Jason Clinton

ESSENTIAL CODE AND COMMANDS

PHRASEBOOK

http://www.allitebooks.org

CONTENTS AT A GLANCE

1
2
3
4
5
6
7
8
9

10

11
12
13

14
15
16

Converting Between Types
Working with Strings
Working with Collections
Working with Objects
Working with Pipes
Working with Files
Manipulating Text

Ruby One-Liners
Processing XML

Rapid Applications Development
with GUI Toolkits

Simple CGI Forms
Connecting to Databases

Working with Networking and
Sockets

Working with Threads
Documenting Your Ruby
Working with Ruby Packages

lvww .allitebooks.cond

19
35
49
61
69
77
83
91

107
127
143

151
163
175
185

http://www.allitebooks.org

Ruby

PHRASEBOOK

ESSENTIAL CODE AND COMMANDS

Jason Clinton

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston e Indianapolis ¢ San Francisco
New York e Toronto e Montreal ¢ London ¢ Munich e Paris ¢ Madrid
Cape Town e Sydney e Tokyo e Singapore ¢ Mexico City

M.al litebooks. cor_rl

http://www.allitebooks.org

Ruby Phrasebook Editor-in-Chief
Copyright © 2009 by Pearson Education, Inc. Mark Taub

All rights reserved. No part of this book shall be reproduced, Development
stored in a retrieval system, or transmitted by any means, E/Idicl:tr?;el Thurston
electronic, mechanical, photocopying, recording, or otherwise,

without written permission from the publisher. No patent Managing Editor
liability is assumed with respect to the use of the information Patrick Kanouse
contained herein. Although every precaution has been taken in Project Editor
the preparation of this book, the publisher and author assume Jennifer Gallant
no responsibility for errors or omissions. Nor is any liability Copy Editor
assumed for damages resulting from the use of the information Geneil Breeze/
contained herein. Krista Hansing
ISBN-13: 978-0-672-32897-8 Indexer
ISBN-10: 0-672-32897-6 Tim Wright
Library of Congress Cataloging-in-Publication Data: Proofreader
2005938020 Carla Lewis/

Leslie Joseph

Printed in the United States of America ’ .
Technical Editor

First Printing August 2008 Robert Evans

Trademarks Publishing

Coordinator
Vanessa Evans

All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized.
Pearson Education, Inc. cannot attest to the accuracy of this Multimedia
information. Use of a term in this book should not be regarded Developer

as affecting the validity of any trademark or service mark. Dan Scherf
. . . Book Designer
Warning and Disclaimer Gary Adair

Every effort has been made to make this book as complete
and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis.

The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book.

Bulk Sales
Pearson Education, Inc. offers excellent discounts on this book

when ordered in quantity for bulk purchases or special sales.
For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearson.com

M.al litebooks. cogl

http://www.allitebooks.org

Table of Contents

Introduction
Audience
How to Use This Book
Conventions
Acknowledgments

1 Converting Between Types

Number from a String

Number to Formatted String

String to Array and Back Again

String to Regular Expression and Back Again
Array to Hash and Back Again

Array to Set and Back Again

Floating-Point, Integer, and Rational Numbers

2 Working with Strings

Searching Strings

Searching Strings with Regular Expressions
Replacing Substrings

Replacing Substrings using SprintF
Replacing Substrings using Regu

Working with Unicode

Sanitizing Input

Working with Line Endings

Processing Large Strings

Comparing Strings

Checksumming a String (MD5 or Otherwise)
Encrypting a String

M.al litebooks. cor_rl

A NN PR PR

o o

10
12
13
15
15

19
20
21
23
24
26
26
27
28
30
31
31
32

http://www.allitebooks.org

Contents

3 Working with Collections

Slicing an Array

Iterating over an Array

Creating Enumerable Classes
Sorting an Array

Iterating over Nested Arrays
Modifying All the Values in an Array
Sorting Nested Arrays

Building a Hash from a Config File
Sorting a Hash by Key or Value

Eliminating Duplicate Data from Arrays (Sets)

Working with Nested Sets

4 Working with Objects

Inspecting Objects and Classes

String Presentation of Objects

Ruby-Style Polymorphisms (“Duck Typing”)
Comparing Objects

Serializing Objects

Duplication

Protecting an Object Instance

Garbage Collecting

Using Symbols

5 Working with Pipes

Determining Interactive Standard Pipes
Synchronizing STDERR with STDOUT
Capturing the Output of a Child Process
Implementing a Progress Bar

Creating a Secured Password Prompt

6 Working with Files

Opening and Closing Files
Searching and Seeking Large File Contents

35
35
37
38
40
41

42
44
45

47

49
50
50
51
52
53
54
55
56
57

61
62
63
64
65
66

69
69
70

Contents

When to Use Binary Mode (Win32) 73
Obtaining an Exclusive Lock 74
Copying, Moving, and Deleting Files 74
7 Manipulating Text 77
Parsing an LDIF 77
Parsing a Simple Config File 78
Interpolating One Text File 79
Sorting the Contents of a File 80
Processing a passwd File 81
8 Ruby One-Liners 83
Simple Search 84
Counting Lines in a File 84
Head or Tail of a File 84
MD5 or SHA1 Hash 85
Simple HTTP Fetch 86
Simple TCP Connect 87
Escaping HTML 87
Deleting Empty Directories 88
Adding Users from a Text File 88
Delete All the Files Just Extracted 89
9 Processing XML 91
Opening an XML File 92
Accessing an Element (Node) 93
Getting a List of Attributes 95
Adding an Element 96
Changing an Element’s Enclosed Text 97
Deleting an Element 98
Adding an Attribute 98
Changing an Attribute 99
Deleting an Attribute 99

Escaping Characters for XML 100

Contents

Transforming Using XSLT 100
Validating Your XML 102
A Simple RSS Parser 103

10 Rapid Applications Development with GUI

Toolkits 107
A Simple GTK+ Hello World 108
Using Glade 110
A Simple Qt Hello World 115
Attaching a Signal Handler to a Qt
Widget Slot 116
Using Qt Designer 118
Attaching Signal Handlers to Qt Designer
Generated Code 124
11 Simple CGI Forms 127
Processing a Web Form 128
Returning Tabled Results 131
Escaping Input 134
Locking Down Ruby 136
Receiving an Uploaded File 137
Representing Data Graphically 138
12 Connecting to Databases 143
Opening (and Closing) a MySQL Database
Connection 144
Creating a Table 145
Getting a List of Tables 146
Adding Rows to a Table 146
Iterating Over Queried Rows 147
Deleting Rows 147
Deleting a Table 148
13 Working with Networking and Sockets 151
Connecting to a TCP Socket 152

Running a TCP Server on a Socket 153

Contents Vil

Serializing Objects with YAML 156
Network Objects with Distributed Ruby 158
Using Net::HTTP 159
Using Webrick 160
14 Working with Threads 163
Creating a Thread 164
Using a Timer 165
Killing a Thread 168
Synchronizing Thread Communication 169
Multithreaded Exception Gathering 172
15 Documenting Your Ruby 175
Documenting Ruby Code 176
Typographic Conventions Used 177
Overriding Method Signatures in
Documentation 179
Hiding a Module, Class, or Method 180
Providing Program Usage Help 180
Generating HTML Documentation 182

Generating and Installing Documentation for ri 183

16 Working with Ruby Packages 185
Installing a Module 187
Removing a Module 188
Searching for a Module 188
Updating Modules 188
Examining a Module 189
Packaging Your Module with Hoe 189
Creating a Simple Test Case 190
Distributing Your Module on RubyForge 191
Making Rakefile Standalone 192

Index 195

About the Author

Jason Clinton has been working in the computer
industry for more than a decade. He is actively
involved in the Kansas City Ruby Users Group
(KCRUG), serving as administrator of the group’s
website and mailing list, and he teaches a community
class on Linux at University of Missouri-Kansas City.

Clinton uses Ruby daily in system administration and
development for Advanced Clustering Technologies, a
Linux Beowulf cluster integrator.

Acknowledgments

Without the Pragmatic Programmers’ freely available
first edition of Programming Ruby, I would have never
discovered the wonderful world of Ruby. The Pickaxe
books and the great Ruby community make projects
like this one possible.

Thanks to my loving partner, Brandon S. Ward, for his
infinite patience while I was working on this book.

We Want to Hear from You!

As the reader of this book, you are our most important
critic and commentator. We value your opinion and
want to know what we're doing right, what we could
do better, what areas you’d like to see us publish in,
and any other words of wisdom you’re willing to pass
our way.

You can email or write me directly to let me know
what you did or didn’t like about this book—as well as
what we can do to make our books stronger.

Please note that I cannot help you with technical problems
related to the topic of this book, and that due to the high
volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s
title and author as well as your name and phone
number or email address. I will carefully review your
comments and share them with the author and editors
who worked on the book.

Email: feedback@developers-library.info

Mail: Mark Taber
Pearson Education, Inc.
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at
informit.com/register for convenient access to any
updates, downloads, or errata that might be available

for this book.

Introduction

Audience

You can find some great Ruby books on the market.
If you are new to Ruby, a friend or someone on the
Internet has probably already listed some favorite
Ruby books—and you should buy those books. But
every book has its niche: Each attempts to appeal to a
certain need of a programmer.

It is my belief that the best thing this book can do for
you is show you the code. 1 promise to keep the chat to a
minimum, to focus instead on the quality and quantity
of actual Ruby code. I'll also keep as much useful
information in as tight a space as is possible.

Unlike any other book on the market at the time of
this writing, this book is intended to be a (laptop-bag)
“pocket-size” resource that enables you to quickly
look up a topic and find examples of practical Ruby
code—a topical quick reference, if you will. In each of
the topics covered, I try to provide as thorough an
approach to each task as the size allows for; there’s not
as much room for coverage of topical solutions as there
is in much larger books with similar goals, such as The
Ruby Way, 2nd Edition (Sams, 2006), by Hal Fulton.
Because of this, other issues that are often given equal
priority are relegated to second. For instance, this is

Ruby Phrasebook

not a tutorial; the code samples have some explanation,
but I assume that you have a passing familiarity with
the language. Also, when possible, I try to point out
issues related to security and performance, but I make
no claim that these are my highest priority.

I hope that you find this book a useful tool that you
keep next to your keyboard whenever you are phrase-
mongering in Ruby.

How to Use This Book

I have not intended for this book to be read cover to
cover. Instead, you should place your bookmark at the
Table of Contents so you can open the book, find the
topic you are programming on at the moment, and go
immediately to a description of all the issues you
might run into.

The content in the book is arranged by topic instead
of Ruby class. The benefit is that you can go to one
place in this book instead of four or five areas in
Ruby’s own documentation. (Not that there’s anything
wrong with Ruby’s documentation. It’s just that some-
times you are working with several classes at a time
and, because Ruby’s docs are arranged by class, you
have to jump around a lot.)

Conventions

Phrases throughout the book are put in dark gray
boxes at the beginning of every topic.

Phrases look 1ike this.

Introduction

Code snippets that appear in normal text are in italics.
All other code blocks, samples, and output appear as
follows:

code sample boxes.

Parentheses are optional in Ruby in some cases—the
rule is: you must have parentheses in your method call if
you are calling another function in your list of parame-
ters, or passing a literal code block to the method. In all
other cases, parentheses are optional. Personally, 'm a
sucker for consistency but one of the indisputable
strengths of Ruby is the flexibility of the syntax.

In an attempt to have consistency between this book
and others, I will (reluctantly) use .class_method() to
refer to class methods, ::class_variable to refer to class
variables, #method() to refer to instance methods, and
finally #var to refer to instance variables. When refer-
ring to variables and methods which are members of
the same class, I'll use the appropriate @variable and
@@eclass_varriable.

I know that some people might find these two rules
annoying—especially those coming from languages
that use the “::” and * notation everywhere. In all prac-
ticality, you will never be so consistent—and rightfully
so. One of Ruby’s strengths is that there is a ton of
flexibility. In fact, this flexibility has helped make Ruby
on Rails so popular. This allowed the creators of Rails
to make what appears to be a domain-specific language (a
language well-suited for a specific kind of work) for
web development. But really, all that is going on is a
variation on Ruby syntax. And this is one of the many
reasons that Ruby is more suitable for a given problem
than, say, Python. Python’ rigidity (“there should be

Ruby Phrasebook

one—and preferably only one—obvious way to do it”)
doesn’t lend itself to DSL, so the programmers in that
language are forced to use other means (which might

or might not turn out to be unpleasant).

I always use single quotes (') in Ruby code unless
actually want to make use of the double-quote (")
features (interpolation and substitution).

I always put the result of the evaluation of the state-
ment (or block) on the next line with a proceeding
#=>, similar to what you would find if you were using
irb or browsing Ruby’s documentation.

Comments on executable lines of code start with # and
are in italics to the end of the comment. Comments on
#=> lines are in parentheses and are in italics.

Acknowledgments

Without the Pragmatic Programmers’ freely available
18 Edition of Programming Ruby, I would have never
discovered the wonderful world of Ruby. The Pickaxe
books and the great Ruby community are what make
projects like this one possible.

Thanks to my loving partner, Brandon S. Ward, for his
infinite patience while working on this book.

Reporting Errata

Readers will almost certainly find topics that they wish
were covered which we were overlooked when plan-
ning this book. I encourage you to please contact us
and let us know what you would like to see included
in later editions. Criticisms are also welcome. Contact
information can be found in the front-matter of this

book.

Converting
Between Types

The word “type” comes with a lot of baggage and I
use it deliberately here. Programmers coming from
other languages will likely expect Ruby, like all lan-
guages, to implement certain core “types’: integers,
floats, strings, characters, etc. However, in Ruby there
really isn’t such a thing as a traditional primitive type.
Even integers are stored as instances of the Fixnum (or
Bignum) class. They are objects just like any other. If
you are new to Ruby, you should keep repeating this
to yourself as you are coding: “everything is an object,
everything is an object, ...”. That’s the rule to swim or
sink by in Ruby. Absolutely everything around is an
object: an instance of a class.

Also, keep in mind that the rigidness that comes with
statically typed languages is relaxed. Methods (general-
ly) do not check to see whether an object that they
are working with 1s an instance of a particular class.
For example, the #puts method will accept any object
which responds to a #to_s method call. So, if your
object implements #to_s, you can use #puts. This is

CHAPTER 1 Converting Between Types

called “duck typing” — you’ll see more discussion about
this throughout the book.

Number from a String

'123".to_i
#=> 123

'123".to_f
#=> 123.0

String.to_i scans the literal value of the object and
returns the value as an Integer. String.to_f scans
the literal value of the object and returns the value as a
Float. If you want the input to decide whether it gets
stored as a Float or Fixnum, do this instead:

class String
def to_real
if self.include? '.'
self.to_f
else
self.to_i
end
end
end

'123"'.to_real

#=> 123
'123.0'.to_real

#=> 123.0
'1.23el10'.to_real

#=> 12300000000.0

Number from a String

Number to Formatted String

123.to_s
#=> "123"

(123.0).to_s
#=> "123.0"

Often a simple conversion from Integer or Float to
String will do—as in above.

However, Ruby also has the sprintf style of String
formatting built in. C programmers will be familiar
with this. Many String formatting codes exist; I cover
just the numeric ones here in Table 1.1; refer to Table
2.1 for an additional list of the escape codes that can
be used for formatting Strings. Also try man sprintf
or ri Kernel.sprintf from a terminal on your
favorite*nix (or Cygwin on Windows) for complete
documentation of this feature.

Here are some examples of using sprintf():

'The price is: %10d' % 123

#=> "The price is: 123" (space padding)
'The price is: %10.2f' % 123
#=> "The price is: 123.00"

'Hex Dump: %08x' % 1234567

#=> "Hex Dump: 0012d687" (zero padding)
'Bin Dump: %08b' % 123

#=> "Bin Dump: 01111011"

Print the hexadecimal code for each byte in the
String “test”:

'test'.each_byte do |byte|
puts '%02x' % byteend

CHAPTER 1 Converting Between Types

Sample output:

74
65
73
74

Use % to start an escape sequence and one of the val-

ues from the Code column to end the escape

sequence. Everything between is the arguments.

Table 1.1 Numeric SprintF Codes

Numeric Arguments Explanation

Code Allowed

D,i,oru space,+, -, 0, *d Integer argument is
converted to decimal
notation. d and i are
synonyms. u forces un-
signed interpretation.

X or X space, #, +, -, 0, *d Integer argument is
converted to hex
notation. d forces
uppercase A to F.

o space, #,+, -, 0, *d Integer argument is
converted to octal
notation.

b space, #, +, -, 0, *d Integer argument is
converted to binary
notation.

f d.d, space, #,+, -, Float argument is

0, *d converted to floating

notation with a lead-
ing zero before num-
bers less than 1 or
greater than -1.

Number from a String

Numeric Arguments Explanation

Code Allowed

eorkE d.d, space, #, +, -, Float argument is
0, *d converted using

rules but with added
exponent notation. E
forces uppercase E.
gorG d.d, space, #, +, -, 0, Float argument is
*d converted using f
rules, but with added
exponent notation
only if the exponent
is less than -4 or
greater than or equal
to the precision. G
forces uppercase E.

unknown author, printf man page, 2000

Table 1.2 gives an explanation of what each of these
arguments does.

Table 1.2 Numeric SprintF Arguments

Argument Explanation

d.d The first d is the width, the last d is
an integer representing the precision
of the floating point rendering. A -
preceding this argument causes left

justification.

space Pad width with spaces.

Use alternate notation for hex, octal,
and binary.

+ Always indicate sign.

- Left justification.

10

CHAPTER 1 Converting Between Types

Table 1.2 Continued

Argument Explanation
0 Pad with zeros.
*d d must be an integer indicating

the width of the numerical
representation.
Note that * is assumed for the first nonzero number
encountered in the argument list.

String to Array and
Back Again

'foobar'[3,1]
#=> "b" (single character String)
'foobar'[3, 2]
#=> "ba"
'foobar and ruby'[-4,4]
#=> "ruby"
'foobar'[2..5] # (Ranges too! See below.)

#=> "obar"
'foobar and ruby'[-4..-1]
#=> "ruby"
'foobar'[2...5]
#=> "oba"
'foobar and ruby'[-4...-1]
#=> "rub"

As in many programming languages, a String object is
merely an array of characters; internally, the actual
String value is stored in a C-style array. Not surpris-
ingly, then, ranges within Strings can be accessed by
analogs to most of the usual Array operations. Refer
to Table 1.3 for a list of ranges that can be used inside
String. [].

String to Array and Back Again

Here are some results that you might not expect at
first glance:

'foobar'[4]

#=> 97 (this is the ASCII value of ‘a’)
'foobar'[4,0]

#=> "" (a null string)
'foobar'[4..200]

#=> "ar" (no out of range error)

Table 1.3 String Slicing Operators

String Ranges Positions (Counting starts at
0, Negative Numbers Count
Position from the End)

S[{start}..{end}] {start} includes the
character; {end} includes
the character.

S[{start}...{end}] {start} includes the
character; {end} excludes
the character.

S[{start}, {count}] {start} includes the
character; {count} positions
from start to include. Use 1
to get a one-character string.

You can also assemble a String from an Array of
Strings:

['this','is','a", "'test'].join ' '
#=> "this is a test"

Also see the subsection “Replacing Substrings” in
“Working with Strings” for information about replac-
ing parts of Strings using slicing operators.

11

12

CHAPTER 1 Converting Between Types

String to Regular Expression
and Back Again

Regexp.new 'mystring'
#=> /mystring/

Regexp.new '\d{4}-\d{2}-\d{2}"'
#=> /\d{4}-\d{2}-\d{2}/

/\d\d:\d\d/ . inspect

#=> "/\\d\\d:\\d\\d/"
/\d\d:\d\d/.source

#=> "\\d\\d:\\d\\d"
/\d\d:\d\d/.to_s

#=> " (2-mix:\\d\\d:\\d\\d)"

Strings and regular expressions can be used inter-
changeably through most places in the Core API.

Notice that I used a single quote to keep the backslash
from escaping inside the String object before it gets
passes to Regexp.new. As an example of use, you might
ask a user to describe the native date format to input
as YYYY-MM-DD or MM/DD/YY. You can make a Regexp
object from this as follows:

Regexp.new gets.chomp.gsub(%r{[A/1}, '\d")

In plain English, this means: “Get a line of input, strip
white space from the ends, replace all occurrences of
characters that are not A or / with the String \d (sin-
gle quoted), and convert the resulting String object
into a Regexp object.” Note that %r{} is another way
of writing a regular expression literal—in this case, I
used it to avoid having to escape the /.

Conversely, String representations of the content of a
Regexp can be made.

Note that the last form listed at the beginning of this
subsection is in alternate notation which is more

Array to Hash and Back Again

human-readable; also note that feeding this alternate
notation back into Regexp.new might not result in the
same Regexp object.

See the subsection “Searching Strings” in “Working
with Strings” for more on this topic.

Array to Hash and Back Again

Hash[*[1,2,3].zip([4,5,6]).flatten]
#=> {1=>4, 2=>5, 3=>6}

{ '"foo' => 1, 'bar' => 2, 'baz' => 3 }.keys
#=> ["baz", "foo", "bar"]

{ "foo' => 1, 'bar' => 2, 'baz' => 3 }.values
#=>[3, 1, 2]

{ "foo' => 1, 'bar' => 2, 'baz' => 3 }.to_aQ
#=> [["baz", 3], ["foo", 11, ["bar", 2]1]

Above, two ordered Arrays, one with your keys—1, 2,
and 3—and another with your values—4, 5, and 6—
are zipped together, flattened, and then splatted to
make the Array compatible with the Hash.[] class
method. This makes the values from the Array become,
one, the key and, the other, the value.

If you have an Array and you want to initialize all of
the keys of a new Hash but not yet set the values, a
clever trick is to zip the Array of keys with an empty
Array:

Hash[*%w{a b c}.zip([]).flatten]

#=> {"a"=>nil, "b"=>nil, "c"=>nil}
Similarly, you can assign the Array’s index to the value
instead of ni1 - this requires an interative
approach.

13

14

CHAPTER 1 Converting Between Types

my_hash = Hash.new
['a','b",'c'].each_with_index { |e, i| my_hash[e] =
i}
my_hash
#=> {"a"=>0, l'l()"=>1, "C"=>2}l

You can give the Array class that capability, of course:

class Array
def to_hash
Hash[*self.zip([]).flatten]
end
end

[1,2,3].to_hash
#=> {1=>nil, 2=>nil, 3=>nil}

Conversely, you can get the keys and values out of the
Hash in a number of ways including those short meth-
ods listed at the beginning of this section.

However, you might also want to walk through the
Hash and get an Array from keys or values that meet
certain criteria:

{ 'foo' => 1, 'bar' => 2, 'baz' => 3 }.select do |k,
v|

v%2==1 #1is it odd?
end

#=> [["baz", 3], ["foo", 11]

See Chapter 3, “Working with Collections,” for related
topics.

Floating-Point, Integer, and Rational Numbers 15

Array to Set and Back Again

require 'set'

['foo', 'bar', 'baz'].to_set
#=> #<Set: {"baz", '"foo", "bar"}>

Set.new(['foo', 'bar', 'baz']).to_a
#=> ["baz", "foo", "bar"]

A Set can be thought of as a Hash with no values (in
fact, it uses a Hash for storage). As you can see, con-
verting to a Set from an Array is much easier than
from a Hash.

Floating-Point, Integer, and
Rational Numbers

Math::PI
#=> 3.14159265358979
Math::PI.to_i
#=> 3
Math::PI.ceil
#=> 4
Math::PI.floor
#=> 3
Math: :PI.round
#=> 3

16

CHAPTER 1 Converting Between Types

Math::E

#=> 2.71828182845905
Math::E.round

#=> 3

7.to_f
#=> 7.0

For the most part, numbers behave in Ruby exactly as
they do in other languages. You might be interested in
two exceptions, though:

If the Integer representation of a number is too large
to store in the host machine’s CPU registers (larger
than 32 bits on x86), the Integer representation is
stored in a Bignum object instead of a Fixnum object.
The difterence between the two is that Bignum allows
computation on very large (or very negative) numbers
at the cost of computational overhead. Note that Ruby
uses 1 bit for the sign and 2 more bits for the tag (used
for internal bookkeeping).

(2*%*29) .class
#=> Fixnum

(2%*30).class
#=> Bignum

Ruby also supports storing numbers in a Rational
object that implements the normal arithmetic
operators.

require 'rational'

Rational(3, 4) + Rational(l, 8)
#=> Rational(7, 8)
Rational(3, 4) / 2
#=> Rational(3, 8)

Floating-Point, Integer, and Rational Numbers

2 * Rational(3, 8)
#=> Rational(3, 4)
Rational(3, 7).to_fQ
#=> 0.428571428571429
Rational(3, 7).to_sQ
#=> "3/7"

A Word on Boolean true and false

In Ruby, anything that is not either false or nil is
considered true—even 0 (zero). Let me say that again:
0 evaluates to true. If you want to say that something
evaluates to false, you must explicitly state it. If your
method needs to return true as the result of
some conditional test, just return the test as result
as the return value. Remember, the last evaluation in a
method is the return value.

As an interesting side note, in Ruby, any time you write
out true or false in your code, you are referring to
singleton instances of the TrueClass and
FalseClass, respectively. So, even true and false

have member methods, and variables and respond to
method calls.

17

This page intentionally left blank

Working with
Strings

Gluing applications together is what programming
languages like Ruby and Perl do particularly well: their
text processing facilities are excellent. Whether its pars-
ing configuration files, serving up web pages or captur-
ing the output of a program, you will be working with
Strings. Where Ruby and Perl differ, however, is in the
object oriented-ness of their approach. In Ruby,
Strings have their own member methods which can be
accessed to perform each processing function. Keep
this in mind throughout this section.

The following subsection and the next two subsections
are closely related. I first briefly present the simple
searching functions that accept Strings as parameters;
then I dive right in to regular expressions.

20

CHAPTER 2 Working with Strings

Searching Strings

'foobar'.include? 'fo'

#=> true
'foobar'['fo']

#=> "fo "(true because not nil or false)
'foobar'.count 'ob' # 'ob' is taken to be a Tist of
characters

#=> 3 (2 "o"s and 1 "b")

o'
appeared in both parameters)

'foobar'.count 'ob',

'foobar'.index 'ob'
#=> 2

'foobar'.index 98 # 98 is the ASCII code for 'b'
#=> 3

In the first two examples, #include? is used to find
whether a String includes a substring and return a
Boolean result. This is implemented in C code and is
slightly faster than a Regexp-based search (though, not
by much).

In the middle two examples, #count is used to return
the number of occurrences of a particular string.
Additional parameters to #count are intersected on a
character basis. (Intersection is a term from set logic. It
means to only include those elements which occur in
both sets. In this case, an “element” is a character.) This
method is not yet Unicode safe.

Finally, in the last two examples, #index returns the
position—in count-from-zero notation—of the first
occurrence of either a String or the numerical code of
a character.You can use #rindex to find the index of
the last occurrence.

Searching Strings with Regular Expressions

You can also walk through a String, File, or I0Stream
performing a search. Let’s say that you want to write a
simple config file parser that places each config vari-
able and its value in a Hash:

'a = 1\nb = 1\nc = 3\n'.each_line() { |Tine|
if Tine.include?('=")
do something with this Tine
end

3

The code at # is executed only if = is present. See the
subsection “Parsing a Simple Config File,” in Chapter
7,“Manipulating Text,” for a much more complete
example of this.

Searching Strings with Regular
Expressions

"The time is: 12:34:54\n".match
/QA\d{2}) : (\d{2}) : (\d{2})/

#=> #<MatchData:0x402e9548>
$1

#=> "12"
$2

#=> "34"

$3

#=> "54"

This topic is huge—entire books are devoted to regu-
lar expressions. Perhaps the best one is Mastering
Regular Expressions (O’Reilly, 2002), by Jeffrey E. E
Friedl. If your job includes working with a lot of clear
text, I highly recommend that you pick up this
resource and keep it within reach.

21

22

CHAPTER 2 Working with Strings

Here I cover ways in which you can use Regexp objects
to search text in Ruby (it’s not a review of the regular
expression language).

When performing a Regexp match in Ruby, any O
groupings within the Regexp are set to the (thread-
local) global variables $1 to $9 in the order they appear
in the Regexp.

The #match method returns a MatchData object for the

first match in the String and also sets the global variable

$~ to the same object. Here’s what a MatchData has in
it:

m = "The time is: 12:34:54\n".match
/QA\d{23): (\d{2}): (\d{2})/
m.to_a

#=> ["12:34:54", "12", "34", "54"]
m.pre_match

#=> "The time is:
m.post_match

#=> "\n"

You can also access the entire match with m[0], and
each of the submatches with m[1] to m[9].

If you want to return all the matches in the String, use
.#scan.This returns an Array that looks like this:

"The time 1is: 12:34:54\n".scan(/\d{2}/)
#o> ["12", "34", "54"]

If you use grouping parentheses in your Regexp, it
returns nested Arrays.

You can also use .#split with Strings using regular
expressions:

Replacing Substrings

"The time is: 12:34:54\n".split(/:\s/)
#=> ["The time is", "12:34:54\n"]

Replacing Substrings

s = 'foobar'
s[-1] = 'Z’

s #=> "foobaz"
s[0,4] = 'ja'

s #=> "jaaz"
s[2] = 122

s #=> "jazz"

ary = ['some_variable', 'some_value']
"Setting #{ary[0]} is currently set to #{ary[1]}."

#=> "Setting some_variable is currently set to
some_value."

"You are currently looking at #{ary[0].tr('_', '
3.
#=>"You are currently looking at some variable."

As mentioned in the section “String to Array and Back
Again,” in Chapter 1, “Converting Between Types,”
Strings can be treated like Arrays of characters in
many respects. This includes replacements such as
above.

In the last two examples above, double-quoted Strings
are used to evaluate "#{}" clauses within them and
interpolate the result of the evaluation.You can do
pretty much anything inside a "#{}". In the above
examples I show array access and even a #tr

method call.

A somewhat more obscure function, #tr allows you to
do a character-wise replacement:

23

24

CHAPTER 2 Working with Strings

'You are currently Tooking at a string.'.tr 'aeiou',

#=> "Y__ _r_ c_rr_ntly 1_k_ng _t _ str_ng."
'You are currently Tooking at a string.'.tr 'aeiou',
'uojea’

#=> "Yea uro carrontly leeking ut u string."

3

” char-

The first example replaces all vowels with an *
acter; the second switches each vowel for another
vowel. See the subsection “Sanitizing Input,” later
in this chapter, for another example of using #tr
and a discussion of how #tr parameters work.

Replacing Substrings using
SprintF

'T received %25s' % 'a string.'
#=> "I received a string."
'T received %-25s' % 'a string.'
#=> "I received a string. "
'T received a couple of strings: %s, %s' % ['one',
"two']
#=> "I received a couple of strings: one, two"

'I received %25p' % [['an', 'array']]

#=> "I received [\"an\", \"array\"]"
'TI received %-25p' % [['an', 'array']]

#=> "I received [\"an\", \"array\"] "

As with numbers, you can also apply sprintf style
formatting using the “%” operator. Table 2.1 gives the
allowed arguments.

Replacing Substrings using SprintF

Table 2.1 String SprintF Codes

String Arguments Explanation

Argument Allowed

c *, - Expects a Fixnum repre-
senting character code

s * - Expects a String object

p - Any object that responds

to .inspect()

And Table 2.2 lists what those arguments do.

Table 2.2 String SprintF Arguments

Argument Explanation

*d d must be an integer. Specifies the
width of the field.

- Left justification.

I should also briefly mention a somewhat obscure fea-
ture of sprintf:You can use (position)$ positional
notation to access a specific entry in the array provided.
Somewhat annoyingly, however, the notation for this
access counts starting at 1 instead of 0 (as Arrays do):

'Hi %1$s! Today you turn %2$d! Happy birthday,
%1$s!' % ['Joe', 13]

#=> "Hi Joe! Today you turn 13! Happy birthday,
Joe!™

25

26

CHAPTER 2 Working with Strings

Replacing Substrings using
Regular Expressions

'The current time is: 12:34:21'.sub(
/Q\d\d) : (\d\d) : (\d\d)/,

BVAVAEED)
#=> "The current time is: 123421"

Again, you can use regular expressions for some pow-
erful functions. Use \1 to \9 to interpolate the group-
ing parentheses’ results from the match to your
replacement. Use .#gsub instead of .#sub to replace all
occurrences in a String.

In the example above, the entire phrase “12:34:21” is
match and replaced with the subgroups 1-3 with no

:”’s between them. Alternatively, you could simply
replace any occurrence of “:” appearing between digits.

This could be written like this:

'The current time is: 12:34:21'.gsub(
/AD:A\d/,
"\1\2")
#=> "The current time is: 123421"

Working with Unicode

#!/usr/bin/ruby -wKu

'untpyc'.scan(/./) { |b|] print b, " '}
Produces:
unTpyec

Ruby accepts source files encoded in UTF-8. Just to
be safe, include the -Ku command-line option in your

Sanitizing Input

shebang line to ensure that this is properly interpreted
on other OSs and other locales. The modified shebang
line is the first line in the code sample above.

Ruby itself is not yet fully internationalized. For
instance, Ruby is unaware of the multibyte nature of
UTF-8 beyond the first 255 character codes. So
#each_byte must be used with care when dealing with
international strings; for example, it will not work on
any non-Latin languages:

puts "uuTpyc" # output directly to buffer
"untpyc".each_byte { |b| print(""<<b, ' ') }

Produces:

unTpyc
?7?2?77?77?7

Instead, use the Regexp engine to iterate over these
characters (it is UTF-8 aware). The code to do this is
the code sample at the beginning of this section.

In general, use the Regexp engine for slicing and
matching when you’re working with Unicode. Other
than that, Strings with Unicode content should
behave exactly as you expect them to.

Sanitizing Input

new_password = gets

if new_password.count 'AA-Za-z. ' != 0 then
puts "Bad Password"

else

#do something 1ike in subsection “Encrypting a
String"
end

27

28

CHAPTER 2 Working with Strings

Let’s say that you want to write a password changer for
*nix (perhaps storing to an LDAP back end). At a
login prompt, you can use almost all characters in a
password that you can generate at a keyboard. But the
few that you can’t use might give your users a
headache when they discover that they can’t log in
again after changing their password. In an effort to
make your life easier, you could write a password
changer that restricts the password to alphanumeric
and a few of its friends. String#count, as applied
above, can help you do just that.

This works by using a special syntax that’s shared by
.#count, .#tr, #delete, and #squeeze. A parameter
beginning with A negates the list; the list consists of
any valid characters in the active character set and may
contain ranges formed with -. If more than one
parameter list is given to these functions, the lists of
characters are intersected using set logic—that is, only
characters in both lists are used for filtering.

For other types of sanitation, you might also want to
simply replace all “evil” characters with _ (such as
perhaps from a CGI form post):

evil_input = ''cat /etc/passwd’'
evil_dnput.tr('./\""', '_")
#=> "_cat _etc_passwd_"

Working with Line Endings

When dealing with clear text from the three main OS
types, you will encounter what is perhaps their oldest
file format fragmentation (see Table 2.3).

Working with Line Endings

Table 2.3 0S-Specific Line Endings

(015 Line Ending
Mac OS 9 and older \r
Windows \r\n

*nix \n

If you are dealing with Windows and *nix text, you
probably don’t need to give it another thought; they
are handled almost exactly the same:

"a\r\nb\r\nc\r\n".each_1ine { |line]|
puts(line.inspect)
}

Produces:

"a\r\n"
"b\r\n"
"c\r\n"

"a\r\nb\r\nc\r\n".each_1ine { |line]|
puts(line.chomp.inspect) # chomp safely removes

both

}

Produces:

a
npn

C

On Linux it looks almost identical:

"a\nb\nc\n".each_Tline { |Tine|
puts(line.inspect)

3

29

30

CHAPTER 2 Working with Strings

Produces:

a\n
"h\n"
"c\n

For Mac OS files, you need to specify the separator:

"a\rb\rc\r".each_1ine "\r" { |line|
puts(line.inspect)

3

Produces:

"a\r"
"p\r"
e\

Processing Large Strings

my_string =
(2%%21).times{ my_string << rand(256) }
#=> 2097152 (2 MB of random data)

require 'stringio'

string_stream = StringI0.new my_string
string_stream.read 256

#=> '"\351@\3009\251\326\036\314| *\335jI\017 ...

When such a huge String is already in memory, the
best way to handle it depends on what you are going
to do with it. If the String is clear text and you intend
to parse it somehow, make use of #each_Tine. Refer to
the subsection “Building a Hash from a Config File,”
in Chapter 3, for an example of building a Hash from
such a String. However, if the String contains binary

Checksumming a String (MD5 or Otherwise)

data, you can take slices of predetermined amounts of
bytes at a time, such has been shown above in incre-
ments of 256. In this example, every time #read is
called, an Enumerator (a kind of position marker) moves
to keep track of your position in the String.

Comparing Strings

"Who" <=> "who"
#=> -1

%w{'who' 'is' 'on' 'first?' 0'}.sort
#=> ["Who", "first?", "is",

' foobar'.casecmp 'Foobaz'
#=> -1

' foobar'.casecmp 'FooBar'

#=> 0
%w{'who' 'is' 'on' 'first?' 'Who'}.sort { |a,b|
a.casecmp b }

#=> ["first?", "is", "on", "who", "Who"]

You can compare Strings in a case-sensitive manner—
this is how #sort works by default. Non-case-sensitive
comparisons are now handled by String#casecmp. This
method works in the same way that "<=>" does
(returning -1, 0, or 1), so it can be used as a part of
"#sort {}" calls.

Checksumming a String (MD5
or Otherwise)

require 'digest/md5’
Digest::MD5::new 'foobar'
#=> 3858f62230ac3c915f300c664312c63f

require 'digest/shal’
Digest::SHAl: :new 'foobar'
#=> 8843d7f92416211de9ebb963ff4ce28125932878

31

32

CHAPTER 2 Working with Strings

Above, I show both MD5 and SHA1 checksum meth-
ods. Be aware that MD5 has been shown to be weak—
with some effort, someone could generate a file which
has the same MD5 sum thereby impersonating a valid
file.You can use SHA1 instead as I have show above.

If you need to checksum a file, one approach is to
#read the whole file in to a String and perform the
previous methods. However, this is a bad idea if you
are checksumming any kind of large file. Instead, con-
sider the following approach:

require 'digest/md5"'

def md5sum_file path

d = Digest::MD5.new

File.open(path, 'r') do |fp]|
while buf = fp.read(1024*8)

d << buf

end

end

d.hexdigest

The above example uses the #update or #<< method
of MD5, and doesn’t require the whole file to be read
into memory.

Encrypting a String

password = 'f0Obar'

generate a random salt
salting_chars = ('A'..'Z').to_a + ('a'..'z").to_a +

., '/'1
salt = salting_chars[rand(54)] +
salting_chars[rand(54)]

#=> "jM"

Encrypting a String

password.crypt(salt)

#=> "jM7qRCLulBPhc"

String#crypt enables you to perform a one-way hash
function on a String. This can be used for simple pass-
word security. To store the password for the first time,
choose a random salt and then use that to hash the
password that you received. Notice that the salt is
stored at the beginning of the hash (which is the last
line in the above example).You can use that hash to
verify someone trying to use this password. Because
this is a one-way encryption, you must encrypt the
attempted password with the same salt and compare
the two encrypted strings to find out whether they
are equal:

input_password = 'f0Obar'
crypted_password = 'jM7gRC1ulBPhc'

salt = crypted_password[0,2]
#m> M

test password
input_password.crypt(salt) == crypted_password

If you would like to implement a two-way encryption
(one that requires that some kind of key be provided
to decrypt the text), there is no such class or method
in the standard Ruby library. Consider using the
Ruby-AES module from RAA. On some operating
systems, the output of a subprocess “aesloop” com-
mand could also be used.

33

This page intentionally left blank

Working with
Collections

In Ruby and other dynamic languages, “Collection” is
an umbrella term for general-use lists and hashes. The
ease of working with these data structures is an attrac-
tive feature and one that often contributes to making
prototyping in Ruby a pleasurable experience. The
implementation details of lists and hashes and their
underlying mechanisms are mostly hidden from the
programmer leaving him to focus on his work.

As you browse this section, keep in mind that under-
pinning everything you see here are traditional
C-based implementations of lists and hashes; Ruby

is attempting to save you the trouble of working
with C—but be sure, that trouble saving can come at
performance cost.

Slicing an Array

This section has a lot of analogs to the earlier section
“String to Array and Back Again,” in Chapter 1,
“Converting Between Types.”You can slice an Array a
number of ways:

36

CHAPTER 3 Working with Collections

[1,

[1,

[1,

[1,

[1,

[1,

[1,

[1,

[1,

2, 3, 4, 5,6, 7, 8, 9][4]
#=> 5 (a Fixnum object)

2, 3, 4, 5,6, 7, 8 9][4,1]
#=> [5] (single element Array)

2, 3, 4, 5,6, 7, 8 91[4,2]
#=> [5, 6]

2, 3, 4, 5, 6, 7, 8, 9]1[-4,4]
#=> [6, 7, 8, 9]

2, 3, 4,5,6, 7,8, 91[2..5]
#=> [3, 4, 5, 6]

2, 3, 4,5, 6, 7,8, 91[-4..-1]
#=> [6, 7, 8, 9]

2, 3, 4, 5, 6, 7, 8 9][2...5]
#=> [3, 4, 5]

2, 3, 4, 5,6, 7, 8 9][-4...-1]
#=> [6, 7, 8]

2, 3, 4,5, 6, 7, 8 9][4..200]
#=> [5, 6, 7, 8, 9] (no out of range error!)

Array Ranges Positions (Counting Starts at

0, Negative Numbers Count
Position from the End)

A[{start}..{end}] {start} includes the element;

{end} includes the element

Al{start}...{end}] {start} includes the element;

{end} excludes the element

Al{start}, {count}] {start} includes the element;

{count} positions from start
to include

Iterating over an Array

You might also like to select elements from the Array
if certain criteria are met:

[1, 2, 3, 4, 5, 6, 7, 8 9].select { |element| ele-
ment % 2 == 0 }
#=> [2, 4, 6, 8] (all the even elements)

Iterating over an Array

[1, 2, 3, 4, 5].each do |element]|

do something to element
end

This is one of the joys of Ruby. It’s so easy!

You can also do the trusty old for loop:

for element in [1, 2, 3, 4, 5]
do something to element
end

The difference between a for loop and an #each is
that in for, a new lexical scoping is not created. That
is, any variables that are created by for or that are in
the loop remain after the loop ends.

To traverse the Array in reverse, you can simply use
#Arrayreverse#each. Note that in this case, a copy of
the Array is being made by #reverse, and then #each is
called on that copy. If your Array is very large, this
could be a problem.

In order for you get any more specialized than that,
however, you need to work with the Enumerator
module. For example, you might want to traverse an
Array processing five elements at a time as opposed to
the one element yielded by #each:

37

38

CHAPTER 3 Working with Collections

require ‘enumerator’
ary = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
ary.each_slice(5) { |element| p element }

Outputs:

[o, 1, 2, 3, 4]
[5, 6, 7, 8, 9]

Creating Enumerable Classes

You may find that you need to make information in a
given, custom data structure available to the rest of the
world. In such a case, if the data structure that you
have created to store arbitrary objects implements an
#each method, the Enumerable mix-in will allow any-
one who uses your class to access several traversal and
searching methods, for free.

require 'enumerator'

class NumberStore
include Enumerable

attr_reader : neg_nums, :Ipos_nums

def add foo_object
if foo_object.respond_to? :to_i
foo_i = foo_object.to_i
if foo_i < 0
@neg_nums.push foo_i
else
@pos_nums.push foo_i
end
else

Creating Enumerable Classes

raise “Not a number.”

end
end
def each
@neg_nums.each { |i| yield i }
@pos_nums.each { |i| yield i }
end

def initialize
@neg_nums = []
@pos_nums = []
end
end

mystore = NumberStore.new
mystore.add 5
mystore.add 87
mystore.add(-92)
mystore.add(-1)

p mystore.neg_nums
p mystore.pos_nums

p mystore.grep -50..60

Produces:
[-92, -1]
[5, 87]
[-1, 5]

In the above contrived example, I have created a data
structure called NumberStore which stores negative
numbers in one list and positive numbers in another
list. Because the #each method is implemented, meth-
ods like #find, #select, #map, and #grep become

39

40

CHAPTER 3 Working with Collections

available. In the last line of the code sample I use the
mixed-in method #grep to find numbers stored in
mystore that are between 50 and 60.

Sorting an Array

[5, 2, 1, 4, 3].sort

#=> [1, 2, 3, 4, 5]

As long as all the objects stored in the Array respond
to the <=> method, the Array will be sorted successful-
ly. If you want to sort by some special criteria, you can
supply a block or even map a value to each element
that can be compared using “<=>". Here is a somewhat
contrived example (there are many ways to accomplish

this):

[‘Platinum’, ‘Gold’, ‘Silver’, ‘Copper’].sort_by do
|award|

case award

when ‘Platinum’: 4

when ‘Gold’: 3

when ‘Silver’: 2

when ‘Copper’: 1

else 0

end
end

#=> [“Copper”, “Silver”, “Gold”, “Platinum”]

Above, a numerical value is assigned to each String
and then the Array is sorted by #sort_by using those
values.

Word of warning: When sorting numerical values,
beware of Floats, they can have the value NaN (imagi-
nary) which is, of course, not comparable to real num-
bers. Array#sort will fail if your array has such a Nan:

Iterating over Nested Arrays 41

[1/0.0, 1, O, -1, -1/0.0, (-1)**(0.5)]
#=> [Infinity, 1, 0, -1, -Infinity, NaN]
[1/0.0, 1, O, -1, -1/0.0, (-1)**(0.5)].sort

Produces:

ArgumentError: comparison of Fixnum with Float
failed

Iterating over Nested Arrays

Array.flatten.each { |elem| #do something }

You can #flatten the Array as I have done above. For
most cases, this works just fine—it’s very fast. But it’s
perhaps not quite as flexible as a recursive implementation:

class Array
def each_recur(&bTock)
each do |elem|
if elem.is_a? Array
elem.each_recur &block
else
block.call elem
end
end
end
end

my_ary = [[1, 2, 3, 41,[5, 6, 7, 811
#=> [[1, 2, 3, 41, [5, 6, 7, 811

my_ary.each_recur { |elem| print(elem, * *) }

Produces:

123456738

42

CHAPTER 3 Working with Collections

Modifying All the Values in an
Array

Array#collect, also known as Array#map, is used to
modify the values of an Array and return a new array.

[‘This’, ‘is’, ‘a’, ‘test!’].collect do |word]|
word.downcase.delete ‘AA-Za-z’

end
#=> [“this”, “is”, “a”, “test”]

If you want to do this on a nested Array, you need
something a little stronger:

class Array
def collect_recur(&bTlock)
collect do |e|
if e.is_a? Array
e.collect_recur(&bTock)
else
block.call(e)
end
end
end
end

[[1,2,3],[4,5,6]].collect_recur { |elem| elem**2 }
#=> [[1, 4, 9], [16, 25, 36]]

Sorting Nested Arrays

[[36, 25, 161, [9, 4, 1]1]1.flatten.sort

#=> [1, 4, 9, 16, 25, 36]

We have to #flatten the Array because the #sort uses
<=> to compare two Arrays, which in turn, compares

Sorting Nested Arrays

their elements for either all elements being less than all
elements in the other Array or vice-versa (if neither
condition is met they are considered equal). It doesn’t
descend in to the Arrays to sort them. Here is what
would happen if we didn’t flatten:

[[36, 25, 16], [9, 4, 1]].sort
#=> [[9, 4, 11, [36, 25, 16]]

Once again, the first code will work in most cases but a
recursive implementation is able to accommodate
working with the Array in place without destroying the
heirarchy (note that this sorts in place, for simplicity):

class Array
def sort_recur!
sort! do |a,b|
a.sort_recur! if a.is_a? Array
b.sort_recur! if b.is_a? Array
a<=>b
end
end
end

p [[36, 25, 161, [9, 4, 1]].sort_recur!

Produces:

[[1, 4, 9], [16, 25, 36]]

43

44

CHAPTER 3 Working with Collections

Building a Hash from a
Config File

my_hash = Hash: :new
tmp_ary = Array::new

“a = 1\nb = 2\nc = 3\n”.each_line do |line]|
if Tine.include? ‘=’

tmp_ary = line.split(‘=").collect { |s]|
s.strip }
my_hash.store(*tmp_ary)

end
end

p tmp_ary
p my_hash
Produces:
[“c”, “3”]1 (from the last Toop)
{“a’=>"1", “c”’=>"3", “b”=>"2"}

This is very similar to an earlier example in the section
“Searching Strings,” in Chapter 2, “Working With
Strings.” Here we are processing a simple format con-
fig file. This is a sample of what such a file looks like:

variablel = foo
variable2 bar
variable3 = baz

For the sake of simplicity, instead of a File for simulat-
ed input, this example uses a simple String with some
\n (newline) separators.

In plain English, those inner lines mean, “Take the cur-
rent line and call the #split on it, splitting on the ‘=’
character; pass each element of the resulting two-ele-
ment Array in to the block; call the #strip method on
the Strings to remove any whitespace, and return the
modified Array to tmp_ary. Hash#store expects two

Sorting a Hash by Key or Value

parameters, not an Array, so we use the splat (*) opera-
tor to expand the tmp_ary Array down so that it
appears to be a list of parameters.”

Sorting a Hash by Key or Value

my_hash = {‘a’=>"1’, ‘c’=>’3’, ‘b’=>’2"}
my_hash.keys.sort.each { |key| puts my_hash[key] }
Produces:

Hashes are unsorted objects because of the way in
which they are stored internally. If you want to access
a Hash in a sorted manner by key, you need to use an
Array as an indexing mechanism as is shown above.

You can also use the Hash#sort method to get a new
sorted Array of pairs:

my_hash.sort
#=> [["a”, “1"], [*b", “2"], [“c", *3"]]

You can do the same by value, but it’s a little more
complicated:

my_hash.keys.sort_by { |key| my_hash[key] }.each do
[key|

puts my_hash[key]
end

Or, you can use the Hash#sort method for values:

my_hash.sort { |1, r| 1[1]<=>r[1] }
#=> [["a”, “171, ["b", “2"1, [*c”, “3"1]

45

46

CHAPTER 3 Working with Collections

This works by using the Emmuerator#sort_by method
that is mixed into the Array of keys. #sort_by looks at
the value my_hash[key] returns to determine the sort-
ing order.

Eliminating Duplicate Data
from Arrays (Sets)

[1, 1, 2, 3, 4, 4].uniq

#=> [1, 2, 3, 4]

You can approach this problem in two diftferent ways.
If you are adding all your data to your Array up front,
you can use the expensive way, #uniq, above, because
you have to do it only once.

But if you will constantly be adding and removing data
to your collection and you need to know that all the
data is unique at any time, you need something more
to guarantee that all your data is unique, but without a
lot of cost. A set does just that.

Sets are a wonderful tool: They ensure that the values
you have stored are unique. This is accomplished by
using a Hash for its storage mechanism, which, in turn,
generates a unique signifier for any keys it’s storing.
This guarantees that you won't have the same data in
the set while also keeping things accessible and fast!
Beware, however, sets are not ordered.

require ‘set’
myset = Set::new [1, 1, 2, 3, 4, 4]
#=> #<Set: {1, 2, 3, 4}>

Working with Nested Sets

Adding duplicate data causes no change:

myset.add 4
#=> #<Set: {1, 2, 3, 4}>

Working with Nested Sets

You should be aware that Set does not guarantee that
nested sets stored in it are unique. This is because
foo_set.eql? bar_set will never return true - even if
the sets have exactly the same values in them. Other
kinds of objects in Ruby exhibit this behavior, so keep
your eyes open.

If you would like to iterate over the contents of sets
without having to worry about the nested data possi-
bly colliding with the upper data, you cannot use
Set#flatten. Here is a simple method to recursively
walk through such a set:

class Set
def each_recur(&Tlock)
each do |elem|
if elem.is_a? Set
elem.each_recur(&bTock)
else
block.call(elem)
end
end
end
end

my_set = Set.new.add([1, 2, 3, 4].to_set).add([1, 2,
3, 4].to_set)
#=> #<Set: {#<Set: {1, 2, 3, 4}>, #<Set: {1, 2,

47

48

CHAPTER 3 Working with Collections

3, 4}>}>
my_set.each_recur { |elem| print(elem, * *) }

Produces:

12341234

Working with
Objects

Working in Ruby is a joy because there is an inter-
nal consistency to the design. This consistency leads to
expected (“least surprising”) behavior throughout the
core Ruby classes, and this section is about that design.
First, some ground rules:

An important detail to remember when working with
Ruby is that all objects are subclassed from Object in
some way; indeed, every object class that you create
yourself will be a subclass of the class Class; in turn,
Class is a subclass of Object. As I mention later, every
new class also mixes in methods and properties of the
Module class.

Object also mixes in methods from the Kernel module.
This ensures that methods such as #gets, #puts, and #p
work no matter which scope you call them in. So to
recap, every single class or instance of that class will
have methods and properties that come from all four
of these classes:

= Object

= Kernel

50

CHAPTER 4 Working with Objects

= (Class

= Module

You would be well on your way to zen mastery of
Ruby if you were intimately familiar with the docu-
mentation for those four classes. But for now, let’s look
at some specifics.

Inspecting Objects and Classes

Class inspections
String.methods
String.constants

Instance inspections

my_string = String.new
my_string.instance_methods
my_string.constants
my_string.instance_variables
my_string.object_id

One of the really great tools in the Ruby toolbox is
irb. At the irb console (and inside your program), you
can inspect just about everything: modules, classes, and
objects. You can examine internal states of variables and
constants, internal methods, access restrictions, and even
information about each existence inside the Ruby VM.
I have provided some examples of these capabilities.

String Presentation of Objects
= { “a” => 123, “b” => 456, “c” => 789 }
h

= File.open “Ruby Book/test.txt”

T -h T T
|

Ruby-Style Polymorphisms (“Duck Typing”)

This code produces the following output:

{“a”=>123, “b”=>456, “c”=>789}
#<File:Ruby Book/test.txt>

The #inspect method, as a Ruby convention, is
expected to return a human-readable String represent-
ing the object. The Ruby method #p expects all
objects to respond to this method call.

#inspect 1s also the method that irb uses to display the
results of evaluating a line. Consider implementing
#inspect in any classes that you will create. Doing so
enables you to more easily inspect your classes from
within irb, which anyone using your code will cer-
tainly appreciate.

Ruby-Style Polymorphisms
(“Duck Typing”)

def second_item(obj)

return obj[1] if obj.respond to? :[]
end

The Pragmatic Programmers have introduced the
Ruby community to a style of programming called
duck typing. In this way of looking at an object’s type,
to borrow from a colloquialism—"1If it looks like a
duck and walks like a duck, it is a duck.” So rather
than ask, “Is this object an instance of Foo class?” we
ask, “Does this object respond to #foo method?”

For example, let’s say that I want to write a method
called #second_item. This method would be designed
with things like Arrays in mind: simply retrieving posi-
tion [1] from the Array and returning it. It could be
written this way:

51

52

CHAPTER 4 Working with Objects

def second(obj)
return obj[1] if obj.kind_of? Array
end

But if I apply the principle of duck typing—illustrated
in the code snippet earlier in this section—I can get
support for any class that implements the #[] method.
So now, using the snippet of code from earlier, I can
even #second_item a String:

mystring = ‘Hello World!’

second_item mystring
#=> 101 # the ASCII code for ‘e’

But this philosophy has its problems, too. For instance,
is #second_item meaningful when called on a Hash? Hash
certainly responds to the #[]1 method call, but because
instances of Hash are not ordered, looking up a hash key
named “[1]” does not have any ordered significance.

Comparing Objects

#=> true
== b.object_id #=> false

.object_id == b.object_id
#=> true

It is important to differentiate between two difterent
types of specific equality in Ruby: that which is of
equal value and that which has an equal identity.

Serializing Objects

For instance, two objects have equal value if their stored
values are equal. In the first case provided, the Fixnum
class implements a #== method, which compares the
values of self (the stored numerical value). However,
we can also talk about whether two objects are actual-
ly the same object inside the Ruby VM. For example,
in the second case provided, their object IDs are equal.

A quick side note: The #=== method (not to be con-
fused with #==) is generally used by classes to tell you
whether two objects are instances of the same class.
However, many classes override this method to provide
special meaning for #===. For comparing class mem-
bership, use the #kind_of? method.

Serializing Objects
h ={ “a” => 123 }

Marshal.dump h

#=> “\004\b{\006\°\006ai\001{"
Marshal.load “\004\b{\006\”\006ai\001{“ =>
{“a”=>123}

This example code converts a Ruby object in to a
String representation of its internal state. The same
String representation can be parsed by Marshal#load to
obtain the original object.

Objects can be converted to Strings for long-term
storage. Between minor releases of Ruby, the storage
format does not change.You can use this mechanism
to store the state of your Ruby programs to files, or
even to send them over IO streams to other Ruby
programs of the same major version. DR B, included in

53

54

CHAPTER 4 Working with Objects

the Standard Library, uses this feature to allow inter-
Ruby script communication over sockets.

Duplication

= Hash.new
= a.dup
.object_id

#=> -605558818
.object_id
#=> -605579038

You can use #dup and #clone to duplicate objects. The
difference between the two is this: #clone copies the
state of the object in the VM to a new memory loca-
tion; #dup generally attempts to use the class’s own
#initialize method.

Notice that the internal state of the object can refer to
other objects in the VM. If so, those references still
refer to the same objects—even though they were
copied. For instance, consider a Hash of Hashes:

a = ‘foo’
b ={ ‘bar’ => ‘baz’ }
#=> {“bar”’=>"baz"}
c=4{a, b}
#=> {“foo”=>{"bar”=>"baz”}}

d = c.dup
#=> {“foo”=>{“bar”=>"baz”}}

it didn’t duplicate the nested Hash
d[a].object_id

=> -739733318

b.object_id

=> -739733318

Protecting an Object Instance

This happens because we are not making a deep copy.
To implement a deep copy, you can use the “Marshal
copy trick”:

a = ‘foo’
b ={ ‘bar’ => ‘baz’ }
#=> {“bar”=>"baz”}
c={a, b}
#=> {“foo”=>{“bar”’=>"baz”}}

d = Marshal.load(Marshal.dump(c))
#=> {“foo”=>{"bar”’=>"baz”}}

this time they nested Hashes are in separate
memory
d[a].object_id
#=> -739819088
b.object_id
#=> -739733318

See the chapter “Working with Collections” for exam-
ples of recursive algorithms which can be used to per-
form deep copies.

Protecting an Object Instance

a = Hash.new
a.freeze

a[‘Foo’] = ‘Bar’ # error

You can freeze an object, to prevent it from being
manipulated, by using the #freeze instance method.
This is useful when you want to encourage clients of’
your class to #dup or #clone your object before work-
ing with it.

This code produces the following output:

TypeError: can’t modify frozen hash

55

56

CHAPTER 4 Working with Objects

Note, however, that frozen objects can be reclaimed by
the garbage collector (such as when they fall out of
scope).

Garbage Collecting

GC.start

Using the previous code causes the garbage collector
to be invoked manually. You might use this code when
you’ve just finished processing a very large data set and
you know that now would be a good time to flush all
information that has fallen out of scope.

Note that Ruby will block (pause execution of scripts)
while the garbage collector is being run. To prevent
this from accidentally happening in the middle of
some critical stream-processing code, you can turn off
the GC temporarily:

GC.disable

The garbage-collection system in Ruby is mostly out-
of-sight, out-of-mind. And really, that’s a good thing. It
does a pretty good job and generally stays out of your
way. But it might be interesting to know what’s going
on behind-the-scenes. Let’s take a look at the
ObjectSpace module.

You can use ObjectSpace to iterate over every item
currently in the Ruby VM:

ObjectSpace.each_object {|x| p x }

However, you might want to limit it to only objects
that are instances of a certain class or module:

show all open files
ObjectSpace.each_object(File) {|x| p x }

Using Symbols

You might also want to know when an object is being
garbage-collected. ObjectSpace provides a handy way of
attaching a method that will be executed when an
object is deleted:
begin

a={}

ObjectSpace.define_finalizer(a,

proc {puts “Deleted Hash”})
end

This code produces the following output when the
object is GC'd:
Deleted Hash

Using Symbols

method(: foobar) .call()

‘What does this statement mean? Read literally, one
could say, “Look up the method foobar() and call it.”
Except for the overhead of calling two additional
methods, this is exactly equivalent to this:

foobar()

Of all the topics in Ruby, the topic of Symbols is per-
haps the most difficult to grasp. (To the programmer
who is coming from Lisp or Smalltalk, you can think
of Symbols as “symbols” or “atoms,” respectively.) The
most important thing to remember is that a Symbol is a
unique name, contains only its own name, and always
contains its own name.

It’s popular to respond to queries about symbols by
saying “Symbols are just immutable strings.” But this
analogy really doesn’t hold. Perhaps the best way to

57

58

CHAPTER 4 Working with Objects

explain a Symbo1 is to cut around the analogies and go
straight to the technical issue.

As you already know, function names in Ruby must be
unique in the context in which they are called; other-
wise, how will Ruby know which method to call? So
why not simply call a method by a String that the
programmer can personally verify is unique? Well,
Ruby enables you to do that if you want:

method(‘foobar’).call()

Notice that this is very similar to the first code snippet in
this subsection. This is primarily because it has become a
convention to automatically convert String parameters to
Symbols inside methods that expect Symbols.

This need for uniqueness is the real reason Symbols are
used in Ruby (or any other language) and is motivated
by the way programming languages store information
about the local context. When you call the method
foo(), Ruby checks a hash table of all the methods
that you (and Ruby) have defined. Because no two
hashes of any word are ever equal, this ensures that each
unique method name has a unique position in this hash
table. Almost all programming languages use a hash to
optimize lookup of methods and variables. In Ruby’s
case, a Symbol is a precomputed hash. That is, a Symbol
is computed into its equivalent hash value at parse
time. If you were to use Strings to refer to internal
objects, Ruby would have to compute the hash value
of that String every time it encountered it during the
execution of your program.

Anywhere the literal :my_symbol appears in your code,
it refers immediately to the point in the hash table
where any variable or method named my_symbo1 must
be stored. This brings up another point: In the same

Using Symbols

way that 1 == 1 and 256 == 256, the symbol :foo ==
:foo. :foo always computes to the same hash value;
therefore, it has exactly the same value everywhere.

This property can be used throughout Ruby to speed
things up a bit. This benchmark demonstrates the over-
head of having to compute the String hash each time
that a method expecting a Symbol receives one.

require ‘benchmark’

def foobar
pass
end

n = 500000

Benchmark.bmbm do |bench|
bench.report(‘Symbol1’) do
n.times { method(:foobar).call() }
end
bench.report(‘String’) do
n.times { method(‘foobar’).call() }
end
end

This code produces the following output:

Rehearsal
Symbol 1.020000 0.090000 1.110000 (1.134434)
String 1.280000 0.080000 1.360000 (1.392788)
————————————————— total: 2.470000sec

user system total real
Symbol 1.040000 0.070000 1.110000 (1.133537)
String 1.270000 0.100000 1.370000 (1.401934)

Remember, it’s convention to allow programmers to
also use a String anywhere they use a Symbol, so be

59

60

CHAPTER 4 Working with Objects

sure to take this into account when writing your own
methods. As an example, this is a (simple) version of
the built-in attr_reader() function. It accepts a Symbol
just like the built-in method.

class Module

Classes mix-in the Module class, so adding
it here

makes it available everywhere. We take

the Symbol or

String provided and add a @ to the

front to allow us

reference the instance

variable.

def my_attr_reader sym
define_method(sym) do
instance_variable_get(‘@" + sym.to_s)
end
end
end

class Foobar
def initialize n

@inst_var = n
end

my_attr_reader :inst_var
end

a = Foobar.new ‘baz’
puts a.inst_var

This code produces the following output:

baz

Working with
Pipes

A quick review for those who don’t swim in *nix
operating systems or aren’t familiar with pipes from
other programming experience:

Every program has three basic file descriptors: 0, 1, and
2.These file descriptors have been traditionally named
STDIN, STDOUT, and STDERR, respectively—commonly
referred to as pipes. Most programs output any kind of
error message to STDERR. In addition, any sort of output
that you might want to display, pipe to a file, or parse
is output to STDOUT. STDIN is used for either interactive
keyboard input or to receive input from another pro-
gram’s STDOUT. Here is an example of such a link
between programs using pipes; the link is created by
the use of the pipe (|) character in the shell:

ruby -e ‘puts “Hello World!”’ | awk ‘{print $1}’

This produces the following output:
Hello

62

CHAPTER 5 Working with Pipes

In this example, Ruby outputs its command-line
parameter to its STDOUT. The shell has linked the sTDOUT
of Ruby to the STDIN of awk. awk has been instructed
to print the first column of every line that it receives
on STDIN. awk’s output is not being directed to anoth-
er program, so it is output to the screen.

In Ruby, when we use Kernel#puts or Kernel#print,
we are sending output to STDOUT by default. If we want
to output to STDERR, all we need to do is use
STDERR.puts or STDERR.print. For example:

DEBUG = true

...

STDERR.puts ‘An event of some kind has occurred.’ if
DEBUG

Determining Interactive
Standard Pipes

if STDIN.tty?
puts ‘Press RETURN to continue.’

STDIN.readline
end

It is important to know whether or not your program’s
input and output are interactive terminals. For
instance, if your program is designed to output progress
updates as it continues and STDOUT is interactive,
you may wish to output aesthetically pleasing periodic
updates of a given task’s completeness. Commonly,
programs will give their output in the form of a per-
centage followed by “/r” to return the cursor to the
beginning of the same line — repeatedly doing this
allows the program to continually provide updates
without causing the screen to scroll.

Synchronizing STDERR with STDOUT 63

Conversely, you may need to know whether or not
your program is receiving input on STDIN from a
user or from another program. For example, you may
wish to display a prompt if STDIN is interactive and
suppress the prompt if STDIN is a pipe from another
program.

In both cases, the above code can be used to deter-
mine whether or not the particular file handle is inter-
active. However, there are some cases which are trou-
blesome, such as programs started from a crontab. To
ensure absolute correctness, if you want to accept the
standard pipes explicitly, then consider implementing

[T3R]

the Unix convention: a “~” option to indicate a pipe in
place of what otherwise might have been a file argu-
ment.
if ARGV.delete ‘-’

accept STDIN
end

Synchronizing STDERR with
STDOUT

$stdout.sync = true

$stdin.sync = true

One of the many issues you will encounter while
working with Ruby as a system administrator is
obtaining meaningful debugging output. This can be
tricky if your program is also outputting information
to standard out. The reason this is tricky is, to increase
performance, output to both of these file descriptors is
performed asynchronously. That is, a bufter is used to
allow program execution to continue while output is
waiting to be placed on the screen.

64

CHAPTER 5 Working with Pipes

To make STDOUT and STDERR sync up, we need to write
to them synchronously. This is done by using the code
snippet at the beginning of this subsection. The per-
formance is much lower, but it gives us the meaningful
output we want.

As a high-performance alternative, if you don’t care
whether both your output and your error messages
appear on the same pipe, you could use a clever over-
ride to catch any calls to $stderr and redirect them to
STDOUT.

$stderr.reopen $stdout

Note that this is not equivalent to using shell redirec-
tion. By the time output reaches the shell, it has
already passed through a buffer.

Capturing the Output of a Child
Process

input = I0.popen ‘echo hello’,
input.gets

r

#=> “hello”

The above code simply opens a child process and cap-
tures its STDOUT. When we call TI0#gets, the last line
of output is returned. Beware that buffering can be at
play here too. For instance, you may find that you need
to call either I0#close_write or I0#close_read in order
to cause the respective bufters to be flushed. Otherwise,
your program may block waiting for input, forever.

Implementing a Progress Bar

Implementing a Progress Bar

A simulated file copy thread with periodic updates
file_copy = Thread.new do
Thread.current[‘progress’] = 0.0
100.times do
Thread.current[‘progress’] += 0.01;
sleep 0.2
end
end

until (percent =
Kernel.sleep 0.
print ‘[*
print ‘#’ * (10 * percent).floor
print ‘=" * (10 * (1.0 - percent)).ceil
print “] %-5.1f%%\r” % [percent * 100]

end

puts

file_copy[‘progress’]) >= 1.0
1

The STDOUT or STDERR of a subprocess (such as a copy or
dd command) can output information about its
progress. In the above example, I simulate capturing
such output and storing it in a thread shared variable
called progress. I use that status and implement a
wrapper that displays a progress bar.

Drawing the progress bar is just a matter of doing a lit-
tle math and using the * operator to multiply the #
and = characters. It should look something like this:

[#f#i========] 26.0 %

On your system, you may find that the progress bar does
not immediately render each update. To fix that use:

STDOUT . sync

This is so that the progress bar is immediately rendered
at each update. to the screen—otherwise, our program
will appear stuck.

65

66

CHAPTER 5 Working with Pipes

Creating a Secured Password
Prompt

system ‘stty -echo’
#...

system ‘stty echo’

The stty magic that was used in the earlier example
has the same effect when we're trying to write a
secured password prompt. Here I take the example
from Chapter 2 “Working with Strings” and imple-
ment a password changer:

begin

system ‘stty -echo’
print “New password: *“
pl = gets
print “\nReenter password:
p2 = gets
puts
if pl == p2 :
generate a random salt
salting_chars = (‘A’..’Z’).to_a +
(‘a’..’z’).to_a + [“.”, /]
salt = salting_chars[rand(54)] +
salting_chars[rand(54)]
pl.crypt salt
do something with your new password

else
puts ‘Passwords do not match.’
end

make sure the terminal reenters a usable state
ensure

system ‘stty echo’
end

Creating a Secured Password Prompt

This works because terminals are attached to virtual
TTYs, which implement interpretation of foct1 codes.
The stty command activates those modes.

It’s actually possible to manipulate ioct1 directly from
inside Ruby for very specialized cases. However, it’s
somewhat complicated, uglier than even C code, and
also very platform specific. If you are interested in
exploring this, take a look at your joctls.h and
terminos.h from your OS programming manual. Then
the problem looks something like this:

orig_devmask = "\0" * 256

read terminal mask
STDIN.joct1 0x00005405, orig_devmask

devmask = orig_devmask.unpack 'C4 S'
devmask[4] &= ~0x00000008 # disable echo

devmask = devmask.pack 'C4 S'

write terminal mask
STDIN.joct1l 0x00005407, devmask

capture the password here

restore original mask
STDIN.joct1 0x00005407, orig_devmask

Yeah, ugly.

67

This page intentionally left blank

6
Working with Files

In many ways, this chapter is closely related to the
previous chapter, “Working with Pipes”. The principals
are the same because both are implemented as children
of the 10 class.

Indeed, in Unix, the distinction between 1O devices
and “files” is significantly blurred. For instance,
/dev/random is a “file” in the sense that it has a name
and path. But it’s also a direct way to “read” the ran-
dom numbers generator in to any program that accepts
files as input.

In Ruby, all 10 objects have basic input and output
support, depending on which file mode the object was
opened with.

Opening and Closing Files

Certainly, one of the tried-and-true conventions in
Ruby is using code blocks to ensure that resources are
automatically closed.
File.open(‘foobar’, ‘w’) do |[file]

file.puts ‘Hello World’
end

70

CHAPTER 6 Working with Files

In the block form—even if there’s an event that causes
immediate exiting of the program—the file will always
be closed properly. This is true when you are doing
any form of reading or writing.

You can close a file at any time with File#close. If you
are going to close the file conditionally, you might
want to insert File#closed? checks throughout your
code to avoid running into an IOError exception.

begin
f = File.open “foobar”, “w+”
if true :
f.close
end
... some time later ...

unless f.closed?

f.rewind
puts f.gets
...
end
ensure
f.close unless f.closed?
end

Searching and Seeking Large
File Contents

File.open ‘public_html/index.html’, ‘r’ do |file|
file.each do |1ine|
p $~ if line.match /Jason/i

end
end

Searching and Seeking Large File Contents

The above code is a quick and effective way to search
a file. When you are dealing with large files, we want
to avoid loading a single large, multiline String in to
memory. Using the I0#gets methods that you are
already familiar with, you can open and read file con-
tents one line at a time, searching the contents as you
go, such as the method shown above.

However, you can also give #each a parameter that
indicates the record separator. For instance, you could
split on \n\n, which would yield paragraphs instead of
lines.

You could also walk though a file a byte at a time. This
is handy in files that have no line feeds or concept of a
“record separator.” I often run into these kinds of files
when working with XML (such as that used in SVG);
if you don'’t particularly want to load up a full XML
parser, you can instead get some context for the occur-
rence of your search term.

In this code sample below, I walk through the file 1KB
at a time, displaying 80 characters of context for any
match.

It works like this: For each chunk read in, I check
whether the search String is present. If it is, I calculate
the position of the match relative to the entire file and
then seck to 40 characters earlier in the file and read
forward 80 characters (plus some more for the size of
the search String). I then #puts the data read in and set
the file position to the character immediately follow-
ing the match.

If I don’t find the search parameter in the chunk, I skip
forward 1KB, but I'm sure to decrease that by the size
of the search parameter. This is to avoid missing any
occurrences that fall on the edge of a 1KB boundary.

71

72

CHAPTER 6 Working with Files

search = “foo”
File.open(‘rubbish.svg’, ‘r’) do |file|
while chunk = file.read 1024 if pos =
chunk.index(search)
pos = file.pos - (1024 - pos)
file.seek((pos - 40), IO::SEEK_SET)
puts file.read(80 + search.size)
file.seek((pos + search.size), IO::SEEK_SET)
else
file.seek(-search.size, I0::SEEK_CUR)
end
end
end

Finally, you might want to walk through a file in groups
of bytes. You would do this on general binary data,
where the contents aren’t necessarily text at all. For
instance, you might want to read the last N bytes of
information from a file to access metadata information.
Let’s make up a metadata format: a 120-byte section
that 1s appended to a file; it has five 24-byte fields.
File.open(‘mydata.bin’, ‘r’) do |file]|
file.seek(-120, IO::SEEK_END) while chunk =
file.read(24) # examine chunk for data
end
end

In practice, though, it would be easier to just read in
all 120 bytes at once and then #sp1it the resulting
String.

When to Use Binary Mode (Win32)

When to Use Binary Mode
(Win32)

File.open ‘test.txt’, ‘r’ do |f|
p f.gets
end

File.open ‘test.txt’, ‘rb’ do |f|
p f.gets
end

on Linux Ruby 1.8.4 produces:
“Hello world!\r\n”
“Hello world!\r\n”

on Windows Ruby 1.8.4 produces
“Hello World!\n”
“Hello world!\r\n”

Our friends from the Windows world need to pay spe-
cial attention to this section (although it wouldn’t hurt
for Unix users to pay attention as b is ignored on those
platforms).

The b option, which may be passed to File.open,
allows special processing of line endings on the
Windows platform. As I mention in Chapter 2
“Working with Strings,” lines end in \n on *nix, and
lines end in \r\n on Windows.

In Windows, Ruby transparently converts any line
endings that it finds to the \n form.This can be trou-
blesome for applications on Windows that expect \r\n
to be there. By reading and writing files in b binary
mode, you ensure that the Windows-specific line end-
ings are maintained.

73

74

CHAPTER 6 Working with Files

Obtaining an Exclusive Lock

File.open ‘/tmp/myscript-lock’,
File: :CREAT|File::TRUNC|File: :WRONLY do |Tockfile]|
if lockfile.flock(File::LOCK_EX|File::LOCK_NB) ==

0
do stuff
end
end

The code at #do stuff works only if an exclusive lock
(“cooperative lock™) on the file can be obtained. This
is a convenient way to create a Ruby daemon that can
run periodically to perform maintenance and adminis-
trative tasks. If the periodic program executor (cron in
UNIX-like, scheduler in Win32) tries to start another
instance of this script while a previous copy is
running, it simply exits. If this script aborts or crashes
for any reason, the OS’s kernel removes the lock auto-
matically.

Copying, Moving, and Deleting
Files

create directory
mkdir(directory, options)

remove directory
rmdir(directory, options)

copy file, copy directory recursively
cp(source, destination, options)
cp_r(source, destination, options)

move file
mv(source, destination, options)

remove file, recursively, or recursively with

Copying, Moving, and Deleting Files 75

force
rm(list, options)

rm_r(1list, options)
rm_rf(list, options)

You can perform file operations within Ruby using
the FileUtils module. This module enables you to do
most file operations without calling an external pro-
gram. It has the added benefit of providing some
meaningful error processing. You can do each of these
file operations relative to the current directory. To find
out what the current directory is, use FileUtils.pwd; to
change the directory, use FileUtils.cd.

The options parameter to these methods is a Hash that
is expected to have one or more of the following keys:

:force # force overwrite; suppress error on rm
:noop # don't actually do anything, just

pretend

ipreserve # preserve permissions

:verbose # display information about what is being
done

As an alternative you can “include FileUtils::Verbose”
when you're trying to debug, and then remove the
“::Verbose” when you're ready to go into production,
as opposed to putting :verbose in every call.

For example, here’s a method I might have used used a
lot while writing this book:
FileUtils.cp_r ‘Book’, ‘Book Backup’, :force => true

If you are on *nix, you'll find a lot of other helpful

5. G

methods in FileUtils. See Ruby’s “ri FileUtils” for
documentation on those methods.

This page intentionally left blank

7
Manipulating Text

Of all the things Ruby does, it manipulates text the
best. And why shouldn’t it? It’s great at working with
pipes and gluing stuff together. The following code
snippets give some good examples of places where text
manipulation is critical for system administration.

Parsing an LDIF

current_entry = {}
all_entries = []
file = File.open ‘test.ldif’

file.each_line do |1ine|
if 1ine[0,1] == * * or 1ine[0,1] == “\t”
current_entry[$1] += line.chomp[l..-1]
else
/C+): (.+)/ =~ line
if ($1 == nil and $2 == nil)
all_entries.push current_entry.dup unless
current_entry == {}
current_entry = {}
else
current_entry[$1] = $2
end
end
end

p all_entries

78

CHAPTER 7 Manipulating Text

LDIF is a plain-text file format used to store informa-
tion about an LDAP tree. LDIF is particularly frustrating
to parse because of a feature that allows a continuation
of the current line of syntax on the next line, but only if
the following line starts with a space or a tab.

This example takes test.1dif and generates an Array
of Hashes. Each Hash represents an LDIF entry. LDIF
files generally look something like this:

dn: footastic

test: something
foobar: Tine continuation with a

tab
foobaz: Tine continuation with a
space
dn: baztar

test: something2

baztar: Tine continuation with a
tab

baztag: Tine continuation with a
space

Parsing a Simple Config File

require ‘pp’

config = {}
config[“globals”] = {}
insert_point = “globals”
while gets do
if $_.match /\[C.+?2)\1/
insert_point = $1
config[insert_point] = {}
elsif $_.match /(.+?)=(C.+)/
config[insert_point][$1.strip] = $2.strip
end
end

pp config

Interpolating One Text File into Another

This code produces the following output:

{“stanzal”=>{“stanzal var”’=>"boo”},
“stanza2”=>{"“stanza2 var”=>"baz”},
“globals”=>{“a global var”=>"foobar”}}

A popular format for config files is to have key =
value pairs in a file, one per line, sometimes even with
[stanzas]. The previous code implements a simple
parser for that format using the Regexp engine to
determine syntax in the input file.

Here is the config file that was input:

a global var = foobar

[stanzall

stanzal var = boo

[stanza2]
stanza2 var = baz

Interpolating One Text File into
Another

config = {‘a global var’ => ‘foobar’}

str = File.read(‘template.txt’)

config.keys.each do |key|

str.gsub! “%#{key}%”, config[key]
end

File.open(‘template.txt’, ‘w’) do |f|
f.write str
end

‘We can open a file and replace any %variablename%
occurrences based on the values that exist in a Hash
called config. Let’s look at this as an extension of the

79

80

CHAPTER 7 Manipulating Text

previous section; say that you had a template file that
looked like this:

This is some template text. One of the variables
collected from the file we parsed was called
“a global var” and it’s value was %a global var%.

This code will use the values stored in config and
replace %a global var% with the value “foobar”.

Sorting the Contents of a File

File.open ‘file.txt’, ‘w’ do |file|
file.write(

File.read(‘file.txt’).split(“\n”).sort.join)
end

Although this code is short and sweet, if you’d like to
sort by some other criteria, you can use the &lock
parameter to #sort to change the behavior. For
instance, to sort the file by the third text column in a
CSV, you would do this:
File.open ‘file.txt’, ‘w’ do |[file|

ary = File.read(‘file.txt’).split(*“\n”)

ary.sort! { |a,b| a.split(*,’)[2] <=>
b.split(*,’)[2] }

file.write(ary.join)
end

Processing a passwd File

Processing a passwd File

attr_accessor :user, :uid, :gid,
:fullname, :home, :shell
def initialize(user, uid, gid, fullname,
home, shell)
@user, @uid, @gid, @fullname, @home, @shell =
user, uid, gid, fullname, home, shell
end
def passwd_entry
[@user,@uid,@gid,
@ful1name,@home,@shell1].join ':'
end
end

ary = []

File.open(‘/etc/passwd’, ‘r’) do |file]|
file.each do |1ine|
tmp = Tine.chomp.split(‘:’).delete_at 1
ary.push PasswdAccount.new(*tmp)
end

end

This snippet reads this information into your Ruby
program with the help of a simple String split. In *nix
operating systems, the user account information is
stored in a globally readable database at /etc/passwd.
For you Windows users, the Apache web server’s
htpasswd system uses the same format.

To update an account, you can simply walk to the line
you want to replace and write this:

ary[0] .passwd_entry
#=> “root:0:0:root:/root:/bin/bash”

81

This page intentionally left blank

3

Ruby One-Liners

You might be asking yourself, “Why one-liners?” To
the bearded UNIX guru, it is obvious that each of
these examples can be accomplished (and perhaps
improved) with simple bash, grep, sed, or awk com-
mands. However, the motivation for this section is
twofold: Our readers from the Windows world will
find that those programs aren’t available for their plat-
form unless they install something like Cygwin. In addi-
tion, most of us mere mortals cannot remember all the
semantics for several programming languages 100% of
the time. For the programmer and system administra-
tor who swim in Ruby most of the time, it is nice to
be able to use knowledge you already have to solve
everyday issues. Besides, one-liners are fun!

In Chapter 5, “Working with Pipes,” I demonstrated
that anything that outputs to STDOUT can be used in
a pipe chain. Any of the following examples that take a
filename parameter can also be used in a pipe chain.

Note: If you have trouble getting these examples to

work on your operating system, try inverting the
3

quotes (change “to ‘ and vice versa).

84

CHAPTER 8 Ruby One-Liners

Simple Search

ruby -n -e ‘print “LINE #{$.3}: #{$_}” if /Jason/i’\

public_html/index.html

This is an example of searching an HTML file for
occurrences of a particular string and outputting a
LINE #: prefix as well as the matching line.

Notice that I used //i to set the search to non-case-
sensitive.

This code produces the following output:

LINE 7: <title>mail.jasoncTlinton.com</title>
LINE 11: <h2>About mail.jasonclinton.com</h2>
LINE 15: <p>If you need to contact this server’s ...

Counting Lines in a File

ruby -n -e ‘END { p $. }’ public_html/index.html

You can do this one in many ways, but this method is
the smallest. This works because $. records the number
of lines read in. And END {} is always executed before a
script exits. This particular code, when run on the file I
use later in the chapter “Processing XML”, produces a
value of 19.

Head or Tail of a File

ruby -p -e ‘exit 0 if $. > 3’ public_html/index.html

head (show the first N lines of a file) is rather simple. It
produces the following output:

<?xm1 version="1.0"7>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0

MD5 or SHA1 Hash

“http://www.w3.0org/TR/xhtm11/DTD/xhtml1l-transi-
tional.dtd”>

But tail is a bit more nasty. There’s no easy way to
walk backward through a file from the end. The shortest
thing to do is to read the whole file, keeping only the
last N lines. This version shows only the last five lines:
ruby -e 'a=[]; while gets; a.push $_; \

a.shift if $.> 5; end; a.each{|e| print e}' \
public_html/index.html

This code produces the following output:

<p>If you need to contact this server’s ...

</body>
</html>
(blank line)However, a much better and faster imple-
mentation uses the operating system’s file-seek meth-
ods to intelligently jump to the end of the file. It can
be found in the experimental module called file-tail
available in the Ruby Application Archives. Here is a sam-
ple of using this module:
require ‘file/tail’
...
File::Tail::Logfile.open (‘public_html/index.html1’)
do |file]

file.rewind(5).tail { |1line| puts Tline }
end

MD5 or SHA1 Hash

ruby -0777 -n -r md5 -e ‘puts MD5.new($_).\

hexdigest’ public_html/index.html

This code produces the following output:
879d890e2c45582ae0bdb5d2749351a4

85

86

CHAPTER 8 Ruby One-Liners

MDS5 is becoming less common, but many websites still
use it to verify that you downloaded a file correctly.

However, it’s not very secure these days . Some people
are moving to SHAT:

ruby -0777 -n -r shal -e ‘puts\
SHA1.new($_) .hexdigest’ public_html/index.htm]l

This code produces the following output:
18c9b79fc87cec2596b1a608dd6e3b3680615f2a

Also, watch out: This command reads the entire file
into RAM to calculate the hash (not particularly
handy when hashing ISOs). If you want to avoid this
caveat, check out the “Encrypting a String” subsection
in Chapter 2 “Working with Strings”.

But if you're looking for something really secure, you
should be using some kind of public-key cryptography
(such as GnuPG or PGP).

Simple HTTP Fetch

ruby -rnet/http -e 'Net::HTTP.new\

("mail.jasonclinton.com").request_get\
("/index.htm1") {|r| r.read_body { |s| print s } }'

Imagine that you didn’t have something like wget avail-
able. This version is a bit longer than it could be, but it
enables you to download very large files because it
saves the results in chunks and prints the fetched file to
STDOUT. You can save it to a file using a Ruby method
or just use the shell > operator to save it to a file:

ruby -rnet/http -e 'Net::HTTP.new\
("mail.jasonclinton.com™).request_get\
("/index.htm1") {|r| r.read_body{ |s| print s } }' \
> index.html

Escaping HTML 87

Simple TCP Connect

The previous command helps if you want to see
whether a socket 1s open on a host—"TIs there a web
server running?” I primarily use the telnet command
for this, but sometimes I find myself on a system that
doesn’t have it (such as some web hosts where I don’t
have administrator rights).

You can also embed this command in a shell script to
test for a remote service state. If the remote service is
not up, it throws an unhandled exception, which
results in a nonzero return value (making it “false”).

Escaping HTML

ruby -0777 -n -rcgi -e ‘print CGI.escapeHTML($_)’\

public_html/index.html

This command escapes an HTML example so you can
put it on a web page without affecting the layout (that
is, it appears as plain text). This is also good to keep in
mind when working with user-submitted content on
your website.

This code produces the following output:

&1t;h2>About jasonclinton.com&lIt;/h2>

88

CHAPTER 8 Ruby One-Liners

Deleting Empty Directories

ruby -rfileutils -rfind -e 'a=[]; Find.find(".") \

{|p| a.push p }; a.sort.reverse.each \
{ |d|FileUtils.rmdir d rescue Errno::ENOTEMPTY }'

This command deletes every empty directory below
the current working directory, recursively. I frequently
use this one on my Music directory.

Hint: The sort.reverse is there to delete the deepest
empty directories first. Since the file system will not
allow us to delete non-empty directories, deleting the
deepest directories first is required.

Adding Users from a Text File

ruby -ne 'system(''useradd -m #{$1} -g \
#{$3} -G #{$4}") and p("#{$1}:#{$2}") if \

JCAENEGNEC*)N\EC*) /" inputfile.txt | chpasswd

Given a file inputfile.txt of the following format:

usernamel passwordl prigrp auxgrpl,auxgrp2
username2 password2 prigrp auxgrpl,auxgrp2

You can merge this file into your *nix passwd database
and create home directories by invoking this one-liner.

Delete All the Files Just Extracted 89

Delete All the Files Just
Extracted

tar vtzf foobar.tar.gz | ruby -rfileutils -e 'a=[];

\

a.push $_.split[5] while gets; a.reverse.each \
{ |f| FileUtils.rm_r f }'

The convention for tarballs on UNIX-like systems is
to store all the files inside a directory of the same
name as the tarball:

jclinton@linux:~> tar -tvzf foobar.tar.gz
drwxrwxrwx 1000/1000 0 2005-11-27 16:11:51 foo-
bar/

-rwxr-xr-x 1000/1000 1024 2005-11-27 12:00:00 foo
-rw-r-xr-x 1000/1000 1024 2005-11-27 12:00:00 bar

Occasionally, someone forgets that they’re supposed to
do this and stores the entire archive contents at the top
level. If you extract this file into your home directory,
for instance, you've suddenly got a mess on your
hands. The previous command is a short one-liner to
delete everything you just extracted; you could just as
easily (and perhaps more safely) replace rm_r with mv to
move it to a new directory.

Notice the t option from tar. This outputs the file list
instead of extracting it. Again, I use #reverse to do the
deepest files first.

This page intentionally left blank

9
Processing XML

Among the topics that a programmer will almost cer-
tainly encounter, XML is near the top of the list. AJAX
has been a key player in bringing awareness of XML
(Extensible Markup Language) to the web develop-
ment industry. With the rabid popularity of Ruby on
Rails, web developers increasingly need Ruby’s support
of XML to drive their AJAX user interfaces. In this
chapter I'll look at the ways you can use some standard
libraries to manipulate XML data.

For this section, I rely on REXML, which is currently
the most popular XML library for Ruby. However, at
the time of this writing, bindings to libxml2 called
libxml-ruby are under development. By the time you
read this, you may find that those bindings are mature
enough for production use—check the RAA
(http://raa.ruby-lang.org/).

http://raa.ruby-lang.org/

92

CHAPTER 9 Processing XML

For the rest of this section, I use the following example
XML file for demonstration purposes (notice that it’s
also XHTML):

<?xm1 version="1.0"7>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtm11/DTD/xhtml1-transi\
tional.dtd">
<htm1 xmTns="http://www.w3.0rg/1999/xhtm1">
<head>
<title>mail.jasonclinton.com</title>
</head>
<body>
<h2>About mail.jasonclinton.com</h2>
<p>This server is host to a number of
projects, all of which are not publicly
accessible. Perhaps one day I will make
myself a nice home page on the web.</p>
<p>If you need to contact this server's
administrator, just email
<a href="mailto:root@jasonclinton.com"
>root@jasonclinton.com.</p>
</body>
</html>

Opening an XML File

require 'rexml/document’
file = File.open 'index.xhtml'

myxml = REXML::Document.new file

When using REXML, the file is parsed when loading.
In the preceding code sample, myxm1 now contains a
REXML: :Document object for which parsing has been
completed.

Accessing an Element (Node)

‘We can use REXML: :Node#to_s (a superclass of
REXML: :Document) to get back a printout of the XML in
the object:

puts myxml

Using the preceding puts statement creates the follow-
ing—abbreviated for space—output:

<?xm1 version="1.0"'?>

<!DOCTYPE html PUBLIC "-//W3C//DTD ...
<html xmlns="http://www.w3.0rg/1999/xhtml"'>
<head>

<title>mail.jasonclinton.com</title>

Accessing an Element (Node)

myxm1 . root
#=> <html xmlns="http://www.w3.0rg/1999/

xhtml'> ... </>

As shown in the preceding code sample, myxm1 has only
one child, the root of the parse tree. You can also
access the children of any node by using the elements
member:

myxml.elements.each { |elem| puts elem.name }
When evaluated, the preceding statement produces on
STDOUT

html

Beneath the root, lies the rest of the parse tree:

myxml.root.elements.each { |elem| puts elem.name }

93

94

CHAPTER 9 Processing XML

The use of elements here is one level lower than the
earlier example. This lower level produces

head
body

After you have your REXML: :Document object (such as
one returned by the code in the section “Opening an
XML File,” earlier in the chapter), you can access the
elements a number of ways. I access the root of the
parse tree, <html> in this case, using #root.You can also
access an Elements object, which contains access to all
children of the element. In the previous example I
showed this by accessing the root element and then
iterating over its children with #elements#each.

Note that REXML: :Document is a special version of an
Element; it behaves like a Parent but does not have
attributes like an Element. So, you can access its chil-
dren but not any siblings or its parent (as should be
expected).

Elements can be accessed by XPath, yielding all ele-
ments that match the path:

myxm1.each_element("htm1/body/p') { |elem| puts elem
}

The evaluation of #each_element’s block produces the
following output due to the presence of two para-
graphs (p) in the index.xhtml document:

<p>This server is host to a number of projects ..
<p>If you need to contact this server's admin ..

Getting a List of Attributes

Or, you can single out the element by its order (such
as I show here using the [2]):

myxml.elements["html/body/p[2]/a']
#=> ..

The most powerful feature for finding a node is the
XPath support shown in the preceding example. For
those new to XML, XPath is a specification for point-
ing to a location in an XML tree. For instance,
htm1/body/p points to any paragraphs (<p>) in the
<body> of my example file.

You can also use the XPath support to access the first
element that matches. In the previous example, I
specifically ask for the second paragraph by using a
[2]. If there were more than one <a> in that paragraph,
only the first would return.

Getting a List of Attributes

myxml.elements['//a'].attributes.each do |attr, val|
p attr, val

end

Evaluating the preceding code block with the XPath
set to //a produces

"href"
"mailto:root@jasonclinton.com"

The method REXML: :Element#attributes returns an
Attributes object, which has a number of helpful
methods we can use. To obtain a complete list of all
attributes of the element, we can use the #each
method. In the preceding example, for instance, I can
access all the <a>s in the document.

95

CHAPTER 9 Processing XML

We can also access a specific attribute such as a Hash
(Attributes is a subclass of Hash):

myxml.elements['//a'].attributes['href']
#=> "mailto:root@jasonclinton.com"

Finally, you can also access the text values (the stuff’
between <tag> .. </tag>) of an Element:

myxml.elements['//a'].text
#=> root@jasonclinton.com

Adding an Element

myxml.elements["html/body'].add_element 'p'
#=> <p/>

In XML, if the schema allows it, any node can be a
parent node. For instance, <body> is a node in my
example document. I can add a new <p> node to it as
in the preceding code.

In addition to simply adding a new element, the
#add_element method can also set attributes as it is cre-
ating the element. To do so, pass a block to the
#add_element method.

myxm1.elements["html/body'].\
add_element('p', {'id'=>"thanks'}).\
text = 'Thank you for visiting!'

Note that I also changed the enclosed text. This pro-
duces the following:

Changing an Element’s Enclosed Text

<?xm1 version="1.0"'?><!DOCTYPE html PUBLIC "-
//W3C//DTD

<html xmlns="http://www.w3.0rg/1999/xhtml"'>
<head>

<title>mail.jasonclinton.com</title>

</head>

<body>

<h2>About mail.jasonclinton.com</h2>

<p>This server is host to a number of projects ...
<p>If you need to contact this server's admin ...
<p id="thanks'>Thank you for visiting!</p>
</body>

</html>

Changing an Element’s
Enclosed Text

myxml.elements['html/body/p[3]'].add_text ' '
myxml .elements['html/body/p[3]'].add_element('a’,
{'href'=>"/"}).text = "Home'

myxml .elements['html/body/p[3]'].\
add_text ' Come again!'
print myxml.to_s

Again using an Xpath pointer, the preceding code
sample produces an REXML object containing the
following text:

<p id="thanks'>Thank you for visiting!
Home Come again!</p>

The preceding code could be executed on the node
added in the previous section “Adding an Element.”

97

98

CHAPTER 9 Processing XML

You can add more text, or elements, at any time by
using the #add_text and #add_element methods.

Deleting an Element

myxml.delete_element "html/body/p[2]/a’

is equivalent to

myxml.elements["html/body/p[2]'].delete_element 'a’

Either of the preceding statements results in the fol-
lowing output:

<p>If you need to contact this server's
administrator, just email .</p>

You can delete elements by using the XPath specifica-
tion for the node that you want to remove. There are
two ways to do this: from the REXML: :Document object
or from any ::Element object. Both ways use the
#delete_element method.

The difference between the two forms is that Element
objects are limited to deleting only children of them-
selves.

Adding an Attribute

myxm1.elements["html/body/p[2]/a'].add_attribute(

'id', 'emaillink')

Escaping Characters for XML

Again, using the XPath specification to indicate the
point of interest produces the following output:

..:root@jasonclinton.com' id='emaillink'>root@jasonc..

As you can see, adding attributes to existing nodes is
simple.

Changing an Attribute

myxml.elements["html/body/p[2]/a'].\

attributes['id'] = 'somelink'

The preceding evaluates to the following #to_s repre-
sentation:

...:root@jasonclinton.com’
id="somelink'>root@jasonc...
Likewise, changing an attribute is just as easy.

Deleting an Attribute

myxm1.elements['html/body/p[2]/a'].\

delete_attribute 'id'

Evaluates to:

...:root@jasonclinton.com'>root@jasonc. ..

The preceding code should not be surprising given the
previous two examples; deleting is easy too.

99

100

CHAPTER 9 Processing XML

Escaping Characters for XML

require 'rexml/document’
myxm]l = REXML: :Document.new
myxml.add_element 'rootnode’

myxml.root.text = '<<illegal characters>>"'
puts myxml.to_s

Produces

<rootnode>&1t;&1t;illegal characters>>
</rootnode>

Escaped characters in XML are called entity references,
and they start with an ampersand (&) and end with a
semicolon (;). When using the REXML: :Document#write
and #to_s methods, REXML automatically replaces
any strings that must be escaped that it finds in text or
attribute values.

Transforming Using XSLT

require 'xml/xs1t'
xs1t = XML: :XSLT.new
xs1t.xml = "index.xhtml"

xslt.xs1 = "index.xs1"
print xslt.serve

REXML is just an XML parser and builder—it doesn’t
know anything about XSLT. To use XSLT, which itself
is a language stored in XML, you’ll need another tool.
One such tool is the ruby-xslt module. This module is
a binding to libxslt, a member of the same family as
libxml2 (which I discuss in Validating Your XML). Using
ruby-xslt, we can perform operations without using
any other modules.

Let’s say that I want to convert my XHTML file into
something more generic. XHTML is a large

Transforming Using XSLT

specification; perhaps I am only interested in having a
simple “document with paragraphs and links” XML
format.

Again, I use the sample XHTML file from the begin-
ning of this chapter. The code sample at the beginning
of this section makes use of the following sample
XSLT file:

<?xml version="1.0" 7>
<xs1:stylesheet
xmIns:xs1="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xs1:template match="/">
<xs1:element name="document">
<xs1:element name="title">
<xs1:value-of select="html/head/title"
/>

</xs1:element>

<xs1:element name="body">
<xs1:for-each select="html/body/p">
<paragraph>
<xsl:apply-templates />
</paragraph>
</xs1:for-each>
</xsT1:element>
</xsT1:element>
</xsT:template>
<xs1:template match="a">
<xsl:element name="Tink">
<xsT:apply-templates />
</xsT1:element>
</xsT:template>
</xsT:stylesheet>

Obviously, the preceding XSLT might as well be
Egyptian hieroglyphs to anyone not familiar with the

101

102

CHAPTER 9 Processing XML

XSLT language. If you are interested in learning XSLT,
consider checking out the W3C’s website for XSLT
(http://www.w3.0rg/TR/xs1t/).

The simple set of Ruby code at the beginning of the
section executes the actual XSLT processing. When
run, it produces the following (reformatted for read-

ability):

<?xml version="1.0"7>
<document>
<title>mail.jasonclinton.com</title>
<body>
<paragraph>This server is host to a number
of projects, all of which are not publicly
accessible. Perhaps one day I will make
myself a nice home page on the
web.</paragraph>

<paragraph>If you need to contact this
server's administrator, just email
<link>root@jasonclinton.com</Tink>.
</paragraph>
</body>
</document>

Validating Your XML

#!/usr/bin/ruby
require 'xml/Tibxml’'

XML: :Parser: :default_validity_checking = true
myxml = XML::Document.file "index.xhtml"

At the time of this writing, REXML has a partially
functional XML validator based on relax-ng. However,
because it is not complete, I can’t discuss what the final

http://www.w3.org/TR/xslt/

A Simple RSS Parser

method calls might look like. In the meantime you
might want to experiment with the newly available
release of libxml-ruby, the bindings to Gnome’s
libxml2. The preceding code samples from this chapter
validate using that library.

This works because a <DOCTYPE .. /> definition is in the
beginning of the example document I included at the
beginning of this section. libxml2 automatically goes
to w3c.org and fetches the needed definitions for vali-
dation (this works as of version 0.3.4). Alternatively,
you can place the needed definitions in /etc/xm1.You
can turn off this fetching behavior with

XML: :Parser::default_load_external_dtd = false

Version 0.3.6 of libxml-ruby will include the capability
to use #validate(XML::DTD) on any XML::Document
object—even after it has been loaded. However, at the
time of this writing there is no way to obtain the
DTD (Doctype Definition) from the XML: :Document
object. Instead, you must find the DTD by opening
the file and locating it. By the time you read this, the
access to the DTD or schema will most likely be
implemented. See the libxml-ruby documentation on
RubyForge to find out what that method has been
named.

A Simple RSS Parser

#!/usr/bin/ruby

require 'net/http’'

require 'rexml/document’

http = Net::HTTP.new 'www.npr.org'

http.open_timeout = 30
http.start
raise "Connection failed." unless http

103

104 CHAPTER 9 Processing XML

response = http.get('/rss/rss.php?id=1001")
myxml = REXML: :Document.new response.body
puts "NPR News Stories"

puts

myxml .each_element('rss/channel/item') do |elem|
puts elem.elements['title'].text

end

RSS (Really Simple Subscriptions) is rather like one-
way email for new updates. You subscribe to feeds and
then browse those feeds using a feed reader. A few
months ago, I was playing around with RSS and
thought it would be neat to see what the news head-
lines were by just running a simple script at a terminal.
Much to my pleasure, doing something like this in
Ruby was as simple as the preceding 15 lines of code!

When run, the code produces the following:

NPR News Stories

High-Octane Offenses in Women's Final Four

Despite Alerts, Identity Theft Cases Rise

Thais Vote in Election Meant to Quiet Unrest

Rice, Straw Call for Iraqi Progress; Carroll Is Home
U.S., Allies Discuss Aiding Palestinians, Not Hamas
UCLA, Florida Trounce Lower Seeds to Meet in Final
After Katrina, a Boom in St. Tammany Parish
Confusion Persists as Medicare 'Part D'

Thai Elections Held Amid Boycotts

Amid Rallies, Questions Over Immigrants' Impact
Marchers Seek to Delay New Orleans Vote

Prosecutor Preps Taylor Case Amid Venue Doubts

A Simple RSS Parser

In plain English: I open up a new HTTP connection
to the NPR server and fetch the feed URL.The
response object stores the result, and the body property
of that object contains the text XML that we want to
parse. I pass the XML to REXML: :Document#new and just
use a simple #each_element method to walk over all the
<title> elements. It’s that simple!

105

This page intentionally left blank

10

Rapid Applications
Development with
GUI Toolkits

In the world of Ruby GUI toolkit bindings, two
high-quality cross-platform options are available:
GTK+ 2.x and Qt 4 (pronounced cute). Both of these
toolkits provide a consistent experience across Linux,
Win32, and Mac OS 10+ as well as have stable APIs
and support for antialiased text on the Linux platform.
The largest difference between the two is the license.
GTK+ is LGPL, which means that you can develop
proprietary or other-licensed source programs with it.

Qt is triple licensed: By default you get either the GPL
or the QPL license, which both require that the pro-
gram you develop be completely open source; that is,
not proprietary, closed source distribution. However,
for a fee, Trolltech, the company that makes Qt, will
allow you to develop and distribute a proprietary
application using the Qt toolkit.

Other than that, the differences are mostly a matter of
taste. GTK+ is written in C; Qt in C++.

108

CHAPTER 10 Rapid Applications Development with GUI
Toolkits

The Fox and Tk toolkits are also handy if you want to
hack something up quickly on the Windows platform.
However, they both look ugly on Linux.

In this chapter, I'll show you both GTK+ and Qt.

A Simple GTK+ Hello World

require 'gtk2'

Gtk.1init

vbox = Gtk::VBox.new 2

button = Gtk::Button.new 'Hello World'

entry = Gtk::Entry.new

entry.text = 'Hello?'

window = Gtk::Window.new 'A Hello World App.'

window.border_width = 5
window.add vbox
vbox.pack_start button
vbox.pack_start entry
window.show_all
Gtk.main

Before you can run the preceding code sample, you
first need to install the Ruby Gnome2 bindings by
either visiting its website at <http://ruby-
gnome2.sourceforge jp/> or using your Linux distrib-
ution’s package manager. On a Debian-based system,
the package is ruby-gnome2.

The preceding code generates a window that looks
like that shown in Figure 10.1.

Hello Warld i
Hello?

Figure 10.1 Simple Hello World window.

http://rubygnome2.sourceforge.jp/
http://rubygnome2.sourceforge.jp/

A Simple GTK+ Hello World

The preceding code is simple. We call Gtk#init, which
parses some of the standard GTK+ command-line
options and does some housekeeping. Then, we declare
four objects, which in turn correspond to four visual
objects (widgets) on the screen: a window, a button, an
entry box, and a special kind of box called aVBox. A
VBox can be thought of as a container widget for
other widgets. We “add” the VBox object to the win-
dow, and in turn ask the VBox to start “packing” widg-
ets in to its vertical stack. We tell GTK+ to show the
window (windows can exist but be hidden). Finally, we
activate GTK+’ main loop. #main is a binding to the C
function of the same name. While inside #main, GTK+
waits for events to occur (such as an uncover event or
a mouse click or movement). When events are
received, certain actions are taken.

There’s a problem, though.You can close the window,
but the Ruby application never exits from the
Gtk#main method call (you have to press Ctrl+C at the
shell to break out). Also, the button doesn’t work. So
let’s attach some code. Code that can be called by
#main 1is called a callback.

require 'gtk2'

Gtk.init

vbox = Gtk::VBox.new 2

button = Gtk::Button.new 'Hello World'
entry = Gtk::Entry.new

entry.text = "Hello?'

window = Gtk::Window.new 'A Hello World App.'
window.border_width = 5

window.add vbox

vbox.pack_start button
vbox.pack_start entry

window.show_all

109

110

CHAPTER 10 Rapid Applications Development with GUI
Toolkits

window.signal_connect("destroy") do
Gtk.main_quit

end

button.signal_connect("clicked") do
entry.text = 'Hello! Hello!'

end

Gtk.main

And now it works! The result is show in Figure 10.2.

Helle Warld

Hello! Hello!

Figure 10.2 Window showing entry with new next.

Using Glade

$ ruby-glade-create-template helloworld.glade >
helloworld.rb

Making applications using the direct GTK+ method
can be tedious, especially if you have a complex win-
dow. Instead, you can design your application in the
Glade UI Designer and then have GTK+ automatical-
ly create all your widgets and their associated Ruby
objects. Glade creates an XML file; we simply load this
XML file into our Ruby application, and all the magic
happens! Let’s look at the Glade equivalent of the
example from GTK+ section.

After starting up Glade, click the New button and
select GTK+ Project. Then, begin by creating a new
window by clicking the Window button. A new blank
window like the one shown in Figure 10.3 appears.

Using Glade

Figure 10.3 A blank Glade window.

Next, add the VBox container by clicking the Vertical
Box button and clicking in the checkerboard area in
the new, blank window. Specify that you want two
rows, and you should now see a split region as shown
in Figure 10.4.

Figure 10.4 Glade window area split in two.

111

112

CHAPTER 10 Rapid Applications Development with GUI
Toolkits

Next, click the Button button and click on the upper
region to insert it. And finally, click on the Entry but-
ton and click on the lower region to insert it. After
resizing the window, it should look like Figure 10.5.

& windowl [x

Figure 10.5 Glade window with
button and entry field.

Now, there are a few housekeeping things to do. Use
the mouse cursor to select the button. In the
Properties window, on the Widget tab, give the button
a meaningful name such as “hello_button” and set the
button text to “Hello World”.

Properties: hello_button

Widget | Packing | Common | Signals [&

Name: [he\lo_button]
Class: [Gthutton]
Border Width: [g |%]|
Stock Button: [Vl
S Hello world| ™
lcon: [| Vl[j
Button Relief: [Normal :]
Focus on Click: | Yes |

Figure 10.6 Glade properties window.

Using Glade

Do the same for the entry field in the lower half of
your window. Click on it and use the Properties win-
dow to change its name to “hello_entry”. Finally, we
need to give the button a signal. (This is different from
a callback. This is a plain text name that is “emitted”
from the widget when an event occurs. Glade checks
your application for a method that can handle it.)
Click on the upper button again and in the Properties
window, go to the Signals tab. Choose Clicked from
the drop-down menu and then click Add to accept the
default signal name suggestion. The window should
look Like Figure 10.7 before you click Add.

Signal | Handler |
[<| 11|

Signal: [clicked

Hander: [ETTEERE | v
Object: []
After: [No]
I Add H Update “ Delete H Clear l

Figure 10.7 Glade signals window.

113

114

CHAPTER 10 Rapid Applications Development with GUI
Toolkits

Back in your Ruby application, we just need to do a
little magic to make everything work:

require 'Tibglade2'

Gtk.init

def on_hello_button_clicked
@hello_entry.text = 'Hello! Hello!'

end

@glade = GladeXML.new("/home/jclinton/Projects/pr\

ojectl/projectl.glade"™, 'windowl') { |handler|
method(handler)

}

@hello_entry = @glade.get_widget 'hello_entry'

@windowl = @glade.get_widget("windowl")

@windowl.signal_connect('destroy') {
Gtk.main_quit

}
Gtk.main

You can also use the magic templating program ruby-
glade-create-template and run it on your
helloworld.glade file. This code 1s shown at the begin-
ning of this section. The output will be a template
Ruby program.

As you can see, it’s less tedious to create a GUI inter-
face this way. But it’s not a silver bullet. You'll still need
to do some manual calls to load items into list views
and combo boxes. Some people find that, because you
still have to work with the interface manually in some
ways, it’s just easier to code it directly. Either way, play-
ing with Glade is a good way to get an idea of how
GTK+ works and what widgets are available.

A Simple Qt Hello World

A Simple Qt Hello World

require 'Qt'

app = Qt::Application.new ARGV

window = Qt::Dialog.new

vgroup Qt: :VBoxLayout.new

button = Qt::PushButton.new -Hello World!-
edit = Qt::LineEdit.new -Hello?-

vgroup.addWidget button
vgroup.addWidget edit
window.setLayout vgroup
window. show

app.exec

Before you can run the preceding code, you need to
install the Ruby-Qt 4 bindings either by visiting the
Korundum website (http://rubyforge.org/projects/
korundum/—by the time you read this a binary
Win32 installer should be ready) or by using your
Linux distribution’s package manager to install it. On a
Mac, you need to compile the extension from source.
Despite its being relatively new, I am using Qt 4 for
this section because it is the first release to offer a GPL
version on all three platforms.

After executing the previous code, the results should
look something like Figure 10.8.

I Hello World!]

IHeIIoT]

Figure 10.8 Simple Qt Hello World window.

The previous code is simple: We create a new
Qt::Application object, which parses the command
line for the common Qt options, and allocate a new

115

http://rubyforge.org/projects/korundum/
http://rubyforge.org/projects/korundum/

116

CHAPTER 10 Rapid Applications Development with GUI
Toolkits

Dialog object, which is used as a container for our
VBox and its two widgets. To get the VBox to stack
the widgets in a column, we add the widgets to the
VBox using #addwidget. After everything is allocated,
we call the #show method to display the window and
then tell the Qt::Application to enter its main event
loop with #exec. All in all, not that much different
from GTK+.

But, again, just like the GTK+ example, we don’t have
any functionality. Unlike GTK+, however, we do not
need to create a method for destroying this window.
So, let’s attach some code to the “Hello World!”
button.

Attaching a Signal Handler to a
Qt Widget Slot

require 'Qt’'
app = Qt::Application.new ARGV
class MyDialog < Qt::Widget
slots 'button_clicked()'
def initialize(parent=nil)
super(parent)

@vgroup = Qt::VBoxLayout.new self

@button = Qt::PushButton.new "Hello World!"
self

@edit = Qt::LineEdit.new "Hello?", self

@vgroup.addWidget @button
@vgroup.addWidget @edit

connect @button, SIGNAL('clicked()'), self,
SLOT('button_clicked() ')

self.setLayout @vgroup
end
def button_clicked()

Attaching a Signal Handler to a Qt Widget Slot 117

@edit.text = 'Hello! Hello!'

end
end
window = MyDialog.new
window. show
app.exec

[Hello World! |

|He|lo| Hello!]

Figure 10.9 A Qt Hello World
that responds to click.

(The principles are the same as in the earlier Qt exam-
ple, but rather than use Qt::Dialog here, I created my
own kind of widget called a MyDialog, which inherits
from Qt::Dialog. This subtle change allows me to now
attach a few signal handlers (called slots) using the spe-
cial methods slots and connect. slots tell Qt that the
methods in this class by these names are special han-
dlers. Other than the use of the slots method, there’s
nothing special about a method called by a signal. To
connect the built-in signal, clicked(), and our own
method button_clicked(), we use the special method
connect to join the two. This join tells Qt to call the
button_clicked() method when the connect signal is
emitted.

As a side note, Qt: :0Object.connect is where the
method lives and is a member of all Qt classes because
Qt::0bject is a super-parent of all Qt classes.

118

CHAPTER 10 Rapid Applications Development with GUI
Toolkits

Using Qt Designer

$ rbuic -x -o qttest.rb qttest.ui

gttest.ui is any file containing a Ul definition created
by Qt Designer. The output of the rbuic program can
be tested by running:

$ ruby -w qttest.rb

Such a test program might output something like
Figure 10.10.

M Form /= 0OX

Hello World!

Hella?

Figure 10.10 An example
window created by rbuic.

In this example, code in gttest.ui, which defines a
user interface, was created using handy tool for creat-
ing GUI interfaces—a tool provided by Trolltech as a
part of Qt. Unlike Glade, the files that describe the
interface are interpreted to automatically create C++
headers, but in this case, we want Ruby files. Richard
Dale, the author of the Ruby bindings to Qt has pro-
vided such a method. But first, let’s create the interface
for our simple hello world program.

Begin by choosing the Widget option from the New
Form dialog (see Figure 10.11).

After doing so, you are presented with the blank
working area shown in Figure 10.12.

Using Qt Designer

New Farm

templates/forms]
Dialog with Buttons Bottom
Dialog with Buttons Right
Main Window

[%] Show this Dialog on Startup

Figure 10.11 The New Form dialog.

Form - untitled*

Figure 10.12 Blank working area in Designer.

Now, we need to add some widgets. Let’s begin by
dragging the Push Button widget from the widget
palette at the left onto the blank working area. Do the
same for the Line Edit widget. Place the widgets in
the general location in which you want them to finally
appear. When we do the next step, adding an align-
ment box, the position that the VBox gives the widgets

119

120

CHAPTER 10 Rapid Applications Development with GUI
Toolkits

is influenced by the position that you have placed
them in freeform mode.

So let’s add that VBox. Right-click in a blank area of
the window and choose Lay Out and then Lay Out
Vertically, as shown in Figure 10.13.

) Form - untitled* Sll=HES

Change objectName...

Change toolTip...
Change whatsThis...

oz Cut Ctrl+X
|3l Copy Ctrl+C
=] Paste CErltV

Select Al Ctrl+A

Delete

M Adjust Size Ctrl+)
Ctrl+H

Ctrl+L

Lay Out in a Grid Ctrl+G
[i¢) Lay out Horizontally in Splitter

= Lay Out Vertically in Splitter

g Break Layout Ctrl+B

Figure 10.13 Set to vertical layout.

Now, you may want to resize the window to look
more like our earlier example.

Let’s move on to making these widgets do what we
want. We need some names and default text for these
widgets. Name each widget using the property editor,
as shown in Figure 10.14. Also set the default text for
the push button to “Hello World!” and the default text
for the line entry to “Hello?”.

After making those changes, the designer window
should look something like Figure 10.15.

Using Qt Designer

B Property Editor

[m——

QObject
objecrname (G

Qwidget

enabled true
geometry [0, 0, 400, 300]
sizePalicy [Preferred, Preferred, 0, 0]
minimumSize 16, 16]
maximumSize [16777215, 16777215]
sizelncrement [0, 0]
baseSize [0, 0]
palette
font [na (Sans Serif, 9]
cursor [R Arrow
mouseTracking false
focusPolicy Qt::NoFocus
contextMenuPolicy Qti:DefaultContextMenu
acceptDrops false
windowTitle Form
windowlcon |,
toolTip
statusTip
whatsThis
accessibleName
accessibleDescription
layoutDirection Qt::LeftToRight
autoFillBackground true

A

Figure 10.14 Property editor window.

[Form [=][&][%

: Hello World! :

. | Helle? ;

Figure 10.15 Designer area post-changes.

Now, save the .ui file, making a note of where you
placed it. It’s now time to generate the needed Ruby
code by running the code snippet at the beginning of
this section.

121

122 CHAPTER 10 Rapid Applications Development with GUI
Toolkits

After running the command at the beginning of this
section, a new qttest.rb file is created containing all the
code needed to construct the interface. Here are the
contents of that generated file (reformatted):

require 'Qt’'
class Ui_window
attr_reader :qvboxLayout
attr_reader :button
attr_reader :edit
def setupUi(window)
window.setObjectName ("window")
window.resize(Qt::Size.\
new(115,78) .expandedTo\
(window.minimumSizeHint()
))
@gvboxLayout = Qt::VBoxLayout.new(window)
@gvboxLayout.spacing = 6
@qvboxLayout.margin = 9
@qvboxLayout.setObjectName("qvboxLayout™)
@button = Qt::PushButton.new(window)
@button.setObjectName("button™)

@gvboxLayout.addwWidget(@button)

@edit = Qt::LineEdit.new(window)
@edit.setObjectName("edit")

@gvboxLayout.addwWidget(@edit)
retransTlateUi (window)

Qt: :MetaObject.connectSlotsByName (window)
end # setupUi
def retranslateUi(window)
window.setWindowTitle(Qt: :Application.\
translate(

Using Qt Designer

"window",

"Form",

nil,

Qt::Application: :UnicodeUTF8

))
@button.setText(Qt::Application.translate(
"window",
"Hello World!",
nil,
Qt::Application::UnicodeUTF8
))
@edit.setText(Qt::Application.translate(
"window",
"Hello?",
nil,
Qt::Application::UnicodeUTF8
))

end # retranslateUi

end
if $0

end

a
u
w
u.
w
a

== _ FILE__

Qt: :Application.new(ARGV)
Ui_window.new
Qt::Widget.new

setupUi (w)

.show
.exec

You can run it and see what you get.

$ ruby -w qttest.rb

But it doesn’t do anything, yet.

123

124

CHAPTER 10 Rapid Applications Development with GUI
Toolkits

Attaching Signal Handlers to Qt
Designer Generated Code

require 'Qt’
require 'qttest.rb'
class Form < Qt::Widget
slots 'on_button_clicked(Q'

def initialize(parent = nil)
super(parent)
@ui_window = Ui_window.new
@ui_window.setupUi(self)
end
def on_button_clicked()
@ui_window.edit.setText 'Hello! Hello!'
end

Qt::Application.new(ARGV)
Form.new

.show

.exec

The gttest.rb file from the previous section is only
able to display itself when run alone. In order to give
that file any functionality, we needed to add signal
handlers. We want to keep our automatically generated
gttest.rb file separate from any code additions that we
make so that they are not overwritten if we decide to
make changes in the designer. So, I moved the con-
struction code from the end of the qttest.rb file into a
new file called main.rb and added the new pushbutton
method there. The result was the new main.rb file
shown here.

First, we create a new generic Qt: :Widget because we
need the methods defined here to be accessed by

Qt: :MetaObject.connectSlotsByName, which can operate
only on children of Qt::0bject. connectSlotsByName is
called from inside the qttest.rb file, which was auto-
matically generated by “rbuic”. Examining the

Attaching Signal Handlers to Qt Designer Generated Code

automatically generated code in qttest.rb, you’ll notice
that connectSlotsByName is called with the parent class
as a parameter (that parent reference was passed in
when creating the Ui_window instance). For
connectSlotsByName to do its magic, two things must be
true:

= The slot (method) handing an event must be
named in this convention:

on_<object>_<signal>(<signal params>)

= The slot must be declared using the slots method
in the body of the class.

So, in our case, the method on_button_clicked follows
the required conventions. button is the name of the
object sending the signal, and clicked is the name of
the signal.

Run it again using the following command:
$ ruby -w main.rb

And now our “Hello World” program runs, and the
button works as shown in Figure 10.16!

| = Form = [8]%

Hello! Hello!

Figure 10.16 Finished Qt Designed window.

125

This page intentionally left blank

11
Simple CGI Forms

There are many ways to do CGI with Ruby. For
small tasks, I have found that erb/eruby with the cgi
module is the simplest, so that’s what I use for the rest
of this section. The easiest way to get eruby working is
to install mod_ruby (and you get a speed boost, to boot!)
After mod_ruby is installed, you need to add some code
to your Apache configuration to get it interpreting

.rhtml files as eruby files.

<IfModule mod_ruby.c>
RubyRequire apache/eruby-run

<Files *.rhtml>
SetHandler ruby-object
RubyHandler Apache: :ERubyRun.instance
</Files>
</IfModule>

The preceding code causes Apache to use mod_ruby’s
special ERubyRun mode to parse any .rhtml file. .rhtml
files are similar to ASP or PHP in that they are normal
HTML files that contain special <% ... %> clauses that
contain executable (Ruby) code.

128

CHAPTER 11 Simple CGI Forms

Processing a Web Form

<?xm1 version="1.0"?>

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 St...
<html xmIns="http://www.w3.0rg/1999/xhtm1">
<head>

<title>process submission</title>

</head>

<body>

<h2>Processing submission:</h2>
<% require 'cgi'; cgi = CGI.new %>

<p>Your message

<blockquote><%= cgi['message'] %></blockquote>
has been saved to file

<%
File.open('/tmp/message.txt', 'w') do |f]|
f.write cgi['message']
print f.path
end
%>
.</p>

</body>
</html>

The preceding code is a simple submit.rhtml. This
script takes the browser’s request and saves what it
receives to a file on the web server.

Now, when we click the Send button on a separate
page, message.html, the message text is transmitted and
handled by submit.rhtml (see Figure 11.1).

This works because the CGI object cgi stores a hash
of all name= form fields. The rest is just regular Ruby
code. Notice that a special <%= ... %> is used that
causes the evaluation of the code inside it to be interpo-
lated in to the HTML; otherwise, if we want some-
thing to be shown in the rendered web page, we have
to use the print or puts method calls.

Processing a Web Form

localhiost mailbox
Flle Edit View Go Bookmarks Tools Tabs Help

e 202 4ON Qa ¢

[@ http:/flocalhost/message.htm|] Go

Save a message to the admin of localhost

Enter your message text:
Default text.

Send | Reset

ic]

Figure 11.1 Form to submit a message.

Here is a sample HTML form that can be used with
the submit.rhtml shown previously:

<?xm1 version="1.0"7>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 St...
<htm1l xmIns="http://www.w3.0rg/1999/xhtml1">
<head>

<title>Tlocalhost mailbox</title>

</head>

<body>

<h2>Save a message to the admin of Tlocalhost</h2>

<form method="post" action="cgi-bin/submit.rhtml">
<div>

<label for="message">Enter your message
text:</Tabel>

129

130 CHAPTER 11 Simple CGI Forms

<textarea jd="message" name="message" rows="10"
cols="72">Default text.</textarea>

<input type="submit" value="Send" />
<input type="reset" />

</div>
</form>

</body>
</html>

The important part of this simple message.html file is
which script will process the Send button. To process a
click on the Send button, we just change the action=
property to "submit.rhtml":

<form method="post" action="cgi-bin/submit.rhtml">
<div>

This HTML renders as shown in Figure 11.2.

Of course, the preceding code is of only limited use-
fulness. In production, you would want to either store
such messages in a database or create the filename on a
date time combination (to ensure uniqueness).

Returning Tabled Results 131

) process submission =) (=]]
Flle Edit View Go Bookmarks Tools Tabs Help

«-5 -0 £#OM QAQ €
[@ http:/flocalhost/cgi-bin/submit.,rhtml] Go

Processing submission:

Your message
Default text.

has been saved to file tmp/message.txt .

T Enter a web address to open, or a phrase to search for

Figure 11.2 Post-processing
message form submit.rhtml.

Returning Tabled Results

<?xm1 version="1.0"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Str...
<htm1 xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>process submission</title>

</head>

<body>

<h2>Processing submission:</h2>

<% require 'cgi'; cgi = CGI.new %>

<p>We will now display each 1ine of your file
one line at a time:</p>
<table>
<%
n=20
cgi['message'].each_line do |1ine|

132 CHAPTER 11 Simple CGI Forms

n+=1
print "<tr><th>#{n}</th><td>#{11ine}</td></tr>"
end
%>
</table>

</body>
</html>

This example demonstrates that you can also loop
inside <% %> clauses and even generate an infinite
amount of HTML from within them—just make sure
that you output it using print or puts.

In the preceding code, we are fetching the named CGI
attribute name=message from the CGI object and then
using the String#each_line method to iterate over its
contents.

To test this code, we can return to our previous sample
form and rename it input.html. Make a small modifi-
cation to the presentation:

<?xm1 version="1.0"7>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 St...
<htm1 xmIns="http://www.w3.0rg/1999/xhtm1">
<head>

<title>table Tines of a file</title>

</head>

<body>

<h2>Iterate by Tline.</h2>

<form method="post" action="cgi-bin/table.rhtml">
<div>

<label for="message">Enter some text to
iterate one line at a time:</Tabel>

Returning Tabled Results

<textarea jd="message" name="message" rows="10"
cols="72">Default text.</textarea>

<input type="submit" value="Send" />
<input type="reset" />

</div>
</form>

</body>
</html>

which now displays as shown in Figure 11.3.

tablellinesiof alfile

File Edit View Go Boockmarks Tools Tabs Help

«- -5 -0 400 & & U

[@ http://localhost/input.htm|

Iterate by line.

Enter some text to iterate one line at a time:
Line one.

Line two.

Line three.

Line four. Hurray!

Send | Reset
i-)

Figure 11.3 Iteration input box.

For our test, we enter the following text in the text
field:

133

134

CHAPTER 11 Simple CGI Forms

Line one.

Line two.

Line three.

Line four. Hurray!

After clicking Send, our text is rendered by
table.rhtml as shown in Figure 11.4.

process submission

File Edit View Go Bookmarks Tools Tabs Help

«-5 -QOR (A#OM QE €

[E‘] http:/flocalhostfcgi-binstable.rhtml Go

Processing submission:

We will now display each line of your file one line at a time:

1line one.

2 Line twa,

3Lline three,

4 Line four. Hurray!

T

Figure 11.4 Result of iteration.

Escaping Input

require 'cgi'
mystring = 'This is some hello/goodbye world text?'

encstring = CGI.escape mystring

#=> "This+is+some+hello%2Fgoodbye+world+text%3F"

CGI.unescape encstring
#=> "This is some hello/goodbye world text?"

Escaping Input

or, for escaping HTML syntax:

require 'cgi
mystring = '<script
0ow3z0r!</script>"'

scriptkiddie.js" />

encstring = CGI.escapeHTML mystring
#=> "<script "scriptkiddie.js"
/> Ow3zOr!"

WIth the addition of </script>
#=> “<script "scriptkiddie.js"
/> Ow3zOr!&l1t;/scripté>”

CGI.unescapeHTML encstring
#=> "<script \"scriptkiddie.js\" />
0w3z0r!</script>"

The cGI module comes with four handy functions for
escaping: two for URLs and two for HTML.

URLs cannot contain a number of illegal characters.
For instance, “/” and space are illegal filenames and also
illegal in an HTTP GET-style script query. Your web
browser automatically escapes any values provided in
form fields when it sends its request to the web server,
and CGI automatically converts it back to a normal
String on the server side. From time to time, you may
find that you need to work with these internal methods
directly. This can be done as I have shown previously.

When displaying visitor-created content on your web-
site, to do this safely, you need to convert any occur-
rences of HTML reserved characters to entity references
(see Chapter 9, “Processing XML,” for more information
about these). For example, take the following sample
text that you might find on a forum in a dark corner
of the Internet; it is stored in the variable mystring:

mystring = '<script "scriptkiddie.js" /> Ow3zOr!'

135

136 CHAPTER 11 Simple CGI Forms

Rather than posting this evil code directly to a page,
we can escape it so that the HTML references are
shown in plain text rather than interpreted by the
browser as shown in the code sample at the beginning
of this section. This escaped text can be safely transmit-
ted to a browser.

Locking Down Ruby

Ruby has a handy security feature that tracks whether
variables are tainted. A tainted variable is one that has
received its data from some sort of external source
(such as a CGI form field or an IO stream) or from
copying the contents of another tainted variable. Then
certain methods that are considered dangerous will
refuse to run if they receive data marked as tainted.
These features are turned on and off at varying levels
through the use of the $SAFE variable.

$SAFE can be set to level O through 4. At level 0, no
checks are performed. By default, $SAFE is level 0O;
however, when using mod_ruby, $SAFE is set to level 1.

$SAFE can be changed inside your program, but it can
only be increased. Attempting to decrease it raises an
error. It’s generally a good idea to start all your .rhtml
and CGI .rb files with the line of code at the begin-
ning of this section. At this $SAFE level of “2” Ruby
does the following security checks:

= Can’t load any file that is in a world-readable

th)

directory or whose path starts with “~”—the *nix

home directory prefix

Receiving an Uploaded File

= Can’t do the following on any String marked
tainted: glob, eval, load, require, system, exec, and
trap

= Ignores most Ruby command-line parameters

= Ignores Ruby’s environment variables RUBYOPT and
RUBYLIB

= Completely disables most File operations having
to do with changing and examining permissions,
Process.setpriority, and the Process permissions
methods

You can mark data as “untainted” after you have veri-
fied that it is valid and safe by using the Object#untaint
method. Refer to the section “Sanitizing Input” in
Chapter 2, “Working with Strings,” for code samples
that may be useful for validation.

Receiving an Uploaded File

<?xm1 version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 St...
<htm1 xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>table lines of a file</title>

</head>

<body>

<% require 'cgi'; require 'time'; cgi = CGI.new
require 'stringio' %>

<h2>Saving file.</h2>
<% uploaded = cgi.params['uploaded’'][0] %>

<p>You uploaded <%=uploaded.original_filename%>.</p>

<% File.open(Time.now.iso8601.untaint, 'w') do |f|

137

138

CHAPTER 11 Simple CGI Forms

f << uploaded.read
end %>

<p>Save completed.</p>
</body>
</html>

require 'time' is necessary if you want access to
Time.now.iso8601

In this example, upload-handler.rhtml, a file is received
and the file is written to a file named by the current
time. Note that CGI actually uses both Tempfile and
StringI0 depending on the size of the file upload.
Either way, the use of << to direct the contents into
our storage file ensures that the received data is copied
to its destination.

Untainting the filename of the destination is needed to
explicitly tell Ruby that the file path is safe. Otherwise,

a security error will be thrown.

A simple HTML form is used to call the upload-
handler.rhtml script:

<form name="upload' enctype="multipart/form-data'
action="cgi-bin/upload-handler.rhtml' method='post'>
<input type='file' name='uploaded' size='52" />
<input type='submit' value='Upload File' />

</form>

Representing Data Graphically

<htm1 xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>process submission</title>

</head>
<body>

Representing Data Graphically

<h2>Processing submission:</h2>

<% require 'cgi'; cgi = CGI.new
require 'time'

require 'gnuplot'

%>

<p>Representation of request processing times:</p>

<% data = []
File.open('/tmp/times.txt', 'r') do |f|
f.each_l1ine do |line|
data.push line.to_f
end
end
plotcmd = "'

Gnuplot: :Plot.new(plotcmd) do |plot|
plot.add_data Gnuplot::DataSet.new(data)
plot.terminal 'svg'

end

I0.popen(Gnuplot.gnuplot, 'w+') do |gp|
gp.write plotcmd
gp.close_write
3.times{ gp.readline }
print gp.read
end %>

<p>

<% time = Time.now - Apache.request.request_time;
puts "This request took #{time}. Added to end of
record. "%>

</p>

<% File.open('/tmp/times.txt', 'a+') do |f]|
f.puts time
end %>

</body>
</html1>

140

CHAPTER 11 Simple CGI Forms

In the preceding code sample, I use the Gnuplot
(http://www.gnuplot.info/) ”"Ruby bindings to plot a
chart of the amount of time it takes to process each
request. At the end of the page load, I add the current
processing time to the end of /tmp/times.txt as a simple
way to tabulate the data (rrdtool would be a better way).

NOTE: rrdtool is an efficient disk-format database for
storing time-related statistics. For example, if you want-
ed to always keep the last 24 hours of network activity
in a database that never grows in size, rrdtool would
provide a very efficient means by which to store that
data. The most recent version even provides some
graphing facilities.

The Gnuplot bindings are somewhat confusing. In the
preceding code sample, the plotemd variable is used by
Gnuplot::Plot as a kind of buffer to store the full list of
instructions for Gnuplot. The bindings only allow for
the use of its methods with code blocks.

The line 3.times is used to eliminate the DOCTYPE dec-
laration from the front of Gnuplot’s output before it is
incorporated into the body of the HTML.

Control over the size of the plot area can be adjusted
by providing parameters to the terminal method. At a
command prompt enter the following command to
access Gnuplot’s parameters:

gnuplot> help svg

http://www.gnuplot.info/

Representing Data Graphically

Pay special attention to the way the file is delivered to
the browser: a MIME type of application/xml is
required. You can accomplish this by changing the fol-
lowing code to your Apache configuration:

AddType application/xml1 .rhtml

Alternatively, you can send Content-Type:
application/xml in the response headers.

Also alternatively, Gnuplot can output to PNG. In this
case, a separate script could be provided as the src= of
an img tag: the STDOUT of Gnuplot would contain the
data stream. Or, Tempfile could be used and then
deleted after some amount of time has elapsed (24
hours, for example).

For the preceding example, I output the Gnuplot data
to SVG and incorporate the SVG markup into the
HTML. This is rendered as shown in Figure 11.5.

Note that Internet Explorer doesn’t support native dis-
play of SVG.

141

142 CHAPTER 11 Simple CGI Forms

process submi
Elle Edit View Go Bookmarks Tools Tabs Help

«-»-OR | ឬ QQ €
[@ http://localhost/cgi-bin/requesttime.rhtml] Go

Processing submission:
Representation of request processing times:

11 T T T T T T

T
1+ + * E
o
09 N il

+) + +
08| o
+
07} 4
++
06k " + * i
05} 4
+ * + * i
04 + o+ 4T =1
03 + + 7
02k e 5 .
o + +
0% <+ & o
O Il 1 1 L 1 1 1
0 5 10 15 20 25 30 35 40

This request took 0.754419. Added to end of record.
T

Figure 11.5 Rendering of plot data in browser.

12

Connecting to
Databases

I selected MySQL for this chapter because it is avail-
able and well-supported on all platforms. Two other
databases that you might consider are PostgreSQL and
SQLite. Both are fine database systems, and I would
encourage you to consider them as options before you
settle on MySQL. In all the examples in this chapter, a
DBD (database driver) other than mysq1 could be sub-
stituted and used in the same way. At the time of this
writing there are 13 available database drivers: ADO,
DB2, Frontbase, InterBase, mSQL, MySQL, ODBC,
Oracle, OCIS, Pg, Proxy, SQLite, and SQLRelay (see
Ruby DBI Documentation, http://ruby-dbi.
rubyforge.org/).

Ruby’s MySQL bindings come in either the direct fla-
vor or the DBI (database interface) flavor. DBI insu-
lates the programmer from some of the specifics of
database systems, thereby making it easier to switch
between them. For this chapter, the DBI bindings are
discussed.

http://ruby-dbi.rubyforge.org/
http://ruby-dbi.rubyforge.org/

144

CHAPTER 12 Connecting to Databases

Opening (and Closing) a MySQL
Database Connection

require 'dbi'
DBI.connect('dbi:mysql:test:localhost’,

'user', 'pass') do | handler |
do stuff ...
end

The preceding code merely creates a connection to
the MySQL server and yields it to the handler object.
The dbi:Mysql signifies that the DBI should search for
and load the Ruby MySQL DBI driver. test is the
name of the database (or schema), and Tocalhost is the
hostname (or IP address) of the server. When the code
block ends, handler will be closed automatically.
Alternatively, you may assign the connection to an
explicit object, which must be manually closed.

handler = DBI.connect('dbi:Mysql:test:localhost',
'user', 'pass')

Such a handler object can be explicitly closed by issu-
ing a single method call:

handler.disconnect

In all the following code samples, I use a handler object
to refer to the connection to the database server.

For this chapter, assume that we are writing a web
application called Vegetable Tracker.

Creating a Table

Creating a Table

require 'dbi'
DBI.connect('dbi:mysql:test:localhost', 'root',
'password') do | handler |
query = <<-QUERY
CREATE TABLE “vegetables™ (
"ID" INT(C 8) NOT NULL AUTO_INCREMENT
PRIMARY KEY ,

“type~ VARCHAR(C 255) NOT NULL ,
“vendor® VARCHAR(C 255) NOT NULL
) ENGINE = MYISAM ;
QUERY
handler.do(query)
end

Here, we are merely executing MySQL statements
inside a DBI#connect code block on an existing handler
object. The preceding MySQL syntax creates a table of
vegetables that will be used in the following code sam-
ples. Notice that a HEREDOC (the <<-QUERY starts the
HEREDOC) is used to format the code to make it
more readable. HEREDOC:s are a great way to
increase the legibility of nested SQL syntax. When
using HEREDOC:, be sure to insert the needed “-” in
front of the WORD you would like to use as a delim-
iter. This causes Ruby to allow you to stop your
HEREDOC on an indented line.

See the section “Catching Errors” later in the chapter
for a discussion of what happens when a table already
exists.

145

146

CHAPTER 12 Connecting to Databases

Getting a List of Tables

require 'dbi'

DBI.connect('dbi:mysql:test:1ocalhost', 'root',
'password') do | handler |
handler.select_al1('SHOW TABLES') do | tables |

p tables
end
end

The list of tables is returned as one-element arrays, one
at a time. The preceding code produces the following:

["vegetables"]
["vendors"]

Adding Rows to a Table

require 'dbi’
DBI.connect('dbi:mysql:test:localhost', 'root',
'password') do | handler |
%w{ carrots corn artichokes }.each do |veg]|
query = 'insert into vegetables (type)

VALUES (?)'
handler.do(query, veg)

end
end

For adding rows to existing tables, again, the
handler.do() method is used. DBI allows for interpola-
tion in the form of a “?” positional notation. Any addi-
tional arguments to #do are interpolated into ?s in
order in the query string provided as the first argument.

Deleting Rows

Iterating Over Queried Rows

require 'dbi'
DBI.connect('dbi:mysql:test:localhost', 'root',
'password') do | handler |

handler.select_all\

('select * from vegetables') do |row|
p row

end

The object row contains a one-dimensional array con-
taining values. This example is almost identical to the
example in the “Getting a List of Tables” section earlier
in the chapter. Here is what is produced:

[1, "carrots", ""]
[2, "corn", "]
[3, "artichokes", ""]

Notice that MySQL automatically incremented the ID
column just as we would expect (because of the previ-
ous table definition).

Deleting Rows

DBI.connect('dbi:mysql:test:localhost', 'root',
‘password’') do | handler |

handler.do("DELETE FROM vegetables ™\
WHERE "ID" =2 LIMIT 1 ; ")
end

Continuing a theme, the significant point of variance
here is the MySQL syntax.

147

148 CHAPTER 12 Connecting to Databases

However, there is one important difference between
this code sample and the others in this section: If the
data that you request to be deleted isn’t already there,
you will not receive any kind of different return value,
and no exception object will be raised. Keep this in
mind when writing your application’s logic.

Deleting a Table

require 'dbi'
DBI.connect('dbi:mysql:test:1ocalhost', 'root',
'password') do | handler |

handler.do('DROP TABLE “vegetables ')

end

And finally, like almost all of the previous examples,
#do is used to accomplish the table deletion. Note,
however, that unlike deleting a row, deleting a table
that does not exist will throw an exception such as this:

in “error': Unknown table 'vegetables'
(DBI::DatabaseError)

The next section explains how to plan for and rescue
these exceptions.

(c)Catching Errorsrequire 'dbi'
DBI.connect('dbi:mysql:test:localhost', 'root',
'password') do | handler
begin
query = <<-QUERY
CREATE TABLE “vegetables™ (
“IDT INT(C 8) NOT NULL
AUTO_INCREMENT PRIMARY KEY ,

Deleting a Table

“type” VARCHAR(C 255) NOT NULL ,
“vendor® VARCHAR(255) NOT NULL
) ENGINE = MYISAM ;
QUERY
handler.do(query)
rescue DBI::DatabaseError => e
raise DBI::DatabaseError unless
e.message.match /already exists/
end
end

DBI throws exceptions of type DBI::DatabaseError
when the database engine reports that something can-
not be done.To use this generic exception in a mean-
ingful way, we have to programmatically search the
error text for clues as to what might have failed. In the
preceding example, rescue is used to catch the
DBI::DatabaseError on a table creation. If the rescue
code block is entered, the variable e temporarily holds
it for us. We can then examine the error for the phrase
“already exists.”

In this particular example, I am interested in ensuring
that a table already exists; perhaps this is the first time
that my Vegetable Tracker web application has been run
on a new server. If the text in the exception is “already
exists,” we pass; otherwise, we raise the exception again
because some error besides the table already existing
occurred.

149

This page intentionally left blank

13

Working with
Networking and
Sockets

Ruby has a robust socket library included. This, cou-
pled with the built-in threading, can be used to
accomplish simple socket-based communications
between Ruby processes or even something as signifi-
cant as a web server.

For example, suppose that you implemented a library
that decodes statuses and encodes commands for a
Lego™ Mindstorms™ robot—as my colleague has
done in a project introducing his son to program-
ming—and you want to implement a network-
controllable server for this interface, one that is
sophisticated enough to handle as many as 30 students
monitoring the robot. How might such a thing be
done simply? Perhaps this question is most pragmati-
cally answered by an implementation of a client-server
protocol that involves exchanging Ruby objects.
(Critics would be correct to point out that this would
exclude participation by other software written in

152 CHAPTER 13 Working with Networking and Sockets

other languages.) Such a framework is readily facilitat-
ed by the Ruby Standard Library.

The advantages of such an approach are immediately
apparent: no need to write a specification for a data
format, no need to implement a stream decoder and
parser, and a somewhat trivial difference between a
local-only implementation and one that involves a sin-
gle client to single server. The details of handling lock-
ing on the “command” aspect of a device are the only
complicated component left for you, the programmer,
to do. As we’ll see in this section, attention should be
given to both the networking-related problems in the
above problem as well as the framework for passing
Ruby objects (that is, Distributed Ruby).

The rest of this section details the basics of socket pro-
gramming in Ruby.

Connecting to a TCP Socket

require 'socket'

TCPSocket.open('localhost', '80') do |socket|
socket.print "gibberish\n"
socket.each_line do |line|

print line
end
end

Running this script against a web server running on
my own machine produces an indignant message from
Apache proclaiming that my “web browser” has lost its
mind. In fact, to TCPSocket, TocaThost might be any

Running a TCP Server on a Socket

other machine or IP address in the world—listening
on port 80 or otherwise. The protocol can be any you
want to carry over the socket.

It makes more sense to read a socket in groups of
bytes. This is similar to the earlier example in the sec-
tion “Searching and Secking File Contents” in Chapter
6. Here 32,768 bytes are read giving an opportunity
for other threads to run:

while bytes = socket.recv 32768

handle bytes

give opportunity for other threads to run
end

Unless you are sure that the response will be short, you
do not want to use #recv without a parameter. #recv
will read until the socket terminates. If the response is
long—perhaps megabytes—your program will hard-
block until that operation finishes. As mentioned in
Chapter 14, “Working with Threads,” this is a symptom
of Ruby not having “real” threading capabilities.

Running a TCP Server on a
Socket

require 'socket'

server = TCPServer.new('', 10080)
puts 'Press enter to stop the server.'

our main server connection loop
while sock_events = select([STDIN, server],
nil, nil)

153

154 CHAPTER 13 Working with Networking and Sockets

sock_events[0].each do |sock|
if sock == STDIN
puts 'Server shutdown by console 1input.'
exit 1
elsif sock == server
Thread.new(server.accept) do |client]
client.send 'You are '

client.send client.peeraddr[2]
client.send '\n'
client.close
end
end
end
end

In this simple example, a server is started and set to lis-
ten on port 10,080. Any incoming client is oftered its
IP address or hostname immediately, in plain text.
From the client side, the output looks something like
this (telnet is a great way to debug simple socket com-
munications):

$ telnet Tocalhost 10080
Trying 127.0.0.1...
Connected to localhost.
Escape character is 'A]'.
You are Tocalhost

Connection closed by foreign host.

Running a TCP Server on a Socket

In every Ruby server approach, some method must be
used to find out when a new request has arrived.
Invariably, a loop structure is used to achieve this and
spawn child threads to handle the incoming requests.
There are two popular ways to listen for an incoming
request: Either dedicate the server thread to accept
only new connections (use TCPServer#accept, directly)
or use #select to allow other incoming events to also
be handled by the server loop. In the preceding exam-
ple, I take the latter approach. Both methods block
execution until something happens. #select blocks until
one of the file descriptors given to it has something
available for attention.

You don’t have to use a thread to handle client com-
munications. One approach that might be less of a
headache—depending on what you are doing—would
be to store all the open client connections in an array
and call the #select method on those in turn.
Something like this:

while events = select([server, clientl,
client2, ...]1, nil, nil)
events[0].each do |sock]|

if sock == server
add a new client handle to track
by using server.accept

else
it's a client so do client stuff

end

end
end

155

156

CHAPTER 13 Working with Networking and Sockets

This approach can be sufficient if communications
throughput is small. In this way, you can avoid having
to write complicated thread-locking semantics.
However, large amounts of traffic quickly begin to
choke the loop. The threaded approach would be bet-
ter in the large traffic case.

Serializing Objects with YAML

require 'yaml'
require 'socket'

matrix = [[0,1,4],
[9l5l2],
[3,8,711

TCPSocket.open('localhost', '8341') do |sock]|
sock.print matrix.to_yaml
end

For all but complicated, nested data types, passing the
YAML (YAML Ain’t Markup Language) version of
data to a remote service is often the quickest and sim-
plest way to communicate information between Ruby
instances on different hosts.

In the preceding example, an array of data is sent to
Tocalhost on port 8341. On the receiver side (server),
the code to receive and reconstitute a Ruby array from
the YAML looks like this:

Serializing Objects with YAML

require 'yaml'
require 'socket'
require 'pp'

server = TCPServer.new('', '8341')

while client = server.accept
some_obj = YAML::load client.recv(100)
print 'Received a '
puts some_obj.class
pp some_obj
client.close

end

This outputs the following:

Received a Array
[ro, 1, 41, 9, 5, 21, [3, 8, 711

Note that YAML is a pervasive standard. You can
achieve cross-language message passing using this sim-
ple data format. For example, you can easily pass data
from Ruby to Perl.

For efficiency, if you know both sides are the same
version of Ruby, you can use Marshal instead of YAML
as the conveying format. Marshal uses a binary form of
the data as a storage mechanism instead of the plain-
text format used by YAML.

Both forms can be written to any file descriptor, not
just network sockets.

157

158 CHAPTER 13 Working with Networking and Sockets

Network Objects with
Distributed Ruby

require 'drb'

class Die
def roll(sides)
return rand(sides)
end
end

mydice = Die.new
DRb.start_service('druby://:7777', mydice)
DRb. thread.join

Distributed Ruby is a powerful RPC mechanism—
though it does lack some features of competitors. It
provides the ability to remotely access objects running
in a different Ruby VM as though they were local. The
preceding code makes the mydice object available on
the network. To access it as a client, you might use the
following code:

require 'drb'

DRb.start_service
remotedice =
DRbObject.new(nil, 'druby://localhost:7777")

puts "Remote rolled a: #{remotedice.rol1(100)}"

When both are run, remotedice is bound to the remote
object mydice; the client sends the parameters by
Marshal, and the result is returned the same way. This
would produce the following output on the client:

Remote rolled a: 83

Using Net: :HTTP 159

Using Net: :HTTP

require 'net/http’'

Net: :HTTP.start('www.gnome.org') do |httpsock]|
rsp = httpsock.get('/robots.txt')

puts rsp.body

end

Using Net: :HTTP is trivial as can be seen in this sample.
A few attributes are available that you may also find
interesting. For example, if #code doesn’t equal 200:

require 'net/http’
Net: :HTTP.start('www.gnome.org') do |httpsock|
rsp = httpsock.get('/foobar")
if rsp.code !'= 200
puts "Server error was: #{rsp.code}"
end

end

Running this produces the following:

Server error was: 404

160 CHAPTER 13 Working with Networking and Sockets

Using Webrick

require 'webrick'

server = WEBri :HTTPServer.new(
:Port => 1234,
:DocumentRoot => Dir.pwd)

class MRC_servlet <
WEBrick: :HTTPServlet: :AbstractServlet
def do_GET(request, response)
response.body =
'<html1><body>It works!</body></html>"

end
end

server.mount '/myrubycode', MRC_servlet
trap 'INT' do
server.shutdown

end

server.start

The preceding three stanzas of code start a web server
with the current path as the root directory, establish a
URL where actual Ruby code renders a web page,
and ensure that we can shut down the web server with
Ctrl+C. Any path for which permissions are available
can be given as :DocumentRoot. Without specifying a
port number, 80 is assumed.

Actual snippets of Ruby code can handle incoming
requests by associating servlets with URLs in the serv-
er’s virtual directory namespace. This is called mounting
and is achieved with the HTTPServer#mount method.

Using Webrick

The inheritance of HTTPServiet: :AbstractServiet pro-
vides the needed behind-the-scenes magic to make
modification of the response variable sufficient.

The result is shown in Figure 13.1.

File Edit View Go Bookmarks Tools Tabs Help
«v-9%» - QR AOMN | QQ €
[@ http:/flocalhost:1234/myrubycode] Go
It worls!

i1

Figure 13.1 Browser rendering “It works!”.

161

This page intentionally left blank

14

Working with
Threads

Threading is a wonderful tool with many complica-
tions. Although cross-platform threading is not impos-
sible, it’s difficult to get right. In Ruby, the built-in
threading support is implemented as Ruby threads.
These threads can be expected to work exactly the
same on every platform: Windows, Linux, and Mac OS
X. However, you should be aware of two serious draw-
backs. Ruby threads are simulated under one Ruby
process, therefore:

= Multiprocessor systems will not share the load of a
multithreaded Ruby application.

= If one of the pseudo-threads causes the Ruby
interpreter to “block” waiting for IO, all threads
will block.

The last point is likely the one you often will run
headlong in to. For example, if you write a GUI appli-
cation that reads data from the network and you do
not make careful implementation decisions, the Ul
may appear to “freeze” while Ruby is waiting to read

164

CHAPTER 14 Working with Threads

network data. Execution of your program continues
when the read operation is complete; however, the
freeze may lead the user to believe that your program
has crashed.

At the time of this writing, in the new version of the
Ruby 1.9 interpreter—YARV—that is in develop-
ment, native threads from the host operating system are
used. However, YARV will not benefit from the avail-
ability of more CPU processing cores due to cross-
thread locking mechanisms used to avoid thread data
corruption. This is the same thread synchronization
mechanism used by CPython. Although there clearly is
room for improvement, Ruby threading offers some
benefits. (YARV stands for Yet Another Ruby VM..)

Creating a Thread

@return_value = 0

@magicStuff = Thread::new do
puts 'A long process goes here.'
sleep 5
@return_value = 255

end

do other stuff while other thread is running ...
now we want to wait for the thread to finish
@magicStuff.join

puts "The return code was #{@return_value}."

Running the preceding code produces the following
output:

A long process goes here.
The return code was 255.

In the preceding code sample, an instance of the
Thread class is created using Thread: :new. The code in

Using a Timer

the supplied code block executes in a private scope.
That is, variables created inside the thread are local to
that thread. This is where things can get tricky.

Variables in existence when the thread is created will
be accessible from the outer program and also inside
the thread scope. Note, however, that these are refer-
ences, not copies, which means that if the main pro-
gram changes a variable’s value, the thread also sees
this—and vice versa. See “Synchronizing Thread
Communication” later in this chapter for more infor-
mation. In the preceding code block, I write to the
variable @return_value and then later access it from
outside the private thread scope. This is possible
because the @return_value variable was declared before
the thread was created.

Though you do not have to, it’s a good idea to always
use #join to close the threads that you create to ensure
that any clean-up code in your threads runs before
your whole program exits.

Using a Timer

@pid = fork do
puts 'A long process goes here.'
sleep 25
exit 255
end
@timer = Thread.new { sleep 3 }
loop do
if Process::wait @pid, Process::WNOHANG:

puts "The exit code was #{$?.exitstatus}."
@timer.kill
break

elsif not @timer.alive?:
puts 'Timed out; killing subprocess.'
Process::kill 'SIGTERM', @pid
break

165

166

CHAPTER 14 Working with Threads

end
sleep 1

end
@timer.join

Running the preceding code sample produces:

A long process goes here.
Timed out; killing subprocess.

Here, I expand on the earlier example of creating a
thread but use a child process as the item of interest.
The child process to watch is created through the use
of Process::fork. Using Process: :fork here allows me
to perform nonblocking inspection of the exit of the
child process and also to have access to Process::kil1
when I decide that the child has been running for too
long.

A Ruby library widely used for timers is called
Timeout. However, it uses exception raising and rescue
blocks to handle the expiration of the timer.
Unfortunately, this is prone to race conditions due to
the way that Ruby threads are implemented. See
Ruby-talk #113417 for an in-depth explanation of

why this behavior exists.

The timer implemented in the preceding code comes
in two parts: the thread that expires and a loop that
checks to see whether it has expired at some predeter-
mined interval. You can use any checking interval that
you want by modifying the value of the sleep argu-
ment at the end of the Toop. I chose a 1-second inter-
val because it suits this particular case well.

Although it may seem like more work to write your
own examination loop, it actually ends up being rather
equal work to using exception-based timers. For

Using a Timer

example, in the case where you have more than one
timer running at any given time, class inheritance must
be used to ensure that your rescue blocks do not acci-
dentally rescue the wrong timer expiration. To fix this
problem, we need two different exception classes that
inherit from Timeout:

require 'timeout'
include Timeout
class OuterTimeout < Timeout::Error

end
class InnerTimeout < Timeout::Error
end
begin
timeout 10, OuterTimeout do
begin
Tloop do

timeout 5, InnerTimeout do
simulate some work
Toop {}
end
end
rescue InnerTimeout
puts 'Inner Expired’
retry
end
end
rescue OuterTimeout
puts 'Outer Expired'
end

But this doesn’t fix all the problems with exception-
based timers. For example, what happens if a second
timer expires in the middle of running the rescue
block from the first timer expiration? The solution to
this corner case is to have the outer and inner code
block wrapped in two begin-ensure-end, respectively.

167

168 CHAPTER 14 Working with Threads

As you might imagine, the code required to do some-
thing as simple as cycle through a list of network mir-
rors with a cap on the total runtime of the application
becomes a nightmare: seven layers of nested blocks to
account for all the corner cases discussed previously.
Even then, its not 100% reliable; for example, sTeep
has some corner cases that do not work with the pre-
ceding code sample.

Sometimes Timeout: : timeout is the right tool for the
job, but you may find that you’d rather stick with a
good old Toop.

Killing a Thread

@threadA = Thread: :new do
begin
puts 'Thread A does some work.'
sleep 5
ensure
puts 'Clean up code for A goes here.'
end
end
@threadB = Thread::new do

begin

puts 'Thread B does some work.'

sleep 5
ensure

puts 'Clean up code for B goes here.'
end

end
@threadA.kill
@threadB.kil1!

When run, the preceding code produces this output:

Thread A does some work.
Thread B does some work.
Clean up code for A goes here.

Synchronizing Thread Communication

#ki11 and #exit and #ki11! and #exit! are respective
co-aliases for the family of instance methods that ter-
minate a running thread. This action causes the next
scheduled thread (or main thread) in the queue to
immediately resume execution. The difference between
the two forms is simply that the latter two forms—
#ki11! and #exit!—will not run the code in ensure
blocks contained within the thread being killed.

Synchronizing Thread
Communication

require 'thread'
require 'monitor'
Tight_switch = 0
Tight_switch_handle = Monitor.new
Tight_on_bureaucrat = Thread.new do
100000. times do
Tight_switch_handle.synchronize do
if 1ight_switch == 0
Tight_switch += 1
end
end
end
end

Tight_off_bureaucrat = Thread.new do
100000. times do
Tight_switch_handle.synchronize do
if Tight_switch
Tight_switch -=
end

end
end
end
Tight_on_bureaucrat.join
Tlight_off_bureaucrat.join
puts light_switch

169

170

CHAPTER 14 Working with Threads

Thread synchronization is—perhaps—the most diffi-
cult and complicated of all programming problems.
Fortunately, Ruby’s threading model and libraries make
it easy to solve some really common components of
this issue. In the preceding, contrived code sample, two
bureaucrats at the Office of Lightswitchery race each
other to look busy flipping the same light switch.
Admittedly, the following lines are too short to have
much of an opportunity for a race condition:

if light_switch ==
Tight_switch += 1
end

However, under the right conditions, it is conceivable
that Ruby’s VM could schedule the thread out right
after the if statement and before the += assignment.
The class Monitor solves this problem. (Mutex also solves
the same problem with less overhead and features—it’s
not reentrant.)

The #synchronize method ensures that the code inside
its provided block is the only concurrently running
copy of itself. In this case, both threads compete for
the lock on Tight_switch_handle to be allowed to exe-
cute their update code.

Additionally, Monitor has the handy capability to be
mixed in to an existing class. In so doing, this
LightSwitch class automatically gets its own
#synchronize method.

require 'thread'

require 'monitor’'

class LightSwitch
include MonitorMixin

Synchronizing Thread Communication

attr :state
def initialize
@state = 0
super
end
def switch_on
synchronize { @state += 1 }
end
def switch_off
synchronize { @state -= 1 }
end
end
Tight_switch = LightSwitch.new
Tight_on_bureaucrat = Thread.new do
100000.times do
if light_switch.state == 0:
Tight_switch.switch_on
end
end
end
Tight_off bureaucrat = Thread.new do
100000.times do
if light_switch == 1:
Tight_switch.switch_off
end
end
end
Tight_on_bureaucrat.join
Tight_off _bureaucrat.join
puts Tlight_switch.state

You can get some idea of the overhead involved in
using Monitor by running the preceding code samples
with and without the #synchronize method calls. You
should see a large difference in run times on some-
thing this simple.

171

172 CHAPTER 14 Working with Threads

Multithreaded Exception
Gathering

require 'thread'
class SnakeEye < Exception
end
exception_queue = Queue.new
worker = Thread.new do
@counter = 0
begin
until @counter==100 do
@counter += 1
sleep 0.02
if rand(6) ==
raise SnakeEye.new(
"'Snake Eye at #{@counter}!")
end

end
rescue SnakeEye => e

exception_queue.enq e
retry
end
end
while worker.alive? or
not exception_queue.empty? do
Check for waiting exceptions every second.
Report them to the user if found.
until exception_queue.empty? do
e = exception_queue.deq
puts e
end
sleep 1
end
worker.join

Because it is generally considered a good idea to have
only one user-interacting thread, the preceding code
sample lays out a framework for collecting thread
exceptions and relaying them to the main thread for
display to the user. In this way, any debugging or log-
ging faculties can be handled in a uniform fashion. In

Multithreaded Exception Gathering

the preceding code sample, I report something similar
to the following;:

Snake Eye at 4!
Snake Eye at 9!
Snake Eye at 12!
Snake Eye at 18!
Snake Eye at 19!
(and so on)

The Queue class provides the synchronization. Inside
the worker thread, a SnakeEye exception gets handled
by the thread’s own rescue block.The exception object
e is then enqueued to the exception_queue. After the
object is inside exception_queue, it’s merely a matter of
periodically checking this queue with the #empty?
method.

I simply output the messages waiting to be delivered to
the user, but you could also use the syslog module’s
debug method to log exceptions in your server-bound
programs.

173

This page intentionally left blank

15

Documenting Your
Ruby

During the 1.8 release cycle of Ruby, RDoc became
the de facto documentation standard for the Ruby
project, and eventually every core and standard library
module’s documentation was ported over to it. RDoc
is now included in Ruby’s standard library.

RDoc scans Ruby or C code and outputs either
HTML or binary files suitable for use with the ri
command. By using RDoc, your program or module
can install documentation in the system, site, or user ri
documentation directories just like Ruby’s own
included documentation.

There are other documentation options, but nothing
rivals RDoc in terms of sheer market penetration. This
chapter focuses exclusively on RDoc.

176

CHAPTER 15 Documenting Your Ruby

Documenting Ruby Code

This is my *Foo* class!
class Foo
This 1is my *Foo* method, *Foo#bar*
It does lots of interesting things to
instances.
def bar
end

This 1is my *Foo* class method, *Foo.baz*.
It touches class variables.

def baz

end

=begin rdoc
This is my *Foo* class!
=end
class Foo
=begin rdoc
This is my *Foo* method, *Foo#bar*
It does Tots of interesting things to
instances.
=end
def bar
end

=begin rdoc

This is my *Foo* class method, *Foo.baz*
It touches class variables.

=end

def Foo.baz

end

Both the # style and multiline style of Ruby comment
are supported by RDoc. To make a comment private,
you can simply remove the rdoc directive from the
multiline form. For other ways of making RDoc skip
comments, see the sections “Typographic Conventions

Typographic Conventions Used

Used” or “Hiding a Module, Class, or Method” later in
the chapter.

‘When the preceding forms of comments are passed
through RDoc, they produce documentation associat-
ed with each method, class, or module. RDoc auto-
matically recognizes syntax conventions such as
Class.method and Object#method. The next section gives
more examples of special syntax, which can be used to
give RDoc hints about linking and font style.

Typographic Conventions Used

For emphasis, use _italic_ typeface.
For strong statements, use *bold* typeface.
For code samples, use +typewriter+ typeface.

For multi-word or multi-1ine typeface
changes, one can use HTML-style mark-up
code: <tt>em, b and tt</tt>, respectively.

\ escapes interpretation of markup

--' on a line causes RDoc to ignore subsequent
lines. These 1lines would be ignored.

#++

'++' causes RDoc to continue interpretation.
These T1ines would appear in documentation.

FH O OH KR H KR H R W R W®HR

Methods are referenced by their #method_name
preceded by a # character.

Internet URL's such as http://www.foobar.baz/
are automatically hyperlinked. tags to
local files are also interpreted. You can also
give a {site label}[http://foo.baz/] to a
hyperlink. This site label replaces the URL in
the generated HTML documentation

#
#
#
#
#
#
#
#
#
#
#
#
#

177

178 CHAPTER 15 Documenting Your Ruby

1. This is a numbered Tist.
2. It has a few items.

* This is a bulleted Tist.
* It also has a few items.
the bullet instead of '

can be used for

a. And what Tist support would be complete
without support for alpha lists?
b. Not RDoc, of course.

[dictionaries] Lists of words with their
associated definitions; the "[]"s do the
magic. In the generated documentation, this
text would appear next to the word
"dictionaries" in a style reminiscent of a
standard dictionary definition.

aligned dictionaries::
Lists of words with their definitions but the
output 1is displayed in a table-1ike format.
This is handy to help control the style of
the output, keeping the columns aligned.
Additionally, note that the ‘indented
definition can start on the same 1ine or on
the next Tine.

= This would be rendered as a "Heading 1" style
== And this would be rendered as a "Heading 2"
style in a smaller font than "Heading 1"

The above 1ine causes a "horizontal rule" to be
inserted in the output. Note that this is
different from a T1ine that starts with "#--";
the additional space is the differentiating
factor.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

All of the above typographic conventions apply to C
extensions as well. The only difference between Ruby
code and C is that comments begin with /* and end
with #/; intermediate lines start with *—programmers
might recognize this as the doxygen-style comment

block.

Overriding Method Signatures in Documentation

Overriding Method Signatures
in Documentation

:call-seq:
width
height

My foo method!
def foo funky_variable_names, are_here
end

The preceding code forces the names of parameters in
the method parameter list to take on the names in the
list following the :call-seq: token. So, if the override
had not been used, RDoc would have generated a
method signature with funky_variable_names, are_here
as the parameters to the foo method. Instead, width and
height are displayed as the parameters.

Additionally, the directive :yield: followed by a list
forces RDoc to rename any variables yielded to
associated code blocks. For example, the following
code snippet would display event_to_handle as the
yielded variable instead of received_event:

:yield:
event_to_handle
#

My listen method!

def Tisten &event_handler
#... some kind of IO listener here
yield received_event

end

179

180

CHAPTER 15 Documenting Your Ruby

Hiding a Module, Class, or
Method

module Mod # :nodoc: all
end

class Klass # :nodoc: all

end

def meth # :nodoc:
end

>

In the preceding code :nodoc:” occurring after the #
suppresses documentation generation for each respec-
tive module, class, or method. In the case of a module

or class, you need to insert :nodoc: all.

Providing Program Usage Help

This is my example program!
It outputs a Hello World.

Usage:
example.rb [--help]

My licensing and copyright notification here.

require 'rdoc/usage’'
require 'optparse'

user_options = OptionParser.new
user_options.on('-h', '--help') { RDoc.usage 1 }
user_options.parse ARGV

puts 'Hello World!'

Providing Program Usage Help

The preceding code might be stored in a file named
example.rb. When the -h parameter is passed to this
program, it produces the following:

This is my example program! It outputs a *Hello
World*.

Usage:
example.rb [--help]

If the main Ruby file of your program begins with an
RDoc style comment that is separated with whitespace
from any modules, classes, or methods, that comment
will be output to STDOUT when the class method
RDoc.usage() is called.

In the preceding example, the parameter 1 is used to
cause RDoc.usage to exit with a nonzero exit code.
Returning a nonzero exit code is expected when no
action has been taken by the program.

To output the usage information even in cases where
the options passed to the program are incorrect, use a
rescue block around OptionParser#parse to cause
RDoc.usage() to be called. For example:

begin

user_options.parse ARGV
rescue

RDoc.usage 1
end

Alternatively, RDoc.usage_no_exit() will not exit after
output.

181

182

CHAPTER 15 Documenting Your Ruby

Generating HTML
Documentation

This is placed in a directory containing all your Ruby
code, recursively. Or, for a specific file:

$ rdoc specific.rb

In the first case, the current directory is recursed to
find all Ruby files and establish any relationships
between files.

In both cases, documentation is output in HTML for-
mat to the doc directory in the current directory.

Generating and Installing
Documentation for ri

$ rdoc --ri file(s)

This command generates the needed files for ri and
places the output in your home directory under a
directory named .rdoc. file can be a file or directory
containing all your Ruby code; it is recursively
scanned for comments.

In the case where you want the documentation
installed to a systemwide directory that is protected
from Linux package manager manipulation:

$ rdoc --ri-site file(s)

Generating and Installing Documentation for ri

In both cases, the binary ri documentation format is
generated and output to the directories required for ri
to automatically find the documentation.

One final version is used only by someone who makes
a package/tarball for a Linux distribution or an
installer for another OS. The files installed by
--ri-system are inserted into a directory, which is
assumed to be managed by the OS package manager
(that is, the contents may be overwritten during
upgrades between versions of a particular piece of
software that provides ri documentation).

$ rdoc --ri-system file(s)

When using ri to test your documentation, remember
that ri searches for and displays information by mod-
ule, class, or method name.

183

This page intentionally left blank

16

Working with Ruby
Packages

Before RubyGems came along, module distributors
were left to their own devices—many opting to utilize
some variation on setup.rb and install.rb-for distrib-
uting their packages. Underpinning these are generally
Rakefiles and Makefiles. For programmers coming
from *nix, this is a familiar convention. However, a lot
is left to the module maintainers to implement on
their own. RubyGems provides an easier way.

Today we have two complementary packaging systems:
setup.rb and RubyGems. The two systems are both
important: For packages that need a commitment to
security, getting security updates from your *nix distri-
bution requires that the module has been packaged in
that distribution’s packaging format. For example, con-
sider Rails.

Maybe Rails is going to run your giant, money-making,
Web 2.0 site. Wouldn't it be nice if, when running
security updates on your web server, Rails was includ-
ed? Well, in a number of distributions it is. For exam-
ple, in Debian, Rail’s source tarballs are downloaded,

186

CHAPTER 16 Working with Ruby Packages

and setup.rb-style packaging is easily converted in to a
.deb package. (There are distributions that mash Gems
packaging and distro packaging together in an unholy
pile of mush—for example, Fedora.) Later in the sec-
tion “Making Rakefile Standalone,” I demonstrate how
to easily make both systems available to distributors.

On the flip side of this consideration, if you want
Win32 users to be able to easily install and update
your modules, RubyGems must be supported because
that OS does not provide a unified update system.

It is absolutely vital that you implement both setup.rb
and RubyGems style packaging. Implementing both is
a little more work, but it’s not too imposing: You can
have both styles in the same tarball or ZIP file, and
your users can decide which style is right for them.

For this section’s examples, we are packaging a simple
RSS reader based on the one from Chapter 9,
“Processing XML.” It has simple dependencies, and
we’ll modify it to make it suitable for use as a rudi-
mentary “library.”

require 'rexml/document’

##
RSSSimple, an example
#
module RSSSimple
##

This method takes an RSS document and

outputs plain text with Tinks.

#

def RSSSimple::prettyprint(rssdata)
myxm]l = REXML::Document.new rssdata.body
myxm1.each_element('rss/channel/item') do |e]

Installing a Module 187

puts e.elements['title'].text
puts "=> #{e.elements['Tink'].text}"
end
end
end

Note that I excluded packaging a C-based Ruby
extension and its extconf.rb. While this is worthwhile,
it’s an expansive subject with myriad complications—
far beyond the scope of this book.

Installing a Module

gem install rails

This command invokes RubyGems, fetches the latest
list of packages from the online repository, fetches
dependencies, and installs your module (Rails, in this
case). Note that on distributions that commit to secu-
rity updates for Ruby modules (for example, Debian),
this command would be as follows:

aptitude install rails

RubyGems is provided by every major Linux distribu-
tion, BSD distribution, and Solaris. On a Mac, you’ll
need to install it from source and compile using the
following:

ruby setup.rb

For Win32, you’ll need to install the ZIP file from
rubygems.org the same way.

You can confirm that everything is installed correctly
by running this command:

gem spec rails

188

CHAPTER 16 Working with Ruby Packages

Removing a Module

gem uninstall rails

This removes a gem but not necessarily any of the
dependencies that were brought in to support it. Those
would have to be removed manually.

Searching for a Module

gem query --remote --name-matches foo

This searches the Gem source index for any modules
that match the name regex. The output would resem-
ble the following:

w*% REMOTE GEMS *%%*
Bulk updating Gem source index for:
http://gems.rubyforge.org

foo (1.0)
ufooar (0.1.1.140)

Updating Modules

gem update

This updates all installed modules, which is usually a
good idea as new versions provide bug and security
fixes. You should test that the new version doesn’t
break your production environment before deploying
it. Cleverly, until you run gem cleanup old versions will
remain present.

http://gems.rubyforge.org

Packaging Your Module with Hoe 189

Examining a Module

gem unpack modulename
gem fetch modulename

gem specification modulename

To examine the contents of a module that has already
been installed, run the first command. To examine a
module that hasn’t been installed yet, use the second
command. To examine the technical details of an
installed module, run the last command.

Packaging Your Module
with Hoe

sudo gem install hoe

sow rsssimple
mv -f rsssimple.rb rsssimple/1ib/

cd rsssimple
$(EDITOR) README.txt
$(EDITOR) Rakefile
rake package

The preceding sequence of commands will take you
from zero to fully packaged. However, before running
the final command you need to do a little house-
keeping. Before running rake, modify the Rakefile to
resemble the following:

-*- ruby -*-

require 'rubygems'
require 'hoe'
require './lib/rsssimple.rb'

190 CHAPTER 16 Working with Ruby Packages

Hoe.new('rsssimple', RSSSimple::VERSION) do |p]|
p.developer('Jason Clinton',
'me@jasonclinton.com')
p.summary = 'Not intended for production.'
end

vim: syntax=Ruby

The preceding set of actions results in the generation
of a pkg directory containing both a tarball and a gem
file.

Explore what other commands have been magically
created for you by running the following command:

rake -T

Creating a Simple Test Case

require './1lib/rsssimple.rb’'

require 'net/http’'
http = Net::HTTP.new 'www.npr.org'
http.open_timeout = 30

http.start

raise "Connection failed." unless http
response = http.get('/rss/rss.php?id=1001"')
RSSSimple: :prettyprint(response)

Placing this code in lib/test_rsssimple.rb enables a
rake test rudimentary test case. When run from the
top-level directory, the output resembles:

Woods Wins Golf's U.S. Open in 19-Hole Playoff
=> http://www.npr.org/templates/story/. ..

Iowa Flood a Huge Blow to Tiny Oakville

=> http://www.npr.org/templates/story/...

Distributing Your Module on RubyForge

Distributing Your Module on
RubyForge

$ rubyforge setup

$ rubyforge config
Getting jclinton
Fetching 1 projects

$ rubyforge names
groups:

packages: rsssimple

$ $(EDITOR) History.txt
rubyforge login

rake release VERSION='0.0.1"'
rake announce

rake publish_docs

$
$
$
$

The preceding eight commands are all that are
required to go from nothing to fully open source.
RubyForge is generous in granting project space; if
you haven’t already, you’ll need to apply for space. The
approval process usually takes a day.

Only the last four commands need to be run to update
RubyForge with any new release of your project.

The first command, setup, creates a config file and
invokes your text editor so that you may supply your
username and password to RubyForge.

The second command, config, fetches information
about your account from RubyForge.

The third command, names, is only informative. It
shows a list of projects known to RubyForge.

It’s always a good 1dea to record notable changes that
should be heeded by your end users in History.txt. The
information entered here is referred to again.

Togin caches an authentication token with RubyForge
that can be used for later uploads.

191

192

CHAPTER 16 Working with Ruby Packages

The final three commands perform the actual release.
The release commands version parameter provides a
way to do some additional sanity checking; it needs to
align with the VERSION in your project’s variable decla-
ration of VERSION included in the Rakefile. announce
creates a nice template email in email.txt that you can
use to mail your adoring fans. Finally, publish_docs
provides an rdoc-style documentation repository for
your users to browse on your RubyForge project page!

Making Rakefile Standalone

$:.unshift '../1ib"'
require 'rsssimple’
require 'rake/testtask'
require 'rake/packagetask’
require 'rake/rdoctask’
require 'rake'

require 'find'

PKG_NAME = 'rsssimple’
PKG_VERSION = RSSSimple::VERSION
PKG_FILES = []

File.open('Manifest.txt', 'r') do |file|
file.readlines.each do |1ine|
PKG_FILES << T1ine.chomp
end
end

Rake: :RDocTask.new do |rd|
rdoc_files = []
Find.find('1ib/') do |file|
rdoc_files << file if file =~ /.*rb$/
end
rd.rdoc_files.include(rdoc_files)
rd.options << '--all’
end

Rake: :PackageTask.new(PKG_NAME, PKG_VERSION) do |p|
p.need_tar = true

Making Rakefile Standalone
p.package_files = PKG_FILES
end
begin
require 'rubygems'

require 'hoe'

Hoe.new('rsssimple', RSSSimple::VERSION) do |p|

p.developer('Jason Clinton',
'me@jasonclinton.com')
p.summary = 'Not intended for production.’
end
rescue LoadError
end

vim: syntax=Ruby

The preceding modifications simply wrap the Rakefile
that we already had in a begin/end block. This prevents
Rake from failing because RubyGems is not there. In
this way, we can help Linux distributors who want to
package our library without depending on
RubyGems.

The rest of the file is straightforward Rake syntax. I
have provided a simple set of basic Rake rules to get
you started: Make a tarball of the project and generate
RDoc documentation. Unfortunately, Rake’s features
are much deeper than I have space to cover here.

After the modifications to the file are complete, two
new commands become available: rake package and
rake rdoc.These two commands are not dependent on
the presence of RubyGems.

193

This page intentionally left blank

Index

Symbols

#count, searching strings,
20

#each, 37

#index, searching strings,
20

#puts, 71
#split, 72

$SAFE variable, setting
security level, 136-137

A

accessing XML elements,
93-95

adding

users from text files,
88

XML elements, 96
attributes, 99
application development
Glade, 113-114

Qt Designer, 118-120,
123

application developments
toolkits
GTK+, 108110
Qt 4,107, 117

Array#collect, 42
Array#map, 42
arrays

eliminating duplicate
data from, 46-47

iterating over, 37-38

modifying all values
in, 42

nested arrays
iterating over, 41
sorting, 42-43

slicing, 35-37

sorting, 40-41

to hashes, 13-14

to sets, 15

to strings, 10-11

attr reader(), 60

attributes of XML ele-
ments

adding, 99
listing, 95
modifying, 99

B-C

binary mode (Win32),
when to use, 73

196

callbacks

callbacks, 109

capturing output of child
processes, 64

CGl, processing web
forms, 128-130

checksumming strings,
31-32

child processes, capturing
output of, 64

classes

enumerable classes,
creating, 38-40

inspecting, 50
closing
files, 69-70

database connec-
tions, MySQL, 144

threads, 165
collections, 35
comments, RDoc, 177
comparing

objects, 52-53

strings, 31
config files

creating hashes, 44

parsing, 78-79
connecting

to databases,
143-144

to TCP sockets, 153
copying files, 74-75

counting lines in files, 84
creating
MySQL tables, 145

standalone Rakefile,
192-193

threads, 164

D

data

eliminating duplicate
data from arrays,
46-47

graphic representa-
tion, 138-141

databases
connecting to, 143
MySQL
connecting to, 144

tables, adding
rows, 146

tables, creating,
145

tables, deleting,
148-149

tables, deleting
rows, 147

tables, iterating
over queried
rows, 147

tables, listing, 146

deleting

all files just extracted,
89

empty directories, 88
files, 74-75

tables, 148-149
XML elements, 98

directories, deleting
empty directories, 88

distributed Ruby, network-
ing objects, 158

distributing modules on
RubyForge, 191

documentation

program usage help,
180-181

RDoc, 175177

typographic conven-
tions, 178

domain-specific
language, 3

duck typing, 6, 51-52
duplicating objects, 54-55

E

elements (XML)
adding, 96
attributes, 99
deleting, 98

enclosed text,
modifying, 97

files

eliminating duplicate
data from arrays, 46-47

encrypting strings, 32-33

entity references, 100,
135

enumerable classes, cre-
ating, 38-40

escaping

HTML, 87

input, 134-136
examining modules, 189

exception-based timers,
167

exceptions, multithread-
ed, gathering, 172

expired threads, timers,
166-167

expressions
replacing substrings
with regular expres-
sions, 26
searching strings with

regular expressions,
21-22

false, 17
feeds, RSS, 104-105
files

binary mode (Win32),
when to use, 73

closing, 69-70

197

files

copying, 74-75
counting lines in, 84
deleting, 74-75, 89

exclusive locks,
obtaining, 74

heads, 84-85
moving, 74-75
opening, 69-70

passwd files, process-
ing, 81

searching large file
contents, 70-72

sorting contents of,
80

tails, 84-85
floating-points, 15-17
for loops, 37

formatted strings, num-
ber to, 7-10

functions, attr reader(),
60

G

garbage collecting, 56-57

gathering multithreaded
exceptions, 172

gems, removing, 188
Glade, 113-114

graphically representing
data, 138-141

groups of bites, 72
GTK+, 109

GUI toolkits
GTK+, 109
Qt 4, 107, 117

H

Hash, 86
hashes

creating from config
files, 44

sorting by key or
value, 45-46

to arrays, 13-14
head of files, 84-85

Hello World application,
GTK+, 108-109

Hoe modules, packaging,
189

HTML, escaping, 87
HTTP fetch, 86

implementing progress
bars, 65

input
escaping, 134-136
sanitizing, 27-28

inspecting objects and
classes, 50

installing modules, 187
integers, 15-17

interactive standard
pipes, 62-63

interpolating one text file
into another, 79-80

10#gets, 71

iterating over arrays,
37-38, 41

J-K

keys, sorting hashes,
45-46

killing threads, 169

L

LDIF, parsing, 77-78
line endings, 28-30
lines, counting in files, 84
listing
MySQL tables, 146

XML element attrib-
utes, 95

locks, obtaining exclusive
locks, 74

loops, for loops, 37

manipulating text

contents of files, sort-
ing, 80

LDIF, parsing, 77-78

passwd files, process-
ing, 81

MySQL

simple config files,
parsing, 78-79

text files, interpolating
one into another,
79-80

MD5 (message digest 5),
85-86

modifying
enclosed text of XML
elements, 97

values in arrays, 42

XML elements, attrib-
utes, 99

modules

distributing on
RubyForge, 191

examining, 189

packaging with Hoe,
189

removing, 188

searching, 188

updating, 188
mounting, 160
moving files, 74-75

multithreaded exceptions,
gathering, 172

MySQL

opening/closing
connections, 144

tables
creating, 145
deleting, 148-149

199

MySQL

iterating over
queried rows,
147

listing, 146
rows, adding, 146
rows, deleting, 147

nested arrays
iterating over, 41
sorting, 42-43

nested sets, 47-48

Net::HTTP, 159

networking objects with
Distributed Ruby, 158

numbers
from strings, 6
to formatted strings,
7-10
numeric SprintF codes,
89

0

objects
comparing, 52-53
duplicating, 54-55
inspecting, 50
networking with dis-
tributed Ruby, 158

protecting instances,
55-56

serializing, 53,
156-157

string presentations
of, 50-51

ObjectSpace, 56

obtaining exclusive locks,
74

opening
files, 69-70

XML files with REXML,
92

opening database con-
nections, MySQL, 144

operators, string slicing
operators, 11

0S line endings, 28-30

P

packaging modules with
Hoe, 189

packaging systems, 185
parsing
LDIF, 77-78

simple config files,
7879

passwd files, processing,
81

passwords, creating
secured password
prompts, 66-67

pipes, 61-63

processing
large strings, 30-31
psswd files, 81
web forms, 128-130

progress bars, imple-
menting, 65

protecting object
instances, 55-56

QR

Qt 4,107, 117

Qt Designer, 118-120,
123

Rakefile, making stand-
alone, 192-193

rational numbers, 15-17
RDoc, 175-177

program usage help,
180-181

typographic conven-
tions, 178

receiving uploaded files,
137-138

regular expressions, con-
verting strings to regu-
lar expressions and
back again, 12-13

removing modules, 188

Ruby threads

replacing substrings,
23-24

with regular expres-
sions, 26

with SprintF, 24-25

representing data graphi-
cally, 138-141

returning tabled results,
131-133

REXML, 91
elements
accessing, 93-95
adding, 96
attributes, 95, 99
deleting, 98

enclosed text,
changing, 97

RSS parser example,
104-105

XML files, opening, 92

XML validation, per-
forming, 102

rows

adding to MySQL
tables, 146

deleting from MySQL
tables, 147

rrdtool, 140

RSS (Really Simple
Subscriptions), 104-105

Ruby threads, 163

201

202

ruby-xslt module

ruby-xslt module,
100-102

RubyForge modules, dis-
tributing, 191

RubyGems, 185-187

S

sanitizing input, 27-28

searches, simple search-
es, 84

searching

large file contents,
70-72

modules, 188
strings, 20-21

secured password
prompts, creating,
66-67

security level of $SAFE
variable, setting,
136-137

serializing objects, 53,
156-157

sets
nested sets, 47-48
to arrays, 15
setup.rb, 185
SHA1, 86

signal handlers, attaching
to Qt 4 widget slots,
117

slicing arrays, 35-37

sockets, 151-152
connecting to, 153

running TCP servers
on, 155

sort.reverse, 88

sorting
arrays, 40-41
contents of files, 80

hashes by key or
value, 45-46

nested arrays, 42-43
SprintF

numeric arguments, 9

numeric codes, 8

replacing substrings,
24-25

standalone Rakefile, cre-
ating, 192-193

STDERR, 61-64
STDIN, 61
STDOUT, 61-64

string slicing operators,
11

strings
checksumming, 31-32
comparing, 31
converting
to arrays, 10-11

to regular expres-
sions and back
again, 12-13

encrypting, 32-33

formatted strings,
7-10

number from, 6

object presentations,
50-51

processing large
strings, 30-31

searching, 20-22

substrings, replacing,
23

with regular expres-
sions, 26

with SprintF, 24-25
Unicode, 26-27
stty, 66
substrings, replacing, 23

with regular expres-
sions, 26

with SprintF, 24-25
symbols, 57-60
synchronizing

STDERR, 63-64

STDOUT, 63-64

synchronizing thread
communication,
170-171

T

tabled results, returning,
131-133

tables, MySQL
adding rows to, 146
creating, 145

threads

deleting, 148-149

deleting rows from,
147

iterating over queried
rows, 147

listing, 146
tails, 84-85

tainted variables,
136-137

TCP connect, 87

TCP sockets, 153-155
terminating threads, 169
text, manipulating

contents of files, sort-
ing, 80

LDIF, parsing, 77-78

passwd files, process-
ing, 81

simple config files,
parsing, 78-79

text files, interpolating
one into another,
79-80

text files
adding users from, 88

interpolating into
another text file,
79-80

threads
closing, 165
creating, 164

exceptions, gathering,
172

203

threads

killing, 169
Ruby threads, 163

synchronization,
170171

timers, 166-167

YARV, 164
timers, 166-167
toolkits

GTK+, 109

Qt 4,107, 117

typographic conventions
(RDoc), 178

U-V-W

Unicode strings, 26-27
updating modules, 188

uploaded files, receiving,
137-138

users, adding from text
files, 88

validating XML, 102
values

modifying in arrays,
42

sorting hashes, 45-46

variables, tainted,
136-137

web forms, processing,
128-130

Webrick, 160

X-Y-Z

XML (Extensible Markup
Language), 91

elements
accessing, 93-95
adding, 96
attributes, 95, 99
deleting, 98

enclosed text,
changing, 97

entity references, 100
files, opening, 92
validating, 102

XPath, accessing XML
elements, 94-95

XSLT, ruby-xslt module,
100-102

YAML, serializing objects,
156-157

YARV, 164

This page intentionally left blank

PHRASEBOOK

ESSENTIAL CODE AND COMMANDS

e o Developer’s Library Phrasebooks
provide a handy reference to
common, everyday code “phrases.”
Lin ux Phrasebooks are written for
programmers and power users
who are comfortable with new
technologies but who need to find
out how to accomplish a specific

task quickly and efficiently.

PHRASEBOOK

Linux Phrasebook Scott Granneman
ISBN-13: 978-0-672-32838-1

PHP Phrasebook Christian Wenz
ISBN-13: 978-0-672-32817-6

MySQL Phrasebook Zak Greant and Chris Newman
ISBN-13: 978-0-672-32839-8

Apache Phrasebook Daniel Lopez and Jesus Blanco
ISBN-13: 978-0-672-32836-7

JavaScript Phrasebook Christian Wenz
ISBN-13: 978-0-672-32880-0

Python Phrasebook Brad Dayley
ISBN-13: 978-0-672-32910-4

Developer’s Library books are available at
most retail and online bookstores. For more
information or to order direct visit our online
bookstore at informit.com/store

Online editions of all Developer’s Library E%veloper’s
titles are available by subscription from ibrary
Safari Books Online at safari.informit.com informit.com/devlibrary

	Ruby Phrasebook
	Table of Contents
	Introduction
	Audience
	How to Use This Book
	Conventions
	Acknowledgments

	1 Converting Between Types
	Number from a String
	Number to Formatted String
	String to Array and Back Again
	String to Regular Expression and Back Again
	Array to Hash and Back Again
	Array to Set and Back Again
	Floating-Point, Integer, and Rational Numbers

	2 Working with Strings
	Searching Strings
	Searching Strings with Regular Expressions
	Replacing Substrings
	Replacing Substrings using SprintF
	Replacing Substrings using Regu
	Working with Unicode
	Sanitizing Input
	Working with Line Endings
	Processing Large Strings
	Comparing Strings
	Checksumming a String (MD5 or Otherwise)
	Encrypting a String

	3 Working with Collections
	Slicing an Array
	Iterating over an Array
	Creating Enumerable Classes
	Sorting an Array
	Iterating over Nested Arrays
	Modifying All the Values in an Array
	Sorting Nested Arrays
	Building a Hash from a Config File
	Sorting a Hash by Key or Value
	Eliminating Duplicate Data from Arrays (Sets)
	Working with Nested Sets

	4 Working with Objects
	Inspecting Objects and Classes
	String Presentation of Objects
	Ruby-Style Polymorphisms (“Duck Typing”)
	Comparing Objects
	Serializing Objects
	Duplication
	Protecting an Object Instance
	Garbage Collecting
	Using Symbols

	5 Working with Pipes
	Determining Interactive Standard Pipes
	Synchronizing STDERR with STDOUT
	Capturing the Output of a Child Process
	Implementing a Progress Bar
	Creating a Secured Password Prompt

	6 Working with Files
	Opening and Closing Files
	Searching and Seeking Large File Contents
	When to Use Binary Mode (Win32)
	Obtaining an Exclusive Lock
	Copying, Moving, and Deleting Files

	7 Manipulating Text
	Parsing an LDIF
	Parsing a Simple Config File
	Interpolating One Text File
	Sorting the Contents of a File
	Processing a passwd File

	8 Ruby One-Liners
	Simple Search
	Counting Lines in a File
	Head or Tail of a File
	MD5 or SHA1 Hash
	Simple HTTP Fetch
	Simple TCP Connect
	Escaping HTML
	Deleting Empty Directories
	Adding Users from a Text File
	Delete All the Files Just Extracted

	9 Processing XML
	Opening an XML File
	Accessing an Element (Node)
	Getting a List of Attributes
	Adding an Element
	Changing an Element’s Enclosed Text
	Deleting an Element
	Adding an Attribute
	Changing an Attribute
	Deleting an Attribute
	Escaping Characters for XML
	Transforming Using XSLT
	Validating Your XML
	A Simple RSS Parser

	10 Rapid Applications Development with GUI Toolkits
	A Simple GTK+ Hello World
	Using Glade
	A Simple Qt Hello World
	Attaching a Signal Handler to a Qt Widget Slot
	Using Qt Designer
	Attaching Signal Handlers to Qt Designer Generated Code

	11 Simple CGI Forms
	Processing a Web Form
	Returning Tabled Results
	Escaping Input
	Locking Down Ruby
	Receiving an Uploaded File
	Representing Data Graphically

	12 Connecting to Databases
	Opening (and Closing) a MySQL Database Connection
	Creating a Table
	Getting a List of Tables
	Adding Rows to a Table
	Iterating Over Queried Rows
	Deleting Rows
	Deleting a Table

	13 Working with Networking and Sockets
	Connecting to a TCP Socket
	Running a TCP Server on a Socket
	Serializing Objects with YAML
	Network Objects with Distributed Ruby
	Using Net::HTTP
	Using Webrick

	14 Working with Threads
	Creating a Thread
	Using a Timer
	Killing a Thread
	Synchronizing Thread Communication
	Multithreaded Exception Gathering

	15 Documenting Your Ruby
	Documenting Ruby Code
	Typographic Conventions Used
	Overriding Method Signatures in Documentation
	Hiding a Module, Class, or Method
	Providing Program Usage Help
	Generating HTML Documentation
	Generating and Installing Documentation for ri

	16 Working with Ruby Packages
	Installing a Module
	Removing a Module
	Searching for a Module
	Updating Modules
	Examining a Module
	Packaging Your Module with Hoe
	Creating a Simple Test Case
	Distributing Your Module on RubyForge
	Making Rakefile Standalone

	Index
	A
	B-C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U-V-W
	X-Y-Z

