
www.it-ebooks.info

http://www.it-ebooks.info/

Scala for Java Developers

Build reactive, scalable applications and integrate Java
code with the power of Scala

Thomas Alexandre

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Scala for Java Developers

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 2230414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-363-7

www.packtpub.com

Cover Image by Grégoire Alexandre (contact@gregoirealexandre.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Thomas Alexandre

Reviewers
Carlos Estebes

Tomer Gabel

Eric Le Goff

Steve Perkins

Erik Wallin

Commissioning Editor
Kunal Parikh

Acquisition Editors
Rubal Kaur
Neha Nagwekar

Content Development Editors
Neil Alexander
Larissa Pinto

Technical Editors
Miloni Dutia

Kunal Anil Gaikwad

Kapil Hemnani

Mukul Pawar

Copy Editors
Roshni Banerjee

Deepa Nambiar

Alfida Paiva

Stuti Srivastava

Laxmi Subramanian

Sayanee Mukherjee

Project Coordinator
Akash Poojary

Proofreaders
Simran Bhogal

Paul Hindle

Maria Gould

Stephen Copestake

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Production Coordinator
Nilesh Bambardekar

Cover Work
Nilesh Bambardekar

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

I wish this book had been available when I first started my own Scala journey.

As a Java developer, you must have heard a lot about Scala, even if you haven't yet
written any Scala code. You must have noticed that Scala is becoming popular and
heard vigorous debate about it. As I sat down to write this, I typed "scala is" into
Google. The top completions included "scala is awesome", "scala is too complex", and
"scala is hard." Understandably, you may be confused by such polarization. You may
also have heard arcane, possibly off-putting details about obscure Scala idioms and
advanced functional programming.

What you probably have not heard is a methodical, impartial attempt to answer
questions such as "might Scala make me more productive in my daily work?",
"will it be easy for me to pick up Scala?", and ultimately, "Should I switch from
Java to Scala?".

Given the size of the Java community and the quality and ubiquity of the JVM,
these are vital questions for many of us as developers and to our industry as a whole.
Author Thomas Alexandre directly addresses them, presenting solid evidence in
the form of working code. He shows that "Scala is awesome", if "awesome" means
providing elegant solutions to common, real world problems. He shows that "Scala
is not hard" by listing the straightforward steps to each of those solutions. He shows
how Scala code is usually less complex than the familiar Java code to solve the same
problem. He equips you to answer the question of whether you want to switch from
Java to Scala.

The focus is on solving practical problem, and not on evangelizing language features
for its own sake. Thomas explains core concept, such as functional programming,
which may be relatively unfamiliar to Java developers, but his main emphasis is
building on what the reader already knows. He does all this without a hint of the
programming language chauvinism that often causes language debates to shed
more heat than light.

www.it-ebooks.info

http://www.it-ebooks.info/

The topics covered are all relevant to everyday Java development. Naturally, there
is material that is purely Scala related, such as the coverage of REPL (the Scala
interactive interpreter that has no Java equivalent). However throughout the book,
the emphasis is on how to use Scala to provide better solutions to familiar problem,
such as accessing relational data from Java. The coverage of Scala/Java integration is
particularly welcome, as the topic seldom gets the attention it deserves. (In fact, Scala
is so important partly because it does not force developers to abandon Java and the
JVM). The material is up to date: for example, in its coverage of new but important
technologies such as Typesafe Activator.

After reading this book, you will be ready to decide for yourself whether Scala is for
you. Like Thomas and myself, you may well decide to program in Scala rather than
Java when you have a choice. You will then be eager to learn more about functional
programming and advanced Scala syntax, and you'll be ready for a more conceptual,
reference-oriented book like Martin Odersky's Programming in Scala.

Thomas Alexandre provides the perfect starter to whet the appetite of Java
developers for the rich main course that Scala has to offer. Bon appetit!

Rod Johnson
Creator of Spring framework
Co-founder of SpringSource

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Thomas Alexandre is a senior consultant at DevCode, specializing in Java and
Scala software development. He is passionate about technology, enthusiastic about
sharing knowledge, and is always looking for ways to code more effectively through
the adoption of new open source software and standards. In addition to 15 years of
Java development, he has focused these past few years on emerging languages and
web frameworks such as Groovy and Scala. He also has a Ph.D. in Computer Science
from the University of Lille, France, and has spent two years as a postdoc with
Carnegie Mellon University in the fields of Security and E-commerce.

Thomas is a certified trainer by Typesafe, the creators of Scala.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

There are many people who have contributed to this book in one form or another
and I would like to thank them for their help.

First, I would like to thank Martin Odersky, the creator of Scala and co-founder
of Typesafe for inspiring me through his fantastic lectures and two online courses
to write this book. The online courses were written together with Erik Meijer and
Roland Kuhn who are also to be thanked. I am also grateful to many Typesafe
employees as well as Zengularity for creating and enhancing such amazing
technologies. In particular, I would like to thank Viktor Klang and Jonas Bonér
for their numerous tweets with links to great reading material and conference talks.
Thanks to Heiko Seeberger and Trond Bjerkestrand for certifying me as a Typesafe
Trainer for their Fast Track to Scala course.

A big thank you to the very active Scala Community for all their contributions in
terms of open source projects, talks at user groups, and workshops. The meetups at the
Stockholm Scala User Group have been a good source of inspiration as well, thanks.

The team at Packt Publishing has been very helpful and has done a great job at all
levels in reviewing and producing this book. In particular, I would like to thank Akash
Poojary, Neha Nagwekar, Neil Alexander, Miloni Dutia, Kunal Gaikwad, Mukul Pawar,
Kunal Parikh, Rubal Kaur, Apeksha Chitnis, Larissa Pinto, Tomer Gabel, Steve Perkins,
Eric Le Goff, and Sumeet Sawant for their extensive participation.

Thank you to my employer and awesome colleagues at DevCode for all the
encouragement they have given me. Special thanks go to my colleague Erik Wallin
for putting much effort into technical review and producing very useful feedback
under a tight schedule. Thank you to all my great friends and ex-colleagues as well
for their support.

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, I would like to thank my family. My parents have always supported me in
everything I have been doing and I would like to thank them for that. I would like to
thank my lovely wife Malin and awesome kids Valdemar (four years old) and Edvin
(three years old) for their great patience and encouragement. Thank you to my
parents-in-law for watching after the kids many a times during the writing of
this book.

Also, a big thank you to my talented brother Grégoire for realizing this terrific
cover picture.

I would like to express my sincere gratitude to Rod Johnson, creator of the Spring
framework and co-founder of SpringSource, for his foreword.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Carlos Estebes is the founder of Ehxioz (http://ehxioz.com/), a Los
Angeles-based software development startup that specializes in developing
modern web applications and utilizing the latest web development technologies
and methodologies. He has over 10 years of web development experience and
holds a B.Sc. in Computer Science from California State University, Los Angeles.

Carlos previously collaborated with Packt Publishing as a technical reviewer in
the third edition of Learning jQuery and in jQuery Hotshot.

Tomer Gabel is a programming junkie and computer history aficionado.
He's been around the block a few times before settling at Wix (http://www.wix.com)
as a system architect. In the last couple of years, he's developed a major crush on
Scala, promoting it within the Israeli software industry as part of JJTV (Java & JVM
Tel-Aviv user group) and Underscore (Israeli Scala user group), and finally
organizing the Scalapeño conference in July 2013.

www.it-ebooks.info

http://www.it-ebooks.info/

Eric Le Goff is a senior Java developer and an open source evangelist. Located
in Sophia-Antipolis, France, he has more than 15 years of experience in large-scale
system designs and server-side development in both startups to established corporate
Banking / Trading software, and more recently in Mobile Financial Services. A former
board member of the OW2 consortium (an international open source community for
infrastructure), he is also a Scala enthusiast certified with the "Functional Programming
Principles in Scala" online course delivered by Martin Odersky (École Polytechnique
Fédérale de Lausanne).

I'd like to thank my wife Corine for all her support despite her own
work constraints. I also want to thank all the contributors and the
open source community at large who allow the delivery of reliable
and innovative software.

Steve Perkins is the author of Hibernate Search by Example, Packt Publishing
(March 2013) and has over 15 years of experience working with Enterprise Java.
He lives in Atlanta, GA, USA with his wife Amanda and their son Andrew.
Steve currently works as an architect at BetterCloud, where he writes software for
the Google cloud ecosystem. When he is not writing code, Steve plays the violin in
a local community orchestra and enjoys working with music production software.

I would like to thank my parents for all of their support over the
years, and Martin Odersky, for opening up my mind to new ways of
thinking about code.

Erik Wallin holds an M.Sc. degree in Electrical Engineering and has worked as a
software engineer since 2005, mostly on the Java platform. Clean and maintainable
code is a great passion for Erik. He likes to use DDD and an expressive language
such as Scala to accomplish this.

Erik is employed as an IT consultant at DevCode. He has previously worked for
IBM, Nanoradio, and ACE Interactive.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Programming Interactively within Your Project 9

Advantages of using Scala for Java projects 9
More concise and expressive 10
Increased productivity 11
Natural evolution from Java 11
Better fit for asynchronous and concurrent code 12

Learning Scala through the REPL 14
Declaring val/var variables 14
Defining classes 16
Explaining case classes 18

Operations on collections 24
Transforming collections containing primitive types 24
Collections of more complex objects 26

Filter and partition 27
Dealing with tuples 28
Introducing Map 28
Introducing the Option construct 30
A glimpse at pattern matching 30
The map method 31
Looking at String Interpolation 32
The groupBy method 33
The foldLeft method 33

Summary 33
Chapter 2: Code Integration 35

Creating a REST API from an existing database 35
The sample database 36
Setting up a Maven project 37

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Creating JPA entities and REST web services 37
Running and testing the project 38

Adding a test in Scala 40
Setting up Scala within a Java Maven project 41
Scala and Java collaboration 44

Converting between collection types 44
JavaBean-style properties 45
Scala and Java object orientation 46
Scala traits as enhanced Java interfaces 48
Declaring objects 50
Introducing companion objects 50
Handling exceptions 51

Differences in style between Java and Scala code 54
Adjusting the code layout 55
Naming conventions 56

Summary 58
Chapter 3: Understanding the Scala Ecosystem 59

Inheriting Java Integrated Development Environments (IDEs) 60
Building with Simple Build Tool (SBT) 60

Getting started with SBT 61
Creating a sample project 61
Importing the project in Eclipse, IntelliJ IDEA, and NetBeans 62
Creating a web application that runs on a servlet container 64

Using sbt-assembly to build a single .jar archive 67
Formatting code with Scalariform 68

Experimenting with Scala Worksheets 68
Working with HTTP 70

Scala's for comprehension 74
Taking advantage of Typesafe Activator 79

Creating an application based on activator templates 80
The REPL as a scripting engine 84
Summary 85

Chapter 4: Testing Tools 87
Writing tests with ScalaTest 88

BDD-style testing 91
Functional testing 94
Mocking with ScalaMock 96

Testing with ScalaCheck 101
Summary 105

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 5: Getting Started with the Play Framework 107
Getting started with the classic Play distribution 108
Getting started with the Typesafe Activator 111
Architecture of a Play application 111

Visualizing the framework stack 112
Exploring the request-response lifecycle 113
Handling a request in the controller 117
Rendering the view 119

Playing with authentication 121
Practical tips when using Play 125

Debugging with Play 125
Dealing with version control 126

Summary 126
Chapter 6: Database Access and the Future of ORM 127

Integrating an existing ORM – Hibernate and JPA 127
Making JPA available in Scala 128

Dealing with persistence in the Play Framework 136
A simple example using Anorm 136

Replacing ORM 139
Learning about Slick 140
Scaffolding a Play application 145

Importing test data 149
Visualizing the database in the H2browser 150
Exploring the code behind the app generation 151
Limitations of the playcrud utility 153

Summary 154
Chapter 7: Working with Integration and Web Services 155

Binding XML data in Scala 155
Running scalaxb from a SOAP web service 160

Working with XML and JSON 164
Manipulating XML 164
Manipulating JSON 166
Using Play JSON 169

Handling Play requests with XML and JSON 172
Mocking Play responses with JSON 174
Calling web services from Play 176

Summary 185

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 8: Essential Properties of Modern
Applications – Asynchrony and Concurrency 187

The pillars of Concurrency 187
The Async library – SIP-22-Async 189

Combining web services 193
Combining services without await 194

Getting started with Akka 195
Understanding the Actor model 195
Switching behavior 199
Supervising actors to handle failure 205
Testing actor systems 207
Exploring further with Akka 209

Summary 210
Chapter 9: Building Reactive Web Applications 211

Describing reactive applications 211
Handling streams reactively 212

Understanding Iteratees in Play 212
Adapting Enumerator with Enumeratee 217

Experimenting with WebSockets and Iteratees in Play 218
Learning from activator templates 221

Reactive stocks 222
Reactive real-time search 222
The Play-Akka-Angular-WebSocket template 224

Playing with Actor Room 224
Summary 233

Chapter 10: Scala Goodies 235
Exploring MongoDB 235

Entering Casbah 236
Applying MapReduce transformations 239

Scratching the surface of Big Data 243
Introducing DSLs in Scala 245

Observing internal DSLs 245
Tackling external DSLs through parser combinators 246

Introducing Scala.js 249
Final tips 252

Copying and pasting in the REPL 252
Timing code execution in the REPL 253

Summary 255
Index 257

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
When I tell people around me that I now program in Scala rather than Java, I often
get the question, "So, in simple words, what is the main advantage of using Scala
compared to Java?" I tend to respond with this: "With Scala, you reason and
program closer to the domain, closer to plain English". Raising the level of
abstraction is often the terminology employed to describe programs in a more
readable and natural way for humans to understand rather than the zeros and
ones understood by computers.

As computer systems that are encountered in telecom, manufacturing or financial
applications mature and grow, different forms of complexity tend to emerge,
which are as follows:

• Complexity due to the addition of supported features, for example, the
variety of contract alternatives in an insurance system or the introduction
of complicated algorithms to solve new challenges in our evolving society

• Complexity to offset the limitations of technologies; for instance, making
a system distributed to handle larger loads or improve reliability and
response time

• Accidental complexity, which is introduced because of factors other than the
problem at stake, such as integration between legacy systems and not really
compatible technologies, short-term workarounds to reach the consumer
market in a quicker way, or misunderstanding how a large system is
designed as a whole when many resources with different backgrounds
and styles are contributing in a short period of time to a large code base

The third complexity is clearly unwanted and should be reduced to a minimum
if not eliminated, whereas the other two should remain manageable. Scala tackles
all of them, and the complexity of the business domain is something that will be
manageable only if a system can be described in code as if it was described in
well-written English.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

In the past few years, the ability of many languages to express behaviors in a more
concise way than the traditional object-oriented way is largely due to the increasing
popularity of functional programming (FP), a paradigm that has been around
for a very long time but until recently thought of as a competitor to the so-called
imperative programming languages such as C or Java. Michael Feathers nicely
outlined the apparent duality between the two in the following statement:

"OO makes code understandable by encapsulating moving parts. FP makes code
understandable by minimizing moving parts."

The former focuses on breaking a large system into smaller, reusable parts.
These parts are easy to reason about as they are modeled according to real-life
objects. They use interfaces between them and are meant to encapsulate a mutating
state. The latter emphasizes on the combination of functions that have ideally no
side effects. It means that their result depends only on their input arguments,
leading to minimizing or removing a mutating state in a program.

The declarative nature of FP, supported by Scala, aims at writing code to express
"what is to be done" rather than "how to do it". Moreover, the FP approach tends
to make algorithms more concise by composing (combining functions together),
whereas the imperative approach tends to introduce side effects, that is, changes
in the program state that will make it more difficult to see the algorithm, in its
whole, in a concise way.

This book will show Java developers that Scala is a significant yet natural evolution
from Java by reasoning at a higher level of abstraction. Making the transition should
ultimately lead to a more robust, maintainable, and fun software.

The intent of this book is not so much about exploring the design or deep features of
the language as well as its exhaustive syntax; there are already a number of excellent
books about the Scala language, notably by the creator of the language himself,
Martin Odersky, and people working with him at Typesafe.

Our aim is to concentrate on helping current Java developers to get started and feel
comfortable using the language, and to make their daily job more productive and fun.

What this book covers
Chapter 1, Programming Interactively within Your Project, provides a short introduction
about the JVM (Java Virtual Machine) and some of the key features that have
made Java successful. We will then start getting our hands dirty and experiment
with the Scala REPL (short for, Read Eval Print Loop), a powerful tool to program
interactively. We will introduce some of the powerful constructs of Scala that make
programming not only enjoyable but also intuitive and productive.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Chapter 2, Code Integration, is about making Scala and Java code collaborate under the
same code base. Topics of interest in this chapter are interoperability between Java and
Scala collections, and wrapping existing Java libraries with Scala. Moreover, we will
touch on the topic of coding style, in particular, by comparing the well-established
Java coding best practices to the more recent Scala guidelines.

Chapter 3, Understanding the Scala Ecosystem, helps you to know the Scala
development ecosystem and its surrounding tools, most of which are being more
or less inherited from Java. In particular, Java frameworks such as Maven, and IDEs
such as Eclipse, cannot be overlooked. In addition to the essential elements of the
development cycle, we will cover Scala-specific tools such as SBT, Scala Worksheets,
and the introduction of Typesafe's Activator and its templates.

Chapter 4, Testing Tools, is a follow-up on the essential tools of a Scala developer,
focusing on reviewing most of the useful tools for unit, integration, and functional
testing of test data as well automated property-based testing.

Chapter 5, Getting Started with the Play Framework, will give you a concrete introduction
to the Play Framework, where we will show you some of the cool features of Play that
make one want to migrate from a more traditional servlet/J2EE model.

Chapter 6, Database Access and the Future of ORM, covers tackling the persistence of
data in relational databases, whether you want to reuse well-established technologies
such as JPA/Hibernate, or move to more innovative yet promising alternatives such
as SLICK (Scala Language-Integration Connection Kit), an interesting alternative
to traditional ORM merely based on the power of the Scala language. Moreover, we
will see how to reverse-engineer the existing relational databases into Play CRUD
applications as a starting point in migrating Java projects.

Chapter 7, Working with Integration and Web Services, covers technologies that are
found everywhere in today's Java development. In this chapter, we will explore
how integrating with the external systems applies to the Scala world and what the
benefits are. Topics included in this chapter relate to Web Services through SOAP
XML, REST, and JSON.

Chapter 8, Essential Properties of Modern Applications – Asynchrony and Concurrency,
refers to two aspects of scalable applications' development. To achieve better
performance, software projects are often encouraged to introduce asynchronous
invocations and concurrent code. Through this chapter, we will show that the more
functional side of Scala can make this complexity more manageable and maintainable.
We will also introduce the Akka framework, a toolkit to simplify the development of
concurrent applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Chapter 9, Building Reactive Web Applications, takes the previous chapter one step
further and introduces a new class of applications that has emerged in the market:
reactive applications. They are characterized by their interactivity, the ability to push
information to end users, elasticity to adapt to changes in load, and the ability to
recover from failures. The aim of this chapter is to build such an app in Play using
concepts learned throughout the book as well as emerging technologies such
as WebSockets.

Chapter 10, Scala Goodies, concludes this book with some perspectives on the future
of web development. For example, Java developers are more and more exposed
to JavaScript on the client side, whether they like it or not. Another example is the
emergence of Domain Specific Languages (DSLs), a nontrivial task to achieve in Java.

What you need for this book
As Scala runs on the Java Platform JVM (short for Java Virtual Machine), you will
be able to write and execute the code provided in the book on any computer that
supports the Java standard edition. To set up the tools that you need, refer to
Chapter 1, Programming Interactively within Your Project and Chapter 3, Understanding
the Scala Ecosystem

Who this book is for
This book is obviously targeted mostly for developers. We want to help Java programmers
to get started and feel comfortable with both the syntax of the language and the tools.
We will achieve this by exploring progressively some of the new concepts brought by
Scala, in particular, how to unify the best of Object-Oriented and functional programming
without giving away any of the established and mature technologies built around Java
for the past fifteen years.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

A block of code is set as follows:

import java.util.*;
public class ListFilteringSample {
 public static void main(String[] args) {
 List<Integer> elements = Arrays.asList(1, 2, 3, 4, 5);
 List<Integer> filteredElements = new ArrayList<Integer>();
 for (Integer element : elements)
 if (element < 4) filteredElements.add(element);
 System.out.println("filteredElements:" + filteredElements);
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

import java.util.*;
public class ListFilteringSample {
 public static void main(String[] args) {
 List<Integer> elements = Arrays.asList(1, 2, 3, 4, 5);
 List<Integer> filteredElements = new ArrayList<Integer>();
 for (Integer element : elements)
 if (element < 4) filteredElements.add(element);
 System.out.println("filteredElements:" + filteredElements);
 }
}

Any command-line input or output is written as follows:

> ./activator ui

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Out of
curiosity, you may click on the Code view & Open in IDE tab and then on the
Run tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively
within Your Project

Moving away from a well established and mature language such as Java requires
some pretty good reasons. Before pragmatically trying out some of the apparent
differences between Java and Scala in order to get acquainted with the Scala syntax,
we are going to clarify what makes Scala so attractive.

In this chapter, we will cover the following topics:

• The advantages of using Scala for Java projects
• Getting familiar with the syntax of the language through a crash course

following an interactive session, including case classes, operations on
collections, and a glimpse of some useful features such as options, tuples,
maps, pattern matching, and string interpolation

Advantages of using Scala for Java
projects
The order of appearance and importance that we propose here only reflects our
personal experience since every project and group of programmers usually have
their own agenda when it comes to priorities.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[10]

More concise and expressive
The ultimate reason why you should adopt Scala is readability: code that is similar
to plain English will make it easier for anyone (including yourself) to understand,
maintain, and refactor it. Scala is unique in that it unifies the object-oriented side
that Java has in order to make code modular with the power of functional languages
to express transformations concisely. To illustrate how to achieve conciseness by the
introduction of anonymous functions (also called lambdas) into the language, take
a look at the following line of code:

List(1,2,3,4,5) filter (element => element < 4)

As a Java programmer, the line might look awkward at first since it does not
follow the usual pattern of invoking method signatures on classes. A possible Java
translation of the previous code could be as follows:

import java.util.*;

public class ListFilteringSample {

 public static void main(String[] args) {

 List<Integer> elements = Arrays.asList(1, 2, 3, 4, 5);

 List<Integer> filteredElements = new ArrayList<Integer>();

 for (Integer element : elements)
 if (element < 4) filteredElements.add(element);

 System.out.println("filteredElements:" + filteredElements);

 }
}

Downloading the example code

You can download the example code files for all books by Packt
Publishing that you have purchased from your account at
http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

We first create a List with five integers, then create an empty List that will hold the
result of the filtering and then loop over the elements of the List to retain only the
ones that match the if predicate (element < 4) and finally print out the result.
Even if this is straightforward to write, it requires a few lines of code, whereas the
Scala line could just be read like the following:

"From the given List, filter each element such that this element is lower than 4".

The fact that the code becomes really concise but expressive makes it easier for the
programmer to comprehend at once a difficult or lengthy algorithm.

Increased productivity
Having a compiler that performs a lot of type checking and works as a personal
assistant, is in our opinion, a significant advantage over languages that check types
dynamically at runtime, and the fact that Java is a statically-typed language is probably
one of the main reasons that made it so popular in the first place. The Scala compiler
belongs to this category as well and goes even further by finding out many of the types
automatically, often relieving the programmer from specifying these types explicitly
in the code. Moreover, the compiler in your IDE gives instant feedback, and therefore,
increases your productivity.

Natural evolution from Java
Scala integrates seamlessly with Java, which is a very attractive feature, to avoid
reinventing the wheel. You can start running Scala today in a production
environment. Large corporations such as Twitter, LinkedIn, or Foursquare (to name
a few) have done that on large-scale deployments for many years now, followed
recently by other big players such as Intel or Amazon. Scala compiles to Java
bytecode, which means that performance will be comparable. Most of the code that
you are running while executing Scala programs is probably Java code, the major
difference being what programmers see and the advanced type checking while
compiling code.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[12]

Better fit for asynchronous and concurrent
code
To achieve better performance and handle more load, modern Java frameworks and
libraries for web development are now tackling difficult problems that are tied to
multi-core architectures and the integration with unpredictable external systems.
Scala's incentive to use immutable data structures and functional programming
constructs as well as its support for parallel collections has a better chance to succeed
in writing concurrent code that will behave correctly. Moreover, Scala's superior type
system and macro support enable DSLs for trivially safe asynchronous constructs,
for example, composable futures and asynchronous language extensions.

In summary, Scala is the only language that has it all. It is statically typed, runs on
the JVM and is totally Java compatible, is both object-oriented and functional, and is
not verbose, thereby leading to better productivity, less maintenance, and therefore
more fun.

If you are now getting impatient to start experimenting with the promising features
of Scala that were briefly described previously, this is a good time to open a
browser, access the Typesafe page URL at http://www.typesafe.com/platform/
getstarted, and download the Typesafe Activator.

The intent of the rest of the chapter is to incrementally introduce some of the
basic concepts of Scala by typing commands in an interactive shell and get direct
feedback from the compiler. This method of learning by experimentation should
feel like a breath of fresh air and has already proven to be a very effective way of
learning the syntax and useful constructs of the language. While Scala continues to
evolve at École Polytechnique Fédérale de Lausanne (EPFL), many large and small
corporations are now taking advantage of the features of the Typesafe platform.

As stated on their website, the Typesafe Activator is "a local web and command-line
tool that helps developers get started with the Typesafe platform". We will cover the
Activator in more detail in a later chapter dedicated to programming tools, but for
now, we will only take the shortest path in getting up and running and get familiar
with some of the syntax of the language.

You should now be able to extract the downloaded zip archive to your system in
a directory of your choice.

Locate the activator script within the extracted archive and either right-click on it
and select Open if you are running Windows or enter the following command in
a terminal window if you are on Linux/Mac:

> ./activator ui

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

In both cases, this will start the Activator UI in a browser window.

In the New application section of the HTML page of the Activator, click on the
[Basics] Hello-Scala! template.

Notice the Location field of the HTML form in the following screenshot. It indicates
where your project will be created:

At present, you don't need to pay too much attention to all of the things that happen
in the background nor to the generated structure of the project. Out of curiosity, you
may click on the Code view & Open in IDE tab and then on the Run tab to execute
this Hello World Scala project, which should print, well, "Hello, world !".

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[14]

Start a terminal window and navigate to the root directory of the hello-scala project
that we just created, by entering the following command on the command line
(assuming our project is under C:\Users\Thomas\hello-scala):

> cd C:\Users\Thomas\hello-scala

C:\Users\Thomas\hello-scala> activator console

This command will start the Scala interpreter, also known as Scala REPL
(Read-Eval-Print-Loop), a simple command-line tool to program interactively.

Learning Scala through the REPL
As a Java developer, an REPL may be new to you since there is no such thing for
the Java language. It used to refer to the Lisp language interactive environment,
and today, equivalent tools are available for many programming languages such
as JavaScript, Clojure, Ruby, and Scala. It consists of a command-line shell where
you can enter one or more expressions rather than complete files and get immediate
feedback by evaluating the result. The REPL is a fantastic tool that helps us to learn
all the Scala syntax because it compiles and executes every statement that you write
using the full power of the compiler. In such an interactive environment, you get
instant feedback on every line of code you write.

If you are new to Scala, we recommend that you carefully follow this REPL session
as it will give you a lot of useful knowledge for programming with Scala.

Let's dive into some of the most apparent differences between Java and Scala in
order to get acquainted with the Scala syntax.

Declaring val/var variables
In Java, you would declare a new variable by putting in order its type, followed by
the name, and then the optional value:

String yourPast = "Good Java Programmer";

In Scala, the order of declaring the variable name and type is inverted, with the name
appearing before its type. Let's enter the following line into the REPL:

scala> val yourPast : String = "Good Java Programmer" [Hit Enter]

yourPast : String = "Good Java Programmer"

Inverting the order of declaring the variables, type, and name as compared to Java
might at first seem a strange idea if you want to make it as easy as possible for a Java
developer to grab the Scala syntax. However, it makes sense for several reasons:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

• The Scala compiler, in this case, is able to deduct the type automatically. You
could (and probably should, for conciseness) omit this type by entering the
equivalent but shorter line of code instead:
scala> val yourPast = "Good Java Programmer"

yourPast : String = "Good Java Programmer"

This is the most basic illustration of what is called Type Inference, and you
will see that the Scala compiler will try to deduct types whenever it can. If we
had omitted this optional type but followed the Java syntax, the parsing done
by the compiler would have been more difficult to implement.

• In our opinion, it is more important to know a variable name than its type
in order to understand the flow of a program (and therefore make it appear
first); for instance, if you deal with a variable representing a social security
number (ssn), we think the term ssn is more valuable than knowing if it is
represented as a string or an integer or any other type.

You probably noticed the val variable in front of the declaration; it means that we
explicitly declare the variable as immutable. We can try to modify it as shown in the
following code snippet:

scala> yourPast = "Great Scala Programmer"

<console>:8: error: reassignment to val

 yourPast = "Great Scala Programmer"

 ^

The preceding code will not only give you a clear explanation of what was wrong
but also the exact place where the parser did not agree (notice the ^ character
precisely showing where the error lies in the line).

If we want to create a mutable variable instead, we should declare it with var as
shown in the following code snippet:

scala> var yourFuture = "Good Java Programmer"

yourFuture: String = "Good Java Programmer"

scala> yourFuture = "Great Scala Programmer"

yourFuture: String = "Great Scala Programmer"

In summary, you cannot change yourPast but you can change yourFuture!

The semicolon at the end of the lines is optional in Scala; a small but pleasant feature
of the language.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[16]

Let's move on to an important difference. In Java, you have primitive types such
as int, char, or boolean (eight in total), as well as operators to manipulate data
such as + or >. In Scala, there are only classes and objects, making Scala more
"object-oriented" than Java in some way. For instance, enter the following value
into the REPL:

scala> 3

res1: Int = 3

By default, the compiler created an immutable Int (integer) variable with the res1
name (that is, result 1) in case you need to reuse it later on.

Now, enter the following line in REPL:

scala> 3 + 2

res2: Int = 5

The preceding code resembles the usage of an operator (as in Java) but is in fact
the invocation of a method named + called on object 3 with the input parameter 2,
equivalent to the slightly less clear statement:

scala> (3).+(2)

res3: Int = 5

Syntactic sugar (that is, syntax designed to make things easier to read or express)
was added here by removing the necessity to specify the parenthesis. This also
means that we can now implement similar methods on our own defined types to
express code elegantly. For example, we can express the addition of two Money
objects of different currencies (note that the Money type does not exist in the default
Scala library) by simply stating Money(10,"EUR") + Money(15,"USD"). Let's try
to do that in the REPL.

Defining classes
First, we can define a new class Money that has a constructor parameter named
amount of type Int as follows:

scala> class Money(amount:Int)

defined class Money

Scala has a special syntax for declaring constructor parameters that
will be explored in more depth later.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Now, we can create a Money instance as shown in the following code snippet:

scala> val notMuch = new Money(2)

notMuch : Money = Money@76eb235

You get back an object with its displayed reference. The REPL provides you with
TAB completion, so type notMuch. and hit the Tab key:

scala> notMuch. [Tab]

asInstanceOf isInstanceOf toString

By using the preceding autocompletion, you will get suggestions of the available
methods for that class, as you will get with most Java IDEs.

As shown previously, you can construct new instances of Money by invoking the
constructor, but you do not have access to the amount variable since it is not a field.
To make it a field of the Money class, you have to add a 'val' or 'var' declaration in
front of it, as shown in the following code snippet:

scala> class Money(val amount:Int)

defined class Money

This time, instead of again typing the line that created an instance, we will use the
up arrow (the shortcut to display previous expressions: the history of the console)
and navigate to it:

scala> val notMuch = new Money(2)

notMuch : Money = Money@73cd15da

The Tab key can be pressed at any time in the REPL and provides
autocompletion.

Invoking autocompletion on this new instance will display the following:

scala> notMuch. [Tab]

amount asInstanceOf isInstanceOf toString

So, we can simply read the value of the getter for this amount field by referring to it:

scala> notMuch.amount

res4: Int = 2

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[18]

Similarly, if we had declared the amount to be a var variable instead of val, we
would also have access to the setter method:

scala> class Money(var amount:Int)

defined class Money

scala> val notMuch = new Money(2)

notMuch: Money = Money@6517ff0

scala> notMuch. [Tab]

amount amount_= asInstanceOf isInstanceOf toString

The setter method is invoked when we use the following code snippet:

scala> notMuch.amount=3

notMuch.amount: Int = 3

Explaining case classes
As Java developers, we are accustomed to the JavaBean style domain classes that not
only include fields with getters and setters but also constructors as well as hashCode,
equals, and toString methods, as shown in the following code snippet:

public class Money {

 private Integer amount;
 private String currency;

 public Money(Integer amount, String currency) {

 this.amount = amount;
 this.currency = currency;

 }

 public Integer getAmount() {
 return amount;
 }

 public void setAmount(Integer amount) {
 this.amount = amount;
 }

 public String getCurrency() {
 return currency;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

 public void setCurrency(String currency) {
 this.currency = currency;
 }

 @Override
 public int hashCode() {
 int hash = 5;
 hash = 29 * hash + (this.amount != null ? this.amount.
hashCode() : 0);
 hash = 29 * hash + (this.currency != null ? this.currency.
hashCode() : 0);
 return hash;
 }

 @Override
 public boolean equals(Object obj) {

 if (obj == null) {
 return false;
 }

 if (getClass() != obj.getClass()) {
 return false;
 }

 final Money other = (Money) obj;
 return true;
 }

 @Override
 public String toString() {
 return "Money{" + "amount=" + amount + ", currency=" +
currency + '}';

 }
}

Achieving this in Scala is very straightforward and only requires the addition of the
case word in front of the class declaration:

scala> case class Money(amount:Int=1, currency:String="USD")

defined class Money

We have just defined a class Money with two immutable fields named amount and
currency with default values.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[20]

Without going too much into the details of the case classes, we can say that in
addition to the preceding features of a traditional JavaBean style domain class, they
have a powerful mechanism for pattern matching. The case word is analogous to the
switch statement in Java, though it is more flexible, as we will see later on. The case
classes contain additional features among which one is a factory method to create
instances (no need to use the new keyword to create one).

By default, the fields declared in Scala classes are public, unlike Java, where they have
a package-private scope, defined between private and protected. We could have written
case class Money(private val amount: Int, private val currency: String)
to make them private instead, or used var instead of val to make the fields mutable.

The shortest way to create an instance of Money is very straightforward:

scala> val defaultAmount = Money()

defaultAmount: Money = Money(1,USD)

scala> val fifteenDollars = Money(15,"USD")

fifteenDollars: Money = Money(15,USD)

scala> val fifteenDollars = Money(15)

fifteenDollars: Money = Money(15,USD)

In the previous instance declaration, since only one parameter is given instead of two,
the compiler matched it against the first declared field, that is, amount. Since the value
15 is of the same type as amount (that is, Integer), the compiler was able to populate
the instance with this amount, using the default value "USD" as the currency.

Unlike the amount variable, invoking the Money constructor with the sole currency
parameter will fail, as seen in the following statement:

scala> val someEuros = Money("EUR")

<console>:9: error: type mismatch;

 found : String("EUR")

 required: Int

 val someEuros = Money("EUR")

 ^

The preceding code does not work because the compiler could not guess which
parameter we were referring to, and therefore tried to match them in order of
declaration. To be able to use the default value for amount with the given "EUR"
string, we need to include the parameter name explicitly, as shown in the following
code snippet:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

scala> val someEuros = Money(currency="EUR")

someEuros: Money = Money(1,EUR)

We could therefore also mark all parameters explicitly, which can be recommended
when there are many parameters as shown in the following code snippet:

scala> val twentyEuros = Money(amount=20,currency="EUR")

twentyEuros: Money = Money(20,EUR)

An additional useful method when constructing instances is the copy method, which
creates a new instance out of the original and eventually replaces given parameters:

scala> val tenEuros = twentyEuros.copy(10)

tenEuros: Money = Money(10,EUR)

We can use the copy method with explicitly named parameters, as follows:

scala> val twentyDollars = twentyEuros.copy(currency="USD")

twentyDollars: Money = Money(20,USD)

The copy method can be very useful when writing test fixtures, in particular, when the
mockup instances to be initialized have constructors with many fields that are similar.

Let's move on by creating an addition operation of our Money class. For simplicity,
we will pretend for a moment that we only deal with amounts of the same currency,
the default USD.

In Java, we would probably add such a method with the following signature and
simple content:

public class Money {

 Integer amount;
 String currency;

 public Money(Integer amount, String currency) {
 this.amount = amount;
 this.currency = currency;
 }

 public Money add(Money other) {
 return new Money(this.amount +
 other.amount, this.currency);
 }
 ...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[22]

In Scala, we use the def keyword to define a class method or a function. In the REPL,
we can have multiline expressions. The following case class declaration, containing
the implementation of a summing method + is an example of such features:

scala> case class Money(val amount:Int=1, val currency:String="USD"){

 | def +(other: Money) : Money = Money(amount + other.amount)

 | }

defined class Money

Notice that we can use + as a method name. We have also included the return type
Money in the signature declaration, which is only optional since the type inference of
Scala will deduct it, but including it explicitly is a good documentation practice for
public methods (and methods are public by default if no other scope is specified).
Moreover, in Scala, since the return word at the end of the method is optional,
the last statement is always the one that is returned to the caller of the method.
Furthermore, it is generally considered a good practice to omit the return
keyword since it is not mandatory.

We can now write the addition of two Money instances with the following
simple expression:

scala> Money(12) + Money(34)

res5: Money = Money(46,USD)

Things start becoming exciting once we start manipulating collections of objects,
and the functional programming part of Scala helps very much for that matter.
Since generics are part of the language (Java 5 onwards), Java can, for example,
iterate over a list of integers by writing the following code snippet:

List<Integer> numbers = new ArrayList<Integer>();
numbers.add(1);
numbers.add(2);
numbers.add(5);
for(Integer n: numbers) {
 System.out.println("Number "+n);
}

The preceding code produces the following output:

Number 1

Number 2

Number 5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

In Scala, the declaration of a list can be written as follows:

scala> val numbers = List(1,2,5)

numbers: List[Int] = List(1,2,5)

Scala collections systematically distinguish between immutable and mutable
collections, but encourage immutability by constructing immutable collections by
default. They simulate additions, updates, or removals by returning new collections
from such operations instead of modifying them.

One way to print out the numbers is that we can follow Java's imperative style of
programming and iterate over the collection by creating a for loop:

scala> for (n <- numbers) println("Number "+n)

Number 1

Number 2

Number 5

Another way to write the code in Scala (as well as many other languages on the JVM,
such as Groovy, JRuby, or Jython) involves a more functional style, using lambda
expressions (sometimes referred to as closures). In brief, lambdas are just functions
that you can pass around as parameters. These functions take input parameters (in
our case, the n integer) and return the last statement/line of their body. They are in
the following form:

functionName { input =>
 body
 }

A typical example of lambda to iterate over the elements of the numbers list we have
defined earlier, is given as follows:

scala> numbers.foreach { n:Int =>

 | println("Number "+n)

 | }

Number 1

Number 2

Number 5

In that case, the body consists of only one statement (println...), and therefore
returns Unit, that is, an empty result roughly equivalent to void in Java, except that
void does not return anything.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[24]

As the time of writing this book, lambda expressions in Java are around the corner and
will be introduced very soon as part of the JDK8 release, adopting a Scala-like style.
Some of the functional constructs will therefore soon be available to Java developers.

It should become possible to write our tiny example in the following way:

numbers.forEach(n -> { System.out.println("Numbers "+n);});

As we stated previously, Scala collections are, by default, immutable. This is a
very important aspect for making them behave as expected when dealing with
multiprocessor architectures. One unique feature of the Scala collections compared
to Java is that they include support for running operations in parallel.

Operations on collections
In this section, we are going to illustrate how the manipulation of collections in Scala
can be expressed in a concise and expressive way.

Transforming collections containing primitive
types
The REPL is a great tool to try out the powerful operations that we can apply to the
collection elements. Let's go back to our interpreter prompt:

scala> val numbers = List(1,2,3,4,5,6)

numbers: List[Int] = List(1,2,3,4,5,6)

scala> val reversedList = numbers.reverse

reversedList: List[Int] = List(6,5,4,3,2,1)

scala> val onlyAFew = numbers drop 2 take 3

onlyAFew: List[Int] = List(3, 4, 5)

The drop method indicates that we get rid of the first two elements of the list, and
the take method indicates that we keep only three elements from the result obtained
after the drop method.

This last command is interesting for two reasons:

• Since every method call is evaluated to an expression, we can chain several
method calls at once (here, take is invoked on the result of drop)

• As already stated before, the syntactic sugar added to the Scala syntax makes
it equivalent to write numbers drop 2 instead of the more traditional Java
numbers.drop(2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Another way of writing elements in a given list is by using the :: method, generally
referred to in Scala documentation as the "cons operator". This alternative syntax
looks like the following expression:

scala> val numbers = 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: Nil

numbers: List[Int] = List(1, 2, 3, 4, 5, 6)

If you are wondering why there is a Nil value at the end of this expression, this is
because there is a simple rule in Scala that says that a method whose last character is
: (that is, a colon) is applied on its right side rather than the left side (such a method
is called as right-associative). So, the evaluation of 6 :: Nil is not equivalent to
6.::(Nil) in that case, but rather Nil.::(6). We can exhibit that into the REPL
as follows:

scala> val simpleList = Nil.::(6)

simpleList: List[Int] = List(6)

The evaluation of 5 :: 6 :: Nil is therefore done by applying the :: method on
the simpleList that we saw earlier, which is List(6):

scala> val twoElementsList = List(6).::(5)

twoElementsList: List[Int] = List(5, 6)

In this case, 5 was appended before 6. Repeating this operation several times will
give you the final List(1,2,3,4,5,6).

This convenient way of expressing lists is not just for simple values such as integers
but can be applied to any type. Moreover, we can concatenate two List instances by
using the ::: method in a similar way:

scala> val concatenatedList = simpleList ::: twoElementsList

concatenatedList: List[Int] = List(6, 5, 6)

We can even mix elements of various types in the same List, for example, integers
and Booleans, as shown in the following code snippet:

scala> val things = List(0,1,true)

things: List[AnyVal] = List(0, 1, true)

However, as you probably noticed, the result type AnyVal chosen by the compiler
in that case is the first common type between integers and Booleans encountered in
their hierarchy. For instance, retrieving only the Boolean element (at index two in the
list) will return an element of type AnyVal rather than a Boolean value:

scala> things(2)

res6: AnyVal = true

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[26]

Now, if we put an element of type String within the list as well, we will get a
different common type:

scala> val things = List(0,1,true,"false")

things: List[Any] = List(0, 1, true, false)

The reason for that can be directly visualized by looking at the hierarchy of Scala
types. Classes representing primitive types such as Int, Byte, Boolean, or Char
belong to value types of scala.AnyVal, whereas String, Vector, List, or Set
belong to reference types of scala.AnyRef, both being subclasses of the common
type Any, as shown in the following diagram:

Any

...

AnyVal AnyRef

Boolean Vector StringInt ...

Null

Nothing

The full hierarchy of Scala types is given in the official Scala documentation at
http://docs.scala-lang.org/tutorials/tour/unified-types.html.

Collections of more complex objects
Let's manipulate objects that are more complex than integers. We can, for instance,
create some collections of Money instances that we made earlier and experiment
with them:

scala> val amounts = List(Money(10,"USD"),Money(2,"EUR"),Money(20,"GBP"),
Money(75,"EUR"),Money(100,"USD"),Money(50,"USD"))

amounts: List[Money] = List(Money(10,USD), Money(2,EUR), Money(20,GBP),
Money(75,EUR), Money(100,USD), Money(50,USD))

scala> val first = amounts.head

first: Money = Money(10,USD)

scala> val amountsWithoutFirst = amounts.tail

amountsWithoutFirst: List[Money] = List(Money(2,EUR), Money(20,GBP),
Money(75,EUR), Money(100,USD), Money(50,USD))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Filter and partition
Filtering elements of a collection is one of the most common operations and can be
written as follows:

scala> val euros = amounts.filter(money => money.currency=="EUR")

euros: List[Money] = List(Money(2,EUR), Money(75,EUR))

The parameter given to the filter method is a function that takes a Money item as
the input and returns a Boolean value (that is, a predicate), which is the result of
evaluating money.currency=="EUR".

The filter method iterates over the collection items and applies the function to
each element, keeping only the elements for which the function returns True.
Lambda expressions are also referred to as anonymous functions because we could
give any name we want to the input argument, for example, x instead of the money
used previously, and still get the same output:

scala> val euros = amounts.filter(x => x.currency=="EUR")

euros: List[Money] = List(Money(2,EUR),Money(75,EUR))

A slightly shorter way of writing this one-liner can be done using an _ sign, a character
that one encounters often when reading Scala code and that might seem awkward for
a Java developer at first sight. It simply means "that thing", or "the current element".
It can be thought of as the blank space or gap used to fill paper-based inquiries
or passport registration forms, in the olden days. Other languages that deal with
anonymous functions reserve other keywords, such as it in Groovy, or self in
Python. The previous lambda example can be rewritten with the short underscore
notation as the following:

scala> val euros = amounts.filter(_.currency=="EUR")

euros: List[Money] = List(Money(2,EUR),Money(75,EUR))

A filterNot method also exists to keep elements for which the evaluation of the
function returns False. Moreover, a partition method is available to combine both
the filter and filterNot methods into one single call that returns two collections,
one evaluating to True and the other to its complement, as shown in the following
code snippet:

scala> val allAmounts = amounts.partition(amt =>

 | amt.currency=="EUR")

allAmounts: (List[Money], List[Money]) = (List(Money(2,EUR), Money(75,EUR
)),List(Money(10,USD), Money(20,GBP), Money(100,USD), Money(50,USD)))

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[28]

Dealing with tuples
Notice the return type of the partition result, (List[Money],List[Money]).
Scala supports the concept of tuples. The preceding parenthesis notation denotes
a Tuple type, which is a part of the standard Scala library and useful to manipulate
several elements at once without having to create a more complex type for
encapsulating them. In our case, allAmounts is a Tuple2 pair containing two
lists of Money. To access only one of the two collections, we just need to type the
following expressions:

scala> val euros = allAmounts._1

euros: List[Money] = List(Money(2,EUR),Money(75,EUR))

scala> val everythingButEuros= allAmounts._2

everythingButEuros: List[Money] = List(Money(10,USD),Money(20,GBP),Money(
100,USD),Money(50,USD))

A cleaner and more natural syntax to achieve this as a one-liner, is the one that
expresses the partition method without referring to ._1 and ._2, as shown in the
following code snippet:

scala> val (euros,everythingButEuros) = amounts.partition(amt =>

 | amt.currency=="EUR")

euros: List[Money] = List(Money(2,EUR), Money(75,EUR))

everythingButEuros: List[Money] = List(Money(10,USD), Money(20,GBP),
Money(100,USD), Money(50,USD))

This time, as a result, we get two variables, euros and everythingButEuros, which
we can reuse individually:

scala> euros

res2: List[Money] = List(Money(2,EUR), Money(75,EUR))

Introducing Map
Another elegant usage of tuples is related to the definition of a Map collection,
another structure that is part of the Scala collections. Similar to Java, the Map
collection stores key-value pairs. In Java, a trivial HashMap definition that populates
and retrieves elements of a Map collection with a couple of values can be written with
a few lines of code:

import java.util.HashMap;
import java.util.Map;

public class MapSample {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

 public static void main(String[] args) {
 Map amounts = new HashMap<String,Integer>();
 amounts.put("USD", 10);
 amounts.put("EUR", 2);

 Integer euros = (Integer)amounts.get("EUR");
 Integer pounds = (Integer)amounts.get("GBP");

 System.out.println("Euros: "+euros);
 System.out.println("Pounds: "+pounds);
 }
}

Since no amount of GBP currency has been inserted into the Map collection, running
this sample will return a null value for the Pounds variable:

Euros: 2
Pounds: null

Populating a Map collection in Scala can be elegantly written as follows:

scala> val wallet = Map("USD" -> 10, "EUR" -> 2)

wallet: scala.collection.immutable.Map[String,Int] = Map(USD -> 10, EUR
-> 2)

The "USD" -> 10 expression is a convenient way of specifying a key-value pair and
is equivalent to the definition of a Tuple2[String,Integer] object in this case,
as illustrated directly in the REPL (which could infer the type automatically):

scala> val tenDollars = "USD"-> 10

tenDollars : (String, Int) = (USD,10)

scala> val tenDollars = ("USD",10)

tenDollars : (String, Int) = (USD,10)

The process of adding and retrieving an element is very straightforward:

scala> val updatedWallet = wallet + ("GBP" -> 20)

wallet: scala.collection.immutable.Map[String,Int] = Map(USD -> 10, EUR
-> 2, GBP -> 20)

scala> val someEuros = wallet("EUR")

someEuros: Int = 2

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[30]

However, accessing an element that is not included in the Map collection will throw
an exception, as follows:

scala> val somePounds = wallet("GBP")

java.util.NoSuchElementException: key not found: GBP (followed by a full
stacktrace)

Introducing the Option construct
A safer way to retrieve an element from the Map collection that was introduced in the
previous section is to invoke its .get() method, which will instead return an object
of type Option, a feature that is not currently available in Java. Basically, an Option
type wraps a value into an object that can either return the type None if the value is
null, or Some(value) otherwise. Let's enter this in the REPL:

scala> val mayBeSomeEuros = wallet.get("EUR")

mayBeSomeEuros: Option[Int] = Some(2)

scala> val mayBeSomePounds = wallet.get("GBP")

mayBeSomePounds: Option[Int] = None

A glimpse at pattern matching
Avoiding the throwing of an exception makes it convenient to continue handling the
flow of an algorithm as an evaluated expression. It not only gives the programmer
the freedom of sophisticated chaining of the Option values without having to check
for the existence of a value, but also enables one to handle the two different cases via
pattern matching:

scala> val status = mayBeSomeEuros match {

 | case None => "Nothing of that currency"

 | case Some(value) => "I have "+value+" Euros"

 | }

status: String = I have 2 Euros

Pattern matching is an essential and powerful feature of the Scala language. We will
look at more examples of it later on.

The filter and partition methods were just two examples of the so-called
"higher-order" functions on lists, since they operate on containers of collection
types (such as lists, sets, and so on) rather than the types themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

The map method
Among the collections' methods that cannot be overlooked lies the map method (not
to be confused with the Map object). Basically, it applies a function to every element
of a collection, but instead of returning Unit for the foreach method, it returns
a collection of a similar container type (for example, a List will return a List of
the same size) that contains the result of transforming each element through the
function. A very simple example is shown in the following code snippet:

scala> List(1,2,3,4).map(x => x+1)

res6: List[Int] = List(2,3,4,5)

In Scala, you may define standalone functions as follows:

scala> def increment = (x:Int) => x + 1

increment: Int => Int

We have declared an increment function that takes an Int value as the input
(denoted by x) and returns another Int value (x+1).

The previous List transformation can be rewritten slightly in a different manner
as shown in the following code snippet:

scala> List(1,2,3,4).map(increment)

res7: List[Int] = List(2,3,4,5)

Using a bit of syntactic sugar, the . sign in the method call, as well as the parenthesis
on the function parameter can be omitted for readability, which leads to the
following concise one-liner:

scala> List(1,2,3,4) map increment

res8: List[Int] = List(2, 3, 4, 5)

Going back to our initial list of the Money amounts, we can, for example, transform
them into strings as follows:

scala> val printedAmounts =

 | amounts map(m=> ""+ m.amount + " " + m.currency)

printedAmounts: List[String] = List(10 USD, 2 EUR, 20 GBP, 75 EUR, 100
USD, 50 USD)

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interactively within Your Project

[32]

Looking at String Interpolation
In Java, concatenating strings using a + operator, as we did in the previous line, is a
very common operation. In Scala, a more elegant and efficient way to deal with the
presentation of strings is a feature named String Interpolation. Available since Scala
Version 2.10, the new syntax involves prepending a s character to the string literal as
shown in the following code snippet:

scala> val many = 10000.2345

many: Double = 10000.2345

scala> val amount = s"$many euros"

amount: String = 10000.2345 euros

Any variable in scope can be processed and embedded in a string. Formatting can
even be more precise by using an f interpolator instead of s. In that case, the syntax
follows the same style as that of the printf method of other languages, where,
for instance, %4d means a four-digit formatting or %12.2f means a floating point
notation with exactly twelve digits before the comma and two afterwards:

scala> val amount = f"$many%12.2f euros"

amount: String = " 10000.23 euros"

Moreover, the String Interpolation syntax enables us to embed the full evaluation of
an expression, that is, a full block of code performing a calculation. The following is
an example, where we want to display the value of our many variable twice:

scala> val amount = s"${many*2} euros"

amount: String = 20000.469 euros

The preceding block of code obeys the same rules as any method or function
evaluation, meaning that the last statement in the block is the result. Although
here we have a very simple computation, it is perfectly valid to include a multiline
algorithm if needed.

Knowing the interpolation syntax, we can rewrite our previous amounts as follows:

scala> val printedAmounts =

 | amounts map(m=> s"${m.amount} ${m.currency}")

printedAmounts: List[String] = List(10 USD, 2 EUR, 20 GBP, 75 EUR, 100
USD, 50 USD)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

The groupBy method
Another convenient operation is the groupBy method that transforms a collection
into a Map collection:

scala> val sortedAmounts = amounts groupBy(_.currency)

sortedAmounts: scala.collection.immutable.Map[String,List[Money]] =
Map(EUR -> List(Money(2,EUR), Money(75,EUR)), GBP -> List(Money(20,GBP)),
USD -> List(Money(10,USD), Money(100,USD), Money(50,USD)))

The foldLeft method
One last method that we would like to introduce here is the foldLeft method,
which propagates some state from one element to the next. For instance, to sum
elements in a list, you need to accumulate them and keep track of the intermediate
counter from one element to the next:

scala> val sumOfNumbers = numbers.foldLeft(0) { (total,element) =>

 | total + element

 | }

sumOfNumbers: Int = 21

The value 0 given as the first argument to foldLeft is the initial value (which
means total=0 when applying the function for the first List element). The
(total,element) notation represents a Tuple2 pair. Note, however, that for
summation, the Scala API provides a sum method, so the last statement could
have been written as follows:

scala> val sumOfNumbers = numbers.sum

sumOfNumbers: Int = 21

Summary
This interactive chapter that introduced some of the commonly used operations on
objects and collections was only a glimpse to demonstrate some of the expressiveness
and powerful constructs of Scala.

In the next chapter, we are going to increasingly blend Scala with an existing standard
Java web application. Since there are so many ways by which one can create a standard
web application, combining some of the many frameworks and database technologies
available, irrespective of whether they involve Spring, Hibernate, JPA, SQL, or NoSQL,
we will take the straightforward path of some of the well-established JavaEE tutorials.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration
Being able to make Java and Scala cooperate on the same code base is a prerequisite
to guarantee a smooth transition between the two languages.

In this chapter, we are going to quickly create a small Java web application in which
we will show you how to add Scala code to it. Then, we will cover some of the most
common integration points between Java and Scala and how programming styles
differ so that programmers who want to refactor and extend their Java application
can do it according to some guidelines.

To avoid spending too much time on creating, understanding, and documenting
a sample Java project, we are going to use a small database that is already available
as part of the Oracle's NetBeans IDE distribution and create a JPA persistence layer
as well as a REST API from it using the code generation features of the IDE.

Download the sample Java project

If you are impatient to directly jump into the Scala code integration
features of this chapter, you may skip the following section and
download the ready-to-use maven Java project instead from Packt's
website at www.packtpub.com.

Creating a REST API from an existing
database
The sample database bundled with the NetBeans IDE can be downloaded from the
www.netbeans.org website. Just click on the Download button on this website and
pick the JavaEE version of the IDE.

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[36]

Once you have run the installation wizard, seen the The installation was successful!
message, and started the IDE (Version 8.0 in our case), we are ready to create a fully
functional web app in five minutes. The first time you use it, just click on the
upper-left corner of the NetBeans IDE to close the startup screen and you should
see the three tabs: Projects, Files, and Services on the left-hand side of the IDE.

The sample database
Our reference database can be seen from the IDE by clicking on the Services panel.
Under the Databases menu that is part of the Services tab, double-click on the
jdbc:derby://localhost:1527/sample [app on APP] Database Connection link
to connect to the sample database on port 1527 (the default port for Derby databases)
with the app user on the APP schema. Under the APP schema, you should find seven
tables including CUSTOMER and PRODUCT. By right-clicking on the CUSTOMER table and
choosing View Data…, you should be able to browse the content of the table.

The following diagram depicts the whole database schema so that you can visualize
the dependencies or foreign keys between the different tables:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Setting up a Maven project
To quickly set up our sample Java project, you may either import it directly in your
favorite IDE from the downloaded code (and skip creating JPA entities and the REST
web service) or perform the following simple steps on the NetBeans IDE:

1. Right-click anywhere within the Projects tab in the IDE, select New
Project…, and then choose the Maven category and the Web Application
project type.

2. Enter Sample as Project Name and com.demo as Group Id, and then click
on the Next > button.

3. Make sure a Server container is selected for deployment (we use the default
GlassFish 4.0 as part of the NetBeans distribution) as well as Java EE 7 Web
as the Java EE version.

4. Click on the Finish button and you should see the structure of the created
project under the Projects tab.

Creating JPA entities and REST web services
Right-click on the Sample project root we just created and navigate to New |
RESTful Web Services from Databases…. Selecting the derby sample database
connection from the drop-down list in the newly opened window should bring up
the database tables into the Available Tables section. Mark only the CUSTOMER table
and select Add>, both CUSTOMER and DISCOUNT_CODE (which are dependent on
CUSTOMER) should be listed as Selected Tables, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[38]

Clicking on the Next button and again on Next on the next page, and finally
clicking on Finish will generate both the persistence JPA entities for Customer
and DiscountCode and the service facade classes, CustomerFacadeREST and
DiscountCodeFacadeREST. Note that since Java EE6, the EntityManager class is
instantiated in each service class, which avoids the need for JPA controller classes
that were generated in the previous versions.

A more detailed version of how to generate a RESTful web service
from a database is available under the NetBeans tutorial at
www.netbeans.org.

Running and testing the project
Before we start introducing Scala code into our Java project, we may launch our
application and test REST invocations in a browser. Right-click on the Sample root
node of the project and select Run to deploy the application. Once the console displays
that the GlassFish server is running, and that the message Hello World! appears in
your browser to show that everything is deployed correctly, right-click on the RESTful
Web Services folder under the project root, and select Test RESTful Web Services.
The opening dialog lets you choose between generating a test client as part of the
same project or externally, as shown in the following screenshot:

Select Locally Generated Test Client (suitable for Internet Explorer) and click
on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Once deployment completes, the browser will display a test page where we can invoke
REST methods on our customer and discountcode entities. If we expand the com.
demo.sample.customer folder, additional parameters will be shown. Clicking on
the {id} parameter, we will get an input field on the right pane where we can enter
a particular customer id value. For instance, we can enter 409. In the drop-down list
that shows MIME types, select application/json and GET as the method to test, and
then click on Test, as shown in the following screenshot:

The bottom part of the page will now display the response to the REST query.
It consists of a Status: 200 (OK) message and a Response content where the
Raw View tab will display the body of the response as JSON, as shown in the
previous screenshot.

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[40]

Adding a unit test in Java
Finally, we can generate a very simple unit test for the Customer class by selecting
the Customer.java source file from the Projects pane, and then right-clicking on it
and navigating to Tools | Create Tests. Simply click on the OK button in the dialog
and eventually allow the installation of the JUnit 4.xx if required. The resulting
generated file appears within Test Packages under the same Java package structure
as the original class under test, in our case com.demo.sample.CustomerTest.java,
which is a common convention when dealing with unit testing in Java. Right-clicking
on the CustomerTest class and choosing Test File will make all the test methods run
with JUnit and fail as a fail clause is present by default at the end of each tested
method. For now, just comment out the fail statement of testGetCustomerId
and remove all the other test methods. Then, rerun the test to see it in green in the
IDE. Alternatively, if you have set up the Maven project with another IDE or a plain
text editor, from the root of the project in the filesystem (where the pom.xml file is
located), you may enter the following Maven command, which you probably are
familiar with, in a terminal window:

> mvn test

 T E S T S

Running com.demo.sample.CustomerTest

getCustomerId

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.034 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

Adding a test in Scala
For now, we have only Java code in the small sample Maven project. We are ready
to introduce a few lines of Scala to the same codebase in order to show how both
languages seamlessly interoperate. Let's create a src/test/scala directory,
next to the existing java/ directory, where we will put our following new
CustomerScalaTest.scala class, which is a similar test to the one we already
have under src/test/java:

package com.demo.sample

import org.junit._
import Assert._

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

class CustomerScalaTest {

 @Before
 def setUp: Unit = {
 }

 @After
 def tearDown: Unit = {
 }

 @Test
 def testGetCustomerId = {
 System.out.println("getCustomerId")
 val instance = new Customer()
 val expResult: Integer = null
 val result: Integer = instance.getCustomerId()
 assertEquals(expResult, result)
 }
}

If we run the tests again, that is, type >mvn clean test again, the class will just be
ignored as it is not a .java source file.

Setting up Scala within a Java Maven
project
In order to be able to start writing a Scala unit test and compile Scala code into our
Java project, we need to add a few dependencies and the scala-maven-plugin to the
pom.xml file. The dependencies are as follows:

• Dependency for the core scala-library:
<dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-library</artifactId>
 <version>2.10.0</version>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[42]

• Dependency for scalatest (a framework for testing in Scala that supports
JUnit and other styles; we will cover it in detail in Chapter 4, Testing Tools):
<dependency>
 <groupId>org.scalatest</groupId>
 <artifactId>scalatest_2.10</artifactId>
 <version>2.0/version>
 <scope>test</scope>
</dependency>

• Dependency for JUnit to use Java Assert statements in our test case:
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
</dependency>

Concerning the scala-maven-plugin, just add something similar to the following
XML block to the <plugins> section of your pom.xml build file:

<plugin>
 <groupId>net.alchim31.maven</groupId>
 <artifactId>scala-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>scala-compile-first</id>
 <phase>process-resources</phase>
 <goals>
 <goal>add-source</goal>
 <goal>compile</goal>
 </goals>
 </execution>
 <execution>
 <id>scala-test-compile</id>
 <phase>process-test-resources</phase>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

If we try to rerun the tests, this time our newly created Scala test will be picked up
and executed, as shown in the following code snippet:

> mvn clean test

 T E S T S

Running com.demo.sample.CustomerScalaTest

getCustomerId

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.035 sec

Running com.demo.sample.CustomerTest

getCustomerId

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.004 sec

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

A couple of observations are worth mentioning about the CustomerScalaTest.
scala class. They are as follows:

• The package declaration at the top of the file is similar to package
declarations in Java. However, having a package declaration in Scala
mirroring the path of directories in the filesystem is not a requirement
unlike Java, but is still recommended.

• Import statements in Scala are similar to Java except that the * wildcard is
replaced by the underscore, _.

You probably noticed that we suddenly have the enormous power to
use any Java library in our Scala code, which means that we will never
be stuck and can always invoke methods in the existing Java classes if
we need a piece of functionality that is not directly available in Scala.

With very few additions to the pom.xml build file, we now have made a regular Java
project Scala aware, which means that we can freely add Scala classes and invoke any
Java library within them. This also means that as Java developers, we are now able
to migrate or refactor only small parts of a project if it makes sense and progressively
improve our codebase as we get more acquainted with the Scala constructs.

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[44]

This approach of dealing with an existing Maven project is only one way of proceeding.
In the next chapter, we will see some other approaches with a more radical change that
involves the Scala's Simple Build Tool (SBT), an alternative to Maven builds.

Scala and Java collaboration
Going back to the REPL, we are going to experiment further with mixing Scala
and Java to explore some common integration needs, and in particular, testing and
manipulating the Java REST API that we have built at the beginning of the chapter.

As a reminder on how to restart the REPL from the hello-scala project introduced
in Chapter 1, Programming Interactively within Your Project, if you closed it in the
meantime, just start a new terminal window, navigate to the root of the hello-scala
project, and enter the following command in the command prompt:

> ./activator console

Converting between collection types
Let's start by comparing Java and Scala collection classes and see how we can go
from one to the other. For instance, a Scala List (from the scala.collection.
immutable package) is different from java.util.List, and sometimes, it can be
useful to convert from one to the other. A convenient way in Java to create java.
util.List is to use the java.util.Arrays utility method, asList, whose exact
signature is public static<T> List<T> asList(T... a), where T refers to a
generic type. Let's import it in the REPL as follows:

scala> import java.util.Arrays

import java.util.Arrays

As the JDK classes are in the class path, they can be directly accessed into the REPL
as shown in the following code snippet:

scala> val javaList = Arrays.asList(1,2,3,4)

javaList: java.util.List[Int] = [1, 2, 3, 4]

Now that we have instantiated a Java list of integers, we want to convert it to its
Scala equivalent and need to import the JavaConverters classes for that using the
following lines of command:

scala> import scala.collection.JavaConverters._

import scala.collection.JavaConverters._

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

Looking at the documentation of JavaConverters in Scaladoc (which is similar to
Javadoc, used to document Scala APIs, and available online at www.scala-lang.
org/api/current/index.html), we can see, for example, that the equivalent of
java.util.List is scala.collection.mutable.Buffer. So, if we invoke the
asScala method on java.util.List, we will get exactly that:

scala> val scalaList = javaList.asScala

scalaList: scala.collection.mutable.Buffer[Int] = Buffer(1, 2, 3, 4)

Now, by invoking the asJava method on scalaList, we will get back our original
java.util.List collection:

scala> val javaListAgain = scalaList.asJava

javaListAgain: java.util.List[Int] = [1, 2, 3, 4]

A good test to verify that we get back the original object after converting it to
a target type and back again is to use an assert statement, as shown in the
following command:

scala> assert(javaList eq javaListAgain)

[no output]

Having no output from assert means that it evaluated to True; otherwise, we would
get a stack trace that shows why they are not equal. You might wonder where this
assert method comes from; assert is a method of the Predef class, a Scala class
imported by default containing useful aliases for commonly used types, assertions
like the one we have used, and simple functions for console's I/O and
implicit conversions.

JavaBean-style properties
To ensure compatibility with Java frameworks such as Hibernate or JMX, you may
sometimes need Java-style getters and setters on the fields of your class. For example,
if we declare a Company class in the REPL as follows:

scala> class Company(var name:String)

defined class Company

We have seen in Chapter 1, Programming Interactively within Your Project, that
Scala accessor methods to read and mutate the name field are name and name_=,
respectively, as shown in the following commands:

scala> val sun = new Company("Sun Microsystems")

sun: Company = Company@55385db5

scala> sun.name

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[46]

res33: String = Sun Microsystems

scala> sun.name_=("Oracle")

[no output is returned]

scala> sun.name

res35: String = Oracle

A straightforward way to have Java-style getters and setters is to annotate the field
with scala.beans.BeanProperty as shown in the following lines of command:

scala> import scala.beans.BeanProperty

import scala.beans.BeanProperty

scala> class Company(@BeanProperty var name:String)

defined class Company

scala> val sun = new Company("Sun Microsystems")

sun: Company = Company@42540cca

scala> sun.getName()

res36: String = Sun Microsystems

scala> sun.setName("Oracle")

[no output is returned]

scala> sun.name (alternatively sun.getName)

res38: String = Oracle

Scala and Java object orientation
The interoperability between Scala and Java classes makes it very straightforward
to replace or extend an existing Java class with a Scala class. Compiling a Scala class
produces bytecode that is pretty similar to what Java produces. For example, let's
take a shorter version of the Customer Java class we generated earlier:

public class Customer {

 private Integer customerId;
 private String zip;

 public Customer(Integer customerId) {
 this.customerId = customerId;
 }

 public Customer(Integer customerId, String zip) {
 this.customerId = customerId;
 this.zip = zip;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

 }
 public Integer getCustomerId() {
 return customerId;
 }

 public void setCustomerId(Integer customerId) {
 this.customerId = customerId;
 }

 public String getZip() {
 return zip;
 }

 public void setZip(String zip) {
 this.zip = zip;
 }
}

If we refactor it into a Scala class with class parameters and create an instance,
we get the following in the REPL:

scala> class Customer (var customerId: Int, var zip: String) {

 def getCustomerId() = customerId

 def setCustomerId(cust: Int): Unit = {

 customerId = cust

 }

 }

defined class Customer

scala> val customer = new Customer(1, "123 45")

customer: Customer = Customer@13425838

scala> customer.zip

res5: String = 123 45

However, a constructor that takes only a single zip parameter does not exist in
this definition:

scala> val otherCustomer = new Customer("543 21")

<console>:8: error: not enough arguments for constructor Customer:
(customerId: Int, zip: String)Customer.

Unspecified value parameter zip.

 val otherCustomer = new Customer("543 21")

 ^

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[48]

To complete our refactoring of the Java class, we need an extra constructor as follows:

scala> class Customer (var customerId: Int, var zip: String) {

 | def this(zip: String) = this(0,zip)

 | def getCustomerId() = customerId

 | def setCustomerId(cust: Int): Unit = {

 | customerId = cust

 | }

 | }

defined class Customer

scala> val customer = new Customer("123 45")

customer: Customer = Customer@7944cdbd

This time, we were able to create an instance with the auxiliary constructor, which
obeys to a couple of rules. They are as follows:

• Any auxiliary constructor must immediately call another this(…) constructor
• The primary constructor has to be called in the end to make sure all the

parameters are initialized

Scala traits as enhanced Java interfaces
Software interfaces are useful mechanisms to make a piece of code interact via a
contract to other external software systems, isolating the specification of what it does
from its implementation. Although Java classes on the JVM have the limitation to
only extend one single class, they can have multiple types by implementing several
interfaces. However, Java interfaces are purely abstract, that is, they contain only
constants, method signatures, and nested types, but no method bodies; for example,
see the following code snippet:

interface VIPCustomer {
 Integer discounts();
}

In contrast, Scala traits are more powerful by allowing partial implementation of
method bodies and therefore, more reusable. One can use a trait to mix in behavior
into a class. Let's take an example in the REPL:

scala> class Customer(val name:String, val discountCode:String="N"){

 | def discounts() : List[Int] = List(5)

 | override def toString() = "Applied discounts: " +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

 | discounts.mkString(" ","%, ","% ")

 | }

defined class Customer

This class declares two fields, name and discountCode (initialized to "N" for
normal), as well as two methods, discounts() and toString(), where
discounts() accumulates discounts for a customer into List of integers
(initialized to a 5 percent discount) and toString() displays it.

We can define a couple of traits that extends the class we just created:

scala> trait VIPCustomer extends Customer {

 | override def discounts = super.discounts ::: List(10)

 | }

defined trait VIPCustomer

A VIPCustomer class is a customer who gets an extra 10 percent discount concatenated
to the list of all of the already available discounts he/she has. The second trait is given
as follows:

scala> trait GoldCustomer extends Customer {

 | override def discounts =

 | if (discountCode.equals("H"))

 | super.discounts ::: List(20)

 | else super.discounts ::: List(15)

 }

defined trait GoldCustomer

A GoldCustomer class is a customer who gets an additional 15 percent discount
or even 20 percent if her rating, that is, discountCode is "H" (high).

Let's now write a Main class to show the addition of stackable traits when
instantiating the Customer class. We use the with keyword to mix in these
additional behaviors into the class as shown in the following lines of command:

scala> object Main {

 | def main(args: Array[String]) {

 | val myDiscounts = new Customer("Thomas","H") with

 | VIPCustomer with GoldCustomer

 | println(myDiscounts)

 | }

 | }

defined module Main

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[50]

We can now simply execute the main method and get the expected result as follows:

scala> Main.main(Array.empty)

Applied discounts: 5%, 10%, 20%

Note that the order in which traits are stacked is important. They are calling each
other from right to left. GoldCustomer is, therefore, the first one to be called.

Traits lie between interfaces and abstract classes. However, you can only extend
one abstract class whereas you can extend several traits.

Declaring objects
Java code often refers to the static keyword to refer to singleton methods and
constants. Scala does not support the static identifier, but instead provides the
notion of object in place of the class declaration. If you need to refactor Java
code into Scala, by simply using the object declaration instead of class, you get
singleton instances and you're done, having the extra advantage that such Scala
objects can also extend interfaces and traits. A simple example of object is the
declaration of the Main program we exhibited earlier in the usage of stackable traits,
or the following simple hello world application:

scala> object Main {

 | def main(args: Array[String]) {

 | println("Hello Scala World !")

 | }

 | }

defined module Main

In addition to the notion of object, Scala provides the notion of companion object,
which consists of an object that cohabits with a class of the same name in the same
package and file. This is why it is called companion.

Introducing companion objects
The companion object enables storing of static methods and from this, you have
full access to the classes' members, including private ones. It is, for example, a good
place to declare static factory methods, and case classes overload the apply factory
method so that you are not required to use the new keyword when creating case
class instances:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

scala> case class Customer(val name:String)

defined class Customer

scala> val thomas = Customer("Thomas")

thomas: Customer = Customer(Thomas)

However, you can still use the new keyword if you want to, shown as follows:

scala> val thomas = new Customer("Thomas")

thomas: Customer = Customer(Thomas)

Under the hood, the case class is constructed as a regular class that has, among
other things, a companion object similar to the following (although simplified)
code snippet:

object Customer {
 def apply()= new Customer("default name")
}
class Customer(name:String) {
…
}

Handling exceptions
We conclude this section about how to migrate code from Java to Scala with exceptions,
a notion that appears everywhere in Java. In a quite similar way to Java, you can write
the try { } catch { } blocks to capture method invocations that might fail. In Java,
you would write something similar to the following code snippet:

package com.demo.sample;

public class ConversionSample {

 static Integer parse(String numberAsString) {
 Integer number = null;
 try {
 number = Integer.parseInt(numberAsString);
 } catch (NumberFormatExceptionnfe) {
 System.err.println("Wrong format for "+numberAsString);
 } catch (Exception ex) {
 System.err.println("An unknown Error has occurred");
 }
 System.out.println("Parsed Number: "+number);
 return number;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[52]

 public static void main(String[] args) {
 parse("2345");
 parse("23ab");
 }
}

The preceding code produces the following output:

run:

Parsed Number: 2345

Wrong format for number 23ab

Parsed Number: null

BUILD SUCCESSFUL (total time: 0 seconds)

In Scala, you could translate it directly to the equivalent code:

scala> def parse(numberAsString: String) =

 try {

 Integer.parseInt(numberAsString)

 } catch {

 case nfe: NumberFormatException =>

 println("Wrong format for number "+numberAsString)

 case e: Exception => println("Error when parsing number"+

 numberAsString)

 }

parse: (numberAsString:String)AnyVal

scala> parse("2345")

res10: AnyVal = "2345"

scala> parse("23ab")

Wrong format for number 23ab

res11: AnyVal = ()

However, in this case, the return value inferred by the compiler is not only empty
but also of the wrong type, AnyVal, which is the common type found between an Int
value and whatever is returned by the exception. To make sure we get an integer as
the output, we need to return an Int value from all the possible cases found in the
catch block:

scala> def parse(numberAsString: String) =

 try {

 Integer.parseInt(numberAsString)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

 } catch {

 case nfe: NumberFormatException =>

 println("Wrong format for number "+numberAsString); -1

 case _: Throwable =>

 println("Error when parsing number "+numberAsString)

 -1

 }

parse: (numberAsString:String)Int

This time we can capture the correct return type from the parsing invocation
as follows:

scala> val number = parse("23ab")

Wrong format for number 23ab

number: Int= -1

In all cases, we return an Int value, -1 in case of failure. This solution is still only
partly satisfying as the caller does not really know the reason of failure unless we
display/log it. A better way is to use, for example, an Either class that represents
a value of one of the two possible types, where its instances are either of the scala.
util.Left or scala.util.Right type. In this case, we can use the Left part to
handle the failure and the Right part to handle a successful result as shown in the
following code snippet:

scala> case class Failure(val reason: String)

defined class Failure

scala> def parse(numberAsString: String) : Either[Failure,Int] =

 try {

 val result = Integer.parseInt(numberAsString)

 Right(result)

 } catch {

 case _ : Throwable => Left(Failure("Error when parsing
number"))

 }

parse: (numberAsString:String)Either[Failure,Int]

scala> val number = parse("23ab")

number: Either[Failure,Int] = Left(Failure(Error when parsing number))

scala> val number = parse("2345")

number: Either[Failure,Int] = Right(2345)

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[54]

Writing explicitly the return type will cause a compilation error on these types of
errors, and therefore, is highly recommended.

Finally, without going into too much detail, there is an even more appropriate way
of handling the try and catch blocks that are derived from Either using the scala.
util.Try class. Instead of handling the exception as Left and Right, it returns
Failure[Throwable] or Success[T], T being a generic type. The advantage of this
approach is that it can be used in for comprehensions (but we have not covered
them yet, examples will come in Chapter 5, Getting Started with the Play Framework).
Moreover, the semantics of Try for error handling is better than Either as it
describes Success or Failure rather than the less meaningful and more generic
terms Left and Right.

Differences in style between Java and
Scala code
If you are going to refactor or rewrite Java code into Scala code, there are a number
of style differences that are useful to be aware of. Obviously, programming style is
largely a matter of taste; however, a few guidelines generally acknowledged by the
Scala community can help someone new to Scala to write easier-to-read and more
maintainable code. This section is dedicated to showing some of the most
common differences.

Writing an algorithm in Java follows an imperative style, that is, a sequence of
statements that change a program state. Scala, focusing primarily on functional
programming, adopts a more declarative approach, where everything is an
expression rather than a statement. Let's illustrate this in an example.

In Java, you would commonly find the following code snippet:

...
String customerLevel = null;
if(amountBought > 3000) {
 customerLevel = "Gold";
} else {
 customerLevel = "Silver";
}
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

The Scala equivalent consists of the following code snippet:

scala> val amountBought = 5000

amountBought: Int = 5000

scala> val customerLevel =

 if (amountBought> 3000) "Gold" else "Silver"

customerLevel: String = Gold

Note that unlike the Java statements, if is now embedded as part of the resulting
evaluated expression.

In general, working where everything is evaluated as an expression (and here an
immutable expression) will make it much easier for reuse as well as composition.

Being able to chain the result of one expression to the next will give you a concise
way of expressing fairly complicated transformations that would require much more
code in Java.

Adjusting the code layout
As the intent of functional programming is to minimize state behavior, it often
consists of short lambda expressions so that you can visualize a fairly complicated
transformation in an elegant and concise way, in many cases even as one-liners.
For this reason, general formatting in Scala recommends that you use only two-space
indentations instead of the four-space indentation that is generally admitted in Java
code, as shown in the following code snippet:

scala> class Customer(

 val firstName: String,

 val lastName: String,

 val age: Int,

 val address: String,

 val country: String,

 valhasAGoodRating: Boolean

) {

 override def toString() =

 s" $firstName $lastName"

 }

defined class Customer

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[56]

If you have many constructor/method parameters, having them aligned as previously
illustrated makes it easier to change them without the need to reformat the whole
indentation. It is also the case if you want to refactor the class with a longer name,
for example, VeryImportantCustomer instead of Customer; it will make smaller
and more precise differences against your version control management system
(Git, subversion, and so on).

Naming conventions
Conventions for naming packages, classes, fields, and methods in the camel case
generally follow the Java conventions. Note that you should avoid the underscore
(_) in variable names (such as first_name or _first_name) as the underscore has
a special meaning in Scala (self or this in anonymous functions).

However, constants, most likely declared as private static final myConstant in
Java, are normally declared in Scala in the upper camel case, such as in the following
enclosing object:

scala> object Constants {

 | val MyNeverChangingAge = 20

 | }

defined module Constants

Choosing a meaningful name for variables and methods should always be a priority
in Java, and it is often recommended to use rather long variable names to precisely
describe what a variable or method represents. In Scala, things are a little bit
different; meaningful names are, of course, a good way to make code more readable.
However, as we are at the same time aiming at making behavior transformations
concise through the use of functions and lambda expressions, short variable names
can be an advantage if you can capture a whole piece of functionality in a short block
of code. For example, incrementing a list of integers in Scala can simply be expressed
as follows:

scala> val amounts = List(3,6,7,10) map (x => x +1)

amounts: List[Int] = List(4, 7, 8, 11)

Although using x as a variable name is often discouraged in Java, here it does not
matter that much as the variable is not reused and we can capture the transformation
it does at once. There are many short or long alternatives to the previous lambda
syntax that will produce the same result. So, which one to choose? Some of the
alternatives are as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

scala> val amounts = List(3,6,7,10) map (myCurrentAmount =>

 myCurrentAmount +1)

amounts: List[Int] = List(4, 7, 8, 11)

In this case, a long variable name breaks a clear and concise one-liner into two lines
of code, thereby, making it difficult to understand. Meaningful names make more
sense here if we start expressing logic on several lines as shown in the following
code snippet:

scala> val amounts = List(3,6,7,10) map { myCurrentAmount =>

 val result = myCurrentAmount + 1

 println("Result: " + result)

 result

 }

Result: 4

Result: 7

Result: 8

Result: 11

amounts: List[Int] = List(4, 7, 8, 11)

A shorter but still expressive name is sometimes a good compromise to indicate
to the reader that this is an amount we are currently manipulating in our lambda
expression, as follows:

scala> val amounts = List(3,6,7,10) map(amt => amt + 1)

amounts: List[Int] = List(4, 7, 8, 11)

Finally, the shortest syntax of all that is well accepted by fluent Scala programmers
for such a simple increment function is as follows:

scala> val amounts = List(3,6,7,10) map(_ + 1)

amounts: List[Int] = List(4, 7, 8, 11)

Underscores are also encountered in Scala for expressing more complicated operations
in an elegant but more awkward way, as is the following sum operation using the
foldLeft method that accumulates the state from one element to the other (and is
covered in the previous chapter):

scala> val sumOfAmounts = List(3,6,7,10).foldLeft(0)(_ + _)

sumOfAmounts: Int = 26

www.it-ebooks.info

http://www.it-ebooks.info/

Code Integration

[58]

Instead of explicitly having 0 as the initial value for the sum, we can write this
summation a bit more elegantly by using the reduce method that is similar to
foldLeft. However, we take the first element of the collection as the initial value
(here, 3 will be the initial value), as shown in the following command:

scala> val sumOfAmounts = List(3,6,7,10) reduce (_ + _)

sumOfAmounts: Int = 26

As far as style is concerned, fluent Scala programmers will not have any problem
reading this code. However, if the state accumulation operation is more complicated
than just a simple + operation, it might be wise to write it more explicitly as shown in
the following command:

scala> val sumOfAmounts =

 List(3,6,7,10) reduce ((total,element) => total + element)

sumOfAmounts: Int = 26

Summary
In this chapter, we have covered how to start integrating Scala code into a Java
codebase as well as how to refactor some of the most common Java constructs into
Scala by following some style guidelines. A much more exhaustive list of style
recommendations is available at http://docs.scala-lang.org/style/ if you
are interested in learning more.

So far we have been mostly addressing the Scala language and syntax. In the next
chapter, we are going to introduce the tools that complement it and that are necessary
to make our Scala programming both productive and enjoyable.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the
Scala Ecosystem

Learning a new language also means getting acquainted with a new ecosystem of
frameworks and tools. The good news is, in Scala, we can largely inherit the very
rich and mature set of available tools and libraries from Java. In this chapter, we are
going to cover the major novelties and additions to the existing ecosystem that we,
as Java developers, are already familiar with.

In this chapter, we will cover the following topics:

• Code editing environments—also known as IDEs
• SBT—a tool specific to Scala to build, test, and execute code
• Utilities as plugins to SBT to integrate with the Java ecosystem
• Scala Worksheets—a novel approach to interactive programming
• Working with HTTP and interacting with external web-based services,

including the introduction of "for comprehensions"—a useful Scala construct
• Typesafe Activator—a convenient tool to bootstrap projects quickly
• Using Scala for scripting

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[60]

Inheriting Java Integrated Development
Environments (IDEs)
Scala is supported on all the three major Java IDEs: Eclipse-based (including all
the different versions of Eclipse, Typesafe's own bundled version known as Scala
IDE as well as more commercial IDEs such as SpringSourceSTS), IntelliJ IDEA, and
NetBeans. This means that you can just keep working as you used to with Java, for
instance, running Scala JUnit tests inside the IDE, directly debugging or remote
debugging. The extended Scala support on all of these platforms will provide you
with the very useful autocompletion feature and instant feedback on the various
types that are inferred by the compiler. In Chapter 2, Code Integration, we used
NetBeans mostly because it had a convenient, small, and ready-to-use database and
embedded tools to reverse engineer this database into a RESTful API in Java. As the
usage of Eclipse targets a larger audience and is also the reference IDE that Typesafe
provides support to, we are going to use it for the following chapters as our main
development environment.

From the scala-ide.org website, you can download and install the Scala IDE for
Eclipse either as the bundled version that supports Scala or the Scala plugin through
the use of update sites (as you would do in Java for installing any other Eclipse plugin
into an existing environment). All instructions to install either the bundled or the
plugin versions are very well explained on this site, so we won't spend much time
here repeating this process. Instructions to install IDEA and NetBeans are available
from http://www.jetbrains.com/ and http://www.netbeans.org/, respectively.

Building with Simple Build Tool (SBT)
A major addition to the Java ecosystem when dealing with Scala is Simple Build
Tool (SBT), a flexible build system written in Scala that also powers both Typesafe
Activator, which we used in the previous chapters, and the Play framework that we
will cover later on in this book. In contrast to the existing XML formats used
by Ant and Maven in Java environments, SBT build definitions are written in Scala
in the form of a Domain Specific Language (DSL), having the benefit of
compile-time checking. As we will see in this section, SBT provides a number of
additional convenient features. In addition to its dependency management ability
based on Ivy and supporting Maven-format repositories, SBT offers both incremental
compilation and an interactive shell (that is, the REPL we were using earlier). It also
supports continuous testing and deployment, and integrates with many Scala test
frameworks, making it the de facto build tool for the Scala community.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

Getting started with SBT
SBT consists of a single .jar archive as well as a very small start script. Therefore, it
can be installed and run on any platform that supports JVM. Installation instructions
are available at http://www.scala-sbt.org/.

Creating a sample project
Once SBT is in your path (we used Version 0.13.0 at the time of writing this book),
create a directory called SampleProject anywhere in your filesystem by entering
the following commands in a terminal window:

> cd <your_filesystem_dir> (e.g. /Users/Thomas/projects/)

> mkdir SampleProject

> cd SampleProject

> sbt

[info] Set current project to sampleproject

> set name := "SampleProject"

[info] Defining *:name

[info] ...

> session save

To end the SBT session, enter the following command:

> exit (or press CTRL-D)

This will create a build.sbt file under the project root. This file gathers information
about the project, that is, the equivalent of the Maven's .pom file in the Java world
except that build.sbt compiles to Scala rather than being XML. The whole file
structure of the project is illustrated in a diagram later on, once we have added
some library dependencies.

Open and edit build.sbt to fill out the basic information as follows:

name := "SampleProject"

version := "1.0"

scalaVersion := "2.10.3"

Note that the extra line between each statement is important. The .sbt files are
not Scala programs; they are a list of Scala expressions, where a blank line is the
delimiter between these expressions.

We are now going to import our empty project into our IDE before we start writing
some code.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[62]

Importing the project in Eclipse, IntelliJ IDEA, and
NetBeans
The sbteclipse plugin is available to adapt a pure SBT project to an Eclipse project.
You just need to create a plugins.sbt file under the project/ directory and type
the following line into it to import the sbteclipse plugin:

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "2.4.0")

The preceding given string is a way in SBT to express a dependency to a Maven
library; it is the equivalent to what you would normally write into a pom file:

<groupId>com.typesafe.sbteclipse</groupId>
<artifactId>sbteclipse-plugin</artifactId>
<version>2.4.0</version>

You see, downloading libraries and their dependencies in SBT is pretty much the
same as working with Maven; they will be fetched from Maven repositories (Maven
central and some other common repositories are already referenced by default in
SBT; this is why you do not have to write them explicitly).

Note that eventually you should use a different version number as this plugin
evolves from time to time. The current version is available together with the plugin
documentation at https://github.com/typesafehub/sbteclipse.

Once SampleProject/project/plugins.sbt is present in your project, you can
simply execute the following command to generate an Eclipse compliant project
(still from the root of the project):

> sbt eclipse

...

[info] Successfully created Eclipse project files for project(s):

[info] SampleProject

Now just start your Eclipse IDE if you haven't already done so, then select File
|Import.... Navigate to General | Existing Projects into Workspace. Browse to the
root directory of your project as you would do in Java and click on OK. Then, click
on Finish to complete the import of the project, which will appear in the Project
Explorer window.

IntelliJ also has its plugin, which is available at https://github.com/mpeltonen/
sbt-idea.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Note that for the various IDEs, there are two plugin concepts: SBT
plugins for particular IDEs and IDE plugins for SBT.

The sbteclipse, sbt-idea, and nbsbt (https://github.com/
dcaoyuan/nbscala/wiki/SbtIntegrationInNetBeans) plugins
are all SBT plugins that require modifications to your plugins.sbt file.
When you run the appropriate SBT command, they generate project files
to be used by Eclipse, IntelliJ, or NetBeans. When you update your SBT
files, you may need to rerun the plugin in order to update your
IDE configuration.

However, if an IntelliJ user browses the available IntelliJ plugins, then
they will see a different Scala plugin there (http://confluence.
jetbrains.com/display/SCA/Scala+Plugin+for+IntelliJ+I
DEA). This is an add-on for IntelliJ, rather than an add-on for SBT. It helps
IntelliJ to configure itself around an SBT project automatically, without
the need for any modification to your SBT files or extra commands.
This approach is arguably more popular in the IntelliJ community.

If you use Maven and Eclipse in the Java world, then this is pretty much
the same story as the m2eclipse Eclipse plugin versus the eclipse: eclipse
Maven plugin.

Similar to Eclipse, you should edit a plugins.sbt file under project/ and place
the dependency to the sbt-idea plugin as follows:

addSbtPlugin("com.github.mpeltonen" % "sbt-idea" % "1.5.2")

The command to create an IntelliJ-compliant project is as follows:

> sbt gen-idea

It is worth noting that as of IntelliJ IDEA 13, the IDEA Scala plugin
natively supports SBT and doesn't require the external plugin to work.
Refer to the IntelliJ documentation on how to import an SBT project
into the IDE.

Sometimes newer versions of the plugin that are not present (yet) in the default
Maven repositories exist. In this case, you have to add such a repository for SBT
to be able to upload the plugin/library. You can do this by having an extra line
as follows:

resolvers += "Sonatype snapshots" at "http://oss.sonatype.org/content/
repositories/snapshots/"

addSbtPlugin("com.github.mpeltonen" % "sbt-idea" % "1.6.0-SNAPSHOT")

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[64]

Since Scala Version 2.10+, NetBeans also has its plugin:

addSbtPlugin("org.netbeans.nbsbt" % "nbsbt-plugin" % "1.0.2")

The plugin itself can be downloaded and built from a GitHub repository as follows:

> git clone git@github.com:dcaoyuan/nbsbt.git

> cd nbsbt

> sbt clean compile publish-local

The publish-local command will deploy it locally on your filesystem.
Then, creating the files for your project is done using the following command:

> sbt netbeans

We are going to continue the chapter adopting Eclipse as our IDE, but most of the
tools should also work under the other IDEs. Moreover, if you need additional
integration with other editors such as ENSIME and Sublime Text, browse the
documentation at http://www.scala-sbt.org.

Once the project is imported into Eclipse, you will notice that the file structure is the
same as for Maven projects; source files have the default directories src/main/scala
and src/test/scala, and this is the same structure for Java too.

Creating a web application that runs on a servlet
container
Among the growing list of available SBT plugins is the xsbt-web-plugin (available
at https://github.com/JamesEarlDouglas/xsbt-web-plugin), a useful plugin
to create traditional web apps that runs on a servlet container (such as Jetty).
As for the plugins we've previously seen, installation consists of adding single line
to the plugins.sbt file as follows:

addSbtPlugin("com.earldouglas" % "xsbt-web-plugin" % "0.4.2")

Then, add the following line to the build.sbt file:

seq(webSettings :_*)

We also need to include Jetty in the container classpath as follows:

libraryDependencies += "org.mortbay.jetty" % "jetty" % "6.1.22" %
"container"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

The whole minimal build.sbt file is given as a summary, as follows:

name := "SampleProject"

organization := "com.samples"

version := "1.0"

scalaVersion := "2.10.3"

seq(webSettings :_*)

libraryDependencies += "org.mortbay.jetty" % "jetty" % "6.1.22" %
"container"

libraryDependencies += "javax.servlet" % "servlet-api" % "2.5" %
"provided"

As we have updated our build file with new dependencies, we need to rerun
sbteclipse to update the Eclipse files for our project. This operation can be
achieved by re-entering from the SBT command prompt:

> eclipse

Let's now write a tiny servlet in Scala in the IDE to exhibit our small sample logic,
which mimics the Java syntax. Right-click on the root of the project in the Package
Explorer window, and select Refresh to make sure the new dependencies are picked
up. The whole structure of the project is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[66]

We can now start editing a new Scala file under src/main/scala (in a new com.
samples package) as follows:

package com.samples
import scala.xml.NodeSeq
import javax.servlet.http._

class SimpleServlet extends HttpServlet {
 override def doGet(request: HttpServletRequest, response:
HttpServletResponse) {

 response.setContentType("text/html")
 response.setCharacterEncoding("UTF-8")

 val responseBody: NodeSeq =
 <html><body><h1>Hello, world!</h1></body></html>

 response.getWriter.write(responseBody.toString)
 }
}

Finally, we need to add a web.xml file as we would normally do in Java to configure
the servlet deployment (to be put under the src/main/webapp/WEB-INF directory)
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.
com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">
 <servlet>
 <servlet-name>simpleservlet</servlet-name>
 <servlet-class>com.samples.SimpleServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>simpleservlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

From the root of the project, in our command prompt, we are now ready to deploy
and execute our little example in the Jetty container by invoking sbt as follows:

> sbt

> container:start

2014-03-15 14:33:18.880:INFO::Logging to STDERR via org.mortbay.log.
StdErrLog

[info] jetty-6.1.22

[info] NO JSP Support for /, did not find org.apache.jasper.servlet.
JspServlet

[info] Started SelectChannelConnector@0.0.0.0:8080

[success] Total time: 20 s, completed Mar 15, 2014 2:33:19 PM

>

By default, the container will listen on localhost at port 8080.

You can now open http://localhost:8080/ on a web browser and verify whether
we get the Hello, world! message as shown in the following screenshot:

You may also run the package command from SBT that will assemble a .war archive
and put it under target/scala-2.10/sampleproject_2.10-1.0.war as follows:

> package

Using sbt-assembly to build a single .jar
archive
The sbt-assembly plugin can gather all your project code and its dependencies
into a single .jar file that can be published into a repository or deployed on other
environments.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[68]

Installing the plugin consists of adding sbt-assembly as a dependency in project/
assembly.sbt (from SBT 0.13), as follows:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.11.2")

To be able to run the assembly command within SBT, you just need to create
an assembly.sbt file in the project root directory as shown in the following
code snippet:

import AssemblyKeys._ // put this at the top of the file

assemblySettings
// your assembly settings here

Assembly settings are documented at https://github.com/sbt/sbt-assembly.
They enable you to modify, for example, the jarName or the outputPath, variables
as well as skipping tests during the assembly phase or setting a main class explicitly
if you wish to create a runnable .jar file.

Formatting code with Scalariform
Automatic code formatting is a useful feature not only for its ability to apply the
same formatting rules to code written by various individuals but also to make the
differences appear more consistently in a source management tool.

The Scala IDE for Eclipse uses Scalariform as its code formatter, which is also
available as an sbt-plugin that can be added to the plugins.sbt file as follows:

addSbtPlugin("com.typesafe.sbt" % "sbt-scalariform" % "1.2.0")

Once you have it in place, Scalariform will format your source code automatically
whenever you run compile or test:compile in SBT.

In Eclipse, formatting code is performed the same way as with Java, that is, right-
clicking in the editor and then navigating to Source | Format (or Ctrl + Shift + F).

Experimenting with Scala Worksheets
In the previous chapters, we had run the REPL as an interactive environment to
experiment and get immediate feedback when entering the Scala syntax. This
allowed us to very quickly write some small algorithms and get the right syntax to
make things work. Although the SBT console provides programmers with a :replay
command to rerun what has already been written in the session, wouldn't it be nice
to be able to save our experiments for later use, as part of our project ? This is exactly
what Scala Worksheets are all about.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

Scala Worksheet is an innovative feature of the Scala support for Eclipse that brings
an interactive environment, that is, a REPL in the context of a project. This feature is
also now available on the Scala support for IntelliJ.

Let's go to our small servlet sample in Eclipse to try it out.

To start a worksheet, right-click on any package or source file and navigate to New |
Scala Worksheet (or if not present in the drop-down list, navigate to Other... | Scala
Wizards | Scala Worksheet), as shown in the following screenshot:

We will choose, for example, the current com.samples package. Click on Next and
enter a name for your worksheet: experiment.

This will create a file named experiment.sc that is saved within the source code
but as it is not a .scala file, it will not be in conflict with the rest of our current
code base nor be present in the deployed .jar archive.

The default page looks like the following code snippet:

packagecom.samples

object experiment {
 println("Welcome to the Scala worksheet") > Welcome to the
Scala worksheet
}

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[70]

Everything after the > sign on each statement is the result of the evaluation that
gets (re)evaluated as soon as you save the Worksheet file. You may try out a few
statements, for instance, by replacing the println statement with a few lines,
as follows:

object experiment {

 val number = 1 + 2

 List(1,2,3,3,3,4) filter (x => x < 4) distinct

 case class Customer(name:String)

 Customer("Helen")

 new SimpleServlet()
}

As soon as you save it (Ctrl + S), the style sheet will display statement evaluations
on the right-hand side as shown in the following screenshot:

Working with HTTP
As Scala can import and invoke Java classes as well as extend them, many of the
Scala libraries available as part of the Scala ecosystem are only a thin layer on top
of robust and mature Java libraries, to either provide additional features or simplify
their usage by adding some syntactic sugar.

One such example is the Scala dispatch library (available at http://dispatch.
databinder.net/Dispatch.html), a useful library to achieve HTTP interaction
based on Apache's robust HttpClient. Let's run a little dispatch session in the REPL.

As dispatch is an external library; we first need to import it into our SBT project to be
able to use it from the REPL console. Add the dispatch dependency to the build.sbt
file of the SampleProject so that it looks like the following code snippet (make sure
to have a blank line between statements in build.sbt):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

name := "SampleProject"
…

libraryDependencies += "net.databinder.dispatch" %% "dispatch-core" %
"0.11.0"

Restart the REPL to make the libraries available, and import them into the session
as follows:

scala> import dispatch._, Defaults._

import dispatch._

import Defaults._

Let's make a basic request to an online geolocation service, where the REST API is
a simple GET request to the freegeoip.net/{format}/{ip_or_hostname} URL
as follows:

scala> val request = url("http://freegeoip.net/xml/www.google.com")

request: dispatch.Req = Req(<function1>)

Now, we will send the GET request through HTTP and take the response as a string
(wrapping XML as this is what we ask as response format from the service):

scala> val result = Http(request OK as.String)

result: dispatch.Future[String] = scala.concurrent.impl.
Promise$DefaultPromise@22aeb07c

Notice the result type of dispatch.Future[String] returned by the interpreter.
The previous versions of dispatch were synchronous (and still available under
the library name, dispatch-classic) but the latest versions such as the one we
are using cope with modern development practices, namely asynchrony. We will
study the asynchronous Scala code later in Chapter 8, Essential Properties of Modern
Applications – Asynchrony and Concurrency, but similar to Java, Future acts as a
placeholder for a computation that does not block. This means that we can continue
the flow of the program without waiting for the variable to be populated, which is
convenient when invoking potentially long-running method calls (such as a REST
service). Note, however, that here dispatch.Future is a different implementation
than java.util.concurrent.Future, which is found in the standard Java library.

To read and display the result of our HTTP request, we can just type the following
command lines:

scala> val resultAsString = result()

resultAsString: String =

"<?xml version="1.0" encoding="UTF-8"?>

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[72]

 <Response>

 <Ip>74.125.225.114</Ip>

 <CountryCode>US</CountryCode>

 <CountryName>United States</CountryName>

 <RegionCode>CA</RegionCode>

 <RegionName>California</RegionName>

 <City>Mountain View</City>

 <ZipCode>94043</ZipCode>

 <Latitude>37.4192</Latitude>

 <Longitude>-122.0574</Longitude>

 <MetroCode>807</MetroCode>

 <AreaCode>650</AreaCode>

</Response>

"

Calling result() here is the syntactic sugar for actually calling the result.apply()
method, a convenient way to make code look elegant in many situations.

Dispatch provides a lot of ways to handle both the request, such as adding headers
and parameters, and the processing of the response such as handling the response
as XML or JSON, splitting into two different handlers or dealing with streams.
To exhibit these behaviors, we are going to call another online service as an example,
the Groupon service. Groupon is a service that offers discount coupons when you
buy a product or service such as holidays, beauty products, and so on in a variety of
categories. The Groupon API can be queried to gather offerings within a geographic
location determined by either city or coordinates (latitude and longitude).

To be able to experiment with the API, upon registration to the
http://www.groupon.com/pages/api URL, you should obtain a unique
client_id key that authenticates you and that you have to pass along whenever
you call the API. Let's illustrate this in the REPL:

scala> val grouponCitiesURL = url("http://api.groupon.com/v2/divisions.
xml?client_id=<your own client_key>")

grouponCitiesURL: dispatch.Req = Req(<function1>)

scala> val citiesAsText = Http(grouponCitiesURL OK as.String)

citiesAsText: dispatch.Future[String] = scala.concurrent.impl.
Promise$DefaultPromise@4ad28057

scala> citiesAsText()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

res0: String = <response><divisions><division><id>abbotsford</
id><name>Abbotsford</name><country>Canada</country><timezone>Pacific Time
(US & Canada)</timezone>...

The REPL limits the amount of output for better readability. Instead of getting the
response as a string, let's handle it as XML:

scala> val citiesAsXML = Http(grouponCitiesURL OK as.xml.Elem)

citiesAsXML: dispatch.Future[scala.xml.Elem] = scala.concurrent.impl.
Promise$DefaultPromise@27ac41a3

scala> citiesAsXML()

res1: scala.xml.Elem = <response><divisions><division><id>abbotsford</
id><name>Abbotsford</name><country>Canada</country><timezone>Pacific Time
(US & Canada)</timezone>...

This time our result is more structured as it is represented as an XML tree. We can
print it in a better format by applying a PrettyPrinter object that will make the
output fit within a width of 90 characters with an indentation of 2:

scala> def printer = new scala.xml.PrettyPrinter(90, 2)

printer: scala.xml.PrettyPrinter

scala> for (xml <- citiesAsXML)

 println(printer.format(xml))

scala> <response>

 <divisions>

 <division>

 <id>abbotsford</id>

 <name>Abbotsford</name>

 <country>Canada</country>

 <timezone>Pacific Time (US & Canada)</timezone>

 <timezoneOffsetInSeconds>-25200</timezoneOffsetInSeconds>

 <timezoneIdentifier>America/Los_Angeles</timezoneIdentifier>

 <lat>49.0568</lat>

 <lng>-122.285</lng>

 ...

 </division>

 <division>

 <id>abilene</id>

 <name>Abilene, TX</name>

 <country>USA</country>

 <timezone>Central Time (US & Canada)</timezone>...

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[74]

Extracting partial information from our XML structure can be achieved by applying
the map transformations including XPath expressions. XPath expressions are
useful to navigate through XML elements to retain only the relevant parts. We can
progressively extract pieces of XML and return them as collections such as Lists or
Seqs (sequences), as shown in the following code snippet:

scala> val cityDivisions = citiesAsXML() map (city => city \\
"division")

cityDivisions: scala.collection.immutable.Seq[scala.xml.NodeSeq]
= List(NodeSeq(<division><id>abbotsford</id><name>Abbotsford</
name><country>Canada</country>...

scala> val cityNames =

 cityDivisions map (div => (div \ "name").text)

cityNames: scala.collection.immutable.Seq[String] =
List(AbbotsfordAbilene, TXAkron / CantonAlbany / Capital
RegionAlbuquerqueAllentown...

Here, we got back a sequence of city names for which there are coupons available.

Scala's for comprehension
Instead of applying successive map transformations to extract XML, in Scala, we can
use a powerful construct that represents the silver bullet of iterations called for
comprehension or for expression. Unlike the for loops found in Java and used
for iterating, for comprehension returns a result. They are specified as follows:

for (sequence) yield expression

In the preceding code, sequence can contain the following components:

• Generators: They drive the iteration and are written in the following form:
element <- collection

As for Java loops, element represents a local variable bound to the current
element of the iteration whereas collection represents the data to be
iterated. Moreover, the first generator (there needs to be at least one)
determines the type of the result. For example, if the input collection is a
List or a Vector, the for comprehension will yield a List or a Vector,
respectively.

• Filters: They control the iteration and are written in the following form:
if expression

The preceding expression must evaluate to a Boolean value. Filters can be
defined either on the same line as generators or separately.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

• Definitions: They are local variable definitions and are written in the
following form:
variable = expression

They are intermediate values that can contribute to compute the result.

A for comprehension construct is much easier to visualize with a few concrete
examples:

scala> for {

 elem <- List(1,2,3,4,5)

 } yield "T" + elem

res3: List[String] = List(T1, T2, T3, T4, T5)

We have transformed List[Int] into List[String] using only one generator.
Using two generators is illustrated in the following code:

scala> for {

 word <- List("Hello","Scala")

 char <- word

 } yield char.isLower

res4: List[Boolean] = List(false, true, true, true, true, false, true,
true, true, true)

We can add a filter on any generator. For instance, if we want to retain only the
uppercase characters of every word, we can write as follows:

scala> for {

 word <- List("Hello","Scala")

 char <- word if char.isUpper

 } yield char

res5: List[Char] = List(H, S)

In the following example, we illustrate how to add a local variable definition:

scala> for {

 word <- List("Hello","Scala")

 char <- word

 lowerChar = char.toLower

 } yield lowerChar

res6: List[Char] = List(h, e, l, l, o, s, c, a, l, a)

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[76]

Going back to our HTTP Groupon service, we can now extract names of cities using
for comprehension as follows:

scala> def extractCityNames(xml: scala.xml.Elem) =

 for {

 elem <- xml \\ "division"

 name <- elem \ "name"

 } yield name.text

extractCityNames: (xml: scala.xml.Elem)scala.collection.immutable.
Seq[String]

scala> val cityNames = extractCityNames(citiesAsXML())

cityNames: scala.collection.immutable.Seq[String] = List(Abbotsford,
Abilene, TX, Akron / Canton, Albany / Capital Region, Albuquerque,
Allentown / Reading, Amarillo, Anchorage...

To be able to query the second part of the API to retrieve special discount deals for
a specific area, we also need the latitude and longitude information from the queried
cities. Let's do that by returning a tuple including three elements, the first one being
the name, the second being the latitude, and the third being the longitude:

scala> def extractCityLocations(xml: scala.xml.Elem) =

 for {

 elem<- xml \\ "division"

 name <- elem \ "name"

 latitude <- elem \ "lat"

 longitude <- elem \ "lng"

 } yield (name.text,latitude.text,longitude.text)

extractCityLocations: (xml: scala.xml.Elem)scala.collection.immutable.
Seq[(String, String, String)]

scala> val cityLocations = extractCityLocations(citiesAsXML())

cityLocations: scala.collection.immutable.Seq[(String, String,
String)] = List((Abbotsford,49.0568,-122.285), (Abilene, TX,32.4487,-
99.7331), (Akron / Canton,41.0814,-81.519), (Albany / Capital
Region,42.6526,-73.7562)...

Out of the list of returned cities, we might be interested in just one for now. Let's
retrieve only the location for Honolulu using the following command:

scala> val (honolulu,lat,lng) = cityLocations find (_._1 == "Honolulu")
getOrElse("Honolulu","21","-157")

honolulu: String = Honolulu

lat: String = 21.3069

lng: String = -157.858

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

The find method in the preceding code takes a predicate as a parameter. As its return
type is an Option value, we can retrieve its content by invoking getOrElse where we
can write a default value in case the find method does not return any match.

An alternative representation could be done using pattern matching, briefly
described in Chapter 1, Programming Interactively within Your Project, as follows:

scala> val honolulu =

 cityLocations find { case(city, _, _) =>

 city == "Honolulu"

 }

honolulu: Option[(String, String, String)] = Some((Honolu
lu,21.3069,-157.858))

The regular syntax of pattern matching normally uses the match keyword before
all the case alternatives, so here it is a simplified notation where the match
keyword is implicit. The underscore (_) as well as the city variable given in case
are wildcards in the pattern matching. We could have given these underscores
variable names but it is not necessary as we are not using them in the predicate
(that is, city == "Honolulu").

Let's now create a request to query for all the deals that match a particular
geographic area:

scala> val dealsByGeoArea = url("http://api.groupon.com/v2/deals.
xml?client_id=<your client_id>")

dealsByGeoArea: dispatch.Req = Req(<function1>)

An alternative to handle data as tuples is to define case classes to encapsulate
elements in a convenient and reusable way. We can, therefore, define a Deal
class and rewrite our previous for comprehension statement returning the
Deal instances instead of tuples:

scala> case class Deal(title:String = "",dealUrl:String = "", tag:String
= "")

defined class Deal

scala> def extractDeals(xml: scala.xml.Elem) =

 for {

 deal <- xml \\ "deal"

 title = (deal \\ "title").text

 dealUrl = (deal \\ "dealUrl").text

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[78]

 tag = (deal \\ "tag" \ "name").text

 } yield Deal(title, dealUrl, tag)

extractDeals: (xml: scala.xml.Elem)scala.collection.immutable.Seq[Deal]

As we did previously for retrieving cities, we can now retrieve deals via HTTP GET
and parse XML this time for the particular city of Honolulu, knowing its latitude and
longitude, as follows:

scala> val dealsInHonolulu =

 Http(dealsByGeoArea <<? Map("lat"->lat,"lng"->lng) OK as.xml.Elem)

dealsInHonolulu: dispatch.Future[scala.xml.Elem] = scala.concurrent.impl.
Promise$DefaultPromise@a1f0cb1

The <<? operator means that we attach input parameters of a GET method to the
dealsByGeoArea request. The Map object contains the parameters. It is equivalent
to the normal representation of HTTP GET where we put the input parameters as
key/value pairs in the URL (that is, request_url?param1=value1;param2=value2).
This is in contrast with the << operator, which would have specified a POST request.
Creating a structured sequence of Deal instances out of the raw XML produced by
the dealsInHonolulu() service call can be written as follows:

scala> val deals = extractDeals(dealsInHonolulu())

deals: scala.collection.immutable.Seq[Deal] = List(Deal(Laundry
Folding StylesExam with Posture Analysis and One or Three
Adjustments at Cassandra Peterson Chiropractic (Up to 85% Off)
One initial consultation, one exam, one posture analysis, and one
adjustmentOne initial consultation, one exam, one posture analysis,
and three adjustments,http://www.groupon.com/deals/cassandra-peterson-
chiropractic,Beauty & Spas), Deal(Laundry Folding Styles1.5-Hour Whale-
Watching SunsetÂ ï»¿Tour for an Adult or Child from Island Water Sports
Hawaii (50% Off) A 1.5-hour whale watching sunset tour for one childA
1.5-hour whale watching sunset tour for one adult,http://www.groupon.
com/deals/island-water-sports-hawaii-18,Arts and EntertainmentOutdoor
Pursuits), Deal(Dog or Horse?$25 for Take-Home Teeth-Whit...

Sorting the list of deals by their category is only a matter of applying a groupBy
method on the collection as follows:

scala> val sortedDeals = deals groupBy(_.tag)

sortedDeals: scala.collection.immutable.Map[String,scala.collection.
immutable.Seq[Deal]] = Map("" -> List(Deal(SkeleCopSix Bottles of 3
Wine Men 2009 Merlot with Shipping Included6 Bottles of Premium Red
Wine,http://www.groupon.com/deals/gg-3-wine-men-2009-merlot-package,),
Deal(Famous...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

Notice how the groupBy method is a very convenient way of applying the Map part
of a MapReduce job operating on a collection, in our case creating a Map object where
keys are the tags or categories of the Groupon deals and values are a list of the deals
that belong to the specific category. A possible tiny Reduce operation on the Map
object can, for example, consist of counting the number of deals for each category,
using the mapValues method that transforms the values of this (key,value) store:

scala> val nbOfDealsPerTag = sortedDeals mapValues(_.size)

nbOfDealsPerTag: scala.collection.immutable.Map[String,Int] = Map("" ->
2, Arts and EntertainmentOutdoor Pursuits -> 1, Beauty & Spas ->3, Food
& DrinkCandy Stores -> 1, ShoppingGifts & Giving -> 1, ShoppingFraming
-> 1, EducationSpecialty Schools -> 1, Tickets -> 1, Services -> 1,
TravelTravel AgenciesEurope, Asia, Africa, & Oceania -> 1)

The example we went through only explores the surface of what we can do with HTTP
tools such as dispatch and much more is described in their documentation. The direct
interaction with the REPL greatly enhances the learning curve of such APIs.

There are several excellent alternatives of lightweight frameworks for dealing with
HTTP interaction, and in the case of dispatch, we have only looked at the client side
of things. Lightweight REST APIs can, therefore, be constructed by frameworks such
as Unfiltered, Finagle, Scalatra, or Spray to name a few. Spray is currently being
architected again to become the HTTP layer of the Play framework (on top of Akka);
technologies we are going to cover later on in this book.

Taking advantage of Typesafe Activator
To be able to run an interactive programming session in the previous chapters, we
have downloaded and installed a tool named Typesafe Activator. Running either
as a command-line tool or through a web browser, the activator lets us create and
execute a sample project out of a template, in this case, a minimal hello-scala
project. From it, we have accessed the SBT console, which acts as a REPL.

Typesafe Activator can be seen as a lightweight IDE powered by SBT. It provides
many project templates that programmers can reuse as a starting point in their new
development project.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[80]

Creating an application based on activator
templates
Open a command terminal window and go to the directory where you extracted the
activator, then enter the following command:

> ./activator new

Enter an application name

>

You need to enter a name for your new project as follows:

> javasample

Fetching the latest list of templates...

Enter a template name, or hit tab to see a list of possible templates

> [Hit TAB]

activator-akka-cassandra activator-akka-spray

activator-play-autosource-reactivemongo activator-scalding

activator-spray-twitter akka-callcenter

akka-cluster-sharding-scalaakka-clustering

akka-distributed-workers akka-distributed-workers-java

akka-java-spring akka-sample-camel-java

akka-sample-camel-scalaakka-sample-cluster-java

akka-sample-cluster-scalaakka-sample-fsm-java-lambda

akka-sample-fsm-scalaakka-sample-main-java

akka-sample-main-scalaakka-sample-multi-node-scala

akka-sample-persistence-java akka-sample-persistence-scala

akka-sample-remote-java akka-sample-remote-scala

akka-scala-spring akka-supervision

angular-seed-play atomic-scala-examples

dart-akka-spray eventual

hello-akka hello-play

hello-play-backbone hello-play-java

hello-play-scala hello-sbt

hello-scala hello-scala-eclipse

hello-scaloid hello-slick

just-play-scalamacwire-activator

matthiasn-sse-chat-template modern-web-template

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

play-akka-angular-websocket play-angularjs-webapp-seed

play-cake play-example-form

play-guice play-hbase

play-java-spring play-mongo-knockout

play-scalatest-subcut play-slick

play-slick-advanced play-spring-data-jpa

play-sqlite play-with-angular-requirejs

play-yeoman play2-crud-activator

reactive-maps reactive-stocks

realtime-search scala-phantom-types

scaldi-play-example scalikejdbc-activator-template

six-minute-apps slick-android-example

slick-codegen-customization-example slick-codegen-example

slick-plainsql spray-actor-per-request

tcp-async template-template

test-patterns-scala tweetmap-workshop

Version 1.0.13 that we are using already contains 76 templates combining diverse
technologies and frameworks together to make some interesting demo projects, but
this list is increasing quickly (from 38 to 76 between Version 1.0.0 and 1.0.13, which
are only a few months apart).

For now, let's take a look at the play-java-spring template, a project sample in
Java, so that we can feel comfortable with the code it contains. Therefore, enter its
name when prompted for the name of the template to be used:

> play-java-spring

OK, application "javasample" is being created using the "play-java-
spring" template.

To run "javasample" from the command-line, run:

/Users/thomas/scala/activator-1.0.13/javasample/activator run

To run the test for "javasample" from the command-line, run:

/Users/thomas/scala/activator-1.0.13/javasample/activator test

To run the Activator UI for "javasample" from the command-line, run:

/Users/thomas/scala/activator-1.0.13/javasample/activator ui

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[82]

The activator creates a SBT project, meaning you can edit build.sbt or plugins.
sbt to add dependencies, repositories (that is, resolvers) as well as SBT plugins.
We can, for example, reuse the addSbtPlugin("com.typesafe.sbteclipse" %
"sbteclipse-plugin" % "2.4.0") line in plugins.sbt that we stated earlier to
be able to create Eclipse project files and import the project into our Scala IDE.

First, let's execute the program to see what it does:

> cd javasample

> ./activator run

As the sample is based on the Play framework (that we will cover in later chapters),
the following is displayed to indicate that the web application is deployed on
localhost at port 9000:

--- (Running the application from SBT, auto-reloading is enabled) ---

[info] play - Listening for HTTP on /0:0:0:0:0:0:0:0:9000

(Server started, use CTRL +D to stop and go back to the console...)

Open a browser at localhost:9000 to visualize the very basic web form of the sample
and submit a couple of entries to be stored in the tiny database, as shown in the
following screenshot:

This web application takes an input from a simple HTML form and saves Bar
objects into a small database through JPA.

To take a look at the code that is part of this template; we can run it through the
activator by first pressing Ctrl + D in the command window to interrupt the current
execution, and then, enter the following command:

> ./activator ui

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

After a few seconds, a browser page should open at http://localhost:8888/app/
javasample/ displaying the activator user interface specifically targeted to this
application. Click on the Code view & Open in IDE item and navigate to the app/
models/Bar.java file by double-clicking on the items on the left-hand side panel, as
shown in the following screenshot:

The browser displays a JPA-annotated entity as we are used to working with
typically in the Eclipse IDE with colored and formatted syntax. The panel on the
right-hand side leaves room for a tutorial, a precious feature to quickly understand
the code and start modifying it. The top menu enables you to compile, run, or test
the application from within the browser. You can open some of the other source files
to identify the structure of the code, although we will cover play web applications in
detail later on.

In summary, Typesafe Activator is a way to get you started in just minutes and is
very flexible as you can run activator projects directly as SBT projects, therefore,
having the possibility to generate IDE-specific files to continue working in Eclipse,
IDEA, or NetBeans if you wish to.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the Scala Ecosystem

[84]

The REPL as a scripting engine
To deal with interoperability with programs written in scripting languages, the
Java community process has defined JSR-223, Scripting for the JavaTM Platform, a
Java specification request that makes it possible to execute scripts written in other
languages (such as Groovy, JavaScript, Ruby, or Jython to name of few) from within
a Java program. For instance, we can write a Java program embedding a basic
JavaScript snippet as follows:

package com.demo;
import javax.script.*;

public class JSR223Sample {

 public static void main(String[] args) throws Exception {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

 // expose object as variable to script
 engine.put("n", 5);

 // evaluate a script string.
 engine.eval("for(i=1; i<= n; i++) println(i)");
 }
}

We will get the following output from the IDE:

run:

1

2

3

4

5

BUILD SUCCESSFUL (total time: 0 seconds)

Starting from Scala's upcoming Version 2.11, this very convenient functionality will
let you interpret scripts written in Scala as well. The following is an example that we
can just run directly in the REPL (taken from the scala-lang.org documentation):

scala> import javax.script.ScriptEngineManager

importjavax.script.ScriptEngineManager

scala> val engine =

 new ScriptEngineManager().getEngineByName("scala")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

engine: javax.script.ScriptEngine = scala.tools.nsc.interpreter.
IMain@7debe95d

scala> engine.put("n", 5)

n: Object = 5

scala> engine.eval("1 to n.asInstanceOf[Int] foreachprintln")

1

2

3

4

5

res4: Object = null

The engine context can bind the n variable to the integer value 5, which can be invoked
in the one-liner script which consists of a foreach lambda expression. The script, in
this case, is only a side effect and does not return any interesting value.

Summary
In this chapter, we have covered some of the major differences between the Java
and Scala ecosystems, and it is noticed that apart from SBT and REPL, which are
not found in the Java world, we are able to reuse all the Java libraries, tools, and
frameworks. We have seen that this group % artifact % version format used to
load dependencies in SBT is the same as that of Java's Maven, and in fact, SBT, by
default, is similar to most of the Maven repositories (for example, Maven Central).
We can, therefore, feel confident that the vast majority of our Java skills are reusable,
and they make the transition easier at least as long as the ecosystem is concerned.
We voluntarily omitted talking about the testing ecosystem as this is the main topic
of our next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Tools
No matter which language you are programming in, testing should be performed
with great care, as it will not only document your code in a consistent way but will
also be of great help for refactoring and maintenance activities, such as fixing bugs.

The Scala ecosystem largely follows Java trends towards testing at all levels,
but with some differences. At many places, we will see that Scala is using DSLs
(Domain Specific Languages), which makes the testing code very clear to read
and understand. As a matter of fact, testing can be a good area to start with when
introducing Scala, migrating progressively from an existing Java project.

In this chapter, we are going to cover some of the major testing tools and their usage
through a number of code examples. We have already written a tiny JUnit-like test
in Scala in Chapter 3, Understanding the Scala Ecosystem, so we will go from here and
focus on BDD-style tests that belong to Behavior Driven Development (BDD).
Agnostic to which technology stack is used, BDD has emerged in these past few
years as a compliant choice for writing clear specifications in the Gherkin language
(which is part of the cucumber framework and is explained at http://cukes.info/
gherkin.html) on how code should behave. Already used in Java and many other
languages, tests written in that style are often easier to understand and maintain as
they are closer to plain English. They are one step closer to the true adoption of BDD
that aims at making the business analysts write the test specifications in a structured
way, which the programs can understand and implement. They often represent the
sole documentation; it is therefore very important to keep them up to date and close
to the domain.

Scala primarily offers two frameworks to write tests, ScalaTest (www.scalatest.
org) and Specs2 (etorreborre.github.io/specs2/). As they are quite similar to
each other, we are only going to cover ScalaTest, and interested readers can look
through the Specs2 documentation to understand their differences. Moreover,
we will take a look at automated property-based testing using the ScalaCheck
framework (www.scalacheck.org).

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Tools

[88]

Writing tests with ScalaTest
To be able to quickly start visualizing some of the tests that can be written with
ScalaTest, we can take advantage of the test-patterns-scala template from
the Typesafe Activator that we introduced in the previous chapter. It consists of
a number of examples that essentially target the ScalaTest framework.

Setting up the test-patterns-scala activator project only requires you to go to
the directory where you installed the Typesafe Activator, as we did earlier, and then,
either start the GUI through the > activator ui command, or type > activator
new to create a new project and select the appropriate template when prompted.

The template project already contains the sbteclipse plugin; therefore, you can
generate eclipse-related files by simply entering from a command prompt in the
root directory of the project, as follows:

> activator eclipse

Once the eclipse project is successfully created, you may import it into your IDE
workspace by selecting File | Import... | General |Existing Projects. As a reminder
from the previous chapter, you can also create project files for IntelliJ or other IDEs
since the Typesafe Activator is just a customized version of SBT.

You can look into the various test cases in src/test/scala. As some of the tests use
frameworks such as Akka, Spray, or Slick, which we haven't covered yet, we will
skip these for now to concentrate on the most straightforward ones.

In its simplest form, a ScalaTest class (which, by the way, might also test Java code
and not just Scala code) can be declared by extending org.scalatest.FunSuite.
Each test is represented as a function value, and this is implemented in the Test01.
scala class, as shown in the following code:

package scalatest
import org.scalatest.FunSuite

class Test01 extends FunSuite {
 test("Very Basic") {
 assert(1 == 1)
 }
 test("Another Very Basic") {
 assert("Hello World" == "Hello World")
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

To execute only this single test class, you should enter the following command in the
command prompt:

> activator

> test-only <full name of the class to execute>

In our case, this command will be as follows:

> test-only scalatest.Test01 (or scalatest.Test01.scala)

[info] Test01:

[info] - Very Basic (38 milliseconds)

[info] - Another Very Basic (0 milliseconds)

[info] ScalaTest

[info] Run completed in 912 milliseconds.

[info] Total number of tests run: 2

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 2, failed 0, canceled 0, ignored 0, pending 0

[info] All tests passed.

[info] Passed: Total 2, Failed 0, Errors 0, Passed 2

[success] Total time: 9 s, completed Nov 11, 2013 6:12:14 PM

The example given under src/test/scala/scalatest/Test02.scala within the
test-patterns-scala project is very similar, but the extra === instead of == will
give you additional info when the test fails. This is shown as follows:

class Test02 extends FunSuite {
 test("pass") {
 assert("abc" === "abc")
 }
 test("fail and show diff") {
 assert("abc" === "abcd") // provide reporting info
 }
}

Once again running the test can be done by entering the following command:

> test-only scalatest.Test02

[info] Test02:

[info] - pass (15 milliseconds)

[info] - fail and show diff *** FAILED *** (6 milliseconds)

[info] "abc[]" did not equal "abc[d]" (Test02.scala:10)

[info] …

[info] *** 1 TEST FAILED ***

[error] Failed: Total 2, Failed 1, Errors 0, Passed 1

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Tools

[90]

Before fixing the failing test, this time, we can execute the test in the continuous mode,
using the ~ character in front of test-only (from the activator prompt), as follows:

>~test-only scalatest.Test02

The continuous mode will make SBT rerun the test-only command each time the
Test02 class is edited and saved. This feature of SBT can make you save a significant
amount of time by running in the background tests or just programs without having
to explicitly write the command. On the first execution of Test02, you can see some
red text indicating "abc[]" did not equal "abc[d]" (Test02.scala:10).

As soon as you correct the abdc string and save the file, SBT will automatically
re-execute the test in the background, and you can see the text turning green.

The continuous mode works for the other SBT commands as well, such as ~run
or ~test.

Test03 shows you how to expect or catch exceptions:

class Test03 extends FunSuite {
 test("Exception expected, does not fire, FAIL") {
 val msg = "hello"
 intercept[IndexOutOfBoundsException] {
 msg.charAt(0)
 }
 }
 test("Exception expected, fires, PASS") {
 val msg = "hello"
 intercept[IndexOutOfBoundsException] {
 msg.charAt(-1)
 }
 }
}

The first scenario fails as it was expecting an IndexOutOfBoundsException, but
the code is indeed returning a valid h, the character at index 0 of the hello string.

To be able to run ScalaTest test suites as JUnit test suites (for example, to run them
within the IDE or when extending an existing JUnit-based project that is already built
in Maven, or when reporting to a build server), we can use the available JUnitRunner
class along with the @RunWith annotation, as shown in the following sample:

import org.junit.runner.RunWith
import org.scalatest.junit.JUnitRunner
import org.scalatest.FunSuite
@RunWith(classOf[JUnitRunner])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

class MyTestSuite extends FunSuite {
 // ...
}

BDD-style testing
Test06 is an example of a test written in a different style, namely BDD. In short, you
specify some kind of a user story in almost plain English that describes the behavior
of the scenario you want to test. This can be seen in the following code:

class Test06 extends FeatureSpec with GivenWhenThen {

 feature("The user can pop an element off the top of the stack")
 {
info("As a programmer")
 info("I want to be able to pop items off the stack")
 info("So that I can get them in last-in-first-out order")

 scenario("pop is invoked on a non-empty stack") {

 given("a non-empty stack")
 val stack = new Stack[Int]
 stack.push(1)
 stack.push(2)
 val oldSize = stack.size

 when("when pop is invoked on the stack")
 val result = stack.pop()

 then("the most recently pushed element should be returned")
 assert(result === 2)

 and("the stack should have one less item than before")
 assert(stack.size === oldSize - 1)
 }

 scenario("pop is invoked on an empty stack") {

 given("an empty stack")
 val emptyStack = new Stack[Int]

 when("when pop is invoked on the stack")
 then("NoSuchElementException should be thrown")
 intercept[NoSuchElementException] {
 emptyStack.pop()
 }

 and("the stack should still be empty")
 assert(emptyStack.isEmpty)
 }
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Tools

[92]

BDD-style tests represent a higher level of abstraction than JUnit tests, and are more
suitable for integration and acceptance testing as well as documentation, for people
knowledgeable about the domain. You just need to extend the FeatureSpec class,
optionally with a GivenWhenThen trait, to describe acceptance requirements. More
details about BDD-style tests can be found at http://en.wikipedia.org/wiki/
Behavior-driven_development. We just want to illustrate here that it is possible to
write the BDD-style tests in Scala, but we won't go further into their details as they
are already largely documented for Java and other programming languages.

ScalaTest provides a convenient DSL to write assertions in a way close to plain English.
The org.scalatest.matchers.Matchers trait contains many possible assertions and
you should look at its ScalaDoc documentation to see many usage examples. Test07.
scala expresses a very simple matcher, as shown in the following code:

package scalatest

import org.scalatest._
import org.scalatest.Matchers

class Test07 extends FlatSpec with Matchers {
"This test" should "pass" in {
 true should be === true
 }
}

Although built with Version 2.0 of ScalaTest, the original sample given
in the activator project uses the now deprecated org.scalatest.
matchers.ShouldMatchers trait; the preceding code sample achieves
the same behavior but is more up to date.

Let's write a few more assertions using a Scala Worksheet. Right-click on the
scalatest package that contains all the test files that were previously reviewed
and then select new | Scala Worksheet. We will name this worksheet as ShouldWork.
We can then write and evaluate matchers by extending a FlatSpec specification with
the Matchers trait, as shown in the following code:

package scalatest
import org.scalatest._
object ShouldWork extends FlatSpec with Matchers {

 true should be === true

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

Saving this worksheet will not produce any output as the matcher passes the test.
However, try to make it fail by changing one true to false. This is shown in the
following code:

package scalatest
import org.scalatest._

object ShouldWork extends FlatSpec with Matchers {

 true should be === false

}

This time, we get a full stack trace as part of the evaluation, as shown in the
following screenshot:

We can start evaluating many more should matchers, as shown in the following code:

package scalatest
import org.scalatest._

object ShouldMatchers extends FlatSpec with Matchers {

 true should be === true

 List(1,2,3,4) should have length(4)

 List.empty should be (Nil)

 Map(1->"Value 1", 2->"Value 2") should contain key (2)

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Tools

[94]

 Map(1->"Java", 2->"Scala") should contain value ("Scala")

 Map(1->"Java", 2->"Scala") get 1 should be (Some("Java"))

 Map(1->"Java", 2->"Scala") should (contain key (2) and not contain
value ("Clojure"))

 3 should (be > (0) and be <= (5))

 new java.io.File(".") should (exist)
}

The evaluation of the worksheet stops whenever we encounter a test failure.
Therefore, we have to fix it in order to be able to progress in the test. This is identical
to running the whole testsuite with the SBT test command, as we did previously,
and as shown in the following code:

object ShouldMatchers extends FlatSpec with Matchers {

"Hello" should be ("Hello")

"Hello" should (equal ("Hej")
 or equal ("Hell")) //> org.scalatest.exceptions.
TestFailedException:

"Hello" should not be ("Hello")
}

In the previous example, the last statement (which is the opposite of the first one)
should fail; instead, it is not evaluated.

Functional testing
ScalaTest is well integrated with Selenium (it is a tool for automating testing in
browsers and is available at www.seleniumhq.org) by providing a complete DSL,
making it straightforward to write functional tests. Test08 is a clear example of
this integration:

class Test08 extends FlatSpec with Matchers with WebBrowser {

 implicit val webDriver: WebDriver = new HtmlUnitDriver
go to "http://www.amazon.com"
click on "twotabsearchtextbox"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

textField("twotabsearchtextbox").value = "Scala"
submit()
pageTitle should be ("Amazon.com: Scala")
pageSource should include("Scala Cookbook: Recipes")
}

Let's try to run a similar invocation directly into a worksheet. As worksheets give
feedback on every statement evaluation, they are very convenient to directly
identify what the problem is, for instance, if a link, a button, or content is not
found as expected.

Just create another worksheet called Functional next to the ShouldWork worksheet
that is already present. Right-click on the scalatest package and select New | Scala
Worksheet.

The worksheet can be filled as follows:

package scalatest
import org.scalatest._
import org.scalatest.selenium.WebBrowser
import org.openqa.selenium.htmlunit.HtmlUnitDriver
import org.openqa.selenium.firefox.FirefoxDriver
import org.openqa.selenium.WebDriver
object Functional extends FlatSpec with Matchers with WebBrowser {
implicit val webDriver: WebDriver = new HtmlUnitDriver
 go to "http://www.packtpub.com/"
 textField("keys").value = "Scala"
 submit()
 pageTitle should be ("Search | Packt Publishing")
 pageSource should include("Akka")
}

Upon the save operation (Ctrl + S), the worksheet will be evaluated and should
probably display some output information for every statement, except for the last
two lines with should matchers, as they should evaluate to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Tools

[96]

Try to change ("Search | Packt Publishing") to a different value, such as Results
or just Packt Publishing, and notice how the console output provides handy
information on what does not match. This is shown in the following screenshot:

This functional test just scratches the surface of what's possible. As we are using the
Java Selenium library, in Scala, you can inherit the power of the Selenium framework
that is available in Java.

Mocking with ScalaMock
Mocking is a technique by which you can test code without requiring all of its
dependencies in place. Java offers several frameworks for mocking objects when
writing tests. The most well known are JMock, EasyMock, and Mockito. As the
Scala language introduces new elements such as traits and functions, the Java-based
mocking frameworks are not enough, and this is where ScalaMock (www.scalamock.
org) comes into play.

ScalaMock is a native Scala-mocking framework that is typically used within ScalaTest
(or Specs2), by importing the following dependencies into the SBT (build.sbt) file:

libraryDependencies +="org.scalamock" %% "scalamock-scalatest-support"
% "3.0.1" % "test"

Within Specs2, the following dependencies need to be imported:

libraryDependencies +=
"org.scalamock" %% "scalamock-specs2-support" % "3.0.1" % "test"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

Since the release of the Scala Version 2.10, ScalaMock has been rewritten, and the
ScalaMock Version 3.x is the version that we are going to cover briefly by going
through an example of mocking a trait.

Let's first define the code that we are going to test. It consists of a tiny currency
converter (available at http://www.luketebbs.com/?p=58) that fetches currency
rates from the European Central Bank. Retrieving and parsing the XML file of
currency rates is only a matter of a few lines of code, as follows:

trait Currency {
 lazy val rates : Map[String,BigDecimal] = {
 val exchangeRates =
 "http://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml"
 for (
 elem <- xml.XML.load(exchangeRates)\"Cube"\"Cube"\"Cube")
 yield
 (elem\"@currency").text -> BigDecimal((elem\"@rate").text)
 }.toMap ++ Map[String,BigDecimal]("EUR" -> 1)

 def convert(amount:BigDecimal,from:String,to:String) =
 amount / rates(from) * rates(to)
}

In this example, the currency rates are fetched from a URL using the xml.XML.load
method. As XML is part of the Scala standard library, there is no need for imports
here. The load method parses and returns the XML rates as an immutable structure
of type Elem, which is a case class that represents XML elements. This is shown in
the following code:

<gesmes:Envelope xmlns:gesmes="http://www.gesmes.org/xml/2002-08-01"
xmlns="http://www.ecb.int/vocabulary/2002-08-01/eurofxref">
 <gesmes:subject>Reference rates</gesmes:subject>
 <gesmes:Sender>
 <gesmes:name>European Central Bank</gesmes:name>
 </gesmes:Sender>
 <Cube>
 <Cube time="2013-11-15">
 <Cube currency="USD" rate="1.3460"/>
 <Cube currency="JPY" rate="134.99"/>
 <Cube currency="BGN" rate="1.9558"/>
 <Cube currency="CZK" rate="27.155"/>
 <Cube currency="DKK" rate="7.4588"/>
 <Cube currency="GBP" rate="0.83770"/>
 ...
 ...
 </Cube>
 </Cube>
</gesmes:Envelope>

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Tools

[98]

Accessing the list of currency rates from this XML document is done through
an XPath expression by navigating inside the Cube nodes, hence the xml.XML.
load(exchangeRates) \ "Cube" \ "Cube" \ "Cube" expression. A single
for comprehension (the for (…) yield (…) construct that we introduced in the
previous chapter) is required to loop over the currency rates and return a collection
of key -> value pairs where, in our case, a key will be a string that represents the
currency name, and value will be a BigDecimal value that represents the rate. Notice
how the information is extracted from <Cube currency="USD" rate="1.3460"/>
by writing (elem \ "@currency").text to capture the currency attribute and
(elem \ "@rate").text to capture the rate respectively. The latter will be further
processed by creating a new BigDecimal value from the given string.

In the end, we get a Map[String, BigDecimal] that contains all our currencies with
their rates. To this value, we add the mapping for the currency EUR (Euros) that will
represent the reference rate one; this is why we use the ++ operator to merge two
maps, that is, the one we just created together with a new map containing only
one key -> value element, Map[String,BigDecimal]("EUR"-> 1).

Before mocking, let's write a regular test using ScalaTest with FlatSpec and
Matchers. We will make use of our Converter trait, by integrating it into the
following MoneyService class:

package se.chap4

class MoneyService(converter:Converter) {

 def sendMoneyToSweden(amount:BigDecimal,from:String): BigDecimal = {
 val convertedAmount = converter.convert(amount,from,"SEK")
 println(s" $convertedAmount SEK are on their way...")
 convertedAmount
 }

 def sendMoneyToSwedenViaEngland(amount:BigDecimal,from:String):
BigDecimal = {
 val englishAmount = converter.convert(amount,from,"GBP")
 println(s" $englishAmount GBP are on their way...")
 val swedishAmount = converter.convert(englishAmount,"GBP","SEK")
 println(s" $swedishAmount SEK are on their way...")
 swedishAmount
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

A possible test specification derived from the MoneyService class is as follows:

package se.chap4

import org.scalatest._
import org.junit.runner.RunWith
import org.scalatest.junit.JUnitRunner

@RunWith(classOf[JUnitRunner])
class MoneyServiceTest extends FlatSpec with Matchers {

"Sending money to Sweden" should "convert into SEK" in {
 val moneyService =
 new MoneyService(new ECBConverter)
 val amount = 200
 val from = "EUR"
 val result = moneyService.sendMoneyToSweden(amount, from)
 result.toInt should (be > (1700) and be <= (1800))
 }

"Sending money to Sweden via England" should "convert into GBP then
SEK" in {
 val moneyService =
 new MoneyService(new ECBConverter)
 val amount = 200
 val from = "EUR"
 val result = moneyService.sendMoneyToSwedenViaEngland(amount,
from)
 result.toInt should (be > (1700) and be <= (1800))
 }
}

To be able to instantiate the Converter trait, we use an ECBConverter class defined
in the Converter.scala file as follows:

class ECBConverter extends Converter

If we execute the test from the SBT command prompt or directly within Eclipse
(as a JUnit), we get the following output:

> test

[info] Compiling 1 Scala source to /Users/thomas/projects/internal/
HttpSamples/target/scala-2.10/test-classes...

 1792.2600 SEK are on their way...

 167.70000 GBP are on their way...

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Tools

[100]

 1792.2600 SEK are on their way...

[info] MoneyServiceTest:

[info] Sending money to Sweden

[info] - should convert into SEK

[info] Sending money to Sweden via England

[info] - should convert into GBP then SEK

[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0

[success] Total time: 1 s, completed

If the URL from which we are retrieving the currency rates is not always available,
or if the currency rates have changed a lot on one particular day and the resulting
amount of the conversion is not in the given interval of the assertion should (be
> (1700) and be <= (1800)), then our test might fail. In that case, mocking the
converter in our test seems appropriate, and can be done as follows:

package se.chap4

import org.scalatest._
import org.junit.runner.RunWith
import org.scalatest.junit.JUnitRunner
import org.scalamock.scalatest.MockFactory

@RunWith(classOf[JUnitRunner])
class MockMoneyServiceTest extends FlatSpec with MockFactory with
Matchers {

"Sending money to Sweden" should "convert into SEK" in {

 val converter = mock[Converter]
 val moneyService = new MoneyService(converter)

 (converter.convert _).expects(BigDecimal("200"),"EUR","SEK").
returning(BigDecimal(1750))

 val amount = 200
 val from = "EUR"
 val result = moneyService.sendMoneyToSweden(amount, from)
 result.toInt should be (1750)
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

The expects method contains the arguments that we expect when our code should
invoke the convert method, and the returning method contains our expected output
in place of the real return result.

ScalaMock has many variations on how to apply the mocking code, and is planning
to enhance the mocking syntax using the Macros in future releases. In short, Macros
are functions that are called by the compiler during compilation. It is an experimental
feature added in Scala from Version 2.10 that makes it possible for the developer to
access the compiler APIs and apply transformations to the AST (Abstract Syntax
Tree), that is, the tree representation of a program. Macros are out of the scope of
this book, but among other things, they are useful for the Code Generation and
DSLs. Their usage will improve the ScalaMock syntax; for instance, you can apply
your mock expectations within inSequence {… } or the inAnyOrder {… } blocks of
code or in nested combinations of these blocks, as illustrated in their documentation,
which is available at scalamock.org. ScalaMock also supports a more Mockito-like
style with a Record-then-Verify cycle rather than the Expectations-First style, which
we have been using.

Testing with ScalaCheck
Having a complete and consistent test suite that consists of unit, integration, or
functional tests is essential in ensuring a good overall quality of your software
development. However, sometimes, such a suite is not enough. While testing for
example-specific data structures, it often happens that there are too many possible
values to test with, which means that there is a very large amount of mocking or
production of test data. Automated property-based testing is the aim of ScalaCheck,
a Scala library inspired by Haskell that allows generating, more or less randomly, the
test data to verify some properties about the code you are testing. This library can be
applied to Scala as well as to Java projects.

To get up and running quickly with ScalaCheck, you can include the appropriate
library in the build.sbt file, as we have often done till now. This is shown as follows:

resolver += Resolver.sonatypeRepo("releases")

libraryDependencies ++= Seq(

"org.scalacheck" %% "scalacheck" % "1.11.0" % "test")

From the SBT prompt, you may type reload instead of exiting and relaunching
SBT, to get a fresh version of the build file, and then type update to fetch the new
dependency. Once this is done, you may also type eclipse to update your project
with the dependency so that it will be a part of your classpath, and the editor will
recognize the ScalaCheck classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Tools

[102]

Let's first run the StringSpecification test that is proposed by the Quick start
page available at www.scalacheck.org:

import org.scalacheck.Properties
import org.scalacheck.Prop.forAll

object StringSpecification extends Properties("String") {

 property("startsWith") = forAll { (a: String, b: String) =>
 (a+b).startsWith(a)
 }

 property("concatenate") = forAll { (a: String, b: String) =>
 (a+b).length > a.length && (a+b).length > b.length
 }

 property("substring") = forAll { (a: String, b: String, c: String)
=>
 (a+b+c).substring(a.length, a.length+b.length) == b
 }

}

In this code snippet, ScalaCheck produces (randomly) a number of strings and
verifies that the properties are correct; the first one is straightforward; it should
verify that adding two strings a and b should produce a string that starts with a.
It probably sounds obvious that this test will pass, no matter what the values of the
strings are, but the second property that verifies the length of the concatenation of
the two strings is not always true; feeding both a and b with the empty value "" is
a counter example that shows that the property is not verified. We can illustrate that
by running the test via SBT as follows:

> test-only se.chap4.StringSpecification

[info] + String.startsWith: OK, passed 100 tests.

[info] ! String.concatenate: Falsified after 0 passed tests.

[info] > ARG_0: ""

[info] > ARG_1: ""

[info] + String.substring: OK, passed 100 tests.

[error] Failed: : Total 3, Failed 1, Errors 0, Passed 2, Skipped 0

[error] Failed tests:

[error] se.chap4.StringSpecification

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

[error] (test:test-only) sbt.TestsFailedException: Tests unsuccessful

[error] Total time: 1 s, completed Nov 19, 2013 4:30:37 PM

>

ScalaCheck conveniently outputs a counter example, ARG_0: "" and ARG_1: "" that
makes the test fail.

We can add a few more tests on more complex objects than just strings. Let's add a
new test class named ConverterSpecification as part of our test suite, to test the
Converter that we have created in the Mocking with ScalaMock section:

package se.chap4

import org.scalacheck._
import Arbitrary._
import Gen._
import Prop.forAll

object ConverterSpecification extends Properties("Converter") with
Converter {

 val currencies = Gen.oneOf("EUR","GBP","SEK","JPY")

 lazy val conversions: Gen[(BigDecimal,String,String)] = for {
 amt <- arbitrary[Int] suchThat {_ >= 0}
 from <- currencies
 to <- currencies
 } yield (amt,from,to)

 property("Conversion to same value") = forAll(currencies) { c:String
=>
 val amount = BigDecimal(200)
 val convertedAmount = convert(amount,c,c)
 convertedAmount == amount
 }

 property("Various currencies") = forAll(conversions) { c =>
 val convertedAmount = convert(c._1,c._2,c._3)
 convertedAmount >= 0
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Tools

[104]

If we run the test in SBT, the following output is displayed:

> ~test-only se.chap4.ConverterSpecification

[info] + Converter.Conversion to same value: OK, passed 100 tests.

[info] + Converter.Various currencies: OK, passed 100 tests.

[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0

[success] Total time: 1 s, completed Nov 19, 2013 9:40:40 PM

1. Waiting for source changes... (press enter to interrupt)

In this specification, we added two specific generators; the first one named
currencies is able to generate only a few strings taken from a list of valid currencies
that we want to test, as otherwise, a randomly generated string would produce
strings that are not part of the Map. Let's add an invalid item "DUMMY" to the
generated list to verify that the test is failing:

val currencies = Gen.oneOf("EUR","GBP","SEK","JPY","DUMMY")

On saving this, the tests are rerun automatically as we specified the ~ sign in front of
test-only. This is shown as follows:

[info] ! Converter.Conversion to same value: Exception raised on property
evaluation.

[info] > ARG_0: "DUMMY"

[info] > Exception: java.util.NoSuchElementException: key not found:
DUMMY

[info] ! Converter.Various currencies: Exception raised on property
evaluation.

[info] > ARG_0: (1,,)

[info] > ARG_0_ORIGINAL: (1,DUMMY,SEK)

[info] > Exception: java.util.NoSuchElementException: key not found:

[error] Error: Total 2, Failed 0, Errors 2, Passed 0, Skipped 0

[error] Error during tests:

[error] se.chap4.ConverterSpecification

[error] (test:test-only) sbt.TestsFailedException: Tests unsuccessful

[error] Total time: 1 s, completed Nov 19, 2013 9:48:36 PM

2. Waiting for source changes... (press enter to interrupt)

The second generator named conversions illustrates the construction of a more
complex generator that takes advantage of the power of for comprehensions.
In particular, notice the suchThat {_ >= 0} filter method that makes sure that the
arbitrary chosen integer has a positive value. This generator returns a Tuple3 triplet
that contains all the necessary values to test the Converter.convert method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

Summary
In this chapter, we covered some of the major testing frameworks available in
Scala, which largely inherit from the rich Java ecosystem. Moreover, by applying
property-based testing via ScalaCheck, we explored novel approaches to enhance
the testing quality. To further improve the quality of the software, interested readers
can look at additional SBT plugins that are listed on the http://www.scala-sbt.
org/ website, notably scalastyle-sbt-plugin to check the coding style or the
various code-coverage plugins. In the next chapter, we are going to dive into
the huge area of web development and take advantage of the power of the Scala
language to make the development of portals and web apps a productive and
fun activity.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play
Framework

This chapter commences our journey into web development in Scala. Web development
has become an area where the choice of architectures and frameworks is tremendous.
Finding the right tool for the job is not always a straightforward task as it ranges
from traditional Java EE or Spring-based architectural styles to more recent Ruby on
Rails-like approaches. Most of the existing solutions still rely on the adoption of the
servlet-container model, whether they use lightweight containers such as
Jetty/Tomcat or support EJBs (Enterprise JavaBeans) such as JBoss, Glassfish,
WebSphere, or WebLogic. Many online articles and conference talks have tried
to compare some of the alternatives, and as these frameworks evolve rapidly and
sometimes focus on different aspects (such as frontend versus backend), compiling
a fair and accurate list remains difficult. In the Scala world, alternatives to create web
applications range from lightweight frameworks such as Unfiltered, Spray, or Scalatra
to full-featured solutions such as the Lift or the Play Frameworks.

We have chosen to concentrate on the Play Framework, because it embraces
important features that we think are the key to maintainable, modern software
development. Some of the advantages of the Play Framework are:

• The Play Framework is scalable and robust. It can handle large loads because
it is built on a fully asynchronous model on the top of technologies that are
ready to handle multicore architectures such as Akka, a framework to build
concurrent and distributed applications that we will cover in Chapter 8,
Essential Properties of Modern Applications – Asynchrony and Concurrency.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play Framework

[108]

• It provides us with enhanced developer productivity by promoting ease of
use, promoting the DRY (short for Don't Repeat Yourself) principle, and
taking advantage of the expressiveness and conciseness of Scala. In addition
to that, the hit refresh workflow of Play by which you can simply refresh
your browser and get instant feedback on the changes you make is a real
boost in the productivity, in contrast with the longer deployment cycles of
the Java servlet and EJB containers.

• It provides good integration with the existing legacy of infrastructure based
on the JVM.

• It provides good integration with modern, client-side development trends
that heavily rely on JavaScript/CSS and their surrounding ecosystem,
including frameworks such as AngularJS or WebJars. Moreover, the LESS
(short for Leaner CSS) dynamic stylesheet language as well as CoffeeScript,
a small and elegant language that compiles to JavaScript, are supported by
Play Framework without any additional integration.

The Play Framework Version 2.x exists both for Java and Scala, which is an additional
strength as Java developers will probably get acquainted with the differences more
quickly and may have previous experience with the Java version before moving on
to Scala.

Several alternatives are offered to rapidly get you started with the Play Framework
and create a minimalistic helloworld project. Note that all these alternatives
create projects based on SBT, as we mentioned briefly in Chapter 3, Understanding
the Scala Ecosystem.

Getting started with the classic Play
distribution
Download the classic Play distribution from http://www.playframework.com/
download, and unpack the .zip archive in a directory of your choice. Add this
directory to your path (so that running the play command anywhere on your
filesystem will create a new application). With this alternative, you can open a
terminal window and enter the following command:

> play new <PROJECT_NAME> (for example play new playsample)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

The following output will be displayed:

We just need to press Enter as we have already given a project name on the previous
command. The following will be displayed on pressing Enter:

Which template do you want to use for this new application?

 1 - Create a simple Scala application

 2 - Create a simple Java application

> 1

OK, application playsample is created.

Have fun!

That's all; in less than a minute, we already have a fully working web app that we
can now execute. As it is an SBT project (where the sbt command has been renamed
play instead), we can just navigate to the root of the created project and start our
Play session as if we were working on an SBT project. This is done as follows:

> cd playsample

> play run

[info] Loading project definition…

--- (Running the application from SBT, auto-reloading is enabled) ---

[info] play - Listening for HTTP on /0:0:0:0:0:0:0:0:9000

(Server started, use Ctrl+D to stop and go back to the console...)

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play Framework

[110]

Notice that the application is started on port 9000 by default. If you want a different
port, you can type the following command instead:

> play

This will bring you to the Play (SBT) session, and from there, you can choose the
port to listen to. This can be done as follows:

[playsample] $ run 9095

[info] play - Listening for HTTP on /0:0:0:0:0:0:0:0:9095

Another alternative is to enter > play "run 9095" in the terminal.

Launch a browser at http://localhost:9095/ (9000 if you are running using the
default port), and you should see the Welcome to Play page on your running portal:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

Getting started with the Typesafe
Activator
Using the same method that we used earlier in the book to create projects based on
the Activator templates, getting started with a Play project through the Activator
is very straightforward. Just go to the Typesafe Activator installation directory and
enter the following command:

> ./activator ui

This will launch the activator in a browser window. The most basic Scala Play project
is found in the hello-play-scala template. Once you have selected the template,
notice the default location that indicates where the project will be created and then
click on Create.

Let's run our sample project either directly from the activator browser view or from
a terminal window by navigating to the root directory of the created project and
entering the following command in the command prompt:

> ./activator run

Once the server is listening on port 9000, you can open the http://localhost:9000/
URL in a browser. Compilation is triggered only once you access the URL, so it may
take a few seconds for the application to show up. What should come up in your
browser is similar to the following screenshot:

Architecture of a Play application
To perceive in a better way how a Play application is built, we first need to understand
a few of its architectural aspects.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play Framework

[112]

Visualizing the framework stack
Before we start exploring the code behind a typical sample Play application, let's
visualize the architecture of the framework using a couple of diagrams. First, the
overall diagram of the technology stack composed of Play is shown as follows:

Akka - Http (formerly Spray)

Akka Framework

JVM

Play
Modules

SBT
based
Build

System

On top of the JVM resides the Akka Framework, a framework to manage concurrent
operations based on the actor model, which we will cover later in Chapter 8, Essential
Properties of Modern Applications – Asynchrony and Concurrency. While most web
frameworks today still rely on servlet containers such as Tomcat or JBoss, the novelty
of Play is to avoid following this model by focusing on making applications stateless
when code can be hot swapped, that is, replaced at runtime. Although widely used
and deployed in commercial environments, servlet containers suffer from additional
overheads, such as the one thread per request problem, which can limit the scalability
when handling large loads. For a developer, the time gained by avoiding the
redeployment of a partial or full .ear or .war archive every time a change in the
code is made can be significant.

On top of Akka resides a REST/HTTP integration layer, based on Spray
(an open source toolkit to build REST/HTTP-based integration layers, now called
Akka-Http), which produces and consumes embeddable REST services. This makes
Play pertinent to the modern ways of writing web applications, where the backend
and frontend communicate through HTTP REST services, exchanging mostly
JSON/XML messages that can be rendered as HTML5 and, therefore, embrace
the full power of frontend JavaScript frameworks.

Finally, to be able to integrate with many other technologies of all kinds, such
as relational or NoSQL-based databases, security frameworks, social networks,
cloud-based or Big Data solutions, a large list of Play plugins and modules are
listed at http://www.playmodules.net.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

Exploring the request-response lifecycle
Play follows the well-known MVC pattern, and the lifecycle of the web request can
be seen as follows:

To go through the various steps of this workflow, we are going to explore a sample
helloworld application that is part of the Play distribution. This helloworld
application is a little more sophisticated and, therefore, more interesting than the
pure getting started examples that we launched previously either via the Typesafe
Activator or the plain > play new <project> command to create a project
from scratch.

The helloworld application that we consider here can be found under the <play
installation root>/samples/scala/helloworld directory (we have used the
Play 2.2.1 distribution at the time of this writing).

As for any Play project within the distribution that already contains the sbteclipse
plugin, we can directly generate Eclipse-related files by entering the following
command in a command prompt (at the level of the project root directory):

> play eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play Framework

[114]

Note that as Play commands are just a thin layer on the top of SBT, we can reuse
the same syntax, that is, > play eclipse rather than > sbt eclipse. Once these
are imported into the IDE, you can see the general source layout of a Play
application in the Package Explorer panel on the left-hand side, as shown in
the following screenshot:

Let's first run the application to see what it looks like using the following command:

> play run

Open a browser at http://localhost:9000/ and you should see a small web form
similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

Enter the required information and click on Submit to verify that you get your name
displayed a specified number of times.

The first step in the request flow appears in the conf/routes file, which is shown
as follows:

Routes
This file defines all application routes (Higher priority routes
first)
~~~~

Home page
GET / controllers.Application.index

Hello action
GET /hello controllers.Application.sayHello

Map static resources from the /public folder to the /assets URL path
GET /assets/*file controllers.Assets.at(path="/public", file)

This is the place where we can define a mapping between HTTP request URLs and
the controller code that needs to handle the request on the Play server, shown in the
following format:

<REQUEST_TYPE(GET, POST...)> <URL_RELATIVE_PATH> <CONTROLLER_METHOD>

For instance, accessing the http://localhost:9000/hello URL in the browser
matches the following route:

GET / controllers.Application.index

The index method, taking no arguments, will be called on the controller.
Application.scala class.

This way of presenting the routing of the URLs to the controllers is different from
the standard Java way found, for instance, in JAX-RS or Spring MVC, where each
controller is annotated instead. In our opinion, the routing file approach gives us a
clear overview of what the API supports, that is, the documentation, and it makes a
Play application RESTful by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play Framework

[116]

Even if it seems that the routes file is a configuration file, it is indeed compiled and
any typo or reference to a nonexistent controller method will be quickly identified.
Replace controllers.Application.index with controllers.Application.
wrongmethod, save the file, and just click on the reload button in the browser
(Ctrl + R). You should get the error nicely displayed in the browser, as seen in the
following screenshot:

Notice how precise the error message is and how the exact failing line in the file is
pointed out. This great way to display error messages on reloading the browser is
one of the many features that makes programmers more productive. Similarly, even
if there is no mapping error in the routes file, accessing a nonmapped URL that is
under development (such as http://localhost:9000/hi) will display an error as
well as the content of the routes file to show us which URLs are possible to invoke.
This can be seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

Handling a request in the controller
Moving on, let's take a look at the Application class that receives and processes
the GET request:

object Application extends Controller {
 /**
 * Describes the hello form.
 */
 val helloForm = Form(
 tuple(
 "name" -> nonEmptyText,
 "repeat" -> number(min = 1, max = 100),
 "color" -> optional(text)
)
)

 // -- Actions
 /**
 * Home page
 */
 def index = Action {
 Ok(html.index(helloForm))
 }

 /**
 * Handles the form submission.
 */
 def sayHello = Action { implicit request =>
 helloForm.bindFromRequest.fold(
 formWithErrors => BadRequest(html.index(formWithErrors)),
 {case (name, repeat, color) => Ok(html.hello(name, repeat.toInt,
color))}
)
 }
}

The index method performs the Action block, which is a function
(Request[AnyContent] => Result), that takes the request and returns a Result
object. The input parameter of the Request type is not shown here in the index
method as it is implicitly passed and we are not using it in the body of the function;
we could have written def index = Action { implicit request => instead, if
we wanted to. The one liner Ok(html.index(helloForm)) means that the returned
result should have an HTTP status equal to 200, that is, Ok, and consist of binding the
html.index view to the helloForm model.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play Framework

[118]

The model in this tiny example consists of a Form object defined in val earlier in the
file. This can be seen as follows:

val helloForm = Form(
 tuple(
 "name" -> nonEmptyText,
 "repeat" -> number(min = 1, max = 100),
 "color" -> optional(text)
)
)

Each parameter is described as a key -> value pair, where key is the name of the
parameter and value is the result of a function applied to the parameter that will
produce a play.api.data.Mapping object. Such mapping functions are very useful
to be able to perform a validation on the form parameters. Here, the Form parameters
are expressed as a tuple object, but we could create more complex objects such as case
classes. The sample project named forms in the Play distribution contains examples of
this more advanced way of handling validation. The fold method encountered in the
sayHello method of the controller is a way to accumulate validation errors to be able
to report all of these errors at once. Let's enter a few mistakes (such as leaving the name
field blank or entering characters when numbers are required) when filling out the
form to verify how errors are displayed. This can be seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

Rendering the view
The template used to render the view is found under the views/index.scala.html
file. This template is shown as follows:

@(helloForm: Form[(String,Int,Option[String])])
@import helper._

@main(title = "The 'helloworld' application") {

 <h1>Configure your 'Hello world':</h1>

 @form(action = routes.Application.sayHello, args = 'id ->
"helloform") {
 @inputText(
 field = helloForm("name"),
 args = '_label -> "What's your name?", 'placeholder ->
"World"
)

 @inputText(
 field = helloForm("repeat"),
 args = '_label -> "How many times?", 'size -> 3,
'placeholder -> 10
)

 @select(
 field = helloForm("color"),
 options = options(
 "" -> "Default",
 "red" -> "Red",
 "green" -> "Green",
 "blue" -> "Blue"
),
 args = '_label -> "Choose a color"
)

 <p class="buttons">
 <input type="submit" id="submit">
 <p>
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play Framework

[120]

One of the strengths of the Play template engine is that it is based on the Scala
language itself. This is good news because we do not need to learn any new
templating syntax; we can reuse the Scala constructs, without any additional
integration. Moreover, the templates are compiled so that we get compile-time
errors whenever we make a mistake; the errors will show up in the browser in the
same way that they showed up for routes or the plain controller Scala code. This fast
feedback can save us a lot of time compared to the more traditional techniques of
using JSPs (JavaServer Pages) in Java web development.

The declarations at the top of the template contain the bound variables that will be
populated throughout the template. The template markup can produce an output
of any kind, such as HTML5, XML, or plain text. Templates can also include
other templates.

In the previous example, the @main(title = "The 'helloworld' application")
{ <block> ...} statement refers to the main.scala.html view file itself, displayed
as follows:

@(title: String)(content: Html)

<!DOCTYPE html>
<html>
 <head>
 <title>@title</title>
 <link rel="stylesheet" media="screen" href="@routes.Assets.
at("stylesheets/main.css")">
 <link rel="shortcut icon" type="image/png" href="@routes.
Assets.at("images/favicon.png")">
 <script src="@routes.Assets.at("javascripts/jquery-1.6.4.min.
js")" type="text/javascript"></script>
 </head>
 <body>
 <header>
 @title
 </header>

 <section>
 @content
 </section>
 </body>
</html>

As you can see, @(title: String)(content: Html) at the top of this file matches
(title = "The 'helloworld' application"){ <block of template with
code> ...} from the previous template. This is how templates call each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

The @ sign indicates that the Scala code follows either directly with the name of
a variable or a method to be invoked, or with a full block of code given between
brackets, that is, @{ …code … }.

The response (views/hello.scala.html) template, once the web form has been
submitted, contains a for loop to display the name field a number of times. This is
shown as follows:

@(name: String, repeat: Int, color: Option[String])
@main("Here is the result:") {
 <ul style="color: @color.getOrElse("inherited")">
 @for(_ <- 1 to repeat) {
 Hello @name!
 }

 <p class="buttons">
 Back to the form
 </p>
}

Playing with authentication
A frequent piece of functionality needed when designing a new web application
involves authentication and authorization. Authentication usually requires that
the user provide the credentials to log in to the application in the form of a
username/password. Authorization is the mechanism by which the system can
ensure that a user can perform only the operations that he/she is entitled to. In this
section, we are going to extend our helloworld sample with security features that
are part of the Play distribution, as a way to demonstrate how the usage of traits in
Scala can provide an elegant solution to conventional problems.

Let's define a new controller that we will call Authentication, which contains
common methods such as login to retrieve a sign-in page, authenticate and check
to perform the verification of the authentication, and logout to go back to the login
page. This is done as follows:

object Authentication extends Controller {

 val loginForm = Form(
 tuple(
 "email" -> text,
 "password" -> text
) verifying ("Invalid email or password", result => result match {
 case (email, password) => check(email, password)

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play Framework

[122]

 })
)

 def check(username: String, password: String) = {
 (username == "thomas@home" && password == "1234")
 }

 def login = Action { implicit request =>
 Ok(html.login(loginForm))
 }

 def authenticate = Action { implicit request =>
 loginForm.bindFromRequest.fold(
 formWithErrors => BadRequest(html.login(formWithErrors)),
 user => Redirect(routes.Application.index).withSession(Security.
username -> user._1)
)
 }

 def logout = Action {
 Redirect(routes.Authentication.login).withNewSession.flashing(
 "success" -> "You are now logged out."
)
 }
}

Similar to the index method that belongs to the Application controller from
the previous section, the login method here consists of binding a form (named
loginForm) to a view (named html.login, corresponding to the file views/login.
scala.html). A simple template for a view that consists of two text fields to capture
an e-mail/username and password is shown as follows:

@(form: Form[(String,String)])(implicit flash: Flash)

@main("Sign in") {

 @helper.form(routes.Authentication.authenticate) {

 @form.globalError.map { error =>
 <p class="error">
 @error.message
 </p>
 }

 @flash.get("success").map { message =>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

 <p class="success">
 @message
 </p>
 }

 <p>
 <input type="email" name="email" placeholder="Email"
id="email" value="@form("email").value">
 </p>
 <p>
 <input type="password" name="password" id="password"
placeholder="Password">
 </p>
 <p>
 <button type="submit" id="loginbutton">Login</button>
 </p>

 }

 <p class="note">
 Try login as thomas@@home with 1234 as
password.
 </p>

}

Notice how the thomas@@home username shows us that you can escape the special
@ character by entering it twice.

Now we have the logic to handle an HTML login page with the submission of the
credentials to be authenticated, but we are still lacking the missing piece that will wrap
a conventional invocation of a method from any controller that we want to protect.
Moreover, this logic will redirect us to the login page in case the username (a property
stored in our request.session object and retrieved from a cookie) is not present.
It can be described in a trait as follows:

trait Secured {

 def username(request: RequestHeader) = request.session.get(Security.
username)

 def onUnauthorized(request: RequestHeader) = Results.
Redirect(routes.Authentication.login)

 def withAuth(f: => String => Request[AnyContent] => SimpleResult) =
{

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play Framework

[124]

 Security.Authenticated(username, onUnauthorized) { user =>
 Action(request => f(user)(request))
 }
 }
}

We can add this trait to the same Authentication.scala controller class.
The withAuth method wraps our Action invocations by applying the Security.
Authenticated method around them. To be able to use this trait, we just need
to mix it in in our controller class as follows:

object Application extends Controller with Secured {
 …
}

Once the trait is part of our controller, we can replace an Action method with
a withAuth method instead. For example, when invoking the index method,
we replace the Action method, as follows:

/**
 * Home page
 */
def index = withAuth { username => implicit request =>
 Ok(html.index(helloForm))
}

To be able to execute our new functionality, we should not forget to add the extra
methods from the Authentication.scala controller to the routes' definitions
(the compiler will flag this if we omit them):

Authentication
GET /login controllers.Authentication.login
POST /login controllers.Authentication.authenticate
GET /logout controllers.Authentication.logout

Let's rerun the application and invoke the http://localhost:9000/ page.
We should be routed to the login.html page rather than the index.html page.
This is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

Try to log in with both the erroneous and correct e-mail/password combinations to
verify that the authentication has been implemented correctly.

This basic authentication mechanism is just an example of how you can easily
extend the applications in Play. It demonstrates the use of the Action composition,
a technique that can also be applied to many other aspects—for example, logging
or modifying requests—and is a good alternative to interceptors.

There are, of course, external modules that you can use with Play if you need to
achieve authentication through other services; for instance, modules based on
standards such as OAuth, OAuth2, or OpenID. The SecureSocial module is a good
example to do this and is available at http://securesocial.ws.

Practical tips when using Play
We will conclude this chapter with a couple of recommendations that will help
with the daily usage of the Play Framework.

Debugging with Play
Due to the declarative nature of functional programming and the powerful type
checking mechanism of the compiler, debugging should happen less often when
dealing with Scala code. However, if you need to debug a Play application in a
situation, you might as well run a remote debugging session as you would in Java.
To achieve this, just start your Play application with an extra debug command:

> play debug run

You should see an extra information line in the output that displays the following
command line:

Listening for transport dt_socket at address: 9999

From here, you can add break points in your code and start a remote debugging
configuration in Eclipse by navigating to the menu named Run | Debug
Configurations…

Right-click on Remote Java Application and select New. Just make sure that you
enter Port:9999 in the Connection Properties form and then start debugging by
clicking on the Debug button.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Play Framework

[126]

Dealing with version control
Typical files that can be ignored when maintaining the code under version control
tools such as GIT are located as follows:

• logs

• project/project

• project/target

• target

• tmp

• dist

• .cache

Summary
In this chapter, we introduced the Play Framework and covered typical examples
where requests are routed to controllers and rendered through views following
the well-known MVC pattern. We saw that the usage of the Scala syntax inside the
definition of routes and templates gives us the extra benefit of compile-time safety.
Such help provided to the programmer largely increases productivity and avoids
spelling mistakes while refactoring, making the whole experience more enjoyable.

We also added some basic HTTP authentication to a helloworld application sample.
In the next chapter, we are going to tackle the issue of Persistence/ORM, a part that
is essential in any web application, involving the usage of a database in the backend
to store and retrieve data. We will see how to integrate the existing persistence
standards used in Java, such as JPA, and will introduce a novel but powerful
approach to Persistence through the Slick framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the
Future of ORM

An essential component found in almost any web application involves the storage
and retrieval of data in a persistent store. Whether relational or NoSQL based, a
database often occupies the most important place since it holds the application data.
When a technology stack becomes a legacy and needs to be refactored or
ported to a new one, the database is usually the starting point since it holds the
domain knowledge.

In this chapter, we are first going to study how to integrate and reuse persistence
frameworks inherited from Java that deal with Object Relational Mapping (ORM)
such as those supporting Java Persistence API (JPA), for example, Hibernate and
EclipseLink. We will then experiment with the default persistence framework
available in the Play Framework, Anorm. Finally, we will introduce and discover
a Scala alternative to ORM and a rather novel approach that adds type safety and
composition to the more traditional SQL-based queries, the Slick framework.
We will experiment with Slick in the context of Play web development. We will also
cover the generation of CRUD-like applications out of existing relational databases
that can be a boost in productivity when starting out from a legacy database.

Integrating an existing ORM – Hibernate
and JPA
As defined by Wikipedia:

"Object-relational mapping (ORM, O/RM, and O/R mapping) in computer
software is a programming technique for converting data between incompatible
type systems in object-oriented programming languages".

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[128]

The popular adoption of ORM frameworks in Java such as Hibernate is largely due
to the simplicity and diminution of code you need to write to persist and query data.

Making JPA available in Scala
Although Scala has its own modern standard for data persistence (that is, Slick,
which we will introduce later on), in this section, we will cover a possible integration
of JPA (Java Persistence API, documented at http://docs.oracle.com/javaee/6/
tutorial/doc/bnbpz.html) within the Scala world by building an SBT project that
uses JPA-annotated Scala classes to persist data in a relational database. It is derived
from an online sample available at http://www.brainoverload.nl/scala/105/
jpa-with-scala, which should be particularly interesting to Java developers
since it illustrates how to use the Spring framework both for dependency injection
and configuration of beans in the context of a Scala project at the same time. As a
reminder, the Spring framework, created by Rod Johnson, came out in 2002 as a way
to provide inversion of control, that is, dependency injection increased in popularity
to become a full-featured framework now containing many aspects of Java EE 7.
More information about Spring is available at http://projects.spring.io/
spring-framework/.

We are going to connect to the already existing CustomerDB sample database that
we have introduced in Chapter 2, Code Integration, to show both how to read existing
data and create new entities/tables to persist data.

As we have seen in Chapter 3, Understanding the Scala Ecosystem, creating a blank
Scala SBT project is a matter of opening a command terminal, creating a directory
to put the project in, and running SBT as follows:

> mkdir sbtjpasample

> cd sbtjpasample

> sbt

> set name:="sbtjpasample"

> session save

We can navigate to the project/ folder that SBT created, and add a plugins.sbt
file containing the following one-liner to import the sbteclipse plugin so that we
can work with the project under the Eclipse IDE:

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "2.4.0")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[129]

Since we are going to use Hibernate- and Spring-related classes, we need to include
such dependencies into our build.sbt build file (as well as the derby-client driver
to connect to the CustomerDB sample database) so that it looks like the following
code snippet:

name:="sbtjpasample"

scalaVersion:="2.10.3"

libraryDependencies ++= Seq(
 "junit" % "junit" % "4.11",
 "org.hibernate" % "hibernate-core" % "3.5.6-Final",
 "org.hibernate" % "hibernate-entitymanager" % "3.5.6-Final",
 "org.springframework" % "spring-core" % "4.0.0.RELEASE",
 "org.springframework" % "spring-context" % "4.0.0.RELEASE",
 "org.springframework" % "spring-beans" % "4.0.0.RELEASE",
 "org.springframework" % "spring-tx" % "4.0.0.RELEASE",
 "org.springframework" % "spring-jdbc" % "4.0.0.RELEASE",
 "org.springframework" % "spring-orm" % "4.0.0.RELEASE",
 "org.slf4j" % "slf4j-simple" % "1.6.4",
 "org.apache.derby" % "derbyclient" % "10.8.1.2",
 "org.scalatest" % "scalatest_2.10" % "2.0.M7"
)

As a reminder to make these dependencies available in Eclipse, we have to run the >
sbt eclipse command again and refresh our project in the IDE.

Now, from the root directory of the project, enter > sbt eclipse and import the
project into the IDE.

Now let's add a couple of domain entities (under a new package se.sfjd) that we
want to annotate with Java-based JPA annotations. The Customer entity defined in
a Customer.scala file in the se.sfjd package will map (at least partially) to the
existing CUSTOMER database table:

import javax.persistence._
import scala.reflect.BeanProperty

@Entity
@Table(name = "customer")
class Customer(n: String) {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "CUSTOMER_ID")

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[130]

 @BeanProperty
 var id: Int = _

 @BeanProperty
 @Column(name = "NAME")
 var name: String = n

 def this() = this (null)

 override def toString = id + " = " + name
}

Notice the underscore (_) representing a default value when declaring var id: Int =
_. The default value will be set according to the type T of a variable, as defined by the
Scala specification:

• 0 if T is Int or one of its subrange types
• 0L if T is Long
• 0.0f if T is Float
• 0.0d if T is Double
• false if T is Boolean
• () if T is Unit
• null for all other types of T

The Language entity corresponds to the addition of a new concept we want to persist
and therefore requires a new database table, as follows:

@Entity
@Table(name = "language")
class Language(l: String) {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "ID")
 @BeanProperty
 var id: Int = _

 @BeanProperty
 @Column(name = "NAME")
 var name: String = l

 def this() = this (null)

 override def toString = id + " = " + name
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[131]

As we saw in Chapter 2, Code Integration, the @BeanProperty annotation is a way
to generate getters and setters conforming to Java, and the this() method is a no
argument constructor needed by Hibernate.

Moving on, the controller class or DAO (Data Access Object) class captures the
behavior we want to provide for the Customer entity such as CRUD functionality in
the form of save and find methods following an interface, or in this case, a Scala trait:

trait CustomerDao {
 def save(customer: Customer): Unit
 def find(id: Int): Option[Customer]
 def getAll: List[Customer]
}

The implementation of the CustomerDao class relies on the methods of the JPA
entity manager that we as Java developers are probably familiar with:

import org.springframework.beans.factory.annotation._
import org.springframework.stereotype._
import org.springframework.transaction.annotation.{Propagation,
Transactional}
import javax.persistence._
import scala.collection.JavaConversions._

@Repository("customerDao")
@Transactional(readOnly = false, propagation = Propagation.REQUIRED)
class CustomerDaoImpl extends CustomerDao {

 @Autowired
 var entityManager: EntityManager = _

 def save(customer: Customer):Unit = customer.id match{
 case 0 => entityManager.persist(customer)
 case _ => entityManager.merge(customer)
 }

 def find(id: Int): Option[Customer] = {
 Option(entityManager.find(classOf[Customer], id))
 }

 def getAll: List[Customer] = {
 entityManager.createQuery("FROM Customer", classOf[Customer]).
getResultList.toList
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[132]

In a similar manner, we can define a Language trait and its implementation as follows,
with the addition of a getByName method:

trait LanguageDao {
 def save(language: Language): Unit
 def find(id: Int): Option[Language]
 def getAll: List[Language]
 def getByName(name : String): List[Language]
}

@Repository("languageDao")
@Transactional(readOnly = false, propagation = Propagation.REQUIRED)
class LanguageDaoImpl extends LanguageDao {

 @Autowired
 var entityManager: EntityManager = _

 def save(language: Language): Unit = language.id match {
 case 0 => entityManager.persist(language)
 case _ => entityManager.merge(language)
 }

 def find(id: Int): Option[Language] = {
 Option(entityManager.find(classOf[Language], id))
 }

 def getAll: List[Language] = {
 entityManager.createQuery("FROM Language", classOf[Language]).
getResultList.toList
 }

 def getByName(name : String): List[Language] = {
 entityManager.createQuery("FROM Language WHERE name = :name",
classOf[Language]).setParameter("name", name).getResultList.toList
 }
}

Before we can execute the project, we still have a couple of steps to follow: first
we need a test class, we can therefore create a CustomerTest class following the
ScalaTest syntax, as we have seen earlier in Chapter 4, Testing Tools:

import org.junit.runner.RunWith
import org.scalatest.junit.JUnitRunner
import org.scalatest.FunSuite
import org.springframework.context.support.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[133]

lassPathXmlApplicationContext

@RunWith(classOf[JUnitRunner])
class CustomerTest extends FunSuite {

 val ctx = new ClassPathXmlApplicationContext("application-context.
xml")

 test("There are 13 Customers in the derby DB") {

 val customerDao = ctx.getBean(classOf[CustomerDao])
 val customers = customerDao.getAll
 assert(customers.size === 13)
 println(customerDao
 .find(3)
 .getOrElse("No customer found with id 3"))
 }

 test("Persisting 3 new languages") {
 val languageDao = ctx.getBean(classOf[LanguageDao])
 languageDao.save(new Language("English"))
 languageDao.save(new Language("French"))
 languageDao.save(new Language("Swedish"))
 val languages = languageDao.getAll
 assert(languages.size === 3)
 assert(languageDao.getByName("French").size ===1)
 }
}

Last but not least, we have to define some configuration, both a META-INF/
persistence.xml file required by JPA that we can put under src/main/resources/
and a Spring application-context.xml where all beans are wired and the database
connection is defined. The persistence.xml file will look as simple as follows:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/
persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://
java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="JpaScala" transaction-type="RESOURCE_
LOCAL">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 </persistence-unit>
</persistence>

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[134]

The application-context.xml file, directly available under src/main/
resources/, is a bit more elaborate and is given as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.
springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.
springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/tx http://www.
springframework.org/schema/tx/spring-tx.xsd
 ">

 <tx:annotation-driven transaction-manager="transactionManager"/>

 <context:component-scan base-package="se.sfjd"/>

 <bean id="dataSource"
 class="org.springframework.jdbc.datasource.
DriverManagerDataSource"
 p:driverClassName="org.apache.derby.jdbc.ClientDriver"
p:url="jdbc:derby://localhost:1527/sample"
 p:username="app" p:password="app"/>

 <bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.
LocalContainerEntityManagerFactoryBean">
 <property name="persistenceUnitName" value="JpaScala"/>
 <property name="persistenceProviderClass" value="org.
hibernate.ejb.HibernatePersistence"/>
 <property name="jpaDialect">
 <bean class="org.springframework.orm.jpa.vendor.
HibernateJpaDialect"/>
 </property>

 <property name="dataSource" ref="dataSource"/>
 <property name="jpaPropertyMap">
 <map>
 <entry key="hibernate.dialect" value="org.hibernate.
dialect.DerbyDialect"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[135]

 <entry key="hibernate.connection.charSet"
value="UTF-8"/>
 <entry key="hibernate.hbm2ddl.auto" value="update"/>
 <entry key="hibernate.show.sql" value="true"/>
 </map>
 </property>
 </bean>

 <bean id="entityManager"
 class="org.springframework.orm.jpa.support.
SharedEntityManagerBean">
 <property name="entityManagerFactory"
ref="entityManagerFactory"/>
 </bean>

 <bean id="transactionManager" class="org.springframework.orm.jpa.
JpaTransactionManager">
 <property name="entityManagerFactory"
ref="entityManagerFactory"/>
 <property name="dataSource" ref="dataSource"/>
 </bean>
</beans>

Before running the test, we need to make sure the database server is up and running;
this was explained in Chapter 2, Code Integration, while using the NetBeans IDE.

Now we can execute the example either by right-clicking on the CustomerTest class
and navigating to Debug As | Scala JUnit Test or from the command prompt by
entering the following command:

> sbt test

3 = Nano Apple

[info] CustomerTest:

[info] - There are 13 Customers in the derby DB

[info] - Persisting 3 new languages

[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0

[success] Total time: 3 s

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[136]

Dealing with persistence in the Play
Framework
The Play Framework can be run with any sort of ORM, whether it is Java based such
as JPA or Scala specific. There are related-but-separate Java and Scala flavors of the
framework. As described in the Play documentation, the Java version uses Ebean as
its ORM, whereas the Scala alternative does not use ORM but runs with Anorm,
a Scala-ish abstraction layer on top of JDBC that interacts with a database using
plain SQL.

A simple example using Anorm
To illustrate the usage of Anorm, we are going to make a small Play example that
connects to the existing CustomerDB database from the NetBeans distribution that
we have used in the previous section and introduced in Chapter 2, Code Integration.

The most straightforward way to start is to create a default Play Scala project from
a terminal window by entering the following command:

> play new anormsample

Once created and imported into Eclipse (after creating Eclipse-related files once
again using the > play eclipse command; refer to Chapter 5, Getting Started with the
Play Framework, if you need more details) we can see that the dependency to Anorm
is already part of the built.sbt file. However, we need to add the dependency to
the derby-client database driver to this file to be able to communicate with the
database through jdbc. The dependency can be added
as follows:

libraryDependencies ++= Seq(
 jdbc,
 anorm,
 cache,
 "org.apache.derby" % "derbyclient" % "10.8.1.2"
)

We can now define a Customer case class that will represent the CUSTOMER table from
the database and implement some behaviors in the form of methods defined in its
companion object, as follows:

package models

import play.api.db._
import play.api.Play.current

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[137]

import anorm._
import anorm.SqlParser._
import scala.language.postfixOps

case class Customer(id: Pk[Int] = NotAssigned, name: String)

object Customer {
 /**
 * Retrieve a Customer from an id.
 */
 def findById(id: Int): Option[Customer] = {
 DB.withConnection { implicit connection =>
 println("Connection: "+connection)
 val query = SQL("SELECT * from app.customer WHERE customer_id =
{custId}").on('custId -> id)
 query.as(Customer.simple.singleOpt)
 }
 }

 /**
 * Parse a Customer from a ResultSet
 */
 val simple = {
 get[Pk[Int]]("customer.customer_id") ~
 get[String]("customer.name") map {
 case id~name => Customer(id, name)
 }
 }
}

The Anorm SQL query conforms to a string-based SQL statement where variables are
bound to values. Here we bind the customer_id column to the id input parameter.
Since we want to return an Option[Customer] to handle the case where the SQL
query did not return any result, we first need to parse the ResultSet object to create
a Customer instance and invoke the singleOpt method that will make sure we wrap
the result into an Option (which can return None instead of a potential error).

The Application controller is given as follows:

package controllers

import play.api._
import play.api.mvc._
import play.api.db._
import play.api.Play.current

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[138]

import models._

object Application extends Controller {
 def index = Action {
 val inputId = 2 // Hardcoded input id for the example
 val result =
 DB.withConnection { implicit c =>
 Customer.findById(inputId) match {
 case Some(customer) => s"Found the customer: ${customer.
name}"
 case None => "No customer was found."
 }
 }
 Ok(views.html.index(result))
 }
}

It simply surrounds the database query with a database connection and does some
pattern matching on the Option[Customer] entity to display different messages
whether the queried customer id is found or not.

You may have noticed the keyword, implicit, sometimes while reading the Scala
code in general (such as the implicit c parameter given in the previous code
example). As clearly explained in the Scala documentation:

"a method with implicit parameters can be applied to arguments just like a
normal method. In this case, the implicit label has no effect. However, if such a
method misses arguments for its implicit parameters, such arguments will be
automatically provided".

In our previous case, we could have omitted this implicit parameter since we are
not using the database connection c variable further in the body of our method.

Running the application with inputId=2 can be replaced by inputId=3000; for
example, to demonstrate the case where no customer is found. To avoid changing
anything in the view, we have reused the welcome message location of the default
index.html page; therefore, you will see the result in the browser in the green
header at the top of the HTML page.

This sample only shows a basic usage of Anorm; it is derived from the much more
complete computer-database example that is part of the samples of the Play
Framework distribution. You can refer to it if you need a deeper knowledge of
the Anorm framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[139]

Replacing ORM
As Java developers, we are used to handling relational database persistence through
the use of mature and well-established JPA frameworks such as Hibernate or
EclipseLink. Despite the fact that these frameworks are convenient to use and hide
a lot of the complexity for retrieving or updating data that is spread over several
tables, Object-Relational Mapping suffers from the Object-Relational Impedance
Mismatch problem; in an object-oriented model, you traverse objects via their
relationships, whereas in a relational database, you join the data rows of tables,
resulting sometimes in an inefficient and cumbersome retrieval of data. (This is
further explained on the Wikipedia page, http://en.wikipedia.org/wiki/
Object-relational_impedance_mismatch.)

In contrast, the Slick framework that is part of the Typesafe stack proposes to
solve the persistence of data to relational databases through a Functional Relational
Mapping, which strives for a more natural fit. Some of the additional benefits of Slick
include the following two aspects:

• Conciseness and Type Safety: Instead of running SQL queries by expressing
them through strings in Java code, Slick uses plain Scala code to express
queries. In JPA, the Criteria API or languages such as JPQL (Java Persistence
Query Language) or HQL (Hibernate Query Language) have long tried
to make string-based queries more type checked, but are still difficult to
comprehend and produce verbose code. With Slick, queries are written
concisely using the power of Scala for comprehensions. Type safety of
SQL queries was introduced a long time ago in the .Net world through
the popular LINQ Framework.

• Composable and reusable queries: The functional approach adopted by
Slick makes composition a natural behavior, a feature that lacks when
considering plain SQL as an alternative to ORM.

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[140]

Learning about Slick
Let's explore the behavior of the Slick framework through code examples to see
how we can enhance and replace more traditional ORM solutions.

The first example we can study is part of the test-patterns-scala activator template
project that we have analyzed in Chapter 4, Testing Tools. The scalatest/Test012.
scala file found inside the project exhibits a typical usage of Slick as follows:

package scalatest

import org.scalatest._
import scala.slick.driver.H2Driver.simple._
import Database.threadLocalSession

object Contacts extends Table[(Long, String)]("CONTACTS") {
 def id = column[Long]("CONTACT_ID", O.PrimaryKey)
 def name = column[String]("CONTACT_NAME")
 def gender = column[String]("GENDER")
 def * = id ~ name
}

class Test12 extends FunSuite {
 val dbUrl = "jdbc:h2:mem:contacts"
 val dbDriver = "org.h2.Driver"

 test("Slick, H2, embedded") {
 Database.forURL(dbUrl, driver = dbDriver) withSession {
 Contacts.ddl.create
 Contacts.insertAll(
 (1, "Bob"),
 (2, "Tom"),
 (3, "Salley")
)

 val nameQuery =
 for(
 c <- Contacts if c.name like "%o%"
) yield c.name
 val names = nameQuery.list
 names.foreach(println)
 assert(names === List("Bob","Tom"))
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[141]

The most interesting part in the code has to do with the SQL query. The immutable
variable names contains the result of a query to the database; instead of expressing
the SQL query as a String or through the Java Criteria API, pure Scala code is used
through a for comprehension, as shown in the following screenshot:

Unlike string-based SQL queries, any typo or reference to tables or fields that do not
exist will be immediately pointed out by the compiler. More complex queries will be
very naturally translated into for expressions in a readable manner compared to the
verbose and hard-to-read output code resulting from the JPA Criteria API.

This sample only contains one table, Contacts, that we define by extending the
scala.slick.driver.H2Driver.simple.Table class. The CONTACTS database
table includes three columns, one primary key id defined as a Long datatype, and
two other properties of type String, name, and gender respectively. The method *
defined in the Contacts object specifies a default projection, that is, all the columns
(or computed values) we are usually interested in. The expression id ~ name (using
the ~ sequence operator) returns a Projection2[Long,String] which can be
thought of as a Tuple2, but for the representation of relations. The default projection
of (Int, String) leads to a List[(Int, String)] for simple queries.

Since the datatypes of columns in relational databases are not the same as Scala
types, they need to be mapped (similar to the mappings needed when dealing
with ORM frameworks or pure JDBC access). As stated in Slick's documentation,
the primitive types supported out of the box are as follows (with a few limitations
depending on the database driver used for each database type):

• Numeric types: Byte, Short, Int, Long, BigDecimal, Float, Double
• LOB types: java.sql.Blob, java.sql.Clob, Array[Byte]
• Date types: java.sql.Date, java.sql.Time, java.sql.Timestamp
• Boolean

• String

• Unit

• java.util.UUID

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[142]

Once the domain entity is defined, the next steps are to create the database,
insert some test data in it, and then run a query as we would do with any other
persistence framework.

All of the code we run in the Test12 test is surrounded by the following block:

Database.forURL(dbUrl, driver = dbDriver) withSession {
 < code accessing the DB...>
}

The forURL method specifies a JDBC database connection, which normally consists
of a driver class corresponding to the specific database to use and a connection
URL defined by its host, port, database name as well as an optional username/
password. In the example, a local in-memory database (H2) named contacts is
used so that the connection URL is jdbc:h2:mem:contacts, exactly as we would
write it in Java. Note that a Slick Database instance only encapsulates a "how-to"
on how connections are created, the physical connection being created only at the
withSession call.

The Contacts.ddl.create statement will create the database schema and the
insertAll method will populate the Contacts table with three rows each
consisting of its primary key id and name.

We can execute this test alone to verify that it runs as expected, by entering the
following command in a terminal window in the root directory of the test-
patterns-scala project:

> ./activator

> test-only scalatest.Test12

Bob

Tom

[info] Test12:

[info] - Slick, H2, embedded (606 milliseconds)

[info] ScalaTest

[info] Run completed in 768 milliseconds.

[info] Total number of tests run: 1

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 1, failed 0, canceled 0, ignored 0, pending 0

[info] All tests passed.

[info] Passed: Total 1, Failed 0, Errors 0, Passed 1

[success] Total time: 1 s, completed Dec 7, 2013 1:43:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[143]

Currently, the test-patterns-scala project includes a dependency to the
slf4j-nop implementation of the SLF4J logging framework that disables any
logging. Since it can be useful to visualize the exact SQL statement produced by
Scala for comprehension statements, let's replace sl4j-nop with a logback
implementation. In your build.sbt build file, replace the line "org.slf4j" %
"slf4j-nop" % "1.6.4" with a reference to logback, for example, "ch.qos.
logback" % "logback-classic" % "0.9.28" % "test".

Now, if you rerun the test, you will probably see much more logging info than
you actually want. We can therefore add a logback.xml file to the project (in the
src/test/resources/ folder) as follows:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

 <appender name="STDOUT" class="ch.qos.logback.core.
ConsoleAppender">
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} -
%msg%n</pattern>
 </encoder>
 </appender>

 <root level="debug">
 <appender-ref ref="STDOUT" />
 </root>

 <logger name="scala.slick.compiler" level="${log.qcomp:-warn}"
/>
 <logger name="scala.slick.compiler.QueryCompiler" level="${log.
qcomp.phases:-inherited}" />

…
 <logger name="scala.slick.compiler.CodeGen"
level="${log.qcomp.codeGen:-inherited}" />
 <logger name="scala.slick.compiler.InsertCompiler"
level="${log.qcomp.insertCompiler:-inherited}" />
 <logger name="scala.slick.jdbc.JdbcBackend.statement"
level="${log.session:-info}" />

 <logger name="scala.slick.ast.Node$"
level="${log.qcomp.assignTypes:-inherited}" />
 <logger name="scala.slick.memory.HeapBackend$"
level="${log.heap:-inherited}" />
 <logger name="scala.slick.memory.QueryInterpreter"
level="${log.interpreter:-inherited}" />
</configuration>

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[144]

This time if we enable only the "scala.slick.jdbc.JdbcBackend.statement"
logger, the output from the test will show all the SQL queries, similar to the
following output:

> test-only scalatest.Test12
19:00:37.470 [ScalaTest-running-Test12] DEBUG scala.slick.session.
BaseSession - Preparing statement: create table "CONTACTS" ("CONTACT_
ID" BIGINT NOT NULL PRIMARY KEY,"CONTACT_NAME" VARCHAR NOT NULL)
19:00:37.484 [ScalaTest-running-Test12] DEBUG scala.slick.session.
BaseSession - Preparing statement: INSERT INTO "CONTACTS" ("CONTACT_
ID","CONTACT_NAME") VALUES (?,?)
19:00:37.589 [ScalaTest-running-Test12] DEBUG scala.slick.session.
BaseSession - Preparing statement: select x2."CONTACT_NAME" from
"CONTACTS" x2 where x2."CONTACT_NAME" like '%o%'
Bob
Tom
[info] Test12:
[info] - Slick, H2, embedded (833 milliseconds)
[info] ScalaTest
[info] Run completed in 952 milliseconds.
[info] Total number of tests run: 1
[info] Suites: completed 1, aborted 0
[info] Tests: succeeded 1, failed 0, canceled 0, ignored 0, pending 0
[info] All tests passed.
[info] Passed: Total 1, Failed 0, Errors 0, Passed 1
[success] Total time: 1 s, completed Dec 10, 2013 7:00:37 PM
>

Finally, to verify whether database schema validation has been enforced, let's try to
modify one of the keys of the inserted data so that we have duplicate keys, as shown
in the following lines of code:

Contacts.insertAll(
 (1, "Bob"),
 (2, "Tom"),
 (2, "Salley")
)

If we run the test again, it fails with a message similar to the following:

[info] Test12:

[info] - Slick, H2, embedded *** FAILED *** (566 milliseconds)

[info] org.h2.jdbc.JdbcBatchUpdateException: Unique index or primary
key violation: "PRIMARY_KEY_C ON PUBLIC.CONTACTS(CONTACT_ID)"; SQL
statement:

[info] INSERT INTO "CONTACTS" ("CONTACT_ID","CONTACT_NAME") VALUES (?,?)
[23505-166]…

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[145]

Scaffolding a Play application
In this section, we are going to further experiment with Slick and Play by automatically
creating a full Play application with basic CRUD functionality out of a relational
database, including Models, Views, Controllers, as well as test data and configuration
files such as Play routes.

Any web application that needs to connect to a database generally requires most of
the CRUD functionality at least in the backend. Furthermore, being able to generate a
default frontend can avoid you having to make one from scratch. In particular, a Play
frontend consisting of HTML5 views is highly reusable since most of the display of
columns, fields, buttons, and forms can be re-arranged with limited copy/paste in
an HTML editor.

Let's apply this reverse engineering on the sample customer database from the
NetBeans distribution that we have already covered in Chapter 2, Code Integration.

The generation of the Play app is done in two steps:

1. Creation of a regular Play project.
2. Usage of an external tool named playcrud that is itself a Play app and will

generate all the required MVC and configuration files on top of the new Play
project structure.

Having this approach in two steps has a better guarantee that the generated
application will follow the latest changes in the Play distribution, in particular with
regards to the evolution of the look and feel in Play that comes with every new release.

To get started with the playcrud utility, clone the project from GitHub by entering
in a command terminal in a directory of your choice (assuming GIT is installed, visit
http://git-scm.com/ if you don't have it already):

> git clone https://github.com/ThomasAlexandre/playcrud

This should create a directory, playcrud, with the content of the project being
a regular Play application, including the plugin to generate an Eclipse project.
We can therefore run the following commands:

> cd playcrud

> play eclipse

Then, import the project into Eclipse to better visualize what it consists of.
The application is made of just one controller found in the Application.scala
file located at samplecrud\app\controllers, and its corresponding view found in
index.scala.html under samplecrud\app\views. Only two routes are defined
in the routes file under samplecrud\conf:

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[146]

Home page
GET / controllers.Application.index

CRUD action
GET /crud controllers.Application.generateAll

The first route will display a form in the browser where we can enter information
about the database from which we want to create a Play app. The form is fairly
straightforward to understand by looking at its template:

@(dbForm: Form[(String,String,String,String)])
@import helper._
@main(title = "The 'CRUD generator' application") {
 <h1>Enter Info about your existing database:</h1>
 @form(action = routes.Application.generateAll, args = 'id ->
"dbform") {

 @select(
 field = dbForm("driver"),
 options = options(
 "com.mysql.jdbc.Driver" -> "MySQL",
 "org.postgresql.Driver" -> "PostgreSQL",
 "org.h2.Driver" -> "H2",
 "org.apache.derby.jdbc.ClientDriver" -> "Derby"
),
 args = '_label -> "Choose a DB"
)

 @inputText(
 field = dbForm("dburl"),
 args = '_label -> "Database url", 'placeholder ->
"jdbc:mysql://localhost:3306/slick"
)

 @inputText(
 field = dbForm("username"),
 args = '_label -> "DB username", 'size -> 10, 'placeholder
-> "root"
)

 @inputText(
 field = dbForm("password"),
 args = '_label -> "DB password", 'size -> 10, 'placeholder
-> "root"
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[147]

 <p class="buttons">
 <input type="submit" id="submit">
 <p>
 }
}

The second is the generateAll action performed once we submit the form that will
create all files needed to execute the newly created Play app.

To be able to generate all files in the right place, we just need to edit one
configuration property called baseDirectory, currently found in the Config.scala
file in the utilities/ folder. This property specifies the root directory of the Play
application we want to generate. Before we edit it, we can generate a blank Play
project that the baseDirectory variable will refer to:

> cd ~/projects/internal (or any location of your choice)

> play new samplecrud

…

What is the application name? [samplecrud]

> [ENTER]

Which template do you want to use for this new application?

 1 - Create a simple Scala application

 2 - Create a simple Java application

> [Press 1]

Just to verify we have our blank Play application correctly created we
can launch it with:

> cd samplecrud

> play run

Now, open the http://localhost:9000 URL in a web browser.

Now that we have our baseDirectory (~/projects/internal/samplecrud), we
can add it to the Config.scala file. The other properties concerning the database
are just default values; we do not need to edit them here since we will instead
specify them when we fill out the HTML form while running the playcrud app.

In a new terminal window, let's execute the playcrud app by entering the
following commands:

> cd <LOCATION_OF_PLAYCRUD_PROJECT_ROOT>

> play "run 9020" (or any other port than 9000)

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[148]

Here, we need to choose a different port than 9000 as it is already taken by the
blank application.

Now, point your web browser to the playcrud URL, http://localhost:9020/.
You should get an HTML form where you can edit the properties of the source
database to access for CRUD generation, as shown in the following screenshot
(this database will only be read from):

Submitting the form will most likely generate some logging output in the terminal
console, and once it is done with the generation, the browser will be redirected to
port 9000 to display the newly generated CRUD app. Since this is the first time we
generate the app, it will fail because the build.sbt file of the generated app was
updated and needs to be reloaded with some new dependencies.

To fix that, interrupt the currently running Play app by pressing Ctrl + D. Once it
has stopped, simply re-launch it:

> play run

If everything goes well, you should be able to access http://localhost:9000 and
see a list of clickable controllers corresponding to the entities that were generated
from the database, including Product, Manufacturer, and Purchase Order.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[149]

Let's open one of them, for instance, the Manufacturer view, as shown in the
following screenshot:

The resulting screen shows the READ part of the CRUD functionality by displaying a
list of all the manufacturer rows from the database. The paging functionality is set to
3 by default, that is why only three out of the 30 available manufacturers are seen at
once, but one can navigate to the other pages by clicking on the Previous and Next
buttons. This default page size is editable in each individual controller (look for a
pageSize val declaration), or can be modified in the controller template before code
generation to update all controllers at once. Moreover, the headers of the HTML
table are clickable to sort elements according to each specific column.

Clicking on the Add New Manufacturer button will invoke a new screen containing
a form used to create a new entry in the database.

Importing test data
The generated app is running with an H2 in-memory database, by default, which
is populated at startup with some test data. During generation, we have exported
content from the source database into an XML file using the functionality of DBUnit,
a JUnit-based framework in Java. DBUnit is useful when there is enough database
data involved in your tests that you want to avoid mocking everything by producing
XML sample files containing some data extracted from a real database instead.
The exported test data is stored in testdata.xml under samplecrud\test\.
When running the generated application, this file will be loaded by DBUnit in the
onStart method of the Global.scala after the DB schema has been created.

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[150]

To be able to persist the data to a real database and therefore avoid importing the
XML file on every restart, we can replace the in-memory data by a real database
on disk. For example, we can replace the database driver properties in the
application.conf file under samplecrud\conf with the following lines:

db.default.driver=org.h2.Driver
db.default.url="jdbc:h2:tcp://localhost/~/customerdb"
db.default.user=sa
db.default.password=""

The new database is built once we have restarted the play app:

> play run

Accessing the http://localhost:9000 URL in the browser will this time create
the database schema on disk and populate test data as well. Since the database is
persisted between restarts, from now on we have to comment out the ddl.create
statement in Global.scala as well as the lines referring to the DBUnit import of
testdata.xml.

Visualizing the database in the H2browser
A convenient feature of Play is that you can access the h2-browser to visualize
the database content in your browser directly from SBT. This is true even if you
are using most databases other than H2. Open a terminal window and navigate
to the root of the generated project:

> play

> h2-browser

Connect to the database by filling out the connection properties as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[151]

Assuming that clicking on the Test Connection button displayed Test successful
as shown in the previous screenshot, we can visualize and send SQL queries to
the customerdb database as shown in the following screenshot:

Exploring the code behind the app generation
Every table from the source database leads to the generation of a number of artifacts:

• One model, one controller, and several view classes
• A set of route entries inserted in the conf.routes file, as shown in the

following code for the PURCHASE_ORDER table:

PurchaseOrder

PurchaseOrder list (look at the default values for pagination
parameters)

GET /purchaseorder controllers.
PurchaseOrderController.list(p:Int ?= 0, s:Int ?= 2, f ?= "")
Add purchaseorder
GET /purchaseorder/new controllers.
PurchaseOrderController.create
POST /purchaseorder controllers.
PurchaseOrderController.save

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[152]

Edit existing purchaseorder
GET /purchaseorder/:pk controllers.
PurchaseOrderController.edit(pk:Int)
POST /purchaseorder/:pk controllers.
PurchaseOrderController.update(pk:Int)

Delete purchaseorder
POST /purchaseorder/:pk/delete controllers.
PurchaseOrderController.delete(pk:Int)

Models consist of the domain entities, each being defined in Slick by a combination
of a case class representing a row together with a driver specific slick.driver.
H2Driver.simple.Table of rows. We could have avoided the usage of the case
class and directly written tuples of the involved columns as we have seen in the
earlier Test12 example from the test-patterns-scala activator template, but
encapsulating the columns in a case class is convenient for later use of pattern
matching and usage in the views. The model class representing a PurchaseOrder
entity is generated as follows:

package models

case class PurchaseOrderRow(orderNum : Option[Int], customerId : Int,
productId : Int, quantity : Option[Int], shippingCost : Option[Int],
salesDate : Option[Date], shippingDate : Option[Date], freightCompany
: Option[String])

// Definition of the PurchaseOrder table
object PurchaseOrder extends Table[PurchaseOrderRow]("PURCHASE_ORDER")
{

 def orderNum = column[Int]("ORDER_NUM", O.PrimaryKey)
 def customerId = column[Int]("CUSTOMER_ID")
 def productId = column[Int]("PRODUCT_ID")
 def quantity = column[Option[Int]]("QUANTITY")
 def shippingCost = column[Option[Int]]("SHIPPING_COST")
 def salesDate = column[Option[Date]]("SALES_DATE")
 def shippingDate = column[Option[Date]]("SHIPPING_DATE")
 def freightCompany = column[Option[String]]("FREIGHT_COMPANY")

 def * = orderNum.? ~ customerId ~ productId ~ quantity ~
shippingCost ~ salesDate ~ shippingDate ~ freightCompany <>
(PurchaseOrderRow.apply _, PurchaseOrderRow.unapply _)

 def findAll(filter: String = "%") = {
 for {
 entity <- PurchaseOrder
 // if (entity.name like ("%" + filter))
 } yield entity

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[153]

 }

 def findByPK(pk: Int) =
 for (
 entity <- PurchaseOrder if entity.orderNum === pk
) yield entity
 ...

The complete code for the PurchaseOrder entity as well as the definition of the
CRUD methods of the corresponding PurchaseOrderController class is available
for download on the Packt Publishing website and can also be reproduced by
executing the scaffolding playcrud GitHub project on the CustomerDB sample
database as we have explained in this section.

Finally, templates to generate views for a specific entity are gathered under the
same directory named views.<entity_name>/ and consist of three files, list.
scala.html, createForm.scala.html, and editForm.scala.html for the READ,
CREATE, and UPDATE operations, respectively. They embed a mix of plain HTML5
markup together with minimal Scala code to loop over and display elements
from the controller queries. Notice in the view the addition of a specific play.
api.mvc.Flash implicit object: this useful feature of Play makes it possible to
display some information in the resulting views to inform the user on the outcome
of the performed actions. You can see in the controller that we referred to it via
the statement Home.flashing {... }, where we display various information
depending on pattern matching on the success or failure of an action.

Limitations of the playcrud utility
In the current release of the experimental playcrud utility, a few limitations have
been found, which are explained as follows:

• The playcrud project does not always work out of the box with all JDBC
databases, especially since the mappings of some databases are customized.
However, with only few changes, it is flexible enough to adapt to new
mappings. Furthermore, it allows the generation of only a partial database by
specifying the tables that need to be generated in an external file. To enable this
functionality, we only need to add a file in our playcrud project under conf/,
name it tables, and write the table names of tables we want to include (one
table name per row in the file, case insensitive). For instance, consider a tables
file that includes the following code:
product
purchaseorder
manufacturer

This code will create MVC classes and HTML views for these three tables only.

www.it-ebooks.info

http://www.it-ebooks.info/

Database Access and the Future of ORM

[154]

• In case the mapping of a specific database datatype is not handled by playcrud,
you will get a compiler error in the browser window that will most likely refer
to the missing datatype. The place in the playcrud code where mappings are
handled is the utilities/DBUtil.scala class. A later release of playcrud
should make these configurations more flexible per database type and put
them in external files, but for now they are embedded in the code.

• The available code generation is inspired and built upon two already
existing samples, one being the sample named computer-database part
of the Play Framework distribution (which exhibits a CRUD app but with
Anorm as persistence, a SQL-based persistence framework, which is the
default in Play), the other being a sample of usage of Slick done by Typesafe's
Slick Team (the Coffee database with its Suppliers showing one-to-many
relationships). If you wish to generate the code differently, all the templates
are found under views/. Some of them mostly contain static data, such as
the generation of build.sbt based on the build.scala.txt template.

• In commercial applications, it is not unusual to encounter database tables
that have more than 22 columns. Since we encapsulate these columns into
case classes and Scala 2.10 has a restriction that limits the creation of a case
class of more than 22 elements, it is not possible at the moment to generate
Slick mappings exceeding that size. Hopefully, starting with Scala 2.11, this
limitation should be lifted.

Summary
In this chapter, we have covered several approaches to deal with relational database
persistence. We first went through an example of integration between Scala and
traditional JPA-based ORM persistence. The example also illustrated the integration
between the Spring framework and a Scala codebase. We then introduced Anorm,
the default persistence framework available in the Play Framework that relies on
direct SQL queries. Because of some limitations of ORM, mainly related to scalability
and performance, and limitations as well of plain SQL queries in terms of lack of
type safety and lack of composability, we moved towards the adoption of the Slick
framework, a unique approach to persistence that targets a more functional way to
persist data in relational databases. Finally, we considered the case where we can
generate a full Play web app with basic CRUD functionality out of an existing database
as a way of rapidly getting started integrating Slick into Play. The future releases of
Slick starting with 2.0 enhance support for code generation and strive for even more
readable syntax for writing database queries through the usage of Scala macros.

In the next chapter, we are going to consider how to use Scala when integrating
external systems together, in particular through Web Services and REST APIs,
supporting data formats such as JSON and XML.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration
and Web Services

Because technology stacks evolve continuously, a large area to consider when
developing commercial software is the integration between systems. The flexibility
and scalability of the Web have seen the proliferation of services built on top of
HTTP to integrate systems in a loosely-coupled fashion. Moreover, to be able to
navigate through secure networks accessible via firewalls and additional security
mechanisms, the HTTP model has been increasingly popular. In this chapter, we are
going to cover how to involve Scala when integrating with systems either via Web
Services or REST Services exchanging messages in formats such as XML and JSON.
In particular, we will consider running such services through the Play Framework.

In this chapter, we will cover the following topics:

• Generating data bindings from XML schemas as well as SOAP web service
classes out of their WSDL description

• Manipulating XML and JSON in Scala and in particular in the context of
the Play Framework

• Invoking other REST web services from Play, and validating and displaying
their response

Binding XML data in Scala
Even if XML has recently stepped down a bit from its ubiquitous position due to
the increasing popularity of JSON, both formats will continue to be heavily used
to structure data.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[156]

In Java, it is a common practice to use the JAXB libraries to create classes that are able
to serialize and deserialize XML data and construct XML documents through an API.

In a similar manner, the scalaxb library available for Scala can generate help classes
for working with XML and web services. As an example, let's consider a small XML
schema, Bookstore.xsd, that defines a set of books as part of a book store
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.books.org"
 xmlns="http://www.books.org"
 elementFormDefault="qualified">
 <xsd:element name="book_store">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="book" type="book_type"
 minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="book_type">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="author" type="xsd:string"/>
 <xsd:element name="date" minOccurs="0"
type="xsd:string"/>
 <xsd:element name="publisher" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="ISBN" type="xsd:string"/>
 </xsd:complexType>
</xsd:schema>

A typical book is defined by its title, author, date of publication, and ISBN number,
as shown in the following example:

<book ISBN="9781933499185">
 <title>Madame Bovary</title>
 <author>Gustave Flaubert</author>
 <date>1857</date>
 <publisher>Fonolibro</publisher>
</book>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[157]

There are several ways one can run scalaxb documented on the www.scalaxb.org
website: either directly as a command line tool, through plugins from SBT or Maven,
or as a web API hosted on heroku. Since we have essentially used SBT so far and
should be comfortable with it, let's use the SBT plugin to create the bindings.

First create a new SBT project entitled wssample by running the following commands
in a new terminal window:

> mkdir wssample

> cd wssample

> sbt

> set name:="wssample"

> session save

>

Now we need to add the scalaxb plugin dependency to a plugins.sbt file under
project/ (and at the same time we will add the sbteclipse plugin that enables us
to generate an Eclipse project out of the SBT project). The resulting plugins.sbt file
will look similar to the following code:

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" %
"2.4.0")

addSbtPlugin("org.scalaxb" % "sbt-scalaxb" % "1.1.2")

resolvers += Resolver.sonatypeRepo("public")

Additionally, we have to slightly modify the build.sbt file to notably include
a command that will generate scalaxb XML bindings when compiling with SBT.
The resulting build.sbt file will look similar to the following code:

import ScalaxbKeys._

name:="wssample"

scalaVersion:="2.10.2"

scalaxbSettings

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[158]

libraryDependencies += "net.databinder.dispatch" %% "dispatch-core" %
"0.11.0"

libraryDependencies += "org.scalatest" %% "scalatest" % "2.0.M7" %
"test"

sourceGenerators in Compile <+= scalaxb in Compile

packageName in scalaxb in Compile := "se.wssample"

Add the Bookstore.xsd schema shown previously to a new src/main/xsd
directory created within the project. From now on, each time you invoke the SBT
command > compile, scalaxb will generate some Scala classes under the target/
scala-2.10/src_managed directory (in the package given in the build.sbt file that
is, se.wssample), unless no changes have been made. For instance, in the case of our
small example, scalaxb generates the following case classes:

package se.wssample

case class Book_store(book: se.wssample.Book_type*)

case class Book_type(title: String,
 author: String,
 date: Option[String] = None,
 publisher: String,
 ISBN: Option[String] = None)

Note the * at the end of the first case class declaration, which is used to specify
varargs (that is, an unspecified number of arguments, so here the Book_store
constructor can take several Book_type instances). A possible test class illustrating
the usage of the generated code to parse an XML document is given in the
BookstoreSpec.scala class as follows:

package se.wssample

import org.scalatest._
import org.scalatest.matchers.Matchers

class BookstoreSpec extends FlatSpec with Matchers {
 "This bookstore" should "contain 3 books" in {

 val bookstore =
 <book_store xmlns="http://www.books.org">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[159]

 <book ISBN="9781933499185">
 <title>Madame Bovary</title>
 <author>Gustave Flaubert</author>
 <date>1857</date>
 <publisher>Fonolibro</publisher>
 </book>
 <book ISBN="9782070411207">
 <title>Le malade imaginaire</title>
 <author>Moliere</author>
 <date>1673</date>
 <publisher>Gallimard</publisher>
 </book>
 <book ISBN="1475066511">
 <title>Fables</title>
 <author>Jean de La Fontaine</author>
 <date>1678</date>
 <publisher>CreateSpace</publisher>
 </book>
 </book_store>

 val bookstoreInstance = scalaxb.fromXML[Book_store](bookstore)

 println("bookstoreInstance: "+ bookstoreInstance.book)

 bookstoreInstance.book.length should be === 3
 }
}

The expected output from this test when invoking the > sbt test command is
as follows:

bookstoreInstance: List(Book_type(Madame Bovary,Gustave Flaubert,Some(185
7),Fonolibro,Some(9781933499185)), Book_type(Le malade imaginaire,Molièr
e,Some(1673),Gallimard,Some(9782070411207)), Book_type(Fables,Jean de La
Fontaine,Some(1678),CreateSpace,Some(1475066511)))

[info] BookstoreSpec:

[info] This bookstore

[info] - should contain 3 books

[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0

[success] Total time: 4 s

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[160]

Running scalaxb from a SOAP web service
Since scalaxb supports the Web Services Description Language (WSDL), we can
also generate a full web service API in addition to the XML data-only related classes.
To achieve this functionality, we just need to copy our WSDL service description file
to src/main/wsdl. All the files with the .wsdl extension will be processed at compile
time by the scalaxb plugin that will create the following three types of output:

• The service API specific to your application.
• Classes specific to the SOAP protocol.
• Classes responsible for sending the SOAP messages to the endpoint URL via

HTTP. scalaxb uses the dispatch library that we introduced in Chapter 3,
Understanding the Scala Ecosystem. This is why we added it as a dependency
into the build.sbt file.

Let's take an online SOAP web service as a way to illustrate the usage of scalaxb
from a WSDL description. www.webservicex.net is a site that contains many
different samples of such web services in various market segments. Here, we will
focus on their Stock Quote service that returns quotes given by a stock symbol.
The API is very straightforward since it consists of only one request method,
getQuote, and the data it returns is limited in size. You might want to try any
other available service (later on as you can have multiple WSDL files in your
same project). Its WSDL description looks similar to the following code:

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions … // headers >
 <wsdl:types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://
www.webserviceX.NET/">
 <s:element name="GetQuote">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="symbol"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetQuoteResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
name="GetQuoteResult" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[161]

 <s:element name="string" nillable="true" type="s:string" />
 </s:schema>
 </wsdl:types>
 <wsdl:message name="GetQuoteSoapIn">
 <wsdl:part name="parameters" element="tns:GetQuote" />
 </wsdl:message>
 <wsdl:message name="GetQuoteSoapOut">
 <wsdl:part name="parameters" element="tns:GetQuoteResponse" />
 </wsdl:message>
 ...

The first part of the WSDL file contains the description of the XML schema.
The second part defines the various web service operations as follows:

 <wsdl:portType name="StockQuoteSoap">
 <wsdl:operation name="GetQuote">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/
wsdl/">Get Stock quote for a company Symbol</wsdl:documentation>
 <wsdl:input message="tns:GetQuoteSoapIn" />
 <wsdl:output message="tns:GetQuoteSoapOut" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:portType name="StockQuoteHttpGet">
 <wsdl:operation name="GetQuote">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/
wsdl/">Get Stock quote for a company Symbol</wsdl:documentation>
 <wsdl:input message="tns:GetQuoteHttpGetIn" />
 <wsdl:output message="tns:GetQuoteHttpGetOut" />
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="StockQuoteSoap12" type="tns:StockQuoteSoap">
 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"
/>
 <wsdl:operation name="GetQuote">
 <soap12:operation soapAction="http://www.webserviceX.NET/
GetQuote" style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[162]

Finally, the last part of the WSDL file defines the coupling between web service
operations and physical URLs:

 <wsdl:service name="StockQuote">
 …
 <wsdl:port name="StockQuoteSoap12" binding="tns:StockQuoteSoap12">
 <soap12:address location="http://www.webservicex.net/stockquote.
asmx" />
 </wsdl:port>
 …
 </wsdl:service>
</wsdl:definitions>

As you can see, the WSDL files are often pretty verbose, but the Scala contract
resulting from the scalaxb generation boils down to this one method trait:

// Generated by scalaxb.
package se.wssample

trait StockQuoteSoap {
 def getQuote(symbol: Option[String]): Either[scalaxb.Fault[Any],
se.wssample.GetQuoteResponse]
}

Notice how the resulting type is nicely wrapped into an Either class that represents
a value of one of the two possible types, Left and Right, where the Right object
corresponds to a successful invocation of the service whereas the Left object
contains a scalaxb.Fault value in case of failure, as we have briefly described
in Chapter 2, Code Integration.

Since the generated classes concerning the SOAP protocol and the HTTP
dispatch-related classes are not specific to the service we are defining, they can be
reused and therefore have been generated as stackable traits including data types and
interface, SOAP bindings, and full SOAP clients. A typical usage scenario of these
traits to invoke a SOAP web service is given in the following StockQuoteSpec.scala
test sample:

package se.wssample

import org.scalatest._
import org.scalatest.matchers.Matchers
import scala.xml.{ XML, PrettyPrinter }

class StockQuoteSpec extends FlatSpec with Matchers {
 "Getting a quote for Apple" should "give appropriate data" in {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[163]

 val pp = new PrettyPrinter(80, 2)

 val service =
 (new se.wssample.StockQuoteSoap12Bindings
 with scalaxb.SoapClients
 with scalaxb.DispatchHttpClients {}).service

 val stockquote = service.getQuote(Some("AAPL"))

 stockquote match {
 case Left(err) => fail("Problem with stockquote invocation")
 case Right(success) => success.GetQuoteResult match {
 case None => println("No info returned for that quote")
 case Some(x) => {
 println("Stockquote: "+pp.format(XML.loadString(x)))
 x should startWith ("<StockQuotes><Stock><Symbol>AAPL</
Symbol>")
 }
 }
 }
 }
}

In this example, once we have instantiated the service, we will just call the API
method service.getQuote(Some("AAPL")) for retrieving the stock quote of
the AAPL symbol (Apple, Inc). We then pattern match on the result to extract the
XML data out of the Either object that was returned by the service. Finally, since
the retrieved data is given as a string of XML, we parse it and format it for better
reading. We can execute the test using the following code to see what comes out of it:

> sbt

> test-only se.wssample.StockQuoteSpec

Stockquote: <StockQuotes>

 <Stock>

 <Symbol>AAPL</Symbol>

 <Last>553.13</Last>

 <Date>1/2/2014</Date>

 <Time>4:00pm</Time>

 <Change>-7.89</Change>

 <Open>555.68</Open>

 <High>557.03</High>

 <Low>552.021</Low>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[164]

 <Volume>8388321</Volume>

 <MktCap>497.7B</MktCap>

 <PreviousClose>561.02</PreviousClose>

 <PercentageChange>-1.41%</PercentageChange>

 <AnnRange>385.10 - 575.14</AnnRange>

 <Earns>39.75</Earns>

 <P-E>14.11</P-E>

 <Name>Apple Inc.</Name>

 </Stock>

</StockQuotes>

[info] StockQuoteSpec:

[info] Getting a quote for Apple

[info] - should give appropriate data

[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0

[success] Total time: 3 s

Working with XML and JSON
XML and JSON are the dominant formats to structure data that can be exchanged
between parts of a system such as backend-frontend or between external systems.
In Scala, there is some out-of-the-box support in the Scala library to manipulate both.

Manipulating XML
We have briefly seen earlier in this chapter as well as in Chapter 3, Understanding the
Scala Ecosystem, when working with HTTP that XML documents can be created as
literals and transformed in many ways. For instance, if we launch an REPL by typing
> play console from a Play project root directory, we can start experimenting
with XML:

scala> val books =

 <Library>

 <book title="Programming in Scala" quantity="15" price="30.00"
/>

 <book title="Scala for Java Developers" quantity="10"
price="25.50" />

 </Library>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[165]

books: scala.xml.Elem =

<Library>

 <book title="Programming in Scala" quantity="15" price="30.00"/>

 <book title="Scala for Java Developers" quantity="10" price="25.50"/>

</Library>

The books variable is of type Elem, which represents an XML structure. Rather than
directly writing an XML literal, we could also construct the XML Elem using utility
methods to parse a file or just parse a string, as follows:

scala> import scala.xml._

scala> val sameBooks = XML.loadString("""

 <Library>

 <book title="Programming in Scala" quantity="15"
price="30.00"/>

 <book title="Scala for Java Developers" quantity="10"
price="25.50"/>

 </Library>

 """)

sameBooks: scala.xml.Elem =

<Library>

<book price="30.00" quantity="15" title="Programming in Scala"/>

<book price="25.50" quantity="10" title="Scala for Java Developers"/>

</Library>

The triple quote used in the preceding command lets us express a preformatted
string where the characters are escaped (for example, the " within a regular string
would have been noted \").

Processing such an XML structure can, for example, consist of computing the total
price for the books. This operation can be achieved with a Scala for comprehension
leading to the following code:

scala> val total = (for {

 book <- books \ "book"

 price = (book \ "@price").text.toDouble

 quantity = (book \ "@quantity").text.toInt

 } yield price * quantity).sum

total: Double = 705.0

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[166]

Retrieving and transforming XML structures happens all the time when dealing with
the integration of diverse external systems. Accessing the various XML tags through
XPath expressions as we have done earlier is very handy and produces concise and
readable code. Programmatically, creating XML out of information exported from
Excel in the form of CSV data is also a common operation and can be achieved
as follows:

scala> val books =

 <Library>

 { List("Programming in Scala,15,30.00","Scala for Java
Developers,10,25.50") map { row => row split "," } map { b => <book
title={b(0)} quantity={b(1)} price={b(2)} /> }}

 </Library>

books: scala.xml.Elem =

<Library>

 <book title="Programming in Scala" quantity="15" price="30.00"/><book
title="Scala for Java Developers" quantity="10" price="25.50"/>

</Library>

Manipulating JSON
JSON is supported in the Scala library and you just need to import the appropriate
library. An example of some REPL usage is illustrated as follows:

scala> import scala.util.parsing.json._

import scala.util.parsing.json._

scala> val result = JSON.parseFull("""

 {

 "Library": {

 "book": [

 {

 "title": "Scala for Java Developers",

 "quantity": 10

 },

 {

 "title": "Programming Scala",

 "quantity": 20

 }

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[167]

 }

 }

 """)

result: Option[Any] = Some(Map(Library -> Map(book -> List(Map(title ->
Scala for Java Developers, quantity -> 10.0), Map(title -> Programming
Scala, quantity -> 20.0)))))

Any valid JSON message can be transformed into a structure made of Maps and
Lists. However, it is often desirable to create meaningful classes, that is, expressing
the business domain out of the JSON messages. The online service available at
http://json2caseclass.cleverapps.io does exactly that; it is a convenient JSON
to Scala case class converter. We can, for example, copy our preceding JSON message
into the Json paste text area and click on the Let's go! button to try it out as shown in
the following screenshot:

The converter produces the following output:

case class Book(title:String, quantity:Double)

case class Library(book:List[Book])

case class R00tJsonObject(Library:Library)

Among the very interesting features of case classes that we have already introduced in
Chapter 1, Programming Interactively within Your Project, is a decomposition mechanism
for pattern matching. Once JSON messages have been deserialized into case classes,
we can, for instance, manipulate them using this mechanism, as the sequence
of the following command illustrates:

scala> case class Book(title:String, quantity:Double)

defined class Book

scala> val book1 = Book("Scala for Java Developers",10)

book1: Book = Book(Scala for Java Developers,10.0)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[168]

scala> val book2 = Book("Effective Java",12)

book2: Book = Book(Effective Java,12.0)

scala> val books = List(book1,book2)

books: List[Book] = List(Book(Scala for Java Developers,10.0),
Book(Effective Java,12.0))

First, we defined two instances of books and put them into a list.

scala> def bookAboutScala(book:Book) = book match {

 case Book(a,_) if a contains "Scala" => Some(book)

 case _ => None

 }

bookAboutScala: (book: Book)Option[Book]

The method defined previously does pattern matching on the Book constructor,
which also contains a guard (that is, the if condition). Since we do not use the second
constructor parameter, we have put an underscore instead of creating an anonymous
variable. Calling this method on both the book instances that we defined earlier will
show the following result:

scala> bookAboutScala(book1)

res0: Option[Book] = Some(Book(Scala for Java Developers,10.0))

scala> bookAboutScala(book2)

res1: Option[Book] = None

We can mix case class pattern matching together with other patterns. Let's, for
instance, define the following regular expression (note the usage of the triple quotes
as well as the use of .r to specify that it is a regular expression):

scala> val regex = """(.*)(Scala|Java)(.*)""".r

regex: scala.util.matching.Regex = (.*)(Scala|Java)(.*)

This regular expression will match any string that contains either Scala or Java.

scala> def whatIs(that:Any) = that match {

 case Book(t,_) if (t contains "Scala") =>

 s"${t} is a book about Scala"

 case Book(_,_) => s"$that is a book "

 case regex(_,word,_) => s"$that is something about ${word}"

 case head::tail => s"$that is a list of books"

 case _ => "You tell me !"

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[169]

whatIs: (that: Any)String

We can now try out this method on a number of different inputs and observe
the result:

scala> whatIs(book1)

res2: String = Scala for Java Developers is a book about Scala

scala> whatIs(book2)

res3: String = "Book(Effective Java,12.0) is a book "

scala> whatIs(books)

res4: String = List(Book(Scala for Java Developers,10.0), Book(Effective
Java,12.0)) is a list of books

scala> whatIs("Scala pattern matching")

res5: String = Scala pattern matching is something about Scala

scala> whatIs("Love")

res6: String = You tell me !

Using Play JSON
There are many alternative libraries one can use to manipulate JSON in addition
to the default implementation of the Scala library. In addition to the ones built on
top of the known Java libraries such as Jerkson (built on top of Jackson) and other
known implementations such as sjson, json4s, or Argonaut (functional programming
oriented), many web frameworks have created their own including lift-json,
spray-json, or play-json. Since in this book we are mostly covering the Play
Framework to build web applications, we are going to focus on the play-json
implementation. Note that play-json can also be run as standalone since it consists
of a single jar without other dependencies to Play. Running an REPL console from
within a Play project already includes the play-json dependency so that we can
directly experiment with it in a console terminal window.

If you want to run the following samples into an REPL different from
the Play console (for instance, a regular SBT project or a Typesafe
activator project) then you will have to add the following dependency
to your build.sbt file:
libraryDependencies += "com.typesafe.play" %% "play-
json" % "2.2.1"

scala> import play.api.libs.json._

import play.api.libs.json._

scala> val books = Json.parse("""

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[170]

 {

 "Library": {

 "book": [

 {

 "title": "Scala for Java Developers",

 "quantity": 10

 },

 {

 "title": "Programming Scala",

 "quantity": 20

 }

]

 }

 }

 """)

books: play.api.libs.json.JsValue = {"Library":{"book":[{"title":
"Scala for Java Developers","quantity":10},{"title":"Programming
Scala","quantity":20}]}}

The JsValue type is the super type of the other JSON data types included in
play-json and is listed as follows:

• JsNull to represent a null value
• JsString, JsBoolean, and JsNumber to describe strings, booleans,

and numbers respectively: numbers include short, int, long, float, double,
and BigDecimal as seen in the following commands:
scala> val sfjd = JsString("Scala for Java Developers")

sfjd: play.api.libs.json.JsString = "Scala for Java Developers"

scala> val qty = JsNumber(10)

qty: play.api.libs.json.JsNumber = 10

• JsObject represents a set of name/value pairs as follows:
scala> val book1 = JsObject(Seq("title"->sfjd,"quantity"->qty))

book1: play.api.libs.json.JsObject = {"title":"Scala for Java
Developers","quantity":10}

scala> val book2 = JsObject(Seq("title"->JsString("Programming in
Scala"),"quantity"->JsNumber(15)))

book2: play.api.libs.json.JsObject = {"title":"Programming in
Scala","quantity":15}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[171]

• JsArray represents a sequence of any JSON value types (which can be
heterogenous, that is, of different types):

scala> val array =

 JsArray(Seq(JsString("a"),JsNumber(2),JsBoolean(true)))

array: play.api.libs.json.JsArray = ["a",2,true]

Programmatically, creating a JSON Abstract Syntax Tree (AST) equivalent to our list
of books can therefore be expressed as follows:

scala> val books = JsObject(Seq(

 "books" -> JsArray(Seq(book1,book2))

))

books: play.api.libs.json.JsObject = {"books":[{"title":"Scala
for Java Developers","quantity":10},{"title":"Programming in
Scala","quantity":15}]}

Play has recently been enhanced to provide a slightly simpler syntax when creating
the JSON structure we have just described. The alternative syntax to construct the
same JSON object is given as follows:

scala> val booksAsJson = Json.obj(

 "books" -> Json.arr(

 Json.obj(

 "title" -> "Scala for Java Developers",

 "quantity" -> 10

),

 Json.obj(

 "title" -> "Programming in Scala",

 "quantity" -> 15

)

)

)

booksAsJson: play.api.libs.json.JsObject = {"books":[{"title":"Scala
for Java Developers","quantity":10},{"title":"Programming in
Scala","quantity":15}]}

Serializing the JsObject to its string representation can be achieved with the
following statement:

scala> val booksAsString = Json.stringify(booksAsJson)

booksAsString: String = {"books":[{"title":"Scala for Java Developers","q
uantity":10},{"title":"Programming in Scala","quantity":15}]}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[172]

Finally, since a JsObject object represents a tree structure, you can navigate
within the tree by using XPath expressions to retrieve various elements, such as
the following example to access the titles of both our books:

scala> val titles = booksAsJson \ "books" \\ "title"

titles: Seq[play.api.libs.json.JsValue] = ArrayBuffer("Scala for Java
Developers", "Programming in Scala")

As the return type is a sequence of JsValue objects, it can be useful to convert
them into Scala types and the .as[…] method would be convenient to achieve that:

scala> titles.toList.map(x=>x.as[String])

res8: List[String] = List(Scala for Java Developers, Programming in Scala)

Handling Play requests with XML and
JSON
Now that we are familiar with the JSON and XML formats, we can start using them
to handle HTTP requests and responses in the context of a Play project.

To exhibit these behaviors, we are going to call an online web service, the iTunes
media library, which is available and documented at http://www.apple.com/
itunes/affiliates/resources/documentation/itunes-store-web-service-
search-api.html.

It returns JSON messages on search invocations. We can, for instance, call the API
with the following URL and parameters:

https://itunes.apple.com/search?term=angry+birds&country=se&entity=so
ftware

The term parameter filters every item in the library that has to do with Angry Birds
and the entity parameter retains only software items. We also apply an additional
filter to query only the Swedish App Store.

If you don't have it already in your build.sbt file, you may need to
add the dispatch dependency at this point, the same way we did while
working with HTTP in Chapter 3, Understanding the Scala Ecosystem:
libraryDependencies += "net.databinder.dispatch" %%
"dispatch-core" % "0.11.0"

scala> import dispatch._

import dispatch._

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[173]

scala> import Defaults._

import Defaults._

scala> val request = url("https://itunes.apple.com/search")

request: dispatch.Req = Req(<function1>)

Parameters that will be part of our GET method call can be expressed as
(key,value) tuples in a Scala Map:

scala> val params = Map("term" -> "angry birds", "country" -> "se",
"entity" -> "software")

params: scala.collection.immutable.Map[String,String] = Map(term -> angry
birds, country -> se, entity -> software)

scala> val result = Http(request <<? params OK as.String).either

result: dispatch.Future[Either[Throwable,String]] = scala.concurrent.
impl.Promise$DefaultPromise@7a707f7c

The type of result in this case is Future[Either[Throwable,String]], which
means we can extract a successful invocation as well as a failed execution by pattern
matching as follows:

scala> val response = result() match {

 case Right(content)=> "Answer: "+ content

 case Left(StatusCode(404))=> "404 Not Found"

 case Left(x) => x.printStackTrace()

 }

response: Any =

"Answer:

{

 "resultCount":50,

 "results": [

{"kind":"software", "features":["gameCenter"],

"supportedDevices":["iPhone5s", "iPad23G", "iPadThirdGen",
"iPodTouchThirdGen", "iPadFourthGen4G", "iPhone4S", "iPad3G", "iPhone5",
"iPadWifi", "iPhone5c", "iPad2Wifi", "iPadMini", "iPadThirdGen4G",
"iPodTouchourthGen", "iPhone4", "iPadFourthGen", "iPhone-3GS",
"iPodTouchFifthGen", "iPadMini4G"], "isGameCenterEnabled":true,
"artistViewUrl":"https://itunes.apple.com/se/artist/rovio-entertainment-
ltd/id298910979?uo=4", "artworkUrl60":"http://a336.phobos.apple.com/us/
r30/Purple2/v4/6c/20/98/6c2098f0-f572-46bb-f7bd-e4528fe31db8/Icon.png",

"screenshotUrls":["http://a2.mzstatic.com/eu/r30/Purple/v4/c0/eb/59/
c0eb597b-a3d6-c9af-32a7-f107994a595c/screen1136x1136.jpeg", "http://
a4.mzst...

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[174]

Mocking Play responses with JSON
Whenever you need to integrate your services with external systems that you do
not own or that are not available until you deploy them in production, it can be
cumbersome to test the interaction of messages that are sent and received.
An efficient way to avoid calling a real service is to replace it with mock messages,
that is, hardcoded responses that will cut short the real interaction, especially if
you need to run your tests as part of an automated process (for instance, daily as
a Jenkins job). Returning a plain JSON message from within a Play controller is
very straightforward, as the following example illustrates:

package controllers

import play.api.mvc._
import play.api.libs.json._
import views._

object MockMarketplaceController extends Controller {

 case class AppStoreSearch(artistName: String, artistLinkUrl: String)
 implicit val appStoreSearchFormat = Json.format[AppStoreSearch]

 def mockSearch() = Action {
 val result = List(AppStoreSearch("Van Gogh", " http://www.
vangoghmuseum.nl/"), AppStoreSearch("Monet", " http://www.
claudemonetgallery.org "))
 Ok(Json.toJson(result))
 }
}

The Json.format[. . .] declaration that involves Reads, Writes, and Format will
be explained later on in this section when we invoke web services, so we can skip
discussing that part for the moment.

To try out this controller, you can either create a new Play project, or, as we did
before, just add this controller to the application we generated out of an existing
database in the last section of Chapter 6, Database Access and the Future of ORM.
You also need to add a route to the route file under conf/ as follows:

GET /mocksearch controllers.MockMarketplaceController.mockSearch

Once the app is running, accessing the http://localhost:9000/mocksearch URL
in a browser will return the following mock JSON message:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[175]

Another convenient way to obtain a JSON test message that you can use to mock a
response is to use the online service found at http://json-generator.appspot.
com. It consists of a JSON generator that we can use as it is by simply clicking on
the Generate button. By default, it will generate a JSON sample including random
data in the panel to the right of the browser window, but adhering to the structure
defined in the panel to the left, as illustrated in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[176]

You can click on the Copy to clipboard button and paste the resulting mock message
directly into the response of the Play controller.

Calling web services from Play
In the previous section, to quickly experiment with the App Store search API,
we have used the dispatch library; we have already introduced this library in
Chapter 3, Understanding the Scala Ecosystem. Play provides its own HTTP library to
be able to interact with other online web services. It is also built on top of the Java
AsyncHttpClient library (https://github.com/AsyncHttpClient/async-http-
client), as dispatch is.

Before we dive into invoking REST web services from Play controllers, let's
experiment a little bit with Play web services from the REPL. In a terminal window,
either create a new Play project or go to the root directory of the one we have used
in the previous sections. Once you get a Scala prompt after having typed the > play
console command, enter the following commands:

scala> import play.api.libs.ws._

import play.api.libs.ws._

scala> import scala.concurrent.Future

import scala.concurrent.Future

Since we are going to invoke a web service asynchronously, we need an execution
context to handle the Future placeholder:

scala> implicit val context = scala.concurrent.ExecutionContext.
Implicits.global

context: scala.concurrent.ExecutionContextExecutor = scala.concurrent.
impl.ExecutionContextImpl@44d8bd53

We can now define a service URL that needs to be called. Here, we will take a simple
web service that returns the geographic location of a site given as a parameter,
according to the following signature:

http://freegeoip.net/{format}/{site}

The format parameter can either be json or xml, and the site will be a reference
to a website:

scala> val url = "http://freegeoip.net/json/www.google.com"

url: String = http://freegeoip.net/json/www.google.com

scala> val futureResult: Future[String] = WS.url(url).get().map {

 response =>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[177]

 (response.json \ "region_name").as[String]

 }

futureResult: scala.concurrent.Future[String] = scala.concurrent.impl.
Promise$DefaultPromise@e4bc0ba

scala> futureResult.onComplete(println)

Success(California)

As we saw earlier in Chapter 3, Understanding the Scala Ecosystem, when working
with the dispatch library, a Future is a placeholder that contains the result of
an asynchronous computation and can be in two states, either completed or not.
Here, we want to print the result once it is available.

We have only extracted the region_name item from the response; the whole JSON
document is as follows:

{
 "ip":"173.194.64.106",
 "country_code":"US",
 "country_name":"United States",
 "region_code":"CA",
 "region_name":"California",
 "city":"Mountain View",
 "zipcode":"94043",
 "latitude":37.4192,
 "longitude":-122.0574,
 "metro_code":"807",
 "areacode":"650"
}

We can encapsulate part of the response if we want to by creating a case class
as follows:

scala> case class Location(latitude:Double, longitude:Double,
region:String, country:String)

defined class Location

The play-json library includes support to read/write JSON structures via Reads/
Writes/Format combinators based on JsPath so that validation can be made on
the fly. If you are interested in all the details behind the use of these combinators,
you may want to read through the blog at http://mandubian.com/2012/09/08/
unveiling-play-2-dot-1-json-api-part1-jspath-reads-combinators/.

scala> import play.api.libs.json._

import play.api.libs.json._

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[178]

scala> import play.api.libs.functional.syntax._

import play.api.libs.functional.syntax._

scala> implicit val locationReads: Reads[Location] = (

 (__ \ "latitude").read[Double] and

 (__ \ "longitude").read[Double] and

 (__ \ "region_name").read[String] and

 (__ \ "country").read[String]

)(Location.apply _)

locationReads: play.api.libs.json.Reads[Location] = play.api.libs.json.
Reads$$anon$8@4a13875b

locationReads: play.api.libs.json.Reads[Location] = play.api.libs.json.
Reads$$anon$8@5430c881

Now, invoking the validate method on the JSON response will verify that the data
we receive is well-formed and with acceptable values.

scala> val futureResult: Future[JsResult[Location]] = WS.url(url).get().
map {

 response => response.json.validate[Location]

 }

futureResult: scala.concurrent.Future[play.api.libs.
json.JsResult[Location]] = scala.concurrent.impl.
Promise$DefaultPromise@3168c842

scala> futureResult.onComplete(println)

Success(JsError(List((/country,List(ValidationError(error.path.
missing,WrappedArray()))))))

The previous JsError object illustrates a validation that failed; it detected that
the country element is not found in the response. In fact, the correct spelling is
country_name instead of country, which we can correct in our locationReads
declaration. This time validation goes through and what we get as a response is a
JsSuccess object containing the latitude and longitude information as we expect it:

scala> implicit val locationReads: Reads[Location] = (

 (__ \ "latitude").read[Double] and

 (__ \ "longitude").read[Double] and

 (__ \ "region_name").read[String] and

 (__ \ "country_name").read[String]

)(Location.apply _)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[179]

locationReads: play.api.libs.json.Reads[Location] = play.api.libs.json.
Reads$$anon$8@70aab9ed

scala> val futureResult: Future[JsResult[Location]] = WS.url(url).get().
map {

 response => response.json.validate[Location]

 }

futureResult: scala.concurrent.Future[play.api.libs.
json.JsResult[Location]] = scala.concurrent.impl.
Promise$DefaultPromise@361c5860

scala> futureResult.onComplete(println)

scala> Success(JsSuccess(Location(37.4192,-122.0574,California,United
States),))

Now, let's create a sample controller that invokes a web service to retrieve some
data from the App Store:

package controllers

import play.api._
import play.api.mvc._
import play.api.libs.ws.WS
import scala.concurrent.ExecutionContext.Implicits.global
import play.api.libs.json._
import play.api.libs.functional.syntax._
import scala.concurrent.Future
import views._
import models._

object MarketplaceController extends Controller {

 val pageSize = 10
 val appStoreUrl = "https://itunes.apple.com/search"

 def list(page: Int, orderBy: Int, filter: String = "*") = Action.
async { implicit request =>
 val futureWSResponse =
 WS.url(appStoreUrl)
 .withQueryString("term" -> filter, "country" -> "se", "entity"
-> "software")
 .get()

 futureWSResponse map { resp =>
 val json = resp.json

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[180]

 val jsResult = json.validate[AppResult]
 jsResult.map {
 case AppResult(count, res) =>
 Ok(html.marketplace.list(
 Page(res,
 page,
 offset = pageSize * page,
 count),
 orderBy,
 filter))
 }.recoverTotal {
 e => BadRequest("Detected error:" + JsError.toFlatJson(e))
 }
 }
 }
}

Here, the call to the web service is illustrated by invoking methods on the WS class,
first the url method giving the URL, then the withQueryString method with
input parameters given as a sequence of key->value pairs. Notice that the returned
type is a Future, meaning our web service is asynchronous. recoverTotal takes
a function that will return a default value after managing the error. The line json.
validate[AppResult] makes the JSON response validated against an AppResult
object that is specified here (as part of a Marketplace.scala file in
app/models/ folder):

package models

import play.api.libs.json._
import play.api.libs.functional.syntax._

case class AppInfo(id: Long, name: String, author: String,
authorUrl:String,
 category: String, picture: String, formattedPrice: String, price:
Double)
object AppInfo {
 implicit val appInfoFormat = (
 (__ \ "trackId").format[Long] and
 (__ \ "trackName").format[String] and
 (__ \ "artistName").format[String] and
 (__ \ "artistViewUrl").format[String] and
 (__ \ "primaryGenreName").format[String] and
 (__ \ "artworkUrl60").format[String] and
 (__ \ "formattedPrice").format[String] and

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[181]

 (__ \ "price").format[Double])(AppInfo.apply, unlift(AppInfo.
unapply))
}

case class AppResult(resultCount: Int, results: Array[AppInfo])
object AppResult {
 implicit val appResultFormat = (
 (__ \ "resultCount").format[Int] and
 (__ \\ "results").format[Array[AppInfo]])(AppResult.apply,
unlift(AppResult.unapply))
}

The AppResult and AppInfo case classes are created to encapsulate the elements that
we care about for our service. As you may have seen when first experimenting with
the API, most of the search queries to the App Store return a large amount of elements,
most of which we may not need. This is why, using some Scala syntactic sugar with
combinators, we can validate the JSON response on the fly and directly extract the
elements of interest. Before trying out this web service call, we just need to add the
needed route to the routes file under conf/, as shown in the following code:

GET /marketplace controllers.MarketplaceController.list(p:Int ?= 0,
s:Int ?= 2, f ?= "*")

Finally, before launching the application in a web browser, we also need the
sample view that is referred to in the MarketplaceController.scala file by
html.marketplace.list and created in a list.scala.html file under views/
marketplace/ in several parts as shown in the following code:

@(currentPage: Page[AppInfo], currentOrderBy: Int, currentFilter:
String)(implicit flash: play.api.mvc.Flash)
...
@main("Welcome to Play 2.0") {

<h1>@Messages("marketplace.list.title", currentPage.total)</h1>

@flash.get("success").map { message =>
<div class="alert-message warning">
 Done! @message
</div>
}
<div id="actions">

 @helper.form(action=routes.MarketplaceController.list()) { <input
 type="search" id="searchbox" name="f" value="@currentFilter"
 placeholder="Filter by name..."> <input type="submit"

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[182]

 id="searchsubmit" value="Filter by name" class="btn primary">
 }
</div>
...

The first part of the view only consists of helper methods to navigate and is generated
the same way as we did for the CRUD sample generation in Chapter 6, Database Access
and the Future of ORM. The second part of the view includes the JSON elements we
have retrieved from the web service:

...
@Option(currentPage.items).filterNot(_.isEmpty).map { entities =>
<table class="computers zebra-striped">
 <thead>
 <tr>
 @header(2, "Picture")
 @header(4, "Name")
 @header(5, "Author")
 @header(6, "IPO")
 @header(7, "Category")
 @header(8, "Price")
 </tr>
 </thead>
 <tbody>
 @entities.map{ entity =>
 <tr>
 <td>
 <img
 src="@entity.picture"
 width="60" height="60" alt="image description" />
 </td>
 <td>@entity.name</td>
 <td>@
entity.author</td>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[183]

 <td>@entity.category</td>
 <td>@entity.formattedPrice</td>
 </tr>
 }
 </tbody>
</table>
...

The third and final part of the view is handling pagination:

...
<div id="pagination" class="pagination">

 @currentPage.prev.map { page =>
 <li class="prev">← Previous
 }.getOrElse {
 <li class="prev disabled"><a>← Previous }
 <li class="current"><a>Displaying @(currentPage.offset + 1)
 to @(currentPage.offset + entities.size) of @currentPage.
total
 @currentPage.next.map { page =>
 <li class="next">Next →
 }.getOrElse {
 <li class="next disabled"><a>Next → }

</div>
}.getOrElse {
<div class="well">
 Nothing to display
</div>
} }

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Integration and Web Services

[184]

Once we re-launch the Play app with > play run and access (through a web
browser) our local http://localhost:9000/marketplace?f=candy+crush URL
that includes a default search from the App Store (the f parameter stands for
filter), we will obtain a page similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[185]

Summary
In this chapter, we saw some examples on how to manipulate the XML and JSON
formats in Scala and how to connect to other systems via web services. In the case of
XML, we also covered how to generate SOAP bindings out of a WSDL description
as well as Scala classes to encapsulate the XML domain included in an XML schema.
Web services in the Play Framework run asynchronously, which means that the
caller is not waiting for the answer to come back before he continues to do other
useful processing (such as serving other requests). In the next chapter, we are going
to study this notion of asynchronous invocations more precisely. It is based on the
concepts of Future and Promise that are also emerging in the Java world to deal
with the execution of concurrent code. In particular, we will go through the Akka
framework, an open source toolkit and runtime simplifying the construction of
concurrent applications. Designed and written in Scala, Akka contains both Scala
and Java APIs and is the basis of the Play Framework infrastructure that makes
the Play Framework an ideal candidate for running scalable web applications on
multicore architectures.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of
Modern Applications –

Asynchrony and Concurrency
Availability and performance are two words that often characterize the requirements
found behind most commercial software. As the volume of processed information
continues to grow together with the rise of social networks and added complexity
of online services, web servers are now increasingly confronted with heavy loads
and higher numbers of concurrent requests. In this chapter, we will explore different
ways to deal with better performance and scalability by covering the following
topics:

• The Async library, a new way to simplify asynchronous code, including
examples of web services composition

• Akka, a toolkit and runtime that simplifies the building of concurrent,
distributed, and fault-tolerant applications based on the actor paradigm

The pillars of Concurrency
Concurrency and asynchrony are the techniques that most programming languages
use to enhance response time and scalability, and Java is no exception. Asynchronous
method calls is a technique by which the caller of a potentially time-consuming
computation does not wait for a response, but rather continues to proceed with
other code while the computation is ongoing. The caller will be notified once
running has completed, receiving notification of either a successful result or a
failure message.

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[188]

The traditional way to deal with asynchronous code in Java has mostly been through
the registration of callbacks, that is, placeholders that are called upon completion.
Complexity tends to increase when working with asynchronous code as the sequence
of execution is not deterministic, that is, the order of execution is not guaranteed.
Executing code concurrently is, therefore, more difficult to test since it may not
produce the same result on successive invocations. Furthermore, as callbacks are not
composable (which means that they can't be chained and combined in a flexible way),
it can be cumbersome to mix several asynchronous computations together to achieve
more advanced scenarios, resulting in the well-known problem of callback hell when
such projects increase in size (cases where the complexity is at such a high level that
it is difficult to maintain and guarantee the proper execution of a piece of code).

Concurrency is also encountered when code is executed on multiple cores. Recent
hardware architectures are now embedding several cores into the same machine as
a way to continue achieving better performance when the minimal physical size of
transistors has been reached.

Another consequence of dealing with concurrent code is that multiple threads of
execution can get into conflicts when trying to access the same resources. Mutable
state in a program, which is not protected against shared access, has a higher risk
of being incorrect. Making sure that the concurrent code executes correctly often
comes at the cost of increased complexity. Java thread synchronization mechanisms,
for example, using locks, have led to solutions that are difficult to understand and
maintain.

The functional approach of Scala striving for immutability is a first step towards
easier concurrency. Scala Improvement Process (SIP), which can be seen as the
equivalent to the Java JSR process in Scala, has proposed an SIP concerning SIP-14-
Futures and Promises. These notions are not new as they have already been used in
many other languages when writing concurrent code, but the new proposal tries
to merge the various Scala implementations of Futures.

Futures and Promises are objects through which you can later
retrieve the result of some asynchronous execution after it
finishes. To learn more, visit http://en.wikipedia.org/
wiki/Futures_and_promises.

As stated in SIP-14-Futures and Promises:

Futures provide a nice way to reason about performing many operations in
parallel—in an efficient and non-blocking way.

From this proposal, an implementation has been created, which is now the basis of
many Scala libraries that deal with concurrent and asynchronous code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[189]

The Async library – SIP-22-Async
In Chapter 7, Working with Integration and Web Services, we have briefly seen how to
call asynchronous web services that return a Future object. The aim of Async is to
simplify asynchronous code by providing a couple of powerful constructs to deal
with asynchronous code blocks and, in particular, combining several such blocks.
It consists of only two constructs:

• async { <expression> }: In this construct, <expression> is the code to
be executed asynchronously.

• await { <expression returning a Future> }: This construct is included
in an async block. It suspends the execution of the enclosing async block
until the argument Future is completed.

An interesting characteristic of the whole async/await mechanism is that it is totally
nonblocking. Although it is not really required to understand how async/await
works, the exact signature of the two methods async[] and await[] are given for
reference, as follows:

def async[T](body: => T) : Future[T]
def await[T](future:Future[T]):T

T refers to arbitrary types (such as Int or String) or container types (such as List
or Map), which is how we describe generic types in Scala. Although we will not cover
too much programming with generic types, which has already been extensively
described in other books such as Programming in Scala, Artima by Martin Odersky,
Lex Spoon and Bill Venners, it is important to understand that they exist and they
form part of the core of the Scala language.

To better understand what Async is all about, we will use the examples that we can
run in the REPL. Create a new Play project by running the command > play new
ch8samples and choose, of course, Scala as the language used for the project.
Once the project is created, add the Async library as a dependency by adding one
line inside the build.sbt file, which now looks like the following lines:

name := "ch8samples"

version := "1.0-SNAPSHOT"

libraryDependencies ++= Seq(

 jdbc,

 anorm,

 cache,

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[190]

 "org.scala-lang.modules" %% "scala-async" % "0.9.0"

)

play.Project.playScalaSettings

We can run the REPL console, as usual, in a terminal window by entering the
following command from the root directory of the project:

> play console

First, we need to perform some imports, which are as shown in the following
command lines:

scala> import scala.async.Async.{async, await}

import scala.async.Async.{async, await}

scala> import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.ExecutionContext.Implicits.global

Similarly, for a thread pool, an execution context is needed to handle how and when
the asynchronous computation should be executed.

Second, we can specify an asynchronous computation by enclosing the computation
into an async block:

scala> val computation = async { 3 * 2 }

computation: scala.concurrent.Future[Int] = scala.concurrent.impl.
Promise$DefaultPromise@545c484c

scala> computation.value

res0: Option[scala.util.Try[Int]] = Some(Success(6))

As you can see that the type of the result is Option[scala.util.Try[Int]], recollect
the brief discussion on the Try class in Chapter 2, Code Integration. We learned that
it builds upon an Either class that can take the value Success or Failure that
corresponds respectively to the Left and Right values of the Either class.

In our case, the computation was quite immediate and resulted in the success
value of 6.

Let us make the computation that takes a longer time (for example, 10 seconds),
as shown in the following command lines:

scala> val longComputation = async { Thread.sleep(10000); 3*2 }

longComputation: scala.concurrent.Future[Int] = scala.concurrent.impl.
Promise$DefaultPromise@7b5ab834

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[191]

Also, during those 10 seconds, we access its result value:

scala> longComputation.value

res1: Option[scala.util.Try[Int]] = None

We will get the answer None, which is what we expect, as the computation is not
completed yet.

If we wait for 10 seconds and perform the same query again, we'll get our result:

scala> longComputation.value

res2: Option[scala.util.Try[Int]] = Some(Success(6))

Note that once a Future is completed and given a value, it cannot be modified.

An alternative to polling for the result is to be informed or execute some code
when the Future is completed. We can do that by invoking the onComplete method,
immediately after rerunning our computation, as follows:

scala> val longComputation = async { Thread.sleep(10000); 3*2 }

longComputation: scala.concurrent.Future[Int] = scala.concurrent.impl.
Promise$DefaultPromise@1c6b985a

scala> longComputation.onComplete(println)

scala> (no immediate result)

In other words, while the computation is not finished, we can proceed executing
other statements:

scala> val hello = "Hello"

Eventually, we will see the value 6 on the screen, once the time of 10 seconds elapses:

scala> Success(6)

So far, we've seen that the async method performs the same way as the future
method, which is part of the scala.concurrent package; for this reason, we could
just replace async with future.

The preferred way is to use async in conjunction with await. The await method
is taking a Future object as an input argument. It wraps the rest of the async,
blocks in a closure and passes it as a callback on completion of the Future object
we're waiting on (the one we passed as argument). Although await will wait for the
invoked Future object until it is completed, the whole async/await execution is
nonblocking, which means we can compose the Future objects in
a totally nonblocking way.

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[192]

Let's illustrate composing two computations where the input of one depends on
the output of the other. A typical example is the invocation of two web services to
query a weather forecast service: one that returns our current geo location and the
other that needs our position (coordinates or the city name). The following lines of
command explain the invocation:

scala> import play.api.libs.json._

import play.api.libs.json._

scala> import play.api.libs.ws._

import play.api.libs.ws._

scala> import play.api.libs.functional.syntax._

import play.api.libs.functional.syntax._

scala> import scala.util.{Success, Failure}

import scala.util.{Success, Failure}

scala> val locationURL = "http://freegeoip.net/xml/www.aftonbladet.se"

locationURL: String = http://freegeoip.net/xml/www.aftonbladet.se

scala> val futureLocation = WS.url(locationURL).get().map { response =>

 (response.xml \ "City").text

 }

futureLocation: scala.concurrent.Future[String] = scala.concurrent.impl.
Promise$DefaultPromise@6039c183

Wait for a couple of seconds to make sure that the web service Future gets
completed, then press Enter; you'll see the following result:

scala> val location = futureLocation.value

location: Option[scala.util.Try[String]] = Some(Success(Stockholm))

The first service returns the XML text where we extracted only the City element.

Now, let's try a second service from the http://openweathermap.org website,
a useful resource for testing web service code in general. The following web service
call returns the weather as a JSON message, given a particular location (we will
use a hardcoded Paris city here to first experiment with this service alone without
composing the two services):

scala> val weatherURL = "http://api.openweathermap.org/data/2.5/
weather?q="

weatherURL: String = http://api.openweathermap.org/data/2.5/weather?q=

scala> val futureWeather = WS.url(weatherURL+"Paris").get().map{ response
=>

 response.json

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[193]

 }

futureWeather: scala.concurrent.Future[play.api.libs.json.JsValue] =
scala.concurrent.impl.Promise$DefaultPromise@4dd5dc9f

Wait for a couple of seconds to make sure that the web service Future gets
completed, then enter the following statement:

scala> val weather = futureWeather.value

weather: Option[scala.util.Try[play.api.libs.json.JsValue]] = Some(Succes
s({"coord":{"lon":2.35,"lat":48.85},
"sys":{"message":0.0052,"country":"FR","sunrise":1389166933,
"sunset":1389197566},"weather":[{"id":803,"main":"Clouds",
"description":"broken clouds","icon":"04n"}],
"base":"cmc stations","main":{"temp":284.36,"pressure":1013,
"temp_min":284.15,"temp_max":284.82,"humidity":86},
"wind":{"speed":5.37,"deg":193},"clouds":{"all":80},
"dt":1389221871,"id":2988507,"name":"Paris","cod":200}))

Combining web services
We are now ready to combine two services using async/await.

Let's copy and paste the following lines at once in the REPL. To do this, we can use the
convenient :paste command of the REPL, as shown in the following command lines:

scala> :paste

// Entering paste mode (ctrl-D to finish)

val futureLocation =

 WS.url(locationURL).get().map(resp => (resp.xml \ "City").text)

val futureWeather2 = async {

 await(WS.url(weatherURL+await(futureLocation)).get()).body

}

futureWeather2.onComplete(println)

// once the block is copied from somewhere using ctrl-C/ctrl-D, press
ctrl-D

// Exiting paste mode, now interpreting.

futureLocation: scala.concurrent.Future[String] = scala.concurrent.impl.
Promise$DefaultPromise@1e111066

futureWeather2: scala.concurrent.Future[String] = scala.concurrent.impl.
Promise$DefaultPromise@724ba7f5

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[194]

scala> Success({"coord":{"lon":18.06,"lat":59.33},
"sys":{"message":0.0251,"country":"SE",
"sunrise":1395808197,"sunset":1395854197},
"weather":[{"id":800,"main":"Clear",
"description":"Sky is Clear","icon":"01d"}],
"base":"cmc stations","main":{"temp":277.29,
"pressure":1028,"humidity":69,"temp_min":276.15,"temp_max":278.15},
"wind":{"speed":5.1,"deg":60},"rain":{"3h":0},
"clouds":{"all":0},"dt":1395852600,"id":2673730,
"name":"Stockholm","cod":200}
)

What happens in this code is that the await construct ensures that the location
city will be available to the weather service.

Combining services without await
If we do not put an await method around the futureLocation web service call
while defining the futureWeather2 variable, we get a different answer. This is
because, in such a case, the Future object that contains the location service answer
is not yet populated when querying for the weather service. You can verify this
behavior by copying and pasting the three following statements at once into the
REPL (assuming the locationURL variable is still valid, it was created earlier
while introducing the location service):

scala> :paste

// Entering paste mode (ctrl-D to finish)

val futureLocation =

 WS.url(locationURL).get().map(resp => (resp.xml \ "City").text)

val futureWeather2 = async {

 await(WS.url(weatherURL + futureLocation).get()).body

}

futureWeather2.onComplete(println)

// once the block is copied from somewhere using ctrl-C/ctrl-D, press
ctrl-D

// Exiting paste mode, now interpreting.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[195]

futureLocation: scala.concurrent.Future[String] = scala.concurrent.impl.
Promise$DefaultPromise@705a7c28

futureWeather2: scala.concurrent.Future[String] = scala.concurrent.impl.
Promise$DefaultPromise@448d5fb8

scala> Success({"message":"Error: Not found city","cod":"404"}

)

This time, the output shows that the city was not entered correctly into the
weather service.

Getting started with Akka
Akka is a toolkit to simplify writing concurrent and distributed applications, tasks
that can be complex to achieve, as we described at the beginning of this chapter.
As Akka is largely documented both by a number of books as well as extensive
online documentation, our goal here is mostly to experiment with the technology.
We will see how to elegantly write Scala code to solve problems that might otherwise
be error-prone and hard to understand if written in more conventional ways such
as thread synchronization and other languages such as Java. Akka is written in
Scala, but provides to both Java and Scala APIs.

Understanding the Actor model
Akka relies on the Actor paradigm to create concurrent applications. The Actor
model has already been introduced decades ago in the original paper of Carl Hewitt,
Peter Bishop, and Richard Steiger entitled A Universal Modular Actor Formalism for
Artificial Intelligence, 1973, IJCAI. Erlang is an example of language that has been
made famous using this model of computation and achieved very good scalability
and reliability figures (the well-known nine nines of availability).

Without going too much into details, we can say that the Actor model is a model
based on message passing rather than method calls. Each unit of computation, called
actor, encapsulates its own behavior and communicates with other actors through
asynchronous immutable messages. It is quite straightforward to reason about actor
systems since they mimic the way humans communicate, exchanging immutable
messages between each other. Since the footprint of actors is very minimal compared
to threads, and state is not shared, they are very suited to writing concurrent and
distributed applications.

In the gold mine of Typesafe activator templates, a number of projects concerning
Akka are available. Let's dig into a couple of them to better understand how to make
programs using Akka actors. First, we can take a look at the hello-akka project to
get an idea on how to run a simple actor.

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[196]

If you haven't got the Typesafe activator in place, follow the instructions from Chapter
3, Understanding the Scala Ecosystem, to create the sample project associated with the
hello-akka template. Once imported into Eclipse, we may start looking at the main
class HelloAkkaScala.scala in the default package of the Scala src directory.

It starts with the following lines (skipping the imports):

case object Greet
case class WhoToGreet(who: String)
case class Greeting(message: String)

class Greeter extends Actor {
 var greeting = ""

 def receive = {
 case WhoToGreet(who) => greeting = s"hello, $who"
 case Greet => sender ! Greeting(greeting)
 // Send the current greeting back to the sender
 }
}

As you see, defining an actor consists of extending an Actor trait and requires
only implementing the abstract receive method. This method represents the
actor's behavior when it receives a message. It does not need to handle all types
of messages, which is why it is a partial function.

The declared mutable variable, greeting, shows that you can safely add some
mutable state to your actor since the processing of the receive method is
single threaded.

It is convenient to model the immutable messages sent between actors as case classes,
and the Greeter actor uses the two messages, Greet and WhoToGreet(who:String).
Whenever the Greeter actor receives a WhoToGreet(who) message, it simply updates
its state but does not reply anything. In contrast, when this same actor receives
a Greet message, it uses the saved state to answer the actor that sent the message.
The ! method is also called tell (which, by the way, is the name used in the Akka
Java API) and represents the sending of a message to an actor, with the signature
actor ! message.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[197]

Also, note the presence of the sender variable that is made implicitly available
as part of the Actor trait, since it is a common pattern that an actor replies to
the sender. However, we could have added an ActorRef argument to the Greet
message containing the address of the receiver instead, that is, declared a case
Greet(someone:ActorRef) class and implemented the processing of Greet,
as follows:

def receive = {
 ...
 case Greet(someone) => someone ! Greeting(greeting)
}

The HelloAkkaScala object defines the main routine, as shown in the following
code snippet:

object HelloAkkaScala extends App {

 // Create the 'helloakka' actor system
 val system = ActorSystem("helloakka")

 // Create the 'greeter' actor
 val greeter = system.actorOf(Props[Greeter], "greeter")

 // Create an "actor-in-a-box"
 val inbox = Inbox.create(system)

 // Tell the 'greeter' to change its 'greeting' message
 greeter.tell(WhoToGreet("akka"), ActorRef.noSender)

 // Ask the 'greeter for the latest 'greeting'
 // Reply should go to the "actor-in-a-box"
 inbox.send(greeter, Greet)

 // Wait 5 seconds for the reply with the 'greeting' message
 val Greeting(message1) = inbox.receive(5.seconds)
 println(s"Greeting: $message1")

 // Change the greeting and ask for it again
 greeter.tell(WhoToGreet("typesafe"), ActorRef.noSender)
 inbox.send(greeter, Greet)

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[198]

 val Greeting(message2) = inbox.receive(5.seconds)
 println(s"Greeting: $message2")
 val greetPrinter = system.actorOf(Props[GreetPrinter])
 // after zero seconds, send a Greet message every second to the
greeter with a sender of the greetPrinter
 system.scheduler.schedule(0.seconds, 1.second, greeter, Greet)
(system.dispatcher, greetPrinter)
}

A system running actors needs a runtime environment; this is what the system
variable declares. Creating an actor consists of invoking the system.actorOf
method with a configuration argument as well as an optional name. This method
gives you back an ActorRef (actor reference) object, which is the actor address, that
is, where messages can be sent. An ActorRef object is an immutable and serializable
handle to an actor, which may or may not reside on the local host or within the
same ActorSystem object. As actors only communicate through messages in an
asynchronous fashion, each actor has a mailbox where messages can be enqueued
if the actor cannot handle them as quickly as they arrive.

The remaining part of the main routine essentially sends orders in the form of Greet
or WhoToGreet messages to the Greeter actor. These messages are sent from an
Inbox object that also expects answers. This Inbox object, also referred to as "actor-
in-a-box", is a convenient way to write code outside actors that will communicate
with actors. Finally, the last actor, greetPrinter, sends Greet messages (that are
scheduled by the environment) to the Greeter actor repetitively every second.

You can execute the example code within the project by running the command
> ./activator run and choosing the [2] HelloAkkaScala program. You should
see something as is shown in the following code:

Multiple main classes detected, select one to run:

 [1] HelloAkkaJava
 [2] HelloAkkaScala

Enter number: 2

[info] Running HelloAkkaScala
Greeting: hello, akka
Greeting: hello, typesafe
hello, typesafe
hello, typesafe
hello, typesafe
… [press CTRL-C to interrupt]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[199]

Switching behavior
Actors have the ability to switch their behavior before handling the next message.
To illustrate this, let's consider an example of a travel agent actor that needs to reserve
both a seat in a flight and a hotel room for its customer. The travel agent is responsible
for making sure the booking is transactional, that is, it is only successful if both
transport and accommodation are booked, which is illustrated in the following figure:

BookingMain

Hotel

Flight
TravelAgent

Success/Failure

BookSeat

Done/Failed

BookTrip

Done/Failed
BookRoom

As it is a recognized best practice to declare the messages concerning an actor into
its companion object, we will express a Flight actor in the following way:

package se.sfjd.ch8

import akka.actor.Actor
import akka.event.LoggingReceive

object Flight {
 case class BookSeat(number:Int) {
 require(number > 0)
 }
 case object Done
 case object Failed
}
class Flight extends Actor {
 import Flight._
 var seatsLeft = 50
 def receive = LoggingReceive {
 case BookSeat(nb) if nb <= seatsLeft =>
 seatsLeft -= nb
 sender ! Done
 case _ => sender ! Failed
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[200]

Notice the require assertion found in the BookSeat message declaration. This
method is part of Predef, a global object that includes many useful functionalities
imported by default. It enables to do some design-by-contract style specification by
checking pre- and post-conditions on methods. The receive method of the Flight
actor is handling one type of message only, BookSeat(n:Int), which means
reserving n seats as long as there are enough seats left for the flight. The Flight
 actor updates its state and replies with a Done message to the sender if there are
enough seats left; it replies Failed otherwise.

Notice the LoggingReceive class that surrounds the block handling the actor
messages. It is part of the akka.event package and is a convenient way of logging
information that reaches this block. We will see later on, while executing the sample
code, what these messages look like.

In a similar manner, a Hotel actor that takes care of reserving a room for n persons
can be written as follows:

object Hotel {
 case class BookRoom(number:Int) {
 require(number > 0)
 }
 case object Done
 case object Failed
}

class Hotel extends Actor {
 import Hotel._
 var roomsLeft = 15
 def receive = LoggingReceive {
 case BookRoom(nb) if nb <= roomsLeft =>
 roomsLeft -= nb
 sender ! Done
 case _ => sender ! Failed
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[201]

The travel agent actor is the one that is going to switch its behavior. Once it has sent
orders to book plane seats and hotel rooms for a number of people, it will successively
change state while expecting answers. Since the messages sent to both Flight and
Hotel are asynchronous, that is, nonblocking, we do not know which answer will
come back first. Furthermore, answers might not come back at all as there is no
guarantee at this point that the messages have been delivered or correctly handled.
The code for the TravelAgent actor is given as follows:

object TravelAgent {
 case class BookTrip(transport: ActorRef, accomodation: ActorRef,
nbOfPersons: Int)
 case object Done
 case object Failed
}
class TravelAgent extends Actor {
 import TravelAgent._

 def receive = LoggingReceive {
 case BookTrip(flightAgent, hotelAgent, persons) =>
 flightAgent ! Flight.BookSeat(persons)
 hotelAgent ! Hotel.BookRoom(persons)
 context.become(awaitTransportOrAccomodation(flightAgent,
hotelAgent,sender))
 }

 def awaitTransportOrAccomodation(transport: ActorRef, accomodation:
ActorRef, customer:ActorRef): Receive = LoggingReceive {
 case Flight.Done =>
 context.become(awaitAccomodation(customer))
 case Hotel.Done =>
 context.become(awaitTransport(customer))
 case Flight.Failed | Hotel.Failed =>
 customer ! Failed
 context.stop(self)
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[202]

 def awaitTransport(customer: ActorRef): Receive = LoggingReceive {
 case Flight.Done =>
 customer ! Done
 context.stop(self)
 case Flight.Failed =>
 customer ! Failed
 context.stop(self)
 }

 def awaitAccomodation(customer: ActorRef): Receive = LoggingReceive
{
 case Hotel.Done =>
 customer ! Done
 context.stop(self)
 case Hotel.Failed =>
 customer ! Failed
 context.stop(self)
 }
}

The invocation context.become(<new behavior method>) switches the behavior
of the actor. In the case of this simple travel agent, the behavior will be switched
to the expected messages that can be received in any order from the Flight and
Hotel actors, respectively. If a successful answer is received from either the Flight
or Hotel actors, the TravelAgent actor will switch its behavior to expect only the
remaining answer.

Now, we only need a main routine to create our initial actors and initiate
communication with the TravelAgent actor, as exhibited in the following code:

package se.sfjd.ch8

import akka.actor.Actor
import akka.actor.Props
import akka.event.LoggingReceive

class BookingMain extends Actor {
 val flight = context.actorOf(Props[Flight], "Stockholm-Nassau")
 val hotel = context.actorOf(Props[Hotel], "Atlantis")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[203]

 val travelAgent = context.actorOf(Props[TravelAgent], "ClubMed")
 travelAgent ! TravelAgent.BookTrip(flight,hotel,10)

 def receive = LoggingReceive {
 case TravelAgent.Done =>
 println("Booking Successful")
 context.stop(self)
 case TravelAgent.Failed =>
 println("Booking Failed")
 context.stop(self)
 }
}

Once the four actor classes involved in the use case have been written in Eclipse,
running the program can be done by running an Eclipse configuration. Navigate
to Run | Run Configuration… and edit a new Java Application configuration
window knowing that the main class to run is the akka.Main class of the Akka
runtime, as specified in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[204]

The actual main routine we want to run is passed as an argument. To do that, edit
the Arguments tab of the same window, as shown in the following screenshot:

For the debug messages produced by the LoggingReceive object to be active, you
need to add the VM arguments as specified in the previous screenshot. Clicking
on the Run button will execute the BookingMain class within the Akka runtime
environment and display the following flow of messages:

If you want to test an alternative scenario, for example, to see the booking failed
while reserving the hotel, just put a higher number of persons, that is, 20 in
travelAgent ! TravelAgent.BookTrip(flight,hotel,20), instead of 10.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[205]

Supervising actors to handle failure
In applications that are running actors concurrently, there might sometimes be
exceptions that are thrown and those make an actor die eventually. As other
actors are still running, it might be difficult to notice partial failures. In traditional
architectures, where an object calls methods on other objects, the caller is the one
receiving the exception. Since it usually blocks waiting for a response, it is also the
one responsible to handle the failure. With actors, as all messages are being handled
asynchronously without knowing the time it will take before receiving an answer
(if any), the context in regards to the sent messages is usually not around anymore
to handle the failure; so, it might be more difficult to react on an exception. In any
case, something must be done about the failing actor for the application to function
properly as its whole.

This is why Akka embraces the "let it crash" philosophy by providing support to
monitor and eventually restart an actor or a group of dependent actors. As actors
are normally created by other actors, they can be organized as hierarchies where
an actor's parent is also its supervisor. Handling partial failure, therefore, consists
of defining some strategies to restart part of the actor hierarchy simultaneously,
depending on the situation.

If we go back to our small travel booking application, we can refactor the TravelAgent
actor to be the supervisor of the Flight and Hotel booking actors. Therefore, we can
declare the following supervisor strategy within the TravelAgent class:

override val supervisorStrategy = OneForOneStrategy(loggingEnabled =
false) {
 case _: Flight.FlightBookingException =>
 log.warning("Flight Service Failed. Restarting")
 Restart
 case _: Hotel.HotelBookingException =>
 log.warning("Hotel Service Failed. Restarting")
 Restart
 case e =>
 log.error("Unexpected failure", e.getMessage)
 Stop
 }

The two possible strategies are OneForOneStrategy and AllForOneStrategy.
In the first case, each child of the supervisor will be handled separately, whereas in
the second case, all children of the given supervisor will be handled simultaneously.

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[206]

The Flight companion object now contains an additional message that reflects
the failure, as shown in the following code:

object Flight {
 case class BookSeat(number:Int) {
 require(number > 0)
 }
 case object Done
 case object Failed
 class FlightBookingException extends Exception("Unavailable Flight
Booking Service")
}

To simulate the fact that booking the seats on a flight might fail at times, we can
introduce the following method call when handling the receive method of the
Flight actor, as shown in the following code snippet:

class Flight extends Actor {
 import Flight._
 var seatsLeft = 50
 def receive = LoggingReceive {
 case BookSeat(nb) if nb <= seatsLeft =>
 unreliable()
 seatsLeft -= nb
 sender ! Done
 case _ => sender ! Failed
 }

private def unreliable(): Unit =
 // the service is only working 75 percent of the time
 if (ThreadLocalRandom.current().nextDouble() < 0.25)
 throw new FlightBookingException
}

Relaunching the booking scenario with the Run configuration will display (since the
failure happens only 25 percent of the time) the failing message at times, as shown in
the following lines:

…

[WARN] [01/24/2014 00:23:50.098] [Main-akka.actor.default-dispatcher-3]
[akka://Main/user/app/ClubMed] Flight Service Failed. Restarting

…

For interested readers who want to elaborate more on the topic of supervision, there
is a complete and consistent sample called akka-supervision that is part of the
activator templates. It demonstrates the computation of arithmetic expressions, so
that nodes that represent subparts of the total computation may fail and be restarted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[207]

Testing actor systems
Because of their nondeterministic nature, concurrent systems require some special
care when testing them in contrast to traditional single-threaded architectures. Actor
systems are no exceptions; the messages being sent and received asynchronously,
there are multiple paths a program flow can follow. Fortunately, Akka provides
a lot of support defined in the akka-testkit module for dealing with tests.

In Chapter 4, Testing Tools, we have already covered a number of examples involving
the scalatest framework by looking at the test-patterns-scala activator
template project. It contains a basic use case regarding the testing of Akka actors
through the testkit module. You can reimport this template project into Eclipse
or just open it if it is still in the IDE. The Test09.scala file exhibits the usage of
a testing actor by providing an ImplicitSender trait that fakes the sending of
messages to two actors under test. The first actor under test is a simple echo actor,
whereas the second is calling a location service asynchronously that calculates the
latitude and longitude of a given address. The syntax of the GeoActor object, given
in the following test, should look familiar since it uses the dispatch libraries in the
same way as we have seen in Chapter 3, Understanding the Scala Ecosystem:

package scalatest

import akka.actor.ActorSystem
import akka.actor.Actor
import akka.actor.Props
import akka.testkit.TestKit
import org.scalatest.WordSpecLike
import org.scalatest.matchers.MustMatchers
import org.scalatest.BeforeAndAfterAll
import akka.testkit.ImplicitSender

//http://doc.akka.io/docs/akka/snapshot/scala/testing.html
object Setup {
 class EchoActor extends Actor {
 def receive = {
 case x => sender ! x
 }
 }

 case class Address(street: String,
 city: String,
 state: String,
 zip: String)

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[208]

//see https://developers.google.com/maps/documentation/
geocoding/#Limits
class GeoActor extends Actor {
 def receive = {
 case Address(street,city,state,zip) => {
 import dispatch._, Defaults._
 val svc = url(s"http://maps.googleapis.com/maps/api/geocode/xm
l?address=${street},${city},${state},${zip}&sensor=true".replace("
","+"))
 val response = Http(svc OK as.xml.Elem)
 val lat = (for {
 elem <- response() \\ "geometry" \ "location" \ "lat"
 } yield elem.text).head
 val lng = (for {
 elem <- response() \\ "geometry" \ "location" \ "lng"
 } yield elem.text).head
 sender ! s"${lat},${lng}"
 }
 case _ => sender ! "none"
 }
 }
}

In the main routine of the test case, we mix in the ImplicitSender trait and then
invoke the expectMsg method :

class Test09(asys: ActorSystem) extends TestKit(asys) with
ImplicitSender with WordSpecLike with MustMatchers with
BeforeAndAfterAll {
 import Setup._
 def this() = this(ActorSystem("Setup"))

 override def afterAll {
 TestKit.shutdownActorSystem(system)
 }

 "An Echo actor" must {
 "return messages" in {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[209]

 val echo = system.actorOf(Props[EchoActor])
 echo ! "hello world"
 expectMsg("hello world")
 }
 }

 "Geo actor" must {
 "send back lat,lon" in {
 val geo = system.actorOf(Props[GeoActor])
 geo ! Address("27 South Park Avenue","San
Francisco","CA","94107")
 expectMsg("37.7822991,-122.3930776")
 }
 }
 }

The expectMsg() method has the role of an assertion that takes duration as a
parameter, so that it does not wait forever for the reply to come back. Instead,
it will throw an exception if the specified time has passed and it has not yet
received the answer it was waiting for.

Exploring further with Akka
In addition to the useful functionalities of actor messaging and supervision,
Akka includes support for many other, more advanced features. Among them
are the following:

• It monitors the lifecycle of actors through the DeathWatch API.
• It persists actor state for recovery after failure.
• It remotes with actors, that is, communicates with actors in a distributed

environment and in a transparent way.
• It clusters to handle failure in a distributed environment. A sample of

the clustering features is also available as the akka-clustering
activator template.

These features are out of the scope of this book, but they are extensively documented
on the Akka site and available at http://akka.io/docs/.

www.it-ebooks.info

http://www.it-ebooks.info/

Essential Properties of Modern Applications – Asynchrony and Concurrency

[210]

Summary
In this chapter, we have first studied how to deal with asynchronous Scala code
using the Async toolkit, which simplifies writing nonblocking code using Futures
and Promises. We then moved to the concurrency topic by introducing the Akka
framework based on the actor paradigm.

Concurrent and distributed systems is such a large topic that we have only introduced
some basic usage scenarios of actor systems. We have learned that since the behavior
and state of actors are encapsulated, actor systems are easy to reason about. Moreover,
the supervision and clustering support in Akka makes the handling of failure and
distribution very robust. The material covered in this chapter is just a glimpse of
what the toolkit can achieve; the very extended and well-written documentation
of the Akka project will guide you through creating scalable and distributed
applications. Programming asynchronous, concurrent, and distributed systems
is often a complex task, and the actor model makes it more manageable.

Since Akka is also the foundation of the Play Framework, we will continue to
use it through the next chapter. We will build reactive web applications in Play
to illustrate how to create modern applications that need to handle streams of data
and push information into the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive
Web Applications

Modern web applications increasingly require us to move from static web content to
a more dynamic paradigm where a lot of integration happens in the background and
the user interaction is more and more sophisticated. At the same time, the provided
online services need to adapt to the changing business requirements and scale to
elastic loads, that is, handling peak hour traffic. Finally, in addition to the service
they provide, web applications now tend to collect extra information concerning
user interaction to better understand customer behavior. In this chapter, we are
going to tackle the following topics:

• Understanding what makes applications reactive
• Introducing the processing of streams in Play Framework with the

Iteratees pattern
• Writing reactive applications including web sockets

Describing reactive applications
The traditional pull model adopted by the Web, which is used to browse HTML
pages now needs to be seconded by two-way communication. This includes a push
model where users, for example, receive confirmation of asynchronous and
long-running services or just get notifications of various natures.

The recently created Reactive Manifesto, which is available at
http://www.reactivemanifesto.org, aims to summarize the criteria
that characterize reactive applications in a technology-agnostic way:

• React to events: Message-passing architecture, not wasting the time
waiting for resources

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[212]

• React to load: Focuses on scalability by avoiding contention on
shared resources

• React to failure: Build resilient systems with the ability to recover at all levels
• React to users: Honor response time guarantees regardless of load

Without going into the details of the manifesto that you are encouraged to read, we
can directly see that the notion of message-driven architecture, which was used by
Akka in the previous chapter, fits very well with this reactive model. In the following
sections, we are going to focus on examples of building such web applications on top
of the Play Framework.

Handling streams reactively
Whenever you need to consume and transform streams of data in web applications,
such as watching stock updates or monitoring log activities on a service, you need
mechanisms to manipulate chunks of data that can be pushed from a server to a
browser, for instance, using Comet (http://en.wikipedia.org/wiki/Comet_
(programming)) or WebSocket (http://en.wikipedia.org/wiki/WebSocket)
technologies. The Iteratee pattern available within the Play framework is such a
mechanism. It was borrowed from the Haskell functional language initially.

Understanding Iteratees in Play
An Iteratee construct aims at providing a composable and nonblocking way of
handling streams produced by its counterpart called Enumerator.

Let's launch a Scala REPL to explore the Iteratee/Enumerator constructs in more
detail. To create a new play project as we have done several times before, notably in
Chapter 5, Getting Started with the Play Framework, use the following command:

> play new ch9samples (then choose Scala as language)

> cd ch9samples

> play console

First, we will remind ourselves how an iteration is done within an imperative
language such as Java. The following statements written in Scala describe the
use of a mutable variable total that will be updated at each step of the iteration:

scala> val numbers = List(1,4,7,8,10,20)

numbers: List[Int] = List(1, 4, 7, 8, 10, 20)

scala> var total = 0

total: Int = 0

scala> var iterator = numbers.iterator

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[213]

iterator: Iterator[Int] = non-empty iterator

scala> while (iterator.hasNext) {

 total += iterator.next

 }

scala> total

res2: Int = 50

As explained in the blog post available at http://mandubian.
com/2012/08/27/understanding-play2-iteratees-for-
normal-humans/, we need to take care of the following when iterating:

• The state of the iteration (are there more elements to follow or is
it finished)?

• A context (here the total accumulator)
• An action, updating the context, that is, the total += iterator.next

We have seen in Chapter 1, Programming Interactively within Your Project, that we can
implement the same operation in a concise and more functional way by using the
foldLeft Scala construct in the following way:

scala> List(1,4,7,8,10,20).foldLeft(0){ (total,elem) =>

 total + elem }

res3: Int = 50

The foldLeft construct is a powerful construct that is applied to Scala collections
such as Lists. If we want to process other forms of input such as a file, a network,
a database connection, or a flow produced by an Akka actor for instance, then the
Enumerator/Iteratee comes into play. An Enumerator construct can be seen as
the producer of data (similar to the previous List) and an Iteratee as the
consumer of that data, processing each step of the iteration. The preceding
example involving the foldLeft method on a List could just be rewritten using
an Enumerator/Iteratee construct. As the iteratee library is already available
within Play, it can be imported directly by using the following command:

scala> import play.api.libs.iteratee._

import play.api.libs.iteratee._

scala> import play.api.libs.concurrent.Execution.Implicits._

import play.api.libs.concurrent.Execution.Implicits._

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[214]

After importing the iteratee library and a global execution context for the iteratee
variables to work with, we can define our first Enumerator as follows:

scala> val enumerator = Enumerator(1,4,7,8,10,20)

enumerator: play.api.libs.iteratee.Enumerator[Int] = play.api.libs.
iteratee.Enumerator$$anon$19@27a21c85...

The iteratee variable defined as follows indicates the computation step to be
performed while accepting an input from the enumerator:

scala> val iteratee = Iteratee.fold(0){ (total, elem:Int) => total + elem
}

iteratee: play.api.libs.iteratee.Iteratee[Int,Int] = play.api.libs.
iteratee.ContIteratee@e07a406

Combining the enumerator construct with the iteratee construct is a matter of
invoking the run method of enumerator that takes the iteratee as an argument:

scala> val result = enumerator.run(iteratee)

result: scala.concurrent.Future[Int] = scala.concurrent.impl.
Promise$DefaultPromise@78b5282b

As we have an asynchronous computation, we get back a result as a Future that
we can display once it is completed, as follows:

scala> result onComplete println

scala> Success(50)

The enumerator object mentioned previously was an enumerator of integers. We can
create producers of data of many different types, such as strings or double values.
This is shown in the following code:

scala> val stringEnumerator = Enumerator("one","two","four")

stringEnumerator: play.api.libs.iteratee.Enumerator[String] = play.api.
libs.iteratee.Enumerator$$anon$19@1ca7d367

scala> val doubleEnumerator = Enumerator(1.03,2.34,4)

doubleEnumerator: play.api.libs.iteratee.Enumerator[Double] = play.api.
libs.iteratee.Enumerator$$anon$19@a8e29a5

To illustrate the creation of an Enumerator from a file, let's add a little text file named
samplefile.txt in the root of the current project containing, for instance, the
following three lines of text:

Alice
Bob
Charlie

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[215]

You may use a separate console window to create this file while leaving the REPL
running in the original console window. Otherwise, you will have to rerun the import
statements. Creating an Enumerator from a file is shown in the following commands:

scala> import java.io.File

import java.io.File

scala> val fileEnumerator: Enumerator[Array[Byte]] = Enumerator.
fromFile(new File("./samplefile.txt"))

fileEnumerator: play.api.libs.iteratee.Enumerator[Array[Byte]] = play.
api.libs.iteratee.Enumerator$$anon$4@33500f2

Enumerator even comprises some useful methods. For example, a stream of events
that are generated at regular intervals each time the Promise object, which contains
the current time, times out (every 500 milliseconds).

scala> val dateGenerator: Enumerator[String] = Enumerator.generateM(

 play.api.libs.concurrent.Promise.timeout(

 Some("current time %s".format((new java.util.Date()))),

 500

))

In a more general way, we can say that Enumerator[E] (read enumerator of type E)
produces three possible kinds of chunks of data of type E:

• Input[E]: It is a chunk of data of type E, for example, Input[LogData] is a
chunk of LogData

• Input.Empty: It means that the enumerator is empty, for instance, an
Enumerator streaming an empty file

• Input.EOF: It means that the enumerator has reached its end, for instance,
an Enumerator construct streaming a file and reaching the end of the file

In addition to the run method used to run an Enumerator over an Iteratee, you
can also invoke the constructor, that is, the apply method of the enumerator directly.
Notice in the following two commands, the different result types you get depending
on how you combine enumerator/iteratee:

scala> val result = enumerator.run(iteratee)

result: scala.concurrent.Future[Int] = scala.concurrent.impl.
Promise$DefaultPromise@1837220f

scala> val result2=enumerator(iteratee)

result2: scala.concurrent.Future[play.api.libs.
iteratee.Iteratee[Int,Int]] = scala.concurrent.impl.
Promise$DefaultPromise@5261b67f

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[216]

This last Future result contains an Iteratee[Int,Int], that is, an Iteratee[<type
contained in chunk>, <result of the iteration>].

scala> val enumerator = Enumerator(1,4,7,8,10,20)

enumerator: play.api.libs.iteratee.Enumerator[Int] = play.api.libs.
iteratee.Enumerator$$anon$19@7e666ce4

The following Iteratee consumes all the chunks from the enumerator stream and
returns them as a List collection:

scala> val chunksIteratee = Iteratee.getChunks[Int]

chunksIteratee: play.api.libs.iteratee.Iteratee[Int,List[Int]] = play.
api.libs.iteratee.ContIteratee@53af8d86

scala> val list = enumerator.run(chunksIteratee)

list: scala.concurrent.Future[List[Int]] = scala.concurrent.impl.
Promise$DefaultPromise@66e1b41c

scala> list onComplete println

scala> Success(List(1, 4, 7, 8, 10, 20))

The examples of Iteratee that we have seen so far use the method fold pretty
much like the foldLeft and the foldRight methods that are part of the Scala
collection. Let's try to build a more sophisticated Iteratee: one that, for instance,
selects words containing the letter E out of the enumerator streams. This can be
done using the following code:

scala> def wordsWithE: Iteratee[String,List[String]] = {

 def step(total:List[String])(input:Input[String]):
Iteratee[String,List[String]] = input match {

 case Input.EOF | Input.Empty => Done(total,Input.EOF)

 case Input.El(elem) =>

 if(elem.contains("E")) Cont[String,List[String]](i=>
step(elem::total)(i))

 else Cont[String,List[String]](i=> step(total)(i))

 }

 Cont[String,List[String]](i=> step(List[String]())(i))

}

wordsWithE: play.api.libs.iteratee.Iteratee[String,List[String]]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[217]

The step recursive function is using a total accumulator variable, that is, a context
to keep some state at each step of the recursion. This is a list of strings containing
all the results we are interested in. The second argument to the step function is the
new chunk from the enumerator stream that comes up at each step. This chunk is
matched against the possible states; if either the stream is empty or we have reached
its end, we return the accumulated result in a Done state. Otherwise, we handle the
incoming element. If the element verifies the if condition, then we add it to the
accumulator and invoke the next step in our recursion as part of a Cont (continue)
state. Otherwise, we just invoke the next step without saving the element.

Finally, the last step initiates the recursion by calling the step function on the first
element of the stream with an empty accumulator. Applying this newly-defined
Iteratee on a simple enumerator looks like the following command:

scala> val output = Enumerator("ONE","TWO","THREE") run wordsWithE

output: scala.concurrent.Future[List[String]] = scala.concurrent.impl.
Promise$DefaultPromise@50e0cc83

scala> output onComplete println

scala> Success(List(THREE, ONE))

Every computation step performed on an incoming string either appends that string to
the total accumulator or ignores it, depending on whether it matches the if condition
or not. In this example, it simply checks that the word contains at least one E.

Adapting Enumerator with Enumeratee
It might happen that the data consumed by an Iteratee does not match the input
produced by an Enumerator. The role of an Enumeratee is to be an adapter that sits
in between the Enumerator and Iteratee to transform the incoming data before
feeding the Iteratee.

As an example of simple transformation from an Enumerator to another one, we
could ,for instance, define an Enumeratee that converts an input of the type String
to Int, as illustrated by the following commands:

scala> val summingIteratee = Iteratee.fold(0){ (total, elem:Int) => total
+ elem }

summingIteratee: play.api.libs.iteratee.Iteratee[Int,Int] = play.api.
libs.iteratee.ContIteratee@196fad1a

scala> Enumerator("2","5","7") through Enumeratee.map(x => x.toInt) run
summingIteratee

res5: scala.concurrent.Future[Int] = scala.concurrent.impl.
Promise$DefaultPromise@5ec418a8

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[218]

scala> res5 onComplete println

scala> Success(14)

The transformation provided by the Enumeratee can be declared in its map method.

Adapting the Enumerator can also consist of transforming the input data to a
different format without changing the type. Considering wordsWithE that we
defined previously, we could apply an Enumeratee that converts all the input data
to uppercase so that the consumption of the stream of data by the Iteratee would
produce a different result than the one obtained without Enumeratee. The following
code illustrates that behavior:

scala> val enumerator = Enumerator("ONE","Two","Three")

scala> enumerator run wordsWithE onComplete println

scala> Success(List(ONE))

scala> enumerator through Enumeratee.map(x=>x.toUpperCase) run wordsWithE
onComplete println

scala> Success(List(THREE, ONE))

To summarize, an Enumerator is a producer of a data stream, an Iteratee a
consumer of that data, and an Enumeratee an adapter between the two. The iteratee
pattern has been integrated together with the Play Framework as a way to handle
streams of data reactively in a web application. In the next section, we are going
to build web applications in such a way, by additionally using WebSockets to
communicate between the client and the server in both directions.

Experimenting with WebSockets and
Iteratees in Play
In addition to the traditional pull model of getting HTML displayed in a browser when
querying a service, most web browsers now support bidirectional communication via
WebSockets so that servers can push data without the user having to query for it first.
Once a socket is established between client and server, the communication can stay
open for further interaction, unlike the HTTP protocol. Modern web apps are using
this feature more and more to push data from streams reactively.

As a reminder, a WebSocket is a protocol providing bidirectional communication
over a single TCP connection, in contrast to the traditional one-way, stateless
communication of HTTP (either a request or a response). Let's look at the support
that Play provides in this area and demonstrate in a short example how to establish
a WebSocket communication between the Play server and a client browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[219]

As we have already created a ch9samples Play project at the beginning of this
chapter to experiment with Iteratees in the REPL, we can just reuse it. We will
start by opening the tiny controllers/Application.scala server-side class that is
available by default. We can add a new connect method to it to create a WebSocket
interaction. In a regular Play controller, a method would normally use an Action
class, as we have seen previously. In this example, we use the WebSocket class
instead, illustrated in the controller as follows:

package controllers

import play.api._
import play.api.mvc._
import play.api.libs.iteratee._
import scala.concurrent.ExecutionContext.Implicits.global

object Application extends Controller {

 def index = Action {
 Ok(views.html.index("Your new application is ready."))
 }

 def connect = WebSocket.using[String] { request =>

 // Concurrent.broadcast returns (Enumerator, Concurrent.Channel)
 val (out,channel) = Concurrent.broadcast[String]

 // log message to stdout and send response back to client
 val in = Iteratee.foreach[String] { msg =>
 println(msg)
 //the channel will push to the Enumerator
 channel push("RESPONSE: " + msg)
 }
 (in,out)
 }
}

In the server-side controller seen in the preceding code, the in variable contains
the logic to handle messages coming from the client, and it will produce
an Enumerator to assemble some response data that will be pushed through
the channel to each client.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[220]

On the client side, the views/main.scala.html view is where we are going to add
the WebSocket support, as a part of a JavaScript script, whose role is to open a web
socket and react to incoming messages. as follows:

@(title: String)(content: Html)

<!DOCTYPE html>

<html>
 <head>
 <title>@title</title>
 <link rel="stylesheet" media="screen" href="@routes.Assets.
at("stylesheets/main.css")">
 <link rel="shortcut icon" type="image/png" href="@routes.
Assets.at("images/favicon.png")">
 <script src="@routes.Assets.at("javascripts/jquery-1.9.0.min.
js")" type="text/javascript"></script>

 <script type="text/javascript">
 function WebSocketTest() {
 if ("WebSocket" in window) {
 alert("WebSocket is supported by your Browser!");
 // Let us open a web socket
 var ws = new WebSocket("ws://localhost:9000/connect");
 ws.onopen = function() {
 // Web Socket is connected, send data
 var msg = "Hello Websocket!"
 ws.send(msg);
 alert("Message is sent..."+msg);
 };
 ws.onmessage = function (evt) {
 var received_msg = evt.data;
 alert("Message is received..."+received_msg);
 };
 ws.onclose = function() {
 // websocket is closed.
 alert("Connection is closed...");
 };
 }
 else {
 // The browser doesn't support WebSocket
 alert("WebSocket NOT supported by your Browser!");
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[221]

 </script>
 </head>
 <body>
 <div id="sse">
 Run WebSocket
 </div>
 </body>
</html>

Now that we have both ends, the only remaining step is to define a route for
the controller's connect method. Edit the conf/routes file to make it look like
the following:

Routes
This file defines all application routes (Higher priority routes
first)
~~~~

Home page
GET / controllers.Application.index
GET /connect controllers.Application.connect

Map static resources from the /public folder to the /assets URL path
GET /assets/*file controllers.Assets.at(path="/public", file)

Now, we are ready to try the demo by starting the play server from the
command prompt:

> play run

Opening a browser at http://localhost:9000/ (preferably one that supports
WebSockets) and clicking on the Run WebSocket link should first confirm that the
browser is indeed supporting WebSockets. Clicking on OK a couple of times will
first show you that a message has been sent, and then show that the roundtrip
has been achieved by receiving a message from the server. You should also see
the Message to send log message on the play server prompt.

Learning from activator templates
There is a growing list of reactive applications based on iteratees that have been
packaged and deployed as activator templates. At the time of writing this book,
we have identified more than five templates and you can look at a few of them.
They often mix technologies such as WebSockets with Akka for communication
and message processing and, on the client side, JavaScript frameworks such as
Angular.js, to often provide simple HTML rendering.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[222]

As the Typesafe activator templates HTML page lets you select tags to filter out
projects depending on some keywords, you may check the appropriate projects by
selecting the reactive checkbox.

Reactive stocks
This sample is a project based on the Java version of Play. It graphically demonstrates
the real-time update of stock values (that are randomly generated for simplicity).
It contains both Java and Scala code. An Akka StockActor actor is instantiated for
every stock symbol, and its role is to maintain a list of all users watching this stock.
Some additional functionality queries a twitter API to retrieve all tweets matching
a particular symbol (for example, http://twitter-search-proxy.herokuapp.com/
search/tweets?q=appl). This knowledge can then be processed to calculate
a sentiment index that should help to decide whether to buy this stock or not.
The following screenshot illustrates graphically what the app looks like, once it is run:

Reactive real-time search
To demonstrate some integration between ElasticSearch and the reactive features of
the Typesafe stack through Play iteratees and Akka, this sample exhibits how to push
log events to a browser. As a reminder, ElasticSearch (http://www.elasticsearch.
org) is a distributed real-time search and an analytics engine based on the well-
established Apache Lucene (https://lucene.apache.org) full-text search engine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[223]

It notably provides a percolation feature, that notifies your application when new
content matches your search criteria (instead of having to poll the search engine to
check regularly for new updates).

To emulate content, an Akka LogEntryProducerActor actor is responsible for
generating random log entries each time it receives a Tick message. These messages
are produced at regular intervals by a MainSearchActor actor that also acts as
a coordinator for the search. Finally, an ElasticSearchActor actor implements
the percolation feature by interacting with an embedded ElasticSearch server
(EmbeddedESServer) that is started from the Play Global class. Instead of pushing
information to the browser via WebSockets, the sample uses Server Side Events
(SSE) as it only needs one-way communication once the search criteria are known.

Further information on the template and all the code behind it is available at
https://github.com/DrewEaster/realtime-search. In particular, the query
syntax to be entered for a search is defined as Lucene syntax and is specified at
http://lucene.apache.org/core/4_3_1/queryparser/org/apache/lucene/
queryparser/classic/package-summary.html#package_description.

If we execute this sample by installing and running the activator template (with
the > activator run command from the root of the template project), we can open
a browser at localhost:9000 and enter GET as the search criterion. After a few
seconds, some browser output should progressively be displayed, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[224]

The Play-Akka-Angular-WebSocket template
As another example of reactively pushing information to the browser, this sample
updates a clock on the client by scheduling an actor. The role of this actor is to send
events in the JSON format via a WebSocket connection by using the Play WebSocket.
async[JsValue] method call. The Angular.js JavaScript framework is used on the
client side and the GUI looks like the following screenshot once it starts running:

The number of activator templates that illustrate reactive applications is growing.
Also, you can check out from time to time the new templates that are available,
without upgrading the version of the activator each time.

Playing with Actor Room
In the previous section, we have seen a number of projects that are using
Enumerators/Iteratees to send and receive messages reactively, with various
levels of complexity. Iteratees are powerful, but using them can sometimes lead to
code snippets that are not easy to understand. The Play Actor Room project, which
is available at https://github.com/mandubian/play-actor-room, proposes to
reduce some of the complexity of setting up Iteratees by abstracting away this
part and letting the programmer focus only on the domain logic, such as processing
incoming messages and assembling outgoing messages. This project started from
the observation that many applications need the same functionality, which can be
seen as a server Room (holding state, for instance, and being the middle man between
distributed clients). The role of this room is to listen for incoming messages from
connected clients, and either broadcast received messages after processing them
or just unicast communication to a single client. It is a good illustration of how an
application can react to users/events. Typical applications such as a multiuser chat
are therefore very straightforward to write, and they are one of the two samples
given as examples. Let's experiment with the most basic use of the actor room
support, a sample called simplest.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[225]

To clone the project somewhere on your disk, just enter the following command:

> git clone https://github.com/mandubian/play-actor-room

First, we can look at the application once it is running:

> cd play-actor-room/samples/simplest

> play run

Opening a browser at the default play port (http://localhost:9000/) will show
you a simple sign-in widget, as shown in the following screenshot. Enter your name
to log in, type a message in the provided text area, and then press Enter.

In the console window where you started the actor room application, you should
now see the logging information printed by the actor that received messages from
the client browser. The information can be seen as follows:

[info] play - Application started (Dev)

[info] play - Starting application default Akka system.

[debug] application - Connected Member with ID:Thomas

[info] application - received Play Actor Room rocks

On opening several browser windows and logging in with different names, you can
see all the messages hitting the server room, that is, at the console. The actor room
actually broadcasts the received messages back to all connected browsers, although
for now there is nothing in the view to handle the messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[226]

You can, however, open the console of one browser to see the display of the
broadcast messages, as shown in the following screenshot:

Additionally, invoking the http://localhost:9000/list/ URL from a third
window will return the list of currently connected clients.

Some of the interesting features of this basic application can be observed once we
import the project into eclipse (entering the > play eclipse command) and open
the controller that includes the implementation of the receiving Actor class.

The Receiver actor that acts as the server has been created by a supervisor Actor. It
handles messages in JSON format. All the default logic of the receiving Actor ,which
is the only code that we need to care about for processing messages from clients, is
as follows:

class Receiver extends Actor {
 def receive = {
 case Received(from, js: JsValue) =>
 (js \ "msg").asOpt[String] match {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[227]

 case None => play.Logger.error("couldn't msg in websocket
event")
 case Some(s) =>
 play.Logger.info(s"received $s")
 context.parent ! Broadcast(from, Json.obj("msg" -> s))
 }
 }
}

Note that broadcasting the response from the server to all the clients is done by
the supervising actor referenced by context.parent. In the previous logic, the
Broadcast message also includes the originator from ActorRef reference.

As a small modification to the default room behavior to fit new business
requirements, we can, for instance, reuse the TravelAgent, Flight, and Hotel actors
that we created in Chapter 8, Essential Properties of Modern Applications – Asynchrony
and Concurrency. We want to provide each user with the ability to book a flight, and
(at any time) monitor how many seats are still available. To do this, we can involve a
slightly bigger JSON message as the exchange format between the server and client.

A useful enhancement to Scala that came with Version 2.10 is the notion of string
interpolation. We already used this feature throughout this book and introduced it in
Chapter 1, Programming Interactively within Your Project. Similarly, JSON interpolation
has been created as an extension to the JSON support in Play. We can reuse JSON
interpolation, for instance, to do some elegant pattern matching. Just add the
following extension dependencies to the Build.scala file:

val appDependencies = Seq(
 "org.mandubian" %% "play-actor-room" % "0.1",
 "play-json-zipper" %% "play-json-zipper" % "1.0",
 "com.typesafe.play" %% "play-json" % "2.2.0"
)

Once in place, the JSON pattern matching feature handles the JSON messages
coming from the browser client to the Receiver actor, as follows

case Received(from, js: JsValue) =>
 js match {
 case json"""{
 "booking":"flight",
 "numberOfPersons":$v1
 }""" => play.Logger.info(s"received $v1")
 …

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[228]

Let's add a Flight actor to keep the count of seats available. In a new package
actors, which is directly under the app/ source directory, we can add a Flight.
scala class that looks like the following:

package actors

import akka.actor.Actor
import akka.event.LoggingReceive

object Flight {
 case class BookSeat(number:Int) {
 require(number > 0)
 }
 case object GetSeatsLeft
 case object Done
 case object Failed
}
class Flight extends Actor {
 import Flight._

 def book(seats:Int):Receive = LoggingReceive {
 case BookSeat(nb) if nb <= seats =>
 context.become(book(seats-nb))
 sender ! Done
 case GetSeatsLeft => sender ! seats
 case _ => sender ! Failed
 }

 def receive = book(50) // Initial number of available seats
}

Rather than creating a mutable state variable var seatsLeft, as we did in Chapter
8, Essential Properties of Modern Applications – Asynchrony and Concurrency, we
encapsulated this state change as an argument passed while switching context each
time we receive a BookSeat message. This way of proceeding is a recommended
best practice to avoid holding mutable variables. We have added a GetSeatsLeft
message to be able to query the value of the current state, in which case the state is
sent back to the sender actor.

On the client side, we can modify the index.scala.html view to add a couple of
simple widgets to our application. In particular, we can add a placeholder to display
the number of available seats left in the flight. This is the information that will be
pushed to all connected browsers by the server room actor. An example of such a
view is as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[229]

@(connected: Option[String] = None)

@main(connected) {

 @connected.map { id =>
 <p class="pull-right">
 Logged in as @id
 Disconnect
 </p>
 <div>Places left in flight: <input size="10" id="placesLeft"></
input></div>

 <div>
 <select id ="booking">
 <option value="flight">Flight</option>
 <option value="hotel">Hotel</option>
 </select>
 Number of persons to book:
 <textarea id ="numberOfPersons" ></textarea>
 </div>

 <script type="text/javascript" charset="utf-8" src="@routes.
Application.websocketJs(id)"></script>
 }.getOrElse {
 <form action="@routes.Application.connect(None)" class="pull-
right">
 <input id="username" name="id" class="input-small" type="text"
placeholder="Username">
 <button class="btn" type="submit">Sign in</button>
 </form>
 }
}

We also need to slightly modify the small JavaScript snippet that handles
communication between the client browser and the server via the WebSocket so
that it handles the new JSON format. The modified websocket.scala.js file is
given as follows:

@(id: String)(implicit r: RequestHeader)

$(function() {

 var WS = window['MozWebSocket'] ? MozWebSocket : WebSocket;
 var wsSocket = new WS("@routes.Application.websocket(id).
webSocketURL()");

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[230]

 var sendMessage = function() {
 wsSocket.send(JSON.stringify(
 {
 "booking":$("#booking").val(),
 "numberOfPersons":$("#numberOfPersons").val()
 }
))
 $("#numberOfPersons").val('');
 }

 var receiveEvent = function(event) {
 console.log(event);
 var data = JSON.parse(event.data);
 // Handle errors
 if(data.error) {
 console.log("WS Error ", data.error);
 wsSocket.close();
 // TODO manage error
 return;
 } else {
 console.log("WS received ", data);
 // TODO manage display
 $("#placesLeft").val(data.placesLeft);
 }
 }

 var handleReturnKey = function(e) {
 if(e.charCode == 13 || e.keyCode == 13) {
 e.preventDefault();
 sendMessage();
 }
 }

 $("#numberOfPersons").keypress(handleReturnKey);

 wsSocket.onmessage = receiveEvent;

})

Finally, in the Application.scala file of the server part, we can extend the
Receiver actor to handle incoming JSON messages and contact the Flight
actor to both update and read the current value of its state, as follows:

[…imports from the original actor room sample…]
import play.api.libs.json._

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[231]

import play.api.libs.functional.syntax._
import play.api.libs.json.extensions._

import actors._

object Receiver {
 val flightBookingActor = Akka.system.actorOf(Props[Flight],"flight")
}
class Receiver extends Actor {
 import Receiver.flightBookingActor

 def receive = LoggingReceive {
 case x:Int =>
 play.Logger.info(s"Received number of seats left: $x")
 val placesLeft:String = if (x<0) "Fully Booked" else x.toString
 context.parent ! Broadcast("flight", Json.obj("placesLeft" ->
placesLeft))
 case Received(from, js: JsValue) =>
 js match {
 case json"""{
 "booking":"flight",
 "numberOfPersons":$v1
 }""" =>
 play.Logger.info(s"received $v1")
 val nbOfPersons = v1.as[String]
 flightBookingActor ! Flight.BookSeat(nbOfPersons.toInt)
 val placesCount = flightBookingActor ! Flight.GetSeatsLeft
 case _ => play.Logger.info(s"no match found")
 }
 }
}

Now that we have all the pieces in place, let's run the example in a couple of
browsers. Notice that we have added the LoggingReceive call to both the Receiver
and Flight actors so that we get extensive logging output once we execute the
server code. On the command prompt, you may enter the following commands to
start the Play application with the additional flags to activate the logging output:

> play

> run -Dakka.loglevel=DEBUG -Dakka.actor.debug.receive=true

Open two browser windows (possibly using two different browsers) at the URL
http://localhost/9000. Complete the sign-in step; for instance, use Alice and
Bob as names to connect to the actor room from the two browsers, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Reactive Web Applications

[232]

Entering the seats that you want to book from either window will update the global
number of seats left in both windows, as illustrated in the following screenshot:

The console output from the server should display the logging information
as follows:

[info] play - Starting application default Akka system.

[debug] application - Connected Member with ID:Alice

[debug] application - Connected Member with ID:Bob

…

Received(Bob,{"booking":"flight","numberOfPersons":"5"})

…

Received(Alice,{"booking":"flight","numberOfPersons":"3"})

…

[info] application - Received number of seats left: 42

[DEBUG] [02/15/2014 22:51:01.226] [application-akka.actor.default-
dispatcher-7] [akka://application/user/flight] received handled message
GetSeatsLeft

[DEBUG] [02/15/2014 22:51:01.226] [application-akka.actor.default-
dispatcher-6] [akka://application/user/$a/Alice-receiver] received
handled message 42

Entering a number of seats that is greater than the number of remaining places will
not update the counter, and it will end up in a Fail message from the Flight actor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[233]

Summary
In this chapter, we have experimented with the iteratees pattern supported by the
Play Framework to handle streams reactively. We have then used it along with
WebSockets and Akka to write a small, reactive web application.

The samples of reactive web applications that we have addressed and discussed
in this chapter are just a glimpse of the endless possibilities of making applications
that react to events and are resilient to failure and load. As web applications grow
in complexity, such architectures should gain in popularity and adoption rate.

Being able to asynchronously process streams in real time is, in our opinion,
a big competitive advantage if this functionality is built in a manageable and
maintainable way. This is precisely the goal that the Play Framework combined
with Akka illustrates.

In the next and the last chapter of this book, we are going to consider a few areas
where we think Scala provides additional, convenient help.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies
We have covered a number of technologies and toolkits in the previous chapters
that, when combined together, offer a great opportunity to build modern and
scalable-reactive web applications in Scala. Scala now celebrates 10 years of
existence with an active community and large corporations supporting it,
leading to a perpetual exploration of innovative ideas touching the language
and the ecosystem.

We propose, in this last chapter, to touch upon a few areas where we have found
some exciting ongoing projects or technologies and where we feel that Scala can
provide elegant solutions to be both productive and fun. We will cover some of
the following aspects:

• NoSQL database access through MongoDB
• Introducing DSLs and in particular, a glimpse at Parser Combinators
• Scala.js—compiling Scala to JavaScript on the client side

Exploring MongoDB
As the volume of information to process and store has drastically increased in
the past few years, many IT shops have been looking for alternatives to traditional
relational databases to store and query data. The not only SQL (NoSQL) database
movement has gained popularity as a way to trade consistency and structure of
the data for more efficient or flexible data storage. MongoDB (www.mongodb.org)
is a database product designed to store documents in formats, such as JSON,
and with no strict database schema. Along with the Java driver built to access
and query a MongoDB database, we are going to discover how the Casbah Scala
toolkit (https://github.com/mongodb/casbah) can be used to conveniently
access and query such a database through a DSL.

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[236]

Entering Casbah
The only requirement to start experimenting with Casbah is to add its .jar library
dependency to an SBT or Play project. In a new directory on your disk, type >
play new ch10samples from a terminal window and add the Casbah dependency
to the build.sbt file in the root directory of the project. This dependency is added
by adding the following code (note that the given version of Casbah was the latest
available at the time of writing this chapter, but should soon be available as the
final version 2.7.0):

name := "ch10samples"

version := "1.0-SNAPSHOT"

libraryDependencies ++= Seq(
 jdbc,
 anorm,
 cache,
 "org.mongodb" %% "casbah" % "2.7.0-RC1"
)

play.Project.playScalaSettings

If you are using an SBT project instead of Play, you may also add a default SLF4J
logging implementation, as shown in the following code snippet, as otherwise the
default used is a no-operation implementation:

libraryDependencies += "org.slf4j" % "slf4j-simple" % "1.7.6"

As usual, starting an REPL can be done either by entering the > play command
followed by a > console command or just > play console:

scala> import com.mongodb.casbah.Imports._

import com.mongodb.casbah.Imports._

After some imports, we connect to the MongoDB database on port 27017 using
the following code:

scala> val mongoClient = MongoClient("localhost", 27017)

mongoClient: com.mongodb.casbah.MongoClient = com.mongodb.casbah.
MongoClient@6fd10428

scala> val db = mongoClient("test")

db: com.mongodb.casbah.MongoDB = test

scala> val coll = db("test")

coll: com.mongodb.casbah.MongoCollection = test

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[237]

These statements have, so far, been executed without a direct contact with the
database. From now on, we need to make sure we have a running instance of the
MongoDB process before we retrieve any content. Start the mongod daemon if it is
not running yet (download instructions can be found at https://www.mongodb.
org/downloads), then enter the following command to fetch the names of the
stored collections:

scala> db.collectionNames

res0: scala.collection.mutable.Set[String] = Set()

We obviously get an empty set as a result, as we haven't stored any document yet.
Let's create a couple of entries:

scala> val sales = MongoDBObject("title" -> "sales","amount"->50)

sales: com.mongodb.casbah.commons.Imports.DBObject = { "title" : "sales"
, "amount" : 50}

scala> val sweden = MongoDBObject("country" -> "Sweden")

sweden: com.mongodb.casbah.commons.Imports.DBObject = { "country" :
"Sweden"}

The created items have yet to be added to the database, using the insert command
as shown in the following commands:

scala> coll.insert(sales)

res1: com.mongodb.casbah.TypeImports.WriteResult = { "serverUsed" :
"localhost:27017" , "n" : 0 , "connectionId" : 7 , "err" : null , "ok"
: 1.0}

scala> coll.insert(sweden)

res2: com.mongodb.casbah.TypeImports.WriteResult = { "serverUsed" :
"localhost:27017" , "n" : 0 , "connectionId" : 7 , "err" : null , "ok"
: 1.0}

scala> coll.count()

res3: Int = 2

Retrieving the elements of the coll collection can be done using the find method:

scala> val documents = coll.find() foreach println

{ "_id" : { "$oid" : "530fd91d03645ab9c17d9012"} , "title" : "sales" ,
"amount" : 50}

{ "_id" : { "$oid" : "530fd92703645ab9c17d9013"} , "country" : "Sweden"}

documents: Unit = ()

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[238]

Notice that a primary key for each document has been created as we did not
provide any while inserting the document into the collection. You may as well
retrieve a single document if you know exactly the object you are looking for and
provide it as an argument. For this, the findOne method is available, passing a new
SearchedCountry MongoDBObject as expressed in the following command lines:

scala> val searchedCountry = MongoDBObject("country" -> "Sweden")

searchedCountry: com.mongodb.casbah.commons.Imports.DBObject = {
"country" : "Sweden"}

scala> val result = coll.findOne(searchedCountry)

result: Option[coll.T] = Some({ "_id" : { "$oid" :
"530fd92703645ab9c17d9013"} , "country" : "Sweden"})

As there might not always be a matching element, the findOne method returns
Option, which in the previous case resulted in Some(value), in contrast to the
following empty result:

scala> val emptyResult = coll.findOne(MongoDBObject("country" ->
"France"))

emptyResult: Option[coll.T] = None

Deleting elements is performed with the remove method, which can be used
in a manner similar to the findOne method:

scala> val result = coll.remove(searchedCountry)

result: com.mongodb.casbah.TypeImports.WriteResult = { "serverUsed" :
"localhost:27017" , "n" : 1 , "connectionId" : 9 , "err" : null , "ok"
: 1.0}

scala> val countryNoMore = coll.findOne(searchedCountry)

countryNoMore: Option[coll.T] = None

Finally, updating a document can be done as follows:

scala> sales

res3: com.mongodb.casbah.commons.Imports.DBObject = { "title" : "sales" ,
"amount" : 50}

scala> val newSales = MongoDBObject("title" -> "sales","amount"->100)

newSales: com.mongodb.casbah.commons.Imports.DBObject = { "title" :
"sales" , "amount" : 100

scala> val result = coll.update(sales,newSales)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[239]

result: com.mongodb.casbah.TypeImports.WriteResult = { "serverUsed" :
"localhost:27017" , "updatedExisting" : true , "n" : 1 , "connectionId" :
9 , "err" : null , "ok" : 1.0}

scala> coll.find foreach println

{ "_id" : { "$oid" : "530fd91d03645ab9c17d9012"} , "title" : "sales" ,
"amount" : 100}

We can see here that the primary key "530fd91d03645ab9c17d9012" is still the one we
had when we initially inserted the sales document into the database, showing that
the update operation was not a removal and then inserting a brand new element.

Updating multiple documents at once is also supported and we refer to the
documentation available at http://mongodb.github.io/casbah/guide/index.
html for further operations.

Applying MapReduce transformations
Among the great features of document-oriented databases such as MongoDB, there
is the possibility to run the MapReduce functions. MapReduce is an approach where
you break up a query or task into smaller chunks of work, and then aggregate the
results of those chunks. To illustrate how a document-based approach can sometimes
be useful in contrast with a traditional relational database, let's take a small example
of financial consolidation. In such a domain, aggregating and calculating sales figures
globally for a large corporation may involve working with a number of orthogonal
dimensions. For instance, sales figures can be gathered from each subsidiary that each
has its own geographic location, time intervals, own currency, and specific categories,
following some tree-based structures in each dimension as depicted in
the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[240]

The geographic location might be a decisive factor when it comes to the currency
used, and conversion should be done to sum figures consistently. To that extent,
the currency used to produce global reports usually follows the root of the company
ownership tree. A company tree structure is given in the following figure:

Similarly, various sales categories might define yet another hierarchy, as shown
on the following figure:

Such reported sales figures may either be very detailed or already accumulated,
therefore, reported at various levels of the hierarchies. As large corporations
are usually made of smaller groups with various degrees of ownership that
are furthermore changing regularly, the consolidation job requires to aggregate
and compute data according to all these parameters.

As for a number of data warehousing solutions expressed in relational databases,
the heart of the domain model can be a huge table containing facts referring to
 the various dimensions expressed in the previous figure. For instance, some
sample input data for this example can consist in the following list of sales
figures (that is, amounts) as XML rows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[241]

The following construct shows how to represent a tree structure in JSON:

{
 "title" : "root",
 "children" : [
 {
 "title" : "node 1",
 "children" : [
 {
 "title" : "node 1.1",
 "children" : [
 ...
]
 },
 {
 "title" : "node 1.2",
 "children" : [
 ...
]
 }
]
 },
 {
 "title" : "node 2",
 "children" : [
 ...
]
 }
]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[242]

The following is an example of a JSON document that contains sales figures by
geographic location:

{
 "title" : "sales",
 "regions" : [
 {
 "title" : "nordic",
 "regions" : [
 {
 "title" : "norway",
 "amount" : 150
 },
 {
 "title" : "sweden",
 "amount" : 200
 }
]
 },
 {
 "title" : "france",
 "amount" : 400
 }
]
}

By storing documents coming from various subsidiaries of a large corporation,
such as JSON, we can consolidate the figures through MapReduce transformations
already supported by the database. Moreover, Casbah takes advantage of
the aggregation framework (http://mongodb.github.io/casbah/guide/
aggregation.html) of MongoDB to be able to aggregate values without
having to use MapReduce

To conclude with MongoDB, we will just mention the ReactiveMongo project
(www.reactivemongo.org) that figures a reactive asynchronous and non-blocking
driver for MongoDB. As it uses the Iteratee pattern that we covered in Chapter 9,
Building Reactive Web Applications, combining it with a stream-friendly framework,
such as Play, can result in a number of interesting and scalable demos, as listed on
their website.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[243]

Scratching the surface of Big Data
Among the recent achievements and trends towards better analysis of data and
services lies the Big Data movement. In particular, the Hadoop framework has
established some kind of ad hoc standard "for the distributed processing of large
datasets across clusters of computers using simple programming models". In
addition to a distributed file system called HDFS optimized for high throughput
to access data, Hadoop offers MapReduce facilities for processing large datasets in
parallel. As setting up and running Hadoop is not always considered a simple task,
some other frameworks have been developed on top of Hadoop as a means to
simplify the definition of Hadoop jobs. In Java, the Cascading framework is a layer
on top of Hadoop that provides a convenient API to facilitate creation of MapReduce
jobs. In Scala, the Scalding framework has been developed to further enhance the
cascading API by utilizing the concise and expressive Scala syntax, as we can observe
by taking a look at the activator-scalding Typesafe activator template. The sample
code provided with this template illustrates a word counting application, that is,
the hello-world project of Hadoop MapReduce jobs.

As a reminder on MapReduce jobs, consider reading the original paper from Google,
available at http://static.googleusercontent.com/media/research.google.
com/en//archive/mapreduce-osdi04.pdf

We can express the job of counting words with the following two steps:

• Splitting lines from a file into individual words and creating a key-value
pair for each word, where key is the word of the String type and value is
the constant 1

• By grouping the elements having the same key (grouping the same words)
into a list and reducing the list by summing the values, we obtain our goal

If you run the > activator ui command in a terminal window, as we already
did a number of times in Chapter 3, Understanding the Scala Ecosystem, and create the
activator-scalding template project, you can verify how concise the word count
in scalding is specified. Do not forget to run the > activator eclipse command
to be able to import the project into the Eclipse IDE:

class WordCount(args : Args) extends Job(args) {

 // Tokenize into words by by splitting on non-characters. This
 // is imperfect, as it splits hyphenated words, possessives

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[244]

 // ("John's"), etc.
 val tokenizerRegex = """\W+"""

 // Read the file specified by the --input argument and process
 // each line by trimming the leading and trailing whitespace,
 // converting to lower case,then tokenizing into words.
 // The first argument list to flatMap specifies that we pass the
 // 'line field to the anonymous function on each call and each
 // word in the returned collection of words is given the name
 // 'word. Note that TextLine automatically associates the name
 // 'line with each line of text. It also tracks the line number
 // and names that field 'offset. Here, we're dropping the
 // offset.

 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line : String => line.trim.toLowerCase.split(tokenizerRegex)
 }

 // At this point we have a stream of words in the pipeline. To
 // count occurrences of the same word, we need to group the
 // words together. The groupBy operation does this. The first
 // argument list to groupBy specifies the fields to group over
 // as the key. In this case, we only use the 'word field.
 // The anonymous function is passed an object of type
 // com.twitter.scalding.GroupBuilder. All we need to do is
 // compute the size of the group and we give it an optional
 // name, 'count.
 .groupBy('word){ group => group.size('count) }

 // In many data flows, we would need to project out just the
 // 'word and 'count, since we don't care about them any more,
 // but groupBy has already eliminated everything but 'word and
 // 'count. Hence, we'll just write them out as tab-delimited
 // values.
 .write(Tsv(args("output")))
}

Most of the code is indeed comments, which means that the whole algorithm is very
close to the description one would do in pseudo code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[245]

If you are interested in Big Data, Scala definitely fits a niche and a number of projects
and frameworks handling huge streams of data and Hadoop-like jobs are already
pushing the limits. Among them, we can mention Spark (http://spark.apache.
org) as well as Twitter's open-source projects SummingBird (https://github.com/
twitter/summingbird) and Algebird (https://github.com/twitter/algebird).

Introducing DSLs in Scala
Domain specific language (DSL) is usually useful to simplify the interaction with
a system by being applied to a small particular domain. They can be targeted to
programmers by providing a simplified API to communicate with a system; or
they may concern the so-called "business users" who may understand a domain
well enough to create some scripts but are not programmers and could have
difficulty dealing with a general-purpose programming language. There are,
in general, two types of DSLs:

• Internal DSLs
• External DSLs

Observing internal DSLs
Internal DSLs use a host language (for instance, Scala) and the simplified usage
is obtained by adding some syntactic sugar, through tricks and special constructs
of the language. The book DSLs in Action by Debasish Ghosh illustrates the
construction of Scala internal DSLs using features of the language such as
infix notation and implicit conversions.

He has given the following DSL usage example that represents an executable
program expressed in clear English: 200 discount bonds IBM for_client
NOMURA on NYSE at 72.ccy(USD). Many transformations happen under the
hood, but the business user is given a very clean syntax.

Such DSLs have the advantage that you are confident that you can express anything
with them as the host language is of generic purpose (such as Scala). This means that
sometimes you may be constrained to use a less clean syntax but you know you have
the full power of the Scala compiler under your hands. Therefore, you will always
succeed in producing a DSL script or program that implements the logic you want.

However, the full power of the compiler may also be something that you would like to
avoid in many cases where you want to give your business user the possibility to only
perform a few specific actions. For this purpose, you may implement external DSLs
instead. There are a number of additional concerns including constrained syntax (for
example, you can't avoid parentheses in some cases) and convoluted error messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[246]

Tackling external DSLs through parser
combinators
An external DSL represents a domain language where the syntax is completely up to
you. This means you can express things exactly the way you want to and can constrain
your business users to only use specific words or meanings. This flexibility comes with
a price of much more work to implement it as you need to define a grammar (typically
Backus–Naur Form (BNF)), that is, define all the rules that apply to parse a meaning or
script successfully. In Java, the task to write an external DSL can be cumbersome and it
usually involves the ANTLR external framework.

In Scala, parser combinators are a notion very close to the definition of BNF grammars
and can provide very concise and elegant code when writing external DSLs.

Once you get acquainted with a few particular operators to deal with the
definition of the grammar, you will discover that writing an external DSL is fairly
straightforward if your language is not too complex. A good source of information
to learn all the symbols and operators involved in parser combinators is available
at http://bitwalker.github.io/blog/2013/08/10/learn-by-example-scala
-parser-combinators/.

The following experimental code illustrates a small DSL in the domain of
finance consolidation where specific money accounts are manipulated as part of
predefined formulae. The main method given at the end of the following snippet
reflects a formula; for instance, you may parse the formula (3*#ACCOUNT1#) to
construct an object-oriented structure that will be able to compute the result of
multiplying the content of a given account by three:

package parsercombinator

import scala.util.parsing.combinator._
import java.text.SimpleDateFormat
import java.util.Date

object FormulaCalculator {

 abstract class Node

 case class Transaction(amount: Int)
 case class Account(name:String) extends Node {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[247]

 var transactions: Iterable[Transaction] = List.empty
 }

 def addNewTransaction(startingBalance: Int, t: Transaction) =
startingBalance + t.amount
 def balance(account: Account) = account.transactions.foldLeft(0)
(addNewTransaction)

 case class NumberOfPeriods (value: Int) extends Node {
 override def toString = value.toString
 }
 case class RelativePeriod (value:String) extends Node {
 override def toString = value
 }
 case class Variable(name : String) extends Node
 case class Number(value : Double) extends Node
 case class UnaryOp(operator : String, arg : Node) extends Node
 case class BinaryOp(operator : String, left : Node, right : Node)
extends Node
 case class Function(name:String,arguments:List[Node]) extends Node {
 override def toString =
 name+arguments.mkString("(",",",")")
 }…

The objects that will result from the parsing of a formula are defined as case classes.
Hence, continuing with the code:

…
 def evaluate(e : Node) : Double = {
 e match {
 case Number(x) => x
 case UnaryOp("-", x) => -(evaluate(x))
 case BinaryOp("+", x1, x2) => (evaluate(x1) + evaluate(x2))
 case BinaryOp("-", x1, x2) => (evaluate(x1) - evaluate(x2))
 case BinaryOp("*", x1, x2) => (evaluate(x1) * evaluate(x2))
 case BinaryOp("/", x1, x2) => (evaluate(x1) / evaluate(x2))
 }
 }

 object FormulaParser extends JavaTokenParsers {

 val identifier: Parser[String] = ident

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[248]

 val relative_period: Parser[RelativePeriod] = """([N|P|\+|\-]
[0-9]+|CURRENT)""".r ^^ RelativePeriod
 val number_of_periods: Parser[NumberOfPeriods] = """\d+""".r ^^ (i
=> NumberOfPeriods(i.toInt))
 val account_name: Parser[String] = """[A-Za-z0-9_]+""".r

 def account: Parser[Account] = "#" ~> account_name <~ "#" ^^ {
Account(_) }

 def function: Parser[Function] =
 identifier~"("~account~","~relative_period~","~number_of_
periods~")" ^^ {
 case f~"("~acc~","~rp~","~nbp~")" =>
Function(f,List(acc,rp,nbp))
 } |
 identifier~"("~account~","~relative_period~")" ^^ {
 case f~"("~acc~","~rp~")" => Function(f,List(acc,rp))
 }

 def node: Parser[Node] =
 (term ~ "+" ~ term) ^^ { case lhs~plus~rhs => BinaryOp("+",
lhs, rhs) } |
 (term ~ "-" ~ term) ^^ { case lhs~minus~rhs => BinaryOp("-",
lhs, rhs) } |
 term

 def term: Parser[Node] =
 (factor ~ "*" ~ factor) ^^ { case lhs~times~rhs =>
BinaryOp("*", lhs, rhs) } |
 (factor ~ "/" ~ factor) ^^ { case lhs~div~rhs => BinaryOp("/",
lhs, rhs) } |
 (factor ~ "^" ~ factor) ^^ { case lhs~exp~rhs => BinaryOp("^",
lhs, rhs) } |
 factor

 def factor : Parser[Node] =
 "(" ~> node <~ ")" |
 floatingPointNumber ^^ {x => Number(x.toFloat) } |
 account |
 function

 def parse(text : String) =

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[249]

 parseAll(node, text)
 }

 // Parses 3 formula that make computations on accounts
 def main(args: Array[String]) {

 val formulaList = List("3*#ACCOUNT1#","#ACCOUNT1#-
#ACCOUNT2#","AVERAGE_UNDER_PERIOD(#ACCOUNT4#,+1,12)")

 formulaList.foreach { formula =>
 val unspacedFormula = formula.replaceAll("[]+","")
 println(s"Parsing of $formula gives result:\n
${FormulaParser.parse(unspacedFormula)}")
 }
 }
}

If we execute this parser combinator code into Eclipse by simply right-clicking
on the FormulaCalculator class and navigating to Run As | Scala Application,
we should obtain the following output in the Eclipse console:

Parsing of 3*#ACCOUNT1# gives result:

 [1.13] parsed: BinaryOp(*,Number(3.0),Account(ACCOUNT1))

Parsing of #ACCOUNT1#- #ACCOUNT2# gives result:

 [1.22] parsed: BinaryOp(-,Account(ACCOUNT1),Account(ACCOUNT2))

Parsing of AVERAGE_UNDER_PERIOD(#ACCOUNT4#,+1,12) gives result:

 [1.39] parsed: AVERAGE_UNDER_PERIOD(Account(ACCOUNT4),+1,12)

This output shows that the three formulae were parsed correctly and converted into
classes. The final evaluation is left out from this exercise but could be set up with
some actual transactions defined on the two accounts.

Introducing Scala.js
Where Java is a compelling choice to run server-side code due to its robust JVM
that can be run anywhere, JavaScript is increasingly becoming the dominant choice
on the client side due to its flexibility and light runtime-embedded environment
as well as its growing set of tools already available in the browsers. Despite its
popularity, JavaScript being a dynamic language does not offer the type of safety
that languages such as Java or Scala provide. The experimental but fast-growing
Scala.js initiative aims at compiling Scala to JavaScript and in my view offers a
really good alternative for those who want to benefit from the power of the Scala
type system all the way to the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[250]

Setting up a project demonstrating the usage of Scala.js can be done in a couple
of minutes and is explained in the sample "getting started" project available at
https://github.com/sjrd/scala-js-example-app.

The example consists of a small HTML page containing a playground <div>
element as illustrated in the following HTML code:

<!DOCTYPE html>
<html>
<head>
 <title>Example Scala.js application</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
</head>
<body>

<h1>Example Scala.js application - development version</h1>

<p>After having compiled and packaged properly the code for the
application
(using `sbt packageJS`), you should see "It works" here below.
See README.md for detailed explanations.</p>

<div id="playground">
</div>

<script type="text/javascript" src="./target/scala-2.10/
example-extdeps.js"></script>
<script type="text/javascript" src="./target/scala-2.10/
example-intdeps.js"></script>
<script type="text/javascript" src="./target/scala-2.10/
example.js"></script>

</body>
</html>

The div element will be dynamically populated as:

<p>
 It works!
</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[251]

The tiny snippet of code written in Scala and compiled to Javascript to achieve this
is given in the following main method:

package example

import scala.scalajs.js
import js.Dynamic.{ global => g }

object ScalaJSExample {
 def main(): Unit = {
 val paragraph = g.document.createElement("p")
 paragraph.innerHTML = "It works!"
 g.document.getElementById("playground").appendChild(paragraph)
 }

 /** Computes the square of an integer.
 * This demonstrates unit testing.
 */
 def square(x: Int): Int = x*x
}

Once we have the access to the DOM of the HTML page through the js.Dynamic.
global object, this simple Scala main method constructs a new paragraph node and
adds it to the existing "playground" node.

The additional square method is used to illustrate a unit test written against the
Jasmine JavaScript test framework.

The execution of the main method is triggered by the one line added to the
js/startup.js file:

ScalaJS.modules.example_ScalaJSExample().main();

The generated code produced by default by Scala.js can be quite big because of
dependencies to Scala libraries. Scala.js offers an optimization through Google's
closure compiler that reduces the size and optimizes the JavaScript code execution
when targeted for production environments.

What is the next step now? Well, we can refer interested readers to a couple of more
projects that we find interesting with regard to this book:

• A project called play-with-scalajs-example and available at https://
github.com/vmunier/play-with-scalajs-example deals with a simple
integration sample of Scala.js and the Play Framework that we have covered
in the previous chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[252]

• A very interesting and more advanced usage of Scala.js is TodoMVC and this is
a part of the workbench-example-app project available at https://github.
com/lihaoyi/workbench-example-app/. It demonstrates a sample web
app for making To Do Lists, a reference app specified to compare different
implementations done in various languages, but has the innovative approach
of being reactive in addition to being written in Scala compiled to JavaScript.
A direct link to the resulting reactive web app is available at http://lihaoyi.
github.io/workbench-example-app/todo.html and is rendered in a
browser, as shown in the following screenshot:

There are already a number of projects around Scala.js listed on its home page at
http://www.scala-js.org/. As Scala.js is maturing quickly, many more projects
should be soon available.

Final tips
The following sections enlist a few final tips and tricks that you might find handy
while working with the REPL.

Copying and pasting in the REPL
As a reminder, this feature introduced in Chapter 8, Essential Properties of Modern
Applications – Asynchrony and Concurrency, makes it easy to execute a full code
snippet at once in the REPL. For instance, the following lines of command illustrate
how the copy and paste feature in REPL helps the easy execution of code:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[253]

scala> :paste

// Entering paste mode (ctrl-D to finish)

[Copy a code block from somewhere with ctrl-C/ctrl-V]

 case class Person(name:String)

 val me = Person("Thomas")

 val you = Person("Current Reader")

 val we = List(you,me).map(_.name).reduceLeft(_+" & "+_)

 val status = s"$we have fun with Scala"

[Once you are done with pasting the code block, press ctrl-D]

// Exiting paste mode, now interpreting.

defined class Person

me: Person = Person(Thomas)

you: Person = Person(Current Reader)

we: String = Current Reader & Thomas

status: String = Current Reader & Thomas have fun with Scala

Timing code execution in the REPL
The REPL has been a very helpful tool throughout this book to discover and
experiment with the various features of Scala. Together with the Scala worksheets
introduced in Chapter 3, Understanding the Scala Ecosystem, they enhance our
productivity by providing continuous feedback and make our development,
therefore, more agile. Sometimes, it is convenient to measure the time it takes to
execute statements or code snippets in the REPL. This is why we have given one
way of achieving this.

First, we define a help function called using that takes two parameters, first a param
argument of the type A and second, a function argument f that transforms
the type of an argument from A into B:

scala> def using[A <: {def close(): Unit},B](param: A)(f: A=>B): B =

 try { f(param) } finally { param.close() }

using: [A <: AnyRef{def close(): Unit}, B](param: A)(f: A => B)B

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[254]

What using does is to invoke the f(param) function, wrapping it into a try {}
finally{} block. As the idea behind this function is to apply it on an I/O resource
such as FileWriter or PrintWriter, we want to guarantee that we can close the
resource no matter what. This is why you can see a param.close call in the finally
block. That means the param argument cannot just be of any type A; it must have
the additional requirement to have a close method. This is exactly what is declared
at the beginning of the definition of the generic using method (that is, [A <: {def
close(): Unit}, B]); the param argument should be a subtype of A that contains
a method with the given signature.

In general, dealing with generic types is out of the scope of this book, and you don't
need to really understand the previous definition to benefit from the using function.
The example illustrates, however, how powerful the use of generic types in Scala can
be. The type system of Scala is extremely powerful and the compiler will help you
very much when writing generic code, unlike the use of generics in Java.

Let's now include the using function into an appendToFile function that will be
responsible for logging the evaluation of the code we write in the REPL:

scala> def appendToFile(fileName:String, textData:String) =

 using (new java.io.FileWriter(fileName, true)){

 fileWriter => using (new java.io.PrintWriter(fileWriter)) {

 printWriter => printWriter.println(textData)

 }

 }

appendToFile: (fileName: String, textData: String)Unit

Finally, the following timeAndLogged function is declared to wrap a body
snippet entered in the REPL with both the logging and timing functionalities:

scala> def timedAndLogged[T](body: => T): T = {

 val start = System.nanoTime

 try {

 val result = body

 appendToFile("/tmp/repl.log",result.toString)

 result

 }

 finally println(" "+(System.nanoTime - start) + " nanos elapsed.
")

}

timedAndLogged: [T](body: => T)T

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[255]

Until Scala 2.10.0, you could use the :wrap method of the REPL power mode
(accessible from the REPL via the > :power command) to be able to execute all
the console statements without further involvement of the timedAndLogged
function. The :wrap feature has recently been removed from the Scala release, so
you will have to explicitly wrap the code that you want timing or logging for in the
timedAndLogged method and therefore, do not need to involve the power mode of
the REPL for that.

For instance, you can execute the following command:

scala> timedAndLogged{ val input = 2014 ; println(input) ; Thread.
sleep(2000) ; input }

2014

 2004778000 nanos elapsed.

res0: Int = 2014

The /tmp/repl.log file we specified in the timedAndLogged function should,
of course, contain the logged result, that is, 2014.

Summary
As we now reach the end of this book, we would like to emphasize some key
aspects on the numerous topics and concepts we have approached during this
journey with Scala.

The concise and expressive syntax of the Scala language should make your code not
only more readable but also more maintainable for yourself and other developers.
You don't have to give up any of the libraries of the very large and mature Java
ecosystem as all the APIs can be reused directly within Scala. Moreover, you benefit
from many additional great Scala-specific libraries. Our recommendation is to take
a piece of Java code from a domain you understand well, maybe because you wrote it
in the first place one or several times before. Then, try to convert it to Scala code and
refactor it to get rid of the boilerplate and to make it in a more functional style.

The Play Framework is not just another web framework; it breaks the conventional
approach of long-cycle development following servlet and EJB containers where
each redeploy can take a significant time. Moreover, it is built on top of rock solid
and scalable technologies such as Akka, which should make you feel confident for
future heavy loads and constraining availability requirements. Finally, our personal
experience with it has been very enjoyable as the Scala compiler behind it has, most
of the time, given very clear feedback on what the problems are when mistakes are
made, all the way to the templates and routes specifications. As both Play and Akka
are exposing Java APIs as well, they can make your transition easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Scala Goodies

[256]

We believe the future of web development is reactive, dealing with large streams
of data, as it is already happening in many areas such as social media sites involving
content distribution and real-time financial/analytics services.

We have only scratched the surface of what is possible to do with Scala. As you
go along and dive more deeply into individual technologies, you will discover
new features and endless possibilities. Our recommendation is to take one step
at a time looking for achievable goals. For instance, first get used to the Scala
collections, especially as they can help you to better master Java lambdas and
functional programming, then write code with pattern matching, traits, for
comprehensions, then move to more advanced topics such as implicits, generics
and so on.

Finally, as inspiration, there is already a tremendous number of open source
projects done with Scala, many books on the individual subjects we have covered,
many forums contributed by a very active Scala community, as well as several years of
extremely useful online videos coming from user groups and international conferences
such as Scaladays (www.scaladays.org), Scala eXchange (www.skillsmatter.com/
conferences/1948-scala-exchange-2014), NEScala (www.nescala.org), Jfokus
(www.jfokus.se), Scala.io (www.scala.io), flatMap (www.flatmap.no), Ping (www.
ping-conf.com), and Scalapeño (www.scalapeno.underscore.co.il), to only
name a few. A whole calendar site of Scala events is available at http://www.
scala2014.org.

With that in mind, I hope you enjoyed the book enough to continue exploring
Scala, writing awesome code, and having fun as much as we did!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
:paste command 193
@ sign 121
:wrap method 255

A
Abstract Syntax Tree (AST) 101, 171
activator templates

about 221, 222
Play-Akka-Angular-WebSocket template

224
reactive real-time search 222, 223
reactive stocks 222

actor-in-a-box 198
Actor model 195-198
ActorRef object 198
Actor Room 224-232
actors

about 195
supervising to handle failure 205, 206

ActorSystem object 198
actor systems

testing 207-209
Akka

about 195
Actor model 195-198
actor systems, testing 207-209
documentation, URL 209
switching behavior 199-202

akka.Main class 203
Algebird 245
anonymous functions 27
Anorm 136-138
appendToFile function 254

apply method 215
assert statement 45
async/await

about 189
used, for combining web services 193, 194

async { <expression> } construct 189
Async library

about 189-193
web services combining, async/await used

193, 194
web services combining, without await

194, 195
async method 191
authentication 121-125
await { <expression returning a Future> }

construct 189
await method 191, 194

B
Backus-Naur Form (BNF) 246
BDD-style testing 91-94
Behavior Driven Development (BDD)

URL 87
BookstoreSpec.scala class 158

C
Casbah 236-239
Casbah Scala toolkit

URL 235
case word 20
classic Play distribution

about 108-110
URL, for downloading 108

close method 254

www.it-ebooks.info

http://www.it-ebooks.info/

[258]

coll collection 237
collections

containing primitive types, transforming
24-26

of complex objects 26
operations 24

collections, complex objects
about 26
filter and partition 27
foldLeft method 33
groupBy method 33
map 28, 30
map method 31
option construct 30
pattern matching 30
String Interpolation 32
tuples 28

collection types 44, 45
companion objects 50
Concurrency 187, 188
controller, Play application

request, handling 118
Converter.convert method 104
copy and paste feature, REPL 252
copy method 21
CustomerTest class 135

D
DAO (Data Access Object) class 131
database

existing database, REST API creating
from 36

sample database 36
Domain Specific Languages. See DSLs
Don't Repeat Yourself. See DRY
drop method 24
DRY 108
DSLs

about 60, 245
external DSLs, tackling through parser

combinators 246-249
internal DSLs 245
URL 87

E
Either class 190
EJBs (Enterprise JavaBeans) 107
ElasticSearch

URL 222
ElasticSearchActor actor 223
Enumeratee

defining 217, 218
Enumerator

about 212
adapting, with Enumeratee 217, 218

exceptions
handling 51, 52

expectMsg method 208, 209
expects method 101
external DSLs

tackling, through parser combinators
246-249

F
filter method 27, 30
filterNot method 27
find method 237
findOne method 238
flatMap 256
foldLeft method 33, 216
foldRight method 216
for comprehension construct 75-78
forURL method 142
f(param) function 254
framework stack, Play application

visualizing 112
functional testing 94-96
future method 191
Futures and Promises

URL 188

G
getByName method 132
Gherkin language

URL 87
GoldCustomer class 49

www.it-ebooks.info

http://www.it-ebooks.info/

[259]

greetPrinter 198
groupBy method 33
Groupon service 72

H
H2-browser database

visualizing 150, 151
HDFS 243
HelloAkkaScala object 197
help function 253
hot swapped 112
HQL (Hibernate Query Language) 139
HTTP

about 70-74
for comprehension 74-79

I
implicit c parameter 138
Inbox object 198
index method 115, 122
Input[E] 215
Input.Empty 215
Input.EOF 215
insert command 237
IntelliJ 62, 64
internal DSLs 245
Iteratees 212-219

J
Java. See also Scala and Java collaboration
Java

and Scala code, in style differences 54
code layout, adjusting 55, 56
naming conventions 56, 58
unit testing, adding 40

JavaBean-style properties 45
Java IDEs 60
Java Integrated Development Environments

(IDEs). See Java IDEs
Java Maven project

Scala, setting up 41, 43
Java Persistence API. See JPA
Jfokus 256

JPA
about 127
URL 128

JPA-annotated Scala
URL 128

JPA entities
creating 37, 38

JPQL (Java Persistence Query Language)
139

JsArray 171
JsBoolean 170
JsError object 178
JsNull 170
JsNumber 170
JsObject 170
JSON

manipulating 166-168
Play requests, handling with 172, 173
Play responses, mocking with 174, 176

JSPs (JavaServer Pages) 120
JsString 170
JsValue type 170
JUnit 40

L
lambdas 10
Language entity 130
Leaner CSS (LESS) 108
Location field 13
LogEntryProducerActor actor 223
LoggingReceive call 231
LoggingReceive object 204
login method 122

M
Macros 101
main method 251
MainSearchActor actor 223
map 28-31
MapReduce jobs

about 79
URL 243

MapReduce transformations
applying 239-242

www.it-ebooks.info

http://www.it-ebooks.info/

[260]

Maven project
setting up 37

mocking
with ScalaMock 96-101

MongoDB
Casbah 236-239
exploring 235
MapReduce transformations, applying

239-242
URL 235

mongod daemon 237

N
naming conventions 56, 58
nbsbt plugin 63
NEScala 256
not only SQL (NoSQL) 235

O
Object Relational Mapping. See ORM
onComplete method 191
option construct 30
ORM

about 128
replacing 139

P
param argument 254
parser combinators

URL 246
partition method 30
pattern matching 30
Play

web services, calling from 176-184
Play-Akka-Angular-WebSocket template

224
Play application

architecture 111
controller request, handling 117, 118
framework stack, visualizing 112
request-response lifecycle, exploring

113-116
view, rendering 119, 120

Play application, scaffolding
about 145-149

app generation code, exploring 151-153
H2-browser database, visualizing 150, 151
playcrud utility, limitations 153
test data, importing 149, 150

playcrud utility
limitations 153, 154

Play Framework
about 107, 108
debugging 125
example, Anorm used 136-138
persistence 136
using, tips 125
version control 126

Play JSON 169-171
play-json library 177
Play requests

handling, with JSON 172, 173
handling, with XML 172, 173

Play responses
mocking, with JSON 174-176

publish-local command 64

R
reactive applications 211
Reactive Manifesto

URL 211
ReactiveMongo project

URL 242
reactive real-time search 222, 223
reactive stocks 222
react to events 211
react to failure 212
react to load 212
react to users 212
Read-Eval-Print-Loop. See REPL
receive method 196, 206
Receiver actor 226
reduce method 58
remove method 238
REPL

about 14
as scripting engine 84, 85
copy and paste feature 252
timing code execution 253-255

request-response lifecycle, Play application
exploring 113-116

www.it-ebooks.info

http://www.it-ebooks.info/

[261]

require assertion 200
REST API

creating, from existing database 35
JPA entities, creating 37, 38
Maven project, setting up 37
project, running 38, 39
project, testing 38
REST web service, creating 37, 38
sample database 36

REST web service
creating 37, 38

ResultSet object 137
run method 215

S
SBT

about 44, 60
code, formatting with Scalariform 68
Eclipse project, importing 62
IntelliJ 62
sample project, creating 61
single .jar archive building, sbt-assembly

used 67
web application, creating 64-67

sbt-assembly
using, to build single .jar archive 67, 68

sbteclipse plugin 62, 88, 157
sbt-idea plugin 63
Scala

DSLs 245
JPA availability 128-135
learning, through REPL 14
setting up, within Java Maven project

41, 43
test, adding 40, 41
XML data, binding 156-159

Scala and Java collaboration
about 44
collection types 44, 45
companion objects 50
enhanced Java interfaces 48, 50
exceptions, handling 51-53
JavaBean-style properties 45
object orientation 46-48
objects, declaring 50

ScalaCheck
testing with 101-104

Scaladays 256
Scala dispatch library

URL 70
Scala events 256
Scala eXchange 256
Scala for Java projects

advantages 9-14
Scala Improvement Process (SIP) 188
Scala.io 256
Scala.js 249-252
ScalaMock

mocking with 96-101
URL 96

Scala REPL (Read-Eval-Print-Loop)
about 14
case classes 18-24
classes, defining 16-18
val variables, declaring 14-16
var variables, declaring 14-16

Scalariform
code, formatting with 68

ScalaTest
about 88
BDD-style testing 91-94
functional testing 94, 96
URL 87

ScalaTest class 88
scala.util.Try class 54
Scala Worksheets 68-70
scalaxb

running, from SOAP web service 160-163
scalaxb library 156
Selenium tool

URL 94
Server Side Events (SSE) 223
Simple Build Tool. See SBT
single .jar archive

building, sbt-assembly used 67, 68
singleOpt method 137
Slick framework

about 140-144
benefits 139

SOAP web service
scalaxb, running from 160-163

www.it-ebooks.info

http://www.it-ebooks.info/

[262]

social security number (ssn) 15
Spark 245
Specs2

URL 87
Spring

URL 128
square method 251
static keyword 50
StockActor 222
streams

handling 212
String Interpolation 32
StringSpecification test 102
SummingBird 245
system.actorOf method 198

T
TAB completion 17
test

adding 40, 41
testing

BDD-style testing 91
functional testing 94
tools 87

test-only command 90
timeAndLogged function 254
timedAndLogged function 255
timedAndLogged method 255
timing code execution, REPL 253-255
TravelAgent object 201
tuples 28
Type Inference 15
Typesafe Activator

about 79, 111
application creating, based on activator

templates 80-83
Typesafe page

URL 12

U
unit test

adding, in Java 40
using function 254
using method 254

V
view, Play application

rendering 119-121
VIPCustomer class 49

W
web application

creating 64-67
web services

calling, from Play 176-184
Web Services Description Language

(WSDL) 160
WebSocket.async[JsValue] method 224
WebSockets 218-221
with keyword 49
Worksheets. See Scala Worksheets

X
XML

manipulating 164-166
Play requests, handling with 172, 173

XML data
binding 155-159

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Scala for Java Developers

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Java EE 7 with GlassFish 4
Application Server
ISBN: 978-1-78217-688-6 Paperback: 348 pages

A practical guide to install and configure the GlassFish 4
application server and develop Java EE 7 applications to
be deployed to this server

1. Install and configure GlassFish 4.

2. Covers all major Java EE 7 APIs and includes
new additions such as JSON Processing.

3. Packed with clear, step-by-step instructions,
practical examples, and straightforward
explanations.

Getting Started with SBT for Scala
ISBN: 978-1-78328-267-8 Paperback: 86 pages

Equip yourself with a high-productivity work
environment using SBT a build tool for Scala

1. Establish simple and complex projects quickly.

2. Employ Scala code to define the build.

3. Write build definitions that are easy to update
and maintain.

4. Customize and configure SBT for your
project, without changing your project's
existing structure.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Play! Framework 2
ISBN: 978-1-78216-012-0 Paperback: 290 pages

Start developing awesome web applications with this
friendly, practical guide to the Play! Framework

1. While driving in Java, tasks are also presented
in Scala – a great way to be introduced to this
amazing language.

2. Create a fully-fledged, collaborative web
application – starting from ground zero;
all layers are presented in a pragmatic way.

3. Gain the advantages associated with
developing a fully integrated web framework.

Java EE 7 Developer Handbook
ISBN: 978-1-84968-794-2 Paperback: 634 pages

Develop professional applications in Java EE 7 with
this essential reference guide

1. Learn about local and remote service endpoints,
containers, architecture, synchronous and
asynchronous invocations, and remote
communications in a concise reference.

2. Understand the architecture of the Java EE
platform and then apply the new Java EE 7
enhancements to benefit your own
business-critical applications.

3. Learn about integration test development on
Java EE with Arquillian Framework and the
Gradle build system.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Preface
	Chapter 1: Programming Interactively within Your Project
	Advantages of using Scala for Java projects
	More concise and expressive
	Increased productivity
	Natural evolution from Java
	Better fit for asynchronous and concurrent code

	Learning Scala through the REPL
	Declaring val/var variables
	Defining classes
	Explaining case classes

	Operations on collections
	Transforming collections containing primitive types
	Collections of more complex objects
	Filter and partition
	Dealing with tuples
	Introducing Map
	Introducing the Option construct
	A glimpse at pattern matching
	The map method
	Looking at String Interpolation
	The groupBy method
	The foldLeft method

	Summary

	Chapter 2: Code Integration
	Creating a REST API from an existing database
	The sample database
	Setting up a Maven project
	Creating JPA entities and REST web service
	Running and testing the project

	Adding a test in Scala
	Setting up Scala within a Java Maven project
	Scala and Java collaboration
	Converting between collection types
	JavaBean-style properties
	Scala and Java object orientation
	Scala traits as enhanced Java interfaces
	Declaring objects
	Introducing companion objects
	Handling exceptions

	Differences in style between Java and Scala code
	Adjusting the code layout
	Naming conventions

	Summary

	Chapter 3: Understanding the
Scala Ecosystem
	Inheriting Java Integrated Development Environments (IDEs)
	Building with Simple Build Tool (SBT)
	Getting started with SBT
	Creating a sample project
	Importing the project in Eclipse, IntelliJ IDEA, and NetBeans
	Creating a web application that runs on a servlet container

	Using sbt-assembly to build a single .jar archive
	Formatting code with Scalariform

	Experimenting with Scala Worksheets
	Working with HTTP
	Scala's for comprehension

	Taking advantage of Typesafe Activator
	Creating an application based on activator templates

	The REPL as a scripting engine
	Summary

	Chapter 4: Testing Tools
	Writing tests with ScalaTest
	BDD-style testing
	Functional testing
	Mocking with ScalaMock

	Testing with ScalaCheck
	Summary

	Chapter 5: Getting Started with the Play Framework
	Getting started with the classic Play distribution
	Getting started with the Typesafe Activator
	Architecture of a Play application
	Visualizing the framework stack
	Exploring the request-response lifecycle
	Handling a request in the controller
	Rendering the view

	Playing with authentication
	Practical tips when using Play
	Debugging with Play
	Dealing with version control

	Summary

	Chapter 6: Database Access and the Future of ORM
	Integrating an existing ORM – Hibernate and JPA
	Making JPA available in Scala

	Dealing with persistence in the Play Framework
	A simple example using Anorm

	Replacing ORM
	Learning about Slick
	Scaffolding a Play application
	Importing test data
	Visualizing the database in the H2-browser
	Exploring the code behind the app generation
	Limitations of the playcrud utility

	Summary

	Chapter 7: Working with Integration
and Web Services
	Binding XML data in Scala
	Running scalaxb from a SOAP web service

	Working with XML and JSON
	Manipulating XML
	Manipulating JSON
	Using Play JSON

	Handling Play requests with XML and JSON
	Mocking Play responses with JSON
	Calling web services from Play

	Summary

	Chapter 8: Essential Properties of Modern Applications – Asynchrony and Concurrency
	The pillars of Concurrency
	The Async library – SIP-22-Async
	Combining web services
	Combining services without await

	Getting started with Akka
	Understanding the Actor model
	Switching behavior
	Supervising actors to handle failure
	Testing actor systems
	Exploring further with Akka

	Summary

	Chapter 9: Building Reactive
Web Applications
	Describing reactive applications
	Handling streams reactively
	Understanding Iteratees in Play
	Adapting Enumerator with Enumeratee

	Experimenting with WebSockets and Iteratees in Play
	Learning from activator templates
	Reactive stocks
	Reactive real-time search
	The Play-Akka-Angular-WebSocket template

	Playing with the Actor Room
	Summary

	Chapter 10: Scala Goodies
	Exploring MongoDB
	Entering Casbah
	Applying MapReduce transformations

	Scratching the surface of Big Data
	Introducing DSLs in Scala
	Observing Internal DSLs
	Tackling external DSLs through parser combinators

	Introducing Scala.js
	Final tips
	Copy and paste in the REPL
	Timing code execution in the REPL

	Summary

	Index

