SQL Server
Advanced

JSON, XML, and Beyond

Taking full advantage of SQL Server’s
ever-growing support for modern data

Peter A. Carter

ApPress’

http://www.allitebooks.org

SQL Server Advanced
Data Types

Peter A. Carter

Apress’

vww . allitebooks.con

http://www.allitebooks.org

SQL Server Advanced Data Types: JSON, XML, and Beyond

Peter A. Carter
London, UK

ISBN-13 (pbk): 978-1-4842-3900-1 ISBN-13 (electronic): 978-1-4842-3901-8
https://doi.org/10.1007/978-1-4842-3901-8

Library of Congress Control Number: 2018955129
Copyright © 2018 by Peter A. Carter

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.
com/9781484239001. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-3901-8
http://www.allitebooks.org

Given the cover art, this book could
only be dedicated to my son, Reuben.

vww . allitebooks.con

http://www.allitebooks.org

Table of Contents

About the AUthOrcccusemmmsenmmssssmmsssnsmsssnsmsssssesssnsesssnsesssnnssssnnssssnnnsss Xi
About the Technical REVIEWETcccusseerssssnsmssansssssnsssssssssssnsssssanssssnnss Xiii
INtroductioncccucemmsssmmmssnnmsssnsmsssnnesssnsssssnsssssnnssssnnesssnnssssnnsessnnsnssnns Xv
Chapter 1: SQL Server Data TYPesSccuuseerrmssssnmnmsssssnnnssssssnsnssssssnnnsssss 1
NUMENIC DA TYPES ..coveererir s s 1
(1 s TR] (o 10
Binary Data TYPESccevrecerrererrresrieserrsse s s s sn s ss s ss s sssesenns 14
Dates and TIMES ..o ene 17
Miscellaneous Standard Data TYPESc.ccoeeeerermerernrermreserese s seeesenns 23
Summary of Advanced Data TYPeS........ccuerurrnrennesesnsesssese s ssssesens 25
Why Is Using the Correct Data Type Important?...........ccccvvrvvvrnsenienenessensenenns 26
SUMMANY..c..citiii i e e b b e s b e e e aenns 27
Chapter 2: Understanding XML.........ccccusummmmmsssnnnnmssssssnsmsssssssssssssnnnnss 29
Understanding XIML.........ccouceienmninenne s e ssssssessesessssesenns 29
Well-FOrmed XML........cocciicrirrc e se s s sss s s s s 38
Understanding XSD SCREMASccovovrererenererc e 43
XML Usage Scenarios in SAL SEIVEN........c.ccoverernserrsesesesessssessssesssssessssssssseens 46
1] 4= 7 47

v

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 3: Constructing XML with T-SQL.........ccccermssnnnnmssssnnnssssssnnnns 49
USiNg FOR XIML RAW ..o e 49
USiNg FOR XML AUTOc.cvrierriesesese s sesseses e sesss e s s e ssssessssssssssssssssesessssens 77
USING FOR XML PATHcccoiitriiicceri s ss s e e s 92
USing FOR XML EXPLICITccoeeereeeereeeseseee e se e se e seenes 101
10T 111 17 o SRS 111

Chapter 4: Querying and Shredding XML..........ccousssnnmsssnsssssnsssssnnssss 113
QUETYING XML.....ovieccriris e se s se s s sttt 113

LT 3 (S 116
L T IR 1 1= (S 118
USING QUEIY() ceverrerererersersesersessessessssessessesssssssessesssssssessessesssssssessesssssssessesses 121
Using Relational Values in XQUErY.........ccuirinnnsesnsessnnnsesssesesesesesessnnes 123
o I 127
Modifying XML Dataccovvrveriernnensenienessnsesesessssessessessessssessessessssessensens 133
Shredding XIML........coocoeeeeeecreree e s 141
Shredding XML with OPENXML() ..cveeeeeererenserenesesesereese s sesseenns 141
Shredding XML With NOUESccccevrerererirnre e sens 146
USING SCREMASccveerrrcrircseree s 152
SUMMAIY.c..eitetrerere e rse e s s a e s e s sae e e e e ae s aesa e e e e e aesae e e e naennens 155

Chapter 5: XML INA@XES...cutrussmenmrssssnnnsesssssnnsssssssnnsssssssnnssssssnnnnsssssnns 157
Preparing the ENVIrONMEeNt ..o 157
Clustered INAEXES ... s 159

Tables Without a Clustered INAeXcovvermrrmnnnsssnsssess e 160
Tables with @ Clustered INAeX..........covrrmrmsennses s 161
Clustering the Primary Key.........cocueurrnnmrnsesmsssesssesessesesssessssesessessssssessnnes 162

TABLE OF CONTENTS

Performance Considerations for Clustered INdexesc.couvverererernnsnnnnes 164
Creating a Clustered INAeXcccveerrvrnenrs e 165
Primary XIML INAEXEScovvererreerrnsmressesssssnessssesessssesssssssssssssssssssssssssssssssssssenes 167
Creating Primary XML INUEXESccceerrvrmrerererenerrssesesesessssessssesessesessssessnns 168
Secondary XML INUEXES......ccovcrverrererenrerseressssessesessessssessessessssessessessessssessessens 171
Creating Secondary XML INAEXES......ccccverererrerierenersensesessssessessessssessessenaes 172
Performance Considerations for XML INAEXESc.coverrnmmnsnsssssssssssnssesenenes 175
SUMMANY....eeeerirereree e n e e e e 179
Chapter 6: Understanding JSONccoussummmmsannmsssnsmsssnsssssnsssssnnnnss 181
Understanding the JSON FOrmatcccevievninieniennnensensese s sesesesessessessenns 181
JSON VS. XIML....cueeuerenerresrrens s sesss sttt st st sss s 188
JSON USAQGE SCENAIOS.....ceeerreererseresreerrasessssesessesessesessssesesssssssssssssssssssssssssnnns 195
n-Tier Applications with ReSt APIS........c.ccococcvvrininnsnnnnsnene e 195
De-Normalizing Datacccvveeresernenenesesnse s sessenens 195
0] 0 I o SR 197
Analyzing the Log Data..........ccovrermrenernnenenesesese s 199
SUMMAIY.c.veitetrerere st e s e e s s a e e s e s sae e e e s aeeaesae e e e e aesae e e e nannaees 199
Chapter 7: Constructing JSON from T-SQL.........cccosrmssnnnnnrssssnnnnsssssnns 201
FOR JSON AUTOcoeeeereerreasssessssessssesssessssessssessssessssessssessssessssessssessssesssenes 201
Working with RoOt NOUEScccceverircerreerererer s 204
Working With NULL VAIUES........cccecrireresirsire s sessessesnens 207
USIiNg ColUMN AlIASEScvirrrrrirrinrririssns e 212
Automatic NeStingccucvieriinininir e 215
FOR JSON PATH.......ccotreitrestresrsesssesssesssessssessssessssessssssssssssssssssssssssssssnssssnnaes 224
SUMMAIY.c e ititrerere e s s e e s e s s sae s e e e s aeeaesae e s e e aesae e e e naennees 228

vii

TABLE OF CONTENTS

Chapter 8: Shredding JSON Data..........ccocccemrrmssnnnnnssssnnnssssssssnssssssnns 229
OPENJSON() with Default SChema..........ccooorerrnccnresere e 229
Shredding @ ColUMN ... s 232
Dynamic Shredding Based on Document Content...........cccoccovvirnccnenenens 235
OPENJSON() with Explicit SChema...........ccccvvrermrenmnnsernsesnesessse s 237
OPENJSON() with Path EXPreSSionS......ccccvevererserseressssessesessssessessessessssessessens 242
Shredding Data into Tables...........ccovi, 246
101 T 249
Chapter 9: Working with the JSON Data Type......cccccirrrrmssssnnnnnnnnnnnas 251
Querying JSON Data.........ccovrmreerererrnsnnesese s e s sesesssss s 251
USING ISISON()everrrrereermreeressseesesessssesesessesesessssessssssessssssesssssssessssesessssenns 251
USING JSON_VALUE() «.vcvvveermreeresmsessssesessesesessssessssssssssssessssssessssenessssenns 254
USING JSON_QUERY() .vcveverrmeeresmressssesessemesessssessssssssssssessssssesssssnessssenns 261
USING JSON_MODIFY() .cvoveereeerersreesesesessessesessesessssssssssssessssssessssesesessenns 266
INdexing JSON Datacccccvvevreverrererenirsere s ses s s e ssesaesessessesnees 271
SUMMAIY..c.eoiticiiirere e s s e s s s b e s p e e s ae e e e e nne s 276
Chapter 10: Understanding Spatial Datacccoinnsssnnmnmnsssnnnnnsssnnns 279
Understanding Spatial Dataccueeeviiernsennesnese s 279
Spatial Data Standardsccevrerennrrrnrenr s ——— 286
Well-KNOWN TEXE......ccoriiiiininsns s 287
WEell-KNOWN BINATYcooiiirieriienere e sses e se s s se s sse e ssenns 289
Spatial Reference SYStemS ..., 291
SSMS and Spatial Data...........ccccecrvrrerrrrrr s 294
SUMMANY....ceitierieerere e e s nr e e 296

viii

TABLE OF CONTENTS

Chapter 11: Working with Spatial Dataccccenrnssennnnnsssnnnnnnssnnns 299
Constructing Spatial Dataccoveerrrrrrerrese e 300
Querying Spatial Dataccouceerererrnneeserr s 307
Indexing Spatial Data.........ccvrvvrrrierinnerrerre e 332

Understanding Spatial INdEXES.......ccccveerrerrrerrerierenensesseresessessessessesessessesses 332
Creating Spatial INAEXES.........cciiirnnn 334
SUMMAIY ...t 340

Chapter 12: Working with Hierarchical Data and HierarchylD......... 341
Hierarchical Data USe CaSes..........cocurmmmrinerinmnsssssesssssssss s 342
Modeling Traditional Hierarchies............cceevvrnerininsnneniensenses s ssesses e ssesessens 344
Modeling Hierarchies with HierarchylD..........c.cccovrininninininnsnsenenecensenenns 350
HierarchylD Methods.........cccorirernnmrnessnesessse e s sessesesnanes 356

Working with HierarchylD Methods............covnmnnnnnnsssenns 358
Indexing HierarchylD ColumnS ... 377
SUMMAIY..c..eitiirirere e s e s sr e e s ae s r e e e nne s 382

INdeX.inni i ———————— 385

ix

About the Author

Peter A. Carter is a SQL Server expert with
more than 15 years’ experience in database
development, administration, and platform
engineering. He is currently a consultant,
based in London. Peter has written a number
of books across a variety of SQL Server topics,
including security, high availability, and

automation.

About the Technical Reviewer

Ian Stirk is a freelance SQL Server consultant
based in London. In addition to his day job, he
is an author, creator of software utilities, and
technical reviewer who regularly writes book
reviews for www.i-programmer.info.

He covers every aspect of SQL Server and
| has a specialist interest in performance and
| scalability. If you require help with your SQL

Server systems, feel free to contact him at
ian_stirk@yahoo.comor waw.linkedin.com/
in/ian-stirk-bb9a31.

Ian would like to thank Peter Carter, Jonathan Gennick, and Jill
Balzano for making this book experience easier for him.

None of us stands alone, and with this in mind, Ian would like to
thank these special people: Pat Richards, Bhargava Ganti, Jon McCabe,
Nick Fairway, Aida Samuel, Paul Fuller, Vikki Singini, Rob Lee, Gerald
Hemming, and Jordy Mumba.

Ian’s fee for his work on this book has been donated to the Deworm the
World Initiative (www.givingwhatwecan.org/report/deworm/).

xiii

http://www.i-programmer.info/
http://www.linkedin.com/in/ian-stirk-bb9a31
http://www.linkedin.com/in/ian-stirk-bb9a31
http://www.givingwhatwecan.org/report/deworm/

Introduction

SQL Server Advanced Data Types attempts to demystify the complex data
types that are available to developers in modern versions of SQL Server.
Over the last couple of years, I have noticed that many SQL developers have
heard of each of the complex data types available in SQL Server but often
avoid using them, as they are not sure how these are best utilized. This

has led to suboptimal solutions being developed, such as an incident that

I recently experienced in which a very good and seasoned SQL developer
implemented complex hierarchical logic using self joins, because he did
not feel confident implementing the HierarchyID data type.

That inspired me to write this book—to help SQL and other developers
responsible for writing T-SQL, as part of their applications, to better
understand the complex data types available in SQL Server and give them
the confidence to use these complex structures appropriately.

The book starts by exploring the simple, conventional data types that
are available in SQL Server and reminds readers why making the right
choices about data types can be so important. The book then moves on
to offer in-depth discussions about the complex data types in SQL Server,
namely, XML, JSON, HierarchyID, GEOGRAPHY, and GEOMETRY. Many of the
code examples in the book are based on real-world problems and solutions
that I have encountered in my time as an SQL Server consultant in London.

Many of the code examples in this book use the WideWorldImporters
sample database. The GitHub repo for this database can be found at
github.com/Microsoft/sql-server-samples/tree/master/samples/
databases/wide-world-importers and the .bak file can be downloaded
from github.com/Microsoft/sql-server-samples/releases/download/
wide-world-importers-vi.0/WideWorldImporters-Standard.bak.

CHAPTER 1

SQL Server
Data Types

SQL Server 2017 provides a wide range of basic data types that can store
data, such as character strings, numeric data, binary data, and dates. In
this chapter, I will review each of the basic data types available in SQL
Server, looking at the differences between similar data types. I will also
discuss the importance of using the correct data type for each use case.

Tip The following sections discuss the acceptable ranges for each
data type. It is worth noting, however, that all data types can also be
set to NULL, indicating that the value is unknown.

Numeric Data Types

Some numeric data types in SQL Server are exact, while others are
approximate. If a data type is exact, it stores a number to a fixed precision.
If a data type is approximate, in many cases, it will store a very close
approximation of a number, instead of the number itself.

The numeric data types supported by SQL Server are listed in Table 1-1.

© Peter A. Carter 2018 1
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_1

SQL SERVER DATA TYPES

CHAPTER 1

sjuiod

J0EeX3 | 01 €9v¢ 01 €9v¢ 0} seliq 8 [EWIJ3P OU UM Uquunu 3JOYM B $810}S INIDIG
sjuiod

10ex3 1 0} |Ev¢ 0 LEvE 0} selhq [EWIJ3P OU YUM J8quinu 3jOUM B $810iS INT
sjuiod

1oex3 | 01G|vg 01Glve 0} selhq ¢ [BWIDBP OU YHM IBqWINU BJOYM B S3I0}S INITTVWS
sjuiod

1oex3 GG2 010 8lAq | [BLWIDBP OU Y}IM J3quInU 3]0YM B S8101S INIANIL
‘Kj9A110adsal ‘() 10 | 0] PALIBALOI aJe pue
1719 8dAy e1ep Jo uwn|od e oul pauasul
9|(e] B Ul Suwnjod 8(0S[e URD 9STE4 pue anI] SaneA

10ex3 L010 MHqgAienslojelfg | Buwisayl ‘L Jo 0}19S 8q ued jey bey vy 114

arewixoaddy
19ex3 abuey azig abeio)s uonduosa(adA] eleq

sadA] vip 1NN “T-T 219V

SQL SERVER DATA TYPES

CHAPTER 1

(panu1yu00)
"JIY¥3WNN 0} JudjeAnba Ajjeuonouny
S TVYWID3Q "¢ Jo 8[eds e pue 9 Jo
soMka 21 - 8e-62 o uoisioald B YyyM paJols aq pinod 9Sy'EZ1
sfa el - 82-02 o ‘g|dwexa 104 Juiod [ew19ap 8y} Moj|0}
Saka 6 - 61-01 e 18y} SNBIP JO JBQINU WINWIXEW 8y} SI
sMag-6-1 o 8|S 8U} 9IyM ‘Pal0]s aq ued Jey) sybip
:MOJaq 10 Jaquinu wnuwixew sy} i uoisioaid
se ‘uois1aa.ld ay} uo ay] "a|eas pue uoisidaid Auoads 1snw
L 01 8EvOL 01 | spuadap palinbal noA “TywWID3qa Buisn uaypp "uoisioaid
19ex3 +8€v0L 01 9oeds abei0s ay) [BLIBP PaXIL YUM Jaquinu e $a101S IVWID3a

SQL SERVER DATA TYPES

CHAPTER 1

salia /1 — 8€-6¢
saMa €1 - 82-0¢
S 6-61-01
saMa G - 6-1

:MOJaq
Se ‘uoIsioaid ay) uo

“IVWIDIq 0} Jusjeanba Ajjeuonouny

SI DTYIWNN "¢ JO 8[eIS B pue g Jo
uoIs19a.d e YyIM palols aq pinod 96 €zL
‘g]dwrexa 104 uiod [ewioap ay} Moj|o}
1e1 subip Jo Jaquinu WNWIXew au S
a9[B9S 3y} 9IyM ‘palols ag ued jeyy subip
10 JBqUINU WNWIXew auy} si uoisioaid
3] "9|eas pue uoisigaid Apoads 1snw

L 01 88v0L spuadap paJinbal noA ‘“DTYIWNN Buisn uaypn “uoisioa.d
198X 01 L+8Sv0L 01 a9eds abeiols ay| [BWID3P POXIL UM Jaquuinu e sa.101S JITYIWNN
ajewixoiddy
1oexy abuey azig abelo)s uonduasaq adA] ejeq

(ponupuod) “1-1 219VL

SQL SERVER DATA TYPES

CHAPTER 1

(ponunuod)
(#2)1¥014 Jo} WAuouAs e s
80€ 01322 01 pue uoisioald a|buis sasn 1y3y “uoisioaid
alewixolddy 80+36.°L SalAq ¢ alewixoldde yum Jaquinu e $a101S 1v3y
"1v3Y Jo) wAuouAs
saifq © SI uoIs1oaid abuIs yum 1y0T14 v pasn
8~ (subip G1) S1 uoisioaid ajbuis ‘uoisioaid e Buih)ioads
Holstoaid alanogs « JIOUIM PasN §1 1014 § “Uoisioaid
safq v — (subip 2) a|qnop Se uMouy 0S[e ‘G Se pajeal} Si 1l
gogg6, L OSPRIAADUS ¢ occed 1 g pue 6z usemag sequinu e y
0} 80€ 01 3€2°¢ :MO[aq "uois19a.d a|Buis se umouy 0s[e Si yalym
:uoisioaid ajgnog Se ‘uoisioald 8yl U0 ‘g 0} paje[suel) SI)l ‘palsjus Si g pue |
80€ 013822 01 spuadap ‘pasinbal USaM]SQ SN[BA B J| 'EG PUB | UBSM](anjeA
80£+36/°L aoeds abeJ0]1s uoIsIvaid 91buIs e s)dadae | Y014 "uoisidald
glewixoiddy 03 :uoisidaid ajbuis 10 Junowre ay| alewixoldde yum Jagquinu e salois 1v014

SQL SERVER DATA TYPES

CHAPTER 1

"1aAI8S 10S Aqg palols

108G /.Y 10U aJe 1nq xia.ud e se adAy eiep sy ojul
‘G89°602°/£€226 passed aq Ued ‘¢ J0 3 S aNns ‘S|oqLIAS
01 808G /.Y £ouauing *sade|d [ewi9ap Inoj Jo uoisioaid
198X 'GB9°€0¢'LE€ 2260} salAq 8 B U}im sanjen Arejauow abie| $8.101S AINOW
"1aAJI8S T0S Aqg palols
10U aJe 1nq xiya.d e se adAy ejep ay oul
passed aq ued ‘g 10 3 se yans ‘sjoquifs
LY98°8Y.' V12 foualing "sade|d [ewidap Inoy Jo uoisioaid
198X3 0} 8¥9¢°8¥. V12 0} saliq ¢ B UJIm san[eA AJejauow [[ews $8101S AINOW1TVIWS
ajewixoiddy
1oexy abuey 9zig abeio)s uonduasaq adA] ejeq

(ponuuod) °1-1 219VJ,

CHAPTER 1 SQL SERVER DATA TYPES

Tip The caret (*) operator means to the power. For example,
2\15-1 means 2 to the power of 15 minus 1, which equates to
32,767.

To see how a number behaves, using each of the numeric formats, we
will use the number 2.5888712345678923456789 and convert it to each of
the numeric data types, to examine its behavior. In SQL Server, there are
two functions that we can use to change the data type of a value: CAST and
CONVERT.

The CAST function uses the syntax in Listing 1-1.

Listing 1-1. CAST Syntax
CAST(expression AS datatype[(length)])

The expression can be either a value that you wish to convert, a
column in a table, or any other valid expression. The datatype should be
the target data type for the expression. length is optional and based on
the target data type. For example, if you were using CAST to change the
data type of an INT to a DECIMAL, length would consist of the required
precision and scale. If you were casting a value to a string, the length would
be the maximum length of the string.

The CONVERT function uses the syntax in Listing 1-2.

Listing 1-2. CONVERT Syntax
CONVERT(datatype[(length)], expression [, style])

The style option of the CONVERT function allows the developer to
supply additional information about how to translate the expression.
The style options that are available for numeric data types can be found
in Table 1-2.

CHAPTER 1 SQL SERVER DATA TYPES

Table 1-2. Numeric Data Type Style Options

Style Code Data Types

Output

0 FLOAT & REAL
1 FLOAT & REAL
2 FLOAT & REAL
3 FLOAT & REAL
0 SMALLMONEY & MONEY
1 SMALLMONEY & MONEY
2 SMALLMONEY & MONEY
126 SMALLMONEY & MONEY

The default value for FLOAT and REAL.
A maximum of six digits. Uses scientific
notation, if required

Eight digits. Always uses scientific
notation

Sixteen digits. Always uses scientific
notation

Seventeen digits, with lossless conversion

The default value for SMALLMONEY and
MONEY. No comma separation, and two
digits to the right of the decimal point

Comma separation every three digits on
the left of the decimal point. Two digits to
the right of the decimal point

No comma separation. Four digits to the
right of the decimal point

Used when converting to character data
types. No comma separation. Four digits
to the right of the decimal point

The script in Listing 1-3 shows how to use the CAST function to translate
the number 2.5888712345678923456789 to each numeric data type.

Note BIT is excluded, as the conversion does not make sense. If it
were included, however, it would CAST to 1.

CHAPTER 1 SQL SERVER DATA TYPES

Listing 1-3. Casting a Number to Each Data Type

SELECT

CAST(2.5888712345678923456789 AS TINYINT) AS 'TINYINT'

, CAST(2.5888712345678923456789 AS SMALLINT) AS
'SMALLINT'

, CAST(2.5888712345678923456789 AS INT) AS 'INT'

, CAST(2.5888712345678923456789 AS BIGINT) AS 'BIGINT'

, CAST(2.5888712345678923456789 AS DECIMAL(23,22)) AS
'DECIMAL'

, CAST(2.5888712345678923456789 AS DECIMAL(18,17)) AS
'DECIMAL ROUNDED'

, CAST(2.5888712345678923456789 AS NUMERIC(23,22)) AS
'NUMERIC'

, CAST(2.5888712345678923456789 AS FLOAT(24)) AS
'SINGLE FLOAT'

, CAST(2.5888712345678923456789 AS FLOAT(53)) AS
'DOUBLE FLOAT'

, CAST(2.5888712345678923456789 AS REAL) AS 'REAL'

, CAST(2.5888712345678923456789 AS SMALLMONEY) AS
' SMALLMONEY

, CAST(2.5888712345678923456789 AS MONEY) AS 'MONEY'

CHAPTER 1 SQL SERVER DATA TYPES

The results of the query in Listing 1-3 can be found in Figure 1-1.

BB Rty Gl Massages
TINYINT SMALLINT INT BIGINT DECIMAL DECIMAL ROUMDED ~ HUMERLC SINGLEFLOAT DOUBLEFLOAT REAL SMALLMONEY ~ MONEY
1 22 D2 ARMTZMETSIMSEN SRTIIMETISHS DSWTMSTIOGEIS LT 2SHETZMSTE 28T 208 2089
0 Query execused succesiuly. DATATVPES (UORTH) i OO0 1 rows

Figure 1-1. Results of casting to numeric data types

Character Strings

SQL Server can store both Unicode and non-Unicode strings. Strings can
also be stored either as a fixed length or a variable length. The character
data types supported by SQL Server are listed in Table 1-3.

10

SQL SERVER DATA TYPES

CHAPTER 1

(panu1yu02) ~

"aoedsanym yum papped aq |jim Buis
ay] ‘y1bus| wnwixew sy} ueyy Jauoys si BuLs ayy
1 Burns sy} Jo ybus| wnwixew ay} ayedlpul 0}
SJa10BIRYD $91Aq g x Uy1bua] ‘anjea e ul ssed 1snw noAk “YyHD Buisn uayp ‘yibus|

poxi4 000% Bulls WNWIXe Paxiy B UM SI819BIRYD 9p0luf Jo Bulis e $al0lg YVHON
'g9¢ 01 dn a10]S UL
adA} erep 8y} ‘paiyioads si Xy UBUM "XV Ajioads
10 Buiis sy JoJ y1bus| wnwixew
aliq e Al1oads Jayua 1snw noA “YyHIYVA Buisn uaym
| x paio}s Buwys palos si eyl Buiys ayy uo Buipuadap ‘azis ajqeLieA

a|qeLIRA aoz 8yl o ybus| ayl B U)IM SJ19BJRYD 8p02lun-uou Jo Bulis e sal0lg IVHIIVA
"aoedsanym yum papped aq [jim Bulis sy
‘pbus| wnwixew ayy ueyy Japoys s Buins ayy 4
‘Burns ay) Jo yibua| wnwixew ay} 8yealpul 0} ‘anfea
sJajoeley9 91Aq | x yibua] e ul ssed 1snw noA “YyHD Buisn uayp "yibus| paxiy

poxi4 0008 BuLs wnwixepy B UM ‘SJ8]19BIRYI 9p0dIuN-uou Jo Bulls e $8101S IVHD

yibua
paxid/ajqeriep wnwixep azis abei0)g uonduasaq adA] ejeq

sadA [viv(1219v40Y") *€-T NGV,

SQL SERVER DATA TYPES

CHAPTER 1

S91Aq
Z % paJols buins

busj ajqeLieA e yum sbulils apoaiun Salo1s

9|qeleA g9z 8y} jo ybusy ayy "pasn aq jou pinoys jey} adAy eyep pajessidap v 1X3IN
alq
L x paJols Buys ybua| ajqeliea e yum sBuLS apodiufn-uou $8101S
9|qeLIeA g9¢ 9uijo ybus| sy "pasn aq jou pinoys 1ey adAy eyep pajessidap v IVEIN
'g9¢ 01 dn a10]S UL
adfy e1ep ay} ‘payloads si Xy USUM XYW Ayoads
1o Buus ayy Joj yibus) wnwixew e Aoads
S9JAQ Jay11e 1snw noA “YYHIYVA Buisn usypy “palols
Z % paJols buis sI 1ey1 Buins ay1 uo Buipuadap ‘azIS |qeLIeA
9|qeLIeA g9z auijo ybus| sy B U}Im S1910B.IRYD 8p0diun Jo bulis e sai0ls AVHIYVAN
yibua
paxid/a|qeriep wNWIXe azig abel10)1S uonduiasaq adf] ejeq

(panunuod) -g-1 919V

12

CHAPTER 1 SQL SERVER DATA TYPES

The script in Listing 1-4 uses the DATALENGTH system function to
demonstrate the difference in storage size for a 15-character string, cast as
each character data type.

Listing 1-4. Examining the Storage Size of Strings

SELECT

DATALENGTH(CAST('My String Value' AS NCHAR(20))) AS
"NCHAR'

, DATALENGTH(CAST('My String Value' AS NVARCHAR(20))) AS
'NVARCHAR'

, DATALENGTH(CAST('My String Value' AS CHAR(20))) AS 'CHAR'

, DATALENGTH(CAST('My String Value' AS VARCHAR(20))) AS
'VARCHAR'

The results of Listing 1-4 can be found in Figure 1-2.

B Results @i Messages
NCHAR NVARCHAR CHAR VARCHAR

@ Query executed successfully.

Figure 1-2. Results of comparing string storage sizes

13

CHAPTER 1

SQL SERVER DATA TYPES

Binary Data Types

SQL Server can store binary data, such as a word document or a photo,

using native binary data types. Binary data types are also used to store data

that has been encrypted using a key or certificate. The binary data types
available in SQL Server are detailed in Table 1-4.

Table 1-4. Binary Data Types

Data Type Description Storage Size Maximum Variable/
Length Fixed
BINARY Stores binary data with Equal to 8000 Fixed
a fixed length. When maximum bytes
using BINARY, you must number of
specify the data length in ~ allowed bytes
bytes. If the data stored is
shorter than the specified
length, it will be padded.
VARBINARY Stores binary data with a Equal to the 2GB Variable
variable length. When using actual number
VARBINARY, you must of bytes stored,
specify either the maximum plus 2 bytes
length of the data in bytes
or specify MAX. When MAX
is specified, data up to a
maximum of 2GB can be
stored.
IMAGE A deprecated data type ~ Equal to the 2GB Variable
that should not be used. actual number
Stores binary data with a of bytes stored,
variable length plus 2 bytes

14

CHAPTER 1 SQL SERVER DATA TYPES

Tip For detailed information about encrypting data, please refer to
Securing SQL Server (Apress, 2016), which can be found at
wWww.apress.com/gp/book/9781484222645.

The style options available for BINARY data when using the CONVERT
function are detailed in Table 1-5.

Table 1-5. Style Options for BINARY Data

Style Code Output

0 The default value for binary data. Converts ASCII characters to binary
bytes, or vice versa

1 Converts a character string into binary data. Validates that there are an
even number of hexadecimal bytes and that the first character is Ox

2 Converts binary data into a character string. Each byte will be
converted into two hexadecimal characters. Data that overflows the
data type will be truncated. If the data is shorter than a fixed length
data type, it will be padded.

The script in Listing 1-5 demonstrates how to read a password that has
been encrypted and stored in a VARBINARY column and convert it back to a
character string. The script first creates the required objects and encrypts
the password.

Listing 1-5. Decrypting an Encrypted Password and Converting It
Back to a Character String

--Create a certificate that will encrypt the symmetric key

CREATE CERTIFICATE PasswordCert
ENCRYPTION BY PASSWORD = 'MySecurePa$$word’

15

http://www.apress.com/gp/book/9781484222645

CHAPTER 1 SQL SERVER DATA TYPES
WITH SUBJECT = 'Cert for securing passwords table' ;
--Create a symmetric key that will encrypt the password

CREATE SYMMETRIC KEY PasswordKey
WITH ALGORITHM = AES 128
ENCRYPTION BY CERTIFICATE PasswordCert ;

--Create a table to store the password

CREATE TABLE dbo.Passwords
(

Password VARBINARY (256)
)

--Open the symmetric key, so that it can be used

OPEN SYMMETRIC KEY PasswordKey
DECRYPTION BY CERTIFICATE PasswordCert
WITH PASSWORD = 'MySecurePa$$word’ ;

--Encrypt a password and insert it into the table

INSERT INTO dbo.Passwords
SELECT ENCRYPTBYKEY(KEY GUID('PasswordKey'), 'Pa$$word’) ;

--Decrypt and read the password

--The first column in the result set shows the password as the
decrypted value but still binary format

--The second column in the result set shows the password
decrypted and converted back to a character string

SELECT
DECRYPTBYKEY(Password) AS 'Decrypted Password In
Binary'
, CAST(DECRYPTBYKEY (Password) AS CHAR(8)) AS 'Decrypted
Password As Character String'

16

CHAPTER 1 SQL SERVER DATA TYPES

FROM dbo.Passwords
--Close the symmetric key
CLOSE SYMMETRIC KEY PasswordKey ;

The results of the select statement against the table created in
Listing 1-5 can be found in Figure 1-3.

EE Resuts ¥ Messages
Decrypted Password In Binary Decrypted Password As Charector String
1 i (x5061242477307264 . PasswOrd

@ Query executed successfully.

Figure 1-3. Results of converting binary data to a character string

Dates and Times

SQL Server can store accurate date and time information, including UTC
offsets. The details of each supported date and time data type can be found
in Table 1-6.

17

SQL SERVER DATA TYPES

CHAPTER 1

anuIW |

anuiw auQ $a)Aq & Jo ureb sy} 0} W} B pue 81D B $310IS IWILILVATIVWS
Spu023s /00" 1o SpU099S
‘€00" ‘000" 0} papunoy $8)Aq 8 [eUOIOR) Y)IM B} B pUR 81D B $310}S IWIL31va
$8lAQ G- /-G o
SoMqy € o *J S1 }MBap 8U} ‘PaTILLIO S
SIUAE-2-0 o */ 1O WNWIXBW e 0] ‘uois1oaid puodss
'SMOJ|0} S ‘U0ISIoa.d puodas [euonoely e A1193ds ued nok ‘JWIL
SpuodasoueU Q0| [euon19RIL A1 UO Bulpuada(Buisn uayp “Aep Jo swi) e $al01g IWIL
aled salfq ¢ ajep e $910]S ilva
Kaeinooy azig abeio)s uonduiosaq adf] ejeq

sadAT vy awil] puv i °9-1 219V,

18

SQL SERVER DATA TYPES

CHAPTER 1

SPU023SOUBU 0 | salhq 01

Solfq g — /-G e
SOIAQ L —1-€ o
Salq9—2-0 o

:SMOJ|0} SB ‘U0ISI9ald pu0odas
SPU023SOUBU Q0| [euonaeJy ay} uo Buipuadag

L+ 01 ¢1- J018SH0 91 e ssed ued
noA ‘awi pue a1ep e BuLIo)S UsyYM . S!
}Neyep 8y} ‘PARIWIO §| */ JO Wnwixew
e 0] ‘U0ISI038.1d pu0dss [RUONIRI) B
Ay10ads uea noA 1354403IWILILVA
Buisn uay\ "ssaualeme auoz

aLUN Y1IM ‘BLuIl pue a1ep e Sal01s

L St jnejsp

AU} ‘PO J| */ JO WNWIXewW

® 0] ‘U0ISI931d Pu0das [BUOIjIRI) B
Aj198ds uea noA ‘z3wWIL31va bBuisn
UaY “so1ep Jo abuel 1abie| B $8101S
pue IWILILVA Uey} 8}eINIIR BI0W
SI ZIWILI1VQ "Spuodss [euonael)
UHIM BWI) pue a)ep e $a101S

13S4403WIL31va

¢IWIL31vd

19

CHAPTER 1 SQL SERVER DATA TYPES

Table 1-7 details allowable style options for date and time data types

when using the CONVERT function.

Table 1-7. Date and Time Styles

Style Code Standard

Input/Qutput

0 or 100 Default for datetime and
smalldatetime

1 uS

2 ANSI

3 British & French

4 German

5 Italian

6

7

8 or 108

9 or 109 Default style (100) + time

(ms)
10 USA
11 Japan
12 ISO

13 or 113
20 or 120 ODBC canonical

21 or 121 ODBC canonical with time
(ms) Default for time, date,
datetime2, and datetimeoffset

mon dd yyyy hh:miAM (or PM)

mm/dd/yy

yy.mm.dd

dd/mm/yy

dd.mm.yy

dd-mm-yy

dd mon yy

Mon dd, yy

hh:mi:ss

mon dd yyyy

hh:mi:ss:mmmAM (or PM)
mm-dd-yy

yy/mm/dd

yymmdd

dd mon yyyy hh:mi:ss:mmm(24h)
yyyy-mm-dd hh:mi:ss(24h)
yyyy-mm-dd hh:mi:ss.mmm(24h)

20

(continued)

CHAPTER 1 SQL SERVER DATA TYPES

Table 1-7. (continued)

Style Code Standard Input/Qutput

101 usS mm/dd/yyyy

102 ANSI yyyy.mm.dd

1-3 British & French dd/mm/yyyy

104 German dd.mm.yyyy

105 [talian dd-mm-yyyy

106 European default dd mon yyyy

107 Mon dd, yyyy

110 USA mm-dd-yyyy

111 Japan yyyy/mm/dd

112 ISO yyyymmdd

13 or 113 European dd mon yyyy hh:mi:ss:mmm(24h)

default (106) + time (ms)

114 hh:mi:ss:mmm(24h)

126 1IS08601 yyyy-mm-ddThh:mi:ss.mmm
mmmm not displayed if 0

127 IS08601 with time zone yyyy-mm-ddThh:mi:ss.mmmZ
mmmm not displayed if 0

130 Hijri dd mon yyyy hh:mi:ss:mmmAM
mon is the Hijri Unicode
representation of the month name

131 Hijri dd/mm/yyyy hh:mi:ss:mmmAM

mon is the Hijri Unicode
representation of the month name

21

CHAPTER 1 SQL SERVER DATA TYPES

The script in Listing 1-6 shows how a date and time value will be
displayed when cast to each of the date and time data types. The script uses
the SYSUTCDATETIME function to retrieve the current system date and time.

Listing 1-6. Casingt a Value to Each of the Date and Time Data Types

SELECT
CAST(SYSUTCDATETIME() AS time(7)) AS 'TIME'
,CAST(SYSUTCDATETIME() AS date) AS 'DATE'
,CAST(SYSUTCDATETIME() AS smalldatetime) AS 'SMALLDATETIME'
,CAST(SYSUTCDATETIME() AS datetime) AS 'DATETIME'
,CAST(SYSUTCDATETIME() AS datetime2(7)) AS 'DATETIME2'
,CAST(SYSUTCDATETIME() AS datetimeoffset(7)) AS
'DATETIMEOFFSET' ;

The results of running the query in Listing 1-6 can be found in

Figure 1-4.

BB Resuts il Messages
TIME DATE SMALLDATETIME DATETIME DATETIMEZ DATETIMEOFFSET
1 1302580944150 | 201801-23 201801-2313:02:00 201801-23 130258093 201801-23 1302580844150 2018-01-22 13:(2:58 0544150 +00:00

@ Query executed successfully. DATATYPES (14.0 RTM) DATATYPES\Administrato...

Figure 1-4. Results of casting a value to each date and time data type

22

CHAPTER 1

SQL SERVER DATA TYPES

Miscellaneous Standard Data Types

SQL Server offers many other standard data types that can be used for

specialized purposes. A description of these data types can be found in

Table 1-8.

Table 1-8. Miscellaneous Data Types

Data Type Description Size Allowable Usage
CURSOR Stores a cursor with Variable Variable or stored
a variable or stored procedure OUTPUT
procedure output parameter
TIMESTAMP Exposes a system- 8 bytes Table, variable,
generated, unique binary stored procedure
value. Used for versioning parameter
a row within a table
UNIQUEIDENTIFIER Stored a GUID (Globally 16 bytes Table, variable,
Unique Identifier) stored procedure
parameter
SQL VARIANT Can store data of multiple Variable Table, variable,
data types. Can be used stored procedure
when you do not know parameter
the data type of the data
that will be input, but this
is a very bad practice
TABLE Stores a result set within ~ Variable Variable

a variable, to be used at a
later time

23

CHAPTER 1 SQL SERVER DATA TYPES

The script in Listing 1-7 creates a value of the data type
UNIQUEIDENTIFIER, which has been created using the NEWID system
function.

Listing 1-7. Creating a UNIQUEIDENTIFIER
SELECT NEWID() ;

The results of running the query in Listing 1-7 can be found in
Figure 1-5.

EH Resuts 2 Messages
{No column name)

1 | DDD157FB-C1A7-4469-AECB-FAC8699F ICEF

@) Query executed successfully.

Figure 1-5. Viewing a UNIQUEIDENTIFIER created with NEWID

24

CHAPTER 1 SQL SERVER DATA TYPES

Summary of Advanced Data Types

SQL Server provides several advanced data types. These data types will be

discussed throughout this book, but a summary can be found in Table 1-9.

Table 1-9. Advanced Data Types

Data Type

Description

HIERARCHYID

XML

JSON

GEOGRAPHY

GEOMETRY

HierarchyID can be used to store hierarchical data, such as a
BoM (bill of materials) of department structure, in a hexadecimal
form. The data type exposes numerous methods that allow
developers to easily navigate the hierarchy.

Used to store data in native XML format. FLWOR (discussed in
Chapter 4) statements can then be used against the data.

Stores data in a native JSON format. SQL Server provides functions
to convert data to and from JSON, extract values from JSON, and
modify JSON data.

Stores location data, using the round earth model. The data type
exposes a number of methods that can be used to interact with the
geospatial data.

Stores location data, using the flat earth model. The data type
exposes a number of methods that can be used to interact with the
geospatial data.

25

CHAPTER 1 SQL SERVER DATA TYPES

The available style options when using the CONVERT function with XML
data are detailed in Table 1-10.

Table 1-10. Style Options for XML Data

Style Code Output

0 The default value. Discards unneeded whitespace and does not allow
an internal DTD to be created

1 Preserves all whitespace

2 Discards unneeded whitespace but allows limited DTD processing

3 Preserves whitespace and allows limited DTD processing

Why Is Using the Correct Data Type
Important?

The most commonly used, and most commonly misused, data type in SQL
Server is INT. When developers must store whole numbers, INT is always
the default choice. Often, however, developers must only store small
values. An INT uses 4 bytes of data, whereas if a SMALLINT would suffice,
only 2 bytes of storage would be used. In cases in which you have small
lookup tables, with less than 255 rows, a TINYINT could be used as the
primary key, only using 1 byte of storage per row.

You're probably thinking to yourself at this point that storage is
relatively cheap these days. Do 2 or 3 bytes of data here and there really
matter? To answer that question, you should not only think in terms of
storage but in terms of memory usage and application performance.

Imagine that you have a fact table containing 1 billion rows that
you must join to five dimension tables, each containing 30,000 rows.

If you have used the INT data type for the primary key in each of these
dimensions, that column would be 117KB in each of the dimension

26

CHAPTER 1 SQL SERVER DATA TYPES

tables, but the corresponding foreign key column in the fact table would
be 3.72GB! Now let’s multiply that by 5, so that each dimension table is
covered. We are now at 18.6GB. This is how much data SQL Server will
have to read from disk into memory before probably spooling out again,
to TempDB, in order to join the tables in your query. If we had used the
SMALLINT data type for our dimension tables instead, SQL Server would
only have to consume 9.3GB of data.

Another consideration when choosing data types is ensuring that
the same data type is used when the same data is stored in multiple
columns. For example, imagine that you have an ETL process that pulls
data from an OLTP database into a data warehouse. You may populate the
data warehouse by running queries that join or filter tables on columns
such as dates. If the data types are not consistent between columns—for
example, a date is stored as the DATE data type in one table and stored as
aDATETIME2 in another column—then implicit casting operations will
occur. These have negative impacts on performance and even stop optimal
indexes from being used.

Tip If data type casting is required, | generally recommend
doing this manually, with the CAST or CONVERT functions, instead
of allowing implicit conversions. This can make code easier to
understand when debugging

Summary

SQL Server provides a large amount of data types out of the box that

will accommodate the needs of most development scenarios. Numeric
values can be stored as whole numbers, or with either exact or
approximate decimal precision. Character data can be stored with Unicode
or non-Unicode character sets. SQL Server can also store dates, times, or
both. You also have the option of recording time zone information.

27

CHAPTER 1 SQL SERVER DATA TYPES

Values can be converted between different data types using either the
CAST or CONVERT functions. When using the CONVERT function, additional
translation information can be provided, via styles.

When developing using SQL Server, it is very important to use the
correct data type. When choosing a data type, a developer should use the
most limiting data type that will store all required values. If a data type with
a more expansive range is erroneously used, then, as a database scales, a
severe impact of memory utilization and performance may be witnessed.

28

CHAPTER 2

Understanding XML

XML (Extensible Markup Language) is a markup language, similar to
HTML, that was designed for the purpose of storing and transporting data.
Like HTML, XML consists of tags. Unlike HTML, however, these tags are
not predefined. Instead, they are defined by the document author. An XML
document has a tree structure, beginning with a root node and containing
child nodes (also known as child elements). Each element can contain
data but also 1. .n attributes.

This chapter will assist you in your understanding of XML, by
explaining the structure of an XML document, before diving into the
difference between XML fragments and well-formed XML, XML schemas,
and how XML data is often used in SQL Server.

Understanding XML

Each attribute can contain data that describes the element. For example,
imagine that you require details of sales orders to be stored in XML format.
It would be sensible to assume that each sales order be stored in a separate
element within the document. But what about that sales order properties,
such as order date, customer ID, product IDs, quantities, and prices?
These pieces of information could either be stored as child elements of the
sales order element, or they could be stored as attributes of the sales order
element. There are no set rules for when you should use child elements

© Peter A. Carter 2018 29
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_2

CHAPTER 2 UNDERSTANDING XML

or attributes to describe properties of an element. This choice is at the
discretion of the document author.

The XML document in Listing 2-1 provides a sample XML document that
holds the details of sales orders for a fictional organization. In this example,
the document author has chosen to use an element to store each sales order
and a nested element to store each line item of the order. The details of each
sales order and line item are stored in attributes of the elements.

Listing 2-1. Sales Orders Stored Using Attribute-Centric Approach

<SalesOrders>

<SalesOrder OrderDate="2013-03-07" CustomerID="57" OrderID="3168">
<LineItem StockItemID="176" Quantity="5" UnitPrice="240.00" />
<LineItem StockItemID="143" Quantity="108"
UnitPrice="18.00" />
<LineItem StockItemID="136" Quantity="3" UnitPrice="32.00" />
<LineItem StockItemID="92" Quantity="48" UnitPrice="18.00" />

</SalesOrder>

<SalesOrder OrderDate="2013-03-22" CustomerID="57" OrderID="4107">
<LineItem StockItemID="153" Quantity="40" UnitPrice="4.50" />
<LineItem StockItemID="36" Quantity="9" UnitPrice="13.00" />
<LineItem StockItemID="208" Quantity="108" UnitPrice="2.70" />

</SalesOrder>

<SalesOrder OrderDate="2013-04-09" CustomerID="57" OrderID="4980">
<LineItem StockItemID="102" Quantity="10" UnitPrice="35.00" />
<LineItem StockItemID="144" Quantity="24" UnitPrice="18.00" />
<LineItem StockItemID="79" Quantity="36" UnitPrice="18.00" />
<LineItem StockItemID="217" Quantity="10" UnitPrice="25.00" />

</SalesOrder>

<SalesOrder OrderDate="2016-01-09" CustomerID="57" OrderID="64608">
<LineItem StockItemID="156" Quantity="40" UnitPrice="15.00" />
<LineItem StockItemID="56" Quantity="7" UnitPrice="13.00" />

</SalesOrder>

30

CHAPTER 2 UNDERSTANDING XML

<SalesOrder OrderDate="2016-05-25" CustomerID="57"
OrderID="73148">
<LineItem StockItemID="31" Quantity="7" UnitPrice="13.00" />
<LineItem StockItemID="103" Quantity="2" UnitPrice="35.00" />
</SalesOrder>
</SalesOrders>

The XML in Listing 2-1 can be generated by running the query in

Listing 2-2 against the WideWorldImporters database.

Listing 2-2. Generating Attribute-Centric XML

SELECT

)

)

SalesOrder.OrderDate
SalesOrder.CustomerID
SalesOrder.0rderID
LineItem.StockItemID
LineItem.Quantity
LineItem.UnitPrice

FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderlLines LinelItem

ON LineItem.OrderID = SalesOrder.OrderID
WHERE SalesOrder.OrderID IN

(
3168,
4107,
4980,
64608,
73148
)

FOR XML AUTO, ROOT('SalesOrders') ;

31

CHAPTER 2 UNDERSTANDING XML

Note The FOR XML clause is used to convert the results of a query
into XML format. FOR XML is discussed in Chapter 3.

The XML document in Listing 2-2 stores the same information as
the document in Listing 2-3. This time, however, the document author
has used an element-centric approach, instead of an attribute-centric
approach. Therefore, the data is stored in child elements, as opposed to
attributes.

Listing 2-3. Sales Orders Stored Using Element-Centric Approach

<SalesOrders>
<SalesOrder>

<OrderDate>2013-03-07</0rderDate>

<CustomerID>57</CustomerID>

<0rderID>3168</0rderID>

<LineItem>
<StockItemID>176</StockItemID>
<Quantity>5</Quantity>
<UnitPrice>240.00</UnitPrice>

</Lineltem>

<LineItem>
<StockItemID>143</StockItemID>
<Quantity»>108</Quantity>
<UnitPrice»18.00</UnitPrice>

</LineItem>

<LineItem>
<StockItemID>136</StockItemID>
<Quantity»3</Quantity>
<UnitPrice>32.00</UnitPrice>

</Lineltem>

32

CHAPTER 2

<LineItem>
<StockItemID>92</StockItemID>
<Quantity>48</Quantity>
<UnitPrice>18.00</UnitPrice>
</Lineltem>
</SalesOrder>
<SalesOrder>
<OrderDate>2013-03-22</0rderDate>
<CustomerID>57</CustomerID>
<0rderID>4107</0rderID>
<LineItem>
<StockItemID>153</StockItemID>
<Quantity>40</Quantity>
<UnitPrice>4.50</UnitPrice>
</Lineltem>
<LineItem>
<StockItemID>36</StockItemID>
<Quantity>9</Quantity>
<UnitPrice>13.00</UnitPrice>
</Lineltem>
<LineItem>
<StockItemID>208</StockItemID>
<Quantity>108</Quantity>
<UnitPrice»2.70</UnitPrice>
</Lineltem>
</SalesOrder>
<SalesOrder>
<OrderDate>2013-04-09</0rderDate>
<CustomerID>57</CustomerID>
<0rderID>4980</0rderID>

UNDERSTANDING XML

33

CHAPTER 2 UNDERSTANDING XML

<LineItem>
<StockItemID>102</StockItemID>
<Quantity>10</Quantity>
<UnitPrice>35.00</UnitPrice>

</Lineltem>

<LineItem>
<StockItemID>144</StockItemID>
<Quantity>24</Quantity>
<UnitPrice»18.00</UnitPrice>

</Lineltem>

<LineItem>
<StockItemID>79</StockItemID>
<Quantity»36</Quantity>
<UnitPrice>»18.00</UnitPrice>

</Lineltem>

<LineItem>
<StockItemID>217</StockItemID>
<Quantity>10</Quantity>
<UnitPrice>25.00</UnitPrice>

</Lineltem>

</SalesOrder>
<SalesOrder>

<OrderDate>2016-01-09</0OrderDate>

<CustomerID>57</CustomerID>

<0rderID>64608</0rderID>

<LineItem>
<StockItemID>156</StockItemID>
<Quantity>40</Quantity>
<UnitPrice>15.00</UnitPrice>

34

CHAPTER 2

</Lineltem>
<LineItem>
<StockItemID>56</StockItemID>
<Quantity>7</Quantity>
<UnitPrice»13.00</UnitPrice>
</LineItem>
</SalesOrder>
<SalesOrder>
<OrderDate>2016-05-25</0rderDate>
<CustomerID>57</CustomerID>
<0rderID>73148</0rderID>
<LineItem>
<StockItemID>31</StockItemID>
<Quantity>7</Quantity>
<UnitPrice»13.00</UnitPrice>
</LineItem>
<LineItem>
<StockItemID>103</StockItemID>
<Quantity>2</Quantity>
<UnitPrice>35.00</UnitPrice>
</Lineltem>
</SalesOrder>

</SalesOrders>

UNDERSTANDING XML

The XML document in Listing 2-3 can be generated by running the

query in Listing 2-4.

Listing 2-4. Generating Element-Centric XML

SELECT

SalesOrder.OrderDate
, SalesOrder.CustomerID
, SalesOrder.OrderID

35

CHAPTER 2 UNDERSTANDING XML

, LineItem.StockItemID
, LineItem.Quantity
, LineItem.UnitPrice
FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderLines LineItem
ON LineItem.OrderID = SalesOrder.OrderID
WHERE SalesOrder.OrderID IN
(
3168,
4107,
4980,
64608,
73148

)
FOR XML AUTO, ELEMENTS, ROOT('SalesOrders') ;

Note The FOR XML clause is discussed in Chapter 3.

The picture in Figure 2-1 calls out each noteworthy aspect of the
attribute-centric document from Listing 2-1.

36

CHAPTER 2 UNDERSTANDING XML

|-I-

<5alesOrders>
<5alesOrder OrderDate="2013-83-87" CustomerID="57" OrderID="3168">
<Lineltem StockItemID="176" Quantity="5" UnitPrice="248.88" />

<Lineltem StockItemID="143" Quantity="108" UnitPrice="18.80" />
<Lineltem StockItemID="136" Quantity="3" UnitPrice="32.80" />
<Lineltem StockItemID="92" Quantity="48" UnitPrice="18.00" />

</SalesOrder>
<SalesOrder OrderDate="2013-83-22" CustomerID="57" OrderID="4187%>

<Lineltem StockItemID="153" Quantity="48" UnitPrice="4.50" />
<LineItem StockItemID="36" Quantity="9" UnitPrice="13.80" />
<LineItem StockItemID="208" Quantity="108" UnitPrice="2.78" />

</SalesOrder>
</SalesOrders>

Figure 2-1. Aspects of an XML document

There are several things to note when looking at this XML document.
First, elements begin with the element name, encapsulated within angle
brackets. They end with the element name, preceded by a backslash and
enclosed in angle brackets. Any elements that fall between these two tags
are child elements of the tag.

Attributes are enclosed in double quotation marks and reside within
the beginning tag of an element. For example, OrderID is an attribute of
the <SalesOrder> element.

It is acceptable to have repeating elements. You can see that
<SalesOrder> is a repeating element, as two separate sales orders
are stored in this XML document. The <SalesOrders> element is the
document’s root element and is the only element that is not allowed to
be complex. This means that it cannot have attributes and cannot be
repeating. Attributes can never repeat within an element. Therefore, if you
require a node to repeat, you should use a nested element as opposed to
an attribute.

37

CHAPTER 2 UNDERSTANDING XML

Well-Formed XML

SQL Server supports both XML fragments and well-formed XML. Using
well-formed XML is favorable, as there is a degree of validation. Therefore,
you should always try to use well-formed XML, where possible. For an
XML document to be well-formed, certain requirements must be met, and
these requirements are listed following:

e XML documents must have a single, non-repeating root
element.

o XML elements must have a closing tag.

e XML elements must be properly nested, with closing
tags in the reverse order of opening tags.

o XML attribute values must be quoted with double-
quotation marks.

o Each attribute name must be unique within an

element.

Tip XML tags are case-sensitive.

Although SQL Server supports XML fragments (XML documents
that are not well-formed), the syntax must still be syntactically correct.
For example, consider the script in Listing 2-5. The XML document is
syntactically incorrect, because the root node is missing a closing angle
bracket.

38

CHAPTER 2 UNDERSTANDING XML

Listing 2-5. Syntactically Incorrect XML
DECLARE @Example XML ;

SET @Example =
'<SalesOrder OrderDate="2013-03-07" CustomerID="57"
OrderID="3168">
<LineItem StockItemID="176" Quantity="5" UnitPrice="240.00" />
<LineItem StockItemID="143" Quantity="108"
UnitPrice="18.00" />
<LineItem StockItemID="136" Quantity="3" UnitPrice="32.00" />
<LineItem StockItemID="92" Quantity="48" UnitPrice="18.00" />
</SalesOrder>
<SalesOrder OrderDate="2013-03-22" CustomerID="57"
OrderID="4107">
<LineItem StockItemID="153" Quantity="40" UnitPrice="4.50" />
<LineItem StockItemID="36" Quantity="9" UnitPrice="13.00" />
<LineItem StockItemID="208" Quantity="108" UnitPrice="2.70" />
</SalesOrder' ;

SELECT @Example ;

39

CHAPTER 2 UNDERSTANDING XML

Running the script in Listing 2-5 will produce the error shown in
Figure 2-2.

E¥ Messages

M=ag 9412, Level l1&, State 1, Line 3
¥ML parsing: line 11, character 14, '>' expected

100% ~

1 Query completed with errors. DATATYPES (14.0 RTM)

Figure 2-2. XML syntax error

If we were to correct the syntax error and rerun the script (Listing 2-6),
the script would run and return an XML document as the result set, even
though the document is not well-formed. It is not well-formed, because
there is not a root node.

Listing 2-6. XML Fragment
DECLARE @Example XML ;

SET @Example =
'<SalesOrder OrderDate="2013-03-07" CustomerID="57"
OrderID="3168">
<LineItem StockItemID="176" Quantity="5" UnitPrice="240.00" />
<LineItem StockItemID="143" Quantity="108" UnitPrice="18.00" />
<LineItem StockItemID="136" Quantity="3" UnitPrice="32.00" />

40

CHAPTER 2 UNDERSTANDING XML

<LineItem StockItemID="92" Quantity="48" UnitPrice="18.00" />
</SalesOrder>
<SalesOrder OrderDate="2013-03-22" CustomerID="57"
OrderID="4107">
<LineItem StockItemID="153" Quantity="40" UnitPrice="4.50" />
<LineItem StockItemID="36" Quantity="9" UnitPrice="13.00" />
<LineItem StockItemID="208" Quantity="108" UnitPrice="2.70" />
</SalesOrder>' ;

SELECT @Example ;

The results of running the script in Listing 2-6 are shown in Figure 2-3.

BH Resuts [Messages
{No column name)
1 <SalesOrder OrderDate="2013-03-07" CustomerlD="57" OrderlD="31...

@ Query executed successfully. DATATYPES (14.0 RTM)

Figure 2-3. XML fragment

To make the XML document returned, well-formed XML, we would
have to add the root node, as demonstrated in Listing 2-7.

41

CHAPTER 2 UNDERSTANDING XML

Listing 2-7. Well-Formed XML
DECLARE @Example XML ;

SET @Example =
'<SalesOrders>
<SalesOrder OrderDate="2013-03-07" CustomerID="57"
OrderID="3168">
<LineItem StockItemID="176" Quantity="5" UnitPrice="240.00" />
<LineItem StockItemID="143" Quantity="108" UnitPrice="18.00" />
<LineItem StockItemID="136" Quantity="3" UnitPrice="32.00" />
<LineItem StockItemID="92" Quantity="48" UnitPrice="18.00" />
</SalesOrder>
<SalesOrder OrderDate="2013-03-22" CustomerID="57"
OrderID="4107">
<LineItem StockItemID="153" Quantity="40" UnitPrice="4.50" />
<LineItem StockItemID="36" Quantity="9" UnitPrice="13.00" />
<LineItem StockItemID="208" Quantity="108" UnitPrice="2.70" />
</SalesOrder>
</SalesOrders>"' ;

SELECT @Example ;

Newcomers to XML are often confused by the difference between a
well-formed XML document and a valid XML document. Even if an XML
document is well-formed, it is not considered valid, unless its components
conform to the details provided in an associated schema. The original
form of the XML schema was known as a DTD (document type definition),
but now it is known as an XSD (XML schema definition). DTD schemas
are not supported by SQL Server, so the focus of this chapter will be on
understanding XSD schemas.

42

CHAPTER 2 UNDERSTANDING XML

Understanding XSD Schemas

The format of an XML document can be defined by an XSD schema. An
XSD schema will define the document’s structure, including data types, if
complex types (complex elements) are allowed, and how many times an
element must occur (or is limited to occurring) within a document. It also
defines the sequence of elements and if an element is mandatory. The
main components of an XSD schema are as follows:

o Element declarations, defining the properties of an

elements:

¢ Element name

¢ Element default value

e Element type

o Elements integrity constraints

o Attribute declarations, defining the properties of an
attribute

o Attribute name

o Attribute default value

o Attribute type

o Attribute constraints
e Simple and complex types
e Model group and attribute group definitions
o Element particle and attribute use

If an element is bound to a primitive data type and does not include
child elements or attributes, it is a simple type. If an element has child
elements, attributes, or other special properties, such as being bound to an
ordered sequence, it must be defined as a complex type.

43

CHAPTER 2 UNDERSTANDING XML

Model groups and attribute groups are named groups of nodes that can
be reused in multiple type definitions. Element particles and attribute uses
define the complex properties of a node. For attributes, this might include
the optionality of the node. For an element, this may also be minimum and
maximum occurrences of the node.

Listing 2-8 shows a schema declaration for the well-formed XML
document in Listing 2-7.

Listing 2-8. XSD Schema

<xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified" xmlns:xs="http://www.

w3.0rg/2001/XMLSchema”>

<xs:element name="SalesOrders">
<xs:complexType>
<Xs:sequence>
<xs:element name="SalesOrder" maxOccurs="unbounded"
minOccurs="0">
<xs:complexType>
<Xs:sequence>
<xs:element name="LineItem" maxOccurs="unbounded"
minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:short"
name="StockItemID" use="optional"/>
<xs:attribute type="xs:byte"
name="Quantity" use="optional"/>
<xs:attribute type="xs:float"
name="UnitPrice" use="optional"/>
</xs:extension>

44

CHAPTER 2 UNDERSTANDING XML

</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute type="xs:date" name="OrderDate"
use="optional"/>
<xs:attribute type="xs:byte" name="CustomerID"
use="optional"/>
<xs:attribute type="xs:short" name="OrderID"
use="optional"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Tip There are free online tools that will create an XSD schema,
based on an XML document. For example, FreeFormatter.com
offers an XSD generation tool, which can be found at

www. freeformatter.com/xsd-generator.html. Alternatively,
Visual Studio can also automatically generate schemas.

An XML document must be well-formed for it to be bound to a
schema. If an XML document is bound to a schema, it is called valid, or
typed, XML. SQL Server supports the use of XSD schemas through XML
schema collections, which are discussed in Chapter 4.

45

http://freeformatter.com
http://www.freeformatter.com/xsd-generator.html

CHAPTER 2 UNDERSTANDING XML

XML Usage Scenarios in SQL Server

The ability to work with XML in SQL Server can be very useful, in many
different cases. For example, imagine that you have a middleware
application that pulls sales orders from a web site and pushes them into an
SQL Server database. SQL Server’s ability to work with XML data allows a
developer to use native SQL Server tooling to shred that XML sales order
into a relational table structure. XML documents can be shredded into
relational values by using the XQuery Nodes method or the OPENXML ()
function. Both will be discussed in Chapter 4. Conversely, imagine that
you must pass sales orders to a middleware system that requires an XML
document. This could also be achieved using SQL Server. You simply run a
query to retrieve the relational data and append the FOR XML clause, which
will convert the data to XML. FOR XML will be discussed in Chapter 3.

SQL Server’s support for schema validation also means that an
application can validate its data against a schema supplied by an SQL
Server developer before sending it across the network. SQL Server can
also validate a document against an XML schema before passing it to
an application. Essentially, you can create a data contract between the
different layers of an application, saving time and allowing for better error-
handling.

In another use case, for storing data as XML in SQL Server, imagine
that you have an XML document that contains detailed product definitions
and descriptions. You could, of course, simply maintain this file as an XML
file in the file system, but storing the document in SQL Server allows you
to query this XML document and join the results to relational information
that is stored in an SQL Server database. XML documents can be queried
in SQL Server, using XQuery, which is discussed in Chapter 4.

46

CHAPTER 2 UNDERSTANDING XML
Many SQL Server data structures are stored in XML format. For
example, the following SQL Server features all rely on XML data structures:
o Extended events
o Eventinformation within DDL triggers
» Eventnotifications
o Data collectors

Native SQL Server support for XML allows developers and
administrators to interact with this data.

If you are reading this book and come from an application
development background, then, at this point, you might be thinking
“surely, everybody just uses JSON these days. Why bother with XML?”
JSON is a much more lightweight document format, which is discussed
in Chapters 6-9 of this book. XML still has functionality that is not
supported by JSON, however. For example, if you wish to use the following
functionality, you will require XML, rather than JSON:

¢ Schema validation
° XPath
¢ Namespaces

o XLST

Summary

XML is a markup language like HTML. Instead of having predefined tags,
however, the tags are defined by the document author. An XML document
consists of elements and attributes and can store data in a semi-structured

tree format.

47

CHAPTER 2 UNDERSTANDING XML

SQL Server supports XML fragments, well-formed XML documents,
and valid (schema-bound) XML documents. To be well-formed, an XML
document must contain a single root node, and an XML document cannot
be schema-bound, unless it is well-formed. The phrases XML document
and XML instance are often used interchangeably (including in this
chapter). Strictly speaking, however, XML document refers to XML that is
well-formed, whereas an XML instance could refer to either a well-formed
XML document or an XML fragment.

XML documents can be bound to a DTD (document type definition)
or an XSD (XML schema definition) schema. SQL Server only supports
storing XSD schemas, however. XSD schemas are implemented in SQL
Server, through an XML schema collection.

48

CHAPTER 3

Constructing XML
with T-SQL

T-SQL allows you to convert relational results sets into XML, by using the FOR
XML clause in your SELECT statement. There are four modes that can be used
with the FOR XML clause; FOR XML RAW, FOR XML AUTO, FOR XML PATH, and
FOR XML EXPLICIT. This chapter will demonstrate how the FOR XML clause
works in RAW mode, AUTO mode, PATH mode, and EXPLICIT mode. As the

chapter progresses, we will move from simple to more complex examples.

Using FOR XML RAW

The simplest and easiest to understand of the FOR XML modes is FOR XML
RAW. This mode will transform each row in a relational result set into an
element within a flat XML document. Consider the query in Listing 3-1,
which extracts details of sales orders from the WideWorldImporters database.

Listing 3-1. WideWorldImporters Sales Order Query

SELECT
SalesOrder.OrderDate
, Customers.CustomerName
, SalesOrder.OrderID
, LineItem.StockItemID
© Peter A. Carter 2018 49

P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_3

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

WHERE customers.CustomerName = 'Agrita Abele’

, LineItem.Quantity
LineItem.UnitPrice
FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderlLines Lineltem
ON LineItem.OrderID = SalesOrder.OrderID
INNER JOIN Warehouse.StockItems Product
ON Product.StockItemID = LineItem.StockItemID
INNER JOIN Sales.Customers Customers
ON Customers.CustomerID = SalesOrder.CustomerID

)

)

This query extracts the details of orders placed by a customer called

Agrita Abele. A partial output of the query can be found in Figure 3-1.

B Resuts F Messages

T
2
3
4
5
6
7
8

]
10
1
12
13
14
15
16
17
18
19
20
21

20160519

20160527
20160527
20160519
20160518
2016-05-27
2016-05-18
2016-05-19
2016-05-27
2016-05-18
20160519
20160527
20160518
20160519
20160518
20160518
20160518
20160527
2016-05-27
20160519
20160518
20160518
20160519
2016-05-19
2016-05-18
2016-05-27

Agita Abele
Agita Abele
Agrita Abele
Agrita Abele
Agrita Abele
Agrita Abele

OrderlD

72787

72787

723
7270

72637

72671
72637

73340
73356
72787
72671
72671

72787

StockkemName

Developer joke mug - when your hammer is C++ (Black)
Developer joke mug - when your hammer is C++ (White)
DBA joke mug - you might be a DBAF (Black)
Developer joke mug - that's a hardware problem (Black)
"The Gu" red shirt XML tag tshirt (Black) 5XL

“The Gu" red shitt XML tag t-shirt (Black) Y04L
Halloween zombie mask (Light Brown) S

Halloween skull mask (Gray) M

Furry gorila with big eyes sippers (Black) XL

Tape dispenser (Blue)

Tape dispenser (Fed)

Superhero action jacket (Blue) S

RC toy sedan car with remote control (Red) 1/50 scale
Superhero action jacket (Blus) 3X5

Black and orange handle with care despatch tape 43mmec100m
Alien officer hoodie: (Black) 4XL

Furry animal socks (Fink) S

Permanent marker black Smm nib (Black) Smm
Superhero action jacket (Blue) SXL

Chocolate sharks 250g

MNovelty chili chocolates 250g

Packing knife with metal insest blade (Yelow) Smm
Shipping caton (Brown) 480270¢320mm

Shipping carton (Brown) 35622%22%mm

Ride on big wheel monster truck (Black) 1/12 scale

10 mm Anti static bubble wrap (Blue) 10m

32 mm Double sided bubble wrap 50m

Quantity UnitPrice

2 13.00
9 13.00
4 13.00
3 13.00
120 18.00
24 18.00
24 18.00
60 18.00
k] 200
50 3200
20 3200
B 2500
2 25,00
1 2500
9% 410
[3500
9% 5.00
B4 270
2 3400
152 855
240 855
35 189
150 274
175 1.14
4 345.00
70 2600
20 112,00

@ Query executed successfully.

DATATYPES (14.0 RTM) | DATATYPES\Admid

Figure 3-1. WideWorldImporters sales order output

50

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

If we were to add a FOR XML clause using RAW mode, the results would
be returned in the form of an XML fragment. The amended query in
Listing 3-2 will return the XML document, instead of a relational result set.

Listing 3-2. WideWorldImporters Sales Orders Using FOR XML RAW

SELECT
SalesOrder.OrderDate

, Customers.CustomerName

, SalesOrder.OrderID

, Product.StockItemName

, LineItem.Quantity

, LineItem.UnitPrice
FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderLines LineItem

ON LineItem.OrderID = SalesOrder.OrderID
INNER JOIN Warehouse.StockItems Product

ON Product.StockItemID = LineItem.StockItemID
INNER JOIN Sales.Customers Customers

ON Customers.CustomerID = SalesOrder.CustomerID
WHERE customers.CustomerName = 'Agrita Abele’
FOR XML RAW ;

Listing 3-3 illustrates the XML fragment that is returned.

Listing 3-3. WideWorldImporters Sales Orders Using FOR XML RAW

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72787" StockItemName="Developer joke mug - when your
hammer is C++ (Black)" Quantity="2" UnitPrice="13.00" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72787" StockItemName="Developer joke mug - when your
hammer is C++ (White)" Quantity="9" UnitPrice="13.00" />

51

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73350" StockItemName="DBA joke mug - you might be a
DBA if (Black)" Quantity="4" UnitPrice="13.00" />

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73350" StockItemName="Developer joke mug - that's a
hardware problem (Black)" Quantity="3" UnitPrice="13.00" />
<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72770" StockItemName=""The Gudquot; red shirt XML
tag t-shirt (Black) 5XL" Quantity="120" UnitPrice="18.00" />
<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72637" StockItemName=""The Gudquot; red shirt XML
tag t-shirt (Black) XXL" Quantity="24" UnitPrice="18.00" />
<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73350" StockItemName="Halloween zombie mask (Light
Brown) S" Quantity="24" UnitPrice="18.00" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72669" StockItemName="Halloween skull mask (Gray) M"
Quantity="60" UnitPrice="18.00" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72787" StockItemName="Furry gorilla with big eyes
slippers (Black) XL" Quantity="9" UnitPrice="32.00" />

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73350" StockItemName="Tape dispenser (Blue)"
Quantity="90" UnitPrice="32.00" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72713" StockItemName="Tape dispenser (Red)"
Quantity="20" UnitPrice="32.00" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72770" StockItemName="Superhero action jacket (Blue)
S" Quantity="8" UnitPrice="25.00" />

52

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73350" StockItemName="RC toy sedan car with remote
control (Red) 1/50 scale" Quantity="2" UnitPrice="25.00" />
<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72637" StockItemName="Superhero action jacket (Blue)
3XS" Quantity="1" UnitPrice="25.00" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72770" StockItemName="Black and orange handle with care
despatch tape 48mmx100m" Quantity="96" UnitPrice="4.10" />
<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72671" StockItemName="Alien officer hoodie (Black)
4XL" Quantity="6" UnitPrice="35.00" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72637" StockItemName="Furry animal socks (Pink) S"
Quantity="96" UnitPrice="5.00" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72669" StockItemName="Permanent marker black 5mm nib
(Black) 5mm" Quantity="84" UnitPrice="2.70" />

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73340" StockItemName="Superhero action jacket (Blue)
5XL" Quantity="2" UnitPrice="34.00" />

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73356" StockItemName="Chocolate sharks 250g"
Quantity="192" UnitPrice="8.55" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72787" StockItemName="Novelty chilli chocolates 250g"
Quantity="240" UnitPrice="8.55" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72671" StockItemName="Packing knife with metal insert
blade (Yellow) 9mm" Quantity="35" UnitPrice="1.89" />

53

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72671" StockItemName="Shipping carton (Brown)
480x270x320mm" Quantity="150" UnitPrice="2.74" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72770" StockItemName="Shipping carton (Brown)
356x229x229mm" Quantity="175" UnitPrice="1.14" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72787" StockItemName="Ride on big wheel monster truck
(Black) 1/12 scale" Quantity="4" UnitPrice="345.00" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72669" StockItemName="10 mm Anti static bubble wrap
(Blue) 10m" Quantity="70" UnitPrice="26.00" />

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73340" StockItemName="32 mm Double sided bubble wrap
50m" Quantity="20" UnitPrice="112.00" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72669" StockItemName="Office cube periscope (Black)"
Quantity="20" UnitPrice="18.50" />

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73356" StockItemName="Ride on vintage American toy
coupe (Black) 1/12 scale" Quantity="10" UnitPrice="285.00" />

The first thing that we should note about this XML instance is that it is
an XML fragment, as opposed to a well-formed XML document, because
there is no root node. The <row> element cannot be the root node, because
itrepeats. This means that we cannot validate the XML against a schema.
Therefore, when using the FOR XML clause, you should consider using
the ROOT keyword. This will force a root element, with a name of your
choosing, to be created within the document. This is demonstrated in
Listing 3-4.

54

CHAPTER 3 CONSTRUCTING XML WITH T-SQL
Listing 3-4. Adding a Root Node

SELECT
SalesOrder.OrderDate

, Customers.CustomerName

, SalesOrder.OrderID

, Product.StockItemName

, LineItem.Quantity

, LineItem.UnitPrice
FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderLines LineItem

ON LineItem.OrderID = SalesOrder.OrderID
INNER JOIN Warehouse.StockItems Product

ON Product.StockItemID = LineItem.StockItemID
INNER JOIN Sales.Customers Customers

ON Customers.CustomerID = SalesOrder.CustomerID
WHERE customers.CustomerName = 'Agrita Abele'
FOR XML RAW, ROOT('SalesOrders') ;

Partial output of the resulting well-formed XML document can be
found in Listing 3-5.

Listing 3-5. Output of XML Document with Root Node

<SalesOrders>
<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72787" StockItemName="Developer joke mug - when your
hammer is C++ (Black)" Quantity="2" UnitPrice="13.00" />
<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72787" StockItemName="Developer joke mug - when your
hammer is C++ (White)" Quantity="9" UnitPrice="13.00" />

55

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

56

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73350" StockItemName="DBA joke mug - you might be a
DBA if (Black)" Quantity="4" UnitPrice="13.00" />

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73350" StockItemName="Developer joke mug - that's a
hardware problem (Black)" Quantity="3" UnitPrice="13.00" />
<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72770" StockItemName=""The Gudquot; red shirt XML
tag t-shirt (Black) 5XL" Quantity="120" UnitPrice="18.00" />
<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72637" StockItemName="8"The Gudquot; red shirt XML
tag t-shirt (Black) XXL" Quantity="24" UnitPrice="18.00" />
<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73350" StockItemName="Halloween zombie mask (Light
Brown) S" Quantity="24" UnitPrice="18.00" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72669" StockItemName="Halloween skull mask (Gray) M"
Quantity="60" UnitPrice="18.00" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72787" StockItemName="Furry gorilla with big eyes
slippers (Black) XL" Quantity="9" UnitPrice="32.00" />

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73350" StockItemName="Tape dispenser (Blue)"
Quantity="90" UnitPrice="32.00" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72713" StockItemName="Tape dispenser (Red)"
Quantity="20" UnitPrice="32.00" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72770" StockItemName="Superhero action jacket (Blue)
S" Quantity="8" UnitPrice="25.00" />

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73350" StockItemName="RC toy sedan car with remote
control (Red) 1/50 scale" Quantity="2" UnitPrice="25.00" />
<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72637" StockItemName="Superhero action jacket (Blue)
3XS" Quantity="1" UnitPrice="25.00" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72770" StockItemName="Black and orange handle with care
despatch tape 48mmx100m" Quantity="96" UnitPrice="4.10" />
<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72671" StockItemName="Alien officer hoodie (Black)
4XL" Quantity="6" UnitPrice="35.00" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72637" StockItemName="Furry animal socks (Pink) S"
Quantity="96" UnitPrice="5.00" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72669" StockItemName="Permanent marker black 5mm nib
(Black) 5mm" Quantity="84" UnitPrice="2.70" />

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73340" StockItemName="Superhero action jacket (Blue)
5XL" Quantity="2" UnitPrice="34.00" />

<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73356" StockItemName="Chocolate sharks 250g"
Quantity="192" UnitPrice="8.55" />

<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72787" StockItemName="Novelty chilli chocolates
250g" Quantity="240" UnitPrice="8.55" />

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72671" StockItemName="Packing knife with metal
insert blade (Yellow) 9mm" Quantity="35" UnitPrice="1.89" />

57

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72671" StockItemName="Shipping carton (Brown)
480x270x320mm" Quantity="150" UnitPrice="2.74" />
<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72770" StockItemName="Shipping carton (Brown)
356x229x229mm" Quantity="175" UnitPrice="1.14" />
<row OrderDate="2016-05-19" CustomerName="Agrita Abele"
OrderID="72787" StockItemName="Ride on big wheel monster
truck (Black) 1/12 scale" Quantity="4" UnitPrice="345.00" />
<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72669" StockItemName="10 mm Anti static bubble wrap
(Blue) 10m" Quantity="70" UnitPrice="26.00" />
<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73340" StockItemName="32 mm Double sided bubble wrap
50m" Quantity="20" UnitPrice="112.00" />
<row OrderDate="2016-05-18" CustomerName="Agrita Abele"
OrderID="72669" StockItemName="Office cube periscope (Black)"
Quantity="20" UnitPrice="18.50" />
<row OrderDate="2016-05-27" CustomerName="Agrita Abele"
OrderID="73356" StockItemName="Ride on vintage American toy
coupe (Black) 1/12 scale" Quantity="10" UnitPrice="285.00" />
</SalesOrders>

The other important thing to note about the document is that it is
completely flat. There is no nesting. This means that the document’s
granularity is at the level of line item, which does not make a lot of sense.

It is also worthy of note that all data is contained in attributes, as
opposed to elements. We can alter this behavior by using the ELEMENTS
keyword in the FOR XML clause. The ELEMENTS keyword will cause all data
to be contained within child elements, as opposed to attributes. This is
demonstrated in the modified query that can be found in Listing 3-6.

58

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

Listing 3-6. Using the ELEMENTS Keyword

SELECT
SalesOrder.OrderDate

, Customers.CustomerName

, SalesOrder.OrderID

, Product.StockItemName

, LineItem.Quantity

, LineItem.UnitPrice
FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderLines LineItem

ON LineItem.OrderID = SalesOrder.OrderID
INNER JOIN Warehouse.StockItems Product

ON Product.StockItemID = LineItem.StockItemID
INNER JOIN Sales.Customers Customers

ON Customers.CustomerID = SalesOrder.CustomerID
WHERE customers.CustomerName = 'Agrita Abele’
FOR XML RAW, ELEMENTS, ROOT('SalesOrders') ;

The well-formed XML document that is returned can be seen in
Listing 3-7.

Listing 3-7. Using the ELEMENTS Keyword

<SalesOrders>

<TOW>
<OrderDate>2016-05-19</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72787</0rderID>
<StockItemName>Developer joke mug - when your hammer is C++
(Black)</StockItemName>
<Quantity>2</Quantity>
<UnitPrice>13.00</UnitPrice>

</row>

59

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Tow>
<OrderDate>2016-05-19</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72787</0rderID>
<StockItemName>Developer joke mug - when your hammer is C++
(White)</StockItemName>
<Quantity>9</Quantity>
<UnitPrice>13.00</UnitPrice>

</Tow>

<row>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73350</0rderID>
<StockItemName>DBA joke mug - you might be a DBA if
(Black)</StockItemName>
<Quantity>4</Quantity>
<UnitPrice>13.00</UnitPrice>

</Tow>

<row>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73350</0OrderID>
<StockItemName>Developer joke mug - that's a hardware
problem (Black)</StockItemName>
<Quantity>3</Quantity>
<UnitPrice>13.00</UnitPrice>

</Tow>

<row>
<OrderDate>2016-05-19</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72770</0rderID>

60

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<StockItemName>"The Gu" red shirt XML tag t-shirt (Black)
5XL</StockItemName>
<Quantity>120</Quantity>
<UnitPrice>18.00</UnitPrice>
</row>
<row>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72637</0rderID>
<StockItemName>"The Gu" red shirt XML tag t-shirt (Black)
XXL</StockItemName>
<Quantity>24</Quantity>
<UnitPrice>18.00</UnitPrice>
</row>
<row>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73350</0rderID>
<StockItemName>Halloween zombie mask (Light Brown) S</
StockItemName>
<Quantity>24</Quantity>
<UnitPrice>18.00</UnitPrice>
</row>
<row>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72669</0rderID>

61

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<StockItemName>Halloween skull mask (Gray)
M</StockItemName>
<Quantity>60</Quantity>
<UnitPrice>18.00</UnitPrice>

</rTow>

<Trow>
<OrderDate>2016-05-19</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72787</0rderID>
<StockItemName>Furry gorilla with big eyes slippers (Black)
XL</StockItemName>
<Quantity>9</Quantity>
<UnitPrice>32.00</UnitPrice>

</rTow>

<row>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>73350</0rderID>
<StockItemName>Tape dispenser (Blue)</StockItemName>
<Quantity>90</Quantity>
<UnitPrice>32.00</UnitPrice>

</Tow>

<row>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72713</0OrderID>
<StockItemName>Tape dispenser (Red)</StockItemName>
<Quantity>20</Quantity>
<UnitPrice>32.00</UnitPrice>

</rTow>

62

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Tow>
<OrderDate>2016-05-19</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72770</0rderID>
<StockItemName>Superhero action jacket (Blue)
S</StockItemName>
<Quantity»>8</Quantity>
<UnitPrice>25.00</UnitPrice>

</Tow>

<row>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73350</0rderID>
<StockItemName>RC toy sedan car with remote control (Red)
1/50 scale</StockItemName>
<Quantity>2</Quantity>
<UnitPrice>25.00</UnitPrice>

</rTow>

<row>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72637</0rderID>
<StockItemName>Superhero action jacket (Blue)
3XS</StockItemName>
<Quantity>1</Quantity>
<UnitPrice>25.00</UnitPrice>

</rTow>

<row>
<OrderDate>2016-05-19</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72770</0rderID>

63

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<StockItemName>Black and orange handle with care despatch
tape 48mmx100m</StockItemName>
<Quantity>96</Quantity>
<UnitPrice>4.10</UnitPrice>

</Tow>

<row>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72671</0rderID>
<StockItemName>Alien officer hoodie (Black)
4XL</StockItemName>
<Quantity>6</Quantity>
<UnitPrice>35.00</UnitPrice>

</rTow>

<row>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72637</0rderID>
<StockItemName>Furry animal socks (Pink) S</StockItemName>
<Quantity>96</Quantity>
<UnitPrice>5.00</UnitPrice>

</Tow>

<row>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72669</0rderID>
<StockItemName>Permanent marker black 5mm nib (Black)
5mm</StockItemName>
<Quantity»>84</Quantity>
<UnitPrice>2.70</UnitPrice>

</row>

64

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Tow>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73340</0rderID>
<StockItemName>Superhero action jacket (Blue)
5XL</StockItemName>
<Quantity»2</Quantity>
<UnitPrice>34.00</UnitPrice>

</Tow>

<row>
<OrderDate>2016-05-27</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73356</0rderID>
<StockItemName>Chocolate sharks 250g</StockItemName>
<Quantity»>192</Quantity>
<UnitPrice>8.55¢</UnitPrice>

</Tow>

<TowW>
<OrderDate>2016-05-19</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72787</0rderID>
<StockItemName>Novelty chilli chocolates
250g</StockItemName>
<Quantity»>240</Quantity>
<UnitPrice>8.55</UnitPrice>

</row>

<TOW>
<OrderDate>2016-05-18</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72671</0rderID>

65

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<StockItemName>Packing knife with metal insert blade
(Yellow) 9mm</StockItemName>
<Quantity>35</Quantity>
<UnitPrice>1.89</UnitPrice>

</Tow>

<row>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72671</0rderID>
<StockItemName>Shipping carton (Brown) 480x270x320mm
</StockItemName>
<Quantity>150</Quantity>
<UnitPrice>2.74</UnitPrice>

</Tow>

<row>
<OrderDate>2016-05-19</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72770</0rderID>
<StockItemName>Shipping carton (Brown) 356x229x229mm
</StockItemName>
<Quantity»>175</Quantity>
<UnitPrice>1.14</UnitPrice>

</row>

<row>
<OrderDate>2016-05-19</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72787</0rderID>
<StockItemName>Ride on big wheel monster truck (Black)
1/12 scale</StockItemName>

66

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Quantity>4</Quantity>
<UnitPrice>345.00</UnitPrice>

</Tow>

<Tow>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72669</0rderID>
<StockItemName>10 mm Anti static bubble wrap (Blue) 10m
</StockItemName>
<Quantity>70</Quantity>
<UnitPrice>26.00</UnitPrice>

</row>

<row>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73340</0rderID>
<StockItemName>32 mm Double sided bubble wrap 50m
</StockItemName>
<Quantity>20</Quantity>
<UnitPrice>112.00</UnitPrice>

</rTow>

<row>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72669</0rderID>
<StockItemName>Office cube periscope (Black)</StockItemName>
<Quantity»>20</Quantity>
<UnitPrice>18.50</UnitPrice>

</row>

67

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Tow>
<OrderDate>2016-05-27</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73356</0rderID>
<StockItemName>Ride on vintage American toy coupe (Black)
1/12 scale</StockItemName>
<Quantity»>10</Quantity>
<UnitPrice>285.00</UnitPrice>

</Tow>

</SalesOrders>

You can see that the element-centric document still returns one
element, called <row>, per row in the relational result set. Instead of the
data being contained in attributes, however, it is stored in the form of child
elements. Each child element has been given the name of the column,
from which the data has been returned. The data is still flat, however.
There is no hierarchy based on logic or physical table structure.

It is possible to give the <row> element a more meaningful name. In
our example, the most meaningful name would be <LineItem>. Listing 3-8
demonstrates how we can use an optional argument in our FOR XML clause,
to generate this name for the element.

Listing 3-8. Generating a Name for the <row> Element

SELECT
SalesOrder.OrderDate
, Customers.CustomerName
, SalesOrder.OrderID
, Product.StockItemName
, LineItem.Quantity
, LineItem.UnitPrice

68

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderLines LineItem

ON LineItem.OrderID = SalesOrder.OrderID
INNER JOIN Warehouse.StockItems Product

ON Product.StockItemID = LineItem.StockItemID
INNER JOIN Sales.Customers Customers

ON Customers.CustomerID = SalesOrder.CustomerID
WHERE customers.CustomerName = 'Agrita Abele’
FOR XML RAW ('LineItem'), ELEMENTS, ROOT('SalesOrders') ;

The resulting XML document can be found in Listing 3-9.

Listing 3-9. Generating a Name for the <row> Element Results

<SalesOrders>

<LineItem>
<OrderDate>2016-05-19</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72787</0rderID>
<StockItemName>Developer joke mug - when your hammer is
C++ (Black)</StockItemName>
<Quantity»2</Quantity>
<UnitPrice>13.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-19</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72787</0rderID>
<StockItemName>Developer joke mug - when your hammer is
C++ (White)</StockItemName>
<Quantity>9</Quantity>
<UnitPrice>13.00</UnitPrice>

</LineItem>

69

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<LineItem>
<OrderDate>2016-05-27</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73350</0rderID>
<StockItemName>DBA joke mug - you might be a DBA if
(Black)</StockItemName>
<Quantity>4</Quantity>
<UnitPrice>13.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73350</0rderID>
<StockItemName>Developer joke mug - that's a hardware
problem (Black)</StockItemName>
<Quantity»>3</Quantity>
<UnitPrice>13.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-19</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72770</0rderID>
<StockItemName>"The Gu" red shirt XML tag t-shirt (Black) 5XL
</StockItemName>
<Quantity>120</Quantity>
<UnitPrice>18.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72637</0rderID>

70

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<StockItemName>"The Gu" red shirt XML tag t-shirt (Black)
XXL</StockItemName>
<Quantity>24</Quantity>
<UnitPrice>18.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73350</0rderID>
<StockItemName>Halloween zombie mask (Light Brown) S
</StockItemName>
<Quantity>24</Quantity>
<UnitPrice>18.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72669</0rderID>
<StockItemName>Halloween skull mask (Gray) M</StockItemName>
<Quantity>60</Quantity>
<UnitPrice>18.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-19</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72787</0rderID>
<StockItemName>Furry gorilla with big eyes slippers (Black)
XL</StockItemName>
<Quantity>9</Quantity>
<UnitPrice>32.00</UnitPrice>

</LineItem>

71

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<LineItem>
<OrderDate>2016-05-27</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73350</0rderID>
<StockItemName>Tape dispenser (Blue)</StockItemName>
<Quantity»>90</Quantity>
<UnitPrice>32.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72713</0rderID>
<StockItemName>Tape dispenser (Red)</StockItemName>
<Quantity>20</Quantity>
<UnitPrice>32.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-19</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72770</0rderID>
<StockItemName>Superhero action jacket (Blue)
S</StockItemName>
<Quantity»>8</Quantity>
<UnitPrice>25.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73350</0rderID>
<StockItemName>RC toy sedan car with remote control (Red)
1/50 scale</StockItemName>

72

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Quantity>2</Quantity>
<UnitPrice>25.00</UnitPrice>

</Lineltem>

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72637</0rderID>
<StockItemName>Superhero action jacket (Blue)
3XS</StockItemName>
<Quantity>1</Quantity>
<UnitPrice>25.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-19</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72770</0rderID>
<StockItemName>Black and orange handle with care despatch
tape 48mmx100m</StockItemName>
<Quantity>96</Quantity>
<UnitPrice>4.10</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72671</0rderID>
<StockItemName>Alien officer hoodie (Black)
4XL</StockItemName>
<Quantity>6</Quantity>
<UnitPrice>35.00</UnitPrice>

</LineItem>

73

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72637</0rderID>
<StockItemName>Furry animal socks (Pink) S</StockItemName>
<Quantity»>96</Quantity>
<UnitPrice>5.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72669</0rderID>
<StockItemName>Permanent marker black 5mm nib (Black)
5mm</StockItemName>
<Quantity>84</Quantity>
<UnitPrice>2.70</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-27</0OrderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73340</OrderID>
<StockItemName>Superhero action jacket (Blue)
5XL</StockItemName>
<Quantity»2</Quantity>
<UnitPrice>34.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73356</0rderID>
<StockItemName>Chocolate sharks 250g</StockItemName>

74

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Quantity>192</Quantity>
<UnitPrice>8.55</UnitPrice>

</Lineltem>

<LineItem>
<OrderDate>2016-05-19</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72787</0rderID>
<StockItemName>Novelty chilli chocolates 250g
</StockItemName>
<Quantity>240</Quantity>
<UnitPrice>8.55</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72671</0rderID>
<StockItemName>Packing knife with metal insert blade
(Yellow) 9mm</StockItemName>
<Quantity>35</Quantity>
<UnitPrice>1.89</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72671</0rderID>
<StockItemName>Shipping carton (Brown) 480x270x320mm
</StockItemName>
<Quantity>150</Quantity>
<UnitPrice>2.74</UnitPrice>

</LineItem>

75

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<LineItem>
<OrderDate>2016-05-19</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72770</0rderID>
<StockItemName>Shipping carton (Brown) 356x229x229mm
</StockItemName>
<Quantity>175</Quantity>
<UnitPrice>1.14</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-19</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>72787</0rderID>
<StockItemName>Ride on big wheel monster truck (Black)
1/12 scale</StockItemName>
<Quantity>4</Quantity>
<UnitPrice>345.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72669</0rderID>
<StockItemName>10 mm Anti static bubble wrap (Blue) 10m
</StockItemName>
<Quantity>70</Quantity>
<UnitPrice>26.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<OrderID>73340</OrderID>

76

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<StockItemName>32 mm Double sided bubble wrap 50m
</StockItemName>
<Quantity>20</Quantity>
<UnitPrice>112.00</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-18</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>72669</0rderID>
<StockItemName>Office cube periscope (Black)</
StockItemName>
<Quantity>20</Quantity>
<UnitPrice>18.50</UnitPrice>

</LineItem>

<LineItem>
<OrderDate>2016-05-27</0rderDate>
<CustomerName>Agrita Abele</CustomerName>
<0rderID>73356</0rderID>
<StockItemName>Ride on vintage American toy coupe (Black)
1/12 scale</StockItemName>
<Quantity»>10</Quantity>
<UnitPrice>285.00</UnitPrice>

</LineItem>

</SalesOrders>

Using FOR XML AUTO

Unlike FOR XML RAW, for XML AUTO can return nested results. It is also
refreshingly simple to use, because it will automatically nest the data,
based on the joins within your query. The modified query in Listing 3-10
uses AUTO mode to return a hierarchical XML document.

77

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

Listing 3-10. Using FOR XML AUTO

SELECT
SalesOrder.OrderDate

, Customers.CustomerName

, SalesOrder.OrderID

, Product.StockItemName

, LineItem.Quantity

, LineItem.UnitPrice
FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderLines LineItem

ON LineItem.OrderID = SalesOrder.OrderID
INNER JOIN Warehouse.StockItems Product

ON Product.StockItemID = LineItem.StockItemID
INNER JOIN Sales.Customers Customers

ON Customers.CustomerID = SalesOrder.CustomerID
WHERE customers.CustomerName = 'Agrita Abele’
FOR XML AUTO ;

The XML fragment that is returned by this query can be partially seen
in Listing 3-11.

Listing 3-11. Using FOR XML AUTO Results

<SalesOrder OrderDate="2016-05-19" OrderID="72787">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Developer joke mug - when your
hammer is C++ (Black)">
<LineItem Quantity="2" UnitPrice="13.00" />
</Product>

78

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Product StockItemName="Developer joke mug - when your
hammer is C++ (White)">
<LineItem Quantity="9" UnitPrice="13.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73350">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="DBA joke mug - you might be a DBA
if (Black)"»
<LineItem Quantity="4" UnitPrice="13.00" />
</Product>
<Product StockItemName="Developer joke mug - that's a
hardware problem (Black)">
<LineItem Quantity="3" UnitPrice="13.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72770">
<Customers CustomerName="Agrita Abele">
<Product StockItemName=""The Gudquot; red shirt XML
tag t-shirt (Black) 5XL">
<LineItem Quantity="120" UnitPrice="18.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72637">
<Customers CustomerName="Agrita Abele">

79

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Product StockItemName="8"The Gudquot; red shirt XML
tag t-shirt (Black) XXL">
<LineItem Quantity="24" UnitPrice="18.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73350">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Halloween zombie mask (Light Brown) S">
<LineItem Quantity="24" UnitPrice="18.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72669">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Halloween skull mask (Gray) M">
<LineItem Quantity="60" UnitPrice="18.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72787">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Furry gorilla with big eyes
slippers (Black) XL">
<LineItem Quantity="9" UnitPrice="32.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73350">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Tape dispenser (Blue)">
<LineItem Quantity="90" UnitPrice="32.00" />

80

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72713">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Tape dispenser (Red)">
<LineItem Quantity="20" UnitPrice="32.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72770">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Superhero action jacket (Blue) S">
<LineItem Quantity="8" UnitPrice="25.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73350">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="RC toy sedan car with remote
control (Red) 1/50 scale">
<LineItem Quantity="2" UnitPrice="25.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72637">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Superhero action jacket (Blue) 3XS">
<LineItem Quantity="1" UnitPrice="25.00" />
</Product>
</Customers>
</SalesOrder>

81

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<SalesOrder OrderDate="2016-05-19" OrderID="72770">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Black and orange handle with care
despatch tape 48mmx1i00m">
<LineItem Quantity="96" UnitPrice="4.10" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72671">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Alien officer hoodie (Black) 4XL">
<LineItem Quantity="6" UnitPrice="35.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72637">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Furry animal socks (Pink) S">
<LineItem Quantity="96" UnitPrice="5.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72669">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Permanent marker black 5mm nib
(Black) 5mm">
<LineItem Quantity="84" UnitPrice="2.70" />
</Product>
</Customers>
</SalesOrder>

82

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<SalesOrder OrderDate="2016-05-27" OrderID="73340">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Superhero action jacket (Blue) 5XL">
<LineItem Quantity="2" UnitPrice="34.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73356">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Chocolate sharks 250g">
<LineItem Quantity="192" UnitPrice="8.55" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72787">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Novelty chilli chocolates 250g">
<LineItem Quantity="240" UnitPrice="8.55" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72671">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Packing knife with metal insert
blade (Yellow) 9mm">
<LineItem Quantity="35" UnitPrice="1.89" />
</Product>
<Product StockItemName="Shipping carton (Brown)
480x270x320mm" >
<LineItem Quantity="150" UnitPrice="2.74" />
</Product>
</Customers>

83

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72770">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Shipping carton (Brown) 356x229x229mm">
<LineItem Quantity="175" UnitPrice="1.14" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72787">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Ride on big wheel monster truck
(Black) 1/12 scale">
<LineItem Quantity="4" UnitPrice="345.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72669">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="10 mm Anti static bubble wrap
(Blue) 10m">
<LineItem Quantity="70" UnitPrice="26.00" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73340">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="32 mm Double sided bubble wrap 50m">
<LineItem Quantity="20" UnitPrice="112.00" />
</Product>
</Customers>
</SalesOrder>

84

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<SalesOrder OrderDate="2016-05-18" OrderID="72669">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Office cube periscope (Black)">
<LineItem Quantity="20" UnitPrice="18.50" />
</Product>
</Customers>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73356">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Ride on vintage American toy coupe
(Black) 1/12 scale">
<LineItem Quantity="10" UnitPrice="285.00" />
</Product>
</Customers>
</SalesOrder>

You can see that when AUTO mode is used, the FOR XML clause has
automatically nested the data based on the JOIN clauses within the query.
Each element has been assigned a name, based on the table alias of the
table from which it was retrieved. Just as with RAW mode, we can use the ROOT
keyword to add a root node and make the document well-formed.

We can also make the document element-centric with the ELEMENTS keyword.

If you look closely at the document in Listing 3-11, you will notice
that the resulting hierarchy is not ideal. <Customers> is nested under
<SalesOrders>, and <LineItemy is nested under <Product>. In this
document, however, you would naturally expect the hierarchy to be
<Customers> <SalesOrders> <LinelItem> <Product>.To achieve this,
we would have to rewrite the query, as per Listing 3-12.

85

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

Listing 3-12. Rewriting the Query to Nest Data Correctly

SELECT
Customers.CustomerName

, SalesOrder.OrderDate

, SalesOrder.OrderID

, LineItem.Quantity

, LineItem.UnitPrice

, Product.StockItemName
FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderLines LineItem

ON LineItem.OrderID = SalesOrder.OrderID
INNER JOIN Warehouse.StockItems Product

ON Product.StockItemID = LineItem.StockItemID
INNER JOIN Sales.Customers Customers

ON Customers.CustomerID = SalesOrder.CustomerID
WHERE customers.CustomerName = 'Agrita Abele'
FOR XML AUTO ;

Note that the order of columns has changed, so that the Customers
table is referenced before the SalesOrders table, which, in turn, is
referenced before the OrderLines table. The Stockltems table is the last to
be referenced. You will also notice that we did not have to change the order
of the joins, to produce the document shown in Listing 3-13.

Listing 3-13. Results of Rewritten Query

<Customers CustomerName="Agrita Abele">
<SalesOrder OrderDate="2016-05-19" OrderID="72787">
<LineItem Quantity="2" UnitPrice="13.00">
<Product StockItemName="Developer joke mug - when your
hammer is C++ (Black)" />
</LineItem>

86

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<LineItem Quantity="9" UnitPrice="13.00">
<Product StockItemName="Developer joke mug - when your
hammer is C++ (White)" />
</Lineltem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73350">
<LineItem Quantity="4" UnitPrice="13.00">
<Product StockItemName="DBA joke mug - you might be a DBA
if (Black)" />
</Lineltem>
<LineItem Quantity="3" UnitPrice="13.00">
<Product StockItemName="Developer joke mug - that's a
hardware problem (Black)" />
</Lineltem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72770">
<LineItem Quantity="120" UnitPrice="18.00">
<Product StockItemName="8quot;The Gudquot; red shirt XML
tag t-shirt (Black) 5XL" />
</Lineltem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72637">
<LineItem Quantity="24" UnitPrice="18.00">
<Product StockItemName="8quot;The Gudquot; red shirt XML
tag t-shirt (Black) XXL" />
</Lineltem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73350">
<LineItem Quantity="24" UnitPrice="18.00">
<Product StockItemName="Halloween zombie mask
(Light Brown) S" />
</Lineltem>

87

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72669">
<LineItem Quantity="60" UnitPrice="18.00">
<Product StockItemName="Halloween skull mask (Gray) M" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72787">
<LineItem Quantity="9" UnitPrice="32.00">
<Product StockItemName="Furry gorilla with big eyes
slippers (Black) XL" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73350">
<LineItem Quantity="90" UnitPrice="32.00">
<Product StockItemName="Tape dispenser (Blue)" />
</Lineltem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72713">
<LineItem Quantity="20" UnitPrice="32.00">
<Product StockItemName="Tape dispenser (Red)" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72770">
<LineItem Quantity="8" UnitPrice="25.00">
<Product StockItemName="Superhero action jacket (Blue) S" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73350">
<LineItem Quantity="2" UnitPrice="25.00">
<Product StockItemName="RC toy sedan car with remote
control (Red) 1/50 scale" />

88

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

</Lineltem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72637">
<LineItem Quantity="1" UnitPrice="25.00">
<Product StockItemName="Superhero action jacket (Blue) 3XS" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72770">
<LineItem Quantity="96" UnitPrice="4.10">
<Product StockItemName="Black and orange handle with care
despatch tape 48mmxi00m" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72671">
<LineItem Quantity="6" UnitPrice="35.00">
<Product StockItemName="Alien officer hoodie (Black) 4XL" />
</Lineltem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72637">
<LineItem Quantity="96" UnitPrice="5.00">
<Product StockItemName="Furry animal socks (Pink) S" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72669">
<LineItem Quantity="84" UnitPrice="2.70">
<Product StockItemName="Permanent marker black 5Smm nib
(Black) 5mm" />
</LineItem>
</SalesOrder>

89

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<SalesOrder OrderDate="2016-05-27" OrderID="73340">
<LineItem Quantity="2" UnitPrice="34.00">
<Product StockItemName="Superhero action jacket (Blue) 5XL" />
</Lineltem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73356">
<LineItem Quantity="192" UnitPrice="8.55">
<Product StockItemName="Chocolate sharks 250g" />
</Lineltem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72787">
<LineItem Quantity="240" UnitPrice="8.55">
<Product StockItemName="Novelty chilli chocolates 250g" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72671">
<LineItem Quantity="35" UnitPrice="1.89">
<Product StockItemName="Packing knife with metal insert
blade (Yellow) 9mm" />
</Lineltem>
<LineItem Quantity="150" UnitPrice="2.74">
<Product StockItemName="Shipping carton (Brown)
480x270x320mm" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-19" OrderID="72770">
<LineItem Quantity="175" UnitPrice="1.14">
<Product StockItemName="Shipping carton (Brown)
356x229x229mm" />
</LineItem>
</SalesOrder>

90

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<SalesOrder OrderDate="2016-05-19" OrderID="72787">
<LineItem Quantity="4" UnitPrice="345.00">
<Product StockItemName="Ride on big wheel monster truck
(Black) 1/12 scale" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72669">
<LineItem Quantity="70" UnitPrice="26.00">
<Product StockItemName="10 mm Anti static bubble wrap
(Blue) 10m" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73340">
<LineItem Quantity="20" UnitPrice="112.00">
<Product StockItemName="32 mm Double sided bubble wrap 50m" />
</Lineltem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-18" OrderID="72669">
<LineItem Quantity="20" UnitPrice="18.50">
<Product StockItemName="Office cube periscope (Black)" />
</LineItem>
</SalesOrder>
<SalesOrder OrderDate="2016-05-27" OrderID="73356">
<LineItem Quantity="10" UnitPrice="285.00">
<Product StockItemName="Ride on vintage American toy
coupe (Black) 1/12 scale" />
</LineItem>
</SalesOrder>

</Customers>

91

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

Nesting based on table joins is not always sufficient. In this example,
it would be possible for some <LineItem> elements to contain multiple
<Product> elements, which is obviously not correct. There cannot be more
than one product per line on a sales order. This is because the primary key
of the Sales.OrderLines table has not been included in the query, meaning
that not every set of tuples returned from the Sales.OrderLines table
must be unique. The values for UnitPrice and OrderQty happened to be
repeated. If this occurred, FOR XML AUTO would group them. If the primary
key had been included, the issue could not occur.

Using FOR XML PATH

Sometimes, you need more control over the shape of the resultant XML
document than can be provided by either RAW mode or AUTO mode. When
you have a requirement to define custom output, PATH mode can be used.
PATH mode offers great flexibility, as it allows you to define the location of
each node within the resultant XML. This is achieved by specifying how
each column in the query maps to the XML, with the use of column names
or aliases.

If a column alias begins with the @ symbol, an attribute will be created.
If no @ symbol is used, the column will map to an element. Columns that
will become attributes must be specified before columns that will be
sibling nodes but defined as elements.

If you wish to define a node’s location in the hierarchy, you can use
the / symbol. For example, if you required the order date to appear nested
under an element called <OrderHeader>, you could specify its column alias
as '/OrderHeader/OrderDate’ for the OrderDate column.

PATH mode allows you to create highly customized and complex
structures. For example, imagine that you are required to create an XML
document in the format displayed in Listing 3-14. Here, you will note that
there is a root node called <SalesOrders>. The next node in the hierarchy

92

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

is <Orders>. This is a repeating element, with a new occurrence for every
order raised by the customer, which is the same as when we explored AUTO
mode. The difference is that each sales order has its own hierarchy. First,
there is a section for generic order information, stored within a node called
<OrderHeader>. This element is the parent element for <CustomerName>,
<OrderDate>, and <OrderID>. These values are to be stored as simple
elements.

There is also a section for the line details of the order, which are stored
in a node called <OrderDetails>. This element contains a repeating child
element named <Product>. This repeating element is the parent node for
each <ProductName> (StockltemName) and <ProductID> (StockltemID)
within the order, as well as the <Price> (unitprice) and <Qty> of each item.
These values are all stored as attributes of the <Product> element.

Listing 3-14. Required Format of XML Output

<SalesOrders>
<Order>
<OrderHeader>
<CustomerName>Agrita Abele</CustomerName>
<OrderDate>2016-05-18</0OrderDate>
<0rderID>72637</0rderID>
</OrderHeader>
<OrderDetails>
<Product ProductID="96" ProductName="8"The Gu"
red shirt XML tag t-shirt (Black) XXL" Price="18.00"
Qty="24" />
<Product ProductID="107" ProductName="Superhero action
jacket (Blue) 3XS" Price="25.00" Qty="1" />
<Product ProductID="138" ProductName="Furry animal socks
(Pink) S" Price="5.00" Qty="96" />
</OrderDetails>
</0Order>

93

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Order>
<OrderHeader>
<CustomerName>Agrita Abele</CustomerName>
<OrderDate>2016-05-18</0rderDate>
<0rderID>72669</0rderID>
</OrderHeader>
<OrderDetails>
<Product ProductID="147" ProductName="Halloween skull
mask (Gray) M" Price="18.00" Qty="60" />
<Product ProductID="206" ProductName="Permanent marker
black 5mm nib (Black) 5mm" Price="2.70" Qty="84" />
<Product ProductID="165" ProductName="10 mm Anti static
bubble wrap (Blue) 10m" Price="26.00" Qty="70" />
<Product ProductID="3" ProductName="Office cube periscope
(Black)" Price="18.50" Qty="20" />
</0OrderDetails>
</0rder>
<Order>
<OrderHeader>
<CustomerName>Agrita Abele</CustomerName>
<OrderDate>2016-05-18</0rderDate>
<0rderID>72671</0rderID>
</0OrderHeader>
<OrderDetails>
<Product ProductID="105" ProductName="Alien officer
hoodie (Black) 4XL" Price="35.00" Qty="6" />
<Product ProductID="209" ProductName="Packing knife with
metal insert blade (Yellow) 9mm" Price="1.89" Qty="35" />
<Product ProductID="183" ProductName="Shipping carton
(Brown) 480x270x320mm" Price="2.74" Qty="150" />
</OrderDetails>
</Order>

94

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Order>
<OrderHeader>
<CustomerName>Agrita Abele</CustomerName>

<OrderDate>2016-05-18</0rderDate>
<0rderID>72713</0rderID>
</0OrderHeader>

<OrderDetails>
<Product ProductID="204" ProductName="Tape dispenser

(Red)" Price="32.00" Qty="20" />
</OrderDetails>
</Order>
<Order>

<OrderHeader>
<CustomerName>Agrita Abele</CustomerName>

<OrderDate>2016-05-19</0rderDate>
<0rderID>72770</0rderID>
</0OrderHeader>

<OrderDetails>
<Product ProductID="99" ProductName=""The Gudquot; red

shirt XML tag t-shirt (Black) 5XL" Price="18.00" Qty="120" />
<Product ProductID="110" ProductName="Superhero action
jacket (Blue) S" Price="25.00" Qty="8" />
<Product ProductID="196" ProductName="Black and orange handle
with care despatch tape 48mmx100m" Price="4.10" Qty="96" />
<Product ProductID="181" ProductName="Shipping carton
(Brown) 356x229x229mm" Price="1.14" Qty="175" />
</OrderDetails>
</Order>

95

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Order>
<OrderHeader>
<CustomerName>Agrita Abele</CustomerName>
<OrderDate>2016-05-19</0OrderDate>
<OrderID>72787</0rderID>
</OrderHeader>
<OrderDetails>
<Product ProductID="37" ProductName="Developer joke mug -
when your hammer is C++ (Black)" Price="13.00" Qty="2" />
<Product ProductID="36" ProductName="Developer joke mug -
when your hammer is C++ (White)" Price="13.00" Qty="9" />
<Product ProductID="133" ProductName="Furry gorilla with
big eyes slippers (Black) XL" Price="32.00" Qty="9" />
<Product ProductID="220" ProductName="Novelty chilli
chocolates 250g" Price="8.55" Qty="240" />
<Product ProductID="75" ProductName="Ride on big wheel
monster truck (Black) 1/12 scale" Price="345.00" Qty="4" />
</OrderDetails>
</Order>
<Order>
<OrderHeader>
<CustomerName>Agrita Abele</CustomerName>
<OrderDate>2016-05-27</0OrderDate>
<0rderID>73340</0rderID>
</OrderHeader>
<OrderDetails>
<Product ProductID="117" ProductName="Superhero action
jacket (Blue) 5XL" Price="34.00" Qty="2" />
<Product ProductID="164" ProductName="32 mm Double sided
bubble wrap 50m" Price="112.00" Qty="20" />
</OrderDetails>
</Order>

96

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Order>
<OrderHeader>
<CustomerName>Agrita Abele</CustomerName>
<OrderDate>2016-05-27</0rderDate>
<0rderID>73350</0rderID>
</OrderHeader>
<OrderDetails>
<Product ProductID="21" ProductName="DBA joke mug - you
might be a DBA if (Black)" Price="13.00" Qty="4" />
<Product ProductID="33" ProductName="Developer joke mug -
that's a hardware problem (Black)" Price="13.00" Qty="3" />
<Product ProductID="142" ProductName="Halloween zombie
mask (Light Brown) S" Price="18.00" Qty="24" />
<Product ProductID="205" ProductName="Tape dispenser
(Blue)" Price="32.00" Qty="90" />
<Product ProductID="59" ProductName="RC toy sedan car
with remote control (Red) 1/50 scale" Price="25.00"
Qty="2" />
</OrderDetails>
</Order>
<Order>
<OrderHeader>
<CustomerName>Agrita Abele</CustomerName>
<OrderDate>2016-05-27</0OrderDate>
<OrderID>73356</0OrderID>
</0OrderHeader>
<OrderDetails>
<Product ProductID="225" ProductName="Chocolate sharks
250g" Price="8.55" Qty="192" />

97

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<Product ProductID="74" ProductName="Ride on vintage American
toy coupe (Black) 1/12 scale" Price="285.00" Qty="10" />
</OrderDetails>
</Order>
</SalesOrders>

Queries to build XML documents using FOR XML PATH can seem a little
complicated at first, but once you understand the principles, they become
quite straightforward. Let’s examine each requirement and how we can
achieve the required shape.

First, we will require a root node called <SalesOrders>, and we will
also need to rename the <row> element to <Orders>. This can be achieved
in the same way as we did when we were exploring RAW mode, using the
optional argument for the <row> element and the ROOT keyword in the FOR
XML clause and the root node, as shown in Listing 3-15.

Listing 3-15. Creating a Root and Naming the <row> Element
with FOR XML PATH

FOR XML PATH('Order'), ROOT ('SalesOrders') ;

The next requirement is to create a complex element called
<OrderHeader>, which will contain the <CustomerName>, <OrdexrDate>,
and <OrderID> elements. This can be achieved by specifying a path to the
element, as well as the element name. As demonstrated in Listing 3-16,
when using this technique, the / character denotes a step down the
hierarchy.

Listing 3-16. Creating Hierarchy Levels

SELECT
CustomerName 'OrderHeader/CustomerName'
, OrderDate 'OrderHeader/OrderDate’
, OrderID 'OrderHeader/OrderID'

98

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

To create the nested line items, we must use a subquery, which returns
the XML data type. For the process to work properly, we must use the TYPE
keyword in the FOR XML clause of the subquery. This will cause the results
to be returned to the outer query in native XML, as it can be processed
server-side. Failure to use this keyword will result in some characters being
replaced by control character sequences.

Because we want the values to be stored as attributes of an element
called <Product>, we will have to rename the <row> element and prefix our
column aliases with the @ symbol. Finally, to ensure that the <Product>
elements are nested under an element named <OrderDetails>, we will
use OrderDetails as the alias for the column returned by the subquery, as
demonstrated in Listing 3-17.

Listing 3-17. OrderDetails Subquery

(
SELECT

LineItems2.StockItemID '@ProductID’
, StockItems.StockItemName '@ProductName'’
, LineItems2.UnitPrice '@Price’
, Quantity '@Qty’

FROM Sales.OrderlLines LineItems2

INNER JOIN Warehouse.StockItems StockItems
ON LineItems2.StockItemID = StockItems.Stock
ItemID

WHERE LineItems2.0rderID = Base.OrderID

FOR XML PATH('Product'), TYPE

) 'OrderDetails’

Listing 3-18 pulls together the aspects that we have discussed and
returns an XML document in the required format.

99

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

Listing 3-18. Putting It All Together

SELECT
CustomerName 'OrderHeader/CustomerName'
, OrderDate 'OrderHeader/OrderDate’
, OrderID 'OrderHeader/OrderID'
J) (
SELECT
LineItems2.StockItemID '@ProductID’
, StockItems.StockItemName '@ProductName'
, LineItems2.UnitPrice '@Price’
, Quantity '@Qty’
FROM Sales.OrderLines LineItems2
INNER JOIN Warehouse.StockItems StockItems
ON LineItems2.StockItemID = Stock
Items.StockItemID
WHERE LineItems2.0rderID = Base.OrderID
FOR XML PATH('Product'), TYPE
) 'OrderDetails’

FROM
(
SELECT DISTINCT
Customers.CustomerName
, SalesOrder.OrderDate
, SalesOrder.OrderID
FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderlLines LineItem
ON SalesOrder.OrderID = LineItem.OrderID
INNER JOIN Sales.Customers Customers
ON Customers.CustomerID = SalesOrder.CustomerID
WHERE customers.CustomerName = 'Agrita Abele'
) Base

FOR XML PATH('Order'), ROOT ('SalesOrders') ;
100

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

Using FOR XML EXPLICIT

FOR XML EXPLICIT is the most complex of the FOR XML modes, but it also
provides ultimate flexibility. It uses the concept of tags and parents to
control nesting. A tag designates a node’s position within the hierarchy,
and parent indicates the tag of the node that resides above it in the
hierarchy. Therefore, the top-level node will have a tag of 1 and a parent
of NULL. Each node is specified in a separate query, and the queries are
joined using UNION ALL.

For example, imagine that we want to expand the example in
Listing 3-18 so that we return an OrderDetails element that has two child
elements. The first will contain the name of the salesperson who took the
order. The second will be a repeating element, detailing the line items
within the order. We could achieve this by using the query in Listing 3-19.

Listing 3-19. Order Details with XML Explicit

SELECT
1 AS Tag

, 0 AS Parent
, SalesOrder.OrderID AS
[OrderDetails!1!SalesOrderID]
, SalesOrder.OrderDate AS
[OrderDetails!1!0rderDate]
, SalesOrder.CustomerID AS
[OrderDetails!1!CustomerID]
, NULL AS [SalesPerson!2!SalesPersonName]
, NULL AS [LineItem!3!LineTotal!ELEMENT]
, NULL AS [LineItem!3!ProductName!ELEMENT]

101

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

, NULL AS [LineItem!3!0rderQty!ELEMENT]
FROM Sales.Orders SalesOrder
INNER JOIN Sales.Customers Customers
ON Customers.CustomerID = SalesOrder.CustomerID
WHERE customers.CustomerName = 'Agrita Abele’
UNION ALL
SELECT
2 AS Tag
, 1 AS Parent
, SalesOrder.OrderID
, NULL
, NULL
, People.FullName
, NULL
, NULL
, NULL
FROM Sales.Orders SalesOrder
INNER JOIN Sales.Customers Customers
ON Customers.CustomerID = SalesOrder.CustomerID
INNER JOIN Application.People People
ON People.PersonID = SalesOrder.SalespersonPersonID
WHERE customers.CustomerName = 'Agrita Abele'
UNION ALL
SELECT
3 AS Tag
, 1 AS Parent
, SalesOrder.OrderID
, NULL
, NULL
, People.FullName
, LineItem.UnitPrice

102

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

, Product.StockItemName
, LineItem.Quantity
FROM Sales.Orders SalesOrder
INNER JOIN Sales.OrderLines LineItem
ON SalesOrder.OrderID = LineItem.OrderID
INNER JOIN Sales.Customers Customers
ON Customers.CustomerID = SalesOrder.CustomerID
INNER JOIN Warehouse.StockItems Product
ON Product.StockItemID = LineItem.StockItemID
INNER JOIN Application.People People
ON People.PersonID = SalesOrder.SalespersonPersonID
WHERE customers.CustomerName = 'Agrita Abele'
ORDER BY
[OrderDetails!1!SalesOrderID]
, [SalesPerson!2!SalesPersonName]
, [LineItem!3!LineTotal!ELEMENT]
FOR XML EXPLICIT, ROOT('SalesOrders') ;

There are various things that we should note about the query in
Listing 3-19. First, each complex node is in its own query, and these
queries are connected by using UNION ALL. Just like every use of UNION
ALL, each query must have the same number of columns. Therefore, NULL
values are used when a node does not exist within the complex node being
defined by the query. Also, note that the OrderID column is used in all
three queries. This column is used to define which salespeople, and line
details should be ordered under each sales order.

Because the SalesPerson and LineItem nodes are siblings, both the
second and third queries have their parent configured as 1, which is
the tag of the first query. This means that both will be nested under the
OrderDetails node, at the same level of the hierarchy. The query defining
the OrderDetails node has its parent configured as NULL. This denotes

103

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

that it is at the top of the hierarchy, with the exception of the root node,
which is defined in the FOR XML clause.

As with other UNION ALL queries, where column names are derived
from the first query, the node names are taken from the first query. If you
examine the column aliases in the first query, you will clearly see how
the structure of the node names is defined. The name parts are separated
with a !. The first name part defines the name of the complex node. The
second part describes the ID of the tag that is being named. The third part
of the name defines the name of the node that will store the data within
the column. By default, FOR XML EXPLICIT is attribute-centric. Therefore,
if you require a node to be an element, you must add a fourth part to the
name, known as the ELEMENT directive.

The query in Listing 3-19 produces the XML document in Listing 3-20.

Listing 3-20. FOR XML EXPLICIT Results

<SalesOrders>
<OrderDetails SalesOrderID="72637" OrderDate="2016-05-18"
CustomerID="1061">
<SalesPerson SalesPersonName="Taj Shand" />
<LineItem>
<LineTotal>5.00</LineTotal>
<ProductName>Furry animal socks (Pink) S</ProductName>
<OrderQty>96</0rderQty>
</Lineltem>
<LineItem>
<LineTotal>18.00</LineTotal>
<ProductName>"The Gu" red shirt XML tag t-shirt (Black)
XXL</ProductName>
<OrderQty>24</0rderQty>
</Lineltem>
<LineItem>

104

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<LineTotal>25.00</LineTotal>
<ProductName>Superhero action jacket (Blue) 3XS</ProductName>
<OrderQty>1</OrderQty>

</Lineltem>

</0OrderDetails>
<OrderDetails SalesOrderID="72669" OrderDate="2016-05-18"
CustomerID="1061">

<SalesPerson SalesPersonName="Hudson Onslow" />
<LineItem>
<LineTotal>2.70</LineTotal>
<ProductName>Permanent marker black 5mm nib (Black) 5mm
</ProductName>
<OrderQty>84</0rderQty>
</LineItem>
<LineItem>
<LineTotal>18.00</LineTotal>
<ProductName>Halloween skull mask (Gray) M</ProductName>
<OrderQty>60</0rderQty>
</LineItem>
<LineItem>
<LineTotal>18.50</LineTotal>
<ProductName>Office cube periscope (Black)</ProductName>
<OrderQty>20</0rderQty>
</LineItem>
<LineItem>
<LineTotal>26.00</LineTotal>
<ProductName>10 mm Anti static bubble wrap (Blue) 10m
</ProductName>
<OrderQty>70</0rderQty>
</LineItem>

</0rderDetails>

105

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<OrderDetails SalesOrderID="72671" OrderDate="2016-05-18"
CustomerID="1061">
<SalesPerson SalesPersonName="Hudson Hollinworth" />
<LineItem>
<LineTotal>1.89</LineTotal>
<ProductName>Packing knife with metal insert blade
(Yellow) 9mm</ProductName>
<OrderQty>35</0rderQty>
</LineItem>
<LineItem>
<LineTotal>2.74</LineTotal>
<ProductName>Shipping carton (Brown) 480x270x320mm
</ProductName>
<OrderQty>150</0rderQty>
</LineItem>
<LineItem>
<LineTotal>35.00</LineTotal>
<ProductName>Alien officer hoodie (Black) 4XL</ProductName>
<OrderQty>6</0OrderQty>
</Lineltem>
</OrderDetails>
<OrderDetails SalesOrderID="72713" OrderDate="2016-05-18"
CustomerID="1061">
<SalesPerson SalesPersonName="Hudson Onslow" />
<LineItem>
<LineTotal>32.00</LineTotal>
<ProductName>Tape dispenser (Red)</ProductName>
<OrderQty>20</0OrderQty>
</Lineltem>
</OrderDetails>

106

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<OrderDetails SalesOrderID="72770" OrderDate="2016-05-19"
CustomerID="1061">

<SalesPerson SalesPersonName="Hudson Onslow" />
<LineItem>
<LineTotal>1.14</LineTotal>
<ProductName>Shipping carton (Brown) 356x229x229mm
</ProductName>
<OrderQty>175</0rderQty>
</LineItem>
<LineItem>
<LineTotal>4.10</LineTotal>
<ProductName>Black and orange handle with care despatch
tape 48mmx100m</ProductName>
<OrderQty>96</0rderQty>
</LineItem>
<LineItem>
<LineTotal>18.00</LineTotal>
<ProductName>"The Gu" red shirt XML tag t-shirt (Black)
5XL</ProductName>
<OrderQty»>120</0OrderQty>
</LineItem>
<LineItem>
<LineTotal>25.00</LineTotal>
<ProductName>Superhero action jacket (Blue) S
</ProductName>
<OrderQty»>8</0OrderQty>
</LineItem>

</0rderDetails>

107

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<OrderDetails SalesOrderID="72787" OrderDate="2016-05-19"
CustomerID="1061">

108

<SalesPerson SalesPersonName="Jack Potter" />
<LineItem>

<LineTotal>8.55¢</LineTotal>
<ProductName>Novelty chilli chocolates 250g</ProductName>
<OrderQty>240</0rderQty>

</LineItem>
<LineItem>

<LineTotal>13.00</LineTotal>

<ProductName>Developer joke mug - when your hammer is
C++ (White)</ProductName>

<OrderQty»>9</0rderQty>

</LineItem>
<LineItem>

<LineTotal>13.00</LineTotal>

<ProductName>Developer joke mug - when your hammer is
C++ (Black)</ProductName>

<OrderQty»>2</0OrderQty>

</LineItem>
<LineItem>

<LineTotal>32.00</LineTotal>

<ProductName>Furry gorilla with big eyes slippers (Black)
XL</ProductName>

<OrderQty>9</0OrderQty>

</LineItem>
<LineItem>

<LineTotal>345.00</LineTotal>

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<ProductName>Ride on big wheel monster truck (Black) 1/12
scale</ProductName>
<OrderQty>4</0OrderQty>
</LineItem>
</OrderDetails>
<OrderDetails SalesOrderID="73340" OrderDate="2016-05-27"
CustomerID="1061">
<SalesPerson SalesPersonName="Taj Shand" />
<LineItem>
<LineTotal>34.00</LineTotal>
<ProductName>Superhero action jacket (Blue) 5XL
</ProductName>
<OrderQty»>2</0rderQty>
</LineItem>
<LineItem>
<LineTotal>112.00</LineTotal>
<ProductName>32 mm Double sided bubble wrap 50m
</ProductName>
<OrderQty>20</0rderQty>
</LineItem>
</OrderDetails>
<OrderDetails SalesOrderID="73350" OrderDate="2016-05-27"
CustomerID="1061">
<SalesPerson SalesPersonName="Sophia Hinton" />
<LineItem>
<LineTotal>13.00</LineTotal>
<ProductName>DBA joke mug - you might be a DBA if
(Black)</ProductName>
<OrderQty>4</0OrderQty>
</LineItem>

109

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<LineItem>
<LineTotal>13.00</LineTotal>
<ProductName>Developer joke mug - that's a hardware
problem (Black)</ProductName>
<OrderQty>3</0OrderQty>
</Lineltem>
<LineItem>
<LineTotal>18.00</LineTotal>
<ProductName>Halloween zombie mask (Light Brown) S
</ProductName>
<OrderQty>24</0rderQty>
</LineItem>
<LineItem>
<LineTotal>25.00</LineTotal>
<ProductName>RC toy sedan car with remote control (Red)
1/50 scale</ProductName>
<OrderQty>2</0OrderQty>
</LineItem>
<LineItem>
<LineTotal>32.00</LineTotal>
<ProductName>Tape dispenser (Blue)</ProductName>
<OrderQty>90</0rderQty>
</LineItem>
</OrderDetails>
<OrderDetails SalesOrderID="73356" OrderDate="2016-05-27"
CustomerID="1061">
<SalesPerson SalesPersonName="Anthony Grosse" />
<LineItem>
<LineTotal>8.55</LineTotal>
<ProductName>Chocolate sharks 250g</ProductName>
<OrderQty>192</0rderQty>
</Lineltem>

110

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

<LineItem>
<LineTotal»285.00</LineTotal>
<ProductName>Ride on vintage American toy coupe (Black)
1/12 scale</ProductName>
<OrderQty>10</0rderQty>

</LineItem>

</0OrderDetails>
</SalesOrders>

Summary

The FOR XML clause can be used to construct XML data from a T-SQL
query. The FOR XML clause can be used in four modes: RAW, AUTO, PATH, and
EXPLICIT.

When used in RAW mode, FOR XML will produce a flat XML instance,
with no nesting. It is very simple to use and allows for the XML instance
to be either attribute-centric or element-centric. It can also produce
well-formed XML, by adding a root node. It provides very little control over
formatting, however.

FOR XML AUTOis very simple to use and allows the developer to create
nested XML instances. Just as with FOR XML RAW, FOR XML AUTO can
produce either element-centric or attribute-centric documents, which can
be well-formatted with the addition of a root node. Data within the XML
document will be nested automatically, based on table joins. Nodes will
derive their names from table aliases.

When used in PATH mode, FOR XML provides much more granular
control over the layout of the XML document. Each column can be defined
as either an element or an attribute, by including or omitting the @ prefix.
Hierarchical position can be defined through column aliases, and complex
nesting requirements can be achieved through subqueries.

111

CHAPTER 3 CONSTRUCTING XML WITH T-SQL

FOR XML EXPLICIT is the most complex of the FOR XML modes but also
the most powerful. It is implemented by defining each complex node in
a separate query, with the queries joined by using the UNION ALL clause.
Hierarchical positioning is defined through tag and parent columns,
which are always the first and second columns, respectively, in the SELECT
list. Column aliases allow for the declaration of node names and define if
each node should be element-centric or attribute-centric.

112

CHAPTER 4

Querying and
Shredding XML

To allow developers to query and navigate XML documents from within
SQL Server, the XQuery language can be combined with T-SQL queries.
In this chapter, I will discuss how to use XQuery to filter, extract, and
modify XML. I will also discuss shredding XML, which is the process of
converting XML data into relational results sets. Finally, an overview of
how to bind an XSD schema to a column of data type XML is provided.

Querying XML

XQuery is a language for querying XML, in the same way that SQL is a
language for querying relational data. The language is built on XPath
but has been enhanced for better iteration and sorting. It also allows for
the construction of XML. The XQuery standard is developed by the W3C
(World Wide Web Consortium), in conjunction with Microsoft and other
major relational database management system (RDBMS) vendors.

XQuery in SQL Server supports five methods against the XML data
type. An overview of these methods can be found in Table 4-1, and each
of the methods will be demonstrated throughout this chapter. XQuery
also supports the use of XSD schemas, to help interact with complex
documents and FLWOR (pronounced flower) statements. FLWOR is an
acronym of for, let, where, order by, and return.

© Peter A. Carter 2018 113
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_4

CHAPTER 4 QUERYING AND SHREDDING XML

Table 4-1. XQuery Methods

Method Description

exist() Checks for the existence of a node with a specified value within
an XML document. It returns 1 if the node exists with the specified
value and 0 if it does not.

modify() Performs data modification statements against an XML document.
Acceptable DML actions are insert, delete, and replace value of.

nodes () Returns a row set that contains copies of original XML instances. It
is used for shredding XML into a relational result set.

query() This returns a subset of an XML document, in XML format.

value() This returns a single scalar value from an XML document, mapped

to an SQL Server data type.

Tip The structure and benefits of XSD schemas are explained in
Chapter 2.

for statements allow you to iterate through a sequence of nodes.
let statements bind a sequence to a variable. where statements filter
nodes based on a Boolean expression. order by statements order nodes
before they are returned. return statements specify what should be
returned.

To demonstrate the use of the XQuery methods in this chapter, we
will create a table in the WideWorldImporters database, called Sales.
CustomerOrderSummary. This table can be created using the scriptin
Listing 4-1.

114

CHAPTER 4 QUERYING AND SHREDDING XML

Listing 4-1. Creating the Sales.CustomerOrderSummary Table

USE WideWorldImporters
GO

CREATE TABLE Sales.CustomerOrderSummary

(
ID INT NOT NULL IDENTITY,
CustomerID INT NOT NULL,
OrderSummary XML
)
INSERT INTO Sales.CustomerOrderSummary (CustomerID,
OrderSummary)
SELECT
CustomerID,
(
SELECT

CustomerName 'OrderHeader/CustomerName'
, OrderDate 'OrderHeader/OrderDate’
, OrderID 'OrderHeader/OrderID'
) (
SELECT
LineItems2.StockItemID
'@ProductID’
, StockItems.StockItem
Name '@ProductName'
, LineItems2.UnitPrice
'@Price’
, Quantity '@Qty'
FROM Sales.OrderlLines LineItems2
INNER JOIN Warehouse.StockItems
StockItems

115

CHAPTER 4

QUERYING AND SHREDDING XML

FROM

) Base

ON LineItems2.StockItemID
= StockItems.StockItemID
WHERE LineItems2.0rderID =
Base.OrderID
FOR XML PATH('Product'), TYPE
) 'OrderDetails’

SELECT DISTINCT
Customers.CustomerName

, SalesOrder.OrderDate
, SalesOrder.OrderID

FROM Sales.Orders SalesOrder

INNER JOIN Sales.OrderlLines Lineltem
ON SalesOrder.OrderID =
LineItem.OrderID

INNER JOIN Sales.Customers Customers
ON Customers.CustomerID =
SalesOrder.CustomerID

WHERE customers.CustomerID = QuterCust.

CustomerID

FOR XML PATH('Order'), ROOT ('SalesOrders'), TYPE

) AS OrderSummary

FROM Sales.Customers OuterCust ;

Using exist()

The exist() method is used to check for the existence of a node with a

specified value. For example, please consider the script in Listing 4-2. The

query will programmatically check to see if the XML document containing

sales order details contains the Chocolate sharks 250g product. The first

116

CHAPTER 4 QUERYING AND SHREDDING XML

portion of the XQuery defines the path to the node to be evaluated, in this
case, the StockItemName attribute. We have defined that the node is an
attribute, by prefixing the node name with the @ symbol. We then specify
eq as the comparison operator, before supplying the value that we want
to validate the node against. If the criteria are met, exist () will return 1.
If the criteria are not met, it will return 0.

Listing 4-2. Checking for the Existence of a Value
DECLARE @SalesOrders XML

SET @SalesOrders =
'<SalesOrder OrderDate="2016-05-27" OrderID="73356">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Chocolate sharks 250g">
<LineItem Quantity="192" UnitPrice="8.55" />
</Product>
</Customers>
</SalesOrder>' ;

SELECT @SalesOrders.exist('SalesOrder/Customers/Product|
(@StockItemName) eq "Chocolate sharks 250g"]') ;

The results of this script are displayed in Figure 4-1.

FH Results =l Messages

(No column name)

1 1

Figure 4-1. Results of checking for the existence of a value

117

CHAPTER 4 QUERYING AND SHREDDING XML

You can see how the exist () method could easily be used in a WHERE
clause, against a column of data type XML. For example, consider the script
in Listing 4-3, which uses the exist() method in a WHERE clause against
the Sales.CustomerOrderSummary table in the WideWorldImporters
database, to return just the order summary for Tailspin Toys (Absecon, NJ).

You will notice that because we are evaluating the value of an element,
as opposed to an attribute, we have used the text () method to extract the
value. The [1] denotes that a singleton value will be returned.

Listing 4-3. Filtering a Table Using the exist() Method

SELECT
CustomerID
, OrderSummary
FROM WideWorldImporters.Sales.CustomerOrderSummary
WHERE OrderSummary.exist('SalesOrders/Order/OrderHeader/
CustomerName[(text()[1]) eq "Tailspin Toys (Absecon, NJ)"]') =1 ;

Using value()

The value() method is used to extract a single, scalar value from an

XML document and map it to an SQL Server data type. For example,
consider the script in Listing 4-4. The script uses the same XML document
as Listing 4-1 but this time extracts the customer name from the document.
In the same way as when we used the exist() method, we will have to use
the @ symbol to prefix an attribute. We also must denote that a singleton
value will be returned.

118

CHAPTER 4 QUERYING AND SHREDDING XML

Listing 4-4. Using the value() Method
DECLARE @SalesOrders XML ;

SET @SalesOrders =
'<SalesOrder OrderDate="2016-05-27" OrderID="73356">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Chocolate sharks 250g">
<LineItem Quantity="192" UnitPrice="8.55" />
</Product>
</Customers>
</SalesOrder>' ;

SELECT @SalesOrders.value('(/SalesOrder/Customers/
@CustomerName)[1]', 'nvarchar(100)') AS CustomerName ;

The results of this script are illustrated in Figure 4-2.

% Results Eﬁ Messages

CustomerName
1 | Agrta Abele

Figure 4-2. Results of using the value() method

The value() method can also be used against a table, to extract values
from each row. For example, the script in Listing 4-5 can be used to extract the
customer name from each row in the Sales.CustomerOrderSummary table.

119

CHAPTER 4 QUERYING AND SHREDDING XML

Listing 4-5. Using the value() Method Against a Table

USE WideWorldImporters
GO

SELECT
CustomerID
, OrderSummary
, OrderSummary.value('(/SalesOrders/Order/OrderHeader/
CustomerName)[1]", 'nvarchar(100)') AS CustomerName
FROM Sales.CustomerOrderSummary ;

Partial results of this query can be found in Figure 4-3.

5 Rosuts |Gl Momages

CustomerlD OrderSummary ' CustomerName
1 H 3¢ 3¢ H 3¢ merNam: Camille Authier
2 §3 <SlesOrders > <Order> <OrderHeader> <«CustomerName>Tail . Tailspin Toys (Absecon, NJ)
3 595 <SlesOrders > <Order> <OrderHeader> <«CustomerName>Wi Wingtip Toys (Accomac, VA)
4 84 <SlesOrders > <Order><OrderHeader><CustomerName>Tail... Tailspin Toys (Aceitunas, PR)
5 38 <SlesOrders ><Order><OrderHeader><CustomerName>Tail... Tailspin Toys (Aiport Drive, MO)
6 537 <SlesOrders > <Order> <OrderHeader> <CustomerMame>Wi.. Wingtip Toys (Akhiok, AK)
r 853 <SlesOrders > <Order><OrderHeader><CustomerName>Cat .. Caterina Pinto
[589 ¢ i Wingtip Toys {Alcester, SD)

@
8
]
H
7
ed
v
[l
.
&
v
(=]
a
E]
=
i
b
e
(D
o

<CustomerMame>Ba.. Bahaar Asef zade

0 9 merName> Tail Tailspin Toys {Alstead. NH)
1 566 <SlesOrders> <Order> <OrderHeader><CustomerName>Wi... Wingtip Toys (Amado, AZ)
12 44 <SlesOrders ><Order><OrderHeader><CustomerMName > Tail Tailspin Toys (Amanda Park, WA)
13 8 <SlesOrders > <Order> <OrderHeaders <CustomerName>Tail... Tailspin Toys (Andrix, CO)
14 125 <SlesOrders > <Order> <OrderHeader> <CustomerName>Tail Tailspin Toys {Annamoriah, WV)
15 | 161 <SlesOrders> <Order> <OrderHeader><«CustomerName>Tail... Tailspin Toys (Antares, AZ)
@ Query executed successfully. DATATYPES (14.0 RTM

Figure 4-3. Results of using the value() method against a table

The value() method can also be used in the WHERE clause of a query.
For example, the query in Listing 4-6 is functionally equivalent to the query
in Listing 4-5. It has simply been rewritten using the value() method
instead of the exist () method.

120

CHAPTER 4 QUERYING AND SHREDDING XML

Listing 4-6. Filtering a Table Using the value() Method

USE WideWorldImporters
GO

SELECT
CustomerID
, OrderSummary
FROM WideWorldImporters.Sales.CustomerOrderSummary
WHERE OrderSummary.value('(/SalesOrders/Order/OrderHeader/
CustomerName)[1]', 'nvarchar(100)') = 'Tailspin Toys (Absecon, NJ)' ;

Using query()

The query() method is used to return an untyped XML document from an
XML document. For example, consider the script in Listing 4-7. The query
will extract the product details from the XML document in an XML format.

Listing 4-7. Extracting Product Details
DECLARE @SalesOrders XML ;

SET @SalesOrders =
'<SalesOrder OrderDate="2016-05-27" OrderID="73356">
<Customers CustomerName="Agrita Abele">
<Product StockItemName="Chocolate sharks 250g">
<LineItem Quantity="192" UnitPrice="8.55" />
</Product>
</Customers>
</SalesOrder>"' ;

SELECT @SalesOrders.query('/SalesOrder/Customers/Product’) AS
ProductDetails ;

121

CHAPTER 4 QUERYING AND SHREDDING XML

The results of this query can be seen in Figure 4-4.

B Resuts 2 Messages
Product Details
1 i <Product StockltemMame="Chocolate sharks 250q"><Lineltem Quantity="192" UnitPrice="8 55" /></Product>

@) Query executed successfully. DATATYPES (14.0

Figure 4-4. Results of extracting product details

To see how the query() method could be used when querying a
table, consider the script in Listing 4-8. This query uses all of the XQuery
methods that have been discussed so far. The value() method is used
to extract the customer’s name and order ID, while the query() method
is used to extract details of the products that were ordered. The table is
filtered using the exist () method.

Listing 4-8. Using query(), value(), and exist() Against a Table

USE WideWorldImporters
GO

SELECT
OrderSummary
, OrderSummary.value('(/SalesOrders/Order/OrderHeader/
CustomerName)[1]", 'nvarchar(100)') AS CustomerName
, OrderSummary.value('(/SalesOrders/Order/OrderHeader/
OrderID)[1]', 'int') AS OrderID
, OrderSummary.query('/SalesOrders/Order/OrderDetails/
Product') AS ProductsOrdered
FROM Sales.CustomerOrderSummary
WHERE OrderSummary.exist('SalesOrders/Order/OrderHeader/
CustomerName[(text()[1]) eq "Tailspin Toys (Absecon, NJ)"]') =1 ;

122

CHAPTER 4 QUERYING AND SHREDDING XML

This query returns the results shown in Figure 4-5.

BE Resuts 1 Messages
OrderSummary Customerhlame OrderlD ProductsOrdered
1 e > ; T.. | Taispin Toys (Absecon. MJ) 950 <Product ProductiD="119" ProductName="Dingsaurb

© Query executed successfully. DATATYPES (14.0RTM) | DATAR

Figure 4-5. Results of using query(), value(), and exist() against
a table

Using Relational Values in XQuery

Relational values from T-SQL variables and columns can also be

passed into XQuery expressions. They can be used for filtering or even
constructing data, but they are read-only. Therefore, the XQuery expression
cannot be used to modify the relational variable or column value.

To see this functionality in action, consider the query in Listing 4-9.
The query is functionally equivalent to the query in Listing 4-7. This time,
however, instead of using a hard-coded filter for the customer name, we
pass this in from a T-SQL variable. Queries that use T-SQL variables or
columns from tables are known as cross-domain queries.

Listing 4-9. Parameterizing an exist() Method

USE WideWorldImporters
GO

DECLARE @CustomerName NVARCHAR(100) ;
SET @CustomerName = 'Tailspin Toys (Absecon, NJ)' ;

SELECT

123

CHAPTER 4 QUERYING AND SHREDDING XML

OrderSummary
, OrderSummary.value('(/SalesOrders/Order/OrderHeader/
CustomerName)[1]", 'nvarchar(100)') AS CustomerName
, OrderSummary.value('(/SalesOrders/Order/OrderHeader/
OrderID)[1]', "int') AS OrderID
, OrderSummary.query('/SalesOrders/Order/OrderDetails/
Product') AS ProductsOrdered
FROM Sales.CustomerOrderSummary
WHERE OrderSummary.exist('SalesOrders/Order/OrderHeader/
CustomerName[(text()[1]) eq sql:variable("@CustomerName")]') =1 ;

T-SQL variables can also be used in the construction of XML. For
example, the script in Listing 4-10 generates a new column in the result
set, which contains an XML fragment. This fragment has an element called
CustomerDetails. Within this element, you will notice an attribute called
GoldCustomer. This is a flag that is configured from a T-SQL variable.

Note that when used inside the query() method, we have enclosed the
sql:variable statement inside double quotes and curly brackets.

Listing 4-10. Constructing an XML Fragment and Passing a Value
from a T-SQL Variable

USE WideWorldImporters
GO

DECLARE @Gold NVARCHAR(3)
DECLARE @CustomerName NVARCHAR(100)
SET @Gold = 'Yes'

SET @CustomerName = 'Tailspin Toys (Absecon, NJ)'

124

CHAPTER 4 QUERYING AND SHREDDING XML

SELECT
OrderSummary
, OrderSummary.value('(/SalesOrders/Order/OrderHeader/
CustomerName)[1]', 'nvarchar(100)') AS CustomerName
, OrderSummary.value('(/SalesOrders/Order/OrderHeader/
OrderID)[1]', "int') AS OrderID
, OrderSummary.query('/SalesOrders/Order/OrderDetails/
Product') AS ProductsOrdered
, OrderSummary.query('<CustomerDetails>GoldCustomer =

"{ sql:variable("@Gold") }" </CustomerDetails>"') AS
CustomerDetails

FROM Sales.CustomerOrderSummary
WHERE OrderSummary.exist('SalesOrders/Order/OrderHeader/
CustomerName[(text()[1]) eq sql:variable("@CustomerName")]') = 1 ;

The results of this query can be found in Figure 4-6. The resultant XML
fragment can be found in the CustomerDetails column.

B ests Bl Messages
Customerhlane Onderil ProductsOrdersd CustomerDietals
T_ | Tolspin Toys (eecon, W) 350 Frodudt Productille" 115" Frodys Names"Tincesy CistorwerDataie BoldCustnmer = “Yag™ o

1D Cusy executed successiuly. DATATYPES (140 RTM) | DATAT ini P 0000

Figure 4-6. Results of constructing an XML fragment and passing a
value from a T-SQL variable

125

CHAPTER 4 QUERYING AND SHREDDING XML

When the XQuery expression is run against an XML column within a
table, relational data, stored in other columns, can also be passed to the
XQuery expression. For example, the script in Listing 4-11 expands the
generated CustomerDetails XML fragment to include the Customer ID
from the CustomerID column of the Sales.CustomerOrderSummary table.

Listing 4-11. Constructing an XML Fragment Using a Relational
Column

USE WideWorldImporters
GO

DECLARE @Gold NVARCHAR(3)

DECLARE @CustomerName NVARCHAR(100)

SET @Gold = 'Yes'

SET @CustomerName = 'Tailspin Toys (Absecon, NJ)'

SELECT
OrderSummary
, OrderSummary.value('(/SalesOrders/Order/OrderHeader/
CustomerName)[1]"', 'nvarchar(100)') AS CustomerName
, OrderSummary.value('(/SalesOrders/Order/OrderHeader/
OrderID)[1]', "int') AS OrderID
, OrderSummary.query('/SalesOrders/Order/OrderDetails/
Product') AS ProductsOrdered
, OrderSummary.query('<CustomerDetails> CustomerID =
"{ sql:column("CustomerID") }" GoldCustomer =
"{ sql:variable("@®Gold") }" </CustomerDetails>")
As CustomerDetails
FROM Sales.CustomerOrderSummary
WHERE OrderSummary.exist('SalesOrders/Order/OrderHeader/
CustomerName[(text()[1]) eq sql:variable("@CustomerName")]') =1 ;

126

CHAPTER 4 QUERYING AND SHREDDING XML

The results of this query can be seen in Figure 4-7. Once again, pay
attention to the CustomerDetails column, to see the resultant XML
fragment.

[LSRR ri—
] L [it rwtins
1 [SssOsen: Orer Orietisater Cgopeciane) | | Toor Tom Mowecon) 950 <Pudct Pt 011 Seacthone: Tiosard . CusiomerCaaty: Ggtoner - '11 GeitCutor = Voo™ o Cutomaiatn;

© Quemy nmuted st oushiby DATATYRES (LUORTM DATATYOFS Admstnte_ WideWeridmponter (00604 1

Figure 4-7. Results of constructing an XML fragment using a
relational column

FLWOR

As previously mentioned, FLWOR stands for for, let, where, order by, and
return. These statements provide granular control, allowing a developer to
navigate to, iterate over, filter, and present XML nodes exactly as required.

The for statement binds a variable to an input sequence. The let
statement is used to assign an XQuery expression to a variable, for use
within an iteration of FOR. The expression can return either atomic
values or a sequence of nodes. The let statement is optional. The where
statement is also optional but can be used to filter the results that are
returned. The order by statement can be used optionally to order the
results of the FLWOR statement. The mandatory return statement specifies
what data will be returned.

For example, consider the XML document in Listing 4-12. This XML
document contains the first two orders from the XML document returned
by the OrderSummary column in Listing 4-11.

127

CHAPTER 4 QUERYING AND SHREDDING XML

Listing 4-12. XML Document for FLWOR Examples

DECLARE @XML XML = N'<SalesOrders>
<Order>
<OrderHeader>
<CustomerName>Tailspin Toys (Absecon, NJ)</CustomerName>
<OrderDate>2013-01-17</0rderDate>
<OrderID>950</0rderID>
</0rderHeader>
<OrderDetails>
<Product ProductID="119" ProductName="Dinosaur battery-
powered slippers (Green) M" Price="32.00" Qty="2" />
<Product ProductID="61" ProductName="RC toy sedan car with
remote control (Green) 1/50 scale" Price="25.00" Qty="2" />
<Product ProductID="194" ProductName="Black and orange glass
with care despatch tape 48mmx100m" Price="4.10" Qty="216" />
<Product ProductID="104" ProductName="Alien officer
hoodie (Black) 3XL" Price="35.00" Qty="2" />
</0OrderDetails>
</0rder>
<Order>
<OrderHeader>
<CustomerName>Tailspin Toys (Absecon, NJ)</CustomerName>
<OrderDate>2013-01-29</0OrderDate>
<OrderID>1452</0OrderID>
</OrderHeader>
<OrderDetails>
<Product ProductID="33" ProductName="Developer joke mug -
that's a hardware problem (Black)" Price="13.00" Qty="9" />

128

CHAPTER 4 QUERYING AND SHREDDING XML

<Product ProductID="121" ProductName="Dinosaur battery-
powered slippers (Green) XL" Price="32.00" Qty="1" />
</OrderDetails>
</Order>
<SalesOrders>’

If we wanted to iterate over each Product element within the second
order, we could use the FOR statement as follows in Listing 4-13.

Note that we use an internal variable, which we name $product, and
the in keyword to designate the path to the ProductName attribute. This
approach and syntax will be familiar to those of you who have worked with
foreach loops in languages such as PowerShell.

The return statement is then used to append the ProductName
attribute’s value to the end of the $product string. Note that we use [2]
in square brackets, to denote that we are interested in the second order,
which will be a singleton element (albeit a complex element containing
multiple other elements).

Caution The following code examples in this section expect a
variable called XML to be declared that contains the XML document in
Listing 4-12. For space reasons, this variable is not explicitly declared
or set within each code example.

Listing 4-13. Using for to Iterate over Product Elements

SELECT @XML.query('
for $product in /SalesOrders/Order[2]/OrderDetails/
Product/@ProductName
return string($product)

)

129

CHAPTER 4 QUERYING AND SHREDDING XML

The results of this query are illustrated in Figure 4-8.

E Results @'ﬂ ?Ukssages
{No column name)

1 Developer joke mug -that'’s a hardware problem (Black) Dinosaur battery-powered slippers (Green) XL

@ Query executed successfully.

Figure 4-8. Results of using for to iterate over product elements

The query in Listing 4-14 uses a let statement, instead of a for
iteration, to retrieve the name of the first product, within the first order,
within the XML document. The return statement requires a singleton
value, and as let simply assigns a value, as opposed to iterating over
multiple values, we cannot return multiple products.

Listing 4-14. Using let to Find a Product Name

SELECT @XML.query("
let $product := /SalesOrders/Order[1]/0OrderDetails/
Product/@ProductName
return string($product[1])

D

The results of this query can be found in Figure 4-9.

B Results @i Messages
(No column name)

1 i Dinosaur battery-powered slippers (Green) M

@ Query executed successfully.

Figure 4-9. Results of using let to find a product name

130

CHAPTER 4 QUERYING AND SHREDDING XML

The query in Listing 4-15 combines both a for statement and a let
statement to construct a new XML document containing the customer

name and product name for each product sold.

Listing 4-15. Combining for and let

SELECT @XML.query("
for $product in /SalesOrders/Order/OrderDetails/Product/
@ProductName
let $customer := /SalesOrders/Order/OrderHeader/
CustomerName
return
<Customer>
{$customer[1]}
<OrderDetails>
{$product}
</OrderDetails>
</Customer>
)

The resultant XML document can be found in Listing 4-16.

Listing 4-16. Results of Combining for and let

<Customer>
<CustomerName>Tailspin Toys (Absecon, NJ)</CustomerName>
<OrderDetails ProductName="Dinosaur battery-powered slippers
(Green) M" />

</Customer>

<Customer>
<CustomerName>Tailspin Toys (Absecon, NJ)</CustomerName>
<OrderDetails ProductName="RC toy sedan car with remote
control (Green) 1/50 scale" />

</Customer>

131

CHAPTER 4 QUERYING AND SHREDDING XML

<Customer>
<CustomerName>Tailspin Toys (Absecon, NJ)</CustomerName>
<OrderDetails ProductName="Black and orange glass with care
despatch tape 48mmxioom" />

</Customer>

<Customer>
<CustomerName>Tailspin Toys (Absecon, NJ)</CustomerName>
<OrderDetails ProductName="Alien officer hoodie (Black) 3XL" />

</Customer>

<Customer>
<CustomerName>Tailspin Toys (Absecon, NJ)</CustomerName>
<OrderDetails ProductName="Developer joke mug - that's a
hardware problem (Black)" />

</Customer>

<Customer>
<CustomerName>Tailspin Toys (Absecon, NJ)</CustomerName>
<OrderDetails ProductName="Dinosaur battery-powered slippers
(Green) XL" />

</Customer>

The query in Listing 4-17 enhances the query in Listing 4-15, to add a
where statement, which will filter the products, so that only the dinosaur
slippers are returned. The query also uses an order by statement, to
guarantee that the order of the results is by product name.

Listing 4-17. Usingwhere and order by

SELECT @XML.query('
for $product in /SalesOrders/Order/OrderDetails/Product/
@ProductName
let $customer := /SalesOrders/Order/OrderHeader/
CustomerName

132

CHAPTER 4 QUERYING AND SHREDDING XML

where $product = "Dinosaur battery-powered slippers
(Green) M"
or $product = "Dinosaur battery-powered slippers
(Green) XL"
order by $product
return
<Customer>
{$customer[1]}
<OrderDetails>
{$product}
</OrderDetails>
</Customer>

)

Modifying XML Data

XML data can be modified using XQuery’s modify method. When using
modify, a developer has three options. You can use the insert option, the
delete option, or the replace value of option. The replace value of
option replaces an existing value within an XML document.

To understand how the insert option works, consider the script in
Listing 4-18. The script populates a variable with an empty order. The
modify method is then used to add an order line to the sales order.

Listing 4-18. Using the modify Insert

DECLARE @SalesOrder xml;
SET @SalesOrder = '
<Order>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
<OrderDate>2013-01-02</0rderDate>

133

CHAPTER 4 QUERYING AND SHREDDING XML

<0rderID>121</0rderID>
</OrderHeader>
<OrderDetails>
</0OrderDetails>
</Order>' ;

SET @SalesOrder.modify('

insert <Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />

into (/Order/OrderDetails)[1]') ;

SELECT @SalesOrder ;

The results of running this query can be seen in Listing 4-19.

Listing 4-19. Results of Using the modify Insert

<Order>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
<OrderDate>2013-01-02</0rderDate>
<0rderID>121</0rderID>
</OrderHeader>
<OrderDetails>
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />
</0OrderDetails>
</Order>

If Product elements already existed within the OrderDetails element,
however, you could gain granular control over where you would like the
element to be inserted by using the as first, as last, before, or after
options. For example, the query in Listing 4-20 will insert the new Product
element as the first element in the OrderDetails element.

134

CHAPTER 4 QUERYING AND SHREDDING XML
Listing 4-20. Inserting an Element As First

DECLARE @SalesOrder xml;
SET @SalesOrder = '
<Order>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
<OrderDate>2013-01-02</0OrderDate>
<OrderID>121</0OrderID>
</0OrderHeader>
<OrderDetails>
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />
</OrderDetails>
</Order>' ;

SET @SalesOrder.modify('

insert <Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" /> as first

into (/Order/OrderDetails)[1]') ;

SELECT @SalesOrder ;

The results of this query can be seen in Listing 4-21.

Listing 4-21. Results of Inserting an Element As First

<Order>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
<OrderDate>2013-01-02</0OrderDate>
<0rderID>121</0rderID>
</0rderHeader>

135

CHAPTER 4 QUERYING AND SHREDDING XML

<OrderDetails>
<Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" />
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />
</OrderDetails>
</Order>

Alternatively, the query in Listing 4-22 demonstrates how you can
insert an element after another, specific element. In this case, we will insert
the Superhero Action Jacket after the USB Rocket Launcher.

Listing 4-22. Inserting an Element After Another Element

DECLARE @SalesOrder xml;
SET @SalesOrder = '
<Order>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
<OrderDate>2013-01-02</0rderDate>
<0rderID>121</0rderID>
</OrderHeader>
<OrderDetails>
<Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" />
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />
</OrderDetails>
</Order>' ;

DECLARE @ProductName NVARCHAR(200) ;

SET @ProductName = 'USB rocket launcher (Gray)' ;

136

CHAPTER 4 QUERYING AND SHREDDING XML

SET @SalesOrder.modify("

insert <Product ProductID="111" ProductName="Superhero action
jacket (Blue) M" Price="30" Qty="10" />

after (/Order/OrderDetails/Product[@ProductName =
sql:variable("@ProductName")])[1]") ;

SELECT @SalesOrder ;

This query uses sql:variable to pass the product’s name from an
T-SQL variable, using the techniques you learned in the “Using Relational
Values in XQuery” section of this chapter. The results of the query can be
seen in Listing 4-23.

Listing 4-23. Results of Inserting an Element After Another Element

<Order>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
<OrderDate>2013-01-02</0rderDate>
<0rderID>121</0rderID>
</OrderHeader>
<OrderDetails>
<Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" />
<Product ProductID="111" ProductName="Superhero action
jacket (Blue) M" Price="30" Qty="10" />
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />
</0OrderDetails>
</Order>

137

CHAPTER 4 QUERYING AND SHREDDING XML

The delete option can be used to remove nodes from an XML
document. For example, consider the script in Listing 4-24. Here, we take
the XML document produced by the query in Listing 4-22 and remove the
last order line that we added to the document.

Listing 4-24. Using the delete Option

DECLARE @SalesOrder xml;
SET @SalesOrder = '
<Order>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
<OrderDate>2013-01-02</0OrderDate>
<0rderID>121</0rderID>
</0rderHeader>
<OrderDetails>
<Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" />
<Product ProductID="111" ProductName="Superhero action
jacket (Blue) M" Price="30" Qty="10" />
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />
</OrderDetails>
</Order>' ;

DECLARE @ProductName NVARCHAR(200) ;
SET @ProductName = 'Superhero action jacket (Blue) M' ;

SET @SalesOrder.modify('
delete (/Order/OrderDetails/Product[@ProductName =
sql:variable("@ProductName")])[1]") ;

SELECT @SalesOrder ;

138

CHAPTER 4 QUERYING AND SHREDDING XML

You can see the resultant XML document in Listing 4-25.

Listing 4-25. Results of Using the delete Option

<Order>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
<OrderDate>2013-01-02</0OrderDate>
<0rderID>121</0rderID>
</0rderHeader>
<OrderDetails>
<Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" />
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />
</0OrderDetails>
</Order>

The replace value of option performs an update on an existing node.
For example, the script in Listing 4-26 updates the quantity of DBA Joke
Mugs ordered from six to ten. Once again, we bind SQL variables to allow
us to pass in the ProductName that we wish to update and the new quantity.
Note that we use replace value of to define the node that should be
updated and with to define the new value.

Listing 4-26. Using replace value of

DECLARE @SalesOrder xml;
SET @SalesOrder = '
<Order>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>

139

CHAPTER 4 QUERYING AND SHREDDING XML

<OrderDate>2013-01-02</0OrderDate>
<0rderID>121</0OrderID>

</0rderHeader>

<OrderDetails>
<Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" />
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />

</0OrderDetails>

</Order>' ;

DECLARE @ProductName NVARCHAR(200) ;

SET @ProductName = 'DBA joke mug - it depends (White)' ;
DECLARE @Quantity INT ;

SET @Quantity = 10

SET @SalesOrder.modify("

replace value of (/Order/OrderDetails/Product[@Product
Name = sql:variable("@ProductName")]/@Qty)[1]

with "10"

DR

SELECT @SalesOrder ;

The results of this query can be seen in Listing 4-27.

140

CHAPTER 4 QUERYING AND SHREDDING XML

Listing 4-27. Results of Using replace value of

<Order>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
<OrderDate>2013-01-02</0OrderDate>
<0rderID>121</0rderID>
</0rderHeader>
<OrderDetails>
<Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" />
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="10" />
</OrderDetails>
</Order>

Shredding XML

Shredding XML is the process of taking an XML result set and converting it
to a relational result set. In SQL Server, there are two ways to achieve this:
the OPENXML () function and the nodes () XQuery method.

Shredding XML with OPENXML()

OPENXML () is a function that takes an XML document and converts it to a
relational result set. It accepts the parameters detailed in Table 4-2.

141

CHAPTER 4 QUERYING AND SHREDDING XML

Table 4-2. OPENXML () Parameters

Parameter Description

idoc A pointer to an internal representation of the XML document

rowpattern The path to the lowest level of the XML document that should be
converted to rows

flags An optional parameter that specifies the mapping between
the XML data and relational result set. The possible values are
detailed in Table 4-3.

Table 4-3 details the valid flags values that can be passed to OPENXML().

Table 4-3. Flags Values

Value Description

0 Defaults to attribute-centric mapping

1 Use attribute-centric mapping, unless XML _ELEMENTS is specified. If
XML_ELEMENTS is specified, attributes will be mapped first, followed by
elements.

2 Element-centric mapping, unless XML_ATTRIBUTES is specified. If
XML_ATTRIBUTES is specified, elements will be mapped first, followed
by attributes.

8 XML_ATTRIBUTES and XML_ELEMENTS, combined with a logical OR

In addition to the function’s parameters, a WITH clause can also be
specified, which defines the schema of the result set to be returned. While
the WITH clause is optional, not specifying the schema will cause an edge
table to be returned. The schema is used to specify a relation column
name, a relational data type, and the path to the relevant node.

142

CHAPTER 4 QUERYING AND SHREDDING XML

Note The flags will be overridden by specific mapping in the
WITH clause.

A limitation of the OPENXML () function is that it does not parse an XML
document itself. Instead, you must parse the document before calling
the function. This can be achieved using the sp_xml:preparedocument
system stored procedure. This procedure parses an XML document, using
the MSXML parser, and creates a handle to the parsed version of the
document that is ready for consumption.

After the OPENXML () function has completed, you should use the
sp_xml:removedocument system stored procedure to remove the parsed
document from memory. It is important to remember to tear down the
parsed document, or you could start running into memory issues, if the
sp_xml:preparedocument procedure is called frequently.

To see the OPENXML () function in action, see the script in Listing 4-28.
This script passes a sales orders document into a variable, before using
OPENXML () to shred the data.

Tip The structure of the XML document has been changed from
previous examples in this chapter, to allow a broader demonstration
of the navigation of an XML document with OPENXML ().

Listing 4-28. Using OPENXML()

DECLARE @SalesOrder XML ;
DECLARE @ParseDoc INT ;

SET @SalesOrder = '
<SalesOrders>
<Order>

143

CHAPTER 4 QUERYING AND SHREDDING XML

<OrderDate>2013-01-02</0rderDate>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
</0OrderHeader>
<OrderDetails>
<Product ProductID="45" ProductName="Developer joke
mug - there are 10 types of people in the world (Black)"
Price="13" Qty="7" />
<Product ProductID="58" ProductName="RC toy sedan car with
remote control (Black) 1/50 scale" Price="25" Qty="4" />
</0OrderDetails>
</Order>
<Order>
<OrderDate>2013-01-02</0rderDate>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
</0OrderHeader>
<OrderDetails OrderID = "122">
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />
<Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" />
<Product ProductID="111" ProductName="Superhero action
jacket (Blue) M" Price="30" Qty="10" />
<Product ProductID="116" ProductName="Superhero action
jacket (Blue) 4XL" Price="34" Qty="4" />
</0OrderDetails>
</Order>
</SalesOrders>' ;

EXEC sp_xml:preparedocument @ParseDoc OUTPUT, @SalesOrder ;
SELECT *

144

CHAPTER 4 QUERYING AND SHREDDING XML

FROM OPENXML(@ParseDoc, '/SalesOrders/Order/OrderDetails/Product")
WITH (

ProductID INT '@ProductID’,
ProductName NVARCHAR (200) '@ProductName',
Quantity INT '@ty "',
OrderID INT '../@0rderID',
OrderDate DATE '../../OrderDate"’,

CustomerName NVARCHAR(200) '../../OrderHeader/CustomerName'
)
EXEC sp_xml:removedocument @ParseDoc ;

When you examine the WITH clause of the OPENXML () statement of this
script, you will see that we first specify the relational column name. By
looking at the Quantity mapping, you will see that the relational names
do not have to match the names of the XML nodes. We then specify a
relational data type for the resultant value, before specifying a path to
the node that we wish to retrieve. This is the most interesting aspect of
the query. You will notice that we have used the rowpattern parameter
of the OPENXML () function to map down to the Product element, as the
lowest level. This means that the Product element is the starting point for
our paths. The ProductID, ProductName, and Quantity attributes are all
attributes of the Product element. Therefore, we prefix these with the @
symbol, to designate that they are attributes, but no other path mapping
is required. The OrderID attribute is an attribute of the OrderDetails
element. Because the OrderDetails element is one level above the
Product element, we use the . ./ syntax, to specify that we must navigate
up one level. The OrderDate element is two levels above the Product
element; therefore, we use . ./ twice, to indicate we should move two
levels up the hierarchy. Also, note that because OrderDate is an element,
not an attribute, we have not prefixed the node with an @ symbol. Finally,

145

CHAPTER 4 QUERYING AND SHREDDING XML

to map to the CustomerName element, we first must navigate two levels up
the hierarchy, using the . ./ syntax. We then must drop down into a sibling
node (OrderHeader), to retrieve the CustomerName element.

The results of the query can be found in Figure 4-10. Note that NULL
values have been returned for OrderID against two of the products. This is
because no OrderID element was specified against the second sales order.

B Resuts B Messages
ProductlD ProductName Quantty OrderlD OrderDate CustomerName
1 4 Developerjoke mug-there e 10typesofpeop... 7 NULL 20130102 Camile Authier
2 |s RC toy sedan car with remote control (Black) 1/.. 4 NULL 20130102 Camill Authier
B DBA joke mug -t depends (Whte) § 12 20130102 Camille Authier
4 |2 UUSB rocket launcher (Gray) 9 12 20130102 Camill Authier
5 111 Superhero action jacket (Blug) M 10 12 20130102 Camile Authier
6 116 Superhero action jacket (Blue) 4XL 4 12 20130102 Camill Authier
@) Query executed successfully. DATATY

Figure 4-10. Results of using OPENXML ()

Shredding XML with Nodes

If you want to shred the data from a column instead of using a variable, you
can avoid the need for iterative logic by shredding the data with XQuery.
Specifically, the nodes () method can be used to identify the nodes that
should be mapped to relational columns. This can be combined with the
value() method, to extract the data from the nodes. For example, consider
the query in Listing 4-29. This query is functionally equivalent to the query
in Listing 4-28 but uses the nodes () method instead of OPENXML ().

146

CHAPTER 4 QUERYING AND SHREDDING XML

Listing 4-29. Using nodes () to Shred XML
DECLARE @SalesOrder XML ;

SET @SalesOrder = '
<SalesOrders>
<Order>
<OrderDate>2013-01-02</0OrderDate>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
</OrderHeader>
<OrderDetails>
<Product ProductID="45" ProductName="Developer joke
mug - there are 10 types of people in the world (Black)"
Price="13" Qty="7" />
<Product ProductID="58" ProductName="RC toy sedan car with
remote control (Black) 1/50 scale" Price="25" Qty="4" />
</OrderDetails>
</Order>
<Order>
<OrderDate>2013-01-02</0OrderDate>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
</OrderHeader>
<OrderDetails OrderID = "122">
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />
<Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" />
<Product ProductID="111" ProductName="Superhero action
jacket (Blue) M" Price="30" Qty="10" />

147

CHAPTER 4 QUERYING AND SHREDDING XML

<Product ProductID="116" ProductName="Superhero action
jacket (Blue) 4XL" Price="34" Qty="4" />
</OrderDetails>
</0Order>
</SalesOrders>' ;

SELECT
TempCol.value('@ProductID', "INT') AS ProductID
, TempCol.value('@ProductName', 'NVARCHAR(70)') AS
ProductName
, TempCol.value('@Qty', "INT') AS Quantity
, TempCol.value('../@0rderID', "INT') AS OrderID
, TempCol.value('../../OrderDate[1]", 'NVARCHAR(10)")
AS OorderDate
, TempCol.value('../../OrderHeader[1]/CustomerName[1]",
"NVARCHAR(15)") AS CustomerName
FROM @SalesOrder.nodes('SalesOrders/Order/OrderDetails/
Product') TempTable(TempCol) ;

When reviewing this script, you should pay particular attention to the
FROM clause. Here, we pass an XQuery expression into the nodes () method,
to define the grain. We then define arbitrary names for a table and column,
which will contain the intermediate results set.

The nodes () method can also be used in conjunction with the query ()
method, to shred an XML document into smaller XML documents. For
example, consider the query in Listing 4-30. This query extracts the
Product elements from the XML document, in XML format.

148

CHAPTER 4 QUERYING AND SHREDDING XML

Listing 4-30. Using the nodes () Method with the query() Method
DECLARE @SalesOrder XML ;

SET @SalesOrder = '
<SalesOrders>
<Order>
<OrderDate>2013-01-02</0OrderDate>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
</OrderHeader>
<OrderDetails>
<Product ProductID="45" ProductName="Developer joke
mug - there are 10 types of people in the world (Black)"
Price="13" Qty="7" />
<Product ProductID="58" ProductName="RC toy sedan car
with remote control (Black) 1/50 scale" Price="25"
Qty="4" />
</OrderDetails>
</Order>
<Order>
<OrderDate>2013-01-02</0OrderDate>
<OrderHeader>
<CustomerName>Camille Authier</CustomerName>
</0OrderHeader>
<OrderDetails OrderID = "122">
<Product ProductID="22" ProductName="DBA joke mug - it
depends (White)" Price="13" Qty="6" />
<Product ProductID="2" ProductName="USB rocket launcher
(Gray)" Price="25" Qty="9" />
<Product ProductID="111" ProductName="Superhero action
jacket (Blue) M" Price="30" Qty="10" />

149

CHAPTER 4 QUERYING AND SHREDDING XML

<Product ProductID="116" ProductName="Superhero action
jacket (Blue) 4XL" Price="34" Qty="4" />
</OrderDetails>
</Order>
</SalesOrders>' ;

SELECT

TempCol.query('.") AS Product
FROM @SalesOrder.nodes('SalesOrders/Order/OrderDetails/
Product') TempTable(TempCol) ;

The results of this query can be seen in Figure 4-11.

<Product Product|D="22" Product Name= DB."H ke mug - & depends (W

@ Query executed successfully. DATATYPES (14.0 RTM) = DATATYPES\Admini

Figure 4-11. Results of using the nodes () method with the query()
method

The biggest benefit of the nodes () method over OPENXML () is its
ease of use against a table. The CROSS APPLY operator can be used to
apply the nodes () method to multiple rows within a table. The query in
Listing 4-31 demonstrates this, by calling the nodes () method against the
OrderSummary column in the Sales.CustomerOrderSummary table. The
query will return one row for every product on every sales order placed by
a customer with the CustomerID of 814. The results are then ordered by
the quantity of each product.

150

CHAPTER 4 QUERYING AND SHREDDING XML

Listing 4-31. Using the nodes () Method Against a Table

USE WideWorldImporters
GO

SELECT
CustomerID
, TempCol.value('@Qty', "INT') AS Quantity
, TempCol.value('@ProductName', "NVARCHAR(70)") AS
ProductName
, TempCol.query('.") AS Product
FROM Sales.CustomerOrderSummary
CROSS APPLY OrderSummary.nodes('SalesOrders/Order/OrderDetails/
Product') TempTable(TempCol)
WHERE CustomerID = 841
ORDER BY TempCol.value('@Qty', 'INT') DESC ;

Partial results of this query can be seen in Figure 4-12.

B Rents gl Massages

mm Productiame
1 i | Black and despatch tape 4immcTim B auctiD="191" tame =iz 2y fragle despaich Lo i ="
2 B k) Black 7 4 lm Pmnmlc 152 chmiem- I!adunc g A 1 (0 ’bpe 41" Gh' 3;_
] 34 Blackand orange fraghe despatchtape SBnmcillm <Product ProdusID" 157" ProdhyctMarme="lack ard oo g dasontch e 48mera 100" Phce="d 1" Qhy="300" /3
4 W w8 Black and orange fragie despatch tape 4Bmmai00m <Product ProductiDi="152" Product Mame-="Black and o A 100" Price="81" Qby="288" /5
5 250 3y Cousier post bag (Whke) 300:130c35mm Prosuct Product|D" 188" Productlame" 3 kg Courer post bag (Whte) 300150 5me" Prices" 65" Gtye"250" />
6 20 Shopng caton (Brown) 41328503 <Prochost ProdyetI D" 17T Frochyct Harna o i 'nmuyzg' T Pricg "1 05" Ghes 250" /5
7 8 Fa) Black and yedow heavy despatch tape Srmailim <Product Pl {ﬁ Fr:d.u:l‘luhe Hiack and velow h= M]MM "1 Qhy="40 3
I P Black and crange this way up despaichtaps S, " . A7 r =
5 B M0 Black and his way Snmc. Product Productil 157 ProductName"Black and oanoe thes way up desoalch tape 4Smey T Frioes™ s 280" />
0 8 40 Blackand orange glass with cane desotichlape 4Bn.. <Product Prodect=" 153" ProductMarme="Back and 2 “-’roe 3 on 240
n o p Black and yedow heavy despatch tape 4Bmme7Em Product ProdyctiD="139" Froduct Hame-="Hiack and velow hag 5 " Pice= =380 />
12 bl Oﬂmmﬁmﬁn <Product ProdueciCi=" 189" Froductame " Clear =&mw‘5'| Fme i“ &y 234
Omuymmmmw DATATYPES (I40FTM) | DATATYPES\Administrato.. WideWordimperters 000000 419 1o

Figure 4-12. Results of using the nodes () method against a table

151

CHAPTER 4 QUERYING AND SHREDDING XML

Using Schemas

As discussed in Chapter 3, an XML document can be bound to a schema,
to ensure that its structure meets the client contract. In SQL Server, we

can define an XSD schema by creating an XML SCHEMA COLLECTION. To
demonstrate this, imagine that we wanted to bind our OrderSummary
column, in the Sales.CustomerOrderSummary table, to a schema. The first
step would be to create the XSD SCHEMA COLLECTION. We could achieve this
using the code in Listing 4-32.

Listing 4-32. Creating an XML SCHEMA COLLECTION

USE WideWorldImporters
Go

CREATE XML SCHEMA COLLECTION OrderSummary AS
N'<?xml version="1.0" encoding="utf-16"?>
<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified" xmlns:xs="http://www.
w3.0rg/2001/XMLSchema”>
<xs:element name="SalesOrders">
<xs:complexType>
<Xs:sequence>
<xs:element maxOccurs="unbounded" name="Order">
<xs:complexType>
<Xs:sequence>
<xs:element name="OrderHeader">
<xs:complexType>
<Xs:sequence>
<xs:element name="CustomerName"
type="xs:string" />
<xs:element name="OrderDate" type="xs:date" />

152

CHAPTER 4 QUERYING AND SHREDDING XML

<xs:element name="OrderID"
type="xs:unsignedInt" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="OrderDetails">
<xs:complexType>
<Xs:sequence>
<xs:element maxOccurs="unbounded"
name="Product">
<xs:complexType>
<xs:attribute name="ProductID"
type="xs:unsignedByte" use="required" />
<xs:attribute name="ProductName"
type="xs:string" use="required" />
<xs:attribute name="Price"
type="xs:decimal" use="required" />
<xs:attribute name="Qty"
type="xs:unsignedShort" use="required" />
</xs:complexType>
</xs:element>
</Xxs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>' ;

153

CHAPTER 4 QUERYING AND SHREDDING XML

Tip Because the schema does not specify a namespace, it will be
associated with the default empty string namespace. A namespace
can be added to the schema, using the <xs:schema> attribute
xmlns:ns=http://your-namespace.

We could bind our schema to the OrderSummary column by using the
query in Listing 4-33.

Listing 4-33. Binding a Schema to a Column

ALTER TABLE Sales.CustomerOrderSummary
ALTER COLUMN OrderSummary XML(OrderSummary) ;

We can also reference a schema when constructing or querying XML
data. The FOR XML clause includes a WITH XMLNAMESPACES option that can
be used to specify the target namespace of the resultant XML document,
and XQuery methods, such as query, can begin with a declare namespace
statement.

Tip Afull discussion of the use of namespaces is beyond the scope
of this book. However, examples of using WITH XMLNAMESPACES
can be found at https://docs.microsoft.com/en-us/sql/t-
sql/xml/with-xmlnamespaces?view=sql-server-2017,

and examples of using a namespace with the query method can be
found at https://docs.microsoft.com/en-us/sql/t-sql/
xml/value-method-xml-data-type?view=sql-server-2017.

154

https://docs.microsoft.com/en-us/sql/t-sql/xml/with-xmlnamespaces?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/xml/with-xmlnamespaces?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/xml/value-method-xml-data-type?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/xml/value-method-xml-data-type?view=sql-server-2017

CHAPTER 4 QUERYING AND SHREDDING XML

Summary

XQuery is a language that can be used to query XML data when it is stored
in SQL Server columns and variables. The exist() method can be used
to check for the existence of a node or a node containing a specific value.
The value() method can be used to extract a scalar value from an XML
document, and the query() method can be used to return a subset of an
XML document still in XML format.

FLWOR statements can be used to help navigate and iterate an XML
document. The for statement binds a variable to an input sequence. The
let statement is used to assign an XQuery expression to a variable. The
where statement can be used to filter the results that are returned. The
order by statement can optionally be used to order the results of the FLWOR
statement. The return statement specifies what data will be returned.

T-SQL variables and columns can be passed into XQuery statements.
When this technique is adopted, it is known as a cross-domain query.

It allows for values to easily be bound to XQuery statements, helping to
simplify logic and reduce duplicate code.

XML data can be modified by using the modify() method. This
method allows developers to use one of three options: insert, replace
value of, or delete. When inserting data, there are further options that
developers can take advantage of;, to give them granular control over where
the insert occurs. For example, you can choose to insert first, last, after a
node, or before a node.

XML data can be converted into relational data (that is, shredded)
by using either the OPENXML () function or the nodes () XQuery method.
When the OPENXML () function is used, the XML document to be
shredded must first be parsed. This can be achieved with the sys.sp
xml:preparedocument system-stored procedure. Once the document has
been shredded, the parse tree should be removed from memory, by using
the sys.sp_xml:removedocument system-stored procedure.

155

CHAPTER 4 QUERYING AND SHREDDING XML

When the nodes () XQuery method is used to shred data, it can be
used in conjunction with either the value() method, which will shred
the data into relational results, or the query () method, which will shred
the data into smaller XML documents. You can also use nodes () with a
combination of both value() and query(). The biggest advantage of the
nodes () method is the ease with which it can be applied to a column,
using the CROSS APPLY operator.

156

CHAPTER 5

XML Indexes

As discussed in Chapters 3 and 4, SQL Server allows you to store data in
tables, in a native XML format, using the XML data type. Like other large
object types, it can store up to a maximum of 2GB per tuple. Although
standard operators such as = and LIKE can be used against XML columns,
you also have the option of using XQuery expressions (discussed in this
chapter). They can be rather inefficient, however, unless you create XML
indexes.

XML indexes will outperform full-text indexes for most queries against
XML columns. SQL Server offers support for primary XML indexes and
three types of secondary XML indexes: PATH, VALUE, and PROPERTY. Each of
these indexes will be discussed in the following sections. First, however,

I will briefly discuss clustered indexes, as a clustered index must exist on
the table before you can create an XML index.

Preparing the Environment

Because the WideWorldImporters database has no tables that contain
native XML columns, we will create an OrderSummary table, for
demonstrations within this chapter. The table will contain three columns:
an IDENTITY column (named ID), a CustomerID column, and an XML
column (called OrderSummary), which will contain a summary of all
orders that a customer has placed. The table can be created and populated
using the script in Listing 5-1.

© Peter A. Carter 2018 157
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_5

CHAPTER5 XML INDEXES

Listing 5-1. Creating an OrderSummary Table

USE WideWorldImporters

GO

CREATE TABLE Sales.OrderSummary

(
1D INT NOT NULL IDENTITY,
CustomerID INT NOT NULL,
OrderSummary XML

)

INSERT INTO Sales.OrderSummary (CustomerID, OrderSummary)
SELECT
CustomerID,
(
SELECT
CustomerName 'OrderHeader/CustomerName'
, OrderDate 'OrderHeader/OrderDate’
, OrderID 'OrderHeader/OrderID’
) (
SELECT
LineItems2.StockItemID
'"@ProductID’
, StockItems.StockI
temName '@ProductName'
, LineItems2.UnitPrice
'@Price’
, Quantity '@Qty’
FROM Sales.OrderLines LineItems2
INNER JOIN Warehouse.StockItems
StockItems

158

FROM

) Base

CHAPTER5 XML INDEXES

ON LineItems2.StockItemID
= StockItems.StockItemID
WHERE LineItems2.0rderID =
Base.OrderID
FOR XML PATH('Product'), TYPE
) 'OrderDetails’

SELECT DISTINCT
Customers.CustomerName

, SalesOrder.OrderDate
, SalesOrder.OrderID

FROM Sales.Orders SalesOrder

INNER JOIN Sales.OrderlLines LineItem
ON SalesOrder.OrderID =
LineItem.OrderID

INNER JOIN Sales.Customers Customers
ON Customers.CustomerID =
SalesOrder.CustomerID

WHERE customers.CustomerID = QuterCust.

CustomerID

FOR XML PATH('Order'), ROOT ('SalesOrders'), TYPE

) AS OrderSummary
FROM Sales.Customers OuterCust ;

Clustered Indexes

A clustered index causes the data pages of a table to be logically stored
in the order of the clustered index key. The clustered index key can be a
single column or a set of columns. This is often the table’s primary key, but

159

CHAPTER5 XML INDEXES

this is not enforced, and there are some circumstances in which you would
want to use a different column. This will be discussed in more detail later
in this chapter.

Tables Without a Clustered Index

When a table exists without a clustered index, it is known as a heap. A heap
consists of an IAM (index allocation map) page (or pages) and a series of
data pages that are not linked together or stored in order. The only way
SQL Server can determine the pages of the table is by reading the IAM
page(or pages). When a table is stored as a heap, every time the table is
accessed, SQL Server must read every single page in the table, even if you
only want to return one row. The diagram in Figure 5-1 illustrates how a
heap is structured.

IAM Page

Data Page Data Page Data Page Data Page

Table scan reads all pages in the table

Figure 5-1. Heap structure

160

CHAPTER5 XML INDEXES

When data is stored on a heap, SQL Server must maintain a unique
identifier for each row. It does this by creating a RID (row identifier). Even
if a table has nonclustered indexes, it is still stored as a heap, unless there
is a clustered index. When nonclustered indexes are created on a heap, the
RID is used as a pointer, so that nonclustered indexes can link back to the
correct row in the base table. Nonclustered indexes store the RID with a

format of FileID: Page ID: Slot Number.

Tables with a Clustered Index

When you create a clustered index on a table, a B-Tree (balanced tree)
structure is created. This allows for more efficient search operations to be
performed, by creating a tiered set of pointers to the data, as illustrated
in Figure 5-2. The page at the top level of this hierarchy is called the root
node. The bottom level of the structure is called the leaf level, and with

a clustered index, the leaf level consists of the actual data pages of the
table. There can be one or more intermediate levels of B-Tree structures,

depending on the size of the table.

A,
G,
M,
P
Sesk ap 1
v ¥ ¥ v
A G, M s,
o L P
Sesk mapl
Y v A4 Y L J Y v ¥
V.
A D. G ! M P. 5. L
B o E > H... > K. -« N > Q. - = + X
C. F. j=2 L. 0. R. u.. Yo
Z.

Clustered index scan reads all pages in the table

Range scan reads on pages required

Figure 5-2. Clustered index structure

161

CHAPTER5 XML INDEXES

The diagram in Figure 5-2 shows that while the leaf level is the data
itself, the levels above contain pointers to the pages below them in the
tree. This allows for SQL Server to perform a seek operation. This is a
very efficient method of returning a small number of rows. It works by
navigating its way down the B-Tree, using the pointers to find the row(s)
itrequires. We can see that, if required, SQL Server can still scan all pages
of the table, in order to retrieve the required rows. This is known as a
Clustered Index Scan. Alternatively, SQL Server may decide to combine
these two methods, to perform a range scan. Here, SQL Server will seek
the first value of the required range and then scan the leaf level, until
it encounters the first value that is not required. SQL Server can do
this because the table is ordered by the index key, meaning that it can
guarantee that there will be no other matching values later in the table.

Clustering the Primary Key

The primary key of a table is often the natural choice for the clustered
index. In fact, by default, unless you specify otherwise, or unless a
clustered index already exists on the table, creating a primary key

will automatically generate a clustered index on that key. There are
circumstances in which the primary key is not the correct choice for the
clustered index. An example of this that I have witnessed is a third-party
application that required the primary key of the table to be a GUID.

A GUID (globally unique identifier) is used to guarantee uniqueness across
the entire network.

This introduces two major problems if the clustered index were to be
built on the primary key. The first is size. A GUID is 16 bytes long. When a
table has nonclustered indexes, the clustered index key is stored in every
nonclustered index. For unique nonclustered indexes, it is stored for every
row at the leaf level, and for non-unique nonclustered indexes, it is also
stored at every row in the root and intermediate levels of the index as well.

162

CHAPTER5 XML INDEXES

When you multiply 16 bytes by millions of rows, this will drastically
increase the size of the indexes, making them less efficient.

The second issue is that when a GUID is generated, it is a random
value. Because the data in your table is stored in the order of the clustered
index key, for good performance, you need the values of this key to
be generated in sequential order. Generating random values for your
clustered index key will result in the index becoming more and more
fragmented every time you insert a new row. Fragmentation will be
discussed later in this chapter.

There is a workaround for the second issue, however. SQL Server has a
function called NEWSEQUENTIALID() that will always generate a GUID value
higher than previous values generated on the server. Therefore, if you
use this function in the Default constraint of your primary key, you can

enforce sequential inserts.

Caution After the server has been restarted, NEWSEQUENTIALID()
can start with a lower value. This may lead to fragmentation.

If the primary key must be a GUID, or another wide column, such
as National Insurance Number, or a set of columns forming a natural
key, such as Customer ID, Order Date, and Product ID, it is highly
recommended that you create an additional column in your table. This
column could be an INT or BIGINT, depending on the number of rows you
expect the table to have, and could use either the IDENTITY property or
a SEQUENCE to create a narrow, sequential key that can be used for your
clustered index. I recommend ensuring a narrow key, as it will be included
in all nonclustered indexes on the table. It will also use less memory when
joining tables.

163

CHAPTER5 XML INDEXES

Caution If you intend to use XML indexes, the clustered index must
be created on the primary key.

Performance Considerations for Clustered Indexes

Because an IAM page lists the extents of a heap table in the order in which
they are stored in the data file, as opposed to the order of the index key, a
table scan of a heap may prove to be slightly faster than a clustered index
scan, unless the clustered index has 0% fragmentation, which is rare.
Inserts into a clustered index may be faster than inserts into a heap,
when the clustered index key is ever-increasing. This is especially true
when there are multiple inserts happening in parallel, because a heap will
experience more contention on system pages (GAM/SGAM/PFS) when
the database engine is looking for spaces to place the new data. If the
clustered index key is not ever-increasing, however, then inserts will lead
to page splits and fragmentation. The knock-on effect is that inserts would
be slower than they would be into a heap. A large insert into a heap may
also be faster, if you take out a table lock and take advantage of minimally
logged inserts. This is because of reduced IO to the transaction log.
Updates that cause a row to relocate, due to a change in size, will be
faster when performed against a clustered index, as opposed to a heap.
This is, for the same reason as mentioned above for insert operations,
where there will be more contention against the system pages. When
updated, rows may change in size, for reasons such as updating a VARCHAR
column with a longer string. If the update to the row can be made in
place (without relocating the row), there is likely to be little difference in
performance. Deletes may also be slightly faster into a clustered index
than into a heap, but the difference will be less noticeable than for update
operations.

164

CHAPTER5 XML INDEXES

Creating a Clustered Index

With SSMS (SQL Server Management Studio), we can create a clustered
index on the ID column of the OrderSummary table, by expanding
Databases » WideWorldImporters » Tables » Sales.OrderSummary in
Object Explorer, right-clicking the Indexes node, and selecting New index
» Clustered index. This will cause the New Index dialog box to be invoked,
as shown in Figure 5-3.

1

Uid New Index - o x
{59 Add at least one column to the index
Select a page LT Script ~ | @@ Help
K General
& Options
F Storage Table rame:
Exended Froperties OrderSummeary

Index name:

Clusteradindenc-OrderSummary-ID

Index type:

Clustered

[] Unique
Index key columns
Connection . .
1 & Name Sort Order Data Type Size Identity Allow NULLs Add. .
¥ DATATYPES —
[DATATYPES \Administrator] F
!EW connection properties :
Progress.
Ready
oK Cancel Help

Figure 5-3. New Index dialog box

Caution If you plan to follow later demonstrations in this chapter,
do not execute the steps illustrated in Figures 5-3 and 5-4. Also,
avoid executing the script in Listing 5-2. If you do create the index,
you will have to drop it before running further examples.

165

CHAPTER5 XML INDEXES

On the General page of the dialog box, give the index a descriptive
name, then use the Add button, to select the column(s) that the index will
be built on, as shown in Figure 5-4.

[4¢ Select Columns from ‘Sales.OrderSummary’ = O X
@ Ready
iSelect table columns to be added to the index:
(] Name Data Type Size Identity Allow NULLs
d ID 4 0
(] CustomerlD int 4 No No
| ok || cancel || Help

Figure 5-4. Add columns dialog box

Alternatively, this clustered index could be created using the script in
Listing 5-2.
Listing 5-2. Creating a Clustered Index

USE WideWorldImporters
GO

CREATE CLUSTERED INDEX [ClusteredIndex-OrderSummary-ID] ON
Sales.OrderSummary (ID) ;
GO

166

CHAPTER5 XML INDEXES

Note Advanced options for creating clustered indexes are beyond
the scope of this book, but further information can be found in Pro
SQL Server Administration (Apress, 2015), available at www.apress.
com/gb/book/9781484207116.

Because our XML indexes require the clustered index to be built on a
primary key, instead of executing the preceding script, we should instead
run the script in Listing 5-3. This script will create a primary key on the ID
column and then a clustered index on the primary key.

Listing 5-3. Creating a Primary Key and Clustered Index

USE WideWorldImporters
GO

ALTER TABLE Sales.OrderSummary ADD CONSTRAINT
PK_OrderSummary PRIMARY KEY CLUSTERED (ID) ;

Primary XML Indexes

A primary XML index is actually a multicolumn clustered index on an
internal system table called the Node table. This table stores a shredded
representation on the XML objects within an XML column, along with the
clustered index key of the base table. This means that a table must have a
clustered index before a primary XML index can be created. Additionally,
the clustered index must be created on the primary key and must consist of
32 columns or less.

The system table stores enough information that the scalar or XML
subtrees required by a query can be reconstructed from the index itself.
This information includes the node ID and name, the tag name and UR],
a tokenized version of the node’s data type, the first position of the node

167

http://www.apress.com/gb/book/9781484207116
http://www.apress.com/gb/book/9781484207116

CHAPTER5 XML INDEXES

value in the document, pointers to the long node value and binary value,
the nullability of the node, and the value of the base table’s clustered index
key for the corresponding row.

Primary XML indexes can provide a performance improvement when
a query must shred scalar values from an XML document (or documents)
or return a subset of nodes from an XML document (or documents).

Creating Primary XML Indexes

To create a primary XML index using SSMS, drill through Databases »
WideWorldImporters » Tables » Sales.OrderSummary in Object Explore.
Then select New Index » Primary XML Index from the context menu of
indexes. This will cause the General page of the New Index dialog box to be

displayed. This is shown in Figure 5-5.

42 New Inex i o *®
| €3 Add at least one column to the index
Select a page IJ Seript - | @ Help
K General
& Options
J Bxdended Propesties Table name:
OrderSummary
Index name:
[PrimaryXmilndex-OrderSummany-OrderSummary
Index type:
Primary XML
XML column
| Connection Name Data Type Identity Allow NULLs Md
v¥ DATATYPES Remove
[DATATYPES \Administrator]
Mo ion i
Progress.
Ready
0K Cancel Help

Figure 5-5. New Index dialog box (Primary XML)

168

CHAPTER5 XML INDEXES

Here, we will give the index a descriptive name and then use the Add
button, to add the required XML column, as shown in Figure 5-6.

“4¢ Select Columns from ‘Sales.OrderSummary’ i [} X
‘@ Ready
Select table columns to be added to the index:
Name Data Type Identity Allow NULLs
OrderSummary xml No Yes
| ok || Cancel || Help

Figure 5-6. Add column dialog box (Primary XML)

From the Options tab of the New Index dialog box (Figure 5-7), we can
set the options detailed in Table 5-1.

169

CHAPTER 5

XML INDEXES

14l New Index

b Ready
Select a page

& General

& Options

K Btended Properies

Connection
v¥ DATATYPES

W erties

[DATATYPES Admiristrator]

- a X
|
0 script - | @ Help '
54
~ Locks
| Alowrowlocks ____________Jitg v
Allow page locks True
~ Operation
Maxdmeum degree of paralieism 0
v Storage
Sort in tempdly False
Fill factor 0
Pad index False
' Allow row locks
How row locks

Cancel Help

Figure 5-7. New Index dialog box—Options page (Primary XML)

Table 5-1. Primary XML Index Options

Option

Description

Allow Row Locks

Allow Page Locks

MaxDoP

Sort in TempDB

Specifies if row locks can be acquired when accessing
the index

Specifies if page locks can be acquired when accessing
the index

Has no effect for building primary XML indexes, as this
operation is always single threaded

If specified, sort in TempDB will cause the intermediate result
set to be stored in TempDB, as opposed to the user database.
This could mean that the index is built faster.

170

(continued)

CHAPTER5 XML INDEXES

Table 5-1. (continued)

Option Description

Fill Factor Specifies a percentage of free space that will be left on each
index page at the lowest level of the index. The default is
0 (100% full), meaning that only enough space for a single
row will be left. Specifying a percentage lower than 100,
for example, specifying 70, will leave 30% free space and
can reduce page splits, if there are likely to be frequent row
inserts.

Pad Index Applies a fill factor (see preceding) to the intermediate levels
of a B-Tree

Alternatively, to create the index via T-SQL, you could use the scriptin
Listing 5-4.

Listing 5-4. Creating a Primary XML Index

USE WideWorldImporters
GO

CREATE PRIMARY XML INDEX [PrimaryXmlIndex-OrderSummary-
OrderSummary]

ON Sales.OrderSummary ([OrderSummary]) ;
GO

Secondary XML Indexes

Secondary XML indexes can only be created on XML columns that already
have a primary XML index. Behind the scenes, secondary XML indexes are
actually nonclustered indexes on the internal Node table. Secondary XML

indexes can improve query performance for queries that use specific types
of XQuery processing.

171

CHAPTER5 XML INDEXES

A PATH secondary XML index is built on the Node ID and VALUE
columns of the Node table. This type of index offers performance
improvements to queries that use path expressions, such as the exists()
XQuery method. A VALUE secondary XML index is the reverse of this and
is built on the VALUE and Node ID columns. This type of index will offer
performance improvements to queries that search for values, without
knowing the name of the XML element or attribute that contains the value
being searched for.

Finally, a PROPERTY secondary XML index is built on the clustered
index key of the base table, the Node ID, and the VALUE columns of the
Node table. This type of index performs very well if the query is trying to
retrieve nodes from multiple tuples of the column.

Creating Secondary XML Indexes

To create a secondary XML index in SSMS, drill through Databases »
WideWorldImporters » Tables » OrderSummary in Object Explorer. Next,
select New Index » Secondary XML Index from the context menu of the
Indexes node. This will cause the New Index dialog box to be displayed, as
illustrated in Figure 5-8.

172

CHAPTER5 XML INDEXES

42 New Inclex — m) X
|0 Ready
 Select a page O Script ~ @ Help
K General
| & Options
J Bitended Properties Table name:
OrderSummarny
Index name:
daryXmiindex-Crdy Pat
Indexx type
Secondary XML
Primary Xml Index:
Br lindex-OrderS OrderS
i = -
Connection Column:
v DATATYPES OrderSummary
DATATYPES Administral
! o Secondary Xml index Type:
Path
View connection propedies
Progress
Ready

Figure 5-8. New Index dialog box (Secondary XML)

On the General tab of the New Index dialog box, we have first given the
index a descriptive name. Next, we select the appropriate primary XML
index from the Primary XML Index drop-down list. Finally, we select the
type of secondary XML index that we wish to create, from the Secondary
XML Index Type drop-down box. In this case, we have chosen to create a
PATH index.

Figure 5-9 illustrates the Options tab of the New Index dialog box. For
details of each option, please refer to Table 5-1.

173

CHAPTER5 XML INDEXES

14l New Index - a x
b Ready

Select a page LT Script - | @ Help

& General

& Options

K Btended Properies

Ceonnection
¥¥ DATATYPES
[DATATYPES \Administrator]
Mew connection properies
Progress ' Allow row locks
Ready Allow row locks

Cancel Help

Figure 5-9. New Index dialog box—QOptions tab (Secondary XML Index)

Alternatively, to create this index with T-SQL, you could use the script
in Listing 5-5.

Listing 5-5. Creating a Secondary XML Index

USE WideWorldImporters
GO

CREATE XML INDEX [SecondaryXmlIndex-OrderSummary-Path]
ON Sales.OrderSummary (OrderSummary)
USING XML INDEX [PrimaryXmlIndex-OrderSummary-OrderSummary] FOR
PATH ;
Go

174

CHAPTER5 XML INDEXES

Performance Considerations for XML Indexes

In order to discuss the performance of XML indexes, let’s write a query that
is well-suited to the PATH secondary XML index that we have created on
the OrderSummary table. The query in Listing 5-6 runs a query against the
OrderSummary table and returns all rows indicating customers who have
ordered the Chocolate echidnas 250g product, which has a StockltemID of
223. The first part of the script removes unchanged pages from the buffer
cache and drops the plan cache, making it a fair test. The middle part of
the script turns on time statistics, so we can accurately tell how long the
query took to run.

Tip Performance will vary, based on the specification of your
server and how many resources are being consumed by concurrent
processes. You should always check performance within your own
environment.

Listing 5-6. Return Rows Where Customers Have Ordered
StockItemID 23

--Clear buffer cache and plan cache
DBCC DROPCLEANBUFFERS

DBCC FREEPROCCACHE

GO

--Turn on I0 statistics to appear with results
SET STATISTICS TIME ON
GO

--Run query
SELECT *

175

CHAPTER5 XML INDEXES

FROM Sales.OrderSummary
WHERE OrderSummary.exist('/SalesOrders/Order/OrderDetails/
Product/.[@ProductID = 223]') = 1 ;

The statistics shown in Figure 5-10 show that the query took 1.95
seconds to complete.

BH Results Eﬁ Messages S‘u Execution plan

SQL Server Executicon Times:

CPU time = 1938 m3s, elapsed time = 1850 ms.
SQL Server parse and compile time:

CPU time = 0 ms, elapsed time = 0 ma.

SQL Server Execution Times:
CPU time = 0 ms, elapsed time = 0 ms.

100% ~

@) Query executed successfully. DATATY

Figure 5-10. Query results with PATH index

Now let’s use the script in Listing 5-7 to drop the PATH index and run

the query again. This time, only the primary XML index is available for use.

Listing 5-7. Run Query Without PATH Index

DROP INDEX [SecondaryXmlIndex-OrderSummary-Path] ON Sales.
OrderSummary ;
Go

DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
Go

176

CHAPTER5 XML INDEXES

SET STATISTICS TIME ON
Go

SELECT *

FROM Sales.OrderSummary

WHERE OrderSummary.exist('/SalesOrders/Order/OrderDetails/
Product/.[@ProductID = 223]') = 1 ;

This time, as we can see from the statistics in Figure 5-11, the query
took more than 2.7 seconds to complete.

B Resuts [Messages 37 Execution plan

SQL Server Execution Times:

CPU time = 17€€ ms, elapsed time = 2723 ms.
SQRL Server parse and compile time:

CPU time = 0 ma, elapsed time = 0 ms.

SRL Server Execution Times:
CPU time = 0 ms, elapsed time = 0 ms.

100% -

@ Query executed successfully. DATAT

Figure 5-11. Query results without PATH index

Finally, let’s use the script in Listing 5-8 to drop the primary XML
Index, and run the query again, with no XML index support.

177

CHAPTER5 XML INDEXES

Listing 5-8. Drop Primary XML Index and Rerun Query

DROP INDEX [PrimaryXmlIndex-OrderSummary-OrderSummary] ON
Sales.OrderSummary ;
GO

DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
Go

SET STATISTICS TIME ON
Go

SELECT *

FROM Sales.OrderSummary

WHERE OrderSummary.exist('/SalesOrders/Order/OrderDetails/
Product/.[@ProductID = 223]') = 1 ;

You will notice from the statistics in Figure 5-12 that the query
execution time has now risen to more than 4 seconds. While our table
only has fewer than 700 rows and results you see will vary, depending on
the performance of your machine, this example shows why creating XML
indexes is so important.

178

CHAPTER5 XML INDEXES

B Resuts [E® Messages 9 Bxecution plan

SQRL Server Execution Times:

CPU time = 2125 ms, elapsed time = 40383 ms.
SQL Server parse and compile time:

CPU time = 0 ms, elapsed time = 0 ma.

SQL Server Execution Times:

CPU time = 0 ms, elapsed time = 0 ma.
100% ~
@) Query executed successfully. DATA

Figure 5-12. Results of query with no XML indexes

Summary

Specialized XML indexes can be created on XML columns, to improve
the performance of queries that rely on interrogating XML data. There are
four types of XML Index: Primary, Secondary PATH, Secondary VALUE, and
Secondary PROPERTY.

A primary XML index cannot be created on an XML column, unless the
table has a clustered primary key (a clustered index built on a primary key
column). A secondary XML cannot be created unless a primary XML index
already exists on the XML column. XML indexes can be created before a
table is populated with data, however.

Queries that interrogate XML columns can be quite inefficient and
perform poorly, unless the correct XML indexes are created to support
them. XML indexes will always be more efficient on XML columns than
full-text indexes will be. As demonstrated in this chapter, XML query
performance is significantly impaired if XML indexes are not created
appropriately.

179

CHAPTER 6

Understanding JSON

As SQL Server evolves, more and more nonrelational features are being

added to the product, blurring the lines between relational and NoSQL

technologies. JSON is an example of this. JSON (JavaScript object notation)

is a document format, designed as a method of lightweight data interchange.

It is similar to XML, in the respect that it is a self-describing, hierarchical

data-interchange format. Unlike XML, however, JSON tags are minimal,

making JSON documents shorter and both easier to read and quicker to parse.

In this chapter, I will introduce the JSON format. I will discuss the

structure of a JSON document and compare it to an XML document.

Finally, I will discuss usage scenarios for JSON data within SQL Server.

Understanding the JSON Format

The basic JSON syntax uses name/value pairs, separated by a colon.

The JSON obiject is then enclosed by braces. The name must be a string,

enclosed with double quotes, and the value must be

A string (enclosed by double quotes)
A number

A nested JSON object

A Boolean value

An array (enclosed by square brackets)

NULL

© Peter A. Carter 2018
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_6

181

CHAPTER6 UNDERSTANDING JSON

For instance, consider the simple example in Listing 6-1.

Listing 6-1. Simple JSON Document
{ "FirstName" : "Pete" }

If multiple name/value pairs occur within a JSON document, they
are separated by a comma. For example, consider the JSON document in
Listing 6-2. You will notice that the value for age is not enclosed in double
quotes, because it is a number, as opposed to a string.

Listing 6-2. Simple JSON Document with Multiple Name/Value
Pairs

{ "FirstName" : "Pete" , "LastName" : "Carter" , "Age" : 38 }

If you were to represent as a JSON flat document a row set in a table,
the result would be an array of JSON objects. For example, consider the
query in Listing 6-3.

Listing 6-3. Top Vehicle Temperatures

USE WideWorldImporters
GO

SELECT TOP 3
VehicleRegistration
, ChillerSensorNumber
, Temperature
FROM Warehouse.VehicleTemperatures
ORDER BY Temperature DESC ;

182

This query will produce the results displayed in Figure 6-1.

CHAPTER6 UNDERSTANDING JSON

EH Results 2l Messages

1o wWwiRtA
2 WWIRTA 2
3 WwWaRTA 1

@ Query executed successfully.

VehicleRegistration ChillerSensorNumber ~ Temperature

5.00
5.00
5.00

Figure 6-1. Top vehicle temperatures

If this result set were to be expressed as a JSON document, it would

look like the document in Listing 6-4.

Listing 6-4. Top Vehicle Temperatures Expressed As JSON

[

{
"VehicleRegistration":
"ChillerSensorNumber":
"Temperature": 5

})

{
"VehicleRegistration":
"ChillerSensorNumber":
"Temperature": 5

}J

{

"WWI-321-A",
1,

"WWI-321-A",
2,

183

CHAPTER6 UNDERSTANDING JSON

"VehicleRegistration": "WWI-321-A",
"ChillerSensorNumber": 1,
"Temperature": 5

You can see that the results are an array of JSON objects; therefore, the
document is enclosed in square brackets. Each JSON object (representing
a single row in the table) is enclosed in braces and separated by commas.
Within each JSON object, comma separated name/value pairs represent
each column in the tabular representation of the results.

The WarehouseVehicleTemperatures table, in the WideWorldImporters
database also includes a column with the JSON data type, which records
the full sensor data. Consider the query in Listing 6-5.

Listing 6-5. Vehicle Temperatures with Full Sensor Data

USE WideWorldImporters
GO

SELECT TOP 3
VehicleRegistration
, ChillerSensorNumber
, Temperature
, FullSensorData
FROM Warehouse.VehicleTemperatures
ORDER BY Temperature DESC ;

184

P -

1 [' s [Macomirgs™ [[hge Tomsm™ “pranaty” (ypa” Tore” “comdrates” |37 $10W2 &1 1¥
? wwana 2 500 (Pimcamirgs” [pe” Foshon™ gty (pm Part” “commdraben” | 108 741 5411201
3 wwana ' s FRecanirgs” g Fodhan” “pramety” (g Pt “coundabes” |LI1IST1154 0198504)

© Chamry v ow s et ty BATATYHS (140 KT DATATYHS Adminatngtn.._ WabeWoridimperters 000000 § rows

CHAPTER6 UNDERSTANDING JSON

This query returns the results displayed in Figure 6-2.

rcategme Oueierdusne sspemse | ASewen

Figure 6-2. Results of temperatures with full sensor data

If we were to represent this result set as a JSON document, we would

have an array of JSON objects in which one of the objects is a nested JSON

object, as shown in Listing 6-6.

Listing 6-6. Vehicle Temperatures with Full Sensor Data Expressed
AsJSON

[

"VehicleRegistration": "WWI-321-A",
"ChillerSensorNumber": 1,

"Temperature": 5,

"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",
\"geometry\": {\"type\":\"Point\",
\"coordinates\":[-107.9037602,43.1198494] },
\"properties\":{\"rego\":\"WWI-321-A\",
\"sensor\":\"1,\"when\":\"2016-05-31T09:34:39\",
\"temp\":5.00}} 1"

"VehicleRegistration": "WWI-321-A",
"ChillerSensorNumber": 2,
"Temperature": 5,

185

CHAPTER6 UNDERSTANDING JSON

"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",
\"geometry\": {\"type\":\"Point\",
\"coordinates\":[-108.3927541,58.1174136] },
\"properties\":{\"rego\":\"WWI-321-A\",
\"sensor\":\"2,\"when\":\"2016-05-31T09:44:35\",
\"temp\":5.00}} 1"

"VehicleRegistration": "WWI-321-A",
"ChillerSensorNumber": 1,

"Temperature": 5,

"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",
\"geometry\": {\"type\":\"Point\",
\"coordinates\":[-88.2125713,56.0198938] },
\"properties\":{\"rego\":\"WWI-321-A\",
\"sensor\":\"1,\"when\":\"2016-05-30T08:14:17\",
\"temp\":5.00}}]"

Tip

The nested JSON objects contain a backslash before each

double quote, as an escape character.

You will notice, in this example, that the value for each
FullSensorData node is a JSON object nested inside the JSON object,
which represents a row within the tabular result set.

A root node can also be added to a JSON document, sometimes used

to represent the name of the object’s type or abstraction. This can help give

the document context. Listing 6-7 shows the same document as Listing 6-6,
but with a root node added.

186

CHAPTER6 UNDERSTANDING JSON
Listing 6-7. Adding a Root Node
{

"VehicleTemperatures": [
{

"VehicleRegistration": "WWI-321-A",
"ChillerSensorNumber": 1,
"Temperature": 5,
"FullSensorData"”: "{\"Recordings\": [{\"type\":\"Feature\",
\"geometry\": {\"type\":\"Point\",
\"coordinates\":[-107.9037602,43.1198494] },
\"properties\":{\"rego\":\"WWI-321-A\",
\"sensor\":\"1,\"when\":\"2016-05-31T09:34:39\",
\"temp\":5.00}}]"

"VehicleRegistration": "WWI-321-A",
"ChillerSensorNumber": 2,

"Temperature": 5,

"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",
\"geometry\": {\"type\":\"Point\",
\"coordinates\":[-108.3927541,58.1174136] },
\"properties\":{\"rego\":\"WWI-321-A\",
\"sensor\":\"2,\"when\":\"2016-05-31T09:44:35\",
\"temp\":5.00}}]"

"VehicleRegistration": "WWI-321-A",
"ChillerSensorNumber": 1,

"Temperature": 5,

187

CHAPTER6 UNDERSTANDING JSON

"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",
\"geometry\": {\"type\":\"Point\",
\"coordinates\":[-88.2125713,56.0198938] },
\"properties\":{\"rego\":\"WWI-321-A\",
\"sensor\":\"1,\"when\":\"2016-05-30T08:14:17\",
\"temp\":5.00}}]"

JSON vs. XML

Let’s compare a simple JSON document against an XML equivalent
and examine the differences. Consider the XML document in Listing 6-8,
which represents the salespeople within the WideWorldImporters

database.

Listing 6-8. Sales People—XML

<SalesPeople>

<SalesPerson>
<PersonID>2</PersonID>
<FullName>Kayla Woodcock</FullName>
<PreferredName>Kayla</PreferredName>
<LogonName>kaylaw@wideworldimporters.com</LogonName>
<PhoneNumber>(415) 555-0102</PhoneNumber>
<EmailAddress>kaylaw@wideworldimporters.com</EmailAddress>

</SalesPerson>

<SalesPerson>
<PersonID>3</PersonID>
<FullName>Hudson Onslow</FullName>
<PreferredName>Hudson</PreferredName>

188

CHAPTER6 UNDERSTANDING JSON

<LogonName>hudsono@wideworldimporters.com</LogonName>
<PhoneNumber>(415) 555-0102</PhoneNumber>
<EmailAddress>hudsono@wideworldimporters.com</EmailAddress>

</SalesPerson>

<SalesPerson>

<PersonID>6</PersonID>

<FullName>Sophia Hinton</FullName>
<PreferredName>Sophia</PreferredName>
<LogonName>sophiah@wideworldimporters.com</LogonName>
<PhoneNumber>(415) 555-0102</PhoneNumber>
<EmailAddress>sophiah@wideworldimporters.com</EmailAddress>

</SalesPerson>
<SalesPerson>

<PersonID>7</PersonID>

<FullName>Amy Trefl</FullName>
<PreferredName>Amy</PreferredName>
<LogonName>amyt@wideworldimporters.com</LogonName>
<PhoneNumber>(415) 555-0102</PhoneNumber>
<EmailAddress>amyt@wideworldimporters.com</EmailAddress>

</SalesPerson>

<SalesPerson>

<PersonID>8</PersonID>

<FullName>Anthony Grosse</FullName>
<PreferredName>Anthony</PreferredName>
<LogonName>anthonyg@wideworldimporters.com</LogonName>
<PhoneNumber>(415) 555-0102</PhoneNumber>
<EmailAddress>anthonyg@wideworldimporters.com</EmailAddress>

</SalesPerson>
<SalesPerson>

<PersonID>13</PersonID>
<FullName>Hudson Hollinworth</FullName>

189

CHAPTER6 UNDERSTANDING JSON

<PreferredName>Hudson</PreferredName>
<LogonName>hudsonh@wideworldimporters.com</LogonName>
<PhoneNumber>(415) 555-0102</PhoneNumber>
<EmailAddress>hudsonh@wideworldimporters.com</EmailAddress>
</SalesPerson>
<SalesPerson>
<PersonID>14</PersonID>
<FullName>Lily Code</FullName>
<PreferredName>Lily</PreferredName>
<LogonName>lilyc@wideworldimporters.com</LogonName>
<PhoneNumber>(415) 555-0102</PhoneNumber>
<EmailAddress>1lilyc@wideworldimporters.com</EmailAddress>
</SalesPerson>
<SalesPerson>
<PersonID>15</PersonID>
<FullName>Taj Shand</FullName>
<PreferredName>Taj</PreferredName>
<LogonName>tajs@wideworldimporters.com</LogonName>
<PhoneNumber>(415) 555-0102</PhoneNumber>
<EmailAddress>tajs@wideworldimporters.com</EmailAddress>
</SalesPerson>
<SalesPerson>
<PersonID>16</PersonID>
<FullName>Archer Lamble</FullName>
<PreferredName>Archer</PreferredName>
<LogonName>archerl@wideworldimporters.com</LogonName>
<PhoneNumber>(415) 555-0102</PhoneNumber>
<EmailAddress>archerl@wideworldimporters.com</EmailAddress>
</SalesPerson>
<SalesPerson>

190

CHAPTER6 UNDERSTANDING JSON

<PersonID>20</PersonID>
<FullName>Jack Potter</FullName>
<PreferredName>Jack</PreferredName>
<LogonName>jackp@wideworldimporters.com</LogonName>
<PhoneNumber>(415) 555-0102</PhoneNumber>
<EmailAddress>jackp@wideworldimporters.com</EmailAddress>
</SalesPerson>
</SalesPeople>

Each salesperson has an opening and closing tag element, containing
an opening and closing tag element, for each property related to a
salesperson. A root node, called SalesPeople, has also been added.

Note This XML document is element-centric. We could, of course,
also represent the salespeoples’ properties as attributes. Please see
Chapter 3, for further details.

Let’s compare this XML to the JSON document in Listing 6-9.

Listing 6-9. Sales People—]SON

{
"SalesPeople": [

{
"PersonID": 2,
"FullName": "Kayla Woodcock",
"PreferredName": "Kayla",
"LogonName": "kaylaw@wideworldimporters.com",
"PhoneNumber": "(415) 555-0102",
"EmailAddress": "kaylaw@wideworldimporters.com"

}s

{

191

CHAPTER6 UNDERSTANDING JSON

192

"PersonID": 3,

"FullName": "Hudson Onslow",

"PreferredName": "Hudson",

"LogonName": "hudsono@wideworldimporters.com",
"PhoneNumber": "(415) 555-0102",

"EmailAddress": "hudsono@wideworldimporters.com”

}’
{
"PersonID": 6,
"FullName": "Sophia Hinton",
"PreferredName": "Sophia",
"LogonName": "sophiah@wideworldimporters.com",
"PhoneNumber": "(415) 555-0102",
"EmailAddress": "sophiah@wideworldimporters.com"
b
{
"PersonID": 7,
"FullName": "Amy Trefl",
"PreferredName": "Amy",
"LogonName": "amyt@wideworldimporters.com",
"PhoneNumber": "(415) 555-0102",
"EmailAddress”: "amyt@wideworldimporters.com"
}’
{
"PersonID": 8,
"FullName": "Anthony Grosse",
"PreferredName": "Anthony",
"LogonName": "anthonyg@wideworldimporters.com",
"PhoneNumber": "(415) 555-0102",
"EmailAddress": "anthonyg@wideworldimporters.com"
b
{

CHAPTER6 UNDERSTANDING JSON

"PersonID": 13,

"FullName": "Hudson Hollinworth",
"PreferredName": "Hudson",

"LogonName": "hudsonh@wideworldimporters.com",
"PhoneNumber": "(415) 555-0102",

"EmailAddress”: "hudsonh@wideworldimporters.com”

}’
{
"PersonID": 14,
"FullName": "Lily Code",
"PreferredName": "Lily",
"LogonName": "lilyc@wideworldimporters.com",
"PhoneNumber": "(415) 555-0102",
"EmailAddress": "lilyc@wideworldimporters.com"
}s
{
"PersonID": 15,
"FullName": "Taj Shand",
"PreferredName": "Taj",
"LogonName": "tajs@wideworldimporters.com",
"PhoneNumber": "(415) 555-0102",
"EmailAddress": "tajs@wideworldimporters.com"
}’
{
"PersonID": 16,
"FullName": "Archer Lamble",
"PreferredName": "Archer",
"LogonName": "archerl@wideworldimporters.com",
"PhoneNumber": "(415) 555-0102",
"EmailAddress": "archerl@wideworldimporters.com"
}s

193

CHAPTER6 UNDERSTANDING JSON

{

"PersonID": 20,

"FullName": "Jack Potter",

"PreferredName": "Jack",

"LogonName": "jackp@wideworldimporters.com",
"PhoneNumber": "(415) 555-0102",
"EmailAddress": "jackp@wideworldimporters.com"

Instead of using elements, as in the XML document, the JSON
document consists simply of name/value pairs in an array of JSON objects.
A root node, called SalesPeople, has also been added.

The most obvious observation about the JSON document is that the
character count is much shorter, largely due to the lack of closing tags. The
main consequence of this is that the document is easier to parse, and there
is less information to be transferred between application tiers. Arguably,
the document is also more human-readable. These advantages have made
JSON a very popular choice with application developers.

The main disadvantage of the JSON document is that it cannot be
bound to a schema in the way that XML can. The impact of this is that
although the document can be parsed, to ensure that it has valid syntax,
itisn’t possible (without custom code) to ensure that it meets the contract
expected by the recipient before sending.

Other than the differences mentioned, despite their different
appearance, the documents are actually quite similar. They are both self-
describing, extensible documents that can be used for data-interchange.
Both formats are widely used and work with many REST APIs and web
service end points.

194

CHAPTER6 UNDERSTANDING JSON

Tip REST is short for representational state transfer. It is an
architectural style of providing a uniform interface, often between
layers of an application. It provides a stateless approach, with client/
server separation.

JSON Usage Scenarios

There are many use cases for JSON data within SQL Server. The following
sections will introduce some of these potential uses.

n-Tier Applications with Rest APIs

Modern apps often have a lot of logic at the client side. The application
tier of the application often has to have complex code, or even multiple
sublayers, to broker a conversation between the client and the back-end
RDBMS. This is because you will have to use an object relational mapper
to execute the query against the database, write these results into data
transfer object, and then serialize the results in JSON format before they
can be sent to the client.

With JSON support in SQL Server, however, you can simply expose the
data from SQL Server to a REST API and return the data in JSON format,
meaning that the application tier can simply send the data as is to the
client. While there may be resistance to this approach from middle-tier
purists, it certainly allows architects to simplify the application design.

De-Normalizing Data

Using a normalized data model is perfect when high-frequency updates
are made to data. In a normalized model, data is separated into multiple
tables, which are joined together using primary and foreign key

195

CHAPTER6 UNDERSTANDING JSON

constraints, with the intention of storing data only once. For example, if
customers have multiple addresses, then core details about a customer,
such as name and phone number, may be stored in a table called
Customers. Their addresses may then be stored in a separate table called
CustomerAddresses, which contains a foreign key (CustomerID), which
joins to the primary key of the Customers table. This means that the core
details about the customer are only stored once, as opposed to having to
repeat the details for every address.

Tip While a detailed discussion of normalization is beyond the
scope of this book, a full discussion can be found in Expert Scripting
and Automation for SQL Server DBAs (Apress, 2016).

A traditional normalized model can cause issues in some instances,
however. For example, performance can decrease when data is split
across multiple tables and joined together in a SELECT statement, owing
to the matching of primary and foreign key values that is required. Also,
when data is updated across multiple tables, a transaction must be used,
to ensure a consistent update. This can lead to locking issues, in which
pessimistic isolation levels are in use, or IO performance issues, in which

optimistic isolation levels are used.

Tip A full discussion of transaction isolation levels can be found in
Pro SQL Server Administration (Apress, 2015).

To work around this issue, data architects will sometimes use NoSQL
structures to store details of entities such as customers, so that logical
entities can be stored as a single record. Coincidently, JSON is often
the format used for these records. This approach creates its own issues,
however, when the NoSQL data must be combined with data that is still
stored in a relational format.

196

CHAPTER6 UNDERSTANDING JSON

JSON can help resolve these kinds of modeling challenges, by allowing
the JSON record to be stored in a table in SQL Server, meaning that
updates can be made to a single table, while the table can still easily be
joined back to relational data.

Config As Code

In DevOps environments, there is a requirement to have infrastructure as
code, platforms as code, and config as code. Essentially, an entire virtual
estate will be written in code, so that it is highly portable between data
centers or, more commonly, between data centers and the cloud. It is also
highly recoverable, in the event of a disaster, such as the loss of a data
center.

SQL Server management has been slow to be incorporated into the
DevOps space, because there is a lack of crossover skills between SQL
Server and desired state configuration tooling, such as Chef and Puppet.
The DBA world is slowly starting to get on board, however, and as part of
an SQL-Server-platform-as-code approach, a configuration management
database (CMDB) will often be used on a central management server, to
store the details of member servers (SQL Server VMs) within the estate.

A central management server (in this context) refers to an instance of SQL
Server that is used to help DBAs manage the rest of the SQL Server estate.
It will often be the master server in SQL Server Agent master/target job
configurations and may have other management features installed, such
as Management Data Warehouse, which is used as a central hub for SQL
Server monitoring.

When a platform-as-code approach is being used, however, a config-
as-code approach should be applied alongside. In the SQL Server world,
this involves being able to rebuild the CMDB from code, which is stored in
a source control provider, such as GitHub of TFS.

197

CHAPTER6 UNDERSTANDING JSON

Config as code for the SQL Server CMBD can easily be managed with a
circular process. The first step in this process is a Server Agent job, which
will periodically run and export the data from the tables into JSON files in
the operating system. These files will then be pushed to a source-control
repository and checked in.

When a desired state configuration management tool such as Chef or
Puppet builds a new central management server, it will look, in the source
control repository, to find the JSON files containing the configuration
data. It will create the config database and then repopulate the tables with
the data from the repo. This provides an easily configurable RPO (recover
point objective) for the config database, without the challenges that are
often associated with enterprise backup management tools and the lead
times often associated with recovering data from tape robots. It also means
that the core management utility for SQL Server can be easily moved to
the cloud or other data centers, helping to make the SQL Server estate
extremely portable.

Tip The principle of desired state management tools, such as
Puppet and Chef, is that they run periodically on a server, with

a manifest that describes the desired state of the server. At the
Windows level, this may include code to disable the guest account
or ensure that user rights assignments are configured correctly.

At the SQL Server level, it may check that a specific login exists or
that xp_cmdshell is disabled. First, the tool will check to see if a
resource is already configured as expected. If not, it will correct the
configuration. This means that if an unauthorized change is made to
a server, it will be corrected the next time the manifest is applied.
The result is that Windows engineers and DBAs can also be sure of
the state of their servers.

198

CHAPTER6 UNDERSTANDING JSON

Analyzing the Log Data

Devices such as sensors or RFID (radio frequency identification) can
generate very large amounts of data. This means that data architects will
often choose to store this data in NoSQL solutions. Often, JSON is used as
the file format for such logging.

When large logs are stored in JSON format, the SQL Server’s native
JSON support means that these logs can easily be read into SQL Server and
analyzed using T-SQL, without any complex parsing requirements. This
can reduce the time to market for reports against log data.

Summary

JSON is a lightweight data-interchange format that is supported by many
REST APIs and web service end points. It is similar to XML, in that it is an
extensible, self-describing, hierarchical document format, but it differs in
the following ways:

e It cannot be validated against a schema.
o Itdoes not have closing tags.

o [Itisshorter.

o Itis easier to parse.

o Itsupports arrays.

JSON'’s basic format is a series of name/value pairs, which are
separated by commas. JSON objects are always enclosed in braces, and
arrays are always enclosed in brackets. JSON objects can be nested inside
other JSON objects. When this is the case, a backslash should be used to
escape characters, such as double quotes and braces.

199

CHAPTER6 UNDERSTANDING JSON

JSON has many use cases in SQL Server, including the simplification
of REST APIs interacting with back-end databases. JSON is also a good
choice when NoSQL solutions must be integrated with SQL Server, such as
when device logs must be analyzed or NoSQL semi-structured data must
be stored alongside structured data. JSON is also very useful when DBAs or
platform engineers implement config as code solutions.

200

CHAPTER 7

Constructing
JSON from T-SQL

Just as the FOR XML clause (see Chapter 3) can be used to construct

XML documents from relational results sets, the FOR JSON clause can be
used to construct JSON data from relational results sets. This is useful

for exchanging data between SQL Server and traditional programming
languages. Unlike FOR XML, however, FOR JSON only offers two modes: AUTO
and PATH. This chapter discusses the use of the FOR JSON clause in both
AUTO mode and PATH mode.

FOR JSON AUTO

FOR JSON AUTO is the simplest of the two FOR JSON modes. It can
automatically nest JSON data, based on table joins, or provide flat JSON
documents from a single table. To explain FOR JSON at the most basic level,
consider the query in Listing 7-1, which returns the order dates, alongside
customer, order, and salesperson keys, for customer 1060.

Listing 7-1. Return Keys and Dates for Sales Orders

USE WideWorldImporters
Go

© Peter A. Carter 2018 201
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_7

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

SELECT
OrderID
, CustomerID
, SalespersonPersonID
, OrderDate
FROM Sales.Orders
WHERE CustomerID = 1060 ;

This query returns the results illustrated in Figure 7-1.

FH Resuts g Messages

CustomerlD SalespersonPersonlD OrderDate

t : 14 20160518
2 7278 1060 14 20160519
3 72916 1060 6 20160520
4 73081 1060 8 20160524

@ Query executed successfully.

Figure 7-1. Results of keys and dates for sales orders

If we wanted to return these results in JSON format, we could append
the FOR JSON clause, as demonstrated in Listing 7-2.

202

CHAPTER 7

Listing 7-2. Return Results As JSON

USE WideWorldImporters
GO

SELECT
OrderID
, CustomerID
, SalespersonPersonID
, OrderDate
FROM Sales.Orders
WHERE CustomerID = 1060
FOR JSON AUTO ;

CONSTRUCTING JSON FROM T-SQL

This query will produce the results shown in Listing 7-3.

Listing 7-3. Results of Returning Data As JSON

[

{
"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18"

}J

{
"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19"

})

{

"OrderID": 72916,
"CustomerID": 1060,

203

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

"SalespersonPersonID": 6,
"OrderDate": "2016-05-20"

})

{
"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24"

}

Working with Root Nodes

Because our results have no root node, an array wrapper (in the form of
square brackets) must be placed around the document. If we did not want
our results to be enclosed in square brackets, we could remove them by
amending our query, as shown in Listing 7-4.

Listing 7-4. Removing an Array Wrapper

USE WideWorldImporters
GO

SELECT
OrderID
, CustomerID
, SalespersonPersonID
, OrderDate
FROM Sales.Orders
WHERE CustomerID = 1060
FOR JSON AUTO, WITHOUT ARRAY WRAPPER ;

204

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

This amended query will return the results shown in Listing 7-5.

Listing 7-5. Results Without an Array Wrapper

{

}

"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18"

"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19"

"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20"

"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24"

Alternatively, we could resolve the issue by adding a root node to our

document. This can be achieved by using the amended query shown in

Listing 7-6, which will cause a root node, SalesOrders, to be added to the

resultant document.

205

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

Caution ROOT and WITHOUT ARRAY_WRAPPER are not compatible
with each other. Attempting to use both will cause the query to
generate an error.

Listing 7-6. Adding a Root Node

USE WideWorldImporters
GO

SELECT
OrderID
, CustomerID
, SalespersonPersonID
, OrderDate
FROM Sales.Orders
WHERE CustomerID = 1060
FOR JSON AUTO, ROOT('SalesOrders') ;

This query produced the results illustrated in Listing 7-7.

Listing 7-7. Results of Adding a Root Node

{
"SalesOrders": [

{
"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18"

}’

{

"OrderID": 72738,

206

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19"

}’

{
"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20"

}’

{
"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24"

}

Working with NULL Values

What if NULL values were returned by our dataset? Consider the example in
Listing 7-8, where the Comments column has been added to the
SELECT list.

Listing 7-8. Adding Comments to the SELECT List

USE WideWorldImporters
GO

SELECT
OrderID
, CustomerID

207

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

, SalespersonPersonID
, OrderDate
, Comments

FROM Sales.Orders

WHERE CustomerID = 1060 ;

The results of this query are displayed in Figure 7-2.

EH Resuls ¥ Messages

i 1060 14
1060 14
1060 6
1060 8

@) Query executed successfully,

OrderlD CustomerlD SalespersonPersonlD OrderDate

2016-05-18
20160515
2016-05-20
2016-05-24

Comments
NULL
NULL
NULL
NULL

DAT

Figure 7-2. Results of adding comments

You will notice that there are no comments associated with any of the
orders returned. Let’s see how this affects the JSON, using the query in

Listing 7-9.

Listing 7-9. JSON with NULL Comments Added

USE WideWorldImporters
GO

SELECT
OrderID
, CustomerID
, SalespersonPersonID
, OrderDate

208

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

, Comments
FROM Sales.Orders
WHERE CustomerID = 1060
FOR JSON AUTO, ROOT('SalesOrders') ;

The results of this query can be found in Listing 7-10.

Listing 7-10. Results of JSON with NULL Comments

{
"SalesOrders": [

{
"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18"

b

{
"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19"

b

{
"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20"

b

{

"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,

209

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

"OrderDate": "2016-05-24"

You can see that the default behavior is to omit any name/value pairs
with NULL values from the results set. We can change this behavior, however,
by using the INCLUDE_NULL_VALUES option, as demonstrated in Listing 7-11.

Listing 7-11. Including NULL Values in Results

USE WideWorldImporters
GO

SELECT
OrderID
, CustomerID
, SalespersonPersonID
, OrderDate
, Comments
FROM Sales.Orders
WHERE CustomerID = 1060
FOR JSON AUTO, ROOT('SalesOrders'), INCLUDE NULL VALUES ;

The results of this query can be found in Listing 7-12. You will notice
that, this time, the name/value pairs with NULL values have been included
in the results.

Listing 7-12. Results of Including NULL Values in Results
{

"SalesOrders": |

{

210

CHAPTER 7

"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18",
"Comments": null

"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19",
"Comments": null

"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20",
"Comments": null

"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24",
"Comments": null

CONSTRUCTING JSON FROM T-SQL

211

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

Using Column Aliases

When considering the format of the JSON output, it is also possible to use
column aliases, such as in Listing 7-13.

Listing 7-13. Using Column Aliases

USE WideWorldImporters
GO

SELECT
OrderID
, CustomerID
, SalespersonPersonID
, OrderDate
, Comments AS 'Orders Comments'
FROM Sales.Orders
WHERE CustomerID = 1060
FOR JSON AUTO, ROOT('SalesOrders'), INCLUDE NULL VALUES ;

This query returns the results shown in Listing 7-14.

Listing 7-14. Results of Using Column Aliases

{
"SalesOrders": [

{
"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18",
"Orders Comments": null

}’

{

212

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19",
"Orders Comments": null

b

{
"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20",
"Orders Comments": null

}’

{
"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24",
"Orders Comments": null

}

You will notice that the comments key now has the name Orders
Comments, instead of Comments. This behavior is also true if you use dot-
separated aliases, such as the example in Listing 7-15.

213

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL
Listing 7-15. Using Dot-Separated Aliases

USE WideWorldImporters
GO

SELECT
OrderID
, CustomerID
, SalespersonPersonID
, OrderDate
, Comments AS 'Orders.Comments'
FROM Sales.Orders
WHERE CustomerID = 1060
FOR JSON AUTO, ROOT('SalesOrders'), INCLUDE NULL VALUES ;

This query returns the results illustrated in Listing 7-16.

Listing 7-16. Results of Using Dot-Separated Aliases

{
"SalesOrders": [

{
"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18",
"Orders.Comments": null

s

{
"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19",
"Orders.Comments": null

b

214

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20",
"Orders.Comments": null

"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24",
"Orders.Comments": null

You will notice that the key is simply given a dot-separated name.
This is important behavior to note, as when using FOR JSON PATH, dot-
separated aliases result in nested JSON objects. You will learn more about
this as you progress through the chapter.

Automatic Nesting

So far, all our examples have focused on the behavior of FOR JSON AUTO,
when used against a single table. So now, let’s turn our attention to
how FOR JSON AUTO automatically nests data, based on table joins and
subqueries.

Consider the query in Listing 7-17. This query inspects order 72646 in
more detail, by enhancing it to retrieve the details of the stock items
ordered on each of the three orders placed.

215

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

Listing 7-17. Added Order Line Details

USE WideWorldImporters
GO

SELECT
Orders.OrderID

, Orders.CustomerID

, Orders.SalespersonPersonID

, Orders.OrderDate

, Orders.Comments

, OrderLines.StockItemID

, OrderLines.UnitPrice

, OrderlLines.Quantity
FROM Sales.Orders Orders
INNER JOIN Sales.OrderLines Orderlines

ON OrderlLines.OrderID = Orders.OrderID
WHERE CustomerID = 1060

AND Orders.OrderID = 72646
FOR JSON AUTO, ROOT('SalesOrders'), INCLUDE NULL VALUES ;

The results of this query are illustrated in Listing 7-18.

Listing 7-18. Results of Adding Order Line Details
{

"SalesOrders": [
{

"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18",
"Comments": null,
"OrderLines": [

216

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

{
"StockItemID": 45,
"UnitPrice": 13,
"Quantity": 6

})

{
"StockItemID": 146,
"UnitPrice": 18,
"Quantity": 108

}J

{
"StockItemID": 8,
"UnitPrice": 240,
"Quantity": 2

})

{
"StockItemID": 212,
"UnitPrice": 4.3,
"Quantity": 20

}

You will notice that a new key, the name of which matches the alias of
the second table, has been added to the representation of each order. The
value is a nested array of JSON objects containing the name/value pairs,
which represent the columns returned from the second (based on the
order of columns within the SELECT list) table.

217

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

So, what if we added a nested join, so that we can retrieve the
product name from the Warehouse.StockItems table, as demonstrated
in Listing 7-19?

Listing 7-19. Using Nested Joins

USE WideWorldImporters
GO

SELECT
Orders.OrderID
, Orders.CustomerID
, Orders.SalespersonPersonID
, Orders.OrderDate
, Orders.Comments
, OrderLines.StockItemID
, OrderLines.UnitPrice
, OrderlLines.Quantity
, Products.StockItemName
FROM Sales.Orders Orders
INNER JOIN Sales.OrderLines Orderlines
ON OrderLines.OrderID = Orders.OrderID
INNER JOIN Warehouse.StockItems Products
ON Products.StockItemID = OrderlLines.StockItemID
WHERE CustomerID = 1060
AND Orders.OrderID = 72646
FOR JSON AUTO, ROOT('SalesOrders'), INCLUDE NULL VALUES ;

218

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

The results of this query can be found in Listing 7-20.

Listing 7-20. Results of Using Nested Joins
{

"SalesOrders": [
{

"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18",
"Comments": null,
"OrderLines": [

{
"StockItemID": 45,
"UnitPrice": 13,
"Quantity": 6,
"Products": [
{
"StockItemName": "Developer joke mug - there
are 10 types of people in the world (Black)"
}
]
}J
{

"StockItemID": 146,
"UnitPrice": 18,
"Quantity": 108,
"Products”: [
{
"StockItemName": "Halloween skull mask
(Gray) S"

219

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

1

{
"StockItemID": 212,

"UnitPrice": 4.3,
"Quantity": 20,
"Products": [
{
"StockItemName": "Large replacement
blades 18mm"

"StockItemID": 8,
"UnitPrice": 240,
"Quantity": 2,
"Products”: [
{
"StockItemName": "USB food flash drive -
dim sum 10 drive variety pack"

You will notice that an additional layer of nesting has been added to
the document, with an array, Products, containing the StockItemName
being added to each OrderLines array.

220

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

Just as nesting is automatic, based on table joins, the same applies
to subqueries. Consider the query in Listing 7-21, which includes two
correlated subqueries in the SELECT list that return the name of the customer
who placed the order and the name of the salesperson who sold it.

Tip Nested structures can be processed more easily by programming
languages.

Listing 7-21. Using Subqueries to Nest Data

USE WideWorldImporters
Go

SELECT
Orders.OrderID
» (SELECT FullName FROM Application.People WHERE
PersonID = Orders.CustomerID FOR JSON AUTO) AS 'Customer'
» (SELECT FullName FROM Application.People WHERE
PersonID = Orders.SalespersonPersonID FOR JSON AUTO) AS
'SalesPerson'
, Orders.OrderDate
, Orders.Comments
, OrderLines.UnitPrice
, OrderlLines.Quantity
, Products.StockItemName
FROM Sales.Orders Orders
INNER JOIN Sales.OrderLines Orderlines
ON OrderlLines.OrderID = Orders.OrderID
INNER JOIN Warehouse.StockItems Products
ON Products.StockItemID = OrderlLines.StockItemID
WHERE CustomerID = 1060
AND Orders.OrderID = 72646
FOR JSON AUTO, ROOT('SalesOrders'), INCLUDE NULL VALUES ;

221

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

The results of this query are detailed in Listing 7-22.

Listing 7-22. Results of Nesting Data Using Subqueries
{

"SalesOrders": [

{
"OrderID": 72646,

"Customer": [

{
"FullName": "Konrads Sprogis"
}
1,
"SalesPerson": [
{
"FullName": "Lily Code"
}
1,

"OrderDate": "2016-05-18",
"Comments": null,
"OrderLines": [

{
"UnitPrice": 13,
"Quantity": 6,
"Products": [
{
"StockItemName": "Developer joke mug - there
are 10 types of people in the world (Black)"
}
]
})
{

222

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

"UnitPrice": 18,
"Quantity": 108,
"Products”: [
{
"StockItemName": "Halloween skull mask
(Gray) S"

"UnitPrice": 4.3,
"Quantity": 20,
"Products": [
{
"StockItemName": "Large replacement
blades 18mm"

"UnitPrice": 240,
"Quantity": 2,
"Products": [
{
"StockItemName": "USB food flash drive -
dim sum 10 drive variety pack"

223

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

FOR JSON PATH

While the final example in the FOR JSON AUTO section of this chapter
returns all the required data for the sales order summary, the format of the
document leaves something to be desired. The document is a lot longer
than necessary, because of unrequired nesting. For example, there can
only be one product name per line item, so the Products array should
ideally be a simple name/value pair in the OrderLines array. The same
principle applies to the customer and salesperson names.

Therefore, let’s imagine that we wanted to produce a JSON document
with the format illustrated in Listing 7-23, which has a more concise,
easier-to-read layout.

Listing 7-23. Desired JSON Format

{
"SalesOrders": [
{
"OrderDetails": {
"OrderID": 72646,
"Customer": "Konrads Sprogis",
"SalesPerson": "Lily Code",
"OrderDate": "2016-05-18",
"Comments": null,
"LineItems": {
"UnitPrice": 13,
"Quantity": 6,
"ProductName": "Developer joke mug - there are
10 types of people in the world (Black)"
}
}
})

224

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

"OrderDetails": {
"OrderID": 72646,
"Customer": "Konrads Sprogis",
"SalesPerson": "Lily Code",
"OrderDate": "2016-05-18",
"Comments": null,
"LineItems": {
"UnitPrice": 18,
"Quantity": 108,
"ProductName": "Halloween skull mask (Gray) S"

"OrderDetails": {
"OrderID": 72646,
"Customer”: "Konrads Sprogis",
"SalesPerson”: "Lily Code",
"OrderDate": "2016-05-18",
"Comments": null,
"LineItems": {
"UnitPrice": 4.3,
"Quantity": 20,
"ProductName": "Large replacement blades 18mm"

"OrderDetails": {
"OrderID": 72646,

225

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

"Customer": "Konrads Sprogis",
"SalesPerson": "Lily Code",
"OrderDate": "2016-05-18",
"Comments": null,
"LineItems": {
"UnitPrice": 240,
"Quantity": 2,
"ProductName": "USB food flash drive - dim sum

10 drive variety pack”

We could easily achieve these results by using FOR JSON PATH, which
provides granular control over how the resultant document is formatted.
This control is provided through the use of column aliases, which allow
you to specify desired nesting, through dot separation. Consider the query
in Listing 7-24. The query is similar to that in Listing 7-21, but there are two
key differences to note. The first is that FOR XML AUTO has changed to FOR
XML PATH. The second is that each column has been given column aliases,
which designate not just the name of the node but its position within the
document. The customer’s full name, for example, will be placed into a
node called Customer, which is nested directly under OrderDetails. The
ProductName node, in contrast, will be nested alongside the unit price
and quantity, under a node called LineItems. This causes a LineItems
key to be created with a value that consists of an array of JSON objects,
including all nodes that are specified in the preceding text. The result is the
document found in Listing 7-23.

226

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

Listing 7-24. Using FOR JSON PATH

USE WideWo
GO

SELECT

)
)

Un

J)
Qu
)
Pr
FROM Sales
INNER JOIN
ON
INNER JOIN
ON
INNER JOIN
ON
INNER JOIN
ON
WHERE Cust
AN
FOR JSON P

rldImporters

Orders.OrderID AS 'OrderDetails.OrderID’
Customers.FullName AS 'OrderDetails.Customer’
SalesPeople.FullName AS 'OrderDetails.SalesPerson'
Orders.OrderDate AS 'OrderDetails.OrderDate’
Orders.Comments AS 'OrderDetails.Comments’
OrderLines.UnitPrice AS 'OrderDetails.LineItems.
itPrice’
OrderlLines.Quantity AS 'OrderDetails.Lineltems.
antity'

Products.StockItemName AS 'OrderDetails.LineItems.
oductName'

.Orders Orders

Sales.OrderLines OrderLines

OrderLines.OrderID = Orders.OrderID
Warehouse.StockItems Products
Products.StockItemID = OrderlLines.StockItemID
Application.People Customers

Customers.PersonID = Orders.CustomerID
Application.People SalesPeople
SalesPeople.PersonID = Orders.SalespersonPersonID
omerID = 1060
D orders.OrderID = 72646
ATH, ROOT('SalesOrders'), INCLUDE NULL VALUES ;

227

CHAPTER 7 CONSTRUCTING JSON FROM T-SQL

Summary

The FOR JSON clause of a SELECT statement can be used to convert a result
set into JSON format. It can be used in two modes: either AUTO or PATH.
When used in AUTO mode, FOR JSON will automatically nest data, based on
the joins within your query.

When used in PATH mode, FOR JSON gives the developer more control,
by allowing the location of each relational column to be defined within
the JSON result set, by using dot-separated column aliases, which control
nesting.

The FOR JSON clause has multiple options for controlling the document
format. For example, a root node can be added to the document, by using
the ROOT option, or if no root node is present, the outer array wrapper can
be removed by using the WITHOUT_ARRAY_WRAPPER option. You can also
specify if NULL values should be included in the resultant document, by
using the INCLUDE_NULL_VALUES option.

228

CHAPTER 8

Shredding JSON Data

In Chapter 7, I discussed how we can convert relational data into JSON
documents, but what if we had to shred a JSON document (just as you
learned to shred XML documents in Chapter 4) into a relational dataset?
We could achieve this by using the OPENJSON() function. The OPENJSON()
function accepts a single JSON document as an input parameter and
outputs a tabular result set. The OPENJSON() function can be called either
with or without specifying an explicit schema for the result set. OPENJSON()
also supports the use of JSON path expressions. This chapter will examine
each of these options.

OPENJSON() with Default Schema

In order to understand how the OPENJSON() function works with the
default schema, let’s examine the CustomFields column of the Application.
People table in the WideWorldImporters database. The query in Listing 8-1,
returns the PersonID (the primary key of the table), the FullName column,
and the CustomFields column, which contains a JSON document.

Tip Unlike the other data types discussed in this book, a JSON data
type has not actually been created in SQL Server 2017. Instead, JSON
documents are stored in NVARCHAR columns, and JSON-aware functions
are called against the data, to parse and interact with the JSON.

© Peter A. Carter 2018 229
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_8

CHAPTER 8 SHREDDING JSON DATA

Listing 8-1. Inspecting the Application.Person Table

USE WideWorldImporters
GO

SELECT
PersonID
, FullName
, CustomFields
FROM Application.People ;

You will notice, from the partial result set shown in Figure 8-1, that the
CustomFields column contains a JSON document specifying each person’s
properties, such as their hire data (for staff), languages spoken, and their title.

[Renits il Messages
FesoniD FulName CustomFisids
1 B | Dot Conwemon Oty HULL
%] Kayls Wookceoh ["CererLarguages”™ ["Poish” Chinese™ "Joparese™] Hre Diste™ 2008 04 15T00:00 00", Taie ™ “Team Mesmbes™ “Primary Sabes Termtony” “Plaina”, Commsasionfiate ™ "0.867)
32 Hudson Oriom: [Otterlarusges™ (| HoeDate™ “2012403.05T00.00 00 Tt “Toam Merrboer™ “Peiruary Saen Tetiory™“Naw England”. Commimsicn Rate™ 367}
4 lesbels R {"Otherlanguages™ ["Turkish”.“Soverian”] e Dabe™2010-08-24T00 0000 " Te™ “Taarm Mesrer”]
L) Eva Muindens { “Otferlargusges™ [ihusrian'] ,“HreCinte™ “31201- 22T00-00.00" “Tee ™ Team Member”)
6 & Sophia Hinton { "CerwrLarguages™ [Swedksh™) "HreDate™ "2007-06-14T00 00.00"."Tese™ T, y " "Southeas” "o A
Al Aoy Trel {"Otherlanguages™ [Sovak™, Soarish™ Poish'] . HoeDate™"2005-02-15T0G:00-00" Tt ™ Tewm Mersber™ “Primary Saies Testony™ " Sculesst™. Tommasionfiate™ "058°]
LI | Frthony Grosse. {“Offerlanguages™ [Crostien” "Dutch” “Bomil™] e Date™“20M-I7-ZYT00-00-00", Tile™ Tmam Mmber™ “Provary Ssies Tartory ™ “Mdsaat”, Commiasioniiats ™0 117
LI) Hica Pz [Otwrlanguiages™ (|, HeaDints™ “2007-1257T00:00.00".“Tte™ “Ganeral Marper”]
wow Sels Romrhar: {"Otwrlarguages™ [Dutch™. Frvinh”."Lthurian] HeeOatn ™" 2007-11-17TD0.00:00" Teke™ Waeeheuse Sugmrviesr)
nom B Orakow {"Omerlanguages™ [|."HeeDate™ 21TTO00000". Tite™ “Warshouse Supenisar™)
- I Harry Fadonge. { “CenerLanguages™ [k, "Sovak”] e lnbe ™ 20081313700 0600, “Teke™Tanm Mamber] -
) Query executed nccessholy. DATATYPES (140 BTM) DATATYPES Admini 000000 1111 rows

Figure 8-1. Results of inspecting the Application.Person table

If we wanted to use OPENJSON() to shred the details of a specific user, we
would first have to pass the JSON document into a variable, before passing
the variable into the OPENJSON() function. This technique is demonstrated
in Listing 8-2, which returns the custom fields for Anthony Grosse.

Listing 8-2. Shredding a Single JSON Document

USE WideWorldImporters
GO

DECLARE @CustomFields NVARCHAR(MAX) ;

230

CHAPTER 8 SHREDDING JSON DATA

SET @CustomFields = (
SELECT CustomFields
FROM Application.People
WHERE FullName = 'Anthony Grosse'
) 5
SELECT *
FROM OPENJSON(@CustomFields) ;

The results of this script are illustrated in Figure 8-2.

g Results @i Messages

key value type
1 i Otherlanguages | ['Croatian”,"Dutch”."Bokmal"] 4
2 HireDate 2010-07-23700:00:00 1
3 Title Team Member 1
4 PrimarySalesTemtory Mideast 1
5 CommissionRate 0N 1

€@ Query executed successfully.

Figure 8-2. Results of shredding a single JSON document

The key column contains the name of the name/value pair; the value
column contains the value of the name/value pair; and the type column

indicates the data type. Table 8-1 details the data types that can be
returned.

231

CHAPTER 8 SHREDDING JSON DATA

Table 8-1. Data Types

Data Type ID Data Type
1 String

2 Number

3 Boolean
4 Array

5 Object

Shredding a Column

But what if we wanted to shred an entire column? The OPENJSON()
function only accepts a single JSON object, so we could not pass in values
from multiple rows. Instead, we would have to use the OUTER APPLY
operator against the table.

The OUTER APPLY operator applies a function to every row in a result
set. If the function returns a NULL value, the row will be included in the
result set. This contrasts with the CROSS APPLY operator, which also applies
a function to every row in a result set but omits the row, if the applied
function returns NULL.

The query in Listing 8-3 demonstrates how to use the OUTER APPLY
operator against the Application.People table, to shred the CustomFields
document.

Listing 8-3. Using OUTER APPLY with OPENJSON()

USE WideWorldImporters
GO

SELECT PersonID, FullName, CustomFields, JSON.*
FROM Application.People
OUTER APPLY OPENJSON(CustomFields) JSON ;

232

CHAPTER 8 SHREDDING JSON DATA

Partial results from this query are shown in Figure 8-3.

B Resuts Gl Messages
PemoniD Fulllame CusonFisids ey value toe

1 [Dets Comversonrly HULL NUL WL HULL
AT s Wosdonck { Otwrlarguagee™ [Polsh™. Thinese™."Jacaress™] “HiDate™ "2006-04-15TOC-00-00". Tele™ " Team Mestr™ “FimanyS.. Otherlanguages [Polh™ CThiness™"Japanem] 4

12 Kana Woadcock: {7 1 o™ “2006-04- 19TO0-00-00", "Tiele ™" Team Merbear™ “PrmanyS . Hmlisle. 2008-04-19T00-00-00 1

4 2 s Woodcock "~ 2006-04- 19TO0-00.00", Tike . Team Memter" “PamaryS.. Tde Team Memtce: 1

8 |2 Koy Wosdcock " 2008 04 19TO000 00" Teke™ Team Membar” “Pamany5.. PrmieySalesTestory Plang 1

§ 2 s Wosdcock " 200604 1ITOO-00-00", Tl ™ Team Mesbar™ "Frimary5.. Commissionfiate 0w 1

T3 Tils™"Toam Mombar™, “PrmarySafes Taston™ "New England™"_. Ctherlanguages | 4

1] S ¥ " Team Member™,“Prmary Sales Temtory™ “New England™,"_. HreDite 201203:05T00.00:00 1

9 3 Hugon Qraicw {W 0 "HeeOate™ 7201203 05T00 00007, Tile™. " Team Mermber”™."Pemary Saies Tomtony™ "New England”™ T Toam Momter 1

w o3 . [“HeaDiste” a CO00"Tel™ Taam Marsba” “PrimavySaiea Tamsony” “Hew Frgiand™" PrimarySaleeTamsry Mw Engiand 1

n 3 O { Ol 01 “HreOste™ Q0-05T00 00:00". “Titke™“Team Merber”, “Prmary Sabes Temtory™ “New England”, Commssone 182 1

12 4 babela Rugo { Ontwerlarguages™. [Tusiosh”,“Sovenian] ,“HireDate ™ "2010.03- 24 T00:00.007, Tide™ Team Member™) Cthelanguages [Tuosh™ " Sevenion] 4

- saala Fugp | Tt aeguinges™ [Tistish™ "Serverian"] “HeeOnta™ 201003 24700000 " Tela™ " Taaes Mernser™) HrsDte 2010.08:24T0000:00 1

Mo sbals Fugp { Dbl aruages™ [Tiskier™ " Sovarian’] “HisDate™ 2010032400000 " Teia™Taaes Marriser™) Tela Tam Martar '
L Eva Murden { "OtherLanguages™. ["Lthuanian"] ,“HreDate™"2012.01-22T00.00.00" "Tile ™ “Team Member) Dtherlanguages [Mithusnan] 4

% Eva Murden { OherLarguages™: [Lthuaran™] “HreDate™"2012.01- 22700 0000 "Tale™ “Team Member) HreClate. 201201 22T0000:00 1

” Fun Murden { Dot argrimgee™ [Letuarinn™] “HraDste™ 20120127700 000" "Tele™ “Team Marber) Tl Tanrn Marta 1 -
) Chuery exccuted success! fully. DATATYPES (140 TM) DATATYPES: 2 o000 118 sows

Figure 8-3. Results of using OUTER APPLY with OPENJSON()

You will notice that the results from the Application.Person table are
duplicated for each row returned from the OPENJSON() function. This is
known as a Cartesian product.

Tip If we had used CROSS APPLY instead of OUTER APPLY, the
results for PersonID 1 would have been omitted.

To turn this data into columns, to avoid rows being duplicated, you
could use the PIVOT operator. The PIVOT operator works by rotating
unique values from a column into separate columns. This could also be
described as changing rows to columns. It will then perform aggregations
on remaining columns, as required. The same could be achieved by using
multiple CASE statements, but the PIVOT operator is far more efficient.

The syntax of the PIVOT operator has an outer query, followed by two
subqueries. The first subquery contains the base query, while the second
contains the pivot specification. Because our values are often textual, and
aggregation isn’t appropriate, we will use the MAX () aggregate function.
This is demonstrated with the query in Listing 8-4.

233

CHAPTER 8 SHREDDING JSON DATA

Listing 8-4. Using PIVOT with OPENJSON()

USE WideWorldImporters
GO

SELECT
PersonID
, FullName
[OtherLanguages]
[HireDate]

, [Title]
[PrimarySalesTerritory]
[CommissionRate]

FROM (

SELECT

PersonID
, FullName
, JSON.[Key] AS JSONName
, JSON.value AS JSONValue

FROM Application.People

OUTER APPLY OPENJSON(CustomFields) JSON

) Src

PIVOT

(
MAX (JSONValue)

FOR JSONName IN ([OtherLanguages], [HireDate],

[PrimarySalesTerritory], [CommissionRate])
) pvt ;

234

[Title],

CHAPTER 8 SHREDDING JSON DATA

The partial results of this query can be seen in Figure 8-4.

BE Rests Gl Messages
PersoniD FullName OcherLanguages HreDate Title PrmarySalesTemtory CommissionRate
1 [A777] Data Conversion Ony NULL HULL NULL HULL NULL
2 2 Kayla Woodcook ["Polsh”™,"Chinese”™ “Japanese”] 2008-4-19T00.00:00 Team Member Plains 0%
3 3 Hudsan Onslow 1] 20120305T00-00-00 Team Mamber New England 382
4 4 Isabela Rupp [Turkish™." Sevenian"] 2010-08-24T000000 Team Member NULL NULL
5 5 Eva Murden ["Lithuanian”] 201201-22T00:00:00 Team Mamber NULL NULL
[[Sophia Hinton ["Swedish"] 200705 147000000 Team Member Scutheast 455
7 7 Amy Trefl [*Slovak","Spanish”."Polsh”] 200502-15T00:00:00 Team Mamber Southeast 058
g 8 Anthorry Grosse [Croatian”."Dutch”,"Bokmal™] 201007-23T00:00:00 Team Member Mideast on
3 9 Alica Fainowna] 2007-1207T000000 Gensral Manager NULL NULL
0 10 Steds Rosenhain [Dutch”,Firrush™."Lehuarian™] 2007-11-17T00:00:00 Warshouse Supsrvisor NULL NULL
non Ehan Orsiow] 20111217T000000 Warshouse Supervisor NULL NULL
” 12 Herry Fodonge ["Greek™."Sovak"] 200303-18T0000:00 Team Member NULL NULL
B B Hudson Holinwth ["Croatian’] 2010-11:27T000000 Team Meber New England 024
14 4 Ly Code ["Firnish”"Buigarian”] 201006-06TO0-00:00 Team Mamber Scutheast 1%
515 Taj Shand [Aeabic™ "Graek'] 200503-14T000000 Manager Far West 25
% 16 Archer Lamble [Greek™] 200305-13T00-0000 Team Member Plains 182
7" Per Koch [Rommian® ‘Fotuguese’) 2011015700000 Marager NULL NULL
1B 1B Kt Darwin ["Estonian”,"Romanian"] 200807-12T00-00:00 Team Member NULL NULL
" n Jai Shand ["Frnish” "Dutch™] 2011-11-13T00:00:00 Team Mamber NULL NULL
2 20 Jack Potler [Arabic™] 200505-29T00.00:00 General Manager Seutheast 357
© Query executed successhully. DATATYPES (14.0RTM) | DATATYPES\Administrato... Wil

Figure 8-4. Results of using PIVOT with OPENJSON()

The limitation of using this approach is that you must know the name
of each key in the JSON document before writing the query. If any key
names are missed, or added later, the data will not appear in the result set.

This can be particularly challenging, as JSON documents cannot be bound
to a schema.

Dynamic Shredding Based on Document Content

The way to resolve the issue of not knowing the document contents at
development time is to use a dynamic PIVOT. This involves using dynamic
SQL to define the current list of JSON keys to pivot before the query is run.
This technique is demonstrated in Listing 8-5.

Tip QUOTENAME () is a system function that delimits a value by
wrapping it in square brackets.

235

CHAPTER 8 SHREDDING JSON DATA

Listing 8-5. Using Dynamic PIVOT with OPENJSON()

DECLARE @Columns NVARCHAR(MAX) ;
DECLARE @SQL NVARCHAR(MAX) ;

SET @Columns = ";

SELECT @Columns += ", p.' + QUOTENAME(JSONName)
FROM (
SELECT DISTINCT
JSON. [Key] AS JSONName
FROM Application.People p
CROSS APPLY OPENJSON(CustomFields) JSON
) AS cols ;

SET @SQL =
"SELECT
PersonID
, FullName
, '+ STUFF(@Columns, 1, 2, ") + '
FROM
(
SELECT
PersonID
, FullName
, JSON.[Key] AS JSONName
, JSON.value AS JSONValue
FROM Application.People
OUTER APPLY OPENJSON(CustomFields) JSON
) AS src
PIVOT

236

CHAPTER 8 SHREDDING JSON DATA

MAX(JSONValue) FOR JSONName IN ('
+ STUFF(REPLACE(@Columns, ', p.[', ',["), 1, 1, ")
+")

) AS p ;'

EXEC (@SQL) ;

OPENJSON() with Explicit Schema

When using OPENJSON() with an explicit schema, you are able to provide
control over the format of the result set that is returned. Instead of a three-
column result set, a column will be returned for every column that you
have specified in the WITH clause. You can also specify the data type of each
column. These data types are T-SQL data types, not JSON data types, so
types such as DATE or DECIMAL can be specified. For example, consider the
script in Listing 8-6.

Listing 8-6. Using OPENJSON() with an Explicit Schema
DECLARE @CustomFields NVARCHAR(MAX) ;

SET @CustomFields =
(
SELECT

CustomFields
FROM Application.People
WHERE PersonID = 2

)

SELECT *
FROM OPENJSON(@CustomFields)
WITH (

237

CHAPTER 8 SHREDDING JSON DATA

HireDate DATETIME2
, Title NVARCHAR(50)
, PrimarySalesTerritory NVARCHAR(50)
, CommissionRate DECIMAL(5,2)

) 5
This query returns the results shown in Figure 8-5.
BEH Results @i Messages

HireDate Title PrimarySalesTemtory CommissionRate
1 [20080419 00:00:00.0000000 | Team Member ~Plains 058

@ Query executed successfully.

Figure 8-5. Results of using OPENISON() with an explicit schema

A slight complexity arises when one of the columns returned is a JSON
object. For example, consider the query in Listing 8-7, which adds the
OtherLanguages column to the query. As there is no specific JSON data type,
we will use NVARCHAR (MAX), as it can be stored as NVARCHAR (MAX) in a table.

Listing 8-7. Adding a JSON Column
DECLARE @CustomFields NVARCHAR(MAX) ;

SET @CustomFields =

(
SELECT

CustomFields
FROM Application.People
WHERE PersonID = 2

)

238

CHAPTER 8 SHREDDING JSON DATA

SELECT *
FROM OPENJSON(@CustomFields)
WITH (
OtherLanguages NVARCHAR(MAX)
, HireDate DATETIME2
, Title NVARCHAR(50)
, PrimarySalesTerritory NVARCHAR(50)
, CommissionRate DECIMAL(5S,2)
)

This query returns the results shown in Figure 8-6.

BH Resuts 2§ Messages

OH'- _HireDate Title PrimarySalesTemtory CommissionRate
2008-04-19 00:00:00.0000000 Team Member Plains 0.98

@ Query executed successfully.

Figure 8-6. Results of adding a JSON column

So why has the OtherLanguages column returned NULL? We know that
the column exists, and that it contains data for PersonID 2, owing to the
previous examples in this chapter. When returning a JSON object from
OPENJSON(), we must use additional syntax in the WITH clause, to specify
that the NVARCHAR actually represents a JSON object, as demonstrated in
Listing 8-8.

Listing 8-8. Correctly Returning a JSON Array or Object
DECLARE @CustomFields NVARCHAR(MAX) ;

SET @CustomFields =

(

239

CHAPTER 8 SHREDDING JSON DATA

SELECT

CustomFields
FROM Application.People
WHERE PersonID = 2

) 5
SELECT *
FROM OPENJSON(@CustomFields)
WITH (
OtherLanguages NVARCHAR(MAX) AS JSON
, HireDate DATETIME2
, Title NVARCHAR(50)
, PrimarySalesTerritory NVARCHAR(50)
, CommissionRate DECIMAL(5,2)
) 5

The script will now return the results that we expect, as shown in Figure 8-7.

EE Results B Messages
OtherLanguages HireDate Title PrimarySalesTemtory CommissionRate
1 | ["Polish” "Chinese"."Japanese”] | 2008-04-19 00:00:00.0000000 Team Member Plains 0.98

@ Query executed successfully.

Figure 8-7. Correctly returning JSON data

When you must shred multiple rows, an explicit schema can also be
specified, when using the OUTER APPLY operator. Remember that the OUTER
APPLY operator will not remove rows that return NULL values, in the way
that CROSS APPLY does. This is demonstrated in Listing 8-9.

240

CHAPTER 8 SHREDDING JSON DATA

Listing 8-9. Using an Explicit Schema with OUTER APPLY

SELECT
PersonID
, FullName
> JSON.*
FROM Application.People
OUTER APPLY OPENJSON(CustomFields)
WITH (
OtherLanguages
NVARCHAR (MAX) AS JSON
, HireDate DATETIME2
, Title NVARCHAR(50)
, PrimarySalesTerritory
NVARCHAR (50)
, CommissionRate
DECIMAL(5,2)
) JSON ;

As you can see from the partial results in Figure 8-8, some of the need-
to-pivot data has been eliminated. The issue remains, however, that you
must know every possible key in the JSON document before the query is
written. Therefore, if there is not a discrete set of possible values, you may
still be required to use dynamic SQL.

241

CHAPTER 8 SHREDDING JSON DATA

[Resuts Gl Messages
PemonD_ Fulbiame OtherLanguages HireDate Title PrimarySalesTemtory - CommissionRate

1 [T | DetaConversonOny NULL NULL NULL NULL NULL

2 2 Kayla Woedeock [Poleh”,"Chinese","Jepanese”] 2008-04-13 00:00:00.0000000 Team Member Plans 038

3 3 Hudsan Onslow 0 2012-03-05 00:00:00.0000000 Team Member New England 362

4 4 Isabefia Rupp [Turkish™."Slovenian™] 2010-08-24 00:00:00.0000000 Team Member NULL NULL

5 5 Eva Muirden ["Lithuanian] 2012-01-22 00:00:00.0000000 Team Member NULL NULL

E [Sophia Hinton ["Swedish™] 2007-05-14 00:00:00.0000000 Team Member Southeast 455

7 7 Ay Trefl ["Slovak","Spanish","Polish”] 2005-02-15 00:00:00.0000000 Team Member Southeast 058

B 8 Arthony Grosse ["Croatian™,"Dutch™,"Bokmal”] 2010-07-23 00:00-00.0000000 Team Member Mideast on

§ 5 HAiica Fatnowna 0 20071207 00:00-00.0000000 General Manager NULL NULL

0 10 Stella Roserhain [Dutch”,"Finnish”,"Lithuanian™] ~ 2007-11-17 00:00-:00.0000000 Warshouse Supervisor NULL NULL

n M Ethan Onslow i} 20111217 00:00:00.0000000 Warshouse Supervisor NULL NULL

2 n Heney Fodonge [Greek"."Slovak"] 2005-03-18 00:00:00.0000000 Team Member NULL NULL

@ Query executed successfully. DATATYPES (14.0 RTM) DATATYPES\Administ

Figure 8-8. Results of using an explicit schema with OUTER APPLY

OPENJSON() with Path Expressions

As well as the use of explicit schema, OPENJSON() also supports JSON path
expressions. A path expression allows you to reference specific properties
within a JSON document. For example, consider the JSON document in
Listing 8-10.

Tip You may recognize this document, as we created it in Chapter 7.

Listing 8-10. Sales Orders with Root Node
{

"SalesOrders": [

{
"OrderID": 72646,

"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18"

}s

242

CHAPTER 8 SHREDDING JSON DATA

{
"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19"
b
{
"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20"
b
{
"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24"
}

If we used a basic OPENJSON() statement against this document, it would
return the entire SalesOrders array, as partially shown in Figure 8-9.

5 Feets ol Massages

ey vae e
1 [SSSORERRN | OwedDTZE, TustomelD: 0080 SsemencPemonil 1, Ouelate” IGOSU), | OuedD" 7278, TitomerD" 160, Ssespencn_ 4
© Cuery executed successtily DATATYPES (M0 ETM) | DATATYPE 020H0 1 rows

Figure 8-9. Results of basic OPENISON()

243

CHAPTER 8 SHREDDING JSON DATA

If we were to use a PATH statement, however, we could choose to only
return the nth item in this array. This would drastically alter the results set,
as OPENJSON() would be able to map each item within the array element
to a relational column, meaning that a row for each key within the element
would be returned, instead of a single row containing a JSON document,

as shown in Figure 8-10, which contains the results of shredding the first
array element (OrderID 72646).

EE Results @i Messages

key value type
1 i OnderlD | 72646 2
2 CustomerlD 1060 2
3 SalespersonPersonlD 14 2
4 OrderDate 20160518 1

@ Query executed successfully.

Figure 8-10. Results of shredding a single array element

So, let’s look at how we can get to this result. First, we must understand
that path expressions can be run in one of two modes: strict or lax. If you
run a path expression in lax mode, and the path expression contains an
error, OPENJSON() will “eat the error” and return an empty result set. If
you use strict mode, however, if the path expression contains an error,
OPENJSON() will throw an error message.

We now must understand the elements of the path itself. First, we use a $
to specify the context, followed by dot-separated, nested key names. Finally,
we specify the array element number in square brackets. So, to produce the
results in Figure 8-10, we would use the query in Listing 8-11.

244

CHAPTER 8 SHREDDING JSON DATA

Listing 8-11. Using Path Expressions to Return a Single Array Element

DECLARE @JSON NVARCHAR(MAX) ;

SET @ISON = '{
"SalesOrders": [
{

"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18"

})

{
"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19"

}’

{
"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20"

}s

{
"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24"

}

245

CHAPTER 8 SHREDDING JSON DATA

SELECT *
FROM OPENJSON(@JSON, 'lax $.SalesOrders[o0]') ;

You will notice, in this script, that after passing in the JSON document,
we use the lax (or, alternatively, strict) keyword to specify the mode we will
use. After a space comes the path expression itself. Here, we start with $, to
set the context, and then point to the SalesOrders key. We then use square
brackets to specify the array element that we wish to use.

Tip JSON path expressions always use zero-base arrays.

Shredding Data into Tables

You can now imagine how simple looping techniques could be used to
shred each element within an array. For example, consider the script
in Listing 8-12. This script will shred each of the array elements into a
temporary table called Orders.

Listing 8-12. Shredding Each Element into a Temporary Table

DECLARE @JSON NVARCHAR(MAX) ;

SET @ISON = '{
"SalesOrders": [
{

"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18"

b

246

CHAPTER 8 SHREDDING JSON DATA

"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19"

"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20"

"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24"

CREATE TABLE #Orders

(

OrderID INT,
CustomerID INT,
SalespersonPersonID INT,
OrderDate DATE

247

CHAPTER 8 SHREDDING JSON DATA
DECLARE @ArrayElement INT = O ;

DECLARE @path NVARCHAR(MAX) = 'lax $.SalesOrders[' + CAST(
@ArrayElement AS NVARCHAR) + ']' ;

WHILE @ArrayElement <=3
BEGIN
INSERT INTO #Orders (OrderID, CustomerID,
SalespersonPersonID, OrderDate)
SELECT
OrderID
, CustomerID
, SalespersonPersonID
, OrderDate
FROM OPENJSON(@JSON, @Path)
WITH(OrderID INT, CustomerID INT, SalespersonPersonID
INT, OrderDate DATE) ;

SET @ArrayElement = @ArrayElement + 1 ;

SET @path = 'lax $.SalesOrders[' + CAST(@ArrayElement
AS NVARCHAR) + ']' ;
END

SELECT * FROM #Orders ;

DROP TABLE #Orders ;

248

CHAPTER 8 SHREDDING JSON DATA

EH Results @l Messages

1 172646 ;1060 14 2016-05-18
2 72738 1080 14 20160519
3 72916 1060 6 2016-05-20
4 73081 1060 8 20160524

@ Query executed successfully.

Figure 8-11. Results of shredding multiple array elements

The final SELECT statement in this script produces the results
illustrated in Figure 8-11.

Caution While | have used a WHILE loop in this example, | have
done so only because it provides a clear and easy example of how
path expressions can be used. | would never use a WHILE loop or

CURSOR in production code. There is always a way to achieve the

same results, using a set-based approach.

Summary

JSON data can be shredded into tabular results sets by using the OPENJSON()
function. OPENJSON() can be used either with or without an explicit

249

CHAPTER 8 SHREDDING JSON DATA

schema. When a schema is not explicitly defined, OPENJSON(), using a WITH
clause, returns a standard row set, detailing the key (name), value, and
JSON data type ID of each node in the document.

When an explicit schema is supplied, OPENJSON() will return a
formatted result set, which contains a column for each specified in the
WITH clause. Using an explicit schema avoids the need to pivot the data
when you know every node in the document at development time. If the
list of columns is not discrete, however, dynamic SQL will be required, to
build a list of possible results before processing.

OPENJSON() also supports JSON path expressions. Passing path
expressions to the function allows you to navigate to a specific item within
an array, meaning that you can shred data to a more granular level. For
example, instead of shredding an array of JSON objects into a table, you
can use looping methodologies to shred the contents of each array element
into relational data.

250

CHAPTER 9

Working with the
JSON Data Type

In this chapter, I will discuss the T-SQL functions that allow developers to
query JSON data. I will then discuss how JSON data can be indexed.

Querying JSON Data

SQL Server has introduced the JSON_VALUE (), JSON_QUERY(), JSON_MODIFY(),
and ISJSON() functions to help developers interrogate and interact with
JSON data. The following sections will discuss each of these functions.

Using ISJSON()

Because JSON data is stored in NVARCHAR (MAX) columns, as opposed to
using its own data type, it is very useful to ensure that a tuple contains
avalid JSON document, before calling a JSON function against it. The
ISJISON() function will evaluate a string to check if it is a valid JSON
document. The function will return a value of 1 if the string is valid JSON
and 0 if it is not. Therefore, a common usage of the function is within an IF
statement. For example, consider the query in Listing 9-1.

© Peter A. Carter 2018 251
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_9

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Listing 9-1. Incorrectly Formatted JSON

DECLARE @JSON NVARCHAR(MAX) ;

SET @ISON = '{"I am not:"Correctly formatted"}' ;

SELECT *
FROM OPENJSON(@JSON) ;

Because the name of the key is missing a closing double quotation

mark, the query will fail, with the error shown in Figure 9-1.

BE Resuts (¥ Messages

Mag 13605, Level 1€, Sctate 4, Line §

100% -
1. Query completed with errors.

JSON text is not properly formatted. Unexpected character 'C'

found at position 12.

DATATYPES (14.0 RTM) DAl

Figure 9-1. Error thrown by invalid JSON

Instead of our script failing, we could instead use the ISJSON()

function in an IF statement, as demonstrated in Listing 9-2.

Listing 9-2. Use ISJSON() in an IF Statement

DECLARE @JSON NVARCHAR(MAX) ;

SET @ISON = '{"I am not:"Correctly formatted"}' ;

IF ISISON(@ISON) = 1

252

CHAPTER9 WORKING WITH THE JSON DATA TYPE

BEGIN

SELECT *

FROM OPENJSON(@JSON) ;
END

This time, the script will complete without errors, as the query against
the OPENJSON() function will never run.

Tip A full description of the usage of OPENJSON() can be found in
Chapter 8.

The ISISON() function could also be used in the WHERE clause of a
SELECT statement. For example, consider the script in Listing 9-3. The
script creates a simple temporary table and inserts two values into an
NVARCHAR (MAX) column. One of the values is valid JSON data, and the other
is not. The script then calls the OPENJSON() function against the column.

Listing 9-3. Filter Results That Are Not JSON
--Create a temp table

CREATE TABLE #JsonTemp

(
JSONData NVARCHAR (MAX)

) 5
--Populate temp table with one JSON value and one non-JSON value

INSERT INTO #JsonTemp
VALUES ('{"I am JSON":"True"}'),
("I am JSON - False') ;

--Call OPENJSON() against only rows where data is JSON

253

CHAPTER9 WORKING WITH THE JSON DATA TYPE

SELECT JSON.*

FROM #JsonTemp Base

OUTER APPLY OPENJSON(Base.JSONData) JSON
WHERE ISJSON(Base.J]SONData) = 1 ;

--Drop temp table
DROP TABLE #JsonTemp ;

Because the WHERE clause removes any rows that do not contain valid
JSON data, before the OPENJSON() function is applied, the script completes
successfully and returns the results shown in Figure 9-2.

ER Resuts 2 Messages

key value type
1 {1amJSON : Tue 1

@) Query executed successfully.

Figure 9-2. Results of filtering non-JSON data

Using JSON_VALUE()

The JSON_VALUE() function can be used to return a single scalar value
from a JSON document. The function accepts two parameters. The first
parameter is the JSON document, from which to retrieve the data. The
second is a path expression to the value you wish to return. As described in
Chapter 8, when using path expressions with OPENJSON(), path expressions
can be used in either lax mode or strict mode. When lax mode is used, if

254

CHAPTER9 WORKING WITH THE JSON DATA TYPE

there is an error in the path expression, NULL results will be returned, and
no error will be raised. When used in strict mode, if there is an error in the
path expression, an error will be thrown.

The value returned is always of data type NVARCHAR (4000). This means
that if the value exceeds 4000 characters, JSON_VALUE () will either return
NULL or throw an error, depending on whether lax mode or strict mode has
been used.

To look more closely at the JSON_VALUE () function, let’s consider
the Warehouse.StockItems table in the WideWorldImporters database.
The CustomFields column of this table contains a JSON document that
includes a key called Tags, which has a value of an array, containing
product tags.

The script in Listing 9-4 will first populate a variable with the content
of CustomFields for a single product. Subsequently, it will check that the
variable contains a valid JSON document, by using the ISJSON() function,
before passing the document into the JSON_VALUE () function.

The path expression of the JSON_VALUE () function starts by
specifying that we wish to use the path expression in lax mode. It then
uses a $ to represent the context, before using a dot-separated path to
the node we wish to extract. Because the Tags node is an array, and the
JSON_VALUE() function can only return a scalar value, we will use square
brackets to denote the element within the array that we would like to
extract. This is mandatory syntax, even if there is only a single element in
the array.

Tip The array is always zero-based.

255

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Listing 9-4. Using]SON_VALUE () Against a JSON Document
DECLARE @JSON NVARCHAR(MAX) ;

--The CustomFields column for StockItem ID 61 contains the
following JSON document:

--'{ "CountryOfManufacture": "China", "Tags": ["Radio
Control","Realistic Sound"], "MinimumAge": "10" }'

SET @JSON = (SELECT CustomFields FROM Warehouse.StockItems
WHERE StockItemID = 61) ;

IF ISJSON(@ISON) = 1
BEGIN

SELECT JSON_VALUE(@Json, 'lax $.Tags[0]") ;
END

This script produces the results illustrated in Figure 9-3.

B Results @'i Messages

(No column name)
1 | Radio Control

@ Query executed successfully.

Figure 9-3. Results of using JSON_VALUE() against a JSON document

So, what if we want to use the JSON_VALUE () function against a column
in a table? Where it is a scalar function, we cannot use OUTER APPLY or
CROSS APPLY. Instead, we must include it in the SELECT list of our query.
This is demonstrated in Listing 9-5.

256

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Listing 9-5. Using JSON_VALUE() in a SELECT List

USE WideWorldImporters
GO

SELECT
StockItemName
, JSON_VALUE(customfields, 'lax $.Tags[0]")
FROM Warehouse.StockItems ;

You will notice that instead of passing in a variable, we simply pass in
the name of the column that contains the JSON document. Partial results
of this query can be found in Figure 9-4.

BH Resuts [Messages
StocktemName (No column name)
1 | USB missile launcher (Green) ! 1USB Powered
2 USB rocket launcher (Gray) USBE Powered
3 Office cube periscope (Black) NULL
4 USB food flash drive - sushi roll 32GB
5 IUSB food flash drive - hamburger 16GB
6 USB food flash drive - hot dog 32GB
7 IUSB food flash drive - pizza slice 16GB
8 USB food flash drive - dim sum 10 drive variety pack 32GB
9 USB food flash drive - banana 16GB
10 USBfood flash drive - chocolate bar 32GB
11 USB food flash drive - cookie 16GB
12 USB food flash drive - donut 32GB
13 USBfood flash drive - shrimp cocktail 16GB
14 USB food flash drive - fortune cookie 32GB
15 USB food flash drive - dessert 10 drive variety pack 16GB
16 DBA joke mug - mind if | join you? (White) Comedy
17 DBAjoke mug - mind if | join you? (Black) Comedy
@ Query executed successfully. DATATYPES (14.0 RT|

Figure 9-4. Results of using JSON_VALUE() against a table

257

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Our original JSON document referred to Stock Item ID 61, which is a
remote-controlled car. We could also use JSON_VALUE in the WHERE clause
of our query, to filter the result set, so that only rows in which the first tag
contains the value Radio Control are returned. This is demonstrated in
Listing 9-6, in which we have also enhanced the query, to ensure that only
valid JSON documents are returned, by using the ISISON() function.

Listing 9-6. Using JSON_VALUE () in a WHERE Clause

USE WideWorldImporters
GO

SELECT
StockItemName
» JSON_VALUE(CustomFields, 'lax $.Tags[0]') AS Tago
FROM Warehouse.StockItems
WHERE JSON VALUE(CustomFields, 'lax $.Tags[0]') = 'Radio Control’
AND ISJSON(CustomFields) = 1 ;

The results of this query are illustrated in Figure 9-5.

EH Resuts Rl Messages
Stock temName Tagl
1 i RCtoy sedan car with remote control (Black) 1/50 scale ! Radio Control
2 RC toy sedan car with remote control (Red) 1/50 scale Radio Control
3 RC toy sedan car with remote control (Blue) 1/50 scale Radio Control
4 RC toy sedan car with remote control (Green) 1/50 scale Radio Control
5 RC toy sedan car with remote control (Yellow) 1/50 scale Radio Control
6 RC toy sedan car with remote control (Pink) 1/50 scale Radio Control
7 RC vintage American toy coupe with remote control (Red) 1/50 scale Radio Control
8 RC vintage American toy coupe with remate control (Black) 1/50 scale Radio Control
S RC big wheel monster truck with remote control (Black) 1/50 scale Radio Control
@ Query executed successfully. DATATYPES (14.0

Figure 9-5. Results of using JSON_VALUE() in a WHERE clause

258

CHAPTER9 WORKING WITH THE JSON DATA TYPE

The third tag of remote-controlled car products denotes if the item
is vintage. There are two vintage cars in the product table. Therefore, in
Listing 9-7, we will further filter the result set to include only products for
which the third tag has a value of Vintage. We will also enhance the SELECT
list, to contain the first three tags in the array. Finally, we will change the
JSON_VALUE() functions in the WHERE clause, to use strict path expressions,
so that an error will result in the query failing.

Listing 9-7. Enhancing the Query

USE WideWorldImporters
GO

SELECT
StockItemName
, JSON_VALUE(CustomFields, 'lax $.Tags[0]') AS Tago
, JSON_VALUE(CustomFields, 'lax $.Tags[1]"') AS Tag1l
, JSON_VALUE(CustomFields, 'lax $.Tags[2]') AS Tag2
FROM Warehouse.StockItems
WHERE JSON_VALUE(CustomFields,'strict $.Tags[0]') = 'Radio Control’
AND JSON_VALUE(CustomFields,'strict $.Tags[2]") = 'Vintage'
AND ISISON(CustomFields) = 1 ;

Unfortunately, this time, even though the ISJSON() function is
ensuring that any non-valid JSON documents are not in the result set, the
query returns the error shown in Figure 9-6. This is because not all JSON
documents in the CustomFields column have a Tags key. From those that
do, not all documents have three tags. Therefore, the path expressions for
two JSON_VALUE () calls in the WHERE clause are not valid. Because we have
changed from lax mode to strict mode, the query fails.

259

CHAPTER9 WORKING WITH THE JSON DATA TYPE

EH Results B Messages
Msg 13608, Level 16, State 2, Line 5
Property cannct be found on the specified JSON path.

100% ~
! Query completed with errors. DA

Figure 9-6. Error thrown by the query

If we were to change back to lax mode path expressions, the query
would return the results displayed in Figure 9-7.

FH Results B Messages

StockltemMName Tagl Tagl Tag2
1 i RC vintage American toy coupe with remote control (Red) 1/50scale | Radio Control Realistic Sound ~ Vintage
2 RC vintage American toy coupe with remote control (Black) 1/50 scale Radio Control Realistic Sound Vintage

i @ Query executed successfully. DATATYPES (14.0 RTM) DATATYPE

Figure 9-7. Query results with lax mode path expressions

With SQL Server 2017 and later versions, it is also possible to passin a
path expression as a variable. Therefore, the query in Listing 9-8 will return
the same results as shown in Figure 9-7.

260

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Tip You must use SQL Server 2017 or later versions, to run the
query in Listing 9-8.

Listing 9-8. Using a Variable As a Path

USE WideWorldImporters
GO
DECLARE @Path NVARCHAR(MAX) = 'lax $.Tags[2]' ;

SELECT
StockItemName
, JSON_VALUE(CustomFields, 'lax $.Tags[0]') AS Tago
, JSON_VALUE(CustomFields, 'lax $.Tags[1]") AS Tagi
, JSON_VALUE(CustomFields,@Path) AS Tag2
FROM Warehouse.StockItems
WHERE JSON VALUE(CustomFields, 'lax $.Tags[0]') = 'Radio Control’
AND JSON_VALUE(CustomFields,'lax $.Tags[2]') = 'Vintage'
AND ISISON(CustomFields) = 1 ;

Using JSON_QUERY()

Unlike JSON_VALUE (), which returns a scalar value, JSON_QUERY() can

be used to extract a JSON object, or an array, from a JSON document.

For example, consider the script in Listing 9-9. The script uses the same
JSON document that we used in Listing 9-4, which extracted a single array
element from the Tags array for Stock Item ID 61. This time, however,
instead of extracting a single array element, we will extract the entire Tags
array. Because we are extracting the entire array, there is no need to specify
the array element number in square brackets, as we did when using JSON_
VALUE () against the document.

261

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Listing 9-9. Using JSON_QUERY () Against a JSON Document

DECLARE @JSON NVARCHAR(MAX) ;

--The CustomFields column for StockItem ID 61 contains the
following JSON document:

--'{ "CountryOfManufacture": "China", "Tags": ["Radio
Control","Realistic Sound"], "MinimumAge": "10" }'

SET @JSON = (SELECT CustomFields FROM Warehouse.StockItems
WHERE StockItemID = 61) ;

IF ISISON(@ISON) = 1
BEGIN

SELECT JSON_QUERY(@Json,'lax $.Tags') ;
END

The results of this script are illustrated in Figure 9-8.

EH Results @i Messages

{No column name)
1 i ["Radio Control","Realistic Sound"]

@) Query executed successfully.

Figure 9-8. Results of using JSON_QUERY() against a JSON document

262

CHAPTER9 WORKING WITH THE JSON DATA TYPE

As with JSON_VALUE(), if we want to use JSON_QUERY () against a
column in a table, we will use it in the SELECT list, as opposed to using
a CROSS APPLY or OUTER APPLY operator. The difference between JSON_
VALUE () and JSON_QUERY () is demonstrated in Listing 9-10. Here, we use
the same query as in Listing 9-7 but enhance it to include a column in the
result set that includes the whole Tags array, using JSON_QUERY ().

Listing 9-10. Using JSON_QUERY () in a SELECT List

USE WideWorldImporters
GO

SELECT
StockItemName
, JSON_VALUE(CustomFields, 'lax $.Tags[0]') AS Tago
, JSON_VALUE(CustomFields, 'lax $.Tags[1]"') AS Tag1l
, JSON_VALUE(CustomFields, 'lax $.Tags[2]"') AS Tag2
, JSON_QUERY(CustomFields,'lax $.Tags') AS TagsArray
FROM Warehouse.StockItems
WHERE JSON VALUE(CustomFields, 'lax $.Tags[0]') = 'Radio Control’
AND JSON_VALUE(CustomFields,'lax $.Tags[2]') = 'Vintage'
AND ISISON(CustomFields) = 1 ;

This query returns the results shown in Figure 9-9.

BB Resuts il Messages

StockhemName Tagl Tagl Tegz Tagshmay
1 [[FiC vintage Amenican oy coupe weh remols control (Red) 1/50scale | Rado Contml Realstic Sound Vintage ["Radio Control”,"Realistic Sound”,"Virtage]
2 RC vintage American toy coupe wih remote control (Black) 1/50scale Radio Control Realistic Sound Vintage [Radio Control”."Realistic Sound™. "Vintage™]

@ Query executed successfully. DATATYPES (14.0 RTM) | DATATYPES\Admini WideWorldlmg d

Figure 9-9. Results of using JSON_QUERY() in a SELECT list

263

CHAPTER9 WORKING WITH THE JSON DATA TYPE

The JSON_QUERY() function can also be used in a WHERE clause.
Consider the query in Listing 9-11, which has been rewritten, so that the
JSON_QUERY() function is used to filter out any rows in which the JSON
document does contain an empty Tags array. You will notice that the query
uses a mix of lax mode and strict mode.

Listing 9-11. Using JSON_QUERY () in a WHERE Clause

USE WideWorldImporters
GO

SELECT
StockItemName

, JSON_VALUE(CustomFields, 'lax $.Tags[0]') AS Tago

, JSON_VALUE(CustomFields, 'lax $.Tags[1]"') AS Tag1

, JSON_VALUE(CustomFields, 'lax $.Tags[2]') AS Tag2

, JSON QUERY(CustomFields, 'lax $.Tags') AS TagsArray
FROM Warehouse.StockItems
WHERE JSON QUERY(CustomFields, 'strict $.Tags') <> '[]’

AND ISISON(CustomFields) = 1 ;

If only the document context ($) is passed to the path expression,
the entire JSON document will be returned. It is also worth noting that
avariable can be used to pass the path, from SQL Server 2017 onward,
just as it can for OPENJSON() and JSON_VALUE (). Both these concepts
are demonstrated in Listing 9-12, which uses a variable to pass only the
document context, as the path expression, to an additional column in the
result set.

Tip You must be running SQL Server 2017 or later versions to run
the query in Listing 9-12.

264

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Listing 9-12. Using Path Variables and Document Context

USE WideWorldImporters

GO

DECLARE @Path NVARCHAR(MAX) = '$' ;

SELECT

)

)

StockItemName

JSON_VALUE(CustomFields, 'lax $.Tags[0]') AS Tago
JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tagi
JSON_VALUE(CustomFields, 'lax $.Tags[2]') AS Tag2
JSON_QUERY(CustomFields, 'lax $.Tags') AS TagsArray
JSON_QUERY(CustomFields, @Path) AS EntireDocument

FROM Warehouse.StockItems
WHERE JSON_QUERY(CustomFields, 'strict $.Tags') <> '[]"
AND ISISON(CustomFields) = 1 ;

The partial results of this query can be seen in Figure 9-10.

[0 Rewite G Messages
Stockhemblame Togl Tag! Tog2 Tegahmay ErtreDocument

1 [USBrsselncherGreer) | USBRowewd NULL HULL [USE Powend] { CourtnOlMansacture™ “China’. “Tags™: ['USB Pomered™]}
2 USE mcket luncher Gray} USBPowemd NULL HULL [USE Powend] | "CountryCfManfactire™: "China”. “Tags™; ["USE Powensd™ |
3 USBfesdflath dive -sushi el 3268 USBFowersd NULL ["X2GE™USB Powered] | "CountryOfManfacture™ “Japan”, “Tags™ [3268", USE Powered']]
4 5B feod flash dive - hamburger 16GE USBPoweed NULL [T15GE"USE Powered™] | "CountnyOfManufacture™ “dapan”, “Taga™: 165687, "USE Powered]|
5 USBfoodflash dive -hot dog 3268 USBFowersd NULL [2GE™USB Fowered] | "Countn/OfManfactune™ “Japan”, “Tags™ [12G8". USE Powered']]
6 USEfocd flash dive - pizea shes TEGE USH Powered NULL [16GE""USE Powered™] ["CountnyOfManudachure™ “Japan™. “Taga™ [16GE"."USE Powered]
T USBfoodflash dive -dmsum 10 deve vosety ... 12GB USBPowered NULL ["32GE™"USE Powered™] | "CountryOfManufacture™ “Japan”, “Tags™: [326B"."USE Powered'] |
& USBlood flash dive -banena 16GE USBPoweed HULL ['16GE""USE Powered™] | "CouninyOfMarndachre™ “dapan”, “Tags™ ["16GE"."USE Powered]]
3 USBfocdflash dive - chocointe bar Ge USBPoweed HULL ["32GE"LISE Powemd™] | "CountnyC¥Manufnctne™ “Japan”, “Tags™ [X2G8"."UUSE Powered™] |
10 USEfood flah dive - cookie 1668 USBPowend NULL [16GE"USE Fowered] | "CountnyOfMamfactre™ “Japen”, “Tags™ [1868","USE Powered']]
1 USE food flash dive - dont nGe USBPowsed HULL ["J2GE"USE Powsred™] | "CountnyOfManutactne™ “Japan”. “Taga™: ["2GB"."USE Powered] |
12 USBfood flsh dive - shemp cocktal 1658 USBFowersd NULL [18GE"USB Powered’] | "CourtryOfManfsctune™ “Japan”, “Tags™ ["16G8"."USE Powered']]
13 USEfood flath dive - fonune coskie nGe USB Powered NULL ["2GE""USE Powered™] ["CourtnyOfManudncture™: “Japan™. “Tage™ [J2G8""USE Powered]]
14 USBfoodflash dive - dessent 10 drive vanetyp... 16GE USE Fowered NULL [18GE","USB Powered™] | CountryOfManufactune™; “Japan™, Tags™: [166" USE Powered]
15 DBAjoke mug - mind £ | jon you? (Whae) Comedy NuLL NULL [Comedy] | "CountryOfManutscore™ "China”. “Tage™: ["Comedy]}
16 DBAjke mug -mind £ | jon you? (Black) Comedy NULL HULL [Comedy’) { "CountryOiManufacture™: "China”™. “Tags™: [Comedy™] }
17 DBAjoke mug - dasssssts (White) Comedy NULL NULL [Comedy’) | "CountryOfManufactues™; "Thina”, “Tags™ ["Comedy]}
18 DBAjke mug - dasssaata flack] Comedy NULL NULL [Comedy’] 1 "CountnyOfMonutoctre ™ "China™. “Taga™ [Cemedy]}

) Cuery evecuted successhully, DATATYPES (140 RTH) DATAT i

Figure 9-10. Results of using path variables and document context

265

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Using JSON_MODIFY()

So far, all the JSON functions that we have examined have allowed us to
interrogate JSON documents. The JSON_MODIFY() function, however, as its
name suggests, allows us to modify the contents of the JSON document. To
explain this further, let’s once again use the CustomFields JSON document
for Stock Item ID 61, as used in Listing 9-4 and Listing 9-9.

The script in Listing 9-13 will modify the second element of the Tags
array, so that the second element is updated to read 'Very Realistic
Sound'. The output of the function is the complete, modified document.

Listing 9-13. Updating a Value
DECLARE @JSON NVARCHAR(MAX) ;

--The CustomFields column for StockItem ID 61 contains the
following JSON document:

--'{ "CountryOfManufacture": "China", "Tags": ["Radio
Control","Realistic Sound"], "MinimumAge": "10" }'

SET @JSON = (SELECT CustomFields FROM Warehouse.StockItems
WHERE StockItemID = 61) ;

IF ISISON(@ISON) = 1

BEGIN
SELECT JSON_MODIFY(@Json,'lax $.Tags[1]', 'Very
Realistic Sound') ;

END

This script returns the results in Figure 9-11.

266

CHAPTER9 WORKING WITH THE JSON DATA TYPE

R Results BE Messages
(No column name)

1 :. { "CountryOfManufacture": “China", *Tags": ["Radio Control","Very Realistic Sound"], "MinimumAge”: “10" }

@ Query executed successfully.

Figure 9-11. Results of updating a value

You can see how the output from this function could be used
subsequently to update a row in a table containing a JSON document, as
demonstrated in Listing 9-14. Here, instead of passing in a variable as the
JSON document, we pass in the CustomFields column from the table.

Listing 9-14. Using MODIFY JSON() to Update a Row in a Table

USE WideWorldImporters
GO

UPDATE StockItems
SET CustomFields = JSON_MODIFY(CustomFields, 'lax
$.Tags[1]', 'Very Realistic Sound')

FROM Warehouse.StockItems

WHERE StockItemID = 61 ;

The MODIFY_JSON() function can also be used to add an element to an
array. Consider the query in Listing 9-15, which marks Stock Item ID 61
as being vintage, by adding an additional element to the Tags array. You
will notice that because we are adding an additional value to an array, as

267

CHAPTER9 WORKING WITH THE JSON DATA TYPE

opposed to updating an existing value, we have used the append keyword
at the beginning of the path expression. Note, too, that because we are
updating the array, rather than a single element, the array element in
square brackets is not included.

Listing 9-15. Adding an Additional Array Element

USE WideWorldImporters
GO

UPDATE StockItems
SET CustomFields = JSON_MODIFY(CustomFields, 'append lax
$.Tags', 'Vintage')

FROM Warehouse.StockItems

WHERE StockItemID = 61 ;

Let’s now use the query in Listing 9-16, to examine the updated record.

Listing 9-16. Examining the Updated Record

USE WideWorldImporters
GO

SELECT
StockItemName

, JSON_VALUE(CustomFields,'lax $.Tags[0]') AS Tago

, JSON_VALUE(CustomFields, 'lax $.Tags[1]") AS Tagi

, JSON_VALUE(CustomFields, 'lax $.Tags[2]') AS Tag2

, JSON_QUERY(CustomFields,'lax $.Tags') AS TagsArray
FROM Warehouse.StockItems
WHERE StockItemID = 61 ;

This query returns the results in Figure 9-12. You will notice that the
second array element now reads "Very Realistic Sound", and the array
now contains a third element, marking the product as vintage.

268

CHAPTER9 WORKING WITH THE JSON DATA TYPE

BR Resuts 2 Messages
StockkemMName Tagl Tagl Tag? TagsAmay
1 | RCtoy sedan car wth remote control (Green) 1/50scale : Radio Control Very Realisic Sound Vintage ["Radio Control”, "Very Realistic: Sound” "Vintage]

@ Query executed successfully. DATATYPES (14.0 RTM) | DATATYPES

Figure 9-12. Results of examining the modified row

As you might expect, the MODIFY _JSON() function can also be used to
delete data. This is achieved by updating a value with a NULL. For example,
imagine that marking Stock Item ID 61 as vintage was a mistake. We could
correct that mistake by using the query in Listing 9-17.

Listing 9-17. Deleting Data with MODIFY_JSON()

USE WideWorldImporters
GO

UPDATE StockItems
SET CustomFields = JSON_MODIFY(CustomFields,
"lax $.Tags[2]", NULL)

FROM Warehouse.StockItems

WHERE StockItemID = 61 ;

Rerunning the query in Listing 9-16 now returns the results shown in
Figure 9-13.

B Resuts Bl Messages
StockkemMame Tagl Tagl Tag2 Tagshmay
1 | RCtoysedan carwih remote conérol (Green) 1/... | Rado Control Very Realisic Sound NULL ["Radio Control”, Vesy Realistic Sound”nul]

) Query executed successfully. DATATYPES (14.0 RTM)

Figure 9-13. Results of reexamining the modified row

269

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Alternatively, we could delete the entire Tags array, by using the query
in Listing 9-18.

Listing 9-18. Deleting the Tags Array

USE WideWorldImporters
GO

UPDATE StockItems
SET CustomFields = JSON_MODIFY(CustomFields, 'lax
$.Tags",NULL)

FROM Warehouse.StockItems

WHERE StockItemID = 61 ;

The query in Listing 9-19 allows us to examine the modified JSON
document. You will notice that the Tags array no longer exists.

Listing 9-19. Examining the Modified Document

USE WideWorldImporters
GO

SELECT
StockItemName
, JSON_QUERY(CustomFields, 'lax $') AS EntireDocument
FROM Warehouse.StockItems
WHERE StockItemID = 61 ;

270

CHAPTER9 WORKING WITH THE JSON DATA TYPE

The results of this query are shown in Figure 9-14.

EH Results E]I Messages
StocktemName) _ EntireDocument
1 RC toy sedan car with remote control (Green) 1/ { "CountryOfManufacture™: “China”, “MinimumAge™: “10" }

@ Query executed successfully.

Figure 9-14. Examining the modified JSON document

Indexing JSON Data

When querying a table and filtering, grouping, or ordering by properties
within a JSON document, you can improve the performance of your
queries by indexing the data. Because JSON doesn’t have its own data
type, as XML does, there are no JSON indexes, as there are XML indexes.
Instead, to index JSON properties, you must create a computed column
that includes a JSON_VALUE () call, which mirrors the logic in the query you
are optimizing. You can then create an index on the computed column,
and SQL Server will use this index when optimizing the query.

Note Actual query performance depends on many factors, including
system hardware, and other resource constraints, such as other
queries that may be running simultaneously. The performance
analysis in this section is meant to illustrate potential impacts, but
performance should always be tested on your own servers, under
realistic workloads.

Before demonstrating this technique, let’s first take a baseline of query
performance against the Warehouse.Stockltems table. We will do this by
turning on TIME STATISTICS in our session, before running the query
that we are trying to optimize. Prior to this, however, we will first copy

271

CHAPTER9 WORKING WITH THE JSON DATA TYPE

the data from the StocklItems table to a new table. The reason for this is
twofold. First, the StockItems table already has a number of indexes, which
could potentially influence our results. The second reason is because the
Stockltems table is system-versioned with indexes. This means that when
we alter the table, to add computed columns, instead of a simple ALTER
TABLE script, we would be required to script out the data to a temp table,
drop and re-create both the table and the archive table, and then script

the data back in. This amount of code would distract from how to add a
computed column, which is the point of this exercise. This is demonstrated
in Listing 9-20.

Tip We use DBCC FREEPROCCACHE to drop any existing plans from
the plan cache. We then use DBCC DROPCLEANBUFFERS to remove
pages from the buffer cache that have not been modified. This helps
make it a fair test.

Listing 9-20. Creating a Performance Baseline

USE WideWorldImporters
GO

--Copy data to a new table

SELECT *
INTO Warehouse.NewStockItems
FROM Warehouse.StockItems

--Clear plan cache
DBCC FREEPROCCACHE

--Clear buffer cache

272

CHAPTER9 WORKING WITH THE JSON DATA TYPE

DBCC DROPCLEANBUFFERS

--Turn on statistics

SET STATISTICS TIME ON

SELECT

)
)
)

)

StockItemName

JSON_VALUE(CustomFields, 'lax $.Tags[0]') AS Tago
JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tagi
JSON_VALUE(CustomFields, 'lax $.Tags[2]') AS Tag2
JSON_QUERY(CustomFields, 'lax $.Tags') AS TagsArray

FROM Warehouse.NewStockItems

WHERE JSON_VALUE(CustomFields, 'lax $.Tags[0]"') = 'Radio Control' ;

)

The results in Figure 9-15 show that the query took 6ms to execute.

100 %

ER Results @]ﬁ Messages
(8 rows affected)

SQL Server Executicon Times:
CPU time = 0 ms, elapsed time = € ms.

) Query executed successfully.

-

Figure 9-15. Time statistics

Let’s now create a computer column on the Warehouse.StockItems

table, using the same logic as in our WHERE clause. This can be achieved by

using the script in Listing 9-21.

273

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Listing 9-21. Creating a Computer Column

USE WideWorldImporters
GO

ALTER TABLE Warehouse.NewStockItems
ADD CustomFieldsTagO AS JSON VALUE(CustomFields,
'lax $.Tags[0]") ;

We can now index the computed column (which will also cause the
column to be persisted, as opposed to calculated on the fly, when queried),
by using the script in Listing 9-22.

Listing 9-22. Indexing the Computed Column

USE WideWorldImporters
GO

CREATE NONCLUSTERED INDEX NCI_CustomFieldsTagO
ON Warehouse.NewStockItems(CustomFieldsTago) ;

Let’s now check the performance of our query, once again, by using the
simplified script in Listing 9-23.
Listing 9-23. Checking Index Performance

USE WideWorldImporters
Go
--Clear plan chahe

DBCC FREEPROCCACHE

--Clear buffer cache

DBCC DROPCLEANBUFFERS

274

CHAPTER9 WORKING WITH THE JSON DATA TYPE

--Turn on statistics

SET STATISTICS TIME ON

SELECT

)
)
)

)

StockItemName

JSON_VALUE(CustomFields,'lax $.Tags[0]") AS Tago
JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tag1
JSON_VALUE(CustomFields, 'lax $.Tags[2]') AS Tag2
JSON_QUERY(CustomFields, 'lax $.Tags') AS TagsArray

FROM Warehouse.NewStockItems
WHERE JSON_VALUE(CustomFields,'lax $.Tags[0]') = 'Radio Control' ;

You can see from the time statistics shown in Figure 9-16 that the query

executed in 3ms. That’s a 50% performance improvement!

A Resuts E® Messages

{8 rows affected)

SQL Server Execution Times:

100 %

@ Query executed successfully.

CPU time = 0 ma, elapsed time = 3 ms.

-

Figure 9-16. Results of checking index performance

275

CHAPTER9 WORKING WITH THE JSON DATA TYPE

Tip Because the NewStockitems table is so small, there is a
chance that the query optimizer will choose not to use your index.

If this happens, you can force it to use the index, by adding the
WITH (INDEX(NCI CustomFieldsTag0)) query hint. It is very
important to note, however, that on a general basis, the optimizer is
smart and rarely should be given hints. If you do need to use hints,
then you should always work with the optimizer, rather than against it.
For example, if the optimizer is incorrectly choosing a LOOP JOIN
physical operator, force it to use either MERGE JOIN or HASH JOIN.
Do not choose for it which is better!

Summary

SQL Server provides the ability to interrogate and modify JSON data with
the ISJISON(), JSON_VALUE(), JSON_QUERY(), and JSON_MODIFY() functions.
The ISISON() function provides a simple validation that the document has
avalid JSON format. It returns 1 if the document is JSON and 0 if not.

The JSON_VALUE() function can be included in the SELECT list, WHERE
clause, ORDER BY clause, or GROUP BY clause of your query. It returns a
single scalar value from a JSON document that is passed to it, based on a
path expression.

The JSON_QUERY() function can also be included in the SELECT list,
WHERE clause, ORDER BY, or GROUP BY, but instead of returning a single
scalar value, it returns a JSON object or array. As with JSON_VALUE(),
the object returned is based on a path expression that is passed to the

function.

276

CHAPTER9 WORKING WITH THE JSON DATA TYPE

The MODIFY_JSON() function can be used to update, insert, or delete
key values. A JSON document and a path expression are passed to the
function, and the complete modified document is returned, making it easy
to use in a standard UPDATE statement. The optional append keyword in the
path expression is used to denote that the intention is to add an additional
value to an array, as opposed to modifying an existing value. Updating a
key value with NULL deletes the key.

Query performance can be improved by indexing the properties of a
JSON document. This is achieved by creating a computed column, based
on the path expression that you wish to optimize. You can then create an
index on the computed column. This allows the query optimizer to use the
index when the column containing the JSON data is queried.

277

CHAPTER 10

Understanding
Spatial Data

Spatial data is data that describes a location. It is said that 80% of the
world’s data has a spatial element to it, so you can see how, for many data-
tier applications, the ability to construct or interrogate spatial data may
be critical. In this chapter, I will give an overview of spatial data and its
implementation in SQL Server, before looking at the spatial standards that
are used in the SQL Server implementation.

Note This chapter is intended to provide a theoretical overview of
spatial data. Practical examples of usage can be found in Chapter 11.

Understanding Spatial Data

SQL Server provides two data types that are able to store spatial data:
GEOMETRY and GEOGRAPHY. These data types are implemented through CLR
(Common Language Runtime) and, behind the scenes, are .NET classes,
which provide a series of methods and properties that allow you to interact
with the data.

© Peter A. Carter 2018 279
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_10

CHAPTER 10 UNDERSTANDING SPATIAL DATA

Caution A geospatial object can be referred to as a geometry, with
simple objects referred to as primitive geometries and collections of
objects referred to as geometry collections. Because geometry is also
the name of the data type that implements spatial data as a flat-earth
model, this can cause confusion. Therefore, please note that when
this chapter refers to a geospatial object, the word geometry will be
used in lowercase. When referring to the data type, the word will be
in uppercase letters (GEOMETRY).

The GEOMETRY data type uses the Euclidean coordinates system, which
provides a flat-earth model. GEOMETRY is the correct data type to use when
you are dealing with 2D objects or small objects that are not required to
consider the curvature of the earth.

When using the GEOMETRY data type, objects are plotted using x and y
axes. For example, the point in Figure 10-1 is located (or plotted) at 5, 3.

280

CHAPTER 10 UNDERSTANDING SPATIAL DATA

5L

Figure 10-1. Plotting a point in a Euclidean system

Tip A shape is referred to as a surface.

Similarly, the polygon (closed surface) in Figure 10-2 is drawn using
the coordinates (-1-1,-12,22,2-1,-1-1).

281

CHAPTER 10 UNDERSTANDING SPATIAL DATA

5

)]

i

Figure 10-2. Plotting a polygon in a Euclidean system

The GEOGRAPHY data type, on the other hand, uses a round-earth model
(or, actually, multiple round-earth models) and is ideal for representing 3D
objects or large areas that must consider the curvature of the earth.

When working with data for a round-earth model, instead of x and y
coordinates, a point can be identified by providing longitude and latitude.
Lines of longitude, also called meridians, indicate the number of degrees
east or west of a baseline of longitude, known as the prime meridian.

The prime meridian runs through the borough of Greenwich in London
and is regarded as the point where Eastern and Western Hemispheres
meet. Sometimes, longitude coordinates are referenced as positive and

negative values, with meridians east of the prime meridian being positive

282

CHAPTER 10 UNDERSTANDING SPATIAL DATA

and meridians west of the prime meridian being negative. Other times,
meridians will always be referred to as positive numbers, with either

E (East) or W (West) being used to denote direction from the prime
meridian. This is illustrated in Figure 10-3.

180 Degrees

135 Degrees East

135 Degrees West
135 Degrees

-135 Degrees

90 Degrees West
-90 Degrees

90 Degrees East
90 Degrees

45 Degrees West 45 Degrees East

-45 Degrees 45 Degrees

Prime Meridian
0 Degrees

Figure 10-3. Plotting longitude

The equator is the central point between the North and South Poles.
Latitude indicates the number of degrees north or south of the equator.
Therefore, the equator has a latitude of 0 degrees. A line of latitude
represents all points on Earth that have the same degree of latitude. As
indicated in Figure 10-4, sometimes degrees of latitude are referred to as
positive and negative values, with the Northern Hemisphere being positive
values and the Southern Hemisphere being negative values. Other times,
latitude is always referenced with positive values, differentiated by a suffix
of either north latitude or south latitude.

283

CHAPTER 10 UNDERSTANDING SPATIAL DATA

60 Degrees North Latitude
60 Degrees

30 Degrees North Latitude
30 Degrees

Equator 0 Degrees

30 Degrees South Latitude
-30 Degrees

60 Degrees South Latitude
-60 Degrees

Figure 10-4. Plotting latitude

Both the GEOMETRY and GEOGRAPHY data types allow you to instantiate a
number of objects. These objects can be broken down into two categories.
The first category is single geometry instances, also known as primitive
geometries. The second category is geometry collections, also known as
multipart geometries. Table 10-1 details the primitive geometries that are
supported by SQL Server.

284

CHAPTER 10 UNDERSTANDING SPATIAL DATA

Table 10-1. Primitive Geometries

Geometry Description
Point A single point specified with a single set of coordinates
LineString A path that joins multiple points, defined with multiple

sets of coordinates. A line string can either be enclosed or
unenclosed.*

CircularString A path, in the form of an arc, between multiple points. There
must be an odd number of points defined, with a minimum of
three. The points cannot all be on the same axis (or it will be
treated as a LineString).

CompoundCurve A path that joins multiple sets of points. It can be defined by
using multiple LineStrings and/or CircularStrings, to create
surfaces such as circles or semicircles.

Polygon An enclosed surface defined by specifying the points that
map each corner of the polygon. Each side of the polygon is
essentially a LineString.

CurvePolygon An enclosed surface. This is similar to Polygon, except that it may
be defined using LineStrings, CircularString, or CompoundCurves,
instead of just LineStrings, as is the case of Polygon.

*An enclosed surface is one in which the points used to define it join. Therefore, the
first coordinates defined will also be the last coordinates defined.

285

CHAPTER 10 UNDERSTANDING SPATIAL DATA

Table 10-2 defines the multipart geometries that are supported by SQL
Server.

Table 10-2. Multipart Geometries

Geometry Description

MultiPoint A collection of 0 or more points
MultiLineString A collection of 0 or more LineStrings
MultiPolygon A collection of 0 or more Polygons

GeometryCollection A collection of 0 or more geometries. Can include any
primitive or multipart geometries

In SQL Server 2017, a new surface type has been added, which is
applicable only to the GEOGRAPHY data type. FullGlobe represents the entire
surface of the planet. Therefore, it has an area, but no borders.

Tip Practical examples of creating and working with primitive
geometries and geometry collections can be found in Chapter 11.

Spatial Data Standards

Spatial data in SQL Server has been implemented around the standards set
out by the Open Geospatial Consortium (OGC). These standards can be
found at www.opengeospatial.org/standards/gml.

The following sections will provide an overview of the spatial surfaces
available within SQL Server and how they can be represented, using well-
known text and well-known binary. I will also discuss spatial reference
systems.

286

http://www.opengeospatial.org/standards/gml

CHAPTER 10 UNDERSTANDING SPATIAL DATA

Well-Known Text

The OGC lays out two methods of referencing spatial data: well-known text
(WKT) and well-known binary (WKB). I'll first discuss WKT, and how each

geometry can be specified using this approach. Table 10-3 details the WKT

for each primitive geometry.

Table 10-3. Primitive Geometry WKT

Geometry WKT Description

Point POINT(x y z m) X indicates the x axis or
longitude; y indicates the
y axis or latitude;
z is optional and indicates the
elevation;
m is optional and indicates
the measure.

LineString LINESTRING(POINT 1, POINT 2,
POINT n)

CircularString CIRCULARSTRING(Start POINT,
Anchor POINT 1, Anchor POINT n,

End POINT)
CompoundCurve ~ COMPOUNDCURVE((POINT When an arc segment is a
1, POINT n), CircularString, the set of

CIRCULARSTRING(Start POINT, points must be prefixed with

Anchor POINT, End POINT)) the geometry type. When the
arc segment is a LineString,
there is no need to specify the
geometry type.

(continued)

287

CHAPTER 10 UNDERSTANDING SPATIAL DATA

Table 10-3. (continued)

Geometry WKT Description
Polygon POLYGON((POINT 1, POINT 2, Polygon can also contain an
POINT n)) inner Polygon, by defining a
second set of points within
parentheses, separated by a
comma.
CurvePolygon CURVEPOLYGON((CIRCULARSTRI A CurvePolygon can

NG(POINT 1, POINT 2, POINT n))

also contain an inner
CurvePolygon, by defining a
second set of points within
parentheses, separated by a
comma.

Table 10-4 details the WKT for multipart geometries.

Table 10-4. Multipart Geometry WKT

Geometry WKT

MultiPoint MULTIPOINT((POINT 1),(POINT n))

MultiLineString MULTILINESTRING((POINT 1, POINT n), (POINT 1, POINT n))
MultiPolygon MULTIPOLYGON((POINT 1, POINT 2, POINT n),(POINT 1,

GeometryCollection

POINT 2, POINT n))

GEOMETRYCOLLECTION(GEOMETRYTYPENAME(POINT
n),GEOMETRYTYPENAME(POINT n))

288

CHAPTER 10 UNDERSTANDING SPATIAL DATA

Well-Known Binary

WKB can also be used to represent a geometry. This binary data is usually
represented as a hexadecimal value. When working with WKB, you can
control the order of bytes before specifying the surface type and, finally,
the points specification. This section will discuss how each of the bytes in
WKB are used.

The first byte indicates the byte order, in which 00 is big endian and 01
is little endian.

Tip Big endian means that the least significant byte in the sequence
is stored last, and little endian means that the least significant byte is
stored first.

The following four bytes represent the type of surface being defined.
Table 10-5 describes the integer codes for each of these bytes.

Table 10-5. WKB Surface Type Integer Codes

Type 2D 4 M M

Point 0001 1001 2001 3001
LineString 0002 1002 2002 3002
CircularString 0008 1008 2008 3008
CompoundCurve 0009 1009 2009 3009
Polygon 0003 1003 2003 3003
CurvePolygon 0010 1010 2010 3010
MultiPoint 0004 1004 2004 3004
MultiLineString 0005 1005 2005 3005
MultiPolygon 0006 1006 2006 3006
GeometryCollection 0007 1007 2007 3007

289

CHAPTER 10 UNDERSTANDING SPATIAL DATA

The remaining bytes consist of eight-byte floats, which describe the
points. For example, imagine a POINT, with coordinates 4, 2. Using big
endian, the hexadecimal representation would be 0x0101000000000000000
00010400000000000000040. If we break this down into its constituent parts

01—Indicates the byte direction

01000000—Indicates the surface type

0000000000001040—Indicates the x axis

0000000000000040—Indicates the y axis

Tip Each byte is represented by a two-character hexadecimal
reference.

Table 10-6 provides some examples of this.

290

CHAPTER 10 UNDERSTANDING SPATIAL DATA

Table 10-6. WKB Examples

WKT WKB (Hexadecimal Representation—Big Endian)

POINT(1 1) 0x0101000000000000000000F03F00000000000
OF03F

POINT(1111) 0x00000000010F000000000000F03F0000000000
00F03F000000000000F03F000000000000F03F

LINESTRING(1 1,2 2) 0x000000000114000000000000F03F0000000000

00F03F00000000000000400000000000000040

POLYGON((11,22,21,11)) 0x00000000010404000000000000000000F03F00
0000000000F03F00000000000000400000000000
0000400000000000000040000000000000F03F00
0000000000F03F000000000000F03F0100000002
0000000001000000FFFFFFFF0000000003

GEOMETRYCOLLECTION 0x00000000010402000000000000000000F03

(POINT(1 1),POINT(2 2)) F000000000000F03F00000000000000400000
0000000000400200000001000000000101000
00003000000FFFFFFFF0000000007000000000-
000000001000000000100000001

Spatial Reference Systems

When working with the GEOGRAPHY data type, we must be aware that there
is not one single unified view of how to represent the earth. Instead, there
are multiple reference systems, known as spatial reference systems. Each
system provides its own map projections. Each system is identified by an
SRID (spatial reference identifier). The SRIDs supported by SQL Server can
be found by interrogating the sys.spatial_reference_systems system table,
as demonstrated in Listing 10-1.

291

CHAPTER 10 UNDERSTANDING SPATIAL DATA

Tip The earth cannot be modeled on a plane without being
distorted. A map projection defines the distortions that are acceptable
and unacceptable. Each projection allows for different distortions.

Listing 10-1. Discovering Spatial References

SELECT *
FROM sys.spatial reference systems ;

Partial results of this query can be found in Figure 10-5.

A Fesuts | gl Mossages
wpatial_relerence_id suthorty_rname authorized soatial_medemnce i wel_krown_ed it ol peasse ol _corvension facler &

e 4 EP3G 421 GEDGCS[Jamaica 18757, DATUM{ Jamaica 1875", ELLIPSOID[Clarkce 1880°, 637.. Clarke's foct OIMTITIES

08 42 EPSG aa GEOGCS[MADES". DATUMI Jemaca 15697, ELUPSOID Clarke 1855, E372206.4.. metre: 1

L EPSG 4243 GEOGCS[Kalanpur 1880, DATUM[Kalanpur 1880°, ELLIPSOID Evernst (1830 . Indianfoct 030479551

M an EPSG a2a4 GEOGCS[Kandawain™. DATUM[Kandswaia”. ELLIPSCID[Evermat 1230 (1537 A4 matre. 1

N2 425 EPSG 4205 GEOGCS[Kertau 19687, DATUM[Kedau 19687, ELUIPSOID[Everest 1630 Modfie . metre 1

M3 4246 EPSG a245 GEOGCS[WOC™, DATUMI Huswa Od Company™. ELLIPSOID[Clarke 1380 RGS)" mete 1

M4 a7 EPSG 4247 GEDGCS[La Canca”, DATUM["La Canca™, ELLIFSOID{ ntemational 1924”, 63781 metre 1

M5 4248 EPSG a2e8 GEOGCS[PSADSE". DATUM[Provisionad Scuth Amencan Datum 19567, ELUPSOL. metre 1

M6 43 EPSG 4243 GEDGCS[Lake", DATUM[Loke", ELLIPSOID inemationsl 19247, 6378388, 2970 . metre 1

17 4250 EPSG 4250 GEOGCS[Lasgon™. DATUM[Lsgen”, ELLIPSOID[Clavkes 1800 (RGS)". 63782851 e 1

NE 451 EPSG 4251 GEDGCS[Libeds 1964”, DATUM Liberia 19647, ELLIPSOID[Clarke 1280 (RGS) metre 1

18 482 EPSG a5 GEOGCS[Lome™. DATUM[Lome™. ELUPSOID[Clake 1280 GN)", 63782452 25.. metre 1

120 4251 EPSG 425 GEOGCS[Luzon 15117, DATUM[Luzon 1911, ELLIPSOIC[Clarke 13567, 637820 . metre 1

10 44 EPSG 4254 GEOGCS[Hits XVIIl 19637, DATUM["HEe XVIl 1563°. ELLIPSOD ntemationsl 15, matre. 1

122 4255 EPSG 4255 GEOGCS[Herat Morth”, DATUM["Herat Noth”, ELLPSOID] Intemational 19247, 63... metre 1

123 2% EPSG 4255 GEOGLS[Mabe 15717, DATUM Mabe 1371, ELLIPSOID Clake 1880 (RGS]". 6 melre 1

124 457 EPSG 4257 GEOGCS[Makassar”, DATUM[Makassar™, ELLIPSOID]" Bessel 18417, E177297.15. . metre 1

1% axe EPSG a5 GEOGCS[ETRSEY". DATUM[Eurcpean Terestrial Raderence System 15857 ELLL. metre 1

126 458 EPSG 4259 GEDGLS[Malongo 1337 DATUM["Malongo 1987, ELLIPSOID[Intemational 152 metre 1

15 4% EPSG 4261 GEOGCS[Merzhich™. DATUM[Mevchich”, ELLIPSOID["Clarkcs 1880 IGN". 63782 . matre 1

128 4282 =] 4262 GEDGCS[Massawa”, DATUM[Massawa™, ELLPSOID[Bessel 1841°, 637739715 metre 1

125 4263 EPSG 4263 GEOGCS[Mnna™. DATUM[MW", ELUPSOID[Clarke 1830 (RGSY. GITIG14.. metre 1

130 4285 EPSG 4265 GEOGCS[Morte Mario™, DATUM[Monte Mana™. ELLIPSOID] Intemational 1924 metre 1

LELIE .- EPSG 4266 GEOGCS[Mpomioks”, DATUM[Mporsicka”, ELLIPSOID] Cadke 1830 JGNI", 637, metre 1

12 4267 EPSG 4267 GEDGCS[MADZT, DATUM[Morth Amenicen Dztum 1927, ELUPSOID[Clake 12, metre 1

133 4s EPSG 4268 GEOGCS[MADZT Mchigen™, DATUM™NAD Mechigan”. ELLIPSOID[Clarke 1866 USwmaveyfoct 030430061

1M 4268 EPSG 4263 GEDGCS[MADEI", DATUM[Marth Amencan Datum 19837, ELUPSOID[GRS 158 metre 1 -

) Cuery executed successiully. DATATYPES (14.0 RTM) DATATYPESAdemaniatrato... master OR000 | 367 rows.

Figure 10-5. Results of discovering spatial reference systems

You will notice that the table provides various details about each SR,
including its ID; the authority that develops and maintains it; the unit of
measurement, along with the unit’s conversion factor, against the base
measure of meters; and, most interestingly, the WKT of the SR, as defined
by the OGC.

292

CHAPTER 10 UNDERSTANDING SPATIAL DATA

Let’s examine the WKT for Microsoft’s implementation of SR (SRID
104001) , which is detailed in Listing 10-2.

Listing 10-2. WKT for SRID 104001

GEOGCS["Unit Sphere",
DATUM["Unit Sphere",
SPHEROID["Sphere”, 1.0, 0.0]
1,
PRIMEM["Greenwich",0.0],
UNIT["Degree", 0.0174532925199433]

Note that the WKT uses a JSON format (see Chapters 6-9 for a detailed
discussion of JSON) and specifies map projection details, such as the

prime meridian and unit of measurement.

Caution It is important to note that while a single GEOGRAPHY
column can contain values based on multiple spatial reference
systems, it is not possible to compare these values. Spatial functions
require that all values have the same SRID, as they contain the
background information required for calculations. That said, however,
it is possible for a value to be converted to a different SRID before a
comparison is performed.

293

CHAPTER 10 UNDERSTANDING SPATIAL DATA

SSMS and Spatial Data

SQL Server Management Studio (SSMS) provides graphical results, to
assist developers when working with spatial data. For example, imagine
a simple script, such as Listing 10-3, which declares a variable of type
GEOMETRY and sets it to contain a simple CurvePolygon.

Listing 10-3. Declaring a CurvePolygon with GEOMETRY

DECLARE @CurvePolygon GEOMETRY =
' CURVEPOLYGON(CIRCULARSTRING(1 3, 35, 47, 73, 13)) ;

SELECT @CurvePolygon ;
The normal results tab will return the WKB of the surface, in

hexadecimal notation, as shown in Figure 10-6.

BH Resuts & Spatialresuts [EW Messages
(No column name)

1 | (x000D00DD020405000000000000000000F03F0000000000...

@) Query executed successfully.

Figure 10-6. Results in WKB

294

CHAPTER 10 UNDERSTANDING SPATIAL DATA

You will notice, however, that a new tab, Spatial results, is present
between the Results and Messages tabs. This pane can be seen in
Figure 10-7.

A Femite © Soseaimete ol Memsages

) Cuery executed successhully, DATATYPES (140 RTM) DATATYPES\Adminmtrato... master 020000 1 rows

Figure 10-7. Spatial results tab—GEOMETRY

You will notice that we can see a graphical representation of our surface,
along with some basic controls that allow us to zoom in and out and also
flick between columns, if the result set contains multiple spatial columns. It
is also possible to scroll around the object, by dragging the mouse.

Consider Listing 10-4. You will notice that the script is very similar to
Listing 10-3, except that we are now declaring a variable of type GEOGRAPHY,
instead of GEOMETRY.

Listing 10-4. Declaring a CurvePolygon with GEOGRAPHY

DECLARE @CurvePolygon GEOGRAPHY =
"CURVEPOLYGON(CIRCULARSTRING(1 3, 35, 47, 73, 13))' ;

SELECT @CurvePolygon ;

295

CHAPTER 10 UNDERSTANDING SPATIAL DATA

Figure 10-8 shows the Spatial results tab for this script. You will notice
that the grid has changed to degrees, as opposed to Euclidean style
coordinates, to reflect that a round-earth model is now in use, and our
coordinates are actually longitude and latitude.

W Rests @ Somsalmets gl Messages

) Duery evecuted successfully DATATYPES (140 RTM] | DATATYPES\Administrato.. master 000000 1 rows

Figure 10-8. Spatial results tab—GEOGRAPHY

Summary

SQL Server provides two data types for working with spatial data: GEOMETRY
and GEOGRAPHY. GEOMETRY allows you to work in a Euclidean (flat-earth)
model, while GEOGRAPHY allows you to work in a round-earth model. SQL
Server’s spatial implementation is based on standards set out by the Open
Geospatial Consortium (OGC).

Spatial shapes, known as surfaces, can be defined by using either
well-known text (WKT) or well-known binary (WKB), which are standards
set out by the OGC. When working with WKT, the surface type is defined
by name, followed by its points specification. When working with WKB,
you can control the order of bytes before specifying the surface type
and, finally, the points specification. WKB is usually represented using

hexadecimal notation.

296

CHAPTER 10 UNDERSTANDING SPATIAL DATA

SQL Server supports the following primitive and multipart
geographies, as well as support for a FullGlobe geometry, when using
GEOGRAPHY in SQL Server 2017 or later versions:

e Point

o LineString

e CircularString

e CompoundCurve

e Polygon

e CurvePolygon

e MultiPoint

e MultiLineString

e MultiPolygon

e GeometryCollection

SQL Server supports many spatial reference systems. This is important
when working with GEOGRAPHY, as each SRID implements its own map
projections. Surfaces with conflicting SRIDs can be stored in the same
column but cannot be compared using spatial functions.

SQL Server Management Studio provides graphical results for spatial
queries. The Spatial results tab allows you to move around a surface,
zooming in and out. The grid will change between Euclidean coordinates
and latitude/longitude, depending on the data type of the results.

297

CHAPTER 11

Working with
Spatial Data

In Chapter 10, I discussed the concepts associated with spatial data, which
SQL Server implements using the GEOMETRY and GEOGRAPHY data types.

In this chapter, I will examine how to work with these data types. First,

I will discuss the methods that can be used to construct surfaces, before
reviewing how to query spatial data. Finally, you will see how to design and
create spatial indexes.

Caution A geospatial object can be referred to as a geometry, with
simple objects referred to as primitive geometries and collections of
objects referred to as geometry collections. Because geometry is also
the name of the data type that implements spatial data as a flat-earth
model, this can cause confusion. Therefore, please note that when
this chapter refers to a geospatial object, the word geometry will be
used in lowercase. When referring to the data type, the uppercase
word GEOMETRY will be used.

© Peter A. Carter 2018 299
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_11

CHAPTER 11 WORKING WITH SPATIAL DATA

Constructing Spatial Data

The GEOMETRY and GEOGRAPHY data types expose a number of methods that
can be used to interact with spatial data. Many of these methods form part
of Open Geospatial Consortium (OGC) standards, while others are an
extension of that standard. Table 11-1 details the methods that can be used
for constructing geometries, all of which are from OGC specifications and
are exposed through both GEOMETRY and GEOGRAPHY.

Table 11-1. Methods for Constructing Geometries

Spatial Type From WKT From WKB

Point STPointFromText STPointFromWKB
LineString STLineFromText STLineFromWKB
Polygon STPolyFromText STPolyFromWKB
Any Primitive Spatial Instance STGeomFromText STGeomFromWKB
MultiPoint STMPointFromText STMPointFromWKB
MultiLineString STMLineFromText STMLineFromWKB
MultiPolygon STMPolyFromText STMPolyFromWKB

Any Multi Spatial Instance STMGeomCollFromText STMGeomCollFromWKB

Each of these methods accepts two parameters. The first parameter
is the well-known text (WKT) or well-known binary (WKB) of the spatial
instance. The second parameter is the SRID (please refer to Chapter 10, for
further details on SRIDs) that the spatial instance should use. When called
against a column or variable of type GEOMETRY, 0 can be passed as the SRID,
as map projections are not required in a Euclidean model (see Chapter 10).
When called against a column or variable of type GEOGRAPHY, however, a
valid SRID must be used, and passing 0 will result in an error being thrown
by the .NET framework.

300

CHAPTER 11 WORKING WITH SPATIAL DATA

The script in Listing 11-1 will create a LineString in a variable
of type GEOMETRY, by using well-known-text.

Listing 11-1. Creating a LineString with Well-Known Text
DECLARE @LineString GEOMETRY ;

SET @LineString = GEOMETRY::STLineFromText('LINESTRING(O 0, 4.5
5, 4.5 0, 00)", 0)

SELECT @LineString ;

The graphical results of this script can be found in Figure 11-1.

Figure 11-1. Results of creating a LineString from WKT

Alternatively, the same spatial instance could be created with
WKB, by using the script in Listing 11-2.

301

CHAPTER 11 WORKING WITH SPATIAL DATA

Listing 11-2. Creating a LineString from a Well-Known Binary
DECLARE @LineString GEOMETRY ;

SET @LineString = GEOMETRY::STLineFromWKB(0x01020000000400000
00012400000000000
00144000000000000012400
0000000, 0);

SELECT @LineString ;

Tip An additional extended method exists for constructing
geometries. GeomFromGML allows you to instantiate an object, based
on the Geography Markup Language (GML). For example, the script
in Listing 11-3 will create a LineString from GML. A full discussion of
GML is beyond the scope of this book, but the OGC specification can
be found at www.opengeospatial.org/standards/gml.

Listing 11-3. Creating a LineString from GML
DECLARE @LineString GEOMETRY ;

SET @LineString =

GEOMETRY: : GeomFromGm1('<LineString xmlns="http://www.opengis.
net/gml">

<posList>0 0 4.5 5 4.5 0 0 0</posList> </LineString>', 0) ;

SELECT @LineString ;

SQL Server also provides an extended method for creating a spatial
instance, by defining the x and y coordinates of a point. Listing 11-4
demonstrates the use of the Point method against a GEOMETRY variable.
The method accepts three parameters. The first is the x axis coordinate, the
second is the y axis coordinate, and the third is the SRID.

302

http://www.opengeospatial.org/standards/gml

CHAPTER 11 WORKING WITH SPATIAL DATA
Listing 11-4. Using the Point Method
DECLARE @Point GEOMETRY ;
SET @Point = GEOMETRY::Point(10, 10, 0) ;
SELECT @Point ;

Spatial instances can also be instantiated by simply passing the well-
known text or well-known binary as a value. For example, consider the
scriptin Listing 11-5.

Listing 11-5. Passing Well-Known Text to a Variable
DECLARE @Polygon GEOMETRY ;
SET @Polygon = 'POLYGON((0 0, 10 0, 10 10, O 10, 0 0))"' ;

SELECT @Polygon ;

303

CHAPTER 11 WORKING WITH SPATIAL DATA

The graphical results of this script are displayed in Figure 11-2.

Figure 11-2. Results of passing well-known text to a variable

A spatial instance can be set to NULL, either by passing a NULL value
directly or by using the read-only Null property of the instance. This is
demonstrated in Listing 11-6.

Listing 11-6. Setting an Instance As NULL
--SET Variable As NULL by passing A NULL Directly

DECLARE @Polygon GEOMETRY ;
SET @Polygon = NULL ;

SELECT @Polygon ;

304

CHAPTER 11 WORKING WITH SPATIAL DATA
--Set A Variable As NULL by using the read-only Null Property
SET @Polygon = GEOMETRY::[Null] ;
SELECT @Polygon ;

It is possible to check the validity of your well-known text or
well-known binary by using the STIsValid method. If the instance is not
valid, it can be made valid, by using the MakeValid method. For example,
consider the script in Listing 11-7, which instantiates a Polygon that
overlaps itself.

Listing 11-7. Validating and Correcting an Instance
DECLARE @Polygon GEOMETRY ;

SET @Polygon = GEOMETRY::STGeomFromText('POLYGON((0 0, 10 10,
10 0, 0 10, 0 0))', 0) ;

SELECT
@Polygon.STIsValid() AS IsValid
, @Polygon.MakeValid().ToString() AS Fixed
» @Polygon AS WKB ;

The results, shown in Figure 11-3, show that the original value has
returned 0, because it is not valid, and the fixed version has converted it to
a MultiPolygon.

M feats © Spatwimeits O Message:
W Fued o
MULTIPOLYGON (19 3 5577136 783005005€- 14 13 10 $ 000000000CCC1 78 5 D000C0C0000001 78, 10 3 95271 6788005009 14) €1 5277 (x00000C00C'10005000C009000000000000000000000003¢

© Query executed succashully DATATYPES (140 KTM) DATATYPES\Administrato.. muster 000000 1 rows

Figure 11-3. Results of validating and correcting an instance

305

CHAPTER 11 WORKING WITH SPATIAL DATA

The graphical results of the query are shown in Figure 11-4.

Figure 11-4. Graphical results of validating and correcting an
instance

It is worth noting that because of the way in which spatial data is
parsed, the use of STIsValid and MakeValid are somewhat limited. For
example, consider the script in Listing 11-8, which attempts to instantiate a
Polygon that is not enclosed.

Listing 11-8. Attempt to Instantiate a Non-enclosed Polygon
DECLARE @LineString GEOMETRY ;

SET @LineString = GEOMETRY::STGeomFromText('POLYGON((0 0, 10
10, 10 0, 0 10))', 0) ;

306

CHAPTER 11 WORKING WITH SPATIAL DATA

SELECT
@LineString.STIsValid() AS IsValid
, @LineString.MakeValid().ToString() AS Fixed
, @LineString AS WKB ;

Because the Polygon is not enclosed, it fails to parse, and the error,
illustrated in Figure 11-5, is thrown.

e, Inedl azid)
. 5qlGesmetry. CesmetryFroalens (OpendisType Type, SqIChars teas, Dmtdd srd

(1 e affected)
W% -4 b

1 Guery completed with emors. DATATYPES (MORTM) DATATYPES\Adminstrasto.. mester 000000 1 rows

Figure 11-5. Error thrown from instantiating a non-enclosed
Polygon

Querying Spatial Data

SQL Server provides numerous methods for interacting with spatial data.
An overview of these methods can be found in Table 11-2. The table details
the name of each method, whether it is an OGC standard or a Microsoft
extension, and the data types the method works with. The final column
provides a brief description of the method’s ability.

307

WORKING WITH SPATIAL DATA

CHAPTER 11

99URI9|0} PalyIoads auy}

10J Buimoye ‘paiioads 9auesIp ayl 0] [enba o uey)
$s9| sI aoueisul Aydeihoah e wouy 99uL)SIP 8SOUM
‘syuiod ||e Jo uoiun ay1 Bunuasaidal 198(qo [eneds e
SuIN)aY "aANR|al S| 9URII|0] AU JI SS10USP 1BU) SAIRJa)

pajlea Bel} 1g e pue ‘9oueId|0} 8U} Jo8lqo [eneds e A¥1IWOID
woJy aguesip e Bunousp ‘sisjaweled aaiyy S1dagdy 3 AHAYEDOID papualx3 9JUBISTOIYITMIS44Ng
Pa|[e9 Sem poylaw ay} yaiym jsuiebe
aouejsul [eneds auyy Jo ‘palddns aauelsIp ay} UIYHM
‘squiod |e Bunuasaidal 19a[qo ue suin}ay aourISIP AY1IW0ID
e sajeubisap yoiym Ysjaweled 9|buis e $1daday 3 AHAVYDOID papualx3 SIAIN)IYITMISL44Ng
1uasa.d JI ‘sanfeA [\ pue 7 yum pajuswbne AYLIWOTD
‘90UBISUI [B1}BdS B JO X3} UMOUM-[|9M BU} SUINBY 3 AHAV¥D0ID papusixg WZ31Xa] sy
AYL13IW0ID
8ouelsul [eljeds B JO TND 8y} SuIndy R AHdV¥D0ID papualx3 Tunsy
1uasald JI ‘sanjeA [\ pue 7 Yum pajuswbne AYLIWOTD
‘aoue)sul [eneds e Jo Aleuiq UMOUX-|[am By} SuIney @ AHdY¥D0ID papuaixj WzAzeutgsy
uonduasag YHMM SHOM Papuaix3/xvo PoulaIN

spoy1a (puvds ‘g-11 21921,

308

WORKING WITH SPATIAL DATA

CHAPTER 11

(ponunuod)

jou ss0p | 4
0 PuB SISIX3 aN[eA [\ UB JI | SUIN}ay "aouejsul [eneds
© 10} paly0ads uaaq Sey anjea |\ Ue Ji Sajepijep

"SaAINIS0d S[e) UIN]a) pUR |qeRI[a4un aq

Kew synsay -1,uop Aay1 JI O pue 109siayul Ajjenusod
$199(q0 8y} 41 | suinjay “isurebe pajied si poyaw
a1 199(qo [eneds ay) yum s199s19]Ul ‘Igaweled e
se passed 199(qo |eneds e JI auiwiglap 01 Ssydwany

910419
Buipunoq s,aoue)sul [eneds e Jo Jajuad ay) suinjay

aourlsul AydesBhoab auy uruiod e
pue 9j2419 Huipunoq s,89ueISUl U JO Julod 18]us9 8y
uaamjaq (sealbap ul) 9|bue wnwixew ay) suin}ay

Sjuawhas 2Je ou SulelI0d YaIym

‘paj[eda sem poyaw syl ydalym isurebe aguelsul au Jo
uoneuwnxoldde ue sjuasaidal Jeyr uobAjod e suinay
"9AIle|a. S| 80uRI9|0] 9y} JI Bunealpul ‘Beyy ug e pue
‘90urJ9|0] B Buneubisap ‘sigjaweled om) S1daday

A413W03ID
'? AHdV¥D03D Papualxy

A413W0ID
'? AHdVdD03D Papusixy

Auo
AHdV3903D papuapq

Auo
AHdV¥D03D papuapq

A4L13IW03D
'8 AHdVdD03D pspu93xy

WSEH

191774

I93ua)adoTaAul

913uyadoTanul

9OUBISTO]YITMIUTTOSAIN)

309

WORKING WITH SPATIAL DATA

CHAPTER 11

Auo

julod e Jo spnyile| 8yl suinidy AHAVYO0ID papusixg 1e7
"e- || 9|geL ul punoy} aq uea sbulueaw
118U} pue $9P0J 10449 8say] pIeA Jou S1) Aym
BuiqLIosap apod Jolia Ue suInal | ‘pijeA jou si 19alqo AYLIW0ID
U} J1 "00¥ ¢ SuInial poylaw au} ‘pifea s1109(qo Ue J| 3 AHdVYDOID papusixg paTTeladpTTeASI
108[qo ue sureuod 3 i 0 pue s AY13W03D
U4 | suindy "TTNN SI 8duejsul [efieds e Ji salepiiey 3 AHdV¥D0ID papualxy TIPNSI
adA1 uaiayip e sI 8aue)sul
3y} 11 0 J0 adAy paiy1oads ayy Jo siisurehe pajea si
poujaw 8y} aduelsul [ereds aup i | suiniay adAy A4L13IW03D
[eneds e sajouap yaiym ‘Ia1aweled ajbuls e s1daday @ AHAVID0ID papualx3 J0odue}sul
10U S30p Ul
110 PUB SISIX3 9NjeA 7 B JI | SuIn}ay aduejsul [eneds AYLIW0TD
© 10} palj10ads usaq sey anfeA Z ue Ji sajepllep ' AHdV¥D0ID papualx3 ZSEeH
uonduasag YHM SHOM Papuaix3/avo poulaiN

(ponunuod) ‘g-11 219V,

310

WORKING WITH SPATIAL DATA

CHAPTER 11

(panu11u02)

uobAjod e Jo uonejualio Huu ayy sebueyn

L1INsal ajewixoidde ayj SuIn}al pue aduelsul

[eneds e jsuiebe wyjLobe 19)anad-se|bnoq e suny
"89UeJ9|0} B S|Iejap 1ey) Jajeweled a)buls e sydaday
uobAjod ayy uiyum sbul

10 Jaqinu [e101 8y} suiniay "uobAjod e 1suiebe pajen
Isurebe paj[ea si poyiaw sy} Jeyy

100[qo [eneds Jo adA} ay; Jo) Loddns sapiroad YaIym
‘lana] Aljignedwod aseqelep WNWIUIW ay) suiniay
paLuIOl-[|aM SI Jey) 9auelsul [eneds e

0] PAWLIOJ-||9M 10U SI Jey] 89ue)sul [eleds B SUBAUOY

9oue)Sul [eneds ay) JO anjeA [\ 8y} Suinjay

U104 ® Jo apnyibuo| ay) suinay

Auo
AHdV¥D03D

AY413IWOID

'? AHdV¥D03D
Ao
AHdV3D03D

A4LIW03D
'8 AHdVdD03D

AdLIW0ID
'8 AHdV¥D03D

AYLIWOTD
' AHdY¥DO03D
Auo
AHdY¥D03D

papualxy

Papualxy

Papualxy

Papuslxy

Papualxg

Papualxg

Papualxg

123[qo3uatI09y

2onpay

s3utyuny

123143 TTTqT3RdWO)qQUTY

PTITEASYEW

3uo7

311

WORKING WITH SPATIAL DATA

CHAPTER 11

A413IW03D

adue)sul Ue JO | MM 8ul suiniey '3 AHdVYDO3D 390 }X9]1SY1S
AJLIWOID
aduelsul ue Jo gyM aul suiniay '3 AHdVYDO03D 390 Ax1eutgsyls
AJLIWOID
99UB)SUI Ue |0 BaJe 99BLNS 8] SUINdY ¥ AHAVYD0ID 990 EPARS
Jojaweled
e se passed si1ey) 199[qo [eneds sy pue 1suiebe
Pa|[ea sI poyiaw 8y} Jeyy 198fqo [eneds ay} Usamiaq
9oUuR]SIp 1S9LI0YS ay) spuasaidal 1eyy buigaur] e AY1IW0ID
suinay “Je1oweled e se 199(qo jeneds e s1daddy R AHAV¥DOID papuaixg 0]9UT73593I0YS
Jaquinu xapul
uanIb 8yl 1B SopIsal Yaiym ‘1suiede pajea s poyiow
au] aoue)sul [enjeds sy woJj Bull e suinjey “xepul Auo
paseq- | B saulyap 1ey) Jajaweled ojbuis e s1daday AHAY¥D0ID papuaixg NSuTy
uonduosag YHM SHIOM Papualx3/990 pouylaN

(ponunuod) ‘g-11 219V,

312

WORKING WITH SPATIAL DATA

CHAPTER 11

(panu1yu00)

Jou sI) Ji 0 pue paulejuod

SI an[eA 8y} JI | SuIniay "aoue]sul PauIeIu0d auyy
10 Jajaweled a|huls e s1dadde pue aguesul
Buiureluod ayy 1surebe pajea aq pjnoys “Jayloue
Aq paurejuod sI 9aue)sul [eneds e JI sajenjens

17NN SuInlal
poaw ay) ‘asImIBL]0 ‘SuobAj0d 810W JO BUO UIRILOI
1snwi 1surefie payoAul SI poylaw ay} eyl aduejsul
al] 199(qo ue Jo J81uad JL)aW0ah 8y suinay

‘f1epunoq sy} 0} Jousjul 8q [[IM Jayng ayy

‘anjeBau uaypn aAiebau 10 aAilsod ag ued aduelsIq
*90UB]SUI JO 92UB)SIP 1BY) UIyUM sjulod |je suinjel
pue ‘aaue)sip Buiuigap ‘1s1ewe.ed ajbuls e s1deday

‘Burgaur ey} Jo Julod pua pue Jels au Yim
‘uI0diniAl e uimal |jim Burnsaul e 1suiebe poyaw
a1 Buien 1aploq s,uobAjod ay) Buryrew Buryssur

e uinjal [j1m uobAjod e 1surebe poyaw sy Bulje
‘a|dwexa Jo4 "8oue)sul ue Jo Arepunoq sy} suiniay

A413IW0ID
'? AHdVdD03D

fjug
A¥L13IW0ID

A413IW03D
'8 AHdVdD03D

Ao
A¥13W03D

290

290

290

290

SUTE1UO0) IS

PTOIIU3)LS

I933Ng1S

Kxepunog]s

313

WORKING WITH SPATIAL DATA

CHAPTER 11

‘Rjannoadsal ‘uobAjod Jo Buligaur e Jo
aoue)sul ue suimay "uobAjoganing Jo Bunsienaan

B SB 1ons ‘aduejsul [eneds paaIng B wody ‘aoueisul AYLIWOTD
[eneds jeuobAjod a1ewixoidde ue sajeal) R AHAVIDOID 990 SUTTOI3AIN)]S
SoAINd a|diynw sey aouejsul
[eneds e a1aym ‘pauinial aq pinoys eyl aaInd au Jo
Xapul 8yl saulap yaiym ‘sawweted ajbuls e s1dagay
"aoue)sul [eneds BuiigasuriyniAl 10 ‘eAIngpunodwo?) AY13W0ID
‘Buinsienalg ‘bursaur B Jo 8AIND 8} SUINBY 'R AHAVYN0ID 390 NoAIN)LS
10U S0P) JI O PUR 1SJ1) AU} $8SS010 9aueIsul [eljeds
pu092as ayy JI | suinyay aduelsul [eieds puosas
a1 $9qlIosap Jeyl Jajaweled g|fuls e s1dadoy
"Jsurefe pajea SI poyew au] 1ey) aauesul [eneds Ajup
U} $9SS0.9 adue)sul [eiyeds uanb e JI sajepljep INTEeED) 9190 S3SS0I1)]S
1surefe pajjesa
S| poylaw ayy Jeyy seauelsul A1jawoab auyy surejuod AYLIW0ID
1eu1 uobAjod xaAu09 9)qissod 1saj[ews ay} suindy R AHdVY¥D0ID 990 TTNHX9AUO0D]S
uonduasag YHM SHOM Papusix3/ono poulaiN

(ponunuod) g-11 219V,

314

WORKING WITH SPATIAL DATA

CHAPTER 11

(panu11u02)

aoue)sul
[eneds e aulap 0] Pasn U0 [eul) 8y} suiney

Jajaweled e Se poylaw au 01

passed SI 1ey; asueisul [eneds e pue jsurebe pajed
S| poylawW auy} ey} aaueisul [eneds sy} usamiaq
9ouR)SIp 1Sau0ys ajewixoidde ay) sa1e|noey

1sureBe paj[ed sI poylaw ay} eyl aguersul

[eneds ay1 yum 19as1a]ul 0] ‘9aur)sul [eneds au SI
yaiym “ayaweled o|buis e sydeday “Aidwa jou Sl
10 Jo fdwsa s1)i | suinay fidws s saLyawoah
OM} UB3M]8(18S UO[193SIa)ul 8} JI Salepijep

aouejsul |eneds
© JO SUOISUaWIp JO Jaquinu wnwixew eyl suiniay

poylaw sy 01 Jajaweled e se passed

SI 4ya1ym ‘aouelsul [enyeds puodss e Jo salepunoq auy}
UIUIIM BpISaJ 10U S90p Jey) ‘Isuiehe pajeo si poylaw
ay1 yoiym ‘Aydesboab e Jo uoiod ay) suinjey

A413IW03ID
'? AHdV¥D03D

AdL1IW03D
'8 AHdV¥D03ID

AdL1IW0ID
'8 AHdV¥D03ID

AdLIW03D
'8 AHdV¥D03ID

A413W0ID
'? AHdVdD03D

290

290

290

290

290

jutodpu3]s

90Ue}STALS

jutofstals

UOTSUBWTIQLS

9DUDID44TALS

315

WORKING WITH SPATIAL DATA

CHAPTER 11

390 8yl A413W03D
£q pauijep se ‘9aueisul [eneds e Jo adAy sy suimay R AHAVIN0ID 990 adAA118w03n]§
uin}al 0} 198[qo auyy Jo xapul
paseg- | ayl SI yaiym ‘1eraweled a|buls e s1daaoy AYLIWOTD
"U01399]|09 A1jow0ab e wolj 199[qo 21109ds e suiney R AHAV¥D0ID 990 NAI18Woan] S
‘Bull Joua1xa s ,uobAjod au1 uinal Alug
(l!™ poyaw 8y} ‘uobAjod e 1sufebe pajes usymy AY1IW0ID 290 3uTYI0TI93X3]S
J0U aJe Aau JI O pue
ales ay} aJe S19s squlod ayy JI | sunay “ieaweled
B S poylaw auy} o} passed s jeyl aouelsul [eneds
e Se 18s sjuiod awes au sey 1suiebe pa|[ea s AYLIW0ID
poujaw 8y} Jey} aduejsul [eleds auy i sajeplfep ’® AHVIDOID 390 sTenb3ys
1sulebe
paj|ea uaaq Sey pouylawu syl 1ey; aouelsul [eneds Ajup
alJ} $8S0[9ua ey} uobAjod Jeinbueiodsal e suinjay AY1IW0ID 990 adoTaAuils
uonduasag YMM SHOM Papuaix3/xvo PouldIN

(ponunuod) ‘g-11 219V,

316

WORKING WITH SPATIAL DATA

CHAPTER 11

(ponunuod)

199(q0 ue sureuo9
1110 pue Adwsa sI 9aueISUl 8Yl JI | suniay '199(qo
Ue suleiuod Jo Adws S| ague)sul [eiyeds e §i sajepljep

awes ay} Jou aJe fayy JI 0 pue
awes au} ale Aau 4 | suiniay awes sy} ale 198(qo
[enreds e Jo juiod pua pue juiod Liels 8yl JI SY29Y9D

j0u op A8y} JI O pue 108SI83UI SBIUR)SUI B} JI |
suJnjay “aleweled B Se poylaw ay) 0} passed si 1eyl
aoue)sul [eneds e yum sdejsano ‘pajjea si poyaw
ay} yaiym 1suiebe ‘aaueysul [ereds auy 4 sajepijen

Jajoweled e se poylaw ay) 0] passed

SI 1eY] 99uB)SUl [eneds e pue jsulebe pajeo s
poylaw auy) 1.yl sauesul jeneds e Aq paddejiano s
1By} BaJe ay} SI9A0D Jey] aoueISUl [eljeds e suinjay

"Burl Jouaqul s,uobAjod ay1 uinal
[IIM poylaL 8y ‘uobA|od . 1surefe pajeds usym

A413IWO3D
'8 AHdV¥D03D

A413W03ID
'? AHdVdD03D

A41IW03D
'8 AHdV¥D03D

A413W03ID
'? AHdVdD03D

Alug
AY13IW03D

290

290

290

290

290

A3dw3s1Ls

PoSOTDSILS

S129SI91UT]S

UOT}D9SIUTILS

NSUTYIOTISIUILS

317

WORKING WITH SPATIAL DATA

CHAPTER 11

as|e} S| UOIIPUOI Jaye
110 sulnyay "anJy aJe SUOIIPUOI Yl0q JI | sunay
(saurepunoq

,$100[q0 y10q Uo SI UONISSIBIUI JO Jul0d BYI BIBYM
1dadxa) Jay10 Yoaes 19asJajul 10U op Ss193lqo ajdiyn e
(uiod pua 1e 1089x8) J|9S) 199S19]UI 10U S30(] @
:suoipuod

Buimoj|oy sy} s1eaw aauelsul [eneds e i sajeplfep

9S|eJ 8JB SUOIIPU0I 8y} JO aJow
10 | J1 0 Jo ‘Bn} |[e aJe SuoIIpuOod 8y} JI | suinjay
paso|0 S| e

(saurepunoq

$,99[00 Y104 UO SI UOIRYaSISUI JO I0d By} 8laym
1d99xa) 1910 Yyoes 199S191U1 J0U op S193[0 9|diyniAl e
(uiod pua 1e 1089x8) J|9s) 199S19]UI 10U S30(] ©
Buigaurie s e

"BLIAID

BuImo||o) 8] S1eaW douURISUI [e1RdS B JI Sa1epIeA

Ao
A¥13W03D

Alup
Ad13IW03D

290

290

oTdWTSSTLS

3utys1lS

uonduoasaq

UUM SHIOM

Papuaix3/390

POUIBN

(ponunuod) ‘g-11 219V,

318

WORKING WITH SPATIAL DATA

CHAPTER 11

(panu1yu02)

9oue)sul [eneds e aqLIasap
0] Pasn 8Jam Jey) SJuI0d JO Jaquinu ay) suinay

surejuod uobAjod ayy 1ey1 sbuus Jolejul
10 Jaquinu 8y suinjal pue uobAjod e 1surebe paje)

Answoab
anjwid e s 9auelsul 8yl i | suiniay “Answoab
-Nnw e u1 s199(qo [eneds Jo Jaquinu ay) suinay

99ue)sSul AUy} Ul SaAIND
10 Jaquinu 8y} suinjay "saouelsul [eieds [euoisuawip
-9u0 ‘aAniwid ‘ajdwis 1suiebe pajea aq 1SN\

"0 sAeme s y1bua| ay) ‘1u10d
® 104 “J919wiad ayy Jo yibus| ayl si siyl ‘uobAjod
© 104 199(qo [eneds e jo yibus) [e10} 8y} suiney

POLLLIOJ-]|oM J0U
SI')I JI 0 pUB PALLLIOJ-||aM S| 8dUBISUI BU} JI | Suinjay
"PaLLIO)-|[aM SI douBISUI [enedS B 1By Sa1epljeA

Ad13IWOID

'8 AHdV¥D03D
Alug
A413W03ID

A413W03ID
'? AHdVdD03D

A413W03ID
'8 AHdV¥D03D

AdLIW03D
'8 AHdVdD03D

A413IW03ID
'? AHdVdD03D

290

290

290

290

290

290

SJUTOJUWNNLS

SUTYIOTISJUTWNN]LS

SOTIWO3NUNNLS

SOAINDJUNNLS

Y33ua1Ls

PTTEASILS

319

WORKING WITH SPATIAL DATA

CHAPTER 11

« POYIaW ay) 01 passed Jaowered

pU028S aU} SI pasn Xuew uieyed ay] “Xujew
uwianed (NI6-30) [9POJA U0II8SIBIU| 6 PAPUBIXT
Ajreuoisuawig 990 ayl Aq paulyap ale sdiysuolelay
"poyiaw auyy 01 Jajeweled 1s.1) 8y} Se passed S jeyy

aoue)sul |eneds e 0} paje|al SI paj|ed Si poyieuw flup
8U} yolym surebie soueysul [eneds sy} Ji sejepijep Ad13W03D 390 91eTay1S
aouer)sul [eneds Alug
B J0 JoLis}ul 8Y} Ulyiim ‘quiod Aseige ue suinjey Ad13W03D 390 9J€4INSUQIUTO4IS
Xapul Jeu e pajedo|
103(qo [eneds ay; suiniay Aawosb pediynw
B UIL}IM 198[qo Ue JO Uoed0| Xapul pased-| e A413IW03D
$9(J119s8p Yolym ‘Je1aweled a|buis e s}y ' AHAVINOID 290 NIUTOdLS
10u op Aauyy 1 0 pue depiano
$103[00 ay1 I | suinay ‘1e1oweled B Se ul passed Sl
1eU1 aour)sul [eieds e sdejlano 1suiebe pajiea sem AYLIWOTD
poy1aW 8} Jey} souelsul [eleds auy} 4i saiepllep 3 AHAV¥D0ID 390 sdeT1anQ1S
uonduosag YHM SHIOM Papualx3/gv0 pouylaN

(ponunuod) ‘g-11 219V,

320

WORKING WITH SPATIAL DATA

CHAPTER 11

(panu11u00)

J0u op A8y] JI 0 PUB YINOo] SaoUBISUl 8] JI | Suinay
‘J9)aweled e Se poylaw ay} 0} passed aouelsul
[enjeds e sayono} Ajjeneds pajjea sem poyaw ay}
yaiym jsurebe aouejsul [eneds auy JI sarepiep

saoue)sul [eneds yloq UIYIM JON e

Jo1oweled e se passed aoue)sul [eneds B UIyIM e
1surefe

Pa|[e9 SeM poylaLl ay} souelsul [ereds syl LI e

:ale 1ey)

U104 [[e Sapnjaul YyoIym ‘aauelsul [eieds e suiniay

aoue)sul
[eneds e auljap 0] Pasn uI0d 1S} U suInay
PaJ[B9 SBM POLISW 8} YIIyMm

1surefe ‘aour)sul [eneds ayy Jo qYS 8yl suinay

flug
AdL3IW0ID

A413IW03ID
'? AHdVdD03D

A413W03ID
'? AHdVdD03D

A413IW03ID
'? AHdVdD0ID

290

290

290

290

Sayonoy s

90UBIR44TAWAS S

JUT0411e3S]S

PTISIS

321

WORKING WITH SPATIAL DATA

CHAPTER 11

aleulpood Alug
X SJUI0d U} SuIn}ay “julod e isurebe pajjed Ad13IW03D 290 X1S
Jou si) ji o pue si
1 JI | suinjay "pajjea Sem poylawl ayl yaiym isurebe
aoaue)sul eneds ayy apisul Aj919]dwod sI Ja1aweled
e se passed aouejsul [enjeds au 4 sajepifep 198/qo AY13IW03D
[eneds e sauljap yaiym Jsjowe.ed sjbuis e s1daddy R AHAV¥DOID 290 UTYIIMLS
‘sindur sy uo Bulpuadap
‘Anowoab pediynw 1o aawLd e J1ayus ag pinod
uolun jueynsal ay] “Jejaweled e se poyjaw auy 0}
passed aouelsul [eljeds e pue pajies sem poylaw
au} yatym jsurebe aouelsul [ereds sy} Uaamiaq AdL1IW03D
uolun ay} sapinoid Jey} aduelsul [eljeds e suiniaY ' AHdVYDN0ID 290 uotunls
uonduasag YHM SHOM Papusix3/ono poyisii

(ponunuod) g-11 219VI

322

WORKING WITH SPATIAL DATA

CHAPTER 11

"86Z T-S88/T-6TE-€-8/642%L00
T °0T/AT1U2)I0MIOUIId L3I /W0D * T2bUTIAS *YUTT//: Sd12y Je punoj 8q ued saaLjew widped wWi6-3a Ul 4O S/I1a0.x

‘sjulod
J9MaJ Ylim 8AINI JeliLLls & puyy 0} Sjdiaye pue SjuaLwbas aujf jo pasoduiod aAINd e Saxe) WyjIoble 19yanad-sejbnoq v,

AY13W03D

aoue)sUl [ejeds 8y} Jo aneA Z 8y} suINldY ’® AHdV3D03D papusixg Z
PaJ[ea S| poylewW 8y yaiym jsurede AdL3IW03D

aoue)sul [eljeds au} JO 1xa} UMOUX-|[dM 8L} SUINdY '8 AHdV¥D0ID papualxy dutxysol
8]euIplood Alup

K'suiod aup suinay juiod e jsurefe paje A413IW03ID 390 ALS

323

https://link.springer.com/referenceworkentry/10.1007/978-3-319-17885-1_298
https://link.springer.com/referenceworkentry/10.1007/978-3-319-17885-1_298

CHAPTER 11 WORKING WITH SPATIAL DATA

Table 11-2 called out the IsValidDetailed, which has been
implemented by Microsoft as an extended method. Table 11-3 details the
error codes that can be thrown by the IsValidDetailed method, when a
spatial instance is not valid.

Table 11-3. IsValidDetailed Error Codes

Error Code Description

24400 The instance is valid.
24401 The instance is not valid, but the reason is unknown.

24402 The instance is not valid, because a point is isolated, which is not valid
for the object’s type.

24403 The instance is not valid, because some pair of polygon edges overlap.

24404 The instance is not valid because a polygon ring intersects itself or
another ring.

24405 The instance is not valid, because a polygon ring intersects itself or
another ring, and the ring number cannot be returned.

24406 The instance is not valid, because a curve degenerates to a point.
24407 The instance is not valid, because a polygon ring collapses to a line.
24408 The instance is not valid, because a polygon ring is not closed.

24409 The instance is not valid, because some portion of a polygon ring lies in
the interior of a polygon.

24410 The instance is not valid, because a ring is the first ring in a polygon
but is not the exterior ring.

24411 The instance is not valid, because a ring lies outside the exterior ring of
its polygon.

(continued)

324

CHAPTER 11 WORKING WITH SPATIAL DATA

Table 11-3. (continued)

Error Code Description

24412

24413
24414

24415

24416

The instance is not valid, because the interior of a polygon is not
connected.

The instance is not valid, because of two overlapping edges in a curve.

The instance is not valid, because an edge of a curve overlaps an edge
of another curve.

The instance is not valid, because a polygon has an invalid ring
structure.

The instance is not valid, because in a curve, the edge is either a line or
a degenerate arc with antipodal end points.

In addition to the methods detailed in Tables 11-1 and 11-2, there are
also a number of aggregation methods available when using the GEOMETRY
and GEOGRAPHY data types. These are detailed in Table 11-4.

Table 11-4. Aggregation Methods

Method Description

CollectionAggregate Creates a GeometryCollection from a set of spatial
objects

ConvexHullAggregate Returns the convex hull of a set of spatial objects

EnvelopeAggregate Returns a bounding spatial object for a set of spatial
objects

UnionAggregate Returns a union of a set of spatial objects

325

CHAPTER 11 WORKING WITH SPATIAL DATA

Now that you are aware of the spatial methods that SQL Server
exposes, you can look at how they can be employed in practice, by using
the WideWorldImporters database. Imagine that we are responsible for
delivery routes, and we must plan a route in Alabama.

The first thing that we want to do is validate our data. Are all our
customers, with delivery locations marked as being in Alabama, actually
within the Alabama state border? The Sales.Customers table contains a
GEOGRAPHY column called DeliveryLocation, with each row containing a
Point object that maps their delivery address. We can use the STWithin
method against this column, passing in the Border column from the
Application.StateProvinces table, which maps the state border. This is
demonstrated in Listing 11-9.

Listing 11-9. Validating That All Addresses Are Within the Alabama
State Border

DECLARE @StateBorder GEOGRAPHY = (
SELECT Border
FROM Application.StateProvinces
WHERE StateProvinceName = 'Alabama') ;

SELECT
Customer.CustomerName AS CustomerName
, City.CityName AS City
, Customer.Deliverylocation.ToString() AS
Deliverylocation
FROM SALES.Customers Customer
INNER JOIN Application.Cities City
ON City.CityID = Customer.DeliveryCityID
WHERE Customer.Deliverylocation.STWithin(@StateBorder) = 1 ;

326

CHAPTER 11 WORKING WITH SPATIAL DATA

The results of this query (which are displayed in Figure 11-6) validate
that all 16 customers with Alabama delivery addresses actually reside in
Alabama.

B Resuts ¥ Messages

. CustomerName City DeliverylLocation
1 | Tailspin Toys (Eulaton, AL) i Eulaton POINT (-85.9124671 33.6456527)
2 Tailspin Toys {Jemison, AL) Jemison POINT (-86.7466522 32.9598451)
3 Tailspin Toys (Nanafalia, AL) Nanafalia POINT (-87.9880651 32.1129257)
4 Tailspin Toys {Guin, AL) Guin POINT (-87.9147454 33.9656554)
5 Tailspin Toys (Belgreen, AL) Belgreen POINT (-87.8664241 34 474818)
6 Tailspin Toys (Saks, AL) Saks POINT (-85.8396879 33.6987135)
7 Wingtip Toys (Tuscaloosa, AL) Tuscaloosa POINT (-87.5691735 33.2098407)
8 Wingtip Toys (Highland Home, AL) Highland Home POINT (-86.3138546 31.9534835)
9 Wingtip Toys (Coker, AL) Coker POINT (-87.6877882 33.2459512)
10 Wingtip Toys (Robertsdale, AL) Robertsdale POINT (-87.7119324 30.5538048)
11 Wingtip Toys (Broomtown, AL) Broomtown POINT (-85.5216276 34.3606453)
12 Wingtip Toys (Marion Junction, AL) Marion Junction ~ POINT (-87.2388839 32.437358)
13 Wingtip Toys (Flomaton, AL) Flomaton POINT (-87.2608071 31.000182)
14 Risto Valbe Bazemore POINT (-87.7000188 33.89454396)
15 Manca Hrastovsek Southside POINT (-86.0224718 33.5245425)
16 Emma Salpa Rogersville POINT (-87.2947417 34.8256425)

@ Query executed successfully.

Figure 11-6. Results of validating that all addresses are within the
Alabama state border

Next, we want to check the distance of each delivery location
from our depot and order the results by that distance. This will
help us plan the route. This technique is known as finding nearest
neighbors and is demonstrated in Listing 11-10, which calculates the
distance and orders the results, by using the DeliveryLocation from
the Application.SystemParameters table, which marks the location of
WideWorldImporters.

327

CHAPTER 11 WORKING WITH SPATIAL DATA

Note The WideWorldimporters depot is in California, but while the
distances to the Alabama locations are vast, they still allow us to plan
the driver’s most sensible route.

Listing 11-10. Finding Nearest Neighbors

DECLARE @StateBorder GEOGRAPHY = (
SELECT Border
FROM Application.StateProvinces
WHERE StateProvinceName = 'Alabama') ;

DECLARE @0ffice GEOGRAPHY = (
SELECT Deliverylocation
FROM Application.SystemParameters) ;

DECLARE @MilesRatio INT = 0.000621371 ;

SELECT
Customer.CustomerName AS CustomerName
, City.CityName AS City
, Customer.Deliverylocation.ToString() AS
Deliverylocation
, Customer.Deliverylocation.STDistance(@0ffice) * @
MilesRatio AS DeliveryDistanceMiles
FROM SALES.Customers Customer
INNER JOIN Application.Cities City
ON City.CityID = Customer.DeliveryCityID
WHERE Customer.DeliverylLocation.STWithin(@StateBorder) = 1
ORDER BY DeliveryDistanceMiles ;

328

CHAPTER 11

The results of this query can be seen in Figure 11-7.

WORKING WITH SPATIAL DATA

W o~ U & WK =

15
16

BB Resuts @i Messages

CustomerName

{ Taspin Toys (Belgroen, AL)

Tailspin Toys (Guin, AL)

Risto Valbe

Emma Salpa

Wingtip Toys {Coker, AL)

Wingtip Toys (Tuscaloosa, AL)
Tailspin Toys (Nanafalia, AL)
Wingtip Toys (Marion Junction, AL)
Tailspin Toys (Jemison, AL)
Wingtip Toys (Robertsdale, AL)
Manca Hrastovsek

Wingtip Toys (Fomaton, AL)
Tailspin Toys (Eulaton, AL)
Tailspin Toys {Saks, AL)

Wingtip Toys (Broomtown, AL)
Wingtip Toys (Highland Home, AL)

@ Query executed successfully.

DeliveryLocation

POINT (-87.8664241 34.474818)
POINT (-87.9147434 33.9656534)
POINT (-87.7000188 33.8545456)
POINT (-87.2947417 34.8256425)
POINT (-87.6877882 33.2459512)
POINT (-87.5691735 33.2098407)
POINT (-87.9880631 32.1129257)
POINT (-87.2388839 32.437358)
POINT (-86.7466522 32 9598451)
POINT (-87.7119324 30.5538048)
POINT (-86.0224718 33.9245425)
POINT (-87.2608071 31.000182)
POINT (-85.9124671 33.6456587)
POINT (-85.8396879 33.6987135)
POINT (-85.5216276 34.3606453)
POINT (-86.3138546 31.9534835)

DeliveryDistanceMies
1939.75915206454
1947.58181832539
1960.8273185532
1964.04782212196
1975.68612346646
1982.99232324433
1986.00460852848
2019.10760853923
2033.72250552745
2041.87457914395
2051.87676799238
2054 42859013072
2063.91858396912
2066.73705103033
2070.07110349507
2081.62431628622

Figure 11-7. Results of finding nearest neighbors

You will notice that in Listing 11-10, the distance is multiplied by

0.000621371. This is because the distance is natively in meters. The unit

of measurement of distance is associated with the SRID, so we can double

check this, by enhancing our query to expose the SRID, as shown in

Listing 11-11. This query exposes the STRid property of each spatial

instance and uses this value to join to the sys.spatial_reference_systems

system table, to expose the unit of measure column.

329

CHAPTER 11 WORKING WITH SPATIAL DATA
Listing 11-11. Exposing the SRID

DECLARE @StateBorder GEOGRAPHY = (
SELECT Border
FROM Application.StateProvinces
WHERE StateProvinceName = 'Alabama') ;

DECLARE @0ffice GEOGRAPHY = (
SELECT Deliverylocation
FROM Application.SystemParameters) ;

DECLARE @MilesRatio INT = 0.000621371 ;

SELECT
Customer.CustomerName AS CustomerName
, City.CityName AS City
, Customer.Deliverylocation.ToString() AS
Deliverylocation
, Customer.Deliverylocation.STDistance(@0ffice) *
@ilesRatio AS DeliveryDistanceMiles
, Customer.Deliverylocation.STSrid AS SRID
, srid.unit_of measure
FROM SALES.Customers Customer
INNER JOIN Application.Cities City
ON City.CityID = Customer.DeliveryCityID
INNER JOIN sys.spatial reference systems srid
ON srid.spatial reference id = Customer.
Deliverylocation.STSrid
WHERE Customer.DeliverylLocation.STWithin(@StateBorder) = 1
ORDER BY DeliveryDistanceMiles ;

330

CHAPTER 11 WORKING WITH SPATIAL DATA

While we know that all deliveries are in the state of Alabama, we may
wish to discover how big our actual delivery area is. We can achieve this
by creating an envelope and then calculating its area. This approach uses
the EnvelopeAggregate extended method and the STArea method, as
demonstrated in Listing 11-12.

Listing 11-12. Calculating the Area of an Aggregate Envelope

DECLARE @StateBorder GEOGRAPHY = (
SELECT Border
FROM Application.StateProvinces
WHERE StateProvinceName = 'Alabama') ;

SELECT
GEOGRAPHY: :EnvelopeAggregate(DeliverylLocation).
STArea() AS ArealnSquareMetres
, GEOGRAPHY: :EnvelopeAggregate(DeliverylLocation)
AS EnvelopeObject
FROM Sales.Customers
WHERE DeliverylLocation.STWithin(@StateBorder) = 1 ;

The results of this query can be seen in Figure 11-8.

BH Resuts @) Spatialresults [Messages
ArealnSquareMetres EnvelopeObject
1 185742485437 .061 (xE6100000020405000000758B27A683194140...

@ Query executed successfully.

Figure 11-8. Results of calculating the area of an aggregate
envelope

331

CHAPTER 11 WORKING WITH SPATIAL DATA

The graphical results of the query in Listing 11-12 are illustrated in
Figure 11-9.

Figure 11-9. Graphical results of calculating the area of an aggregate
envelope

Indexing Spatial Data

The following sections provide an overview of spatial indexes, before
demonstrating how to create them.

Understanding Spatial Indexes

Spatial indexes are a special type of index, implemented in SQL Server,
that can improve the performance of certain queries against spatial data
types. Table 11-5 describes the predicate patterns that can benefit from
spatial indexes, when used in a WHERE or JOIN clause.

332

CHAPTER 11 WORKING WITH SPATIAL DATA

Table 11-5. Queries That Can Benefit from Spatial Indexes

Data Type Method Operator
GEOMETRY & GEOGRAPHY STDistance <
<=
GEOMETRY & GEOGRAPHY STEquals =
GEOMETRY & GEOGRAPHY STIntersects =
GEOMETRY Only STContains =
GEOMETRY Only STOverlaps =
GEOMETRY Only STTouches =
GEOMETRY Only STWithin =

Just as with traditional indexes, spatial indexes use a B-Tree structure
(see Chapter 5 for further information on B-Tree indexes), meaning that
the spatial data must be represented in a linear order. To achieve this,
SQL Server decomposes space into a nested grid system, before building
an index.

The grid will have four layers. Each cell in the first (Level 1) grid will
contain another (Level 2) grid, and so on. Each of the four grid layers can
be given a separate density, with low density being defined as 4 x 4 cells,
medium density as 8 x 8 cells, and high density as 16 x 16 cells. Each cell
within the grid is numbered using a Hilbert space-filling curve algorithm.

Tip A full discussion of the Hilbert space-filling curve is beyond the
scope of this book, but further details can be found in many locations
online, including mathworld.wolfram.com/HilbertCurve.html.

333

http://wolfram.com/HilbertCurve.html

CHAPTER 11 WORKING WITH SPATIAL DATA

Once the grid system has been created, SQL Server reads the data from
the column row by row. For each row, it will associate the spatial object
with each Level 1 cell that it touches. For each touched cell, it will then
drop down to Level 2 and repeat the process. This then happens again for
Level 3 and Level 4, as required. This process is called tessellation. The
output of the process is a set of touched cells, which can be stored in the
index and subsequently used to calculate their spatial position, relative to
other objects.

The tessellation process requires a bounding box, and this can behave
differently, depending on the tessellation system used. The tessellation
systems are data-type dependent and you will have the option of using
automatic coordinates for the bounding box or defining your own.

You may further configure the tessellation process, by defining how
many tessellation cells should be used. What this means is that you can
cap the maximum number of touched cells recorded for a single object.

It is worth noting, however, that this only affects Levels 2 through 4.
Level 1 will record as many cells as the object touches, regardless of your
configuration.

Creating Spatial Indexes

To demonstrate the creation of a spatial index, we will create an index

on the Border column of the Application.StateProvinces table in the
WideWorldImporters database. We will use an auto grid system, and we will
configure medium density for Levels 1 to 3, with high density for Level 4.

To create the index through SQL Server Management Studio, drill
through Databases » WideWorldImporters » Tables » Application.
StateProvinces in Object Explorer. Then select New Index » Spatial Index
from the context menu of the Indexes folder. This will cause the General
page of the New Index dialog bog to be invoked, as shown in Figure 11-10.

334

CHAPTER 11 WORKING WITH SPATIAL DATA

SE New Index -] x
Eﬁummnmmmnmm
| Select a page LT Script - | @ Help
| & General
| & Opions
| M Storage Table name:
| & Spatial StateProvinces
& Bdended Propesties fchers e
Sl-Border
Index type:
Spatial
Spatial column
% | Mame Data Type Identity Allow NULLs || Add
I\& paratyees | Border No Yes || Remove |
[DATATYPES \Adminsstrator]
Vigw connection propedies
':le
Ready
OK Cancel Help

Figure 11-10. New Index dialog box—General page

On this page of the dialog box, we have given the index a meaningful
name and used the Add button, to add the column that we wish to index. We
will now progress to the Options page, which is illustrated in Figure 11-11.

335

CHAPTER 11 WORKING WITH SPATIAL DATA

»\p‘ New Index o o *®
{3 Mismatch in cobumn datatype and tesselation scheme

Select a page LT Secript ~ | € Help
F Genenal
4 Options "
Storage e
& Soatial v s
& Bended Properies Auto recompute statistics True
v Locks
HAllow row locks True
Allow page bocks True
~ Operation
1
v Storage
G i Sod in tempdl False
Fill factor 0
v¥ DATATYPES
[DATATYPES \Adminitrator Fod ndex Feliy
Miew connection properties
Progress Maximum degree of parallelism
Ready Maimum degres of paralisfsm

q 0K Cancel Help
|

Figure 11-11. New Index dialog box—Options page

The Options page will look familiar to anyone who has created a
traditional index. Table 11-6 details each of the options available.

Table 11-6. Spatial Index Options

Option Description

Auto Recompute Specifies if statistics should be updated automatically when
Statistics they are deemed out of date

Allow Row Locks Specifies if row locks can be acquired when accessing the index
Allow Page Locks Specifies if page locks can be acquired when accessing the index

Maximum Degree Has no effect for building primary spatial indexes, as this
of Parallelism operation is always single-threaded

(continued)

336

CHAPTER 11 WORKING WITH SPATIAL DATA

Table 11-6. (continued)

Option

Description

Sort in TempDB

Fill Factor

Pad Index

If specified, Sort in TempDB will cause the intermediate result
set to be stored in TempDB, as opposed to the user database.
This could mean that the index is built faster.

Specifies a percentage of free space that will be left on each
index page at the lowest level of the index. The default is 0
(100% full), meaning that only enough space for a single row
will be left. Specifying a percentage lower than 100—for
example, specifying 70—will leave 30% free space, which can
reduce page splits, if there are likely to be frequent row inserts.

Applies a fill factor (see preceding) to the intermediate levels of
a B-Tree

On the Storage page, illustrated in Figure 11-12, you can specify the

filegroup that the index will be created on. Usually, it is best for indexes

to be aligned with the same filegroup (or partition schema) as their table,

for performance. From a maintenance perspective, it may be helpful to

store the index on a different filegroup when the table is partitioned. If you

don’t, the index will have to be dropped before the table is repartitioned.

337

CHAPTER 11 WORKING WITH SPATIAL DATA

i New Index
&3 Mismatch in column datatype and tesselation scheme
Select a page LT Seript = | @ Help

¥ Storage Filegroup:
& Spatid PRIMARY

¢ DATATYPES
[DATATYPES \Adinistrator]

View connection properties

0K Cancel Help

Figure 11-12. New Index dialog box—Storage page

The Spatial page is shown in Figure 11-13. This is where we can
configure the spatial specific options of our index. In the General section
of the page, we can choose our tessellation system—either automatic or
manual. If we select manual, the Grids area of the page will become active,
and we can select the grid densities that we would like to use. If the manual
geometry system is selected, the Bounding Box area of the page will also
become active, and we can specify our bounding box coordinates.

338

CHAPTER 11 WORKING WITH SPATIAL DATA

i New Index - o x
€ Ready
Select a page LT Script = @ Help

Connection
¥¥ DATATYPES =~ Level 2 Medium
[DATATYPES\Administrator] PR
Level 4 High
View connection properties
Progress Tessellation Scheme
Ready Name of tessallation scheme.

Figure 11-13. New Index dialog box—Spatial page

Tip A geometry system must be used on a GEOMETRY column and
a geography system must be used on a GEOGRAPHY column.

Alternatively, we could use T-SQL to create the index. The scriptin
Listing 11-13 will create the same index as discussed previously.

Listing 11-13. Creating a Spatial Index

USE WideWorldImporters
Go

CREATE SPATIAL INDEX [SI-Border]
ON Application.StateProvinces (Border)
USING GEOGRAPHY_GRID

WITH (GRIDS =(LEVEL 1 = MEDIUM,LEVEL 2 = MEDIUM,LEVEL 3 =
MEDIUM,LEVEL 4 = HIGH),
CELLS_PER_OBJECT = 16,

339

CHAPTER 11 WORKING WITH SPATIAL DATA

PAD_INDEX = OFF,

STATISTICS NORECOMPUTE = OFF,

SORT_IN TEMPDB = OFF,

DROP_EXISTING = OFF,

ONLINE = OFF,

ALLOW_ROW_LOCKS = ON,

ALLOW_PAGE_LOCKS = ON, MAXDOP = 1)
ON [PRIMARY] ;

Summary

Spatial objects can be constructed by using various means. They can be
created using OGC standard methods, from either well-known text or
well-known binary, or they can be constructed by using a Microsoft
extended method from GML. SQL Server also supports passing
well-known text directly into a variable of a table’s cell.

A wealth of methods exist that allow developers to easily interact
with spatial data. Commonly used methods include STDistance, which
will return the distance between two geometries, and STWithin, which
will check if an instance resides within the same space as another. There
are also aggregate methods that allow multiple instances to have union,
envelope, and convex hull applied to them as a group, as well as converting
multiple instances to a single collection.

SQL Server provides spatial indexes, which can improve the performance
of certain types of queries. The index support for queries depends on the data
type, the method in the WHERE or JOIN clause, and the arithmetic operator used.

Spatial indexes use B-Tree structures, but before the B-Tree is created,
a grid system of space is created, with four nested levels. The spatial
instances from the column are then read one by one into the grid system,
and their touched cells are numbered, using a Hilbert curve. This means
that spatial instances can be indexes in a linear fashion, but detailing their
proximity to each other.

340

CHAPTER 12

Working with
Hierarchical Data
and HierarchylD

Modeling and working with data hierarchies have long been requirements
for SQL Server developers. Traditionally, hierarchical data has been
modeled using a self-join on a table, between two columns. One column
contains the ID of the hierarchical member, and the other, the ID of its
parent hierarchical member. Newer versions of SQL Server (2008 and
later versions) offer HierarchyID, however. HierarchyID is a data type
written in .NET and exposed in SQL Server. Using HierarchyID can offer
performance benefits and simplified code, compared to using a table

with a self-join. The data type exposes many methods that can be called
against the data, to allow developers to easily determine the ancestors and
descendants of a hierarchical member, as well as determine other useful
information, such as the level of a specific hierarchical member within the
hierarchy.

In this chapter, we will examine first the use cases for hierarchical data.
I'will discuss how to model a traditional hierarchy, before explaining how
we can remodel it using HierarchyID. Finally, we will look at the methods
that are exposed against the HierarchyID data type.

© Peter A. Carter 2018 341
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_12

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Hierarchical Data Use Cases

There are many data requirements that need a hierarchy to be maintained.

For example, consider an employee hierarchy, modeled from an organizational
chart (see Figure 12-1). A human resources department may have reporting
requirements, to determine how many staff directly or indirectly report to a
manager. It may also have to report on more complex requirements, such as
how much revenue has been generated by staff reporting to each group head.

Danielle Carter

Head of Sales

k.,

Peter Carter

Group Head - Europe

Kelly Mullhull

Group Head - USA

Lisa Abraham

Group Head - Asia

l—‘—l

Richard Watson

Sales Manager - UK

Jennifer Trevis

Sales Manager -

Continent

Richard Trevis

Sales Manager - USA

k.

"

Finola Carter

Account Exec

l—l—l

Jennifer Abraham

Account Exec

Reuben Carter

Account Exec

Iris Carter

Account Exec

Barry Abraham

Salesperson

Sylvia Carter

Salesperson

"

Linda Marie

Salesperson

Edward James

Salesperson

Figure 12-1. Sales department organization chart

Another classic use case for hierarchical data is a bill of materials
(BoM). A BoM defines a hierarchy of parts that are required to produce
a product. For example, Figure 12-2 illustrates a simple BoM for a home
computer. A computer manufacturer would have to maintain a hierarchy
of these parts for stock reporting.

342

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Home Compuler

- Keyboard

—™ Mouse
> Tower
— Case

Chasss
PSU
—> Matherboard
— Processor
CFU
Heat Sink & Fan

— Video Card

i Sound Card

‘| Hard Drive (Internal)

——{ Hard Drive (External)

Hard Diive

Hard Drive Chassis

Figure 12-2. Bill of materials

343

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

In this chapter, we will be working with the example of a sales area
hierarchy. As illustrated in Figure 12-3, we will be modeling global sales
regions. The hierarchy is ragged, meaning that there can be a varying
number of levels in each branch of the hierarchy.

Europe. ‘1 Amenca l
5 ‘Westem Europe Eastern Eutope Canats USA LATAM
‘ i ‘ ‘ Fe ‘ ‘ oo | ‘ sv | ‘ e ‘ ‘ e | ‘ - | | o ‘

Figure 12-3. Sales area hierarchy

Maintaining a sales area hierarchy is important to many companies,
as it allows them to report on many factors, from revenue taken in each
region to the number of salespeople in each region to average revenue
per salesperson and region, etc. In this example, as well as in standard
sales regions, there are areas of the hierarchy that are aggregation areas.
This means that no salespeople exist, and sales are not directly taken for
these regions. Instead, they are reporting levels, to allow lower levels of the
hierarchy to be rolled up. These aggregation areas are highlighted in blue.

Modeling Traditional Hierarchies

Let’s look at how we might model a sales area hierarchy, using a traditional
approach. To do this, consider the data in Table 12-1.

344

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Table 12-1. Sales Area Hierarchy

SalesArealD ParentSalesArealD SalesArea CountOfSalesPeople SalesYTD
Name
1 NULL Global Sales NULL NULL
2 1 Europe NULL NULL
3 1 America NULL NULL
4 2 UK 3 300,000
5 2 Western Europe NULL NULL
6 2 Eastern Europe NULL NULL
7 3 Canada 4 350,000
8 3 USA NULL NULL
9 3 LATAM NULL NULL
10 5 Germany 3 150,000
11 5 France 2 100,000
12 6 Hungary 1 50,000
13 6 Slovakia 2 80,000
14 8 Eastern 4 140,000
15 8 Western 3 280,000
16 9 Brazil 1 100,000
17 9 Argentina 2 70,000
18 14 New York 2 120,000

In the preceding table, the SalesArealD column would be the primary
key of the table, and the ParentSalesArealD column would be a foreign
key, which references the SalesArealD column, creating what is known as a
self-join.

345

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Note The ParentSalesArealD column is NULL for the GlobalSales
area, because it does not have a parent. This is known as the root of
the hierarchy.

The SalesAreaName column describes the sales area, while the
CountOfSalesPeople and SalesYTD columns detail how each sales area
is performing. We will use these columns to explore how to work with
hierarchical data. You will notice that the CountOfSalesPeople and
SalesYTD columns are populated with NULL values for aggregation areas.
This is because they are “virtual” areas, where no salespeople are based.

This table can be created by using the script in Listing 12-1.

Listing 12-1. Creating a Traditional Hierarchical Table

USE WideWorldImporters
GO

CREATE TABLE Sales.SalesAreaTraditionalHierarchy
(
SalesArealD INT NOT NULL PRIMARY KEY,
ParentSalesAreaID INT NULL
REFERENCES Sales.Sales
AreaTraditionalHierarch

y(SalesArealD),
SalesAreaName NVARCHAR(20) NOT NULL,
CountOfSalesPeople INT NULL,
SalesYTD MONEY NULL
)
INSERT INTO Sales.SalesAreaTraditionalHierarchy (

SalesArealD
, ParentSalesArealD
, SalesAreaName

346

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

, CountOfSalesPeople

, SalesYTD
)
VALUES
(1, NULL, 'GlobalSales', NULL, NULL),
(2, 1, 'Europe', NULL, NULL),
(3, 1, 'America', NULL, NULL),
(4, 2, "UK', 3, 300000),
(5, 2, 'Western Europe', NULL, NULL),
(6, 2, 'Eastern Europe', NULL, NULL),
(7, 3, 'Canada', 4, 350000),
(8, 3, "USA', NULL, NULL),
(9, 3, 'LATAM', NULL, NULL),
(10, 5, 'Germany', 3, 150000),
(11, 5, 'France', 2, 100000),
(12, 6, 'Hungary', 1, 50000),
(13, 6, 'Slovakia', 2, 80000),
(14, 8, 'Eastern', 4, 140000),
(15, 8, 'Western', 3, 280000),
(16, 9, 'Brazil', 1, 100000),
(17, 9, 'Agentina’, 2, 70000),
(18, 14, 'New York', 2, 120000) ;

Let’s imagine that we must answer a business question, using this
traditional hierarchy. For example, we may have to answer the question,
“What is the total of SalesYTD for the America region?” To determine this,
we would have to write a query that joins the table to itself and rolls up the
SalesYTD column for all subregions under the America region.

The best way of achieving this is to use a recursive CTE (common
table expression). A CTE is a temporary result set that is defined within the
context of a SELECT, UPDATE, INSERT, DELETE, or CREATE VIEW statement
and can only be referenced within that query. It is similar to using a

347

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

subquery as a derived table but has the benefit that it can be referenced
multiple times and also reference itself. When a CTE references itself, it
becomes recursive.

A CTE is declared using a WITH statement, which specifies the name of
the CTE, followed by the column list that will be returned by the CTE, in
parentheses. The AS keyword is then used, followed by the body of the CTE,
again within parentheses. This is shown, for our example, in Listing 12-2.

Tip The queries in Listings 12-2 to 12-14 are not meant to be run
separately. Listing 12-15 brings them all together, into a useable script.

Listing 12-2. CTE Structure

; WITH AreaHierarchy (SalesArealD, SalesYTD, ParentSalesArealD)
AS

(
[Body of CTE]

The definition of a recursive CTE has two queries, joined with a UNION
ALL clause. The first query is known as the anchor query and defines the
initial result set. The second query is known as the recursive query and
references the CTE. The first level of recursion will join to the anchor
query, and subsequent levels of recursion will join to the level of recursion
immediately above them.

Therefore, in our example, the anchor query will have to return the
SalesArealD of the America sales area. Because all queries joined with
UNION ALL must contain the same number of columns, our anchor query
must also return the ParentSalesArealD and SalesYTD columns, even
though these values will be NULL.

348

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

The query in Listing 12-3 shows the required anchor query.

Listing 12-3. Anchor Query

SELECT
SalesArealD
, SalesYTD
, ParentSalesArealD
FROM Sales.SalesAreaTraditionalHierarchy Rootlevel
WHERE SalesAreaName = 'America’

The recursive query will return the same column list as the anchor
query but will include a JOIN clause, which joins the ParentSalesArealD
column in the recursive query to the SalesArealD column of the CTE, as
demonstrated in Listing 12-4.

Listing 12-4. Recursive Query

SELECT
Area.SalesArealD
, Area.SalesYTD
, Area.ParentSalesArealD
FROM Sales.SalesAreaTraditionalHierarchy Area
INNER JOIN AreaHierarchy
ON Area.ParentSalesArealD = AreaHierarchy.SalesArealD

Following the declaration of this CTE, we will be able to run a SELECT
statement, which rolls up the SalesYTD, to return the total of SalesYTD
for the whole of America. The script in Listing 12-5 brings all these
components together.

349

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID
Listing 12-5. Bringing It All Together

WITH AreaHierarchy (SalesArealD, SalesYTD, ParentSalesArealD)
AS
(
SELECT
SalesArealD
, SalesYTD
, ParentSalesArealD
FROM Sales.SalesAreaTraditionalHierarchy Rootlevel
WHERE SalesAreaName = 'America’
UNION ALL
SELECT
Area.SalesArealD
, Area.SalesYTD
, Area.ParentSalesArealD
FROM Sales.SalesAreaTraditionalHierarchy Area
INNER JOIN AreaHierarchy
ON Area.ParentSalesArealD = AreaHierarchy.SalesAreaID

)

SELECT SUM(SalesYTD)
FROM AreaHierarchy ;

Modeling Hierarchies with HierarchylD

When modeling hierarchical data using HierarchyID, there is no need
to perform a self-join against a table. Therefore, instead of having a
column that references its parent area’s primary key, we will instead
have a HierarchyID column, which defines each area’s position within
the hierarchy. To explain this concept further, let’s consider the data in
Table 12-2.

350

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Table 12-2. Sales Area Hierarchy with HierarchyID

SalesArealD SalesAreaHierarchy SalesAreaName CountOfSalesPeople SalesYTD

1 / GlobalSales NULL NULL

2 n/ Europe NULL NULL

3 12/ America NULL NULL

4 nn/ UK 3 300,000
3 nr2/ Western Europe NULL NULL

6 1173/ Eastern Europe NULL NULL

7 1211/ Canada 4 350,000
8 1212/ USA NULL NULL

9 1213/ LATAM NULL NULL
10 /2117 Germany 3 150,000
1 122/ France 2 100,000
12 1131/ Hungary 1 50,000
13 n73/2/ Slovakia 2 80,000
14 1212/1/ Eastern 4 140,000
15 121212/ Western 3 280,000
16 12131/ Brazil 1 100,000
17 121312/ Argentina 2 70,000
18 121211171 New York 2 120,000

In Table 12-2, you will notice that the hierarchy is represented by
the format /[Node]/[Child Node]/[GrandchildNode]/, in which a row
containing just / is the root of the hierarchy. For example, we can see that
the value /1/2/1/ for Germany tells us that Germany is a child of /1/2/

351

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

(Western Europe), which in turn is a child of /1/ (Europe). /1/ is the child
of / (Global Sales), which is the root of the hierarchy.
We can create and populate this table by using the script in Listing 12-6.

Listing 12-6. Create Table with HierarchyID

USE WideWorldImporters
GO

CREATE TABLE Sales.SalesAreaHierarchyID

(

SalesArealD INT NOT
NULL PRIMARY KEY,

SalesAreaHierarchy = HIERARCHYID NOT NULL,

SalesAreaName NVARCHAR(20) NOT NULL,
CountOfSalesPeople INT NULL,
SalesYTD MONEY NULL
)
INSERT INTO Sales.SalesAreaHierarchyID (

SalesArealD

, SalesAreaHierarchy
, SalesAreaName
, CountOfSalesPeople
, SalesYTD
)
VALUES
(1, '/", 'GlobalSales', NULL, NULL),
(2, '/1/', 'Europe', NULL, NULL),
(3, '/2/", 'America', NULL, NULL),
(4, '/1/2/', "UK', 3, 300000),
(5, '/1/2/', 'Western Europe', NULL, NULL),
(6, '/1/3/', 'Eastern Europe', NULL, NULL),

352

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

(7, '/2/1/', 'Canada', 4, 350000),

(8, '/2/2/', 'USA', NULL, NULL),

(9, '/2/3/", 'LATAM', NULL, NULL),
(10, '/2/2/1/', 'Germany', 3, 150000),
(11, '/1/2/2/", 'France', 2, 100000),
(12, '/1/3/1/', 'Hungary', 1, 50000),
(13, '/1/3/2/', 'Slovakia', 2, 80000),
(14, '/2/2/1/', 'Eastern', 4, 140000),
(15, '/2/2/2/", 'Western', 3, 280000),
(16, '/2/3/1/', 'Brazil', 1, 100000),
(17, '/2/3/2/', 'Agentina', 2, 70000),
(18, '/2/2/1/1/", 'New York', 2, 120000) ;

Even though we have inserted human-readable strings into the
SalesAreaHierarchyID column, SQL Server converts these strings and
stores them as hexadecimal values. This makes the column extremely
compact and efficient. The size of the HierarchyID column and that of
the INT column used for the ParentSalesArealD column in the traditional
hierarchy can be compared using the query in Listing 12-7.

Listing 12-7. Comparing the Size of a Traditional Hierarchy to
HierarchyID

USE WideWorldImporters

GO
SELECT
SUM(DATALENGTH(salesareahierarchy)) AS SizeOf
HierarchyID
» SUM(DATALENGTH(parentsalesareaid)) AS SizeOf
Traditional

FROM Sales.SalesAreaHierarchyID SalesAreaHierarchy

353

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

INNER JOIN sales.SalesAreaTraditionalHierarchy SalesAreaTraditional
ON SalesAreaHierarchy.SalesArealD = SalesArea
Traditional.SalesArealD ;

The results of this query are shown in Figure 12-4. You can see that the
HierarchyID column is less than half the size of the INT column used for
the ParentSalesArealD.

B Resuts [Messages
SizeOf Traditional

@ Query executed successfully. DATATYPES (14.0 RTM) DATA

Figure 12-4. Results of size comparison

Note In Chapter 1, you learned that it is important to use the
correct data type, and if | had chosen to use a SMALLINT for the
ParentSalesArealD column, the two columns would be about the
same size. This is, however, a minor example, provided for the
purpose of explaining HierarchyID, but if you are implementing
hierarchies on a large scale, this example is a fair representation.

If we run a normal SELECT statement against the SalesAreaHierarchylD
table, we can see the hexadecimal values in their raw form. For example,
consider the query in Listing 12-8.

354

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Listing 12-8. SELECT Statement Against HierarchyID Column

USE WideWorldImporters
GO

SELECT
SalesAreaName
, SalesAreaHierarchy
FROM Sales.SalesAreaHierarchyID ;

The results of this query are displayed in Figure 12-5. You will notice
that the contents of the SalesAreaHierarchy column are returned as
hexadecimal values, instead of human-readable strings. In order to view
the human-readable strings that we entered, we must use the ToString()
method, which is discussed in the “Working with HierarchyID Methods”
section of this chapter.

355

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

BEH Results ¥ Messages
1
|2
3
| 4
5 Westem Eumpoe (x5B40
6 Eastem Europe x5BCO
7 Canada (x6ACO
'8 USA (x6B40
'3 LTAM x6BCO
10 Gemany (<5856
|11 France (x5B5A
12 Hungary 0x5BD6
13 Slovakia (x5BDA
14 Eastem (x6B56
15 Westem (x6B5A
16 Brazil (x6BD6
|17 Agentina (x6BDA
18 New York (x6B56B0
@ Query executed successfully.

Figure 12-5. Results of SELECT statement against HierarchyID
column

HierarchylD Methods

A number of methods are exposed against the HierarchyID data type,
allowing developers to quickly write efficient code when working with
hierarchies. Table 12-3 details these methods.

356

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Table 12-3. Methods Exposed Against the HierarchyID Data Type

Method Description

GetAncestor Returns the ancestor of a hierarchy node. Accepts a
parameter that defines how many levels up the hierarchy
the ancestor should be returned from. For example,
GetAncestor (1) will return the node’s parent, while
GetAncestor(2) will return the node’s grandparent.

GetDescendant Returns a child node ID for a given node in the hierarchy.
The GetDescendant () method is generally used in the
creation of two nodes. Therefore, the method accepts two
parameters, both of type HierarchyID. The generated
node will sit between the two nodes specified.

GetlLevel Returns the hierarchical level of the node
GetRoot A static method that returns the root level of a hierarchy

IsDescendantOf The IsDescendantOf() method accepts a single
parameter, of type HierarchyID, and returns 1 if a given
node is a descendant of the node passed as a parameter.

Parse Parses the string representation of a node, which is
passed as a parameter, to ensure it is valid. If valid, it
returns the hexadecimal representation. If invalid, it will
throw an error.

Read Reads the binary representation of SqlHierarchyId
from the BinaryReader and sets the SqlHierarchyId
object to that value. The Read() method can only be
called from SQLCLR. It cannot be called from T-SQL. When
using T-SQL, you should use CAST or CONVERT instead.

(continued)

357

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Table 12-3. (continued)

Method Description

GetReparentedValue Used to move a node to a new parent. Accepts two
parameters, the first being the original parent and the
second being the new parent

ToString Returns a string-formatted representation of a node within
the hierarchy
Write Writes out a binary representation of SqlHierarchyId

to the BinaryWriter. For use with SQLCLR only. When using
T-SQL, use CAST or CONVERT instead.

Tip HierarchyID methods are case-sensitive. For example, calling
tostring() will throw an error; calling ToString() will succeed.

Working with HierarchylD Methods

The following sections describe how to use the methods exposed against
the HierarchyID data type.

Using ToString()

If you run a SELECT statement against a column with the HierarchyID data
type, the value returned will be a hexadecimal representation of the node.
To see a textual representation of the node, you must use the ToString()
method. For example, consider the query in Listing 12-9.

358

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID
Listing 12-9. Using ToString()

USE WideWorldImporters
GO

SELECT
SalesAreaName
, SalesAreaHierarchy
, SalesAreaHierarchy.ToString() AS SalesArea
HierarchyString
FROM Sales.SalesAreaHierarchyID ;

The results of this query are displayed in Figure 12-6. You will see that
the column becomes human-readable, once the ToString() method is
called against it.

359

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

& Results @i Messages
' SalesAreaName SalesAreaHierarchy SalesAreaHierarchyString

|1 | GlobalSales | (x /
T — = -

'3 America (68 2/

|4 UK Ox5AC0 nns
|5 Westem Eupoe (x5B40 172/
|6 Eastem Europe (x5BCO veY
7 Canada B6ACO 121/
'8 USA (x6B4D 1212/
g LATAM <6BCO 1213/
10 Gemany (x5B56 N2/
11 France (5B5A Ny
112 Hungary (x5BD6 N3N/
113 Slovakia (<5BDA N13/2/
|14 Eastem x6B56 121211/
|15 Westem (6B5A 1222/
|16 Brazi x6BD6 121301/
| 17 Argentina (x6BDA 12/3/2/

[18 New York (x6B56B0 127211/1/

€@ Query executed successfully.

Figure 12-6. Results of using ToString()

Using Parse()

The Parse() method is called implicitly when a string representation of
anode is inserted into a HierarchyID column. Essentially, the Parse()
method performs the reverse function of the ToString() method. It
attempts to convert a string formatted representation to the HierarchyID
representation. If it fails, an error is thrown. For example, consider the
scriptin Listing 12-10.

360

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID
Listing 12-10. Using the Parse() Method
--Returns Hexidecimal Representation Of Node
SELECT HierarchyID::Parse('/1/1/2/2/") ;
--Throws An Error Because Trailing / Is Missing
SELECT HierarchyID::Parse('/1/1/2/2") ;

The Results tab displayed by running this script can be seen in

Figure 12-7. While the first query displays the expected result, the second
query returns no results.

EH Resuts ¥ Messages

{No column name)

(No column name)

1 Query completed with errors.

Figure 12-7. Using Parse() Results tab

361

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Checking the Messages tab, displayed in Figure 12-8, will detail the
error thrown by the .NET framework.

1B Feats B Messagee

™ wctad

mE 4
1 Query completed wit erori. (DATATYPES (MORTM) DATATYPES\Admerwitrat.. WideWordmpotters (G000 1rows

Figure 12-8. Error thrown by .NET framework

Using GetRoot()

The GetRoot () method will return the root node of a hierarchy, as
demonstrated in Listing 12-11.

Listing 12-11. Using GetRoot ()

USE WideWorldImporters
GO

SELECT
SalesAreaName
, SalesAreaHierarchy.ToString()
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaHierarchy = HierarchyID::GetRoot() ;

The results of this query can be viewed in Figure 12-9.

362

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

BH Results @i Messages

SalesAreaName (No column name)

1 | GlobalSales i/

@ Query executed successfully.

Figure 12-9. Results of using GetRoot ()

Using GetLevel()

The GetLevel() method allows you to determine at what level of the
hierarchy a particular node resides. For example, the query in Listing 12-12
will return all nodes that reside on the bottom level of the hierarchy. In our
case, this is just New York.

The subquery will determine the maximum level within the hierarchy,
and the outer query will return all sales areas that are at that level.

Listing 12-12. Using GetLevel()

USE WideWorldImporters
GO

SELECT
SalesAreaName
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaHierarchy.Getlevel() =
(
SELECT
MAX(SalesAreaHierarchy.GetLevel())
FROM Sales.SalesAreaHierarchyID

)

363

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

The results of this query can be found in Figure 12-10.

BH Resuts [Messages

SalesAreaName
1 | New York

@) Query executed successfully.

Figure 12-10. Results of using GetLevel()

Read() and Write()

Because this chapter focuses on how to use HierarchyID within your
T-SQL code and the Read() and Write() methods are only applicable
to using SQLCLR (the technology that allows for managed objects to be
created inside SQL Server), a full description of the Read() and Write()
methods is beyond the scope of this book.

Using GetDescendant()

Of course, a developer could insert a new node into the hierarchy, between
existing nodes, but the GetDescendant () method helps a developer do

this pragmatically. The method accepts two parameters, both of which can
be NULL and represent existing children. The method will then generate a
node value, using the following rules:

o Ifthe parentis NULL, then a NULL value will be returned.

e Ifthe parentis not NULL, and both parameters are NULL,
the first child of the parent will be returned.

364

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

If the parent and first parameter are not NULL, but the
second parameter is NULL, a child of parent greater than
the first parameter will be returned.

If the parent and second parameter are not NULL but the
first parameter is NULL, a child of parent smaller than
the second parameter will be returned.

If parent and both parameters are not NULL, a child of
parent between the two parameters will be returned.

If the first parameter is not NULL and not a child of the

parent, an error is thrown.

If the second parameter is not NULL and not a child of
the parent, an error is thrown.

If the first parameter is greater than or equal to the
second parameter, an error is thrown.

For example, imagine that we want to create with the parent of America

anew sales area called Spain. We want the node value to be between

Canada and USA. We could achieve this with the query in Listing 12-13.

Tip Obviously, Spain should be included under Western Europe, not
under America. Don’t worry, this is a deliberate error, which we will
resolve in the “Using GetReparentedValue” section of this chapter.

Listing 12-13. Generating a New Hierarchy Node

USE WideWorldImporters

SELECT NewNode.ToString()

365

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

(
SELECT

SalesAreaHierarchy.GetDescendant (0x6AC0,0x6B40) AS
NewNode
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaName = 'America’
) NewNode ;

The results produced by this query are illustrated in Figure 12-11.
You will see that the lowest level contains a period (1.1). This is because
Canada has a value of 1 and USA has a value of 2. Therefore, to generate a
node value between the two, an integer cannot be used. This guarantees
that a new node can always be inserted between two existing nodes.

FH Resuts [l Messages

(No column name)
1

@ Query executed successfully,
Figure 12-11. Results of using GetDescendant ()

To programmatically add the Spain sales area to the hierarchy,
we could use the query in Listing 12-14.

366

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Listing 12-14. Insert a New Node into the Hierarchy

USE WideWorldImporters
GO

INSERT INTO Sales.SalesAreaHierarchyID
(
SalesArealD
» SalesAreaHierarchy
, SalesAreaName
, CountOfSalesPeople
, SalesYTD

SELECT
(SELECT MAX(SalesAreaID) + 1 FROM Sales.SalesArea
HierarchyID)
, SalesAreaHierarchy.GetDescendant
(0x6AC0,0x6B40)
, 'Spain'
, 2
, 200000
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaName = 'America’ ;

Using GetReparentedValue()

As you probably noticed in the “Using GetDescendant()” section, the
Spain sales area was incorrectly created under the America aggregation
area, as opposed to the Western Europe aggregation area. We can resolve
this issue by using the GetReparentedValue() method.

Consider the script in Listing 12-15. First, we declare two variables,
with the type HierarchyID. These will be passed as parameters into the
GetReparentedValue() method. The @America variable is populated

367

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

with the sales area hierarchy node pertaining to the original parent sales
area, and the @WesternEurope variable is populated with the sales area
hierarchy node pertaining to the target parent sales area.

Listing 12-15. Use GetReparentedValue()

USE WideWorldImporters
GO

DECLARE @America HIERARCHYID =

(
SELECT SalesAreaHierarchy
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaName = 'America’

)
DECLARE @WesternEurope HIERARCHYID =
(

SELECT SalesAreaHierarchy

FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaName = 'Western Europe'

)

SELECT Area.ToString()

FROM

(

SELECT SalesAreaHierarchy.GetReparentedValue(@America,
@WesternEurope) AS Area

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy = 0x6B16

) NewNodePath ;

368

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

The results of this script can be seen in Figure 12-12. You will notice
that the leaf node value has remained the same, while the path (parent
nodes) have been changed, so that the node sits under the Western Europe
aggregation area.

EH Results EL Messages

(No column name)
1 {210

@) Query executed successfully.

Figure 12-12. Results of using GetReparentedValue()

We could update the ancestry of the Spain sales area, in the Sales.
SalesAreaHierarchylID table, by using the script in Listing 12-16.

Listing 12-16. Updating the Ancestry of the Spain Sales Area

USE WideWorldImporters
GO

DECLARE @America HIERARCHYID =

(

SELECT SalesAreaHierarchy
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaName = 'America’

)
DECLARE @WesternEurope HIERARCHYID =

(

SELECT SalesAreaHierarchy

369

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaName = 'Western Europe'

)

UPDATE Sales.SalesAreaHierarchyID

SET SalesAreaHierarchy =

(

SELECT SalesAreaHierarchy.GetReparentedValue(@America,
@WesternEurope)

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy = 0x6B16
)
WHERE SalesAreaHierarchy = 0x6B16 ;

Using GetAncestor()

The GetAncestor () method can be used to return the ancestor node

of a given hierarchical node at the number of levels based on an input
parameter to the method. For example, consider the query in

Listing 12-17. This query will return the grandparent of Spain, the parent
of Spain, and Spain itself, by passing different parameters into the
GetAncestor() method.

Caution For this query to work as expected, you first must have
run the previous examples in the chapter. Specifically, the insert
and update queries in the “Using GetDescendant()” and “Using
GetReparentedValue()” sections, as well as Listing 12-2, which
creates and populates the table.

370

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Listing 12-17. Using GetAncestor()

USE WideWorldImporters
GO

SELECT
CurrentNode.SalesAreaName AS SalesArea
, ParentNode.SalesAreaName AS ParentSalesArea
, GrandParentNode.SalesAreaName AS GrandParentSalesArea

FROM Sales.SalesAreaHierarchyID Base

INNER JOIN Sales.SalesAreaHierarchyID CurrentNode
ON CurrentNode.SalesAreaHierarchy = Base.
SalesAreaHierarchy.GetAncestor(0)

INNER JOIN Sales.SalesAreaHierarchyID ParentNode
ON ParentNode.SalesAreaHierarchy = Base.
SalesAreaHierarchy.GetAncestor(1)

INNER JOIN Sales.SalesAreaHierarchyID GrandParentNode
ON GrandParentNode.SalesAreaHierarchy = Base.
SalesAreaHierarchy.GetAncestor(2)

WHERE Base.SalesAreaName = 'Spain' ;

Using IsDescendantOf()

The IsDescendantOf() method evaluates if a node within the hierarchy
is a descendant (at any level) of a node that is passed to it as a parameter.
It is this method that we can use to rewrite the query in Listing 12-5, which
rolled up the SalesYTD for all sales areas under the America aggregation
area, using a traditional hierarchy.

You will remember, that when using a traditional hierarchy, we had
to implement a recursive CTE, which rolled up the SalesYTD column, for
all hierarchical levels, which are descendants of America. When using
aHierarchyID column to maintain the hierarchy, however, our code is
greatly simplified, as demonstrated in Listing 12-18.

371

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Listing 12-18. Using IsDescendant0f()

USE WideWorldImporters
GO

SELECT
SUM(SalesYTD) AS TotalSalesYTD
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaHierarchy.IsDescendantOf(0x68) = 1 ;

Instead of a recursive CTE, the functionally equivalent code is a simple
query with a WHERE clause that filters hierarchical nodes, based on whether
they are descendants of the America aggregation area. Listing 12-19 shows
a more complex example. Here, we are parameterizing the sales area and
calculating not only the total SalesYTD but also the TotalSalesPeople and
the regions AverageSalesPerSalesPerson.

Listing 12-19. Parameterizing IsDescendantOf() Queries

USE WideWorldImporters
GO

DECLARE @Region NVARCHAR(20) = 'America’ ;

DECLARE @RegionHierarchy HIERARCHYID =

(
SELECT SalesAreaHierarchy
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaName = @Region
) s
SELECT

SUM(SalesYTD) AS TotalSalesYTD
, SUM(CountOfSalesPeople) AS TotalSalesPeople

372

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

, SUM(SalesYTD) / SUM(CountOfSalesPeople) AS
AverageSalesPerSalesPerson

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy.IsDescendantOf(@RegionHierarchy) = 1 ;

You can clearly see how the Region parameter could be passed into a
stored procedure, so that this code could be accessed by an application.

Let us now add a SalesAreaName to the SELECT list, and group by this
column, as demonstrated in Listing 12-20.

Listing 12-20. Adding a GROUP BY

USE WideWorldImporters
GO

DECLARE @Region NVARCHAR(20) = 'America’ ;

DECLARE @RegionHierarchy HIERARCHYID =

(
SELECT SalesAreaHierarchy
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaName = @Region
) s
SELECT

SUM(SalesYTD) AS TotalSalesYTD

, SUM(CountOfSalesPeople) AS TotalSalesPeople

, SUM(SalesYTD) / SUM(CountOfSalesPeople) AS

AverageSalesPerSalesPerson

, SalesAreaName
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaHierarchy.IsDescendantOf(@RegionHierarchy) = 1
GROUP BY SalesAreaName ;

373

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

The results of this query are illustrated in Figure 12-13.

| EH Resuts @ Messages
' TotalSalesYTD TotalSalesPeople AverageSalesPerSalesPerson SalesAreaName
1 70000.00 2 35000.00 Argertina
2 [NULL NULL NULL
3 100000.00 1 100000.00 " Brezi
4 350000.00 4 87500.00 Canada
5 140000.00 4 35000.00 Eastem
6 NULL NULL NULL LATAM
7 120000.00 2 60000.00 New York
8 NULL NULL NULL USA
[9 280000.00 3 93333.3333 Westem
|O Query executed successfully. DATATYPES

Figure 12-13. Results of using IsDescendantOf () with GROUP BY

The interesting behavior exposed by the results of this query is that
America is included. This is because HierarchyID regards America as
a descendant of itself. This does not create an issue for us, because the
aggregations are not pre-calculated. However, in some instances, you may
have to exclude America from the result set. This can easily be achieved by
adding an additional filter to the WHERE clause, as demonstrated in
Listing 12-21.

Listing 12-21. Filtering the Current Node from Descendants

USE WideWorldImporters
Go

DECLARE @Region NVARCHAR(20) = 'America’ ;

DECLARE @RegionHierarchy HIERARCHYID =

(

374

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

SELECT SalesAreaHierarchy
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaName = @Region

)

SELECT
SUM(SalesYTD) AS TotalSalesYTD
, SUM(CountOfSalesPeople) AS TotalSalesPeople
, SUM(SalesYTD) / SUM(CountOfSalesPeople) AS
AverageSalesPerSalesPerson
, SalesAreaName
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaHierarchy.IsDescendantOf(@RegionHierarchy) = 1
AND SalesAreaHierarchy <> @RegionHierarchy
GROUP BY SalesAreaName ;

This query filters the result set to exclude the sales area, the
hierarchical node of which is equal to the hierarchical node that is being
passed to the IsDescendantOf() method. This technique allows us to use
the WITH ROLLUP clause on the GROUP BY, in conjunction with wrapping
SalesAreaName in an ISNULL() function, to produce a subtotal row for the
whole of America. This is demonstrated in Listing 12-22.

Listing 12-22. Producing a Total Row for America

USE WideWorldImporters
GO

DECLARE @Region NVARCHAR(20) = 'America’ ;

DECLARE @RegionHierarchy HIERARCHYID =

(
SELECT SalesAreaHierarchy

FROM Sales.SalesAreaHierarchyID

375

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

WHERE SalesAreaName = @Region
) s

SELECT
SUM(SalesYTD) AS TotalSalesYTD
, SUM(CountOfSalesPeople) AS TotalSalesPeople
, SUM(SalesYTD) / SUM(CountOfSalesPeople) AS
AverageSalesPerSalesPerson
, ISNULL(SalesAreaName, @Region)
FROM Sales.SalesAreaHierarchyID
WHERE SalesAreaHierarchy.IsDescendantOf(@RegionHierarchy) = 1
AND SalesAreaHierarchy <> @RegionHierarchy
GROUP BY SalesAreaName WITH ROLLUP ;

The results of this query can be seen in Figure 12-14.

EH Results @ Messages
TotalSalesYTD TotalSalesPeople AverageSalesPerSalesPerson (No column name)
1 70000.00 2 35000.00 Argentina
2 100000.00 1 100000.00 Brazil
3 350000.00 < 87500.00 Canada
4 140000.00 4 35000.00 Eastem
5 NULL NULL NULL LATAM
6 120000.00 2 60000.00 New York
T NULL NULL NULL USA
8 280000.00 3 93333.3333 Westem
9 106000000 16 66250.00 .
@) Query executed successfully. DATATYPES

Figure 12-14. Results of adding a total row

376

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

Indexing HierarchyID Columns

There are no “special” index types that support HierarchyID, as there are
for XML or geospatial data types. Instead, the performance of HierarchyID
columns can be improved by using traditional clustered and nonclustered
indexes. When creating indexes to support HierarchyID, there are two
strategies that can be employed, depending on the nature of the queries
that will use the indexes.

By default, creating an index on a HierarchyID column will create a
depth-first index. This means that descendants will be stored close to their
parents. In our example, New York would be stored close to Eastern, which
in turn would be stored close to USA, and so on. The script in Listing 12-23
demonstrates how to create a clustered index on the SalesAreaHierarchy
column, which uses a depth-first approach.

Caution The script first drops the primary key on the SalesArealD
column, which implicitly drops the clustered index on this column.
The primary key name, in this case, is system-generated, however.
Therefore, to run this script, you must change the name of the
constraint, to reflect your own system.

Listing 12-23. Creating a Depth-First Clustered Index

USE WideWorldImporters
GO

ALTER TABLE Sales.SalesAreaHierarchyID
DROP CONSTRAINT PK__SalesAre DBOA1ED5D7B258FB ;
GO

CREATE CLUSTERED INDEX SalesAreaHierarchyDepthFirst
ON Sales.SalesAreaHierarchyID(SalesAreaHierarchy) ;
GO

377

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

We can see how SQL Server has organized this data,
by running the query in Listing 12-24. This query uses the undocumented
sys.physlocformatter() function to return the exact location of each
record, in the format FileID:PageID:S1otID.

Listing 12-24. View Location of Rows

USE WideWorldImporters
GO

SELECT
SalesAreaName
, Sys.fn _PhysLocFormatter(%%physloc%%) AS Physicallocation
FROM Sales.SalesAreaHierarchyID ;

This query returns the results shown in Figure 12-15. You can see that
each node is stored under its parent. This is even true for Spain, despite us
adding it after the other regions, which means its original location would
have been the final used slot in the page.

378

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

EH Resuts [Messages

: salesareaname Physicallocation

| 1 GlobalSales (3:29416:0)
2 Europe (3:25416:1)
3 UK (3:29416:2)
4 Westem Europe (3:25416:3)
5 Gemany (3:25416:4)
6 i Spain © (3:29416:5)
7 France (3:29416:6)
8 Eastem Europe (3:25416:7)
9 Hungary (3:25416:8)
10 Slovakia (3:29416:9)
11 America (3:29416:10)
12 Canada (3:28416:11)
13 USA (3:29416:12)
14 Eastem (3:29416:13)
15 New York (3:29416:14)
16 Westem (3:28416:15)
17 LATAM (3:29416:16)
18 Braz (3:29416:17)
19 Argentina (3:29416:18)

@) Query executed successfully.

Figure 12-15. Results of viewing row locations

Tip The row’s physical location is likely to be different when you
run the query yourself.

379

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

The other possible indexing strategy is a breadth-first technique.
Here, sibling nodes will be stored close to each other, instead of storing
descendants close to each other. To implement a breadth-first indexing
strategy, we must add to our table an additional column that stores the
hierarchical level of each node. This column can be created and populated
by using the script in Listing 12-25.

Listing 12-25. Adding a Level Column to Support Breadth-First
Indexing

USE WideWorldImporters
Go

ALTER TABLE Sales.SalesAreaHierarchyID ADD
SalesArealevel INT NULL ;
Go

UPDATE Sales.SalesAreaHierarchyID
SET SalesArealevel = SalesAreaHierarchy.GetlLevel() ;

Using the script in Listing 12-26, we can now create a clustered index,
which is first order by the hierarchical level of the node and then by the
HierarchyID column. This will cause siblings to be stored close to one
another.

Note The script first drops the existing clustered index, because a
table can only support a single clustered index.

380

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID
Listing 12-26. Creating a Breadth-First Index

USE WideWorldImporters
GO

DROP INDEX SalesAreaHierarchyDepthFirst ON Sales.
SalesAreaHierarchyID ;
GO

CREATE CLUSTERED INDEX SalesAreaHierarchyBredthFirst
ON Sales.SalesAreaHierarchyID(SalesArealevel,
SalesAreaHierarchy) ;

Listing 12-27 demonstrates how we can use the same technique as in
Listing 12-24, to view the actual location of each node within the hierarchy.
This time, as well as returning the sales area name, we will also return the

SalesAreaLevel for easy analysis.

Listing 12-27. View Rows Location with a Breadth-First Strategy

USE WideWorldImporters
GO

SELECT
SalesAreaName
, SalesArealevel
, Sys.fn _PhysLocFormatter(%%physloc%%) AS Physicallocation
FROM Sales.SalesAreaHierarchyID ;

The results of this query can be found in Figure 12-16. You will notice
that the order of rows has changed and that UK, Western Europe, Eastern
Europe, Canada, USA, and LATAM are now next to one another, as they are
all at Level 2 of the hierarchy.

381

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

BB Resuts 2l Messages
salesareaname salesarealevel Physicallocation
1 GlobalSales 0 (3:37688:0)
2 1 (3:37688:1)
3 1 (3:37688:2)
E 12 (3:37688:3)
5 2 (3:37688:4)
6 2 (3:37688:5)
7 2 (3:37688:6)
8 2 (3:37688:7)
9 LATAM 2 (3:37688:8)
10 Gemany 3 (3:37688:9)
11 Spain 3 (3:37688:10)
12 France 3 (3:37688:11)
13 Hungary 3 (3:37688:12)
14 Slovakia 3 (3:37688:13)
15 Eastem 3 (3:37688:14)
16 Westem 3 (3:37688:15)
17 Braal 3 (3:37688:16)
18 Argentina 3 (3:37688:17)
19 New York 4 (3:37688:18)
@ Query executed successfully.

Figure 12-16. Results of viewing row locations in a breadth-first
hierarchy

Summary

HierarchyID is created as a .NET class and implemented as a data

type in SQL Server. Using HierarchyID over a traditional approach to
modeling hierarchies in SQL Server has the benefits both of reducing
code complexity and improving performance. The HierarchyID data type
exposes several methods that can be used by developers to easily navigate

382

CHAPTER 12 WORKING WITH HIERARCHICAL DATA AND HIERARCHYID

a hierarchy, insert new hierarchical nodes, or update existing nodes so that
they sit under a new parent.

The two most commonly used methods, in my experience, are the
ToString() method, which allows a developer to format a hierarchical
node as a human-readable string representation, and IsDescendantOf(),
which performs an evaluation of hierarchical node lineage and returns 1
when a node is a descendant of an input parameter and 0 if it is not.

The Read() and Write() methods offer data type conversion
functionality to SQLCLR, but these are not implemented in T-SQL, as the
CAST and CONVERT functions can easily be used instead.

When indexing HierarchyID columns, either a depth-first strategy or a
breadth-first strategy can be applied. Depth-first is the default option and
stores child nodes close to their parents. A breadth-first strategy requires
an additional column in the table, which stores the node’s level with the
hierarchy. This allows a multicolumn index to store sibling nodes close to
one another. The indexing option that you choose should reflect the nature
of the queries run against the HierarchyID column.

383

Index

A

Advanced data types
GEOGRAPHY, 25
GEOMETRY, 25
HIERARCHYID, 25
JSON, 25
XML, 25

Aggregation methods, 325

B

Bill of materials (BoM), 342-343
Binary data types
BINARY, 14
CONVERT function, 15
converting to character
string, 17
encrypted password, 15-16
IMAGE, 14
style options, 15
VARBINARY, 14

C

CAST function, 7, 9-10
Character data types
CHAR, 11
NCHAR, 11

© Peter A. Carter 2018
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8

NTEXT, 12
NVARCHAR, 12
string storage
sizes, 13
TEXT, 12
VARCHAR, 11
Clustered indexes
creating, 165-167
description, 159
inserts, 164
primary key, 162-163
tables
B-Tree structure, 161-162
heap structure, 160-161
updates, 164
Common table expression (CTE),
347-348
Configuration management
database (CMDB), 197-198
CONVERT function, 7

D

Date and time data types
casting, 22
DATE, 18
DATETIME, 18
DATETIME2, 19

385

https://doi.org/10.1007/978-1-4842-3901-8

INDEX

Date and time data types (cont.)
DATETIMEOFFSET, 19
details, 17, 18
SMALLDATETIME, 18
style options, 20-21
TIME, 18

Document type definition (DTD),

42,48

E

exist() method, 116-118
Extensible Markup
Language (XML)
attribute-centric approach
aspect of, 36-37
generating, 31
sales orders, 30
definition, 29
element-centric approach
generating, 35
sales orders, 32-35
SQL Server
data structures, 47
FOR XML clause, 46
JSON, 47
XQuery Nodes
method, 46
OPENXML() function, 46
sales orders, 46
storing data, 46
well-formed (see Well-formed
XML)
XSD schemas, 43-45

386

FOR JSON AUTO, SalesOrder

automatic nesting
adding order line details,
216-217
nested joins, 218-220
subqueries to nest data,
221-223
column aliases, 212-215
NULL values, 207-211
return keys and dates, 201-202
return results, 203
root nodes, 204-207

FOR JSON PATH, 224-227
FOR XML AUTO, SalesOrder

results, 78-85

results of re-written query, 86-91
rewriting query to nest data, 86
root node, 85

FOR XML EXPLICIT, SalesOrder

NULL values, 103
Order Details, 101-102
UNION ALL, 103-104
results, 104

FOR XML PATH, SalesOrder

customized and complex
structures, 92

hierarchy levels, 98

OrderDetails subquery, 99

required format, 100

Root and <row> element, 98

@ symbol, 92

XML output, 92-98, 100

FOR XML RAW,

WideWorldImporters Sales

Orders
ELEMENTS keyword, 59-68
output, 50
query, 49, 51
root node, 54-58
<row> element, 68-77
XML fragment, 51-54

G

Geography Markup Language
(GML), 302

GetAncestor() method,
370-371

GetDescendant() method,
364-367

GetLevel() method, 363-364

GetReparentedValue() method,
367-370

GetRoot() method, 362-363

Globally unique identifier (GUID),

162-163

H

Hierarchical data
bill of materials (BoM),
342-343
sales area (see Sales area
hierarchy)
sales department organization
chart, 342

INDEX

HierarchyID

breadth-first indexing
additional column, 380
creating, 380-381
viewing row locations,
381-382
depth-first clustered index, 377
GetAncestor(), 370-371
GetDescendant(), 364-367
GetLevel(), 363-364
GetReparentedValue(), 367-370
GetRoot(), 362-363
IsDescendantOf(), 371-376
methods, 356-358
Parse(), 360-362
Read() and Write(), 364
ToString(), 358-360
viewing row locations, 378-379

Indexing JSON data

ALTER TABLE script, 272

checking index performance,
274-275

computed column, 274

JSON_VALUE(), 271

performance baseline, 272

StocklItems table, 272

TIME STATISTICS, 271, 273

WHERE clause, 273

IsDescendantOf() method,

371-376

IsValidDetailed error codes, 324-325

387

INDEX

J, KL

JavaScript object notation (JSON)

document
config as code, 197-198
log data, 199

name/value pairs, 182, 199

normalized data, 195-196
n-Tier applications,
Rest APIs, 195
simple, 182
syntax, 181
vehicle temperatures
full sensor data,
184-185
root node, 186-188
top, 182-183
vs. XML, sales people, 188
JSON data type
ISJSON() function
error, 252
filter results, 253-254
IF statement, 251-252
incorrectly formatted
JSON, 252
NVARCHAR(MAX)
columns, 251
OPENJSON() function,
253-254
JSON_MODIFY() function
array element, 268
deleting data, 269
modified document,
270-271

388

modified row, 268-269
Tags array, 270
updated record, 268
updating row, 267
updating value, 266-267
JSON_QUERY() function
JSON document,
261-262
path variables and
document context,
264-265
SELECT list, 263
WHERE clause, 264
JSON_VALUE() function
JSON document, 256
lax mode path
expressions, 260
NULL results, 255
OPENJSON(), 254
parameters, 254
path expression, 255
results, 257
SELECT list, 256-257
variable, 260-261
WHERE clause, 258-259

Miscellaneous data types
CURSOR, 23
SQL VARIANT, 23
TABLE, 23
TIMESTAMP, 23
UNIQUEIDENTIFIER, 23-24

N

Numeric data types
BIGINT, 2
BIT, 2
CAST function, 7, 9-10
CONVERT function, 7
DECIMAL, 3
FLOAT, 5
INT, 2
MONEY, 6
NUMERIC, 4
REAL, 5
SMALLINT, 2
SMALLMONEY, 6
style options, 7-8
TINYINT, 2

O

Open Geospatial Consortium
(0OGCQC), 296, 300
OPENJSON() function
default schema
Application.Person table,
229, 230
data types, 231-232
dynamic PIVOT,
235-236
OUTER APPLY operator,
232-233
PIVOT operator, 233-235
shredding, single JSON
document, 230-231

INDEX

explicit schema
NVARCHAR(MAX), 238-239
OUTER APPLY, 241-242
results, 238
returning JSON data, 239-240
T-SQL data types, 237

path expressions
array element, 244-245
results, 243
sales orders, root node,

242-243

P

Parse() method, 360-362
Primary XML indexes
Add column dialog box, 169
creating, 171
New Index dialog box, 168
Node table, 167
options, 169-171
scalar/XML subtrees, 167

Q

Querying JSON data, see JSON
data type
query() method, 121-123

R

Radio frequency identification
(RFID), 199
Read() and Write() methods, 364

389

INDEX

S

Sales area hierarchy, 344
anchor query, 349
components, 349-350
CTE, 347-348
HierarchyID

area’s position, 350-351
create table, 352
SELECT statement,
354-356
size of, 353-354
recursive query, 349
traditional approach, 345-347
Sales department organization
chart, 342

Secondary XML indexes, 171-174

Shredding JSON data
array elements, temporary

table, 246-249
OPENJSON() function (see
OPENJSON() function)

Shredding XML
nodes(), 146-151
OPENXML()

flags values, 142

parameters, 141-142

Product element, 145

results, 146

sales orders document,
143-144

sp_xml:preparedocument
procedure, 143

WITH clause, 142, 145

390

Spatial data, 279

aggregation methods, 325
Alabama state border
address validation,
326-327
area of aggregate envelope,
331-332
exposing SRID, 329-330
finding nearest neighbors,
327-329
constructing geometries
GML, 302
methods, 300
NULL value, 304
Point method, 302-303
STIsValid and MakeValid
methods, Polygon, 305-307
WKB, 302
WKT, 300-301, 303-304
GEOGRAPHY data type,
282-284
GEOMETRY data type, 280-282
indexing (see Spatial indexes)
IsValidDetailed error codes,
324-325
methods, 307-323
multipart geometries, 286
primitive geometries, 284-285
spatial reference systems,
291-293
SSMS, 294-296
WKB, 289-291
WKT, 287-288

Spatial indexes
B-Tree structure, 333
creating, 339
data types, 332-333
grid system, 334
New Index dialog box
General page, 334-335
Options page, 335-337
Spatial page, 338-339
Storage page, 337-338
tessellation process, 334
T-SQL, 339
Spatial reference identifier (SRID),
291, 293
SQL Server Management Studio
(SSMS), 294-296

T U
Tessellation process, 334
ToString() method, 358-360

\'

value() method, 118-121

w

Well-formed XML
components, 42
fragment, 40-41
requirements, 38
root node, 41-42

INDEX

syntactically incorrect, 38-39
syntax error, 40
Well-known binary (WKB), 300
hexadecimal representation—
big endian, 291
hexadecimal value, 289
LineString, 302
surface type integer codes, 289
Well-known text (WKT)
LineString, 301
multipart geometry, 288
primitive geometry, 287-288
variable, 303-304

XY Z
XML data, 25
style options, 26
XML indexes
clustered (see Clustered
indexes)
OrderSummary table, 157-159
PATH index
drop primary XML index
and run query, 178
Ordered StockItemlID 23, 175
query execution time,
178-179
query results, 176-177
run query, 176
primary, 167-171
secondary, 171-174
types, 157

391

INDEX

XML SCHEMA
COLLECTION, 152-154
XML schema definition (XSD)
schemas, 43-45
XQuery
definition, 113
exist(), 116, 118
FLWOR statement
for and let statement, 131
product elements, 129-130
product name, 130
where and order by
statement, 132

392

XML document, 127-128
methods, 113-114
modify method
delete option, 138-139
insert option, 133-137
replace value of option,
139-141
query(), 121-123
relational values, T-SQL
variables, 123-127
Sales.CustomerOrderSummary,
114-116
value(), 118-121

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: SQL Server Data Types
	Numeric Data Types
	Character Strings
	Binary Data Types
	Dates and Times
	Miscellaneous Standard Data Types
	Summary of Advanced Data Types
	Why Is Using the Correct Data Type Important?
	Summary

	Chapter 2: Understanding XML
	Understanding XML
	Well-Formed XML
	Understanding XSD Schemas
	XML Usage Scenarios in SQL Server
	Summary

	Chapter 3: Constructing XML with T-SQL
	Using FOR XML RAW
	Using FOR XML AUTO
	Using FOR XML PATH
	Using FOR XML EXPLICIT
	Summary

	Chapter 4: Querying and Shredding XML
	Querying XML
	Using exist()
	Using value()
	Using query()
	Using Relational Values in XQuery
	FLWOR
	Modifying XML Data

	Shredding XML
	Shredding XML with OPENXML()
	Shredding XML with Nodes

	Using Schemas
	Summary

	Chapter 5: XML Indexes
	Preparing the Environment
	Clustered Indexes
	Tables Without a Clustered Index
	Tables with a Clustered Index
	Clustering the Primary Key
	Performance Considerations for Clustered Indexes
	Creating a Clustered Index

	Primary XML Indexes
	Creating Primary XML Indexes

	Secondary XML Indexes
	Creating Secondary XML Indexes

	Performance Considerations for XML Indexes
	Summary

	Chapter 6: Understanding JSON
	Understanding the JSON Format
	JSON vs. XML
	JSON Usage Scenarios
	n-Tier Applications with Rest APIs
	De-Normalizing Data
	Config As Code
	Analyzing the Log Data

	Summary

	Chapter 7: Constructing JSON from T-SQL
	FOR JSON AUTO
	Working with Root Nodes
	Working with NULL Values
	Using Column Aliases
	Automatic Nesting

	FOR JSON PATH
	Summary

	Chapter 8: Shredding JSON Data
	OPENJSON() with Default Schema
	Shredding a Column
	Dynamic Shredding Based on Document Content

	OPENJSON() with Explicit Schema
	OPENJSON() with Path Expressions
	Shredding Data into Tables

	Summary

	Chapter 9: Working with the JSON Data Type
	Querying JSON Data
	Using ISJSON()
	Using JSON_VALUE()
	Using JSON_QUERY()
	Using JSON_MODIFY()

	Indexing JSON Data
	Summary

	Chapter 10: Understanding Spatial Data
	Understanding Spatial Data
	Spatial Data Standards
	Well-Known Text
	Well-Known Binary
	Spatial Reference Systems

	SSMS and Spatial Data
	Summary

	Chapter 11: Working with Spatial Data
	Constructing Spatial Data
	Querying Spatial Data
	Indexing Spatial Data
	Understanding Spatial Indexes
	Creating Spatial Indexes

	Summary

	Chapter 12: Working with Hierarchical Data and HierarchyID
	Hierarchical Data Use Cases
	Modeling Traditional Hierarchies
	Modeling Hierarchies with HierarchyID
	HierarchyID Methods
	Working with HierarchyID Methods
	Using ToString()
	Using Parse()
	Using GetRoot()
	Using GetLevel()
	Read() and Write()
	Using GetDescendant()
	Using GetReparentedValue()
	Using GetAncestor()
	Using IsDescendantOf()

	Indexing HierarchyID Columns
	Summary

	Index

