
SQL Primer
An Accelerated Introduction 
to SQL Basics
—
Add a core competency to 
your skill set that every 
programmer, system administrator, 
database administrator, 
and data scientist should have
—
Rahul Batra

www.allitebooks.com

http://www.allitebooks.org


SQL Primer
An Accelerated Introduction  

to SQL Basics

Rahul Batra

www.allitebooks.com

http://www.allitebooks.org


SQL Primer

ISBN-13 (pbk): 978-1-4842-3575-1  ISBN-13 (electronic): 978-1-4842-3576-8
https://doi.org/10.1007/978-1-4842-3576-8

Library of Congress Control Number: 2018947350

Copyright © 2018 by Rahul Batra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole  
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, 
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book's product page, located at www.apress.com/9781484235751.  
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Rahul Batra
Gurgaon, Haryana, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3576-8
http://www.allitebooks.org


To Mum and Dad.

www.allitebooks.com

http://www.allitebooks.org


v

Chapter 1:  An Introduction to SQL ��������������������������������������������������������1
The Relational Model and SQL ������������������������������������������������������������������������������2

Advantages of Using SQL ��������������������������������������������������������������������������������������4

SQL Commands Classification ������������������������������������������������������������������������������5

Explaining Tables ��������������������������������������������������������������������������������������������������5

Data Types in SQL �������������������������������������������������������������������������������������������������7

Chapter 2:  Getting Your Database Ready ��������������������������������������������11
Using PostgreSQL �����������������������������������������������������������������������������������������������12

Using SQLite ��������������������������������������������������������������������������������������������������������14

Creating Your Own Database�������������������������������������������������������������������������������16

Table Creation �����������������������������������������������������������������������������������������������������17

Inserting Data ������������������������������������������������������������������������������������������������������20

Writing Your First Query ��������������������������������������������������������������������������������������21

Chapter 3:  The Benefit of Constraints �������������������������������������������������25
The Null Constraint ���������������������������������������������������������������������������������������������26

Selective Fields INSERT ��������������������������������������������������������������������������������������28

Check Constraints �����������������������������������������������������������������������������������������������30

Table of Contents

About the Author ���������������������������������������������������������������������������������xi

About the Technical Reviewer �����������������������������������������������������������xiii

Acknowledgments ������������������������������������������������������������������������������xv

Introduction ��������������������������������������������������������������������������������������xvii

www.allitebooks.com

http://www.allitebooks.org


vi

Primary Key Constraint ���������������������������������������������������������������������������������������32

Unique Key Constraints ���������������������������������������������������������������������������������������34

Differences Between a Primary Key and a  Unique Key��������������������������������������36

Chapter 4:  Operations on Tables ���������������������������������������������������������37
Dropping Tables ��������������������������������������������������������������������������������������������������37

Creating New Tables from Existing Tables ����������������������������������������������������������39

Modifying Tables �������������������������������������������������������������������������������������������������42

Showing Table Information in PostgreSQL ����������������������������������������������������������43

Showing Table Information in SQLite ������������������������������������������������������������������45

Showing Table Information in Other DBMS’s ������������������������������������������������������46

Chapter 5:  Writing Basic Queries ��������������������������������������������������������47
Selecting a Limited Number of Columns �������������������������������������������������������������47

Ordering the Results �������������������������������������������������������������������������������������������49

Ordering Using Field Abbreviations ���������������������������������������������������������������������50

Ordering by Multiple Columns �����������������������������������������������������������������������������51

Putting Conditions with WHERE ��������������������������������������������������������������������������53

Combining Conditions �����������������������������������������������������������������������������������������55

Chapter 6:  Manipulating Data �������������������������������������������������������������57
Inserting Data into a Table from Another Table ���������������������������������������������������57

Updating Existing Data ����������������������������������������������������������������������������������������60

Deleting Data from Tables �����������������������������������������������������������������������������������63

Chapter 7:  Organizing Your Data ��������������������������������������������������������65
Normalization ������������������������������������������������������������������������������������������������������65

Atomicity �������������������������������������������������������������������������������������������������������������67

Repeating Groups ������������������������������������������������������������������������������������������������68

Splitting the Table �����������������������������������������������������������������������������������������������69

Table of ConTenTs



vii

Chapter 8:  Doing More with Queries ���������������������������������������������������75
Counting the Records in a Table �������������������������������������������������������������������������75

Using DISTINCT with COUNT �������������������������������������������������������������������������������77

Column Aliases ����������������������������������������������������������������������������������������������������79

Order of Execution of SELECT Queries ����������������������������������������������������������������82

Using the LIKE Operator ��������������������������������������������������������������������������������������83

Chapter 9:  Calculated Fields ���������������������������������������������������������������87
Mathematical Calculations ����������������������������������������������������������������������������������87

String Operations ������������������������������������������������������������������������������������������������89

Literal Values �������������������������������������������������������������������������������������������������������92

Chapter 10:  Aggregation and Grouping ����������������������������������������������95
Aggregate Functions �������������������������������������������������������������������������������������������95

Using the Extreme Functions – MAX and MIN �����������������������������������������������������98

Grouping Data ���������������������������������������������������������������������������������������������������100

Grouping and Aggregate Functions �������������������������������������������������������������������103

The HAVING Clause �������������������������������������������������������������������������������������������105

Chapter 11:  Understanding Joins �����������������������������������������������������109
Alternative Join Syntax �������������������������������������������������������������������������������������111

Resolving Ambiguity in Join Columns ���������������������������������������������������������������112

Outer Joins ��������������������������������������������������������������������������������������������������������113

Cross Joins��������������������������������������������������������������������������������������������������������115

Self Joins ����������������������������������������������������������������������������������������������������������118

Non-Equi Joins ��������������������������������������������������������������������������������������������������120

Chapter 12:  Subqueries ��������������������������������������������������������������������123
Types of Subqueries ������������������������������������������������������������������������������������������124

Existence Tests in Subqueries���������������������������������������������������������������������������125

Using Subqueries in INSERT Statements ����������������������������������������������������������127

Using ANY and ALL ��������������������������������������������������������������������������������������������129

Table of ConTenTsTable of ConTenTs



viii

Chapter 13:  Working in Sets �������������������������������������������������������������133
Union �����������������������������������������������������������������������������������������������������������������133

Intersection �������������������������������������������������������������������������������������������������������136

Difference ���������������������������������������������������������������������������������������������������������138

Chapter 14:  Views�����������������������������������������������������������������������������141
Why Are Views Needed? �����������������������������������������������������������������������������������141

Creating a View �������������������������������������������������������������������������������������������������142

Modifying Data Through Views��������������������������������������������������������������������������145

Deleting Views ��������������������������������������������������������������������������������������������������149

Chapter 15:  Indexing ������������������������������������������������������������������������151
Creating an Index ����������������������������������������������������������������������������������������������152

Using EXPLAIN to See Indexes at Work �������������������������������������������������������������154

Unique Indexes��������������������������������������������������������������������������������������������������158

How Do Indexes Work? �������������������������������������������������������������������������������������160

Index Overheads �����������������������������������������������������������������������������������������������161

Deleting an Index ����������������������������������������������������������������������������������������������163

Chapter 16:  Access Control Statements �������������������������������������������165
Creating New Users in PostgreSQL �������������������������������������������������������������������166

Grant Privileges to Users �����������������������������������������������������������������������������������169

Revoking Privileges �������������������������������������������������������������������������������������������172

Appendix A:  Further Reading ������������������������������������������������������������175

Appendix B:  Database Management Systems and Tools ������������������179
Relational Database Management Systems �����������������������������������������������������179

SQL Development Environments �����������������������������������������������������������������������181

Table of ConTenTsTable of ConTenTs



ix

Appendix C: A History of SQL and Relational Databases ������������������183
The Rise of Sophisticated File-Oriented Systems ���������������������������������������������183

The Entry of Database Systems ������������������������������������������������������������������������184

Genesis of the Relational Model �����������������������������������������������������������������������185

The Hard Fought Battle of Query Languages ����������������������������������������������������186

Index �������������������������������������������������������������������������������������������������189

Table of ConTenTsTable of ConTenTs



xi

About the Author

Rahul Batra was first introduced to 

programming in 1996 in GWBASIC, but he 

did not seriously foray into it until 2001 when 

he started learning C++. Along the way, there 

were dabblings in many other languages like 

C, Ruby, Perl, Python, and Lisp. He has worked 

with databases such as PostgreSQL, Sybase 

ASA, and SQLite. He is passionate about 

sharing knowledge, especially with those who 

are just starting out. Rahul currently lives and 

works in Gurgaon, India.  



xiii

About the Technical Reviewer

Stefan Ardeleanu was born in Bucharest, 

Romania, in 1967. He graduated Math and 

Philosophy, and he was a math teacher for 

10 years. Afterwards, he started a career in 

software development. He felt attracted by 

databases from the beginning so his entire 

career in software industry has been related 

to databases and, especially, to database 

development and design.  

Stefan Ardeleanu is a database specialist, 

a database architect and developer, working 

for many years under various systems as Oracle, SQL Server, DB2, 

and PostgreSQL. He has experience in OLTP and Data warehouse and 

replication systems.

Stefan is a passionate SQL guy, and he was able to develop and 

improve a specific style of development. This style is reflected in his 

various projects, including replication systems and data migration 

systems, where this style is highly required.



xv

Acknowledgments

I got into computing early, when I was around 12 years old. In those 

days, buying a personal computer was an expensive affair. Especially in 

a developing country like India where the computer revolution was slow 

to reach the household level. I owe a debt of gratitude to my parents and 

my sister for providing me with a PC. Without it, I certainly would not 

have had as much passion for the field as I do now. Thank you for your 

unwavering belief in me.

My wife not only acted as an editor for the early drafts of this text but 

also took the lion’s share of taking care of our child while I was writing the 

book. Thank you for your patience and encouragement.

Completing a book is rarely an individual effort. I thank the team at 

Apress for working with me to bring this to fruition. Thank you, Jonathan 

and Jill for taking a chance on me and keeping me focused. Thank you, 

Stefan and Laura for combing through the text and improving the finished 

product immensely.

Finally, thanks are in order to my early readers who suggested 

improvements and caught errors – Keith Thompson, Nathan Adams, Paul 

Guilbault, Jim Noh, and Sean Farrell.



xvii

Introduction

I wrote the predecessor text to this book in late 2012 and put it on the 

Internet hoping someone would find it useful. There was enough response 

that I continued writing and we have this book as a result. There have 

been lots of changes and additions over time, but the core aim remains the 

same – a brief introduction to SQL assuming no prior experience in it.

After reading this text, the reader should be able to recognize the parts 

of queries they encounter and even be able to write simple SQL statements 

and queries themselves. The book, however, is not intended as a reference 

work or for a full-time database administrator since it does not have 

exhaustive topic coverage.

The book is written in a linear fashion – you start from Chapter 1 and 

work your way forward. Being example heavy, I hope readers are able to 

jump to certain topics and get a quick recap. The examples are worked out 

in PostgreSQL and SQLite, but the goal is to remain DBMS implementation 

agnostic as far as possible.

I encourage you to tinker with the statements and queries as you 

progress through the book. Also, be sure to check out the appendices for 

book recommendations to help you dig deeper in the world of SQL and 

databases.

Your questions, comments, criticism, encouragement, and corrections 

are most welcome and you can e-mail me at rhlbatra@hotmail.com.

http://rhlbatra@hotmail.com


1© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_1

CHAPTER 1

An Introduction 
to SQL
Modern society is driven by data. Whether it is at a personal level, like a 

notebook containing scribbled notes; or at a countrywide level like Census 

data, it has permeated all our workflows. There is always a growing need 

to efficiently store and organize it so that meaningful information can be 

extracted out of raw data.

A database is nothing but a collection of organized data. It doesn’t 

have to be in a digital format to be called a database. A telephone directory 

is a good example, which stores data about people and organizations with 

a contact number. A to-do list is also a rudimentary form of a database. 

With ever-larger amounts of data being collected about even the most 

mundane of processes, digital databases have become increasingly 

important since their inception in the 1960s.

Software that is used to manage a digital database is called a Database 

Management System (DBMS). When you hear someone talking about 

PostgreSQL or MySQL, they are referring to a DBMS. A database is what is 

created when you use the DBMS software to store data about topics that 

make sense to you or your organization. For example, your company may 

use PostgreSQL to store inventory information about cellular phones – the 

product that you sell. In this case, you have created an inventory database 

using PostgreSQL as your DBMS.



2

 The Relational Model and SQL
Data comes in myriad shapes and sizes, and every context generates 

data in a different way. The data generated by a bank keeping a record of 

account balances is different from keeping track of members of a family 

tree. But for a DBMS to provide uniform data management and reporting 

capabilities, we must adhere to a data organization structure or data 

model.

The most prevalent database organizational model is the Relational 

Model, developed by Dr. E. F. Codd in his groundbreaking research paper – 

A Relational Model of Data for Large Shared Data Banks in 1970.1 In this 

model, the data to be stored is organized in a tabular format with rows 

and columns. Each row inside a table represents a distinct record with the 

column headings specifying the corresponding type of data stored. This is 

not unlike a spreadsheet where the first row can be thought of as column 

headings and the subsequent rows storing the actual data.

A database would typically consist of more than one table, each 

with different column headings. There may be certain columns that are 

common between tables, but this is a topic we will approach later in 

the book.

1 Codd, E. F.; “A Relational Model of Data for Large Data Banks,” Communications 
of the ACM, vol 13, no 6, June 1970, https://www.seas.upenn.edu/~zives/03f/
cis550/codd.pdf

Chapter 1  an IntroduCtIon to SQL

https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf


3

Question What does the word relational in relational database 
mean? 

It is a common misconception that the word relational implies a 
relationship between the tables. a relation is a mathematical term 
that is roughly equivalent to a table itself. When used in conjunction 
with the word database, we mean to say that this particular system 
arranges data in a tabular fashion. 

a possible origin of this misconception might have been the set 
relation command in dBase, a dBMS from the 1980s. that command 
indeed was used to create linkages between tables, but it has 
nothing to do with relational theory.

SQL stands for Structured Query Language, and it is the de 

facto standard for interacting with relational databases. Almost all 

database management systems you’ll come across will have an SQL 

implementation. SQL was standardized by the American National 

Standards Institute (ANSI) in 1986 and has undergone many revisions, 

most notably in 1992 and 1999. However, all DBMS’s do not strictly adhere 

to the standard defined but rather remove some features and add others to 

provide a unique feature set. Nonetheless, the standardization process has 

been helpful in giving a uniform direction to the vendors in terms of their 

database interaction language.

While SQL is a computer language, it is not like the other programming 

languages that you may have heard of like Python or C. Such programming 

languages are generic in nature, suitable for a wide variety of tasks from 

programming basic calculating systems to advanced simulation models. 

SQL is a special purpose query language meant for interacting with 

relational databases. It has no use other than this context.

Chapter 1  an IntroduCtIon to SQL



4

This does not mean that it is the only database query language to 

exist. In the 1980s, another language called QUEL from Ingres was fairly 

popular, but the standardization effort around SQL cemented its position. 

In recent years, we have seen a large number of non-relational databases 

being developed under the umbrella term of NoSQL. Most of their query 

languages, however, bear some resemblance to SQL even though their data 

model varies significantly from the relational model.

 Advantages of Using SQL
• It is standardized – no matter which relational database 

you choose, it will have an SQL query interpreter 

built in. The sheer popularity of SQL makes it worth 

everyone’s time who interacts with a data system.

• It has a reasonable English-like syntax. None of the 

painstaking detail of programming languages like C or 

Java have to be specified when using SQL. It is concise, 

easy to understand, and easy to write database queries 

with. It is declarative in nature, meaning you only have 

to declare what you want to achieve rather than going 

over the steps to achieve the results.

• It allows a uniform way to query and administer 

a relational database. Many of the database 

administration commands are standard SQL 

commands making the transfer of skills much easier.

• It is mature – SQL has been around for over 35 years. 

While many new features have been added to it, the 

core of SQL has largely been unchanged. You can derive 

a lot of utility knowing a few basic SQL concepts and 

commands, and they will serve you well into the future.

Chapter 1  an IntroduCtIon to SQL



5

 SQL Commands Classification
SQL is a language for interacting with databases. It consists of a number of 

commands with further options to allow you to carry out your operations 

with a database. While DBMS’s differ in the command subset they provide, 

usually you would find the classifications below.

• Data Definition Language (DDL): CREATE TABLE, 

ALTER TABLE, DROP TABLE, etc. These commands 

allow you to create or modify your database structure.

• Data Manipulation Language (DML): INSERT, 

UPDATE, DELETE. These commands are used to 

manipulate data stored inside your database.

• Data Query Language (DQL): SELECT. Used for 

querying or selecting a subset of data from a database.

• Data Control Language (DCL): GRANT, REVOKE, etc. 

Used for controlling access to data within a database, 

commonly used for granting user privileges.

• Transaction Control Commands: COMMIT, 

ROLLBACK, etc. Used for managing groups of 

statements as a unit of work.

Besides these, your database management system may give you other 

sets of commands to work more efficiently or to provide extra features. But 

it is safe to say that the ones above would be present in almost all DBMS’s 

you encounter.

 Explaining Tables
A table in a relational database is nothing but a two-dimensional matrix 

of data where the columns describe the type of data, and the row contains 

the actual data to be stored. Have a look at Table 1-1 to get a sense of the 

visualization of a table in a database.

Chapter 1  an IntroduCtIon to SQL



6

The above table stores data about programming languages. It consists 

of four columns (id, language, author, and year) and three rows. The 

formal term for a column in a database is a field and a row is known as a 

record.

Note the example tables in this book primarily deal with 
programming languages, their authors, and the year they were 
created. We could have used database query languages, but they are 
far fewer in number.

our computer hardware and technologies have changed quite a bit 
since the 1950s and 1960s, but the early programming languages 
from that era still have a lasting impact on the programming 
languages of today. Lisp – imagined by John McCarthy in 19582 is 
still alive in the form of Common Lisp, Scheme, and Clojure. even 
Fortran still sees regular use in scientific computing.

Table 1-1. A Table Describing Programming Languages

ID Language Author Year

1 Fortran Backus 1955

2 Lisp McCarthy 1958

3 Cobol hopper 1959

2 McCarthy, John; “Recursive functions of symbolic expressions and their 
computation by machine, Part I,” Communications of the ACM, vol 3, issue 4, April 
1960, http://jmc.stanford.edu/articles/recursive/recursive.pdf

Chapter 1  an IntroduCtIon to SQL

http://jmc.stanford.edu/articles/recursive/recursive.pdf


7

There are two things of note in the example table. The first one is that 

the id field effectively tells you nothing about the programming language 

by itself, other than its sequential position in the table. The second is that 

though we can understand the fields by looking at their names, we have 

not formally assigned a data type to them, that is, we have not restricted 

(not yet anyways) whether a field should contain alphabets or numbers or 

a combination of both.

The id field here serves the purpose of a primary key in the table. It 

makes each record in the table unique, and its advantages will become 

clearer in chapters to come. But for now consider this, what if a language 

creator made two languages in the same year; we would have a difficult 

time narrowing down on the records. An id field usually serves as a good 

primary key since it’s guaranteed to be unique, but usage of other fields for 

this purpose is not restricted.

A key concept of tables is that they are conceptual in nature and may 

not have any bearing upon the actual files where the data is stored. When 

users create a spreadsheet, they associate a file name with the spreadsheet 

and place it somewhere on their disk. But relational databases hide all 

these details from the user. The physical storage of a table on the disk 

might be to a single file, or to many files, or even have a relationship of 

storing many tables in a single file. It is the responsibility of your DBMS to 

provide a way to read and write to tables.

 Data Types in SQL
Just like programming languages, SQL also has data types to define the 

kind of data that will be stored in its fields. In the table given above, we 

can see that the fields language and author must store English language 

characters. The id and year fields both store whole numbers.

The commonly used data types you will encounter in subsequent 

chapters are shown in Table 1-2.

Chapter 1  an IntroduCtIon to SQL



8

A string of characters is usually stored in either char or varchar. The 

former reserves as much space as you want when you specify the field, 

but if the value you store in it is shorter, the remaining space is wasted. A 

varchar, however, stands for a varying character and will occupy the exact 

length of the string, nothing wasted. There is, however, a maximum limit to 

how long a string value you can assign to such a field, and that is specified 

during the field definition itself.

char(12)

varchar(12)

If you store the value ‘McCarthy’ that is eight characters long, the 

char will store it but waste four characters. The varchar will store it as 

exactly eight characters but the whole dynamism comes at a cost of speed. 

Nonetheless, the speed difference is small enough that for most scenario’s 

you would see the varying character data type being used.

In case of number values, we get a split across two major classes – 

integer for storing whole numbers and numeric for storing number values 

with a decimal point in them. The ranges and limits of the values being 

stored in them vary with your choice of DBMS. However, a good rule of 

thumb to follow is to use the smallest data type that will suffice for the 

present and foreseeable future of your application.

Table 1-2. Various Data Types in SQL

Character types char, varchar

Integer values integer, smallint

decimal numbers numeric, decimal

date data type date

Chapter 1  an IntroduCtIon to SQL



9

For example, if I were storing student roll numbers, using a smallint 

would suit just fine. In most implementations, this data type allows a 

maximum value of 32767, a number I mostly expect to be much greater 

than the number of students in any class.

Decimal point numbers are trickier to specify. We use the numeric data 

type to fix how large the number could be and how many numbers can 

occur after the decimal point.

numeric(precision, scale)

numeric(5, 2)

The total number of digits is specified by the precision and the number 

of digits after the decimal point is represented by scale. So in the example 

given, we would be able to store a number like 999.99 but not any further.

Since data types still vary from a DBMS implementation to another, I 

suggest you keep your DBMS manual handy. Each implementation gives 

you many other types to work with, but for our learning purposes, the ones 

above should suffice.

Chapter 1  an IntroduCtIon to SQL



11© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_2

CHAPTER 2

Getting Your 
Database Ready
The best way to learn SQL is to practice writing the commands on a real 

relational database management system. In this book SQL is taught using 

either one of the following systems: PostgreSQL or SQLite. The reasons for 

choosing these DBMS systems are simple – they are free and open source, 

with availability on most major platforms. PostgreSQL is a full-features 

enterprise class database management system with a great community. 

SQLite is a small but robust system that is especially suited for learning 

purposes. Choose the latter if you are not comfortable with software 

installations.

However, any relational database product that you can get your hands 

on should serve you just fine. In some cases, you may already have access 

to one in your organization, but be sure to ask for permissions to use it 

for learning purposes. There might be minor incompatibilities between 

different vendors, so if you choose something else to practice on while 

reading this book, it would be a good idea to keep the database vendor's 

user manual handy.

Since this text deals largely with teaching SQL in a product- 

independent manner, rather than the teaching of a specific DBMS system, 

details with respect to installation and specific operations of the product 

will be kept to a minimum. Emphasis is instead placed on a few specific 

steps that will help you to get working on writing SQL as fast as possible.



12

 Using PostgreSQL
The latest version of PostgreSQL as of writing this book was 9.6. You don’t 

absolutely need the latest version; in fact I use version 9.5 in this text.

You can download the latest version of PostgreSQL from https://

www.postgresql.org/download/ for your platform. For the fastest and 

easiest installation, I would recommend you choose your platform from 

the Binary Packages list. Pre-built binaries mean that you can simply 

download and install PostgreSQL like any other software using a graphical 

step-by- step installer.

After choosing your platform, you might still get multiple ways to 

perform an installation. I’d recommend choosing the graphical installer 

version from third-party vendors like BigSQL or EnterpriseDB. I had 

chosen the EnterpriseDB installer for my Fedora Linux machine, and a 

friendly installation procedure popped up when I ran the downloaded file, 

asking for details like the installation directory (Figure 2-1).

Chapter 2  GettinG Your Database reaDY

https://www.postgresql.org/download/
https://www.postgresql.org/download/


13

Some other details will also be asked for, most importantly the port 

number and password. The default value of 5432 for the port number 

should suffice. At the end of installation, you would have user named 

‘postgres’ on your system and a working database installation.

You can quickly verify that everything went well using psql, which is a 

command-line utility to interact with your PostgreSQL installation. I am 

capturing the command and output from my system below (Listing 2-1).

Listing 2-1. Launching the psql shell

[~]$ /opt/PostgreSQL/9.5/bin/psql -U postgres

psql.bin (9.5.8)

Type "help" for help.

postgres=#

Figure 2-1. EnterpriseDB PostgreSQL installation wizard

Chapter 2  GettinG Your Database reaDY



14

If you get a similar output, you are ready to start using your PostgreSQL 

installation. If not, I’m afraid you will have to do some digging on your 

own. You can also choose SQLite, which is discussed in the next section 

and has a much easier installation procedure.

 Using SQLite
If installing PostgreSQL seems like a daunting task, you are in luck. There is 

a very credible, free alternative database for you to practice on. It is called 

SQLite and its creator D. Richard Hipp has generously licensed it in the 

public domain. You can download it from the project page at:  https://

www.sqlite.org/download.html

Like the previous section, what you are looking for to get the fastest 

start is precompiled binaries corresponding to your operating system. 

SQLite is tiny; on most platforms its core engine is less than one megabyte!

If you are using Microsoft Windows, you are looking for the section 

titled “Precompiled Binaries for Windows.” Download the SQLite DLL 

zip archive, named like sqlite-dll-win32-x86-xxxxxxx.zip, which contains 

SQLite but not a way to interact with it. For that you must download the 

SQLite shell, named like sqlite-tools-win32-x86-xxxxxxx.zip, which will 

allow us to create and query SQLite databases through the command line.

Extract both these archives into the same directory and you are done 

installing SQLite. Your folder should now contain at least three files:

• sqlite3.dll

• sqlite3.def

• sqlite3.exe

The last one launches the command shell used to interact with SQLite 

databases.

Chapter 2  GettinG Your Database reaDY

https://www.sqlite.org/download.html
https://www.sqlite.org/download.html


15

If you are on a Linux or MacOS X system, chances are high that you 

already have SQLite installed. To test this, you can attempt launching the 

SQLite shell sqlite3 (Listing 2-2).

Listing 2-2. Launching the sqlite3 shell

[~]$ sqlite3

SQLite version 3.13.0 2016-05-18 10:57:30

Enter ".help" for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.

sqlite>

If you get the output as above, you have everything you need to run 

SQLite. Alternatively, if you get an error message, it means you have to 

install it yourself. You can either use the similar precompiled binary 

method for your platform or you could use the system installer.

For systems like Red Hat Enterprise Linux, Scientific Linux, and 

CentOS, you can use yum to install SQLite.

# yum install sqlite

On a Fedora Linux system, you have to use dnf as below.

# dnf install sqlite

If you happen to use a Debian- or Ubuntu-based system, you can 

achieve the same result with the following.

$ sudo apt-get install sqlite3

Once the installation is done, you can verify the installation by 

launching the SQLite shell as before.

Chapter 2  GettinG Your Database reaDY



16

 Creating Your Own Database
Database management systems like PostgreSQL allow you to create 

multiple databases. For practice purposes, it's advisable to create your own 

database, so that you are free to perform any operations on it.

Most database systems differ in the way they provide database 

creation facilities. PostgreSQL achieves the same by providing you 

multiple ways to do this, including through the pgAdmin III graphical 

utility. However, for didactic purposes, we will instead use a command 

operation to create our database. Open up the psql shell and enter the 

command as below (Listing 2-3).

Listing 2-3. Creating a database in PostgreSQL

CREATE DATABASE testdb;

The command CREATE DATABASE is used to create a database that 

will serve as a holding envelope for your tables. In the example and output 

shown above, we created a database called testdb for our use. The login 

user you used while connecting with psql, in most cases postgres, is now 

the owner of this database and has full control of entities within it. This is 

analogous to creating a file in an operating system where the creator gets 

full access control rights and may choose to give other users and groups 

specific rights.

The SQL standard by definition allows commands and keywords to be 

written in a case-insensitive manner. In this book we will use uppercase 

letters while writing them in statements, which is a widely accepted practice.

Note oddly enough, the sQL standard doesn’t include the CREATE 
DATABASE command. in the 1992 standard, aptly named sQL-92, 
there is a CREATE SCHEMA command that was close to the former 
but not exactly similar. in modern times, however, databases like 
MySQL treat the two commands as synonyms of each other.

Chapter 2  GettinG Your Database reaDY



17

If you are using SQLite, fire up the command shell, and you will be 

greeted with a text printing version information (Listing 2-4). This is 

exactly the same message we saw in the previous section when we were 

verifying our SQLite installation.

Listing 2-4. Opening the SQLite shell

SQLite version 3.13.0 2016-05-18 10:57:30

Enter ".help" for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.

sqlite>

Here we enter our .open command to both create a SQLite database or 

open it in case it already exists.

sqlite> .open testdb

On a Linux system, you could also simply write the database name 

after the command of the SQLite shell like below, and you would be able to 

open the said database.

sqlite3 testdb

Interestingly, this invocation would not result in creation of testdb, it would 

simply open it if it exists. If you don’t perform any other operation and close 

the shell (Ctrl-D), there would be no testdb file on your machine on Linux. On 

a Windows system, you would get an empty file with a length of 0 bytes.

 Table Creation
We have already explored the concept of a table in a relational model. It is 

now time to create one using a standard SQL command – CREATE TABLE 

(Listing 2-5).

Chapter 2  GettinG Your Database reaDY



18

Listing 2-5. General Syntax of a CREATE TABLE statement

CREATE TABLE <Table_Name>

(<Field 1> <Data Type>,

 <Field 2> <Data Type>,

 \. \. \.

 <Field N> <Data Type>);

This is the simplest valid statement that will create a table for you, 

devoid of any extra options. We'll further this with clauses and constraints as 

we go along, but for now let us use this general syntax to actually create the 

table of programming languages we introduced in Chapter 1 (Listing 2-6).

Listing 2-6. Creating the programming languages table

CREATE TABLE proglang_tbl (

id        INTEGER,

language  VARCHAR(20),

author    VARCHAR(25),

year      INTEGER);

We have to key this command in PostgreSQL on the psql shell. Notice 

that when we launch the shell, the last line where our cursor waits looks as 

below:

postgres=#

This actually means that we are connected to the database named 

postgres, which is something the PostgreSQL installation uses internally for 

management purposes. We have already created our very own database. 

Let’s switch to that before creating our tables using \c (Listing 2-7).

Chapter 2  GettinG Your Database reaDY



19

Listing 2-7. Connecting to a different database in psql

postgres=# \c testdb

You are now connected to database "testdb" as user "postgres".

testdb=#

Notice that the text on the last line has changed, indicating the current 

database we are connected to. Now you can key in the table creation 

statement given in Listing 2-6, and if you don’t miss any of the important 

punctuation or misspell the keywords written in uppercase, your table 

would be created and the shell would reply simply with:

CREATE TABLE

testdb=#

A non-successful command would yield an error with a helpful 

explanation. To see this in action, let’s run the exact same table creation 

command again. The shell would now respond:

ERROR:  relation "proglang_tbl" already exists

The statement by itself is simple enough since it resembles the general 

syntax of Listing 2-5. It is interesting to note the data types chosen for 

the fields. Both id and year are specified as integers for simplicity, even 

though there are better alternatives. The language field is given a space of 

20 characters to store the name of the programming language while the 

author field can hold 25 characters for the creator's name.

The semicolon at the last position is the delimiter for SQL statements, 

and it marks the end of a statement.

If you are using SQLite, the statement remains exactly the same as 

Listing 2-6. The only difference being that since an SQLite database is a 

particular file and you open it when opening the SQLite shell, there is no 

switching of database required (Listing 2-8).

Chapter 2  GettinG Your Database reaDY



20

Listing 2-8. Creating the programming languages table in SQLite

[~]$ sqlite3 testdb

SQLite version 3.13.0 2016-05-18 10:57:30

Enter ".help" for usage hints.

sqlite> CREATE TABLE proglang_tbl (

   ...> id        INTEGER,

   ...> language  VARCHAR(20),

   ...> author    VARCHAR(25),

   ...> year      INTEGER);

sqlite>

Notice that there is no successful operation message. If all goes well, 

SQLite shell simply moves on. Just for some experimentation, if we try to 

create the same table again, we get an error saying:

Error: table proglang_tbl already exists

which is again a helpful and somewhat friendlier error message.

 Inserting Data
The table we have just created is empty so our task now becomes insertion 

of some sample data inside it. To populate this data in the form of rows, 

we use the DML command INSERT, whose general syntax is given below 

(Listing 2-9).

Listing 2-9. General syntax of INSERT INTO TABLE

INSERT INTO <Table Name>

VALUES ('Value1', 'Value2', ...);

Fitting some sample values into this general syntax is simple enough, 

provided we keep in mind the structure of the table we are trying to insert the 

row in. For populating the proglang_tbl with rows like we saw in Chapter 1, 

we would have to use three INSERT statements as below (Listing 2-10).

Chapter 2  GettinG Your Database reaDY



21

Listing 2-10. Inserting data into the proglang_tbl table

INSERT INTO proglang_tbl

 VALUES (1, 'Fortran', 'Backus', 1955);

INSERT INTO proglang_tbl

 VALUES (2, 'Lisp', 'McCarthy', 1958);

INSERT INTO proglang_tbl

 VALUES (3, 'Cobol', 'Hopper', 1959);

If you do not receive any errors from psql or sqlite3 (or the SQL 

interface for your chosen DBMS), then you have managed to successfully 

insert three rows of data into your table. Notice how we've carefully kept 

the ordering of the fields in the same sequence as we used for creating our 

table. This strict ordering limitation can be removed, and we will see how 

to achieve that later on.

If you ran these three statements in psql, at the end of each executed 

statement, you would receive a message like:

INSERT 0 1

indicating a success.

 Writing Your First Query
Let us now turn our attention to writing a simple query to check the results 

of our previous operations in which we created a table and inserted three 

rows of data into it. For this, we would use a Data Query Language (DQL) 

command called SELECT.

A query is simply a SQL statement that allows you to retrieve a useful 

subset of data contained within your database. You might have noticed the 

INSERT and CREATE TABLE commands were referred to as statements, but a 

fetching operation with SELECT falls under the query category.

Chapter 2  GettinG Your Database reaDY



22

Most of your day-to-day operations in an SQL environment would 

involve queries, since you'd be creating the database structure once 

(modifying it only on a need basis) and inserting rows only when new 

data is available. While a typical SELECT query is fairly complex with many 

clauses, we will begin our journey by writing down a query just to verify the 

contents of our table. The general syntax of a simple query is given below 

(Listing 2-11).

Listing 2-11. General syntax of a simple SQL query

SELECT <Selection> FROM <Table Name>;

Transforming this into our result verification query is a simple task 

(Listing 2-12). We already know the table we wish to query – proglang_tbl 

and for our selection we would use * (star), which will select all rows 

and fields from the table.

SELECT * FROM proglang_tbl;

The output of this query would be all the (3) rows displayed in a matrix 

format just as we intended. If you are running this through psql, you would 

get an output similar to the one given below.

Listing 2-12. Verifying the contents of our table in psql

testdb=# select * from proglang_tbl;

 id | language |  author  | year

----+----------+----------+------

  1 | Fortran  | Backus   | 1955

  2 | Lisp     | McCarthy | 1958

  3 | Cobol    | Hopper   | 1959

(3 rows)

testdb=#

Chapter 2  GettinG Your Database reaDY



23

The output from SQLite would be slightly messier at first, but let’s fix 

that one step at a time (Listing 2-13).

Listing 2-13. Verifying the contents of our table in sqlite3

sqlite> select * from proglang_tbl;

1|Fortran|Backus|1955

2|Lisp|McCarthy|1958

3|Cobol|Hopper|1959

sqlite>

Clearly not the cleanest output, but setting a few options would fix that. 

The first of them is called:

.mode column

and this would output a neatly spaces resultset rather than the 

squashed one we saw before (Listing 2-14).

Listing 2-14. Turning on the column mode

sqlite> .mode column

sqlite> select * from proglang_tbl;

1           Fortran     Backus      1955

2           Lisp        McCarthy    1958

3           Cobol       Hopper      1959

Ah, much better! But there is still a little room for improvement here. 

We see that column headers are still missing from the output and having 

them would be advantageous. So we turn on the headers option and the 

result starts looking pretty neat (Listing 2-15).

Chapter 2  GettinG Your Database reaDY



24

Listing 2-15. Turning on the headers in sqlite3

sqlite> .headers on

sqlite> select * from proglang_tbl;

id          language    author      year

----------  ----------  ----------  ----------

1           Fortran     Backus      1955

2           Lisp        McCarthy    1958

3           Cobol       Hopper      1959

I recommend that you keep these options turned on for your learning 

sessions. The output becomes much easier to verify at a glance.

Chapter 2  GettinG Your Database reaDY



25© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_3

CHAPTER 3

The Benefit 
of Constraints
Relational databases are well into their fourth decade of dominance as a 

data storage and organization mechanism. A large part of this success is 

owed to the flexibility of the data model. It is easy to visualize all kinds of 

data fitting into a neat tabular structure with predefined columns.

The flexibility also extends to querying – while creating and populating 

tables, little restriction is placed upon what you can query from a table. 

You might try to generate completely new insights from a table you 

hadn’t thought of before. To enable all of this, relational databases 

expect a certain amount of discipline and thought being put upfront 

when designing your tables. Neat tables with well-defined data types are 

essential for success, and certain rules help you keep on this path of good 

database design.

A constraint is a rule that you apply or abide by while doing SQL 

operations. They are useful in cases where you wish to make the data 

inside your database more meaningful and/or structured.



26

 The Null Constraint
Consider the example of the programming languages table – every 

programming language that has been created must have an author 

(whether a single person, a couple, or committee). Similarly it should have 

a year when it was introduced, be it the year it first appeared as a research 

paper or the year a working compiler for it was written. In such cases, it 

makes sense to create your table in such a way that certain fields do not 

accept a NULL (empty) value.

A null value does not mean 0 (zero) or an empty string like ‘’. Think of it 

as either empty or undefined. If you haven’t captured someone’s age while 

populating a table, you can’t assume their age to be 0. This might have 

serious implications if someone was using this data for statistical analysis. 

Putting a null value there makes much more sense.

We now modify our previous CREATE TABLE statement so that we can 

apply the NULL constraint to some fields (Listing 3-1).

Listing 3-1. Creating a table with NULL constraints

CREATE TABLE proglang_tblcopy (

id        INTEGER     NOT NULL,

language  VARCHAR(20) NOT NULL,

author    VARCHAR(25) NOT NULL,

year      INTEGER     NOT NULL,

standard  VARCHAR(10) NULL);

In this table, we only allow the standard field to have a null value. Every 

other field ends with the option NOT NULL, which specifies that this field 

must necessarily have a value. All fields by default are nullable in most 

database management systems, so you have to specify a non-nullable field. 

Writing the word NULL to specify a nullable field is optional.

Chapter 3  the Benefit of Constraints



27

If we try to insert a row into this table with a NULL value in one of the 

non-nullable fields like year, we expect an error message to be thrown 

at us. In both SQLite and PostgreSQL, we represent a null value with the 

literal null noting the lack of any quotation marks that generally enclose 

strings (Listings 3-2, 3-3). Null is not a string value and writing ‘null’ makes 

an actual string of length 4 and is decidedly non-null. Other database 

management systems might represent null values in a different way, so 

check your manual for such details.

Listing 3-2. Inserting a null value in SQLite

sqlite> INSERT INTO proglang_tblcopy

VALUES (1, 'Fortran', 'Backus', null, 'ANSI');

Error: NOT NULL constraint failed: proglang_tblcopy.year

Listing 3-3. Inserting a null value in PostgreSQL

testdb=# INSERT INTO proglang_tblcopy

VALUES (1, 'Fortran', 'Backus', null, 'ANSI');

ERROR:  null value in column "year" violates not-null 

constraint

DETAIL:  Failing row contains (1, Fortran, Backus, null, ANSI).

We see in this case that we have achieved our objective of creating a 

table in which the field's id, language, author, and year cannot be empty 

for any row, but the new field standard can take empty values. We now go 

about trying to insert new rows into this table using an alternative INSERT 

syntax.

Chapter 3  the Benefit of Constraints



28

 Selective Fields INSERT
From our last encounter with the INSERT statement, we saw that we had 

to specify the data to be inserted in the same order as specified during the 

creation of the table in question. We now look at another variation that 

will allow us to overcome this limitation and handle inserting rows with 

embedded NULL values in their fields by not specifying them at all  

(Listing 3-4). While this approach may seem verbose initially, its 

advantages quickly outweigh any statement length-related concerns.

Listing 3-4. General Syntax of INSERT with selected fields

INSERT INTO <Table_Name>

(<Field Name 1>,

 <Field Name 2>,

 . . .

 <Field Name N>)

VALUES

(<Value For Field 1>,

 <Value For Field 2>,

 . . .

 <Value For Field N>);

Since we specify the field order in the statement itself, we are free to 

reorder the values sequence in the same statement, thus removing the 

first limitation. Also, if we wish to enter an empty (NULL) value in any of 

the fields for a record, it is easy to do so by simply not including the field’s 

name in the first part of the statement. The statement would run fine 

without specifying any fields you wish to omit, provided they do not have a 

NOT NULL constraint attached to them.

Chapter 3  the Benefit of Constraints



29

We now write some INSERT statements for the proglang_tblcopy table, 

in which we try to insert some languages that have not been standardized 

by any organizations and some which have been (Listing 3-5).

Listing 3-5. Inserting new data into the proglang_tblcopy table

INSERT INTO proglang_tblcopy

 (id, language, author, year, standard)

VALUES

 (1, 'Prolog', 'Colmerauer', '1972', 'ISO');

INSERT INTO proglang_tblcopy

 (id, language, author, year)

VALUES

 (2, 'Perl', 'Wall', '1987');

INSERT INTO proglang_tblcopy

 (id, year, standard, language, author)

VALUES

 (3, '1964', 'ANSI', 'APL', 'Iverson');

When you run this through your SQL interface, three new rows would 

be inserted into the table. Notice the ordering of the third row; it is not the 

same sequence we used to create the table. Also, since Perl (row id 2) has 

not been standardized by an international body yet, so we do not specify 

the field name itself while doing the INSERT operation. This ensures that 

the standard field for the row is populated with null.

To verify the results of these statements (Table 3-1) and to make sure 

that the correct data went into the correct fields, we run a simple query as 

before.

SELECT * FROM proglang_tblcopy;

Chapter 3  the Benefit of Constraints



30

Nulls are often shown by SQL interfaces by a blank space or a 

question mark (?) or sometimes even the word ‘null’ or ‘(null)’. Each 

implementation is free to choose its representation since it is not 

standardized among vendors.

 Check Constraints
Data must be meaningful for someone to derive insights from it. A great 

advantage of relational databases is that they enable good structuring 

of data, proper data type-based storage, and null value rules. Check 

constraints go a step even further by providing validation of what values 

are allowed in a particular field.

They allow you to provide a logical expression against which inserted 

values are tested and subsequently accepted or rejected. For example, 

suppose we wish to ensure that in our programming languages table, no 

language creation year could be less than or equal to 1950 (Listing 3-6). 

This would stop someone from entering values like 190 for the year, which 

makes sense unless we wish to capture programming languages created 

during the Roman Empire!

Table 3-1. Result of the Query Run on proglang_tblcopy

id language author year standard

1 prolog Colmerauer 1972 iso

2 perl Wall 1987

3 apL iverson 1964 ansi

Chapter 3  the Benefit of Constraints



31

Listing 3-6. Creating a check constraint for the year field

CREATE TABLE proglang_constraints (

id        INTEGER     NOT NULL,

language  VARCHAR(20) NOT NULL,

author    VARCHAR(25) NOT NULL,

year      INTEGER     NOT NULL

CHECK (year > 1950),

standard  VARCHAR(10) NULL);

Note the full definition of the year field that defines the check 

constraint after the NOT NULL constraint. The logical expression we are 

testing against is year > 1950, which disallows any row containing a year 

value less than 1951. Let’s try entering such a row to test the hypotheses 

(Listing 3-7).

Listing 3-7. Trying to violate a check constraint

testdb=# INSERT INTO proglang_constraints

          (id, language, author, year)

         VALUES

          (1, 'Short Code', 'Mauchly', 1949);

ERROR:  new row for relation "proglang_constraints" violates 

check constraint "proglang_constraints_year_check"

DETAIL:  Failing row contains (1, Short Code, Mauchly, 1949, 

null).

While an underused feature, check constraints are extremely useful. 

A lot of application software code is written with the purpose of validating 

data to be inserted, an area where check constraints can help immensely.

Chapter 3  the Benefit of Constraints



32

 Primary Key Constraint
The mathematical concept behind the relational data model was Set theory. 

This area of discrete maths deals with unordered bag of values that can be 

uniquely identified, that is, contains no duplicates. For a table, a value is a 

record of data and a key column for each record is the perfect way to identify it.

A primary key is used to make each record unique in at least one way 

by forcing a field to have a unique value. They do not have to be restricted 

to only one field; a combination of them can also be defined as a primary 

key for a table. One must think carefully about the logical implications of 

choosing a field or a combination of them as a primary key.

Often the best primary key candidates are not our instinctive 

identifiers for a collection. If you were storing data about people, their 

names are something we identify them with in real-life scenarios. But what 

would happen in the unforgiving world of primary keys if two people were 

named ‘David Childs’?

In our programming languages table, the id field is a good choice 

for applying the primary key constraint. We will now modify our CREATE 

TABLE statement to incorporate this (Listing 3-8).

Listing 3-8. A CREATE TABLE statement with a primary key

CREATE TABLE proglang_tbltmp (

id        INTEGER     NOT NULL  PRIMARY KEY,

language  VARCHAR(20) NOT NULL,

author    VARCHAR(25) NOT NULL,

year      INTEGER     NOT NULL,

standard  VARCHAR(10) NULL);

ID fields are usually chosen as primary fields. Note that in this 

particular table, the language field would have also worked, since a 

language name is unique. However, if we have a table that describes 

people, we should try to find a logically unique field like their SSN number 

or employee ID number.

Chapter 3  the Benefit of Constraints



33

Even though the concept of a primary key seems to be natural and 

necessary, most database implementations don’t really enforce it. This 

includes the two databases used for examples in this book – PostgreSQL 

and SQLite. You are free to create a table without any primary keys (like 

we did before this section came along) and insert exactly duplicated data 

again and again. Not an ideal scenario but allowed nonetheless if you are 

so inclined.

Let us add some duplicated rows in our proglang_tblcopy table that we 

were working with in the beginning of the chapter (Listing 3-9).

Listing 3-9. Inserting duplicate data in a table without a primary key

INSERT INTO proglang_tblcopy

 (id, language, author, year)

VALUES

 (2, 'Perl', 'Wall', '1987');

INSERT INTO proglang_tblcopy

 (id, language, author, year)

VALUES

 (2, 'Perl', 'Wall', '1987');

Note that we already had three unique rows in the table to which 

we added two duplicated ones. The execution of the INSERT statements 

was silent, indicating success. Let’s verify the contents of the table now 

(Table 3-2).

SELECT * FROM proglang_tblcopy;

Chapter 3  the Benefit of Constraints



34

If we try to add duplicate records in our table containing the primary 

key constraint – proglang_tbltmp, we promptly get an error thrown at us 

(Listing 3-10).

Listing 3-10. Trying to add a duplicate record violating a primary 

key constraint

INSERT INTO proglang_tbltmp

 (id, language, author, year)

VALUES

 (2, 'Perl', 'Wall', '1987');

ERROR:  duplicate key value violates unique constraint 

"proglang_tbltmp_pkey"

DETAIL:  Key (id)=(2) already exists.

 Unique Key Constraints
A unique key like a primary key is also used to make each record inside a 

table unique. Once you have defined the primary key of a table, any other 

fields you wish to enforce as unique is done through this constraint. Well 

thought-out uniqueness constraints go a long way in ensuring that the data 

inside the table is sane.

Table 3-2. Result of the Query Run on proglang_tblcopy Showing 

Duplicated Rows

id language author year standard

1 prolog Colmerauer 1972 iso

2 perl Wall 1987

3 apL iverson 1964 ansi

2 perl Wall 1987

2 perl Wall 1987

Chapter 3  the Benefit of Constraints



35

For example, in our database it now makes sense to have a unique key 

constraint on the language field (Listing 3-11). This would ensure none of 

the records would duplicate information about the same programming 

language even if the id field was non-matching.

Listing 3-11. Programming languages table with the unique key 

constraint

CREATE TABLE proglang_tbluk (

id        INTEGER     NOT NULL  PRIMARY KEY,

language  VARCHAR(20) NOT NULL  UNIQUE,

author    VARCHAR(25) NOT NULL,

year      INTEGER     NOT NULL,

standard  VARCHAR(10) NULL);

We will now try to insert two rows about the language Prolog cleverly 

changing the id field to test out our unique constraint (Listing 3-12).

Listing 3-12. Inserting duplicate data in a table with a unique key 

constraint

testdb=# INSERT INTO proglang_tbluk

 (id, language, author, year, standard)

VALUES

 (1, 'Prolog', 'Colmerauer', 1972, 'ISO');

INSERT 0 1

testdb=# INSERT INTO proglang_tbluk

 (id, language, author, year, standard)

VALUES

 (2, 'Prolog', 'Colmerauer', 1972, 'ISO');

ERROR:  duplicate key value violates unique constraint 

"proglang_tbluk_language_key"

DETAIL:  Key (language)=(Prolog) already exists.

Chapter 3  the Benefit of Constraints



36

Note that we write the word UNIQUE in front of the field and omit the 

KEY in the table creation command. You can have as many fields with 

unique constraints as you wish.

We will revisit the unique and primary key constraints again in  

Chapter 15 when we discuss indexing.

 Differences Between a Primary Key and a  
Unique Key
You might have noticed that the two constraints discussed above are 

similar in their purpose. However, there are a couple of differences 

between them.

 1. A primary key field cannot take on a NULL value, 

whereas a field with a unique constraint can. 

However, there can be only one such record 

since each value must be unique due to the very 

definition of the constraint.

 2. You are allowed to define only one primary key 

constraint for a table, but you can apply the unique 

constraint to as many fields as you like.

This is a favorite interview question for any job that deals with SQL as 

far as my experience goes. It is not too unfair considering the importance 

of these constraints to a logical data model. Just remember to think of a 

primary key as a NOT NULL UNIQUE constraint.

A primary key ensures a logical way to differentiate between rows of a 

table. It is the bare minimum criterion for a differentiated record. Unique 

constraints are usually added as additional rules to ensure data sanity 

while keeping the business or domain rules in mind. It’s not necessary to 

have them, but they act as gatekeepers to allow only good data through.

Chapter 3  the Benefit of Constraints



37© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_4

CHAPTER 4

Operations on Tables
Tables are the fundamental storage containers of the relational world.  

A database will typically contain many tables, each representing a 

collection of entities. As requirements evolve, so do the tables within 

a database and database administrators (DBA’s) routinely perform 

administrative operations on individual tables like deleting them or 

changing their definition. While typical database users are not granted 

permissions to perform such operations on large production databases, 

nonetheless it is important to be familiar with them for didactic purposes.

You might have noticed that we keep on making new tables whenever 

we are introducing a new concept. This has had the not-so-desirable 

effect of populating our database with many similar tables each holding 

programming languages data but with slightly varying definitions 

and constraints. We will now go about dropping unneeded tables and 

modifying existing ones to suit our needs.

 Dropping Tables
The deletion of tables in SQL is achieved through the DROP TABLE 

command. DROP is actually a top-level SQL command, much like CREATE, 

which performs a deletion operation on many kinds of database objects. 

To delete a table, we simply append it with the database object type – a 

TABLE in this case.



38

We will now drop any superfluous tables we have created during the 

previous lessons (Listing 4-1). Note that dropping a table means deleting 

a table and any data inside it without a chance of recovery. So be careful 

while writing DROP commands.

Listing 4-1. Dropping the temporary tables we created

DROP TABLE proglang_tbl;

DROP TABLE proglang_tblcopy;

DROP TABLE proglang_constraints;

DROP TABLE proglang_tbltmp;

If you get no errors returned, it means that the tables have been 

deleted. DROP TABLE only supports dropping a single table at a time 

conventionally though there are clever ways to go about deleting multiple 

tables with a single statement.

To verify whether the tables have actually been dropped you have two 

choices. A simplistic one is to write any query for the table, and you would 

get an error back similar to Error: no such table: proglang_tbl. The 

other way is to get the listing of currently existing tables from the database 

catalog, which is a database that the DBMS internally uses to keep a track 

of databases, tables, and other objects that users create. Querying the 

catalog in SQLite for a listing of tables is extremely simple (Listing 4-2).

Listing 4-2. Listing existing tables in SQLite

sqlite> .tables

proglang_tbluk

Doing the same thing in PostgreSQL is slightly longer, but it is a 

SELECT query on the catalog database (Listing 4-3).

Chapter 4  OperatiOns On tables



39

Listing 4-3. Listing existing tables in PostgreSQL

testdb=# SELECT table_name

          FROM information_schema.tables

          WHERE table_schema = 'public'

          AND table_type = 'BASE TABLE';

      table_name

----------------------

 proglang_tbluk

(1 row)

If the query seems complicated to you, it is because it contains parts 

and syntax that we have not covered yet. But rest assured, the syntax 

will start making perfect sense by the end of the chapter on queries. 

For now we can infer that the table data in PostgreSQL is stored in the 

information_schema.tables catalog table.

 Creating New Tables from Existing Tables
You might have noticed that we have dropped the proglang_tbl table, 

and we now have with us only the proglang_tbluk table that has all the 

necessary constraints and fields. The latter's name was chosen when 

we were discussing the unique key constraint, but it now seems logical 

to migrate this table structure (and any corresponding data) back to the 

name proglang_tbl. We achieve this by creating a copy of the table using 

a combination of both CREATE TABLE and SELECT commands and learn 

a new clause in the process – AS (Listing 4-4). This combination has a 

particularly catchy name – CTAS and was introduced in the SQL:2003 

standard but not all DBMS systems implement it yet, notably Microsoft 

SQL Server.

Chapter 4  OperatiOns On tables



40

Listing 4-4. General syntax for creating a new table from an  

existing one

CREATE TABLE <New Table>

 AS

SELECT <Selection> FROM <Old Table>;

Since our proglang_tbluk contains only one record, we will push some 

more sample data in it so that we can later verify whether the records 

themselves got copied or not. Notice that we give the field names explicitly, 

or else the second row (which contains no standard field value) would give 

an error similar to:

sqlite> INSERT INTO proglang_tbluk

         VALUES

        (2, 'Perl', 'Wall', 1987);

Error: table proglang_tbluk has 5 columns but 4 values were 

supplied

in SQLite. A lot of other DBMS’s like Ingres would also not accept such 

a cavalier approach to inserting data. PostgreSQL, however, would accept 

such a statement provided it could unambiguously insert the data that in 

this case it can due to the omitted value being the last nullable field only. 

I would advise writing the column names explicitly wherever possible. We 

will follow this sage advice in Listing 4-5.

Listing 4-5. Inserting some more data into the proglang_tbluk table

INSERT INTO proglang_tbluk (id, language, author, year)

VALUES (2, 'Perl', 'Wall', '1987');

INSERT INTO proglang_tbluk (id, year, standard, language, author)

VALUES (3, '1964', 'ANSI', 'APL', 'Iverson');

Chapter 4  OperatiOns On tables



41

To create an exact copy of the existing table, we use the same selection 

criteria as we have seen before - * (star). This will select all the fields from 

the existing table and create the new table with them along with any 

records (Listing 4-6). It is possible to use only a subset of fields from the old 

table by modifying the selection criteria and we will see this later.

Listing 4-6. Re-creating a new table from an existing one

CREATE TABLE proglang_tbl

 AS

SELECT * FROM proglang_tbluk;

If you are using psql, you would see the prompt displaying SELECT 3, 

which gives an indicator of how many rows were selected and inserted 

into the new table. We now run a simple SELECT query to see whether our 

objective was achieved or not (Table 4-1).

SELECT * FROM proglang_tbl;

The two tables are now exactly identical but are not linked to each 

other in any way. If you drop any of the tables, the other one will not be 

affected. Similarly, inserting new data in one of them will not insert the 

data in the other one from now on.

Table 4-1. Result of the Query Run on proglang_tbl

id language author year standard

1 prolog Colmerauer 1972 isO

2 perl Wall 1987

3 apl iverson 1964 ansi

Chapter 4  OperatiOns On tables



42

 Modifying Tables
After a table has been created, you can still modify its structure using the 

ALTER TABLE command (Listing 4-7). What we mean by modify is that 

you can change field types, sizes, even add or delete columns. Not all 

database management systems support all operations of ALTER TABLE. To 

get around such limitations, people frequently copy the data over to a new 

table that has the newly required structure. While altering a table is not an 

SQL command you’d use very often (hopefully!), you should be familiar 

with it.

There are some rules you have to abide by while altering a table and 

these are usually spelled out in detail by your particular DBMS manual. 

For now, we will see a simple example to modify the field author for the 

proglang_tbl table.

Listing 4-7. General syntax of a simple ALTER TABLE command

ALTER TABLE <Table name> <Operation> <Field with clauses>;

To keep our proglang_tbl intact, we are going to be making our changes 

to the old proglang_tbluk table. We want to make the author field hold 

a tad bit more maximum data length of 30 characters instead of 25. The 

operation to choose in this case is ALTER COLUMN, which would modify our 

existing field (Listing 4-8).

Listing 4-8. Altering the author field

ALTER TABLE proglang_tbluk

 ALTER COLUMN author TYPE varchar(30);

If you not using SQLite, the above query should execute quietly in 

PostgreSQL. SQLite unfortunately does not support altering a column 

size but happily supports addition of new columns. So let’s add another 

requirement of adding a nullable column current_status to our table fields 

(Listing 4-9).

Chapter 4  OperatiOns On tables



43

Listing 4-9. Adding a new current_status field

ALTER TABLE proglang_tbluk

 ADD COLUMN current_status VARCHAR(32) NULL;

We have used the ADD COLUMN operation in this case for the ALTER 

TABLE command. Unsurprisingly we hope to add this new 32-character 

length column to our proglang_tbluk with this statement.

The many faces of ALTER TABLE altering a table is one of those 
commands where even after three decades, there are discrepancies. 
For example, you already saw that the ALTER COLUMN doesn’t work 
in sQlite. Ingres; another, DbMs, expects you to write ALTER only, 
which coincidentally also works fine for postgresQl. We choose the 
former to be explicit. Oracle on the other hand has gone a completely 
different way, and it uses MODIFY instead of ALTER COLUMN.

similarly, while adding a column, you could write only ADD <column 
name> in postgresQl or sQlite and expect it to work.

however, while altering data types, postgresQl expects you to write 
TYPE between the column name and the new data type specification 
whereas ingres wouldn’t expect it.

always keep the manual of your DbMs handy!

 Showing Table Information in PostgreSQL
If you are thinking about using the database system catalog to get 

table definition information to verify your ALTER TABLE results, 

congratulations! You are indeed correct in thinking that. As before, the 

query might seem a little more than we can handle correctly at this point in 

the text, but it’s output is highly readable (Listing 4-10).

Chapter 4  OperatiOns On tables



44

Listing 4-10. Viewing field information in PostgreSQL by querying 

the catalog

testdb=# SELECT column_name,

                data_type,

                character_maximum_length

         FROM INFORMATION_SCHEMA.COLUMNS

         WHERE table_name = 'proglang_tbluk';

  column_name   |     data_type     | character_maximum_length

----------------+-------------------+--------------------------

 id             | integer           |

 language       | character varying |                       20

 author         | character varying |                       30

 year           | integer           |

 standard       | character varying |                       10

 current_status | character varying |                       32

(6 rows)

Both our changes to the fields author and current_status seem to be 

reflected correctly. There are a few other databases where such a query 

would work, but unfortunately this is another area where a lot of DBMS 

implementations differ widely.

A PostgreSQL psql-specific method is to use \d+ <table name>, which 

gives almost the same information along with some other values by default 

(Listing 4-11). I personally prefer the Listing 4-10 version that queries the 

catalog.

Chapter 4  OperatiOns On tables



45

Listing 4-11. Describing the schema of the table in psql

testdb=# \d+ proglang_tbluk;

                             Table "public.proglang_tbluk"

  Column       |         Type          | Modifiers | Storage  |

---------------+-----------------------+-----------+----------+

 id            | integer               |           | plain    |

 language      | character varying(20) |           | extended |

 author        | character varying(30) |           | extended |

 year          | integer               |           | plain    |

 standard      | character varying(10) |           | extended |

current_status | character varying(32) |           | extended |

Indexes:

    "proglang_tbluk_pkey" PRIMARY KEY, btree (id)

     "proglang_tbluk_language_key" UNIQUE CONSTRAINT,  

btree (language)

 Showing Table Information in SQLite
As we have already discussed SQLite, as of the writing of this text, does not 

support modification to column sizes in a table using ALTER TABLE. It does 

however allow you to add a new column, and we added the current_status 

field like with PostgreSQL. Let’s now verify this by looking at the table 

information inside the SQLite shell.

SQLite has its own special dot syntax commands that allow certain 

useful database management tasks. We have already seen the .open 

command used to create and open a database and .tables to list the 

table names. Similarly we can use the .schema command to get table 

information (Listing 4-12).

Chapter 4  OperatiOns On tables



46

Listing 4-12. Displaying schema information in SQLite

sqlite> .schema proglang_tbluk

CREATE TABLE proglang_tbluk (

id             INTEGER     NOT NULL  PRIMARY KEY,

language       VARCHAR(20) NOT NULL  UNIQUE,

author         VARCHAR(25) NOT NULL,

year           INTEGER     NOT NULL,

standard       VARCHAR(10) NULL,

current_status VARCHAR(32) NULL);

Notice how the new column is added at the end while the length of the 

author field remains 25 characters.

 Showing Table Information in Other DBMS’s
If you are not practicing on either of the DBMS implementations 

mentioned above, there might be other ways to verify table field-level 

information. For example, Ingres utilizes the HELP TABLE <table name> 

command, which can be run on its isql shell.

A lot of other DBMS’s like Oracle use the DESCRIBE command to view 

a table definition. While the information this command shows may vary 

from one DBMS to another, they at least show the field name, its data type, 

and whether or not NULL values are allowed for the particular field. The 

general syntax of the command is given below (Listing 4-13).

Listing 4-13. The general syntax of the DESCRIBE statement

DESCRIBE <table name>;

Chapter 4  OperatiOns On tables



47© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_5

CHAPTER 5

Writing Basic Queries
A query is an SQL statement that is used to extract a subset of data from 

your database and presents it in a readable format. As we have seen 

previously, the SELECT command is used to run queries in SQL. You 

can further add clauses to your query to get a filtered, more meaningful 

result. The level of flexibility afforded by SQL is one of the reasons it has 

succeeded as a query language. While there is an entire gamut of add-ons 

to SELECT, in this chapter we will focus on only two – ORDER BY and WHERE.

Database administration tasks for a well thought-out schema are 

few and far between, but retrieving meaningful results using queries is 

something everyone does routinely. Since the majority of operations on 

a database involve queries, it is important to understand them in detail. 

While this chapter will only deal with queries run on a single table, you can 

run a SELECT operation on multiple tables in a single statement.

 Selecting a Limited Number of Columns
The intention since the beginning of SQL was to provide an easy-to-use 

query system to everyday users. They should not have to reach for a 

programming language to make their report readable. A major facility for 

this is the ability to display a finite set of columns in the output rather than 

all the fields of a table.



48

We have already seen how to extract all the data from a table when 

we were verifying our results in the previous chapters. But as you might 

have noted in some of our catalog queries – we can extract a subset of data 

too. We first test this by limiting the number of fields to show in the query 

output by not specifying the * selection criteria, but by naming the fields 

explicitly as a comma-separated list (Listing 5-1).

Listing 5-1. Selecting a subset of fields from a table

SELECT language,

       year FROM proglang_tbl;

language year

Prolog 1972

Perl 1987

APL 1964

You can see that the query we constructed mentioned the fields 

we wish to see, that is, language and year. Also note that the result of 

this query is useful by itself as a report for looking at the chronology of 

programming language creation. While this is not a rule enforced by SQL 

or a relation database management system, it makes sense to construct 

your query in such a way that the meaning is self-evident if the output is 

meant to be read by a human. This is the reason we left out the field id in 

the query, since it has no inherent meaning to the reader except if they 

wish to know the sequential order of the storage of records in the table.

You are free to decide the ordering of the fields in your output. The 

positioning of a field in a CREATE TABLE statement has no effect on any 

SELECT query you run on it. Indeed, you are even free to duplicate a field 

as many times as you wish in your output. Whether it makes sense to do so 

is debatable! But as long as the field names in the comma-separated list to 

SELECT is valid, it will show up in the output.

ChAPter 5  Writing BAsiC Queries



49

 Ordering the Results
You might have noticed that in our previous query output, the languages 

were printed out in the same order as we had inserted them. But what 

if we wanted to sort the results by the year the language was created in. 

The chronological order might make more sense if we wish to view the 

development of programming languages through the decades. In such 

cases, we take the help of the ORDER BY clause. To achieve our purpose, we 

modify our query with this additional clause (Listing 5-2).

Listing 5-2. Usage of the ORDER BY clause

SELECT language,

       year

FROM proglang_tbl ORDER BY year;

language year

APL 1964

Prolog 1972

Perl 1987

The astute reader will notice that the output of our ORDER BY clause 

was ascending. This is the default ordering that can be made explicit by 

appending the argument ASC to the column we wish to sort. To reverse this, 

we use the argument DESC to our ORDER BY clause as below (Listing 5-3).

Listing 5-3. Usage of the ORDER BY clause with the DESC 

argument

SELECT language,

       year

FROM proglang_tbl ORDER BY year DESC;

ChAPter 5  Writing BAsiC Queries



50

language year

Perl 1987

Prolog 1972

APL 1964

Ordering is not limited to numeric fields. You can order character- 

based columns too. The sorting method is alphabetical starting with the 

first character and subsequently moving to the next sequential characters 

if the character is the same. Let us try ordering our query result by the 

language field this time (Listing 5-4).

Listing 5-4. Usage of the ORDER BY clause with a character based 

column

SELECT language,

       year

FROM proglang_tbl ORDER BY language;

language year

APL 1964

Perl 1987

Prolog 1972

 Ordering Using Field Abbreviations
A useful shortcut in SQL involves ordering a query result using an integer 

abbreviation instead of the complete field name. The abbreviations are 

formed starting with 1, which is given to the first field specified in the 

query; 2 to the second field; and so on. Let’s rewrite our query to sort the 

output by descending year using field abbreviations (Listing 5-5).

ChAPter 5  Writing BAsiC Queries



51

Listing 5-5. Ordered SELECT query in descending order using field 

abbreviations

SELECT language,

       year

FROM proglang_tbl ORDER BY 2 DESC;

language year

Perl 1987

Prolog 1972

APL 1964

The 2 argument given to the ORDER BY clause signifies ordering by the 

second field specified in the query, namely year. Over time I have realized 

that the best use of field abbreviations is while you are querying a database 

system interactively. Rarely is it a good idea to use field abbreviations if you 

are embedding SQL inside a programming language.

 Ordering by Multiple Columns
What if you wanted to order your results by more than one column? It 

would be a plausible scenario where some of the values of the ordering 

column are the same. For example, supposing you had a table having 

student grades and names. You want to order the students by their grades, 

but a lot of students have gotten the Grade A. So you apply a second 

ordering by name, sorting alphabetically all grade A students, then grade B 

students and so on.

Let’s try to see a working example of this using our programming 

languages table. But for that we need to insert a few more rows in there 

(Listing 5-6).

ChAPter 5  Writing BAsiC Queries



52

Listing 5-6. Inserting a few more languages in our table

INSERT INTO proglang_tbl

 (id, language, author, year, standard)

VALUES

 (4, 'JOVIAL', 'Schwartz', 1959, 'US-DOD');

INSERT INTO proglang_tbl

 (id, language, author, year, standard)

VALUES

 (5, 'APT', 'Ross', 1959, 'ISO');

Now let us order our programming languages table by year and 

language keeping in mind that our newly inserted languages have the 

same year of creation (Listing 5-7).

Listing 5-7. Ordering by more than one columns

SELECT language,

       year

FROM proglang_tbl ORDER BY year, language;

language year

APt 1959

JOViAL 1959

APL 1964

Prolog 1972

Perl 1987

You can even use different ordering types for each of the columns 

(Listing 5-8).

ChAPter 5  Writing BAsiC Queries



53

Listing 5-8. Combining different ordering types

SELECT language,

       year

FROM proglang_tbl

ORDER BY year DESC, language ASC;

language year

Perl 1987

Prolog 1972

APL 1964

APt 1959

JOViAL 1959

Notice how APT came before JOVIAL because we had mentioned an 

ascending order for the language field.

 Putting Conditions with WHERE
We have already seen how to select a subset of data available in a table 

by limiting the fields queried. We will now limit the number of records 

retrieved in a query using conditions. The WHERE clause is used to achieve 

this, and it can be combined with explicit field selection or ordering 

clauses to provide meaningful output.

For a query to run successfully and fetch data from a table, it must have 

at least two parts – the SELECT and the FROM clause.1 After this we place the 

optional WHERE condition and then the ordering clause. Thus, if we wanted 

to see the programming language (and its author), which was standardized 

by ANSI, we'd write our query as below (Listing 5-9).

1 If we let go of our from a table requirement, we can write a query with just SELECT. 
Try SELECT 1 in your DBMS and see the output.

ChAPter 5  Writing BAsiC Queries



54

Listing 5-9. Using a WHERE conditional

SELECT language,

       author

FROM proglang_tbl

WHERE standard = 'ANSI';

language author

APL iverson

As you may have noticed, the query we formulated specified the 

language and author fields, but the condition was imposed on a separate 

field altogether – standard. Thus we can safely say that while we can 

choose what columns to display, our conditionals can work on a record 

with any of its fields.

You are by no means restricted to use = (equals) for your conditions. It 

is perfectly acceptable to choose other operators like < and >. You can also 

include the ORDER BY clause and sort your output. An example is given 

below (Listing 5-10).

Listing 5-10. Combining the WHERE and ORDER BY

SELECT language,

       author,

       year

FROM proglang_tbl

WHERE year > 1970

ORDER BY author;

language author year

Prolog Colmerauer 1972

Perl Wall 1987

ChAPter 5  Writing BAsiC Queries



55

Notice that the output only shows programming languages 

developed after 1970 (at least according to our database). Also since the 

ordering is done by a varchar field, the sorting is done alphabetically in 

an ascending order.

 Combining Conditions
If we can only specify one condition using the WHERE clause, it will fulfill 

only a tiny fraction of real-world requirements. We can however construct 

complex conditions using the boolean operators AND and OR.

When we want our resultset to satisfy all of the multiple conditions, we 

use the AND operator (Listing 5-11).

Listing 5-11. Using the AND operator to combine conditions

SELECT language,

       author,

       year

FROM proglang_tbl

WHERE year > 1970 AND standard IS NULL;

language author year

Perl Wall 1987

We have now combined the two conditions, meaning any row in the 

resultset must satisfy both the criteria mentioned. In our case, there is only 

one such row – Perl.

An interesting point to note is our construction of the second 

conditional. We specify that the standard field should be a null value by 

specifying IS NULL. This is not the same as saying standard = NULL. If 

we attempt to write the latter as our conditional, we would get an empty 

result.

ChAPter 5  Writing BAsiC Queries



56

While this may seem counterintuitive, it actually makes perfect sense. 

A null is supposed to signify undefined values, not a precise value like 

infinity or 0 or even a complex number. We cannot rationalize the precise 

equivalence operator = for a null, and thus SQL interpreters use the IS 

NULL comparison.

If we want our resultset to satisfy any one of our conditions, we use 

the OR operator. Let’s use this operator in the above example but with a 

different intention. We want all languages that were either created after 

1970 or don’t have a standardizing body (Listing 5-12).

Listing 5-12. Using the OR operator

SELECT language,

       author,

       year

FROM proglang_tbl

WHERE year > 1970 OR standard IS NULL;

language author year

Prolog Colmerauer 1972

Perl Wall 1987

Prolog only satisfies the first criterion that it was created after 1970 but 

was actually standardized by ISO. Perl satisfies both criteria and is also 

rightly shown. If we had a language in our table without a standardizing 

body but created before 1970, it would also sneak up on the resultset here.

We can even create yet more complex queries by combining the AND 

and OR operators. One has to be careful to not make the logic of the filtering 

using these operators complex or unreadable.

ChAPter 5  Writing BAsiC Queries



57© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_6

CHAPTER 6

Manipulating Data
In this chapter we study the Data Manipulation Language (DML) part of 

SQL that is used to make changes to the data inside a relational database. 

The three basic commands of DML are as follows.

• INSERT Populates tables with new data

• UPDATE Updates existing data

• DELETE Deletes data from tables

We have already seen a few examples on the INSERT statement 

including simple inserts, selective field insertions, and null value inserts. 

Thus we will concentrate on other ways to use this statement.

 Inserting Data into a Table from Another 
Table
You can insert new records into a table from another one by using a 

combination of INSERT and SELECT. This is pretty close to the way we 

combined CREATE TABLE and SELECT to create a new table with rows from 

another table.

Since a query would return you some records, combining it with an 

insertion command would enter these records into the new table. You can 

even use a WHERE conditional to limit or filter the records you wish to enter 

into the new table. We will now create a new table called stdlang_tbl, which 



58

will have only two fields – language and standard. In this we would insert 

rows from the proglang_tbl table that have a non-null value in the standard 

field (Listing 6-1). This will also demonstrate our first use of a boolean 

operator – NOT.

Listing 6-1. Using INSERT and SELECT to conditionally load data 

into another table

CREATE TABLE stdlang_tbl

 (language varchar(20),

  standard varchar (10));

INSERT INTO stdlang_tbl

 SELECT language,

        standard

 FROM proglang_tbl

 WHERE standard IS NOT NULL;

Note that we had to create the table separately in this case and then 

insert data into it using INSERT and SELECT. The NOT inverts the IS NULL 

test, that is, if something is a null value instead of normally returning a 

true, the NOT makes the conditional return a false.

NOT, NULL, True and False If we consider boolean logic principles, 
the closest analogue to NULL is the value false. However NOT inverts 
a boolean value: true becomes false, and false becomes true.

Testing a value with IS NULL is an SQL comparison, returning a true 
for every null value. This is what we have inverted in the example 
above using NOT. Don’t confuse the meaning of this comparison with 
what boolean value a NULL closely represents.

CHapTer 6  ManIpuLaTIng DaTa



59

When you view the contents of this table, you will notice that it has 

picked up the languages that actually had a standard column value 

(Table 6-1).

The data being populated by INSERT INTO and SELECT must adhere 

to the constraints defined during table creation. If our stdlang_tbl had 

defined language as its primary key, our insert statements would run 

fine unless we encountered a duplicate language value (Listing 6-2). 

This is not a problem in our case currently since the languages are 

themselves unique.

Listing 6-2. An altered definition of stdlang_tbl with the primary key

DROP TABLE stdlang_tbl;

CREATE TABLE stdlang_tbl

 (language varchar(20) PRIMARY KEY,

  standard varchar (10));

INSERT INTO stdlang_tbl

 SELECT language,

        standard

 FROM proglang_tbl

 WHERE standard IS NOT NULL;

Table 6-1. Contents of Our Newly Created stdlang_tbl table

language standard

prolog ISO

apL anSI

JOVIaL uS-DOD

apT ISO

CHapTer 6  ManIpuLaTIng DaTa



60

What would happen if we somehow violated the constraints? For 

example, let us go about creating a new table standardizing_bodies that 

contains only one field – name. The only constraint on this is UNIQUE. 

We already know that both Prolog and APT from our proglang_tbl were 

standardized by ISO. Let’s try to simulate this using code (Listing 6-3).

Listing 6-3. Violating the UNIQUE constraint while INSERT  

INTO … SELECT

CREATE TABLE standardizing_bodies

 ( name varchar(10) UNIQUE );

INSERT INTO standardizing_bodies

 SELECT standard FROM proglang_tbl

 WHERE standard IS NOT NULL;

ERROR:  duplicate key value violates unique constraint 

"standardizing_bodies_name_key"

DETAIL:  Key (name)=(ISO) already exists.

Note that the contents of this new table standardizing_bodies will 

be empty. Our INSERT operation was a single statement, not a collection 

of unique inserts. Thus when the constraint was violated, no data was 

inserted.

 Updating Existing Data
To modify some data in a record, we use the UPDATE command. While it 

cannot add or delete records (those responsibilities are delegated to other 

commands), if a record exists it can modify its data even affecting multiple 

fields in one go and applying conditions. The general syntax of an UPDATE 

statement is given below (Listing 6-4).

CHapTer 6  ManIpuLaTIng DaTa



61

Listing 6-4. General syntax of the UPDATE command

UPDATE <table_name> SET

 <column1> = <value>,

 <column2> = <value>,

 <column3> = <value>

 . . .

WHERE <condition>;

Let us now return to our proglang_tbl table and add a new row about 

the Forth and Tcl programming languages (Listing 6-5).

Listing 6-5. Populating some more data in our programming 

languages table

INSERT INTO proglang_tbl

 (id, language, author, year, standard)

VALUES

 (6, 'Forth', 'Moore', 1973, NULL);

INSERT INTO proglang_tbl

 (id, language, author, year, standard)

VALUES

 (7, 'Tcl', 'Ousterhout', 1988, NULL);

What if we suddenly wanted to add 10 years to each language’s 

creation year? Since we want to apply the UPDATE logic to every row, we can 

forego the search conditions (Listing 6-6).

Listing 6-6. Running an UPDATE on all rows of a table

UPDATE proglang_tbl SET

 year = year + 10;

CHapTer 6  ManIpuLaTIng DaTa



62

This query would increase all language creation years by 10. There is 

no ambiguity here, since the right-hand side year + 10 is calculated first 

and then assigned to the year field. This happens for all rows. To get back 

to our original dates, simply run the same query with the SET column as 

year = year – 10.

We later realize that the Forth language was created near 1972 (instead 

of 1973), and it actually has been standardized in 1994 by the ANSI. Thus 

we now go about correcting our mistakes by writing our update queries 

to reflect this data (Listing 6-7). We should note that we must include a 

search condition for the Forth language only.

Listing 6-7. Updating the Forth language details

UPDATE proglang_tbl SET

 year = 1972

WHERE language = 'Forth';

UPDATE proglang_tbl SET

 standard = 'ANSI'

WHERE language = 'Forth';

We could have easily combined updating the multiple fields in a single 

statement, thus saving the DBMS engine the trouble to find the row again 

(Listing 6-8).

Listing 6-8. Updating multiple fields in a single statement

UPDATE proglang_tbl SET

 year = 1972,

 standard = 'ANSI'

WHERE language = 'Forth';

CHapTer 6  ManIpuLaTIng DaTa



63

If you've typed the statement correctly and no errors are thrown 

back, the contents of the record in question would have been modified as 

intended. Verifying the result of the same involves a simple query the likes 

of which we have seen in previous examples.

 Deleting Data from Tables
You can use the DELETE command to delete records from a table. This 

means that you can choose which records you want to delete based on a 

condition or delete all records, but you cannot delete certain fields of a 

record using this statement. The general syntax of the DELETE statement is 

given below (Listing 6-9).

Listing 6-9. General syntax of DELETE

DELETE FROM <table_name>

WHERE <condition>;

While putting a conditional clause in the DELETE is optional, it is almost 

always used – simply because not using it would cause all the records to be 

deleted from a table, which is a rarely valid need. Luckily, we have a spare 

table stdlang_tbl that is not needed anymore, so let’s try deleting all rows 

from it (Listing 6-10).

Listing 6-10. Deleting all records from a table

DELETE FROM stdlang_tbl;

If we try to verify contents of this table, we’d get no data rows back. 

Only the column headers would be visible.

language standard

CHapTer 6  ManIpuLaTIng DaTa



64

We now write the full statement to delete the record corresponding to 

Forth from the table. Again, we will have to include the search condition in 

the WHERE clause (Listing 6-11, Table 6-2).

Listing 6-11. Deleting a record from the proglang_tbl table

DELETE FROM proglang_tbl WHERE language = 'Forth';

You should always be careful about the WHERE clauses you put on 

a DELETE statement. They should never be too broad, lest you end up 

deleting more data than you intended.

Table 6-2. proglang_tbl contents After the Record Deletion

id language author year standard

1 prolog Colmerauer 1972 ISO

2 perl Wall 1987

3 apL Iverson 1964 anSI

4 JOVIaL Schwartz 1959 uS-DOD

5 apT ross 1959 ISO

7 Tcl Ousterhout 1988

CHapTer 6  ManIpuLaTIng DaTa



65© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_7

CHAPTER 7

Organizing Your Data
Since this is a text meant to teach SQL to people unfamiliar with it, our 

data has been very simplistic. The number of fields you’d wish to store in 

your database would be a larger value than the five-column table we saw 

in earlier chapters. Also, some assumptions were made intrinsically on 

the kind of data we will store in the table. But this is not always the case 

in real life.

In reality the data we encounter will be complex, even redundant. 

This is where the study of data modeling techniques and database design 

come in. While it is advised that the reader refer to a more comprehensive 

treatise on this subject, nonetheless we will try to study some good 

relational database design principles since the study would come in handy 

while learning SQL statements for multiple tables.

 Normalization
Let us suppose we have a database of employees in a fictional institution 

as given below (Table 7-1). If the database structure has not been modeled 

but has been extracted from a raw collection of information available, 

redundancy is expected.



66

We can see that Descartes has two rows because he spent his life in 

both France and Netherlands. Doesn’t seem very elegant, does it? Now if at 

a later point we decide that we wish to classify him with a different skill, we 

would have to update both his rows since they should contain an identical 

(primary) skill.

Wouldn’t it be saner to have a separate table for skills and somehow 

allow the records that share the same skill to refer to this table? This way if 

we wish to reflect that both Socrates and Descartes were thinkers in Western 

Philosophy, renaming the skill record in the second table would do the trick.

This process of breaking down a raw database into logical tables and 

removing redundancies is called Normalization. There are even levels of 

normalization called normal forms that dictate how to achieve the desired 

design.

There are five accepted normal forms that serious database 

administrators and developers are familiar with. They range from first 

normal form 1NF to fifth normal form 5NF These forms are progressive in 

nature, meaning that a design in 3NF is also 1NF and 2NF compliant. Since 

the origin of these forms are based in academic research, the working 

developers usually restrict themselves to 3NF or 4NF in most cases. 

Again, we advise the reader refer to a more comprehensive text dealing 

with database design and normalization. We will do mere lip service in 

exploring these vast fields.

Table 7-1. The Fictional Firm’s Employee Data

employee_id name skill manager_id location

1 Socrates Philosophy (null) Greece

2 Plato Writing 1 Greece

3 Aristotle Science 2 Greece

4 Descartes Philosophy (null) France

4 Descartes Philosophy (null) Netherlands

ChAPter 7  OrGANiziNG YOur DAtA



67

For now, let’s turn to our programming languages data to see the need 

for normalization playing out.

 Atomicity
In the programming language examples that we’ve seen, our assumption 

has always been that a language has a single author. But there are 

countless languages where multiple people contributed to the core design 

and should rightfully be acknowledged in our table. How would we go 

about making such a record? Let us take the case of BASIC, which was 

designed by John Kemeny and Thomas Kurtz. The easiest option to add 

this new record into the table is to fit both authors in the author field 

(Table 7-2).

Table 7-2. A Record with a Non-Atomic Field Value

id language author year standard

1 Prolog Colmerauer 1972 iSO

2 Perl Wall 1987 (null)

3 APL iverson 1964 ANSi

4 tcl Ousterhout 1988 (null)

5 BASiC Kemeny, Kurtz 1964 ANSi

You can immediately see that it would be difficult to write a query 

to retrieve this record based on the author field. If the data written as 

“Kemeny, Kurtz” or “Kurtz, Kemeny” or even “Kemeny & Kurtz,” it would 

be extremely difficult to put the right string in the WHERE conditional clause 

of the query. After all, it is possible that the person who inserted the data is 

not the same as the one querying it.

ChAPter 7  OrGANiziNG YOur DAtA



68

The correct solution is to redesign the table structure to make all field 

values atomic. Atomicity of values means that every intersection of a row 

and column must contain a single, indivisible value. If in your current 

design you have some fields containing non-atomic values, you need to 

start thinking of changing your table structures.

 Repeating Groups
Another simple (but ultimately wrong) approach that comes to mind is to 

split the author field into two parts – author1 and author2. If a language has 

only one author, the author2 field would contain a null value (Table 7- 3). 

Can you spot the problem that will arise from this design decision?

This imposes an artificial constraint on how many authors a 

language can have. It seems to work fine for a couple of them, but what 

if a programming language was designed by a committee of a dozen or 

more people, and we did want to include all of them in the credits? At the 

database design time, how do we fix the number of authors we wish to 

support?

Table 7-3. A Table with a Repeating Group

id language author1 author2 year standard

1 Prolog Colmerauer (null) 1972 iSO

2 Perl Wall (null) 1987 (null)

3 APL iverson (null) 1964 ANSi

4 tcl Ousterhout (null) 1988 (nul)

5 BASiC Kemeny Kurtz 1964 ANSi

ChAPter 7  OrGANiziNG YOur DAtA



69

This kind of design is referred to as a repeating group and must be 

actively avoided. This also has an ugly effect of having too many null values 

in some of the fields, a first sign of bad database design.

 Splitting the Table
Our first stab at table design lumps the languages and authors together. It 

is natural to think that way because our understanding of the data at first 

glance views all the fields as a logical whole. All the data to us belongs to 

the programming languages, the entity being described.

But as we have seen above, the authors of the languages seem to be 

a distinct entity in our data. We have not even begun to capture multiple 

languages by the same author, and already we feel a pressing need to 

distinguish between languages and authors as entities.

The correct design to remove the problems listed above is to split 

the table into two – one holding the author details (Table 7-5) and one 

detailing the language (Table 7-4).

Table 7-4. A Table Holding Programming Language Details

id language year standard

1 Prolog 1972 iSO

2 Perl 1987 (null)

3 APL 1964 ANSi

4 tcl 1988 (nul)

5 BASiC 1964 ANSi

ChAPter 7  OrGANiziNG YOur DAtA



70

Once you have removed the non-atomicity of fields and repeating groups 

along with assigning unique id’s to your tables, your table structure is now in 

the first normal form. The author table’s language_id field, which refers to the 

id field of the language table, is called a foreign key constraint (Listing 7-1).

Listing 7-1. Creating the new tables

CREATE TABLE newlang_tbl

 (id       INTEGER     NOT NULL PRIMARY KEY,

  language VARCHAR(20) NOT NULL,

  year     INTEGER     NOT NULL,

  standard VARCHAR(10) NULL);

CREATE TABLE authors_tbl

 (author_id   INTEGER     NOT NULL,

  author      VARCHAR(25) NOT NULL,

  language_id INTEGER REFERENCES newlang_tbl(id));

Notice that in the author’s table we’ve made a foreign key constraint by 

making the language_id field reference the id field of the new programming 

languages table using the keyword REFERENCES. You can only create a foreign 

key reference as a primary or unique key; otherwise during the constraint 

creation time we would receive an error similar to the following.

Table 7-5. A Table Holding Author Details

author_id author language_id

1 Colmerauer 1

2 Wall 2

3 Ousterhout 4

4 iverson 3

5 Kemeny 5

6 Kurtz 5

ChAPter 7  OrGANiziNG YOur DAtA



71

ERROR:  there is no unique constraint matching given keys for 

referenced table "newlang_tbl"

Since we have created a reference to the language_id, inserting a row in 

the author’s table that does not yet have a language entry would also result 

in an error, called a Referential Integrity violation (Listing 7-2).

Listing 7-2. A referential integrity violation

INSERT INTO authors_tbl

 (author_id, author, language_id)

VALUES

 (5, 'Kemeny', 5)

ERROR:  insert or update on table "authors_tbl" violates 

foreign key constraint "authors_tbl_language_id_fkey"

DETAIL:  Key (language_id)=(5) is not present in table 

"newlang_tbl".

However, when done sequentially, that is, the language first and  

then its corresponding entry in the author table, everything works out 

(Listing 7-3).

Listing 7-3. Making entries for BASIC in both the tables

INSERT INTO newlang_tbl

 (id, language, year, standard)

VALUES

 (5, 'BASIC', 1964, 'ANSI');

INSERT INTO authors_tbl

 (author_id, author, language_id)

VALUES

 (5, 'Kemeny', 5);

ChAPter 7  OrGANiziNG YOur DAtA



72

Referential Integrity in SQLite if you tried to run Listing 7-2 
in SQLite, you wouldn’t get an error back despite there being no 
language_id 5 in the newlang_tbl. SQLite, by default, turns off 
referential integrity checking for backward compatibility reasons.  
to turn it on for your database, run the following pragma in its 
command shell.

PRAGMA foreign_keys = ON;

if you now violate referential integrity, we would get a familiar 
Error: FOREIGN KEY constraint failed error message.

Referential integrity is a key benefit of good relational database design. 

Since it applies to related entities, it ensures that the values of these 

remain in sync. In our example above, this constraint made sure that we 

never have an author’s data whose created programming language is not 

captured in the languages table.

When designing databases to solve a business problem, deciding how 

referential integrity comes into play is a big decision. This is done mainly 

in discussion with domain experts who understand the business logic of 

the entities data you are trying to capture.

The other statements to get fully populated tables are given below 

(Listing 7-4).

Listing 7-4. Fully populating the newly created tables

INSERT INTO newlang_tbl

 (id, language, year,  standard)

VALUES

 (1, 'Prolog', 1972, 'ISO');

ChAPter 7  OrGANiziNG YOur DAtA



73

INSERT INTO newlang_tbl

 (id, language, year)

VALUES

 (2, 'Perl', 1987);

INSERT INTO newlang_tbl

 (id, language, year,  standard)

VALUES

 (3, 'APL', 1964, 'ANSI');

INSERT INTO newlang_tbl

 (id, language, year)

VALUES

 (4, 'Tcl', 1988);

INSERT INTO authors_tbl

 (author_id, author, language_id)

VALUES (6, 'Kurtz', 5);

INSERT INTO authors_tbl

 (author_id, author, language_id)

VALUES (1, 'Colmerauer', 1);

INSERT INTO authors_tbl

 (author_id, author, language_id)

VALUES (2, 'Wall', 2);

INSERT INTO authors_tbl

 (author_id, author, language_id)

VALUES (3, 'Ousterhout', 4);

INSERT INTO authors_tbl

 (author_id, author, language_id)

VALUES (4, 'Iverson', 3);

ChAPter 7  OrGANiziNG YOur DAtA



74

The Pursuit of Normalization  The man who created the 
Relational Model and in turn normalization – Dr. Codd – was an 
academic genius. While he was working at IBM at the time, decidedly 
non-academia, the whole thing has a whiff of mathematical purity 
about it.

But the cost of removing redundancies in data is speed. While there 
may be many advanced levels of normal forms, 1NF-5NF and the 
lesser-known Boyce-Codd Normal Form, we must not be too pedantic 
about pursuing the higher normal form. Common sense must prevail 
in the head of the database designer.

In some cases, denormalization does have the benefit of faster 
access. Indeed, many in-vogue NoSQL database systems tout 
redundant data storage as a feature. This obviously comes at the cost 
of consistency of truth. But then again, when our seemingly random 
clicks on the Web are captured and analyzed to decide our most 
suitable insurance provider, perhaps a loss of truth is acceptable.

Nevertheless if 40 years of dominance is anything to go by, unless 
you have run into a very special case, Codd (and the relational model) 
is always right.

ChAPter 7  OrGANiziNG YOur DAtA



75© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_8

CHAPTER 8

Doing More 
with Queries
SQL as a language was created for the end users of the database systems. 

It just happened to be used by programmers too, but the goal was always a 

simple, declarative, English-like language to allow anybody familiar with 

computers and the domain to make sensible reports out of the database 

system. These reporting capabilities were the direct output of an SQL 

query, and thus from the very beginning, there have been a lot of options 

and clauses that can be used with SELECT to make the output more legible.

We have already seen some basic queries, how to order the results of 

a query, and how to put conditions on the query output. Let us now see 

more examples of how we can modify our SELECT statements to suit our 

ever-growing reporting needs.

 Counting the Records in a Table
Sometimes we just wish to know how many records exist in a table without 

actually outputting the entire contents of these records. This can be 

achieved through the use of an SQL function called COUNT. Let us first see 

the contents of the proglang_tbl table when we last left it (Table 8-1).



76

We can clearly see that using the id of the last row of the table, 7 in this 

case, is clearly not a good idea. While there may have been 7 rows in the 

table at some point in the past, we had actually deleted the Forth language 

row. Additionally we cannot always rely on such a field, especially 

when we could have inserted an id of 4711 in the field without anybody 

complaining. Clearly, we need COUNT to come to our rescue (Listing 8-1).

Listing 8-1. Query to count number of records in the table

SELECT COUNT(*) FROM proglang_tbl;

The output returned will be a single record with a single field with the 

value as 6. The function COUNT took one argument, that is, what to count 

and we provided it with * that means the entire record. Thus we achieved 

our purpose of counting records in a table.

What would happen if instead of giving an entire record to count,  

we explicitly specify a column? And what if the column had null values? 

Let's see this scenario by counting on the standard field of the table 

(Listing 8- 2).

Table 8-1. proglang_tbl contents from Chapter 6

id language author year standard

1 Prolog Colmerauer 1972 ISO

2 Perl Wall 1987

3 APL Iverson 1964 ANSI

4 JOVIAL Schwartz 1959 US-DOD

5 APT Ross 1959 ISO

7 Tcl Ousterhout 1988

ChAPTeR 8  DOINg MORe WITh QUeRIeS



77

Listing 8-2. Query to count number of standard field values in  

the table

SELECT COUNT(standard) FROM proglang_tbl;

If you guessed the output of this query as the value 4, you are correct. 

Out of the six rows, two records contain null as their standard value leaving 

out four languages with a standard.

 Using DISTINCT with COUNT
The astute reader might have noticed that the number of standardized 

languages was computed by counting the number of non-null standard 

values. However the resultset contained a duplicate standards body  

value – ISO for both APT and Prolog.

Sometimes it is useful to be able to leave out such duplicates. The 

DISTINCT clause allows us to utilize only non-duplicated values of the 

input specified and is commonly used in conjunction with COUNT. Before 

seeing it in action, let’s add another row to our table so that the results of 

using DISTINCT jump out clearly (Listing 8-3).

Listing 8-3. Inserting a new row in our programming languages 

table

INSERT INTO proglang_tbl

 (id, language, author, year, standard)

VALUES

 (6, 'PL/I', 'IBM', 1964, 'ECMA');

Note the new data choice that we are populating with our new  

row. With PL/I we now have a fourth distinctive standards organization – 

ECMA. PL/I also shares the same birth year as APL (1964) giving us a 

duplicate year field. Now let us run a query to check what distinct year 

values we have in the table (Listing 8-4).

ChAPTeR 8  DOINg MORe WITh QUeRIeS



78

Listing 8-4. Distinct year values in the table

SELECT DISTINCT year

FROM proglang_tbl;

Year

1972

1988

1987

1964

1959

Both 1964 and 1959 make an appearance only once as we desired. A 

common use case for DISTINCT is to combine it with the COUNT function 

to output the number of unique values we have in the table (Listing 8-5). 

Attempting the same for year, we get our expected result of 5.

Listing 8-5. Counting distinct year values

SELECT COUNT (DISTINCT year)

FROM proglang_tbl;

> 5

Using DISTINCT on the standard field has a slightly different output 

than we might expect at first guess (Listing 8-6).

Listing 8-6. Listing distinct standard values

SELECT DISTINCT standard

FROM proglang_tbl;

ChAPTeR 8  DOINg MORe WITh QUeRIeS



79

standard

(null)

eCMA

ANSI

ISO

US-DOD

We actually get five rows in our output including the null value because for 

the DISTINCT clause, it is a uniquely separate value. Combining this with COUNT 

removes the significance of the null row giving us the value 4 (Listing 8-7).

Listing 8-7. Counting distinct standard values

SELECT COUNT (DISTINCT standard)

FROM proglang_tbl;

> 4

 Column Aliases
Queries are frequently consumed directly as reports since SQL provides 

enough functionality to give a meaningful representation to the data stored 

inside a RDBMS. One of the features allowing this is Column Aliases, which 

let you rename column headings in the resultant output. The general 

syntax for creating a column alias is given below (Listing 8-8).

Listing 8-8. General syntax for creating column aliases

SELECT <column1> <alias1>,

       <column2> <alias2>,

        ...

FROM <table>;

ChAPTeR 8  DOINg MORe WITh QUeRIeS



80

For example, we wish to output our programming languages table with 

a few columns only. But we do not wish to call the authors of the language 

as authors. The person wanting the report wishes they be called creators. 

This can be simply done by using the query below (Listing 8-9).

Listing 8-9. Renaming the author field to creator for reporting 

purposes

SELECT id,

       language,

       author creator

FROM proglang_tbl;

id language creator

1 Prolog Colmerauer

2 Perl Wall

3 APL Iverson

4 JOVIAL Schwartz

5 APT Ross

7 Tcl Ousterhout

6 PL/I IBM

While creating a column alias will not permanently rename a field, it 

will show up in the resultant output. Implementations differ on whether 

they allow column aliases to be used in other parts of the query other than 

column listing. For example, let’s try using the column alias creator in the 

WHERE clause of a query in PostgreSQL (Listing 8-10).

ChAPTeR 8  DOINg MORe WITh QUeRIeS



81

Listing 8-10. Using column aliases in the WHERE clause in 

PostgreSQL

SELECT id,

       language,

       author creator

FROM proglang_tbl WHERE creator = 'Ross';

ERROR:  column "creator" does not exist

LINE 4: FROM proglang_tbl WHERE creator = 'Ross';

Aha, PostgreSQL explicitly told us that this is a no-go. Let’s see if SQLite 

is slightly more forgiving (Listing 8-11).

Listing 8-11. Using column aliases in the WHERE clause in SQLite

sqlite> SELECT id,

               language,

               author creator

        FROM proglang_tbl

        WHERE creator='Ross';

id          language    creator

----------  ----------  ----------

5           APT         Ross

While SQLite did allow it, I’m not really fond of using column aliases 

in anything other than column renaming for the output. I’d advise that you 

do the same unless there is a very strong case of readability improvement 

and your implementation allows it (and there are very few that allow it).

ChAPTeR 8  DOINg MORe WITh QUeRIeS



82

 Order of Execution of SELECT Queries
A query is not evaluated from left to right; there is a specific sequence in 

which its various parts are evaluated as given below.

 1. FROM clause

 2. WHERE clause

 3. GROUP BY clause

 4. HAVING clause

 5. SELECT clause

 6. ORDER BY clause

There is an interesting corollary of having the SELECT evaluation being 

lower than the WHERE clause. Can you guess what it is?

It is the inability of database management systems like PostgreSQL, 

DB2, and Microsoft SQL Server to use column aliases in the WHERE clause. 

Until the point the query execution is on the filtering stage using the 

conditions provided, it has still not resolved the column aliases of the 

query.

Let’s test this by running a query in PostgreSQL where we use the 

column alias in the ORDER BY clause, the only one with a lower precedence 

(Listing 8-12).

Listing 8-12. Using column aliases in the ORDER BY clause

testdb=# SELECT id,

       language,

       author creator

FROM proglang_tbl

ORDER BY creator;

ChAPTeR 8  DOINg MORe WITh QUeRIeS



83

 id | language |  creator

----+----------+------------

  1 | Prolog   | Colmerauer

  6 | PL/I     | IBM

  3 | APL      | Iverson

  7 | Tcl      | Ousterhout

  5 | APT      | Ross

  4 | JOVIAL   | Schwartz

  2 | Perl     | Wall

(7 rows)

Our reasoning was rewarded with the correct output, not that I would 

change my advice of using column aliases only with proper thought.

 Using the LIKE Operator
While putting conditions on a query using WHERE clauses, we have already 

seen comparison operators = and IS NULL. Now we take a look at the LIKE 

operator, which will help us with wildcard comparisons. For matching we 

are provided with two wildcard characters to use with LIKE.

• % (Percent) Used to match multiple characters 

including a single character and no character

• _ (Underscore) Used to match exactly one character

We will first use the % character for wildcard matching. Let us suppose 

we wish to list out languages that start with the letter P (Listing 8-13).

Listing 8-13. All languages starting with P

SELECT * FROM proglang_tbl

WHERE language LIKE 'P%';

ChAPTeR 8  DOINg MORe WITh QUeRIeS



84

id language author year standard

1 Prolog Colmerauer 1972 ISO

2 Perl Wall 1987

6 PL/I IBM 1964 eCMA

The output of the above query is all language records whose name 

begins with the letter capital P. While we don’t have such a record, note 

that this resultset would not include any language that starts with the small 

letter p.

We can see that using the % wildcard allowed us to match multiple 

characters like erl in the case of Perl. But what if we wanted to restrict 

how many characters we wished to match? What if our goal was to write a 

query that displays the languages ending in the letter l, but are only three 

characters in length? The first condition could have been satisfied using 

the pattern %l, but to satisfy both conditions in the same query we use the 

_ wildcard. A pattern like %l would result in returning both Perl and Tcl, 

but we modify our pattern suitably to return only the latter (Listing 8-14).

Listing 8-14. All languages ending with l and 3 characters long

SELECT * FROM proglang_tbl

WHERE language LIKE '__l';

id language author year standard

7 Tcl Ousterhout 1988

Note that the result did not include Perl since we explicitly gave two 

underscores to match two characters only. Also it did not match APL or 

JOVIAL since SQL data is case sensitive and l is not equal to L.

ChAPTeR 8  DOINg MORe WITh QUeRIeS



85

We can also use NOT in conjunction with LIKE to negate or inverse 

the result. If we used a NOT in the conditional clause of Listing 8-14, what 

languages do we expect to get back in the result? Having Perl, APL, and 

JOVIAL is certainly right, but they are not the entire resultset. Any language 

that is not three characters long and ending with a lowercase l would be in 

the output (Listing 8-15).

Listing 8-15. Using NOT with LIKE

SELECT * FROM proglang_tbl

WHERE language NOT LIKE '__l';

id language author year standard

1 Prolog Colmerauer 1972 ISO

2 Perl Wall 1987

3 APL Iverson 1964 ANSI

4 JOVIAL Schwartz 1959 US-DOD

5 APT Ross 1959 ISO

6 PL/I IBM 1964 eCMA

Be careful when using LIKE; its comparisons are computationally 

expensive on the database, especially the ones involving multiple % 

wildcards.

ChAPTeR 8  DOINg MORe WITh QUeRIeS



87© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_9

CHAPTER 9

Calculated Fields
We have already seen column aliases that allow us to rename a field's name 

in the query output. But we frequently encounter conditions that require 

changes to a field value. This is where the concept of a calculated field 

comes in.

 Mathematical Calculations
Any numeric field can be operated upon by mathematical operators we 

are all familiar with. We can add, subtract, multiply, divide, and even find 

the remainder of a division operation fairly easily. While the operators 

supported differ in various implementations, the ones given below should 

be available across any RDBMS you come across (Table 9-1).

Table 9-1. Mathematical Operators Available in SQL

Addition +

Subtraction -

Multiplication *

Division /

Remainder %



88

Let us take our programming languages table and try to find out the 

decade in which the language was created. For example, Prolog was 

created in the 1970s decade. Let us try to find out this fact from the year of 

creation available to us. One approach is to find the remainder of the year 

when divided by 10, which is the number of years in a decade (Listing 9-1). 

This is the value that specifies how many years it has been since the start of 

that decade.

Listing 9-1. Using the remainder operation

SELECT language,

       (year % 10) remain

FROM proglang_tbl;

language remain

Prolog 2

Perl 7

APL 4

JOVIAL 9

APT 9

Tcl 8

PL/I 4

Now if we subtract this value from the year of creation itself, we would get 

the decade in which the programming language was created (Listing 9-2).

Listing 9-2. Finding the creation decade of a language

SELECT language,

       year - (year % 10) decade

FROM proglang_tbl;

ChAPTeR 9  CALCuLATeD FIeLDS



89

language decade

Prolog 1970

Perl 1980

APL 1960

JOVIAL 1950

APT 1950

Tcl 1980

PL/I 1960

Another approach is to divide the year by 10 and then multiply it by 10. 

This is slightly less straightforward because it relies on the definition of the 

integer data type. Since an integer cannot store decimal points, division 

by 10 would silently chop off the remainder. The year 1972 divided by 10 

would be 197 discarding the .2 bit. If we multiply this value by 10, we would 

get our desired decade value (Listing 9-3).

Listing 9-3. Finding the creation decade of a language using an 

alternative calculation

SELECT language,

       (year / 10) * 10 decade

FROM proglang_tbl;

 String Operations
By far the most commonly used string operation is concatenation. It 

means to join or combine strings. However, since even numeric fields can 

be treated as a string, we can use the concatenation operator || on them 

too. See the example below to modify our decade field to include some 

characters (Listing 9-4).

ChAPTeR 9  CALCuLATeD FIeLDS



90

Listing 9-4. Using the string concatenation operator

SELECT language,

       'The '||((year/10)*10)||'s' decade

FROM proglang_tbl;

language decade

Prolog The 1970s

Perl The 1980s

APL The 1960s

JOVIAL The 1950s

APT The 1950s

Tcl The 1980s

PL/I The 1960s

Note that the concatenation operator manifests itself in different forms 

in different implementations. PostgreSQL, SQLite, and Oracle use the 

shown || symbols whereas Ingres, MySQL, and Microsoft SQL Server use + 

to denote concatenation. Their effect, however, is the same.

The string concatenation operator differs in various programming 
languages too. The || character, which is used in most SQL 
implementations, comes from the IBM PL/I – a language quite 
popular in the ‘60s and ‘70s but rarely seen in modern times.

The last character I actually is the roman numeral for 1, as it 
was built purposely to unify the growing gap between languages 
specializing in business processes and those catering to scientific 
computation.

ChAPTeR 9  CALCuLATeD FIeLDS



91

Another common string operation is substring, which returns only a 

part of the string field value. For example, if we needed to get only the first 

two characters of each programming language, we would use the SUBSTR 

function. The general syntax of this function is given below (Listing 9-5).

Listing 9-5. General syntax of substring

SELECT SUBSTR(<field name>, <starting position>, <length>),

         ...

FROM <table>;

The starting position is the character you wish to start extracting from. 

Unlike most programming languages, the string index positions here 

don’t start from 0 but 1. The third argument length specifies how many 

characters should be a part of the result. For the first two characters of a 

programming language, the starting position would be 1 and the length 

would be 2 (Listing 9-6).

Listing 9-6. Extracting the first two characters of a programming 

language

SELECT SUBSTR(language, 1, 2),

       year

FROM proglang_tbl;

substr year

Pr 1972

Pe 1987

AP 1964

JO 1959

AP 1959

Tc 1988

PL 1964

ChAPTeR 9  CALCuLATeD FIeLDS



92

Interestingly, on one hand, PostgreSQL gives the same result when we 

use SUBSTRING instead of SUBSTR, because it treats them as aliases. SQLite, 

however, works only with SUBSTR. Microsoft SQL Server, on the other hand, 

works only with SUBSTRING. Check your database manual for which version 

your implementation expects.

Another class of string operations that often comes in handy are UPPER 

and LOWER, which change the case of a string value to upper- and lowercase 

respectively. This is best illustrated with an example (Listing 9-7).

Listing 9-7. Changing the case of fields

SELECT UPPER(language),

       LOWER(standard)

FROM proglang_tbl;

upper lower

PROLOG iso

PeRL

APL ansi

JOVIAL us-dod

APT iso

TCL

PL/I ecma

 Literal Values
There are cases when one needs to use a fixed literal value as the values 

of a new column. Like column aliases can change the column header for 

readability, literal values change record values. In a sense they are not 

calculated fields, but fixed fields inserted in specific positions of a record. 

ChAPTeR 9  CALCuLATeD FIeLDS



93

An example will help illustrate this – supposing you wish to really clarify 

the year of language creation, as not just a number but also to include the 

characters AD (Listing 9-8).

Listing 9-8. Using literal values

SELECT language,

       year,

       'AD'

FROM proglang_tbl;

language year AD

Prolog 1972 AD

Perl 1987 AD

APL 1964 AD

JOVIAL 1959 AD

APT 1959 AD

Tcl 1988 AD

PL/I 1964 AD

We can even use numeric literal values the same way, omitting the 

quotation marks for such values. A common utility for literal values arises 

when the user has to copy-paste data from their database query output 

into another tool like a spreadsheet or word processor.

ChAPTeR 9  CALCuLATeD FIeLDS



95© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_10

CHAPTER 10

Aggregation 
and Grouping
SQL has maintained its prominent position in the technical world due 

to its ability to cater to a wide range of business intelligence and analytic 

requests. While databases are often used for finding a needle in a haystack, 

that is, narrowing down to a single row, a lot of interactive usage of SQL 

revolves around generating aggregated insights from a bunch of rows.

Indeed, a major advantage that SQL-based systems have over NoSQL 

data storage solutions is how intuitive grouping and aggregation is in the 

former category.

 Aggregate Functions
An aggregate function is used to compute summarization information 

from a table or tables. We have already seen the COUNT aggregate function 

that counts the records matched. Similarly, there are other aggregation 

functions in SQL like AVG for calculating averages; SUM for computing 

totals; and the extreme functions MAX, MIN for finding out maxima and 

minima values respectively.

The count and extreme functions work with all data types, but 

functions like SUM and AVG make sense only with numeric types and thus 

work only with them.



96

Let’s now try to use AVG on the only sensible numeric choice we have in 

our table – year (Listing 10-1). You can think of the below query as a way of 

finding out the mean year value of all the programming language records 

we have in our table.

Listing 10-1. Finding the Average year of creation in our 

programming languages table

1.  SELECT AVG(year) FROM proglang_tbl;

avg

1970.4285714285714286

We can see the result as a decimal number with a default of 16 digits 

after the decimal point in PostgreSQL. This is slightly lowered to 10 digits 

after the decimal point in SQLite but more than enough still to cover all but 

the rare scenarios.

While the average value was calculated accurately, one can argue 

that a value like this to specify year is not useful. What we really want 

is a readable year value that looks like an actual year, an integer value 

specifically. Thus we go about casting this average value to an integer 

(Listing 10-2).

Listing 10-2. Casting values to integers

SELECT CAST(AVG(year) AS INTEGER)

FROM proglang_tbl;

avg

1970

Chapter 10  aggregation and grouping



97

Conversion of data types using CAST only works with compatible data 

types like numerics and integers. If you try to convert a varchar into an 

integer, the DBMS will spit out an error message as is proper (Listing 10-3).

Listing 10-3. Casting incompatible types

testdb=# SELECT CAST(language AS INTEGER)

         FROM proglang_tbl;

ERROR:  invalid input syntax for integer: "Prolog"

The exception here is SQLite, which will obediently convert the 

varchar value to 0. This may be the most sensible choice for it because of 

its underlying engine implementation; however, I would warn you to stay 

away from such surprising cast operations.

Let’s try the other numeric aggregate function that is commonly used – 

SUM. Suppose we wish to find the sum of the year values in our table – the 

query would be written in a straightforward way using SUM (Listing 10-4).

Listing 10-4. Using the SUM aggregate function

SELECT SUM(year)

FROM proglang_tbl;

sum

13793

As before, if we use SUM on a varchar field, PostgreSQL would spit out 

an error while SQLite would quietly give a value of 0.0 (Listing 10-5).

Chapter 10  aggregation and grouping



98

Listing 10-5. Using SUM on a varchar field in PostgreSQL

testdb=# SELECT SUM(language)

         FROM proglang_tbl;

ERROR:  function sum(character varying) does not exist

LINE 1: SELECT SUM(language) FROM proglang_tbl;

               ^

HINT:  No function matches the given name and argument types. 

You might need to add explicit type casts.

 Using the Extreme Functions – MAX and MIN
MAX and MIN are collectively called the extreme functions because they 

essentially find the extreme values from a set of column values. Their 

most intuitive application is with numeric data, but these functions can be 

applied to other database types as well.

These functions are fairly straightforward to understand and use. Let’s 

take the MIN first. It looks at a particular set of rows and finds the minimum 

value of the column that is provided as an argument to it. For example, 

in our table we wish to find out from which year do we have records of 

programming languages, that is, the earliest language year. Analyzing the 

problem at hand, we see that if we apply the aggregate function MIN to the 

field year in our table, we should get the desired output (Listing 10-6).

Listing 10-6. Using the MIN extreme aggregate function

SELECT MIN(year)

FROM proglang_tbl;

min

1959

Chapter 10  aggregation and grouping



99

We had two languages in our table corresponding to the year 1959 – 

APT and JOVIAL. But since this is the minimum value, it was the result 

once regardless of how many languages had the same value. The function 

MAX is similar, but its result would signify the latest year in which one of the 

languages in our table was created (Listing 10-7).

Listing 10-7. Using the MAX extreme aggregate function

SELECT MAX(year)

FROM proglang_tbl;

max

1988

Of course you can combine them in a single query to get the result in a 

single row itself (Listing 10-8).

Listing 10-8. Using MAX and MIN together

SELECT MAX(year),

       MIN(year)

FROM proglang_tbl;

max min

1988 1959

Like we read before, these functions are not limited to numeric types. 

So let’s combine finding the MAX year value with the MIN language value 

(Listing 10-9).

Chapter 10  aggregation and grouping



100

Listing 10-9. Mixing MAX and MIN types

SELECT MAX(year),

       MIN(language)

FROM proglang_tbl;

max min

1988 apL

The MIN language found was APL since it’s the first alphabetically. 

Notice that APT was not chosen since L < T when comparing alphabets.

We need to be careful while reading this result though. At first glance 

it gives a misleading view that 1988 corresponds to APL, which is not the 

case. Our query simply gives the extreme values of these two fields in our 

table, whether they are from the same record or not.

 Grouping Data
The GROUP BY clause of a SELECT query is used to group records based 

upon their field values. This clause is placed after the WHERE conditional. 

For example, in our sample table we can group data by which committee 

decided on their standard. Let’s see this action after we insert another 

record in our table so that the logical nature of grouping becomes clearer 

(Listing 10-10).

Listing 10-10. Grouping records by its fields

INSERT INTO proglang_tbl

 (id, language, author, year, standard)

VALUES

 (8, 'Fortran', 'Backus', 1957, 'ANSI');

Chapter 10  aggregation and grouping



101

SELECT standard FROM proglang_tbl

WHERE standard IS NOT NULL

GROUP BY standard;

standard

eCMa

anSi

iSo

uS-dod

Notice how the different standards are grouped into a single value, 

regardless of how many times they occur in the table. Let’s try to add the 

language column to the output of the above query (Listing 10-11).

Listing 10-11. Trying to add language to our output fields

SELECT standard,

       language

FROM proglang_tbl

WHERE standard IS NOT NULL

GROUP BY standard;

ERROR:  column "proglang_tbl.language" must appear in the GROUP 

BY clause or be used in an aggregate function

The database engine gave us an error for this query. This makes sense 

because while it bunched the different standards together because of 

our grouping clause, which language it should choose to display with it 

is ambiguous. Let us take the error message’s first suggestion and also 

include the language field in the GROUP BY clause (Listing 10-12).

Chapter 10  aggregation and grouping



102

Listing 10-12. Adding language to our output fields

SELECT standard,

       language

FROM proglang_tbl

WHERE standard IS NOT NULL

GROUP BY standard, language;

standard language

eCMa pL/i

anSi apL

uS-dod JoViaL

iSo prolog

iSo apt

anSi Fortran

The interesting thing to note here is the rule that the columns listed in 

the SELECT clause must be present in the GROUP BY clause. This leads us to 

the following two corollaries.

 1. You cannot group by a column that is not present in 

the SELECT list.

 2. You must specify all the columns in the grouping 

clause that are present in the SELECT list.

Bare Columns in SQLite if you tried executing Listing 10-11 
in SQLite, you would not get an error. this is because of the bare 
column feature in SQLite that allows a column to be present without 
aggregation in the SELECT clause and still be absent from the GROUP 
BY clause. 

Chapter 10  aggregation and grouping



103

this is quite different from most dBMS systems out there, and i 
would suggest that you stay away from using this feature seriously 
because of the undefined behavior involved. however, it is good to 
read up on the details present at the SQLite website. 

https://www.sqlite.org/lang_select.html

 Grouping and Aggregate Functions
Another useful way to use grouping is to combine the operation with 

an aggregate function. Suppose we wish to count how many standards 

a particular organization has in our table. This can be achieved by 

combining the GROUP BY clause with the COUNT aggregate function as given 

below (Listing 10-13).

Listing 10-13. Using GROUP BY with aggregate functions

SELECT standard,

       COUNT(*)

FROM proglang_tbl

GROUP BY standard;

standard count

<null> 2

eCMa 1

anSi 2

iSo 2

uS-dod 1

Chapter 10  aggregation and grouping

https://www.sqlite.org/lang_select.html


104

The output is intuitive enough to warrant no further explanation, but 

the query itself is interesting. Notice that the GROUP BY clause consisted of 

only the standard. The aggregate function is a result of the bunching of the 

grouped columns.

Grouping truly makes sense in SQL when used judiciously with 

aggregate functions. A lot of utility and intelligence from databases are 

derived from analysts using a combination of these applied on a well- 

designed model. Let’s see another example of combining GROUP BY with 

multiple aggregate functions this time.

Suppose we wish to find out how many languages were made in the same 

year, and of those languages which come first alphabetically (Listing 10-14). 

We can immediately see that a GROUP BY on year is needed here along with 

a couple of different aggregate functions.

Listing 10-14. Using GROUP BY with multiple aggregate functions

SELECT year,

       MIN(language),

       COUNT(*)

FROM proglang_tbl

GROUP BY year;

year min count

1972 prolog 1

1957 Fortan 1

1988 tcl 1

1987 perl 1

1964 apL 2

1959 apt 2

Chapter 10  aggregation and grouping



105

 The HAVING Clause
Like a WHERE clause places conditions on the fields of a query, the HAVING 

clause places conditions on the groups created by GROUP BY. It must be 

placed immediately after the GROUP BY but before the ORDER BY clause 

(Listing 10-15).

Listing 10-15. Demonstration of the HAVING clause

SELECT language,

       standard,

       year

FROM proglang_tbl

GROUP BY standard,

         year,

         language

HAVING year < 1980;

language standard year

apt iSo 1959

JoViaL uS-dod 1959

apL anSi 1964

Fortran anSi 1957

pL/i eCMa 1964

prolog iSo 1972

From the output we can clearly see that the records for Perl and Tcl are 

left out since they do not satisfy the HAVING conditional of being created 

before 1980.

Chapter 10  aggregation and grouping



106

You might wonder why we need two different filtering clauses – WHERE 

and HAVING. A WHERE clause does not allow aggregate functions in its 

conditionals, a prime target for the HAVING clause. For example, suppose 

we wish to check which standard values exist more than once in our table. 

Our first stab at this using the GROUP BY clause might look something like 

this (Listing 10-16).

Listing 10-16. Trying aggregate functions in WHERE

SELECT standard

FROM proglang_tbl

WHERE COUNT(standard) > 1

GROUP BY standard;

ERROR:  aggregate functions are not allowed in WHERE

Just like we thought, our SQL interpreter did not allow such a travesty. 

Instead we’ll use the same conditional in the HAVING clause (Listing 10-17).

Listing 10-17. HAVING clause with aggregate functions

SELECT standard

FROM proglang_tbl

GROUP BY standard

HAVING COUNT(standard) > 1;

standard

anSi

iSo

It correctly gave us the names of the two standard values with 

more than one occurrence. Interestingly, if we tweak the conditional to 

COUNT(*), we get an additional row (Listing 10-18).

Chapter 10  aggregation and grouping



107

Listing 10-18. Changing the aggregate function behavior

SELECT standard

FROM proglang_tbl

GROUP BY standard

HAVING COUNT(*) > 1;

standard

(null)

anSi

iSo

The filtering clause is now not restricted to non-null values of the 

standard column. Since there are multiple records with null values in the 

field, it will also be included in the result.

Chapter 10  aggregation and grouping



109© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_11

CHAPTER 11

Understanding Joins
A join operation allows you to retrieve data from multiple tables in a single 

SELECT query. Two tables can be joined by a single join operator, but the 

result can be joined again with other tables. There must exist a same or 

similar column between the tables being joined.

When you design an entire database system using good design 

principles like normalization, we often require the use of joins to give a 

complete picture to a user's query. For example, we split our programming 

languages table into two in Chapter 7 – one holding the author details 

(Table 11-2) and the other holding information about the languages itself 

(Table 11-1). To show a report listing authors and which programming 

language they created, we would have to use a join.

Table 11-1. Contents of newlang_tbl

id language year standard

1 Prolog 1972 ISO

2 Perl 1987 (null)

3 APL 1964 ANSI

4 Tcl 1988 (null)

5 BASIC 1964 ANSI



110

We now form a query to show our desired output – the list of all 

authors with the corresponding language they developed (Listing 11-1). 

We choose our join column as the language_id field from the authors table. 

This corresponds to the id field in the languages table.

Listing 11-1. Running a join operation on our two tables

SELECT author, language

FROM authors_tbl, newlang_tbl

WHERE language_id = id;

author language

Colmerauer Prolog

Wall Perl

Ousterhout APL

Iverson Tcl

Kemeny BASIC

Kurtz BASIC

Table 11-2. Contents of authors_tbl

author_id author language_id

1 Colmerauer 1

2 Wall 2

3 Ousterhout 4

4 Iverson 3

5 Kemeny 5

6 Kurtz 5

ChAPTer 11  UNderSTANdINg JOINS



111

The output of our query combines a column from both tables giving us 

a better report. The language_id = id is called the join condition. Since 

the operator used in the join condition is an equality operator (=), this join 

is called an equijoin. Another important thing to note is that the columns 

participating in the join condition are not the ones we choose to be in the 

result of the query.

Remember that the joining of tables to view a resultset does not affect 

the tables at all. Nothing physically changes in the tables themselves with 

respect to their structure or data. The implicit connection forming is only 

within the lifetime of the join query execution.

 Alternative Join Syntax
You would have noticed that we formed our join query without much 

special syntax, using our regular FROM/WHERE combination. The SQL-92 

standard introduced the JOIN keyword to allow us to form join queries. 

Since it was introduced earlier, the FROM/WHERE syntax is still quite popular 

for joins. But now that the majority of database vendors have implemented 

most of the SQL-92 standard, the JOIN syntax is also in widespread use. 

Below is the JOIN syntax equivalent of the query we just wrote to display 

which author created which programming language (Listing 11-2).

Listing 11-2. Rewriting our query using the JOIN(SQL-92) syntax

SELECT author, language

FROM authors_tbl JOIN newlang_tbl

ON language_id = id;

Notice that instead separating the two tables using a comma (thereby 

making it a list), we use the JOIN keyword. The columns that participate in 

the join condition are preceded by the ON keyword. The WHERE clause can 

then be used after the join condition specification (ON clause) to specify 

any further conditions if needed.

ChAPTer 11  UNderSTANdINg JOINS



112

The kind of joins where all rows that don’t match the join condition 

exactly are eliminated are called inner joins. Thus we can optionally use 

the full keyword INNER JOIN in our queries without affecting the resultset 

(Listing 11-3).

Listing 11-3. Specifying INNER JOIN explicitly

SELECT author, language

FROM authors_tbl INNER JOIN newlang_tbl

ON language_id = id;

 Resolving Ambiguity in Join Columns
In our example the join condition fields had distinct names – id and 

language_id. But what if in our languages table we kept the key field's 

name as language_id? This would create an ambiguity in the join 

condition, which would become the confusing language_id = language_

id. To resolve this, we need to qualify the column by prepending it by the 

table name it belongs to and a .(period) (Listing 11-4).

Listing 11-4. Resolving the naming ambiguity by qualifying the 

columns

CREATE TABLE languages_tbl

 (language_id INTEGER, language VARCHAR(20));

INSERT INTO languages_tbl VALUES (4, 'Tcl');

SELECT author, language

FROM authors_tbl JOIN languages_tbl

ON language_id = language_id;

ChAPTer 11  UNderSTANdINg JOINS



113

=> ERROR:  column reference "language_id" is ambiguous

SELECT author, language

FROM authors_tbl JOIN languages_tbl

ON authors_tbl.language_id = languages_tbl.language_id;

author language

Ousterhout Tcl

Another way to solve such ambiguity is to qualify the columns using 

table aliases. The concept is to give a short name to a table and then 

use this to qualify the columns instead of a long, unwieldy table name 

(Listing 11-5).

Listing 11-5. Using table aliases

SELECT author, language

FROM authors_tbl a JOIN newlang_tbl l

ON a.language_id = l.id;

Here the authors table is given the alias a and the languages table 

is given the alias l. It is generally considered a good practice to qualify 

column names of a join condition regardless of whether there is a name 

ambiguity or not.

 Outer Joins
Since we encountered inner joins in Listing 11-3, it gave us a clue to the 

existence of outer joins. In this kind of join, the resultset consists of rows 

that match the join condition and the rows that don’t match the condition 

from one of the tables. If the rows from the first table that don’t match the 

condition are desired in the resultset, we use a left outer join. Otherwise 

when rows from the second table are required, we use a right outer join.

ChAPTer 11  UNderSTANdINg JOINS



114

This sounds a bit confusing at first, so let’s clarify the concept using 

an example. Let’s add a single row to the newlang_tbl about the Lisp 

programming language, but we will not make any entry into the authors 

table for this (Listing 11-6).

Listing 11-6. Adding a new row to illustrate outer joins

INSERT INTO newlang_tbl

VALUES (6, 'Lisp', 1958, 'ANSI');

If we ran an inner join query on the two tables like Listing 11-1, we 

would get a similar output as the query gave that time around. This new 

row we added would not feature in the resultset. But let’s try a left outer 

join where we explicitly want this new row to be in the results despite 

not having an entry in the authors table. Our first table must then be the 

newlang_tbl and the query would be as below (Listing 11-7).

Listing 11-7. A left outer join example

SELECT language, author

FROM newlang_tbl n LEFT OUTER JOIN authors_tbl a

ON n.id = a.language_id;

language author

Prolog Colmerauer

Perl Wall

APL Ousterhout

Tcl Iverson

BASIC Kemeny

BASIC Kurtz

Lisp

ChAPTer 11  UNderSTANdINg JOINS



115

Aha, success! The LEFT OUTER JOIN allowed us to sneak the Lisp row 

into the resultset with a null author value. Looking at the query listing, if 

you immediately think that just by switching the order of the joined tables, 

we can convert this into a RIGHT OUTER JOIN, then you are absolutely right 

(Listing 11-8).

Listing 11-8. A right outer join example

SELECT language, author

FROM authors_tbl a RIGHT OUTER JOIN newlang_tbl n

ON n.id = a.language_id;

The output of this query would be exactly the same as in Listing 11-7. 

Notice that our join condition specified in the ON clause did not need any 

order change. Since all right outer joins can be written as left outer joins 

(and vice versa), it is rare to find many real-world usages of right outer 

joins. SQLite goes as far as not support right outer joins at all, which is just 

as well.

 Cross Joins
You might think what would happen if we left out the join condition from 

our query. Well what happens in the background of running a join query 

is that first all possible combinations of rows are made from the tables 

participating in the join. Then the rows that satisfy the join condition 

are chosen for the output (or further processing). If we leave out the join 

condition, we get as the output all possible combinations of records 

(Listing 11-9). This is called a Cross Join or Cartesian Product of the tables 

usually denoted by the sign X.

ChAPTer 11  UNderSTANdINg JOINS



116

Listing 11-9. Query for showing the cartesian product of our tables

SELECT author, language

FROM authors_tbl, newlang_tbl;

author language

Colmerauer Prolog

Colmerauer Perl

Colmerauer APL

Colmerauer Tcl

Colmerauer BASIC

Colmerauer Lisp

Wall Prolog

Wall Perl

Wall APL

Wall Tcl

Wall BASIC

Wall Lisp

Ousterhout Prolog

… …

The output of the query is truncated here, but when you run it on your 

computer you should get 36 rows in the result containing each author and 

language combination. Another way to rewrite this query is to actually 

use the JOIN keyword with a preceding argument CROSS as shown below 

(Listing 11-10).

ChAPTer 11  UNderSTANdINg JOINS



117

Listing 11-10. Rewriting our query using CROSS JOIN

SELECT author, language

FROM authors_tbl CROSS JOIN newlang_tbl;

Notice the lack of the ON clause, which means no join condition.

What if we were selecting more than one column from the newlang_tbl, 

say both language and year? Would the number of combinations increase 

dramatically from our cross join above? Turns out that no, the number of 

records in the resultset would be exactly the same as before (Listing 11-11).  

A cartesian product is the combination of records from the tables 

participating in the joins, not within the unit of record for a single table.

Listing 11-11. Selecting multiple columns from a table participating 

in a cross join

SELECT author, language, year

FROM authors_tbl CROSS JOIN newlang_tbl;

author language year

Colmerauer Prolog 1972

Colmerauer Perl 1987

Colmerauer APL 1964

… … …

A cross join is not something you would come across often. It is of 

some utility when either of the tables is small, that is, consisting of a few 

rows, and you need a combination of all the values of it joined with a 

bigger table. However I’d advise against running cross joins on actual 

production database servers unless you really understand why you need 

them in the scenario.

ChAPTer 11  UNderSTANdINg JOINS



118

 Self Joins
Sometimes a table within its own columns has meaningful data but 

one (or more) of its fields refer to another field in the same table. For 

example, if we have a table in which we capture programming languages 

that influenced other programming languages and denote the influence 

relationship by the language id, to show the resolved output we would 

have to join the table with itself. This is also called a self join. Consider 

the table created below and pay close attention to the data being inserted 

(Listing 11-12).

Listing 11-12. Creating and populating our language influence 

table

CREATE TABLE inflang_tbl (id INTEGER PRIMARY KEY,

                          language VARCHAR(20) NOT NULL,

                          influenced_by INTEGER);

INSERT INTO inflang_tbl (id, language)

 VALUES (1, 'Fortran');

INSERT INTO inflang_tbl (id, language, influenced_by)

 VALUES (2, 'Pascal', 3);

INSERT INTO inflang_tbl (id, language, influenced_by)

 VALUES (3, 'Algol', 1);

id language influenced_by

1 Fortran

2 Pascal 3

3 Algol 1

ChAPTer 11  UNderSTANdINg JOINS



119

Our goal is to now write a self join query to display which language 

influenced which one, that is, resolve the influenced_by column 

(Listing 11-13).

Listing 11-13. Running a self join query

SELECT l1.id,

       l1.language,

       l2.language AS influenced

FROM inflang_tbl l1, inflang_tbl l2

WHERE l1.id = l2.influenced_by;

id language influenced

3 Algol Pascal

1 Fortran Algol

Notice the use of table aliases to qualify the join condition columns 

as separate and the use of the AS keyword that renames the column in the 

output.

What if we wanted to use the alternative SQL-92 JOIN syntax for our 

self join? Well as it turns out, there is no special self join keyword or clause 

because it is not needed. To the SQL query interpreter, you have created an 

inner join on two tables who just happen to have exactly similar contents. 

So we can rewrite the Listing 11-13 query using our familiar JOIN keyword 

as below (Listing 11-14).

Listing 11-14. Running a self join query using JOIN

SELECT l1.id,

       l1.language,

       l2.language AS influenced

FROM inflang_tbl l1 JOIN inflang_tbl l2

ON l1.id = l2.influenced_by;

ChAPTer 11  UNderSTANdINg JOINS



120

 Non-Equi Joins
The joins we have seen till now have largely dealt with equality in their join 

condition. While this is the most common way of joining tables together, 

we are by no means restricted to use only equality. Let’s put another join 

condition between the newlang_tbl and authors_tbl between the id and 

author_id this time (Listing 11-15).

Listing 11-15. A non-equi join

SELECT id,

       author_id,

       author,

       language

FROM authors_tbl, newlang_tbl

WHERE id < author_id;

id author_id author language

1 2 Wall Prolog

1 3 Ousterhout Prolog

2 3 Ousterhout Perl

1 4 Iverson Prolog

2 4 Iverson Perl

3 4 Iverson APL

1 5 Kemeny Prolog

2 5 Kemeny Perl

3 5 Kemeny APL

4 5 Kemeny Tcl

1 6 Kurtz Prolog

ChAPTer 11  UNderSTANdINg JOINS



121

id author_id author language

2 6 Kurtz Perl

3 6 Kurtz APL

4 6 Kurtz Tcl

5 6 Kurtz BASIC

While not the most logical of results, it does however satisfy our non- 

equality join condition that in each row the id field is lesser than the 

corresponding author_id field value. We can also freely mix this result with 

an equality condition using the familiar AND operator within the same 

query (Listing 11-16).

Listing 11-16. Using the equality and non-equality conditions

SELECT id,

       author_id,

       author,

       language

FROM authors_tbl, newlang_tbl

WHERE id < author_id

AND id = language_id;

id author_id author language

3 4 Iverson APL

5 6 Kurtz BASIC

The result now consists of records where the author of a language has 

their author_id value greater than their created languages’ id.

ChAPTer 11  UNderSTANdINg JOINS



123© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_12

CHAPTER 12

Subqueries
A subquery, simply put, is a query written as a part of a bigger statement. 

Think of it as a SELECT statement inside another one. The result of the 

inner SELECT can then be used in the outer query. Let us take a simple 

example to illustrate this.

Consider the same source tables as the ones in the joins chapter – 

authors_tbl and newlang_tbl. We will try to write a query (and a subquery) 

to display the author of a particular language (Listing 12-1).

Listing 12-1. A simple subquery example

SELECT author FROM authors_tbl

 WHERE language_id IN

 ( SELECT id FROM newlang_tbl

   WHERE language="Tcl");

author

Ousterhout

The subquery SELECT id FROM newlang_tbl WHERE language='Tcl' 

picks the correct language id from the newlang_tbl and passes it on to the 

outer query on the authors table. This frees us from the responsibility of 

joining the two tables using the language id field.



124

We can visualize the intermediate step where the subquery has already 

resolved to a value. The query would now look something like SELECT 

author FROM authors_tbl WHERE language_id IN (4).

Which approach to take in certain situations – a join, a subquery, or 

a combination of both – is mostly a matter of personal preference. Other 

times, one approach will be clearly the superior choice. Remember that all 

joins can be rewritten as subqueries, but the reverse is not true in all cases.

 Types of Subqueries
We can broadly classify subqueries into three categories.

 1. Scalar subqueries A subquery that returns only 

a single column of a single row as its output. 

The example in the previous section, where the 

subquery returns the id for Tcl, is a scalar subquery.

 2. Row subqueries A subquery that returns a single 

row but more than one column. These are the least 

important type of subqueries since most database 

management systems do not support it, including 

SQLite.

 3. Table subqueries A table subquery can return more 

than a single row and many columns per row. In 

essence, it can return a table itself to take part in 

your outer query.

To illustrate the usage of table subqueries, let us take an example 

where we wish to display all the programming language writers who 

created a language after 1980 (Listing 12-2).

Chapter 12  SubquerieS



125

Listing 12-2. A table subquery example

SELECT author, language

FROM authors_tbl a,

     (SELECT id, language

      FROM newlang_tbl

      WHERE year > 1980) n

WHERE a.language_id = n.id;

author language

Wall perl

Ousterhout tcl

Carefully study the FROM clause of the query above. Our table subquery 

is placed within it, and it returns a set of languages that were created after 

1980. The result consists of two rows and two columns, one of which, that 

is, language is picked up to be displayed in the final output.

 Existence Tests in Subqueries
The keyword EXISTS tests the presence of any number of rows returned 

from a subquery. We usually don’t care about the columns being returned 

by the mere existence of rows satisfying a specific criterion. Let’s try to use 

EXISTS test to display languages who have an author entry in the authors_

tbl (Listing 12-3).

Chapter 12  SubquerieS



126

Listing 12-3. Using an existence test

SELECT language,

       year

FROM newlang_tbl

WHERE EXISTS (SELECT * FROM authors_tbl

              WHERE newlang_tbl.id = language_id);

language year

prolog 1972

perl 1987

apL 1964

tcl 1988

baSiC 1964

Notice the subquery WHERE clause in this case. It is effectively referencing 

the outer table field using newlang_tbl.id. For whichever languages this 

existence test will be satisfied, the outer query will add to the resultset.

We can add the option NOT to the existence test to find the complement 

of the result (Listing 12-4).

Listing 12-4. Using NOT in the existence test

SELECT language,

       year

FROM newlang_tbl

WHERE NOT EXISTS (SELECT * FROM authors_tbl

                  WHERE newlang_tbl.id = language_id);

language year

Lisp 1958

Chapter 12  SubquerieS



127

Recall that we had never put the corresponding entry in the authors 

table for Lisp in the last chapter.

So who created Lisp anyway? Lisp is the second oldest 
programming language whose major dialect is still in active use. John 
McCarthy created Lisp in 1958 as a part of his research, and other 
people chipped in to help implement it on the computers of that era. 

McCarthy by all accounts was a genius-level intellect, widely admired 
by his peers. he was one of the pioneers of the field of artificial 
intelligence and even coined the term. With the creation of Lisp, he 
advanced the field of programming language design by leaps and 
bounds. Over the past three decades, features from Lisp are slowly 
trickling into mainstream programming languages. Many renowned 
technologists still marvel at the design of the decades-old Lisp 
dialects – Common Lisp and Scheme. 

though McCarthy died in 2011 at the age of 84, his legacy and work 
lives on.

 Using Subqueries in INSERT Statements
We can even use subqueries inside other SQL statement like INSERT. Let us 

try to add a new language and a new author in our tables and ease our task 

of remembering id numbers by just a bit by using subqueries (Listing 12-5).

Listing 12-5. Inserting a new programming language

INSERT INTO newlang_tbl

 (id, language, year, standard)

VALUES (7, 'Pascal', 1970, 'ISO');

Chapter 12  SubquerieS



128

The updated content of our programming languages table now looks 

as shown below (Table 12-1).

While inserting a new entry into the authors_tbl, we can either 

remember that we used the language_id as 7 for Pascal or use a subquery. 

Let us see an example of the latter approach (Listing 12-6). After all, the 

title of the chapter gave away our approach!

Listing 12-6. Inserting a new author using a subquery

INSERT INTO authors_tbl

 (author_id, author, language_id)

VALUES (7, 'Wirth',

        (SELECT id FROM newlang_tbl WHERE language="Pascal")

       );

We believe that this should put the correct language id for Mr. Wirth 

since he created Pascal. Let us verify this belief by looking at the contents 

of the table.

Table 12-1. Contents of newlang_tbl

id language year standard

1 prolog 1972 iSO

2 perl 1987

3 apL 1964 aNSi

4 tcl 1988

5 baSiC 1964 aNSi

6 Lisp 1958 aNSi

7 pascal 1970 iSO

Chapter 12  SubquerieS



129

author_id author language_id

1 Colmerauer 1

2 Wall 2

3 Ousterhout 4

4 iverson 3

5 Kemeny 5

6 Kurtz 5

7 Wirth 7

You can even use subqueries to control your UPDATE and DELETE 

statements. The logic remains much the same as with using subqueries in 

SELECT and INSERT.

 Using ANY and ALL
The ANY operator used with the arithmetic comparison operators can 

be used to check a column value in comparison to a similar value(s) 

generated in the subquery. For example, if we wanted to display all the 

languages but exclude the oldest one from the result, we could combine > 

and ANY to achieve this (Listing 12-7).

Listing 12-7. Using the ANY operator

SELECT language

FROM newlang_tbl

WHERE year > ANY (SELECT year FROM newlang_tbl);

Chapter 12  SubquerieS



130

language

prolog

perl

apL

tcl

baSiC

pascal

Only Lisp does not have a creation year that is not greater than any of 

the list of values returned by the subquery. Obviously, this is because the 

smallest value returned is the creation year of Lisp itself, and thus it does 

not feature in the final result.

Now what would happen if we reversed our comparison operator to  

< ANY? The result would include all languages whose year value is less than 

any one of the creation years returned by the subquery (Listing 12-8).

Listing 12-8. Using the ANY operator with <

SELECT language

FROM newlang_tbl

WHERE year < ANY (SELECT year FROM newlang_tbl);

language

prolog

perl

apL

baSiC

Lisp

pascal

Chapter 12  SubquerieS



131

We notice that Lisp has snuck into the resultset but Tcl is notably 

absent. This is because the year of Tcl, that is, 1988 is not less than any of 

the values returned by the subquery. Equal to? Sure, but not distinctly less 

than.

The other comparison conjunction we can use with ANY is =, but that 

is rarely seen because it is equivalent to using IN (), which is much more 

intuitive.

SQLite does not support ANY or ALL operators if you tried 
running the above examples in SqLite, you would get an error 
message as below. 

Error: near "SELECT": syntax error

SQLite currently does not support these keywords, but we can still 
achieve the same results using what we have to work with. Let’s attempt 
to rewrite Listing 12-7 displaying all languages but the oldest one.

SELECT language FROM newlang_tbl

WHERE year <> (SELECT MIN(year) FROM newlang_tbl);

the above query computes our desired resultset just fine and is 
pretty readable. Some, including yours truly, actually prefer it to the 
ANY syntax. if you are wondering about <>, it means not equal to.

The ALL operator works similarly, but the value in the WHERE clause 

must hold true for all of the values returned from the subquery (Listing 12-9). 

One scenario where ALL gets usage is to find data related to extreme values 

like minima and maxima. You are of course free to choose the built- in 

functions MAX and MIN for the purpose too.

Chapter 12  SubquerieS



132

Listing 12-9. Using the ALL operator

SELECT language

FROM newlang_tbl

WHERE year <= ALL (SELECT year FROM newlang_tbl);

language

Lisp

Only Lisp being the oldest language in our table would satisfy the ALL 

criteria of having a year value less than or equal to all the values from 

the subquery. Similarly, we can use ALL to find the latest language too 

(Listing 12-10).

Listing 12-10. Using the ALL operator with >=

SELECT language

FROM newlang_tbl

WHERE year >= ALL (SELECT year FROM newlang_tbl);

language

Tcl

Chapter 12  SubquerieS



133© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_13

CHAPTER 13

Working in Sets
Set theory is a branch of discrete mathematics that deals with a collection 

of objects. There is a lot of conceptual overlap between set theory and 

relational database concepts. It is no wonder that the output of a query is 

frequently called a resultset.
Primitive set theoretic operations like union, intersection, and 

difference are increasingly supported in various implementations. We 

will now explore the theory behind these operations and how to use 

them in SQL.

 Union
The union is an operation that combines elements of two sets. Let’s 

say we have the following two sets consisting of a bunch of numbers 

(Listing 13-1).

Listing 13-1. Two sets containing numbers

set1 = { 1, 3, 5 }

set2 = { 1, 2, 3 }

The resulting union set will be a set consisting of all of these elements 

repeated exactly once, that is, no duplicates are allowed (Listing 13-2). 

Note that the order of a set is unimportant. Think of it as a bag of elements 

rather than an ordered collection.



134

Listing 13-2. The mathematical UNION operation

set1 UNION set2 = { 1, 3, 5, 2 }

Let's now look at how to use simulate the union operation in 

SQL. Consider our programming languages table and its data below as we 

last left it in Chapter 10 (Table 13-1).

If we wanted to get the list of creation years of languages standardized 

by either ANSI or ISO, we could use a UNION keyword to achieve this 

(Listing 13-3).

Listing 13-3. Using a UNION operator

SELECT year FROM proglang_tbl

 WHERE standard='ANSI'

UNION

SELECT year FROM proglang_tbl

 WHERE standard='ISO';

Table 13-1. Contents of proglang_tbl

id language author year standard

1 Prolog Colmerauer 1972 ISO

2 Perl Wall 1987

3 APL Iverson 1964 ANSI

4 JOVIAL Schwartz 1959 US-DOD

5 APT Ross 1959 ISO

6 PL/I IBM 1964 ECMA

7 Tcl Ousterhout 1988

8 Fortran Backus 1957 ANSI

ChAPTER 13  WORkINg IN SETS



135

year

1959

1957

1964

1972

Since we had four entries in our table with a standard value as ANSI or 

ISO, we got our expected four rows in the resultset. Note that there were no 

duplicate entries to be processed. But what if there were duplicate entries 

to process with the UNION operation (Listing 13-4)?

Listing 13-4. Using a UNION operator to eliminate duplicate values

SELECT standard FROM proglang_tbl

 WHERE language = 'Fortran'

UNION

SELECT standard FROM proglang_tbl

 WHERE language = 'APL';

standard

ANSI

Both the languages we specified in our WHERE clause were standardized 

by ANSI. The UNION operation, just like in discrete maths, removed the 

duplicated value and gave out a single row as the result.

There is another related SQL operation UNION ALL that will simulate 

the act of combination but will not eliminate duplicates (Listing 13-5). The 

advantage you get by using this is performance improvement since the SQL 

engine does not have to bother with checking for duplicates. If you have 

constructed your participating queries in such a way that there are no repeated 

values, using a UNION ALL would improve your query processing time.

ChAPTER 13  WORkINg IN SETS



136

Listing 13-5. Using a UNION ALL operator

SELECT standard FROM proglang_tbl

 WHERE language = 'Fortran'

UNION ALL

SELECT standard FROM proglang_tbl

 WHERE language = 'APL';

standard

ANSI

ANSI

 Intersection
The intersection operation outputs only the common elements in the input 

sets. If we apply an intersection to the two sets in the previous section, we 

get a resulting set of two elements (Listing 13-6).

Listing 13-6. The mathematical INTERSECTION operation

set1 INTERSECTION set2 = { 1, 3 }

As with union, each common value is displayed only once. Duplicates 

are removed from the final result set.

Translating this to SQL is pretty simple; instead of using UNION we use 

the keyword INTERSECT to get common elements (Listing 13-7).

Listing 13-7. Using the INTERSECT in SQL

SELECT standard FROM proglang_tbl

 WHERE year=1964

INTERSECT

SELECT standard FROM proglang_tbl

 WHERE year=1957;

ChAPTER 13  WORkINg IN SETS



137

standard

ANSI

Something to keep in mind here is that the INTERSECT operator would 

find the exact common values between the two queries that precede 

and succeed it. That means the entire records of the result and not just 

common values from a part of it. While in the previous example, our 

result set had only one column to be given back – standard, let’s see what 

happens when we add another column to the result list (Listing 13-8).

Listing 13-8. Using the INTERSECT with multiple columns in the 

results

SELECT year, standard FROM proglang_tbl

 WHERE year=1964

INTERSECT

SELECT year, standard FROM proglang_tbl

 WHERE year=1957;

=> (0 rows)

The output is no rows at all. The first query would select records for 

PL/I and APL while the second for Fortran. But all these languages have a 

different combined value of (year, standard), giving us a net zero result.

Note that while the ANSI SQL standard does provision for an 

INTERSECT ALL operator, I'm yet to come across a database management 

system that implements it. PostgreSQL happily ignores that you wrote the 

ALL clause and simply gives back an INTERSECT result.

ChAPTER 13  WORkINg IN SETS



138

 Difference
The difference operation between sets, written as set1 - set2 is a list of 

all elements in set1 that do not occur in set2 (Listing 13-9). If an element is 

only in set2, it will not be captured by the plain difference operation.

Listing 13-9. The mathematical DIFFERENCE operation

set1 DIFFERENCE set2 = { 5 }

set2 DIFFERENCE set1 = { 2 }

Let's try and write a SQL statement to emulate this logic with our 

familiar IN and NOT IN operators. But first let’s insert a row into our table 

so that we can see the difference operation in action (Listing 13-10).

Listing 13-10. Inserting a new row for RPG

INSERT INTO proglang_tbl

 (id, language, author, year, standard)

VALUES

 (9, 'RPG', 'IBM', 1964, 'ISO');

Suppose we wish to list out the years of creation of languages that 

were standardized by ISO but not the ANSI (Listing 13-11). From our 

source table, we find that three languages were standardized by ISO with 

years 1972, 1959, and 1964. But since in 1964, APL was created, which was 

eventually standardized by ANSI, we should ideally be left with the answer 

1972 and 1959.

Listing 13-11. Trying to write set difference with IN

SELECT year FROM proglang_tbl

  WHERE standard IN ('ISO')

    AND standard NOT IN ('ANSI');

ChAPTER 13  WORkINg IN SETS



139

year

1972

1959

1964

Whoa, what sorcery is this!?! We thought 1964 would be ineligible 

because of ANSI standardization. But clearly this is not the case. What 

has happened actually is that first there was a scan of ISO rows – giving us 

three values. Then ANSI rows were discounted but not necessarily from 

the first result but the table as a whole. So while the APL 1964 was left 

off, the freshly inserted RPG 1964 still remained, effectively making our 

second condition worthless. The correct way to achieve this is using the set 

difference operator EXCEPT as below (Listing 13-12).

Listing 13-12. Set difference with EXCEPT

SELECT year FROM proglang_tbl WHERE standard IN ('ISO')

EXCEPT

SELECT year FROM proglang_tbl WHERE standard IN ('ANSI');

year

1972

1959

Voila, this seems to yield the correct answer! If you happen to be using 

an Oracle system, replace EXCEPT with MINUS to achieve the exact same 

result.

ChAPTER 13  WORkINg IN SETS



140

When we write more than a single SELECT as a part of a single query 

and join them using a set theoretic operator, such statements are called 

compound queries. Do note that many database management systems 

restrict the use of compound queries as subqueries. Sybase Adaptive 

Server Enterprise is one such popular DBMS that doesn’t allow you to 

write a UNION inside a subquery.

ChAPTER 13  WORkINg IN SETS



141© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_14

CHAPTER 14

Views
One of the beautiful aspects of the relational data model and SQL is that 

the output of a query is also a table, a relation to be precise. It may consist 

of a single column or a single row, but it is a table nonetheless. A view is a 

query that can be used like a table.

Think of it as a virtual table that stores for the viewer’s convenience a 

pre-computed resultset. It does not truly exist like a base table but provides 

a different angle to view the data without the tedium of details.

 Why Are Views Needed?
Most production database systems would contain a lot of tables. It is also 

possible that some of these tables consist of a lot of fields because of the 

complexity of the domain. Views would come to the rescue of the casual 

database user, people who are not experts in all parts of the database 

system. They have a specific, repetitive need, and views provide them with 

a simpler interface to the data they need.

Another advantage that views bring to the table is security. We can 

restrict access to base tables and provide views containing only the data 

a particular group of users is allowed to see. Good database design rules 

often force sensitive columns to be lumped together with oft-accessed 

fields. Views come to the rescue in such cases by effectively hiding the 

sensitive columns if you so choose.



142

For the database designers, views provide independence. To a 

reasonable degree, views allow the underlying base tables to change their 

structure to cater to evolving needs and yet views can remain the same. In 

other cases, views can be re-created with a different query underlying it 

but will contain the same data in the same format, providing a continuity 

to the user.

 Creating a View
The general syntax of creating a view is pretty straightforward (Listing 14- 1). 

In fact, it probably is as minimal and natural as you can get.

Listing 14-1. General syntax of view creation

CREATE VIEW <view name> AS <query>

Now let us create a view for ourselves – language_chronology that will 

have only two fields, namely, languages and their years of creation  

(Listing 14-2).

Listing 14-2. Creating a language_chronology view

CREATE VIEW language_chronology AS

 SELECT language, year

 FROM proglang_tbl

 ORDER BY year ASC;

Notice how we have explicitly added the ordering clause to the view 

creation. There are very few restrictions on what is allowed in the query 

part of CREATE VIEW. Let us now verify the results by running a query on 

the view exactly the same way as we would on a table (Listing 14-3).

Chapter 14  Views



143

Listing 14-3. Listing the contents of a view

SELECT * FROM language_chronology;

language year

Fortran 1957

JOViaL 1959

apt 1959

rpG 1964

apL 1964

pL/i 1964

prolog 1972

perl 1987

tcl 1988

We can also include calculated fields in the query part of view creation. 

The only thing we must keep in mind is how we rename the calculated 

field column, failing which would undoubtedly result in a loss of clarity. 

Let’s re-create our decade query from Chapter 9, this time as a view 

(Listing 14-4).

Listing 14-4. Creating a view with a calculated field

CREATE VIEW language_decade AS

 SELECT language,

        'The '||((year/10)*10)||'s' decade

 FROM proglang_tbl;

Chapter 14  Views



144

language decade

prolog the 1970s

perl the 1980s

apL the 1960s

JOViaL the 1950s

apt the 1950s

tcl the 1980s

pL/i the 1960s

Fortran the 1950s

rpG the 1960s

If we had failed to rename the column as decade, our DBMS systems 

would execute the view creation but the resultant view would be 

practically unusable. PostgreSQL would have renamed the column to a 

mysterious ?column? whereas SQLite would have put the entire expression 

as the name of the second field 'The '||((year/10)*10)||'s'. Needless 

to say, we are better off renaming the fields of the view.

Another way to rename the fields is to specify it in the view definition 

clause rather than the query that populates it (Listing 14-5). This works just 

as well and is arguably clearer because it lists the fields upfront.

Listing 14-5. Renaming the field in the view definition clause

CREATE VIEW language_era (lang, era) AS

 SELECT language,

        'The '||((year/10)*10)||'s'

 FROM proglang_tbl

 WHERE year < 1971;

Chapter 14  Views



145

lang era

apL the 1960s

JOViaL the 1950s

apt the 1950s

pL/i the 1960s

Fortran the 1950s

rpG the 1960s

If you choose this method of renaming columns, you must specify the 

names of all the columns in the view. Note that renaming a field has no 

effect on its data type or null status.

 Modifying Data Through Views
There are widely ranging opinions on whether data modification 

through views is a good idea. Some people prefer to treat views as a 

read-only listing of contents, but most DBMS systems provide some data 

modification ability through views.

Let us first try a simple update of the year column through our 

language_chronology table (Listing 14-6). Remember we had pulled the 

year field into the view along with the language name.

Listing 14-6. Updating a value through a row

UPDATE language_chronology

SET year=1977

WHERE language='Fortran';

The statement executes fine in PostgreSQL. Now to verify whether 

it actually made a difference, let us verify the contents of the view first 

(Listing 14-7).

Chapter 14  Views



146

Listing 14-7. Checking contents of our modified view

SELECT * FROM language_chronology

WHERE language='Fortran';

language year

Fortran 1977

All seems to be as expected in the view. While we have an inkling that 

the base table would also have been updated, let’s verify this too  

(Listing 14-8).

Listing 14-8. Checking contents of our base table

SELECT * FROM proglang_tbl

WHERE language='Fortran';

id language author year standard

8 Fortran Backus 1977 aNsi

This also means that the other view language_era that was dependent 

on proglang_tbl would not contain the row for Fortran since its creation 

involved the use of the condition WHERE year < 1971. Records move in 

and out of views as the underlying base table contents change over time.

View modification in SQLite if you attempted to execute this 
UPDATE command in sQLite, it would throw you an error like:

Error: cannot modify language_chronology because it 
is a view

sQLite has clearly stated that it would not stand for data modification 
through a view. a design choice i happen to agree with.

Chapter 14  Views



147

Let’s attempt another data modification, but this time we will try to 

update the calculated field inside the view language_era (Listing 14-9). We 

know that JOVIAL was made in the year 1959, so we wish to round off the 

value and make its era to The 1960s.

Listing 14-9. Attempting to modify a calculated field of a view

UPDATE language_era SET era='The 1960s'

WHERE lang='JOVIAL';

> ERROR:  cannot update column "era" of view "language_era"

> DETAIL:  View columns that are not columns of their base 

relation are not updatable.

The DBMS has rejected our request to update a calculated field 

because era does not exist in the base table proglang_tbl. If we think about 

it, this makes sense because the SQL interpreter would not know what 

year value to put in the base table. A value of 1960, a value of 1969, and 

everything in between would make the era value as The 1960s. The DBMS 

would not attempt to choose any random value because its reasoning 

would be ambiguous.

Changing the lang field of the same view is perfectly unambiguous and 

hence allowed (Listing 14-10).

Listing 14-10. Query to modify a non-calculated field of a view

UPDATE language_era SET lang='Jovial'

WHERE lang='JOVIAL';

> UPDATE 1

SELECT * FROM proglang_tbl

WHERE id=4;

Chapter 14  Views



148

id language author year standard

4 Jovial schwartz 1959 Us-DOD

Similarly, we can create a view with aggregated columns using the 

GROUP BY clause, but modifying the contents of such a view is not allowed 

(Listing 14-11).

Listing 14-11. Creating a view with aggregate columns

CREATE VIEW standards AS

 SELECT standard, count(*)

 FROM proglang_tbl

 GROUP BY standard;

standard count

2

eCMa 1

aNsi 2

isO 3

Us-DOD 1

We know from previous experience that adding a new row or 

modifying the aggregated column would be ambiguous and thus not 

allowed. But what if we attempted to just update the standard field value 

just like we did with JOVIAL (Listing 14-12)? Would the update be reflected 

in all rows containing the field value?

Chapter 14  Views



149

Listing 14-12. Trying to modify a field value in an aggregated view

UPDATE standards SET standard='IS'

WHERE standard='ISO';

> ERROR:  cannot update view "standards"

> DETAIL:  Views containing GROUP BY are not automatically 

updatable.

> HINT:  To enable updating the view, provide an INSTEAD OF 

UPDATE trigger or an unconditional ON UPDATE DO INSTEAD rule.

The operation was disallowed but PostgreSQL gave us a hint on how 

to go about achieving this. While we won’t cover that technique, it’s good 

to know that in the rare case you do need it, it’s available in some database 

systems.

 Deleting Views
To delete or remove a view in its entirety, we use the DROP VIEW command. 

It is very similar to the DROP TABLE command we saw in Chapter 4  

(Listing 14-13).

Listing 14-13. Dropping a view

DROP VIEW standards;

Note that you cannot accidentally drop a table using DROP VIEW, which 

is a relief (Listing 14-14).

Listing 14-14. Dropping a view

DROP VIEW proglang_tbl;

> ERROR:  "proglang_tbl" is not a view

> HINT:  Use DROP TABLE to remove a table.

Chapter 14  Views



151© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_15

CHAPTER 15

Indexing
Databases have long been the primary data storage components from 

which insights are derived. As businesses increasingly adopt technology- 

enabled workflows, the rate of data generation has grown substantially. 

This trend has accelerated with the adoption of the Internet and mobile 

computing.

A well-sized relational database used to run into hundreds of 

megabytes in the 1990s. It is not uncommon to hear of database systems 

running into hundreds of gigabytes or even a few terabytes nowadays. As 

a professional, you will frequently encounter tables with million rows in 

them.

Until now we have seen the parts of SQL that allow you to perform 

operations and run queries, but we haven’t touched anything close to 

performance tuning. When you want to run your queries on multimillion 

record tables, taking a hard look at performance optimization is not 

optional.

One of the most common performance optimization techniques 

is indexing. An index allows the SQL engine to quickly look up specific 

records in a table. This is not unlike jumping directly to the letter W in 

a dictionary when you wish to know the meaning of wistful. It would be 

quite tedious to go through all the pages sequentially starting with A until 

we reach our desired word.



152

A lot of commands in this chapter are specific to the DBMS at hand. 
While the general concept of indexes and basic commands to create 
and delete indexes remain similar across products, there is no getting 
around the fact that as we get deeper into our SQL journey, vendor- 
based differences become more visible.

 Creating an Index
As with most statements in SQL, index creation is pretty straightforward. 

You use the CREATE INDEX command to achieve this (Listing 15-1).

Listing 15-1. General syntax of CREATE INDEX

CREATE INDEX <index name> ON <table name> (<column list>);

Let’s create a simple index on the language column of proglang_tbl 

(Listing 15-2). We make a reasonable assumption that there are going to be 

a lot of queries using the language field in the WHERE clause, and creating 

an index on it would increase performance.

Listing 15-2. Creating an index on proglang_tbl

 CREATE INDEX language_idx ON proglang_tbl(language);

If this command succeeds in psql, you would not get an error back but 

no other visual indication. Let’s verify our index creation attempt by listing 

the table description like we did in Chapter 4. Instead of the detailed \d+ 

<table name> option, we will use the slightly compact \d <table name> 

command (Listing 15-3).

ChApter 15  InDexIng



153

Listing 15-3. Verifying index creation in PostgreSQL

\d proglang_tbl;

         Table "public.proglang_tbl"

  Column  |         Type          | Modifiers

----------+-----------------------+-----------

 id       | integer               |

 language | character varying(20) |

 author   | character varying(25) |

 year     | integer               |

 standard | character varying(10) |

Indexes:

    "language_idx" btree (language)

We can see at the very end of the output, there is an entry for our index 

language_idx. Running the same CREATE INDEX on SQLite also succeeds, 

and there are two primary ways to verify the creation. The first is the 

.schema command we had seen in Chapter 4 (Listing 15-4).

Listing 15-4. Verifying index creation in SQLite using .schema

sqlite> .schema proglang_tbl

        CREATE TABLE proglang_tbl (

        id        INTEGER     NOT NULL,

        language  VARCHAR(20) NOT NULL,

        author    VARCHAR(25) NOT NULL,

        year      INTEGER     NOT NULL,

        standard  VARCHAR(10) NULL);

        CREATE INDEX language_idx ON proglang_tbl (language);

ChApter 15  InDexIng



154

This showed us the DDL commands that were used to create the table 

and its related entities like indexes. Another approach is to use an SQLite 

pragma to list all indexes on a table (Listing 15-5). Pragmas are statements 

provided by SQLite to query its own metadata such as index information.

Listing 15-5. Verifying index creation in SQLite using a pragma

sqlite> PRAGMA index_list(proglang_tbl);

seq         name          unique      origin      partial

----------  ------------  ----------  ----------  ----------

0           language_idx  0           c           0

 Using EXPLAIN to See Indexes at Work
We have now seen that the index we created actually exists, but how do we 

see it in action? We should be able to get a measurable speed up on a large 

table. The EXPLAIN command would come to our rescue here. But first let’s 

go about creating a large table to run our index-enabled queries on.

A quick and dirty way to get a large table would be to use a cartesian 

product or cross joins. We already have our proglang_tbl with 5 columns 

and 9 rows in it. Doing a cartesian product on each of the fields with each 

other should yield us 9 to the power 5 = 59049 rows (Listing 15-6). This is 

not a huge table by any means but it would allow us to see the effect an 

index has on query execution.

Listing 15-6. Creating a big table using cross joins in PostgreSQL

SELECT a.language,

       b.author,

       c.year,

       d.standard,

       e.id

ChApter 15  InDexIng



155

INTO biglang_tbl

FROM proglang_tbl a, proglang_tbl b, proglang_tbl c, proglang_

tbl d, proglang_tbl e;

SELECT count(*) FROM biglang_tbl;

 count

-------

 59049

Now that we have a populated table, let us try to analyze the query 

time for finding all Fortran rows using EXPLAIN (Listing 15-7). While this 

command is not in the SQL standard, most relational database systems 

implement it.

Listing 15-7. Using EXPLAIN on a query in PostgreSQL

EXPLAIN SELECT * FROM biglang_tbl WHERE language="Fortran";

                            QUERY PLAN

---------------------------------------------------------------

  Seq Scan on biglang_tbl  (cost=0.00..1150.11 rows=6486 

width=24)

   Filter: ((language)::text = 'Fortran'::text)

   (2 rows)

Well there is some output even though it is not entirely evident yet 

what we are seeing, A query plan, is a term for how the SQL engine is going 

to execute your query. Let us now contrast this output with the one after 

creating an index on the language field (Listing 15-8).

ChApter 15  InDexIng



156

Listing 15-8. Using EXPLAIN on a query in PostgreSQL after 

creating an index

CREATE INDEX biglang_idx ON biglang_tbl (language);

EXPLAIN SELECT * FROM biglang_tbl WHERE language='Fortran';

                                  QUERY PLAN

---------------------------------------------------------------

----------------

  Bitmap Heap Scan on biglang_tbl  (cost=126.56..619.63 

rows=6486 width=24)

   Recheck Cond: ((language)::text = 'Fortran'::text)

    ->   Bitmap Index Scan on biglang_idx  (cost=0.00..124.94 

rows=6486 width=0)

         Index Cond: ((language)::text = 'Fortran'::text)

(4 rows)

We immediately see that this output is different from the previous 

one, and it involves the use of our recently created index. The previous 

output mentioned a Seq Scan or a sequential scan, which as the name 

suggests, involves going through our records sequentially. The current 

output, however, mentions Bitmap Heap Scan and Bitmap Index Scan, 

which sound way faster than a full simple scan. The details of how these 

particular scans work is out of the scope of this text, but we can look at 

another parameter in the output to get a relative sense of the efficiency of 

our index in this case.

Both plans mention a parameter-like cost=<1st value>..<2nd 

value>. The second value is the estimated total cost of query execution. 

The smaller this value is, the greater is the efficiency of query execution. In 

the first output without the index, this value is estimated as 1150.11 while 

after index creation, we reduce it down to 619.63, a big win for us.

ChApter 15  InDexIng



157

While index creation on SQLite is similar to other databases, if you had 

tried to execute Listing 15-6 in it, you would have gotten an error saying 

something along the lines of Error: near "INTO": syntax error. The 

supported way to create the biglang_tbl in SQLite would be to use the 

CREATE TABLE .. AS .. <query> (Listing 15-9).

Listing 15-9. Creating the biglang_tbl in SQLite

CREATE TABLE biglang_tbl AS

 SELECT a.language,

        b.author,

        c.year,

        d.standard,

        e.id

 FROM proglang_tbl a, proglang_tbl b, proglang_tbl c,

      proglang_tbl d, proglang_tbl e;

Also instead of using the simple EXPLAIN, which gives a huge and 

pretty incomprehensible output at first glance, we use the more succinct 

EXPLAIN QUERY PLAN statement like below (Listing 15-10).

Listing 15-10. Using EXPLAIN QUERY PLAN in SQLite

EXPLAIN QUERY PLAN SELECT * FROM biglang_tbl WHERE 

language="Fortran";

selectid    order       from        detail

----------  ----------  ----------  ---------------------------

0           0           0            SEARCH TABLE biglang_tbl 

USING INDEX biglang_idx 

(language=?)

ChApter 15  InDexIng



158

While the output is pretty small as compared to the one from 

PostgreSQL, we can clearly see that it is going to use our index to search 

our table for Fortran rows.

 Unique Indexes
We can optionally specify the keyword UNIQUE during index creation to 

make an index that only allows non-duplicate values (Listing 15-11). This 

makes the index have a dual responsibility of data integrity along with 

performance enhancement.

Listing 15-11. General syntax of UNIQUE index creation

CREATE UNIQUE INDEX <index name> ON <table name> (<column 

list>)

However, since it has an implied data integrity meaning, we cannot use 

this kind of index on a field that is already known to have duplicate values. 

In our newly created biglang_tbl, the ID field is actually duplicated many 

times due to our cross join conditions. Creating a unique index on this 

field would result in an error (Listing 15-12).

Listing 15-12. Cannot create a unique index on a field containing 

duplicate values

CREATE UNIQUE INDEX id_idx ON biglang_tbl (id);

ERROR:  could not create unique index "id_idx"

DETAIL:  Key (id)=(4) is duplicated.

Similarly adding a duplicate value into a field that has a unique index 

would result in an error along the lines of ERROR: duplicate key value 

violates unique constraint "<index name>".

ChApter 15  InDexIng



159

If you have an extremely sharp memory, you’d recall that this is 

the same error we saw in Listing 3-12 back in Chapter 3 when we were 

discussing unique constraints. If we now try to describe the schema of the 

involved table proglang_tbluk, we would see how PostgreSQL defined the 

constraints in terms of indexes (Listing 15-13).

Listing 15-13. Describing a table with both a Primary Key and a 

Unique index

\d proglang_tbluk;

            Table "public.proglang_tbluk"

     Column     |          Type          | Modifiers

----------------+------------------------+-----------

 id             | integer                | not null

 language       | character varying(20)  | not null

 author         | character varying(30)  | not null

 year           | integer                | not null

 standard       | character varying(10)  |

 current_status | character varying(32)  |

Indexes:

    "proglang_tbluk_pkey" PRIMARY KEY, btree (id)

     "proglang_tbluk_language_key" UNIQUE CONSTRAINT, btree 

(language)

Actually, this is also something we had tried in Chapter 4 in Listing 4-11, 

but we were not paying very close attention to the INDEXES section of the 

output back then.

ChApter 15  InDexIng



160

 How Do Indexes Work?
Having a high-level overview of how indexes work can help the user write 

effective, fast-executing queries. Most SQL users ignore the conceptual 

understanding of indexes, but they are not really hard to grasp.

At the beginning of the chapter, we compared the database index to 

looking up a word in a dictionary. That lookup process was made easier 

by the alphabetical ordering nature of a dictionary. Similarly a book index 

 allows you to look up concepts discussed in the book by listing them 

alphabetically with a page number where the concept is discussed.

This is very similar to an actual database index. While the underlying 

details vary from implementation to implementation, it is helpful to think 

of it as an ordered lookup table. The values of the field being indexed are 

sorted and stored along with the pointers to the locations of the actual 

record in the base table.

If we created an index on the standard field of proglang_tbl, a 

simplified representation of the index would look like Figure 15-1. The 

SQL interpreter would not have to traverse through the whole of the 

table to find the two rows with ANSI as the standard field. The inefficient 

whole table traversal is what is sometimes referred to as full table scan or 

sequential scan. The point of an index is to avoid this kind of scan.

Figure 15-1. A visual representation of the workings of an index

ChApter 15  InDexIng



161

When someone writes a query with a WHERE clause finding the specific 

value of a standard, this index would come into effect automatically 

without the user having to specify using it. Adding or deleting more rows 

with differing values of this field would automatically update the index too, 

so that the index always refers to the latest data in the table.

 Index Overheads
With all the niceties that indexes bring to the user without much effort in 

terms of arcane commands, sometimes users want to create indexes for 

every column possible. After all, there doesn’t seem to be a downside to 

index creation yet.

Well as it turns out, like with everything else in the world, there is no 

free lunch. If there is an index on every column for a table with N fields, 

then for every DML statement like INSERT, UPDATE, or DELETE, the N 

indexes have to be kept in sync. This makes changing data slow for large 

tables, sometimes annoyingly and sometimes worryingly.

Another serious overhead that too many indexes bring is their storage 

requirements. Indexes occupy physical space on the disk just like a table. 

While storage has become cheap in recent times, database administrators 

are not known for their cavalier attitude toward server free space.

Let’s check how the disk is impacted by index creation. We will keep 

our focus on the biglang_tbl and its index biglang_idx. First let’s find the 

total space occupied by the table and its related objects (Listing 15-14).

Listing 15-14. Displaying the total size of a table and its related 

objects in PostgreSQL

SELECT pg_size_pretty(pg_total_relation_size('biglang_tbl'));

 pg_size_pretty

----------------

 4608 kB

(1 row)

ChApter 15  InDexIng



162

The function pg_total_relation_size would return the disk 

space occupied by the table, its indexes, and a few other things. The 

pg_size_pretty is for prettifying the output to a more human-readable 

unit of kB rather than the number of bytes. As is evident from these 

function names, they are specific to PostgreSQL. Check your DBMS 

manual for commands to query the database catalog in case you are 

using a different product.

Now let’s find how much space the table and index take out of this 

figure (Listing 15-15). That should give us a relative idea about how big 

indexes get.

Listing 15-15. Displaying the size of a table and its index in 

PostgreSQL

testdb=# SELECT  pg_size_pretty(pg_relation_size('biglang_tbl'));

 pg_size_pretty

----------------

 3296 kB

(1 row)

testdb=# SELECT pg_size_pretty(pg_relation_size('biglang_idx'));

 pg_size_pretty

----------------

 1312 kB

(1 row)

Our index is roughly 39% of the size of our table! Not to mention it 

occupies 28% of the total relation size of biglang_tbl. Keep in mind that we 

are talking about a single index on one column here. Clearly we need to be 

parsimonious with our index creation.

ChApter 15  InDexIng



163

A good rule of thumb is to rely on the primary key and unique indexes 

a lot during your queries. Over time you will start seeing patterns of slow- 

running queries. If these queries are not run often, perhaps we can live 

with the extra time taken. But if the slow-running queries are run regularly 

and often contain the same field in the WHERE clause that is not indexed, it 

is a perfect candidate for index creation.

Index size in SQLite You might have noticed that we discussed 
index sizes in postgreSQL only. the helper functions like pg_size_
pretty, pg_total_relation_size, and pg_relation_size 
are specific to postgreSQL and are not a part of the SQL standard. 

I haven’t found a good way to calculate index sizes in SQLite. Since it 
is a self-contained single file database, you could verify the file size 
before and after index creation to get a rough estimate.

 Deleting an Index
If you no longer need an index, SQL gives you the DROP INDEX command 

to delete an index. The general syntax of this command is simple enough 

(Listing 15-16).

Listing 15-16. General syntax of DROP INDEX

DROP INDEX <index name>

Note that this does not change the data of the underlying table in any 

way (Listing 15-17). All you are doing is dropping the index, so the query 

time may become slower.

ChApter 15  InDexIng



164

Listing 15-17. DROP INDEX doesn’t change the contents of the 

underlying table

DROP INDEX biglang_idx;

SELECT COUNT(*) FROM biglang_tbl;

 count

-------

 59049

(1 row)

ChApter 15  InDexIng



165© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_16

CHAPTER 16

Access Control 
Statements
Due to their ease of use, extensive feature sets, and reliability, SQL-based 

relational database management systems have become the golden source 

of truth for enterprises everywhere. When large companies think of storing 

critical data, the only question in their minds is which relational DBMS 

vendor and not what kind of data store.

When such important data is being stored in the system and when the 

DBMS becomes the central data store across the organization, some level 

of access control is absolutely essential.

Access control refers to permissions within a software system. When 

you log onto a server or sometimes even your own computer, you have 

been given permission to access the resources of the system. Often when 

you wish to install new software on your machine, you require root or 

administrator privileges. This is the operating system’s access control 

mechanisms at work.

Relational databases understandably also have very powerful  

access control mechanisms. While most systems vary widely in how  

they provide access control, almost all vendors do provide the  

Data Control Language (DCL) SQL commands of GRANT and REVOKE.



166

Access Control in SQLite Permissions truly come into play in 
multi- user systems, that is, when multiple users have access to 
a system but not equally. This is typically the case in client-server 
database systems like PostgreSQL, Sybase ASE, etc.

SQLite is a single file- based system typically used in scenarios 
where we need to embed a simple database within tight constraints 
or within an application. It is not truly meant for multi-user access 
though there are provisions in it to allow it to some degree. This 
does not mean that it is not a capable RDBMS. I personally think 
the world would be better off using SQLite in half the cases where 
more expensive and resource-hungry systems were put, but that is a 
discussion for another time.

SQLite being single file-based relies on the operating systems to 
grant or restrict access to its data file. Consequently, it does not 
implement any GRANT or REVOKE commands. The rest of the chapter 
focuses on access control mechanisms using PostgreSQL examples.

 Creating New Users in PostgreSQL
For running the examples in the book, we have been using the user 

postgres. This has served us well as a catch-all account with all rights and 

permissions. Just to recap, we used to start our psql session by specifying 

the username in the -U option as below (Listing 16-1).

Listing 16-1. The psql session start command with user postgres

/opt/PostgreSQL/9.5/bin/psql -U postgres

ChAPTER 16  ACCESS ConTRoL STATEMEnTS



167

But this does not accurately reflect the real-world setup. Usually you 

would have your own user account, which will have lesser privileges than 

the administrator account. This is safer both for you and the database 

administrators knowing that one account being compromised does not 

affect everything in the system.

Let us go about creating a new user in PostgreSQL though psql 

(Listing 16-2), and then we’ll go on to specifying the rights that the 

particular user gets.

Listing 16-2. Creating a new user in psql

postgres=# CREATE USER primer with PASSWORD 'hunter2';

CREATE ROLE

postgres=#

When you execute this command, a new user by the name primer is 

created with the password hunter2 and the console displays the message 

CREATE ROLE. Since the session was created with the user postgres and 

the text before the =# is still the same, we can see that the CREATE USER 

command does not switch to the new user directly but continues the same 

session with postgres.

The legend of hunter2 Before social networks were popular, 
Internet Relay Chat (IRC) ruled the instant messaging landscape. 
People connected to an IRC server and joined one or more chat 
rooms called channels and talked with like-minded people.

If a conversation was particularly funny, people would post it to a 
site Bash.org. Around 2004, somebody posted a funny exchange 
between two users where the first user convinces the other one that 

ChAPTER 16  ACCESS ConTRoL STATEMEnTS



168

when they type their real password in IRC, everyone else sees only 
******’s. This was of course not true, but funny nonetheless. Whether 
the conversation truly happened can also not be verified, but the 
password in question was ‘hunter2’.

You can read the Bash.org entry here: http://www.bash.
org/?244321

We will now try to verify whether the user was indeed created  

(Listing 16-3). Like before, psql gives us a short command for this – \du.

Listing 16-3. Checking if the user primer has been created

postgres=# \du

                              List of roles

 Role name |                     Attributes                  | 

Member of

-----------+------------------------------------------------+

 postgres  | Superuser, Create role, Create DB, Replication,|

           | Bypass RLS                                     | 

{}

 primer    |                                                | 

{}

We see that indeed our user has been created, though the list of its 

attributes is empty. Don’t worry, we will get to that in a bit.

If you want to verify the same information without using the psql 

metacommand, we can query the inbuilt database catalog information 

(Listing 16-4).

ChAPTER 16  ACCESS ConTRoL STATEMEnTS

http://www.bash.org/?244321
http://www.bash.org/?244321


169

Listing 16-4. Querying user information from the database catalog

SELECT usename,

       usesysid,

       usecreatedb,

       usesuper FROM pg_user;

usename usesysid usecreatedb usesuper

postgres 10 t t

primer 41095 f f

 Grant Privileges to Users
Let us try to open a psql session using this newly created user. We will pass 

the value primer to the -U option of psql (Listing 16-5).

Listing 16-5. Trying to log in using our newly created user

/opt/PostgreSQL/9.5/bin/psql -U primer

Password for user primer:

psql.bin: FATAL:  database "primer" does not exist

Along with the user, it also tried to open the default database for the 

new user whose name was assumed to be the same as the username. 

We’ll remedy this by explicitly stating that we want to operate on testdb 

(Listing 16-6).

ChAPTER 16  ACCESS ConTRoL STATEMEnTS



170

Listing 16-6. Connecting to testdb using primer user

/opt/PostgreSQL/9.5/bin/psql -U primer -d testdb

Password for user primer:

psql.bin (9.5.8)

Type "help" for help.

testdb=> SELECT * FROM proglang_tbl;

ERROR:  permission denied for relation proglang_tbl

Logging into the testdb database worked. But when we ran a basic 

query on one of the tables, it immediately gave us a permission denied 

error. This seems logical in retrospect since we haven’t granted any special 

access to primer. We don’t want any new user to immediately gain access 

to our meticulously created tables.

We will use the GRANT statement to give specific privileges to our newly 

created user. The general syntax of GRANT is given below (Listing 16-7).

Listing 16-7. General syntax of GRANT

GRANT <privilege> ON <table name> TO <user>

The most obvious privilege we wish to give the primer user is the 

ability to query proglang_tbl. This is equivalent to giving the user a read- 

only access to the particular table. We run this statement as the superuser 

postgres who will bestow privileges to other users (Listing 16-8).

Listing 16-8. Granting SELECT to primer

GRANT SELECT ON proglang_tbl TO primer;

Now we can exit the psql session as postgres and reopen testdb as 

the user primer. We will attempt to first query and then update a row in 

the table just to see whether the GRANT statement worked as advertised 

(Listing 16-9).

ChAPTER 16  ACCESS ConTRoL STATEMEnTS



171

Listing 16-9. Verifying whether primer can query or update the 

table

testdb=> SELECT count(*) FROM proglang_tbl;

 count

-------

     9

(1 row)

testdb=> UPDATE proglang_tbl SET year=1982 WHERE author='Ross';

ERROR:  permission denied for relation proglang_tbl

The query worked fine but the row update did not, so everything is 

working as expected. As you might have guessed, we would need to GRANT 

the UPDATE privilege too for the second statement to work.

SELECT and UPDATE are not the only privileges available for fine-

grained access control. You can specify other privileges like INSERT and 

DELETE too. Finally, there is an ALL privilege that grants all the available 

privileges on that particular database object to the user specified. If you 

wish to specify multiple privileges in one go, you can specify them like a 

list (Listing 16- 10).

Listing 16-10. Granting multiple privileges in one go

 GRANT SELECT, UPDATE, INSERT ON proglang_tbl TO primer;

Granting privileges is usually done when the users who wish to access 

the table or database object in question are not the ones who created it. If a 

user has created a table, they get all privileges on it by default.

There are other privileges in most DBMS systems out there than the 

four basic ones we covered. However their use is usually of interest to the 

database administrators rather than query users. Feel free to refer to your 

DB manual to know more about the supported privileges.

ChAPTER 16  ACCESS ConTRoL STATEMEnTS



172

 Revoking Privileges
The REVOKE command is the exact opposite of GRANT. It allows you to 

remove privileges from a user for a database object. Its general syntax 

is similar to GRANT with the exception that it uses FROM instead of TO 

(Listing 16-11).

Listing 16-11. General syntax of REVOKE

REVOKE <privilege> ON <table name> FROM <user>

While discussing views in Chapter 14, we had mentioned how views 

help in data security by providing a virtual table containing only the fields 

you want to show to others. But this plan would be foiled if the users could 

query the base table too. Using REVOKE here is a good idea. We’d allow 

users to query the view but not the underlying table (Listing 16-12). This 

way we ensure that usability is not hampered while still being able to keep 

all kinds of fields together that make sense on a data-modeling level.

Listing 16-12. Revoking access on the base table

testdb=# GRANT SELECT ON language_decade TO primer;

testdb=# REVOKE SELECT ON proglang_tbl FROM primer;

We are running these commands using the superuser postgres. Let us 

now log in as the user primer and see how these statements have affected 

our privileges (Listing 16-13).

Listing 16-13. Checking privileges of the user primer

SELECT * FROM proglang_tbl;

ERROR:  permission denied for relation proglang_tbl

SELECT * FROM language_decade WHERE decade='The 1950s';

ChAPTER 16  ACCESS ConTRoL STATEMEnTS



173

 language |  decade

----------+-----------

 Jovial   | The 1950s

 APT      | The 1950s

(2 rows)

We notice that the user can query the view but not the base table. This 

is in fact a very common access control workflow in large databases. Right 

after the data definition process, different views are created on the basis of 

how we expect the data to be queried, and then base table privileges are 

revoked for interactive querying.

While we can specify a list of users in GRANT and REVOKE, we cannot 

reasonably expect the list of users of a database system to remain the same 

over time. Most DBMS software provides a keyword PUBLIC to refer to 

all current and future users of a system. This can be used with our access 

control statements to minimize the need for routine access administration 

(Listing 16-14).

Listing 16-14. Using PUBLIC with access control statements

testdb=# GRANT ALL ON proglang_tbl TO PUBLIC;

testdb=# REVOKE DELETE ON proglang_tbl FROM PUBLIC;

What these two statements in succession would achieve is to first 

open up the proglang_tbl for everyone and then remove only the DELETE 

privilege. The other privileges like INSERT, UPDATE, etc., would be available 

to all users of the system without us having to list them one by one. If a new 

user is created, these access control levels would be applicable to them too.

ChAPTER 16  ACCESS ConTRoL STATEMEnTS



175© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_17

APPENDIX A

Further Reading
This text was always meant to be a short, tutorial introduction to SQL for 

people who did not have prior experience with it. But this doesn’t mean 

that we have learned all there is to learn about SQL. Indeed, we are far 

from it.

While I am happy that you got to the end of this text, it’s only fair that I 

give you pointers on how to continue your SQL journey forward. Below is a 

list of books that I consider worthy of reading. Not all of them may suit you, 

so I am including a short description of what I felt about them to help you 

decide.

 1. The Practical SQL Handbook: Using SQL Variants 

(4th Edition, Addison-Wesley Professional, 2001) 

by Judith S Bowman, Sandra L Emerson, Marcy 

Darnovsky: This is perhaps the best book on SQL 

that I have read, bar none. The writing is crisp, it is 

just the right size, and it focuses on the real-world 

aspects of SQL rather than too much obscure theory. 

The only downside is that it has not been updated 

since 2001; but since the basics of SQL change 

infrequently, coupling this with your database 

manual can help you get by swimmingly.



176

 2. Introduction to SQL: Mastering the Relational 
Database Language (4th Edition, Addison-Wesley 
Professional, 2006) by Rick F van der Lans: The 

gold standard in SQL references. Everything you 

ever wanted to know about SQL is covered in this 

heavy tome. The writing is a bit dry at times and 

the chapter organization might not suit complete 

beginners, but I don’t think they were the intended 

audience anyways. I’d recommend you keep this 

handy if you frequently run into issues that Internet 

forums don’t solve.

 3. SQL Queries for Mere Mortals: A Hands-On 
Guide to Data Manipulation in SQL (3rd Edition, 
Addison-Wesley Professional, 2014) by John L 

Viescas and Michael J Hernandez: An extremely 

gentle but verbose tutorial on SQL in case you found 

the current text to be fast paced. The authors give a 

detailed step-by-step approach to translating plain 

English requirements to SQL queries. The examples 

are plentiful and is intended for complete beginners. 

This is a popular and well-regarded book and 

deservedly so.

 4. A Visual Introduction to SQL (2nd Edition, Wiley, 
2001) by David Chappell and J Harvey Trimble Jr.: 

Another classic that has not been updated for quite 

a while but is just as useful today. Meant as a visual 

tutorial introduction to SQL, it is to the point and 

covers a whole range of topics in 250 pages or so. 

A good choice to pick up from your library and go 

through in a month.

Appendix A  Further reAding



177

 5. Database Management and Design (2nd Edition, 
Prentice Hall, 1995) by Gary W Hansen and 

James V Hansen: The hidden gem of the database 

theory book world. If you ever wanted to know the 

theoretical underpinnings of databases and SQL, 

this is text to read if you can find it. It is clearer and 

crisper than its more popular counterparts. It is 

unfortunate that there hasn’t been a new edition 

in this millennium, and yet it still remains in my 

recommendation list. You would have to get past the 

outdated software that is used for examples in the 

book though.

 6. SQL Cookbook: Query Solutions and Techniques 

for Database Developers (1st Edition, O’Reilly 
Media, 2005) by Anthony Molinaro: A superb 

collection of examples of real-world SQL queries. 

The book tries to cover all major DBMS packages 

and gives great explanations about the statements 

themselves. A great companion book if you are a 

working professional and frequently need to write 

queries that are not immediately obvious.

 7. The Art of SQL (1st Edition, O’Reilly Media, 2006) 

by Stephane Faroult and Peter Robson: An advanced 

but fun way to look at SQL and relational databases. 

Modeled on Sun Tzu’s Art of War, this book is 

distilled wisdom on how SQL-based databases 

ought to be used. This book immediately jumps 

into the nitty gritty of database design, performance 

optimization, and other such topics, so the reader is 

assumed to be well versed in the basics of SQL.

Appendix A  Further reAding



178

 8. SQL Antipatterns: Avoiding the Pitfalls of 
Database Programming (1st Edition, Pragmatic 
Bookshelf, 2010) by Bill Karwin: This book is 

a crash course on what NOT to do while using 

SQL. You will learn to appreciate it after you have 

some experience under your belt, but a great book 

to browse through whenever you have time. The 

book is not too lengthy, roughly 300 pages, and 

is full of great tips on how to avoid bad database 

design and usage.

Appendix A  Further reAding



179© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_18

APPENDIX B

Database 
Management  
Systems and Tools
Ever since the 1980s there has always been a fair amount of choice in 

relational database management systems. But since the turn of the 

millennium, we now have ample choice in the open source world too. In 

fact, some of the strongest RDBMS tools are open source.

Below is a listing of my recommendations of good RDBMS systems 

and tools. It is biased toward free and open source software. Since it is an 

opinionated list by a single person, there are bound to be good resources 

that I have missed. Nonetheless, I hope this serves as a good starting point.

 Relational Database Management Systems

 1. PostgreSQL https://www.postgresql.org/ The 

best, most feature-rich open source database right 

now. It should be your default choice when trying to 

choose a RDBMS to be used by multiple programs 

and users. Its maturity and security are second to 

none and improvements trickle in at a steady pace. 

https://www.postgresql.org/


180

But its best feature for me is its documentation. The 

user manual that accompanies it serves as a great 

reference for SQL while being simple and succinct.

 2. SQLite https://sqlite.org/ A lightweight, single 

file, embeddable database. Extremely popular 

with lots of help and documentation available 

everywhere. Should be your choice of RDBMS 

when making a single user system or when the 

number of concurrent users is less. Does more than 

most people give it credit for, and it easily handles 

databases around 15–16GB in size.

 3. Firebird http://firebirdsql.org/ The hidden 

gem of the open source DBMS world. While not as 

well known as some of its peers, Firebird remains 

a stable, feature-rich and standard-compliant 

RDBMS. It scales well from small embeddable 

database systems to large, enterprise-wide ones. It 

began as a fork of Borland’s Interbase in 2000 but 

now the two products have diverged quite a bit.

 4. MariaDB https://mariadb.org/ The community-

developed fork of MySQL, now regarded as the 

default choice when looking for something that 

works like MySQL. There was a good ecosystem 

around MySQL that MariaDB automatically inherits 

and new features are being added to it on a regular 

basis.

 5. HyperSQL http://hsqldb.org/ Also known as 

HSQLDB, this is a popular, mature Java-based 

relational database engine. It can work both as an 

embedded and client/server-based DBMS. Perfect 

Appendix B  dAtABAse MAnAgeMent systeMs And tools 

https://sqlite.org/
http://firebirdsql.org/
https://mariadb.org/
http://hsqldb.org/


181

for use with JVM languages. Think of it as an SQLite 

alternative in the Java universe, and just like SQLite 

it probably does a lot more than you expect it to.

 6. H2 http://www.h2database.com Another small, 

feature-rich Java- based database engine that can be 

used in embedded and client/server modes. It has 

similar design goals as HSQLDB but makes different 

trade-offs. In any case, you get an excellent, small, 

and open source database engine free of cost.

 SQL Development Environments
Exploratory analysis of data stored inside relational databases has really 

picked up since the advent of the business intelligence and analytics fields. 

Consequently there is a new class of tools that allow you to interactively 

query your database and see the results in a nicely formatted manner.

Just like with RDBMS systems, you are spoiled for choice here. There 

are many free-to-use, open source SQL tools available. Some of them 

give even more features in their paid offerings, but for beginners the free 

versions go a long way.

 1. DBeaver https://dbeaver.jkiss.org/ My 

favorite SQL development environment. It is so full 

featured that I was surprised to know that it started 

out as a hobby project. Connects to many database 

systems and provides a plethora of features. 

However, all of this comes at a cost of speed and 

resources. Let’s just say that if you have an old 

system, look elsewhere first.

Appendix B  dAtABAse MAnAgeMent systeMs And tools 

http://www.h2database.com/
https://dbeaver.jkiss.org/


182

 2. DB Browser for SQLite http://sqlitebrowser.

org/ If you are working with SQLite, this is a top-

notch data browser for it. It allows you to write 

queries and spits out a neatly formatted table too, 

but for most primitive operations like filtering 

on a column you don’t need to write a query at 

all. Its browsing capabilities turn the tables into a 

spreadsheet-like abstraction allowing filtering of 

values.

Appendix B  dAtABAse MAnAgeMent systeMs And tools 

http://sqlitebrowser.org/
http://sqlitebrowser.org/


183© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8_19

APPENDIX C

A History of SQL 
and Relational 
Databases
Computers began their life as advanced calculating machines in the 

late 1940s and 1950s. But soon, businesses realized their importance 

in automated processing and recordkeeping. By the 1960s, computers 

increasingly used file-oriented systems to store data.

A typical workflow would consist of all related data stored as a single 

file and then an application program would operate on this file exclusively 

to provide an output. This operation would typically be done over night 

and there were multiple data files and multiple application programs 

working on them to support different data processing tasks.

 The Rise of Sophisticated File-Oriented 
Systems
The very early computers used tape storage to store data. This meant that 

data access was restricted to sequential scanning of the records. You read 

the first record, then the next, and so on with no way to jump or go back 

without starting the read process from the very beginning. For application 



184

programs to process data stored in this fashion split in multiple files, 

they had to ensure that the data files were sorted by a specific field before 

the actual processing began. Doing this would enable a flow where the 

record read from one file would be in tandem with the records read from 

other files, and the complete information related to the record could be 

processed in one go.

With advancements in storage technology and the invention of 

magnetic disks and tapes, sophisticated data access methods also came 

around. Instead of simple sequential access, the Indexed Sequential Access 

Method (ISAM) became prominent in the 1960s. IBM developed ISAM 

and its successor Virtual Storage Access Method (VSAM) as file-oriented 

technologies allowing key-based direct access for its mainframe systems.

These systems were to be used with programming languages like 

COBOL and PL/I. Because of their integrated nature, they became popular 

in the enterprise environment and remained so for quite some time. 

However, a need for something more structured was already being felt.

 The Entry of Database Systems
While the random access techniques did increase throughput, they never 

addressed another kind of problem that cropped up when organizations 

started moving multiple processes to automated data processing systems.

Data was split in multiple, independent files with no centralized logical 

structure in place. Redundant columns increased storage costs and the 

very real possibility of data inconsistency between various files. An even 

worse problem was data control with homonyms becoming inevitable. A 

homonym is created when the same field name is used for very different 

things in multiple files making a sensible understanding of the system an 

arduous task.

Appendix C  A History of sQL And reLAtionAL dAtAbAses



185

Logical data models and database systems arose to address some of 

the shortcomings of the file-oriented systems. They acted as integrated, 

centralized data structures that curbed the redundancy problem to 

a degree. An important concept that came around with database 

management systems was a Data Dictionary that provided meaning 

to the fields stored in the database. Suddenly everyone had access to 

a controlled, meaningful set of records thanks to a well-regulated data 

dictionary.

IBM released the Information Management System (IMS) in 1966 for 

use in the legendary NASA Apollo program. It was a hierarchical database 

that assumed all the data relationships can be structured as hierarchies. 

While the underlying data storage was still files tied together by pointers, 

IMS was a leap in data modeling where proper thought had to be given on 

how to best structure your data as a hierarchy.

Another kind of data model that picked up steam during the late 

1960s was the network data model. It allowed you to represent data not 

just in a strict hierarchy but a complex network with entities referring to 

each other. This allowed for a more natural way of modeling data that 

was being generated in business processes. One of the earliest successful 

implementations of this model was the Integrated Data Store (IDS), which 

started in 1964. It had such an impact on the industry that its design largely 

influenced the network model standard – the CODASYL DBTG standard.

 Genesis of the Relational Model
While successful, the hierarchical and network models suffered from 

one inherent flaw in their design. Their modeling was driven from the 

viewpoint of a programmer with intricate knowledge of how they would 

interconnect multiple entities. Once the design was done, queries could 

be run as envisioned by the programmers with little chance for any further 

flexibility.

Appendix C  A History of sQL And reLAtionAL dAtAbAses



186

However Dr. Codd’s relational theory proposed in 1970 insisted on not 

having rigid predetermined relationships through physical pointers. He 

believed that natural, logical relationships would manifest themselves by 

understanding the domain of the data and that the system should be ready 

for flexible querying. He built his model on sound mathematical theory 

rather than the intricacies of programming, which wasn’t the case with 

what had come before.

The birthplace of relational databases was the IBM Research Labs at 

San Jose where Codd worked in the ‘70s and ‘80s. IBM came up with the 

SystemR project as a sort of a prototype relational database management 

system but failed to move fast enough in recognizing the gold they had 

struck. A company by the name of Relational Software Inc. created the first 

widely available industrial RDBMS in 1979 by borrowing IBM’s research 

on SystemR. Relational Software Inc. went on to rename itself Oracle 

Corporation.

In the ‘70s, another project was drawing inspiration from SystemR 

but in an academic setting. Michael Stonebraker and Eugene Wong 

from the University of California, Berkeley, started their own research 

RDBMS called Ingres. It would prove to be Oracle’s biggest competitor in 

the 1980s. While not as prevalent today as it once was, the Ingres project 

was tremendously impactful on the database industry as a whole. A lot 

of programmers who worked on it or read its easily available source code 

in the early years went on to subsequently contribute to other database 

systems.

 The Hard Fought Battle of Query Languages
SQL wasn’t the dominant query language of the early years of relational 

databases. In fact, Codd had proposed two early languages for data 

manipulation and querying – relational algebra and relational calculus. As 

is evident from the name, they were mathematical notations rather than 

attempts to make a query language with wide appeal.

Appendix C  A History of sQL And reLAtionAL dAtAbAses



187

Codd’s attempt at making a real query language was Alpha, proposed 

in his 1971 paper “A Data Base Sublanguage Founded on the Relational 

Calculus.” However, the SystemR project used a separate query language 

called SEQUEL created by Don Chamberlin and Raymond Boyce around 

1973. This language eventually got renamed to SQL.

The Ingres project created their own query language called QUEL, 

influenced by the design of Alpha. However, in the 1980s the dominant 

vendors of database systems were pushing SQL, including IBM and 

Oracle, and QUEL died a slow death with the diminishing popularity of the 

trailblazing Ingres. By the late 1980s, SQL had firmly stamped its mark as 

the de facto database query language, a position it holds to this day.

Appendix C  A History of sQL And reLAtionAL dAtAbAses



189© Rahul Batra 2018 
R. Batra, SQL Primer, https://doi.org/10.1007/978-1-4842-3576-8

Index

A
Access control, 165

granting privileges to users
general syntax, GRANT, 170
multiple privileges, 171

PostgreSQL, 166–169
relational databases, 165
REVOKE command, 172–173
SQLite, 166

Aggregate functions
AVG, 96
casting values, integers, 96
COUNT, 95
MAX and MIN, 98–100
SUM, 97–98
varchar value, 97

Alpha, 187
ALTER TABLE command, 42–43
American National Standards 

Institute (ANSI), 3
The Art of SQL, 177
Atomicity, 67–68

B
Bitmap Heap Scan, 156
Bitmap Index Scan, 156

C
Check constraints, 30–31
Compound queries, 140
Concatenation operator, 89–90
Constraints

check, 30–31
NULL (see NULL constraints)
primary key, 32–34
relational databases, 25
selective fields INSERT, 28–30
unique key, 34–36

CREATE USER command, 167
Cross joins, 115–117

D
Database and database 

administrators (DBA’s), 37
Database Management and 

Design, 177
Database Management System 

(DBMS), 1–3, 5, 8
Data Control Language  

(DCL), 5, 165
Data Definition Language  

(DDL), 5
Data Dictionary, 185

https://doi.org/10.1007/978-1-4842-3576-8


190

Data Manipulation Language 
(DML), 5

DELETE command, 63–64
INSERT and SELECT 

commands, 57–60
UPDATE command, 60–62

Data Query Language (DQL), 5, 21
Data types, 7–9
DB Browser for SQLite, 182
DBeaver, 181
Denormalization, 74
Difference operation

EXCEPT operator, 139
IN and NOT IN operators, 138
mathematical, 138

DROP commands, 37–39
DROP TABLE command, 149

E
Entry of database  

systems, 184–185
Equijoin, 111
EXPLAIN command, 154

create index PostgreSQL  
query, 156

EXPLAIN QUERY PLAN, 157
PostgreSQL query, 155

F
File-oriented systems, 183–184
Firebird, 180
Foreign key constraint, 70

G
Genesis of relational  

model, 185–186
GROUP BY clause

adding language, 101–102
aggregate functions

COUNT, 103
multiple, 104
standard, 104

group records, 100
SELECT clause, 102

Grouping data, see GROUP BY 
clause

H
HAVING clause, 105–107
H2 database, 181
Hierarchical database, 185
Homonym, 184
HyperSQL, 180

I
Indexed Sequential Access  

Method (ISAM), 184
Indexing

CREATE INDEX command, 152
databases, 151
DROP INDEX command, 163
pg_size_pretty function, 162
pg_total_relation_size  

function, 162
proglang_tbl, 152

Index



191

storage, 161
syntax, 152
table and index size, 162
verification

PostgreSQL, 153
SQLite pragma, 154
SQLite schema, 153

visual representation, 160
Information Management System 

(IMS), 185
Ingres, 186–187
Inner joins, 112
Integrated Data Store (IDS), 185
Intersection operation

INTERSECT ALL operator, 137
INTERSECT keyword, 136
multiple columns, 137
SQL translation, 136

J, K
Joins

columns, resolving ambiguity, 
112–113

cross, 115–117
equijoin, 111
FROM/WHERE syntax, 111
inner, 112
non-equi, 120–121
normalization, 109
outer, 113–115
self, 118–119
syntax, 111
table aliases, 113

L
LIKE operator, 83–85
Literal values, 92–93
Logical data models, 185

M
MariaDB, 180
Mathematical calculations

creation decade, language, 88–89
operators, 87
remainder operation, 88

N
Network data model, 185
Non-equi joins, 120–121
Normalization, 65–66, 74
NULL constraints

CREATE TABLE statement, 26
error message, 27
PostgreSQL, 27
selective fields INSERT

general syntax, 28
proglang_tblcopy  

table, 29–30
SQLite, 27
standard field, 26

O
Organizing data

atomicity, 67–68
normalization, 65–66, 74

Index



192

repeating groups, 68–69
tables

foreign key constraint, 70
referential integrity, 71–72

Outer joins, 113–115

P
PostgreSQL, 179–180

Binary Packages, 12
command CREATE  

DATABASE, 16
DBMS systems, 11
download, latest version, 12
inserting data, 20–21
installation directory, 

EnterpriseDB, 12–13
port number and password, 13
psql command and  

output, 13
table creation, 18–19
table information, 43–45

Primary key constraint
CREATE TABLE  

statement, 32
definition, 32
ID fields, 32
proglang_tblcopy  

table, 33–34
vs. unique key, 36

Primitive set theoretic  
operations, 133

PUBLIC keyword, 173

Q
QUEL, 187
Queries

AND operator, 55–56
column aliases, 79–81
counting records, table, 75–77
database administration, 47
DISTINCT with COUNT, 77–79
field abbreviations, 50–51
LIKE operator, 83–85
number of fields, 47–48
ORDER BY clause, 49–50, 82–83
ordering by multiple  

columns, 51–53
OR operator, 56
SELECT command, 47–48
SELECT evaluation, 82
* selection criteria, 48
WHERE condition, 53–54

Query plan, 155

R
Referential integrity, 71–72
Relational algebra, 186
Relational calculus, 186
Relational database management 

systems
Firebird, 180
H2, 181
HyperSQL, 180
MariaDB, 180
PostgreSQL, 179–180
SQLite, 180

Organizing data (cont.)

Index



193

Repeating groups, 68–69
Resultset, 133

S
Self joins, 118–119
Sequential scan, 160
Set theory, 133
Simple SQL query, general  

syntax, 21–22
SQL Antipatterns, 178
SQL Cookbook, 177
SQLite, 180

column mode, 23
DBMS system, 11
DLL zip archive, 14
download, 14
Fedora Linux system, 15
headers, 23–24
installing, 14
precompiled binaries, 14
shell sqlite3, 15
table creation, 19–20
table information, 45–46
yum, 15

SQL Queries for mere  
mortals, 176

SQL variants, 175
String operations

concatenation  
operator, 89–90

substring, 91–92
UPPER and LOWER, 92

Structured Query Language (SQL)
advantages, 4
commands classification, 5
database, 1
data types, 7–9
DBMS, 1–3, 5, 8
development environments, 181
relational model, 2–4
tables, 5–7

Subqueries
ALL operator, 131–132
ANY operator, 129–131
existence tests, 125–126
INSERT statements, 127–128
types, 124–125

row subqueries, 124
scalar subqueries, 124
table subqueries, 124

Substring, 91–92
SystemR project, 186–187

T
Tables

ALTER TABLE command, 42–43
creating new tables from 

existing, 39–41
DBA’s, 37
DBMS, 46
DROP commands, 37–39

PostgreSQL, 43–45
SQLite, 45–46

Transaction Control Commands, 5

Index



194

U
UNION keyword, 134
Union operation, 133

duplicate values, elimination, 135
mathematical, 134
programming languages  

table, 134
UNION ALL operator, 136
usage, 134

Unique indexes
creation, 158
duplicate values, 158

Unique key constraints, 34–36

V, W, X, Y, Z
Views

advantage, 141
calculated field, 143

creation, 142
data modification

aggregate columns, 148
base table checking, 146
calculated field, 147
field value, 149
modified view, 146
non-calculated  

field, 147
updating value, 145

definition, 141
DROP VIEW  

command, 149
field renaming, 144
language_chronology, 142
syntax, 142

Virtual Storage Access Method 
(VSAM), 184

Virtual table, 141

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Introduction to SQL
	The Relational Model and SQL
	Advantages of Using SQL
	SQL Commands Classification
	Explaining Tables
	Data Types in SQL

	Chapter 2: Getting Your Database Ready
	Using PostgreSQL
	Using SQLite
	Creating Your Own Database
	Table Creation
	Inserting Data
	Writing Your First Query

	Chapter 3: The Benefit of Constraints
	The Null Constraint
	Selective Fields INSERT
	Check Constraints
	Primary Key Constraint
	Unique Key Constraints
	Differences Between a Primary Key and a  Unique Key

	Chapter 4: Operations on Tables
	Dropping Tables
	Creating New Tables from Existing Tables
	Modifying Tables
	Showing Table Information in PostgreSQL
	Showing Table Information in SQLite
	Showing Table Information in Other DBMS’s

	Chapter 5: Writing Basic Queries
	Selecting a Limited Number of Columns
	Ordering the Results
	Ordering Using Field Abbreviations
	Ordering by Multiple Columns
	Putting Conditions with WHERE
	Combining Conditions

	Chapter 6: Manipulating Data
	Inserting Data into a Table from Another Table
	Updating Existing Data
	Deleting Data from Tables

	Chapter 7: Organizing Your Data
	Normalization
	Atomicity
	Repeating Groups
	Splitting the Table

	Chapter 8: Doing More with Queries
	Counting the Records in a Table
	Using DISTINCT with COUNT
	Column Aliases
	Order of Execution of SELECT Queries
	Using the LIKE Operator

	Chapter 9: Calculated Fields
	Mathematical Calculations
	String Operations
	Literal Values

	Chapter 10: Aggregation and Grouping
	Aggregate Functions
	Using the Extreme Functions – MAX and MIN
	Grouping Data
	Grouping and Aggregate Functions
	The HAVING Clause

	Chapter 11: Understanding Joins
	Alternative Join Syntax
	Resolving Ambiguity in Join Columns
	Outer Joins
	Cross Joins
	Self Joins
	Non-Equi Joins

	Chapter 12: Subqueries
	Types of Subqueries
	Existence Tests in Subqueries
	Using Subqueries in INSERT Statements
	Using ANY and ALL

	Chapter 13: Working in Sets
	Union
	Intersection
	Difference

	Chapter 14: Views
	Why Are Views Needed?
	Creating a View
	Modifying Data Through Views
	Deleting Views

	Chapter 15: Indexing
	Creating an Index
	Using EXPLAIN to See Indexes at Work
	Unique Indexes
	How Do Indexes Work?
	Index Overheads
	Deleting an Index

	Chapter 16: Access Control Statements
	Creating New Users in PostgreSQL
	Grant Privileges to Users
	Revoking Privileges

	Appendix A: Further Reading
	Appendix B: Database Management Systems and Tools
	Relational Database Management Systems
	SQL Development Environments

	Appendix C: A History of SQL and Relational Databases
	The Rise of Sophisticated File-Oriented Systems
	The Entry of Database Systems
	Genesis of the Relational Model
	The Hard Fought Battle of Query Languages

	Index



