are better suited to

switch statements as opposed to if statements, so I encourage you to add them to the

features you know how to use.

�The millis and Other Time Functions
The function used to indicate elapsed time is the millis function, which returns the

number of milliseconds (thousandths of a second) since the program started. With this

function, we can write code to determine the difference between two points of time in

the running of a program. If you want to convert from milliseconds to seconds, simply

divide by 1,000.

Processing provides access to the internal clock with additional functions, including

second, minute, hour, day, month, and year. You need to check on the ranges of the

values returned. The month function returns a number from 1 to 12; the hour function

returns an integer from 0 to 23.

�The match Function for Regular Expressions

Processing provides the match function for checking if a String in the first parameter

matches the pattern specified in a Regular expression in the second parameter. My use

of Regular expressions in the image test program might be considered overkill, but I felt

it important to introduce the topic. You can set up complex tests and perform complex

manipulation of strings using Regular expressions.

Chapter 5 More Interactions

130

�ArrayList

An ArrayList is a construct for holding a sequence of values and is an alternative to

arrays. It is easier to remove an element from an ArrayList and, consequently, was a

good fit for holding the set of the Food elements. The declaration you will see in context

in the “Program” section is

ArrayList<Food> foods = new ArrayList<Food>();

You will see uses of the add method when the Food items are positioned randomly

in the window. The following code fragment uses the get method for an ArrayList

to get a reference to the Food item at a particular slot in the foods ArrayList and, if

it is closeEnough to the head segment of the snake, remove the item from the foods

ArrayList. You can examine the closeEnough code in the whole program given later.

 if (closeEnough(newHeadx,newHeady,

 foods.get(i).fx,foods.get(i).fy)) {

 foods.remove(i);

�Under the Covers
Data are represented in the electronic circuitry of the computer using sets of on–off

switches. An on–off switch holds one bit of information, where bit stands for binary digit.

It is easy to see how this can represent true or false; that is, a value of Boolean data

type. A set of eight bits is called a byte. There also is a byte data type.

You can think about a set of bits as representing patterns. One bit can hold two

different patterns. Two bits can hold 00, 01, 10, and 11, for four different patterns. Three

bits can hold 000, 001, 010, 011, 100, 101, 110, and 111, for eight different patterns. The

formula that is a string of N bits can hold 2N distinct patterns. Check it out for N = 4.

A char value is represented using two bytes (16 bits) according to a system called

UNICODE. Older computer languages used a system called ASCII that held seven or

eight bits. A string of length 8 can hold 28 or 256 different patterns. This certainly is

enough for our letters, numerals, and standard symbols, but not enough for all the

languages of the world, which is the goal of the UNICODE effort.

Numbers are represented using the binary number system. What does this mean? In

life, we use the decimal number system. This is a place-value system with base 10. You

learned this in elementary school when you learned how to do addition with two-digit

Chapter 5 More Interactions

131

numbers. The decimal number 36 stands for 3 times 10 plus 6 times 1. More formally,

36 stands for 3 times 101 plus 6 times 100. The number 2,017 stands for 2 times 103 plus 0

times 102 plus 1 times 101 plus 7 times 100. Anything raised to the zeroth power is 1. Now,

apply this methodology to base 2. The number 111 in the binary system stands for 1

times 22 plus 1 times 21 plus 1 times 1. This is equal to 7 in the decimal system.

A byte, or a set of eight bits, can hold a number from 0 to 255. This fact should

explain why the range 0 to 255 shows up frequently in computer work. In Processing, the

fill function expects either one integer or float value, from 0 to 255, to indicate a level

of grayscale, or three integers or float values, each from 0 to 255, to represent a degree

of redness, greenness, or blueness. By the way, fill also can accept a fourth parameter,

the alpha, which specifies opacity, by which you can set levels of transparency. See

references to more on fill in the “Things to Look Up” section.

You might ask why the designers of computers chose to use binary. A plausible

answer is that designing and building switches with two states is considerably easier

than designing and building switches with ten states. Yes, the computer hardware

designers needed to accept that there would be more switches to hold the same value,

but it would be easier to build. Another way to express this is to consider the circuitry

required for arithmetic operations. The addition table for binary contains four items:

0 + 0 is 0

1 + 0 is 1

0 + 1 is 1

1 + 1 is 1 carry a 1

Now recall the addition “number facts” you needed to learn in elementary school.

There were ten times ten facts! Even reducing it based on the fact that addition is

commutative, the fancy way to say that A+ B is the same as B + A still leaves 50. The

circuitry required to support binary arithmetic is much, much simpler.

When our code places something in an array, you might wonder what happens. If it

is an array of integers, then a copy of the integer is constructed and placed in the area of

storage set up for the array. If the array is to hold character strings or objects created by

constructors in classes we define, the array will hold a reference to the object. Similarly,

when our code invokes a function (or a method associated with a class), the int

parameters will be copies of the integers within the function for int parameters. This is

known as pass by value. For parameters that are objects or strings, what is passed to the

function are references to the strings and other objects. You might need to be aware of

this if the function changes the value of the parameter. If the parameter is an integer, any

Chapter 5 More Interactions

132

integer variable used in the function call will not be changed. However, if the function

expected an array and the function changed the array, the array used in the function call

will be changed.

�Slingshot Operation Overview
In this example, the programming makes use of the same mouse event functions that

you learned about in the previous chapter to perform a dragging operation, moving

the circle representing the rock and lengthening the two lines representing cords in the

slingshot. The player presses the main mouse button down over the rock in the slingshot

and drags it back from the rest of the slingshot. When the player releases the mouse

button, the rock will start its flight, which travels in an arc. The initial horizontal and

vertical change factors (deltas) are computed based on the length and the angle of one of

the straps. The rock stops when it hits the chicken or reaches ground level. If the chicken

is hit, the image is replaced with feathers.

Players should aim for the chicken, but the program does not depend on this. If the

player aims the rock away from the chicken, the program will send the rock off in the

direction calculated. The rock will eventually return to the ground level and stop.

The opening screen is shown in Figure 5-2.

Figure 5-2.  Opening screen of slingshot

Chapter 5 More Interactions

133

�Implementing the Slingshot Sketch
Although you might think that the slingshot program is very different than bouncing

things or a jigsaw puzzle, the implementation resembles the first in its use of classes and

inheritance and the second in the dragging operation.

�Planning
The slingshot sketch features a slingshot, a rock, a chicken, and some feathers.

These four items are each implemented as objects in three different classes, each of

which is a subclass of a class named Thing. At the start of the sketch, objects named

mySlingshot, chickenPicture, and myRock are appended into an array named scene. The

feathersPicture is swapped in later, replacing the chickenPicture. The draw function

displays the appropriate items using the method show, which has been overridden for each

subclass. The general technique of using an array such as my scene array will be useful.

The implementation using classes of the rock and the chicken picture and the

feathers picture is straightforward. The slingshot is a different story. My approach is

to define a slingshot by five positions, or, to be more accurate, one absolute position

and four other positions defined as offsets; that is, relative terms to one location given

in absolute terms. Figure 5-3 shows the different parts of the slingshot in terms of the

names given in the code. The tx_ty label marks the position given in absolute terms and

corresponds to the tx and ty variables defined in the Thing class definition.

Figure 5-3.  Names of points defining slingshot

Chapter 5 More Interactions

134

Note that the code in setup that creates the Rock object positions it at the actual

h location. I think this is a case in which writing and reading the code is easier than

formulating and reading the English prose.

The sketch has four phases. The opening phase lasts until the player presses the

mouse button when the mouse is on top of the Rock as determined by the myRock.

isOver method. The second phase is when part of the slingshot and the rock are

in motion. In this phase, variables determining the appearance of the slingshot are

changed in the method called movePocket and the myRock is moved by the move method.

The next phase is initiated by mouseReleased. The delta factors are calculated and the

myRock is set into flight in the mouseReleased function. This phase ends when myRock

hits the chicken or hits the ground. The noLoop() function is invoked, stopping all

interaction. The function table is shown in Table 5-1. Give it a quick review and then go

on to examine the program itself.

Table 5-1.  Slingshot Function Table

Function Name Invoked by Invokes

setup Underlying Java program Slingshot, Rock, Picture

draw Underlying Java program show methods, chickenPicture.

hits, simulateRockInAir,

myRock.getTx, myRock.getTy

(in two places)

Thing Invoked by super

SlingShot setup Calls Thing by calling super

Rock setup Calls Thing by calling super

Picture setup Calls Thing by calling super

Thing method move draw called as inherited

method for myRock.move,

simulateRockInAir

Slingshot method show draw called as item in

scene array

(continued)

Chapter 5 More Interactions

135

Table 5-1.  (continued)

Function Name Invoked by Invokes

Slingshot method

movePocket

draw

Slingshot methods:

getActualF1x,

getActualF1y,

getActualHx,

getActualHy

initspeeds

Slingshot method

initspeeds

calculateSpeeds Slingshot methods:

getActualF1x, getActualF1y,

getActualHx, getActualHy

Rock method show draw called as item in

scene array

Picture method show draw called as item in

scene array

simulateRockInAir draw myRock.move

calculateSpeeds mouseReleased

Rock method getTy draw in two places to check

for hitting chicken and

hitting ground

Rock method getTx draw (just for hitting

chicken)

Rock method isOver mousePressed

Picture method hits Draw

mousePressed Underlying Java program myRock.isOver

mouseReleased Underlying Java program calculateSpeeds

Chapter 5 More Interactions

136

�Programming the Slingshot Sketch
The slingshot program is shown with comments in Table 5-2. The global variables and

the class definitions are first. Although I could have said this for prior examples, I feel the

need to say it at this point: This is my implementation of slingshot. Others might have

done it differently. You might notice and be concerned about certain things: The move

method is not used for mySlingshot or chickenPicture, or feathersPicture, but just

for myRock. There is no cost in this and defining these distinct items as subclasses of the

Thing class made sense to me and it worked. The division of labor in calculateSpeeds,

initSpeeds, and the getActual methods could be different. I define “getter” methods

to demonstrate their use. The getTx and getTy were not necessary because I did not

make the object variables private. However, I wanted to contrast with the methods that

perform a computation to return the actual values for certain mySlingshot variables.

Table 5-2.  Slingshot Sketch

Slingshot mySlingshot; The single slingshot object

Rock myRock; The single rock object

float rockD = 15; Diameter used for myRock

float horSpeed, verSpeed1, verSpeed2; To simulate ballistic motion

float gravity = .05; Arbitrary value designed to produce a nice arc

float adjust = 20; Arbitrary scale factor on initial speeds

PImage chicken; Variable for the image file of the chicken

Picture chickenPicture; Variable for the Picture object for the

chicken

PImage feathers; Variable for the image file for the feathers

Picture feathersPicture; Variable for the Picture object for the

feathers

int targetIndex; Holds the index into the scene array indicating

the position held originally by chickenPicture

and, if and when the chicken is hit, where

feathersPicture will go

Boolean rockInMotion = false; Rock is in motion in the sling and once released

(continued)

Chapter 5 More Interactions

137

Table 5-2.  (continued)

Boolean slingInMotion = false; After mouse pressed on the rock and until

mouse released

Thing[] scene = {}; Will hold all Thing objects to be displayed

class Thing { Header for the Thing parent class

float tx; Horizontal position

float ty; Vertical position

Thing (float x, float y) { Constructor

tx = x; Set variable

ty = y; Set variable

} Close constructor method

void show() { to be overridden

} Close show method

void move(float dx, float dy) { Moves are done incrementally; that is,

arguments indicate changes

tx = tx + dx; Make the horizontal adjustment

ty = ty + dy; Make the vertical adjustment

} Close move method

} Close Thing class

class Rock extends Thing { Header for Rock subclass

float rDiam; Variable for size of rock

Rock (float x, float y, float diam) { Header for Rock constructor

super(x,y); Invoke parent constructor

rDiam = diam; Set size

} Close constructor

void show() { Header for show method

fill(200,0,200); Set color (always the same)

(continued)

Chapter 5 More Interactions

138

Table 5-2.  (continued)

ellipse(tx,ty,rDiam, rDiam); Display circle

} Close show method

Boolean isOver(float mx, float my) { Header for isOver method

return (dist(mx,my,tx,ty)

<rDiam/2);

Return true or false depending on if

parameters on rock

} Close isOver method

float getTx() { Header for getTx method

return tx; Return value of variable

} Close getTx method

float getTy() { Header for getTy method

return ty; Return value of variable

} Close getTy method

} Close Rock class

class Slingshot extends Thing {

float hx,hy; Moving part of slingshot; note that all

variables are offsets from tx and ty, defined

in Thing

float f1x,f1y,f2x,f2y,bx,by; Stationary part of slingshot, along with tx and ty

Slingshot (float f1xa,float f1ya,

float f2xa, float f2ya, float x,

float y, float bxa, float bya,

float hxa, float hya) {

Header for constructor

super(x,y); Invoke parent constructor

f1x = f1xa; Set variable

f1y = f1ya; Set variable

f2x = f2xa; Set variable

f2y = f2ya; Set variable

(continued)

Chapter 5 More Interactions

139

bx = bxa; Set variable

by = bya; Set variable

hx = hxa; Set variable

hy = hya; Set variable

} Close constructor method

void show() { Header for show method

strokeWeight(4); Set thickness of line

line (tx, ty, tx+bx, ty+by); Draw line from center to base

line (tx, ty, tx+f1x, ty+f1y); Draw line from center to first prong

line (tx, ty, tx+f2x, ty+f2y); Draw line from center to second prong

line (tx+f1x, ty+f1y, tx + hx,

ty+hy);

Draw line from first prong to pocket

line (tx+f2x, ty+f2y, tx +hx,

ty+hy);

Draw line from second prong to pocket

} Close show method

float getActualHx() { Header for method

return (tx+hx); Return actual x coordinate, calculated by

adding in base tx

} Close method

float getActualHy() { Header for method

return (ty+hy); Return actual y coordinate, calculated by

adding in base ty

} Close method

void movePocket(float dx, float dy) { Header for method

hx += dx; Make incremental x adjustment

hy += dy; Make incremental y adjustment

} Close method

Table 5-2.  (continued)

(continued)

Chapter 5 More Interactions

140

float getActualF1x() { Header for method

return (tx+f1x); Return actual x coordinate, calculated by

adding in base tx

} Close method

float getActualF1y() { Header for method

return (ty+f1y); Return actual y coordinate, calculated by

adding in base ty

} Close method

float[] initSpeeds() { Header, returns an array with two values

float actF1x, actF1y,actHx,actHy; Variables used in calculations

float angle; Angle variable

float[] answer = {0,0}; Declare and initialize variable to be an array

float lenOfSling; Variable used in calculations

actF1x = getActualF1x(); Extract value

actF1y = getActualF1y(); Extract value

actHx = getActualHx(); Extract value

actHy = getActualHy(); Extract value

lenOfSling = dist(actF1x,

actF1y,actHx,actHy)/adjust;

Calculate extension of sling, adjusted

angle = -atan2(actF1y-

actHy,actF1x-actHx);

Computes angle using vertical and horizontal

differences

answer[0] =

lenOfSling*cos(angle);

Set the x value to be returned

answer[1] =

-lenOfSling*sin(angle);

Set the y value to be returned; need to adjust

for upside down coordinates

return answer; Return answer

} Close method

Table 5-2.  (continued)

(continued)

Chapter 5 More Interactions

141

} Close class

class Picture extends Thing { Header for Picture class

PImage pic; Will hold the picture

float picW; Will hold width of picture

float picH; Will hold height of picture

float padLeft; Calculated amount used for a hit

float padRight; Calculated amount used for a hit

float padTop; Calculated amount used for a hit

float padBot; Calculated amount used for a hit

Picture (float x, float y, PImage pica) { Header for constructor for Picture

super(x,y); Invoke parent constructor

pic = pica; Set pic

picW = pic.width; Extract the picture width

picH = pic.height; Extract the picture height

padLeft = x+picW/4; Calculate for hit calculation

padRight = x+picW*.75; Calculate for hit calculation

padTop = y+picH/4; Calculate for hit calculation

padBot = y+picH*.75; Calculate for hit calculation

} Close constructor

void show() { Header for show method

image(pic,tx,ty); Draw pic at its location

} Close show

Boolean hits(float x, float y) { Header for hits method

return ((x>padLeft)&&(x<padRight)

&&(y>padTop)&&(y<padBot));

return true if x,y near center of picture

} Close hits method

} Close Picture class

Table 5-2.  (continued)

(continued)

Chapter 5 More Interactions

142

void setup() { Header for setup

size(1300,600); Specify window dimensions

frameRate(25); Slow down frames

mySlingshot = new Slingshot(-10,-20,

10, -40, 170,400, 0,100, -90,-20);

Create mySlingshot object

scene = (Thing[])

append(scene,mySlingshot);

Start definition of scene: an array of Thing

objects

targetIndex = scene.length; Used to swap feathers for chicken

chicken = loadImage("chicken.gif"); Load chicken image

feathers = loadImage("feathers.gif"); Load feathers image

feathersPicture = new

Picture(600,400,feathers);

Create feathersPicture object

chickenPicture = new

Picture(600,400,chicken);

Create chickenPicture object

scene = (Thing[])

append(scene,chickenPicture);

Append to scene; it will be at targetIndex

myRock = new Rock(mySlingshot.

getActualHx(),mySlingshot.

getActualHy(),rockD);

Create myRock object

scene = (Thing[])

append(scene,myRock);

Append to scene

background(255); Set background to white

} Close setup

void draw () { Header for draw

background(255); Erase the window

for (int i=0;i<scene.length;i++){ Go through all items in scene

scene[i].show(); And show each one

} Close for-loop

Table 5-2.  (continued)

(continued)

Chapter 5 More Interactions

143

if (rockInMotion) { If rock is in motion

if (chickenPicture.hits(myRock.

getTx(),myRock.getTy()))

Check if rock hits the chicken

{ If it does

rockInMotion = false; Reset Boolean

scene[targetIndex] =

feathersPicture;

Swap in the feathers image

} Close if hits clause

simulateRockInAir(); Continue motion of rock in the air (rock will

move one more frame if it hits chicken)

if (myRock.getTy()> height) { Checks if myRock is at bottom of the window

rockInMotion = false; Set Boolean to stop motion of myRock

noLoop(); Freezes the display and stops all mouse

interactions

} Close rock reached the ground clause

} Close initial check of rock in motion

if (slingInMotion) { Check if sling in motion

float dx = mouseX - pmouseX; Determine change in x

float dy = mouseY - pmouseY; Determine change in y

mySlingshot.movePocket(dx,dy); Adjust the slingshot variables

myRock.move(dx,dy); Move the rock

} Close the sling in motion clause

} Close the draw method

void mousePressed() { Header for mousePressed

if (!rockInMotion) { If not rock on motion phase

if (!slingInMotion) { Or slingshot in motion phase

if (myRock.isOver(mouseX,mouseY)) { if mouse over rock

Table 5-2.  (continued)

(continued)

Chapter 5 More Interactions

144

slingInMotion = true; Then start slingshot in motion phase

} Close isOver if

} Close not slingInMotion if

} Close not rockInMotion if

} Close mousePressed function

void mouseReleased() { Header for mouseReleased

if (slingInMotion) { Only acts if slingshot in motion phase

slingInMotion = false; Stop the phase

calculateSpeeds(); Set the horizontal and vertical delta values

rockInMotion = true; Set the Boolean to specify the next phase

} Close if true clause

} Close mouseReleased

void calculateSpeeds() { Header for calculateSpeeds

float[] speeds = mySlingshot.

initSpeeds();

Get values calculated from position in

slingshot

horSpeed = speeds[0]; This is the horizontal delta; does not change

verSpeed1 = speeds[1]; This is the initial vertical delta

} Close calculateSpeeds function

void simulateRockInAir() { Header for simulateRockInAir

float dy; Calculated value for vertical change

verSpeed2 = verSpeed1 + gravity; Simulate effect of gravity by calculating next

vertical delta (change amount)

dy = (verSpeed1 + verSpeed2)/2; Calculate average

myRock.move(horSpeed,dy); Move the rock

verSpeed1 = verSpeed2; Prepare for calculation in next frame

} Close simulateRockInAir function

Table 5-2.  (continued)

Chapter 5 More Interactions

145

The snake moves when you press the arrow keys. The snake grows when it passes

over food. The game ends if the snake goes off the window, passes over itself, or a set

period of time has elapsed. Figure 5-5 shows a screen shot when the time has elapsed.

The snake has grown to be 15 segments long.

�Snake Operation Overview
In this project, a snake is made up of a head segment and four other segments. Circles

representing food are positioned at random locations in the window. The opening

screen is shown in Figure 5-4.

Figure 5-4.  Opening screen of snake

Chapter 5 More Interactions

146

�Implementing the Snake Sketch
The snake game was one of the first computer games widely distributed and I am

going by memory on its design. Of course, my motivation is to demonstrate techniques

in programming and features of Processing, and the snake game represents ample

opportunities for both.

Figure 5-5.  Example of final window for snake game

Chapter 5 More Interactions

147

�Planning
The first task is to decide how to represent the snake and how to represent the food.

The snake is to be made up of segments, with the possibility of adding a segment at the

end. The snake segments can be held in an array. The first segment has the extra circle.

The food is distributed randomly in the window, and it must be possible to remove a

food item. Now, it is possible, but somewhat complicated to remove items from the

middle of an array. In contrast, the ArrayList class has a remove method. I decided to

define classes for the head segment and for the other segments for the snake and use an

ordinary array to hold all the segments. I decided to define a class for the food items and

an ArrayList to hold all the food items.

The player moves the snake by use of the arrow keys. This is a standard application

of the keyPressed method and then the switch construct. The trickier part is moving the

snake by repositioning each segment. You will see from examining the code how I did

this: The head segment moves to a new position and then all the rest of the segments go

into the place where the segment before them was. At each movement of the snake, my

code checks for the snake going out of bounds or going on top of another segment. I also

have a check in the code for the elapsed time exceeding the time limit. Elapsed time is

calculated using calls to millis.

My implementation of the snake game has an invisible grid; that is, food items and

snake segments are located only at certain positions defined by a variable called unit.

I programmed a function call closeEnough that checks if positions are within a margin

amount. Note also that I changed the definition of the parameters used for drawing

ellipses to be the upper left CORNER as opposed to the center because that is how it

is done for rectangles. The functions, methods, and their relationships are shown in

Table 5-3.

Chapter 5 More Interactions

148

�Programming the Snake Sketch
The code for the snake sketch is shown in Table 5-4. It is long, but much of it is what I

would call standard boilerplate code for programs with classes.

Table 5-3.  Snake Function Table

Function Name Invoked by Invokes

setup Underlying Java program placefood, buildfirstsegments

draw Underlying Java program foods.get, Food.display, seg.

display, endgame

endgame

placefood setup foods.add, Food

buildfirstsegments setup HeadSeg, Seg

keyPressed Underlying Java program movesnake

movesnake keyPressed closeEnough, growSnake,

endgame

growsnake movesnake Seg

closeEnough movesnake

Seg buildfirstsegments,

growsnake

Seg.display draw

Seg.moveTo movesnake

HeadSeg buildfirstsegments

HeadSeg.display draw

Food placefood

Food.display draw

Chapter 5 More Interactions

149

Table 5-4.  Snake Sketch

float margin = 10; Value used to detect the snake head being over

food or over another segment

float cw; The specified width of the window

float ch; The specified height of the window

int unit; The unit that defines the implicit grid

int timeLimit = 30*1000; 30 seconds for game

int timeStart; Set in setup

ArrayList<Food> foods = new

ArrayList<Food>();

Will hold the randomly positioned food items

int amountOfFood = 30; Number of food items

Seg[] segs; Will hold the snake

HeadSeg hseg; The head of the snake

void setup() { Header for setup

size(800,600); Set dimensions of window

cw = width; Store for later calculation (yes, I know this is

800)

ch = height; Store for later calculation

unit = int(min(cw,ch)/30); This will define the implicit grid

ellipseMode(CORNER); Easier to check for snake over circle

representing food

placefood(); Invoke function to distribute food

buildfirstsegments(5); Invoke function to build original snake

timeStart = millis(); Store starting time

} Close setup

void endgame(String m) { Header for endgame

fill(0); Set for text for final message

textSize(30); Set for text for final message

Chapter 5 More Interactions

150

int snakeL = segs.length; Extract length

text("Game Over: "+m+" Snake size

is "+str(snakeL),100,100);

Display final message

noLoop(); Stop action; keys no longer work

} Close endgame

void draw() { Header for draw

background(200); Clear screen

for (int i=0;i<foods.size();i++) { Display food by looping through foods

foods.get(i).display(); Display item in foods

} Close for-loop

for (int i=0; i<segs.length;i++) { Display segs of snake

segs[i].display(); Display seg

} Close for-loop

if (timeLimit<(millis()-timeStart)) { Determine elapsed time since sketch started

and check if greater than timeLimit

endgame("Time."); If so, invoke endgame

} Close if

} Close draw

void placefood() { Header for placefood

for (int i=0;i<amountOfFood;i++) { for loop to build foods ArrayList

foods.add(new

Food(unit*int(random(width)/

unit),unit*int(random(height)/

unit)));

Add in a food object

} Close for-loop

} Close placefood

Table 5-4.  (continued)

(continued)

Chapter 5 More Interactions

151

void buildfirstsegments(int n) { Header for buildfirstsegments; original

snake is oriented horizontal, head to the right,

and not at the boundaries

int leftbd = unit*10; Determine left bound

int rightbd = width-leftbd; Determine right bound

int headx =

unit*int(random(leftbd,rightbd)/unit);

Position head of snake between these

horizontal bounds

int heady =

unit*int(random(leftbd,rightbd)/unit);

Using same bounds, position head vertically

Seg aseg; Used to hold each of the ordinary segments

hseg = new HeadSeg(headx,heady); Create new head segment

segs = new Seg[n]; Create array of the indicated size and then

assign individual elements

segs[0] = hseg; The first one is the head segment

for (int i=1;i<n;i++) { Loop to make the successive segments; note

that loop starts at i set to 1

int nsegx = headx+(i*unit); Snake starts out horizontal, with head seg on

the left

int nsegy = heady; All these seg elements at same vertical

position

aseg= new Seg(nsegx,nsegy); Create the Seg element

segs[i] = aseg; Set item in the segs array to reference the

newly created Seg element

} Close for-loop

} Close buildfirstsegments

void keyPressed() { Header for keyPressed

switch(keyCode) { Select based on keyCode; note there is no

action if the key is not an arrow key

Table 5-4.  (continued)

(continued)

Chapter 5 More Interactions

152

case UP:

movesnake(0,-unit); Move snake up the screen

break; Leave switch

case DOWN:

movesnake(0,unit); Move snake down the screen

break; Leave switch

case RIGHT:

movesnake(unit,0); Move snake to the right

break; Leave switch

case LEFT:

movesnake(-unit,0); Move snake to the left

break; Leave switch

} Close switch

} Close keyPressed function

void movesnake(int dx, int dy) { Header for movesnake; slides snake along

int numOfSegs = segs.length; Current length

int[] xpositions = new

int[numOfSegs];

Will hold current x positions in an array; will not

use last value

int[] ypositions = new

int[numOfSegs];

Will hold current y positions in an array; will not

use last value

for (int i=0;i<numOfSegs;i++) { Loop through segments

xpositions[i] = segs[i].sx; Store x coordinate

ypositions[i] = segs[i].sy; Store y coordinate

} Close for-loop

int newHeadx = xpositions[0]+dx; Determine new x coordinate for head segment

int newHeady = ypositions[0]+dy; Determine new y coordinate for head segment

segs[0].moveTo(newHeadx,newHeady); Move first segment to calculated positions

Table 5-4.  (continued)

(continued)

Chapter 5 More Interactions

153

for (int i=1;i<numOfSegs;i++) { Loop through segs after the head

segs[i].moveTo(xpositions[i-1],

ypositions[i-1]);

Move into location previously held by seg in

front

} Close loop

for (int i=1;i<(numOfSegs-1);i++) { Check for head seg collisions with any

segment, except last by looping through

segments, except for the last

if (closeEnough(newHeadx, newHeady,

xpositions[i],ypositions[i])) {

Check if close enough, using stored positions

endgame("Collision with self."); If true, invoke endgame, with appropriate

message

} Close if true clause

} Close loop

if ((newHeadx<0)||(newHeadx>

(width-unit))||(newHeady<0)||

(newHeady>(height-unit))) {

Check if head out of bounds

endgame("Out of bounds. "); If true, invoke endgame, with appropriate

message

}

for (int i=foods.size()-1;i>=0;i--) { Iterates over the foods ArrayList

backward; this is important because items are

removed

if (closeEnough(newHeadx,newHeady,

foods.get(i).fx,foods.get(i).fy)) {

Check if close enough

foods.remove(i); If true, remove is available for ArrayList

growSnake(); And grow the snake

} Close if true clause

} Close loop

} Close movesnake method

Table 5-4.  (continued)

(continued)

Chapter 5 More Interactions

154

void growSnake() { Header for growSnake

int numOfSegs = segs.length; Will examine last two segs; need to do this to

determine what direction snake grows

int lastx = segs[numOfSegs-1].sx; The next element is the same as the last in x or

y, but these expressions always work; calculate

x coordinate of last seg

int lasty = segs[numOfSegs-1].sy; Calculate y coordinate of last seg

int overx = segs[numOfSegs-2].sx; Calculate x coordinate of next to the last seg

int overy = segs[numOfSegs-2].sy; Calculate y coordinate of next to the last seg

int difx = lastx-overx; Calculate difference

int dify = lasty-overy; Calculate difference

int newx = lastx+difx; Use values to calculate new x

int newy = lasty+dify; Use values to calculate new y

Seg newseg = new Seg(newx, newy); Create new Seg object

segs = (Seg[])append(segs,newseg); Append to segs (i.e., the snake)

} Close growsnake

Boolean closeEnough(int x1,int y1,int

x2,int y2) {

Header for closeEnough

return (dist(x1,y1,x2,y2)< margin); Returns result of calculation

} Close closeEnough

class Seg { Header for Seg class definition

int sx; Horizontal location

int sy; Vertical local

Seg (int x, int y) { Constructor for Seg

sx = x; Set variable

sy = y; Set variable

} Close constructor

Table 5-4.  (continued)

(continued)

Chapter 5 More Interactions

155

void display() { Header for display

fill(0,250,0); Set fill color

rect(sx,sy,unit, unit); Draw rectangle

} Close display method

void moveTo(int nx, int ny) { Header for moveTo; move to this position

sx = nx; Set new x coordinate

sy = ny; Set new y coordinate

} Close moveTo method

} Close Seg class

class HeadSeg extends Seg { Header for HeadSeg, child class of Seg

HeadSeg(int x, int y) { Constructor for HeadSeg

super(x,y); Invoke parent constructor

} Close constructor

void display() { Header for display for HeadSeg; the head

segment is displayed with a circle on top of a

rectangle

fill(0,250,0); Set color

rect(sx,sy, unit, unit); Draw rectangle

fill(0,0,200); Set to blue

ellipse(sx+.2*unit, sy+.2*unit,

.60*unit,.60*unit);

Draw circle

} Close display method

} Close HeadSeg class definition

class Food { Header for Food class

int fx; x coordinate

int fy; y coordinate

Table 5-4.  (continued)

(continued)

Chapter 5 More Interactions

156

Food (int x, int y) { Header for Food constructor

fx = x; Set variable

fy = y; Set variable

} Close constructor method

void display() { Header for display method

fill(250,250,0); Set color for food

ellipse(fx+.1*unit,fy+.1*unit,

.8*unit, .8*unit);

Draw circle

} Close display method

} Close Food class

Table 5-4.  (continued)

�Image Test Operation Overview
In this sketch, an image is presented to evoke a response from the player. Figure 5-6

shows the image, which was prepared by my son for my birthday and seems suitable

for an image test. It provides a way for me to introduce the notion of access to and

modification of an external file as well as a simple use of Regular expressions.

Chapter 5 More Interactions

157

After a specified amount of time, the player is given a chance to type in a response, as

shown in Figure 5-7.

Figure 5-6.  Opening screen of image test

Chapter 5 More Interactions

158

Unlike the key presses of the arrow keys in the snake sketch, players expect to type

in text, see what is being typed character by character, and then press the Enter key to

submit the complete response.

Figure 5-7.  Request for input for image test

Chapter 5 More Interactions

159

Table 5-5.  Sample CSV file opened in Excel

Answer Time Stamp Correct

I see a lot of Annikas 10/8/17 11:42

10 Annikas in a tree 10/8/17 11:42 Yes

ten 10/8/17 11:43 Yes

How did you do this? 10/8/17 11:43

A lot of girls 10/12/17 14:48

ten girls 10/12/17 14:48 Yes

girls around a tree 10/12/17 14:51

A lot of girls 10/12/17 14:51

10 girls 10/12/17 14:51 Yes

Annika in a tree 12/3/17 9:15

There are 10 Annikas 12/13/17 13:25 Yes

a lot of girls 12/13/17 13:25

a lot of girls in a tree 12/13/17 13:26

My sketch performs these tasks and then checks for the strings 10, ten, or Ten in the

response. If any of these strings are found, the response is marked as correct. A CSV file

has been loaded and a new row is added for this response. Table 5-5 shows the table at

some point in my work. Notice that some rows have the Yes entry in the Correct column

and some do not. The updated CSV file is available for use in the data subfolder.

�Implementing the Image Test
The new features of this sketch are handling of text input and use of the Table data type

with a CSV file. The sketch also makes use of Regular expressions. I will not go into detail

on Regular expressions, except to say that they are exactly what you need to make a

check on text.

Chapter 5 More Interactions

160

�Planning

The handling of text input is available in the Processing documentation and elsewhere

online. The approach I took makes use of two character strings: myText and answer. The

myText variable is changed at each key press. When the Enter key is pressed, the value of

myText is assigned into answer. The draw function checks if answer is not empty.

Processing provides the Table data type. It is possible to create a Table within

Processing, but I decided to create a file using Excel, save the file as a CSV file, and place

it in the data folder. The sketch adds a row or multiple rows to the file. The program

saves the file after each response.

The Regular expression function I use is match. The first parameter is the string to be

examined and the second holds the pattern. For this sketch, I set a variable

String correctanswers = "(10)|(ten)|(Ten)";

When my code uses this in match, the string will be checked for the presence of the

string 10 or the string ten or the string Ten.

Often, I am too lazy to include the functionality of restarting a sketch, but I decided

to do it this time. The user, test subject, or player action is to click the mouse. The

response that I coded in mouseClicked was to make answer and myText each be the

empty string and reset startTime using millis. Be warned that the restart coding can be

more difficult than this. The relationship of functions is shown in Table 5-6.

Table 5-6.  Function Table for imageText

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program storeAnswer

keyPressed Underlying Java program

storeAnswer draw

mouseClicked Underlying Java program

�Program

The image test sketch has several global variables, as shown in the code in Table 5-7.

These are critical for the communication among the functions.

Chapter 5 More Interactions

161

Table 5-7.  Code for Image Test Sketch

Table results; Will hold table

PImage picture; Will hold image

int startTime; Set in setup or mouseClicked

int duration = 4*1000; Time image is displayed

float pictureWidth; For aspectWoverH

float pictureHeight; For aspectWoverH

float setHeight = 900; Set height for image

float computedWidth; Calculated from the setHeight and

aspectWoverH

float aspectWoverH; Calculated

String prompt="What did you see? ";

String myText = ""; Added to in keyPressed

String answer = ""; Set when Enter pressed

String correctanswers =

"(10)|(ten)|(Ten)";

Regular expressions

void setup() { Header for setup

picture = loadImage("AnnikasInTree.

jpg");

Load in image

pictureWidth = picture.width; Set pictureWidth

pictureHeight = picture.height; Set pictureHeight

aspectWoverH = pictureWidth/

pictureHeight;

Compute aspect ratio

computedWidth = setHeight *

aspectWoverH;

Calculate computedWidth

results = loadTable("results.

csv","header");

Read in table from the CSV file in the data

folder; the “header” indicates that there is a

header row

size(1000,1000); Set window dimensions

(continued)

Chapter 5 More Interactions

162

startTime = millis(); Used with current time and duration

textSize(20); Set textSize

}

void draw() { Header for draw

background(0); Erase screen

if ((millis()-startTime)< duration) { If still within duration

image(picture,10,10,computedWidth,

setHeight);

Display image at the computed dimensions

} Close if

else { else

text(prompt + myText,100,100); Ask for response

if (answer.length()>0) { keyPressed builds up input in myText, stores

in answer after Enter key pressed, so if answer

not empty

storeAnswer(); Stores answer as new row in the results table

noLoop(); Stops looping until mouseClicked restarts

process

} Close if answer not empty

} Close else

} Close draw

void keyPressed() { Accept keyboard input

if (keyCode == BACKSPACE) { If Backspace pressed

if (myText.length() > 0) { If anything already entered

myText = myText.substring(0 ,

myText.length()- 1);

Take out the last character

}

} else if (keyCode == DELETE) { If Delete pressed

Table 5-7.  (continued)

(continued)

Chapter 5 More Interactions

163

myText = "" ; Reset myText to empty

} else if (keyCode == ENTER) { If Enter pressed

answer = myText; Set answer to MyText

} else if (keyCode != SHIFT &&

keyCode != CONTROL && keyCode != ALT) {

Check for these three special keys

myText = myText + str(key); Add key to myText

} Close if testing for anything besides certain

special keys

} Close keyPressed

void storeAnswer(){ Store answer with a time stamp as new row in

table

String check = ""; Set check to empty string

String ts =

month()+"/"+day()+"/"+year()+"

"+hour()+":"+minute()+":"+second();

Create what I call the time stamp

TableRow newRow = results.addRow(); Add new row, with two or three values set

newRow.setString("Time Stamp",ts); Make entry in the Time Stamp column

newRow.setString("Answer",answer); Make entry in the Answer column

if (match(answer,correctanswers)

!=null) {

If there is a match

newRow.setString("Correct","Yes"); Make entry in the Correct column

check = " Correct! "; Prepare for message

} Close if match

saveTable(results,"data/results.csv"); Save the table

background(0); Clear screen

text(check+"Click on screen to play

again",200,200);

Output message

} Close storeAnswer

Table 5-7.  (continued)

(continued)

Chapter 5 More Interactions

164

�Things to Look Up
At some point, you should read about Regular expressions, as they are their own

miniature programming language.

You can read up on Array and ArrayList. Do some research on UNICODE.

There is considerable functionality in the use of the Table data type. For example,

you can extract information from a Table constructed from a CSV file to control drawings

and animations.

I suggested that you could change from milliseconds to seconds by dividing by 1,000.

You can look up the nf function for formatting numbers.

�How to Make This Your Own
You can replace the chicken and the feathers and perhaps add a background with your

own artwork. You can alter the slingshot to be something else after you understand what

needs to be set once the projectile takes off. You can add a scoring system. You can do

research on ballistic motion, perhaps investigating how to model a torpedo.

You can make Snake a fancier game. For example, you can add food of different

values or obstacles for the snake to avoid. It is also a good candidate for levels of play.

void mouseClicked() { Header for mouseClicked restarts the game

by setting startTime as the current time and

restarting looping

myText=""; Reset myText

answer=""; Reset answer

startTime = millis(); Set startTime to now

loop(); Restart looping; draw will be invoked

} Close mouseClicked

Table 5-7.  (continued)

Chapter 5 More Interactions

165

The image test can be changed by using your own initial image, with appropriate

tests, as complicated as you can manage, for checking the answer. More generally, come

up with your own ideas for posing questions, examining the responses, and using tables

for recording results.

The dice game of craps might inspire you to expand on the game or use another dice

game. Consider showing die faces.

�What You Learned
This chapter covered ways Processing supports interactions, including mouse actions;

single key presses, such as use of the arrow keys; and multiple key presses for accepting

pieces of text. The image test program demonstrated the use of a Table constructed

from a CSV file. The sketch added a row to the Table and saved the Table, replacing the

original file.

This was an introduction to Regular expressions. I hope you saw enough to

investigate further either now or when you come across a possible use.

The snake and slingshot sketches demonstrated classes and inheritance, arrays and

ArrayList, and calculations involving algebra and trigonometry.

�What’s Next
The next chapter features the use of transformations to produce an intricate pattern

inspired by an origami model and changing an image to be grayscale. As an extra bonus,

the image is acquired from the Web, providing a way to let users specify the image they

want to use.

Chapter 5 More Interactions

167
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0_6

CHAPTER 6

Images, Graphics, and
Building on Prior Work
This chapter focuses on two examples, one with images and one with graphics. The

first example displays an image with instructions to press any key to switch to and from

grayscale. The image, by the way, is not from a file in the data folder of the sketch, but

acquired on loading the sketch, from an address on the Web. The program will not work

if the computer is not connected to the Web. For this example, the program asks the user

to enter a URL. This makes use of the technique described in Chapter 5 for entering text.

Allowing the user the ability to type in an address means that the program should handle

a bad address without the program stopping. Error handling is an important topic!

The second example demonstrates the use of transformations for creating an origami-

inspired flower.

I will describe reusing ideas for both the examples from previous chapters or the

preliminary sketches I prepared for this chapter. This can entail just using the examples

as inspiration or copying and pasting sections of code. It is a very common approach

to programming that you should adopt. This is not like searching online for the exact

solution to a homework problem, but learning ways to do things and remembering your

own work.

�More on the Sketches
To get to the final version of the first example, I actually developed three distinct sketches

and decided I needed to explain each to you. This carries with it the lesson that it is

okay and often the faster approach to program something that you know is not the final

version.

168

The second example demonstrates the use of the translate and rotate functions

to produce a complex shape using several copies of a hexagon shape. It has some

similarities with the make-a-polygon sketch in Chapter 2, but the basic hexagon shape

used for the flower is not a regular polygon.

�Programming Concepts
The general programming concepts I feature in this chapter include the very general topic

of error handling. You also will read about images as arrays of pixels and transformations.

�Error Handling
A possible reader response about error handling is to say that syntactic errors are caught

by the programming language, that is, by the PDE, and semantic errors will be caught by

proper testing. I am all for “proper” testing, but sometimes our intentions exceed actual

practice. Moreover, the issue for the example here is that our user might not enter a valid

URL. You do not want the program to stop, but, instead, give the user another chance.

One approach could involve using Regular expressions to check for a valid web address.

However, a well-formed URL could still be invalid in that the file might not exist. Some

sort of error checking is crucial. The approach I suggest here checks for the returned

image being valid before continuing.

It is good to analyze the situation to determine how errors could arise and, if

possible, after an error occurs, to determine if something in our programming could

have prevented it. That is not the case with users entering web addresses. We always will

need ways to protect our programs from fallible users. We can make the generalization

that this error arises because we leave the protected environment of our Processing

sketch by accepting something from outsiders (i.e., users) and going out to the Web.

�Images as Arrays of Pixels
Images are encoded in different ways and the particular programming language could

limit the formats permissible in a program. At some point, the image can be viewed as

a set of picture elements known as pixels. A typical way to represent the color in a pixel

and the default setting in Processing is the Red-Green-Blue-Alpha system. The alpha

specifies the transparency. For this application, I ignore the alpha, but keep it in mind

because you might want to use it for your own work.

Chapter 6 Images, Graphics, and Building on Prior Work

169

There are formulas for converting from an RGB set of three values to a single

number representing a grayscale level and there are formulas for converting from an

RGB set of three values to a set of three values that produces a grayscale; you will see

the latter in my code.

�Transformations
A common coordinate system in computing is the upside-down one with the origin

in the upper left corner. Transformations provide a way for programmers to change

the coordinate system by translations, rotations, or scaling operations. This can be a

powerful technique to produce drawings such as the hexagons. Processing and other

programming languages provide ways to undo the effects of transformations using

what is termed a stack approach. This means our programs can save the state of the

coordinate system at different times and then systematically return to an earlier state.

�Processing Programming Features
The Processing features for the examples in this chapter include getting a file from the

Web, working with images, defining shapes, and geometric transformations.

�Getting a File from the Web
You already know how to do this! The loadImage function in Processing is not limited

to files in the sketch data folder. The underlying Java program implementing loadImage

accepts an address without http or https as a relative address and adds the data/ to it.

If the address has the http or https at the start, the program accesses the networking

functions in the operating system to attempt to get the file.

If the attempt to get a file is not successful, the program will detect an error, often

called throwing an error, sooner or later, which appears on the console. However, our

code can detect if the loadImage function returned an image. The pseudo-code indicates

an approach to take:

original = loadImage(url);

If (original !=null) { do normal processing with original}

else { display message to user

 reset variables to prompt for address again }

Chapter 6 Images, Graphics, and Building on Prior Work

170

It generally is a good idea to let users know about a problem before asking them to

try again, so this is what I decided to do. Typing web addresses can be difficult. My sketch

does not allow copy-and-paste to enter an address and this is a challenge I present to my

readers.

Processing does provide the try-and-catch option for detecting and catching errors.

Any code that you believe might produce a runtime error is put in a clause prefaced by

the term try. After this clause, a catch clause is used to hold the response. This does

require knowing what error can occur. You can examine a sketch taking this approach in

the code section.

�Pixel Processing
Processing provides functions for producing arrays for the whole window or for an

individual PImage. If original is the PImage holding the result of the loadImage

function, then original.loadPixels(); sets original.pixels to be a one-dimensional

array holding the information for each pixel. The size of the array is original.width *

original.height. It is not necessary for this sketch, but there is a formula for getting to

the element in the pixels array corresponding to the pixel at row r, r going from 0 to 1

less than original.height, and column c, c going from 0 to 1 less than original.width.

The formula is

i = c + r*original.width;

The information for each pixel is in an object of data type color. It is possible

to extract the red, green, and blue (along with alpha, which is not used here) using

functions red, green, and blue. I found a formula for computing grayscale values based

on red, green, and blue values and use it to calculate the grayscale version. Notice the

calculation of each element of the pixels array of the grayed PImage is based on values

from the original PImage.

float rfactor = 0.2980;

float gfactor = 0.5870;

float bfactor = 0.1140;

 ...

for(int i=0;i<original.pixels.length;i++) {

 float redc = red(original.pixels[i]);

 float greenc = green(original.pixels[i]);

Chapter 6 Images, Graphics, and Building on Prior Work

171

 float bluec = blue(original.pixels[i]);

 float gs = redc*rfactor+greenc*gfactor+bluec*bfactor;

 color gscolor = color(gs,gs,gs);

 grayed.pixels[i] = gscolor;

}

grayed.updatePixels();

�The beginShape and endShape Vertex Functions
Processing provides functions to draw shapes and this is what I use to draw the basic

hexagon. An advantage to using these functions as opposed to drawing lines as I

demonstrated with the polygon sketch is that the fill and stroke settings can define the

colors for the border and the internal parts of the drawing. There are several variations

for beginShape and endShape. I used the default for beginShape and endShape(CLOSE).

This meant that I specified six vertices to define a hexagon.

�Transformations
Processing provides a way to save the current coordinate system, make changes to the

coordinate system, and restore the last coordinate system saved. One type of change

uses the translate function and another uses the rotate function. I describe rotate

and translate operations in the context of explaining the implementation of the

origami flower.

The functions used for saving and restoring coordinate systems are pushMatrix and

popMatrix. The names make sense if you realize that the coordinate systems are defined

by operations involving matrices and that saving the current coordinate system means

placing it on a stack. The terminology for stacks is last in, first out (LIFO).

Different coordinate systems are expressed by A, B, and C. If my code sets up

a coordinate system I call A and then does a push, does something to set up the B

coordinate system, does some drawing, then pushes B on the stack, when I want my

code to put the coordinate system back to what it was before I made the transformations

setting up B, I could use the pop function. I could then do something to set up C. If I

wanted to go back to what it was before I set up A, I would invoke the pop operation

twice. Examine and experiment with the hexagons sketch and then your own projects

and this will become clear and something you can use.

Chapter 6 Images, Graphics, and Building on Prior Work

172

�Under the Covers
What are PImages? They are not exactly objects. There is no new operator used. This

gave me some hints that something different is going on. The following did not work for

getting what I called a backup image:

 backup = original;

Changing the original by changing the pixels array caused both PImages to

change. The same thing happened when I used these two statements:

 original = loadImage(..)

 backup = loadImage(...)

Instead, the approach that did work was to use createImage to create a new PImage

to hold the grayscale version. My code populates grayed using the code shown earlier.

Note  Java does not support the color data type. If you are porting Processing
code over into Java, you do need the Processing libraries and you can use the
color function. You can change color cl = color(200,100,100); to int
cl = color(200,100,100);

�Image to Grayscale Operation Overview
I decided that I wanted the sketch to make only the picture grayscale, not the whole

display window. To get to the final version, I first prepared a sketch with a specific URL

in the code (hard-coded) that toggles between grayscale for the whole window and the

window with the original, full-color image. This is shown in Figure 6-1. I then prepared

a sketch with a bad address to confirm that I knew how to write code to detect that

situation. My last version prompted the user for an address, repeating the prompt until

there was a good response, and let the user toggle between the original image in color

and a grayscale version without changing other parts of the window. All the programs

are available with the other programs and I will describe my thought process in the

“Planning” section with relevant information in the “Under the Covers” section. This

process of creating simpler programs first and working up to the final version is a good

way of working.

Chapter 6 Images, Graphics, and Building on Prior Work

173

Note  If you are reading this with only grayscale images, you will need to get the
code from the web site and run it to see the full effects. You can examine the code
and change the URL hard-coded into the text to something you want. If you stick
with the URL I wrote, you will see the picture of my mother at the piano.

Figure 6-1.  Image of Esther Minkin at the piano

Chapter 6 Images, Graphics, and Building on Prior Work

174

Figure 6-2 shows the window display with the picture turned to grayscale.

Figure 6-2.  Window turned to grayscale

What I am calling the final version of the image to grayscale program starts out with

the screen shown in Figure 6-3. The user is directed to type in a web address, as shown

Figure 6-4. I became quite good at typing this URL. I decided that I would include both

Chapter 6 Images, Graphics, and Building on Prior Work

175

the original image and the grayscale image my code created. I also decided to include

some other color on the window to convince me that I wasn’t changing the whole

window. The screen shown in Figure 6-5 shows what appears immediately, assuming a

valid web address. The user can now press any key and change the image on the left to

and from grayscale. This is shown in Figure 6-6.

Figure 6-3.  Opening screen for final grayscale sketch

Chapter 6 Images, Graphics, and Building on Prior Work

176

Figure 6-4.  User types in URL

Chapter 6 Images, Graphics, and Building on Prior Work

177

Figure 6-5.  Image acquired and grayscale version produced

Chapter 6 Images, Graphics, and Building on Prior Work

178

Figure 6-6.  Toggling to grayscale

Chapter 6 Images, Graphics, and Building on Prior Work

179

Now, what if I (or any other user) typed in an invalid web address? What if we typed

in something that wasn’t a well-formatted URL or pointed to a file that did not exist? The

screen shown in Figure 6-7 appears and the user can try again.

Figure 6-7.  Response to bad URL

Chapter 6 Images, Graphics, and Building on Prior Work

180

�Implementing the Image to Grayscale
As I have indicated, I prepared several sketches before arriving at the final one that is

featured here. It is important to realize that I did not know what the preliminary sketches

would be, but I also was not hesitant to rename the sketches and work on sketches that I

knew would not be the final one.

�Planning
My initial program had the URL hard-coded. It served for practice in using pixels and to

convince me that the grayscale formula worked. I next thought about providing the user

with the ability to enter an address. For this I used the coding from the previous chapter

asking the test subjects to enter a response to the Annikas in a tree image. I needed to

copy over the getTextInput function and declare and initialize the prompt, answer, and

myText global variables.

A bigger challenge was that user input meant I needed to provide a response to a

bad address. This caused me to go back to the first program and put a bad URL into the

code. I put the test for original!=null into the program to check it out. Then I made the

changes to what would be the final program.

Going off in a different direction, I decided that I wanted to produce a gray image just

for the picture, not the whole window. When my code changed the whole window, it did

not change the PImage original, so I could use it again. This meant I needed to have

two PImage variables, original and grayed, with grayed defined using the grayscale

formula. You will see the code for the final version in the next section. Note that at one

point, I had a variable named backup, but then I decided to keep the original variable

to be the original image and create a PImage variable named grayed. The relationship of

the functions is shown in Table 6-1.

Chapter 6 Images, Graphics, and Building on Prior Work

181

�Programming the Image to Grayscale
The getTextInput, keyPressed, and draw functions are close, although not identical, to

the functions in Chapter 5. The code makes use of variables prompt, myText, and answer

just like the sketch in Chapter 5. When the answer variable is not empty, draw sets the

variable url to answer and then invokes getImage. I did not need to have both the url

and the answer variables, but there was no harm in keeping both of them. The code is

shown in Table 6-2.

Table 6-1.  Functions in Image from Web, Toggling Grayscale

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program getImage

keyPressed Underlying Java program toggle, getTextInput

getImage draw makeGray

makeGray getImage

toggle keyPressed

getTextInput keyPressed

Table 6-2.  Grayscale, Image from Web Sketch

PImage original; Will hold image

PImage grayed; Will hold grayscale version of image

Boolean nowOrig = false; Flag for toggling

float rfactor = 0.2980; Used in grayscale formula

float gfactor = 0.5870; Used in grayscale formula

float bfactor = 0.1140; Used in grayscale formula

String myText = ""; For showing input

String answer = ""; Final text input

String prompt ="Type in web address\n"; Message to player

(continued)

Chapter 6 Images, Graphics, and Building on Prior Work

182

Table 6-2.  (continued)

String url = ""; Address of file

int imgw; Width of image

int imgh; Height of image

int imgw2; Double width

int imgh2; Double height

void setup() { Header for setup

size(800,800); Set dimensions of window

textSize(20); Set text size

fill(0); Set color of text to black

} Close setup

void getImage() { Header for getImage

original = loadImage(url); Try to load image

if (original !=null) { Check if okay

imgw = original.width; Set imgw

imgh = original.height; Set imgh

grayed = createImage(imgw,imgh,RGB); Create place for grayscale image

imgw2 = 2*imgw; Double the width for display

imgh2 = 2*imgh; Double the height for display

image(original, 0,0,imgw2,imgh2); Display original

makeGray(); Invoke makeGray

image(grayed,imgw2+10,0,imgw2,imgh2); Now display grayed

text("Press any key to toggle between

original and grayscale",20,imgh+50);

Output instructions

fill(200,0,0); Set fill to red

ellipse(100,700,100,100); Draw red circle

fill(0,200,0); Set fill to green

(continued)

Chapter 6 Images, Graphics, and Building on Prior Work

183

Table 6-2.  (continued)

ellipse(600,700,150,150); Draw green circle

} Close clause

else { Failure to get image

myText = ""; Set for new try at input

answer=""; Set for new try at input

background(200); Erase window

prompt = "Bad address for image. Try

again.\n";

Set new prompt

} Close else

} Close getImage

void draw() { Header for draw

if (original==null) { Check if empty original

background(200); Erase window

text(prompt+myText,100,100); Output instructions; might have some text input

if (answer.length()>0) { If answer is set

url=answer; Set url to the answer

getImage(); Invoke getImage

} Close clause

} Close original==null clause

} Close draw

void keyPressed () { Header for keyPressed

if (original!=null) { If original is good

toggle(); Invoke toggle

} Close clause

else { else

(continued)

Chapter 6 Images, Graphics, and Building on Prior Work

184

Table 6-2.  (continued)

getTextInput(); Invoke getTextInput

} Close else

} Close keyPressed

void makeGray() { Header for makeGray

original.loadPixels(); Make sure original.pixels is set

grayed.loadPixels(); Make sure grayed.pixels is ready for input

for(int i=0;i<original.pixels.

length;i++) {

Loop through all of original.pixels

float redc = red(original.pixels[i]); Extract the red

float greenc = green(original.

pixels[i]);

Extract the green

float bluec = blue(original.pixels[i]); Extract the blue

float gs = redc*rfactor+greenc*gfact

or+bluec*bfactor;

Calculate the grayscale amount

color gscolor = color(gs,gs,gs); Build a color variable

grayed.pixels[i] = gscolor; Assign the color variable to the

corresponding item in the grayed.pixels

} Close the for-loop

grayed.updatePixels(); Update pixels of grayed

} Close makeGray

void toggle() { Header for toggle

if (nowOrig) { Now original?

image(original,0,0,imgw2,imgh2); Draw original

nowOrig = false; Change nowOrig Boolean

} Close clause

else { else

(continued)

Chapter 6 Images, Graphics, and Building on Prior Work

185

Table 6-2.  (continued)

image(grayed,0,0,imgw2,imgh2); Draw grayed

nowOrig = true; Change nowOrig Boolean

} Close clause

} Close toggle

void getTextInput() { Header for getTextInput

if (keyCode == BACKSPACE) { BACKSPACE pressed?

if (myText.length() > 0) { Only act if there are some characters in

myText

myText = myText.substring(0,

myText.length()-1);

Take off last character

} Close clause

} else if (keyCode == DELETE) { Close clause, check for DELETE

myText = "" ; Make myText empty

} else if (keyCode == ENTER) { Close clause, check for ENTER

answer = myText; Set answer

} else if (keyCode != SHIFT &&

keyCode != CONTROL && keyCode != ALT)

{

Close clause; check for anything other than

these special keys

myText = myText + str(key); Add to myText (change char to str to do

concatenation)

} Close clause

} Close getTextInput

Chapter 6 Images, Graphics, and Building on Prior Work

186

�Origami Flower Operation Overview
The second example draws a figure made up of hexagons wherever the user clicks

on the screen. The graphic is inspired by the Origami Hydrangea by Shuzo Fujimoto.

My graphic has three layers. The origami model can have with more layers, depending

on the skill of the folder and the size of the paper. Figure 6-8 shows the window after

five clicks.

Figure 6-8.  Hexagon window after several mouse clicks

Chapter 6 Images, Graphics, and Building on Prior Work

187

The operation of this sketch is straightforward. The player clicks on the screen

and the graphic image appears with the center at the location of the mouse and with a

rotation randomly chosen in the range from 0 to PI/2 (90 degrees). The player can clear

the window by pressing any key.

Notice the small hole in the center of the graphics. This does resemble the origami

model and I produced it in the graphic by use of a fudge factor, which I put in a variable

I named fudge.

�Implementing the Origami Flower Sketch
The challenge to implementing the origami sketch, assuming understanding of how to

program the response to a mouse event such as mouseReleased and a keyPress event,

and a general idea about transformations, is not a programming challenge at all. I

needed to understand the origami model and I needed to be comfortable with algebra.

I examined the paper models I had and noticed that there were three layers, each made

up of hexagon shapes at right angles to each other. I worked out the relative positions

of the six vertices from the center of the hexagon shape, with some help from knowing

the folding. With closer examination and some algebra, I realized that the difference in

the size of the hexagon from one layer to the next was the square root of 2. I say this not

to say it is easier than a programming problem or more difficult, but to point out that

problem solving occurs before coding.

�Planning
I started with just drawing the hexagon. I knew that it needed to be a function with

parameters indicating the location and the size. Early in the programming, I decided

on the orientation of the base hexagon and that what I called the size of the hexagon

is actually one-half the width. Here is the function for the basic hexagon, which

I named hexShape. I put in the comment to remind myself of the meaning of the

parameters.

void hexShape(float cx, float cy, float hexSize) {

 //cx and cy are center of circle for which this is

 //an inscribed NOT regular hexagon.

 beginShape();

Chapter 6 Images, Graphics, and Building on Prior Work

188

 vertex(cx+hexSize,cy);

 vertex(cx+hexSize*.5,cy-hexSize*.5);

 vertex(cx-hexSize*.5,cy-hexSize*.5);

 vertex(cx-hexSize,cy);

 vertex(cx-hexSize*.5,cy+hexSize*.5);

 vertex(cx+hexSize*.5,cy+hexSize*.5);

 endShape(CLOSE);

}

Notice that beginShape is a function call. It does not indicate the start of a clause and

there are no brackets. However, I do indent one space because that makes sense for me.

The built-in CLOSE parameter to endShape produces a line from the last vertex to the first.

The next step was planning that a function named hexLayer would call the hexShape

function four times. This calls for a for-loop. In the body of the loop, I would include a

translate and then a rotate transformation. Figure 6-9 shows the result of a translate

operation.

Figure 6-9.  Action of translate

Chapter 6 Images, Graphics, and Building on Prior Work

189

A rotate operation changes the orientation of the axes. A rotate transformation

always is at the current coordinate system origin so the translate is critical. My code

has pushMatrix at the start of the body of the for-loop and then popMatrix at the end

of the body. The fudge variable is used to slightly alter the location of the hexagon. The

alteration is always in the same dimension (x) and direction (positive) because the

rotation changes what that is for each hexagon drawn by hexShape. Finally, hexCombo

invokes hexLayer four times, with the size passed to hexLayer shrinking by being

divided by a factor of sqrt(2). Table 6-3 shows the relationship of the functions for the

hexagons sketch.

Table 6-3.  Function Table for Hexagons

Function Name Invoked by Invokes

setup Underlying Java program

draw Underlying Java program

mouseReleased Underlying Java program hexCombo

keyPressed Underlying Java program

hexCombo mouseReleased hexLayer (four times)

hexLayer hexCombo hexShape (four times)

�Programming the Origami Flower
I did not copy over all the comments in my sketch, but did include a few in setup with

comments on the comments. Do go back to the polygons sketch in Chapter 2 and note

the similarities. The code is shown in Table 6-4.

Chapter 6 Images, Graphics, and Building on Prior Work

190

Table 6-4.  Hexagons Sketch

float fudge = 3; Defined to produce the hole in the center

void setup() { Header for setup

size(1000,900); Set dimensions of window

fill(200,0,100); Set color

textSize(18); Set bigger text

text("Click on screen, press any

key to clear the screen",20,20);

Display instructions

//hexShape(400,400,300); Consider keeping this and removing the

// to see what is produced and doing the equivalent

for your own designs

//hexLayer(500,400,300); Consider keeping this and removing the

// to see what is produced

//hexCombo(500,500,300);

//draws a bigger combo

Consider keeping this and removing the

// to see what is produced

} Close setup

void draw() { Header for draw function, which is required to enable

mouse and key events

} Close draw

void mouseReleased() { Header for mouseReleased

hexCombo(mouseX,mouseY,200); Draw combo at mouse location

} Close mouseReleased

void hexCombo(float cx, float cy,

float startSize) {

Header for hexCombo

float curSize = startSize; curSize starts off as startSize

translate(cx,cy); Translate to cx,cy

rotate(random(HALF_PI)); Rotate

(continued)

Chapter 6 Images, Graphics, and Building on Prior Work

191

Table 6-4.  (continued)

hexLayer(0,0,curSize); Do one layer

pushMatrix(); Save coordinate system

rotate(PI/4); Rotate PI/4

curSize = curSize/sqrt(2); Shrink curSize

hexLayer(0,0,curSize); Do one layer

rotate(PI/4); Rotate PI/4 again

curSize = curSize/sqrt(2); Shrink curSize

hexLayer(0,0,curSize); Do one layer

rotate(PI/4); Rotate PI/4 again

curSize = curSize/sqrt(2); Shrink curSize

hexLayer(0,0,curSize); Do one layer

popMatrix(); Restore coordinate system

} Close hexCombo

void hexLayer(float cx, float cy,

float layerSize) {

Header for hexLayer

float pctrx, pctry; Used in call for hexShape

float hexSize = layerSize; Set using parameter

fill(200,0,100); Set fill (not necessary)

for (int i=0;i<4;i++){ Loop to draw four hexagons

pushMatrix(); Save coordinate system

translate(cx,cy); Translate is cx,cy

rotate(HALF_PI*i); Rotate calculated amount (0, PI/2, PI, and 3*PI/2)

pctrx =.5*hexSize+fudge; Add fudge factor to x position

pctry = 0; Set y

hexShape(pctrx,pctry,

.5*hexSize);

Draw hexagon

(continued)

Chapter 6 Images, Graphics, and Building on Prior Work

192

Table 6-4.  (continued)

popMatrix(); Restore coordinate system

} Close for-loop

} Close hexLayer

void hexShape(float cx, float cy,

float hexSize) {

Header for hexShape

beginShape(); Start shape

vertex(cx+hexSize,cy); Right-most vertex

vertex(cx+hexSize*.5,

cy-hexSize*.5);

Working around counterclockwise

vertex(cx-hexSize*.5,

cy-hexSize*.5);

Working around counterclockwise

vertex(cx-hexSize,cy); Leftmost vertex

vertex(cx-hexSize*.5,

cy+hexSize*.5);

Continuing working around

vertex(cx+hexSize*.5,

cy+hexSize*.5);

Continuing working around

endShape(CLOSE); Close shape, connecting first and last vertices

} Close hexShape

void keyPressed() { Header for keyPressed

background(200,200,200); Erase window

text("Click on screen, press any

key to clear the screen",20,20);

Display instructions

} Close keyPressed

Chapter 6 Images, Graphics, and Building on Prior Work

193

�Things to Look Up
All the examples in this text use the RGB color system. The colorMode function can

change how the RGB ranges are specified or change from the RGB to the hue, saturation,

brightness (HSB) system. You will need to know this if you are working with HSB when

using another tool to prepare images.

For this application, I used the loadPixels and updatePixels methods for PImage

objects. There are functions that produce and update the pixels array for the whole

display window and that is what I used in my first sketch for this project. You can look up

these functions and examine the sketches on the code source site.

There is a copy method for copying parts of one PImage to another PImage or even

the same PImage, which could be useful. Similarly, you can look up other filter type

functions for images, such as tint.

The try-and-catch construct works for some errors, but attempting to get an

inaccessible image from the Web does not throw an exception immediately. I include

an example of try-and-catch with the NullPointer exception, but decided to feature the

approach of checking for a PImage being null in my code. It seems less mysterious to

me. A message will appear on the console if a file was not found.

The beginShape and endShape functions have several variations. There also are

functions for shapes with curved borders, including splines and Bezier curves. You can

give them a quick examination and then return when you think you have an application.

�How to Make This Your Own
Improve the image from web example by providing a way to paste in an address copied

from the address bar in a browser. Alternatively, you can provide a list of choices for the

user to allow them to choose one.

Assuming you have an image with transparency, create a program in which you modify

any isOver type function or method to check for transparency so the isOver first checks

for the mouse being within the rectangle indicated by the image width and height and, if

it is, checks the location’s alpha value for being over zero, or, perhaps, over some higher

threshold. Only if both checks are true should the isOver method return true. This last

check will be done using the pixels array for the image. You will need to use the formula

indicated earlier to determine the index into the pixels array from x and y values.

Design your own shape and then put shapes together, making use of

transformations. You will see more uses of transformations when we get to 3D.

Chapter 6 Images, Graphics, and Building on Prior Work

194

�What You Learned
In this chapter, you learned how to acquire an image located on a web site. Because

this involved asking someone to type in an accurate web address (URL), you saw one

way to detect errors and let the person try again. This is sometimes known as graceful

degradation.

You learned ways to manipulate images (PImage objects). You learned a formula for

converting the individual pixels of an image to grayscale and got a hint at other image

functions. You can explore other facilities in Processing for manipulating images.

You also learned ways to manipulate (transform) the coordinate system to

produce drawings, specifically drawings made using beginShape and endShape. The

transformations can be used for anything displayed in the window, including images

and text.

Every chapter makes use of concepts introduced earlier, but it was more pronounced

in this chapter. You saw another use of the coding for the user to input text and another

use of mouseReleased to position a drawing at the location of the mouse in the window.

�What’s Next
The next chapter presents more on files, with a focus on the construction of a program

to produce a holiday card. The card consists of an image and a message in a chosen

font. For this example, you will learn how to get a file, such as an image file, from the

local computer. The sketch selects a random set of fonts from those available on the

local computer and the user selects one of the fonts for the card. Finally, the card maker

types a short message. The image and message appear and the card maker has the

option to save the window (i.e., the card) in the data folder of the sketch. The general

programming concepts include use of fonts, invoking the file management system on

the local computer so the user can select a file, defining a subclass FontButton for the

Button class you already saw, and taking a screen shot of the Processing window and

saving it as an image file in the sketch.

Chapter 6 Images, Graphics, and Building on Prior Work

195
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0_7

CHAPTER 7

Using Files for Making
a Holiday Card
This chapter explains how to build a sketch that lets the user, the card maker, prepare

a holiday greeting card with an option to save the card in the sketch folder for printing,

adding handwritten notes, and eventually send to family and friends. If and when the

card maker chooses to save a card, a camera shutter sound is played. The final result is

shown in Figure 7-1. The photograph included is of our backyard last January when there

was considerable snow partially covering up and knocking over a statue. You can see that

the card is suitable for writing a note. If the card maker saves the results, it can be printed

out in the usual way.

The card maker chooses from a set of fonts available on the local computer and

chooses an image file available on the local computer. A small program that accesses

the names of all the fonts available on the local computer is described by itself. The

functionality of playing a sound and finding a file on the local computer are each

provided using libraries, collections of programs that are not part of the basic Processing

environment but potentially available.

196

�Programming Concepts
The general programming concepts for this chapter include files, libraries, fonts, setting

up callbacks, and the idea of providing feedback to user actions.

�Files
I looked up the definition of files and found several different ones. I urge you to do the

same and decide which ones resonate with you. Here is my definition: Files are entities

that hold information, that persist, and are independent of the Processing program.

This should not be an abstract concept at this point. In several previous chapters, you

learned how to access image files and a CSV file, all of which had been uploaded to the

Figure 7-1.  Final holiday card

Chapter 7 Using Files for Making a Holiday Card

197

sketch folder. The CSV file became a Table object. For the CSV file, you also learned how

to modify, namely add a row, to the table and then save it. This means you replaced the

original with an updated CSV file. In Chapter 6, you saw how to write code to access a file

on the Web, with guidance for how to detect the error situation of an address being bad.

This chapter describes how to provide the user with the option to look for a file on his

or her own computer, the local computer, and use it in the sketch. I also describe how to

access the files defining fonts available on the local computer and use some of these in

the program. You will learn how to take a screen shot to save the whole window, called

a frame, in the sketch folder. The examples in this chapter show other programming

techniques, including the use of sound. Incorporating sound also involves files: the

sound file used to simulate a camera shutter and the programs that implement the

playing of sound in the sound library. Most programming languages have facilities for

handling files.

�Libraries
Libraries are collections of programs beyond the standard built-in facilities of the

specific programming language that can be accessed, with some minimal procedures

and coding. It is appropriate to ask why everything is not included all the time. For

Processing, for example, why isn’t everything included in the PDE? The answer is that it

would slow down the translation (compilation) process and that new libraries are added

all the time. For the holiday card example, I need to include a Java library for doing the

file input/output operations and I need a sound library for implementing the playing of

sound.

�Fonts
When we use a word processing program, we can make use of different fonts. Fonts

deserve more attention than I generally can manage. I hesitate to pretend you are asking

another question, but here it is: Where are the fonts? For the most part, the fonts are

not “in” the word processing program or any one tool, but resident as files on the local

computer, available for all the programs to use. The not-so-good news is that a different

set of fonts might be available on other computers. You can run a program I will describe

to see a complete list of the fonts available on your computer.

Chapter 7 Using Files for Making a Holiday Card

198

�Callbacks
When the programmer defines a mouseClicked function, this act sets up the response

when the underlying Java program detects that the mouse button has been clicked.

Using more general terms, an event handler has been designated for the mouse click

event. The terminology is different, but the results are the same for setting up a response

to the user designating a file. The coding will be shown in the “Processing Programming

Features” section. The programmer specifies a function, which is called setting a

callback.

�Feedback to Users
The make a card application provides the card maker the ability to take a screen shot

and save it to the sketch folder. I decided to play an old-fashioned camera shutter sound

when this happens. This did give me the excuse to use the sound library, but it also

serves the important function of providing feedback to the user. You need to decide if

and when and how to let your users know what is going on.

�Processing Programming Features
I describe acquiring and using the library for sound and then the library for obtaining

a local file. This should serve as an introduction, although I must point out that each

library is different. You will need to research all the available capabilities. I also include

here my reuse of the Button class I defined for an earlier example and my definition of a

subclass I named FontButton.

�Use of the Sound Library
The PDE has procedures for making use of libraries. If you click Sketch on the PDE

toolbar, then select Import Library … , a drop-down menu appears including Sound.

Select on Sound and the sound library code in the form of class definitions will be

available to you. The statement import processing.sound.*; is placed in the code. The

statement brings in all the files, indicated by the * symbol, in the sound subfolder in the

Processing library.

Chapter 7 Using Files for Making a Holiday Card

199

When I created the make card sketch, I went to an old sketch, created some time ago,

invoked the Sketch/Show Sketch folder, opened up its data folder, and selected and

used the mouse to drag the file camera-shutter-click-01.wav to the new sketch. This

had the effect of putting a copy of the sound file in the make card sketch. The original file

did not leave the old sketch! I then typed in the import statement myself. These actions

meant that I did not need to use the import library procedure. However, I later returned

to Sketch/Import Library … /Add Library to see what I had installed. I noticed that the

sound library was an older version. It still worked for my application, but I clicked to

perform an update.

To use the sound capabilities, I wrote a declaration statement for a global variable:

SoundFile shutter;

In the setup function, I included the statement

shutter = new SoundFile(this,"camera-shutter-click-01.wav");

This creates a new object of the class SoundFile. The constructor for SoundFile takes

two parameters. The first, this, might seem mysterious. It associates the new object

with the current object, which is the Processing program, a PApplet object. The second

parameter is the name of the file in the data folder that I copied over from a previous sketch.

The last step in my relatively simple use of sound for this sketch is determining when

I want the sound to be played. At this point in the code, I include the statement

shutter.play();

That is how it is done. You can find or make your own .wav files for this purpose.

�Making and Saving an Image of the Current Window
The saveFrame function takes a screen shot of the current window and saves it as an

image file. You can use placeholders in the name so that you can take multiple images.

The statement

saveFrame("snaps/card####.png");u

will assign numbers to the #### so that distinct files are stored in a folder named snaps

within the sketch folder. You can save the images in various image file formats: .png,

.jpg, .tif, .tga, and so on. You do need to be careful about how frequently your code

does this, though, because each call is producing a file.

Chapter 7 Using Files for Making a Holiday Card

200

�Use of Java Input/Output Library
Certain libraries, such as sound, are developed and maintained by the Processing

Foundation and others are designated as contributed by the larger Processing

community. Others can be added by a procedure described in the Processing

documentation and still others, such as the library used for obtaining a file from the local

computer, are available simply by typing in the import statement directly:

import java.io.File;

This import statement brings in the File class located in the io folder of the java

library.

Processing provides a function called selectInput, which I invoke in the setup

function:

selectInput("Select an image", "imageChosen");

This function makes use of the java.io.File class. The first parameter is a prompt

that might appear but does not remain visible. What does happen is that the user is

presented with Finder or its equivalent for accessing the file system to select a file.

The second parameter, "imageChosen", is the name of the function I have written to

respond to the user selecting a file. It is what I described as the callback function. I do not

describe all of the function here because you will see it in the programming section. Here

is the header and the first couple of lines:

void imageChosen(File f) {

 if(f.exists()) {

 original = loadImage(f.getAbsolutePath());

 ...

To be a callback function for the actions initiated by selectInput, the parameter

specified in the header must be of data type File. An object of data type File has a

method named exists and it is invoked to indicate if the file does exist and can be used

to load the image. If the card maker did not open a file, the f.exists() call would return

false. Note also there is another method in use, getAbsolutePath. The file can be but

presumably is not in the data folder for the sketch and so needs a complete path. The

rest of imageChosen does the usual manipulation of an image before displaying it in the

usual way. I also make use of a Boolean variable okay to check in another function if it is

okay to proceed.

Chapter 7 Using Files for Making a Holiday Card

201

�Subclasses
I required buttons for my user interface and decided to use the Button class I had

developed for earlier examples, specifically the jigsaw puzzle. My code creates one

button for each of the three fonts my code chooses for presentation to the card maker.

However, these are special buttons, so I decided to define a subclass of Button, which I

call FontButton.

I could have made use of parallel structures to hold the font, but decided that the proper

thing to do was to make the font, rather, the PFont, one of the variables defined in the class

definition and to change to the PFont when displaying the button. I achieve this by defining

FontButton as a subclass of Button. Here is the definition of the FontButton class:

class FontButton extends Button {

 PFont ft;

 FontButton (int x,int y,int bwid,int bht,color c, String lab, PFont fta)

{

 super(x,y,bwid,bht,c,lab);

 ft = fta;

 }

 void display() {

 textFont(ft);

 super.display();

 }

}

Note the one additional variable, ft. The FontButton constructor invokes the

constructor for Button using the term super. It then uses the parameter fta to set ft.

The display method for FontButton uses ft in a call to textFont to set the font and then

invokes the display for the Button, using the expression super.display(). If I want to

change how buttons look, I can change the code in the display method for Button with

the knowledge that the display method for FontButton sets the font for any subsequent

text, but does not do anything else.

Chapter 7 Using Files for Making a Holiday Card

202

The sketch provides a way for users to see what a randomly selected font looks like by

clicking in the window. The screen shot shown in Figure 7-3 shows some of the actual fonts

on screen. Reacting to a mouse click and making a random choice should be familiar to you.

�Show Fonts Sketch Operation Overview
For you to examine the fonts available on whichever computer you are using, I describe a

program that acquires a list of the fonts and then reveals random choices at each mouse

click in the window. The sketch displays the names of the fonts in the console window as

shown in Figure 7-2.

Figure 7-2.  Console showing names of some of fonts

Chapter 7 Using Files for Making a Holiday Card

203

Figure 7-3.  Window after many mouse clicks

�Implementing the Show Fonts Sketch
The implementation is fairly straightforward, given the function PFont.list. However,

it does give me an opportunity to describe something I have not mentioned before: class

methods. These are methods that apply to the PFont class as a whole and not individual

PFont objects. It is properly called a method, and not a function. The list method does

what I have promised: It generates an array of String objects, each the name of a font

available on the local computer. The println function prints the whole array on the

console, requiring several lines.

Responding to the user pressing the mouse button should be familiar to you. I write

code in the mousePressed function. The code makes use of random to get an index into

the fontList array. I use createFont to create the font selected and then textFont to

make this the current font. Finally, I use text to place the name of the font at the location

Chapter 7 Using Files for Making a Holiday Card

204

specified by mouseX and mouseY. This is an exercise that distinguishes between the thing

and the name of the thing, something computer scientists tend to do. See the “Under the

Covers” section to find out what happens to the fonts.

�Programming the Show Fonts Sketch
This sketch is short enough that I will dispense with the Planning section and the

function relationship table and go straight to the code, shown in Table 7-1.

Table 7-1.  Show Fonts Sketch

String[] fontList ; Array to hold names of fonts

PFont myfont; Set and used in mousePressed; note that this

could be a local variable

void setup() { Header for setup

size(800, 600); Set dimensions of window

fill(255,0,0); Set color (for text) to red

fontList = PFont.list(); Obtain the names of all the available fonts

println(fontList); Print on console

} Close setup

void draw() { Header for draw, defined to enable mouse events

} Close (empty) draw

void mousePressed() { Header for mousePressed

int ch = int(random(0,fontList.

length));

Make a random selection of a font; need to make

it an integer

myfont =

createFont(fontList[ch],20);

Create a font corresponding to the one chosen;

set size

textFont(myfont); Set newly created font as the current font

text(fontList[ch],mouseX,mouseY); Display text, name of the font at mouse location

} Close mousePressed

Chapter 7 Using Files for Making a Holiday Card

205

�Make Card Sketch Operation Overview
You have seen a screen shot of the completed make card sketch, Figure 7-1. Figure 7-4

shows the screen when the card maker is presented with a choice of fonts.

Figure 7-4.  Example of make card interface

Chapter 7 Using Files for Making a Holiday Card

206

Figure 7-5 is a screen shot taken on my computer at the start of the card making

process. You are seeing folder names and file names on my computer. Your screen would

look different. The Finder program (and on a PC this would be the equivalent file system

program) starts. Its window has partially blocked the Processing sketch window.

Figure 7-5.  Screen shot at start of make card sketch

Chapter 7 Using Files for Making a Holiday Card

207

Figure 7-6.  Esther and Jeanine on the Clearwater

The next step is to find a suitable image. The card maker can examine several image

files. Figure 7-6 shows my actions looking for a picture to use. I selected a picture of my

mother and myself on the Clearwater. The next step is to click Open in the lower right

corner. This takes control back to the Processing sketch and produces Figure 7-7, which

is the equivalent of Figure 7-4. Notice that a different set of three fonts have been chosen.

Chapter 7 Using Files for Making a Holiday Card

208

After clicking on one of the font buttons, the card maker gets a screen like Figure 7-8.

After typing in a message, the final card appears, like the example shown in the Figure 7-1.

Figure 7-7.  Font buttons

Chapter 7 Using Files for Making a Holiday Card

209

The card maker has the option of clicking on the down arrow to take a snapshot of

the entire Processing window and then saving it to the sketch folder. Figure 7-9 shows

two windows, with one showing the whole sketch. The sketch folder contains two

subfolders and two PDE files:

snaps subfolder

makeCard.pde

Button.pde

data subfolder

Figure 7-8.  Card maker now types in message

Chapter 7 Using Files for Making a Holiday Card

210

The Button.pde file contains the Button class definition that I chose to copy into its

own tab. I refer you again to the Processing documentation for the use of tabs.

In Figure 7-9, the window on top on the right shows an image file that has been saved.

Figure 7-9.  Screen shot showing image saved in sketch folder

�Implementing the Make Card Sketch
This example was inspired by the holiday season as well as the goal of showcasing the

use of files on the local computer and the use of libraries. I leave it to you, the reader, to

build on the example and to make use of the features in interesting ways.

�Planning
The operations required to enable the card maker to make a card are as follows:

•	 Allow the card maker to select a picture (image file) on the local

computer.

•	 Prepare a set of three fonts from which the card maker can choose

one from the fonts available on the local computer.

•	 Accept the card maker’s font selection.

Chapter 7 Using Files for Making a Holiday Card

211

•	 Allow the card maker to write a message.

•	 Allow the card maker the option of saving the card to the snaps

subfolder of the sketch folder.

I decided to take the easy path by building the card in the fixed sequential order

indicated. The first step is to bring in an image file. The second step was to create buttons

that indicated distinct fonts. I decided to select three fonts randomly from the large set

available. The card maker selects a font. The last step was to input text. Creating the

buttons would make use of the Button class I developed for Chapter 4. Entering text

would be supported using code shown in Chapter 5. One difference is that keyPressed

checks if the key is the Down arrow key. If this is true, then saveFrame is invoked.

Otherwise, the getTextInput function is called. The sequence would be followed using

Boolean variables and functions, such as f.exists to check if a file f does indeed exist.

Table 7-2.  Functions for Makecard.pde

Function Invoked by Invokes

setup Underlying Java program selectInput

buildFontButtons Draw FontButton constructor,

display

Draw Underlying Java program buildFontButtons,

displayAll

displayAll draw

imageChosen Callback set by call of selectInput

in setup

mouseClicked Underlying Java program

keyPressed Underlying Java program getTextInput

I did copy the Button class definition from Chapter 4 and paste it into a new tab.

A new tab is created by clicking on the arrow toward the top of the PDE window and

selecting the new tab option. A small window will appear giving you a field to enter

the name. Using tabs is not required, but is a frequent practice for class definitions or

just to divide large programs into smaller pieces. This produces a separate PDE file, as

was shown in Figure 7-9. Figure 7-10 shows the Button tab, scrolled down to show the

definition of FontButton.

Chapter 7 Using Files for Making a Holiday Card

212

Figure 7-10.  Screen shot of Processing showing FontButton class definition

�Programming the Make Card Sketch
The program for the make card sketch is shown in Table 7-3. Remember that you must

include the Button and FontButton code, shown in Figure 7-10. You can go back to

Chapter 4 for comments on each line of the Button class. I give my usual advice: Do

not read it from start to finish. Use the function relationships, shown in Table 7-2, to

guide you.

Chapter 7 Using Files for Making a Holiday Card

213

Table 7-3.  Make Card Sketch

import java.io.File; Bring in one class, File, from the

java.io library

import processing.sound.*; Bring in all the classes in the

processing.sound library

SoundFile shutter; Will hold the sound clip

PImage original; For the image

float imgw; Width of image

float imgh; Height of image

float aspect; Calculate aspect ratio

String[] fontList; List of fonts

String[] myListOfFontNames = new String[3]; List of the three fonts selected

randomly

PFont chosenFont; For the current font

FontButton[] fontButtons = new FontButton[3]; For the three buttons

Boolean fontButtonsBuilt = false; Will indicate phase of operations

String prompt="Your message: "; Used in inputting the message text

String myText = ""; Used in inputting text

String answer = ""; Used in inputting text

String message = ""; Holds the complete, inputted text

PFont firstFont; Set to Arial, used for initial

instructions

Boolean okay = false; Will be set to true when image

file is selected and image loaded

void setup() { Header for setup

size(900,800); Set dimensions of window

shutter = new SoundFile(this,"camera-shutter-

click-01.wav");

Load the sound

(continued)

Chapter 7 Using Files for Making a Holiday Card

214

Table 7-3.  (continued)

firstFont = createFont("Arial",30); Create the font

textFont(firstFont); Set font for instructions

fill(0); Set text color to black

text("Make a card by choosing a picture, then

a font, then a message.\n Click down arrow to

take a snap. Reload to try again.",10,50);

Display instructions; the \n forces

a line break

fontList = PFont.list(); Read in names of all fonts on local

computer

selectInput("Select an image", "imageChosen"); Invoke thread to let user find a file;

set imageChosen as the callback

} Close setup

void buildFontButtons() { Header for buildFontButtons

for (int i=0;i<3;i++) { Loop to set up three buttons

int ch = int(random(0,fontList.length)); Make random choice

PFont ft = createFont(fontList[ch],25); Create the font

myListOfFontNames[i] = fontList[ch]; Store the name

fontButtons[i] = new FontButton(260,500+i

*60,400,50,color(200,0,100),

fontList[ch],ft);

Create the button and store in

array by invoking constructor

fontButtons[i].display(); Display the button just created

} Close for-loop

} Close buildFontButtons

void draw() { Header for draw

if (okay) { Initially false, set to true in

imageChosen

if (original!=null) { Extra check to be sure file does exist

background(200); Clear window

(continued)

Chapter 7 Using Files for Making a Holiday Card

215

Table 7-3.  (continued)

image(original,10,10,imgw,imgh); Display image

if (!fontButtonsBuilt) { Now check if font buttons are built

buildFontButtons(); Build font buttons

fontButtonsBuilt = true; Set Boolean to true

noLoop(); Stop looping

} Close if font buttons need to be built

else { else (font buttons are built, move

on to getting text for the message)

text(prompt+myText,100,imgh+100); Display prompt plus whatever has

been typed in

if (answer.length()>0) { If answer set (done in getTextInput)

message = answer; Set message

displayAll(); Display image and message

} Close if

} Close else

} Close if original!=null

} Close if okay

} Close draw

void displayAll() { Header for displayAll

background(200); Clear window

image(original,10,10,imgw,imgh); Draw image

text(message,30,imgh+50); Display message

noLoop(); Stop looping

} Close displayAll

void imageChosen(File f) { Header for imageChosen

if(f.exists()) { Check if f is valid

(continued)

Chapter 7 Using Files for Making a Holiday Card

216

Table 7-3.  (continued)

original = loadImage(f.getAbsolutePath()

);

Load image using absolute path;

this image is not in the data

subfolder

imgw = original.width; Prepare for calculation to make

image smaller; set imgw

imgh = original.height; Set imgh

aspect = imgw/imgh; Calculate aspect ratio

imgh = min(imgh,400); Resize as needed

imgw = imgh * aspect; Won’t change if imgh did not

change

background(200); Clear window

image(original, 10,10,imgw,imgh); Display image

okay = true; Set Boolean

} Close if f exists

} Close imageChosen

void mouseClicked() { Header for mouseClicked

for (int i=0;i<3;i++) { Loop through all the buttons

if (fontButtons[i].isOver(mouseX,mouseY)) { Is mouse over this one?

chosenFont = fontButtons[i].ft; Set chosenFont

textFont(chosenFont); Make this current font

textAlign(LEFT); Set alignment

break; Leave for loop

} Close if isOver

} Close for-loop

loop(); Restore looping

} Close mouseClicked

(continued)

Chapter 7 Using Files for Making a Holiday Card

217

Table 7-3.  (continued)

void getTextInput() { Header for getTextInput

if (keyCode == BACKSPACE) { Backspace case

if (myText.length() > 0) { Only do something if there has

been text

myText = myText.substring(0, myText.

length()-1);

Remove last character

} Close if text

} else if (keyCode == DELETE) { Close if backspace and check if

delete

myText = "" ; Remove all text

} else if (keyCode == ENTER) { Close if all text and check for

enter

answer = myText; Set answer; this will stop entry

} Close if enter

else if (keyCode != SHIFT && keyCode != CONTROL

&& keyCode != ALT) {

Check for not being these special

keys

myText = myText + str(key); Add in this key

} Close check for not specials

} Close getTextInput

void keyPressed() { Header for keyPressed

if (keyCode == DOWN) { Check if keyCode is DOWN arrow

shutter.play(); Make noise

saveFrame("snaps/card####.png"); Save the frame

} Close if down

else { else

getTextInput(); Check for text

} Close else

} Close keyPressed

Chapter 7 Using Files for Making a Holiday Card

218

�Under the Covers
The imagery of “under the covers” might not quite fit the point I want to make here.

A Processing sketch (i.e., our code) is running on a local computer with other code,

including Java code and programs that make up the operating system. It is operating

system programs that perform tasks such as interacting with files. Similarly, the

definitions of fonts are files that reside on the local computer.

Java provides ways of defining and running what are termed threads of execution,

or threads for short. The notion is that the programmer can set up distinct sequences of

programming statements. Threads can be executed concurrently if there are multiple

processors or in what is termed pseudo-concurrency. Their use must be managed so that

problems do not arise, such as data being accessed before it is ready or changes made

out of the anticipated order. In the example here, the program does not do anything until

the callback established by the selectInput call has loaded an image.

When I introduced the topic of local variables and global variables in Chapter 1,

I said that “local variables go away” when the function exits. This is not completely

accurate. It is true that the values in the local variables are not available for use

outside the function or if and when the function is invoked again, the values do not

persist. However, the space taken up by the variables is not immediately reclaimed.

Java has what is called garbage collection, a process in which values that are in

use are marked. Values are marked if they are pointed to or referenced by global

variables or variables in running functions. Think about the showFonts program. The

mousePressed function creates a font and assigns it to the variable myFont. If myFont

had referenced another font, set in the previous call of mousePressed, the space

taken up by the old font would not be marked as in use. Values marked are moved

into one area so that Java has room to keep going. The garbage collection is invoked

automatically. By the way, garbage collection is done in its own thread. Although it

is true that storage and memory are plentiful in modern computing, it still can be

the case, especially on mobile devices, that space taken up and not released causes

problems. These are termed memory leaks.

Chapter 7 Using Files for Making a Holiday Card

219

�Things to Look Up
Explore other libraries. Libraries provide considerable functionality. However, there can

be problems with individual libraries and with incompatibilities between and among

libraries. For example, the current recommendation found in online sources is to use

monoaural sound files, not stereo, with the sound library. This is easy to do with the

camera shutter sound featured here.

Understand the differences between createFont and loadFont.

Independent of the mechanics of fonts, I urge you to investigate the uses of different

types of fonts in terms of communication and aesthetics. Do keep in mind that less is

more. Just because you can use a large number of distinct fonts does not mean you should.

Look up Java threads and Java garbage collection.

�How to Make This Your Own
It could be that we take the clutter of windows on our computer screens for granted and

think nothing of the Finder window partially covering the Processing sketch window.

It did bother me. One approach is to not go immediately to the file finder, but display

the instructions and have a button for each of the tasks. This also could be part of an

important enhancement to allow do-overs for each of the steps.

Enhance the sketch by adding new features to the card design. For example, you

could make it possible for the card maker to add multiple pictures.

Independent of making a card, design your own programs that include providing

users, players, or makers the ability to include their own images or their own tables of

information.

�What You Learned
You learned how to access files on the local computer such as image files and, also, the

very specific files holding fonts. Providing your user with the ability to access a file on the

local computer required use of a Java library.

You learned how to take a screen shot of the current window and save it in the sketch

folder using saveFrame. The naming system provides a way to save multiple images.

Chapter 7 Using Files for Making a Holiday Card

220

To let the user know that something did happen as a result of a certain action, in this

case, a key press, you learned how to play a sound using a .wav file, which also required

the use of a library.

You continued to learn about classes and subclasses.

�What’s Next
The next chapter features an example incorporating video clips. This also requires the

use of a library. A critical aspect of the example is not just playing a single video clip by

itself, but combining display and manipulation of videos with manipulation of images

and drawings.

Chapter 7 Using Files for Making a Holiday Card

221
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0_8

CHAPTER 8

Combining Videos,
Images, and Graphics
This chapter features a family collage sketch. The critical programming concepts are

playing a video clip and handling video together with images and rectangles. The

rectangles represent the category of graphics. The distinct types of items are defined

using classes and subclasses.

In addition to introducing the use of video, this chapter and its example can be

viewed as another lesson on classes. You can go back to Chapter 4 and review the

bouncing things example. The code for repositioning of the pieces by mouse actions has

some similarities to creating a line and then moving an image on the line example in

Chapter 4.

The source code material includes an extra example, a demonstration of using

drawing on canvas or an image or a video for directions for an origami model. Figures

are given as a teaser.

�Programming Concepts
This section provides general background on video and the notions of shallow vs. deep

copying. I then move to the details of how video is handled in Processing and more on

classes and subclasses.

�Video
Digital video files come in a variety of formats, just like images. It should be easy to

accept that a considerable amount of data is involved, potentially a full image for every

frame of the video. Some formats perform compression across frames as well as within

222

frames. The term codec is used for the software or hardware device used for encoding

and decompressing video. There are trade-offs to make between quality of the video and

size of the file. There also are differences in the speed of going from the stored, digital

format to presentation on the screen. It also can be important to ask if the video is to

be streamed or acquired all at once. Regarding quality of the image, you might need to

think about whether this video is to be viewed on a small screen, like a phone; a typical

computer monitor; a high-definition TV; or projected on a large screen for viewing by a

big audience.

�Copying a Video
A general concept in computing is shallow copying vs. deep copying. It relates to the issue

of whether your code is dealing with a value or a reference to a value. These issues arise

in all programming languages and are not confined to working with videos or images.

If your code copies the reference, it will be to the same value. In my first version of the

collage, my duplicate method of the class I named MovieItem copied the reference

to the Movie object. Therefore, the method produced two items in the window playing

the same movie, frame by frame. I decided that I wanted the duplicate operation to

produce a new, distinct copy of the video. With this approach, Annika does a round

with herself. We can think of the movies being at different points in the reel. I did this by

implementing a deep copy. You can examine the code in the “Program” section.

�Processing Programming Features
The critical Processing programming features are video and more on classes and

subclasses.

�Video
Processing provides a library for handling videos. We need to go to the toolbar and click

Sketch/Add Library… and select Video. This will put the following line into your code:

import processing.video.*;

Chapter 8 Combining Videos, Images, and Graphics

223

The main class is called Movie. A Movie object is created using the new operator and

the Movie constructor. A typical setting of a Movie variable would look something like

the following:

myMovie = new Movie(this, "snowman.mov");

where snowman.mov is a file that has been placed in the data folder of the sketch. The

this term refers to the PApplet defined for the sketch and is one of the few situations

in which we need to think about the Java program being created. When you get to the

“Implementing the Family Collage Sketch” section, you will see the Movie constructor in use.

The methods I use for the family collage in addition to the constructor, Movie, are

loop, pause, stop, and jump. In addition, I must include the following function in my

sketch:

void movieEvent(Movie m) {

m.read();

}

This is invoked whenever a Movie object has a new frame available. Think of the

Movie as running in a parallel thread and letting my Processing sketch know when

there is something happening. This is exactly like our providing a body for setup, draw,

mouseClicked, and so on. Finally—and it is important to realize that I have not gotten to

it yet—the current frame of the video needs to be displayed in the Processing window.

I define a class I named MovieItem as a subclass of a class named Item. (There also is

an ImageItem subclass.) Each of these classes has a display method. Object variables

include variables for specifying the horizontal and vertical coordinates and the width

and the height. The display of the Movie is done using the image function:

void display() {

image(imovie, xpos, ypos,iwidth,iheight);

}

Where the video is displayed and the dimensions of the display are dependent on the

variables (xpos, ypos, iwidth, and iheight) set and maintained by my code.

You can use what you learned in previous chapters to access a video on the Web or

ask to user to identify a video on the local computer. Do keep in mind that videos can be

quite large, so you do need to make sure the video is fully loaded before attempting to

use it. Do also read about obtaining streaming video, including video from webcams and

other cameras.

Chapter 8 Combining Videos, Images, and Graphics

224

�Classes and Subclasses
My initial objectives for my family collage are to be able to move each item by dragging

with the mouse, duplicate an item, and delete an item. I then realized that sometimes

items get under other items, so I wanted a way to move an item to the top. I also decided

that I wanted to be able to pause and restart a video. As I have written, I also decided to

treat a duplicate of a video as a distinct entity. My implementation has the Item class

and the ImageItem and MovieItem subclasses. I use a tab to hold all the class definitions.

I name the tab definitions, which means that the sketch folder has a PDE file named

Definitions.pde. The Item class is simply a rectangle. All the items are stored in an

array.

In addition to the constructor methods, the methods are isOver, removeIt, display,

move, duplicate, restart, and pauseMovie. Because of how I invoke the methods, which

you will see in the code, I need to define all methods in the parent class. The restart

and pauseMovie methods in the Item class are empty.

The example demonstrates the power of classes and subclasses to share the coding

that is alike across classes and supply distinct coding when required.

�Under the Covers
Reinforcing what has been said, videos are large, complex entities and Processing (Java)

handles them as such, playing each video independently of everything else in its own

thread. The image function used for static images is used to display the current frame of

a video. The function movieEvent is invoked by the underlying Java program in the same

way that mousePressed, mouseReleased, mouseDragged, and keyPressed are invoked.

The parameter to movieEvent indicates which Movie object had the event, so the call in

the body of movieEvent

m.read();

responds to the event by updating the Movie with the available frame. If the event was

something other than the arrival of a new frame, the last frame would be reread. Note

that the one function handles all Movie objects.

Because videos are large, it can be critical to make sure that videos no longer in use

are treated in such a way that garbage collection can reclaim the space. For the family

collage sketch, this meant that I wrote code to assign the value null to the variable

referencing the video when the user chose to delete it.

Chapter 8 Combining Videos, Images, and Graphics

225

�Family Collage Operation Overview
The use of the family collage to reposition, create new items, and remove items is

suggested in Figure 8-1, showing the initial look of the collage, and Figure 8-2, which shows

the window after some changes have been made. The user clicks and drags to move an

item around the screen. To fully appreciate the sketch, you need to run the code to see the

videos playing and to observe dragging items, duplicating (copying) items, and deleting

items. As already mentioned, video can be paused and restarted from the beginning.

Figure 8-1.  Opening window for family collage

Chapter 8 Combining Videos, Images, and Graphics

226

The image with the little girl at the table is a frame of a video clip that is being played.

This frame was captured when I used the Grab utility to get the screen shot. The collage

starts off with the video clip, two static images, and two rectangles. Each of the items can

be repositioned. It also is possible to copy any item, move the copy around, and delete

any item. The video clip can be paused and restarted.

Figure 8-2 shows a screen after I, as the user, made some modifications. There are

two different copies of the same movie (Annika singing the snowman song from Frozen)

that started at different times and, therefore, are at different places.

Figure 8-2.  Collage after some manipulation

Chapter 8 Combining Videos, Images, and Graphics

227

You also should take note of the two rectangles at the upper left corner, as one is

slightly offset from the other. My duplicate method creates the second item slightly

offset from the position of the original.

�Implementing the Family Collage Sketch
Once you understand how videos work, I claim that the implementation is

straightforward and based on what you already know about classes and subclasses and

mouse events for dragging.

�Planning
I decided to have the different types of items in my collage implemented as subclasses

of an Item class and to store all Item objects in an array. Because I was providing a way

to move items around, I needed to erase the window and redisplay everything: all the

items and the instructions. Methods to display an item would be present in each class.

Processing provides the ArrayList construct, which you read about in the snake example

in Chapter 5, with its own remove method. However, I chose to use a standard array to hold

all the Item objects, mainly to show that it was possible to write a function for removing an

element, which I did in the removeFromItemsArray, using two for-loops.

Each Item has object variables indicating the horizontal and vertical coordinates.

The move method performs an incremental move. The change amounts are calculated

using mouseX-pmouseX and mouseY-pmouseY.

The inclusion of video items meant that I needed to design a MovieItem class,

which would contain a Movie variable. Table 8-1 shows the functions defined in the

collage6 tab. Some of these functions do invoke methods of the classes defined in the

definitions tab. Note that I use the modifier appropriate for those methods that are

overridden in the subclass definitions. The move, isOver, and the move method defined

in the Item class (the parent class) are not overridden.

Chapter 8 Combining Videos, Images, and Graphics

228

�Programming the Family Collage Sketch
Table 8-2 lists the code and descriptions for the definitions tab, which is the class

definitions for Item, ImageItem, and MovieItem. Table 8-3 lists the code for the main

program, which is held in the collage6 tab. Note that the Item class serves as the class

definition for the rectangles and also as the parent class for ImageItem and MovieItem. I do

realize that these might seem long, but the individual functions are fairly short. Remember

that you do not have to and should not read it from start to finish but move around, using

the function relationship table (Table 8-1) to guide you. You also can download and use the

online source code and just return here when you have a question.

Table 8-1.  Function Table for collage6 Tab

Function Invoked by Invokes

setup Underlying Java program Item, ImageItem, MovieItem

draw Underlying Java program Appropriate display method

overWhich mousePressed isOver

keyPressed Underlying Java program overWhich, swapThem,

appropriate duplicate, removeIt,

restart, pauseMovie

swapThem keyPress

removeFromItemsArray removeIt

mousePressed Underlying Java program overWhich

mouseDragged Underlying Java program move

mouseReleased Underlying Java program

movieEvent Underlying Java program The read method for a Movie

Chapter 8 Combining Videos, Images, and Graphics

229

Table 8-2.  Code for Class definitions

class Item { Header for Item

float xpos; Horizontal coordinate can change

float ypos; Vertical coordinate can change

float iwidth; Width

float iheight; Height

int cred; Redness

int cgreen; Greenness

int cblue; Blueness

�Item(float x,float y,float w,float h,int

red,int green, int blue) {

Header for Item constructor

xpos = x; Set initial horizontal coordinate

ypos = y; Set initial vertical coordinate

iwidth = w; Set width

iheight = h; Set height

cred = red; Set redness

cgreen = green; Set greenness

cblue = blue; Set blueness

} Close constructor

Boolean isOver(float x,float y) { Header for isOver method

return ((x>xpos)&&(y>ypos)&&(x<(xpos+

iwidth))&&(y<(ypos+iheight)));

Return result of calculation against four

sides

} Close isOver

void removeIt(int i) { Header for removeIt

removeFromItemsArray(i); Remove from the Items array

} Close removeIt

void display() { Header for display

fill(cred,cgreen,cblue); Set the color

(continued)

Chapter 8 Combining Videos, Images, and Graphics

230

Table 8-2.  (continued)

rect(xpos,ypos,iwidth,iheight); Draw rectangle

} Close display

void move(float dx,float dy) { Header for move

xpos +=dx; Incrementally adjust xpos

ypos +=dy; Incrementally adjust ypos

} Close move

void duplicate() { Header for duplicate

Item copy; For the copy

copy = new Item(xpos+10, ypos+10,iwidth,

iheight,cred,cgreen,cblue);

Create new Item, offset position

items = (Item[]) append(items,copy); Add to Items array

} Close duplicate

void restart() { Header for restart

} Close empty method

void pauseMovie() { Header for pauseMovie

} Close empty method

} Close Item class definition

class MovieItem extends Item { Header for MovieItem subclass of Item

Movie imovie; iMovie references the Movie object

String movieFileName; Holds movie file name, used by

duplicate

PApplet paref; Holds reference to the PApplet, used by

duplicate

MovieItem (float x,float y,float w,

float h,String mfn, PApplet par) {

Constructor

super(x,y,w,h,255,255,255);//sets up

white rectangle

Call parent constructor to set base variables

(continued)

Chapter 8 Combining Videos, Images, and Graphics

231

Table 8-2.  (continued)

imovie = new Movie(par,mfn); Set reference to the Movie

movieFileName = mfn; Set name of file

paref = par; Set reference to PApplet

imovie.loop(); Start the movie

} Close constructor

void removeIt(int i) { Header for removeIt

imovie.stop(); Stop the movie

imovie = null; Extra precaution to remove link to movie,

for garbage collection

super.removeIt(i); Call parent method

} Close removeIt

void duplicate() { Header for duplicate

Item copy; Will hold the copy

copy = new MovieItem(xpos+10, ypos+10,

iwidth,iheight,movieFileName,paref);

Create the MovieItem; this will start the

new Movie. Note reference to the paref.

items = (Item[]) append(items,copy); Add to items

} Close duplicate

void display() { Header for display

image(imovie, xpos, ypos,iwidth,iheight); Draw in window the current frame

} Close display

void restart() { Header for restart

imovie.jump(0); Go to first frame

imovie.loop(); Start movie

} Close restart

void pauseMovie() { Header for pauseMovie

imovie.pause(); Pause (uses method of Movie object)

(continued)

Chapter 8 Combining Videos, Images, and Graphics

232

As noted earlier, Table 8-3 shows the code for the main tab, labeled collage6. I kept

the name so I could let you know that my program went through several revisions.

Table 8-2.  (continued)

} Close pauseMovie

} Close MovieItem class definition

class ImageItem extends Item { Header for ImageItem

PImage myImage; Reference to PImage

String filename; File name, used by duplicate

ImageItem (float x,float y,float w,

float h, String imagefilename) {

Header constructor

super(x,y,w,h,255,255,255);//sets

up white rectangle

Call parent constructor to set base

variables

filename = imagefilename; Save file name

myImage = loadImage(imagefilename); Set PImage

} Close constructor

void duplicate() { Header for duplicate

Item copy; For copy

copy = new ImageItem(xpos+10,

ypos+10,iwidth,iheight,filename);

Create new ImageItem, offset

items = (Item[]) append(items,copy); Add to Items array

} Close duplicate

void display() { Header for display

image(myImage, xpos, ypos,iwidth,iheight); Draw image

} Close display

} Close class definition

Chapter 8 Combining Videos, Images, and Graphics

233

Table 8-3.  Code for collage6

import processing.video.*; Import video library

MovieItem myMovieItem; Used by setup

Item[] items = {}; Will hold all the items, starts out empty

Item curItem = null; Will hold the item being dragged

void setup() { Header for setup

size(1000, 1000); Set window

Item myItem1 = new

Item(10,30,100,200,250,0,200);

Create rectangle item

items = (Item[])

append(items,myItem1);

Add to items

Item myItem2 = new Item(500,800,

200,100,0,100,100);

Second rectangle

items = (Item[])

append(items,myItem2);

Add to items

myMovieItem = new

MovieItem(250,200,300,200,

"snowman.mov",this);

Create MovieItem, including creating Movie,

starting Movie. The this refers to the PApplet

items = (Item[])

append(items,myMovieItem);

Add to items

ImageItem myImage = new ImageItem

(10,500,205,154,"pigtails1.JPG");

Create first ImageItem

items = (Item[])

append(items,myImage);

Add to items

myImage = new ImageItem(600,300,

300,400,"climbing.jpg");

Create second ImageItem

items = (Item[])

append(items,myImage);

Add to items

} Close setup

(continued)

Chapter 8 Combining Videos, Images, and Graphics

234

Table 8-3.  (continued)

void draw() { Header for draw

background(255); Erase window

text("c for copy, d for delete,

t for move to top, p for pause video,

r for restart.", 5,20);

Output the instructions

for (int i=0; i<items.length;i++){ Loop through items

items[i].display();//use

appropriate method

Display each item

} Close for-loop

} Close draw

int overWhich() { Header for overWhich. The function determines

the first item the mouse is over.

for (int i=0; i<items.length;i++) { Loop through items

if (items[i].isOver(mouseX,mouseY)){ Is it over the item

return i; Return the index (exit function)

} Close if true clause

} Close the for-loop

return -1; Did not exit function in the for-loop, so return -1

} Close overWhich

void keyPressed() { Header for keyPressed

int i; Will hold return value of overWhich

i = overWhich(); Invokes overWhich

if (i < 0) { If negative, means not over any item

return; Return; no action

} Close if true clause

else { else

(continued)

Chapter 8 Combining Videos, Images, and Graphics

235

Table 8-3.  (continued)

switch(key) { Switch depending on letter pressed

case 'c':

items[i].duplicate(); Copy item at ith position and add to items array

break; Leave switch

case 'd':

items[i].removeIt(i); Delete ith element from items array

break; Leave switch

case 't':

swapThem(i,items.length-1); Swap the item with the last; that is, the topmost

break; Leave switch

case 'r':

items[i].restart(); Restart the item

break; Leave switch

case 'p':

items[i].pauseMovie(); Pause the item

break; Leave switch

default:

println("invalid key pressed"); Shows up on console

break; Leave switch (not strictly necessary because this

is the last)

} Close switch

} Close else clause

} Close keyPressed

void swapThem(int j,int k) { Header for swapThem; general function, although

only used to swap with topmost item

Item temp; Need a placeholder

temp = items[j]; Set item at j

(continued)

Chapter 8 Combining Videos, Images, and Graphics

236

Table 8-3.  (continued)

items[j] = items[k]; Swap in item at k

items[k] = temp; Set item at k

} Close swapThem

void removeFromItemsArray(int i) { Header for removeFromItemsArray

Item[] tempitems = new Item[items.

length-1];

Create new array, size one less than size of

current Items array

for (int k = 0; k<i;k++) { For loop up to item to remove

tempitems[k] = items[k]; Copy over

} Close loop

for (int k=i+1;k<items.length;k++) { For loop starting after item to remove

tempitems[k-1] = items[k]; Copy over

} Close loop

items = tempitems; Set items to the array just created and populated

} Close removeFromItemsArray

void mousePressed() { Header for mousePressed

int i; Will hold index of item

i = overWhich(); Find out if on any item

if (i>=0) { If this is valid item

curItem = items[i]; Set curItem

} Close if true clause

} Close mousePressed

void mouseDragged() { Header for mouseDragged

float dx; Will hold incremental x amount

float dy; Will hold incremental y amount

if (curItem!=null) { Only do this if curItem set

dx = mouseX- pmouseX; Calculates horizontal change

(continued)

Chapter 8 Combining Videos, Images, and Graphics

237

�Things to Look Up
You can and should read the documentation on the use of video. This would include

a video in a file and videos captured from cameras. If you have a webcam on your

computer, you can investigate how to include it in a sketch.

�How to Make This Your Own
Add other types of items, including drawings, perhaps what you made for Chapter 1.

Inspired and instructed by the last two chapters, incorporate ways for collage makers

to access image files and video files on their own computers or on web sites.

The collage example given here, by allowing multiple copies of the one video, results

in Annika singing a round with herself. If you decide to allow more than one movie,

either by uploading the video file(s) to the data folder or providing the capability of the

collage maker adding videos dynamically, you might want to address the issue of too

much sound. One approach I took for a program using JavaScript was to specify a sound

level for each video. However, there now are policies involving autoplay of video on the

Web that made me opt for muting audio on my collage program.

Table 8-3.  (continued)

dy = mouseY- pmouseY; Calculates vertical change

curItem.move(dx,dy); Set curItem to move these amounts

} Close if clause

} Close mouseDragged

void mouseReleased(){ Header for mouseReleased

curItem = null; Sets curItem to null, which means no more

dragging

} Close mouseReleased

void movieEvent(Movie m) { Header for movieEvent

m.read(); Read the next frame for the specified Movie

} Close movieEvent

Chapter 8 Combining Videos, Images, and Graphics

238

You can incorporate video controls. Perhaps you want the restart operation to

continue playing where the video was paused.

I have included in the code section a sketch that shows directions for folding

an origami model, the kissy fish. Most of the steps are shown as line drawings, each

constructed dynamically. For example, see Figure 8-3.

Figure 8-3.  Step making kissy fish

Chapter 8 Combining Videos, Images, and Graphics

239

Figure 8-4.  Step before throat surgery

Certain steps are shown as photographs, because I thought this was best. Figure 8-4

shows the model before a step I call throat surgery.

Chapter 8 Combining Videos, Images, and Graphics

240

Figure 8-5.  Model after throat surgery

Figure 8-5 shows the model after throat surgery.

Chapter 8 Combining Videos, Images, and Graphics

241

Thus, the sketch demonstrates use of graphics, image, and video. The reason

I omitted extensive coverage of this example was not because I felt the programming was

too difficult, but because of the complexity of the algebra and trigonometry required for

the line drawings. You are welcome to try it out and examine the coding. The origami

directions sketch might inspire you to think about a process you know that consists of

steps and decide what the best way is to convey each step: a drawing made dynamically,

an image, a video, or perhaps an audio file or something else.

Review previous examples and think about incorporating video clips, perhaps as an

initial, splash type of opening screen, or as a response to some action. Perhaps you can

make your chicken fly off if hit by the slingshot.

Finally, there are two steps that I decided needed to be shown using video. Figure 8-6

shows a frame from one of the two videos, showing how to operate the model.

Figure 8-6.  Video showing kissy fish in operation

Chapter 8 Combining Videos, Images, and Graphics

242

�What You Learned
This chapter introduces incorporating video into your sketches. The Movie object, or,

more precisely, a reference to the Movie object, was a variable in a class. The use of

classes and subclasses demonstrated the object-oriented approach that provides a way

to be consistent about what code can be shared and what must be different in dealing

with a set of things.

�What’s Next
The next chapter describes the implementation of the paper-and-pencil game,

Hangman. I provide two approaches. In one, the player enters letters by typing keys

on the keyboard. In the other, a button is provided for each letter. My intention is to

encourage you to realize that there generally are multiple ways to implement something

even as simple and familiar as this game. For my sketch, I make use of a very small word

list provided as a CSV file in the data folder. I can use some of my favorite words and

discuss scaling up.

Chapter 8 Combining Videos, Images, and Graphics

243
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0_9

CHAPTER 9

Hangman
The focus for this chapter is the paper-and-pencil game of Hangman. In Hangman, one

player decides on a word and writes out blanks for each letter. This player also makes

a start on the hanging progression by drawing a representation of a scaffold. The other

player attempts to guess the word, asking for one letter at a time. If a letter is in the word,

once or many times, the first player writes the letter on the appropriate blanks. If the

guessed letter is not in the secret word, the first player advances the hanging. Yes, this

grisly game is played by children and, more notably, parents and children. I played it

with my parents and I played it with my children. The computer program will take the

role of the first player, the one who chooses the secret word.

�More on the Sketches
Typical practices are to either write out the letters guessed or write out the

whole alphabet and cross out each letter as it is guessed. I decided to create two

implementations. The first one, shown in Figure 9-1, represents an implementation of

the game in which the player tries letters using the letters on the keyboard. Keeping track

of letters guessed is left to the player.

244

In the second implementation, I supply buttons for each letter and remove the

button once it has been used. To be fully accurate, my code covers up the button so it is

not visible and sets a Boolean variable to indicate that this button has been removed.

Figure 9-2 shows the window of the implementation using buttons for each letter.

This implementation does not let the player make the mistake of trying a letter not in the

secret word a second time, so this implementation changes the game. The existence of

these two implementations gives you a chance to think about what is the same and what

is different in the results and the implementations.

Figure 9-1.  Window with secret word, using keyboard

Chapter 9 Hangman

245

The secret words are chosen at random from a list contained in a CSV file in the data

folder. This gives me the opportunity to discuss scaling up a program after initial testing.

My word list has only five words. They are carefully chosen to include words that check

aspects of the programming and help me play the game while I am testing the program.

The word list can be replaced simply by changing the file in the data folder; no change is

required in the code. Not all scaling up operations are that simple.

�Programming Concepts
This section suggests things to think about when implementing a known application and

issues in testing. I also mention briefly the handling of strings of characters.

Figure 9-2.  Window with letter keys

Chapter 9 Hangman

246

�Implementing an Existing Application
Designing a known paper-and-pencil game can be more challenging than you might

expect. Similarly, it can be challenging to build a new implementation of something

that already exists in a computerized form. When you automate a manual task, or build

a new version of something already computerized, you need to evaluate and, perhaps,

trade off using the new capabilities vs. supplying your audience with what they expect. In

Chapter 8, I provided a brief overview of an example for directions for an origami model

making use of line drawings, images, and video. In this chapter, you will read about two

implementations of the simple, familiar Hangman game. The fact that I came up with

two implementations that produce games that are slightly different is not uncommon.

It would be useful to perform testing to see how people, including young children and

parents, react.

�Testing and Scaling Up
Building a computer application involves testing! For games and related activities,

you do not want to struggle with playing the game while building the game. My

implementation of both Hangman sketches made use of a word list supplied as a file in

the data folder. I did not need to wait to put together a final list while testing the logic of

either sketch. Instead, I made a list of five words. The number 5 does not appear in my

code. Instead, my code reads in the Table and constructs an array of String objects.

Besides being words that I like, the words I used are of different lengths so I know

immediately or after guessing one letter what the word is without modifying the code

that makes a random choice. Certain of the words have letters that appear more than

once, so I could verify that my code does the correct thing. I can be confident that my

sketches will work with the longer lists.

Testing might not be so easy; code might need to be modified. For example, in more

complex applications, I might want to replace a random choice to test specific logical

paths through the code. This is something to think about on a case-by-case basis. Bigger

and more complex systems, especially systems that change frequently, could require the

development of a testing suite or an automated system for testing, not requiring human

interaction.

Chapter 9 Hangman

247

I did not include a final wordlist in the code available with the source code, but I can

tell you my approach. I searched and found online lists that were supplied for spelling

bees for different grades. It was easy to download and convert such a list to a CSV file.

For each case, you might need to think about what is an appropriate source for the data.

It probably is not a list of your favorite words. You also should consider the alternative

of going to the Web for a new list each time you run the program. For Hangman, it might

not matter, but for other applications, you might want to be up-do-date.

For the Hangman sketches, my code extracts the words and prepares a String array.

The code does a lot of work at the start, when users generally are relatively patient as

opposed to taking a small amount of time for each game. If what you determine to be the

appropriate data source is very large, this might not be the proper decision.

Most, if not all, programming languages provide functions for examining and

manipulating strings of characters. You do need to check on what is available. You also

need to be careful about strings of characters vs. single characters.

�Processing Programming Features
The treatment of the word list is essentially the same as the data file kept and updated

in the image test sketch described in Chapter 5. One key difference is that the file is not

modified. My code brings in the file as a Table and then sets (populates) an array of

String objects in the setup function. My code also sets a variable, numwords, to hold the

number of words. Doing this once at the start saves a small amount of time later when

making the choice. The choice of word to be the secret word is done in the keyPressed

function and uses the random function.

Note T he number of elements in an array named myArray is myArray.
length. The number of characters in a string named myString is myString.
length(). The first length is a variable; the second is a method. To use entities
in this example, the number of words in the array wordlist is wordlist.
length. Because I set the variable numwords in setup, you won’t see this in the
program. The number of letters in the secret word, held in the variable secret,
is secret.length(). I set wlen to this value. Processing will catch errors you
might make regarding length and you will catch on. It is not something you
would be expected to work out for yourself.

Chapter 9 Hangman

248

Examination and manipulation of the secret word is done using built-in String

methods. The length method returns the length of the secret word, required to set the

variable blanks to a combination of the underline (_) and the blank characters. When

the player has made a guess, the method charAt is used within a for-loop that iterates

through each of the characters in the secret word. In one implementation, the for-loop

is in the keyPressed function; in the other, it is in the mousePressed function.

When the player guesses a letter that is in the secret word, the blanks String is

changed to show the guessed letter. My function is more general than it needs to be,

accepting as parameters a base String, parameter name base; a String representing

that to be inserted, parameter name sub; an integer indicating the place of the insertion,

parameter place; and an integer indicating the number of characters removed, parameter

remove. The function makes use of the substring String method. This method provides

a way to extract a piece of a string using index values. A call of substring(myString,a,b)

extracts the string from position a, with 0 corresponding to the first character, up to, but not

including b. This is another programming feature that you can and will get accustomed to

if you give yourself time. It also is helpful to try small examples.

Note also that the base here will be the blanks String, which has two

characters for every character in the secret word. The call of replace is blanks =

replace(blanks,letterpicked+" ",i*2,2);

The function is

String replace(String base,String sub,int place,int remove){

 String prior = base.substring(0,place); //before insert

 String after = base.substring(place+remove); //after

 return prior+sub+after;

}

Notice that the replace function does not change the base but returns the new string.

Chapter 9 Hangman

249

Figure 9-3.  Opening window for both implementations

�Hangman Sketches Operation Overview
Both Hangman sketches start with what is termed a splash window or screen, shown

in Figure 9-3. Having this extra window made it easier to program restarting with a new

secret word. Of course, an improved splash window could be more interesting, perhaps

showing a hint of the hanging.

Chapter 9 Hangman

250

Figure 9-4.  Hangman with buttons after several moves

You have seen what the next windows look like for the two implementations in

Figure 9-1 and Figure 9-2. Figure 9-4 shows a game in process. The player has correctly

guessed an m, but tried three other letters, resulting in the hanging progressing.

Chapter 9 Hangman

251

Switching to the game without buttons, the player has used the keyboard and lost the

game, although correctly picking three letters, as shown in Figure 9-5.

Figure 9-5.  A loss in the Hangman game with no buttons

Chapter 9 Hangman

252

Pressing any key starts a new game. I have nothing in the code that prevents the

same word from being selected during a session. It is something to consider adding to

the sketches. The longer the word list, though, the less likely that secret words

will be repeated often.

Figure 9-6.  A win in the Hangman game with buttons

Figure 9-6 shows a winning game.

Chapter 9 Hangman

253

If you have multiple windows open on your desktop and you move among the

different programs, you could have the experience of pressing a key for a program such

as these with no response. There are a lot of possibilities but there is a good chance that

the operating system is not sending the key event information to the program you want

to use. Your program needs to have the focus and some other program has it instead.

The focus will go to a program by clicking its window. This is common when users have

numerous applications open.

�Implementing the Hangman Sketches
The examples for this chapter do not require me to design an application, but instead

to think about how to represent the features of a known game. I decided to produce the

two implementations to demonstrate that there can be multiple possibilities in such

situations and to demonstrate different ways of obtaining input from a player.

�Planning
It was clear to me that I should make use of a file for the word list to make it independent

of the code and, therefore, easily changeable. For the Hangman sketches, my code loads

the file as a Table and then extracts the words to populate a String array.

The letter Button class for this chapter is a modification of the Button classes

used earlier in the text. I could have used the same Button class and defined a parallel

structure to hold the remove attribute, but decided that this was the better approach.

I liked my rectangular design for the single-character letter buttons better than the ovals

and I wanted to include the remove attribute with the other object variables.

The hanging progression is implemented using a select/case structure with each

case its own drawing. A variable nextStep will indicate the right case.

For the changing presentation of the secret word, I started off with a String variable,

named blanks, that consists of underlines and blanks. Using just blanks would not work

because they all run together. String methods are used both for examining the secret

word, held in the variable secret, and modifying the variable blanks.

The tables showing the functions and their relationships show the main differences

between the two implementations. Table 9-1 shows the functions and relationships for

the Hangman game using the keyboard, not buttons. It is, as you should expect, simpler.

The main action is in keyPressed. Actually, keyPressed is invoked for the key press that

starts off the application plus the game play.

Chapter 9 Hangman

254

The functions table for the Hangman game using letter buttons is shown in Table 9-2.

I do not include a row for the Button methods, but you can see where the methods are

invoked. You will see that several functions are invoked in only one place. Here keyPressed

is used for starting the application. The mousePressed function does the work during the

playing of the game.

Table 9-1.  Function Table for the Hangman Game with No Buttons

Function Invoked by Invokes

setup Java program

draw Java program

keyPressed Java program advanceHanging, replace

replace keyPressed

advanceHanging keyPressed

Table 9-2.  Functions Table for the Hangman Game with Buttons

Function Invoked by Invokes

setup Java program setupAlphabetButtons

draw Java program

keyPressed Java program advanceHanging, showButtons

replace keyPressed

advanceHanging keyPressed, mousePressed resetAlphabetButtons

setupAlphabetButtons setup Button

resetAlphabetButtons advanceHanging Changes Button.removed

showButtons keyPressed Button.display

whichLetter mousePressed Button.isOver

mousePressed Java program whichLetter, replace,

advanceHanging

Chapter 9 Hangman

255

�Programming the Hangman Sketches
The two sketches are substantially the same, differing only in the treatment of the letter

buttons. The code for the Hangman using the keyboard is shown in Table 9-3. It is long,

but as I have written before, do not read it from start to finish. Use the functions table

and examine individual lines of code.

Table 9-3.  Hangman Program

String[] wordlist; Will hold all the words

Table words; Table for loading in the words

int numWords; Set to be number of words

Boolean chosen = false; Will change when secret word is chosen

String secret; The current secret word

String blanks = ""; Will hold blanks, some of which are filled in

with correct guesses

int wlen; Length of secret word

int nGuessed; Number of correct guesses

String msg = "Press any key to start"; Starting message

int nextStep = 0; Position in the hanging progression

void setup() { Header for setup

size(1000,800); Set dimensions of window

words = loadTable("words.csv"); Bring in file

numWords = words.getRowCount(); Set number of words

wordlist = new String[numWords]; Create an array of the appropriate size

for (int i = 0;i<numWords;i++) { For loop to populate the array

wordlist[i] = words.getString(i,0); Extract word from Table

} Close for-loop

background(200); Erase and set color of window

} Close setup

(continued)

Chapter 9 Hangman

256

Table 9-3.  (continued)

void draw() { Header for draw; note that most of display

is done elsewhere

if (!chosen) { If no word chosen

fill(0); Set color for text to black

textSize(30); Set text size

text(msg,20,30); Output initial instructions

} Close if true

} Close draw

void keyPressed() { Header for keyPressed

if (!chosen) { Pick a new secret word

background(200); Erase screen

msg = "Press letter keys to guess

letters";

Set msg to be new message

text(msg,20,30); Display message

secret = wordlist[int(random(numWords))]; Pick secret word, random choice

wlen = secret.length(); Set the word length

chosen = true; Set chosen to true

blanks = ""; Initialize blanks to empty string

nGuessed = 0; Set number guessed to 0

nextStep = 0; Set place in hanging to 0

for (int i=0;i<wlen;i++) { for-loop to construct blanks

blanks = blanks + "_ "; Add an underscore and an empty character

} Close for-loop

fill(0); Just in case changed in advanceHanging,

set color to black; might not be necessary

text(blanks,30,100); Display blanks string

(continued)

Chapter 9 Hangman

257

Table 9-3.  (continued)

advanceHanging(); Go to advanceHanging to draw scaffold

} Close if !chosen

else { else

Boolean found = false; Initialize found to false

for (int i=0;i<wlen;i++){ Loop through whole word

if (secret.charAt(i)==key) { Check each letter in secret to the key just

typed

nGuessed++; If there is a match, increment nGuessed

found = true; Set found to true; this will be set to true

again whenever there are duplicate letters in

the word

blanks = replace(blanks,

key+" ",i*2,2);

Modify the blanks string

} Close the if key matches clause

} Close the for-loop

if (found) { If found now true

fill(200); Set fill to background color

noStroke(); Remove stroke

rect(0,60,width,80); Draw rectangle over where the blanks

string displayed

fill(0); Set fill to black

text(blanks,20,100); Output the new blanks screen

} Close if found

else { else

advanceHanging(); Advance the hanging

} Close the else clause

if (nGuessed>=wlen) { Check if guessed all the letters

(continued)

Chapter 9 Hangman

258

Table 9-3.  (continued)

noStroke(); Set noStroke

fill(200); Set fill to background color

rect(0,0,width,40); Erase the prior message

msg = "You won! Press any key

for new game";

Set a new msg

chosen = false; Set chosen to false

text(msg,20,30); Output new message

nGuessed = 0; Set nGuessed to 0 and

nextStep=0; nextStep to 0 to prepare for new round

} Close if nGuessed >= wLen

} Close else clause

} Close keyPressed

String replace(String base,String sub,

int place,int remove){

Header for replace

String prior = base.

substring(0,place);

Set prior to the first place characters of the

base

String after = base.

substring(place+remove);

Set after to the base string after

place+remove characters

return prior+sub+after; Combine and return prior +sub+after

} Close replace

void advanceHanging() { Header for advanceHanging

switch (nextStep) { Switch on nextStep, the variable holding

the current place

case 0: Initial drawing: the gallows

strokeWeight(6); Set thicker line for gallows

stroke(153,76,0); Brownish color for gallows

line(5,200,300,200); Bottom part

(continued)

Chapter 9 Hangman

259

Table 9-3.  (continued)

line(10,200, 10,600); Vertical

line(5,600,120,600); Top

break; Leave case

case 1: Head

stroke(0); Necessary because may be noStroke for

erasing blanks

strokeWeight(2); Set thickness of line

fill(255); White

ellipse(200,300,40,70); Head

break; Leave case

case 2: Body

stroke(0); Black

line(200,335,200,450); Vertical line

break; Leave case

case 3: Right arm

stroke(0); Black

line(200,350,240,380); Diagonal to the right

break; Leave case

case 4: Left arm

stroke(0); Black

line(200,350,160,380); Diagonal to the left

break; Leave case

case 5: Right leg

stroke(0); Black

line(200,450,220,550); Diagonal to the right

break; Leave case

(continued)

Chapter 9 Hangman

260

Table 9-3.  (continued)

case 6: Left leg

stroke(0); Black

line(200,450,180,550); Diagonal to the left

break; Leave case

case 7: noose; set up for restart

stroke(255,128,22); color for rope

line(180,200,200,330); Line from gallows

noFill(); Turn off fill

ellipse(200,340,30,10); Loop of noose

fill(255); Now set fill to white and

stroke(0); Set stroke to black

ellipse(200,300,40,70); Redo head

noStroke(); Turn off stroke

fill(200); Set to background color

rect(0,0,width,40); Erase prior message

msg = "You lost! Press any

key for new game";

Set new message

chosen = false; Set up for continuing

text(msg,20,30); Output msg

nGuessed = 0; Set for new round

nextStep=0; Set for new round

break; Leave case (not strictly necessary as this is

last case)

} Close switch statement

nextStep++; Increment nextStep

} Close advanceHanging

Chapter 9 Hangman

261

The program and description for the Hangman main coding with letter buttons is

shown in Table 9-4. I have not included the definition of the Button class. This is similar

to what you have seen in other chapters and you can examine the source code. Note the

similarities between the two Hangman programs.

Table 9-4.  Hangman with Buttons Program

String[] wordlist; Will hold all the words

Table words; Table for loading in the words

int numWords; Set to be number of words

Boolean chosen = false; Will change when secret word is chosen

String secret; The current secret word

String blanks = ""; Will hold blanks, some of which are filled

in with correct guesses

int wlen; Length of secret word

int nGuessed; Number of correct guesses

String msg = "Press any key to start"; Starting message

int nextStep = 0; Position in the hanging progression

Button[] buttons = {}; Will hold all the letter buttons

float padding = 8; Spacing around letters

void setup() { Header for setup

size(1000,800); Set dimensions of window

words = loadTable("words.csv"); Bring in file

numWords = words.getRowCount(); Set number of words

wordlist = new String[numWords]; Create an array of the appropriate size

for (int i = 0;i<numWords;i++) { For-loop to populate the array

wordlist[i] = words.getString(i,0); Extract word from Table

} Close for-loop

(continued)

Chapter 9 Hangman

262

Table 9-4.  (continued)

background(200); Erase and set color of window

setupAlphabetButtons(); Invoke function to make letter buttons

} Close setup

void setupAlphabetButtons() { Header for setupAlphabetButtons

String alphabet =

"abcdefghijklmnopqrstuvwxyz";

Alphabet

int startx = 20; Starting x position

int starty = 680; Starting y position

int buttonwidth = 26; Width

int buttonheight = 22; Height

int margin = 10; Space between buttons

int spacing = margin + buttonwidth; Total space

for (int i=0;i<alphabet.length();i++) { for-loop going through alphabet

Button b = new Button(startx+

i*spacing, starty,buttonwidth,

buttonheight,alphabet.charAt(i));

Invoke Button constructor

buttons = (Button[]) append

(buttons,b);

Add Button just created to buttons

} Close for-loop

} Close function

void resetAlphabetButtons() { Header for resetAlphabetButtons

for (int i=0;i<buttons.length;i++) { for-loop

buttons[i].removed = false; Set removed variable to false (initial

position)

} Close for-loop

} Close function

(continued)

Chapter 9 Hangman

263

Table 9-4.  (continued)

void showButtons() { Header for showButtons

for (int i=0;i<buttons.length;i++) { for-loop

buttons[i].display(); Display the buton

} Close for-loop

} Close function

char whichLetter (int x, int y) { Header for whichLetter

for (int i=0;i<buttons.length;i++) { for-loop

if (buttons[i].isOver(x,y)) { Is x, y over this button?

return (buttons[i].letter); If so, return the letter

} Close if

} Close for-loop

return ('?'); If control reaches here, return ?

} Close function

void draw() { Header for draw; note that most of

display is done elsewhere

if (!chosen) { If no word chosen

fill(0); Set color for text to black

textSize(30); Set text size

text(msg,20,30); Output initial instructions

} Close if true

} Close draw

void keyPressed() { Header for keyPressed

if (!chosen) { Need to pick a new secret word

background(200); Erase screen

msg = "Press letter keys to guess letters"; Set msg to be new message

(continued)

Chapter 9 Hangman

264

Table 9-4.  (continued)

text(msg,20,30); Display message

secret = wordlist[int

(random(numWords))];

Pick secret word, random choice

wlen = secret.length(); Set the word length

chosen = true; Set chosen to true

blanks = ""; Initialize blanks to empty string

nGuessed = 0; Set number guessed to 0

nextStep = 0; Set place in hanging to 0

for (int i=0;i<wlen;i++) { for-loop to construct blanks

blanks = blanks + "_ "; Add an underscore and an empty character

} Close for-loop

fill(0); Just in case changed in advanceHanging,

set color to black; might not be necessary

text(blanks,30,100); Display blanks string

advanceHanging(); Go to advanceHanging to draw scaffold

showButtons(); Invoke showButtons

} Close if !chosen

} Close keyPressed

void mousePressed() { Header for mousePressed

char letterpicked =

whichLetter(mouseX,mouseY);

Set letterpicked

if (letterpicked=='?') { return;} If ?, simply return; no action

Boolean found = false; Start found to be false

for (int i=0;i<wlen;i++){ for-loop, going through the secret word

if (secret.charAt(i)==letterpicked) { If this letter of secret is equal to the letter picked

nGuessed++; Increment number guessed

(continued)

Chapter 9 Hangman

265

Table 9-4.  (continued)

found = true; Set found to true; will be set multiple

times for multiple instances of a letter

blanks = replace(blanks,

letterpicked+" ",i*2,2);

Replace this letter in blanks

} Close if

} Close for-loop

if (found) { If found was set to true

fill(200); Set to background color

noStroke(); Turn off stroke

rect(0,60,width,80); Draw rectangle, erasing where blanks were

fill(0); Set color to black

text(blanks,20,100); Display blanks

} Close if (found)

else { else

advanceHanging(); Advance the hanging

} Close else

if (nGuessed>=wlen) { Check if done

noStroke(); Set noStroke

fill(200); Set color to background

rect(0,0,width,40); Erase old message

msg = "You won! Press any key

for new game";

Set new message

resetAlphabetButtons(); Prepare for new round; reset the buttons

chosen = false; Reset chosen

text(msg,20,30); Output the message

(continued)

Chapter 9 Hangman

266

Table 9-4.  (continued)

nGuessed = 0; Reset nGuessed

nextStep=0; Reset nextStep

} Close if

} Close mousePressed

String replace(String base,

String sub,int place,int remove){

Header for replace

String prior = base.substring(0,place); Set prior to the first place characters of

the base

String after = base.substring

(place+remove);

Set after to the base string after

place+remove characters

return prior+sub+after; Combine and return prior+sub+after

} Close replace

void advanceHanging() { Header for advanceHanging

switch (nextStep) { Switch on nextStep, the variable holding

the current place

case 0: Initial drawing: the gallows

strokeWeight(6); Set thicker line for gallows

stroke(153,76,0); Brownish color for gallows

line(5,200,300,200); Bottom part

line(10,200, 10,600); Vertical

line(5,600,120,600); Top

break; Leave case

case 1: Head

stroke(0); Necessary because might be noStroke for

erasing blanks

strokeWeight(2); Set thickness of line

(continued)

Chapter 9 Hangman

267

Table 9-4.  (continued)

fill(255); White

ellipse(200,300,40,70); Head

break; Leave case

case 2: Body

stroke(0); Black

line(200,335,200,450); Vertical line

break; Leave case

case 3: Right arm

stroke(0); Black

line(200,350,240,380); Diagonal to the right

break; Leave case

case 4: Left arm

stroke(0); Black

line(200,350,160,380); Diagonal to the left

break; Leave case

case 5: Right leg

stroke(0); Black

line(200,450,220,550); Diagonal to the right

break; Leave case

case 6: Left leg

stroke(0); Black

line(200,450,180,550); Diagonal to the left

break; Leave case

case 7: Noose; set up for restart

stroke(255,128,22); Color for rope

line(180,200,200,330); Line from gallows

(continued)

Chapter 9 Hangman

268

Table 9-4.  (continued)

noFill(); Turn off fill

ellipse(200,340,30,10); Loop of noose

fill(255); Now set fill to white and

stroke(0); Set stroke to black

ellipse(200,300,40,70); Redo head

noStroke(); Turn off stroke

fill(200); Set to background color

rect(0,0,width,40); Erase prior message

msg = "You lost! Press any key for

new game";

Set new message

resetAlphabetButtons(); Set up for next round; reset removed

attribute of buttons

chosen = false; Set for new round

text(msg,20,30); Output new message

nGuessed = 0; Set for new round

nextStep=-1; Set for new round

break; Leave case; not strictly necessary as this is

last case

} Close switch

nextStep++; Increment nextStep

} Close advanceHanging

�Things to Look Up
Look up String methods.

Depending on how complicated you want to make your drawings, you might want to

look up drawing possibilities, including curves and shapes.

Chapter 9 Hangman

269

�How to Make This Your Own
Make your own drawings for the hanging progression. You even can make it something

besides hanging.

Do the research to find suitable word lists online. You might want to use the URL

method of bringing in the file or files.

For the implementation using the keyboard, show the letters of the alphabet that

have been played.

Keep score over one session using global variables, or update a CSV file kept in the

data folder.

Define levels of play that access different word lists and have different hanging

progressions.

Create or acquire suitable video clips or audio clips to play on a win or a loss.

Move on to other guessing games. Invent your own.

�What You Learned
In this chapter, you saw another use of a CSV file and two different ways to support

player input: the keyboard and letter buttons. The fact that how to implement a familiar

paper-and-pencil game is not obvious is more common than you might imagine. You

saw manipulation of String objects and simple drawing. The letter Button class is

similar, although not identical, to the Button class used in previous chapters.

�What’s Next
The next and final chapter is an introduction to drawing in 3D. Working in 3D is a

challenge. Doing your own experimenting will help your understanding. Both featured

examples show the use of 2D images with 3D objects. One example shows a ball,

wrapped in a 2D image, apparently rolling around in 3D. The other example will include

an explanation of how to detect when a specified time has elapsed. The source code

includes extra examples.

Chapter 9 Hangman

271
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0_10

CHAPTER 10

3D
This last chapter is an introduction to the 3D capabilities of Processing. Just as

Processing provides ways to draw in the plane, we can build a sketch with objects that

are rendered in space; that is, three dimensions. It is important to recall that once things

have been drawn in the Processing window, any notion of how the pixels were colored

is not maintained. That is why the coding has to keep track of food items and snake

segments and rock, slingshot, and chicken, drawing them again as required. Processing

does not provide a 3D modeling system, but the facilities provide considerable power.

With that in mind, in this chapter, we’ll review and work with two 3D sketches.

The first is an animation in which a ball wrapped in the Spanish flag rolls around a

wading pool at the Alhambra (Figure 10-1).

272

Figure 10-1.  Ball with Spanish flag rolling around Alhambra

Chapter 10 3D

273

The second example is a cube, with pairs of photos of Annika’s dance recital on

opposing sides (Figure 10-2). The cube can be rotated and builds on a sketch described in

the Processing documentation. This can be fully appreciated only by running the program.

Figure 10-2.  Rotating cube

Chapter 10 3D

274

As with everything in programming, it is essential for your understanding that

you experiment: Copy the simple sketches in the documentation and make changes,

download or copy the examples in this book and make changes, and create your own

sketches. I include extra sketches with the source code. See later in the chapter for screen

shots of a dreidel (a top that spins and slows down) and a representation of the solar

system, with nine planets rotating round the sun, including Pluto, although that makes

for an even greater challenge.

�Programming Concepts
Representation of 3D on the flat computer screen requires what is termed rendering.

The 3D objects in Processing and most all 3D tools are collections of flat faces, in certain

contexts called facets, made up of edges and vertices (corners) and information on what

is the inside vs. the outside of the object. The locations of the vertices are specified

using three values for the x, y, and z axes, analogous to x and y coordinates for 2D. In

Processing, the standard orientation for the z axis is coming out of the plane of the

screen. That is, values for the z dimension increase moving toward us; the default zero z

position is at the screen; and values are more negative moving away from us. Although I

could, with confidence, make the statement that most programming tools use the origin

in the upper left corner, the upside-down arrangement that Processing uses for 2D work,

3D tools differ on the orientation of the three dimensions. Processing uses a left-handed

coordinate system, whereas some languages and tools use a right-handed coordinate

system.

The task of the renderer is to determine how the object is projected onto the screen

to be viewed by the user. This often involves calculating when all or portions of edges

and faces are blocked by other faces. This is known as the hidden line or hidden surface

removal problem. The calculations use the eye, gaze location (the point in space that

the eye is looking at), type of projection (standard perspective or something else), and,

sometimes, lighting. Default settings mean that programmers might not need to specify

everything to produce results.

Processing and other tools provide a set of primitive 3D shapes along with ways

for programmers to construct their own shapes. Spheres are provided as faceted

polyhedrons, with the standard setting providing so many facets that they appear round

to us. Transformations, such as shown in 2D, are provided.

Chapter 10 3D

275

�Processing Programming Features
The first piece of code that signals to Processing that we want to use 3D is the size

statement. The line size(500,740,P3D); specifies the dimensions of the Processing

window and indicates use of the 3D renderer. Processing provides two 3D primitives,

sphere and box. The sphere takes one parameter, the radius of the sphere. The box takes

one or three parameters; using one produces a cube and using three specifies the three

sizes of the three dimensions of the box. The location of the sphere or the box is at the

current origin of the coordinate system, which starts in the upper left corner. The result

of the following sketch is shown in Figure 10-3.

void setup() {

 size(800,600,P3D);

 sphere(200);

}

Figure 10-3.  Sphere drawn at origin in upper left

Chapter 10 3D

276

I have more to say about the sphere, but first, let’s take the common first step of

moving the origin to the center of the window.

void setup() {

 size(800,600,P3D);

 translate(width/2, height/2, 0);

 sphere(200);

}

The code has changed the original origin in the x and y dimensions, but not in z

dimensions. This demonstrates the critical aspect of 3D in Processing: Drawing is done

by setting the origin.

The lines on the sphere mark the facet lines (Figure 10-4). This is a polyhedron with

many flat sides, enough to fool our eye into seeing a sphere. The lines are governed by

the setting of stroke and the interior of the faces by the setting of fill.

Figure 10-4.  Sphere at translated origin

Chapter 10 3D

277

Other transformations, such as rotateX, rotateY, rotateZ, and scale change what

we see in the window. The use of scale can change a sphere into an ellipsoid with

different dimensions. You can change the number of facets using sphereDetail and you

can turn off seeing the facets using noStroke. This also removes all edges, which might

or might not be what you want.

My next example demonstrates the use of the camera function along with fill and

noFill. The first step is to write the setup function and include a call to noFill. The draw

function erases the window, as you have seen many times before, and invokes translate

to move the drawings to the center of the window. The effects of translate and any

other transformation go away after each call of draw, and must be repeated.

Using noFill will show you so-called wire frame objects. There is no hidden line

removal; all we see are the edges. The following code for setup and draw draws two

boxes.

void setup() {

 size(800,600,P3D);

 noFill();

}

void draw() {

 background(200);

 translate(width/2,height/2,0);

 box(30);

 box(100,150,200);

}

This code produces what is shown in Figure 10-5. The two boxes are not obvious.

Consider the inner square: If I held up a fully 3D cube right in front of one eye and you

closed the other eye, you would see a square, not a cube.

Chapter 10 3D

278

Now, I show a definition for mouseDragged in which I use the camera function to

change the position of the eye to be the current mouse coordinates on the window. You

are familiar with providing code for the mouse event functions and making use of mouseX

and mouseY. I do not change the other values controlled by the camera function. More

accurately, I restate the default values. These include the z location of the eye, the gaze

point, and the orientation. My one-eyed camera person is not tilting his or her head.

void mouseDragged() {

 �camera(mouseX, mouseY, (height/2.0) / tan(PI*30.0 / 180.0), width/2.0,

height/2.0, 0, 0, 1, 0);

}

Figure 10-5.  Box within a box

Chapter 10 3D

279

Providing this capability for interaction means that the user gets a much greater

sense of the 3D nature of the drawing. Figure 10-6 shows the box within box drawing

with the only change being the modified eye position.

Figure 10-6.  Changed window after mouse dragging

Finally, I decided I wanted to toggle back and forth between having fill and not

having fill; that is, hidden lines removed vs. wire frame. To do this, I declared a global

variable noFillB and wrote a keyPressed function.

boolean noFillB = true;

void keyPressed() {

 if (noFillB) {

 fill(255);

Chapter 10 3D

280

 noFillB = false;

 }

 else {

 noFill();

 noFillB = true;

 }

}

Figure 10-7 shows what we would consider a 3D object in space. The fill has been

turned back on. The inner box is completely hidden along with three edges of the

outer box.

Figure 10-7.  Hidden lines removed

Chapter 10 3D

281

Processing provides texture facilities to put images on 3D shapes. The

documentation provides examples of making a 2D map of the world the texture on the

sphere. For the rolling ball example, I decided to use the Spanish flag. The first step is to

declare a global variable of type PShape.

PShape ball;

Create the shape in the setup function:

PImage design = loadImage("flag.png");

ball = createShape(SPHERE,10);

ball.setTexture(design);

To draw the shape in the window at the current origin, I use

shape(ball);

Recall the hexagons drawn as part of the origami model in Chapter 6. Processing

provides a way to create custom shapes in 3D as well as 2D. The vertices are specified

using three numbers. It is possible to set the fill for these shapes, as demonstrated by the

following code that I have taken from my dreidel example (look ahead to Figure 10-10).

The code here, all in setup, draws four triangular sides for the base of the top. Figure 10-8

shows a screen shot. Notice that the vertex mentioned first in the set of vertices starting

with beginShape and ending with endShape repeats to close the shape.

void setup() {

 size (600,600,P3D);

 translate(width/2, height/2,0);

 noStroke();

 scale(100);

 fill(100,100,0);

 //bottom triangle from each of the 4 sides to center point

 beginShape();

 vertex(-1,1,1);

 vertex(-1,1,-1);

 vertex(0,2,0);

 vertex(-1,1,1);

 endShape(CLOSE);

 fill(100,0,0);

Chapter 10 3D

282

 beginShape();

 vertex(1,1,1);

 vertex(1,1,-1);

 vertex(0,2,0);

 vertex(1,1,1);

 endShape(CLOSE);

 fill(0,100,0);

 beginShape();

 vertex(-1,1,-1);

 vertex(1,1,-1);

 vertex(0,2,0);

 vertex(-1,1,-1);

 endShape(CLOSE);

 fill(0,0,100);

 beginShape();

 vertex(-1,1,1);

 vertex(1,1,1);

 vertex(0,2,0);

 vertex(-1,1,1);

 endShape(CLOSE);

}

Chapter 10 3D

283

Figure 10-8.  3D shape, colored using fill

The code for the dreidel base applied colors using fill in the standard way. An

alternative is to put what is called texture on a 3D shape by specifying the position in

space of the 3D object and the corresponding position in a 2D image. This requires five

numbers. Following the example in the Textured Cube in the Processing documentation,

I use the technique of specifying the vertices using unit values and scale the object to be

bigger using the scale function. You will find the entire sketch code in the “Program”

section for the rotating cube example.

Chapter 10 3D

284

Processing also provides ways of specifying lighting for the scene. It appears that just

using the single statement lights(); does improve the look of many sketches involving

3D. The statement must be in the draw function or some other function invoked for each

frame, because the settings are reset at each invocation of draw.

I urge you to experiment with the primitives and transformations. I do caution you to

proceed at a slow pace, though, as I did in the example with the two boxes. If you change

where an object is located and change one or more of the camera parameters and apply

rotations, it will not be easy to understand what is going on. If an object such as a sphere

is very small, it might appear as a black ball as opposed to a faceted sphere. Making a

snowman is a good place to start. You can find a snowman consisting of three spheres

and a snowman on a box in the source code. The facets produce a crystal-like effect that

fits the idea of a snowman.

�Under the Covers
The rendering of 3D scenes into output on the 2D display is called the 3D graphics

rendering pipeline. Today, much of the computation is done using special graphics

processing units (GPUs) with much parallel computation. The increase in computer

speed over the years has been considerable, but the demands from the gaming and

movie industries also have increased, so this still is an area of research and development.

�Rolling Ball at Alhambra Operation Overview
In the first sketch, the ball rolls down the left side, across the back, up the right side,

and then goes back down the right side, across the back from right to left, and up on

the left side (Figure 10-1). I do call this a cheap trick: The background is a 2D image

from a postcard that I purchased at the Alhambra in Granada, Spain. The ball uses the

Processing texture feature to appear to be wrapped in the Spanish flag. The 3D space is

superimposed on the background.

The rolling ball at the Alhambra starts in motion. Pressing any key toggles back

and forth between stopping and starting. The stop-and-start feature was added later by

declaring a global variable, moving, and putting all the coding in the draw function within

an if (moving) statement. After I did this, it was much easier for me to produce a screen

shot of the sketch with the Spanish flag displayed as I wanted.

Chapter 10 3D

285

�Implementing the Rolling Ball at Alhambra
Having been to the Alhambra and possessing the postcard, I decided to produce a sketch

that superimposes movement of a ball against the picture. The program just grew after

that, with wrapping the ball in the Spanish flag to show the rotating and providing the

stop-and-start feature.

�Planning
The first task for the rolling ball was to determine the turning points and this was done

by trial and error. I wrote a sketch that made the postcard picture the background and

then drew a sphere at each guessed location. This was an instance of what is termed

throw-away code, and you need to be willing to do it. The next task was developing the

movement back and forth over the three sides of the reflecting pool. I realized that the

coordinates change in z or x. More exactly, the change is decreasing in z, then increasing

in x, then increasing in z, then (turning around) decreasing in z, decreasing in x, and

increasing in z. I was satisfied with this as an adequate example for my classes. However,

when I was writing this book, I decided to do more.

Moving an object in 3D in Processing requires resetting of the origin. If the origin

of a sphere is the center, then rotating the sphere on itself is easy once I decide along

which axis I want to do the rotation. This creates a new challenge: My code can rotate

the sphere, but how to make it visible that the ball is rotating if it is simply a sphere? The

answer is to put something on the sphere using the texture facilities.

I came to the realization that the path was made up of six segments, not three: going

down the left side, across from left to right at the back, coming up the right side, going

down the right side, across from right to left at the back, and coming up the left side.

I used a switch statement in a function I named rotateAndDraw to handle the cases

corresponding to the segments.

I put in the stop-and-start facility to give the user something to do, but then I became

a happy user because, as I have said, it made it easier to get the screen shot I wanted. My

first thought was to use noLoop to stop the action, but decided that a Boolean would be

better. The relationship of the functions is shown in Table 10-1.

Chapter 10 3D

286

Table 10-2.  Program for Rolling Ball

PImage bg; This is the image from the postcard showing the

Alhambra

float x,y,z; Used to indicate the parameters of translate to

position the origin to draw the ball

float xstart = 150; The leftmost x position

float xend = 330; The rightmost x position

float ylevel = 400; The constant y level; that is, the height

float zstart = -50; The farthest away z position

float zend = 450; The closest z position

boolean forward = true; Indicating forward motion or not

(continued)

Table 10-1.  Function Table for Rolling Ball

Function Invoked by Invokes

setup Underlying Java program

draw Underlying Java program forwardtravel,

backwardtravel

forwardtravel draw rotateAndDraw

backwardtravel draw rotateAndDraw

keyPressed Underlying Java program

�Programming the Rolling Ball at Alhambra
The global variables include the values defining the turning points, Boolean (true–false)

values, often called flags, the PImage for the background and the PShape for the ball, and

the message giving instructions. I note that forwardtravel and backwardtravel could

have been part of draw, but this way made sense to me. Table 10-2 shows the code.

Chapter 10 3D

287

Table 10-2.  (continued)

float a=0; The a stands for angle; this is used for rotating the

ball, initialized to 0

PShape ball; Will hold the ball, with its texture

boolean moving = true; Used to indicate movement or not

String msg = "Press any key to

stop or restart.";

Instructions

void setup() { Header for setup

size(500,740,P3D); Set dimension of window and 3D

noStroke(); Turn off stroke

sphereDetail(15); Set the amount of detail (faceting)

bg = loadImage("alhambra.jpg"); Load postcard image

PImage design = loadImage

("flag.png");

Load Spanish flag image

ball = createShape(SPHERE,10); Create a shape

ball.setTexture(design); Give it texture; that is, wrap the flag around the sphere

background(bg); Set initial background

x = xstart; Initialize x

y = ylevel; Initialize y

z = zend; Initialize z

textSize(20); Set text size for instructions

} Close setup

void draw() { Header for draw

if (moving) { Only do something if moving is true

background(bg); Erase the window and redraw background

fill(0); Set color for clearing bottom of image

rect(0,700,500,40); Draw black rectangle

(continued)

Chapter 10 3D

288

Table 10-2.  (continued)

fill(250,0,0); Set color for instructions message

text(msg,100,720); Output instructions

lights(); Set lights

if (forward) { If forward

forwardtravel(); Invoke forwardtravel

} Close clause

else { else

backwardtravel(); Invoke backwardtravel

} Close clause

} Close the if (moving) clause

} Close draw

void forwardtravel() { Header for forwardtravel

if ((z>zstart)&&(x==xstart)) { Check if at first segment

z--; Decrement z (move away)

rotateAndDraw(1); Invoke rotateAndDraw with parameter 1

} Close clause

else { if (x<xend) { Check if at segment at back

x++; Increment x

rotateAndDraw(2); Invoke rotateAndDraw with parameter 2

} Close clause

else { z++; Increment z (move toward viewer)

rotateAndDraw(3); Invoke rotateAndDraw with parameter 3

if (z>zend) {forward = false;}; If at the end, set forward to false

} Close clause

} Close clause

} Clause forwardtravel

(continued)

Chapter 10 3D

289

Table 10-2.  (continued)

void backwardtravel() { Header for backwardtravel

if ((z>zstart)&&(x>=xend)) { If at fourth segment

z--; Decrement z

rotateAndDraw(4); Invoke rotateAndDraw with parameter 4

} Close clause

else { if (x>xstart) { If in back segment

x--; Decrement x (move to the left)

rotateAndDraw(5); Invoke rotateAndDraw with parameter 5

} Close clause

else { z++; Increment z, now moving toward viewer

rotateAndDraw(6); Invoke rotateAndDraw with parameter 6

if (z>zend) {forward = true;}; If at end, set forward to true

} Close clause

} Close clause

} Close backwardtravel

void rotateAndDraw(int p) { Header for rotateAndDraw; parameter will indicate

the segment and therefore what gets rotated and

positively or negatively

a=a+PI/10; Increment a (the angle)

translate(x,y,z); Position origin at x,y,z; these have been set

previously

switch(p) { Switch on the parameter

case 1: First segment, going down the left

rotateX(a); Rotate around x axis

break; Leave switch

(continued)

Chapter 10 3D

290

Table 10-2.  (continued)

case 2: Second segment, going from left to right at the back

rotateZ(a); Rotate around z axis

break; Leave switch

case 3: Third segment, coming up the right

rotateX(-a); Rotate around x axis, negatively

break; Leave switch

case 4: Fourth segment, going back down the right, away from

viewer

rotateX(a); Rotate around x axis

break; Leave switch

case 5: Fifth segment, going at the back right to left

rotateZ(-a); Rotate around z axis, negatively

break; Leave switch

case 6: Sixth segment, coming back up the left side

rotateX(-a); Rotate around x axis, negatively

break; Leave switch

} Close switch

shape(ball); Draw the ball

} Close rotateAndDraw

void keyPressed() { Header for keyPressed

moving = !moving; Toggle the moving Boolean; using !, which is logical

not, changes true to false and false to true

} Close keyPressed

Chapter 10 3D

291

�Rotating Cube Operation Overview
The example, shown in Figure 10-2, is based on the Textured Cube described in the

Processing documentation. I emphasize again that the sketch needs to be run to be

appreciated. The user can rotate the cube using the mouse. Note that dragging the

mouse to the right or left causes the cube to be rotated around the y axis. Dragging the

mouse up or down the screen causes the cube to be rotated around the x axis. If the

mouse is dragged diagonally, it is rotated along both axes.

I made the addition of having the cube rotate by itself after no action by the user

after a specified amount of time. This is a nice, although perhaps creepy effect, and it

demonstrates a technique for handling the event of nothing happening.

�Implementing the Rotating Cube
I include this as one of the featured examples because of my addition and because

I felt it merited extra attention beyond what was provided in the documentation.

The main Processing feature demonstrated is applying texture, in the form of images,

to faces of a cube.

�Planning
I decided to use three images for texture, each for the pair of opposing sides of the cube.

Following the TexturedCube example, applying a texture (i.e., an image) to a portion

of a 3D shape can be done using unit measurements as opposed to the exact pixel

dimensions to relate a set of 3D coordinates (three numbers) to a set of 2D coordinates

(two numbers). Each face of the cube is associated with one of the three images.

Two global variables are set up to hold the amount of rotation around the x axis

(rotx) and the rotation around the y axis (roty). These values are set in one of two ways.

If the user drags the mouse, the mouseDragged function is invoked. The calculation is

done to set rotx using the difference between the previous x coordinate of the mouse,

held in pmouseY, and the current x coordinate, held in mouseY. The calculation for roty is

the difference between mouseX and pmouseY. Here is the code:

void mouseDragged() {

 float rate = 0.01;

 last = millis();

Chapter 10 3D

292

 rotx += (pmouseY-mouseY) * rate;

 roty += (mouseX-pmouseX) * rate;

}

A horizontal (x) movement will set off a rotation around the y axis and vertical

(y) movement will set off a rotation around the x axis. The expressions involving the

previous mouse positions are different because of the upside-down coordinate system.

Do not take my word for this. Change mouseDragged and move the mouse and see what

seems correct to you.

The rate variable determines how much moves of the mouse affect rotations. You

can experiment with the value. Do keep in mind that the mouseDragged function is called

at every frame, so you don’t want small moves to lead to big rotations.

The line with millis relates to the second way the rotation variables are set. You

can go back to Chapter 5 and review how a pause is implemented in the image test

sketch. In the rotating cube example in this chapter, the rotation variables are set if the

user does not do anything for a specified amount of time. The specified amount of time

is held in the variable interval. The millis function returns the time in milliseconds

since the sketch is started. The global variable last is set in setup to the value returned

by millis()and in mouseDragged. In the draw function, the following if statement

determines if enough time has elapsed since the user did something.

if ((millis()-last) > interval) {

 setRotation();

 }

In English, the condition in the if statement asks if the difference between current

time and the last time something happened is greater than interval. The setRotation

function is the following:

 void setRotation() {

 rotx += PI/400;

 roty += PI/400;

 }

I could have put these two statements in the if clause, but I generally favor defining

functions for distinct tasks.

Chapter 10 3D

293

To produce the cube, I modified the function in the Processing documentation in

two ways. I gave the function three parameters for the three sets of opposite sides of

the cube. Then I used beginShape(QUADS) and endShape() three times, referencing

a different one of the parameters each time. I used the approach of defining the cube

as occupying the space from -1 to 1 along the x axis, -1 to 1 along the y axis, and -1 to 1

along the z axis. The vertices of the images are indicated by (0,0), (1,0), (1,1), and (0,1).

It is important to note two things. First, this is a very tiny cube. The reason we can see it

is that there is a call to scale(200) before the TextureCube function is invoked. Second,

there is some distortion of the images I use for this because they are not squares.

The function table for rotating cube is shown in Table 10-3.

Table 10-3.  Function Table for Rotating Cube

Function Invoked by Invokes

setup Underlying Java program

draw Underlying Java program setRotation, TexturedCube

mouseDragged Underlying Java program

setRotation draw

TexturedCube draw

�Programming the Rotating Cube
In Table 10-4, you will find the code for this sketch. I did copy the vertex calls in the

TexturedCube function from the Processing documentation, but I did do my own

fiddling around to convince myself they were correct. I suggest you do your own

experimentation. You might end up making the images applied as textures be mirror

images some of the time.

Chapter 10 3D

294

Table 10-4.  Program of Rotating Cube

PImage frog, flowers, makeup; For the three images

float rotx = PI/4; Initial rotation around x axis

float roty = PI/4; Initial rotation around y axis

int last; Hold time last thing was done

int interval = 6000; Amount of wait before rotation “by itself”

void setup() { Header for setup

size(1000, 1000, P3D); Set dimensions of window and set up for 3D

frog = loadImage("AnnikaFrog.JPG"); Load frog image

flowers = loadImage("AnnikaFlowers.

JPG");

Load flowers image

makeup = loadImage("AnnikaMakeup.

jpg");

Load makeup image

textureMode(NORMAL); Set normal texture mode

last = millis(); Initial setting of last

} Close setup

void draw() { Header for draw

background(0); Erase window

textSize(20); Set the text size

�text("Drag using mouse anywhere on

screen to rotate cube. If no action,

cube will rotate by itself.", 17,14);

Give instructions

noStroke(); No stroke

translate(width/2.0, height/2.0, -100); Move origin to center and back away from viewer

if ((millis()-last) > interval) { Has there been nothing happening for a long

enough time?

setRotation(); Set the rotations

(continued)

Chapter 10 3D

295

Table 10-4.  (continued)

} Close if clause

rotateX(rotx); Rotate around x whatever rotx is

rotateY(roty); Rotate around y whatever roty is

scale(200); Scale up (because cube defined is tiny)

TexturedCube(frog,flowers,makeup); Invoke TexturedCube to draw the cube with

the images

} Close draw

void setRotation() { Header for setRotation

rotx += PI/400; Increment rotx

roty += PI/400; Increment roty

} Close setRotation

void TexturedCube(PImage tex1,

PImage tex2, PImage tex3) {

Header for TexturedCube; the parameters are

the three images for opposing sides of the cube;

the cube is 2 pixels by 2 pixels by 2 pixels

beginShape(QUADS); Begin a shape, using the QUADS parameter

indicating how the images will be applied

texture(tex1); Use the first image; it will be applied to the faces

of the cube that are at z equal to 1 and -1; these

are the front face and the back face

vertex(-1, -1,1, 0, 0); Connect the corners of the face to the corners

of the image; the upper left corner of the face is

connected to the top left corner of the image

vertex(1, -1,1, 1, 0); The upper right corner of the face is connected

to the top right corner of the image

vertex(1,1,1, 1, 1); The bottom right corner of the face is connected

to the bottom right corner of the image

vertex(-1,1,1, 0, 1); The bottom left corner of the face is connected to

the bottom left corner of the image

(continued)

Chapter 10 3D

296

Table 10-4.  (continued)

This still uses tex1; now applied to the back

face; the x and y specifications will be opposite

the previous set of images to display the images

correctly

vertex(1, -1, -1, 0, 0); Connect the corners of the face to the corners of

the image; the upper right corner of the face is

connected to the top left corner of the image

vertex(-1, -1, -1, 1, 0); The upper left corner of the face is connected to

the top right corner of the image

vertex(-1,1, -1, 1, 1); The bottom left corner of the face is connected to

the bottom right corner of the image

vertex(1,1, -1, 0, 1); The bottom right corner of the face is connected

to the bottom left corner of the image

endShape(); End the shape assigning the image as texture in

two parts, for the two opposing faces

beginShape(QUADS); Begin a shape, using the QUADS parameter

indicating how the images will be applied

texture(tex2); Use the second image; it will be applied to the

faces of the cube that are at y equal to -1 and 1;

these are the top face and the bottom face

vertex(-1, -1, -1, 0, 0); Now the coordinate that stays the same is the

y coordinate for the cube; it is at -1 for the first

four (the top face) and then will be at 1 for the

next four; the cube face, corner at -1, -1, -1

is associated with the image corner at 0,0

vertex(1, -1, -1, 1, 0); The cube face, corner at 1, -1, -1 is

associated with the image corner at 1,0

vertex(1, -1,1, 1, 1); The cube face, corner at 1, -1,1 is associated

with the image corner at 1,1

(continued)

Chapter 10 3D

297

Table 10-4.  (continued)

vertex(-1, -1,1, 0, 1); The cube face, corner at -1, -1,1 is associated

with the image corner at 0,1

Using the same image, tex2, the next four

vertices describe the bottom face

vertex(-1,1,1, 0, 0); The cube face, corner at -1,1,1 is associated

with the image corner at 0,0

vertex(1,1,1, 1, 0); The cube face, corner at 1,1,1 is associated

with the image corner at 1,0

vertex(1,1, -1, 1, 1); The cube face, corner at 1,1,-1 is associated

with the image corner at 1,1

vertex(-1,1, -1, 0, 1); The cube face, corner at -1,1,-1 is associated

with the image corner at 0,1

endShape(); End the shape

beginShape(QUADS); Begin a shape, using the QUADS parameter,

indicating how the images will be applied

texture(tex3); Use the third image; it will be applied to the

faces of the cube that are at x equal to -1 and 1;

these are the left and right faces.

vertex(-1, -1, -1, 0, 0); Now the coordinate that stays the same is the

x coordinate for the cube; it is at -1 for the first

four (the left face) and then will be at 1 for the

next four; the cube face, corner at -1,-1,-1 is

associated with the image corner at 0,0

vertex(-1, -1,1, 1, 0); The cube face, corner at -1,-1,1 is associated

with the image corner at 1,0

vertex(-1,1,1, 1, 1); The cube face, corner at -1,1,1 is associated

with the image corner at 1,1

vertex(-1,1, -1, 0, 1); The cube face, corner at -1,1,-1 is associated

with the image corner at 0,1

(continued)

Chapter 10 3D

298

�Things to Look Up
The Processing documentation provides a basic tutorial on 3D at https://processing.

org/tutorials/p3d/. It includes a description of what it means to be a left-handed

coordinate system and the diagram shown in Figure 10-9.

Table 10-4.  (continued)

Using the same image, tex3, the next four

vertices describe the right face

vertex(1, -1,1, 0, 0); The cube face, corner at 1,-1,1 is associated

with the image corner at 0,0

vertex(1, -1, -1, 1, 0); The cube face, corner at 1,-1,-1 is associated

with the image corner at 1,0

vertex(1,1, -1, 1, 1); The cube face, corner at 1,1,-1 is associated

with the image corner at 1,1

vertex(1,1,1, 0, 1); The cube face, corner at 1,1,1 is associated

with the image corner at 0,1

endShape(); End the shape

}

void mouseDragged() { Header for mouseDragged

float rate = 0.01; Used to scale the change in mouse positions

last = millis(); Set last to indicate time when something

happened

rotx += (pmouseY-mouseY) * rate; Increment rotx

roty += (mouseX-pmouseX) * rate; Increment roty

} Close mouseDragged

Chapter 10 3D

https://processing.org/tutorials/p3d/
https://processing.org/tutorials/p3d/

299

You will become comfortable with the coordinate system if and when you build on

my examples and examples in the Processing documentation and when you design and

build your own projects.

Investigate how to make custom shapes and how to apply textures. Review the

use of transformations, especially using scale after creating a custom shape using unit

dimensions.

Proceed slowly and study the different ways to use the camera function to change the

various parameters for calculating the display and how to specify the different ways of

lighting. At the risk of repeating myself, proceed step by step. If you change shapes and make

transformations and change camera parameters all at once, you probably will get confused.

�How to Make This Your Own
You certainly can do your own cheap tricks, making objects move against interesting flat

backgrounds. You can use your own pictures for textures on rotating cubes or give the

user the option to use images on the local computer or on the Web.

A good next challenge would be bouncing things in a five-sided box. You can decide

if there is an invisible sixth side. Another challenge would be a shooter game, perhaps a

version of slingshot.

Figure 10-9.  Orientation of x, y, and z axes

Chapter 10 3D

300

One addition for the rotating cube could provide users a way to upload images from

their own local computer. See Chapter 7 for background on how to do this.

I have provided extra examples in the source code section. These include a simple

snowman consisting of just three spheres, the simple snowman on a box, the original

rolling ball around the Alhambra, a dreidel, and a (crude) solar system.

The dreidel is shown in Figure 10-10. During Hanukkah, people play a gambling

game. The player spins the dreidel, a top with four Hebrew letters. When it stops, the

letter determines if the spinner takes the whole pot (often Hanukkah gelt, or foil-covered

chocolate candy), half the pot, puts in one, or does nothing. In my sketch, the dreidel,

made up of textured and colored 3D parts, spins and slows down after a random amount

of rotation. There is an adjustment at the end so the final letter is facing directly forward,

although I also print the result to the console. Spinning can be restarted using any key and

the mouse can be used to rotate the spinning or stationary dreidel around the x or y axes.

Figure 10-10.  Dreidel (spinning top)

Chapter 10 3D

301

A student insisted that I include Pluto in a sketch of the solar system. This is fine

because of the challenge of depicting the Pluto object revolving in a different plane.

However, Pluto is very small relative to the other planets. The planets depicted are only

very roughly proportional, with Pluto being the most out of proportion. A screenshot is

shown in Figure 10-11.

Figure 10-11.  Solar system (planets not in proportion)

�What You Learned
This chapter was an introduction to 3D using Processing. You learned about the 3D

coordinate system and transformations such as translations and rotations. You learned

about the 3D primitives, applying texture, and creating custom 3D shapes. Objects are

positioned by transformations of the coordinate system. What you learned to do in 2D

can apply to the 3D domain. This applies to the mouseDragged event and the mouseX,

mouseY, pmouseX, and pmouseY variables and using millis to insert a wait for something

to happen.

Chapter 10 3D

302

�What’s Next
This is the last chapter! I hope this book was a satisfactory introduction to programming

and the Processing language and it made you want to create your own sketches.

In the Appendix, I describe ProcessingJS, a companion project by the Processing

development community to provide a way to publish (disseminate) Processing sketches

on the Web. I use two examples. The first is a coin toss type of application, alternating

between two photos taken when we were in the Wall Street area in New York City. The

second is a 3D helix that can be rotated just as the cube is rotated.

Chapter 10 3D

303
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0

APPENDIX A

�Publishing on the Web

Note  This appendix assumes some knowledge of HTML and JavaScript,
or at least a willingness to be adventurous. The JavaScript code does have a
resemblance to Processing code. In addition, I provide HTML examples.

The Processing development community has a project named ProcessingJS that provides

tools to publish many Processing sketches on the Web. This is a way to showcase

your work without requiring someone to download the Processing Development

Environment. You do need to have your own web site. The ProcessingJS site

(http://processingjs.org/) provides a file to download and then upload to your

web site along with your PDE files for the sketch, any files that would be in the data

folder, such as image files, and an HTML file that you create.

The Processing development community has another, distinct project, called p5.js,

which provides a library for writing in JavaScript using many Processing functions. The

ProcessingJS approach described here is something different.

To demonstrate ProcessingJS, I focus on two examples. The first example is

essentially a coin toss but instead of pictures of coins, the sketch chooses between two

photographs. You can go back to Chapter 2 for my first coin toss example. The sketch

also implements a pause, as was shown in Chapter 10. The opening screen is shown in

Figure A-1. The sketch reverts to this screen after a pause.

Figure A-1.  Opening window

https://doi.org/10.1007/978-1-4842-3697-0
http://processingjs.org/

304

Figure A-2 is one possible result of clicking.

Figure A-2.  Fearless girls

Appendix A Publishing on the Web

305

Figure A-3 shows the other possibility.

Figure A-3.  Raging bull

The second example features a 3D helix and provides the user a way to rotate the

helix. The opening screen is shown in Figure A-4.

Figure A-4.  Rainbow helix

Appendix A Publishing on the Web

306

The coding for the rotation is done the same way as demonstrated in the rotating

cube example of Chapter 10. If the user drags the mouse horizontally, the helix will

appear to spin.

I have prepared and uploaded to my web site the ProcessingJS files for these two

examples and others. You can visit http://faculty.purchase.edu/jeanine.meyer/

processing/ to view other examples. Note that you can view the HTML source through

the browser. Some of these examples will be familiar to you from the chapters.

�Implementation
The approach is to use a file produced by the ProcessingJS community to translate the

PDE program into JavaScript. We, the Processing programmers, prepare an HTML file

that references the PDE program along with a file downloaded from the ProcessingJS

site. Our PDE code is essentially converted into JavaScript, making use of functions in the

processing.min.js file.

You need to acquire a web site and have a File Transfer Protocol (FTP) program such

as Filezilla to upload the files. The following four tasks can be performed in any order. I

assume you will use one specific folder on the web site.

	 1.	 Download the file processing.min.js from the ProcessingJS.org

web site and upload it to the folder on the web site in which you

are going to store your work. You do not have to repeat this for

subsequent examples, assuming you use the same folder. If you

want to use more than one folder, the links must obey the HTML

rules for relative links.

	 2.	 Prepare your sketch in the usual way and upload the PDE file to

your web site in the same folder.

	 3.	 Upload all the images from the data subfolder for your sketch to

your web site; do not upload the data folder itself. See later for the

fix necessary for multiple images.

	 4.	 Prepare the HTML file. To do this, you need to use a text editor,

such as Sublime, TextEdit, TextWrangler, or NotePad. You do not

use the Processing PDE and you do not use a word processing

program. The HTML file will be the file that you tell your public

Appendix A Publishing on the Web

http://faculty.purchase.edu/jeanine.meyer/processing/
http://faculty.purchase.edu/jeanine.meyer/processing/

307

about to go to your sketch. They enter the full web address (URL)

in a browser or click on links you have set up as hyperlinks from

another HTML file. The basic format—change what is in italics—is

as follows:

<html>

<head>

<title>what you want to appear in the tab</title>

<script src="processing.min.js"></script>

</head>

<body>

<canvas data-processing-sources="name of the pde file"

width="100% height="100%">

</canvas>

</body>

</html>

Upload this file to your web site.

Be aware that browsers interpreting HTML tend to be forgiving. For example, the

<head> and </head> tags can be omitted.

The following are various modifications I made to the basic procedure for certain

things to work.

�Preloading of Images
In certain cases, for example, needing to access an image width or height, or dealing

with multiple images, you might need to direct the processing.min.js code to preload

the images. Although I admit to not fully understanding how ProcessingJS functions, it

can be critical in standard HTML and JavaScript applications to pay attention to loading

of images. If you or your code makes use of a file before it is fully downloaded from the

server to the client computer, things can go wrong. The fix for ProcessingJS is done using

a directive that appears as a comment in the Processing code and is ignored during

normal Processing execution.

Appendix A Publishing on the Web

308

For example, for the rotating cube, the example described in Chapter 10, I inserted

the following into the Processing code.

/* @pjs preload="AnnikaFrog.JPG,AnnikaFlowers.JPG,AnnikaMakeup.jpg";

*/

Because it is a comment, it is ignored and does not change the operation of the

Processing program running in the PDE.

Note  This insertion was not necessary for the Raging Bull/Fearless Girls example
and some others.

�Adding HTML to the body Element
The first new example is a coin toss type of sketch. The two images are a photo of the

Raging Bull statue near Wall Street in New York City and a photo of Annika next to the

Fearless Girl statue, facing the Raging Bull. There has been an ongoing controversy

involving the addition of the statue of a girl facing the charging bull and the company

that put up Fearless Girl. I had come across articles relating to this topic and decided

that I should include hyperlinks to them using standard HTML, namely the a and button

elements.

<html>

<head>

<title>Wall Street coin toss </title>

<style>

 button, canvas {position: fixed; }

</style>

<script src="processing.min.js"></script>

</head>

<body>

<a href="http://www.slate.com/blogs/xx_factor/2017/04/12/the_charging_bull_

sculptor_is_right_fearless_girl_should_go.html">

<button>Background story on Raging Bull vs. Fearless Girl </button>

Appendix A Publishing on the Web

309

<a href="https://www.nytimes.com/2017/10/06/business/fearless-girl-

settlement.html">

<button>Firm behind Fearless Girl pays settlement over equal pay</button>

<canvas data-processing-sources="fearlessGirls2.pde" width="100%"

height="100%"></canvas>

</body>

</html>

Note that the processing.min.js is not proceeded by http://. This is because it is

in the same folder as the HTML file.

The style element setting position: fixed prevents certain scrolling effects.

The code for the Raging Bull vs. Fearless Girl Processing sketch is available with the

other source code files.

�Adding Responses to Touch
I wanted my sketches to work on mobile devices. Certain applications, for example,

the Balls with Rocks, when the player does the touch equivalent of a mouse click, work

with no additional coding. This was not the case with the helix, making the path, or

other applications dependent on full implementation of mouse events. I already had

written JavaScript code to simulate (trigger) mouse events based on touch events, so I

incorporated the same code into the HTML file for the Processing JS examples. You can

gather from reading the JavaScript that the touch events are being translated into mouse

events that then are handled by the (converted) Processing code.

HTML files can have multiple script elements. In this case, my files have the script

element already described for the processing.min.js file. This is termed an external

script element. The HTML files for examples requiring touch have in addition an internal

script element, shown here. The <body> element has an attribute that invokes my init

function to set up the simulation of mouse events triggered by touch events. Here is the

HTML (and JavaScript) file for the rainbow helix. The Processing sketch code is available

with the other source code files. The sketch makes use of a general mathematical

technique called parameterized curves to determine the points of the inner helix and the

outer helix. The Processing features used include beginShape and endShape.

Appendix A Publishing on the Web

310

<html>

<title>Rainbow helix</title>

<script src="processing.min.js"></script>

<script>

var d = document;

function init() {

 d.addEventListener("touchdrag", touchHandler, true);

 d.addEventListener("touchstart", touchHandler, true);

 d.addEventListener("touchmove", touchHandler, true);

 d.addEventListener("touchend", touchHandler, true);

 d.addEventListener("touchcancel", touchHandler, true);

}

function touchHandler(event) {

 var touches = event.changedTouches;

 if (touches.length>1) {

 return false;

 }

 var first = touches[0];

 var type = "";

 switch(event.type) {

 case "touchstart": type = "mousedown"; break;

 case "touchmove": type="mousemove"; break;

 case "touchend": type="mouseup"; break;

 case "touchdrag": type="mousedrag"; break;

 default: return;

 }

 var simulatedEvent = document.createEvent("MouseEvent");

 simulatedEvent.initMouseEvent(type, true, true, window, 1,

 first.screenX, first.screenY,

 first.clientX, first.clientY, false,

 false, false, false, 0, null);

 first.target.dispatchEvent(simulatedEvent);

 event.preventDefault();

}

Appendix A Publishing on the Web

311

</script>

<body onload="init();">

Drag mouse or touch to rotate helix.

<canvas data-processing-sources="rainbowStrip3DHelix1LayerIPAD.pde"

width="100%" height="100%">

</canvas>

</body>

</html>

The ProcessingJS project, just like the Processing project, is ongoing. Not every

Processing sketch can be handled at this time. For example, Processing sketches with

video cannot be ported to the Web at this time. However, we can expect progress.

Appendix A Publishing on the Web

313
© Jeanine Meyer 2018
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-3697-0

Index

A
Angles, 11–12
Animation, 57, 63

arrays, 64
bouncing balls (see Bouncing balls)
color function, 80
compound statements, 64
computer programs, 63
draw function, 57, 81
logical operations, 63
mousePressed, 79, 81
parallel structures, 64
processing programming

features
array variables, 66–67
assignment statement, 66
brackets, 69
bx and by variables, 65
draw function, 65
indexing expression, 67
logical expressions, 65
println function, 67–68
setup function, 68

pseudo-random
processing, 64–65

shapes, 80
ArrayList, 130
Arrays, 60, 64, 67, 72, 80
Assignment statement, 4
Autoplay policy, 237

B
Ballistic motion, 124
Behaviors, 85
Bit, 130, 131
Boolean values, 63
Bouncing balls

functions, 70
global variables

coding, 70–71
pentagon, 61–62, 74–76
planning, 69–70, 72
polygons, 76–79
program, 72–73
screen shot, 57–60

Bouncing objects
Ball, Box, and Picture, 90–91
circles, rectangle and

image, 88–90
coding, 92–96
function, 92

break statement, 129
Byte data type, 130, 131

C
Callbacks, 196, 198
Case statement, 123, 125, 127–129
cast operation, 88
Character (char) data type, 125–126
Child class, see Subclass

https://doi.org/10.1007/978-1-4842-3697-0

314

Classes, 83–86
bouncing objects (see Bouncing

objects)
jigsaw puzzle (see Jigsaw puzzle game)
objects, 83
path (see Path making and image

travel sketch)
subclass, 84
superclass, 84

Codec, 222
Coin toss sketch

code for, 51–53
first click, 49
font, 39
function, 51
mouse position, 36
opening window for, 48
three click, 50

colorMode function, 193
Constructor method, 83, 86
Coordinate system, 5–6

D
3D

Alhambra, rolling ball at
functions, 285–286
planning, 285
programming, 286–290
Spanish flag, 271–272, 284
throw-away code, 285

box within box, 277–280
camera function, fill

and noFill, 277
dreidel, 300
edges and faces, 274
GPUs, 284
hexagons, 281, 283

mouseDragged function,
278, 291–292, 301

orientation of, x, y and z axes, 299
rendering, 274
rotating cube

Annika’s photos, 273, 291
function, 293
planning, 291
programming, 293–298
TexturedCube, 291, 293

shapes, 274
solar system, 301
sphere, 275–277
tools, 274
tutorial, 298

Daddy logo
coding, 25–26
comments, 24
fat and skinny, 2
function

draw, 22
global variables, 23
local variables, 23
programmer-defined, 22

shapes, 27
skinnyW, 24

Data types, 3
Decimal number system, 11, 130
Dot notation, 101
Dreidel, 300
Dynamic arrays, 86–88

E
Edges and vertices, 274
Error handling, 167, 168
Error message, 15
Event handling, 33–35
Events, 33–35, 39, 50

Index

315

F
Faces, 274, 276, 291
Facets, 274, 277, 284
Family collage

after manipulation, 227
collage6 tab

coding, 233–237
function, 227–228

definitions tab, 228–232
opening window for, 225–226

Fearless girls, 304
Files, 169–170, 194
Files on local computer, 195, 197, 200, 210,

218, 219
File Transfer Protocol (FTP) program, 306
fill function, 131
Finite differences, 124
Focus, 34, 40
FontButton class, 201
Fonts, 197, 201–204, 207, 208, 210, 218, 219
For-loop, 39
Frame, 197
frameRate function, 7
Functions, 5, 7, 10–11, 23, 28

G
Garbage collection, 218, 219
Global variables, 23
Graphics processing units (GPUs), 284
Grayscale images

planning, 180
programming, 181–185
response to URL, 179
screen, 175
toggling, 178, 181
URL, 176
window turned, 174

H
Hangman

buttons after moves, 250
code, 255–260
existing application, 246
functions and relationships, 253–254
game in process, 250
loss, 251
main coding with buttons, 261–268
planning, 253
possibilities, 253
programming features, 247–248
secret words, 245
splash window, 249
String objects, 248, 269
testing and scaling up, 246–247
URL method, 269
Window with letter keys, 244–245
Window with secret word, 243–244
winning, 252

Hello, World program
arithmetic operators, 20
brackets, 13
color function, 20
draw function, 20
ellipse, 18–19
ellipseMode function, 20
error message, 15–16
programmer-defined

functions, 20
save program, 14–15
setting size and color, 17
setup function, 13
skinnyFaceWidth, 19
syntactic mistakes, 15–16
text function, 16

Hidden faces, 274
Hidden lines, 274, 277, 279, 280

Index

316

Holiday greeting card
make card sketch

clearwater, 207
font buttons, 208
image saved in sketch

folder, 210
interface, 205
planning, 210–211
programming, 212–217
screen shot, start process, 206
types in message, 209

processing programming features
java input/output library, 200
saveFrame function, 199
sound library, 198
subclasses, 201

programming concepts
callbacks, 198
feedback to users, 198
files, 196–197
fonts, 197
libraries, 197

Hue, saturation, brightness (HSB)
system, 193

I
image function, 37
Images

arrays of pixels, 168
function, 37
grayscale operation (see Grayscale

images)
processing features

beginShape and endShape vertex
functions, 171

loadImage function, 169
pixel processing, 170

throwing, 169
transformations, 171
try-and-catch option, 170

Image test
character strings, 160
coding, 160–164
CSV file, 159
function table, 160
input for, 157–158
opening screen of, 156–157
overview, 123

Inheritance, 84, 88, 90, 91
Initialization statements, 4

J
Java program, 8
Jigsaw puzzle game

Button class, 108
coding, 110–120
function table for, 108–109
Mix up and Restore

buttons, 105, 107
mouseReleased function, 108
oksofar variable, 88
Piece class, 108
PImage variable, 108
setup function, 108
states, 84

K
keyCode function, 126
keyPressed function, 126
Kissy fish

in operation, 241
steps, 238–239
throat surgery, 239–241

Index

317

L
Libraries, 197, 198, 200, 210, 219
loadPixels method, 193
Local variables, 23
Looping, 35

M
Makecard.pde functions, 211
Margin, 85
match function, 129
Memory leaks, 218
Methods, 83, 86, 91, 101, 121
millis function, 129
mouseClicked function, 198
mousePressed function, 203, 218

N
Natural languages, 2
new operator, 87

O
Object-oriented programming (OOP), 83
Objects, 83, 85, 88–90, 100, 101, 108, 122
Origami directions, 241
Origami flower operation

hexagon window, 186
planning, 187–189
programming, 189–192

original.loadPixels() function, 170

P, Q
PApplet class, 121
Parallel structures, 60, 64, 71–72, 81, 83

Parent class, see Superclass
Pass by value, 131
Path making and image travel sketch

display image, 101
draw function, 100
first phase, 96, 98
functions, 101
image, 98–99
Location class, 100
mouse event functions, 100, 102
move image code, 102–104
stubs, 100

PFont class, 203
Phases of operation, 84
PImages, 172
Pixel, 168, 170–171, 180, 193, 194
Please Excuse My Dear Aunt Sally

(PEMDAS), 35
Polygon sketch

code for, 46–47
for-loop, 39
four-sided polygon, 40
function, 43
mouse position, 36
mouseReleased function, 45
n sides, 43
three-sided, 44–45
triangle, 41, 43
vertex, 44

Preloading, 307–308
Processing development environment

(PDE), 7–10
ProcessingJS, 303, 311

fearless girls, 304
FTP program, 306
HTML files, 308–310
images preloading, 307–308

Index

318

opening window, 303
PDE code, 306
p5.js, 303
raging bull, 305
rainbow helix, 305
web site, 303

Processing programming
features

ArrayList, 130
break statement, 129
char data type, 126
focus term, 40
for-loop, 39
image function, 37
keyCode function, 126
keyPressed function, 126
match function, 129
millis function, 129
random function, 36
switch statement, 127, 129
table files, 127

Programming languages, 2
calculations, 34–35
image files, 34
looping, 35

Pseudo-random
processing, 34

R
Radians, 43
Raging bull, 305
Rainbow helix, 305
random function, 36
Red/green/blue (RGB) color, 6

Regular expressions, 125–127, 129, 156,
159, 160, 164, 165

Rendering, 274, 284

S
saveFrame function, 199
Scaling up, 245–247
Shallow copying vs. deep copying, 222
Show fonts sketch operation

console window, 202
mouse click, random choice, 203
programming, 204

Sketch, 5, 7, 9, 10, 14, 16–18, 21, 23–26, 28
Slingshot game

ballistic motion, 124
classes, 133
comments, 136–144
finite differences, 124
function table, 134–135
mouse event functions, 123, 132
opening screen of, 132
phases, 134

Snake game
coding, 148–156
final screen of, 145
function table, 148
keyPressed method, 147
opening screen of, 145
overview, 123
segments, 147

Solar system, 301
Stack approach, 169
String data type, 125, 126
Subclass, 84
Superclass, 84

ProcessingJS (cont.)

Index

319

super.display() expression, 201
switch statement, 127, 129
Syntactic mistakes, 15–16

T
Toggling grayscale, 181
Tolerance, 85, 88
Touch events, 309–311
Transformations, 167, 169, 171, 193, 194

U
updatePixels methods, 193

V, W, X, Y, Z
Variables, 3
Video

codec, 222
constructor methods, 224
family collage (see Family collage)
ImageItem and MovieItem

subclasses, 224
Item class, 224
Movie object, 223
shallow copying vs. deep

copying, 222
Void, 10

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Basics
	Programming Concepts
	Programming Languages and Natural Languages
	Values and Variables
	Functions
	Specifying Positions and Angles
	Colors
	Development Environment
	Role of Planning

	Under the Covers
	Processing Programming Features
	Processing Development Environment
	Functions
	Angles

	Implementing Hello, World
	Implementing the Daddy Logo
	Planning
	Daddy Logo Program

	Things to Look Up
	How to Make This Your Own
	What You Learned
	What’s Next

	Chapter 2: Interactions
	Programming Concepts
	Events
	Randomness
	Displaying Images from Files
	Calculations, Including Built-in Functions
	Looping

	Processing Programming Features
	Under the Covers
	Polygon Sketch Operation Overview
	Implementing the Polygon Sketch
	Planning
	Polygon Sketch Program

	Coin Toss Sketch Operation Overview
	Implementing the Coin Toss Sketch
	Planning

	Things to Look Up
	How to Make This Your Own
	What You Learned
	What’s Next

	Chapter 3: Animation Using Arrays and Parallel Structures
	More on the Sketches
	Programming Concepts
	Animation
	Logical Operations
	Arrays
	Parallel Structures
	Compound Statements
	Pseudo-Random Processing

	Processing Programming Features
	Implementing a Bouncing Ball
	Planning
	Program

	Implementing a Set of Three Bouncing Balls
	Planning
	Program

	Implementing Pentagon Bouncing
	Planning

	Implementing Bouncing Polygons
	Planning
	Program

	Under the Covers
	Things to Look Up
	How to Make This Your Own
	What You Learned
	What’s Next

	Chapter 4: Classes
	Programming Concepts
	Classes
	Phases of Operations
	Tolerance or Margin

	Processing Programming Features
	Classes
	Dynamic Arrays
	Tolerance and OK So Far Coding

	Bouncing Objects Overview
	Implementing the Bouncing Objects
	Planning
	Program

	Make Path and Travel Path Overview
	Implementing the Make Path and Travel Path
	Planning
	Program

	Jigsaw Overview
	Implementing the Jigsaw
	Planning
	Program

	Under the Covers
	Things to Look Up
	How to Make This Your Own
	What You Learned
	What’s Next

	Chapter 5: More Interactions
	More on the Sketches
	Programming Concepts
	Ballistic Motion
	Character (char) Data Type vs. String Data Type
	Use of Files
	Case Statement
	Elapsed Time
	Regular Expressions

	Processing Programming Features
	The char Data Type
	The keyPressed Function, key, and keyCode
	Table Files
	The Case Statement
	The millis and Other Time Functions
	The match Function for Regular Expressions
	ArrayList

	Under the Covers
	Slingshot Operation Overview
	Implementing the Slingshot Sketch
	Planning
	Programming the Slingshot Sketch

	Snake Operation Overview
	Implementing the Snake Sketch
	Planning
	Programming the Snake Sketch
	Image Test Operation Overview
	Implementing the Image Test
	Planning
	Program

	Things to Look Up
	How to Make This Your Own
	What You Learned
	What’s Next

	Chapter 6: Images, Graphics, and Building on Prior Work
	More on the Sketches
	Programming Concepts
	Error Handling
	Images as Arrays of Pixels
	Transformations

	Processing Programming Features
	Getting a File from the Web
	Pixel Processing
	The beginShape and endShape Vertex Functions
	Transformations

	Under the Covers
	Image to Grayscale Operation Overview
	Implementing the Image to Grayscale
	Planning
	Programming the Image to Grayscale

	Origami Flower Operation Overview
	Implementing the Origami Flower Sketch
	Planning
	Programming the Origami Flower

	Things to Look Up
	How to Make This Your Own
	What You Learned
	What’s Next

	Chapter 7: Using Files for Making a Holiday Card
	Programming Concepts
	Files
	Libraries
	Fonts
	Callbacks
	Feedback to Users

	Processing Programming Features
	Use of the Sound Library
	Making and Saving an Image of the Current Window
	Use of Java Input/Output Library
	Subclasses

	Show Fonts Sketch Operation Overview
	Implementing the Show Fonts Sketch
	Programming the Show Fonts Sketch

	Make Card Sketch Operation Overview
	Implementing the Make Card Sketch
	Planning
	Programming the Make Card Sketch

	Under the Covers
	Things to Look Up
	How to Make This Your Own
	What You Learned
	What’s Next

	Chapter 8: Combining Videos, Images, and Graphics
	Programming Concepts
	Video
	Copying a Video

	Processing Programming Features
	Video
	Classes and Subclasses

	Under the Covers
	Family Collage Operation Overview
	Implementing the Family Collage Sketch
	Planning
	Programming the Family Collage Sketch

	Things to Look Up
	How to Make This Your Own
	What You Learned
	What’s Next

	Chapter 9: Hangman
	More on the Sketches
	Programming Concepts
	Implementing an Existing Application
	Testing and Scaling Up

	Processing Programming Features
	Hangman Sketches Operation Overview
	Implementing the Hangman Sketches
	Planning
	Programming the Hangman Sketches

	Things to Look Up
	How to Make This Your Own
	What You Learned
	What’s Next

	Chapter 10: 3D
	Programming Concepts
	Processing Programming Features
	Under the Covers
	Rolling Ball at Alhambra Operation Overview
	Implementing the Rolling Ball at Alhambra
	Planning
	Programming the Rolling Ball at Alhambra

	Rotating Cube Operation Overview
	Implementing the Rotating Cube
	Planning
	Programming the Rotating Cube

	Things to Look Up
	How to Make This Your Own
	What You Learned
	What’s Next

	Appendix A:
Publishing on the Web
	Implementation
	Preloading of Images
	Adding HTML to the body Element
	Adding Responses to Touch

	Index

