
Scalability 
Patterns

Best Practices for Designing High  
Volume Websites
—
Design your website to handle a  
million hits a day
—
Chander Dhall

www.allitebooks.com

http://www.allitebooks.org


Scalability Patterns
Best Practices for Designing 

High Volume Websites

Chander Dhall

www.allitebooks.com

http://www.allitebooks.org


Scalability Patterns: Best Practices for Designing High Volume Websites

ISBN-13 (pbk): 978-1-4842-1074-1		  ISBN-13 (electronic): 978-1-4842-1073-4
https://doi.org/10.1007/978-1-4842-1073-4

Library of Congress Control Number: 2018951608

Copyright © 2018 by Chander Dhall 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green
Development Editor: Laura Berendson
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, 
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or 
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book’s product page, located at www.apress.com/9781484210741.  
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Chander Dhall
Austin, Texas, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-1073-4
http://www.allitebooks.org


In loving memory of my parents to whom  
I owe endless gratitude.

www.allitebooks.com

http://www.allitebooks.org


v

About the Author����������������������������������������������������������������������������������ix

About the Technical Reviewer��������������������������������������������������������������xi

Preface�����������������������������������������������������������������������������������������������xiii

Table of Contents

Chapter 1: �Introduction�������������������������������������������������������������������������1

Scaling – An Art and a Science������������������������������������������������������������������������������2

Background������������������������������������������������������������������������������������������������������2

Response Times: What Are We Aiming For?�����������������������������������������������������6

REST Principles������������������������������������������������������������������������������������������������������7

Concepts��������������������������������������������������������������������������������������������������������������11

Theory������������������������������������������������������������������������������������������������������������������14

Chapter 2: �Scaling – An Art and a Science������������������������������������������25

CAP Theorem��������������������������������������������������������������������������������������������������������30

Fallacies of Distributed Computing����������������������������������������������������������������������33

How to Achieve Scaling����������������������������������������������������������������������������������������33

Step 1: Getting Started�����������������������������������������������������������������������������������33

Step 2: Vertical Scaling�����������������������������������������������������������������������������������35

Step 3: Vertical Partitioning����������������������������������������������������������������������������36

Step 4: Horizontal Scaling������������������������������������������������������������������������������38

Conclusion�����������������������������������������������������������������������������������������������������������49

www.allitebooks.com

http://www.allitebooks.org


vi

Chapter 3: �Scaling – Advanced Concepts��������������������������������������������51

Caching����������������������������������������������������������������������������������������������������������������52

Understanding Partitioning����������������������������������������������������������������������������������55

1. �Vertical Partitioning������������������������������������������������������������������������������������56

2. �Horizontal Partitioning��������������������������������������������������������������������������������57

3. �Hardware Partitioning���������������������������������������������������������������������������������58

Hardware Partitioning������������������������������������������������������������������������������������������59

RDBMS Horizontal Scaling�����������������������������������������������������������������������������������62

RDBMS Horizontal Partitioning����������������������������������������������������������������������������67

RDBMS Vertical Partitioning���������������������������������������������������������������������������70

Set – A Unit of Scale���������������������������������������������������������������������������������������73

Conclusion������������������������������������������������������������������������������������������������������75

Chapter 4: �Concepts We Tend to Ignore�����������������������������������������������77

Async Non-Blocking I/O���������������������������������������������������������������������������������������77

Caching����������������������������������������������������������������������������������������������������������������82

Data Categorization����������������������������������������������������������������������������������������85

Caching Guidelines�����������������������������������������������������������������������������������������86

Cached Item Removal�������������������������������������������������������������������������������������90

Content Delivery Networks����������������������������������������������������������������������������������92

TCP, HTTP/1.1, and HTTP 2�����������������������������������������������������������������������������������95

Reverse Proxy������������������������������������������������������������������������������������������������������97

IP Anycasting�������������������������������������������������������������������������������������������������������98

Microservices�������������������������������������������������������������������������������������������������������99

Why Microservices?�������������������������������������������������������������������������������������101

Summary�����������������������������������������������������������������������������������������������������������107

Table of ContentsTable of Contents



vii

Chapter 5: �Relational vs. No-Sql��������������������������������������������������������109

No-Sql Databases����������������������������������������������������������������������������������������������109

Types of No-Sql Databases��������������������������������������������������������������������������������113

Key-Value Store��������������������������������������������������������������������������������������������113

Document Databases�����������������������������������������������������������������������������������115

Column-Family Databases����������������������������������������������������������������������������117

Graph Databases������������������������������������������������������������������������������������������124

Full-Text Search Engine Databases��������������������������������������������������������������127

Summary�����������������������������������������������������������������������������������������������������������130

Chapter 6: �Polyglot Persistence���������������������������������������������������������133

Offline Processing����������������������������������������������������������������������������������������������133

Polyglot Persistence�������������������������������������������������������������������������������������������136

Summary�����������������������������������������������������������������������������������������������������������151

�Index��������������������������������������������������������������������������������������������������153

Table of ContentsTable of Contents



ix

About the Author

Chander Dhall, CEO of Cazton, is an 

internationally acclaimed software architect 

and consultant. He is an eight-time awarded 

Microsoft Most Valuable Professional, Google 

Developer Expert, Azure Advisor, Cosmos DB 

Insider, ASP.NET Insider, Web API Advisor, 

and the Dev Chair for DevConnections. He 

speaks at top tech conferences around the 

world like Microsoft Tech Ed, Microsoft Visual Studio Launch Event, MVP 

Mix, DevConnections, NDC, Techorama, Build Stuff, and many others. 

He’s a professional software architect, trainer, open source contributor, 

community leader, and organizer with years of experience in enterprise 

software development.   

Chander Dhall is a world-renowned technology leader in architecting 

and implementing solutions. He has not only rescued software 

development teams, but also implemented successful projects under tight 

deadlines and difficult business constraints. His company has a proven 

track record of not just saving clients millions of dollars, but also providing 

an expedited delivery time. Chander’s team of experts speak in top 

technical conferences in the world.

As an advisor and insider to top technologies and frameworks, 

Chander has insight into new releases on technologies used by millions 

of developers. His critical advice, impeccable vision, futuristic strategy 

backed with creating and establishing best practices in the industry are 

some of the reasons for his unparalleled success.



x

At the same time, he’s a voracious and highly respected speaker. 

Chander is known to elucidate critical and complex concepts while 

making them easy to understand. He’s one man who can talk to anyone 

from a junior developer, a senior architect, all the way to an executive and 

knows how to speak their language. He has utilized his amazing business 

sense having started companies with zero funding and turned them into 

multimillion-dollar companies in less than two years.

About the AuthorAbout the Author



xi

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior  

analyst/developer using Microsoft technologies. He works for BluArancio  

(www.bluarancio.com). He is a Microsoft Certified Solution Developer for 

.NET, a Microsoft Certified Application Developer for .NET, a Microsoft 

Certified Professional, and a prolific author and technical reviewer. 

Over the past 10 years, he’s written articles for Italian and international 

magazines and coauthored more than ten books on a variety of computer 

topics.

http://www.bluarancio.com/


xiii

Preface

Over the course of my professional career, my team and I have rescued 

countless projects that were either running out of budget or were behind 

schedule. At the same time, we have created projects or augmented 

teams to help clients start projects from scratch and take them all the way 

to completion. The success of a project does not solely depend on hiring 

a couple of rock star architects or developers and assuming everything 

will fall into place. Success needs to be in the DNA of the team. Good 

software leaders inculcate the successful qualities in each and every 

member of the team.

This book is the result of a presentation I did for Microsoft Tech Ed in 

Barcelona, Spain, in 2014. While the concepts are not new, I believe when 

it comes to the scalability of a web-based system and scaling your database 

system, these principles are timeless.

When we talk about scaling our systems, microservices is considered 

as a panacea to all ills; however, there are many systems that may not need 

a complete microservices model. Whereas microservices brings agility to 

our systems, we may not have the need to deploy four times a day. We may 

not have systems that are written in different languages and frameworks 

that need to be part of the system we are building.

Even though this book talks about microservices, it’s just one of the 

patterns that we will explore. Understanding scalability patterns and 

what’s good, bad, and ugly about all of those is the real aim of the book. 

Having worked with start-ups, mid-size corporations, and Fortune 500 

companies with global presence, I been fortunate to see what works and 

what fails. Patterns change all the time, but principles are fundamental to 

the system that runs on them. If you were to use an RDBMS like Sql Server 



xiv

that is better for scaling up than scaling out, normalization would take 

precedence over duplication of the data. However, if you are using a No-

Sql database like MongoDB that scales out easily, then duplication might 

take precedence over normalizing in certain cases where availability is 

important.

With the ever-increasing technologies and frameworks, enterprise 

architects and developers struggle with getting tied into legacy tech, which 

makes it harder for them to take advantage of better technologies that 

could have solved many of the problems they are facing. However, it’s 

not just the technologies or the tech stack. More importantly, it’s also the 

patterns and principles that are being used to architect the system. It’s very 

easy to lose focus on the big picture, especially in big organizations where 

it’s easy for teams to be in siloes and become myopic about they are doing. 

While working with different companies, my team and I keep an eye on 

similar mistakes in approaches and strategies and try to disseminate the 

learnings to other people on the team and eventually to teams working at 

other clients. It’s reasonable to make mistakes; however, the goal is to learn 

from these mistakes.

This book focuses on different patterns of scalability. The goal 

of the book is for you to understand the strengths and limitations of 

these patterns. Understanding of the underlying principles is the key to 

architecting, developing, deploying, and then maintaining a great system 

that is futuristic, easy, and less costly to maintain and has the best ROI. The 

book is not opinionated, and the goal is not to force opinions. It’s a critical 

analysis of all the current practices I have witnessed in the last decade. 

The real goal is to expose and encourage a scientific way of thinking that 

is principle based. The principles change per technology. Functional 

programming languages can’t be expected to be written with the same 

principles as object-oriented languages. Patterns are problem specific. 

We cannot use a Strategy Pattern to solve the same problem as a Factory 

Pattern.

PrefacePreface



xv

Software development is an ever-evolving field. Change is the only 

constant we know. The key takeaway from the book is to understand 

the mistakes that have already been made and to learn from them. No 

solutions suggested in this book should be considered absolute or final. 

I’m sure we will continue to see newer problems with each passing day, 

and the great tech community will continue to solve them with continued 

dedication. Knowledge, experience, agility, and continuous improvement 

are key components to making projects, teams, and companies successful.

I wish I could put all of that in a book, but as you know a book is just 

a way to express some of your opinions. With this book, I wish to spread 

ideas and hope to establish a relationship with the readers. In the social 

media world, it’s easy to connect and I hope you will reach out. I value 

your opinions, criticism, and suggestions. I had a great time writing this 

book. I hope you enjoy reading it.

PrefacePreface



1© Chander Dhall 2018 
C. Dhall, Scalability Patterns, https://doi.org/10.1007/978-1-4842-1073-4_1

CHAPTER 1

Introduction
In this world of ever-increasing data usage, scalability has become more of a 

necessity than a luxury. This can very well be attributed to the tremendous 

growth in the size of smartphones and tablet users. According to Internet 

Live Stats (www.InternetLiveStats.com), we have about 3,915,062,366 

users (as of May 9, 2018). With the world population being roughly 7.6 

billion users, this number will only continue to grow. With the advent of 

mobile devices and the constant dependency on these, there is a big need 

of a “Scalability First” approach or “Cloud Oriented Architecture.”

Scaling Up has traditionally been a much simpler architecture than 

Scaling Out. Previously, a high-powered server with Relational Databases 

was enough to power Enterprise Applications and websites. Data transfer 

and interaction between the user and the websites were fairly limited. 

Nevertheless, social networks are more of a game changer in that the data 

generated is enormous. Just for the sake of comparison, buying a plane 

ticket online versus commenting incessantly on Facebook are two entirely 

different business cases. Whereas the former requires the bare minimum 

input from the user, the latter has hardly any limits. Whereas the former 

requires robustness, security, and is not heavy on data or interaction, a 

typical RDBMS might be a good solution for it. Accuracy and validity of the 

transaction end up being more important for such a transaction over speed. 

Whereas in the case of social networks, performance and scale of the website 

are far more important than being able to successfully save a post created 

three years ago. In comparison, losing the order history of plane tickets sold 

three years ago might be an unforgettable nightmare for an airline.

http://www.internetlivestats.com/


2

In recent years, businesses have been trying their best to drive their 

customers to mobile apps. There are apps for almost anything a consumer 

would want to do: ranging from buying a cup of coffee to monitoring his 

heart rate. The boom in Web followed by the boom in mobile has been 

instrumental in making it difficult for a typical Relational Database to be 

able to scale to the limits needed. Again, scaling is also very relative. If 

you own a coffee shop, you only need to be able to scale up to the amount 

of real orders you can handle in a day. If the infrastructure of your coffee 

shop only allows you to sell 1,000 cups of coffee a day, there is no point in 

creating a website that can scale to receiving 100 million orders in a day.

Note  Scalability is a science as well as an art. Technical architects 
need to work in tandem with the business in order to better 
understand its scalability needs.

�Scaling – An Art and a Science
Scaling is an art and a science. During the last recession, I was brought onto 

a project that had been going on for four years and had more than 300 bugs. 

The two consulting companies that had been working on it had blamed it 

on the clarity of requirements and practicality of timelines. Not even one 

major module out of four was production ready. And guess what? This was a 

perfect project to work on and prove the importance of scalability.

�Background
This was a company that was highly profitable and had a manager who did 

extremely well with Excel sheets and a high volume of low-cost, low-skilled 

people. They could do everything from tracking a package, to invoicing, 

and making sure the customers were happy. However, if the CEO of the 

Chapter 1  Introduction



3

company wanted to find out where a $2MM machine was located, and 

the only person who knew had taken the day off, there was no real way of 

finding out. Automation was the need of the hour.

It turns out that both the companies had brought in a bunch of smart 

developers and architects who somehow either didn’t understand the 

business or chose to ignore it. A quick glance at the code base proved 

that the code was not uniform. Some of the code was very well written; 

however, there were islands of repetitive code base, unit testing barely 

existed and even worse, integration testing was not fully automated.

Now let’s look at this database. The code base had 2,500 stored 

procedures. Most of these were 100–1,000 lines of code, and one stored 

procedure was copied about six times on average and the last couple of 

lines were changed. Just imagine changing the common code in 10 such 

stored procedures. It would mean changing 60 files at the bare minimum 

and the testing effort behind it would be massive. The code had a data 

layer, but it was not consistent. The absence of a good Object Relational 

Mapper was one of the major problems. An ORM is not an end-all and 

be-all for a data layer. Nevertheless, it makes sense to have an ORM as 

part of your data layer. Most of the standard queries run equally well with 

an ORM. There are surely cases where ORMs may decrease performance, 

and so using a Stored Procedure in tandem is an approach that cannot fail. 

ORMs make it easy to catch errors at compile time, reduce development 

effort, and decrease the chances of bugs in production. A Stored Procedure 

could be great for performance and should be used in such situations 

where performance affects the business. At the same time, altering a 

production database is usually not a good idea, but with Stored Procedures 

that’s sometimes the only way to go.

The UI was pretty standard. It was Web and Windows at the time and 

later, I assume, other UIs (User Interfaces) would be added. However, there 

was no use of an API. Dynamic Link Libraries were the only way to share 

reusable code. This was not considered that bad in those ages, but it could 

have been better. Windows UI code is pretty standard and there is not much 

Chapter 1  Introduction



4

room to maneuver for a developer, so we won’t go much into that here. 

The Web UI code was overly complicated and nonstandard. Simple things 

like the presence of a few different kinds of grids in the same application 

were simply not needed. For the consistency of the website, ensuring speed 

of development and reusability, a partial control on a page needed to be 

standardized across the entire enterprise. It may not have been a good idea to 

have multiple CSS for a standard button with the same size. Let’s say there is 

a basic grid that is used multiple times in the same app, like a basic grid with 

just some regular sorting on column names. Assume there are three such 

grids and all of them are built using three different libraries. Now for some 

reason, the business wants to add filtering on each grid. This will increase 

the work threefold. What if two different kind of grids are used on the same 

page? That means additional JavaScript and CSS files on the page. Whereas, 

by standardizing a grid across the application, and adding custom CSS and 

JavaScript where needed, we could have alleviated both of these problems.

Without going into too much detail about the actual project needs, 

I would like to talk about only the requirements that are relevant to this 

course. Looking at the solution, it was quite clear that the developers were 

brought in using Agile, which was a great starting point at that time, but 

the solution showed signs of missing the complete picture. The code was 

broken into modules and the typical mistake of assuming all modules are 

mutually exclusive was committed. That was apparent given the pockets 

of mock code and data that were present. This was required to fill in 

pieces of puzzle that were not accounted for when the current module 

was designed. For example, the Shipment Module was designed and 

implemented without even defining the API of how the system was to 

handle payments. So, when the Payments Team came up with an API, it 

broke everything in Shipment. All in all, the design was exceptionally good 

in some areas, but the complete system was quite dysfunctional. That is the 

basis of my previous comment about smart developers. There was surely 

a lack of a good hands-on architect on the team, which would explain why 

the project was in such a terrible state. There were five major modules and 

Chapter 1  Introduction



5

only one of them had actually been done with more than 300 known bugs. 

So, after four years of development, nothing was actually working.

A quick look at the architecture suggested that the system configuration, 

topology, servers that were asked for in production environment, and the 

amount of resources requested were enough to run a company that gets 

more than 100 million unique hits a day. Later in a meeting with the CEO, I 

was amazed to find out that the company had only 140 part-time employees 

who would ever use this system. It was like creating a rocket ship to go to 

the grocery store. The recruiter who had hired me was confident in my 

abilities to complete this project and had gotten approval to have me there 

for an extended period of time. I was told by internal employees of the 

company that it would take four more years for this project to be delivered 

and they didn’t expect it to work well. The morale was surely low.

After a few hours of my assessment, my next meeting was with the 

CEO. It’s important to remember one thing about executives: they all want 

to know when the project will be done and how much it is going to cost. 

You basically have only 10 minutes to prove your worth. At least, that’s 

what I had heard…. The CEO was very impressive and extremely good at 

what he did, although, he had not been involved directly in managing the 

technical projects. His disdain for technical people and lack of trust in 

them was being hidden by his great leadership skills. In his situation, this 

was not surprising at all. Ten minutes into the meeting, the big question 

came up. Before answering, I had to be fully informed of the business’s 

needs. After an enlightening conversation of the CEO’s vision, I was 

confident that I could finish the entire project by myself in 9–12 months. 

This number also had the added buffer I needed in case something 

external jeopardized my plan. If you have ever bid for projects with 

multiple vendors, you surely know this: the lowest and the highest bids 

usually disqualify themselves. I almost disqualified myself here. He called 

my recruiter right after the meeting and was dismayed and also bewildered 

by my estimate. After a bit of back and forth, we realized he didn’t have 

trust in my estimate because it was so much lower than expected. The only 

Chapter 1  Introduction



6

way to establish trust now was to have my recruiter guarantee a smaller, 

more seemingly realistic result. So, the promise was made to deliver one 

major module in three months. Fortunately, it was delivered in nine weeks 

and the entire project was finished in eight months with no other resource 

added to the team.

Bottom line: Software Estimation is hard, and it becomes even harder 

when the scope is not defined or understood well. Usually, a lot of time 

is spent worrying about technical aspects, but not in understanding what 

the business really wants. Yes, scalability is truly a science. Let’s say there 

are 100 million users on a website. Assuming the website doesn’t make 

simultaneous ajax requests at any given instant, there cannot be more 

than a 100 million concurrent requests. Assuming we have a machine that 

can handle five million concurrent requests (and the system resources are 

utilized less than 70%), we know that we need 20 such machines to scale. 

But how realistic is this scenario? Statistics are mostly misleading. Daily, 

monthly and yearly analysis of the data can result in predictive analysis 

and the nature of business, clientele, location of users, time of the year, 

etc., can play a big part in understanding when to really scale to the highest 

level. Most of the time, it might be sufficient to handle the traffic with just 

two machines. Scaling with infinite resources is easy, but scaling with the 

most optimum use of resources and creating a sustainable solution that 

doesn’t foreclose future options of growth is what we should be aiming for. 

This is where scalability really becomes an art.

�Response Times: What Are We Aiming For?
Amazon claims that just an extra 1/10th of a second on its response 

times will cost 1% in sales. Google claims that half a second increase in 

latency caused its traffic to drop by one-fifth. Have you worked in real-

time systems with internal SLAs (Service Level Agreements) of eight 

seconds? Quite surprisingly, there are web applications, APIs, and back-

end processes with that kind of response time. Whereas, an offline system 

Chapter 1  Introduction



7

that doesn’t need to have a real-time response can have extended SLAs. 

The longer the SLA of a real-time system, the more adversely it affects 

the business. The recent trend in the industry has been to decrease the 

response times and it’s a welcome move. Note, if any organization hasn’t 

tackled this until recently, it’s high time that efforts are made to alleviate 

this problem.

So, what is the magic number for competitive advantage? How 

much faster does a website need to be in order to have it? It turns out 

that the magic number is 250 milliseconds. According to Harry Shum, a 

computer scientist and speed specialist at Microsoft, “Two hundred fifty 

milliseconds, either slower or faster, is close to the magic number now for 

competitive advantage on the Web.”

�REST Principles
When it comes to scalability, the best principles to follow are the REST 

principles. REST stands for REpresentational State Transfer, which is 

a term coined by Roy Fielding. REST promotes an architecture that is 

over HTTP, which happens to be a stateless protocol for web-based 

applications. The six principles to be discussed are the following:

	 1.	 Client–server: The principle states, “Servers 

and clients may also be replaced and developed 

independently, as long as the interface between them 

is not altered.” Even though this principle sounds 

pretty straightforward in today’s world, keep in mind 

that this dissertation was written around the time 

when they were a bunch of monolithic apps that had 

high coupling. It was extremely hard for the client 

and server to not be dependent on each other.

Chapter 1  Introduction



8

In my honest opinion, Roy deserves credit for 

suggesting this principle way before smartphones 

became prevalent. This makes a lot of sense when 

we have multiple kinds of UIs, for example, thick 

clients apps on Windows, iOS, or Android platform 

along with web apps.

	 2.	 Stateless: The principle states, “The client–server 

communication is further constrained by no 

client context being stored on the server between 

requests.” Since HTTP is stateless, it makes perfect 

sense for all client server interactions to be stateless. 

Being stateless means that the server will not store 

anything about the last HTTP request a client has 

made and will treat each and every request as 

a completely new request. What happens if the 

application needs to be stateful? There are many 

ways to handle that but the most scalable way 

would be to use a second-level cache like Redis, 

Memcached, App Fabric, etc.

	 3.	 Caching: The principle states, “Well-managed 

caching partially or completely eliminates some 

client–server interactions, further improving 

scalability and performance.” Caching data that 

doesn’t change very often like product catalogs and 

their description is always a good idea. It not only 

increases the response times of the application, it 

also reduces the number of calls to the database. 

In my personal experience at different clients, they 

either have no caching or a partial caching strategy. 

Caching strategies need to be at the core of any 

application architecture. One thing to stress though 

Chapter 1  Introduction



9

is having a strategy about “what not to cache.” Quite 

interestingly, this is as important as having a list of 

items to cache. Certain items should not be allowed 

to be cached at all. These include critical items that, 

if cached, or cached incorrectly might display a 

wrong version of the item to the user and may cause 

business errors that might result in loss of business 

and client confidence.

	 4.	 Layered system: The principle states, “A client 

cannot ordinarily tell whether it is connected 

directly to the end server, or to an intermediary 

along the way. Intermediary servers may improve 

system scalability by enabling load-balancing and 

by providing shared caches.” Imagine building 

monolithic apps to serve your users over HTTP, 

be it an iPhone app, Android app, Windows app, 

or even a gaming console like Xbox or Samsung 

TV app. What if all of them had to write all the 

server logic separately? It makes sense to use an 

API. Once we have an API the client has no clue 

about the underlying back-end servers and can just 

conform to an authenticated and authorized series 

of request-response-based HTTP calls via a Web 

API. On a separate note, a lot of these apps could 

be built with the same technology like Xamarin 

or Cordova, a similar code base for most of the UI 

functionality, which is another improvement and 

works well for most of the applications.

Chapter 1  Introduction



10

	 5.	 Code on demand: The principle states, “Servers 

are able temporarily to extend or customize the 

functionality of a client by the transfer of executable 

code.” This makes perfect sense in situations where 

we need to exploit a different kind of capability that 

could be specific to an operating system and might 

not be that easy to develop on a particular UI, let’s 

say web browsers. Flash or Silverlight are good 

examples of code on demand. For DRM-related 

functionality, Silverlight had a huge advantage over 

HTML5. Both these technologies used an executable 

to add rich functionality to web applications.

	 6.	 Uniform Interface: The principle states, “The 

uniform interface between clients and servers, 

discussed below, simplifies and decouples the 

architecture, which enables each part to evolve 

independently.” Anytime we create an API, it should 

follow simple, uniform interface for accessing and 

manipulating resources. API consumers should 

be able to create a resource, when possible, and 

be able to access relative URIs to access related 

resources. HATEOAS (Hypermedia as the Engine 

of Application State) is a constraint of the REST 

application architecture. With the use of HATEOAS 

we create a hypermedia-driven site. This site 

simplifies navigation of the REST interfaces 

dynamically by including hypermedia links with the 

responses.

If you want more details on REST, please read Roy’s dissertation.

Chapter 1  Introduction



11

�Concepts
There are certain concepts that are important to understand scalability 

well. They might be defined a little differently than expected, but there is 

a reason behind it. An attempt has been made to explain the reasoning 

behind the definitions below.

Scalability: It’s usually described as the potential of a system to handle 

a certain amount of work and its ability to grow seamlessly as needed. 

Let’s pay attention to some key details now. How about the potential 

of a network or even a process to scale or is it limited to just a system? 

What is meant by handling work? Is it just user traffic? Would a system 

be considered scalable if a sudden growth in traffic causes the system to 

be down momentarily? It’s important to understand the significance of 

the word “seamless” in the definition. Of course, no system needs to be 

defined to be able to handle unlimited traffic as even the most scalable 

system in the world will be hit by a finite population; the population of the 

world plus the number of automated processes that are making requests to 

it. Predetermining the system’s strength and its ability to scale seamlessly 

help plan the system well and go a long way in the success of the business.

In technical terms, scalability is defined as the potential of a system, 

network, or even a process to handle a certain number of simultaneous 

users, sessions, transactions, or operations and grow seamlessly as needed.

	 1.	 Scaling Up: Adding more system resources to the 

current system. This involves either upgrading parts of 

the system like processors, memory, hard disks, etc., 

or simply replacing the hardware with a more superior 

one. This is also referred to as Vertical Scaling.

	 2.	 Scaling Out: Scaling up is usually the easiest 

resolution, but can become a bottleneck with 

increased availability needs. The law of diminishing 

returns applies here. Adding more resources beyond 

Chapter 1  Introduction



12

a certain threshold could cost a huge cost overhead 

for minimal gain in performance or even reliability. 

Also, a single point of failure may lead to a huge 

downtime impact when it’s not backed up well 

and the Mean Time to Repair (see below) could 

be high. Apparently, a more recent trend involves 

addition of commodity-level hardware to an existing 

system. Adding additional nodes to a cluster in a 

back-end system is referred to Scaling Out. Each 

server is independent of the other server and the 

failure of one server, ideally, should not impact the 

availability of the entire system.

Reliability: A system that performs as expected for a specific period 

of time is known as a reliable system. During this specified period of 

time, reliability is defined as the concerned system’s resistance to failure. 

A partial failure of a system should not lead to the complete failure of a 

reliable system. Below are the different measures to calculate reliability.

	 1.	 Mean Time Between Failures (MTBF): This is 

defined as the difference of Total Time Elapsed and 

Total Downtime divided by the number of failures.

MTBF = (Total Time Elapsed - Total Downtime)/

(Number of failures)

	 2.	 Mean Time to Repair (MTTR): This is defined as the 

average time taken to repair a failed component.

Performance: Performance is sometimes incorrectly defined as 

time taken per operation; however, performance really boils down to 

amount of work accomplished compared to the time and resources used. 

Good performance, hence, is nothing but the optimum utilization of 

all resources involved. Time taken per operation will be automatically 

reduced if the computation of the result involves the most optimum 

Chapter 1  Introduction



13

utilization of resources for that particular task. Nevertheless, a high-

performing system may involve one or more of the following: good 

responsiveness, low resource utilization, high throughput and/or 

availability, short data transmission time, etc.

Responsiveness: Time taken per operation is known as responsiveness. 

In real life, it gets used as a measure of performance, but it’s equally 

important to consider resource use while calculating performance.

Availability: A direct effect of scalability is availability. Availability 

generally refers to the ability of a user to access a system during the 

window of time in which the system is supposed to be accessible. In the 

web world, most systems are supposedly accessible 24/7, so the window 

of time may be a little redundant here. One big thing to keep in mind is 

responsiveness of the system. A system won’t be considered available if the 

response time is overly delayed. For example, if an average response from 

a website takes less than one second, the system will be considered largely 

unavailable if the system takes, let’s say, one minute to respond.

The following formula is used to calculate Availability:

Availability (%) = (Total Time Elapsed - Total Downtime)/(Total Time 

Elapsed)

Single points of failure: Imagine a website running on just one web 

server. For example, IIS, Apache, or Nginx. Now, imagine it has just one 

database. If the web server fails, but the database is working, the system will 

still be down. If the database fails and the web server is up, the system will be 

partially down. It will be able to serve static HTML files; however, it won’t be 

able to get any dynamic data from the database. Assuming the system relies 

heavily on the data from the database for every single call, the system will 

be considered a failure. So, in the example above, both the Web Server and 

the Database are Single Points of Failures (SPOFs). SPOF is the part of the 

system that if it stops working, it will lead to the collapse of the entire system.

Fault Tolerance: Systems that don’t collapse even after failures of 

certain individual components of a system are fault tolerant systems. 

Imagine a situation where there 10 web servers behind a load balancer. 

Chapter 1  Introduction



14

Even if few of them are down, the traffic could still be balanced between 

the rest of them. A typical user might not even feel any difference. It could 

very well result in the loss of some temporary information though (like 

session information). There are techniques that will be discussed later to 

minimize even those situations.

Downtime Impact: It is the impact of the downtime of a server, 

service, or a resource. The impact could be measured in terms of the users 

affected, perceived business loss, loss of reputation, etc. For example, 

if an e-commerce website does a business of roughly $10 million on 

Thanksgiving and Christmas between 10 a.m. to 8 p.m., a downtime 

of two hours could be a loss of $2 million or more. Of course, the bad 

experience could also mean permanent loss of customers especially if 

the website was hacked and the customers now feel insecure trusting the 

platform. According to Dunn & Bradstreet, 59% of Fortune 500 companies 

experience a minimum of 1.6 hours of downtime per week (Reference: 

http://www.evolven.com/blog/downtime-outages-and-failures-

understanding-their-true-costs.html#sthash.JBOjDOVi.dpuf).

�Theory
There’s a well-known joke about theorists: A theorist is “Someone who 

doesn’t believe in anything that is working well in practice until and unless 

he could prove it out in theory.” A similar joke exists about academicians: 

“An academician is a person who is willing to assume anything, but 

responsibility.” Of course, I’m in no mood to put myself down or my 

community down; however, jokes or stereotypes may have some truth 

to them. As a problem solver, absolute satisfaction comes only when the 

problem is solved both in theory as well as practice. I must admit though, 

if the knowledge is sans practical experience, it could be a humbling 

experience trying to scale a system to more than a billion hits a day, 

especially a transactional system that is e-commerce based.

Chapter 1  Introduction

http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html#sthash.JBOjDOVi.dpuf
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html#sthash.JBOjDOVi.dpuf


15

At the same time, the practical experience of making things work 

without fully understanding the theory behind it could be self-defeating, 

too. The goal is to create a sustainable solution that scales itself. Hence, 

the underlying theory backed with practical experience is the best 

combination.

Here’s a small example that explains the intent behind the discussion.

Ages ago, books were written that evangelized services to scale 

businesses’ applications. The solution was either promoted or interpreted 

as elucidated in Figure 1-1. When I read about it, I was easily convinced 

that this would be a good solution for some projects in some organizations, 

but it can’t be the end-all be-all of scaling almost any solution. Anyone 

with sustained success in architecting Enterprise Grade solutions could 

have seen the pitfalls of blindly following the approach on any projects 

under the sun. To my utter surprise, this approach was implemented on 

critical projects at almost every client I worked with for the next 8–10 years.

Figure 1-1.  Scaling a web application using services (old 
approach)

Chapter 1  Introduction



16

Well, it was a great opportunity to help clients as well as get the 

practical experience of scaling brownfield applications. Theoretically, it 

sounds really good. Here’s the argument in favor of using the approach in 

Figure-1:

	 1.	 Speed of development: Since there are multiple 

services for all major business divisions, it makes 

sense to divide and conquer. Let’s assume a 

company has multiple teams responsible for some 

kind of business functionality to handle payments, 

orders, inventory, products, etc. With this approach, 

they can have different services. They can define 

the APIs for these services, and any team looking 

to build on top of another team would just need 

the contract of the service to continue their 

development.

	 2.	 Testability: Every team can test their services 

independently. Assuming the team has the 

required domain knowledge, testing the service 

independently is an easier task. Any bugs found 

by the consumer of the services can be centrally 

reported to the team responsible for it.

	 3.	 Performance and Scalability: Each team is 

responsible for the performance and scalability of 

the service. They are expected to maintain a certain 

SLA.

	 4.	 Fault Tolerance: It’s very easy to spawn multiple 

services doing the same task to make the solution 

fault tolerant. If the master service is down, replica 

services will still be handling requests and the 

system will be fault tolerant.

Chapter 1  Introduction



17

	 5.	 Deployment: The approach makes the deployment 

modular and easier. Redeploying a service does not 

mean redeploying the entire app.

	 6.	 Access Management: Sometimes, there are 

reasons to expose one business functionality quite 

differently than others. For example, if all the 

services need to remain internal to a company’s 

network but a service like payments needs to 

be exposed to other B2B customers who want 

to leverage your payments engine behind the 

scenes, then payments, being a service, could 

now be exposed to the rest of the world (of course, 

with the right credentials). Any service related to 

e-commerce transactions that is responsible for 

sensitive customer data could very well be kept in 

a Tier 2 server (Tier 1 servers in this case refer to 

servers exposed via HTTP and Tier 2 is an internal 

server that can’t be accessible unless via a Tier 1 

server). Trust me, the list is actually much longer 

and compelling arguments could be made as to why 

this is a great architecture.

Whereas, this architecture makes sense for quite a few business 

cases, no architecture is such that it will be the best architecture for 

all the problems in the world. The success of a project really depends 

on the ability of an architect to understand the unique challenges of 

an organization, vast experience on all sorts of projects (small-scale, 

mid-scale, and large-scale), experience on multiple operating systems, 

environments, etc. (thick client apps, thin client apps, linux, windows, iOS, 

IOT-based systems), ability to understand and develop (hands-on coding 

ability) the entire framework (if needed), visionary capability, and the 

strength of the personal network of both technical and business people.

Chapter 1  Introduction



18

Nevertheless, I believe in failing fast. Every architecture has certain 

strengths, weaknesses, and limitations. It’s always good to understand 

those before implementation. Let’s brainstorm some potential problems 

with the architecture to see where it may fail.

	 1.	 Increased out-of-process calls: You might think 

this solution will provide separation of concerns 

and hence high cohesion and low coupling. That is 

correct; however, imagine a scenario where the call 

comes to the Order Service that needs to contact 

the Inventory Service to make sure that the product 

exists, then might need to make a call to the Catalog 

Service to get the current pricing and then contact 

the Cart Service to see if any kind of promotions can 

be applied to the particular order. This might mean 

the services having to call other services on which 

they are dependent.

Of course, there are better ways of fixing this 

problem. In fact, the major reason behind the 

evolution of a services-oriented architecture to 

evolve in this way is the lack of understanding of 

the final model. Most cases, individual teams end 

up creating these services, hoping some day they’ll 

magically fit together across the organization.

In Figure 1-2, we have the following dependencies:

		  1.	 S1 -> S2

		  2.	 S2 -> S1, S2 -> S3, S2 -> S5

		  3.	 S3 -> S4, S3 -> S5

		  4.	 S4 -> S5

Chapter 1  Introduction



19

We can easily identify circular dependencies, and 

in a complex application, unless strict standards 

are defined, there is a lot of potential for failure 

especially in circumstances in which the need to 

scale is unexpected. Dependency between S1 and 

S2 is circular, and from a high-level diagram like 

this, is hard to identify recursive dependencies. 

Circular dependencies slow us down, but a recursive 

dependency leads to partial or complete failure and 

must be avoided in any instance.

	 2.	 Performance: Going back to our example of the checkout 

page. In order to check out an online shopping cart, we 

need a lot of information. In a monolithic web application 

(assuming there is no common API) with more of a Model 

View Controller architecture, an easy way to go about this 

request would be to make a call to the controller and then 

the controller makes a call to the database. Assuming that 

the entities in question are the Payment, User, Product, 

Order, and Inventory objects, we would really need to 

make one call to the Relational Database Management 

System and join the corresponding tables to get the result 

back to the web server.

Figure 1-2.  Services dependent on each other

Chapter 1  Introduction



20

Now, imagine doing this with what we have 

above? Imagine we have five different services, 

separately built and deployed by different teams, 

all corresponding to the tables. We shall be making 

five different out-of-process calls, which is surely 

more expensive than the one call to the database. 

What about the database join? For such an involved 

query I’m sure we will need to do some database 

joins. We may need customerId from the Customer 

table to reference the credit card information 

from the Payments table. In order to check the cart 

out, we will need a join between Customer and 

Payments table and may be more joins eventually. If 

that is the case, there is no other option than to do 

an in-memory join. Of course, an in-memory join 

is fast, but using the web server to do data joins is 

not at all a good strategy. A web server should really 

be concerned with I/O more than computation. 

A web server should be the least utilized in any 

computation behavior and should be able to 

respond as soon as possible to every incoming 

request. The more the usage of resources, the worse 

the scalability of the system. Another side effect of 

this approach might also mean bringing more data 

than is needed from the services, doing a join to get 

the common data we need for the request, and then 

sending back what was asked for. Now since the 

join is not happening at the level of the RDBMS, but 

at the level of the web server, we are forced to grab 

more data from the database than needed. That will 

also reduce performance.

Chapter 1  Introduction



21

	 3.	 Single Points of Failure: An application 

architecture cannot be considered to be fully 

scalable if it does not adhere to a simple principle 

of having no Single Points of Failure (SPFs). Testing 

and Debugging is really a process to deliberately 

try to fail the application in test environment so as 

to avoid any potential failure in production. When 

Microsoft was testing Azure, it was said that it tested 

for every possible scenario imaginable, even a 

meteor strike. It surely made sense with what they 

were trying to do, which was to create datacenters 

all over the world with geo-replication between 

continents. Any natural- or human-based cause for 

failure cannot be ignored.

Imagine the first scenario where we had an 

MVC (Model-View-Controller) app interacting 

directly with the database. So there are only two 

points of failure that we are concerned about: one 

is the web server and the other one is the database. 

It’s very easy to back up the database timely. We 

can also have a Master-Slave configuration with 

regular updates. At the same time, it’s quite easy to 

horizontally scale the web server.

In the second scenario, however, we have the web 

server, the database, and the services and hence, the 

number of SPFs is a lot higher. Does that mean that 

it is a bad idea? No, but it is something to consider. 

Based on the size of your app and its usage, it might 

not be a great idea to have increased SPFs. But in a 

full-blown enterprise app, it might be worthwhile to 

explore this route by making sure we have respective 

slaves for each and every service or SPF.

Chapter 1  Introduction



22

	 4.	 Cost: With the increase in services, the cost will 

surely increase. With every service added, it’s 

quintessential to make sure that there is a secondary 

service that is either available all the time in a 

Master-Slave setting or is a backup service that starts 

functioning the moment the first service is down. 

The Master-Slave arrangement is a much more 

reliable solution and is more real time, while in the 

latter solution, turning on the secondary service and 

switching the app to it could take some time and the 

system could have a downtime. Downtime impact is 

different for different apps and different businesses 

and should always be avoided.

Comments: Does every app need to scale? Consider 

a phone book app for your entire organization of 

100 employees. Even if you grow to 10,000 users in 

two years (quite unusual), chances are it could be 

run using just one web server. Does it make sense 

to use SOA for it? Surely not. Is the data from the 

phone app needed in other apps? If yes, maybe just 

an API-based architecture might be sufficient. Very 

rarely there will be a case to create separate services 

from independent business logic within an app with 

limited business functionality. At the same time, in 

certain situations multiple services are the way to go 

and the costs will be reduced in the long term.

On a separate note, the moment someone is 

following the industry best practices, most likely, they 

are already behind in today’s world. It takes a while 

for something to become a best practice and it takes 

even longer for the best practice to reach the masses. 

Chapter 1  Introduction



23

Of course, it’s a great thing to follow best practices, 

but it’s also important to understand that with the 

pace with which something becomes an established 

best practice, we might have already been behind 

the industry experts who have moved to a much 

better solution. For example, how much of SQL has 

changed in the last 10 years? Which principles of 

SQL have changed in the last 30 years? Not much 

has changed when it comes to the principles. So, 

when the DBAs feel like they have mastered the 

best practices of data, quite honestly, they’ve only 

mastered the best practices of SQL. And maybe the 

best solution for their application might be a No-

SQL or some kind of polyglot persistence. Polyglot 

Persistence really is an industry-wide accepted term 

for a solution that comprises multiple kind of data 

stores, including but not limited to SQL databases, 

Document databases, Key-Value pairs, Big Table, etc.

Remember the industry-wide move to the 

Services-Oriented Architecture? and then later to 

Microservices? which some people are calling Nano-

Services. Moving to this type of architecture because 

it fits the organization is a good move; however, 

incorporating the architecture just because it’s a best 

practice may not always work. Additionally, a lack of 

understanding of the architecture may result in a faulty 

implementation or a variation of implementations 

may cause failure. It’s not hard to have a general 

architecture that works for most business problems in 

a very optimum fashion, but it’s very easy to overlook 

the intricacies of that architecture and end up with a 

not-so-great implementation.

Chapter 1  Introduction



25© Chander Dhall 2018 
C. Dhall, Scalability Patterns, https://doi.org/10.1007/978-1-4842-1073-4_2

CHAPTER 2

Scaling – An Art 
and a Science
No matter how well thought out, for an architecture that is created 

on a slide deck but not backed by a proof of concept or real world 

implementation failure, chances of failure are high. The bottom line is that 

a theoretical architecture created without much real-world experience can 

lead us to failure. A possible exception is an architecture that works well 

for a specific app or a particular company. But that does not mean we can 

use the same architecture elsewhere and it’s guaranteed to work. Even that 

can fail for a different app and a different organization. Just because it has 

worked well in practice doesn’t mean it will always work. A good example 

of this is an app created with some Single Point of Failure (SPFs). It’s very 

possible that the organization never had an SPF that actually failed. This 

doesn’t mean it’s an architecture that will be successful all the time. Even 

theory doesn’t guarantee everything 100%, which is the same in the case 

of practical implementations. They don’t guarantee 100% success either. It 

is in our interest to use the best of both worlds. Both theory and practical 

knowledge are needed to create a world-class architecture. When Dhall 

Architecture (to be defined later) had to be implemented for the first time, 

failure was not an option. Quite fortunately, it succeeded. Later, I tried this 

on bigger environments and bigger applications and it was successful. 

There was one thing consistent in my approach, and it has been since  

I started architecting software; and that’s failing the architecture on the 



26

slide deck first. If an architecture that looks great on a slide deck, fails after 

the brainstorming session, it's bound to fail. So, my secret of success lies in 

deliberate attempts to fail the architecture iteratively. I utilized sessions of 

brainstorming followed by deliberate attempts to fail the architecture. This 

is an on-going process. The process is simple:

	 1.	 Understand all the business requirements.

	 2.	 Make a conscious effort to understand the future 

vision of the company as well as theproject.

	 3.	 List all technical, functional and non-functional 

requirements.

	 4.	 Create an architecture that encompasses everything 

from 1-3.

	 5.	 Brainstorm on how to fail it by identifying:

	 a.	 Failures,

	 b.	 Bottlenecks,

	 c.	 Downtime.

	 6.	 Come up with an architectural solution to the 

problems identified in 5. 

	 7.	 Add it to the architecture and create a better pattern.

	 8.	 Repeat the process (steps 3-7) until we come up 

with an architectural pattern that works.

	 9.	 Use these principles to create a modern 

architecture.

Chapter 2  Scaling – An Art and a Science



27

Note E ven though the techniques used in Dhall Architecture have 
not been invented by me, combining these techniques and innovating 
on them has been a part of my professional work for a large number 
of years. I do claim to be the only person using these techniques. 
Dhall Architecture to me is a thought process and a living philosophy 
that changes over time with failures, successes and experience. 
Since, there is no name out there for such an architecture I’ve given it 
a name. Feel free to call it what you like.

Having worked in different business domains including, but not 

limited to airlines, gaming, entertainment, health care, cosmetics, 

e-commerce, finance, insurance, technology, social networks, and many 

others, I have been fortunate to learn a lot about these domains. It’s 

worth appreciating the individuals who could do both technology and 

business well. It’s very rare to find such individuals. For the most part, 

in any software development effort, there are very few individuals who 

understand the business down to the minutest detail. In the same vein, 

there are very few individuals who understand a great breadth as well 

as depth of technology. So, finding a rare gem who has mastered both is 

extremely difficult. In my experience in the industry, that one person can 

make the entire project successful even if backed by an average team.

What’s important to keep in mind is that the chances are that the 

domain expert has been with the company for at least five years. That, in 

itself, means that he has worked at no other company for those five years. 

While it’s great for domain knowledge, his or her technical knowledge is 

limited to some blog posts and books that are in the market. Trust me, not 

all experts end up writing books or even blog posts. Especially folks like 

me who have a big team of employees working for them and are involved 

in doing projects for multinational corporations, don’t really have time 

to pen down all what we know. The domain expert has limited technical 

Chapter 2  Scaling – An Art and a Science



28

knowledge unless he has been really open to inviting experts time and 

again and they have been open to sharing their knowledge.

Similarly, tech experts like me have to keep up with the domain 

knowledge regardless of the extent of knowledge we have. It will be an 

unfair statement to say that we are as good as the domain experts working 

for our clients. Fortunately, domain-based knowledge doesn’t change as 

often as technology, so it's not hard to get ramped up on it. Most projects 

fail because decisions were made based on the partial understanding of 

few blog post. Disinformation circulated in the tech world are the cause 

of failure of a large proportion of software development projects. Every 

now and then, we hear news of a website failure, enterprise application, 

native mobile, or tablet app and how it could not scale as per the load. 

Some examples of this are Instagram, Pokémon now, Twitter, etc.

We have gotten a little sidetracked here, but the approach that has 

been described needs to be used with the domain expert in room and only 

after understanding the actual business requirements. It’s important to 

have a realistic understanding of the kind of scale that is needed. Scaling 

is a science and it’s deceptively simple when we talk about it in theory. For 

example, if your current system can handle 10,000 requests per second 

and uses only one web server, then in order to go to a million requests 

per second, you should need 100 servers. We only wish it was that simple! 

What if the database is an RDBMS? Since it was part of the web server, can 

we scale the web server the way we described above? Surely not without 

significant changes in the architecture. Can we scale it if we have 100 web 

servers and 100 database servers? It’s not as easy as it sounds. Horizontal 

scaling of web servers might be easy, but scaling the RDBMS is a different 

animal altogether.

What if we plan for a huge scale and then our domain expert tells us 

that we don’t have more than 1,000 users a day on average, but the website 

gets a billion hits a day on both Thanksgiving and Christmas? In layman’s 

terms, we might be able to run the website with just one server throughout 

the year, but for just two days we may require 100 servers. Is it worth it 

Chapter 2  Scaling – An Art and a Science



29

to pay for those servers all year long or lease them as you go via a cloud 

provider? I can’t stress enough the need to work with the domain/business 

expert on creating a successful scalable solution. This is just a cursory 

description of scalability. We haven’t even touched the tip of the iceberg yet. 

Even though I plan to deep dive into certain concepts, the actual code for 

implementation will be outside the purview of the book. It’s important to 

understand that the architect leading scalability efforts needs to be hands-

on. I wouldn’t have been able to scale applications if I didn’t write code 

myself. Hands-on architects can strive to achieve good performance and 

use the resources optimally.Good performance per request ensures good 

scalability. I have been involved in projects where we improved scalability 

by improving performance and reducing the number of servers. My team 

and I learned our most important lesson that in order to scale, we need 

to take performance seriously. We follow the simple process of getting an 

independent module completed and then we make sure it’s tested well 

before we tackle performance if that module qualifies for a performance 

check. A performance check, early in the game, is an interesting deal 

altogether. Sometimes a lot of effort up front may not be the wisest 

approach, but the mentality of fixing performance issues only once we have 

built it will most likely lead to failure.

Let’s look at a real-life example. In one of my projects, an architect was 

retrieving all the rows from a table in the database and then doing a join 

in memory. When I showed curiosity regarding the rationale behind it, he 

mentioned that there will be no case when the table will return more than 

300 rows. He didn’t see any value in going back to the database again and 

again. The logic was to cache the records in the web server to speed up 

paging retrievals. My assertion was that this is a generic functionality that 

also involved paging and could be used for any other entity. An entity (in 

the application) was a real-world object that got data from a corresponding 

table in the database (using a repository pattern). The logic sounded good 

on paper; however, my question was valid. How do we prevent a junior 

developer from not copying the pattern? The architect didn’t seem to think 

Chapter 2  Scaling – An Art and a Science



30

it was a problem. In fact, he didn’t think anyone in his right mind would 

even do that. During further analysis, we found out that it had already 

been referenced in three different places. The good part was that he had 

encapsulated the logic well and used dependency injection. Refactoring 

here would be a cake walk. My further discussions with him reiterated why 

it was a bad idea to cache using the web server cache. It is sufficient for a 

small application, but it is a scalability nightmare. Long story short, we used 

Redis to add a second-level cache in it and fixed the logic to query Redis for 

only 20 records. Every page displayed only 20 records, and the data barely 

changed. Even if it did, we had an offline process to keep Redis in sync.

The architect is and was a good architect. Good architects think about 

encapsulating logic, using dependency injection, use generics, and make 

it reusable. What makes him even better is his ability to take criticism, 

be open to conversation, learn, and apply the right solution. However, 

there is one lesson that is learned hard in software development. That is 

preventing the lowest common denominator on the team from misusing 

the code base or not implementing the architectural principles set forth 

by the team. On a separate note, it is quite obvious to question the use of 

Redis in this case. You are right in assuming that there is no need to use a 

second-level cache for just one function call.

Trust me, there were a lot of other reasons to use Redis in the 

application and a lot of these will be unveiled in subsequent chapters.

�CAP Theorem
No discussion of scalability is complete without the CAP (Consistency, 

Availability and Partition Tolerance) Theorem. It is also known as Brewers’ 

Theorem after the computer scientist, Eric Brewer. In layman’s terms, CAP 

theorem states that in any distributed system, it’s only possible to get two 

out of the three guarantees viz. Consistency, Availability and Partition 

Tolerance. Keep in mind, a distributed system is one that is made up of 

Chapter 2  Scaling – An Art and a Science



31

individual machines or nodes. These nodes communicate effectively with 

each other via messages. A failure of a particular node may not mean the 

failure of the system. We all know about Master-Slave configurations. In 

a distributed system, we have multiple nodes and in order to make our 

system resistant to failure, we may need to back up a Master node into 

one or more slave nodes. Different systems can use different algorithms to 

achieve the same results.

However, for our understanding, let’s take an example of a distributed 

system where a Master node is the only node that the system can write to. 

Assuming we get a request to add an order to the system. The order gets 

written to the Master node. Once the order is added to the Master node, 

let’s assume the system makes the Master node send a message to all slave 

nodes to add the new order. If the request is made to a slave that has not 

been updated yet, the order won’t exist and the system will be deemed 

to be inconsistent. But, if the system makes sure that a subsequent read 

request to the system will be able to guarantee the retrieval of the latest 

request, it’s considered to be a consistent system. Relational Database 

Management Systems are consistent. Every read request returns the most 

current data.

	 1.	 Consistency: A distributed system that returns the 

most current data no matter which node the request 

was made to is considered to guarantee consistency. 

In layman’s terms, if a write or update request to any 

node in the system is replicated to other nodes in 

the system, before the read request, it’s a consistent 

system. So, the bottom line is that every read will 

return the most recent write. The system will not 

return stale data but the most recently updated 

data. In order to achieve consistency, the system 

has to update all the relevant nodes at each request, 

before allowing any reads from the system on that 

particular resource.

Chapter 2  Scaling – An Art and a Science



32

	 2.	 Availability: It is the ability of a node to respond to 

requests if the node hasn’t failed. Availability allows 

for failed nodes. However, if the node hasn’t failed 

and doesn’t respond to a legitimate request, it is 

considered to not be available. In order to achieve 

availability, the system needs to replicate data 

between different nodes.

	 3.	 Partition Tolerance: It is the guarantee of a system 

to respond to requests even when the system is 

partially down. No failure less than a complete 

failure of the system should allow the system to 

respond incorrectly. So, if the connections between 

some nodes in the system are lost, the system is 

partition tolerant, if and only if the system as a 

whole is still consistent and available.

Figure 2-1.  The CAP Theorem

Chapter 2  Scaling – An Art and a Science



33

�Fallacies of Distributed Computing
In order to understand distributed computing, this white paper is highly 

recommended: https://pages.cs.wisc.edu/~zuyu/files/fallacies.

pdf. It elucidates common mistakes an engineer makes with architecture 

distributed systems. These fallacies are the following:

	 1.	 Network is reliable.

	 2.	 Latency is zero.

	 3.	 Bandwidth is infinite.

	 4.	 Network is secure.

	 5.	 Topology doesn’t change.

	 6.	 There is one administrator.

	 7.	 Transport cost is zero.

	 8.	 Network is homogenous.

�How to Achieve Scaling
�Step 1: Getting Started
The simplest system to start deploying an app to is one that has the entire 

app on one server. For now, let’s assume we have a website running on a 

web server like IIS or Apache and has an RDBMS like SQL Server, MySQL, 

PostGre, or Oracle. So, in this system we will have both the web server 

and the database server on the same physical server.One of the common 

Chapter 2  Scaling – An Art and a Science

https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf
https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf


34

mistakes in designing architectures is the faulty imaging of the server. 

This architecture fails to see the difference between the database and 

app server. App servers need a better CPU and RDBMSs thrive on more 

RAM. With more RAM, the more frequent queries could be now retrieved 

from it. The larger the RAM, the better the subsequent retrievals. The 

web server can always use more cores if there is a computation-intensive 

job. For the most part, it can be argued that web servers should never 

do a computation-intensive job. If there is one, we can always make an 

API call to a process that finishes the job. This is surely a good approach. 

However, in a real-world scenario, this could become an overkill in certain 

applications.

One of the big improvements in the Node.js community has been 

to make it a multi-threaded system. A single thread with multiple 

load balancers can get the job done. However, there is no point not 

using the additional cores we may have access to. By no means there 

is an implication that a web server doesn’t need RAM and a database 

server doesn’t need a better CPU. The point is that there are different 

configurations for both these servers, and they need to be configured 

separately in order to be optimized to perform their jobs well. One of the 

big mistakes is to optimize both the database and the web server in the 

same way. That’s why the approach of having both the web app and the 

database in the same server doesn’t work that well.

Figure 2-2.  A server that hosts a web server with a database server

Chapter 2  Scaling – An Art and a Science



35

Let’s evaluate the current architecture? If the database fails, the system 

fails. Similarly, if the web server fails, the entire system fails. It could be 

argued that in case of failure of the database, the system can still serve 

static files. Yes, that’s true. However, we will keep the focus on enterprise 

systems of scale, and it will be correct to assume that they just won’t be 

serving static files. So, we have two single points of failure in the system, 

and we have already seen that the system doesn’t scale.

�Step 2: Vertical Scaling
So, how does it relate to scalability? The only feasible way to scale the 

architecture in Step 1 would be to add more RAM and CPU to the existing 

server. This is also called Vertical Scaling or increases the hardware 

resources without altering the number of servers or nodes. Vertical 

Scaling is also referred to as scaling up. Scaling up requires adding more 

resources to the same server. It’s more like upgrading the server to a better 

configuration of hardware assets. On the contrary, scaling out means 

adding another server to the system with a similar configuration. This 

works up to a certain amount of traffic. However, after that the law of 

diminishing returns kicks in and the system is impossible to scale. After a 

certain tip-off point, any addition of resources doesn’t increase the amount 

of traffic the system can handle. In layman’s terms, there is a tipping point, 

beyond which the system would just not scale.

Chapter 2  Scaling – An Art and a Science



36

One of the other, often overlooked, downsides of vertical scaling is 

that it requires downtime. Imagine replacing the RAM of the system, you 

will need your system to stop and be unresponsive at least for some time. 

If the system is just one server, downtime is unavoidable. Vertical scaling 

could also mean tremendously high costs beyond a certain configuration. 

It’s always cheaper to add another node with commodity-level hardware 

than upgrading to an elite configuration. Beyond a certain configuration of 

hardware resources, costs increase exponentially.

Let’s evaluate the current architecture. If the database fails, the system 

fails. Similarly, if the web server fails the entire system fails. Similar to Step 

1, Step 2 has single points of failure in the system and we have already seen 

that the system doesn’t scale.

�Step 3: Vertical Partitioning
As we can see our major problem is that the system is still one cohesive 

system and it won’t be available to serve any request the moment any 

of the nodes (database and the app server) fails. This is where Vertical 

Partitioning can be used, which means deploying each service, be it a 

Figure 2-3.  Adding more RAM and Hard Drives to the server in 
Figure 2-2 

Chapter 2  Scaling – An Art and a Science



37

database, a web API, or an app server, on a separate node. It is when each 

node or cluster performs different kinds of tasks. For example, notification 

server, mail server, payments service, RDBMS, web server, etc., perform 

different tasks and are different from each other.

There are certain benefits to this approach over Step 2. In Step 2, if 

for some reasons, the database ended up maxing either the CPU or the 

RAM, the app server would barely be functional and vice versa. Vertical 

partitioning avoids the situation of sharing resources and avoids the conflicts 

arising therefore. It also reduces context switching. Context switching is the 

process of storing the execution context for state of a process or thread so 

that execution can be resumed later from the same point.

Figure 2-4.  Vertical Partitioning

Chapter 2  Scaling – An Art and a Science



38

Another important factor to consider is that the web server needs to be 

tuned differently than the database server. In case of a web server, we may 

need to upgrade the server kernel to the latest version of TCP, increase the 

initial congestion window size, and enable window scaling to increase the 

receive window size to a higher value. In certain cases, we may need to disable 

slow start after Idle. Other optimizations may include enabling TCP fast open, 

investigating the possibility eliminating redundant data transfers, compressing 

the transferred data, and reusing TCP connections whenever possible. Most of 

these optimizations are great for the web server. However, they do not mean 

much in case of the database server. The database server for an RDBMS may 

need to be tuned entirely different than No-SQL database like Redis, Elastic 

search, MongoDB, or Cassandra. A typical mistake in the enterprise has been 

using the same image (and optimizations) for different kinds of servers. With 

vertical scaling, we have the advantage of optimizing and tuning according to 

our needs. We can tune the web server as well as the database differently as 

they are now independent of each other. 

Let’s evaluate the current architecture. If the database fails, the entire 

system fails, except that it will still be able to serve static files. Similarly, if 

the web server fails the entire system fails. Similar to Steps 1& 2, Step 3 has 

two single points of failure in the system and we have already seen that the 

system doesn’t scale.

�Step 4: Horizontal Scaling
Horizontal Scaling, commonly referred to as Scaling Out, is the ability 

to add any amount of hardware and software entities in a fault tolerant 

system, thereby increasing the actual capacity of the unit as a whole. 

Fault tolerance is the property of a system to continue to operate without 

complete failure even though parts of the system might fail. So, the idea is 

simple. Rather than having to pay for high-powered machines and scale 

up, it’s better to pay for commodity-level machines and scale them out. 

Any failure of a machine won’t bring the entire system down as we don’t 

Chapter 2  Scaling – An Art and a Science



39

have a single point of failure. And it is surely a cost-effective way. Scaling 

up will reach to a maximum at some point of time and or another, and it’s 

not feasible for scaling the system indefinitely. However, scaling out is a 

very promising solution for scalability when compared to scaling up.

In order to scale the web server layer, we will need a load balancer. A 

load balancer is quintessential to balance the traffic across all nodes (in 

this case, web servers) in order to prevent any individual node from getting 

overloaded with requests. Once the machine gets more requests than it 

can handle, the system can become unresponsive. At the same time, in the 

absence of a load balancer, the additional nodes provide no value. When 

it comes to a load balancer, a case could be made for either a software or a 

hardware load balancer. Software load balancers are known to implement 

a combination of algorithms such as Weighted Scheduling Algorithm, 

round robin scheduling, least connection first scheduling. Some of the 

examples are HAProxy, NGINX, Varnish, LVS, mod_athena etc. And 

hardware load balancers consist of specialized routers or switches that 

balance the load between the server and the client. Some of the examples 

are Cisco system catalyst, Barracuda, Coytepoint, F5 Big-IP, etc. It’s really 

not that one is better than the other, it’s more about what features are 

more important to the business. And to be more specific, the discussion 

is really not about hardware or software load balancers per se, it’s more 

about buying a proven appliance versus building our own or using an 

open source solution. With a high-end commercial offering, it’s easy to 

get a richer feature set that has less management effort, which could also 

mean less management costs. There’s also an advantage of getting support 

from the vendor and, of course, you have the luxury of getting data and 

statistics, which help in troubleshooting. Additionally, using an open 

source software load balancer may mean an increased effort on installing 

it the first time, especially if that means adding other features that are not 

available with the default solution. That said, open source software load 

balancers work great too. It's all about what we are comfortable with. 

Chapter 2  Scaling – An Art and a Science



40

Assuming that we are dealing with mostly HTTP traffic when it comes 

to the web world, it’s a common practice to include HTTP accelerators 

with load balancing. As the name suggests it accelerates the traffic by 

acting as a transparent forward proxy for HTTP traffic that saves static 

objects in a cache (memory-based or disk-based) and serves them from it 

whenever possible. The logic is pretty simple. All web servers indicate, as 

part of their response, whether an object is static. This is done using HTTP 

headers, for example, Cache-Control and Pragma. It is also possible to 

exclude certain specific objects from caching, if needed.

In this step, we are horizontally scaling up the web server only. We are 

assuming that our database is an RDBMS, and it doesn’t require us to scale 

beyond that one server. As you can see in the diagram, the load balancer 

equally divides the incoming calls among the app servers. If the traffic 

increases, we can add any amount of web servers and the system should 

continue to operate well. At the least, we have scaled the web server layer 

now and any failure of a hardware like hard disk or RAM in a web server 

will only affect that particular web server. It won’t affect the health of the 

Figure 2-5.  Horizontal Scaling the App Servers

Chapter 2  Scaling – An Art and a Science



41

complete system. It will still affect the concurrent sessions that were part of 

that particular server. However, the subsequent request from the user will 

be redirected to a healthy server. The downtime is pretty minimal and the 

recovery is almost seamless from the users’ point of view.

In case of horizontal scaling, the system increases the overall capacity 

by increasing the number of nodes (which in this case are the web servers). 

Each and every node is expected to perform the same exact tasks and are 

supposed to be identical in nature. It’s a common best practice to have 

the same operating system image, as well as the same version of software 

and tools installed on the nodes. Each and every node should use the 

same configuration for security as well as performance tuning of the 

server. If it’s a web server, it’s better to tune it for high I/O performance, 

and hence a better upgraded CPU is sometimes preferred over memory 

and the configuration should open it up to perform better for scaling 

requests. Whereas if it’s a database server, generally speaking, memory 

may be preferred over CPU, and it needs to be tuned to perform better as 

a database. This configuration needs to be consistent across all the nodes. 

Especially when it comes to security, most of the times, hackers exploit 

the vulnerability that comes in a part of sample code and applications 

that comes in with the operating system or a particular software that 

was installed. So, it’s very important to keep a consistent image that has 

undergone load testing, security testing, etc., and is configured for the 

specific type of application.

Cost Analysis: It’s not true that horizontal scaling is always cheaper. 

It truly depends on your app. If your app has a small number of users, it 

might be just better to stick with vertical scaling, at least as long as it’s a 

cheaper and more viable option. For an app that doesn’t require a lot of 

scale, scaling out might mean additional licensing costs on not just the 

operating system (unless you’re using a free one) but also other tools that 

are being used on that server. And in certain cases the additional hardware 

might be more expensive than just upgrading the hardware at times. More 

servers also might mean more management headache. So, if the system 

Chapter 2  Scaling – An Art and a Science



42

doesn’t require the kind of scale we are talking about, vertical scaling is not 

a bad option. Again, this perspective is not true for systems that need high 

scale. But it’s important to mention this.

By now, you’ve probably noticed that we still have two points of failure. 

One is the database and one is the load balancer itself. There is really no 

point in scaling the app server if we are going to be dependent on the load 

balancer. Any failure or malfunction in the load balancer would mean 

failure of the entire system. Even if the database layer is built to scale 

indefinitely along with the web server, the point of entry to the system is 

going to be the load balancer, and apparently, it doesn’t conform to our 

standard practice of not having any single point of failure.

Let’s evaluate the current architecture. If the database fails, the entire 

system fails, except that it will still be able to serve static files. Similarly, if 

the load balancer fails, the entire system fails. Similar to previous steps, 

we still have single points of failure in the system, and that is not going to 

create a scalable system.

We shall talk about dealing with the problem of database as a 

bottleneck in the next step. However, can we horizontally scale the load 

balancers to start with? Generally speaking, this is very easy. There are two 

ways we can do this.

	 1.	 Active-Active

	 2.	 Active-Passive

As the name suggests, Active-Active is a configuration where we have 

at least two load balancers independently capable of handling traffic and 

balancing it between the respective web servers. Both of them run on 

primary and secondary nodes. In case of a failover the other load balancer 

now services the failed-over clients, as well as any new clients. When the 

failed load balancer is backup, it takes its client connections back and 

resumes its services. This process is called Failback.

Chapter 2  Scaling – An Art and a Science



43

Active-Passive is a configuration where the primary load balancer 

takes care of all client connections and balancing traffic between the web 

servers. However, the secondary load balancer doesn’t not play an active 

role in balancing traffic. Rather, it stays in a listening mode. It monitors the 

primary load balancer regularly. In case of a failover, the secondary load 

balancer takes over and handles the entire traffic and balances it across the 

web servers.

Either approach will solve the problem of removing the load balancer 

as a single point of failure and is scalable out of the box. Depending on 

the load, it makes sense to increase the load balancers. The Active-Active 

configuration could be considered to be more expensive generally than 

Active-Passive. However, we need to do a good job analyzing the cost. 

Now, we need to think of the following: 

	 1.	 What’s the cost of downtime of the app if the 

load balancers are not scaled at the required rate 

(assuming a sustained increase in traffic)?

	 2.	 Active-Active configuration means that the load 

balancers operate in a way that all of them are used, 

almost equally, at any given point of time. What 

happens if one of them goes down, and what’s the 

cost of that slowness for the end user?

	 3.	 How are we maintaining user sessions? In case of 

sticky sessions, a particular user may be sent back to 

a particular web server by a particular load balancer. 

This is called a sticky session. What happens to this 

user’s session when that load balancer fails over?

If we think through these questions, we realize that some approaches 

including sticky sessions may not be the best approaches for scalability. 

In fact, for anything to scale we should create a system where a failure in 

any node does not disrupt the entire system, and no failure other than 

Chapter 2  Scaling – An Art and a Science



44

the failure of the entire system brings business to a halt. Even though 

you might be familiar with the concept of session management, it’s 

worth revisiting this in the context of scalability. As we know, the HTTP 

protocol is a stateless protocol. That means that every request (and 

response) is independent of other interactions to the same Web server. 

In layman’s terms, the protocol does not allow a place to capture state. 

However, in real-life scenarios, there are times when we need to associate 

some information about the status of the user such as access rights and 

localization settings that should be applied during a particular session to 

each and every interaction the user has with our web server. Traditionally, 

in applications that ran out of just one web server, programmers used to 

capture state in the same web server. That is surely not something that 

can scale. In order to make a solution horizontally scalable, we need to 

make sure that every single web request from the same user can be easily 

handled by any web server. There are three different kinds of solutions that 

exist when it comes to session management. They are:

	 1.	 Sticky Sessions: As we discussed earlier, this is a 

scenario where if a particular user was served by, 

let’s say, Server X, every subsequent request by the 

same user must go back to server X. This definitely 

has a few downsides.

	 a.	 The major one being the possibility of unequal 

load in certain servers compared to others.

	 b.	 In case server X goes down, we lose all the 

sessions on that server. Imagine a user having 

his entire shopping cart in that session; it would 

not be a good experience.

Chapter 2  Scaling – An Art and a Science



45

	 2.	 Web session clustering: This is an approach in which 

the session is created in one server, then requests 

are made from that server to replicate the session 

to other servers. Usually the session is stored in 

memory for speed. This solves the problem of 

scalability as the subsequent request of the same 

user can be directed to any web server. It does 

create the additional network I/O overhead though 

especially with the increase in the number of web 

servers. At the same time, the increased number 

of web servers is usually because of the increased 

number of users. That means a big chunk of the web 

server memory is going to be used for replicating 

the sessions. Imagine having about 100 servers and 

each server serving a million users each. Don’t you 

think it’s redundant to have 100 million sessions 

Figure 2-6.  Sticky Sessions

Chapter 2  Scaling – An Art and a Science



46

in each server? Imagine the cost of serializing and 

deserializing the entire session object and sending it 

over the wire and replicating it. And there is a slight 

possibility that the new request from the same user 

arrives a server that may not have the latest session 

information yet. What if the request to replicate the 

session information fails? And even if we can handle 

some of these cases by retries and other algorithms, 

why add this additional overhead?

So, in my opinion, it’s a solution that could be used 

for a smaller number of web servers and users, or the 

application doesn’t have a lot of session writes. However, 

there are better solutions for a higher load otherwise.

	 3.	 Centralized session store: Another way to scale the 

session is using a centralized session store. In this 

solution, we do not want the web servers to have 

any session information whatsoever. Instead, we 

want to have a centralized session store where all 

Figure 2-7.  Web session clustering

Chapter 2  Scaling – An Art and a Science



47

the session information is kept. For the purpose 

of scale, this works if the session store is a scalable 

store. Imagine something like Redis or Memcached, 

or any other in-memory store that scales out of the 

box. For an application that requires a lot of session 

writes and has an ever-increasing number of users, 

this is a very scalable solution. Just a quick note: 

there are cases when you may need to persist the 

session. Nevertheless, the choice of the data store 

totally depends on the type of business we have. 

The session could be persisted on the disc in case of 

a No-SQL session store like Redis. Or it could also 

be persisted in a Relational Database Management 

System (RDMS). The trade-off in that case would 

be performance. However, I like to reiterate that 

in real life it’s really the business that defines the 

choice of technology and we have to be cognizant 

of the fact what our priorities are while designing 

an architecture. At the same time, we have to make 

sure that the architecture is scalable and futuristic. 

Traditionally, a lot of people in the enterprise have 

preferred the (RDBMS) database over No-SQL, 

but there are in-memory databases like Redis that 

are fast but also have the ability to persist data on 

disk. These databases are by far the the best in 

performance as well as scalable out of the box. And 

with the right configuration and right planning, 

most of the concerns regarding losing session data 

can be easily mitigated.

Chapter 2  Scaling – An Art and a Science



48

Note A n app server could be an API or a traditional web 
architecture like MVC. For scalability of the system, it’s preferable 
to have an API in the app server. Given that we have many 
different devices nowadays, API is preferred over a traditional web 
architecture. An API could support both thick-client (native apps) or 
thin-client (web-based) architecture and any kind of device (mobile, 
tablet, desktop, smart TV, etc.).

Figure 2-8.  Centralized session store

Chapter 2  Scaling – An Art and a Science



49

�Conclusion
One of the benefits of speaking at internationally acclaimed conferences is 

meeting smart architects, developers, executives all around the world, and 

receiving information about architecture choices that can be blockers for 

scalability. Until recently, there were many new projects that started with 

less accurate choices in designing applications of scale. Even today there 

are frameworks out there that lead you toward creating sticky sessions. 

In the absence of a good architect, developers, for the most part, may get 

misled into using the framework API and end up making wrong decisions. 

For example, while creating a cache for a web application, it’s quite normal 

for you to use the caching API that is part of the web framework that is 

being used. More often than not, that would mean using an in-memory 

cache. However, for an app to scale, it’s beneficial to use a second-level 

caching engine like Redis or Memcached. 

It’s not very surprising that many start-ups actually start with both 

the web server and the database server on the same server. Later, when 

they end up scaling, they incorrectly use the same configuration for both 

the servers. I hope by now it’s very clear that both the web server and the 

database server need to have completely different configurations. They 

need to have configurations that pertain to their specific needs. Tuning a 

web server is entirely different than tuning a database server.

So far, we have seen some very basic scaling and partitioning strategies 

that end up in varied server configurations. However, these are also 

building blocks toward a more robust architecture down the line. All 

scalable architectures will have a combination of vertical and horizontal 

partitioning as well as scaling. There are no either-or strategies. We will 

now discuss some advanced concepts.

Chapter 2  Scaling – An Art and a Science



51© Chander Dhall 2018 
C. Dhall, Scalability Patterns, https://doi.org/10.1007/978-1-4842-1073-4_3

CHAPTER 3

Scaling – Advanced 
Concepts
In this Chapter we build on the SPOFs discovered previously and make 

our architecture better. Concepts like caching, partitioning and scaling are 

discussed in detail. If you remember the figure from the previous chapter 

(Figure 3-1), you might recall that we have two single points of failure (SPOF). 

In this case, we had the database and the load balancer as the SPOFs.

Figure 3-1.  Horizontally scaled app servers with a load balancer and 
a relational database



52

However, we later looked at eliminating one of these by using an Active-

Active or Active-Passive solution for the load balancers. In both of the 

solutions, we have minimized the dependence of the application on the load 

balancer. Unless and until all the load balancers decide to die at the same 

time, the system will continue to run smoothly. Load balancer solutions can 

vary from hardware or software load balancers to a hybrid combination of 

those. The details of such solutions are outside the purview of the book. 

Note  We talk about App servers throughout the book. This can mean 
having a regular web app, an MVC app, a Web API or another Web 
application. This encompasses pretty much anything that runs on a 
Web server. Most applications of scale need to have an API in order to 
support multiple clients like a desktop web application, mobile web 
application, native mobile or tablets app, Windows app, Mac app etc. 
We assume that the readers will use the right architecture standards 
according to their needs. Since the focus of this book is entirely on 
scalability, we don’t get into the details of security, API gateways, 
throttling strategies and other essential components of architecture.

�Caching
In layman terms, caching is just a simple mechanism to speed up a 

system by storing commonly used data that doesn’t change that often and 

storing it close to where it’s used. It is also, inadvertently, a mechanism to 

decrease the load on a system component like a database. As we discussed 

in Chapter 1, caching is one of the REST principles. When we work with 

cache we need to understand that there is always a possibility of having 

stale data and the application should be fine working with it. We can use 

various caching patterns that display fresh data from the system of record 

by hydrating the cache timely and accurately.

Chapter 3  Scaling – Advanced Concepts



53

Primarily caching starts with mostly an in-memory cache that lives 

in the server memory. The data that is supposed to be cached lives in the 

server RAM and if the application asks for it, it’s sent back to the user. Let’s 

walk through an example.

In Figure 3-2 above, we can see that one of the load balancers makes 

a request to the database server to update a resource. This request is 

illustrated as Update Request 1. The database responds with the updated 

value. That’s called the response Update Response 1. We can assume that 

the updated value is called v1. If we work to use some kind of in-memory 

cache, we will now have the value v1 in server number 1 and there will be 

no cache in server numbers 2 and 3.

Figure 3-2.  Diagram showing one request updating the value to 
version 1 (v1) and storing it in Server 1

Chapter 3  Scaling – Advanced Concepts



54

It’s quite possible that there is another update request that goes to server 

number 3. That request is illustrated as Update Request 1 in the following 

diagram (Figure 3-3). If all goes well the database will respond back with the 

updated value v2. Since the cache is supposed to be in memory and there is 

no way for the servers to share updated values among each other, it turns out 

that server number 1 will still have the outdated value v1. Server number 2 

won’t have that problem just because it will have no other option but to go to 

the actual source of record, which is the DB server.

Even though there are ways to solve such problems, it always makes 

sense to use a second-level cache like Redis or Memcached. Second-level 

caching servers are scalable out of the box. Since the cache is shared, all the 

updates from the web servers will go to one place. All the web servers can 

now make a call to that one proxy or agent and it will return the last updated 

value. With increasing traffic, we can horizontally scale the web servers, and 

in return, horizontally scale the caching servers as needed. This system not 

only is highly scalable, it also has a better overall performance and system 

utilization. One of the major benefits of having a second-level caching server 

is that it reduces the number of calls to the DB server drastically.

Figure 3-3.  Diagram showing second request updating the value to 
version 1 (v2) and storing it in server 3

Chapter 3  Scaling – Advanced Concepts



55

Figure 3-4 above shows web server numbers 2 and 3 making calls to a 

shared cache agent that works as a proxy to the shared cash servers behind 

the scenes. This agent could be as simple as another load balancer or a 

more involved proxy depending on the actual caching system.

Step five, we were able to successfully reduce the number of calls to the 

database server. It’s a welcome step, with the increase in traffic database 

being a possible point of contention. At the same time, we still have the 

database as a single point of failure.

�Understanding Partitioning
In order to improve the performance of a database we can use different 

database partitioning techniques. These are hardware, vertical, and 

horizontal partitioning. When a table grows in size due to the number of 

rows and columns, it leads to an increase in the scan time. Let’s assume we 

have a table with 10 columns and 1,000 rows. If we search via a primary key, 

the data set is small enough to have a very quick retrieval. If the key is also a 

clustered index, the retrieval could be even faster. However, over a period of 

time, this data could be millions of rows. That will surely increase the scan 

Figure 3-4.  Diagram showing use of Shared Cache

Chapter 3  Scaling – Advanced Concepts



56

time. It’s also normal to assume that this table itself could now have more 

than 25 columns itself. A partition of this table can be helpful in improving 

the speed of querying quite a bit. One way to partition would be to reduce 

the table into smaller tables. Once that is done, an average query will be 

quick to scan because it will execute for a small portion of that data. This 

helps in speeding up maintenance tasks that include, but are not limited 

to, rebuilding the indices for backing up the table. We can also achieve 

partitioning without splitting tables by simply putting these tables on 

individual disk drives. We can partition the database in three different ways:

	 1.	 Vertical Partitioning

	 2.	 Horizontal Partitioning

	 3.	 Hardware Partitioning

�1. Vertical Partitioning
Now that the load balancer is taken care of, we do not have any SPOF 

except at the Data Layer. It’s really our RDBMS that is running on a 

single server. Most of the time, scaling of the RDBMS can start with 

replicationand denormalization. However, vertical partitioning a database 

might not be a bad option. It’s almost the first logical step to scaling the 

database.

There are two types of vertical partitioning. They are:

	 1.	 Normalization

	 2.	 Row Splitting

Normalization is the process of removing redundancy in a database by 

finding the right linkages between tables and linking them using primary 

key and foreign key relationships. Imagine having a Cart table that has 

all the product, customer, order, payments, and cart info. It can be a 

nightmare to keep adding redundant values like customer name, customer 

address, customer phone number, and other values from the customer 

Chapter 3  Scaling – Advanced Concepts



57

table to the Cart table. It’s the same way we don’t want the product model, 

product price, and other information to be duplicated in the Cart table. 

Traditionally, Relational databases (RDBMs) have been known to use the 

technique of normalization and create different tables for different entities. 

In this case, it would be Customer, Product, Payment, and Cart. All these 

tables will be linked by primary keys and foreign keys. For example, the 

Cart table will have foreign keys like ProductId, CustomerId, OrderId, and 

PaymentId. Based on the business requirements these entities, may have a 

one to one, one to many, or many to many relationships among each other.

Row splitting: Even though the normalization is a very good technique 

to remove redundant data and establish relationships between data tables, 

there are times when row splitting must be used to reduce scan times. It 

works by dividing the original table into multiple tables with the same 

number of rows but fewer columns each. All the split tables continue to 

use the same unique key. In order to retrieve the original table with all the 

columns, all we need to do is query on the split tables with the same ID.

A good example of using vertical partitioning would be a report 

where searches are made on only some specific columns. For example, 

searches that made using the city, ZIP Code, State, and ID. However, 

the report may have some kind of verbose columns like blog post, a 

picture of a blob, etc. It may make sense to move the blog posts and the 

picture blob to a completely different table. This will surely increase the 

overall performance. However, one thing to keep in mind is that vertical 

partitioning may adversely affect the performance if the partitions are very 

large. At the same time, we have to make sure that we have a sound join 

strategy as the data is in multiple tables.

�2. Horizontal Partitioning
In contrast to vertical partitioning, horizontal partitioning divides the table 

into multiple tables that have the same number of columns but fewer rows. 

Imagine running an e-commerce business for 20 years. Imagine getting 

Chapter 3  Scaling – Advanced Concepts



58

hundreds of thousands of orders in a month. Even though the Order table 

can grow to a huge size, it might make sense to start partitioning that table 

horizontally per year. Partitioning data according to the age of the data 

is very common. Depending on the use case, it may also make sense to 

partition the data per quarter or even per month. So even though the table 

will have the same number of columns, the number of rows in that table 

will decrease drastically.

Horizontal partitioning definitely can reduce the size of the table and 

speed up queries. However, like vertical partitioning, this also needs to 

be done carefully. We should take the appropriate time to analyze the 

data as well as user behavior. Otherwise, we may end up in scenarios that 

quite frequently query multiple tables. Data from these tables will have to 

be merged using UNION operators, which are not the most appropriate 

things for performance.

�3. Hardware Partitioning
With a tremendous improvement in database hardware in recent times, 

it makes sense to take advantage of it. Nowadays, the hardware is so 

good that sometimes we forget to even optimize it. Even small changes 

that will improve by 10 milliseconds can be very helpful for the overall 

performance. It depends entirely on the frequency with the which the 

users execute that particular query.

With servers with multiple CPU cores, it’s quite common to use 

multiple threads so that multiple queries can run at the same time. One of 

the common scenarios is using one thread per table to speed up queries. 

Another way to partition the hardware is to use RAID (redundant array of 

independent disks) devices. These devices enable data to be striped across 

multiple disk drives. For example, if we are storing tables on different 

drives, this can drastically improve the query performance when it comes 

to joining those tables. At the same time, the table that has been stored on 

a single drive will be slower to the same table stripped over multiple drives.

Chapter 3  Scaling – Advanced Concepts



59

�Hardware Partitioning
As we have discussed earlier, an RDBMS is easy to scale up but not so good 

for scale-out. Scaling up of the database could have been done without a SAN 

too, couldn’t it? Could we not just have added more CPU and more RAM? 

Yes, we could have. However, with increased load the disk I/O would be the 

one that becomes the bottleneck. It won’t be able to keep up with the CPU. At 

that juncture, one of the ways to scale up an RDBMS is using a Storage Area 

Network. A SAN is basically a network of switches that connect servers with 

storage arrays such as disk arrays, tape libraries, and optical jukeboxes. They 

are accessible to servers so that the devices appear to the operating system 

as locally attached devices. In order for traffic from the storage network to 

not appear on a LAN (Local Area Network), the SAN has its own network of 

devices. These devices are generally not accessible to the LAN.

With a topology similar to Ethernet switches, a SAN's physical layer 

comprises a network of either Fibre Channel or Ethernet switches. Being a 

combination of hardware and software not only allows automatic backup 

of data, it also allows monitoring of the storage and backup process. It’s 

composed of three layers:

•	 Host layer

•	 Fabric layer

•	 Storage layer

The host layer is composed of servers that allow access to the SAN. The 

operating system of the host uses Host Bus Adapters, which are hardware 

cards used to communicate with the storage devices in the SAN.

The fabric layer is composed of the networking devices used by the 

SAN to move data from the initiator to the target. It’s comprised of a varied 

number of devices that include SAN routers, switches, bridges, gateway 

devices, and cables.

Chapter 3  Scaling – Advanced Concepts



60

A storage layer comprises all sorts of storage devices in a SAN. A 

multitude of hard disks and magnetic tape devices may constitute the 

storage layer because they are joined through a RAID (redundant array 

of independent disks). RAID is a disk system that contains multiple disk 

drives, called an array, to provide greater performance, reliability, storage 

capacity, and lower cost.

Nowadays the storage arrays are a lot more sophisticated and cost 

effective. They come with features like data snapshots and have better 

availability and performance. They are capable of data mirroring not just 

within the storage array but also across storage arrays.

They also have the ability to allocate storage to a server outside the 

physical disk boundaries that support the storage.

SAN brings along with it a multitude of benefits:

	 1.	 Increased performance (by reducing disk 

contention): While architecting we need to look 

for contenting objects as well as figure out which 

objects are accessed frequently and which are not. 

It might make sense to colocate frequently accessed 

objects with objects that are barely accessed 

together. However, we may choose to separate 

contending objects on different disks. If needed, 

we may also consider separating them across SCSI 

adapters.

	 2.	 Improved availability: Typically, the database gets 

improved availability by using RAID 1 or RAID 5, 

which provides redundancy in return. However, 

allocation of storage for each server can be a tedious 

task and overestimating as well as underestimating 

storage needs are a common problem. SAN comes 

in handy to overcome the issues of capacity and 

availability.

Chapter 3  Scaling – Advanced Concepts



61

	 3.	 Backups: Unlike traditional backups that need to be 

small backups in order to reduce restore times, SANs 

could be counted upon to have faster backups. SANs 

are capable of continuously capturing database 

snapshots. They do it smartly by not copying actual 

data but duplicating pointers to original data.

	 4.	 Database updates: SANs can help reduce risks 

while updating databases. Depending on the SAN 

configuration, the storage arrays can help quickly 

clone the database. A read-only clone, after testing, 

could be converted to a writeable clone. This 

method is far superior to restoration of the database 

and reduces the risks caused by upgrade, outages, 

corruption of the data, etc.

Even though hardware partitioning with SAN has a lot of advantages, at 

a higher level, it’s nothing more than vertical partitioning. The reason is 

because we still have one RDBMS and that scales it up but really doesn’t 

scale it out. Nevertheless, it’s a great option to have, especially when we want 

to make sure that we get all the benefits provided by SAN without having to 

lose the benefits provided by the RDBMS. Scaling out an RDBMS could be 

a lot more challenging than scaling it up. However, we can serve millions 

of users without having to scale out the database. So, sometimes, it’s not 

a bad idea to use a SAN before even considering scaling out (Figure 3-5). 

Given the benefits that it brings to the table, it’s more than just an idea worth 

evaluation.

Chapter 3  Scaling – Advanced Concepts



62

Well, it’s time to reevaluate our architecture. After adding the SAN, we can 

say that even though the load balancers and the app servers are horizontally 

scaled and are no more a single point of failure, the database server still is. 

Not only is the database server a SPOF, it’s also a point of contention. We can 

scale out all components of the architecture so far except the database server. 

SANs are easy to scale but the details on how to scale a SAN are outside the 

focus of this book. So even though it’s a great solution for a significant amount 

of load, we still recognize some opportunities for improvement.

�RDBMS Horizontal Scaling
At this point of time in our application architecture, the obvious and the 

only choice we are left with is to horizontally scale the database server. 

That means we should have multiple replicas of the database, and they 

should be able to take on similar tasks without having to depend on each 

other. When we replicate a database one time, it’s a very simple process. 

However, since the replicas are horizontally scaled, any of the app servers 

should be able to write to an agent or a proxy that talks to the replicated 

databases without having to worry about data inconsistency. In order for 

that to be successful, there are different ways this can be accomplished. 

Figure 3-5.  Diagram showing DB Server extended via SAN

Chapter 3  Scaling – Advanced Concepts



63

In a transactional system that upholds ACID (Atomicity, Consistency, 

Isolation, Durability) properties, database transactions need to guarantee 

validity even in the event of errors, power failures, etc. In order for that to 

occur, we need to make sure that until and unless the change (update or 

a write request) is propagated to all the replicas, it should not send out an 

acknowledgment to the app servers.

For example, we can have a configuration where we allow reads 

from any server but writes to occur in only one server. Let’s assume that 

someone makes a write request to complete an order. We would want 

that order to be replicated to the other instances. If, for some reasons, the 

user makes a request to retrieve the order before it was replicated to the 

other databases, he might not be able to see the order he just placed. If 

we guarantee the replication, the retrieval can slow down depending on 

the number of replicas. This is just one kind of replication. Replication 

could be of different types. Most major databases support replication and, 

if needed, we can also use agents that are capable of replicating not just a 

major RDBMS but also replicating data among different kinds of RDBMSs. 

For example, we can use an agent that will replicate data between SQL 

Server, Oracle, Postgres, and MySQL. Different kinds of replications are the 

following:

	 1.	 Transactional replication: This is based on 

transactional consistency. That means even with 

multiple servers (with one publisher and multiple 

subscribers), the system would continue to behave 

the same way as it would with one RDBMS server. 

As we all know that an RDBMS is a transactional 

data base that upholds ACID guarantees, 

transactional consistency means that these servers 

would do the same.

Chapter 3  Scaling – Advanced Concepts



64

	 2.	 Merge replication: In case of Merge replication, 

as the name suggests, the publishers as well as 

different subscribers merge their data. Consider a 

situation where the publisher takes a snapshot of 

its data and shares it with the subscribers initially. 

Once that is done the subscribers may go offline, 

update their data, go back online and not only 

receive but also merge their changes with the 

current publishers and subscribers.

Transactional replication is used in the following circumstances:

	 1.	 When we want the changes to be propagated from 

the publisher to the subscriber as they occur in 

real time. This is usually the case in applications 

that require latency between the publisher and the 

subscribers.

	 2.	 When changes to the data are very frequent.

	 3.	 When the data is very critical and consistency of 

the data is more important than performance of the 

overall app.

	 4.	 When the application triggers certain functionality 

and needs to access intermediate states rather than 

just the net change to that particular row.

Transactional replication is usually the first step. When in an RDBMS 

environment, it’s the least unobtrusive way to go from one server to 

multiple servers. If we are building an app with critical data, for example, 

an e-commerce application, a health care application, a payments API, 

or any other critical enterprise data, it makes sense to use transactional 

replication for that particular piece of data. In traditional computer 

science terminology, sometimes the publisher is also known as the master 

and subscribers are known as the slaves. In this kind of replication, the 

Chapter 3  Scaling – Advanced Concepts



65

publisher is invoked for all the writes and the subscribers are updated by 

the publisher in real time.

One of the major disadvantages of this approach is performance. 

Imagine having one publisher and many different subscribers. In that 

situation, it will be very hard to scale. In fact, after a certain number 

of subscribers depending on the app load, it might not be a viable 

option. Imagine being an e-commerce company that does thousands of 

transactions per second on a peak day like Thanksgiving. Even though 

it’s a good step toward adding redundancy and data location and helps 

back up your data in real time, in may not be the most suitable way to deal 

with applications that require tremendous scale. That said, it still takes us 

very far and lets us build a system that now does not have a single point of 

failure and can be scaled more than anything we’ve seen so far.

Merge replication is used in the following cases:

	 1.	 When the application cares about the net change 

rather than incremental state changes.

	 2.	 When the application cares about availability and 

performance more than consistency of the data. 

The data will eventually be consistent, but that may 

mean a certain read from a subscriber that hasn’t 

been updated may not have the most current copy 

of the data.

Merge replication has some disadvantages too. One of the major 

disadvantages is making sure that there are no conflicts during merging 

and, if there are, resolving them efficiently and accurately. Another big 

disadvantage is the presence of inconsistent data in real time. So even 

though it makes sense for a lot of applications, applications requiring real-

time consistency are not suitable for merge replication.

Snapshot replication: Both merge and transactional replication use 

snapshot replication for initial data, which simply means taking a snapshot 

from the publisher initially and copying it over to the subscriber. Later, 

Chapter 3  Scaling – Advanced Concepts



66

the changes are propagated according to the type of replication. Some 

RDBMSs classify snapshot replication as an altogether different category.

The architecture diagram looks like the following as shown in Figure 3-6.

Now let’s evaluate the architecture in terms of scalability. These are 

database replicas and they have a very decent advantage when it comes 

to scaling the database. Failure of one instance, be it the publisher or one 

of the subscribers, will not bring the application down as the database 

has been replicated in near real time. This, definitely, is a step forward in 

making sure that our system is scalable.

However, we still haven’t fixed the problem of scaling beyond the 

capacity of an individual server. Beyond a certain limit, no increase in 

hardware will help increase the performance much. The disk I/O won’t 

be able to keep up with the increase in CPU and eventually get to a point 

that we will need to scale beyond that one database. Keep in mind these 

are just replicas and will have the same set of data. This is not the same as 

scaling out web servers. When we scaled out web servers it was very clear 

that they would service similar but different requests. In this case, that is 

simply being replicated to all the servers. It would be a completely different 

thing if all the servers had different data. Ideally, that would mean a real 

scale-out situation. This is not referred to as a scale-out.

Figure 3-6.  Diagram showing the replication of relational database

Chapter 3  Scaling – Advanced Concepts



67

What about the addition of the SAN? It’s surely helpful, however, 

it’s just vertically scaling the hardware as we have seen previously. Any 

amount of vertical scaling or scaling up has a limit and as the application 

grows, we are bound to reach a point of contention, beyond which we 

won’t be able to serve any more users effectively. An ideal solution 

would be to have the ability to add any number of databases (that can be 

replicated separately for redundancy) that keep data that is different than 

other databases without any dependency whatsoever on other databases 

so that addition of new databases can cope with the increase in load. Quite 

clearly as of now, our architecture is not capable of doing that.

�RDBMS Horizontal Partitioning
As discussed earlier, horizontal partitioning is when we have the same 

number of columns in a table, but we choose to move some of the rows to 

a completely different server altogether. Traditionally, many companies 

employ this model for line of business applications. For example, clients 

that have a lot of data could have a stand-alone server whereas certain 

other clients could be so small that they may end up sharing a database 

server. In case of customers that have a dedicated server, over a period of 

years the data might grow beyond a single server. In that case, as mentioned 

earlier, we can start breaking the data down based on years or quarters or 

even months. The decision of choosing the breakdown criteria solely relies 

on the business application and the current and past usage of data.

For example, there could be a case where customers do not want to 

retrieve data that is 10 calendar years or older. At the same time, they may 

want to create static reports from data that is 2 to 8 years old. But they 

may have a serious need of working very actively with data that is less 

than 2 years old. In such a case it makes perfect sense to divide the data in 

three different tiers. These are 10 years or older, 2–10 years, and less than 

2 years old. Every single tier could be in a completely separate database 

Chapter 3  Scaling – Advanced Concepts



68

cluster. Since these are calendar years, the classification may not change 

as frequently. Application code can have a lookup table that lets them 

know where exactly to query. In some cases, it might make sense to have 

an agent or even a second-level cache like Redis or Memcached that has 

the lookup table in memory to speed up retrieval. When the categories 

are small enough it might make sense to just have this as part of the 

configuration file in the application or the API.

We can use multiple kinds of techniques or strategies to create 

horizontal partitioning solutions. The example above elucidates age-
based or balanced (least-used) strategy where we segregate the clusters 

according to the usage pattern. If the users are prone to accessing new or 

older data in the same priority, we can also use a round-robin strategy. 

In this strategy, data gets added on a round-robin basis in different 

clusters. Another well-known strategy is first-come first-served, and as 

the name suggests, it segregates data based on a first-come first-served 

basis. In our example, if we have multiple clients and we choose to add 

the first 100 clients to one cluster and keep adding every set of 100 clients 

to subsequent clusters, we shall be following the first-come first-served 

strategy. The first-come first-served strategy is very similar to value-based 

strategy except that the value-based strategy is a little bit more flexible 

and can work on any particular value. In a value-based strategy, assuming 

that every client has an ID and clients with ID 1 to 100 are in one cluster, 

101 to 200 are in another cluster. However, as mentioned, value-based 

strategy is a little bit more flexible and can work on any available value. 

In this case, we can take any column and use that to generate a value 

classification. For example, we may want to segregate data by the name of 

the state. In that case, we will be creating a cluster per state or a cluster for 

multiple states depending on the business needs. Lastly, we can also use a 

hash-based strategy that uses a custom hash function that decides which 

cluster the user data should be written to.

Below in Figure 3-7 you can find a simplified diagram that illustrates 

horizontal partitioning of the database.

Chapter 3  Scaling – Advanced Concepts



69

At first glance, horizontal partitioning might seem to be selectively 

simple and attractive. However, we live in a world where business 

changes more often than we think it does. Constant changes redefine our 

architecture and even though we may have used the best possible horizontal 

partitioning mechanism, we cannot guarantee that our solution will be the 

best solution for all future purposes. Let’s assume that client No. 10 acquires 

client No. 200. The transition is not that hard but may still require some 

manual work like making sure that there is no conflicting data. Since after 

merging the data, the client No. 10 would be the only client appropriate 

tests need to be done to make sure we don't end up overwriting some 

referential data.  What if there is a business case to add shared data among 

different clients based on a new business requirement. Where do we keep 

the overlapping data? You will be surprised I have seen production systems 

where clients have chosen to keep two copies of overlapping data (in both 

the client tables) and have decided to update both the copies with every 

single write. Even in a simple scenario like the one above, every single write 

call that affects overlapping data in one cluster would require another call 

to the other cluster and will slow the system down. What if we have multiple 

Figure 3-7.  Diagram showing two different clusters each having data 
for 100 clients

Chapter 3  Scaling – Advanced Concepts



70

such clusters and multiple clients with overlapping data? That will mean 

not just slowing the system down but potential for data inconsistencies. The 

more the clients to be updated, the more we run into distributed system 

related problems too. What if the data is in different servers geographically? 

Anything is possible. For the most part, if horizontal partitioning of the data 

layer is not done very smartly or in a futuristic manner, it’s nothing more 

than a hack and is bound to create problems.

�RDBMS Vertical Partitioning
Whereas horizontal partitioning keeps the same table structures but 

moves rows to a completely different server or cluster, vertical partitioning 

is a strategy in which we keep different tables in different clusters. Even 

though it sounds very simple, it requires a lot of domain knowledge and 

usage patterns of the application to create a sound vertical partitioning 

strategy. Depending on the business needs, we can easily find tables that 

do not interact much with other tables and place them in one cluster. As 

we discussed above, in row splitting we create new tables by separating out 

certain columns from the original table. One of the good ways to partition 

vertically is by gathering enough data to find tables that have slow scan 

time. Once we have figured out which tables need to be scaled vertically, 

we need to look at the data and find which columns are the ones that are 

accessed more frequently than others.

Let’s take an example of the table BlogPost. Most of the searches might 

only search either the postID or the column Post. What if we have blog posts 

that are quite lengthy? Most of the times searches will be about certain 

keywords from within the blog posts. In an ideal scenario, it’s wise to use a 

search engine like Lucene, solar, elastic search, etc., for search functionality. 

However, for now, let’s assume that we are not allowed to use any external 

search engine. Well, in that case, we will need to work with what we have. 

We can create an index column that has the indices and a link to the blog 

post and move the blog posts out in a completely different table.

Chapter 3  Scaling – Advanced Concepts



71

What about the pictures in the BlogPost table? In an ideal scenario, 

we will use some kind of blob storage outside the database. If it is 

public, it might make sense to use CDN. However, assuming that we 

are not allowed to use any external tool or CDN, we can use vertical 

partitioning and move the pictures to a completely different table and 

reference them via relationships. One thing to keep in mind is that in case 

of vertical partitioning, the new table will have a completely different 

name altogether. Later, when we end up doing some kind of hardware 

partitioning, it’s important to categorize tables per disk in order to get 

optimum performance. One of the common practices is to colocate tables 

in a cluster that are related. For example, old e-commerce data could be in 

a completely different cluster as compared to verbose data like blog posts, 

and comments, etc., could be a completely different cluster.

Even though we can solve a lot of these problems in a much better way 

with hybrid persistence models, commonly known as polyglot persistence, 

we’re trying to work under a constraint (which is scaling an RDBMS). 

Figure 3-8 illustrates horizontal partitioning of the database.

Figure 3-8.  Diagram showing vertical partitioning of data by adding 
different tables in different clusters

Chapter 3  Scaling – Advanced Concepts



72

Even though the structure looks very simple and has its own benefits, 

including helping with scalability, it has certain downsides. One of the 

major disadvantages of this approach is having to do cross-cluster joins 

in situations where we have relationships that exist in separate clusters. 

For example, if we have a User table in database cluster 2, that means we 

will need the AuthorID in the blog posts table as well as the user ID in 

the comments table to be referenced to the users table in order to get the 

identity. Well, if that’s the case why can’t we move the user table to cluster 

1? We surely can. However, that will create another problem for users in the 

payments table as well as other tables like order, customer, etc., that are part 

of e-commerce business for the company. Now they will need to do a cross 

join to cluster 1. Both of these could be very inefficient. Of course, these 

are just simple examples of the kind of things to look for before making a 

decision on how to segregate the data. In many cases, vertical partitioning 

is very fruitful for scalability purposes. However, if the strategy is not fully 

vetted and sorted out, it can lead to problems like the ones discussed above.

In complex domains, both horizontal and vertical partitioning strategies 

can be of limited help just because of the complexity of the data involved. 

They can still take us along way before we run into problematic situations.

Figure 3-9.  Diagram showing DB clusters extended by SANs

Chapter 3  Scaling – Advanced Concepts



73

At this point of time our architecture looks something like Figure 3-9 

above. Just as a clarification, we need the global hash map so that the app 

servers know which Db clusters to call for a particular kind of data.

�Set – A Unit of Scale
With a solution we have come up with so far, we can easily say that it’s a 

very scalable solution. What we want to keep in mind is that the data bases 

are not scalable beyond a certain point because we’re using relational 

databases. However, they clearly are not a single point of failure. In my 

consulting experience, I see this kind of architecture all the time and it’s 

just a matter of time that the diagram above becomes a unit of scale and 

companies create a maintenance nightmare by multiplying that unit of 

scale over and over again. In Figure 3-10 below you can see that we have 

taken whatever we created in step No. 9 and made it a unit of scale, which 

is called a set. With the kind of users we have, this set could serve millions 

of users. When we get to the point that we need to expand beyond that set, 

we can use another set for a different set of users. This architecture can 

definitely keep it going for a while but it’s not the best architecture. It’s not 

that this architecture does not work; in fact it works quite well for many 

cases. However, as an architect we have a responsibility to create something 

that is very flexible, scalable, performs well, is easy to understand, has less 

problems, and lasts a lot longer than an architecture like this.

Chapter 3  Scaling – Advanced Concepts



74

Let us evaluate our current architecture.

	 1.	 Load balancers are fully scalable and are not a single 

point of failure.

	 2.	 App servers are fully scalable and are not a single 

point of failure.

	 3.	 Shared cache is fully scalable and is not a single 

point of failure.

	 4.	 Databases are definitely not a single point of failure. 

However, it will be wrong to assume that they are 

fully scalable.

Let me make an attempt to explain point No. 4. One of the biggest 

constraints we’ve had so far is that we are only using one kind of database: 

relational databases. The problem with replicating and partitioning 

relational databases is that you can only go so far until other problems like 

performance start occurring. We have already discussed the disadvantages 

of vertical and horizontal partitioning, especially when it comes to 

overlapping data between two or more tables that could be placed in 

Figure 3-10.  System-level redirector balancing traffic between sets

Chapter 3  Scaling – Advanced Concepts



75

separate clusters. It’s not just a performance hit, it’s also a maintenance 

nightmare. Imagine having to deal with all that logic in your application. 

Imagine having to duplicate data and storing it in multiple locations. 

Imagine having to have offline processes that check for the validity and 

congruency of the data. The list can go on and on.

�Conclusion
We have come to the point that we have an architecture that has the 

potential to scale for most Enterprise applications out there. The 

architecture has successfully gotten rid of all single points of failures and 

has the potential to scale to millions of users a day and be able to store an 

incredible amount of data. For a lot of business-to-business applications, 

this could be considered a close-to-perfect architecture. However, 

the architecture has a constraint that the system of record happens to be an 

RDBMS and there’s a reason that it has been highlighted quite often in this 

chapter. In the recent years, scalability needs have increased drastically 

but most traditional architects have have continued to just focus on scaling 

an RDBMS. At the same time, the industry has quite successfully moved to 

polyglot persistence. In my personal experience, any successful system of 

scale has been built on polyglot persistence. Relational databases are 

simply not a panacea to all ills anymore. They have their place but there’s 

a lot of room for adding different types of NoSQL databases. We will now 

pursue our journey toward creating an architecture that is overall better, 

more scalable, has higher performance, is easy to use and understand, and 

quite surprisingly is overall much cheaper.

Chapter 3  Scaling – Advanced Concepts



77© Chander Dhall 2018 
C. Dhall, Scalability Patterns, https://doi.org/10.1007/978-1-4842-1073-4_4

CHAPTER 4

Concepts We Tend 
to Ignore
Before we get to the next level and create the best architecture, it’s advisable 

to look in to some concepts that we tend to ignore. By no means it’s a 

complete list of concepts that are needed to create a scalable architecture. 

The idea behind this list is to create awareness. I would also like to stress 

the need for looking out of the box for similar concepts and ideas that keep 

coming in with new technologies, frameworks, hardware, and technological 

paradigm shifts that occur along the time. For example, we won’t be talking 

about security at all. This does not mean security is not important. In fact, it 

is the most important part of any application. However, since the focus of 

the book is on scalability concepts we assume that readers will take care of 

important, but unrelated concepts like security.

It might be possible that most people in our team are already aware 

of most, or even all, of these concepts. That still may not mean that all of 

these concepts get incorporated before making decisions about scaling our 

applications.

�Async Non-Blocking I/O
When Node.js was launched it became popular overnight. It was based 

on one strong fundamental that any time we make an out-of-process call, 

we should not be wasting the hardware resources and instead free up the 



78

thread to do other things. It was interesting that even though the operating 

systems supported that for a while, there were not many web frameworks 

taking advantage of it. The ones that were incorporating this aspect were 

different than Node.js because they were not async-first.

Even though it was asynchronous in nature and was specifically 

non-blocking when it came to I/O (Input/Output) calls, there was some 

misinformation out there where people mis-understood the framework to 

be non-blocking, even for computation. That was simply disinformation. 

The website specifically said non-blocking I/O but apparently some 

bloggers misunderstood the concept. Node.js used one thread and that 

will make sure the thread will block if it’s doing a computation intensive 

job. So let’s understand what async non-blocking I/O means.

I/O is simply your first interaction with any out-of-process call, be it 

an API call, a call to the system’s disk such as file system access, or call to a 

database. Node.js, since the beginning provided async methods that would 

not block the event loop when an out-of-process call used to be made. 

This had the advantage of the thread being available for other operations 

and not having to wait for the process calls. This was incredible for making 

applications that are scalable without much effort as there were a lot 

of async operations in the standard library itself. When the process call 

completed, the thread would pick it up and send a response back to the user.

If we were to make an attempt to compare Node.js to contemporary 

web frameworks, it was easy to say that other web frameworks may have 

support for asynchronous programming, but they were not async-first. 

Most of the contemporary web frameworks would work with multiple 

trends at the same time, taking advantage of multicore CPU servers. 

However, whenever a call was made, by default, it would be a synchronous 

call. That means the thread would block until the call was completed and 

then be available to do something else. Unless someone took advantage 

of concurrency-enabling libraries in those frameworks, the calls would 

be blocking by default. A very good analogy to describe this is someone 

cooking food in a kitchen. Imagine the chef is the thread in question. 

Chapter 4  Concepts We Tend to Ignore



79

Traditional frameworks blocks are such that while you are boiling food 

in the kitchen, you are not allowed to do anything else. Once the food is 

boiled, you’re allowed to cook vegetables and then eat them. However, 

in Node.js, the chef starts to boil the water and goes on to read the recipe 

while he chooses to cut the vegetables or even open the door for a visitor 

to come in. We all do not want to be the chef in traditional frameworks for 

obvious reasons.

Even though Node.js was async-first, it did not mean that the code 

never blocked. In fact, the code would block if someone used the 

synchronous version of the method instead of an asynchronous one. It could 

also block if someone ended up writing a computation-intensive method. 

For example, the calculation of Fibonacci series or any other algorithm (that 

is computation intensive) would completely block the thread.

Note  It’s a misconception that blocking a thread means blocking 
the CPU. Usually the threading logic gets delegated to the operating 
system. At the same time, developers need to be careful while 
altering the thread priority.

So, if someone is using Node.js but introduces blocking code, it may 

slow the website quite a bit. It’s not that hard to mess up the code to a 

level that it also affects scalability. Let’s take an example where we have 

10 different API calls that take less than 100ms response times. Right after 

the thread makes these calls, it will be freed up to do something else. At 

this point of time the thread has to do a computation-intensive job that 

takes, let’s say, 2 seconds. The API calls were made asynchronously and 

we should be getting the results back in about 100ms (assumption). What 

would that mean for us? That would simply mean that even though we 

have the results back in about 100–110 ms (approximately), we will have to 

wait another 2 seconds just because the thread was blocked owing to the 

Chapter 4  Concepts We Tend to Ignore



80

execution of the operation. If we were to ignore the latency from the server 

to the user for now, it still means that the calls (that could have gotten 

back to the user in roughly 100ms) would take 2.1 seconds minimum. To 

make matters worse, what happens if that process takes 10 seconds? An 

even worse situation would be the thread dying in the middle of a critical 

operation. All it takes is one developer adding synchronous operations here 

and there in the code, and the entire web server we’ll be delaying the calls.

It’s not quite uncommon to see these kinds of practices in real 

production code. Another real question is why are we discussing all this? 

Given the real-world experiences I’ve had with multiple clients, choosing 

the right technology and the right framework is just the beginning. 

There’s a lot more to creating a full-blown scalable application. Whereas 

an async-first framework is very helpful to help scale applications, not 

adhering to the right practices may mean not getting the expected results. 

It’s highly critical to make the right decisions and then make sure they’re 

implemented under the right guidance.

Even though being single threaded could have been looked upon as 

a huge disadvantage of Node.js, just by using load balancers we could 

fix the problem. Rather than using multicore servers, we can now use 

commodity-level hardware and scale the application. What happens 

to competition-intensive Jobs? There are different ways to handle that 

problem, but one simple way is to use an API that handles those jobs 

independently. If needed, we can also use a language like F# that is 

specifically designed for high computation and can be accessed via an API 

that talks to the Node.js server.

Here’s a simple illustration (Figure 4-1) that just focuses on scaling a 

Node.js application and delegating computation-intensive jobs to that F# 

server.

Chapter 4  Concepts We Tend to Ignore



81

Recently with the introduction of .Net core, an open source framework, 

Microsoft did a great job integrating the benefits of a popular framework 

like .Net and an asynchronous framework like Node.js. .NET Core took 

inspiration from Node.js and is a very lightweight server. Like Node.js, it 

adds all the functionality using packages. This is a much better approach 

than the traditional monolithic .NET framework, which was bigger in size 

to begin with. It came preinstalled with a bunch of functionality that may 

not be needed for every app out there. With .NET Core, users can add 

lean libraries as they go and make very lightweight applications. They 

also created asynchronous functions for out-of-process calls for every 

synchronous function in the framework. This framework is faster than Node.

js in certain cases and slower in others. But for a lot of developers who like to 

code in the enterprise as well as on critical applications, C# ends up being a 

much better language for the server compared to JavaScript (Node.js code is 

written in JavaScript). C# allows compile time checking and is a full-blown 

object-oriented language like Java. That said, both these frameworks are very 

popular and have their own benefits as well as downsides. At the same time, 

both these languages are extremely popular and have their own following.

Figure 4-1.  Node.js application delegating computation-intensive 
jobs to F#

Chapter 4  Concepts We Tend to Ignore



82

Microsoft’s dedication toward async-first and creating a lightweight 

framework is in line with the architectural principles Node.js was built 

upon. That, in itself, is a validation that the industry is moving toward such 

principles. The major takeaway here is that our job is incomplete with just 

the selection of the framework. The bulk of the work is in creating guidelines 

to make sure every single developer on the team writes code in the right 

manner. More important than enforcing guidelines to write code correctly 

is to enforce guidelines to not write code incorrectly. More often than not, 

it’s the incorrect way of writing code that fails projects. It’s the technical 

debt that is accrued over a period of time that is the biggest threat to the 

scalability of the app as well as the future of the project or the business.

�Caching
Our conversation about scaling the persistence layer has been restricted 

to scaling the relational databases so far. Even though caching might seem 

to have a benefit of just speeding up the system, one of the major benefits 

of caching, in practicality, happens to be decreasing the load on the major 

database. In our case, it happens to be a relational database. Since it’s very 

clear by now that we can’t scale out relational databases beyond a certain 

limit, it makes sense to reduce the load on it. One of the other major 

benefits of caching is storing data close to where it’s called from. This helps 

speed up retrievals and enhances the user experience. To recap, the major 

benefits are the following:

	 1.	 Speeding up the system.

	 2.	 Storing data close to the client.

	 3.	 Decreasing load on the actual system of record.

	 4.	 Auto-scalabilty benefits of the second-level caching 

engine.

	 5.	 Reuse of the caching engine by multiple 

applications, APIs, or web services.

Chapter 4  Concepts We Tend to Ignore



83

Although caching has some significant advantages, one of the caveats 

of caching is the fact that the application needs to have a way of managing 

stale data and refreshing the cache. In certain cases, the application might 

end up displaying stale data, too. That means caching cannot be used for 

all sorts of use cases. However, it makes perfect sense for certain use cases. 

Imagine loading all the pictures from a CDN and then caching them on 

the browser. This will be an example of a UI cache. Imagine loading all 

the product specifications from a second-level cache server. This will be 

a perfect example of API cache. Why product specifications? When was 

the last time the product specification for a particular model of a product 

changed after the product was released? Almost never. For example, a 24-inch 

monitor released for production in 2017, when sold in 2018, will still have 

the same specifications for that particular model number. The bottom line 

is that it makes sense to take such data and cache it. However, there are 

examples of data that could make sense for a certain period of time and 

would not often change but might still have the potential to change. That 

data can be cached as well. Lastly, we also have database cache that could 

mean going as far as querying some, most, or even all database queries in 

memory. Again, this totally depends on the business case.

Different kinds of caches are listed below.

	 1.	 Query cache

	 2.	 Object cache

	 3.	 Session cache

	 4.	 API cache

	 5.	 Page cache

Query cache, as discussed earlier, is a common technique of caching 

the query results. As we know, databases are persisted on the disk. Caching 

some queries in the RAM of the database server makes the retrieval 

faster. The application can also query the database and choose to cache 

Chapter 4  Concepts We Tend to Ignore



84

the query results on the application server. This would mean using the 

memory of the API or the application server to store these results.

Object cache is mainly a cache for application objects that are stored 

in memory. The retrieval is faster that a cached query. If there is a clear 

separation of concerns in the application architecture, for example, having 

an API that has a business logic layer, data access layer and the caching 

layer, it makes more sense to cache objects than a query sometimes. In 

case of a query we may retrieve data and then manipulate the data before 

we create what is known as a data transfer object (or DTO). It’s not the 

queried columns but usually a subset of it that makes it to the DTO and 

then is consumed by the User Interface. If we cache the query, we will still 

need to manipulate the objects before we have the final object. However, 

caching exactly the object that is needed by the UI can speed up retrieval.

Session cache is when a user’s session information is stored. A second-

level cache engine is a very good place to store a user’s session data. 

Making a call to the database on every request increases database load, 

reduces performance, and eventually, reduces the quality of the user 

experience. If it’s stored in a cache the retrieval is faster. For scalability 

purposes it’s a great thing to introduce as now we have reduced not just 

the additional data that gets added to the database but also the number of 

calls to the database. Why cache the user session? As we all know HTTP is 

stateless, but we need the state to improve the user experience. So, we use 

the session with a configurable timeout to make sure that the user has a 

seamless experience. Session information is stored in order to make sure 

that the user is identified and served correctly by the system regardless of 

the actual server serving the request behind the scenes.

API cache is when we cache responses at the API level. GET requests 

can be cached but POST, PUT, and DELETE cannot be cached. It might be 

valuable to cache resources that don’t change that often. Anything from 

text, pdf, images, and even videos can be cached at the API level. There 

are times when for reasons, especially security, that some companies 

Chapter 4  Concepts We Tend to Ignore



85

prohibit the use of GET. In such cases, the retrieval of resources is also 

done via POST, which cannot be cached unfortunately. API cache is 

usually implemented using a gateway cache or a reverse proxy. In order to 

invalidate the cache, there is a purge request to the proxy that notifies it to 

remove the resource. Note: The proxy must be configured to handle this 

method and actually implement the logic to remove and update the actual 

resource in question.

Page Cache is when the entire page could be cached and served as 

if there is no change. A good use case of something like that would be a 

documentation website like Microsoft MSDN. It has documentation for a 

lot of frameworks as well as technologies. Very rarely the documentation 

would change. So, it makes perfect sense to cache the entire page. It’s 

mostly suited for a write-once, read-frequently kind of a paradigm. If the 

page is write-heavy or prone to updates quite frequently, this might not be 

a great approach.

�Data Categorization
Now that we have walked through some of the different kinds of caches, 

we need to take a look at data categorization. Data that could be cached is 

categorized under three different types:

	 1.	 Reference Data

	 2.	 Resource Data

	 3.	 Activity Data

Reference Data happens to be heavy on reads and with almost little or 

zero updates to it once it’s part of the system of record. It’s also data that 

allows concurrent access for the most part. Good examples of this kind of 

data are product descriptions, static content like blog posts, questions in a 

survey, and similar data.

Chapter 4  Concepts We Tend to Ignore



86

Activity Data happens to be both read and write data. However, this 

data is the result of user activity for the most part and is specific to the 

user. Some examples of activity data are shopping cart content, comments 

added by the users, reviews made by the user, and even responses to 

questions or surveys.

Resource Data happens to be both read and write data, but unlike 

activity data, this data is shared between different users. One of the good 

examples of resource data could be the number of units in stock. Another 

good example is the final rating for a product based on data from multiple 

users.

�Caching Guidelines
It’s important to understand caching guidelines well before designing 

an architecture. Very minimal errors like categorizing data wrongly, not 

caching data appropriately, failing to purge the cache appropriately, and 

sometimes caching data beyond a certain time limit could prove to be very 

costly for business.

	 1.	 Key is the key: When caching data, it’s simply a 

bunch of key-value pairs. For a second-level cache 

like Memcached, which is super fast and incredibly 

scalable, it accepts data that is a bunch of string 

key-value pairs. For something more involved like 

Redis, it supports a lot of other data structures 

including hashes, lists, sets, sorted sets, etc. When 

retrieving data, it’s advisable to use the minimal 

but complete set of unique identifiers we need to 

retrieve that data. The reason it needs to be minimal 

is because keys consume space in the cache, and if 

we don’t craft them smartly it will lead to reduced 

performance over time.

Chapter 4  Concepts We Tend to Ignore



87

	 2.	 Caching the right data: This could be understood 

better by the use of a real-world example. For an 

e-commerce website, we may have a service that 

provides the recommendations for a particular user. 

Recommendations might be further divided based 

on a particular category, for example, electronics, 

books, videos, etc. This could be further divided into 

subcategories like laptops, tablets, and phones with 

the Electronics category. For the first time when 

the user makes a call, we might get the generic user 

preferences and cache them. Let’s call it UP1 which 

stands for User Preferences for user No. 1. Once he 

selects his category (Electronics), we may be able 

to retrieve U1-Electronics preferences and now 

cache them. We can now choose to cache UP1 and 

U1-Electronics separately as well as merge them 

together in a separate category called UP1:: U1-

Electronics.

What’s the benefit of this approach? Let’s say the 

user now picks a completely new category like 

Video. In this case, we will only go to the database 

for the U1-Videos but not for UP1 as we have it in 

cache already. After some time, we will have the 

entire set of preferences in cache. The fundamental 

concept is to cache the right data or the data that 

is of some value to us rather than just caching an 

output of a web request made by the user. User 

patterns and behaviors change all the time so 

it’s always advisable to consider a strategy that is 

flexible to work with as well as easy to change.

Chapter 4  Concepts We Tend to Ignore



88

	 3.	 Categorize the data appropriately: First and foremost, it’s 

very important to distinguish and categorize data that 

will be cached and not cached. Often what’s overlooked 

is data that must never be cached. This can vary per 

business. Resources that are critical, change frequently, 

and are considered data of utmost importance usually 

don’t make a good candidate to be cached. For example, 

account balances in a bank should not be cached. The 

customer can make a decision based on a cached but 

stale version of the data, and that could result in a not-

so- great customer experience. Second, it’s important to 

categorize the data as reference data, activity data, and 

resource data and come up with a customized policy on 

how to handle this. Invalidating the cache is extremely 

important and technologies like Redis provide a good 

publisher-subscriber model that can be used to refresh 

the caches relatively quickly. There are times when 

additional application logic is written to be more 

proactive in looking for changes between the system 

of record and the cache. This doesn’t mean we need to 

retrieve the entire table. It could be something as simple 

as querying for a timestamp like LastUpdatedDateTime 

and accordingly flushing the cache.

	 4.	 Fall back to the system of record: What happens 

when, for some reasons, the cache is down or 

doesn’t return a single record. No matter what the 

case, we cannot fully rely on the cache. There should 

always be logic in the application or the API to 

make a call to the actual source of record in case the 

cache fails. At the end of the data, the cache doesn’t 

guarantee data retention and should never be relied 

upon as the system of record.

Chapter 4  Concepts We Tend to Ignore



89

	 5.	 Be careful with the type of data stored in the cache: 

The general guidelines are not to store important 

data in the system of record and refresh the 

cache from it. However, there are times when it 

might make sense to add some data in the cache 

temporarily, especially data that might not need to 

be stored in the database permanently but might 

make sense for some user interaction temporarily. 

For example, temporary settings based on the 

session information of an authenticated but not 

authorized user, could be directly stored in the 

cache. Since, the data is linked to an anonymous 

user for whom there is no actual record in the 

database, the temporary settings could be written 

into the cache and removed automatically after 

some time. That said, data that is important, costly 

to reproduce, has legal ramifications if lost, as 

well as needed for the accuracy of the business 

transactions should be first saved in the system of 

record and then in the cache.

	 6.	 Cache the smallest objects: The example in point 

No. 1 shows that we started with smaller settings 

and then clubbed them together. Whenever we need 

data from the cache we should be smart about how 

to retrieve it in a way that we get the least amount of 

data needed for our use. This improves the overall 

performance of the application. Even though caches 

are fast reducing the number of round trips to 

the cache, a cluster will significantly improve the 

performance of the application.

Chapter 4  Concepts We Tend to Ignore



90

	 7.	 Do not alter data coherency to reduce the data 

size: Caching the smallest available objects is a 

good idea. However, this doesn’t mean breaking 

an object down to multiple small ones and then 

reconstructing it on the fly. There are some 

challenges with that approach. The actual process 

of combining various small objects might be flawed. 

Sometimes, it could be more expensive in terms 

of performance. One of the common examples 

to compare Memcached vs. Redis performance 

is regarding strings. Memcached doesn’t natively 

support different data structures like Redis does. 

It stores everything as a string. The problem with 

that is that in the real world we may need to store 

an entire data structure in cache. Even though 

Memcached may be mostly faster than Redis on 

retrieving the same strings as it is, it may actually 

be slower in circumstances where Redis might be 

able to retrieve the entire object as it is, compared to 

Memcached where we might have to run a function 

on the fly to convert it to the format we need it in.

�Cached Item Removal
Deleting an item from a cache is as important as adding an item to a cache. 

There are three different ways an object can be removed from the cache.

	 1.	 Expiration

	 2.	 Explicit removal

	 3.	 Eviction

Chapter 4  Concepts We Tend to Ignore



91

Expiration is configurable at different levels. We can provide 

expiration time frames at the cache cluster level. We can also choose to 

enforce expiration time frames per resource. So, for example, any time an 

item is added to the cache it can have an expiration period associated with 

it. Every time the item is updated it will restart the expiration period.

Explicit removal is when we explicitly remove an item from the cache. 

This happens when the item has been changed in the system of record and 

we need to remove the item and add the latest version of that item in our 

caching engine.

Eviction is when an object (mostly the least recently used object) gets 

removed due to lack of space. This could be a situation where we may 

lose objects that may not have actually expired. With second-level caches 

being automatically scalable on commodity-level hardware, these kinds of 

situations are rare but may still occur depending on the architecture and 

the amount of data in the cache. However, this is definitely a challenge 

with write-aside cache strategy or a caching strategy that calls for using a 

data store nearby for quick access. For example, caching in memory on 

a web server would be an example of write-aside cache and anytime the 

cache is full, it will start evicting objects that may not be due for expiration.

Write-aside cache could still be done using a second-level cache in 

the same data center as well as on local cache (caching locally at the client 

machine). Local cache could also mean caching locally at the web server 

level. However, while scaling we need to keep in mind that this will not 

make copies of these objects and will increase the chance of staleness. 

(Refer: Caching in Chapter 3). It’s only good for immutable client-side 

objects that change quite infrequently.

Caching is in itself a very involved topic. While working with clients on 

critical projects we have policies that include, but are not limited to, the 

following:

	 1.	 Data protection especially for important cached data 

like user sessions, shopping cart, mainframe data.

Chapter 4  Concepts We Tend to Ignore



92

	 2.	 Persisting cached data very frequently without 

losing performance benefits.

	 3.	 Publisher-subscriber model to keep the data as fresh 

as possible.

	 4.	 High availability and replication while keeping 

accurate data in the replicated caches.

	 5.	 Prevention from node failures and strategies to 

combat it.

	 6.	 Alternate strategies to identify, resolve, as well 

withstand data loss without degradation of user 

experience.

	 7.	 Reducing costs of high availability.

	 8.	 Graceful degradation while planned upgrades 

and patches to the operating system as well as the 

caching engine and the system.

�Content Delivery Networks
In order to understand the importance of Content Delivery Networks (or 

CDNs) we need to understand why latency is important. A congestion 

window is the limit of data the sender can send into the TCP network 

before receiving an ACK (or acknowledgment) from the receiver. The 

received window (rwnd) is the limit of data that could be accepted by 

the receiver. TCP uses both congestion and a receive window in order to 

prevent congestion in the network. When the packets from the sender or 

the source exceed what the destination (or receiver) can handle, it can lead 

to network congestion. That’s why the protocol introduces the limit.  

Chapter 4  Concepts We Tend to Ignore



93

This limit increases with every single pair of requests (from sender) 

and acknowledgments (from receiver). In order to reach the congestion 

window (cwnd) size of size N, the time taken is calculated using the 

following formula:

Time RTT
N

initial cwnd
= ´

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
úlog2

Here, RTT means Round Trip Time.

Let’s assume we are sending data between San Francisco and 

New York. The round-trip time between the two cities is 42ms. One of 

the ways TCP congestion control happens is by using the TCP Slow-

start strategy. Slow-start can begin with an initial cwnd of 1, 2, 4, or 10 

Maximum Segment Size (or MSS). The MSS happens to be the largest 

amount of data that a device on the TCP network can receive. With every 

acknowledgment (or ACK) the window size will be effectively doubled per 

round-trip time (assuming that the ACKs are not delayed). The process 

in the diagram is a three-way TCP handshake in which the SYN (or 

Synchronize) message is sent from the sender to the receiver, which sends 

the SYN-ACK (Synchronize-Acknowledgment) back to the sender. This is 

how the TCP socket connection is established. Next, if we assume that the 

actual request is made to the server and the server takes about 50ms to 

process the request. We will assume the MSS of 10 (which is the maximum 

allowed size). This means the server can send 14.6KB to the receiver in 

113 ms. With every round trip time this number should effectively double, 

so you can see the data that can come in with the subsequent requests is 

29.2KB and 58.4KB. If the total size of the response from the server was just 

116.8KB we will need approximately 239ms. This looks like a small number 

but is really high when we consider the RTT time between the two cities, 

which is just 42ms and the size of the response is pretty minimal.

Chapter 4  Concepts We Tend to Ignore



94

Latency is a constant and is a fraction of the speed of the light. If we 

assume that we have the best transmission media (out of fiber optics, coaxial 

cables, etc.) and there is no loss of packet due to external reasons, latency 

itself is a big factor in performance of the application. In this case, we only 

assumed that the server takes just 50ms to process the request and prepare 

a response. However, it’s the congestion limits and the way TCP works 

that slowed us down. So, the key learning here is that in order to speed up 

responses for our users, we must make use of servers that are near the user’s 

location. This is where CDNs come to the rescue. See Figure 4-2.

CDNs stores a cached version of the content in multiple geographical 

locations. These are also known as points of presence (or PoPs). There 

are quite a few CDN services that are available out there and there is no 

real need to buy hardware all over the world if the user base is out there. 

However, static content like static html, pdf files, images, and thumbnails 

as well as rich media could be added in a CDN and allow it to serve the 

user from the closest PoP.

Figure 4-2.  TCP slow start between San Francisco and New York

Chapter 4  Concepts We Tend to Ignore



95

�TCP, HTTP/1.1, and HTTP 2
One of the often-overlooked strategies is of optimizing TCP. Here are 

some tips:

	 1.	 Upgrade server kernel to the latest version: Even 

though the MSS or the Maximum Segment Size 

had been increased from 4 to 10 a few years ago, a 

lot of servers (especially the ones that run legacy 

applications) have not been upgraded to take the 

advantage. In order to often take advantage of 

upgrades, we should upgrade the server kernel to 

the latest version. Usually with legacy apps upgrades 

are not that easy. However, if it could be done 

without disrupting any business, it’s completely 

worth it.

	 2.	 Increase the initial congestion size.

	 3.	 Enable window scaling. This increases the receive 

congestion window size. The previous limit used to 

be 65,534 bytes. The current limit is one GB.

	 4.	 Disable slow start after idle. This is important 

because we do not want TCP two have to go through 

the same slow start scenario described above after 

it’s been idle for quite some time.

	 5.	 Use TCP fast open. It allows data to be carried in 

the SYN and SYN-ACK packets and consumed by 

the receiving end during the initial connection 

handshake. This saves up to one full round-trip time 

(RTT) compared to the standard TCP.

Chapter 4  Concepts We Tend to Ignore



96

In case of applications over HTTP 1.1, please consider making some 

other performance improvements discussed below:

	 1.	 Investigate DNS lookups and try to reduce them.

	 2.	 Redirects must be avoided at all costs.

	 3.	 Reduce HTTP requests by using bundling and 

minification.

	 4.	 Critical resources might need to be inline in case of 

a web application. Bundling and minification are 

great for most of the scripts and stylesheets; however, 

sometimes it’s worth sending inline scripts and 

stylesheets for rendering the critical areas of the page 

without which the website may not function at all.

	 5.	 Compress text using GZip.

	 6.	 Optimize images per device. Using the same 

size of images for an iPhone and desktop could 

unnecessary reduce performance.

	 7.	 Add ETags to avoid fetching duplicate content.

	 8.	 Make sure to add an expires header on resources.

	 9.	 Investigate using local storage for stylesheets and 

scripts in case of a web application.

HTTP/2 provides many features that are a huge improvement over 

HTTP/1.1. It solves a lot of problems that were created by the previous 

protocol, and most of the performance hacks suggested above are 

not required for HTTP/2-based applications. Some of the features of 

HTTP/2 are new binary framing, parallel requests, header compression, 

server push, and stream prioritization. Binary framing is allowed such 

that translation from text to binary is not needed, thereby increasing 

performance. The server has the ability to push resources to the client. 

Chapter 4  Concepts We Tend to Ignore



97

That means as long as the client doesn’t specifically bar the server 

from sending data toward it, the server can send additional resources 

to a client for future use. One of the best features of HTTP/2 is single 

connection, which remains open as long as the website is open. This 

reduces the number of round trips. It also allows multiple requests on 

the same connection. This feature is called multiplexing. Prioritization is 

another great feature in which the server can assign dependency levels to 

resources. This way the resources with higher priority will download first. 

It allows interleaving of requests and response messages. HTTP/2 supports 

header compression, which reduces overhead. It’s a matter of time and all 

browsers will support HTTP/2. Currently all major browsers support it over 

HTTPs (not on HTTP though).

�Reverse Proxy
Now that we have talked about caching, TCP, and HTTP, it might be 

worthwhile to discuss Reverse proxy or HTTP accelerators. HTTP 

Accelerators can be used to improve the response time to remote users. 

There are commercially available products that can serve as good 

reverse proxies.

The accelerators act as a forward proxy for multiple HTTP clients.  

By examining the headers of the resources, the accelerator can understand 

which objects can be cached. So, it saves static objects in memory-based or 

disk-based object cache. Whenever the user requests those objects, they had 

retrieved from the cache itself. Even though the accelerator is smart enough 

to cache only the objects that have the required headers (Cache-Control and 

pragma), it could be configured to exclude specific objects from caching.

It makes use of the HTTP header (Last-Modified) to detect if the static 

object is still fresh. If the object has been modified, it will retrieve the latest 

copy of the object and send it to the user. The configuration allows us to 

Chapter 4  Concepts We Tend to Ignore



98

disable specific objects from being cached. We can configure disabling 

caching enforcement by modifying the conditional request from the 

browser. Sometimes for some kinds of static objects, including stylesheets 

and scripts, the browser may send a conditional request to the server. If 

this object is not available in this HTTP accelerator, we can modify the 

request and move the condition so that the server is forced to respond with 

the object that would later be saved in the proxy. We can also configure it 

to enable web server compression. Just FYI, mostly the proxy has a better 

compression than the web server. However, this is just one configuration 

option which is a good one to test before we use it. Other configuration 

options include flushing the cache for troubleshooting purposes. A major 

benefit of a commercial accelerator is the ability to access analytics on 

acceleration statistics.

Most of the time load balancers and HTTP accelerators would be part 

of the same commercial package. This could be either hardware or software 

based, or a combination of it. One of things to note is the use of the reverse 

proxy with an Async non-blocking I/O back end. Unless it’s a legacy app, 

all new applications should use Async non-blocking I/O as it reduces the 

overall overhead. ASP.NET Core has recently picked up a lot on performance 

and the major reason behind that is it’s async-first approach like Node.js.

Sometimes, the reverse proxy may also work with a lightweight server 

like Lighttpd to get cached static content. This way it will reduce the 

number of calls to the back-end server. If you’re using CDNs for all the 

static content, you may not need something like a Lighttpd, but for certain 

applications and business use cases it might make a lot of sense.

�IP Anycasting
When we go to the address bar in a browser and type the name of a 

website, let’ say http://cazton.com, the Border Gateway Protocol (BGP) 

will ensure that the request goes to the Cazton.com server via the best 

Chapter 4  Concepts We Tend to Ignore

http://cazton.com/


99

route through the Internet. Using IP routing tables, IP Anycasting is smart 

enough to serve the user’s request from the closest server topographically 

(not necessarily geographically). Typically, anycast is when a group of 

servers use the same IP address. Anycasting uses an IP address range 

that is advertised in the BGP messages and routers are made aware of the 

topographical path. This way the routers know of which neighbors provide 

the shortest path to the advertised IP address.

The major benefit of this approach is being able to add new servers 

and making the routers aware of the new neighbors that can serve the 

request faster to a certain set of users. This cuts down on latency and 

bandwidth costs and improves user experience drastically. The main 

benefits of this approach are seen when you have regions of high traffic 

and the servers are far apart, including across the major oceans. Apart 

from performance improvement and service reliability, it also balances the 

load and reduces the impact of DoS (or Denial of Service attack). It reduces 

the likeliness of the DoS attack impacting the entire service and reduces it 

to the local server.

�Microservices
Transitioning from monolith apps to services was a logical progression. 

In order to have services or APIs that could communicate with external as 

well as internal systems, it made sense to take a particular component of 

the system and convert it into services. For example, in an e-commerce 

website it makes sense to take the payments functionality and create a 

completely different service that only has one responsibility, which is 

taking care of payments. Similarly, we can create the following services: 

pricing, customer, product, inventory, etc.

As we can see, this allows us to have more flexibility in having the 

services contract with other components within and outside our system. 

This also helps in scaling development and testing efforts. In large 

Chapter 4  Concepts We Tend to Ignore



100

corporations, some of the services could be the responsibility of different 

teams. This has the potential to scale as well. However, if we do not scale 

the System of record, this architecture would not scale beyond the point.

Note P lease refer to Figure 1-2 for more details on SOA with a non-
scalable back end.

In recent years, microservices architecture has become very popular. 

Quite interestingly, the SOA was implemented quite differently across 

the industry. Micro services architecture is the natural progression from 

SOA toward a more well-defined architecture that is meant for scale and 

is lightweight. Traditional monolithic apps were hard to scale. At the same 

time, deployment could be a nightmare depending on the size of the 

system. My team and I have been invited to work on monolithic systems 

that took days of preparation for the deployment teams and would take 

hours for successful deployment. Quite unfortunately, this would mean 

deploying new features in a product every few weeks a very huge cost. 

Sometimes, this would mean being able to deploy only three to four 

times a year. With the microservices architecture, the same system would 

eventually be deployed faster and partial updates to the system could 

happen even a few times a day.

To be fair to SOA, it wasn’t that the architecture was insufficient, it 

was really the way it was implemented that some monolithic projects 

became such. For the most part, the industry had to learn from 

the experience of implementing monolithic projects before progressing 

to a more elegant architecture. The reason I call microservices the natural 

progression to SOA is because it is almost like SOA done right. With the 

standardization of the microservices architecture across the industry, the 

DevOps (Development and Operations) tooling has become so much 

better in the last few years: DevOps is a practice that aims to unify the 

software development and operations in order to achieve automation 

and monitoring at all steps of software construction. This would include 

Chapter 4  Concepts We Tend to Ignore



101

testing, integration, and deployment with infrastructure as code. The 

direct benefits of DevOPS include shorter development cycles, increase 

in deployment frequency, partial releases of the system, and a more 

controlled and dependable deployment cycle.

�Why Microservices?
In the last decade, we have witnessed our growth of Internet-enabled 

devices all across the world. Be it cell phones, tablets, desktops, IOT-

enabled devices, the amount of activity on the Web has skyrocketed. This 

means every business that has the potential to grow quickly needs to be 

able to scale according to the usage patterns no matter how unpredictable 

they are. Let’s take an example of an on-demand online library that has 

videos and pictures. In a monolithic architecture, it might be very normal 

to assume that all the videos and pictures would be served from the same 

service. Let’s call the service media service. After some time with the 

increase in number of users, we should be able to add multiple instances 

of the same service in different servers. As you can see, even if we grow the 

business drastically we are able to scale the service using a simple SOA 

architecture for services. See Figure 4-3.

Figure 4-3.  Scaling the Media service that has video, picture, and 
thumbnail functionality

Chapter 4  Concepts We Tend to Ignore



102

Next, the business has grown, and we are asked to display thumbnails 

on all the videos. That will mean changing the media service to add 

certain functionality for the thumbnails. This means that even though the 

video and picture functionality was working correctly, we will still need 

to re-deploy the media service to add the new functionality. Let’s assume 

that we have really long videos. That could mean that scaling the video 

portion is as easy as creating copies of videos close to the users. However, 

imagine the number of thumbnails needed for videos that are about an 

hour long. Depending on the operating system, if the thumbnail size grows 

beyond a certain number, it might mean crossing the limit of files allowed 

in a folder. Scaling the thumbnail is a completely different problem then 

scaling the video.

What about the situation where certain videos are extremely popular? 

In that case, we might need to look into moving such videos on faster hard 

drives. We might need to cache some of these videos as close to the user 

as possible. In the current case we have no other option but to deploy 

the media service as it is everywhere. What if we wrote the Media service 

in a language or framework that gets discontinued or wasn’t async-first. 

The only way to take advantage of a better, faster, async-first language 

would mean rewriting the whole service in a different language. These 

are just some problems with this architecture. To summarize, it’s not just 

a cost problem. It’s a scalability issue. It’s a deployment problem. It’s a 

management problem. It’s a resource allocation problem.

In the micro services model, we develop software applications that 

have independently deployable and modular services that serve a business 

goal. If, we work to solve the same problem using microservices, we would 

have created two different services to begin with: the Video service and the 

Photo service. Let’s assume, that the Video service is written in .NET and 

the Photo service is written in Java. After some time, we could have added 

the Thumbnail service, which could have been written in a completely 

different language like Node.js.

Chapter 4  Concepts We Tend to Ignore



103

In the diagram above (Figure 4-4), we have four versions of Video 

Service (VS1-4) and Thumbnail Service (TS1-4) each and two versions of 

Photo Service (PS1-2).

You can see that the benefit of microservices architecture is that we 

cannot only deploy but also scale the services independently. We can also 

use different languages and frameworks to create these services. System 

architecture is modular and independently deployable; we can now fix the 

problem we had with the videos by caching the videos close to the users. 

The major benefit of that approach is that it would require no change 

whatsoever to the photo service or the thumbnail service. Below you 

can find a very simplified version of the architecture where we can have 

multiple different clients accessing the services (Figure 4-5).

Figure 4-4.  Scaling independent microservices for video, photo and 
thumbnail

Chapter 4  Concepts We Tend to Ignore



104

Another huge problem that comes in the way of continuous delivery 

for monolithic services (not microservices) is versioning. Let us assume 

that after some time, we have users wanting us to parse the data that 

comes from the video and display subtitles. They would also like to listen 

to just an audio file. In the monolithic architecture, we will need to add 

functionality to create an audio file and then consume it via some kind 

of text-parsing functionality that will also have to be a part of the media 

service now. In most of the cases the text parser would be a completely 

different package. What if the video service wants to upgrade to the latest 

text parser version and for some reasons the audio service cannot? The 

media service is still a monolithic service. It’s written in one language and 

it uses shared packages. Even though video and audio are different sets of 

the same service, they are bound to use the same versions of the packages. 

Independent upgrade of package is simply not feasible. The diagram below 

(Figure 4-6) is an illustration of all the different functionalities sharing 

shared packages. The video and audio services are sharing the same 

version of the text parser.

Figure 4-5.  Independently scaled microservices being consumed by 
different types of clients

Chapter 4  Concepts We Tend to Ignore



105

In a microservices-based architecture, we can surely use shared 

packages. However, we also have the flexibility to use different versions 

of the same packages with different services. So in this case we can have 

the video service using Text Parser version 1 and the audio service using 

Text Parser version 2 or the other way around. The great news here is that 

upgrading the package for audio service will, in no way, affect the video 

service. This way we do not have conflicting dependencies, we can do 

independent deployments, we can use multiple technology stacks and 

scale our development efforts. The sole benefit of being able to use multiple 

technology stacks in itself goes a long way in being able to retain talent 

as well as be able to use the latest and greatest technologies to get better 

results. Below you can find a diagram illustrating the same (Figure 4-7).

Figure 4-6.  Media service using the same version of shared packages 
(including the text parser) for the video, photo, thumbnail, and audio 
functionality

Chapter 4  Concepts We Tend to Ignore



106

HTTP is stateless but the application does have needs for statefulness. 

Microservices could be stateful or stateless depending on the application 

architecture. Most systems of scale would most probably have both 

stateless as well as stateful services. In case of a cloud offering like 

Microsoft Azure, we can use Azure Service Fabric that allows us to create 

Stateful as well as Stateless service. Both the services are created similarly 

and have code, config, and data separated out. Based on the need of the 

application as well as the state of it, we can scale all the three components 

accordingly. Stateful microservices have no need for queues and caches 

and have low latency. In case of stateless microservices we need queues, 

caches, and partitioned storage so we can store the application state 

in a scalable fashion. It’s strongly recommended to start with stateless 

microservices and introduce state as described earlier in the book rather 

than looking for an out-of-the-box stateful architecture. This will go a long 

way in making sure that the system is scalable, deployable, and will be 

Figure 4-7.  Microservices architecture showing use of different 
versions of the Text Parser in Audio and Video service

Chapter 4  Concepts We Tend to Ignore



107

flexible enough to newer changes in business needs as well as architecture. 

When in doubt, refer back to the REST principles for creating a scalable 

solution.

�Summary
In this chapter, we discussed some really important concepts including 

Async non-blocking I/O, caching, reverse proxy, CDNs, and microservices. 

This, in no way, is an exhaustive list that you would need for performance 

and scalabilty but are essential concepts setting us for success. 

Microservices architecture has a lot of great benefits for systems of scale. 

Introduction of a combination of reverse proxy, CDNs, and Async non-

blocking I/O reduces the system load, moves static data close to the user, 

improves performance, and makes the system more scalable. Caching 

strategy is very critical for the success of the system. It’s worth spending 

time and devising a cohesive strategy for caching before the start of the 

project and then before every release cycle. This should be done for at least 

the first few sprints. The architect as well as the domain expert needs to 

be involved with developers so they can understand the reasoning behind 

some of the decisions.

Chapter 4  Concepts We Tend to Ignore



109© Chander Dhall 2018 
C. Dhall, Scalability Patterns, https://doi.org/10.1007/978-1-4842-1073-4_5

CHAPTER 5

Relational vs. No-Sql
Quite contrary to what it sounds, No-Sql means Not Only Sql. So far 

in the book we have been assuming that the persistence layer is only 

relational database or a scaled-out version of it. Before we actually talk 

about the architecture using No-Sql databases, it’s worth understanding 

the differences and appreciating the different kinds of No-Sql databases 

out there and understanding the different strengths they bring to the table. 

No-Sql databases are of many different kinds. The name given to the entire 

category of databases is kind of unfair. In my personal experience, some 

very good architects have made the mistake of thinking of Relational and 

No-Sql databases as an either-or, which is not the best way to approach 

architecting systems of scale.

�No-Sql Databases
If you remember the discussion of CAP theorem in Chapter 2, relational 

databases are consistent as well as highly available but lack at partitioning 

(CA from the CAP theorem). In fact, when we start partitioning relational 

databases, we encounter many problems. It’s highly disruptive to shard 

or partition an RDBMS. Depending on the nature of partitioning, we may 

even lose the benefits of a relational model such as schema consistency 

while partitioning. We may need to create and maintain the schema on 

every server. RDBMSs are also hard to scale out and scaling up is in the 

only option without the core properties of ACID (Atomicity, Consistency, 

Isolation, and Durability).



110

On the flip side, No-Sql databases, for the most part, are good 

at Availability and Partitioning (AP from the CAP theorem). No-Sql 

databases are easy to scale out even with commodity-level hardware. 

However, there is a cost to it and that is consistency. In case of a No-Sql 

database, copies of data are stored in different servers. So that means 

any time we update a particular copy for data, the No-Sql database lets 

the application know that the data has been updated. Let’s assume 

we are updating a user’s last name. This will mean that the last name 

will be updated from version 1 to version 2. At this point in time, the 

No-Sql database sends one request each to the other servers where 

the data has been duplicated so as to update those copies of data. This 

would mean that all the copies of the users of records will be updated to 

version 2. However, before these copies are updated, if the application 

makes a request do any of the servers sharing duplicated data, there’s a 

chance of retrieving version 1 of the last name. This is a very simplistic 

example of eventual consistency. Eventual consistency is different than 

transactional consistency. In case of eventual consistency, there is an 

informal guarantee that unless any new updates are made to an item, 

all the reads to that item will eventually return the last updated value. 

In case of transactional consistency, the application will only receive an 

acknowledgment if, and only if, all the copies of the item (in question) 

have been successfully updated to the latest version.

Apart from being able to scale automatically, No-Sql databases are 

very good at holding structured, semi-structured, and unstructured 

data. Structured data is data that has defined length and format. This 

could include phone numbers, email addresses, and mailing addresses, 

etc. Semi-structured data includes XML, JSON, and similar formats. 

Unstructured data includes text and multimedia content like email 

messages, documents (or PDFs), photos, audio and video files, etc. Most 

No-Sql databases are schema-free or schema-agnostic. The reason is that 

they are built for scaling out. The idea is to be able to take schema-agnostic 

Chapter 5  Relational vs. No-Sql



111

documents of data (that can scale out easily) that may be related to each 

other, but the relationships are not enforced by the database schema.

Relational databases use Normalization, which is a technique used to 

provide the following benefits.

	 1.	 To prevent duplication of data.

	 2.	 Enforcing real-life relationships so data is organized 

into logical groupings.

	 3.	 So that changes can be made in one place thereby 

making updates to the data easier and faster.

	 4.	 Preserving the integrity of the data.

Why is all this important for a relational database? 

One reason is because relational databases cannot 

afford to duplicate data as scaling out is hard.

Rather than duplicating the data in individual 

tables, they use the concepts of joins. Using joins, 

the data can now be retrieved from multiple tables 

that are associated via some kind of relationship. 

However, as mentioned earlier, since No-Sql 

databases can scale out easily with commodity-level 

machines, they can afford duplicating data. Highly 

structured data in case of relational databases 

makes sense but also adds some problems that get 

alleviated in case of No-Sql databases.

Highly structured data is usually the result of normalization. There 

is nothing wrong in that. However, it’s not the best for all use cases. 

Highly structured normalized data can make retrieval slow. It’s true that 

normalization makes writes or updates to the database really fast. That’s 

Chapter 5  Relational vs. No-Sql



112

because the updates are happening in the minimum number of tables 

if normalization is done currently. However, imagine cases that are read 

heavy. For example, these include product descriptions, product metadata, 

blog posts, and many such data items. Normalization slows retrieval 

with the increased number of tables involved. It’s not quite uncommon 

to see more than five tables joined in queries. On the contrary, in case of 

No-Sql databases designed properly, it may just be as simple as making 

one query to a document. It’s a very well-known thing that in critical 

systems, the DBAs (Database Administrators) spend a lot of time fixing 

performance problems on queries. Most of it is because of normalization. 

We are not saying that normalization is bad. In fact, it’s something that is 

definitely required, especially in case of highly structured data in relational 

databases. However, there are cases where we really don’t need to have 

highly structured data and denormalization might be the key to speed up 

retrievals.

Why not just use the relational database and denormalize the tables for 

retrieval? Quite interestingly, this happens more often than not. In certain 

systems, there are databases that have normalized tables and considered 

the source of truth. However, there is also a denormalized version of those 

tables for speeding up queries. This denormalized version could be in 

a completely different database and it could be really fast for retrieval. 

Yes, the solution works. However, I’d like for you to consider the fact we 

have created a denormalized database. More clearly, we have created a 

denormalized RDBMS. Bear with me and spell it out. We have created a 

denormalized Relational (Normalized) database management system. 

How does that sound to you? Denormalized Normalized database is just a 

hack. That’s exactly the point. In order to make this work, we will still need 

an offline process that keeps the databases in sync. If that’s the case, we 

could have considered a No-Sql database for this. A better solution would 

be using the relational database for data that needs structure and using a 

No-Sql database for semi-structured as well as unstructured data.

Chapter 5  Relational vs. No-Sql



113

�Types of No-Sql Databases
As stated earlier, there are many different kinds of No-Sql databases. They 

are the following:

	 1.	 Key-Value

	 2.	 Document

	 3.	 Column

	 4.	 Graph

�Key-Value Store
These are schema-less, high-performance data stores with high availability. 

Partitioning, replication and auto-recovery are a given with such data 

stores. As the name suggests, they are simply a hashtable of key-value pairs, 

and the only possible retrieval mechanism is making a query using the 

actual key. In many cases, these are used as a second-level cache for the 

most part. These can vary from using just a string like MemcachedDB, to 

supporting data structures in strings or JSON, as well as BLOBs in case of 

Redis and Riak KV. For the most part these stores have a very simple API 

for the Key-Value pairs. It is getting one key using a simple Get-query or 

multiple keys using a Multi-get, Put-query to associate the value with the 

key as well as Delete-query to remove the entry of the key-value pair.

Figure 5-1 shows a simple Key-Value pair. The key is just a combination 

of the state and the Tax Id. The value is the name of the company. So, if 

someone has to create a web application for searches to be made, it would 

require a drop-down for state and then a textbox for the Tax Id. Once the 

application has both the values, there will be a function to concatenate the 

input after sanitizing it. Once we have the Key (let’s say, TX::AAA), which is 

a combination of the State (e.g., TX) and Tax Id (e.g., AAA), we can get the 

value of my company, which is “Cazton, Inc.”

Chapter 5  Relational vs. No-Sql



114

Key-Value stores are capable of handling a constant stream of 

operations, both read as well as write, with low latency. Key-Value stores 

can also be configured to persist data to the disk if a certain number of 

write operations occur per second. So, for example, if you’d like to persist 

data every second if there are more than 100 writes, in case of Redis, it will 

just be a simple configuration. Redis would allow you to set multiple such 

criteria for persisting data.

Values are stored as a blob. This, thereby, removes the need to index the 

data to improve performance. However, the value is opaque so filtering is 

pretty much not an option. That’s because the value is usually opaque. They 

can be used for saving user profiles, user preferences, session information, 

etc. They can also be used to retrieve product recommendations. One of the 

often-overlooked use case is use of a customers’ profile, preferences, and 

shopping habits to generate a wide array of customized ads and coupons.

Note  Key-Value store are like caches but are more powerful. 
Usually, a cache is just a read-heavy store that works in conjunction 
with a database. However, a Key-Value store is fully capable of 
persisting data to the disk. At the same time, a Key-Value store can 
be used for writes as well as updates. One other distinguishing factor 
is a transactional guarantee. Since caches are stored in RAM, unlike 
Key-Value stores, they are not resilient to server failure and won’t be 
able to provide any sort of transactional guarantees.

Figure 5-1.  A Simple Key-Value Store

Chapter 5  Relational vs. No-Sql



115

When it comes to scalabilty and performance they are probably the 

best. However, a big problem with Key-Value stores is that they lack most 

of the complex functionality compared to any other data stores. One good 

example is of foreign keys. It will have to be introduced by the user manually 

and enforced by the application too. However, it’s a good idea to enforce 

foreign keys via the application, and it’s good to have the database enforcing 

it too. Of course, lack of transaction capability compared to other data stores 

is another issue. But again, the use of Key-Value stores is for some specific 

scenarios and it makes sense to use them considering the low overhead.

The popular Key-Value stores may differ in the way they are 

implemented. For example, MemcachedDB supports simply Key-Value 

pairs and support ordering of keys. Redis is known to maintain data in 

RAM while also persisting it on disk. Couchbase Server not only stores 

data in RAM but is capable of supporting rotating disks. Aerospike has the 

capability to support RAM as well as SSDs (Solid State Drives). The latter is 

used to implement secondary indices.

�Document Databases
These are by far the most popular of No-Sql databases. The document 

databases the values in documents, which are of a particular format like 

XML, JSON, BSON (binary encoding of JSON objects), etc. One of the 

major distinguishing features of a document Database is that it embeds 

metadata for the stored values. That makes it be able to retrieve results not 

just based on the query but also on the contents of the values.

Let’s take an example of a dataset for an e-commerce website. 

Regardless of what format it uses, the data may have some entities like 

User, Order, and Product. In turn, Product may have some other fields 

like userId, model, description, and cost. User may have fields like name, 

email, shipping address, and mailing address. Shipping address in turn 

could have fields like street name, city, state, and zip. If we know the 

userId, we can it to filter the values. However, that is the same in case of 

Chapter 5  Relational vs. No-Sql



116

a Key-Value store. As we discussed above, we should be able to filter data 

based on the contents of the values. So, in case of a user, we can use the 

zip code, (which is part of the content of the value for the key userId) 

as a filter. The resultant data set would be users in a particular zip code. 

How about finding details of all products in the zip code, city, or state? If 

we have the right association, the document Database is fully capable of 

retrieving the resultant dataset. See Figure 5-2.

Partitioning, replication, and auto-recovery are provided out of the box 

with document databases. Since replication is supported, data could live 

in multiple servers easily. In such stores it makes sense to use techniques 

like Map-Reduce (to retrieve data from multiple servers and merge it 

Figure 5-2.  A simple Document Database

Chapter 5  Relational vs. No-Sql



117

before sending it back to the user). Map-Reduce is a specialization of the 

generic strategy split-apply-combine, which is used for data analysis. In 

a distributed environment MapReduce is used in parallel execution and 

is used for processing and generating big data sets. The Map procedure 

usually is responsible for filtering and sorting the data, and the Reduce 

procedure performs a summary operation. Behind the scenes it’s more like 

a three-step process.

First, the Map procedure is applied by each worker node to local 

data. The result is stored in some form of temporary storage. The master 

node ensures that only one copy of redundant data is actually processed. 

Map procedure creates data based on output keys. Second is the shuffle 

phase. The worker nodes redistribute data based on output keys that were 

generated by the map function. Shuffling is done in a way that all data 

belonging to one key must be located on the same worker node. Third, In 

the Reduce phase, worker nodes finally process each group of output data 

(per key) in parallel.

Some of the more popular document databases include MongoDB, 

Couchbase, and CosmosDB. I had to add CosmosDB here even though it’s 

hard to categorize CosmosDB. Given the fact that it’s the only database with 

five levels of consistency support that I know of, this is one database that 

could be a replacement for an RDBMS as well as a No-Sql database. We do 

have one caveat with CosmosDB. Even though we can access it using .NET, 

Node.js, Java, and even MongoDB API, it only runs on Azure. Couchbase 

and MongoDB are very widely used. Recently, Couchbase made news as 

LinkedIn was looking at different solutions and they ended up moving to 

Couchbase where they end up doing around 10M+ queries a second.

�Column-Family Databases
Like relational databases, data is stored in rows and columns in a column-

family Database. However, data is stored in cells that are grouped in 

columns of data. The logical grouping of all these columns is called a 

Chapter 5  Relational vs. No-Sql



118

column family. Column families can create any number of columns either 

statically (via the predefined schema) or at runtime. These columns 

are logically related together and are typically retrieved as a unit that 

correspondence to a real-world entity. The real power of the column-

family Database is in denormalizing data into column families, thereby 

increasing retrieval.

In Figure 5-3, there is a simple column Database with a key that is 

Company Id and the Column Family is Contact Info. As you can see we are 

using the same key as before. However, the data structure of the value (in 

this case Column Family) is a little bit more involved. We have a Company 

Name, Phone Number, as well as an Email. As long as we have the key, we 

can get the exact detail of the family we need. We can also do the same for 

a different column family. Let’s say we have company employees using 

Twitter and we have their Twitter usernames. Since all the tweet data 

is public, if we want to create a column family to store the Twitter data, 

we can. Figure 5-4 shows how that data will be stored. A great benefit of 

this approach is scalability. Column family data can live separately in 

different machines altogether. Querying the key serves as a path to which 

Figure 5-3.  A simple Column-Family Database with Column Family: 
Contact Info

Chapter 5  Relational vs. No-Sql



119

machine the data lives in. For example, if we know the key 112 we can get 

the corresponding Tweet text and TweetId in this case. Keep in mind that 

column families can have lot more fields. We’ve only displayed two fields 

to keep it simple (Figure 5-4).

A layman’s explanation of Column stores is that it’s very similar to 

RDBMS but the data is stored in columns instead of rows. This could 

be very misleading for people coming from a relational database as the 

principles are quite different altogether. Column-Databases have been 

inspired by the Google big table and are meant specifically to work in a 

distributed environment whereas relational databases are not. The benefit 

of having the column families is to be able to retrieve data based on it. In 

a relational database, that will mean a bunch of joins to get the same data. 

However, in this case since the data is already aggregated smartly, we just 

need the key to get the right column within a column family. We can see 

that we won’t need a join to retrieve this data in case of Column-Database. 

Joins require indexing of the entire dataset. Rather than running the query 

on multiple machines separately, we are better off using the key that will 

point us to the exact machine where the data is stored.

Figure 5-4.  A simple Column-family Database with Column Family: 
Twitter

Chapter 5  Relational vs. No-Sql



120

In a column Database, data is stored in a column family, which is 

pretty much the same way it’s stored on the disk. Column-Databases are 

definitely different from document stores. In case of document stores, we 

have the ability to search through the content. This requires indexing the 

entire dataset. Some documents store like CosmosDB index all the data 

by default. CosmosDB also allows the ability to turn off indexing for a 

particular entity.

Let’s take a more involved example that will probably clarify how the 

data is stored in a Column data Database. Assume we have an RDBMS 

with the following data (Figure 5-5):

As we can see there are two column families here: one is specific to 

address and the other to authorization.

Figure 5-5.  A relational database showing a User table

Chapter 5  Relational vs. No-Sql



121

Figure 5-6.  A Column-family database representation of the 
relational data

Chapter 5  Relational vs. No-Sql



122

As you can see above in Figure 5-6, we are using a special key here 

that is a combination of firstName, city, and the userId. The userId alone 

would have been sufficient. However, this makes our data readable for 

the example. If you pay close attention to the data above, it’s actually 

not correctly formatted JSON. In fact, the absence of a comma between 

different properties within a family proves that it’s not JSON. As you can 

see both the column families are flattened in the column-family database 

as they are. This makes the query retrieval very straightforward as well as 

super fast. The same data would look like the table (Figure 5-5) in case of a 

relational database and in case of a document database this data would as 

follows (Figure 5-7):

Chapter 5  Relational vs. No-Sql



123

Figure 5-7.  JSON representation of the Column-family database data

Chapter 5  Relational vs. No-Sql



124

This should clarify the major differences in the representation of data 

when it comes to Column-family database, Document, and relational 

databases. Even though Column-family databases are extremely scalable 

and have fast retrieval, thanks to how they are structured and indexing of 

column families, they are surely not the best data stores for supporting 

connections and relationships natively. Even if you were to create your 

own connections, chances are that they may perform inferior to a graph 

database, document database, and relational data Database.

Google big table, HBase, and Cassandra are examples of column 

Database. Most of the No-Sql databases are actually hybrids of different 

types of No-Sql databases. For example, Cassandra is a hybrid between a 

key-value and a column-Database.

�Graph Databases
Often No-Sql databases are critiqued for not having joins. Do we really 

need joins in a flattened dataset though? Absolutely, not. However, since 

most of us come from a relational background, we are always looking for 

similar paradigms in No-Sql databases. It’s really not that we want joins. 

What we are actually missing is the need for relationships. Even though 

it’s possible, it may not be practical to have relationships in other No-

Sql databases, a graph-based No-Sql database is the best for it. Graph 

databases use a graphical representation instead of rows and columns 

used by relational databases. Another major benefit is that the schema is 

not enforced rigidly either.

Chapter 5  Relational vs. No-Sql



125

All the nodes of the graph correspond to real-world entities. Edges 

specify the relationships between these nodes. Each node knows the 

adjacent nodes. Even with the increase in the number of nodes, the cost of 

a hop (or taking a step from one node to another) remains the same. The 

idea of the graph databases is to specify real world relationships as it is 

and be able to speed up queries including hierarchies and relationships. 

Queries are sped up because there are indices that speed up lookups.

In Figure 5-8, multiple labels have been depicted with some properties 

like rel, since, and id, which show the relationship, start date of that 

relationship, as well as id of that particular relationship. Note, the id 

of the node is the id of the entity and the id of the edge is the id of the 

relationship.

If you were to pay attention to the edges in Figures 5-8 as well as 5–9, 

you will notice that it’s very easy to get the edge data as well as the labels. 

However, in a relational database the only way to get that data would be 

to have a join between at least two different tables, which is surely a costly 

operation. In the real world, this can involve many different kinds of tables. 

As you can see, the relationships in Figure 5-7 are simple relationships 

but the ones in Figure 5-8 depict multiple attributes. Please note that the 

relationship between the nodes is depicted by directional edges. However, 

Figure 5-8.  Graph Database showing multiple entities and 
relationships

Chapter 5  Relational vs. No-Sql



126

Figure 5-9 shows an example of two-way relationships. These are just 

very simple examples. But the value of graph databases in recommending 

things based on interests, behavior on an application, as well as purchase 

history is unprecedented. In such cases, there are a lot more relationships 

between entities like customer to entities like products. Not only that 

the relationships are bidirectional and have a lot more attributes. 

Hence, graph databases make a good candidate for social networks and 

recommendation engines.

As compared to a Key-Value store that is optimized for lookups, the 

graph data store is optimized for traversing data between nodes. Generally 

speaking, lookup would be slower in case of graph database compared 

to a Key-Value store. Note, we are able to create a tree kind of structure in 

a Key-Value pair if we have to. This is usually done by having subsets of 

Key-Value pairs within the immediate parent key, all the way to the root or 

main parent key. However, a graph database is not just capable of having 

a simple tree structure, but it also has actual relationships that are quite 

intertwined, more like a graph. So, if we were to stick to the tree analogy, 

it’s like having a tree with branches and a trunk, at the same time, roots 

Figure 5-9.  Graph Database showing multiple entities, relationships, 
and multi-labeled properties

Chapter 5  Relational vs. No-Sql



127

that connect to other trees in a forest. Some graph databases also end up 

using Lucene behind the scenes that helps them index their data better 

and in certain cases they could end up being as fast as a Key-Value store.

Even though both relational databases and graph data stores are 

capable of handling relationships well, the former are optimized for 

aggregation, but the latter are optimized for connections. This makes 

the queries faster for handling all sorts of relationships because they are 

indexed. However, this doesn’t make Graph databases the end-all and 

be-all database for Master Data Management (or MDM). They are not 

very useful for processing high volumes of databases and since they are 

not optimized for aggregation of data, they are not very good at handling 

queries that span a vast majority of the database. They do have their place 

in a polyglot persistence scenario where they are one kind of database, 

but the primary database may not be a graph database. One thing to 

remember is that a well-designed and optimized RDBMS might be almost 

as good as a graph data store on retrieving relationships, but it’s also good 

at a lot of other use cases that the graph database might not be.

�Full-Text Search Engine Databases
Even though Full-Text Search Engine databases are a specialized form 

of document databases, the way they are designed and the fact that they 

have completely different use cases, makes a case for having a separate 

discussion. As you know that in the document database, it’s really the key 

that’s important. If we know the key, we can get the data we need. If we 

know the value and the subsequent keys within the value, we can also 

get the contents. In a Search Engine though, it’s all about the value. The 

value gets indexed after the Search Engine processes it, using analyzers 

(examines text and generates a token stream), tokenizers (break data into 

lexical units called tokens), and filters (examines tokens and then keeps 

them, transforms them, or discards them). Once the value is indexed we 

retrieve the data we need using the indices.

Chapter 5  Relational vs. No-Sql



128

Full-text search engine databases are optimized to handle textual data, 

and in many different languages. They have a very granular indexing structure 

and have flexible query operations. Every document has a weight (or score) 

attached to it by default. This score can be altered by boosting (discussed 

below) the document higher or lower so it could be displayed accordingly.

A typical indexing process means analyzing the content, creating 

a document, analyzing it using some kind of analyzer, indexing that 

particular document, and adding the index where all indices are stored. 

These are the stages in a search engine:

	 1.	 Acquire content: We get data from different 

sources. The idea of this stage is to make sure we 

remove redundant pieces of data we don’t need. 

For example, if we got data from a website that 

is in HTML, we might want to remove the HTML 

markup.

	 2.	 Build documents: A document is a unit of search 

and has fields with values. For example, if we are 

searching for, let’s say Laptops, on an e-commerce 

website. We will be able to retrieve N (where N is the 

number) laptops provided they exist in the search 

engine. That means we were able to retrieve N 

documents.

	 3.	 Boosting: While retrieving the N documents in No. 

2 above, the search engine would rank them using 

some sort of ranking algorithm. However, during the 

build process we can also rank a document higher 

than others by increasing the boost value. This 

process is called Boosting. For example, if someone 

is searching for “24-inch monitor” and we have a 

27-inch monitor on sale, it makes sense to boost 

the latter so the user can see it in search results. 

Chapter 5  Relational vs. No-Sql



129

Boosting can be done during build as well as during 

retrieval except it’s a little bit more expensive to do it 

during retrieval process.

	 4.	 Analyze document: A text needs to be broken into 

tokens that make sense. For example, we may not 

need to keep the stop words like “a,” “an,” and “the.” 

We can use the built-in Stop Word Analyzer for this. 

We may also want to make sure we tokenize phrases 

together: “passed away”’ and ‘”passed out”’ are 

different than storing tokens ‘"passed,” “away,” and 

“out.” We can use a custom phrase analyzer for it.

	 5.	 Index document: Finally, we can index this 

document and store it in the search engine’s source 

of record, which could be files, databases, and 

eventually a copy of this might also live in the RAM 

just to speed up retrieval.

A good search engine is one that has high recall without sacrificing 

precision. Precision happens to be the fraction of retrieved instances that 

are relevant. Recall is the fraction of relevant instances that are retrieved. 

So, if we were to search for my company name “Cazton, Inc” and we get, 

let’s say 15 results and only 12 out of 15 were relevant to my search then the 

precision is 12/15. However, what if there are total 25 results in the search 

engine that pertain to ‘Cazton, Inc’? That means the recall is just 15/25.

Another important concept is one of an inverted index. It is an index 

data structure storing a mapping from content, such as words or numbers, 

to its locations in a database file, or in a document or a set of documents. 

If you’ve used an index at the end of the book, you know what an inverted 

index is. In a book, we can look for a keyword and it shows a list of all pages 

that keyword is in. In case of search engines, we can use the same logic and 

make our applications easily searchable. Let’s assume we want to find out 

which pages on Cazton.com refer to trainings. In that case, we can use the 

Chapter 5  Relational vs. No-Sql



130

inverted index “training.” A more involved example is show below. Here 

are some of the trainings on Cazton.com

	 1.	 Mastering ASP.NET core with Angular and EF Core.

	 2.	 Mastering Microservices – (Node.js, ASP.NET Core, 

or Java).

	 3.	 Data Science Made Easy.

	 4.	 Scalability patterns training.

Assuming the analyzer gets rid of unwanted characters like ‘-’, ‘.’ and 

‘(’, the index for above data would look like this:

ASP.NET core: {(1,1), (2,3)}

Mastering: {(1,0), (2,0)}

To simplify things, we used numbering. This could have very well been 

the url of the page where the training is listed. Nevertheless, search engines 

are not only important but are the only kind of databases that make perfect 

sense for adding search capabilities in the website. They can be used for 

speeding up searches, creating ranking algorithms, and also some good 

recommendation engines. With the addition of artificial intelligence in 

search engines lately, their scope has become broader. Some of the popular 

search engines are based on Lucene. They are Solr and Elasticsearch. Azure 

search is a search engine in Azure that provides abstractions that make it 

easier for developers without a background in information retrieval to be 

able to add search capabilities to their applications.

�Summary
In this chapter we discussed different types of No-Sql databases. We can 

see that all these No-Sql databases are built for different purposes and 

have different strengths. The problem occurs when we try to use one kind 

of database – be it No-Sql or relational – to take care of all our needs. For 

Chapter 5  Relational vs. No-Sql



131

applications that require a high-scale, it’s important to understand that 

very rarely we can find a use that for which only one kind of database 

would be sufficient. We need to agree that it’s best to find the right database 

for the right problem and be smart about managing data consistency 

across the board. Often times in the enterprise, we see one kind of database 

solving problems it’s not meant to solve. We also find primarily relational 

databases as well as document databases advertised as an end-all and be-

all solutions for almost everything. Sometimes, even the so-called experts 

indulge in this kind of favoritism (or cult following) and even though they 

may be an expert in that particular database, that doesn’t make them a data 

expert or a scalability and performance expert. The rule of the thumb is that 

if there is an expert out there, that guarantees that one of these databases 

will work better than all other databases for all scenarios possible, the only 

thing we can infer from this is that they are not experts.

That said, CosmosDB is a database that provides five different 

consistency levels. Microsoft also supports a .NET, Node.js, Java, and 

a python SDK for Cosmos DB. It runs in Azure and is fully managed. It 

automatically replicates all the data to any number of regions worldwide. It 

provides a wide variety of consistency levels.

Strong consistency: This is an RDBMS-like consistency. With every 

request, the client is always guaranteed to read the latest acknowledge 

write. However, this is slow, and in order to use this the Cosmos DB 

account cannot be associated with more than one region.

Bounded staleness: This level guarantees that the reads may lag 

behind by at most x versions of the document or a certain time interval by 

the client. For example, if the client sets x=2, the user will be guaranteed 

to get a document no later than the last two versions. It is the same with 

time. If the time is set to five seconds, every five seconds the resource 

will be guaranteed to have been written to all replicas to make sure that 

subsequent requests can see the latest version.

Chapter 5  Relational vs. No-Sql



132

Session: This is the most popular of all, and as the name suggests, 

is scoped to a client session. Imagine someone added a comment on a 

product on an e-commerce website. The user who commented should 

be able to see it; however, it will take some time before other users on the 

website can see it too.

Eventual: As the name suggests, the replicas will eventually converge 

in absence of any additional writes. This happens to be the one with the 

weakest read consistency but the fastest of all options.

Consistent Prefix: By selecting this option, you ensure that sequence of 

writes is always reflected during subsequent reads.

The fact that CosmosDB is in Azure and provides guarantees of 15ms 

writes and 10ms reads, it’s worthwhile to use it for most applications of 

scale. We’ve had great experience implementing systems of scale at our 

customers. However, this is for a specific customer base that has either 

moved fully to Azure or is on its way.

Chapter 5  Relational vs. No-Sql



133© Chander Dhall 2018 
C. Dhall, Scalability Patterns, https://doi.org/10.1007/978-1-4842-1073-4_6

CHAPTER 6

Polyglot Persistence
So far, we have seen that no single database, be it Sql or No-Sql, has been 

able to satisfy all the business needs. Prior to mass flooding of the world 

with mobile devices (cell phones and tablets) and even IoT devices, it 

might have been fine to use a relational database for most applications. 

However, the advent in social media and the ever-increasing number of 

users have led to polyglot persistence being the panacea for scalability. In 

Figure 3-10, we had arrived at an architecture that could scale most of the 

business applications. We had created a scalable set, and we displayed two 

sets that were being fed traffic by a system-level redirector.

The architecture successfully got rid of all single points of failures and 

has the potential to scale to millions of users a day and be able to store an 

incredible amount of data. However, the architecture still has a constraint 

that the system of record happens to be an RDBMS. We will now continue 

our journey toward creating an architecture that is overall better; more 

scalable; has higher performance; is easy to use and understand; and quite 

surprisingly, overall much cheaper.

�Offline Processing
One of the often-ignored techniques in architecture is offline processing. 

Imagine going on an e-commerce website, getting your cart ready, and 

adding the payment information. Let’s assume you are a trusted customer. 

Imagine having issues with the payment service. This could be resolved in 



134

real time and may take forever. What if the real-world issue takes 20 minutes? 

Would you want the customer to keep retrying for 20 minutes? Chances of 

losing the customer are high. A different workflow instead could be storing 

the customer’s order as well as the payment information (assuming your 

system is legally compliant to do that) and providing him with a customer 

order. Once the payment problem is resolved, there could be two options. 

Depending on the legislation of the place your business runs in, it might 

allow you to accept the payment or it might mean we might have to send an 

email to the customer to verify something like a security code of the credit 

card before the actual order is processed.

This is just one example of taking a workflow offline and making the 

customer’s problem ours. In simple terms, whatever we can do to make 

sure that the customer has a phenomenal experience on the application 

or the website, that’s the key to success. So, one of the rules of thumb my 

team has is to gauge if anything could be made offline, without sacrificing 

any user experience. It’s important to consider user experience though. 

We should never make something offline just for the sake of it. Let’s take 

an example of a unit of work. A unit of work is a very commonly known 

pattern. It’s used to group one or more operations in a single transaction. 

A good example would be transferring money from a checking to savings 

account. If some money is withdrawn from the checking account but never 

makes it to a savings account, that will be a big problem. So, it makes sense 

to add them to the same unit of work. This way we can we rest assured 

that the transaction will either succeed or fail as a whole but won’t bring 

inconsistency in data.

Sometimes, architects and developers go overboard with the idea of 

using unit of work pattern and that might mean using it incorrectly. I like 

to ask this question in my presentations worldwide and, not surprisingly, 

90% of the time I get the wrong answer. The question is simple. If there is 

a login functionality on a website that has two distinct calls to the API, do 

they fall under the same unit of work? Step 1 is creating the login via the 

API. Step 2 is sending out the email. It’s human to think of this as a unit of 

Chapter 6  Polyglot Persistence



135

work but it’s impractical. The reason even smart developers get this wrong 

sometimes is because they think of the scenario where if the email didn’t 

go out, the user should not be allowed to log in. This is definitely a good 

way to look at it. However, if this is part of the same unit of work we have a 

problem. Let’s assume the email is down for 10 minutes. That means the 

user will try to keep creating the same username over and over again for at 

least 10 minutes. Chances of him leaving the website are high.

However, if they are both different transactions, it works perfectly 

fine. The user creates an account on the website and can go do other 

things. The email service resumes and he gets an email. There needs 

to be an offline queue that is tracking the requests in case of the email 

service or an offline process checking the database for new registrations 

and making sure emails have been sent out. In my personal experience, 

offline checks are mostly just considered good to have, but in reality they 

are very essential for systems to work well. In distributed systems, we can 

always expect things to not work. We should expect service, databases, 

third-party APIs, and every single component to fail. That’s why we need to 

have a background process that makes sure the system functions properly 

and the data is coherent. Depending on the programming language we 

choose, there are many different asynchronous messaging frameworks 

that are available in today’s world. Choice of the framework would 

depend a lot on the actual needs of the project as well as familiarity of the 

language in which the framework has been written in. Most commonly 

used ones are Advanced Message Queuing Protocol, Message Queuing 

Telemetry Transport, Java Messaging Service, and .NET Messaging Service. 

LinkedIn’s Kafka (open source software) takes message queuing to the next 

level. It has a reactive pub-sub architecture that allows various different 

consumers to process the logic based on the same messages (or events) 

because it publishes these messages to topics and persists them. It scales 

out very easily and has configuration options for reliable messaging. To 

know more about Kakfa, feel free to read my article on it. You can find it at 

https://www.cazton.com/consulting/kafka

Chapter 6  Polyglot Persistence

https://www.cazton.com/consulting/kafka


136

Regardless of what technology we use, it’s important to have a policy of 

offline-first. This means, if parts of a process could be made to go offline, 

we need to investigate the possibility and feasibility of it as a team. By 

reducing the online interaction with the client, we are reducing the risk of 

customer displeasure in terms of failure. That said, critical functionality 

with real-time needs should be made (highly) available to the customer 

and attempts should be made to reduce the response time on it.

�Polyglot Persistence
Polyglot persistence means using multiple kinds of database technologies. 

So far, we have made a case for using more than one kind of database 

technologies. A good way to understand this would be to take an example 

of an e-commerce application. Let’s assume we have an e-commerce 

application, Cazton.com. For now, we can simplify the business by saying 

that it only sells electronic items. A typical user goes to the website and 

searches an electronic item of choice be it a laptop, desktop, a cell phone, a 

hard drive, a RAM, or anything similar.

However, as we know, the home page is also a pretty loaded page. 

With the exception of websites like Google.com, most businesses like to 

display a variety of products on the home page. There is nothing wrong in 

this approach. In fact, it’s also a way to let the customer know what all 

products and services the website offers. However, the problem occurs 

when we wait for an entire page to load before any functionality works. 

What if the user only wants to search for a 24-inch monitor, buy it if the 

price is fair, and leave? He will still have to wait for the entire page to load. 

Depending on the number of images, the actual markup, the stylesheets, 

and JavaScript files, it could take forever. It can even get worse with peak 

load times on the website. So how do we fix this problem?

Chapter 6  Polyglot Persistence



137

First, we need to make sure that the critical styles (CSS files) and the 

critical script (JavaScript files) are made in line with HTML. What’s the 

reason behind this? If you recall, we just discussed a typical user wanting to 

just search for the product he wants to buy and leave, rather than browsing 

through the home page. If we wait for the entire home page to load, we will 

be reducing the customer’s user-experience. That’s why we want to make 

sure that the critical styles and scripts are downloaded with the HTML 

file before we download the rest of the scripts and styles. Think of this as 

having a search button on the home page, ready to go while the rest of 

the page is loading. Second, since our home page usually gets most of the 

traffic, it’s also a great idea to use a CDN as well as cache the static content.

Third, we need to make sure that we use a search engine database for 

the search functionality. What about the dynamic text on the home page that 

comes from a database? We need to make sure that if it is text that does not 

change that often, it’s stored as well as served from a No-Sql database. Why is 

that? We do not want data in a relational database that does not belong there, 

simply because relational database is hard to scale out. So, we need to make 

sure that that the relational database is home to data that is critical to the 

company. Our goal should be to allocate the data smartly (where it belongs 

best) so we delay the relational database from maxing out the capacity.

Isn’t that a simple fix? Can we not just get a server with more RAM and 

hard disk space? Yes, we can. However, beyond a certain number there 

is no real advantage to adding more capacity or memory, and it also gets 

extremely costly. What do we do with the static text on the home page? If 

the text is something that does not change very often, we can use a caching 

database server like Redis. Depending on your app, caching could be done 

on the browser as well as using the second-level cache.

What happens to the images and thumbnails if this is a mobile device? 

Images must be optimized per device. A lot of times we can see that it’s 

the same image and a different stylesheet is used per device. This can 

make pictures look smaller but the mobile device still has to load the same 

image that was created for the desktop. This must be mitigated across 

Chapter 6  Polyglot Persistence



138

the board. Another important thing that needs to be done is to optimize 

the stylesheets such as layout and ensure that paint operations are not 

triggered more often than necessary in the browser. This could be done 

by using simple techniques as hiding the element, making all the changes 

in the DOM (not the render tree), and then making the element visible 

again. This way layout will only be triggered once. If you need to read 

more about this I would investigate Virtual Dom approaches as well as 

frameworks. Since this is not a book about web development, we will not 

get into more details on web performance.

Note I f you’re interested in learning about web performance, feel 
free to check out some web performance techniques on Cazton.com.

Now that our user has made a search for a 24-inch monitor, the Search 

engine will quickly display the results. Here are certain things to note:

	 1.	 The number of items returned by the search engine 

should be set by default for device. For example, if 

you are displaying ten results in the auto-complete 

box for a desktop, you may only want to show six 

results on a tablet and maybe just four for a mobile 

phone user.

	 2.	 Why not just use an RDBMS? There are a few major 

reasons. First, the search engine will scale out easily. 

Second, a Search engine will be faster to respond. 

Third, we want to reduce the load on the relational 

database.

	 3.	 What if we have a 27-inch monitor on the sale and it 

might be priced as much as the 24-inch monitor? We 

would definitely want to boost it up. This means it 

will show up higher in the search results based on the 

Chapter 6  Polyglot Persistence



139

boosting score we provide. This is easier to implement 

in a search engine than a relational database as 

boosting is natively supported in a search engine.

Now that the user has made the selection, we assume that he clicks  

on the 27-inch monitor. This may mean going to a completely new page 

from the home page. Let’s assume the home page is http://Cazton.com 

and the new page is http://cazton.com/monitors/88 where 88 is the id for 

the monitor in question. This page will have some sections. They could be 

product description, comparative products, and comments regarding the 

product. Of course, it may have images as well. Again, the images could 

be served from a CDN. What about the data? There could be hundreds of 

comments. Product descriptions could be really large and may talk about a 

lot of other things including warranties, shipping information, and return 

policy, etc. Our job is to identify what changes often and what doesn’t. 

This will help us decide whether we use a No-Sql or a relational database. 

At the same time, it’s important for us to identify which out of these are 

consistent across the board. For example, the return policy could be easily 

the same across the entire system simply because as a business it makes 

sense to do that. Things that are consistent throughout the system need to 

live in the second-level cache and could be cached on the browser. One 

thing most often overlooked is the aspect of cache failing. Of course, in that 

case we should be pointing to the source of truth. In this case, that could 

be a document database.

We still haven’t talked about comments. Comments are not like 

product description. Product description is a write-once and read-

only kind of scenario. Very rarely should a product description change. 

However, comments could change any time. Even though the actual 

comment that has been uploaded may not change, the list of comments 

is an ever-changing list with new comments coming in any time. A 

product can have zero comments, all the way to hundreds of thousands 

of comments. This is where a lot of architects would add comments in 

a relational database. Bad idea. Why so? Simply, because it’ verbose 

Chapter 6  Polyglot Persistence

http://cazton.com/
http://cazton.com/monitors/88


140

data. The logic behind adding the data in a relational database is that it’s 

transactional so we will able to make sure that the last comment added 

gets retrieved in the next call to the database. In case of a No-Sql database 

that’s not usually the case. It may have session consistency. That means 

the user who created the comment might be able to retrieve it, however, 

the change may take time to get through to all redundant (or replicated) 

servers. This is exactly what’s called eventual consistency. That means 

some users may not see the new comment. This is possible in a high traffic 

website. Let’s ponder this for a moment. How important is comment No. 

439 if the user can see 438 comments before it? Hardly important. This is 

where the business of the company should be looked at before making a 

technical decision. It’s completely fine to make the comments live in a No-

Sql (preferably document database) rather than a relational database. That 

eventual consistency overhead for a very small time affecting a miniscule 

amount of user experience for a very small number of users is nothing 

compared to the elephant in the room that is scaling the RDBMS.

To play devil’s advocate, what if it’s comment No. 2? Assuming 

comment No. 1 was a 1-star comment placed by a company competitor 

and comment No. 2 was going to be a 1-star rating of the product by 

an actual user, this comment could have changed the mind of the 

buyer. Even though it’s highly unlikely, it’s possible that we can get 

into a situation like this. This can be resolved by a No-Sql database 

still. There are a couple of ways. One is that you can make the No-Sql 

guarantee transactional consistent. Some databases provide that option. 

CosmosDB provides that option along with five other consistencies as 

discussed earlier. This will slow down the writes because it will make 

sure that all replicas have the new comment. So, there is a tradeoff but 

it’s possible. Another way is to choose eventual consistency (or even 

session consistency) but then write API and UI logic to either poll the 

new comment or use websockets on the API and observables on the UI 

to make sure the value is always updated. This will provide a very similar 

experience. But the bottom line is that there is no good reason to add 

Chapter 6  Polyglot Persistence



141

the comments to a relational database. The cost of doing that is way 

too high. Remember our goal. We don’t want to delay maxing out the 

relational database for as long as we can.

So now let’s assume the user has read everything about the product, 

compared it with competitive products and read the reviews on page no. 2. 

Now, she wants to buy a product of her choice. When she selects the Add 

to Cart option we can now add the data to a relational database. Why now? 

Simply because order-related data is very important for any business. This 

is data we cannot afford to lose. Remember, the business pays taxes based 

on this data. And everything from adding to the cart all the way to adding 

customer information as well as payment and shipping information needs 

to be in the relational database. What about speed in this case? Security of 

data takes precedence over user experience in this case. Additionally, the 

relational database will be much faster now simply because of the reduced, 

thanks to the caching engine, search engine, and the document database 

taking most of the load so far. Not only do the relational databases provides 

transactional guarantees, they also provide a wide array of functionality 

(more than almost all No-Sql database) including reporting, encryption, etc.

Note  We could have also used transactional consistency in 
CosmosDB for the Add to Cart option, used session consistency for 
the comments, and eventual consistency for the product description 
and related data. This way Cosmos DB could have been a panacea 
for all ills. However, since Cosmos DB only works on Azure, we cannot 
assume that everyone reading the book is going to use Azure. So, 
we will continue to talk in terms of relational and No-Sql databases 
separately. Once we understand the concepts, actual implementation 
is just trivial compared to decision making that’s needed ahead of 
implementation.

Chapter 6  Polyglot Persistence



142

In Figure 6-1 above, an attempt has been made to compare the 

different databases on the criteria of scalability and performance as well 

as on the depth of the functionality offered by them. It’s very obvious 

that a simple Key-Value pair store will be the fastest in terms of retrieval 

and hence responsiveness will be high. And since we are just scaling a 

hashtable or a dictionary for that matter, as long as we know which server 

the value is in, we can get there with just one hop. Ordered Key-Value pairs 

or for that matter Key-Value stores like Redis may be just a bit slower but 

are almost as good as the Key-Value stores.

Figure 6-1.  Comparing different databases in terms of scalability 
and performance vs depth of functionality offered by the datababase

Chapter 6  Polyglot Persistence



143

Note  We have previously discussed how Redis could be faster than 
Memcached in certain cases. This graph can change based on the 
actual implementation and the business use case in question. The 
graph assumes we are using these technologies correctly and with 
accurate implementation.

If column families are done right, they could be almost as scalable as 

a Key-Value pair store for the same amount of data. Since column-family 

databases are used for limited business cases, they do a great job scaling, 

better than most databases for the right fit of the business cases.

Search engines are similar in scaling and performance but also limited 

in terms of business use cases. They usually focus on the value whereas 

the document databases focus on the key portions. If you follow releases of 

document databases carefully, you will notice some of them add complex 

search functionality in a few major releases. Why is that? It’s because they 

can add structured (or key-related) searches easily just because of the way 

document databases are constructed but they are missing indices (which 

are created on the values not keys) that could support unstructured or 

semi-structured searches.

Note I n my personal experience, architecting and delivering a 
search solution for a Fortune 100 client, they were using a search 
engine directly from their application. This is when the search engine 
didn’t have a default security add-on that distinguished between the 
role of a user. In short, that meant one rest call to the search engine 
could have deleted all the indices. Even though those indices could 
be re-created it could have taken anywhere from 15–30 minutes 
based on their data, and that would have meant slow user experience 
as the searches would have to fall back on the system of record, 

Chapter 6  Polyglot Persistence



144

which was a relational database. In such cases, the solution is to go 
through an API that directly makes calls to the search engine, which 
is the second tier of servers only accessible to the internal network. 
Not just that, we should make sure that there is only one port open 
through the firewall and that the web server checks for the correct 
rights before making the calls. Lastly, we should also make sure we 
change the default port. Most search engines that get hacked are 
the ones running on default ports (with default admin passwords 
wherever applicable).

Document databases offer the most competition to relational databases 

in terms of functionality. They are almost as good as the relational databases. 

However, they do score really high on performance and scalability. It’s truly 

hard to compare a traditional document database to the modern ones any 

more. Nowadays, modern document databases like Cosmos DB support all 

sorts of consistencies. In fact, when Cosmos DB was launched, it was actually 

called DocumentDB. Since then, it was very clear that Cosmos DB literally 

does everything (in the Cosmos) that a Sql or No-Sql database can do and at 

the same time is available throughout the world on Microsoft’s cloud, Azure, 

and so it made sense to change the name to Cosmos DB.

Relational databases still have their value and will continue to do so. 

Because of the performance of Document databases, sometimes architects 

build systems that may not even have a relational database. That works for 

some business cases where there is a lot of social data that may not be as 

important as e-commerce data. If a company is hosting tax-related, payroll-

specific, health care or e-commerce data, it’s hard to envision a system with 

complete absence of relational database (with the exception of Cosmos DB).  

It makes sense to incorporate a strategy of minimally using relational 

databases. This means we use relational databases only for data that belongs 

there. This should not be misconstrued to mean that all systems will have 

a minimum amount of data in the relational database. There are certain 

Chapter 6  Polyglot Persistence



145

systems that may only make sense to be in the relational database. Due 

to some security policies, data-related restrictions, client contracts, and 

geographical restrictions, there might be cases where the entire data may 

have to be served from a certain quality of data centers that may be centrally 

located and each customer may get its instance of a relational database. This 

might be costly but could scale the way we described the relational databases 

scale. However, the discussion assumes there is a valid case for scaling the 

system and it tries to summarize the different patterns that are possible.

In short, for a system to scale well we need to have the following 

components. In Figure 6-2, as you can see there is a system-wide hash 

table that maps the calls to right place. We have load balancers that direct 

the traffic to the underlying web servers, which are easily horizontally 

scalable. Offline processing is a big component of it and since it has been 

explained before, it has been structured in the diagram in the way caching 

has. Relational databases have been shown to be scaled in the same 

fashion we explained earlier using SANs and database clusters. However, 

if we have the search databases and document databases that are auto-

scalable, along with caching data stores that are auto-scalable too, we will 

rarely reach a point that the relational databases will need to scale beyond 

a certain limited number.

Figure 6-2.  Dhall Architecture: Finalizing the scalable architecture

Chapter 6  Polyglot Persistence



146

This is a very simplified representation of Dhall Architecture, an 

architecture that can scale most of the systems in the contemporary world. 

It’s more conceptual than a full-blown architecture diagram of an actual 

system. For example, security is a concept assumed to be understood and 

for that reason it hasn’t been mentioned here. That does not mean we 

don’t use security, but the focus is only on scalability patterns. Imagine 

something like Netflix. Can it scale using the following principles? Of 

course it can. However, the actual diagram would be quite different. 

It may have more than 700 different microservices. The beauty of the 

conceptual representation above is that if you remember all the concepts 

discussed, you can now create a microservices-based representation of the 

above diagram, tailor it per your needs, and get the benefits of a scalable 

architecture that has high responsiveness. The diagram does not get into 

every single detail that has been discussed earlier but assumes you will use 

the concepts discussed in the book, for example CDNs, wherever necessary.

Note  Dhall Architecture is less of an architecture, but more of a 
thought process. It encompasses all the major concepts and techniques 
discussed in the book. In order to create a truly scalable system 
we need to use principles that are based on optimal utilization of 
resources. First, we need to create units that are independent and use 
the least amount of resources. Next, all we need to do is scale them.

The book is not about microservices but in certain business cases 

microservices make a lot of sense. It’s a good trend in the right direction. 

Except certain instances where architects go a little overboard with it 

(especially on systems that would not need any scale) for the most part 

it’s a trending architecture that pays off both in the short and the long 

run. In fact, because of microservices-based architecture, different 

technology stacks can now be combined to create a scalable architecture. 

Many of my clients have moved to a microservices model after my 

Chapter 6  Polyglot Persistence



147

recommendation just to be able to take advantage of the latest tech that is 

out there while the monolith app is slowly broken down. In certain cases, 

the applications have combinations of Classic ASP pages routing to ASP.

NET Web forms that may route to Java websites. Rather than rewriting 

the legacy applications overnight, it makes sense to move them to a 

microservices model (if it makes sense for the business) and then slowly 

rewrite certain components. In case of Single page applications on the 

Web too, we are witnessing the rise of web components that have the same 

principle of interoperability (as that of microservices on the API layer) on 

the UI. That means if a web component is written in a SPA framework, for 

example, Aurelia, Ember, or Vue, it should be able to work in an Angular 

or a React application. The concept of interoperability and being able to 

scale multiple technologies together is what makes microservices very 

appealing to almost all modern systems.

For microservices to be successful, we need to make sure we have a 

highly successful DevOps practice. We need to make sure we automate the 

build and unit tests from the version control itself. Continuous integration 

and delivery needs to be a must. We need to also automate acceptance 

tests. After we run iterations of all these tests, only then should we submit 

the latest changes for user acceptance testing before the release. User 

telemetry as well as usage monitoring of the system are a must. We need 

to have code metrics and peer code reviews along with architectural 

validation. If possible, we need to have a developer sandbox in a cloud-

based infrastructure with a cloud-based developer and test labs to test 

for failovers as well as scale of the system. Auto-scaling configuration 

must be a part of such a system. Deliberate attempts should be made to 

fail the individual components of a system in dev, test as well as staging 

environment, and none of these attempts should bring the system to a halt. 

A system is only supposed to be unavailable if and only if all services of the 

system go down at the same time. For that matter, geo replication of the 

entire system is also an option and should be tested via automation.

Chapter 6  Polyglot Persistence



148

Microservices architecture requires a lot of discipline and dedication 

in teams. They should be self-managing teams that own as well as are 

accountable for lapses and failures and ready to team up to take the 

right steps in the short as well as the long run. Infrastructure as code or 

a way to provision the entire IT infrastructure via code is very essential 

to create an auto-scale environment. All major cloud offerings have 

automated infrastructure via code and it makes perfect sense to use 

infrastructure configuration that manages the environment automatically. 

For microservices to work, there needs to be a strong core that takes care of 

major and most important functionalities for the company. It needs to be 

part of the company’s DNA to have cross-team collaboration especially in 

terms of DevOps and automation. Sharing ideas across the board becomes 

extremely important so efforts are not being duplicated. There needs to 

be a team of stakeholder architects from every team that communicates in 

a broader form across the teams and work toward mitigating any hurdles 

in the way. Teams have to be truly agile. For someone who’s been working 

Agile and Lean for more than a decade, I feel sorry to say that even now, 

many places just either use Agile as a religion and don’t get the best benefit 

out of it or they just pay lip service to Agile. Over and over again, my team 

has been part of teams where we had to create Agile metrics before we 

doubled, tripled, and sometimes even quadrupled the velocity in the 

teams we worked with. It’s not just about the velocity, it’s about the value 

too. These principles work but it’s important to see them as a whole. When 

we start picking à la carte principles based on our convenience, there is a 

grave threat to the sustainability of what we are delivering. That’s why at 

Cazton, Inc., we do regular training every fortnight for at least couple of 

hours along with software development by embedding our team members 

with the client teams as well as recruiting the top talent for the client.

Microservices models are different for every client and based on a 

lot of different factors. These are your legacy stacks, legacy and current 

software architecture, amount of current as well as anticipated scale, 

business direction and needs, nature of the business, and so on. There 

Chapter 6  Polyglot Persistence



149

is no one size fits all and there never will be. There have been times 

when we have helped customers move from monolithic to microservices 

architecture and are able to successful achieve write times of less than 15 ms  

and read times of less than 10 ms using Cosmos DB on planet scale for 

critical services. In Figure 6-3, an attempt has been to made to depict a 

typical microservices-based architecture from a company that has kiosks, 

call centers, a website as well as stores that bring in customers to buy 

goods. For now, we call the company Cazton.com.

Note  Cazton, Inc is my company and this is a fictitious 
representation. However, the concepts are fully valid and derived 
from actual architectures that are successful in production.

In the Figure 6-3 we have certain core functionality. In this case the 

company has certain physical stores, kiosks, and a huge web presence at 

Cazton.com. We also assume that the company has customer care centers 

that also lead to sales as well as exchanges. Assuming every company has a 

marketing and finance department, all the needed functionality for those 

two departments is present in the core. The core of the company could 

be on-premise or on cloud but is still on some kind of infrastructure as 

code mechanism that guarantees auto-scale as well failover protection. 

The circle around the company’s core is of cloud-enabled services that 

interface between the company’s core as well as third-party companies. 

For examples, Shipping data service interacts with all the third-party 

shipping companies to make sure shipment happens on time as promised. 

In the diagram you can only see one shipping company. This is by design 

to reduce redundancy. Similarly, if the pricing changes it needs to change 

in all third-party outlets. These could be websites that display deals and 

subscribe to the pricing service.

Chapter 6  Polyglot Persistence



150

Note H ere’s a link to a case study of a successful microservices 
implementation involving Cazton, Inc on Microsoft.com.  
https://customers.microsoft.com/en-us/story/elkjop-
retailers-azure. For more curious readers this link has more 
details: https://www.cazton.com/blogs/executive/
microservices-success-story

Figure 6-3.  A microservices architecture with a strong core on-
premise or on cloud, surrounded by core auto-scalable services that 
are cloud enabled, and third-party services

You might be wondering that this is a completely different depiction 

than the one in Figure 6-2. Even though they might look very different, they 

are actually very complementary and work together very well. In Figure 6-2 

we have the app servers. They could be used either for the application server 

or as the web server. They could also be used for an API server that hosts 

a Web API that is a REST-based HTTP service. Cazton.com, the physical 

stores, kiosks, as well as the customer care centers may be very well talking 

to the same web API that is on auto-scale. Those APIs could be redirected 

Chapter 6  Polyglot Persistence

https://customers.microsoft.com/en-us/story/elkjop-retailers-azure
https://customers.microsoft.com/en-us/story/elkjop-retailers-azure
https://www.cazton.com/blogs/executive/microservices-success-story
https://www.cazton.com/blogs/executive/microservices-success-story


151

to a search database, caching engine, document database, or a relational 

backend as per the need. We can also create the cloud-enabled APIs and 

scale them in the same fashion as Figure 6-2 architecture. Finally, it’s all 

about interactions and making sure we don’t end up creating circular 

references and duplicating the work. Any service that gets hammered more 

than others could be scaled out separately and easily with the microservices 

model. We can always scale back the service when the need is over.

One of the best ways to auto-scale is by configuring a certain number 

of CPU and RAM usage on the server. For example, when 60% of the system 

resources are being utilized due to an increase in load, it might be time to 

spawn off another server. Any time the overall systems resources are being 

used less than 30% it might be time to now scale back the additional server 

that was just spawned off. This technique assumes that we already have a 

highly redundant scaled out topology of servers that is auto-scalable. This 

is just a simplified version of auto-scale and does not in any way represent 

the entire strategy.

�Summary
Even though we have reached the end of the book, we have just began 

understanding how to scale systems to perfection. Scaling a system is surely 

a science but science could be misleading. If someone creates code that can 

handle one hundred thousand users per server, in theory, he would need 

a million servers to handle a billion users. That may not be true at all. If the 

developer writes code that doesn’t scale out of one server, it may never be 

able to serve users correctly. At the same time, if someone can optimize the 

code, use different kinds of databases discussed in the book, be mindful of 

which parts to scale, and use the microservices model effectively, he may be 

able to scale to a billion users with even one hundred servers. Scaling is an art 

as well as a science. Usage patterns along with artificial intelligence are the 

keys to creating an auto-scalable system. However, before getting there, there 

is a lot of meticulous and disciplined work that needs to be done at all levels.

Chapter 6  Polyglot Persistence



152

One of the big reason behind my success as an architect has been 

the continued hands-on approach I have lived with. Architects who lose 

the hands-on touch may be prone to making error-prone architecture 

decisions. No matter how much time I spent learning on a daily basis 

both at work and outside work, having the right team members as well as 

growing the team have also been big reasons behind my success. Scaling 

systems is almost impossible if the entire team is not educated timely 

about the pros and cons of the decisions. Building a truly scalable system 

comes at a huge learning curve and failures could prove very costly. 

Training the resources in the fundamental of scaling is just a beginning. 

There is a lot more guidance, supervision, as well as constant mentoring 

that is needed to make a team truly successful in a creating highly 

responsive scalable systems. The patterns discussed in this book are some 

of the most important patterns in the contemporary world. There are wide 

arrays of other architectures that haven’t been discussed intentionally as 

they are the right fit for certain use cases. However, I hope, by now, you 

understand that more than the patterns, it’s the principles used to arrive at 

those patterns that are important.

We all have unique problem solvers in us. The great thing about 

technology is that we amaze ourselves with newer ways of solving the 

same problems. Even though education, experience, and intellect help us 

solve a lot of problems, it’s really the drive and passion that differentiates 

our solution from an average one. Individual problems are easy to solve 

but systems of scale require tremendous thought process and timely 

action. With this book an attempt has been made to consolidate major 

solutions that already exist in the industry so that it can help executives 

and architects make sound decisions for their projects. At the same time, 

for beginners and intermediate level developers, this could be the start to 

know what to do and even more importantly, what not to do. Hope this 

book helps make you and your team successful.

Chapter 6  Polyglot Persistence



153© Chander Dhall 2018 
C. Dhall, Scalability Patterns, https://doi.org/10.1007/978-1-4842-1073-4

Index

A
Activity data, 86
Age-based/balanced (least-used) 

strategy, 68
API cache, 84
Async non-blocking I/O

API calls, 79
architectural principles, 82
C#, 81
disadvantage of Node.js, 80
Fibonacci series, 79
file system access, 78
hardware resources, 77
.Net core, 81
Node.js application and 

computation-intensive 
jobs, 80–81

real-world experiences, 80
traditional frameworks blocks, 79
web frameworks, 78

Atomicity, Consistency, Isolation, 
Durability (ACID), 63

Availability, 13

B
Border Gateway Protocol (BGP), 98
Brewers’ Theorem, 30

C
Cache-Control, 40
Caching

advantages, 83
API cache, 84
benefits, 82
data categorization, 85–86
eviction, 91
expiration, 91
explicit removal, 91
guidelines, 86–90
load balancer

database server to update 
resource, 53

second-level server, 54
object cache, 84
Page Cache, 85
product specification, 83
projects and  

policies, 91
query cache, 83
relational databases, 82
session cache, 84
shared cache, 55
types, 83

Cazton, Inc, 129, 149
Column-family  

database, 117–122, 124

https://doi.org/10.1007/978-1-4842-1073-4


154

Consistency, Availability and 
Partition Tolerance (CAP) 
theorem, 30–32

Content Delivery Networks 
(CDNs), 92, 94

CosmosDB, 117
bounded staleness, 131
consistent prefix, 132
eventual, 132
session, 132
strong consistency, 131

Couchbase, 117

D
Database Administrators  

(DBAs), 112
Database partitioning techniques

hardware partitioning
RAID devices, 58
SAN (see Storage Area 

Network (SAN))
horizontal partitioning, 57
table, 55–56
vertical partitioning, 56–57

Development and Operations 
(DevOps), 100

Distributed computing, 33
Document databases, 115–117
Downtime impact, 14

E
Email service, 135

F
Failback process, 42
Fault tolerance, 13
First-come first-served, 68
Full-Text Search Engine  

databases, 127–130

G
Graph databases, 124–127

H
Hash-based strategy, 68
Horizontal scaling, 38

Active-Active configuration, 42
Active-Passive  

configuration, 43
Cache-Control and Pragma, 40
capacity, 41
cost anaysis, 41
Failback process, 42
failure, 42
hardware load balancers, 39
HTTP protocol, 44
RDBMS, 40
session management, 44–47
software load balancers, 39

HTTP 1.1, 96
HTTP/2, 96–97

I, J
IP Anycasting, 98–99

Index



155

K
Kakfa, 135
Key-Value store, 113–115

L
Line of business applications, 67
Load balancer, SPOFs, 51–52
Local Area Network (LAN), 59

M
Mean Time Between Failures 

(MTBF), 12
Mean Time to Repair (MTTR), 12
Merge replication, 64–65
Microservices

architecture, 100
clients, 103
DevOps, 100
e-commerce website, 99
flexibility, 99
HTTP, 106
media service, 101–102
Microsoft Azure, 106
monolithic  

architecture, 101, 104
shared packages, 105
SOA, 100–101
software applications, 102
stateful, 106
system architecture, 103
Text Parser versions, 105–106
thumbnails, 102

video and audio, 104
video, picture, and  

thumbnail, 101–103
MongoDB, 117

N
Normalization process, 56
No-Sql databases

availability and  
partitioning, 110

CAP theorem, 109
column families, 117–122, 124
DBAs, 112
denormalized version, 112
document, 115–117
eventual consistency, 110
Full-Text Search  

Engine, 127–130
graph, 124–127
Key-Value store, 113–115
normalization, 111
RDBMSs, 109
structured, semi-structured, 

and unstructured data, 110
transactional  

consistency, 110
types, 113
users of records, 110

O
Object cache, 84
Offline processing, 133–136

Index



156

P
Page Cache, 85
Performance, 12
Polyglot persistence, 71

applications, 147
app servers, 150
auto-scale, 151
Cazton.com, 149–150
column families, 143
comments, 139
Cosmos DB, 140, 149
critical styles and scripts, 137
data security, 141
document databases, 144
e-commerce application, 136
eventual consistency, 140
Google.com, 136
images and thumbnails, 137
24-inch monitor, 138
27-inch monitor, 139
Key-Value stores, 142
microservices, 146–148, 150
No-Sql database, 140
order-related data, 141
product descriptions, 139
products and services, 136
RAM and hard disk space, 137
Redis, 137
relational databases, 144–145
return policy, 139
scalability and performance vs. 

depth of functionality, 142
scalable architecture, 145
search engines, 137, 143

security, 146
shipping data service, 149
stylesheets, 138

Pragma, 40

Q
Query cache, 83

R
Redundant array of independent 

disks (RAID), 58, 60
Reference data, 85
Relational Database Management 

Systems (RDBMSs), 47
horizontal partitioning

age-based/balanced 
strategy, 68

first-come first-served, 68
hash-based strategy, 68
line of business  

applications, 67
overlapping data, 70
round-robin strategy, 68
value-based strategy, 68

horizontal scaling
merge replication, 64–65
replication types, 63
snapshot replication, 65
transactional  

replication, 63–64
web servers, 66

normalization, 57
SAN, 61

Index



157

system-level redirector, 74
unit of scale, 73
vertical partitioning

BlogPost table, 70
colocate tables, 71
disadvantages, 72
polyglot persistence, 71

Reliability, 12
Replications

merge, 64–65
snapshot, 65
transaction, 63–64

Repository pattern, 29
REpresentational State Transfer 

(REST) principles, 7
caching, 8–9
client–server, 7–8
code on demand, 10
layered system, 9
stateless, 8
uniform interface, 10

Resource data, 86
Responsiveness, 13
Reverse proxy, 97–98
Round-robin strategy, 68
Row splitting process, 57

S
Scalability, 11
Scaling, 2

background, 2–6
horizontal (see Horizontal 

scaling)
multi-threaded system, 34

response times, 6–7
vertical partitioning, 36–38
vertical scaling, 35–36

Scaling out, 11, 38
Scaling up, 11, 35
Session cache, 84
Single point of failure  

(SPOF), 13, 25
App servers, 74
description, 21
database and load  

balancer, 51–52
SAN, 62
shared cache, 74

Snapshot replication, 65
Storage Area Network (SAN)

arrays, 60
benefits, 60–61
DB server, 62
fabric layer, 59
host layer, 59
RDBMS, 61
storage layer, 60
switches, 59

T, U
TCP optimization, 95
Theory

access management, 17
deployment, 17
fault tolerance, 16
performance and scalability, 16
potential problems with 

architecture

Index



158

cost, 22–23
increased out-of-process 

calls, 18–19
performance, 19–20
SPFs, 21

speed of development, 16
testability, 16

Transactional replication, 63–64

V
Value-based strategy, 68
Vertical scaling, 11

W, X, Y, Z
Web servers, 66
Weighted Scheduling  

Algorithm, 39

Theory (cont.)

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Introduction
	Scaling – An Art and a Science
	Background
	Response Times: What Are We Aiming For?

	REST Principles
	Concepts
	Theory

	Chapter 2: Scaling – An Art and a Science
	CAP Theorem
	Fallacies of Distributed Computing
	How to Achieve Scaling
	Step 1: Getting Started
	Step 2: Vertical Scaling
	Step 3: Vertical Partitioning
	Step 4: Horizontal Scaling

	Conclusion

	Chapter 3: Scaling – Advanced Concepts
	Caching
	Understanding Partitioning
	1. Vertical Partitioning
	2. Horizontal Partitioning
	3. Hardware Partitioning

	Hardware Partitioning
	RDBMS Horizontal Scaling
	RDBMS Horizontal Partitioning
	RDBMS Vertical Partitioning
	Set – A Unit of Scale
	Conclusion


	Chapter 4: Concepts We Tend to Ignore
	Async Non-Blocking I/O
	Caching
	Data Categorization
	Caching Guidelines
	Cached Item Removal

	Content Delivery Networks
	TCP, HTTP/1.1, and HTTP 2
	Reverse Proxy
	IP Anycasting
	Microservices
	Why Microservices?

	Summary

	Chapter 5: Relational vs. No-Sql
	No-Sql Databases
	Types of No-Sql Databases
	Key-Value Store
	Document Databases
	Column-Family Databases
	Graph Databases
	Full-Text Search Engine Databases

	Summary

	Chapter 6: Polyglot Persistence
	Offline Processing
	Polyglot Persistence
	Summary

	Index



