
Regex Quick
Syntax
Reference

Understanding and
Using Regular Expressions
—
Zsolt Nagy

www.allitebooks.com

http://www.allitebooks.org

Regex Quick Syntax
Reference

Understanding and Using
Regular Expressions

Zsolt Nagy

www.allitebooks.com

http://www.allitebooks.org

Regex Quick Syntax Reference: Understanding and Using Regular Expressions

ISBN-13 (pbk): 978-1-4842-3875-2 ISBN-13 (electronic): 978-1-4842-3876-9
https://doi.org/10.1007/978-1-4842-3876-9

Library of Congress Control Number: 2018953563

Copyright © 2018 by Zsolt Nagy

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484238752.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Zsolt Nagy
Berlin, Germany

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3876-9
http://www.allitebooks.org

iii

About the Author ���ix

About the Technical Reviewer ���xi

Table of Contents

Chapter 1: An Introduction to Regular Expressions������������������������������1

Why Are Regular Expressions Important? ���1

What Are Regular Expressions? ��2

Frustrations with Regular Expressions Arise from Lack of Taking Action �������������4

Regular Expressions Are Imperative ���5

The Language Family of Regular Expressions ��6

Summary���8

Chapter 2: Regex Syntax 101 ���9

Formulating an Expression ���9

Literal Characters and Meta Characters ��10

Arbitrary Character Class ��13

Basic Concatenation ���14

Alternative Execution ��14

Operator Precedence and Parentheses���15

Anchored Start and End ��15

Modifiers ���19

Summary���21

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 3: Executing Regular Expressions ���23

Regular Expressions in JavaScript ��23

RegExp Methods ��25

String Methods Accepting Regular Expressions ��26

Regex Modifiers ���27

Global Matches ��28

Multiline Matches ��30

ES6 Unicode Regular Expressions ���31

Sticky Matches ��32

Summary ���34

Other PCRE-Based Regex Environments ���34

PHP ��35

Python ���37

Perl 5 ���40

Java ���41

R ��43

C# ��44

Ruby ��46

Golang ���48

C++ ���49

Summary ���51

Chapter 4: Visualizing Regex Execution Using Finite
State Machines ���53

Regular Expressions Are Finite State Machines ��53

Backtracking ���55

Deterministic and Nondeterministic Regex Modeling ���56

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Basic Regex Simplifications ��62

A Successful Match Is Cheaper Than Failure ��63

Automatically Generating Regex FSMs ���63

Summary���66

Chapter 5: Repeat Modifiers ���67

Backtracking ���68

Match at Least Once ���70

Match at Most Once: Optionals ���72

Match Any Number of Times ���73

Fixed-Range Matching ��74

Loop Exactly n Times ��77

Greedy Repeat Modifiers ���78

Lazy Repeat Modifiers���79

Possessive Repeat Modifiers ��82

Summary���84

Chapter 6: Character Sets and Character Classes ������������������������������85

Character Sets ��85

Character Set Ranges ���87

Exclusions from Character Sets ��88

Character Set Classes ���88

Concatenating Advanced Language Constructs ��92

Summary���93

Chapter 7: Substring Extraction from Regular Expressions ���������������95

Defining Capture Groups ���96

Perl 6 Capture Groups ���97

Table of ConTenTsTable of ConTenTs

vi

Retrieval of Captured Substrings ��98

JavaScript ��100

PHP ��101

Python ���102

Perl 5 ���103

Reusing Captured Substrings Within a Regex ���104

Capture Groups and Performance ���106

Extensions to Capture Groups ���108

Summary���108

Chapter 8: Lookahead and Lookbehind ��109

Lookahead���109

Lookbehind ���112

Summary���113

Chapter 9: Maintaining Regular Expressions �����������������������������������115

Extended Mode ���116

Regex Subroutines ��118

PCRE Subroutines ��119

Perl 6 Subroutines ���120

Recursion and Circular References with Subroutines ���������������������������������121

Extended Mode, Subroutines, and Abstractions ��121

Named Capture Groups ���122

EMACS Named Capture Groups ���122

PCRE Named Capture Groups ��122

Perl 6 Named Capture Groups ���125

Case Study: XRegExp Library for JavaScript ���125

Summary���128

Table of ConTenTsTable of ConTenTs

vii

Chapter 10: Optimizing Regular Expressions �����������������������������������131

Summary of the Optimization Techniques ��132

Making Character Classes More Specific ���132

Repeating Character Class Loops ���134

Use Possessive Repeat Modifiers Whenever Possible ��������������������������������������135

Use Atomic Groups ��136

Refactor for Optimization ��138

Optimization Techniques Limit Nondeterministic Execution �����������������������������138

Summary���139

Chapter 11: Parsing HTML Code and URL Query Strings
with Regular Expressions ���141

Parsing HTML Tags ��141

Processing the Query String of a URL ���144

 Afterword: This Is Not the End, but the Beginning ����������������������������147

 “What If I Want to Learn More?” ���149

 Keep in Touch ��150

 Index ���151

Table of ConTenTsTable of ConTenTs

ix

About the Author

Zsolt Nagy is a web development team

lead, mentor, and software engineer living

in Berlin, Germany. He programs with

JavaScript, Perl, and other open source

web technologies. Zsolt is also experienced

in using and teaching regular expressions

using these technologies. He writes a blog

about lessons learned while solving complex

problems, experimenting with technology,

and teaching other people how to improve

their skills. As a software engineer, he continuously challenges himself to

stick to the highest possible standards.

You can read regular articles from me on

 – zsoltnagy.eu, a blog on writing maintainable web applications

 – devcareermastery.com, a career blog on designing a fulfilling

career

Sign up to my e-mail list for regular free content. I am the author of

these two books:

 – ES6 in Practice: The Complete Developer’s Guide (https://

leanpub.com/es6-in-practice)

 – The Developer’s Edge: How to Double Your Career Speed with

Soft-Skills (https://leanpub.com/thedevelopersedge)

Check them out if these topics are interesting to you.

https://www.zsoltnagy.eu
https://www.devcareermastery.com
https://leanpub.com/es6-in-practice
https://leanpub.com/es6-in-practice
https://leanpub.com/thedevelopersedge

xi

About the Technical Reviewer

Massimo Nardone has a master of science

degree in computing science from the University

of Salerno, Italy, and has more than 24 years of

experience in the areas of security, web/mobile

development, cloud, and IT architecture.

His IT passions are security and Android.

Specifically, he has worked as a project

manager, software engineer, research engineer,

chief security architect, information security

manager, PCI/SCADA auditor, and senior lead

IT security/cloud/SCADA architect.

He has also worked as a visiting lecturer and supervisor for exercises at

the Networking Laboratory of the Helsinki University of Technology (Aalto

University), and he holds four international patents (in the PKI, SIP, SAML,

and proxy areas).

He currently works as the chief information security officer (CISO) for

Cargotec Oyj and is a member of the ISACA Finland Chapter board.

Massimo has reviewed more than 45 IT books for different publishing

companies and is the coauthor of Pro JPA 2 in Java EE 8 (Apress, 2018),

Beginning EJB in Java EE 8 (Apress, 2018), and Pro Android Games

(Apress, 2015).

1© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_1

CHAPTER 1

An Introduction to
Regular Expressions
I still remember my doomed encounters with regular expressions back

when I tried to learn them. In fact, I took pride in not using regular

expressions. I always found a long workaround or a code snippet. I

projected and blamed my own lack of expertise on the hard readability of

regular expressions. This process continued until I was ready to face the

truth: regular expressions are powerful, and they can save you a lot of time

and headache.

Fast-forward a couple of years. People I worked with encountered the

same problems. Some knew regular expressions, and others hated them.

Among the haters of regular expressions, it was quite common that they

actually liked the syntax and grammar of their first programming language.

Some developers even took courses on formal languages. Therefore,

I made it my priority to show everyone a path toward their disowned

knowledge to master regular expressions.

 Why Are Regular Expressions Important?
In today’s world, we have to deal with processing a lot of data. Accessing

data is not the main problem. Filtering data is. Regular expressions provide

you with one type of filter that you can use to extract relevant data from

2

the big chunks of data available to you. For instance, suppose you have an

XML file containing 4GB of data on movies. Regular expressions make it

possible to query this XML text so that you can find all movies that were

filmed in Budapest in 2016, for instance.

Regular expressions are a must-have for software developers.

In front-end development, we often validate input using regular

expressions. Many small features are also easier with regular expressions,

such as splitting strings, parsing input, and matching patterns.

When writing backend code, especially in the world of data science,

we often search, replace, and process data using regular expressions. In IT

infrastructure, regular expressions have many use cases. VIM and EMACS also

come with regex support for finding commands, as well as editing text files.

Regular expressions are everywhere. These skills will come handy for

you in your IT engineering career.

 What Are Regular Expressions?
Regular expressions, or regexes, come from the theory of formal languages.

In theory, a regex is a finite character sequence defining a search pattern.

We often use these search patterns to

 – Test whether a string matches a search expression

 – Find some characters in a string

 – Replace substrings in a string matching a regex

 – Process and format user input

 – Extract information from server logs, configuration

files, and text files

 – Validate input in web applications and in the

terminal

Chapter 1 an IntroduCtIon to regular expressIons

3

A typical regular expression task is matching. I will now use JavaScript

to show you how to test-drive regular expressions because almost everyone

has access to a browser. In the browser, you have to open the Developer

Tools. In Google Chrome, you can do this by right-clicking a web site and

selecting Inspect. Inside the Developer Tools, select the Console tab to

enter and evaluate your JavaScript expressions.

Suppose there is a JavaScript regular expression /re/. This expression

looks for a pattern inside a string, where there is an r character, followed

by an e character. For the sake of simplicity, suppose our strings are case

sensitive.

const s1 = 'Regex';

const s2 = 'regular expression';

In JavaScript, strings have a match method. This method expects a

regular expression and returns some data on the first match.

> s1.match(/re/)

null

> s2.match(/re/)

["re", index: 0, input: "regular expression"]

A regular expression is an expression written inside two slash (/)

characters. The expression /re/ searches for an r character followed by

an e character.

As an analogy, imagine that you loaded a web site in the browser,

pressed Ctrl+F or Cmd+F to find a substring inside the web site on the

screen, and started typing re. The regular expression /re/ does the same

thing inside the specified string, except that the results are case sensitive.

Notice that 'Regex' does not contain the substring 're'. Therefore,

there are no matches.

Chapter 1 an IntroduCtIon to regular expressIons

4

The string 'regular expression' contains the substring 're' twice:

once at position 0 and once at position 11. For the sake of determining

the match, the JavaScript regular expression engine returns only the first

match at index 0 and terminates.

JavaScript allows you to turn the syntax around by testing the regular

expression.

> /re/.test(s1)

false

> /re/.test(s2)

true

The return value is a simple Boolean. Most of the time, you do not

need anything more, so testing the regular expression is sufficient.

Each programming language has different syntax for built-in regex

support. You can either learn them or generate the corresponding regex

code using an online generator such as https://regex101.com/.1

 Frustrations with Regular Expressions Arise
from Lack of Taking Action
According to many software developers, regular expressions are

 – Hard to understand

 – Hard to write

 – Hard to modify

 – Hard to test

 – Hard to debug

1 https://regex101.com/

Chapter 1 an IntroduCtIon to regular expressIons

https://regex101.com/
https://regex101.com/

5

As I mentioned in the introduction of this chapter, lack of

understanding often comes with blame. We tend to blame regular

expressions for these five problems.

To figure out why this blaming exists, let’s discover the journey of a regular

developer, no pun intended, with regexes. Many of us default to this journey

of discovery when it comes to playing around with something we don’t know

well. With regular expressions, the task seems too easy: we just have to create

a short expression, right? Well, oftentimes, this point of view is very wrong.

Trial and error oftentimes takes more time than getting the pain

handled and getting the lack of knowledge cured. Yet, most developers

work with trial and error over and over again. After all, why bother learning

the complex mechanics of regular expressions if you could simply copy

and paste a small snippet? Learning the ins and outs of regular expressions

seems to be too hard at first glance anyway.

Therefore, my mission is to show you that

 – Learning regular expressions is a lot easier than you

thought

 – Knowing regular expressions is fun

 – Knowing regular expressions is beneficial in many

areas of your software developer career

You can still easily master regular expressions to the extent that they

will do exactly what you intended them to do. This mastery comes from

understanding the right theory and getting a lot of practice.

 Regular Expressions Are Imperative
Regular expressions are widely misunderstood. Whenever you hear that

regular expressions are declarative, run from that tutorial or blog as far as

you can. Regexes are an imperative language. If you want to understand

regexes as declarative, chances are you will fail.

Chapter 1 an IntroduCtIon to regular expressIons

6

By definition, regexes specify a search pattern. Although this is a true

statement, it is easy to misinterpret it because you are not specifying

a declarative structure. In the real world, you specify a sequence of

instructions acting like a function in an imperative programming language.

You use commands and loops, you pass arguments to your regex, you may

pass arguments around inside your regex, you return a result, and you may

even cause side effects.

Learning regular expressions as an imperative language comes with a

big advantage. If you have dealt with at least one programming language in

your life, chances are, you know almost everything to understand regular

expressions. You are just not yet proficient in the regex syntax. As soon as you

familiarize yourself with this weird language, everything will fall into place.

 The Language Family of Regular
Expressions
When I talk about regular expressions, in practice I mean a family of

different dialects. Similarly to genetics, regular expressions keep evolving,

and new mutations surface on a regular basis. Although the principles stay

the same in most languages, every single dialect brings something different.

Standardization of regular expressions began with BRE (Basic Regular

Expressions) inside the POSIX standard 1003.2. This standard is used in

the editors ed and sed, as well as in the grep command.

The first major evolution of regular expressions came with the ERE

(Extended Regular Expressions) syntax. This syntax is used in, for example,

egrep and notepad++.

For completeness, I will also mention the SRE (Simple Regular

Expressions) dialect, which has been deprecated in favor of BRE.

Some editors such as EMACS and VIM have their own dialects. In the

case of VIM, the dialect can be customized with flags, and this technique

provides even more variations. These dialects are built on top of ERE.

Chapter 1 an IntroduCtIon to regular expressIons

7

The regular expressions used in most programming languages are

based on the PCRE (Perl Compatible Regular Expressions) dialect. Each

programming language has its own abbreviations and differences. These

programming languages include PHP, JavaScript, Java, C#, C++, Python, R,

Perl up to version 5, and more.

To make matters more complex, Perl 6 comes with a completely

different set of rules for regular expressions. The Perl 6 syntax is often

easier to read, but in exchange, you have to learn a different language.

As an example, let’s write a regex for matching strings that contain at

least one non-numeric character.

Dialect Expression

Bre, ere, eMaCs, VIM, pCre /[^0123456789]/

perl 6 /<-[0123456789]>/

As you can see, in this specific example, all dialects but Perl 6 look

identical. Without getting lost in the details too much, let’s understand

what this expression means in BRE, ERE, EMACS, VIM, and PCRE.

 – [0123456789] matches one single character from

the character set of digits.

 – ^ inside an enumeration negates the character list.

This means [^0123456789] matches any character

that’s not a digit.

 – As the regular expression may match any character

of the test string, a match is determined as soon as

you find at least one character in the test string that’s

not a digit. Therefore, 123.45 matches the regular

expression, while 000 does not.

The Perl 6 syntax works in the same way; the syntax is just different.

Chapter 1 an IntroduCtIon to regular expressIons

8

Let’s now write a regular expression that matches the 0, 1, or 2

character, using the or operator of regular expressions.

BRE: or operator is not supported

ERE,PCRE,Perl 6: /0|1|2/

EMACS,VIM: /0\|1\|2/

An equivalent BRE expression would be /[012]/, using a character set.

You will study character sets in detail in Chapter 6.

As studying six groups and many different variations would take a long

time, I highly recommend you stick to one specific dialect and practice

your skills focusing on the one and only dialect you use in practice. You

can come back to study other dialects later. When it comes to the PCRE

dialect, different languages give you different variations. I have personally

found it beneficial to build and execute regular expressions in multiple

programming languages. This way, I had an easier time solidifying my

regex knowledge from different angles.

 Summary
In this chapter, I defined a regular expression as a finite character

sequence defining a search pattern. As an example, you saw a test

execution of a simple JavaScript regular expression in the console.

Although the tested regular expression was simple, oftentimes people have

a hard time constructing and understanding regular expressions. This is

because regular expressions represent a compact imperative language,

and therefore, they are often not intuitive to understand. To make matters

more complicated, regular expressions consist of multiple languages,

which means that the JavaScript syntax is completely different than the

syntax used in Perl 6.

Chapter 1 an IntroduCtIon to regular expressIons

9© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_2

CHAPTER 2

Regex Syntax 101
When learning a new tool, you always have to get started somewhere.

The goal of this chapter is to give you a basic subset of the regular

expression syntax to play with. Learning all the syntax is not productive,

though, because let’s face it, learning advanced regular expression syntax

all at once is too much for anyone.

 Formulating an Expression
A regular expression is written inside a starting slash and an ending slash

character: /re/.

As you saw in Chapter 1, this expression matches strings containing re.

Some programming languages allow you or require you to use a

different notation. For instance, in JavaScript, you may use the following

form to define the regular expression /re/:

> const regex = new RegExp('re');

> regex

/re/

In PHP and Python, you have to use strings or raw strings to pass a

regular expression to a function. Here’s a Python example:

import re

regex = re.compile(r"xy+")

10

Unless dealing with a specific example in a specific language, I will

stick to the /re/ notation in this book.

 Literal Characters and Meta Characters
A regex literal character matches itself. The expression /a/ matches any

string that contains the a character.

For instance, the expression /a/ matches the string "andrea" because

both the first and last letters of the string are a. Matching often comes with

simplifications in execution. During execution, the regex engine locates only

the first character of the string, which is an a. Given the character matches

the expression, you are done; there is no need to read the rest of the string.

The expression /a/ does not match the string "ABCDEA" because after

reading the whole string, we did not find a single a character.

All lowercase and uppercase alphabetical characters and all numerical

characters are available as literal characters. Depending on the regex

dialect, some other characters can also be used to match themselves. For

instance, !, %, =, and _ are available in most dialects as literal characters.

Characters such as ., *, ^, $, [, and] are not literal characters in almost

any dialect. They are meta characters. A meta character is responsible for

denoting an operation similarly to a keyword in a programming language.

Table 2-1 describes meta characters.

Table 2-1. Meta Characters

Meta Character Semantics

. Arbitrary character

* Iteration: match any number of times

^ Two semantics: (1) negation, (2) anchor matching the start of the

string or line

$ Anchor matching the end of the string or line

[] Character sets

ChApTer 2 regex SynTAx 101

11

In PCRE, the language family of programming languages, even more

characters are reserved, as shown in Table 2-2.

In VIM and EMACS, you have to escape the characters |, ?, {, },

(, and) to use them as operators.

If you want to use any of the reserved characters, you have to escape

them with a backslash.

The treatment of whitespaces is complicated. When searching for

patterns in free text, it is rarely convenient to enter the exact whitespace

you are looking for. Unfortunately in most dialects, a space matches a

space, the \n character matches a newline, and the \t character matches

a tab. The problem with this approach is that the exact whitespace

characters become important in the search expression.

This approach reminds me of a weird front-end experience of

mine. I created a user interface to help users parse CSV files. In the user

interface, there was a field for entering the CSV separator character.

Once an administrator called me. He showed me that he pasted a tab

whitespace character in a text field so that his CSV separator became a tab.

Unfortunately, the input field got trimmed, and the tab character could

not be saved because the input field had to contain at least one whitespace

character.

Table 2-2. PCRE Meta Characters

PCRE Meta Character Semantics

| Alternative execution (or)

? Optional parts in the expression

+ Match at least once

{} Specify a range for the number of times an expression

has to match the string

() grouping characters (1), or extracting substrings (2)

ChApTer 2 regex SynTAx 101

12

Whitespace characters are often a mess.

You will learn later that you can add flags to the end of a regular

expression. These flags may influence how you treat whitespace characters.

In some cases, the input string is split into lines, and regular

expressions are expected to match each line. In other cases, input strings

may contain newline characters, and these newlines can be matched

by the regular expression. This implies that some flags may change the

behavior of matching newline characters.

The Perl 6 dialect handles whitespaces completely differently than

any other dialect. Perl 6 ignores all whitespace characters in a regular

expression, making whitespaces less of a riddle than in other dialects. You

will see later that ignoring whitespaces comes with the benefit that you

can format regular expressions in any way you want. The following are

equivalent when whitespaces don’t matter:

/first second third/

/

 first

 second

 third

/

A whitespace character in a regular expression matches any sequence

of whitespaces in the tested string.

The x, or extended mode, flag of some PCRE regular expressions turns

the same formatting mode on. Note that this flag is not available in all

PCRE languages.

/(?x)

 first

 second

 third

/

ChApTer 2 regex SynTAx 101

13

As a summary, be careful with whitespace anomalies. Avoid using

whitespaces in regular expressions. You will soon find out how to handle

whitespaces properly, once I introduce named character classes.

 Arbitrary Character Class
In some cases, you will look for an arbitrary character. Creating an

enumeration of all possible characters does not really make sense.

In all regular expression dialects, the . symbol denotes one arbitrary

character. For instance, /..e/ denotes a three-letter sequence ending with e.

Unfortunately, in different dialects, the . character is defined

differently because it may or may not include the newline character.

 – Perl 6 follows the command-line regex format

defined by BRE and ERE. In other words, a .

represents any character, including the newline.

 – In all other languages represented by the PCRE

language family, a . character represents any

character except the newline. Therefore, matching

the newline character has to be explicitly specified.

EMACS and VIM follow this approach.

For maintainability reasons, it is advised to explicitly specify the type

of character you are interested in matching. You will learn how to do this

in Chapter 6. Until then, using [.\n] makes sure you include the newline

character together with the arbitrary character class.

ChApTer 2 regex SynTAx 101

14

 Basic Concatenation
In all programming languages, the three necessary control elements are

sequencing, selection, and iteration. Concatenation is responsible for

sequencing.

You have already used concatenation in several places. First you used it

in Chapter 1 when you defined the /re/ regular expression. You read /re/

as follows: match the character r and then match the character e.

When constructing regular expressions, you can concatenate any

regular expression sequences.

 Alternative Execution
Now that you know how to do sequencing, let’s move on to selection. Let’s

recall the example from Chapter 1, shown here:

BRE: or operator is not supported

EMACS,VIM: /0\|1\|2/

ERE,PCRE,Perl 6: /0|1|2/

You have already learned that the | or \| operator specifies alternative

paths. /0|1|2/ matches a character that is a 0 or a 1 or a 2.

Here are some examples:

 – /java|php|perl/ matches strings containing java or

php or perl.

 – /....|a|the/ matches any string that is at least four

characters long or contains the character a or

contains the substring the.

The pipe operator has the lowest precedence out of all the operators in

regular expressions.

ChApTer 2 regex SynTAx 101

15

 Operator Precedence and Parentheses
Concatenation binds stronger than alternative execution. Think of

concatenation as if it was multiplication, and think of alternative execution

as if it was addition. You do not need any parentheses in /a|the/ because

concatenation binds stronger. Similarly, you don’t need any parentheses

when you calculate 1 + 2 * 3, which is 1 + 6 = 7.

Sometimes you want to override the default precedence rules. This

is where parentheses come in handy. You can use parentheses to group

expressions with lower precedence.

For instance, the expression /list|lost|lust/ can be simplified to

/l(i|o|u)st/. You can use any number of nested parentheses for grouping.

Don’t forget to escape the parentheses in VIM and EMACS.

For the sake of completeness, be aware that the usage of parentheses

is overloaded. Parentheses will be used to capture substrings from regular

expressions. You will explore this use case at a later stage.

Parentheses are meta characters that do not consume any characters

from the string the regex is testing. There are many other commands that

do not cause a traversion inside the string. For instance, in the next section,

you will learn about the anchored start and end that do not consume any

characters either.

 Anchored Start and End
In some dialects such as JavaScript, the ^ and $ symbols represent the

beginning and the end of the string to be matched. In other environments

such as in EMACS and VIM, the ^ and $ symbols represent the beginning

and the end of the line to be matched.

ChApTer 2 regex SynTAx 101

16

In BRE, ERE, many PCRE-based languages, and Perl 6,

 – /^x/ matches strings that start with x.

 – /x$/ matches strings that end with x.

 – /^x$/ matches the string 'x' with no other

characters present.

In some PCRE-based languages, the previous characters only denote

line boundary assertions. For instance, in Ruby,

 – /^x/ matches lines that start with x.

 – /x$/ matches lines that end with x.

 – /\Ax/ matches strings that start with x.

 – /x\z/ matches strings that end with x.

Whenever ^ and $ formulate restrictions defined on lines, you use the

\A and \z or \Z characters, respectively, for the strings containing all lines

in many PCRE-based languages.

This is not a generic rule, because in JavaScript, \A means the literal

character A. JavaScript uses the word boundary assertion \b to test for the

start or end of a word.

 – /\bx/ matches words starting with x.

 – /x\b/ matches words ending with x.

Furthermore, in JavaScript, the m multiline modifier redefines ^ and $

to assert the start and end of a line, respectively. You will learn about the

multiline modifier in the next chapter.

In EMACS,

 – /\`x/ matches strings that start with x.

 – /^x/ matches lines that start with x.

 – /x\'/ matches strings that end with x.

 – /x$/ matches lines that end with x.

ChApTer 2 regex SynTAx 101

17

In VIM,

 – /\%^x/ matches strings that start with `x`.

 – /^x/ matches lines that start with `x`.

 – /x\%$/ matches strings that end with `x`.

 – /x$/ matches lines that end with `x`.

In Perl 6,

 – `/^x/` matches strings that start with `x`.

 – `/x$/` matches strings that end with `x`.

 – `/^^x/` matches lines that start with `x`.

 – `/x$$/` matches lines that end with `x`.

You can conclude that anchored start and end characters may

behave completely differently in different dialects. Always check your

documentation and test your work before relying on these assertions.

Exercise 1: Which of the following strings does /^list|lost|lust$/

match in JavaScript, and why?

 – list,

 – lostlist,

 – listlist,

 – lustlist?

Solution: Surprisingly, the answer is, the first three strings match.

Here’s the proof:

> 'list'.match(/^list|lost|lust$/)

["list", index: 0, input: "list"]

> 'lostlist'.match(/^list|lost|lust$/)

["lost", index: 0, input: "lostlist"]

ChApTer 2 regex SynTAx 101

18

> 'listlist'.match(/^list|lost|lust$/)

["list", index: 0, input: "listlist"]

> 'lustlist'.match(/^list|lost|lust$/)

null

You may have erroneously thought that the regular expression matches

strings 'list', 'lost', and 'lust', and nothing else, because the start

and the end of the string are all anchored.

If you expected only list to match the regular expression, recall a

sentence from the alternative execution section: the pipe operator has the

lowest precedence out of all operators in regular expressions.

The | operator has the lowest precedence, which means that both the

^ and the $ bind stronger. If you use parentheses to highlight the natural

precedence, you get the following expression:

/(^list)|lost|(lust$)/

This expression reads as follows: you match any string that

 – Either starts with list

 – Or contains lost

 – Or ends with lust

The second string, 'lostlist', matches this expression, because

it contains lost. The third string, 'listlist', matches this expression

because it starts with list.

The fourth string, 'lustlist', does not match this expression because

it does not start with list, does not contain lost, and does not end with

lust.

If you want to limit your matches to exclusively list, lost, and lust,

you have to use parentheses.

/^(list|lost|lust)$/

ChApTer 2 regex SynTAx 101

19

After adding parentheses, only the first string matches the expression.

> 'list'.match(/^(list|lost|lust)$/)

["list", index: 0, input: "list"]

> 'lostlist'.match(/^(list|lost|lust)$/)

null

> 'listlist'.match(/^(list|lost|lust)$/)

null

> 'lustlist'.match(/^(list|lost|lust)$/)

null

When using anchor characters with |, always denote your intended

precedence with parentheses, even if your intentions are obvious to

you and even if the usage of parentheses is redundant. This way, your

expressions will become more maintainable.

 Modifiers
It is possible to add different modifiers to a regular expression to change

the way the expression is interpreted and executed. Modifiers are typically

written after the end of the expression.

The bad news is different regular expression implementations come

with different modifiers. The good news is before working with a language,

you can look up and get used to the modifiers available in your language.

ChApTer 2 regex SynTAx 101

20

Table 2-3 shows some examples of modifiers.

These flags are not universal. For instance, the x flag is not available in

JavaScript. The g flag is not available in PHP because global mode can be

accessed only by invoking a different matcher function.

Let’s see the effects of case-insensitive mode in the JavaScript console:

> /re/.test('Regex');

false

> /re/i.test('Regex');

true

Case-insensitive mode treats the string as case insensitive, matching

the sequence Re with the regular expression /re/i.

Table 2-3. Modifiers

Modifier Semantics

g global matching, which does not return after the first match.

m Multiline matching to make ^ and $ match the start and end of a line

instead of the start and the end of the whole string.

s Single-line mode. The character . matches all characters including \n.

i Case-insensitive matching.

x Ignore whitespace characters. This option turns on free spacing mode.

u Match with full Unicode.

ChApTer 2 regex SynTAx 101

21

For now, you can assume /re/i and /(r|R)(e|E)/ are equivalent. This

is not exactly true because of two reasons affecting efficiency.

 – You will later learn a more optimal way of represent-

ing character sets representing, for example, a

character from the set {r, R}.

 – You will learn the secondary function of parentheses

used for capturing substrings, which may drastically

slow down regular expressions.

Don’t worry about performance considerations in this section. Focus

on getting the syntax right.

 Summary
This chapter covered some basic building blocks that make it possible for

you to understand and construct basic regular expressions.

You learned how to formulate a regular expression, what characters

you can use as literal characters, and how to use meta characters.

This chapter also introduced concatenation and alternative execution

matching characters after each other or as alternatives.

The . character was introduced as a shorthand for one arbitrary

character.

I concluded this chapter with anchoring the start and end of a string

or a line and with previewing some modifiers. You will use some of these

modifiers in the next chapter, where you will execute PCRE-based regular

expressions in many different programming languages.

ChApTer 2 regex SynTAx 101

23© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_3

CHAPTER 3

Executing Regular
Expressions
Regular expressions can be used in different programming languages and

text editors. As it is important to test your code in different environments,

in this chapter you will get to know how to construct and execute regexes

in your own environment.

Don’t worry about memorizing the details in all languages. The goal

in this chapter is to explore and play with regexes. You don’t have to

put pressure on yourself to memorize language elements I have not yet

explained in detail. Once you get to the verbose explanation of a feature

you may not yet understand, remembering what you have read in this

chapter will increase your familiarity with the language construct.

First, you will get to know regular expressions in JavaScript in depth so

that you can experiment with regexes in the browser. Then you will get a

chance to use some web sites to execute regular expressions in many other

programming languages.

Once again, the mind-set of this chapter is “No pressure. Have fun.”

 Regular Expressions in JavaScript
It is easy to experiment with JavaScript regular expressions, as JavaScript is

accessible in all browsers.

24

I will use the Chrome Developer Tools to execute regular expressions.

The > symbol at the front of each line denotes input. The return value and

console logs are printed after the input lines. As we are experimenting in

the console, I will use global variables. Obviously, in the source code, using

let and const is encouraged.

Regular expressions can be constructed in two ways.

In their literal form, a regex pattern can be written in between slashes

(/), and some global modifiers can be added to them in the end.

In their object form, you use the RegExp constructor to create regular

expressions. The two forms are identical.

> new RegExp('xy+')

/xy+/

The xy+ pattern matches strings that contain an x character followed

by at least one y character.

JavaScript regular expressions are objects.

> typeof /xy+/

"object"

The constructor function allows the runtime compilation of the

expression. For instance, you could construct a regex pattern using a visual

editor, assemble a string based on the visual editor, and pass it to the

RegExp constructor as an argument during runtime.

Chapter 3 exeCuting regular expressions

25

 RegExp Methods
There are many use cases for regular expressions in JavaScript. You can

identify these use cases by examining the public interface of regexes,

which describe the methods executable on RegExp objects.

 – exec executes a search returning information on a

match.

 – test executes a search returning a Boolean indicating

whether a match was found.

 – toString stringifies a regular expression.

> /xy+/.exec('yyxyy');

{0: "xyy", index: 2, input: "yyxyy", length: 1}

> /xy+/.test('yyxyy');

true

> /xy+/.toString()

"/xy+/"

Notice that exec returns the longest match xyy, not the shortest match

xy. This is because the y+ construct acts like a loop that matches as many

y characters as it finds. In other words, the y+ construct is greedy. You will

learn about the behavior of the + meta character in Chapter 5.

Notice in the previous test example that from the point of view of

finding a match, the xy+ search expression is equivalent to using xy. This

is because locating one y character implies that you can also locate at

least one.

Therefore, in the method test, /xy+/ and /xy/ behave in the same

way. In other methods, y+ finds the longest sequence of y characters.

Chapter 3 exeCuting regular expressions

26

 String Methods Accepting Regular Expressions
Some string methods accept regular expressions as arguments.

 – match executes a search in the string returning

information on the upcoming match. It’s like the

exec method on RegExp objects, exchanging the

object and the argument.

 – search executes a search in the string returning the

index of the upcoming match. The returned index is

-1 if the regex pattern cannot be found in the string.

 – replace executes a search in the string and replaces

the first match.

 – split splits a string into substrings based on a

specified regex pattern.

Here are some examples:

> s = 'xyyzxyzz';

> s.match(/xy+/);

{ 0: "xyy", index: 0, input: "xyyzxyzz", length: 1 }

> s.search(/xy+/);

0

> s.replace(/xy+/, 'U')

"Uzxyzz"

> s

"xyyzxyzz"

> s.split(/xy+/)

["", "z", "zz"]

Chapter 3 exeCuting regular expressions

27

Notice that replace does not mutate the original string; it just returns a

new string with the replaced values.

The split method of strings is polymorphic in a sense that it accepts

a string as well as a regular expression. In the latter case, the string split is

made according to the longest possible matches.

 Regex Modifiers
The second argument of the RegExp constructor function is the list of flags

applied to the regular expression. These flags are called modifiers. For

instance, for a case-sensitive search, you can apply the i flag.

> x = new RegExp('x')

/x/

> xX = new RegExp('x', 'i')

/x/i

> x.test('XY')

false

> xX.test('XY')

true

Chapter 3 exeCuting regular expressions

28

Table 3-1 describes the modifiers available in JavaScript.

Single-line matching is a construct that was added to the regex engine

of JavaScript with ES2018. I will not cover this flag in this chapter. Let’s

execute a few examples for the rest of the flags.

 Global Matches
Let’s construct an example for global matching. We will find all the

sequences of x characters.

> regex = /x+/g;

> str = 'yxxxyxyxx';

> regex.exec(str)

Table 3-1. JavaScript Modifiers

Modifier Description

i non-case-sensitive matching. uppercase and lowercase don’t matter.

g global match. You attempt to find all matches instead of just returning the

first match. the internal state of the regular expression stores where the

last match was located, and matching is resumed where it was left in the

previous match.

m Multiline match. it treats the ^ and $ characters to match the beginning

and the end of each line of the tested string. a newline character is

determined by \n or \r.

u unicode search. the regex pattern is treated as a unicode sequence.

y sticky search.

s single-line matching. the . character will also match newline characters

such as \r and \n. available in es2018 and newer.

Chapter 3 exeCuting regular expressions

29

{0: 'xxx', index: 1, input: 'yxxxyxyxx' }

> regex.lastIndex

4

> regex.exec(str)

{ 0: "x", index: 5, input: "yxxxyxyxx" }

> regex.exec(str)

{ 0: "xx", index: 7, input: "yxxxyxyxx" }

> regex.exec(str)

null

> str.match(/x+/)

{0: 'xxx', index: 1, input: 'yxxxyxyxx' }

> str.match(/x+/g)

["xxx", "x", "xx"]

In the exec example, you can see that all three matches are returned

one by one. After the third match, null is returned. The lastIndex

property of the global regular expression stores the position where it needs

to resume execution.

You have already learned that with string matching, the return value is

similar to the first execution of regex.exec. However, with a global regex

argument, the return value is an array containing all matches in sequential

order.

Chapter 3 exeCuting regular expressions

30

 Multiline Matches
Let’s execute a multiline example. The regular expression

> xRow = /^x+$/m

defines that each row of a possibly multiline string can contain only

lowercase x characters, and each row has to contain at least one x

character. The ^ character indicates that each row has to start with the

specified regex sequence. The $ character indicates that each row has to

end with the specified regex sequence.

The match function specifies that the first row of the string matches all

the specified criteria.

'xx\nxXx\nxxxx'.match(xRow)

["xx", index: 0, input: "xxxXxxxxx"]

If you want to retrieve all matches, you have to add the global flag to

the regular expression. This expression matches the first and third rows of

the string, ignoring the second row:

'xx\nxXx\nxxxx'.match(/^x+$/mg)

["xx", "xxxx"]

Without the flags, the newline characters count as whitespace. As

whitespace characters are not equal to x, the string does not match the

regular expression.

'xx\nxXx\nxxxx'.match(/^x+$/)

null

As you can see, without the multiline flag, the ^ and $ characters

indicate that the whole string may only contain characters specified by the

pattern x+.

Chapter 3 exeCuting regular expressions

31

 ES6 Unicode Regular Expressions
In ES6, you can specify Unicode characters for matching. A Unicode

character is treated as one character regardless of the number of bytes the

character occupies.

> 'x'.codePointAt(0).toString(16)

"78"

The hexadecimal code of the x character is 78. The corresponding

Unicode character in JavaScript is \u{78}. However, a regular expression

containing this Unicode character does not match the character itself.

> /\u{78}/.test('x')

false

This is why you need the u flag.

> /\u{78}/u.test('x')

true

Another problem with Unicode characters is that their size in bytes

may vary. For instance, '\u{2ABCD}' is a Unicode character that cannot be

represented using 4 bytes.

Let’s construct a regular expression that checks whether the

corresponding string contains exactly one character. You can do this

using the arbitrary character symbol .. You can specify that your string

starts with this character, ends with this character, and has nothing in

between: /^.$/.

Let’s test under what conditions does the string '\u{2ABCD}' match

this regex: /^.$/. As this book is not able to handle long Unicode

characters, I will give you both a screenshot (see Figure 3-1) and the code.

The Unicode character will be a rectangle in the code.

Chapter 3 exeCuting regular expressions

32

> /^.$/.test('▯')
false

> /^.$/u.test('▯')
true

> /^.$/.test('\u{2ABCD}')

false

> /^.$/u.test('\u{2ABCD}')

true

We can conclude that the old JavaScript regex engine interprets

'\u{2ABCD}' as a sequence of two characters. However, with the u flag, the

long Unicode character is recognized as a single character.

 Sticky Matches
The y flag sets the lastIndex property of a regular expression after a match

to the first character after the last matched sequence. If the last execution

of the regular expression resulted in no matches, lastIndex is set to 0.

Figure 3-1. Unicode flag for JavaScript regular expressions

Chapter 3 exeCuting regular expressions

33

This is a mutation of the internal state of the regular expression. Always

be aware of this side effect! When the y flag is on, a ^ is automatically

added to the beginning of the regular expression. This means the character

at position lastIndex has to match the start of the regular expression.

Here’s an example:

> regExp = /ab+/y
/ab+/y

> 'ababbabbb'.match(regExp)
{ 0:"ab", index: 0, input: "ababbabbb" }

> regExp.lastIndex
2

> 'ababbabbb'.match(regExp)
{ 0: "abb", index: 2, input: "ababbabbb" }

> regExp.lastIndex
5

> 'ababbabbb'.match(regExp)
{ 0:"abbb", index: 5, input: "ababbabbb" }

> regExp.lastIndex
9

> 'ababbabbb'.match(regExp)
null

> regExp.lastIndex
0

> 'ababbabbb'.match(regExp)
{ 0: "ab", index: 0, input: "ababbabbb" }

> regExp.lastIndex
2

// ...

Chapter 3 exeCuting regular expressions

34

 Summary
Regular expressions in JavaScript have some unique features worth

experimenting with. Some of these features are unique in the JavaScript

regular expression virtual machine. Other features are common to other

languages.

I didn’t focus on the exact syntax of the regex patterns here because

you will learn the exact rules at a later stage. Some characters, such as the +

(at least once) meta character, act as foreshadowing for the capabilities of

regular expressions in most languages.

You learned that regular expressions are objects in JavaScript, and they

are integrated into some String methods as well.

The RegExp public interface allows testing a string, finding the first

match, finding all matches, replacing substrings, and even splitting strings.

To perform some of these use cases, you can use some modifiers such

as the global g modifier, the sticky y modifier, or the multiline m modifier.

Two more modifiers make it more convenient to process strings: i

makes the string insensitive to uppercase or lowercase, while u makes the

JavaScript regex virtual machine handle Unicode characters properly.

 Other PCRE-Based Regex Environments
JavaScript regular expressions are based on the PCRE dialect as well as

the regex execution environments of most programming languages. We

will now explore how to execute regular expressions in some of the most

popular languages.

Given that in the case of most languages executing regular expressions

is not as easy as in JavaScript, we will use some tools that make it possible

to execute and test regular expressions in the browser.

Chapter 3 exeCuting regular expressions

35

When you want a quick solution for generating code for matching

regular expressions, head over to the code generator of regex101.com.1

 PHP
PHP offers global functions to handle regular expressions. These start with

the following:

 – preg_ matching the Perl PCRE syntax

 – ereg_ based on the ERE dialect

 – mb_ereg also based on the ERE dialect, with the

ability to handle Unicode characters

We will deal only with the PCRE syntax here.

In PHP, some modifiers are the same as in JavaScript, while others are

different.

 – i stands for case-insensitivity just like in JavaScript.

 – m stands for multiline just like in JavaScript.

 – u stands for Unicode matching just like in JavaScript.

 – s makes the . character match all characters with-

out exception, including the newline, just like in

ES2018.

 – x turns on free spacing mode for easier readability.

Free spacing mode ignores whitespace characters

between regex characters.

Consult the PCRE section of the PHP manual2 for the documentation

of all PCRE regex functions.

1 https://regex101.com/
2 http://php.net/manual/en/ref.pcre.php

Chapter 3 exeCuting regular expressions

https://regex101.com/
http://php.net/manual/en/ref.pcre.php

36

You can execute PHP code online using many sandbox solutions such

as writephponline.com3 or the Joodle PHP online editor.4

You can use preg_match to return the first match from a string.

preg_match('/xy+/', 'xyxyyxyyy', $matches, PREG_OFFSET_

CAPTURE);

print_r($matches);

The result is as follows:

Array ([0] => Array ([0] => xy [1] => 0))

This is an array containing one element describing the match. The

match descriptor is an array, where element 0 contains the matched

sequence, and the element at index 1 contains the index of the first

character of the match.

preg_match_all returns all matches, so it is similar to the g flag in

JavaScript. Remember, PHP does not have the g modifier, so global matching

is encoded in the public interface in the PCRE regular expression wrapper.

preg_match_all('/xy+/', 'xyxyyxyyy', $matches, PREG_OFFSET_

CAPTURE);

print_r($matches);

The result contains all matches.

Array (

 [0] => Array (

 [0] => Array ([0] => xy [1] => 0)

 [1] => Array ([0] => xyy [1] => 2)

 [2] => Array ([0] => xyyy [1] => 5)

)

)

3 www.writephponline.com/
4 https://www.jdoodle.com/php-online-editor

Chapter 3 exeCuting regular expressions

http://www.writephponline.com/
https://www.jdoodle.com/php-online-editor

37

Although the preg_ functions act as a wrapper for Perl 5–style regular

expressions, there are some small differences in the Perl syntax. Consult

the php.net documentation on PCRE pattern differences5 for more details.

 Python
We will now use python.org’s shell6 to start getting familiar with regular

expressions in Python. The re Python module gives you support for PCRE-

style regular expressions. You can import this module with import re.

>>> import re

The compile method of the re module compiles a regular expression

based on the pattern string provided to it. You can already assemble many

pattern strings using your PCRE knowledge.

>>> regex = re.compile(r"xy+")

Notice the r in front of the string. In Python, this denotes a raw string.

Although in the previous example you can omit this r, in generic cases, you

can save a lot of character escaping if you use raw strings.

The search method of a compiled regular expression searches its

string argument for a match.

>>> regex.search("QxyxyyQ")

<_sre.SRE_Match object; span=(1, 3), match='xy'>

You can get more information on the result with some methods.

>>> result = regex.search("QxyyxyQ")

>>> result.group(), result.start(), result.end(), result.span()

('xyy', 1, 4, (1, 4))

5 http://php.net/manual/en/reference.pcre.pattern.differences.php
6 https://www.python.org/shell/

Chapter 3 exeCuting regular expressions

http://php.net/manual/en/reference.pcre.pattern.differences.php
https://www.python.org/shell/

38

The method group returns the first match in its longest form. The

first character of the match and the first character after the match can be

retrieved using the start, end, and span methods.

The match method of compiled regular expressions is misleading

because it looks for a match from the start of the string.

>>> regex.match("QxyxyyQ")

None

>>> regex.match("xyxyyQ")

<_sre.SRE_Match object; span=(0, 2), match='xy'>

Technically, match is redundant because you could use the ^ character

to match the start of the string.

>>> re.compile("^xy+").search("xyxyyQ")

<_sre.SRE_Match object; span=(0, 2), match='xy'>

I explained the match method so you would avoid confusing it with

search.

There is no need to compile regular expressions because the match

and search methods are also available via the re module as a function

accepting a regex string and a regular string.

>>> re.search('^xy+', 'xyyyyxyQ')

<_sre.SRE_Match object; span=(0, 5), match='xyyyy'>

It is also possible to enumerate all matches belonging to a search

expression. The methods findall and finditer do the trick.

>>> re.findall('xy+', 'QxyxyyQxyyyQ')

['xy', 'xyy', 'xyyy']

>>> iterator = re.finditer('xy+', 'QxyxyyQxyyyQ')

>>> for matchNum, match in enumerate(iterator):

... print (match.group(), match.span())

Chapter 3 exeCuting regular expressions

39

...

xy (1, 3)

xyy (3, 6)

xyyy (7, 11)

In the first example, we enumerated all matches in an array. In the

second example, we created an iterator and started iterating on it to print

the results one by one.

Now you know enough to understand the example code generated by

regex101.com.7

import re

regex = r"ab+"

test_str = "ababb"

matches = re.finditer(regex, test_str)

for matchNum, match in enumerate(matches):

 matchNum = matchNum + 1

 print ("Match {matchNum} was found at {start}-{end}:

{match}"

 .format(

 matchNum = matchNum,

 start = match.start(),

 end = match.end(),

 match = match.group()

)

)

7 https://regex101.com/

Chapter 3 exeCuting regular expressions

https://regex101.com/

40

 for groupNum in range(0, len(match.groups())):

 groupNum = groupNum + 1

 print ("Group {groupNum} found at {start}-{end}: {group}"

 .format(

 groupNum = groupNum,

 start = match.start(groupNum),

 end = match.end(groupNum),

 group = match.group(groupNum)

)

)

Note that I formatted the long lines in the code. As the width of this

book is limited, this change makes sense, and it is not a good idea to write

very long lines of code anyway.

The code sequence prints out the following:

Match 1 was found at 0-2: ab

Match 2 was found at 2-5: abb

The inner loop of groups was not executed in this example. You will

come back to this code later when studying the extraction of substrings

using capture groups.

For more information, consult the Python regex documentation.8

 Perl 5
The Perl 5 documentation9 gives you information on how to formulate

regular expressions. In this section, you will learn how to execute one

simple regular expression and print out some information on the match.

8 https://docs.python.org/2/howto/regex.html
9 https://perldoc.perl.org/perlre.html

Chapter 3 exeCuting regular expressions

https://docs.python.org/2/howto/regex.html
https://perldoc.perl.org/perlre.html

41

You can execute the code snippets in an online Perl compiler such as

the one on rextester.com.10 A simple match can be executed using the =~

operator.

if ("ababb" =~ /ab+/) {

 print "Match";

}

The value of "ababb" =~ /ab+/ is 1 whenever the match is successful,

0 otherwise. You can also retrieve the matched string and the string before

and after the match.

if ("ababb" =~ /ab+/) {

 print "Match: ", $`, "|-->|", $&, "|<--|", $';

}

Output:

|-->|ab|<--|abb

The g global modifier is available in Perl to retrieve all matches.

while ("ababb" =~ /ab+/g) {

 print "Match: ", $`, "|-->|", $&, "|<--|", $', '\n';

}

Output:

|-->|ab|<--|abb

ab|-->|abb|<--|

 Java
You will now see how to write a simple Java class that can execute some

regular expression matching.

10 http://rextester.com/l/perl_online_compiler

Chapter 3 exeCuting regular expressions

http://rextester.com/l/perl_online_compiler

42

If you don’t want to install the Java development environment on your

machine, you can run Java code using tio.run11 or compilejava.net.12

Let’s see the source code first:

import java.util.regex.Matcher;

import java.util.regex.Pattern;

public class Main {

 public static void main(String args[]) {

 final String regex = "xy+";

 final String string = "QxyxyyQxyyyQ";

 final Pattern pattern = Pattern.compile(regex);

 final Matcher matcher = pattern.matcher(string);

 while (matcher.find()) {

 System.out.println(

 "Full match: " + matcher.group() + "(" +

 matcher.start() + "," + matcher.end() + ")"

);

 }

 }

}

 – java.util.regex contains a Matcher and a Pattern

utility. Pattern compiles a regular expression, and

Matcher creates an object to match a pattern with a

string.

 – You can iterate on the matcher object using its find

method to locate the upcoming target.

11 https://tio.run/#java-openjdk9
12 https://www.compilejava.net/

Chapter 3 exeCuting regular expressions

https://tio.run/#java-openjdk9
https://www.compilejava.net/

43

 – The details of the match can be accessed through

the matcher object. The getter functions group(),

start(), and end() return the matched string, the

start index of the match, and the index of the first

character after the match, respectively.

The result of the execution is as follows:

Full match: xy(1,3)

Full match: xyy(3,6)

Full match: xyyy(7,11)

 R
In the R language, using regular expressions is quite straightforward.

You can use the grep function to filter the list of strings according to

the regular expression matching it. value = TRUE means that you are

interested in the filtered string values. FALSE means you are interested in

the indices of the returned values.

grep("ab+", strings, value = TRUE)

grep("^ab+", strings, value = TRUE)

grep("ab+", strings, value = FALSE)

grep("^ab+", strings, value = FALSE)

Let’s create a couple of strings.

(strings <- c("XabbbbX", "abb", "aaa", "a", "Abbb", "XabX"))

The returned values are as follows:

[1] "XabbbbX" "abb" "XabX"

[1] "abb"

[1] 1 2 6

[1] 2

Chapter 3 exeCuting regular expressions

44

The function regexpr gives more information about the matches, as

shown here:

regexpr("ab+", strings)

[1] 2 1 -1 -1 -1 2

attr(,"match.length")

[1] 5 3 -1 -1 -1 2

The first line contains the indices of the first matched character in each

string.

You could also use regmatches to display the matched substrings. First

you have to save the matches in a constant and then use this constant as

the second argument of the regmatches function.

matches <- regexpr("ab+", strings)

regmatches(strings, matches)

The return value is as follows:

[1] "abbbb" "abb" "ab"

For more information, consult the R manual.13

 C#
The generated C# code of regex101.com14 executes smoothly and shows

how easy it is to use regular expressions in C#.

System.Text.RegularExpressions gives you regex support.

Similarly to Java, you have to create a class and a static Main function as

the entry point of the application.

13 https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
14 https://regex101.com/

Chapter 3 exeCuting regular expressions

https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
https://regex101.com/

45

In the Main function, you have to define a pattern and a string.

Regex101 defined these in the variables pattern and input, respectively.

Regex.Matches enumerates all matches for you one by one. Each match is

stored in an object of type Match. A Match object has a Value and an Index

field.

using System;

using System.Text.RegularExpressions;

public class Example

{

 public static void Main()

 {

 string pattern = @"ab+";

 string input = @"ababb";

 foreach (Match m in Regex.Matches(input, pattern))

 {

 Console.WriteLine("'{0}' found at index {1}.",

m.Value, m.Index);

 }

 }

}

After executing this code in dotnetfiddle.net,15 for example, the

following text is written to the console:

'xy' found at index 0.

'xyy' found at index 2.

15 https://dotnetfiddle.net/

Chapter 3 exeCuting regular expressions

https://dotnetfiddle.net/

46

 Ruby
Let’s test-drive the basics of Ruby regular expressions in an online Ruby

console such as repl.it.16

> /ab+/ =~ 'XabbabX'

=> 1

Regex matching is done using the =~ operator. The return value of a

regex matching is the first character of the match. When there is no match,

nil is returned.

> /ab+/ =~ 'XX'

=> nil

You can also use the match method of regular expressions. The return

value of a match is a MatchData object containing the first match.

> /ab+/.match('XabbabX')

=> #<MatchData "abb">

You can get the matched string by querying $&.

> $&

=> "abb"

Let’s execute the match once more and access some more data on the

matched result.

> result = /ab+/.match('XabbabX')

=> #<MatchData "abb">

> result[0]

=> "abb"

> result.pre_match

16 https://repl.it/repls/VoluminousBraveSloth

Chapter 3 exeCuting regular expressions

https://repl.it/repls/VoluminousBraveSloth

47

=> "X"

 > result.post_match

=> "abX"

If you are interested in an array of all matches, you can use the scan

method of strings.

 > 'XabbabX'.scan(/ab+/)

=> ["abb", "ab"]

Similarly to the C# code, the Ruby code generated by regex101.com17 is

also straightforward to interpret.

re = /xy+/

str = 'xyxxyyy'

Print the match result

str.scan(re) do |match|

 puts match.to_s

end

 – re contains the regular expression, while str is the

string you attempt to match.

 – By using the str.scan method, you get an array. You

can iterate on the array and print all matches.

Check out the Ruby Regular Expression documentation18 if you are

interested in learning more about Ruby regexes.

17 https://regex101.com/
18 http://ruby-doc.org/core-2.2.0/Regexp.html

Chapter 3 exeCuting regular expressions

https://regex101.com/
http://ruby-doc.org/core-2.2.0/Regexp.html

48

 Golang
Use the Go Playground19 to execute Golang code.

Let’s generate some regex tester code using regex101.com.20

package main

import (

 "regexp"

 "fmt"

)

func main() {

 var re = regexp.MustCompile(`ab+`)

 var str = `ababb`

 for i, match := range re.FindAllString(str, -1) {

 fmt.Println(match, "found at index", i)

 }

}

In the code, we created the regular expression ab+ and the string ababb.

The regex method FindAllStrings finds all substrings matching the

regular expression. We can then print out the matched substring as well as

its index.

We can use some other Golang features to match regular expressions.

package main

import (

 "regexp"

 "fmt"

)

19 https://play.golang.org/
20 https://regex101.com

Chapter 3 exeCuting regular expressions

https://play.golang.org/
https://regex101.com/

49

func main() {

 var re = regexp.MustCompile(`ab+`)

 var str = `ababb`

 // re.MatchString returns a boolean indicating if there is

a match

 fmt.Println(re.MatchString(str))

 // re.FindString returns a string containing the first match

 fmt.Println(re.FindString(str))

 // re.FindAllString collects all matches in an array

 // Important: FindAllString is written in singular

 fmt.Println(re.FindAllString(str, -1))

}

The Golang Regexp Documentation21 contains more information on

the regexp package.

 C++
The last example is C++. First, for simplicity, you need an online C++

compiler. You can use either onlinegdb.com22 or cpp.sh.23

Let’s see a simple regex matching:

#include <iostream>

#include <regex>

using namespace std;

int main()

21 https://golang.org/pkg/regexp/
22 https://www.onlinegdb.com/online_c++_compiler
23 http://cpp.sh/

Chapter 3 exeCuting regular expressions

https://golang.org/pkg/regexp/
https://www.onlinegdb.com/online_c++_compiler
http://cpp.sh/

50

{

 regex r("ab+");

 cout << regex_search("XabbabX", r);

 return 0;

}

We can define a regular expression using regex r(regexString).

We can then use the r variable in the regex_search function accepting a

string and a regular expression. The return value of regex_search is 1 if a

match was found, 0 otherwise.

If you are interested in getting all matches one by one, you need to use

an sregex_iterator. This iterator is defined over a string and a regular

expression, and it emits the matches one by one.

#include <iostream>

#include <regex>

using namespace std;

int main()

{

 regex r("ab+");

 string str = "XabbabX";

 sregex_iterator iter(str.begin(), str.end(), r),

 iter_end;

 smatch nextMatch;

 for (;iter != iter_end; ++iter) {

 cout << (*iter).str() << "\n";

 }

 return 0;

}

Chapter 3 exeCuting regular expressions

51

At each point in time, iter points at a regex match. *iter gives you the

contents at the location specified by iter. You can get the matched token

itself via the str() getter method.

As you can see, you need to know quite a lot of C++ to interpret regular

expressions. If you don’t know C++, you can still execute your regular

expressions using these code snippets. If you do know C++, this code will

be a piece of cake for you.

 Summary
Although this chapter just scratched the surface, you can see that in

most programming languages, regular expressions are easy to execute.

Although the exact specifications vary, they are similar in nature. I highly

recommend playing around with them so that you get a feel for how you

can execute regexes in languages other than your own programming

language.

Chapter 3 exeCuting regular expressions

53© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_4

CHAPTER 4

Visualizing Regex
Execution Using
Finite State Machines
A regular expression is converted into code executed in a virtual machine.

This virtual machine runs on the virtual machine of the host language or

editor.

Abstract models are helpful for understanding how regular expressions

are executed. Although these models often neglect optimization

techniques implemented by regex engines, they still give you valuable

information on how regexes work.

 Regular Expressions Are Finite State
Machines
The easiest way to visualize a regular expression is with a finite state

machine.1 A finite state machine (FSM) is a directed acyclic graph2 with a

1 https://en.wikipedia.org/wiki/Finite-state_machine
2 https://en.wikipedia.org/wiki/Directed_acyclic_graph

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Directed_acyclic_graph

54

dedicated initial state and a dedicated end state. The FSM representation

of a regular expression is as follows:

 – The edges (arrows) represent characters we read

from the input stream.

 – The nodes represent an internal state of the regular

expression.

For instance, the regular expression /ab/ can be represented with the

finite state machine shown in Figure 4-1.

/ab/ first matches the character a and then the character b. Imagine we

are reading the text aabc and want to figure out if this string matches the

regular expression /ab/.

Let’s place a token on the start node.

 1. After reading the first a character, we move the token

through the arrow denoted by the a state. The token

is now in the intermediate state.

 2. After reading the second a, there is no arrow starting

in the intermediate state; therefore, we move back to

the start state. In this state, we try reading a again. As

there is an a arrow originating from the start state,

we move to the intermediate state again.

Figure 4-1. /ab/

Chapter 4 Visualizing regex exeCution using Finite state MaChines

55

 3. After reading the b character, we move our token

from the intermediate state to the match state.

Given that we have reached the match state, the

string matches the regular expression.

Notice the match has been determined without reading the last

character in the sequence.

Each character in the regular expression is an instruction executed in

sequence. These instructions are matching tasks. Our goal is to reach the

match node in any way possible. From the perspective of determining a

match, it does not matter how many times we reach the match state, as

long as we reach it at least once.

 Backtracking
In some cases, we are stuck in an intermediate node of the finite state

automaton. To avoid getting stuck, we are entitled to continue execution by

using backtracking. Backtracking happens once you fail to reach the match

node, and you cannot move anywhere from a node.

When we backtrack in a finite state automaton, we move backward

on the edges until we reach a node that has forward edges that we haven’t

tried yet. If you have ever read a Fighting Fantasy gamebook, where you

explore the Deathtrap Dungeon, for instance, you might remember how

you backtracked from one path of the maze to another. The same thing

happens in a regular expression.

As you move forward, you mark the edges you have visited. As you

move back, you only try edges that you haven’t marked before.

While moving backward on an edge, we also move back our caret

pointing at the upcoming character of the input string, unreading the

character on the edge.

Chapter 4 Visualizing regex exeCution using Finite state MaChines

56

One special form of backtracking is when we move back to the

starting node. In this case, we have another move in our arsenal: moving a

character forward in the input string and attempting to start a new match.

For instance, when matching the string "abaa" with the regex /aa/,

we first read the character a. Then we backtrack because we cannot move

forward after the first character. After backtracking, we move the caret

forward, leaving the string "baa" to match against /aa/. As we cannot

match the character b against a, we move the caret forward again. We now

have the string "aa" to match against /aa/. This matching will obviously

succeed without any further backtracking.

To understand backtracking more deeply, let’s explore the differences

between deterministic and nondeterministic regular expression modeling.

 Deterministic and Nondeterministic Regex
Modeling
The | (pipe) represents an or operation in most regular expression dialects.

In EMACS and VIM, you have to escape the pipe, resulting in the \|

operator. In BRE, or is not supported. In all other dialects, the or operator is

a regular pipe. In this chapter, we will stick to the latter notation.

/a|b/ is a regular expression that matches either an a character or

a b character. The finite state machine representation of this regular

expression looks like Figure 4-2.

Figure 4-2. /a|b/

Chapter 4 Visualizing regex exeCution using Finite state MaChines

57

In practice, regex implementations may simplify this automaton

by representing a set of possible matches using a bitmask, as shown in

Figure 4-3.

The bitmask representation simplifies the graph, especially in complex

cases.

Let’s consider some more complex cases, where simplification is not

obvious.

Here’s an expression, shown in Figure 4-4: /list|lost|lust/.

The most obvious construction of an automaton looks like the

following: we branch off for each operand of the or operator and attempt to

match the characters in sequence.

Figure 4-3. /a|b/

Figure 4-4. /list|lost|lust/

Chapter 4 Visualizing regex exeCution using Finite state MaChines

58

During execution, we have to attempt each branch. When one branch

fails, we backtrack. For instance, in the sequence lossless, we attempt the

following steps:

 – As the first character is l, we try to match it in all

three branches.

 – On the first branch, we check the second

character, which is an o. As we cannot move

forward in this branch, we backtrack.

 – On the second branch, the second and third

characters, o and s, both match the characters

on the upcoming arrows. However, the fourth

character is supposed to be a t instead of an s,

so we backtrack.

 – On the third branch, we check the second

character, which is still an o. As we needed an

u to move forward, we backtrack.

 – The second, third, and fourth characters don’t

match any of the arrows originating from the start

node.

 – The fifth character is a l again. We try to match it in

all three branches.

 – On the first branch, e != i, so we backtrack.

 – On the second branch, e != o, so we backtrack.

 – On the third branch, e != u, so we backtrack.

 – The rest of the characters (e, s, and s) don’t match

any of the edges originating from the start node.

 – As there are no more letters to read and we have not

reached the match state, we return a failure.

Chapter 4 Visualizing regex exeCution using Finite state MaChines

59

Each time we can move in multiple directions from the same

node, we take a nondeterministic action. The previous automaton is a

nondeterministic finite automaton (NFA3).

Many regex interpreters use this nondeterministic form, without

considering any compile-time optimizations. Some regex interpreters go

the extra mile and convert the nondeterministic edges into deterministic

ones.

First, notice each branch starts with l. We can simply use just one edge

instead of the three and delay the nondeterminism, as shown in Figure 4-5.

3 https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton

Figure 4-5. /l(ist|ost|ust)/

Chapter 4 Visualizing regex exeCution using Finite state MaChines

https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton

60

Second, notice each branch ends with st. We can use one edge and

one state instead of the three redundant ones, as shown in Figure 4-6.

As a final step, let’s apply a bitmask instead of the three edges, where

the letters are connected with or, as shown in Figure 4-7.

For now, we will denote this bitmask by {i|o|u}. Read it this way:

“Choose one of the characters i, o, u.” You will learn about this language

construct later in the chapter.

More important, the resulting graph is now a DFA,4 or deterministic

finite automaton.

4 https://en.wikipedia.org/wiki/Deterministic_finite_automaton

Figure 4-6. l, I, or o or u, s, t

Figure 4-7. l, {i, o, u} character set, s, t

Chapter 4 Visualizing regex exeCution using Finite state MaChines

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

61

The nondeterministic form is a lot easier to build from the regular

expression. If the length of the input is N, it takes O(N) steps to construct

the tree. In exchange, we pay the price during execution, as the worst-case

execution time is O(2^N).

Constructing a deterministic automaton takes the magnitude of steps

O(2^N). In exchange, execution costs are linear.

In practice, as long as our regular expressions are not reusable, we

tend to settle for slower worst-case execution time. This is because a

regular expression can succeed very quickly. As soon as we find a match,

execution is finished.

Therefore, even though most regex engines use optimizations, the

nondeterministic form is often beneficial.

Finally, notice that our original expression was /list|lost|lust/. If we

reverse engineer a regular expression from the final optimized automaton,

we get /l(i|o|u)st/. This form is purely deterministic. Therefore, we can

conclude that in case our regex interpreter has a tendency to execute

regex matching in a nondeterministic way, we save precious runtime by

writing an optimized regular expression. Even if the interpreter makes the

necessary optimizations for us, we still save automaton construction time

by writing regexes in an optimized form.

This benefit is often negligible, so whenever we can choose between

optimization and understandability, I go for understandability.

If you are interested in learning more about optimization techniques,

refer to swtch.com.5

5 https://swtch.com/~rsc/regexp/regexp1.html

Chapter 4 Visualizing regex exeCution using Finite state MaChines

https://swtch.com/~rsc/regexp/regexp1.html

62

 Basic Regex Simplifications
You have seen that a nondeterministic automaton construction algorithm

yields two completely different automata for the same regular expression.

In the previous section,

 – /list|lost|lust/ resulted in a nondeterministic

finite state automaton.

 – /l(i|o|u)st/ resulted in a deterministic one.

You already know that the second form is more efficient. Generally,

unless there is a semantic reason to increase the readability of the regular

expression, I prefer the second form.

The same holds for constructs, when matching one branch implies

that the other branch is matched. For instance, in /lesson|less/ or /

less|lesson/, matching lesson implies that we had to match less.

This is because lesson starts with less. As a consequence, we can

simplify the regular expression to /less/.

For instance, when executing /lesson|less/ on lessom, which is a

nonsense word written most likely as a result of a typo, we first try to match

against lesson and then backtrack just to conclude that less is accepted.

Although in small regular expressions this is not a big deal, imagine a

bloated regular expression like the following:

/less(a|b|c|de(f|g)|o(a|b|c|...))|less/

When checking lessom, we may waste a lot of precious execution time

in the first branch for no reason.

We may succeed in the first branch, for instance, by checking the

input lessdeg. However, lessdeg also matches less, which means we

did unnecessary work. Regular expressions are not designed to find

the shortest match. They are designed to return the first match in the

execution sequence.

Chapter 4 Visualizing regex exeCution using Finite state MaChines

63

 A Successful Match Is Cheaper Than Failure
You saw in the previous sections that regular expressions tend to succeed

faster than returning a failure. This is because a failure means we have to

try each execution path in all possible ways.

As success is cheaper than failure, always formulate a condition for

success when designing a regular expression. Failure tends to be more

expensive.

 Automatically Generating Regex FSMs
Visualizing a regular expressions helps you understand how they work and

how they can be simplified. Until you master the regex execution model in

your mind, you could have a notebook with you to construct a finite state

machine for each regular expression you encounter. If you want to save

time, you can also use some online services.

http://ivanzuzak.info/noam/webapps/fsm_simulator/ simulates

the execution of a regular expression matching a given string. It not only

creates automata for you but also shows the execution of the matching

algorithm character by character. Unfortunately, the language of the

automaton is limited, as we can only concatenate strings, use the or

operator, and use the Kleene (*) operator for indicating any number of

occurrences. We can also use parentheses for grouping. Using the plus

symbol instead of the pipe is slightly inconvenient because in this special

dialect, plus means alternative execution and not the “at least once” repeat

modifier. In exchange for the semantic difficulties, this software shows

you three different types of simplified automata that can be used to match

your strings. The constructs in this book have been very close to the eNFA

construct.

Chapter 4 Visualizing regex exeCution using Finite state MaChines

http://ivanzuzak.info/noam/webapps/fsm_simulator/

64

http://ivanzuzak.info/noam/webapps/regex_simplifier/ shows

you how to simplify regular expressions. For instance, the expression

containing the words list, lost, and lust is simplified as follows:

Input: list+lost+lust

R1 list+lost+lust

Rule (ab+ac) => a(b+c)

R2 l(ist+ost)+lust

Rule (ab+ac) => a(b+c)

R3 l((ist+ost)+ust)

Rule (ab+cb) => (a+c)b

R4 l(((is+os)t)+ust)

Rule (a) => a

R5 l((is+os)t+ust)

Rule (ab+cb) => (a+c)b

R6 l(((is+os)+us)t)

Rule (ab+cb) => (a+c)b

R7 l((((i+o)s)+us)t)

Rule (a) => a

R8 l(((i+o)s+us)t)

Rule (ab+cb) => (a+c)b

R9 l((((i+o)+u)s)t)

Rule ab(cd) => abcd

R10 l(((i+o)+u)s)t

Chapter 4 Visualizing regex exeCution using Finite state MaChines

http://ivanzuzak.info/noam/webapps/regex_simplifier/

65

Rule ab(cd) => abcd

R11 l((i+o)+u)st

Rule (a+(b+c)) => a+b+c

R12 l(i+o+u)st

https://regexper.com/6 constructs an execution graph from a

JavaScript regular expression. For instance, check out the representation

of a complex JavaScript regular expression online.7 If you study the graph,

you can easily reverse engineer what each meta character means. If this

regular expression seems intimidating for you, don’t worry, because we all

have trouble reading expressions like this one.

This graph representation has little to do with the finite state automata

because in the regexper graph, edges do not consume characters. In

this graph, nodes consume characters, and edges can be selected in a

nondeterministic way. Also notice that edges may have conditions on

them such as 1..3 times or 1+ times. The FSM representation of such

edges may be completely different. This is a simplification for the sake of

understandability.

https://www.debuggex.com/8 uses the same format as regexper, and

the interface helps you visualize how a regular expression matches a string

character by character. You can use JavaScript, Python, and generic PCRE

syntax.

https://regexr.com/9 gives you a verbal explanation and cheat sheet

for JavaScript, as well as the generic PCRE syntax.

6 https://regexper.com/#%2Flist%7Clost%7Clust%2F
7 https://regexper.com/#%2F%5E(l%2Bi%3Fs*t%7B3%7D%24%7C%5BlL%5Dost%7B2%
2C%7D%7C(lu)*st%7B1%2C4%7D%5Cd%5Cd%5B%5Eabc1-3%5D)%2F

8 https://www.debuggex.com/
9 https://regexr.com/

Chapter 4 Visualizing regex exeCution using Finite state MaChines

https://regexper.com/
https://www.debuggex.com/
https://regexr.com/
https://regexper.com/#%2Flist%7Clost%7Clust%2F
https://regexper.com/#%2F%5E(l%2Bi%3Fs*t%7B3%7D%24%7C%5BlL%5Dost%7B2%2C%7D%7C(lu)*st%7B1%2C4%7D%5Cd%5Cd%5B%5Eabc1-3%5D)%2F
https://regexper.com/#%2F%5E(l%2Bi%3Fs*t%7B3%7D%24%7C%5BlL%5Dost%7B2%2C%7D%7C(lu)*st%7B1%2C4%7D%5Cd%5Cd%5B%5Eabc1-3%5D)%2F
https://www.debuggex.com/
https://regexr.com/

66

https://regex101.com/10 is another handy tool for testing whether a

regular expression matches a string. PCRE (PHP), JavaScript, Python, and

GoLang are all usable. The tool can also generate code for C#, Java, Ruby,

Rust, and Perl 5.

http://qfsm.sourceforge.net/download.html11 is my favorite finite

state machine designer tool. You can visualize and simulate finite state

machines conveniently.

 Summary
In this chapter, you learned the fundamentals of visualizing the execution

of simple regular expressions with finite state machines. We concluded that

the execution of state machines can be deterministic or nondeterministic,

depending on the way how regular expressions are simplified.

Deterministic execution can be visualized using a deterministic finite

automaton. Creating this automaton is expensive, but determining whether

a regular expression matches a string is cheap in terms of execution time.

Nondeterministic execution can be visualized using a

nondeterministic finite automaton. Creating this automaton is cheap, but

executing whether a regular expression matches a string is expensive in

terms of execution time.

As success is always cheaper than a failure during runtime, we tend

to favor nondeterministic execution to avoid losing too much time with

optimization.

We concluded this chapter with some simple considerations for

optimizing regular expressions and some tools that visualize, test, simplify,

or debug regular expressions.

So far, you have used a limited subset of regular expressions. In the

next chapter, you will extend this subset with repeat modifiers.

10 https://regex101.com/
11 http://qfsm.sourceforge.net/download.html

Chapter 4 Visualizing regex exeCution using Finite state MaChines

https://regex101.com/
http://qfsm.sourceforge.net/download.html
https://regex101.com/
http://qfsm.sourceforge.net/download.html

67© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_5

CHAPTER 5

Repeat Modifiers
In Chapter 1, I explained that regular expressions are imperative.

Imperative languages come with control structures. When developing

software using a programming language, we use the following control

structures:

 – Branching: In most programming languages, we use

if statements and switches. In regular expressions,

we branch off using the | metasyntax character or

using character sets. An | structure vaguely corre-

sponds to an if-else structure, and a character set

vaguely corresponds to a switch statement. An

example of character sets is [ab]. Read it like a|b. In

other words, choose either a or b.

 – Loops: In most programming languages, we use

loops such as the for loop or the while loop. Repeat

modifiers are similar structures to loops in regular

expressions.

68

Table 5-1 describes the repeat modifiers that are available to use.

Table 5-1 shows the PCRE syntax only. There are some differences in

other dialects. We will tackle those differences in the description of each

repeat modifier.

 Backtracking
When performing a match, we can match a character, a set, or a sequence

of characters. Here are some examples:

 – ab+ matches an a and then at least one b. Matching

strings are ab, abb, abbb, and so on.

 – [ab]+ matches any number of a or b character in

any order, assuming the matched sequence is at

least one character long. Matching strings are a, b,

aa, ab, ba, bb, aaa, aab, and so on.

 – (ab)+ matches at least one ab sequence. Matching

strings are ab, abab, ababab, and so on.

Table 5-1. Repeat Modifiers

Repeat Modifier (PCRE) Description

+ Match at least once

? Match at most once

* Match any number of times

{min,max} Match at least min times, and at most max times

{n} Match exactly n times

Chapter 5 repeat Modifiers

69

In most programming languages, we use loops for iteration. We

normally execute a loop a fixed number of times, moving forward in

execution. This is where regular expressions differ from other languages.

Regex repeat modifiers may unloop themselves. The process of unlooping

is called backtracking.

Backtracking may occur whenever we have a degree of

nondeterminism in our regular expression. Nondeterminism is brought by

alternative execution and repeat modifiers. It is easy to see that selection

and iteration are similar in nature. For instance, the repeat modifier a+ is

nothing other than an infinite sequence.

a|aa|aaa|aaaa|aaaaa|...

For instance, in JavaScript, suppose we are matching the aa string

against the regular expression /^[ab]+a$/.

> /^[ab]+a$/.test('aa')

true

This matching returns true, but the execution becomes interesting, as

shown in Figure 5-1.

Notice that the ^ and $ state transitions do not read any characters

from the string, but they fix the position from which a string is parsed. The

fixed start and end anchors guard the match state such that the whole

string has to be parsed.

Figure 5-1. Backtracking in nondeterministic FSMs

Chapter 5 repeat Modifiers

70

Suppose you have a token, and you move it among the states of the

automaton to match the previous regular expression.

From the start state, the ^ anchor lets us pass at the start of the

string to the first intermediate state. We then consume an a character

to move to the middle state. Suppose we are using the loop with label

{a|b} to consume the second a character and stay in the same state. After

consuming the second a character, our string ends, and we are not in a

match state.

Therefore, we have to backtrack, unlooping the [ab]+ repeat modifier

once. Then we consume the second a character via the other arrow,

moving us to the last intermediate state in the automaton. As the only

arrow moving out from this state is the $, we have to check whether we

have reached the end of the string. Yes, we have, so we successfully reach

the match state.

Let’s examine each repeat modifier in more depth.

 Match at Least Once
In BRE, we have to use the * to represent the + repeat modifier. a+ becomes

aa*. In other words, matching an a character and at least zero more a

characters is equivalent to matching at least one a character.

In EMACS and VIM, you have to escape the + operator. a+ becomes

a\+. In all other dialects, we use the following:

 – a+ to denote matching the a character at least once

 – [ab]+ to denote matching the a or the b character at

least once

 – (ab)+ to denote matching the ab sequence at least

once

Chapter 5 repeat Modifiers

71

The finite state machine belonging to a+ is as shown in Figure 5-2.

We first match an a character, and then we match any number of a

characters. The next loop may be an empty transition, or we may simplify

the automaton by matching the next character.

For instance, we can construct two different automata for the regular

expression /a+b/, as shown in Figure 5-3 and Figure 5-4.

Figure 5-2. /a+/

Figure 5-3. /a+b/ with empty arrow

Figure 5-4. /a+b/ without empty arrow

Chapter 5 repeat Modifiers

72

The two automata are equivalent, assuming that we can freely move

forward along the empty arrow, without reading any characters.

Let’s summarize the at least once loop for different dialects in Table 5- 2.

 Match at Most Once: Optionals
Optionals are not supported in BRE. Optionals have to be escaped in

EMACS and VIM. In the rest of the dialects, optionals are written in the

same way as the at least once meta character:

 – a? to denote matching the a character at most once

 – [ab]? to denote matching the a or the b character at

most once

 – (ab)? to denote matching the ab sequence at most

once

Optionals are called optionals because either we can match them once

or we don’t match them at all.

Table 5-2. At Least Once Loop

Dialect Notation for the At Least Once Loop

Bre None; use aa*

ere, pCre, perl 6 a+

eMaCs, ViM a\+

Chapter 5 repeat Modifiers

73

The finite state machine belonging to an optional matching a? is

shown in Figure 5-5.

Notice the empty arrow. When taking the bottom path, no characters

are consumed from the string we attempt to match.

 Match Any Number of Times
This operator is available in all dialects without escaping. The expression

a* looks the same in all dialects and matches a sequence of a characters of

any lengths, including the empty string. The finite state automaton form of

the match is straightforward, as shown in Figure 5-6.

Figure 5-5. /a?/

Figure 5-6. /a*/

Chapter 5 repeat Modifiers

74

Parentheses and brackets can be used in the same way as the + and the

operators.

 – a* denotes matching any number of a characters.

 – [ab]* denotes matching the a or b character any

number of times.

 – (ab)* denotes matching the ab sequence any

number of times.

Don’t forget to escape the parentheses with \(and \) in EMACS and

VIM.

 Fixed-Range Matching
Suppose we want to match the a character at least twice and at most 5 times.

Different dialects support this in different ways, as shown in Table 5- 3.

In most programming languages, we use the PCRE dialect: /a{2,5}/.

Focus on your own use cases.

Table 5-3. Matching the character

a at least twice, and at most 5 times

Dialect Notation

Bre, eMaCs /a\{2,5\}/

ViM /a\{2,5}/

ere, pCre /a{2,5}/

perl 6 / a ** 2..5 /

Chapter 5 repeat Modifiers

75

The finite state machine form looks verbose because we have to

expand every option. Matching two to five times means we have to

construct a route for matching twice, three times, four times, and five

times, as shown in Figure 5-7.

In practice, most regex engines represent this repeat modifier as an

*(asterisk). An asterisk is interpreted as any number of times match and

use internal counters to meet the required conditions.

Figure 5-7. /a{2,5}/

Chapter 5 repeat Modifiers

76

Note that it is possible to leave out the maximum value of the range.

To match at least two a characters, you have to use the notation shown in

Table 5-4.

Notice the maximum amount is simply left out in all dialects except

Perl 6, where an * denotes the arbitrary value.

The finite state machine form of /a{2,}/ is a lot less complex than

the FSM belonging to the bounded repeat modifier. In fact, this machine

is equivalent to the FSM belonging to the expression /aaa*/, as shown in

Figure 5-8.

In theory, the upper limit is unbounded. In practice, this upper limit

depends on the implementation of the regex virtual machine. The upper

limit restriction may be a low value like 256. In other languages, this value is

32767, which is one less than the maximum value of a 2-byte-long unsigned

integer. Be careful when using regular expressions with big upper limits.

Table 5-4. Matching at least two a characters

Dialect Notation

Bre, eMaCs /a\{2,\}/

ViM /a\{2,}/

ere, pCre /a{2,}/

perl 6 / a ** 2..* /

Figure 5-8. /a{2,}/

Chapter 5 repeat Modifiers

77

Also note, in some languages like Python, the real maximum limit is

infinity, but you may easily get an overflow error if this limit is too big.

 Loop Exactly n Times
Let’s examine the shorthand for the expression /aa/ in all dialects, as

shown in Table 5-5.

This means we loop through the a character exactly twice. When there

is a complex expression instead of a or the number of repetitions is a lot

more than 2, the shorthand actually becomes shorter than the original

version of /aa/.

The finite state machine belonging to this loop is straightforward, as

shown in Figure 5-9.

Table 5-5. Shorthand for /aa/

Dialect Notation

Bre, eMaCs /a\{2\}/

ViM /a\{2}/

ere, pCre /a{2}/

perl 6 / a ** 2 /

Figure 5-9. /aa/

Chapter 5 repeat Modifiers

78

As you can see, the state machine matches the FSM of /aa/.

 Greedy Repeat Modifiers
You have already seen the meta characters for greedy repeat modifiers in

Table 5-1.

All these repeat modifiers are greedy by default. This means the

repeat modifiers consume as many characters from the matched string as

possible and backtrack character by character.

As an extreme example, suppose we are matching the string 'The lost

list' using the regular expression /^.*list$/.

As the * repeat modifier is greedy, .* consumes the whole string first,

just to conclude that we are at the end of the string and we have yet to

match the character l. In case of a failure, we backtrack.

Repeat modifiers consume characters in a greedy way, and they

backtrack as little as possible. Therefore, we backtrack just one character.

After the backtracking, .* matches The lost lis, and the next character

to be consumed is t. As t is not equal to l, we backtrack.

Now .* becomes The lost li, and we are trying to match s against l.

This doesn’t work, so we backtrack.

Now .* becomes The lost l, and we are trying to match i against l.

This doesn’t work, so we backtrack.

Now .* becomes The lost , and we are trying to match l against l.

This succeeds, so we continue matching the rest of the string with the rest

of the regex pattern. As we succeed matching the whole string and we

reach the end, we exit the regex matching with success.

In this example, we just backtracked four times. But imagine if we

had megabytes of text; one .* construct may read the whole file before

evaluating the rest of the regular expression. Therefore, proceed with .*-

like constructs with caution. There is almost always a more optimal way to

describe a pattern.

Chapter 5 repeat Modifiers

79

Backtracking is introduced because our state machine is

nondeterministic. In /^.*list$/, in each step, as long as we are in

the .* loop and an l character is coming, we have to decide whether

we are matching a . character or we are matching an l. This is the

nondeterminism that causes backtracking.

One way to combat backtracking is to make the nondeterministic state

machine deterministic. This may require an exponential number of steps

with respect to the size of the input. Only a few regex virtual machines do

this because the effort rarely pays off.

Another solution is to use loops that match and backtrack according to

a different strategy.

 Lazy Repeat Modifiers
You have seen that greed sometimes leads to bad performance. What you

have not seen is the relationship between greed and correctness. Greed

can sometimes lead to incorrect results.

For instance, suppose you want to create a global regular expression

in JavaScript that matches all questions in a Spanish text. In Spanish, the

syntax of a question is as follows:

¿<SENTENCE>?

Assuming there are no newline characters, it makes sense to match a

sentence using the following regular expression:

let regex = /¿.+\?/g

Let’s test our regex on some questions.

let text = '¿Tienes animals en casa? ¿Dónde está la

biblioteca?';

> text.match(regex);

["¿Tienes animals en casa? ¿Dónde está la biblioteca?"]

Chapter 5 repeat Modifiers

80

Oops, something seems to be wrong. Both questions were returned as

one result. Why?

Because our .+ repeat modifier is greedy, that’s why! .+ doesn’t care

that a \? character is coming. We read the question mark as an arbitrary

character.

This is why repeat modifiers have a lazy version of repeat modifiers in

most dialects.

Lazy repeat modifiers match the minimum number of characters that

are absolutely necessary by executing the body of the repeat modifier as

few times as possible. Once the expression fails and we have to backtrack,

we now add characters instead of removing them.

The syntax of lazy repeat modifiers is as follows: in EMACS, PCRE, and

Perl 6, we simply add a question mark (?) after the repeat modifier.

 – a*? matches zero or more a characters and attempts

to match as few a characters as possible.

 – a+? matches one or more a characters and attempts

to match as few a characters as possible.

 – a?? matches zero or one a characters, first attempting

not to match the a character.

 – a{1,2}? attempts to match the a character once or

twice, first trying to match it once. In Perl 6, the

equivalent syntax is a **? 1..2.

Let’s see our JavaScript example:

let regex = /¿.+?\?/g

let text = '¿Tienes animals en casa? ¿Dónde está la

biblioteca?';

text.match(regex);

The return value matches the two sentences properly.

Chapter 5 repeat Modifiers

81

(2) ["¿Tienes animals en casa?", "¿Dónde está la biblioteca?"]

Note that regardless if you want to use greedy or lazy repeat modifiers,

it makes sense to restrict the search space. We can exclude the first

character following the repeat modifier from the possible first characters

inside the repeated sequence. This means we are better off excluding

the \? character from the arbitrary . character class. We can perform the

exclusion by defining the [^\?] character set. Read it as “an arbitrary

character except the question mark.”

regex = /¿[^\?]+\?/g;

> text.match(regex)

(2) ["¿Tienes animals en casa?", "¿Dónde está la biblioteca?"]

Tip always attempt to make the first character of the sequence
inside the repeat modifier body and the first character after the
repeat modifier mutually exclusive to avoid nondeterministic
branching and backtracking.

Now we have the two sentences one by one, as two separate matches of

the global regular expression. To get some more practice with lazy repeat

modifiers, let’s match /^.*?list$/ against the text The lost list.

 – The is matched by .*, before we attempt to match

list$ on lost list. We do consume l from the

string, but then, the letter o does not match i from

the pattern, so we backtrack.

 – The lost is matched by .*. We now attempt to

match the list$ pattern with list. We succeed. No

more backtracking is needed.

Chapter 5 repeat Modifiers

82

In this example, the result was the same, but the number of

backtracking operations was lower.

You may ask the question, when it is worth using a lazy repeat modifier,

and when it is worth using a greedy repeat modifier? The answer is not

obvious.

 – You may want to use one version or another for correct-

ness reasons. See the Spanish questions, for example.

Whenever you have to match a pattern where there is a

starting sign and an ending sign and the expressions

may not be nested, a minimal loop is correct.

 – When correctness does not matter, you can some-

times intuitively figure out which pattern to use.

Remember, a match is always cheaper than failure;

therefore, it is worth optimizing for faster matching.

 Possessive Repeat Modifiers
A possessive repeat modifier executes as a greedy repeat modifier does

with one exception: once a possessive structure backtracks, it fails.

Instead of backtracking just one iteration, the possessive repeat modifier

just fully gives up, reverting all iterations. Either we greedily match as

many iterations of the possessive loop as possible or we don’t match any

iterations at all.

Possessive repeat modifiers are available in PCRE and in Perl 6.

In most PCRE languages, we write a + after the symbol of the

corresponding greedy repeat modifier to indicate that it is possessive,

yielding a*+, a++, a?+, a{1,2}+ loops.

Chapter 5 repeat Modifiers

83

In Perl 6, we write a : after the repeat modifier: a*:, a+:, a?:, a **:

1..2.

Some languages like JavaScript don’t have possessive repeat modifiers.

It is still possible to emulate them with a construct we are not yet familiar

with. Write down this expression: (?=(a+))\1. Once you know what a

positive lookahead is and how capture groups work, you can verify that

the expression (?=(a+))\1 is equivalent to a++, assuming that there are no

other open parentheses in front of this expression. The equivalence is not

fully strict, though, because a capture group is introduced to construct the

possessive repeat modifier. The introduced capture group may offset the

numbering of other capture groups behind this capture group.

I encourage you to play around with possessive repeat modifiers in

regex101.com.1 You can see the matching executed in a step-by-step fashion

if you use the regex debugger belonging to the PHP (PCRE) syntax.

For instance, the expression /a++b/ matches any string containing

the sequence ab. The pattern a++ matches the a character, and then b is

matched.

The expression /a++a/ never matches any strings. This is because a++

is possessive, so it eats up all the a characters before attempting to match

another a character. As this a character is never found, the regex engine

backtracks fully and fails. Unlike /a+a/, we cannot backtrack just one

character in /a++a/. Therefore, no strings will ever match the regex /a++a/.

As a rule of thumb, we can conclude that the first character of the

sequence we are trying to match in a possessive repeat modifier may never

follow the repeat modifier itself. Otherwise, we will never get a match.

1 www.regex101.com

Chapter 5 repeat Modifiers

http://www.regex101.com/

84

 Summary
Most programming languages implement sequence, selection, and iteration.

While sequence and selection are obvious in regular expressions, there are

many ways to perform iteration. You have learned five basic ways to iterate

a pattern. The + symbol indicates matching a character or a sequence at

least once. The ? symbol matches at most once, and the * symbol matches

any number of times. We can also formulate cardinality restrictions by

specifying the minimum and the maximum of allowed occurrence count.

We can also repeat a sequence exactly a specified number of times.

You also used the notation [ab] to select either the a character or the b

character. I will expand on this concept in the next chapter by introducing

character sets.

Generic repeat modifiers are greedy: they attempt to match a maximal

number of characters. Backtracking is minimal; you remove one character

from the matched string during each backtracking attempt.

You can add a ? at the end of the repeat modifier to get a lazy repeat

modifier, which does minimal matching and increases the number of

matched characters one by one after each backtracking.

You can add a + at the end of the repeat modifier to get a possessive

repeat modifier, which does maximal matching and fails during any

backtracking attempt.

Chapter 5 repeat Modifiers

85© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_6

CHAPTER 6

Character Sets and
Character Classes
The previous chapter introduced finite state machines to make regular

expressions easier to understand. In this chapter, you will learn the

tools you need to create more complex finite state machines to perform

advanced pattern matching tasks with regular expressions.

We will build on Chapter 2, assuming that you know how to handle

literal characters, concatenation, the or operator, the dot character, grouping

operators with parentheses, anchored start and end, and modifiers.

 Character Sets
A character set matches strings containing any of the characters in the set.

In Perl 6, character sets are enumerated inside <[and]>.

In all other dialects, including all other programming languages and

text editors, we use brackets: [and].

86

The character set for a string containing at least one binary digit is as

follows:

 – /<[01]>/ in Perl 6

 – /[01]/ in all other dialects

The expression [01] matches a 0 or a 1 character.

As I have already introduced the or operator, it is easy to conclude that

the previous character set is equivalent to the following:

 – /0\|1/ in EMACS and VIM

 – /0|1/ in ERE, Perl 6, and PCRE (including all

programming languages)

Regex engines tend to build an internal representation of sets using

bitmasks. Therefore, checking character sets is often just as efficient as

matching single characters.

In the finite state machine representation, there is only one edge

connecting two states, as shown in Figure 6-1.

I used the [01] character set notation to indicate the bitmask.

Figure 6-1. /[01]/

Chapter 6 CharaCter SetS and CharaCter ClaSSeS

87

 Character Set Ranges
Imagine that your next task is to represent an octal digit and a hexadecimal

digit. In PCRE, knowing what you already know, you could use the

following syntax:

 – /[01234567]/ for an octal digit

 – /[0123456789abcdefABCDEF]/ for a hexadecimal

digit

Regular expressions allow you to define ranges using the - character

in most dialects. Only Perl 6 is different, where you have to use the ..

character.1

Therefore, the octal digit becomes as follows:

 – /<[0..7]>/ in Perl 6

 – /[0-7]/ in all other dialects

The range 0-7 is equivalent to 01234567.

The task of writing a hexadecimal digit seems to be a bit more

complicated at first glance. Writing /[0-9]|[a-f]|[A-F]/ is completely

valid, but the syntax looks too complicated.

Recalling the equivalence of ranges and their enumerations, we can

conclude the following:

 – 0123456789 is equivalent to 0-9.

 – abcdef is equivalent to a-f.

 – ABCDEF is equivalent to A-F.

1 In Perl 6, the - character denotes subtraction between character sets and
negation of character sets.

Chapter 6 CharaCter SetS and CharaCter ClaSSeS

88

As a consequence, 0123456789abcdefABCDEF is equivalent to

0-9a-fA-F. Therefore, the hexadecimal digit becomes the following:

 – /<[0..9a..fA..F]>/ in Perl 6

 – /[0-9a-fA-F]/ in all other dialects

 Exclusions from Character Sets
You saw that character sets are represented by bitmasks in most regex

interpreters. You will now figure out how to invert these bits.

In Perl 6, placing a - in front of the opening bracket inverts the

character set. This minus meta character can also be used in front of

character set classes. See the next section for more details on character

classes.

In all other dialects, the inverter character is the ^ operator, placed

inside the brackets in front of the character enumeration, range, or class.

For instance, characters that are not hexadecimal digits are defined as

follows:

 – /<-[0..9a..fA..F]>/ in Perl 6

 – /[^0-9a-fA-F]/ in all other dialects

 Character Set Classes
The good news is that regex dialects allow us to specify character set

classes such as digits, whitespaces, or alphanumerical characters. The bad

news is each dialect does it differently.

For instance, the PHP documentation enumerates the character

classes available in PHP.2

2 http://php.net/manual/en/regexp.reference.character-classes.php

Chapter 6 CharaCter SetS and CharaCter ClaSSeS

http://php.net/manual/en/regexp.reference.character-classes.php

89

This simplifies the hexadecimal character example originating from

character set ranges to /[[:xdigit:]]/. Notice the double brackets. The

outer bracket denotes that we define a character set. The inner bracket

belongs to the named character class syntax.

As a rule of thumb, always used named character classes instead of

ranges and enumerations because named classes make it easier to read

and maintain your expressions in the future.

Exercise 1: Write PHP code matching the 'Aa5h' string against the /

[[:xdigit:]]/ character set class expression. Use the output generated by

https://regex101.com3 to determine the results. You can run your code

online using the service www.writephponline.com/.4

Solution:

$re = '/[[:xdigit:]]/';

$str = 'Aa5h';

preg_match_all($re, $str, $matches, PREG_SET_ORDER, 0);

// Print the entire match result

var_dump($matches);

After execution, we get the following response:

array(3) {

 [0]=> array(1) { [0]=> string(1) "A" }

 [1]=> array(1) { [0]=> string(1) "a" }

 [2]=> array(1) { [0]=> string(1) "5" }

}

This means the regular expression successfully matches the uppercase

and lowercase alphabetical digits as well as the numerical digit. As h is not

a hexadecimal digit, no match is returned.

3 https://regex101.com
4 www.writephponline.com/

Chapter 6 CharaCter SetS and CharaCter ClaSSeS

https://regex101.com/
http://www.writephponline.com/
https://regex101.com/
http://www.writephponline.com/

90

Exercise 2: Write a regular expression in Perl 6 checking whether a

string contains a hexadecimal character, where the alphabetical digits may

be written only in uppercase. Use the Perl 6 documentation5 to research

how regular expressions are written in Perl 6, and use the service tio.run6

to execute your code.

Solution:
According to the documentation, the code looks like the following:

if 'XXaAXX' ~~ m/<+xdigit -lower>/ {
 say "Matching character: " ~ $/;
 say "String before the match is: " ~ $/.prematch;
 say "String after the match is: " ~ $/.postmatch;
 say "Match start index: " ~ $/.from;
 say "Match end index: " ~ $/.to;

}

We will use the test string 'xxaAXX' and expect that our regular

expression will match only the uppercase A character at index 3, not the

lowercase a character at index 2.

The regular expression /<+xdigit -lower>/ defines a character set

including all hexadecimal characters and excluding lowercase letters. I

could have used the abbreviation :Ll for denoting the lower class. This

would have changed the regular expression to /+xdigit -:Ll/.

The syntax of the condition is equivalent to the one in the

documentation, except for the more verbose messages. After executing the

code using tio.run, we get the following output:

Matching character: A
String before the match is: XXa
String after the match is: XX
Match start index: 3
Match end index: 4

5 https://docs.perl6.org/language/regexes
6 https://tio.run/#perl6

Chapter 6 CharaCter SetS and CharaCter ClaSSeS

https://docs.perl6.org/language/regexes
https://tio.run/#perl6

91

Each programming language comes with its own documentation for its

character classes. We have seen in the case of Perl 6 that some languages

have a redundant notation, specifically, a more semantic one (lower) and

a shorter one (Ll).

In JavaScript, character classes are escape sequences. See the

documentation on developer.mozilla.org7 for more details.

Exercise 3: Formulate the Perl 6 regular expression /<+xdigit

-lower>/ in JavaScript.

Solution:
JavaScript does not have a hexadecimal digit class. Therefore, we will

simply use the decimal digit class \d and the range A-F.

The resulting regular expression is /[\dA-F]/.

Always look up the documentation for the exact class names, as

they differ in each language. Some rules of thumb still apply, such as the

following:

\d stands for a digit ([0-9]).

\D stands for a nondigit character ([^0-9]).

\s stands for whitespace (\s- in EMACS; [\t\r\

n\f]).

\S stands for a nonwhitespace (\S- in EMACS; [

^\t\r\n\f]).

\w stands for a character typically used in identifiers

([0-9a-zA-Z_]).

\W stands for a nonidentifier character.

7 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/RegExp

Chapter 6 CharaCter SetS and CharaCter ClaSSeS

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

92

 Concatenating Advanced Language
Constructs
We have already covered some basic use cases for concatenating regular

expression characters. For instance, the expression /re/ means we have to

match the character r, followed by the character e.

Concatenation works with any regex subexpressions. Therefore, the

expression

/\d.[^a-z][^a-z]/

is valid in PCRE. It matches four characters, a digit, an arbitrary character,

and two characters that are not lowercase letters.

Special characters require special care. Suppose we would like to

search for the expression [(1+2)*3]^2. If we fire up our JavaScript Chrome

Developer Tools and execute a matching string '/[(1+2)*3]^2/' against

the regex /[(1+2)*3]^2/, we are destined to fail.

> '[(1+2)*3]^2'.match(/[(1+2)*3]^2/)

null

The reason is that we have to escape all special characters.

'[(1+2)*3]^2'.match(/\[\(1\+2\)*3\]\^2/)

["[(1+2)*3]^2", index: 0, input: "[(1+2)*3]^2"]

Correct me if I am wrong, but escaping seems anything but readable.

Some languages such as Perl and PHP provide the \Q and \E special

characters to write any characters unescaped. Whatever is written in

between \Q and \E will be matched in sequence, character by character.

For instance, the PHP implementation looks like this:

$re = '/\Q[(1+2)*3]^2\E/';

$str = '[(1+2)*3]^2';

preg_match_all($re, $str, $matches, PREG_SET_ORDER, 0);

Chapter 6 CharaCter SetS and CharaCter ClaSSeS

93

// Print the entire match result

var_dump($matches);

The output is as follows:

array(1) { [0]=> array(1) { [0]=> string(11) "[(1+2)*3]^2" } }

As this feature does not exist in JavaScript, we have the following options:

 – Use an extended library such as xregexp.8

 – Use an escaping function9 that does the dirty work

automatically.

Here’s an example (which you can find online10):

RegExp.escape = function(text) {

 return text.replace(/[-[\]{}()*+?.,\\^$|#\s]/g, "\\$&");

}

 Summary
In this chapter, you learned to use some more advanced elements of the

regular expression syntax.

 – Character sets

 – Character set ranges

 – Exclusions from character sets

 – Character set classes

I concluded this chapter with some examples concatenating regex

substrings formed using the language constructs you already know.

8 http://xregexp.com/
9 https://simonwillison.net/2006/Jan/20/escape/
10 https://stackoverflow.com/questions/6318710/
javascript-equivalent-of-perls-q-e-or-quotemeta

Chapter 6 CharaCter SetS and CharaCter ClaSSeS

http://xregexp.com/
https://simonwillison.net/2006/Jan/20/escape/
https://stackoverflow.com/questions/6318710/javascript-equivalent-of-perls-q-e-or-quotemeta
https://stackoverflow.com/questions/6318710/javascript-equivalent-of-perls-q-e-or-quotemeta

95© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_7

CHAPTER 7

Substring Extraction
from Regular
Expressions
You read about many different use cases of regular expressions in Chapter 1.

Let me repeat some of these use cases:

 – To test whether a string matches a search expression

 – To find some characters in a string

 – To replace substrings in a string matching a regex

 – To process and format user input

 – To extract information from server logs, configura-

tion files, and text files

 – To validate input in web applications and in the

terminal

Many of the use cases require that we find a substring of a string and

extract it, reorder it, remove it, or replace it.

Regular expressions provide us with some help to perform these tasks

in the form of substring extraction.

96

When I introduced literal characters and meta characters, I said that

parentheses had two semantics: grouping characters and extracting

substrings. Even in the section on regex operator precedence and

parentheses in Chapter 2, I mentioned that we would use parentheses for

substring extraction. Let’s learn this important use case.

 Defining Capture Groups

When the regular expression substring x is in parentheses, as in
(x), it is a capture group. Capture groups cannot be defined inside
character classes.

The value of capture groups is captured and can be retrieved either

inside the regular expression or using the API of the programming

language you are using. Retrieval is possible only whenever the closing

parenthesis in the regular expression matching process has been reached.

In all languages except Perl 6, the identifier of a capture group is a
positive integer determined by the position of the opening parenthesis
in the expression.

Exercise 1: Let’s determine the capture groups in the following PCRE

regular expression:

/^a(b|c(d|(e))(f))$/

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

97

Solution:
Table 7-1 shows the solution.

The capture group number is determined by the position of the

opening parenthesis.

/^a(b|c(d|(e))(f))$/

 ^ ^ ^ ^

 | | | |

 1 2 3 4

 Perl 6 Capture Groups
In Perl 6, capture group numbering is different. Capture group numbering

starts with zero. The capture group identifier increases in a nested

hierarchical way.

On the top level, there is one capture group with the identifier 0.

/^a(b|c(d|(e))(f))$/

 ^

 |

 0

Table 7-1. Solution for Exercise 1

Capture Group Number Substring Pattern

1 b|c(d|(e))(f)

2 d|(e)

3 e

4 f

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

98

Inside capture group 0, there are two capture groups on the next level:

0.0 and 0.1. The capture group numbering starts like this:

/^a(b|c(d|(e))(f))$/

 ^ ^

 | |

 0.0 0.1

Inside the capture group 0.0, there is one more capture group.

/^a(b|c(d|(e))(f))$/

 ^

 |

 0.0.0

 Retrieval of Captured Substrings
Check out the documentation of the programming language you are using.

As an example, we will retrieve substrings in the following languages:

 – JavaScript

 – PHP

 – Python

 – Perl 5

Table 7-2. Perl 6 capture group numbering

Perl 6 Capture Group Number Substring Pattern

0 b|c(d|(e))(f)

0.0 d|(e)

0.0.0 e

0.1 f

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

99

We will use the same example as earlier. Suppose we want to retrieve

the currency, the numeric price value, and the full price with currency in a

string in this format:

Price: €19.00

The regular expression matching this string is as follows:

/^Price: [€\$]\d\d\.\d\d$/

We have to escape the dollar sign as a currency because $ is a meta

character denoting an end-of-string or end-of-line anchor. We also have

to escape a dot because it is a meta character denoting one arbitrary

character.

Let’s add some parentheses for the substrings we have to capture.

/^Price: (([€\$])(\d\d\.\d\d))$/

The added capture groups contain the data shown in Table 7-3.

Let’s explore the retrieval of the three capture groups.

Table 7-3. Data for Capture Groups

Capture Group Number Data

1 full price

2 Currency symbol

3 numeric price

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

100

 JavaScript
The API works as follows:

 – regex.exec(str)

 – str.match(regex)

These return all the capture groups defined in regex when matching

str.

const regex = /^Price: (([€\$])(\d\d\.\d\d))$/;

const str = 'Price: €19.00';

const matches = regex.exec(str);

// str.match(regex); // does the same

console.table(matches);

(index) Value

0 "Price: €19.00"

1 "€19.00"

2 "€"

3 "19.00"

index 0

input "Price: €19.00"

As a side note, if you don’t yet know console.table, check out my

article on the console API.1

1 www.zsoltnagy.eu/understanding-the-console-api-in-javascript-7-tips-
for-smoother-debugging/

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

http://www.zsoltnagy.eu/understanding-the-console-api-in-javascript-7-tips-for-smoother-debugging/
http://www.zsoltnagy.eu/understanding-the-console-api-in-javascript-7-tips-for-smoother-debugging/
http://www.zsoltnagy.eu/understanding-the-console-api-in-javascript-7-tips-for-smoother-debugging/

101

 PHP
We will use preg_match_all($regex, $str, $result). PHP returns all

the capture groups inside the $result array.

$regex = "/^Price: ((€|\$)(\d\d\.\d\d))$/";

$str = "Price: €19.00";

preg_match_all($regex, $str, $result);

print_r($result);

Execute the code, for example, in the PHP Sandbox.2 The result is as

follows:

Array

(

 [0] => Array

 (

 [0] => Price: €19.00

)

 [1] => Array

 (

 [0] => €19.00

)

 [2] => Array

 (

 [0] => €

)

 [3] => Array

 (

 [0] => 19.00

)

)

2 http://sandbox.onlinephpfunctions.com/

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

http://sandbox.onlinephpfunctions.com/
http://sandbox.onlinephpfunctions.com/

102

 Python
Let’s recall the code we saw when we first tested regular expressions with

Python, and let’s place the correct regex and test_str values in there.

import re

regex = r"^Price: ((€|\$)(\d\d\.\d\d))$"

test_str = "Price: €19.00"

matches = re.finditer(regex, test_str)

for matchNum, match in enumerate(matches):

 matchNum = matchNum + 1

 print ("Match {matchNum} was found at {start}-{end}: {match}"

 .format(

 matchNum = matchNum,

 start = match.start(),

 end = match.end(),

 match = match.group()

)

)

 for groupNum in range(0, len(match.groups())):

 groupNum = groupNum + 1

 print ("Group {groupNum} found at {start}-{end}: {group}"

 .format(

 groupNum = groupNum,

 start = match.start(groupNum),

 end = match.end(groupNum),

 group = match.group(groupNum)

)

)

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

103

Once we paste this code in the Python shell,3 the result becomes

visible.

Match 1 was found at 0-13: Price: €19.00

Group 1 found at 7-13: €19.00

Group 2 found at 7-8: €

Group 3 found at 8-13: 19.00

As you can see, the capture groups are accessible via the match object.

Yes, this was the promised foreshadowing from the first introduction

of the same Python code. Originally, the same code didn’t find any capture

groups in the expression, but now you can see that the inner for loop

prints out the capture groups one by one.

 Perl 5
We have seen that a simple match can be executed using the =~operator.

if ("Price: €19.00" =~ /^Price: ((€|\$)(\d\d\.\d\d))$/) {

 print "Match";

}

We have already seen a few variables that provide us with some context

to the match, such as the following:

if ("Price: €19.00" =~ /^Price: ((€|\$)(\d\d\.\d\d))$/) {

 print "String before the match: ", $`, "\n";

 print "String after the match:", $', "\n";

 print "Matched string:", $&, "\n";

}

Similarly, there are variables defined for each capture group in the

form of $1, $2, $3, and so on.

3 https://www.python.org/shell/

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

https://www.python.org/shell/
https://www.python.org/shell/

104

if ("Price: €19.00" =~ /^Price: ((€|\$)(\d\d\.\d\d))$/) {

 print "String before the match: ", $`, "\n";

 print "String after the match:", $', "\n";

 print "Matched string:", $&, "\n";

 print "First capture group:", $1, "\n";

 print "Second capture group:", $2, "\n";

 print "Third capture group:", $3, "\n";

}

The result of the execution is as follows:

String before the match:

String after the match:

Matched string:Price: €19.00

First capture group: €19.00

Second capture group: €

Third capture group:19.00

 Reusing Captured Substrings
Within a Regex
Suppose we are interested in extracting a price in between any positive

number of highlighter characters. The following strings should all be matches:

****€19.00****

-€19.00*-*

--€19.00--

The following inputs are invalid:

€19.00 // no highlighter

*€19.00** // length before and after don't match

**€19.00-- // character sequences don't match

++€19.00++ // not accepted characters

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

105

Let’s start with the assembly of the regular expression assuming that

the price ranges between 1.00 and 9999.99 euros, as shown in Table 7-4.

We are now stuck. Continuing with the assembly of the regular

expression is not possible with the constructs you have learned so far.

This is where we need to know what was exactly matched before the

euro sign. This is when reusing a previously captured substring becomes

useful, as shown in Table 7-5.

Table 7-4. Assembling a regular expression matching a price label

Constructed Regex Explanation

/^$/ We are matching for the whole string, not just

substrings.

/^[*-]+$/ We start with any number of highlighter

characters.

/^[*-]+€\.$/ We place the euro sign and the escaped dot

character in the expression.

/^[*-]+€\d{1,4}\.\d{2}$/ then we add the digits, making sure that there

are always two digits after the decimal point.

Table 7-5. Using a backreference to match a price label

Constructed Regex Explanation

/^([*-]+)€\d{1,4}\.\d{2}$/ Capture the substring that has to be repeated

/^([*-]+)€\d{1,4}\.\d{2}\1$/ access and insert the exact substring

matched in capture group 1 using \1

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

106

Let’s test our regular expression in JavaScript using the Chrome

Developer Tools console.

/^([*-]+)€\d{1,4}\.\d{2}\1$/.exec('****€19.00****')

> {

 0: "****€19.00****",

 1: "****",

 index: 0,

 input: "****€19.00****"

 }

\1 is called a backreference. A backreference rematches the same

characters already matched in a character group.

Example: Create a PCRE-compatible regular expression that detects

four-letter palindrome4 words.

Solution:
We need to use the usual start and end anchors, followed by two

arbitrary characters. As we need to capture these characters, we put them

in parentheses. Then we need to swap these characters by including them

backward, using the backreferences \2 and \1.

/^(.)(.)\2\1$/

In Perl 6, backreferences are variables defined by writing a $ sign in

front of the capture group number. Here’s an example: $0.

Always test your backreferences. Whenever they don’t exist, the

erroneous behavior differs from environment to environment.

 Capture Groups and Performance
Unfortunately, the semantics of parentheses are overloaded. This can be

dangerous when it comes to performance.

4 https://en.wikipedia.org/wiki/Palindrome

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

https://en.wikipedia.org/wiki/Palindrome

107

When we learn the basics of regular expressions, we learn the

natural semantics of parentheses, which is to override the precedence of

operators. However, be aware of the following:

every set of parentheses creates a capture group, regardless of
whether we need them. as capture groups are expensive, the
performance of our regular expression is affected by adding the
overhead of maintaining the capture groups to the execution time of
the expression.

The overhead of maintaining the capture groups can be expensive. The

regex engine has to add and remove characters from active capture groups

while reading a character or backtracking.

To avoid the performance penalty, it is possible to define parentheses

that do not create capture groups. These parentheses are only there for

overriding precedence, as shown in Table 7-6.

In most programming languages and in EMACS, ?: after the start

parentheses defines the group to be noncapturing. In Perl 6, the character

set syntax of earlier languages is used for this purpose. This is because

Perl 6 is a new language, and time has proven that we need noncapturing

parentheses more often than character sets.

Table 7-6. Non-capturing parentheses

Language No-Capture Parentheses

emaCS /(?:exp)/

ere,PCre /(?:exp)/

Perl 6 / [exp] /

VIm /\%(exp)/

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

108

VIM came up with some weird notation that I find highly illogical

in hindsight. Back when the notation was invented, it must have been

innovative.

 Extensions to Capture Groups
Some PCRE-based languages offer even more features.

Ruby and Perl support backreferences relative to the capture group we

are in. The syntax differs from implementation to implementation.

An example in Ruby looks like ((.)\k<-1>)+, where the backreference is

\k<-1>, indicating the capture group just before the backreference.

In some languages, forward references make it possible to reference to

a future capture group. Here’s an example: (\3\2(.)(.))*.

One problem with capture group numbering is maintainability.

Even after the extraction, the variables $1, $2, and so on, are not too

semantic. Python addresses this problem by allowing a name tag in a

regular expression. Here’s an example: (?P<name>value). In ES2018, the

2018 version of JavaScript, named capture groups also appear in the form

(?<name>value).

 Summary
In this chapter, you learned the basics of creating capture groups and

learned the rules of capture group numbering. You also retrieved captured

strings in four different languages.

As capture groups may be expensive to maintain, you looked at a way

to define noncapturing parentheses to avoid the performance penalty.

ChaPter 7 SubStrIng extraCtIon from regular exPreSSIonS

109© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_8

CHAPTER 8

Lookahead
and Lookbehind
Anchors such as ^, $, and the \b boundary character are zero-length

assertions that filter matches based on special conditions. These

conditions restrict the position of the first or last character of the match.

We will now do something similar, but this time, we will restrict the

position of some characters in the expression with respect to other

characters in the string. Lookahead and Lookbehind are two zero-length

assertions that accomplish this.

For the sake of simplicity, we will restrict this chapter to PCRE-

compatible languages and Perl 6.

 Lookahead
A lookahead matches characters but reverts the actions upon success.

There are two types of lookaheads: positive and negative.

We use a positive lookahead if our match has to be followed by a

certain pattern.

110

We use a negative lookahead if our match should not be followed by a

certain pattern. Table 8-1 shows the syntax.

The syntax may not be too pleasing to the eye, especially in the case of

the negative assertion. However, my experience is that you will get used to

it if you use it. Until then, keep your cheat sheet with you.

Lookaheads do not capture substrings, similarly to (?:pattern).

As the lookahead may contain any literal or meta character, capture

groups defined inside a lookahead will capture the matched string. In fact,

this is the only way to capture the value of the lookahead.

The lookahead (?=.c) in /a(?=.c)b/ matches the string abc as

follows:

 1. First we read a.

 2. Then we enter the lookahead, memorizing the index

1 pointing at character b of abc.

 3. We match the character b as an arbitrary character

inside the lookahead.

 4. We match the character c in the lookahead.

 5. As the lookahead succeeds, we exit from the

lookahead construct with success and revert to

position 1 in the string.

Table 8-1. Syntax for Lookahead

Lookahead Type PCRE Syntax Perl 6 Syntax

Positive (?=pattern) <?before pattern>

Negative (?!pattern) <!before pattern>

Word boundary \b >>

ChaPter 8 Lookahead aNd LookbehiNd

111

 6. We match character b in the string.

 7. The regex matching succeeds, and the substring

"ab" starting at position 0 is returned. Word

boundaries work like a positive lookahead.

Example 1: Using the PCRE dialect, match list, lost, or lust in a

string such that the matched string should end a nonwhitespace character

sequence.

Solution:
We can simply use a word boundary anchor at the end of the matched

sequence.

/l[iou]st\b/

Example 2: Suppose the following championship classification is given

in the form of a JavaScript template literal:

const classification = `

 1st D.Okada (5) 97Pts

 2nd J.Newtown (27) 78Pts

`;

Create a regular expression that matches all scores. A score is a non-

negative integer in front of the text Pt.

Solution:
/\d+/ matches positive integers in the form of sequences of digits.

As we need all matches, we have to apply the g modifier to the

expression: /\d+/g. Let’s list all the numbers from the expression.

> let regex = /\d+/g;

> let result = null;

> while (result = regex.exec(classification)) {

 console.log(result[0]);

 }

ChaPter 8 Lookahead aNd LookbehiNd

112

1

5

97

2

27

78

Let’s apply a lookahead to match the scores only. The lookahead

syntax is (?=Pt).

> regex = /\d+(?=Pt)/g;

> while (result = regex.exec(classification)) {

 console.log(result[0]);

 }

97

78

 Lookbehind
A lookbehind is the mirror image of a lookahead. It walks backward from

the regular expression and checks whether the specified pattern matches

the string before the lookbehind. If the lookbehind match succeeds, the

match is reverted. The syntax is shown in Table 8-2.

Table 8-2. Lookbehind Syntax

Lookbehind Type PCRE Syntax Perl 6 Syntax

Positive (?<=pattern) <?after pattern>

Negative (?<!pattern) <!after pattern>

Word boundary \b <<

ChaPter 8 Lookahead aNd LookbehiNd

113

Opposed to lookahead, lookbehind constructs are often restricted.

Restrictions differ from implementation to implementation.

Most dialects only allow patterns of fixed lengths and exclude repeat

modifiers, as well as character sets. This is not universally true because

Java, for instance, allows fixed-range repeat modifiers.

Example 3: Using PCRE, match list, lost, lust inside nonwhitespace

character sequences in case they start the nonwhitespace sequence.

Solution:
This time the word boundary anchor is placed before the l of the

matched strings.

PCRE: /\bl[iou]st/

 Summary
A lookahead matches characters looking forward but reverts all actions

upon success.

A lookbehind matches characters looking backward and reverts all

actions upon success.

A word boundary anchor may work as a lookahead or as a lookbehind

indicating the start or end of a nonwhitespace character sequence.

ChaPter 8 Lookahead aNd LookbehiNd

115© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_9

CHAPTER 9

Maintaining Regular
Expressions
There is a common fear in the industry of writing and maintaining regular

expressions. This is because as an expression becomes bigger, reading it

gets harder.

This reminds me of the word Fluessigkeitsliebhaberei in my gym. It

means the act of loving fluids. In one word. Complete nonsense. German

words are long. Sometimes very long.

Rindfleischetikettierungsueberwachungsaufgabenuebertragungsgesetz

is another example.1 Most readers are used to reading short words. Then

comes a long word like this out of the blue, and we can throw all our

speed-reading experience out of the window.

Software developers are used to reading code. But code normally

contains a lot of whitespaces. The following PCRE expression2 is just like a

very long German word:

 /^(?=.*[A-Z].*[A-Z])(?=.*[!@#$&*])(?=.*[0-9].*[0-9])

(?=.*[a-z].*[a-z]).{8,}$/

1 https://en.wikipedia.org/wiki/Rinderkennzeichnungs-_und_Rindfleis
chetikettierungs%C3%BCberwachungsaufgaben%C3%BCbertragungsgesetz

2 Source: https://stackoverflow.com/questions/5142103/regex-to-validate-
password-strength. I slightly modified the expression to allow passwords longer
than eight characters. I also changed the minimum number of lowercase letters
from three to two.

https://en.wikipedia.org/wiki/Rinderkennzeichnungs-_und_Rindfleischetikettierungs%C3%BCberwachungsaufgaben%C3%BCbertragungsgesetz
https://en.wikipedia.org/wiki/Rinderkennzeichnungs-_und_Rindfleischetikettierungs%C3%BCberwachungsaufgaben%C3%BCbertragungsgesetz
https://stackoverflow.com/questions/5142103/regex-to-validate-password-strength
https://stackoverflow.com/questions/5142103/regex-to-validate-password-strength

116

It is by far not the worst regex I have seen, but it takes time for me to

interpret it. What if we could add some whitespaces around it?

Only Perl 6 allows whitespaces for formatting by default.

Unfortunately, whitespaces in other dialects are literal characters that

match themselves.

Not everything is lost, though. In this chapter, we will turn

seemingly nonsense regular expressions that are impossible to read into

maintainable code. We will investigate the possible solutions for creating

maintainable regular expressions.

 Extended Mode
PCRE and some ERE languages allow an extended mode. The syntax is as

follows:

/(?x) regex # comment line 1

 body # comment line 2

 in # comment line 3

 extended # comment line 4

 mode # comment line 5

/

In extended mode, whitespaces do not match anything; they are

just there for formatting. The hash character (#) indicates the start of a

comment, lasting until the end of the line.

(?x) should be the first thing in the regular expression. You cannot

just turn extended mode on in the middle of the expression. The construct

(?x) is actually a regex flag or modifier. In some dialects or regex libraries,

instead of writing /a/i, you can use the construct /(i)a/. The advantage

of placing regex modifiers at the front is readability. When an expression is

long, readers prefer knowing the modifiers before reading the expression

itself.

Chapter 9 Maintaining regular expressions

117

I highly recommend turning on extended mode. Recall the following

expression:

/^(?=.*[A-Z].*[A-Z])(?=.*[!@#$&*])(?=.*[0-9].*[0-9])

(?=.*[a-z].*[a-z]).{8,}$/

The following is the extended mode equivalent of the same expression:

/(?x)

 ^ # Start anchor

 (?=.*[A-Z].*[A-Z]) # At least two upper case letters

 (?=.*[!@#$&*]) # AND at least one special character

 (?=.*[0-9].*[0-9]) # AND at least two digits

 (?=.*[a-z].*[a-z]) # AND at least two lower case letters

 .{8,} # String is at least 8 characters long

 $ # End anchor

/

Believe it or not, this is the same expression as the previous one-liner.

Unfortunately, not all dialects have extended mode. For instance, in

EMACS and VIM, you don’t have it. In JavaScript, extended mode is not

available either, but you can use the XRegExp library3 to turn on extended

mode.

const regex = new XRegExp(' \

 ^ # Start anchor \

 (?=.*[A-Z].*[A-Z]) # At least two upper case letters \

 (?=.*[!@#$&*]) # AND at least one special character \

 (?=.*\\d.*\\d) # AND at least two digits \

 (?=.*[a-z].*[a-z]) # AND at least two lower case letters \

 .{8,} # String is at least 8 characters long \

 $ # End anchor \

');

3 https://github.com/slevithan/xregexp

Chapter 9 Maintaining regular expressions

https://github.com/slevithan/xregexp

118

Don’t forget to escape backslashes when you use the XRegExp

constructor. To illustrate this, I used \\d instead of [0-9].

Even without extended mode, if you think outside the box, you can

make your code more maintainable. For instance, using the RegExp

constructor of JavaScript and using the syntax of the JavaScript language,

you can write code that is easy to read.

const regex = new RegExp(

 '^' + // Start anchor

 '(?=.*[A-Z].*[A-Z])' + // At least two upper case letters

 '(?=.*[!@#$&*])' + // AND at least one special character

 '(?=.*\\d.*\\d)' + // AND at least two digits

 '(?=.*[a-z].*[a-z])' + // AND at least two lower case letters

 '.{8,}' + // String is at least 8 characters

long

 '$' // End anchor

);

 Regex Subroutines
A few regex dialects provide subroutines. Subroutines are like functions in

programming languages. Your regex becomes more readable if you don’t

specify the whole expression as one chunk and instead you abstract some

pieces of the expression into subroutines. Your expression also becomes

more DRY (Don’t Repeat Yourself). After all, copying and pasting the same

subroutine three or four times in an expression is not too maintainable.

A subroutine is executed whenever it is called from any point of

the expression. If the subroutine is matched, execution of the regular

expression is followed as usual. If the subroutine is not matched,

backtracking takes place.

Chapter 9 Maintaining regular expressions

119

 PCRE Subroutines
Check out the documentation of your regex host language in the case

of PCRE. Not all PCRE languages support subroutines. In the case of

JavaScript, for instance, I suggest using the XRegExp library to enhance the

expressive power of your regular expressions.

var time = XRegExp.build('(?x)^ {{hours}} ({{minutes}}) $', {

 hours: XRegExp.build('{{h12}} : | {{h24}}', {

 h12: /1[0-2]|0?[1-9]/,

 h24: /2[0-3]|[01][0-9]/

 }, 'x'),

 minutes: /^[0-5][0-9]$/

});

The {{hours}}, {{minutes}}, {{h12}}, and {{h24}} placeholders

insert subexpressions in their own place.

XRegExp subroutines look a bit complex. The generic PCRE subroutine

syntax is a bit easier to read.

(?(DEFINE)

 (?<SUBROUTINE1>

 # body of SUBROUTINE1

)

 (?<SUBROUTINE2>

 # body of SUBROUTINE2

)

)

The DEFINE section of an expression never matches anything. It is used

to declare your subroutines.

Use (?&SUBROUTINE1) inside your expression to match it.

Chapter 9 Maintaining regular expressions

120

Let’s see an example matching a currency symbol and a price that may

contain a whole part and a fractional part. We assume that there is room

for up to two digits in the fractional part.

/(?x) (?&CURRENCY) (?&PRICE)

 (?(DEFINE)

 (?<CURRENCY> [\$\€])

 (?<PRICE> \d++ \.?+ \d{0,2})

)

/

 Perl 6 Subroutines
The Perl 6 syntax for subroutines is cleaner than the PCRE syntax, but it

works more or less in the same way as the PCRE version.

You can declare Perl 6 subroutines in the following way:

/

 :my regex SUBROUTINE1 {

 # body of SUBROUTINE1

 }

 :my regex SUBROUTINE2 {

 # body of SUBROUTINE2

 }

/

You can call a subroutine inside your Perl 6 expression with

<SUBROUTINE1>.

Chapter 9 Maintaining regular expressions

121

Let’s rewrite the same currency example you saw in the “PCRE

Subroutines” section.

/(?x) (?&CURRENCY) (?&PRICE)

 (?(DEFINE)

 (?<CURRENCY> [\$\€])

 (?<PRICE> \d++ \.?+ \d**0..2)

)

/

 Recursion and Circular References
with Subroutines
As you can call subroutines from subroutines, you can use them to create a

recursive structure.

You can even formulate circular references with subroutines, so you

can call subroutine B from A, and you can call subroutine A from B.

Be aware, though, that you may increase the level of nondeterminism

with these constructs, making your expression less efficient.

 Extended Mode, Subroutines, and Abstractions
Abstraction is the act of identifying reusable code and extracting this code

out to one place. We can create subroutines to abstract repeated pieces of

functionality in our regular expressions, and we can reuse them as many

times as we want. Subroutines are essential in writing maintainable DRY

regular expressions.

With the benefits of extended mode, you will be able to say goodbye

to long, unmaintainable regex riddles. You could even consider writing

regular expressions that are thousands of characters long with full clarity.

Just imagine, before you picked up this book, you might have had trouble

reading a 20-character expression.

Chapter 9 Maintaining regular expressions

122

 Named Capture Groups
In PCRE, we extract the values of capture groups with \1, \2, and so on.

The number of the capture group is based on the order of the opening

parenthesis belonging to the capture group from left to right.

We are now doing our best to make our regular expressions

maintainable. Just imagine what happens if someone decides to add a pair

of parentheses in our regular expression. Has this ever happened to you? If

yes, you know how inconvenient it is. One change may affect the reference

of all your capture groups in the expression. This goes against the principles

of maintainability because there is tight coupling between the position of

the parentheses inside the expression and the code surrounding the regular

expression, geared at processing the value of the capture groups.

Our primary goal in this section is to fix the name of the capture

groups. Our secondary goal is to make these names semantic.

If named captures exist in your dialect, use them for better

maintainability.

 EMACS Named Capture Groups
EMACS makes it possible to fix the number of the capture group: \(?1:

.* \). This name is not semantic, as we still have to stick to numbers.

 PCRE Named Capture Groups
In PCRE, we can use proper names for capture groups: (?<VARIABLE_NAME>

.*). In the languages allowing named capture groups, it is possible to

use these names in the code surrounding the regular expression to extract

these capture groups.

For instance, in Python, we have learned that match.group(1) gives us

the value of the first capture group. Instead of the number, we can also pass

the name of a named capture group. match.group('VARIABLE_NAME')

extracts the capture group with the name VARIABLE_NAME.

Chapter 9 Maintaining regular expressions

123

In JavaScript, ES2018 comes with named capture groups. Let’s solve

the example we saw in the Capture Groups section, where we matched the

price and the currency symbol of a label. This time, our solution will be

maintainable because we will use named capture groups.

Exercise 1: Suppose we would like to retrieve the currency, the

numeric price value, and the full price with a currency symbol in a string of

the following format:

Price: €19.00

The regular expression matching this string is as follows:

/^Price: [€\$]\d\d\.\d\d$/

We have to escape the dollar sign as a currency symbol, because $

is a meta character denoting an end-of-string or end-of-line anchor. We

also have to escape the dot because it is a meta character denoting one

arbitrary character.

After adding some parentheses to capture the values we want, the

regular expression looks like this:

/^Price: (([€\$])(\d\d\.\d\d))$/

We have three capture groups to access the data, as shown in Table 9-1.

Table 9-1. Capture Groups

Capture Group Number Data

1 Full price

2 Currency symbol

3 numeric price

Chapter 9 Maintaining regular expressions

124

From a maintainability point of view, using the indices 1, 2, and 3 to

refer to these capture groups is not a brilliant idea.

Imagine, for instance, that requirements change such that Price may

be multilingual, and you have to capture the price text in the language it

appears in.

/^(Price|Preis): (([€\$])(\d\d\.\d\d))$/

Bingo. Capture groups 1, 2, and 3 became 2, 3, and 4, respectively. You

have to rewrite all your code processing these values.

This is why getting fed up with numbered capture groups is a healthy

feeling. Let’s use capture groups to increase the maintainability of the

code. Our capture groups will look like Table 9-2.

We will use the syntax (?<name>content) to match content in the

capture group name.

/^Price: (?<fullPrice>(?<currency>[€\$])(?<numPrice>\d\d\.\d\d))$/

To create a named capture group, all we need to do is write a question

mark after the start of the parentheses and then put the capture group

name inside greater-than and less-than symbols.

Table 9-2. Capture Groups

Capture Group Number Data

<fullPrice> Full price

<currency> Currency symbol

<numPrice> numeric price

Chapter 9 Maintaining regular expressions

125

And we are done. Let’s execute the solution.

console.table(

 /^Price: (?<fullPrice>(?<currency>[€\$])

(?<numPrice>\d\d\.\d\d))$/

 .exec('Price: $15.99')

 .groups

)

> (index) Value

 currency "$"

 numPrice "15.99"

 fullPrice "$15.99"

Although you can still refer to the captured groups with their numeric

indices 1, 2, and 3, you can also use their label names if you access the

groups property.

Last, but not least, it is possible to formulate a backreference on the

capture group name using the format \k<groupName>.

Named capture groups make your expressions more maintainable.

That’s their purpose.

 Perl 6 Named Capture Groups
The syntax is $<VARIABLE_NAME>=(.*). You can retrieve its value using

$<VARIABLE_NAME> in your code.

 Case Study: XRegExp Library for JavaScript
XRegExp is a powerful library that makes JavaScript regular expressions

more expressive and more maintainable. If you need regular expressions

on a regular basis, no pun intended, then I highly recommend including

XRegExp in your application.

Chapter 9 Maintaining regular expressions

126

You can read the documentation of the library on xregexp.com, and

you can clone it from GitHub.4 You can also install XRegExp from npm,

using the command npm i xregexp.

Let’s do the latter and install XRegExp using npm locally in an empty

folder.

Now that the installation is done, we can open our text editor, in my

case atom.io; create an empty .js file in the root, and require the XRegExp

library.

let XRegExp = require('xregexp');

Let’s test-drive the library by creating a simple expression.

let regex = XRegExp('(?i)^[ab]*$');

XRegExp.exec('aAbB', regex);

In this example, you can see an XRegExp feature, leading modifiers.

This feature makes modifiers easier to read because you don’t have to

scroll down to the end of a regular expression to identify the modifier flags.

When executing the program, you can see that the uppercase letters as

well as the lowercase letters were matched.

Let’s continue talking about maintainability. A necessary condition for

creating maintainable regexes is the ability to add some spacing around

the expression. We can turn off the evaluation of whitespace characters

with the x flag. This means we can format tokens of our expressions in

any way we like, without changing its meaning. As you can see, the start

anchor, the main loop, and the end anchor are now in different lines, and

after execution, the pattern is still matched against the string correctly.

let XRegExp = require('xregexp');

let regex = XRegExp(`(?ix)

 ^

4 https://github.com/slevithan/xregexp

Chapter 9 Maintaining regular expressions

https://github.com/slevithan/xregexp

127

 [ab]*

 $

`);

let result = XRegExp.exec('aAbB', regex);

console.log(result);

We have whitespaces turned off, but we can do more. We can insert

some comments to make the expression more semantic. Just think about

it. Some expressions are long, so why not explain them token by token?

let XRegExp = require('xregexp');

let regex = XRegExp(`(?ix)

 ^ # start anchor

 [ab]* # any number of a, b, A, B characters

 $ # end anchor

`);

let result = XRegExp.exec('aAbB', regex);

console.log(result);

After the comments have been added, the solution is still working.

Now that we are aware of the extended format, let’s increase the

maintainability of the expression even further by adding some subpatterns.

To add a subpattern, we have to use the build method of XRegExp and

specify an object with the subpattern names as keys, and the values to be

inserted as values.

let XRegExp = require('xregexp');

let regex = XRegExp.build(`(?ix)

 ^ # start anchor

 {{charLoop}} # any number of a, b, A, B characters

 $ # end anchor

Chapter 9 Maintaining regular expressions

128

`, {

 charLoop: /[ab]*/

});

console.log(XRegExp.exec('abAB', regex));

You can see the regex was built correctly.

In fact, if you use the source property of the regex, you can see the

assembled regular expression.

console.log(regex.source())

These subpatterns work like subroutines, and they are useful in general

when it comes to creating larger regular expressions.

This was a short introduction to the XRegExp library. You have seen

the maintainability enhancements of regexes, and there are some more

features that are available to you. Interestingly, many of the ES2018

updates were based on features already available in XRegExp, so XRegExp

was an innovator in this sense. The Unicode escapes, the dotall flag, and

the named capture groups were all available in the XRegExp library, which

was one reason why we used them in this chapter.

 Summary
This chapter was the icing on the cake. You can be proud of yourself

because now you not only understand regular expressions but can also

write maintainable expressions. These skills catapult you to the top 1

percent of software developers in terms of regular expression usage.

Chapter 9 Maintaining regular expressions

129

You have learned the following techniques to increase the

maintainability of your code:

 – Using extended mode to introduce whitespaces and

comments

 – Using subroutines to create named abstractions in

your code

 – Using named capture groups to make the retrieval of

your capture groups maintainable

In the next chapter, you will learn how to optimize your regular

expressions.

Chapter 9 Maintaining regular expressions

131© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_10

CHAPTER 10

Optimizing Regular
Expressions
You have learned all the tools to optimize the execution of a regular

expression; therefore, this chapter acts as a summary for everything you

have learned so far.

You learned that the execution of regexes can be modeled using two

types of automata: deterministic and nondeterministic FSM.

The execution time of a nondeterministic automaton can be

exponentially measured in the number of its steps. The complexity comes

from the need for backtracking.

Creating a deterministic finite state automaton from a

nondeterministic automaton also has exponential complexity.

In most execution environments, regular expression virtual machines

follow the nondeterministic model. This is because success may be a lot

faster than failure. We could just match the input in n steps, where n is the

size of the input. If we made our execution deterministic, the state space

could explode, and we could end up with O(2 ^ n) complexity.

Using a nondeterministic model has consequences. We will make use

of these consequences while optimizing our regexes.

132

 Summary of the Optimization Techniques
As complexity arises from backtracking, the intended goal of optimization

techniques is to minimize backtracking. We will consider a few ways to do

that.

• Making character classes more specific

• Repeating character class loops

• Using possessive repeat modifiers

• Using atomic groups

• Refactoring for optimization

Some compilers perform automatic optimizations on your regexes.

The generic rule is that you are left on your own.

 Making Character Classes More Specific
Our enemy is the .* pattern because in the worst case you may end up

backtracking as many times as the length of your input.

For instance, suppose you want to capture identifier names in

between the microtemplate tags ${ and }. In this example, we assume

we are looking for patterns of form ${ id }, where id may not contain

whitespaces. The following extended PCRE expression does the trick:

/(?x)

 \$\{ # Consume the opening tag ${

 \s* # Consume all whitespaces greedily

 (.+?) # Minimal match our identifier

 \s* # Consume all remaining whitespaces greedily

 \} # Close the tag

/

Chapter 10 Optimizing regular expressiOns

133

Notice the extended mode (?x). Remember, starting a regex with (?x)

makes whitespace characters not match themselves and allows you to

place comments in the expression followed by a # character until a newline

character.

As we are looking for identifier characters, we are sure that these

characters are not whitespaces, and they are not closing braces either.

Therefore, it is a luxury to use the arbitrary character class here. We can

make our expression more deterministic by changing .+? to a more

specific character class: [^\s\}].

/(?x)

 \$\{ # Consume the opening tag ${

 \s* # Consume all whitespaces greedily

 ([^\s\}]+) # Minimal match our identifier

 \s* # Consume all remaining whitespaces greedily

 \} # Close the tag

/

Notice that we now have the luxury to use a greedy repeat modifier

because it does not matter whether we are greedy or lazy. In fact, our best

bet is just to go for a possessive repeat modifier, but let’s not jump ahead of

ourselves too much.

Tip When using alternative execution or a character class, none of
the choices in the alternation may start with the same character as
the character followed by the alternation.

Avoid [xy]*x. Understand the requirements better because there is

almost always an easier solution: /[xy]*x/ matches a substring of the

input that contains x and y characters only and ends with x. If we just

check for the existence of such a pattern, checking for /y*x/ is sufficient.

Chapter 10 Optimizing regular expressiOns

134

If our task is to verify /^[xy]*x$/, go for /^(y*+x)*+$/. We

possessively match any number of y characters, followed by an x. We look

for as many of these patterns as possible. As we used possessive matching

everywhere, there is absolutely no backtracking present in this expression.

To allow the usage of possessive loops, we had to eliminate the [xy]

character set by factoring x out of it.

 Repeating Character Class Loops
Avoid repeating the same character class loop, regardless of whether you

use the greedy or lazy version.

/(?x)
 \$\{ # Consume the opening tag ${
 \s* # Consume all whitespaces greedily
 (.+?) # Minimal match our identifier
 \s* # Consume all remaining whitespaces greedily
 \} # Close the tag

/

Here, (\s*)(.+?)(\s*) is an invitation for trouble. If, for any reason,

we don’t find the } character in our input string, the regular expression

goes into backtracking hell and tries every possible combination of

including each possible sequence of whitespace characters either in one of

the \s* patterns or in the .+? pattern.

You have already seen a possible solution to eliminate this

backtracking hell.

/(?x)
 \$\{ # Consume the opening tag ${
 \s* # Consume all whitespaces greedily
 ([^\s\}]+) # Minimal match our identifier
 \s* # Consume all remaining whitespaces greedily
 \} # Close the tag

/

Chapter 10 Optimizing regular expressiOns

135

By making the character class in the middle distinct from the other

two, we will not allow the regex VM to go on a Don Quixote windmill fight

of trying to determine where our whitespaces belong.

To eliminate all backtracking whatsoever, we can use another

technique, covered next.

 Use Possessive Repeat Modifiers Whenever
Possible
Possessive repeat modifiers never backtrack by definition; they fail instead.

In exchange for eliminating backtracking, we limit the state space by not

exploring the backtracking branches at all.

/(?x)

 \$\{ # Consume the opening tag ${

 \s*+ # Consume all whitespaces greedily

 ([^\s\}]+) # Minimal match our identifier

 \s*+ # Consume all remaining whitespaces greedily

 \} # Close the tag

/

Here the regex engine won’t even try backtracking in the case of the

\s*+ pattern. This is because we as humans know that if there is no }, it

does not matter how we match the whitespaces. Therefore, we can simply

accelerate the failure.

Remember the rule for discovering the opportunity to add possessive

repeat modifiers:

If the character following the possessive loop is

mutually exclusive with the first character of the

pattern inside the loop, then you may consider using

a possessive loop.

Chapter 10 Optimizing regular expressiOns

136

 Use Atomic Groups
Not only loops but also alternations can backtrack in an inefficient way. We

might have already matched a node in an alternation, just to find that at a

later stage we examine the same character, trying to match other branches

of the same alternation.

I can illustrate atomic groups with an easy example from my personal

life. I tend to lose stuff easily. Sometimes I go look for my stuff in my house.

For instance, suppose I am looking for my phone. I look at the table, my

pocket, and also the kitchen.

Once I find my phone, I check whether I have an appointment. I have

appointments on Tuesday. If the day does not match, I don’t need my

phone anymore.

The following regular expression captures first me looking for my

phone and then checking the day:

/(?>table|pocket|kitchen) --> Tuesday/

Suppose on Wednesday I find my phone in my pocket, and then I figure

out it’s not Thursday, so I have to backtrack. Then I go back and look for

my phone in the kitchen. This doesn’t make any sense! Once I have found

my phone, it would make sense to stop looking for my phone. This is what

atomic groups solve.

For instance, suppose you would like to get an exact match for list,

lost, or lust. In PCRE,

/^(list|lost|lust)$/

Suppose we are trying to match the text lists. We start at the first

branch of the alternation and match list completely. Given we have yet

to parse an s character instead of terminating the sequence, we backtrack.

Now we are back to square one, with the string lists, and we try to match

it against lost. After consuming the l character, we have to backtrack. In

the third branch, the same thing happens: we match the l character just to

conclude that we need an i instead of a u.

Chapter 10 Optimizing regular expressiOns

137

This time, we got away with unnecessary backtracking cheaply.

Imagine, though, what happens if backtracking operations are nested.

What happens if there is a complex subexpression in the place of the l

character. We can waste a lot of resources.

This is why it makes perfect sense to treat this alternation in a

possessive way. Both PCRE and Perl 6 make it possible to create atomic

groups, also known as possessive groups. In a possessive group, if any of the

branches match, execution does not go back to try another branch. If we try

to backtrack into a possessive group, we automatically fail the expression.

Once you leave a possessive group, you cannot backtrack into it.

PCRE: /(?> a|b)/

Perl 6: / [a|b]: /

Notice that in Perl 6, the colon is consistent for loops and alternations.

Perl 6 appears to be cleaner than PCRE in this sense. In most programming

languages, we still deal with the PCRE syntax, so you will have to get used

to the PCRE syntax if you want to use possessive groups.

If you have ever written Prolog programs, a possessive group is

like the cut (!) operation. It cuts execution branches from the theorem

proving tree.

Use possessive groups whenever all alternatives in

an or construct are mutually exclusive.

Let’s finish with the execution of our previous example. We try to

match lists against the regex.

/^(?> list|lost|lust)$/

We are in the first branch and match list. We leave the possessive

alternation. There is still an s character left, and given we were supposed

to be at the end of the string, we backtrack. Given we cannot backtrack into

the possessive group, this regular expression fails to match lists. Problem

solved.

Chapter 10 Optimizing regular expressiOns

138

 Refactor for Optimization
We saw this optimization technique in action when we first introduced

the list, lost, lust example. We can factor out common characters at the

beginning and at the end of the expression. This regex

/^(list|lost|lust)$/

becomes the following:

/^l(i|o|u)st$/

Matching also becomes more efficient because after backtracking, we

don’t have to match the same character over and over again.

Once you have only one character in each branch of your alternation,

you can use character sets for higher efficiency.

/^l[iou]st$/

 Optimization Techniques Limit
Nondeterministic Execution
Optimization techniques are all about cutting down execution paths from

an execution tree. You can optimize an expression up to the extent that it

becomes deterministic.

A necessary condition for creating a deterministic execution plan of a

regular expression is to

• Factor out all prefixes in alternations

• Make all your loops and alternations possessive

Chapter 10 Optimizing regular expressiOns

139

 Summary
After learning how to write maintainable regular expressions, the next

task was to write efficient regexes. I covered the following optimization

techniques:

• Making character classes more specific

• Repeating character class loops

• Using possessive repeat modifiers

• Using atomic groups

• Refactoring for optimization

All of these optimization techniques are geared toward making

execution of your regular expressions more deterministic.

Chapter 10 Optimizing regular expressiOns

141© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_11

CHAPTER 11

Parsing HTML Code
and URL Query
Strings with Regular
Expressions
In this chapter, we will use JavaScript to parse an HTML document and

process the query string of a URL.

 Parsing HTML Tags
Exercise 1: Suppose an HTML document is given. Extract all the <td> tags

using a regular expression, and print their content to the console. You can

assume any content including newline characters inside the <td> tags. The

<td> tags may have attributes.

Example Input:

const table = `

 <table>

 <tr>

 <td class="first">text 1</td>

142

 <TD>text 2</TD>

 </tr>

 <tr>

 <td>text trés</td>

 <td>

 text 4 first line

 text 4 second line

 </td>

 <td></td>

 </tr>

 </table>`;

Solution:
When dealing with a multiline regular expression, it is worth using the

new ES2018 s (dotall) flag to treat the whole text as a single line. Given

there are multiple table details to match, we will definitely need to declare

our regular expression as global using the g flag.

/.*/gs.exec(table)

Let’s also add the opening and closing tags that we would like to

match. Notice there are four distinct options matching a table detail

element: <td>, <Td>, <tD>, and <TD>. We can match them all with just one

expression, without any alternation or character sets, by declaring our

regular expression as case insensitive using the i flag. When matching the

close tag </td>, make sure you escape the slash.

/<td>.*<\/td>/gis.exec(table)

Chapter 11 parsing htML Code and UrL QUery strings with regULar expressions

143

After executing this expression, you can see that three table details got

returned as one. There are multiple reasons for this error.

 – First, .* is greedy, and it matches all characters,

including other </td> flags and <td> flags. We reduce

the matched string only after backtracking character

by character and unlooping the characters of the last

</td> tag.

 – Second, <td class="first"> is not matched by this

regular expression because a greater-than symbol

has to follow the d in the <td> tag according to our

expression.

We can solve both problems easily.

Regarding the first problem, we can make the greedy .* loop lazy by

adding a ? after it. These mechanics will attempt a minimal match. An

alternative solution is to change . to [^<], but this solution would imply

we cannot nest tags inside <td>, so that is not a brilliant idea.

The second problem can be addressed by matching all characters

between the td and the >. In this case, we know the characters we match

are distinct from >. Therefore, we match any number of non-greater-than

characters in a [^>]* loop.

/<td[^>]*>.*?<\/td>/gis.exec(table)

We need one more change: we have to capture the contents of the tag

so that we can access it and print it to the console.

let regex = /<td[^>]*>(.*?)<\/td>/gis

let contents = '';

while (contents = regex.exec(table)) {

 console.log(contents[1]);

}

Note the contents of the last table detail are captured as undefined.

Chapter 11 parsing htML Code and UrL QUery strings with regULar expressions

144

 Processing the Query String of a URL
Exercise 2: Create a regex that transforms the query string of a URL into an

object of key-value pairs such that

?key1=value1&key2=value2&...&keyN=valueN

becomes the following:

{

 key1: 'value1',

 key2: 'value2',

 ...

 keyN: 'valueN'

}

You can assume the text starts with a question mark.

The lengths of the keys are all positive. The lengths of the values are

non-negative. The equation sign is always present.

Solution:
First we have to read a question mark or an ampersand, followed by an

arbitrary list of characters of positive length that are not equation signs. We

have to capture the characters after the ampersand.

/[?&]([^=])+/g

Then we match an equation sign, followed by any number of

characters that are not ampersands. We have to capture these characters.

/[?&]([^=])+=([^&]*)/g

Each key ends up in capture group 1, and each value ends up in

capture group 2. As the expression is global, we will match the key-value

pairs one by one.

Chapter 11 parsing htML Code and UrL QUery strings with regULar expressions

145

We will now create the result object using JavaScript.

let queryParameters = {};

let queryString = '?key1=value1&key2=value2&key3=&key4=value4';

let regex = /[?&]([^=]+)+=([^&]*)/g;

let result = null;

while (result = regex.exec(queryString)) {

 queryParameters[result[1]] = result[2];

}

console.log(queryParameters);

Chapter 11 parsing htML Code and UrL QUery strings with regULar expressions

147© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9

 AFTERWORD

This Is Not the End,
but the Beginning
Wow, you have come a long way. You can consider yourself a champion of

regular expressions. Let’s recap the steps you went through in this book.

 – An Introduction to Regular Expressions: You found out

why most people never master regular expressions.

After identifying and busting some myths about

regular expressions, you started getting some hands-on

practice in multiple regex dialects.

 – Regex Syntax 101: You equipped yourself with some

basic building blocks that enable you to write basic

regular expressions.

 – Executing Regular Expressions: Enough about theory!

It was time to get some hands-on practice in ten PCRE-

based languages. You learned how to test and execute

your code in the browser, without installing any

development environments.

 – Visualizing Regex Execution Using Finite State

Machines: This chapter was a game changer. Finite

state machines show you how regular expressions are

executed. You got an in-depth understanding about the

regexes you wrote up to this point.

https://doi.org/10.1007/978-1-4842-3876-9

148

 – Repeat Modifiers: Although I could have covered

repeat modifiers earlier, I waited for this chapter until

you managed to understand the finite state machine

model of regexes. Finite state machines add a deeper

understanding to using the different types of repeat

modifiers.

 – Character Sets and Character Classes: Character sets

and classes are vital when it comes to writing compact

and efficient regular expressions.

 – Substring Extraction from Regular Expressions: This was

your first advanced topic. You learned how to create

capture groups and extract substrings from regular

expressions.

 – Lookahead and Lookbehind: There are times when you

want to match a character sequence if it is right before

or right after another sequence. This is where these

constructs become useful.

 – Maintaining Regular Expressions: This was the icing

on the cake. You learned how to write maintainable

regular expressions, allowing you to create regexes that

are hundreds or even thousands of characters long.

You also learned how to optimize your expressions for

deterministic execution.

 – Optimizing Regular Expressions: This chapter

summarized different optimization techniques that

limit nondeterminism in the execution of regular

expressions by cutting the state space.

Afterword this is Not the eNd, but the begiNNiNg

149

 – Parsing HTML Code and URL Query Strings with

Regular Expressions: This chapter showed you how

to use JavaScript to parse an HTML document and

process the query string of a URL.

The promise of this book was that you would get an in-depth

understanding of regular expressions, allowing you to

 – Understand the imperative elements of the language

 – Write maintainable code

 – Write efficient code

 – Not get lost in the process

Now you have all the tools required to write regular expressions that

are easy to create, maintain, verify, test, and debug.

 “What If I Want to Learn More?”
Send me a message about the specific context in which you would like to

use regular expressions. You can reach me at info@zsoltnagy.eu.

I have recorded a JavaScript video course on regular expressions,

including the library XRegExp. Once proper demand arises, I will create

other regex video courses or books.

I also recommend that you check out my YouTube channel.1 The

following resources may be especially interesting to you:

 – A playlist on regular expression videos2

 – A JavaScript interview exercise, where regexes simplify

the code3

1 https://tinyurl.com/zsoltnagy
2 https://tinyurl.com/regex-playlist
3 https://tinyurl.com/js-interview-regex

Afterword this is Not the eNd, but the begiNNiNg

https://tinyurl.com/zsoltnagy
https://tinyurl.com/regex-playlist
https://tinyurl.com/js-interview-regex

150

 Keep in Touch
You can read regular articles from me on

 – zsoltnagy.eu,4 a blog on writing maintainable web

applications

 – devcareermastery.com,5 a career blog on designing a

fulfilling career

Sign up to my e-mail list for regular free content. I am the author of

these two books:

 – ES6 in Practice : The Complete Developer’s Guide6

 – The Developer’s Edge: How to Double Your Career Speed

with Soft-Skills7

Check them out if these topics are interesting to you.

4 http://zsoltnagy.eu
5 http://devcareermastery.com
6 https://leanpub.com/es6-in-practice
7 https://leanpub.com/thedevelopersedge

Afterword this is Not the eNd, but the begiNNiNg

https://leanpub.com/es6-in-practice
http://zsoltnagy.eu/
http://devcareermastery.com/
https://leanpub.com/es6-in-practice
https://leanpub.com/thedevelopersedge

151© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9

Index

A
Arbitrary character, 13

B
Backtracking, 55–56

C, D, E
Character classes, 148
Character sets, 85–86, 148

classes, 88–91
concatenation, 92–93
exclusions from, 88
[01] expression, 86
ranges, 87–88

F, G
Finite state machines (FSMs), 53

/ab/, 54–55
automatically generating

regex, 63, 65–66
backtracking, 55–56
basic regex simplifications, 62
deterministic and

nondeterministic
regex modeling, 56–61

successful match, 63
visualizing regex execution, 147

H, I
HTML tags, parsing, 141–143, 149

J, K
JavaScript regular expressions

ES6 unicode regular
expressions, 31–32

global matching, 28–29
multiline matches, 30
regex modifiers, 27–28
RegExp methods, 25
sticky matches, 32–33
string methods, 26–27

L
Literal characters, 10
Lookahead string, 109, 148

scores, 111–112
string abc, 110
syntax, 110

Lookbehind string, 112, 148
syntax, 112
using PCRE, 113

https://doi.org/10.1007/978-1-4842-3876-9

152

M, N
Maintainance, regular

expressions, 148
extended mode, 116–118
named capture groups, 122

EMACS, 122
PCRE, 122–125
Perl 6, 125
tight coupling, 122

regex subroutines, 118
extended mode, subroutines,

and abstractions, 121
PCRE subroutines, 119
Perl 6 subroutines, 120
recursion and circular

references, 121
XRegExp, 125–128

Meta characters, 10–12
Modifiers, 27

O
Optimization, 148

character classes, 132–134
deterministic model, 131
limit nondeterministic

execution, 138
to minimize backtracking, 132
nondeterministic model, 131
possessive repeat modifiers, 135
refactor for, 138
repeating character

class loops, 134–135
use atomic groups, 136–137

P
Perl Compatible Regular

Expressions (PCRE), 7
execution environments,

programming languages
C#, 44–45
C++, 49–51
Golang, 48–49
Java, 41–43
Perl 5, 40–41
PHP, 35–37
Python, 37–40
R, 43–44
Ruby, 46–47

Q
Query string of URL, 144–145
Query strings, 149

R
Regex syntax 101, 147

formulating expression
alternative execution, 14
anchored start and

end, 15–18
arbitrary character class, 13
concatenation, 14
literal and meta

characters, 10–12
modifiers, 19–21
operator precedence and

parentheses, 15

Index

153

Regular expressions
frustrations with, 4–5
imperative, 5–6
importance, 1–2
JavaScript, 3
language family, 6–8
search patterns, 2

Repeat modifiers, 68, 148
backtracking, 68–70
branching, 67
fixed-range

matching, 74–77
greedy, 78–79
lazy, 79–82
loop exactly n times, 77
loops, 67
matching any number

of times, 73–74
matching at least one a

character, 70–72

matching at most once, 72–73
possessive, 82–83

S, T, U, V, W, X, Y, Z
Simple regular expressions (SRE), 6
Substring extraction, 148

capture groups, 96–97
extensions, 108
and performance, 106–108
Perl 6, 97–98

retrieval of captured
substrings, 98

data, 99
JavaScript, 100
Perl 5, 103–104
PHP, 101
Python, 102

reusing captured substrings
within regex, 104–106

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: An Introduction to Regular Expressions
	Why Are Regular Expressions Important?
	What Are Regular Expressions?
	Frustrations with Regular Expressions Arise from Lack of Taking Action
	Regular Expressions Are Imperative
	The Language Family of Regular Expressions
	Summary

	Chapter 2: Regex Syntax 101
	Formulating an Expression
	Literal Characters and Meta Characters

	Arbitrary Character Class
	Basic Concatenation
	Alternative Execution
	Operator Precedence and Parentheses
	Anchored Start and End
	Modifiers
	Summary

	Chapter 3: Executing Regular Expressions
	Regular Expressions in JavaScript
	RegExp Methods
	String Methods Accepting Regular Expressions
	Regex Modifiers
	Global Matches
	Multiline Matches
	ES6 Unicode Regular Expressions
	Sticky Matches
	Summary

	Other PCRE-Based Regex Environments
	PHP
	Python
	Perl 5
	Java
	R
	C#
	Ruby
	Golang
	C++
	Summary

	Chapter 4: Visualizing Regex Execution Using Finite State Machines
	Regular Expressions Are Finite State Machines
	Backtracking
	Deterministic and Nondeterministic Regex Modeling
	Basic Regex Simplifications
	A Successful Match Is Cheaper Than Failure
	Automatically Generating Regex FSMs
	Summary

	Chapter 5: Repeat Modifiers
	Backtracking
	Match at Least Once
	Match at Most Once: Optionals
	Match Any Number of Times
	Fixed-Range Matching
	Loop Exactly n Times
	Greedy Repeat Modifiers
	Lazy Repeat Modifiers
	Possessive Repeat Modifiers
	Summary

	Chapter 6: Character Sets and Character Classes
	Character Sets
	Character Set Ranges
	Exclusions from Character Sets
	Character Set Classes
	Concatenating Advanced Language Constructs
	Summary

	Chapter 7: Substring Extraction from Regular Expressions
	Defining Capture Groups
	Perl 6 Capture Groups
	Retrieval of Captured Substrings
	JavaScript
	PHP
	Python
	Perl 5

	Reusing Captured Substrings Within a Regex
	Capture Groups and Performance
	Extensions to Capture Groups
	Summary

	Chapter 8: Lookahead and Lookbehind
	Lookahead
	Lookbehind
	Summary

	Chapter 9: Maintaining Regular Expressions
	Extended Mode
	Regex Subroutines
	PCRE Subroutines
	Perl 6 Subroutines
	Recursion and Circular References with Subroutines
	Extended Mode, Subroutines, and Abstractions

	Named Capture Groups
	EMACS Named Capture Groups
	PCRE Named Capture Groups
	Perl 6 Named Capture Groups

	Case Study: XRegExp Library for JavaScript
	Summary

	Chapter 10: Optimizing Regular Expressions
	Summary of the Optimization Techniques
	Making Character Classes More Specific
	Repeating Character Class Loops
	Use Possessive Repeat Modifiers Whenever Possible
	Use Atomic Groups
	Refactor for Optimization
	Optimization Techniques Limit Nondeterministic Execution
	Summary

	Chapter 11: Parsing HTML Code and URL Query Strings with Regular Expressions
	Parsing HTML Tags
	Processing the Query String of a URL

	Afterword: This Is Not the End, but the Beginning
	“What If I Want to Learn More?”
	Keep in Touch

	Index

